
15 Complex arithmetic primitives

GAUSS1 ESTABLISHED THE MODERN THEORY OF NUMBERS,
GAVE THE FIRST CLEAR EXPOSITION OF COMPLEX NUMBERS,

AND INVESTIGATED THE FUNCTIONS OF COMPLEX VARIABLES.

— The Columbia Encyclopedia (2001).

Apart from Fortran and symbolic-algebra systems, few programming languages support complex arithmetic. The
1998 ISO C++ Standard adds a standard header file, <complex>, to provide a complex data-type template, and pro-
totypes of complex versions of a dozen or so elementary functions. The 1999 ISO C Standard goes further, offering
a standard header file, <complex.h>, and a new language keyword, _Complex. When <complex.h> is included, the
name complex can be used as a synonym for the new keyword, allowing declaration of objects of type float com-
plex, double complex, and long double complex. The header file declares nearly two dozen function prototypes for
each of those three data types.

The C99 Standard also specifies a built-in pure imaginary data-type modifier, called _Imaginary, and a new key-
word, _Imaginary_I, representing the constant i =

√−1 as one solution of the equation i2 = −1. The <complex.h>
header file defines macro synonyms imaginary for the type and I for the constant. However, the Standard makes
the imaginary type optional: it is available if, and only if, the macros imaginary and _Imaginary_I are defined. If
the imaginary type is not supported, then I is defined to be the new keyword _Complex_I, which has the value of
the imaginary unit, and type of float _Complex. Because of its optional nature, we avoid use in the mathcw library
of the imaginary type modifier; the complex data types are sufficient for our needs.

The IEEE Portable Operating System Interface (POSIX) Standard [IEEE01] requires the same complex arithmetic
support as C99, but defers to that Standard in the event of differences.

Annex G of the C99 Standard contains this remark:

A complex or imaginary value with at least one infinite part is regarded as an infinity (even if its other part is a NaN). A
complex or imaginary value is a finite number if each of its parts is a finite number (neither infinite nor NaN). A complex or
imaginary value is a zero if each of its parts is a zero.

That first statement is surprising, because it implies different computational rules that might ignore, or fail to propa-
gate, the NaN. That is contrary to the usual behavior of NaNs in the operations and functions of real arithmetic, and
in this author’s view, likely to be more confusing than useful.

The C99 Standard requires implementations of the complex data type to satisfy this condition [C99, §6.2.5, ¶13,
p. 34]:

Each complex type has the same representation and alignment requirements as an array type containing exactly two elements
of the corresponding real type; the first element is equal to the real part, and the second element to the imaginary part, of the
complex number.

The mandated storage layout follows the practice in Fortran, and means that, in C99, a complex argument passed by
address can be received as a pointer to a two-element array. That simplifies interlanguage communication.

The C89 Standard adds support for struct return values, and the C99 Standard allows complex return values
from functions. However, the C language has never permitted arrays to be returned from functions, nor does it
support operator overloading. The only solution seems to be implementation of the type as a struct instead of
an array. Otherwise, it is impossible to retrofit full support for complex types into older C implementations without
modifying the compiler itself.

1The German scientist Carl Friedrich Gauss (1777–1855) was one of the most influential mathematicians in history, with important contribu-
tions in algebra, astronomy, complex analysis, geodesy, geometry, magnetism, number theory, numerical quadrature, probability, statistics, and
telegraphy. The unit of magnetic induction is named after him. He was a child prodigy, a mental calculating savant, and a polyglot. He also
invented the heliotrope, a device for using mirrors to reflect sunlight over long distances in land surveying.
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442 Chapter 15. Complex arithmetic primitives

For that reason, the complex-arithmetic primitives that we describe in this chapter take a different approach:
when a complex function result is required, it appears as the first argument. The function is then declared to be of
type void, and the code guarantees that the result argument can overlap with an input argument, because that often
proves convenient in a chain of complex-arithmetic operations.

In addition, to avoid collisions with the C99 function names, we use prefix letters cx instead of the standard prefix
letter c. Thus, our cxabs() corresponds to C99’s cabs().

Our implementation of support for complex arithmetic then provides a completely portable set of functions. When
the compiler can support the C99-style extensions, as indicated by the compile-time definition of the standard macro
__STDC_IEC_559_COMPLEX__, it is easy to provide the new functions as wrappers around calls to our own set. Al-
though the C99 Standard requires the enabling macro to be defined by the language, at the time of writing this, some
implementations that claim at least partial support of that Standard require <complex.h> to be included to have the
symbol defined. That is backwards, because the symbol should indicate the availability of the header file, not the
reverse. Our code caters to the problem by using instead a private compile-time symbol, HAVE_COMPLEX, to enable
code that references the complex data type. The <complex.h> header file is then expected to be available, and the
mathcw library version of that file, complexcw.h, includes the standard file, and then declares prototypes for our
additional functions.

At the time of writing this, the GNU gcc and Intel icc compilers do not permit combining the complex modifier
with decimal floating-point types. Compilation of the complex decimal functions is therefore suppressed by omitting
them from the decimal source-file macros in the mathcw package Makefile.

In the following sections, after we define some macros and data types, we present in alphabetical order the dozen
or so primitives for portable complex arithmetic, along with their C99 counterparts.

15.1 Support macros and type definitions

To simplify, and hide, the representation of complex-as-real data, we define in the header file cxcw.h public types
that correspond to two-element arrays of each of the supported floating-point types:

typedef float cx_float [2];
typedef double cx_double [2];
typedef decimal_float cx_decimal_float [2];
typedef decimal_double cx_decimal_double [2];
typedef long double cx_long_double [2];
typedef __float80 cx_float80 [2];
typedef __float128 cx_float128 [2];
typedef long_long_double cx_long_long_double [2];
typedef decimal_long_double cx_decimal_long_double [2];
typedef decimal_long_long_double cx_decimal_long_long_double [2];

Unlike Fortran, which has built-in functions for creating a complex number from two real numbers, C99 instead
uses expressions involving the imaginary value, I. That value is defined in <complex.h> as a synonym for either the
new keyword _Imaginary_I, if the compiler supports pure imaginary types, or else the new keyword _Complex_I.
To clarify the creation of complex numbers from their component parts, the header file complexcw.h defines the
constructor macro

#define CMPLX(x,y) ((x) + (y) * I)

that we use in the remainder of this chapter. That header file also defines the macro

#define CTOCX_(result,z) CXSET_(result, CREAL(z), CIMAG(z))

for converting from native complex to the complex-as-real type fp_cx_t.
Our C99 complex functions use a new type, fp_c_t, for floating-point complex data. It is defined with a typedef

statement to one of the standard built-in complex types.
The header file cxcw.h provides a few public macros for inline access to the components of complex-as-real data

objects, and their conversion to native complex data:
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#define CXCOPY_(z,w) CXSET_(z, CXREAL_(w), CXIMAG_(w))
#define CXIMAG_(z) (z)[1]
#define CXREAL_(z) (z)[0]
#define CXSET_(z,x,y) (CXREAL_(z) = (x), CXIMAG_(z) = (y))
#define CXTOC_(z) CMPLX(CXREAL_(z), CXIMAG_(z))

We use them extensively to eliminate explicit array subscripting in all of the complex functions.
Experiments on several platforms with multiple compilers show that code-generation technology for complex

arithmetic is immature. The simple constructor function

double complex
cmplx(double x, double y)
{

return (x + y * I);
}

can compile into a dozen or more instructions, including a useless multiplication by one in the imaginary part. With
high optimization levels, some compilers are able to reduce that function to a single return instruction, when the
input argument and the output result occupy the same registers.

For the common case of conversion of fp_cx_t data to fp_c_t values, we can use the storage-order mandate to
reimplement the conversion macro like this:

#define CXTOC_(z) (*(fp_c_t *)(&(CXREAL_(z))))

Tests show that our new version eliminates the useless multiply, and produces shorter code.
On most architectures, access to the imaginary or real parts requires only a single load instruction, and the as-

signments in CXSET_() can sometimes be optimized to two store instructions, and on some platforms, to just one
double-word store instruction. The conversion to native complex data by CXTOC_() can often be reduced to two store
or register-move instructions, or one double-word store instruction.

Because most of the functions defined in this chapter are short and time critical, we use the underscore-terminated
macros to get inline code. For slower code that requires function calls and allows debugger breakpoints, any of the
macros that end with an underscore can be replaced by their companions without the underscore.

15.2 Complex absolute value

A complex number z = x + yi can be represented as a point in the plane at position (x, y), as illustrated in Figure 15.1
on the following page. The notation x + yi is called the Cartesian form. Using simple trigonometry, we can write it in
polar form as

z = r cos(θ) + r sin(θ)i,
= r exp(θi), polar form,

where r is the distance of the point (x, y) from the origin (0, 0), the angle θ is measured counterclockwise from the
positive x axis, and the exponential is obtained from the famous Euler formula for the imaginary exponential:

exp(θi) = cos(θ) + sin(θ)i, Euler formula.

The combination of trigonometric functions on the right-hand side is so common that many textbooks give it the
name cis(θ). In this book, we prefer the exponential form on the left-hand side.

The substitution θ = π in the Euler formula produces

exp(πi) = cos(π) + sin(π)i
= −1 + 0i
= −1.
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Figure 15.1: Cartesian and polar forms of a point in the complex plane. The angle θ is positive when measured
counterclockwise from the positive x axis.

That can be rearranged to produce the Euler identity that connects the two most important transcendental numbers
in mathematics with the complex imaginary unit and the digits of the binary number system:

eπi + 1 = 0, Euler identity.

The absolute value of a complex number x+ yi is the Euclidean distance of the point (x, y) from the origin: |z| = r =√
x2 + y2. Because the standard hypot() function already provides that computation, the C99 Standard mandates

use of that function, or equivalent code:

fp_t
CXABS(const fp_cx_t z)
{ /* complex absolute value: return abs(z) */

/* WARNING: this function can overflow for component magnitudes
larger than FP_T_MAX / sqrt(2): rescale carefully! */

return (HYPOT(CXREAL_(z), CXIMAG_(z)));
}

No special handling of Infinity and NaN components in the complex number is needed, because HYPOT() does that
work for us.

The commented warning about possible overflow is significant, because the real function family ABS() is never
subject to overflow. Whenever an algorithm requires the complex absolute value, it is essential to provide suitable
scaling to prevent premature overflow.

The code for the C99 complex functions, and their function prototypes, is bracketed with preprocessor condition-
als that emit code only if HAVE_COMPLEX is defined. However, we omit those conditionals in the code presented in
this book.

With a few exceptions where efficiency is imperative, and the code is simple, we implement the C99-style func-
tions in terms of our portable functions, as here for the complex absolute value:
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fp_t
CABS(fp_c_t z)
{ /* complex absolute value: return abs(z) */

/* WARNING: this function can overflow for component magnitudes
larger than FP_T_MAX / sqrt(2): rescale carefully! */

fp_cx_t zz;

CTOCX_(zz, z);

return (CXABS(zz));
}

15.3 Complex addition

The addition operation for complex numbers is simple: just sum the real and imaginary parts separately:

void
CXADD(fp_cx_t result, const fp_cx_t x, const fp_cx_t y)
{ /* complex addition: result = x + y */

CXSET_(result, CXREAL_(x) + CXREAL_(y), CXIMAG_(x) + CXIMAG_(y));
}

The code works correctly even when result is the same as either, or both, of x or y.
The C99-style companion function for complex addition is not likely to be used, but we include it for com-

pleteness, because it facilitates machine-assisted translation to C99 code from code that uses the portable complex
arithmetic primitives:

fp_c_t
CADD(fp_c_t x, fp_c_t y)
{ /* complex addition: return x + y */

return (x + y);
}

15.4 Complex argument

The argument, or phase, of a complex number x + iy is the angle in radians between the positive x axis and a line from
the origin to the point (x, y). That is exactly what the two-argument arc tangent function computes, so the code is
easy:

fp_t
CXARG(const fp_cx_t z)
{ /* complex argument: return argument t of z = r * exp(i*t) */

return (ATAN2(CXIMAG_(z), CXREAL_(z)));
}

The C99 function is a simple wrapper that calls the portable function:

fp_t
CARG(fp_c_t z)
{ /* complex argument: return argument (angle in radians) of z */

fp_cx_t zz;

CTOCX_(zz, z);

return (CXARG(zz));
}
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From the polar form of complex numbers, it is easy to see that the argument of a product is the sum of the
arguments:

arg(w × z) = arg(w) + arg(z).

The argument of a quotient is the difference of the arguments, and the argument of a reciprocal is the negation of the
argument:

arg(w/z) = arg(w)− arg(z),
arg(1/z) = − arg(z).

15.5 Complex conjugate

The conjugate of a complex number x + iy is just x − iy, so the code is easy:

void
CXCONJ(fp_cx_t result, const fp_cx_t z)
{ /* complex conjugate: result = complex_conjugate(z) */

CXSET_(result, CXREAL_(z), -CXIMAG_(z));
}

We implement the C99 function with inline code:

fp_c_t
CONJ(fp_c_t z)
{ /* complex conjugate: return complex_conjugate(z) */

return (CMPLX(CREAL(z), -CIMAG(z)));
}

15.6 Complex conjugation symmetry

There are two common notations for complex conjugation of a variable or expression in mathematical texts: a super-
script star, z�, or an overbar, z̄. In this chapter, we use the star notation because it is easier to see.

The conjugate of a complex number is the reflection of its point on the complex plane across the real axis. In the
Cartesian form of complex numbers, we have

w = u + vi, z = x + yi, for real u, v, x, and y,
w� = u − vi, z� = x − yi, complex conjugate.

In the equivalent polar form, we have

z = r exp(θi), for real r and θ,
z� = r exp(−θi), by reflection across the real axis.

The operation of complex conjugation appears in an important symmetry relation for many complex functions
of a single variable, f (z):

f (z�) =
(

f (z)
)�, symmetry under complex conjugation.

To understand the origin of that special symmetry of some complex functions, we look first at how complex
conjugation behaves with the low-level operations of complex arithmetic:

(−z)� = (−x − yi)�

= (−x + yi)
= −(x − yi)
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= −(z�), symmetry under negation,

(w + z)� =
(
(u + x) + (v + y)i

)�
= (u + x)− (v + y)i
= (u − vi) + (x − yi)
= w� + z�, symmetry under addition,

(w × z)� =
(
(ux − vy) + (uy + vx)i

)�
= (ux − vy)− (uy + vx)i
= (u − iv)(x − iy)
= w� × v�, symmetry under multiplication,

(1/z)� =
(
1/(x + yi)

)�
=

(
(x − yi)/(x2 + y2)

)�
= (x + yi)/(x2 + y2)

= 1/(x − yi)
= 1/(z�), symmetry under reciprocation,

(w/z)� = w�/z�, symmetry under division.

The last relation follows by combining the symmetry rules for multiplication and reciprocation, but can also be
derived by tedious expansion and rearrangement of the numerator and denominator. Thus, the operation of complex
conjugation distributes over negations, sums, differences, products, and quotients. Because it holds for products, we
conclude that it also holds for integer powers:

(zn)� = (z�)n, for n = 0,±1,±2, . . . .

Because it applies for products and sums, it is also valid for polynomials and convergent series with real coefficients,
pk:

(P(z)
)�

= (p0 + p1z + p2z2 + p3z3 + · · · )�
= (p0)

� + (p1z)� + (p2z2)� + (p3z3)� + · · ·
= p�

0 + p�
1z� + p�

2(z
�)2 + p�

3(z
�)3 + · · ·

= p0 + p1z� + p2(z�)2 + p3(z�)3 + · · ·
= P(z�).

If a function with a single complex argument has a convergent Taylor-series expansion about some complex point z0
given by

f (z) = c0 + c1(z − z0) + c2(z − z0)
2 + c3(z − z0)

3 + · · · ,

then as long as the coefficients ck are real, we have the conjugation symmetry relation
(

f (z)
)�

= f (z�). The elemen-
tary functions that we treat in this book have that property, and it is of utmost importance to design computational
algorithms to ensure that the symmetry property holds for all complex arguments z, whether finite or infinite. How-
ever, NaN arguments usually require separate consideration.

The product of a complex number with its conjugate is the square of its absolute value. We can show that in both
Cartesian form and in polar form:

zz� = (x + yi)× (x − yi) zz� = r exp(θi)× r exp(−θi)

= x2 − xyi + yxi + y2 = r2 exp(θi − θi)

= x2 + y2 = r2

= |z|2, = |z|2.
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Rearranging the final identity produces a simple formula for the complex reciprocal that is helpful for converting
complex division into complex multiplication and a few real operations:

1
z
=

z�

|z|2 .

From the Cartesian form, these further relations are evident:

z = z�, if, and only if, z is real ,
real(z) = 1

2 (z + z�),

imag(z) = − 1
2 (z − z�)i.

15.7 Complex conversion

The type-conversion macros defined on page 442 make it easy to provide companion functions:

void
CTOCX(fp_cx_t result, fp_c_t z)
{ /* convert native complex z to complex-as-real */

CTOCX_(result, z);
}

fp_c_t
CXTOC(fp_cx_t z)
{ /* convert complex-as-real z to native complex */

return (CXTOC_(z));
}

Those macros and functions reduce the need to reference the imaginary and real parts separately, shorten code that
uses them, and make the type conversions explicit.

15.8 Complex copy

Because C does not support array assignment, we need a primitive for the job, so that user code can avoid referring
to array subscripts, or individual components:

void
CXCOPY(fp_cx_t result, const fp_cx_t z)
{ /* complex copy: result = z */

CXCOPY_(result, z);
}

The C99-style companion is unlikely to be needed, except for machine-assisted code translation, but we provide it
for completeness:

fp_c_t
CCOPY(fp_c_t z)
{ /* complex copy: return z */

return (z);
}



15.9. Complex division: C99 style 449

15.9 Complex division: C99 style

The most difficult operation in the complex primitives is division. If x = a + ib and y = c + id, then complex division
is defined by introducing a common factor in the numerator and denominator that reduces the complex denominator
to a real number that can then divide each component:

x/y = (a + bi)/(c + di)

=
(
(a + bi)(c − di)

)
/
(
(c + di)(c − di)

)
=

(
(ac + bd) + (bc − ad)i

)
/(c2 + d2)

=
(
(ac + bd)/(c2 + d2)

)
+

(
(bc − ad)/(c2 + d2)

)
i.

In the last result, we can readily identify two serious problems for implementation with computer arithmetic
of finite precision and range: significance loss in the additions and subtractions in the numerator, and premature
overflow and underflow in both the numerator and the denominator.

There are more difficulties lurking, however. We also have to consider the possibility that one or more of the four
components a, b, c, and d are Infinity, a NaN, or zero.

Infinities introduce problems, because IEEE 754 arithmetic requires that subtraction of like-signed Infinities, and
division of Infinities, produce a NaN. Thus, even though we expect mathematically that (1 + i)/(∞ + i∞) should
evaluate to zero, the IEEE 754 rules applied to the definition of division produce a NaN result:

(1 + i)/(∞ + i∞) = ((∞ + ∞) + (∞ − ∞)i)/(∞2 + ∞2)

= (∞ + NaNi)/∞
= NaN + NaNi.

Division by zero is also problematic. Consider a finite numerator with positive parts. We then have three different
results, depending on whether we divide by a complex zero, a real zero, or an imaginary zero:

(a + bi)/(0 + 0i) = 0/0 + (0/0)i
= NaN + NaNi,

(a + bi)/0 = a/0 + (b/0)i
= ∞ + ∞i,

(a + bi)/(0i) = b/0 − (a/0)i
= ∞ − ∞i.

Thus, a complex-division routine that checks for zero real or imaginary parts to simplify the task to two real divides
gets different answers from one that simply applies the expansion of x/y given at the start of this section.

Experiments with complex division in C99 and Fortran on various platforms show that their handling of Infinity
is inconsistent. The ISO standards for those languages offer no guidance beyond a recommended algorithm for
complex division in an informative annex of the C99 Standard [C99, §G.5.1, p. 469]. However, that annex notes in its
introduction:

This annex supplements annex F to specify complex arithmetic for compatibility with IEC 60559 real floating-point arith-
metic. Although these specifications have been carefully designed, there is little existing practice to validate the design decisions.
Therefore, these specifications are not normative, but should be viewed more as recommended practice.

The possibility of Infinity and NaN components could require extensive special casing in the division algorithm, as
well as multiple tests for such components. That in turn makes the algorithm slower for all operands, even those
that require no special handling.

To eliminate most of the overhead of special handling, the algorithm suggested in the C99 Standard follows the
policy of compute first, and handle exceptional cases later, which the IEEE 754 nonstop model of computation easily sup-
ports. Older architectures may require additional coding, however, to achieve documented and predictable results
for complex division.

Here is our implementation of the C99 algorithm for complex division:
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void
CXDIV(fp_cx_t result, const fp_cx_t x, const fp_cx_t y)
{ /* complex division: result = x / y */

fp_t a, b, c, d, logb_y, denom;
fp_pair_t ac_bd, bc_ad;
volatile fp_t e, f;
int ilogb_y;

ilogb_y = 0;
a = CXREAL_(x);
b = CXIMAG_(x);
c = CXREAL_(y);
d = CXIMAG_(y);

logb_y = LOGB(FMAX(QABS(c), QABS(d)));

if (ISFINITE(logb_y))
{

ilogb_y = (int)logb_y;
c = SCALBN(c, -ilogb_y);
d = SCALBN(d, -ilogb_y);

}

denom = c * c + d * d;
fast_pprosum(ac_bd, a, c, b, d);
fast_pprosum(bc_ad, b, c, -a, d);

e = SCALBN(PEVAL(ac_bd) / denom, -ilogb_y);
STORE(&e);
f = SCALBN(PEVAL(bc_ad) / denom, -ilogb_y);
STORE(&f);

if (ISNAN(e) && ISNAN(f))
{

fp_t inf;

/* Recover infinities and zeros that computed as NaN +
I*NaN. The only cases are nonzero/zero, infinite/finite,
and finite/infinite */

if ((denom == ZERO) && (!ISNAN(a) || !ISNAN(b)))
{

inf = INFTY();
e = COPYSIGN(inf, c) * a;
f = COPYSIGN(inf, c) * b;

}
else if ((ISINF(a) || ISINF(b)) && ISFINITE(c) && ISFINITE(d))
{

inf = INFTY();
a = COPYSIGN(ISINF(a) ? ONE : ZERO, a);
b = COPYSIGN(ISINF(b) ? ONE : ZERO, b);
e = inf * (a * c + b * d);
f = inf * (b * c - a * d);

}
else if (ISINF(logb_y) && ISFINITE(a) && ISFINITE(b))
{

c = COPYSIGN(ISINF(c) ? ONE : ZERO, c);
d = COPYSIGN(ISINF(d) ? ONE : ZERO, d);
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e = ZERO;
f = ZERO;
e *= (a * c + b * d);
f *= (b * c - a * d);

}
}

CXSET_(result, e, f);
}

The complex division algorithm is complicated, and several subtle points are worth noting:

� Premature overflow and underflow are avoided by scaling the denominator and the numerator. Mathemati-
cally, that could be done by dividing each component by the larger magnitude, |c| or |d|. However, that division
introduces into the scaled components at least one rounding error each, and for older architectures, even more,
because division was often less accurate than addition and multiplication. The C99 algorithm trades execution
time for better accuracy by scaling by the power of the base near the larger of |c| and |d|. That scaling is exact,
so no additional rounding error is introduced. The C99 LOGB() and SCALBN() functions provide the needed
tools, and we can use them on all systems because they are also members of the mathcw library.

� Even though division is more expensive than multiplication, the computation of the result components, e and
f , uses two divisions, rather than precomputing the reciprocal of denom and then using two multiplications.
Doing so would introduce additional rounding errors that are unnecessary if we pay the cost of an extra divi-
sion.

� The biggest loss of accuracy in the division comes from the product sums ab + bd and bc − ad. The algo-
rithm recommended by the C99 Standard computes them directly, but we replace that computation by calls
to the functions PPROSUM() and PEVAL() for enhanced accuracy. We comment more on that problem later in
Section 15.13 on page 455 and Section 15.16 on page 458.

� If the result components are finite or Infinity, or just one of them is a NaN, no further computation is needed.

� Otherwise, both components are a NaN, and three separate cases of corrective action are required, each of
which involves from two to six property checks with the ISxxx() functions.

C99 does not provide a function for complex division, because that operation is built-in. For completeness, we
provide a C99-style function that uses the code in CXDIV():

fp_c_t
CDIV(fp_c_t x, fp_c_t y)
{ /* complex division: return x / y */

fp_cx_t xx, yy, result;

CTOCX_(xx, x);
CTOCX_(yy, y);
CXDIV(result, xx, yy);

return (CXTOC_(result));
}

15.10 Complex division: Smith style

The first published algorithm for complex division known to this author is Robert L. Smith’s ACM Algorithm 116
[Smi62], which addresses the overflow and underflow problems by scaling the denominator by the larger of its two
components. If |c| ≥ |d|, we rewrite the division given at the start of the previous section with two intermediate
variables r and s like this:

x/y = (a + bi)/(c + di)
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=
(
(ac + bd)/(c2 + d2)

)
+

(
(bc − ad)/(c2 + d2)

)
i,

=
(
(a + bd/c)/(c + d2/c)

)
+

(
(b − ad/c)/(c + d2/c)

)
i,

r = d/c,
s = dr + c,

x/y =
(
(a + br)/s

)
+

(
(b − ar)/s

)
i.

Otherwise, when |c| < |d|, similar steps produce

r = c/d,
s = cr + d,

x/y =
(
(ar + b)/s

)
+

(
(br − a)/s

)
i,

The total floating-point work is 2 fabs() operations, 1 compare, 3 adds, 3 divides, and 3 multiplies.
The inexact scaling contaminates both components of the result with an additional rounding error. With some-

what more work, that scaling can be made exact [LDB+00, Appendix B, page 61], but we do not discuss it here
because we can do even better.

The fused multiply-add operation was not invented until much later, but it clearly could be of use here, speeding
the calculations, and largely eliminating subtraction loss.

15.11 Complex division: Stewart style

About two decades after ACM Algorithm 116 [Smi62], G. W. Stewart revisited Smith’s method and pointed out that
premature overflow and underflow can be made less likely by rearranging the computation to control the size of
intermediate products [Ste85]. The revised algorithm requires additional control logic, and looks like this when
rewritten to use the same variables for real and imaginary parts as we have in CXDIV():

#include <stdbool.h>

#define SWAP(x,y) (temp = x, x = y, y = temp)

void
stewart_cxdiv(fp_cx_t result, const fp_cx_t z, const fp_cx_t w)
{ /* complex-as-real division: set result = z / w */

fp_t a, b, c, d, e, f, s, t, temp;
bool flip;

a = CXREAL_(z);
b = CXIMAG_(z);
c = CXREAL_(w);
d = CXIMAG_(w);
flip = false;

if (QABS(d) > QABS(c))
{

SWAP(c, d);
SWAP(a, b);
flip = true;

}

s = ONE / c;
t = ONE / (c + d * (d * s));

if (QABS(d) > QABS(s))
SWAP(d, s);
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if (QABS(b) >= QABS(s))
e = t * (a + s * (b * d));

else if (QABS(b) >= QABS(d))
e = t * (a + b * (s * d));

else
e = t * (a + d * (s * b));

if (QABS(a) >= QABS(s))
f = t * (b - s * (a * d));

else if (QABS(a) >= QABS(d))
f = t * (b - a * (s * d));

else
f = t * (b - d * (s * a));

if (flip)
f = -f;

CXSET_(result, e, f);
}

In the first if block, Stewart exploits the complex-conjugation symmetry rule for division:
(
(a + bi)/(c + di)

)�
= (a + bi)�/(c + di)�

= (a − bi)/(c − di), then multiply by i/i,
= (b + ai)/(d + ci).

If necessary, the real and imaginary components are swapped to ensure that |c| ≥ |d|, and the flip variable records
that action. Subsequent operations then compute the conjugate of the desired result, and the sign is inverted in the
final if statement.

Stewart’s code requires parentheses to be obeyed, but as we recorded in Section 4.4 on page 64, that was not true
in C before the 1990 ISO Standard.

The floating-point operation count is 8 to 12 QABS() tests, 4 to 6 compares, 3 adds, 2 divides, 8 multiplies, and
possibly 1 negation. Unless divides are exceptionally slow, Stewart’s algorithm is likely to be somewhat slower than
Smith’s, but it has better numerical behavior at the extremes of the floating-point range.

Extensive tests of both Smith’s and Stewart’s algorithms on several platforms against more accurate code for com-
plex division show that, with millions of random arguments, the relative error of the quotient lies below 3.0 ulps.
However, it is certainly possible with specially chosen components to exhibit cases that suffer catastrophic subtrac-
tion loss.

Although we do not show the needed code, special handling of Infinity and NaN arguments is required, because
both Smith’s and Stewart’s algorithms produce NaN results, instead of Infinity, for ∞/finite and zero for finite/∞.

15.12 Complex division: Priest style

Two decades more passed before complex division was again revisited. In a lengthy article with complicated numer-
ical analysis [Pri04], Douglas Priest shows that the inexact scaling in the Smith [Smi62] and Stewart [Ste85] methods
can be eliminated without the overhead of the logb() and scalbn() calls used in the C99 algorithm, provided that
the programmer is willing to commit to a particular floating-point format, and grovel around in the bits of the
floating-point representation. Priest’s detailed examination shows that there is some flexibility in the choice of scale
factor, that absolute-value operations can be eliminated by bit masking, and that a two-step scaling can eliminate all
premature underflow and overflow.

The major difficulty for the programmer is decoding the floating-point representation and choosing suitable bit
masks and constants to accomplish the scaling. Priest exhibits code only for IEEE 754 64-bit arithmetic, and hides the
architecture-dependent byte storage order by assuming that long long int is a supported 64-bit integer data type.
With the same variable notation as before, here is what his code looks like:
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void
priest_cxdiv(cx_double result, const cx_double z, const cx_double w)
{ /* set result = z / w */

union
{

long long int i; /* must be 64-bit integer type */
double d; /* must be 64-bit IEEE 754 type */

} aa, bb, cc, dd, ss;
double a, b, c, d, t;
int ha, hb, hc, hd, hz, hw, hs; /* components of z and w */

a = CXREAL_(z);
b = CXIMAG_(z);
c = CXREAL_(w);
d = CXIMAG_(w);
aa.d = a; /* extract high-order 32 bits to estimate |z| and |w| */
bb.d = b;
ha = (aa.i >> 32) & 0x7fffffff;
hb = (bb.i >> 32) & 0x7fffffff;
hz = (ha > hb) ? ha : hb;
cc.d = c;
dd.d = d;
hc = (cc.i >> 32) & 0x7fffffff;
hd = (dd.i >> 32) & 0x7fffffff;
hw = (hc > hd) ? hc : hd; /* compute the scale factor */

if (hz < 0x07200000 && hw >= 0x32800000 && hw < 0x47100000)
{ /* |z| < 2^-909 and 2^-215 <= |w| < 2^114 */

hs = (((0x47100000 - hw) >> 1) & 0xfff00000) + 0x3ff00000;
}
else

hs = (((hw >> 2) - hw) + 0x6fd7ffff) & 0xfff00000;

ss.i = (long long int)hs << 32; /* scale c & d, & get quotient */
c *= ss.d;
d *= ss.d;
t = ONE / (c * c + d * d);
c *= ss.d;
d *= ss.d;

CXSET_(result, (a * c + b * d) * t, (b * c - a * d) * t);
}

The variables ha through hd hold the top 32 bits of the four components with the sign bits masked to zero, and
the larger of each pair are then used to determine hs, which has the top 32 bits of the scale factor. That scale factor is
an exact power of the base, and is constructed in the structure element ss.i, and used as its memory overlay ss.d.
The scale-factor selection is intricate and takes three journal pages to describe; see [Pri04, §2.2] for the details.

Determining the scale factor requires only fast 32-bit and 64-bit integer operations, and once it is available, the
final result is constructed with 3 adds, 1 divide, and 12 multiplies.

Priest observes that the product-sums in the last statement are subject to catastrophic subtraction loss, but does
not attempt to correct that problem.

Instead of laboriously deriving new scale-factor code for a float version of Priest’s method for complex division,
it is more sensible to promote the float operands to double and call priest_cxdiv(), since all internal products are
then exact, and subtraction loss is eliminated. The long double type is more difficult to handle, since it too needs
new scale-factor code, and there are 80-, 96-, and 128-bit storage conventions for the 80-bit type, a paired-double
128-bit format, and a separate 128-bit representation, plus differing byte-addressing practices.

Priest claims that his algorithm also correctly handles the case of complex infinite operands: when the exact result
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is infinite, at least one component of the result is Infinity, and the other may be a NaN, as permitted by C99 and noted
at the beginning of this chapter.

Timing tests on several architectures with arguments of random signs, and magnitudes drawn from both uniform
and logarithmic distributions, show that Priest’s algorithm is always faster than Stewart’s, and is much faster than
the C99 algorithm that we present in Section 15.9 on page 449.

15.13 Complex division: avoiding subtraction loss

The problem of catastrophic subtraction loss remains in the four algorithms for complex division ([C99, §G.5.1,
p. 469], [Smi62], [Ste85], and [Pri04]) that we have presented in the preceding sections. It is a requirement of IEEE
754 arithmetic that results of the five basic operations of real arithmetic are always correctly rounded. Even though
complex arithmetic is more difficult than real arithmetic, a library implementation of the basic complex operations
should guarantee relative errors that are no worse than a few units in the last place for all possible operands.

In each algorithm, subtraction loss lurks in the expression forms ab + cd and ab + c. In Section 15.9 on page 449,
we proposed handling the first form with our pair-precision product-sum function family, PPROSUM(). In Sec-
tion 15.10 on page 451, we suggested using the FMA() fused multiply-add family for the second form.

When we recall that each product can be represented exactly as a sum of pairs, then we can apply our VSUM()
primitive for accurate vector summation:

fp_t v[4], result;
v[3] = a * b; /* hi(a * b) */
v[2] = c * d; /* hi(c * d) */
v[1] = FMA(a, b, -v[3]); /* lo(a * b) */
v[0] = FMA(c, d, -v[2]); /* lo(c * d) */
result = VSUM((ft_t)NULL, 4, v); /* a * b + c * d, accurately */

When a fast fma() operation is available, the problem expression can, and should, be computed that way. However,
when the fma() function is comparatively slow, it is better to use it only when subtraction loss is known to happen:
in a binary base, the terms must be of opposite sign, and ratio of their magnitudes must lie in [ 1

2 , 3
2 ] (see Section 4.19

on page 89).
We therefore replace the call to PPROSUM() with a call to this faster version:

static void
fast_pprosum(fp_pair_t result, fp_t a, fp_t b, fp_t c, fp_t d)
{ /* compute result = a * b + c * d accurately and quickly */

fp_t ab, ab_abs, cd, cd_abs;

ab = a * b;
cd = c * d;
result[1] = ZERO;

if ((ab >= ZERO) && (cd >= ZERO)) /* same signs */
result[0] = ab + cd;

else if ((ab < ZERO) && (cd < ZERO)) /* same signs */
result[0] = ab + cd;

else /* opposite signs */
{

ab_abs = QABS(ab);
cd_abs = QABS(cd);

if ( ((cd_abs + cd_abs) < ab_abs) || ((ab_abs + ab_abs) < cd_abs) )
result[0] = ab + cd;

else /* certain loss */
{

fp_t err_ab;
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err_ab = FMA(a, b, -ab);
result[0] = FMA(c, d, ab);
result[1] = err_ab;

}
}

}

In that code, PSET_() is a macro that expands inline to set both components of its first argument, without worrying
about the sign of zero in the second component, as the function PSET() does.

15.14 Complex imaginary part

The imaginary part of a complex number is just its second component, so retrieving it is simple:

fp_t
CXIMAG(const fp_cx_t z)
{ /* complex imaginary part: return imag(z) */

return (CXIMAG_(z));
}

The C99 companion function exploits the storage mandate cited earlier on page 441 to cast a complex-value
pointer to an array-element pointer via our conversion macro:

fp_t
CIMAG(fp_c_t z)
{ /* complex imaginary part: return imag(z) */

return (CXIMAG_((fp_t *)&z));
}

15.15 Complex multiplication

After division, the next most difficult operation in the complex primitives is multiplication. If x = a + ib and
y = c + id, then complex multiplication is defined like this:

xy = (a + ib)(c + id)
= (ac − bd) + i(ad + bc).

That looks straightforward, but as happens with division, the problems of significance loss and premature overflow
and underflow, and the introduction of spurious NaN results from subtraction and division of Infinity, must be dealt
with.

Our algorithm follows the procedure recommended in a non-binding annex of the C99 Standard [C99, §G.5.1,
p. 468], and like the division algorithm, it computes first, and handles exceptional cases later:

void
CXMUL(fp_cx_t result, const fp_cx_t x, const fp_cx_t y)
{ /* complex multiply: result = x * y */

fp_t a, b, c, d;
fp_pair_t ac_bd, ad_bc;

a = CXREAL_(x);
b = CXIMAG_(x);
c = CXREAL_(y);
d = CXIMAG_(y);

PPROSUM(ac_bd, a, c, -b, d);
PPROSUM(ad_bc, a, d, b, c);
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CXSET_(result, PEVAL(ac_bd), PEVAL(ad_bc));

if (ISNAN(CXREAL_(result)) && ISNAN(CXIMAG_(result)))
{

int recalc;

recalc = 0;

if ( ISINF(a) || ISINF(b) ) /* x is infinite */
{ /* Box the infinity and change NaNs in other factor to 0 */

a = COPYSIGN(ISINF(a) ? ONE : ZERO, a);
b = COPYSIGN(ISINF(b) ? ONE : ZERO, b);

if (ISNAN(c))
c = COPYSIGN(ZERO, c);

if (ISNAN(d))
d = COPYSIGN(ZERO, d);

recalc = 1;
}

if ( ISINF(c) || ISINF(d) ) /* y is infinite */
{ /* Box infinity and change NaNs in other factor to 0 */

c = COPYSIGN(ISINF(c) ? ONE : ZERO, c);
d = COPYSIGN(ISINF(d) ? ONE : ZERO, d);

if (ISNAN(a))
a = COPYSIGN(ZERO, a);

if (ISNAN(b))
b = COPYSIGN(ZERO, b);

recalc = 1;
}

if (!recalc && (ISINF(a * c) || ISINF(b * d) || ISINF(a * d) || ISINF(b * c)))
{ /* Recover infinities from overflow: change NaNs to zero */

if (ISNAN(a))
a = COPYSIGN(ZERO, a);

if (ISNAN(b))
b = COPYSIGN(ZERO, b);

if (ISNAN(c))
c = COPYSIGN(ZERO, c);

if (ISNAN(d))
d = COPYSIGN(ZERO, d);

recalc = 1;
}

if (recalc)
{

fp_t inf;
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inf = INFTY();
CXSET_(result, inf * ( a * c - b * d ),

inf * ( a * d + b * c ));
}

}
}

The code deals with the common case quickly, but when both components of the result are found to be NaNs, fur-
ther testing, and possible computation of properly signed infinities, is needed. We improve upon the recommended
algorithm by using PPROSUM() and PEVAL() for the computation of ac − bd and ad + bc. In practice, we can use our
fast_pprosum() private function (see Section 15.13 on page 455) instead of PPROSUM().

As with division, C99 does not provide a function for complex multiplication, because that operation too is built-
in. Following our practice with CDIV(), we provide a C99-style function that uses the code in CXMUL():

fp_c_t
CMUL(fp_c_t x, fp_c_t y)
{ /* complex multiply: return x * y */

fp_cx_t xx, yy, result;

CTOCX_(xx, x);
CTOCX_(yy, y);
CXMUL(result, xx, yy);

return (CXTOC_(result));
}

15.16 Complex multiplication: error analysis

The accuracy of multiplication with complex arithmetic has been studied with detailed mathematical proofs that
occupy about ten journal pages [BPZ07]. That work has been recently extended to algorithms using fused multiply-
add operations [JKLM17], slightly improving the bounds cited here. The authors show that for floating-point base β
under the conditions

� subnormals, overflow, and underflow are avoided,

� round-to-nearest mode is in effect for real arithmetic operations,

� the number of significand bits is at least five, and

� expressions of the form ab ± cd are computed accurately,

then complex multiplication has a maximum relative error below 1
2

√
5β1−t, where t is the number of significand

digits. For binary IEEE 754 arithmetic, their bound corresponds to 1.118 ulps. Importantly, their analysis leads to
simple test values that produce the worst-case errors:

β = 2,
t = 24 or 53,

e = 1
2 β1−t,

z0 = 3/4 +
(
(3(1 − 4e))/4

)
i, 32-bit IEEE 754 format,

=
3
4
+

12 582 909
16 777 216

i

= 0x1.8p-1 + 0x1.7fff_fap-1 * I,

z1 =
(
2(1 + 11e)

)
/3 +

(
(2(1 + 5e))/3

)
i
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=
5 592 409
8 388 608

+
5 592 407
8 388 608

i

= 0x1.5555_64p-1 + 0x1.5555_5cp-1 * I,

exact z0z1 = (5e + 10e2) + (1 + 6e − 22e2)i

=
41 943 045

140 737 488 355 328
+

140 737 538 686 965
140 737 488 355 328

i

= 0x1.4000_028p-22 + 0x1.0000_05ff_ffeap+0 * I,

w0 =
(
3(1 + 4e)

)
/4 + (3/4)i, 64-bit IEEE 754 format,

=
6 755 399 441 055 747
9 007 199 254 740 992

+
3
4

i

= 0x1.8000_0000_0000_3p-1 + 0x1.8p-1 * I,

w1 =
(
2(1 + 7e)

)
/3 +

(
2(1 + e)/3

)
i

=
3 002 399 751 580 333
4 503 599 627 370 496

+
3 002 399 751 580 331
4 503 599 627 370 496

i

= 0x1.5555_5555_5555_ap-1 +

0x1.5555_5555_5555_6p-1 * I,

exact w0w1 = (5e + 14e2) + (1 + 6e + 2e2)i

=
22 517 998 136 852 487

40 564 819 207 303 340 847 894 502 572 032
+

40 564 819 207 303 367 869 492 266 795 009
40 564 819 207 303 340 847 894 502 572 032

i

= 0x1.4000_0000_0000_1cp-51 +

0x1.0000_0000_0000_3000_0000_0000_008p+0 * I.

Despite the factors of 2/3 in the expressions for z1 and w1, all of the components are exactly representable in binary
arithmetic.

Using those worst-case values for the float and double formats, this author wrote two short test programs,
tcmul2.c and tcmul3.c, in the exp subdirectory. The first uses native complex arithmetic and is run with the native
math library. The second replaces the complex multiplications by calls to our CMUL() family members, and thus
requires the mathcw library. The programs were then run on several architectures, including GNU/LINUX (Alpha,
AMD64, IA-32, IA-64, PowerPC, and SPARC), FREEBSD (IA-32), OPENBSD (IA-32), and SOLARIS (AMD64 and
SPARC), with multiple C99-level compilers.

All of the tests show relative errors below 0.539 ulps for the 32-bit native complex multiply. For the 64-bit native
complex multiply, all systems produce a correctly rounded imaginary part, but almost all of the test systems lose 49
of the 53 significand bits for the real part of the product! Only on the FREEBSD IA-32 and SOLARIS AMD64 tests,
and with one uncommon commercial compiler on GNU/LINUX AMD64, is the real part correctly rounded. By
contrast, the test program that uses the mathcw library routines produces correctly rounded results for those tests on
all platforms. The lesson is that complex arithmetic in C is not yet trustworthy.

15.17 Complex negation

The negative of a complex number x + iy is just −x − iy, so the implementation is simple:

void
CXNEG(fp_cx_t result, const fp_cx_t z)
{ /* complex negation: result = -z */

CXSET_(result, -CXREAL_(z), -CXIMAG_(z));
}

There is no C99 Standard function for complex negation, because the operation is built-in, but we provide a
companion function that uses inline code, rather than calling CXNEG():
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fp_c_t
CNEG(fp_c_t z)
{ /* complex negation: return -z */

return (-z);
}

15.18 Complex projection

The projection function may be unique to C99, and the Standard describes it this way [C99, §7.3.9.4, p. 179]:

The cproj() functions compute a projection of z onto the Riemann2 sphere: z projects to z except that all complex infinities
(even those with one infinite part and one NaN part) project to positive infinity on the real axis. If z has an infinite part, then
cproj(z) is equivalent to

INFINITY + I * copysign(0.0, cimag(z)).

That description readily leads to obvious code:

void
CXPROJ(fp_cx_t result, const fp_cx_t z)
{ /* complex projection of z onto Riemann sphere: result = proj(z) */

if (ISINF(CXREAL_(z)) || ISINF(CXIMAG_(z)))
CXSET_(result, INFTY(), COPYSIGN(ZERO, CXIMAG_(z)));

else
CXSET_(result, CXREAL_(z), CXIMAG_(z));

}

The C99 companion function uses CXPROJ() for the real work:

fp_c_t
CPROJ(fp_c_t z)
{ /* complex projection of z onto Riemann sphere: return proj(z) */

fp_cx_t zz, result;

CTOCX_(zz, z);
CXPROJ(result, zz);

return (CXTOC_(result));
}

If a sphere of radius one is centered at the origin on the complex plane (see Figure 15.2), then a line from any
point w = (u, v) on the plane outside the sphere to the North Pole of the sphere intersects the sphere in exactly two
places, like an arrow shot through a balloon. Thus, every finite point (u, v) has a unique image point on the sphere
at the first intersection. As we move further away from the origin, that intersection point approaches the North Pole.
The two intersections with the sphere coincide only for points where one or both components of the point on the
plane are infinitely far away. That is, all complex infinities project onto a single point, the North Pole, of the Riemann
sphere.

15.19 Complex real part

The real part of a complex number is just its first component, so retrieving it is easy:

fp_t
CXREAL(const fp_cx_t z)
{ /* complex real part: return real(z) */

return (CXREAL_(z));
}
2See the footnote in Section 11.2 on page 303.
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Figure 15.2: Projecting a complex point onto the Riemann sphere.

As with CIMAG(), the corresponding C99 function for the real part uses the storage requirement to convert a
complex-value pointer to an array-element pointer:

fp_t
CREAL(fp_c_t z)
{ /* complex real part: return real(z) */

return (CXREAL_((fp_t *)&z));
}

15.20 Complex subtraction

The subtraction operation for complex numbers simply requires computing the difference of their real and imaginary
components, so the code is obvious:

void
CXSUB(fp_cx_t result, const fp_cx_t x, const fp_cx_t y)
{ /* complex subtraction: result = x - y */

CXSET_(result, CXREAL_(x) - CXREAL_(y), CXIMAG_(x) - CXIMAG_(y));
}

There is no C99 function for complex subtraction, because it is a built-in operation, but we can easily provide
a C99-style function. Because the operation is so simple, we code it directly, rather than calling CXSUB() to do the
work:

fp_c_t
CSUB(fp_c_t x, fp_c_t y)
{ /* complex subtraction: return x - y */

return (x - y);
}

w = u + v i

x
y

z
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15.21 Complex infinity test

The peculiar C99 definition of complex infinite values cited on page 441 suggests that we provide a primitive for
testing for a complex infinity, even though the ISO Standard does not specify test functions for complex types. The
code for our two families of complex types is short:

int
ISCXINF(const fp_cx_t z)
{ /* return 1 if z is a complex Infinity, else 0 */

return (ISINF(CXREAL_(z)) || ISINF(CXIMAG_(z)));
}

int
ISCINF(fp_c_t z)
{ /* return 1 if z is a complex Infinity, else 0 */

return (ISINF(CREAL(z)) || ISINF(CIMAG(z)));
}

15.22 Complex NaN test

The C99 definition of complex infinite values complicates NaN tests, so we extend the ISO Standard with test func-
tions to hide the mess. Their code looks like this:

int
ISCXNAN(const fp_cx_t z)
{ /* return 1 if z is a complex NaN, else 0 */

fp_t x, y;
int result;

x = CXREAL_(z);
y = CXIMAG_(z);

if (ISINF(x) || ISINF(y))
result = 0;

else if (ISNAN(x) || ISNAN(y))
result = 1;

else
result = 0;

return (result);
}

int
ISCNAN(fp_c_t z)
{ /* return 1 if z is a complex NaN, else 0 */

fp_cx_t zz;

CTOCX_(zz, z);
return (ISCXNAN(zz));

}
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15.23 Summary

At the time of writing this, support for complex arithmetic in compilers for the C language family is limited, and
on many systems, of doubtful quality. Consequently, the functions for complex arithmetic described in this chapter
have not received extensive use.

Most of the functions are simple, and good candidates for inline expansion by compilers. We encouraged such
expansion by using the macros CXIMAG_(), CXREAL_(), CXSET_(), CXTOC_() and CTOCX_() to produce inline code
instead of a function call, and conceal all array-element references.

The functions for complex absolute value and complex argument are numerically troublesome, but can easily be
expressed in terms of the HYPOT() and ATAN2() families which are carefully implemented to produce high accuracy.

The functions for multiplication and division are subject to premature underflow and overflow, and to massive
subtraction loss. We discussed four different algorithms for complex division, and showed how careful handling
of expressions of the forms a × b + c × d and a × b + c with the occasional help of fused multiply-add operations
can eliminate subtraction loss in both complex division and complex multiplication. Since the mathcw package
and this book were completed, several additional papers on the problem of accurate complex multiplication and
division have appeared [BS12, WE12, JLM13b, JLM13a, Mul15, Jea16, JLMP16, JKLM17], but comparison with our
code remains a project for future study.

The last of those papers also points out an issue that we have not treated in this chapter: computer algorithms
for complex multiplication may not obey the expected mathematical property of commutativity (w × z ≡ z × w),
and thus, may incorrectly produce a nonzero imaginary part in the computation z × z� = (x + yi) × (x − yi) =
x2 − x × yi + y × xi + y2 = x2 + y2, a value that, mathematically, is purely real.

The difficulties in producing fast and correctly rounded complex multiply and divide cry out for a hardware so-
lution. If hardware provided multiple functional units with extended range and double-width results, then complex
absolute value, complex division, and complex multiplication could be done quickly, and without premature under-
flow or overflow, or unnecessary subtraction loss. Sadly, only a few historical machines seem to have addressed that
need:

� Bell Laboratories Model 1 through Model 4 relay computers with fixed-point decimal arithmetic (1938–1944)
(ten digits, only eight displayed) [Sti80],

� Bell Laboratories Model 5 relay computer with seven-digit floating-point decimal arithmetic (1945) [Sti80], and

� Lawrence Livermore National Laboratory S-1 (see Appendix H.7),

No current commercially significant computer architecture provides complex arithmetic in hardware, although there
are several recent papers in the chip-design literature on that subject.

Unlike Fortran, C99 does not offer any native I/O support for complex types. The real and imaginary parts
must be handled explicitly, forcing complex numbers to be constructed and deconstructed by the programmer for
use in calls to input and output functions for real arithmetic. Maple provides a useful extension in printf() format
specifiers that could be considered for future C-language standardization: the letter Z is a numeric format modifier
character that allows a single format item to produce two outputs, like this:

% maple
> printf("%Zg\n", 1 + 2*I);
1+2I
> printf("%5.1Zf\n", 1 + 2*I);

1.0 +2.0I

The _Imaginary data type is a controversial feature of C99, and its implementation by compilers and libraries
was therefore made optional. That decision makes the type practically unusable in portable code. Although mathe-
maticians work with numbers on the real axis, and numbers in the complex plane, they rarely speak of numbers that
are restricted to the imaginary axis. More than four decades of absence of the imaginary data type from Fortran, the
only widely used, and standardized, language for complex arithmetic, suggests that few programmers will find that
type useful. The primary use of an imaginary type may be to ensure that an expression like z * I is evaluated with-
out computation as -cimag(z) + creal(z) * I to match mathematics use, instead of requiring an explicit complex
multiplication that gets the wrong answer when one or both of the components of z is a negative zero, Infinity, or
NaN.
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We provided complex companions for the real ISxxx() family only for Infinity and NaN tests, because they are
nontrivial, and likely to be programmed incorrectly if done inline. Most of the relational operations do not apply to
complex values, and it is unclear whether tests for complex finite, normal, subnormal, and zero values are useful.
We have not missed them in writing any of the complex-arithmetic routines in the mathcw library. Should they prove
desirable in some applications, they could easily be generated inline by private macros like these:

#define ISCFINITE(z) ISFINITE(CREAL(z)) && ISFINITE(CIMAG(z))
#define ISCNORMAL(z) ISNORMAL(CREAL(z)) && ISNORMAL(CIMAG(z))
#define ISCSUBNORMAL(z) ISSUBNORMAL(CREAL(z)) && ISSUBNORMAL(CIMAG(z))
#define ISCZERO(z) (CREAL(z) == ZERO) && (CIMAG(z) == ZERO)

#define ISCXFINITE(z) ISFINITE(CXREAL_(z)) && ISFINITE(CXIMAG_(z))
#define ISCXNORMAL(z) ISNORMAL(CXREAL_(z)) && ISNORMAL(CXIMAG_(z))
#define ISCXSUBNORMAL(z) ISSUBNORMAL(CXREAL_(z)) && ISSUBNORMAL(CXIMAG_(z))
#define ISCXZERO(z) (CXREAL_(z) == ZERO) && (CXIMAG_(z) == ZERO)

However, the programmer needs to decide what should be done about cases where one component is, say, subnor-
mal, and the other is not. For example, it might be desirable to change && to || in the definition of ISCXSUBNORMAL().

We defer presentation of the computation of complex versions of the elementary functions required by C99 to
Chapter 17 on page 475, because now is a good time to apply the primitives of this chapter to one of the simplest
problems where complex arithmetic is required: solution of quadratic equations, the subject of the next chapter.
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