
Nelson H.F. Beebe

Programming Using
the MathCW Portable Software Library

The
Mathematical-
Function
Computation
Handbook

The Mathematical-Function Computation
Handbook

Nelson H.F. Beebe

The Mathematical-Function
Computation Handbook
Programming Using the MathCW Portable
Software Library

ISBN 978-3-319-64109-6 ISBN 978-3-319-64110-2 (eBook)
DOI 10.1007/978-3-319-64110-2

© Springer International Publishing AG 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction
on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation,
computer software, or by similar or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and
regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed
to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty,
express or implied, with respect to the material contained herein or for any errors or omissions that may have been
made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Library of Congress Control Number: 2017947446

Nelson H.F. Beebe
Department of Mathematics
University of Utah
Salt Lake City, UT
USA

Dedication
This book and its software are dedicated to three Williams: Cody, Kahan, and Waite. They taught us that floating-
point arithmetic is interesting, intricate, and worth doing right, and showed us how to do it better.

This book and its software are also dedicated to the DEC PDP-10 computer, on which outstanding interactive
computing and the Internet were built, and on which this author spent a dozen productive years.

v

Preface

WRITE YOUR OWN STORY.
DON’T LET OTHERS WRITE IT FOR YOU.

— CHINESE FORTUNE-COOKIE ADVICE.

A preface IS GENERALLY SHORTER THAN AN

introduction, WHICH CONTAINS MATTER KINDRED

IN SUBJECT, AND ADDITIONAL OR LEADING UP TO WHAT

FOLLOWS; WHILE A preface IS USUALLY CONFINED TO

PARTICULARS RELATING TO THE ORIGIN, HISTORY, SCOPE,
OR AIM OF THE WORK TO WHICH IT IS PREFIXED.

— New Century Dictionary (1914).

This book documents a large library that supplies the mathematical functions required by several programming
languages, including at least these:

� the 1983 ANSI and 1995 and 2012 ISO Standards [Ada83, Ada95, Ada12] for the Ada programming language;

� the 1990, 1999, and 2011 ISO Standards for C [C90, C99, C11b];

� the 1998, 2003, and 2011 ISO Standards for C++ [C++98, BSI03b, C++03a, C++11a];

� the 2002 and 2006 ECMA and 2006 ISO Standards for C# R© (pronounced C-sharp) [ECM06a, HWG04, CLI05,
C#06a, CLI06];

� the 1978 ANSI and 1991, 1997, and 2010 ISO Standards for Fortran [ANSI78, FTN91, FTN97, FTN10];

� the widely used, but not yet standardized, Java R© programming language [AG96, AG98, CLK99, AGH00,
GJSB00, GJSB05, GJS+13, GJS+14]; and

� the 1990 ISO Extended Pascal Standard [PAS90, JW91].

Numerous scripting languages, including awk, ECMAScript R©, hoc, JavaScript R©, Julia, Lua R©, Perl R©, PHP,
Python R©, Rexx, Ruby, and Tcl, offer a subset of mathematical functions that are usually drawn from the venerable
Fortran and C repertoires. Many other current and historical programming languages, among them Algol 60, Algol
68, COBOL, D, Go, Lisp, Modula, Oberon, OCaml, PL/1, Rust, and Scheme, as well as the Adobe R© PostScript R©
page-description language, also provide subsets of the Fortran functions.

Although the needs of those languages are a valuable guide for the design of this library, this author’s view
has been a wider one, and several additional elementary and special functions are provided, including ones for the
detection of integer overflow, a sadly neglected area in most architectures and almost all programming languages.

Most current computers, as well as the virtual machines for C#, Java, and PostScript, are based on the IEEE 754
Standard for Binary Floating-Point Arithmetic published in 1985, but developed several years earlier, and implemented
in hardware in the Intel 8087 coprocessor in 1980. Software intended to be run only on current systems could there-
fore limit itself to the IEEE 754 architecture. However, three considerations led to the broader view adopted in this
book:

� Decimal floating-point arithmetic is part of the 2008 revision of the IEEE 754 Standard [IEEE08, ISO11], and
there are proposals to include it in future versions of the ISO C and C++ Standards. Two main reasons to
provide decimal arithmetic are its familiarity to humans, and its widespread use in databases.

IBM is a strong proponent of decimal arithmetic, and has produced a firmware implementation on its main-
frame systems, and added hardware support in the PowerPC version 6 and later chips. This arithmetic is

vii

viii

based on more than two decades of experience with software decimal arithmetic, notably in the Rexx program-
ming language [Cow85, Cow90] defined by ANSI Standard X3.274-1996 [REXX96], and the NetRexx language
[Cow97].

Symbolic-algebra languages, such as Maple R©, Mathematica R©, Maxima, MuPAD R©, PARI/GP, and REDUCE,
provide arbitrary-precision arithmetic. The Maple language uses decimal arithmetic, but the others use binary
arithmetic.

� There are excellent, and readily available, virtual machines for several historical architectures, including most
early microprocessors, the DEC PDP-10, PDP-11, and VAX architectures, the IBM System/360, and even the
modern Intel IA-64.

A recent book on virtual machines [SN05] notes that they provide a good way to prototype new machine
designs, and have important advantages for security when users can be isolated in private virtual machines.

The great success of the Java programming language has in large part been due to its definition in terms of
a virtual machine, called the Java Virtual Machine (JVM) R© [LY97, LY99, SSB01, LYBB13, Set13, LYBB14], and a
standard library that provides a uniform environment for Java programs that is independent of the underlying
hardware and operating system.

Microsoft’s related C# language is also defined in terms of a virtual machine that forms the core of the Microsoft
.NET Framework, and the associated free-software reimplementations of .NET in the DotGNU Project1 and the
Mono Project.2

Once compilers make programming languages available for the virtual machine, applications, and indeed,
even entire operating systems, can be lifted from hardware to virtual machines. This broadens markets for
software vendors, removes their dependence on hardware suppliers, and allows them to reach future hardware
platforms more quickly.

The commercial Parallels R©, VirtualBox R©, Virtual Iron R©, VMware R©, and Xen R© systems have demonstrated
that virtual machines adapted to particular hardware can support multiple operating systems on a single CPU
with little overhead. Hewlett–Packard, IBM, and Sun Microsystems have all introduced products that allow
processors to be logically split and shared among multiple operating systems, or multiple instances of the same
operating system. GNU/LINUX containers and FREEBSD jails provide similar capabilities.

� The Cody and Waite Software Manual for the Elementary Functions [CW80] that inspired some of the work de-
scribed in this book was careful to address the algorithmic issues raised by floating-point designs with number
bases other than two. Their book also addresses computations of the elementary functions in fixed-point arith-
metic, a topic that we largely ignore in this book.

Most books and courses on programming languages spend little time on floating-point arithmetic, so student
programmers may consequently conclude that floating-point programming must be trivial, uninteresting, and/or
unimportant. This author’s view is that floating-point programming does not receive the attention that it deserves,
and that there are interesting problems in the design of mathematical software that are not encountered in other
types of programming.

However, because a substantial portion of the human population seems to have a fear of mathematics, or at least
finds it uncomfortable and unfamiliar, this book takes care to minimize the reader’s exposure to mathematics. There
are many research papers on the elementary and special functions that provide the mathematical detail that is a
necessary foundation for computer implementations, but in most cases, we do not need to deal with it directly. As
long as you have some familiarity with programming in at least one common language, and you can recall some of
your high-school algebra, and are willing to accept the results of a few short excursions into calculus, you should be
able to understand this book, and learn much from it.

On the other hand, professional numerical analysts should find this book of interest as well, because it builds
on research by the mathematical software community over the last four decades. In some areas, notably those of
converting floating-point numbers to whole numbers, and finding remainders, we present cleaner, simpler, and
more portable solutions than are found in existing libraries.

1See http://www.gnu.org/projects/dotgnu/.
2See http://www.mono-project.com/.

Preface

ix

An important recent research topic has been the development for some of the elementary functions of mathe-
matically proven algorithms that guarantee results that are always correctly rounded. In most cases, these advanced
algorithms are quite complex, and beyond the scope of this book. However, for some of the simpler elementary
functions, we show how to produce always, or almost always, correctly rounded results.

You might wonder why anyone cares about the correctness of the last few digits of a finite approximation to, say,
the square root of 27. Certainly, few humans do. However, it is important to remember that computer hardware,
and software libraries, are the foundations of all other software. Numerical computing in particular can be remark-
ably sensitive to the characteristics and quality of the underlying arithmetic system. By improving the reliability
and accuracy of software libraries, we strengthen the foundation. By failing to do so, we leave ourselves open to
computational disasters.

Acknowledgements

This author has had the interest and opportunity to have programmed in scores of programming languages on
dozens of operating systems, and most of the major CPU architectures, since his first encounter with the IBM 7044
and IBM System/360 model 50 as an undergraduate student.

At the University of Utah Department of Mathematics, we have a large computing facility that serves thousands
of students, as well as departmental staff and faculty, and invited guests. We have made it a point to provide, and
preserve, access to a wide range of physical and virtual hardware, and operating systems, to encourage and facilitate
software portability testing. A powerful tool, build-all, developed by this author and presented in another book
[RB05a], makes it easy to automate the building and validating of software packages in parallel on multiple systems.

In recent years, guest access to computing facilities in other locations has been invaluable for development and
testing on even more platforms. Those organizations include:

� the University of Utah Center for High-Performance Computing (formerly, the Utah Supercomputing Insti-
tute);

� the Henry Eyring Center for Theoretical Chemistry in the Department of Chemistry at the University of Utah;

� the University of Utah Department of Electrical Engineering;

� the University of Utah Department of Physics and Astronomy;

� the Emulab Network Emulation Testbed of the Flux Research Group in the School of Computing at the Uni-
versity of Utah; .

� the Hewlett–Packard Test Drive Laboratory;

� the IBM Linux Community Development System; and

� the University of Minnesota Supercomputing Institute.

This author is grateful to the management and staff of all of those excellent facilities, as well as to Intel Corporation
for the grant to his department of an IA-64 server.

The mailing list of the IEEE 754 committee, and numerous exchanges with list members, continue to stimulate
my interest in floating-point arithmetic. In particular, IBM Fellow Mike Cowlishaw provided useful comments on
some of the material on decimal arithmetic in this book, and helped to clarify the history and rationale of decimal
arithmetic in computers, and its implementation in modern compilers.

Virtual machines used during the development of this book and its software include:

� the fine commercial VMware system on AMD64, EM64T, and IA-32;

� Ken Harrenstien’s outstanding KLH10 implementation of the influential and venerable PDP-10 architecture
on which this author worked happily and productively for a dozen years, and the far-ahead-of-its-time DEC
TOPS-20 operating system kindly made available to hobbyists by its original vendor;

� Bob Supnik’s amazing SIMH simulator of about thirty historical architectures, including the Interdata 8/32
(target of the first port of UNIX from the DEC PDP-11), and the DEC VAX;

Preface

x

� Roger Bowler’s Hercules emulator for the IBM System/370, ESA/390, and z/Architecture; and

� The QEMU (Quick EMUlator) hypervisor and KVM (Kernel-based Virtual Machine) that run on most desktop
operating systems, including at least Apple MAC OS X and MACOS, DRAGONFLYBSD, FREEBSD, GHOSTBSD,
GNU/LINUX, HAIKU, HARDENEDBSD, MIDNIGHTBSD, Microsoft WINDOWS, NETBSD, OPENBSD, PAC
BSD, PCBSD, OPENSOLARIS, REACTOS, and TRUEOS.

This book, and all of the software that it describes, is a single-person production by this author. Years of following
the scientific research literature, and published books, in broad areas of computer science, theoretical chemistry,
computational physics, and numerical mathematics, and a lifetime spent in programming in scientific computing
and other areas, gave the experience needed to tackle a project with the breadth of scope of the software library
described here.

The Unix family

The Open Group currently owns the all-caps registered trademark UNIX R© for a descendant of the operating system
developed at AT&T Bell Laboratories starting about 1969, and permits vendors whose implementations pass an
extensive test suite to license use of that trademark. Because of legal wrangling, ownership of the specific name
UNIX was long disputed in US courts. That led computer manufacturers to rebrand their customized versions
under other trademarked names, and similarly, in the free-software world, each O/S distribution seems to acquire
its own unique name. In this book, we use the capitalized name UNIX to refer to the entire family.

The GNU R© system, where GNU stands for the infinitely recursive phrase GNU is Not Unix, is, for the purposes
of this book, also a UNIX-like system. If this matters to you, just mentally add the suffix -like to every mention of
UNIX in this book.

Filesystem implementations, operating-system kernel details, software packaging practices, and system-manage-
ment procedures and tools, differ, sometimes dramatically so, across different members of the UNIX family. How-
ever, for the ordinary user of those systems, they are all familiar and similar, because most of their commonly used
commands are nearly identical in behavior and name. The notions of files as byte streams, devices, kernel data, and
networks treated as files, command shells for interactive use and scripting, simple I/O redirection mechanisms, and
pipes for easy connection of many smaller programs into larger, and more powerful, ones, are critical features of the
UNIX environment. A common window system, X11, provides mechanism but not policy, and separates program,
window display, and window management, allowing each to run on separate computers if desired, but joined by
secure encrypted communications channels.

Many UNIX distributions have long been available as open-source software, allowing programmers all over the
world to contribute documentation, enhancements, and sometimes, radical new ideas. Internet mailing lists allow
them to keep in regular contact and develop long-time electronic friendships, even though they may never have a
chance to meet in person. The UNIX world is truly a global community.

Trademarks, copyrights, and property ownership

Because it deals with real computers, operating systems, and programming languages, both historic and current, this
book necessarily contains many references to names that are copyrighted, registered, or trademarked, and owned
by various firms, foundations, organizations, and people. Except in this preface, we do not clutter the book text
with the traditional superscript symbols that mark such ownership, but we acknowledge it here, and we index
every reference to model, product, and vendor names. Among the commercial software systems most frequently
mentioned in this book are Maple, Mathematica, MATLAB R©, and MuPAD. In general, we should expect almost
any commercial entity, or commercial product, to have a name that is registered or trademarked. The computing
industry that has so changed human history is the work of many companies and many people from many countries,
and we should view it proudly as part of our shared modern heritage.

The International Organization for Standardization (ISO) kindly gave permission to cite in this book (usually
brief) snippets of portions of the ISO Standards for the C language. Because of the language precision in Standards,
it is essential for correct software development to be guided by the original exact wording, rather than working from
existing practice, hearsay, imperfect human memory, or paraphrased text.

Preface

xi

To show code, or not

Authors of books about software have to make a choice of whether to show actual code in a practical programming
language, or only to provide imprecise descriptions in flowcharts or pseudocode.

Although the latter approach seems to be more common, it has the serious drawback that the code cannot be
tested by a compiler or a computer, and long experience says that untested code is certain to contain bugs, omissions,
and pitfalls. Writing software is hard, writing floating-point software is harder yet, and writing such software to
work correctly on a broad range of systems is even more difficult. Software often outlives hardware, so portability is
important.

There are many instances in this book where subtle issues arise that must be properly handled in software, and the
only way to do so is to use a real programming language where the code can undergo extensive testing. The floating-
point programmer must have broad experience with many architectures, because obscure architectural assumptions
and platform dependencies can all too easily riddle code, making it much less useful than it could be, if more care
were paid to its design.

This author has therefore chosen to show actual code in many sections of this book, and to index it thoroughly,
but not to show all of the code, or even all of the commentary that is part of it. Indeed, a simple printed listing of the
code in a readable type size is several times longer than this book.

When the code is routine, as it is for much of the validation testing and interfacing to other programming lan-
guages, there is little point in exhibiting it in detail. All of the code is freely available for inspection, use, and
modification by the reader anyway, because it is easily accessible online. However, for many shorter routines, and
also for complicated algorithms, it is instructive to display the source code, and describe it in prose.

As in most human activities, programmers learn best by hands-on coding, but they can often learn as much, or
more, by reading well-written code produced by others. It is this author’s view that students of programming can
learn a lot about the subject by working through a book like this, with its coverage of a good portion of the run-time
library requirements of one of the most widely used programming languages. This is real code intended for real
work, for portable and reliable operation, and for influencing the future development of programming languages to
support more numeric data types, higher precision, more functionality, and increased dependability and security.

To cite references, or not

Although research articles are generally expected to contain copious citations of earlier work, textbooks below the
level of graduate research may be devoid of references. In this book, we take an intermediate approach: citations,
when given, are a guide to further study that the reader may find helpful and interesting. When the citations are to
research articles or reports, the bibliography entries contain Web addresses for documents that could be located in
online archives at the time of writing this book.

Until the advent of computers, tracking research publications was difficult, tedious, and time consuming. Access
to new journal issues often required physical visits to libraries. Photocopiers made it easier to abandon the long-time
practice of sending postcards to authors with requests for article reprints. The world-wide Internet has changed that,
and many journals, and some books, now appear only electronically. Internet search engines often make it possible
to find material of interest, but the search results still require a lot of labor to record and re-use, and also to validate,
because in practice, search results are frequently incomplete and unreliable. Most journal publishers have Web sites
that provide contents information for journal volumes, but there is no common presentation format. Also, a search
of one publisher’s site is unlikely to find related works in journals produced by its competitors.

The BIBTEX bibliography markup system developed by Oren Patashnik at Stanford University as part of the
decade-long TEX Project has provided an important solution to the problem of making publication information
reusable. This author has expended considerable effort in writing software to convert library and publisher data
into BIBTEX form, and developed many tools for checking, curating, ordering, searching, sorting, and validating
BIBTEX data.

Two freely available collections, the BibNet Project archives and the TEX User Group archives, both hosted at the au-
thor’s university, and mirrored to other sites, provide a view into the research literature of selected areas of chemistry,
computer science, computer standards, cryptography, mathematics, physics, probability and statistics, publication
metrics, typesetting, and their associated histories.

Those archives provide a substantial pool of data from which specialized collections, such as the bibliography
for this book, can be relatively easily derived, without retyping publication data. BIBTEX supports citation, cross

Preface

xii

referencing, extraction, sorting, and formatting of publication data in hundreds of styles. Additional software written
by this author extends BIBTEX by automatically producing the separate author/editor index that appears in the back
matter of this book, and enhancing bibliography entries with lists of page numbers where each is cited. Thus, a
reader who remembers just one author of a cited work can quickly find both the reference, and the locations in the
book where it is cited.

The MathCW Web site

This book is accompanied by a Web site maintained by this author at

http://www.math.utah.edu/pub/mathcw/

That site contains

� source code for the book’s software;

� a BIBTEX database, mathcw.bib, from a subset of which all references that appear in the bibliography in this
book’s back matter are automatically derived and formatted;

� related materials developed after the book has been frozen for publication;

� compiled libraries for numerous systems; and

� pre-built C compilers with support for decimal arithmetic on several operating systems.

It is expected to be mirrored to many other sites around the world, to ensure wide availability, and protection against
loss.

The mathcw software is released in versioned bundles, and its history is maintained in a revision control system to
preserve a record of its development and future evolution, as is common with most large modern software projects.

Preface

Contents

List of figures xxv

List of tables xxxi

Quick start xxxv

1 Introduction 1
1.1 Programming conventions . 2
1.2 Naming conventions . 4
1.3 Library contributions and coverage . 5
1.4 Summary . 6

2 Iterative solutions and other tools 7
2.1 Polynomials and Taylor series . 7
2.2 First-order Taylor series approximation . 8
2.3 Second-order Taylor series approximation . 9
2.4 Another second-order Taylor series approximation . 9
2.5 Convergence of second-order methods . 10
2.6 Taylor series for elementary functions . 10
2.7 Continued fractions . 12
2.8 Summation of continued fractions . 17
2.9 Asymptotic expansions . 19
2.10 Series inversion . 20
2.11 Summary . 22

3 Polynomial approximations 23
3.1 Computation of odd series . 23
3.2 Computation of even series . 25
3.3 Computation of general series . 25
3.4 Limitations of Cody/Waite polynomials . 28
3.5 Polynomial fits with Maple . 32
3.6 Polynomial fits with Mathematica . 33
3.7 Exact polynomial coefficients . 42
3.8 Cody/Waite rational polynomials . 43
3.9 Chebyshev polynomial economization . 43
3.10 Evaluating Chebyshev polynomials . 48
3.11 Error compensation in Chebyshev fits . 50
3.12 Improving Chebyshev fits . 51
3.13 Chebyshev fits in rational form . 52
3.14 Chebyshev fits with Mathematica . 56
3.15 Chebyshev fits for function representation . 57
3.16 Extending the library . 57
3.17 Summary and further reading . 58

xiii

xiv Contents

4 Implementation issues 61
4.1 Error magnification . 61
4.2 Machine representation and machine epsilon . 62
4.3 IEEE 754 arithmetic . 63
4.4 Evaluation order in C . 64
4.5 The volatile type qualifier . 65
4.6 Rounding in floating-point arithmetic . 66
4.7 Signed zero . 69

4.7.1 Detecting the sign of zero . 69
4.7.2 Signed-zero constants . 69
4.7.3 Arc tangent and signed zero . 70

4.8 Floating-point zero divide . 70
4.9 Floating-point overflow . 71
4.10 Integer overflow . 72

4.10.1 Preventing integer overflow . 74
4.10.1.1 Safe integer absolute value . 74
4.10.1.2 Safe integer addition . 75
4.10.1.3 Safe integer division . 75
4.10.1.4 Safe integer multiplication . 75
4.10.1.5 Safe integer negation . 76
4.10.1.6 Safe integer remainder . 76
4.10.1.7 Safe integer subtraction . 76
4.10.1.8 Safe integer operations: a retrospective . 77

4.11 Floating-point underflow . 77
4.12 Subnormal numbers . 78
4.13 Floating-point inexact operation . 79
4.14 Floating-point invalid operation . 79
4.15 Remarks on NaN tests . 80
4.16 Ulps — units in the last place . 81
4.17 Fused multiply-add . 85
4.18 Fused multiply-add and polynomials . 88
4.19 Significance loss . 89
4.20 Error handling and reporting . 89
4.21 Interpreting error codes . 93
4.22 C99 changes to error reporting . 94
4.23 Error reporting with threads . 95
4.24 Comments on error reporting . 95
4.25 Testing function implementations . 96

4.25.1 Taylor-series evaluation . 97
4.25.2 Argument purification . 97
4.25.3 Addition-rule evaluation . 98
4.25.4 Relative error computation . 99

4.26 Extended data types on Hewlett–Packard HP-UX IA-64 . 100
4.27 Extensions for decimal arithmetic . 101
4.28 Further reading . 103
4.29 Summary . 104

5 The floating-point environment 105
5.1 IEEE 754 and programming languages . 105
5.2 IEEE 754 and the mathcw library . 106
5.3 Exceptions and traps . 106
5.4 Access to exception flags and rounding control . 107
5.5 The environment access pragma . 110
5.6 Implementation of exception-flag and rounding-control access . 110

Contents xv

5.6.1 Clearing exception flags: feclearexcept() . 110
5.6.2 Getting the rounding direction: fegetround() . 111
5.6.3 Raising exception flags: feraiseexcept() . 111
5.6.4 Setting the rounding direction: fesetround() . 111
5.6.5 Testing exception flags: fetestexcept() . 112
5.6.6 Comments on the core five . 112

5.7 Using exception flags: simple cases . 112
5.8 Using rounding control . 115
5.9 Additional exception flag access . 116

5.9.1 Getting the environment: fegetenv() . 117
5.9.2 Setting the environment: fesetenv() . 117
5.9.3 Getting exception flags: fegetexceptflag() . 118
5.9.4 Setting exception flags: fesetexceptflag() . 118
5.9.5 Holding exception flags: feholdexcept() . 119
5.9.6 Updating the environment: feupdateenv() . 119
5.9.7 Comments on the six functions . 120

5.10 Using exception flags: complex case . 120
5.11 Access to precision control . 123

5.11.1 Precision control in hardware . 124
5.11.2 Precision control and the AMD64 architecture . 124
5.11.3 Precision control in the mathcw library . 124

5.12 Using precision control . 126
5.13 Summary . 127

6 Converting floating-point values to integers 129
6.1 Integer conversion in programming languages . 129
6.2 Programming issues for conversions to integers . 130
6.3 Hardware out-of-range conversions . 131
6.4 Rounding modes and integer conversions . 132
6.5 Extracting integral and fractional parts . 132
6.6 Truncation functions . 135
6.7 Ceiling and floor functions . 136
6.8 Floating-point rounding functions with fixed rounding . 137
6.9 Floating-point rounding functions: current rounding . 138
6.10 Floating-point rounding functions without inexact exception . 139
6.11 Integer rounding functions with fixed rounding . 140
6.12 Integer rounding functions with current rounding . 142
6.13 Remainder . 143
6.14 Why the remainder functions are hard . 144
6.15 Computing fmod() . 146
6.16 Computing remainder() . 148
6.17 Computing remquo() . 150
6.18 Computing one remainder from the other . 152
6.19 Computing the remainder in nonbinary bases . 155
6.20 Summary . 156

7 Random numbers 157
7.1 Guidelines for random-number software . 157
7.2 Creating generator seeds . 158
7.3 Random floating-point values . 160
7.4 Random integers from floating-point generator . 165
7.5 Random integers from an integer generator . 166
7.6 Random integers in ascending order . 168
7.7 How random numbers are generated . 169

7.7.1 Linear congruential generators . 169

xvi Contents

7.7.2 Deficiencies of congruential generators . 170
7.7.3 Computing congruential generators . 171
7.7.4 Faster congruential generators . 174
7.7.5 Other generator algorithms . 176
7.7.6 Combined generators . 177
7.7.7 Cryptographic generators . 178

7.8 Removing generator bias . 178
7.9 Improving a poor random number generator . 178
7.10 Why long periods matter . 179
7.11 Inversive congruential generators . 180

7.11.1 Digression: Euclid’s algorithm . 180
7.11.1.1 Euclid’s algorithm for any integers . 183
7.11.1.2 Division-free gcd algorithm . 184

7.11.2 Another digression: the extended Euclid’s algorithm . 186
7.12 Inversive congruential generators, revisited . 189
7.13 Distributions of random numbers . 189

7.13.1 The uniform distribution . 189
7.13.2 The exponential distribution . 189
7.13.3 The logarithmic distribution . 190
7.13.4 The normal distribution . 192
7.13.5 More on the normal distribution . 194

7.14 Other distributions . 195
7.14.1 Numerical demonstration of the Central Limit Theorem . 196

7.15 Testing random-number generators . 196
7.15.1 The chi-square test . 197
7.15.2 Random-number generator test suites . 200
7.15.3 Testing generators for nonuniform distributions . 202

7.16 Applications of random numbers . 202
7.16.1 Monte Carlo quadrature . 202
7.16.2 Encryption and decryption . 203

7.16.2.1 Problems with cryptography . 203
7.16.2.2 A provably secure encryption method . 204
7.16.2.3 Demonstration of a one-time pad . 204
7.16.2.4 Attacks on one-time-pad encryption . 207
7.16.2.5 Choice of keys and encryption methods . 207
7.16.2.6 Caveats about cryptography . 208

7.17 The mathcw random number routines . 208
7.18 Summary, advice, and further reading . 214

8 Roots 215
8.1 Square root . 215

8.1.1 Considerations for rounding of the square root . 216
8.1.2 An algorithm for correct rounding of the square root . 217
8.1.3 Variant iterations for the square root . 220

8.2 Hypotenuse and vector norms . 222
8.3 Hypotenuse by iteration . 227
8.4 Reciprocal square root . 233

8.4.1 Improved rounding of the reciprocal square root . 234
8.4.2 Almost-correct rounding of the reciprocal square root . 235

8.5 Cube root . 237
8.5.1 Improved rounding of the cube root . 237
8.5.2 Almost-correct rounding of the cube root . 239

8.6 Roots in hardware . 240
8.7 Summary . 242

Contents xvii

9 Argument reduction 243
9.1 Simple argument reduction . 243
9.2 Exact argument reduction . 250
9.3 Implementing exact argument reduction . 253
9.4 Testing argument reduction . 265
9.5 Retrospective on argument reduction . 265

10 Exponential and logarithm 267
10.1 Exponential functions . 267
10.2 Exponential near zero . 273
10.3 Logarithm functions . 282

10.3.1 Computing logarithms in a binary base . 284
10.3.2 Computing logarithms in a decimal base . 287

10.4 Logarithm near one . 290
10.5 Exponential and logarithm in hardware . 292
10.6 Compound interest and annuities . 294
10.7 Summary . 298

11 Trigonometric functions 299
11.1 Sine and cosine properties . 299
11.2 Tangent properties . 302
11.3 Argument conventions and units . 304
11.4 Computing the cosine and sine . 306
11.5 Computing the tangent . 310
11.6 Trigonometric functions in degrees . 313
11.7 Trigonometric functions in units of π . 315

11.7.1 Cosine and sine in units of π . 316
11.7.2 Cotangent and tangent in units of π . 318

11.8 Computing the cosine and sine together . 320
11.9 Inverse sine and cosine . 323
11.10 Inverse tangent . 331
11.11 Inverse tangent, take two . 336
11.12 Trigonometric functions in hardware . 338
11.13 Testing trigonometric functions . 339
11.14 Retrospective on trigonometric functions . 340

12 Hyperbolic functions 341
12.1 Hyperbolic functions . 341
12.2 Improving the hyperbolic functions . 345
12.3 Computing the hyperbolic functions together . 348
12.4 Inverse hyperbolic functions . 348
12.5 Hyperbolic functions in hardware . 350
12.6 Summary . 352

13 Pair-precision arithmetic 353
13.1 Limitations of pair-precision arithmetic . 354
13.2 Design of the pair-precision software interface . 355
13.3 Pair-precision initialization . 356
13.4 Pair-precision evaluation . 357
13.5 Pair-precision high part . 357
13.6 Pair-precision low part . 357
13.7 Pair-precision copy . 357
13.8 Pair-precision negation . 358
13.9 Pair-precision absolute value . 358
13.10 Pair-precision sum . 358

xviii Contents

13.11 Splitting numbers into pair sums . 359
13.12 Premature overflow in splitting . 362
13.13 Pair-precision addition . 365
13.14 Pair-precision subtraction . 367
13.15 Pair-precision comparison . 368
13.16 Pair-precision multiplication . 368
13.17 Pair-precision division . 371
13.18 Pair-precision square root . 373
13.19 Pair-precision cube root . 377
13.20 Accuracy of pair-precision arithmetic . 379
13.21 Pair-precision vector sum . 384
13.22 Exact vector sums . 385
13.23 Pair-precision dot product . 385
13.24 Pair-precision product sum . 386
13.25 Pair-precision decimal arithmetic . 387
13.26 Fused multiply-add with pair precision . 388
13.27 Higher intermediate precision and the FMA . 393
13.28 Fused multiply-add without pair precision . 395
13.29 Fused multiply-add with multiple precision . 401
13.30 Fused multiply-add, Boldo/Melquiond style . 403
13.31 Error correction in fused multiply-add . 406
13.32 Retrospective on pair-precision arithmetic . 407

14 Power function 411
14.1 Why the power function is hard to compute . 411
14.2 Special cases for the power function . 412
14.3 Integer powers . 414
14.4 Integer powers, revisited . 420
14.5 Outline of the power-function algorithm . 421
14.6 Finding a and p . 423
14.7 Table searching . 424
14.8 Computing logn(g/a) . 426
14.9 Accuracy required for logn(g/a) . 429
14.10 Exact products . 430
14.11 Computing w, w1 and w2 . 433
14.12 Computing nw2 . 437
14.13 The choice of q . 438
14.14 Testing the power function . 438
14.15 Retrospective on the power function . 440

15 Complex arithmetic primitives 441
15.1 Support macros and type definitions . 442
15.2 Complex absolute value . 443
15.3 Complex addition . 445
15.4 Complex argument . 445
15.5 Complex conjugate . 446
15.6 Complex conjugation symmetry . 446
15.7 Complex conversion . 448
15.8 Complex copy . 448
15.9 Complex division: C99 style . 449
15.10 Complex division: Smith style . 451
15.11 Complex division: Stewart style . 452
15.12 Complex division: Priest style . 453
15.13 Complex division: avoiding subtraction loss . 455
15.14 Complex imaginary part . 456

Contents xix

15.15 Complex multiplication . 456
15.16 Complex multiplication: error analysis . 458
15.17 Complex negation . 459
15.18 Complex projection . 460
15.19 Complex real part . 460
15.20 Complex subtraction . 461
15.21 Complex infinity test . 462
15.22 Complex NaN test . 462
15.23 Summary . 463

16 Quadratic equations 465
16.1 Solving quadratic equations . 465
16.2 Root sensitivity . 471
16.3 Testing a quadratic-equation solver . 472
16.4 Summary . 474

17 Elementary functions in complex arithmetic 475
17.1 Research on complex elementary functions . 475
17.2 Principal values . 476
17.3 Branch cuts . 476
17.4 Software problems with negative zeros . 478
17.5 Complex elementary function tree . 479
17.6 Series for complex functions . 479
17.7 Complex square root . 480
17.8 Complex cube root . 485
17.9 Complex exponential . 487
17.10 Complex exponential near zero . 492
17.11 Complex logarithm . 495
17.12 Complex logarithm near one . 497
17.13 Complex power . 500
17.14 Complex trigonometric functions . 502
17.15 Complex inverse trigonometric functions . 504
17.16 Complex hyperbolic functions . 509
17.17 Complex inverse hyperbolic functions . 514
17.18 Summary . 520

18 The Greek functions: gamma, psi, and zeta 521
18.1 Gamma and log-gamma functions . 521

18.1.1 Outline of the algorithm for tgamma() . 525
18.1.1.1 Asymptotic expansions . 528
18.1.1.2 Recurrence-relation accuracy . 528
18.1.1.3 Sums of rational numbers . 529
18.1.1.4 Avoiding catastrophic overflow . 530

18.1.2 Gamma function accuracy . 531
18.1.3 Computation of π/ sin(πx) . 531
18.1.4 Why lgamma(x) is hard to compute accurately . 531
18.1.5 Outline of the algorithm for lgamma() . 534
18.1.6 Log-gamma function accuracy . 536

18.2 The psi() and psiln() functions . 536
18.2.1 Psi function poles and zeros . 538
18.2.2 Recurrence relations for psi functions . 539
18.2.3 Psi functions with negative arguments . 541
18.2.4 Psi functions with argument multiples . 541
18.2.5 Taylor-series expansions of psi functions . 542
18.2.6 Asymptotic expansion of the psi function . 542

xx Contents

18.2.7 Psi function on [0, 1] . 543
18.2.8 Outline of the algorithm for psi() . 543
18.2.9 Computing π/ tan(πx) . 545
18.2.10 Outline of the algorithm for psiln() . 546

18.3 Polygamma functions . 547
18.3.1 Applications of polygamma functions . 555
18.3.2 Computing the polygamma functions . 556
18.3.3 Retrospective on the polygamma functions . 558

18.4 Incomplete gamma functions . 560
18.5 A Swiss diversion: Bernoulli and Euler . 568

18.5.1 Bernoulli numbers revisited . 574
18.6 An Italian excursion: Fibonacci numbers . 575
18.7 A German gem: the Riemann zeta function . 579

18.7.1 Computing the Riemann zeta function . 583
18.7.2 Greek relatives of the Riemann zeta function . 587

18.8 Further reading . 590
18.9 Summary . 591

19 Error and probability functions 593
19.1 Error functions . 593

19.1.1 Properties of the error functions . 593
19.1.2 Computing the error functions . 595

19.2 Scaled complementary error function . 598
19.3 Inverse error functions . 600

19.3.1 Properties of the inverse error functions . 601
19.3.2 Historical algorithms for the inverse error functions . 603
19.3.3 Computing the inverse error functions . 605

19.4 Normal distribution functions and inverses . 610
19.5 Summary . 617

20 Elliptic integral functions 619
20.1 The arithmetic-geometric mean . 619
20.2 Elliptic integral functions of the first kind . 624
20.3 Elliptic integral functions of the second kind . 627
20.4 Elliptic integral functions of the third kind . 630
20.5 Computing K(m) and K′(m) . 631
20.6 Computing E(m) and E′(m) . 637
20.7 Historical algorithms for elliptic integrals . 643
20.8 Auxiliary functions for elliptic integrals . 645
20.9 Computing the elliptic auxiliary functions . 648
20.10 Historical elliptic functions . 650
20.11 Elliptic functions in software . 652
20.12 Applications of elliptic auxiliary functions . 653
20.13 Elementary functions from elliptic auxiliary functions . 654
20.14 Computing elementary functions via RC(x, y) . 655
20.15 Jacobian elliptic functions . 657

20.15.1 Properties of Jacobian elliptic functions . 659
20.15.2 Computing Jacobian elliptic functions . 661

20.16 Inverses of Jacobian elliptic functions . 664
20.17 The modulus and the nome . 668
20.18 Jacobian theta functions . 673
20.19 Logarithmic derivatives of the Jacobian theta functions . 675
20.20 Neville theta functions . 678
20.21 Jacobian Eta, Theta, and Zeta functions . 679
20.22 Weierstrass elliptic functions . 682

Contents xxi

20.23 Weierstrass functions by duplication . 689
20.24 Complete elliptic functions, revisited . 690
20.25 Summary . 691

21 Bessel functions 693
21.1 Cylindrical Bessel functions . 694
21.2 Behavior of Jn(x) and Yn(x) . 695
21.3 Properties of Jn(z) and Yn(z) . 697
21.4 Experiments with recurrences for J0(x) . 705
21.5 Computing J0(x) and J1(x) . 707
21.6 Computing Jn(x) . 710
21.7 Computing Y0(x) and Y1(x) . 713
21.8 Computing Yn(x) . 715
21.9 Improving Bessel code near zeros . 716
21.10 Properties of In(z) and Kn(z) . 718
21.11 Computing I0(x) and I1(x) . 724
21.12 Computing K0(x) and K1(x) . 726
21.13 Computing In(x) and Kn(x) . 728
21.14 Properties of spherical Bessel functions . 731
21.15 Computing jn(x) and yn(x) . 735
21.16 Improving j1(x) and y1(x) . 740
21.17 Modified spherical Bessel functions . 743

21.17.1 Computing i0(x) . 744
21.17.2 Computing is0(x) . 746
21.17.3 Computing i1(x) . 747
21.17.4 Computing is1(x) . 749
21.17.5 Computing in(x) . 750
21.17.6 Computing isn(x) . 753
21.17.7 Computing kn(x) and ksn(x) . 754

21.18 Software for Bessel-function sequences . 755
21.19 Retrospective on Bessel functions . 761

22 Testing the library 763
22.1 Testing tgamma() and lgamma() . 765
22.2 Testing psi() and psiln() . 768
22.3 Testing erf() and erfc() . 768
22.4 Testing cylindrical Bessel functions . 769
22.5 Testing exponent/significand manipulation . 769
22.6 Testing inline assembly code . 769
22.7 Testing with Maple . 770
22.8 Testing floating-point arithmetic . 773
22.9 The Berkeley Elementary Functions Test Suite . 774
22.10 The AT&T floating-point test package . 775
22.11 The Antwerp test suite . 776
22.12 Summary . 776

23 Pair-precision elementary functions 777
23.1 Pair-precision integer power . 777
23.2 Pair-precision machine epsilon . 779
23.3 Pair-precision exponential . 780
23.4 Pair-precision logarithm . 787
23.5 Pair-precision logarithm near one . 793
23.6 Pair-precision exponential near zero . 793
23.7 Pair-precision base-n exponentials . 795
23.8 Pair-precision trigonometric functions . 796

xxii Contents

23.9 Pair-precision inverse trigonometric functions . 801
23.10 Pair-precision hyperbolic functions . 804
23.11 Pair-precision inverse hyperbolic functions . 808
23.12 Summary . 808

24 Accuracy of the Cody/Waite algorithms 811

25 Improving upon the Cody/Waite algorithms 823
25.1 The Bell Labs libraries . 823
25.2 The Cephes library . 823
25.3 The Sun libraries . 824
25.4 Mathematical functions on EPIC . 824
25.5 The GNU libraries . 825
25.6 The French libraries . 825
25.7 The NIST effort . 826
25.8 Commercial mathematical libraries . 826
25.9 Mathematical libraries for decimal arithmetic . 826
25.10 Mathematical library research publications . 826
25.11 Books on computing mathematical functions . 827
25.12 Summary . 828

26 Floating-point output 829
26.1 Output character string design issues . 830
26.2 Exact output conversion . 831
26.3 Hexadecimal floating-point output . 832

26.3.1 Hexadecimal floating-point output requirements . 832
26.3.2 Remarks on hexadecimal floating-point output . 833
26.3.3 Hexadecimal floating-point output-conversion code . 834
26.3.4 Conversion to uppercase . 848
26.3.5 Determining rounding direction . 848

26.4 Octal floating-point output . 850
26.5 Binary floating-point output . 851
26.6 Decimal floating-point output . 851

26.6.1 The decimal-conversion program interface . 853
26.6.2 Fast powers of ten . 855
26.6.3 Preliminary scaling . 856
26.6.4 Support for %g-style conversion . 857
26.6.5 Buffer sizes . 858
26.6.6 Special cases . 858
26.6.7 Scaling and rounding adjustment . 859
26.6.8 Digit generation . 860
26.6.9 Completing decimal output conversion . 861
26.6.10 Computing the minimum desirable precision . 864
26.6.11 Coding fast powers of ten . 864

26.7 Accuracy of output conversion . 865
26.8 Output conversion to a general base . 865
26.9 Output conversion of Infinity . 866
26.10 Output conversion of NaN . 866
26.11 Number-to-string conversion . 867
26.12 The printf() family . 867

26.12.1 Dangers of printf() . 868
26.12.2 Variable argument lists . 870
26.12.3 Implementing the printf() family . 871
26.12.4 Output conversion specifiers . 873

26.13 Summary . 878

Contents xxiii

27 Floating-point input 879
27.1 Binary floating-point input . 879

27.1.1 Sign input conversion . 885
27.1.2 Prefix string matching . 886
27.1.3 Infinity input conversion . 887
27.1.4 NaN input conversion . 887
27.1.5 Power input conversion . 889
27.1.6 Floating-point suffix conversion . 890
27.1.7 Integer suffix conversion . 892
27.1.8 Input rounding adjustment . 893

27.2 Octal floating-point input . 894
27.3 Hexadecimal floating-point input . 895
27.4 Decimal floating-point input . 895
27.5 Based-number input . 899
27.6 General floating-point input . 900
27.7 The scanf() family . 901

27.7.1 Implementing the scanf() family . 902
27.7.2 Whitespace and ordinary characters . 904
27.7.3 Input conversion specifiers . 905
27.7.4 Retrospective on the scanf() family . 909

27.8 Summary . 910

A Ada interface 911
A.1 Building the Ada interface . 911
A.2 Programming the Ada interface . 912
A.3 Using the Ada interface . 915

B C# interface 917
B.1 C# on the CLI virtual machine . 917
B.2 Building the C# interface . 918
B.3 Programming the C# interface . 920
B.4 Using the C# interface . 922

C C++ interface 923
C.1 Building the C++ interface . 923
C.2 Programming the C++ interface . 924
C.3 Using the C++ interface . 925

D Decimal arithmetic 927
D.1 Why we need decimal floating-point arithmetic . 927
D.2 Decimal floating-point arithmetic design issues . 928
D.3 How decimal and binary arithmetic differ . 931
D.4 Initialization of decimal floating-point storage . 935
D.5 The <decfloat.h> header file . 936
D.6 Rounding in decimal arithmetic . 936
D.7 Exact scaling in decimal arithmetic . 937

E Errata in the Cody/Waite book 939

F Fortran interface 941
F.1 Building the Fortran interface . 943
F.2 Programming the Fortran interface . 944
F.3 Using the Fortran interface . 945

xxiv Contents

H Historical floating-point architectures 947
H.1 CDC family . 949
H.2 Cray family . 952
H.3 DEC PDP-10 . 953
H.4 DEC PDP-11 and VAX . 956
H.5 General Electric 600 series . 958
H.6 IBM family . 959

H.6.1 IBM 7030 Stretch . 959
H.6.2 IBM and Fortran . 961
H.6.3 IBM System/360 . 963

H.7 Lawrence Livermore S-1 Mark IIA . 965
H.8 Unusual floating-point systems . 966
H.9 Historical retrospective . 967

I Integer arithmetic 969
I.1 Memory addressing and integers . 971
I.2 Representations of signed integers . 971

I.2.1 Sign-magnitude representation . 971
I.2.2 One’s-complement representation . 972
I.2.3 Two’s-complement representation . 972
I.2.4 Excess-n representation . 974
I.2.5 Ranges of integers . 974

I.3 Parity testing . 975
I.4 Sign testing . 975
I.5 Arithmetic exceptions . 975
I.6 Notations for binary numbers . 977
I.7 Summary . 978

J Java interface 979
J.1 Building the Java interface . 979
J.2 Programming the Java MathCW class . 980
J.3 Programming the Java C interface . 982
J.4 Using the Java interface . 985

L Letter notation 987

P Pascal interface 989
P.1 Building the Pascal interface . 989
P.2 Programming the Pascal MathCW module . 990
P.3 Using the Pascal module interface . 993
P.4 Pascal and numeric programming . 994

Bibliography 995

Author/editor index 1039

Function and macro index 1049

Subject index 1065

Colophon 1115

List of figures

2.1 Asymptotic expansion accuracy for erfc(x) . 20

3.1 Exponential function approximation, the wrong way . 26
3.2 Exponential function approximation, the right way . 27
3.3 Error in minimax 〈3/3〉 fit of sin(x)/x . 37
3.4 Chebyshev polynomials . 46
3.5 Errors in Chebyshev approximations . 48

4.1 IEEE 754 binary floating-point data layout . 63
4.2 Binary and decimal ulp spacing . 81

5.1 IA-32 floating-point control word . 125

6.1 Computing the remainder . 145

7.1 The correlation problem in LCGs . 171
7.2 Frames from animated rotation of LCG 3-D point sequence . 172
7.3 Frames from animated rotation of LCG 3-D point sequence . 173
7.4 Views of uniform distributions of random numbers . 190
7.5 Views of exponential distributions of random numbers . 191
7.6 Views of logarithmic distributions of random numbers . 193
7.7 Views of normal distributions of random numbers . 193
7.8 Normal curves for various σ values . 195
7.9 Counts of heads for 100 coin-flip experiments . 197
7.10 Counts of heads for 100 000 coin-flip experiments . 197

10.1 The exponential function . 268
10.2 Errors in Cody/Waite EXP() functions . 272
10.3 Errors in EXP() functions . 273
10.4 Errors in EXPM1() functions . 278
10.5 The natural logarithm function . 282
10.6 Errors in mathcw logarithm functions in a binary base . 288
10.7 Errors in mathcw logarithm functions in a decimal base . 289
10.8 Errors in LOG1P() functions . 293

11.1 Sine and cosine . 300
11.2 Cosecant and secant . 300
11.3 Tangent and cotangent . 302
11.4 Errors in COS() functions . 311
11.5 Errors in SIN() functions . 312
11.6 Errors in TAN() functions . 313
11.7 Inverse cosine and sine . 324
11.8 Errors in ACOS() functions . 326
11.9 Errors in ASIN() functions . 327
11.10 Inverse tangent . 332
11.11 Errors in ATAN() functions . 333

12.1 Hyperbolic functions . 342
12.2 Errors in hyperbolic functions . 346

xxv

xxvi

12.3 Inverse hyperbolic functions near origin . 348
12.4 Inverse hyperbolic cosine . 349
12.5 Inverse hyperbolic sine . 349
12.6 Inverse hyperbolic tangent . 350
12.7 Errors in inverse hyperbolic functions . 351

13.1 Errors in pair-precision square-root functions . 376
13.2 Errors in pair-precision square-root functions . 377
13.3 Errors in pair-precision cube-root functions . 380
13.4 Errors in pair-precision cube-root functions . 381

15.1 Cartesian and polar forms of point in complex plane . 444
15.2 Projecting a point onto the Riemann sphere . 461

16.1 Three cases for roots of quadratic equations . 466

17.1 Complex square root surfaces . 481
17.2 Errors in csqrt() function . 484
17.3 Complex cube root surfaces . 485
17.4 Errors in ccbrt() function . 488
17.5 Complex exponential surfaces . 489
17.6 Errors in cexp() function . 493
17.7 Errors in cexpm1() function . 494
17.8 Complex logarithm surfaces . 495
17.9 Errors in clog() function . 497
17.10 Errors in clog1p() function . 501
17.11 Errors in cpow() function . 502
17.12 Complex cosine surfaces . 503
17.13 Complex sine surfaces . 503
17.14 Complex tangent surfaces . 503
17.15 Errors in ccos() function . 505
17.16 Errors in csin() function . 505
17.17 Errors in ctan() function . 505
17.18 Complex inverse cosine surfaces . 506
17.19 Complex inverse sine surfaces . 506
17.20 Complex inverse tangent surfaces . 506
17.21 Errors in cacos() function . 510
17.22 Errors in casin() function . 510
17.23 Errors in catan() function . 510
17.24 Complex hyperbolic cosine surfaces . 511
17.25 Complex hyperbolic sine surfaces . 511
17.26 Complex hyperbolic tangent surfaces . 511
17.27 Errors in ccosh() function . 515
17.28 Errors in csinh() function . 515
17.29 Errors in ctanh() function . 515
17.30 Complex inverse hyperbolic cosine surfaces . 516
17.31 Complex inverse hyperbolic sine surfaces . 516
17.32 Complex inverse hyperbolic tangent surfaces . 516
17.33 Errors in cacosh() function . 519
17.34 Errors in casinh() function . 519
17.35 Errors in catanh() function . 519

18.1 Gamma function and its logarithm . 522
18.2 Errors in the TGAMMA() functions (narrow and log range) . 532
18.3 Errors in the TGAMMA() functions (wide range) . 533

List of figures

xxvii

18.4 Errors in the LGAMMA() functions (narrow and log range) . 537
18.5 Errors in the LGAMMA() functions (wide range) . 538
18.6 Psi and psiln functions . 539
18.7 Errors in the PSI() functions . 546
18.8 Errors in the PSILN() functions . 547
18.9 Polygamma functions . 549
18.10 Errors in the PGAMMA(n,x) functions . 559
18.11 Errors in the gamibf() and gamibdf() functions . 567
18.12 Errors in the gamib() and gamibd() functions . 568
18.13 Pascal’s Triangle and Fibonacci numbers . 576
18.14 Riemann zeta function . 580
18.15 Errors in the ZETA() functions . 585
18.16 Errors in the ZETAM1() functions . 586
18.17 Catalan/Dirichlet beta function . 588

19.1 Error functions and normal curve . 594
19.2 Error-magnification factors for error functions . 596
19.3 Errors in the ordinary error functions . 599
19.4 Errors in the complementary error functions . 600
19.5 Errors in the scaled complementary error functions . 601
19.6 Inverse error functions . 602
19.7 Error-magnification factors for inverse error functions . 604
19.8 Inverse error function and two approximations to it . 606
19.9 Relative error in approximation to inverse error function . 607
19.10 Errors in inverse error functions . 611
19.11 Errors in complementary inverse error functions . 611
19.12 Normal distribution functions and inverses . 614

20.1 Complete elliptic integral functions of first kind . 625
20.2 Complete elliptic integral functions of second kind . 628
20.3 Error magnification in elliptic integral functions . 629
20.4 Errors in elliptic integral functions of first kind . 634
20.5 Errors in complementary elliptic integral functions of first kind . 637
20.6 Errors in elliptic integral functions of second kind . 641
20.7 Errors in complementary elliptic integral functions of second kind . 644
20.8 Jacobian elliptic functions . 658
20.9 Jacobian elliptic function amplitudes . 660
20.10 Errors in Jacobian elliptic functions along k . 665
20.11 Errors in Jacobian elliptic functions along u . 666
20.12 Elliptic modulus and nomes . 668
20.13 Jacobian theta functions . 674
20.14 Neville theta functions . 679
20.15 Jacobian Eta, Theta, and Zeta functions . 680
20.16 Weierstrass elliptic functions . 684
20.17 Weierstrass sigma and zeta functions . 687
20.18 Errors in Weierstrass sigma and zeta functions . 688

21.1 Bessel functions Jn(x) and Yn(x) . 696
21.2 Bessel function ratios . 701
21.3 Errors in j0(x) functions . 709
21.4 Errors in j1(x) functions . 710
21.5 Errors in jn(n,x) functions . 713
21.6 Errors in y0(x) functions . 714
21.7 Errors in y1(x) functions . 715
21.8 Errors in yn(n,x) functions . 717

List of figures

xxviii

21.9 Errors in improved j0(x) function . 719
21.10 Modified Bessel functions . 720
21.11 Errors in bi0(x) functions . 726
21.12 Errors in bi1(x) functions . 727
21.13 Errors in bin(x) functions . 728
21.14 Errors in bis0(x) functions . 729
21.15 Errors in bis1(x) functions . 730
21.16 Errors in bisn(x) functions . 731
21.17 Errors in bk0(x) functions . 732
21.18 Errors in bk1(x) functions . 733
21.19 Errors in bkn(x) functions . 734
21.20 Errors in bks0(x) functions . 735
21.21 Errors in bks1(x) functions . 736
21.22 Errors in bksn(x) functions . 737
21.23 Spherical Bessel functions . 739
21.24 Errors in sbj0(x) functions . 741
21.25 Errors in sbj1(x) functions . 742
21.26 Errors in sbjn(x) functions . 743
21.27 Errors in sby0(x) functions . 744
21.28 Errors in sby1(x) functions . 745
21.29 Errors in sbyn(x) functions . 746
21.30 Errors in sbi0(x) functions . 747
21.31 Errors in sbis0(x) functions . 748
21.32 Errors in sbi1(x) functions . 749
21.33 Errors in sbis1(x) functions . 750
21.34 Errors in sbin(n,x) functions . 754
21.35 Errors in sbisn(n,x) functions . 755
21.36 Errors in sbk0(x) functions . 756
21.37 Errors in sbk1(x) functions . 756
21.38 Errors in sbkn(x) functions . 756
21.39 Errors in sbks0(x) functions . 757
21.40 Errors in sbks1(x) functions . 757
21.41 Errors in sbksn(x) functions . 757

22.1 Recurrence relations for log-gamma . 767
22.2 Significance loss for log-gamma . 767
22.3 Reciprocal of gamma function . 768

23.1 Errors in pair-precision exponential functions . 786
23.2 Errors in the decimal pair-precision PEXPD() functions . 786
23.3 Errors in pair-precision logarithm functions (series region) . 792
23.4 Errors in pair-precision logarithm functions . 793
23.5 Errors in pair-precision logarithm-plus-one functions . 794
23.6 Errors in pair-precision PEXPM1() functions . 795
23.7 Errors in pair-precision PEXP2() functions . 796
23.8 Errors in pair-precision PEXP8() functions . 797
23.9 Errors in pair-precision PEXP10() functions . 798
23.10 Errors in pair-precision PEXP16() functions . 799
23.11 Errors in pair-precision PCOS() functions . 800
23.12 Errors in pair-precision PSIN() functions . 801
23.13 Errors in pair-precision PTAN() functions . 802
23.14 Errors in pair-precision PACOS() functions . 805
23.15 Errors in pair-precision PASIN() functions . 806
23.16 Errors in pair-precision PATAN() functions . 806
23.17 Errors in pair-precision PCOSH() functions . 807

List of figures

xxix

23.18 Errors in pair-precision PSINH() functions . 807
23.19 Errors in pair-precision PTANH() functions . 809
23.20 Errors in pair-precision PACOSH() functions . 809
23.21 Errors in pair-precision PASINH() functions . 810
23.22 Errors in pair-precision PATANH() functions . 810

D.1 IEEE 754-2008 decimal floating-point data layout . 930
D.2 IEEE 754-2008 decimal floating-point data layout . 930

H.1 VAX binary floating-point logical data layout . 957
H.2 VAX F-floating memory layout . 957
H.3 VAX D- and G-floating memory layout . 958
H.4 VAX H-floating memory layout . 958
H.5 System/360 hexadecimal floating-point data layout . 964

List of figures

List of tables

3.1 Accuracy of rational polynomials . 34
3.2 Low-level polynomial approximations . 44
3.3 Chebyshev polynomials and recurrence relation . 45
3.4 Standard contents of the mathcw library . 58
3.5 Extended contents of the mathcw library, part 1 . 59
3.6 Extended contents of the mathcw library, part 2 . 60

4.1 Magnification factors . 62
4.2 Binary floating-point characteristics and limits . 65
4.3 Rounding in binary arithmetic . 67
4.4 IEEE 754 rounding-mode actions . 68
4.5 Nonstandardness of atan2(±0,±0) . 71

5.1 Interval-arithmetic operations . 115

6.1 Out-of-range conversions to integers . 131
6.2 Rounding to integer values . 132
6.3 Fixed-point representation of large integers . 133
6.4 Remainder function examples . 144
6.5 Loop counts in fmod() . 148

7.1 Percentage points of chi-square distribution . 198

9.1 Trigonometric argument reduction . 244
9.2 Worst cases for trigonometric argument reduction . 252

10.1 Exponential and logarithm hardware instructions . 294

11.1 Bernoulli numbers of even order . 304
11.2 Distances of closest machine numbers to 1

2 π . 305
11.3 Trigonometric hardware instructions . 338

12.1 PORT library hyperbolic functions . 352
12.2 FNLIB library hyperbolic functions . 352

13.1 Pair-precision primitives . 356
13.2 Splitting numbers into sums of parts . 360
13.3 Accuracy of float_pair primitives . 382
13.4 Accuracy of double_pair primitives . 383
13.5 Error distribution for float_pair primitives . 384
13.6 Error distribution for double_pair primitives . 384

14.1 Special cases in the power function . 413
14.2 More on special cases in the power function . 414
14.3 Variable limits in the computation of logn(g/a) . 427
14.4 Accuracy of rational polynomial fits for computing logn(g/a) . 428
14.5 Accuracy of rational polynomial fits to (nw − 1)/w . 437
14.6 Effect of q on power-function accuracy . 439
14.7 Effect of q on power-function memory size . 439

xxxi

xxxii

16.1 Solution of the quadratic equation . 467

17.1 Complex elementary function tree . 479
17.2 Special cases for complex square root . 482
17.3 Special cases for complex cube root . 486
17.4 Special cases for complex exponential . 490
17.5 Special cases for complex logarithm . 496
17.6 Special cases for complex inverse trigonometric cosine . 507
17.7 Special cases for complex hyperbolic cosine . 513
17.8 Special cases for complex hyperbolic sine . 513
17.9 Special cases for complex hyperbolic tangent . 514
17.10 Special cases for complex inverse hyperbolic cosine . 518
17.11 Special cases for complex inverse hyperbolic sine . 518
17.12 Special cases for complex inverse hyperbolic tangent . 518

18.1 Behavior of Γ(x) near poles . 523
18.2 Zeros of lgamma(x) . 534
18.3 Zeros of psi(x) . 540
18.4 Accuracy of asymptotic series for polygamma functions . 555
18.5 Euler numbers of even order . 572
18.6 Tangent numbers of odd order . 575
18.7 Fibonacci numbers . 577

19.1 Cumulative distribution function Φ(x) (x ≤ 0) . 612
19.2 Cumulative distribution function Φ(x) (x ≥ 0) . 613
19.3 Probability of exceeding the mean . 616

20.1 Computing π from the AGM . 622

21.1 Bessel function family . 695
21.2 Roots of ordinary Bessel functions . 698
21.3 Asymptotic trigonometric formulas for Bessel functions . 699
21.4 Series term counts for Jn(x) . 703
21.5 Iteration counts for continued fraction of Jn(x)/Jn−1(x) . 712
21.6 Low-order spherical Bessel functions . 738
21.7 Spherical Bessel function limits . 740
21.8 Convergence of Taylor series of in(x) . 753

24.1 Bit loss on HP/Compaq/DEC Alpha OSF/1 . 812
24.2 Bit loss on HP/Compaq/DEC Alpha OSF/1 (large MAXTEST) . 812
24.3 Bit loss on GNU/Linux AMD64 . 813
24.4 Bit loss on GNU/Linux AMD64 (large MAXTEST) . 813
24.5 Bit loss on GNU/Linux IA-32 . 814
24.6 Bit loss on GNU/Linux IA-64 (no FMA) . 814
24.7 Bit loss on GNU/Linux IA-64 (FMA) . 815
24.8 Bit loss on HP-UX IA-64 . 815
24.9 Bit loss on HP-UX PA-RISC . 816
24.10 Bit loss on IBM AIX on POWER . 816
24.11 Bit loss on GNU/Linux MIPS R4400SC . 817
24.12 Bit loss on SGI IRIX MIPS R10000 . 817
24.13 Bit loss on Mac OS X PowerPC . 818
24.14 Bit loss on Solaris SPARC . 818
24.15 Bit loss on Solaris IA-32 . 819
24.16 Bit loss on GNU/Linux IA-64 for native math library . 819
24.17 Bit loss on Solaris SPARC for native Sun math library . 820

List of tables

xxxiii

24.18 Bit loss on Solaris IA-32 for native Sun math library . 820
24.19 Bit loss on Solaris SPARC for IBM APMathLib . 820
24.20 Bit loss on Solaris SPARC for Sun fdlibm . 821
24.21 Bit loss on Solaris SPARC for Sun libmcr . 821
24.22 Bit loss on Solaris SPARC for Moshier’s Cephes library . 821
24.23 Bit loss on Solaris IA-32 for Moshier’s Cephes library . 822

26.1 Symbolic flags for formatted output . 840
26.2 Hard cases for binary to decimal conversion . 852
26.3 Goldberg/Matula base-conversion precision . 853
26.4 More symbolic flags for formatted output . 854
26.5 Output conversion specifiers (part 1) . 873
26.6 Output conversion specifiers (part 2) . 874
26.7 Flag-character format modifiers . 875
26.8 Precision format modifiers . 876
26.9 Minimum field-width format modifiers . 876
26.10 Exponent-width format modifiers . 876
26.11 Digit-grouping format modifiers . 876
26.12 Number-base format modifiers . 876
26.13 Output data-length format modifiers . 877
26.14 Binary and octal floating-point output . 877

27.1 Input conversion specifiers . 906
27.2 Input data type format modifiers . 907

D.1 Decimal floating-point features (DPD encoding) . 929
D.2 Decimal floating-point features (BID encoding) . 929
D.3 Behavior of the quantize() function . 932
D.4 Behavior of the samequantum() function . 933
D.5 Behavior of the decimal normalize() function . 934
D.6 The <decfloat.h> header file . 937

H.1 Arithmetic of current and historical computer systems . 948

I.1 Integer word sizes . 970
I.2 Sign-magnitude integers . 971
I.3 One’s-complement integers . 972
I.4 Two’s-complement integers . 973
I.5 Excess-n 4-bit integers . 974
I.6 Largest integers in various word sizes . 975
I.7 Behavior of integer division by zero . 977

L.1 Latin letters in mathematics . 987
L.2 Greek letters in mathematics . 988

P.1 Pascal numeric data types . 990

List of tables

Quick start

THIS QUICK START FEATURE IS NOT COMPREHENSIVE:
THERE MAY BE ADDITIONAL OSHA STANDARDS AND

GUIDANCE MATERIALS THAT ALSO APPLY.

— WEB SITE DISCLAIMER, U.S. DEPARTMENT OF LABOR,
OCCUPATIONAL SAFETY & HEALTH ADMINISTRATION.

The mathcw library implements the elementary mathematical functions mandated by C89 and C99, normally sup-
plied by the -lm library on most UNIX systems. Table 3.4 on page 58 summarizes the mathcw library contents.

Much more information is provided in the remaining chapters of this book, but if you are only interested in
library installation, then this short section provides enough information for that task.

To build, validate, and install this library on almost any modern UNIX or POSIX-compatible system, this widely
used GNU recipe does the job:

% ./configure && make all check install

On Hewlett–Packard HP-UX on IA-64 (Intel Architecture 64-bit), change the target all to all-hp to get library
support for two additional precisions available on that platform; see Section 4.26 on page 100 for details. The
corresponding check-hp target tests all five supported precisions.

To change the default installation tree from the GNU-standard default of /usr/local, define prefix to an equiv-
alent value at install time:

% make prefix=/depot install

That would create the library file /depot/lib/libmcw.a.
The mathcw library can be used like this with either C or C++ compilers:

% cc [flags] [-I$prefix/include] file(s) [-L$prefix] -lmcw

The -I option is needed if the code includes this package’s mathcw.h header file. That may not be necessary, if
<math.h> is included. Depending on the local conventions, the -L option may or may not be required to define a
load-library path. $prefix must be replaced by the local default, such as /usr/local.

Caution is needed on systems for which the C header file <math.h> redefines library function names, or where
compilers produce inline code for elementary functions, such as on the Intel IA-32 (formerly, x86) architecture, which
has single hardware instructions for several of them. For the GNU compiler family, use the option -fno-builtin to
permit library routines to replace inline code.

Caution is also needed when the host default floating-point behavior is not IEEE-754 conformant. GNU/LINUX
and OSF/1 operating systems with Alpha processors have this defect: underflows flush abruptly to zero, and over-
flows and operations with NaN immediately terminate the process. To get mostly conformant behavior, with GNU
compilers, use the -mieee flag, and with native compilers, use the -ieee flag. To get full conformance, use -mieee-
with-inexact or -mieee-conformant, plus -mfp-rounding-mode=d, with GNU compilers, and -ieee_with_inexact
and -mfp-rounding-mode=d with native ones.

On IBM AIX 4.2, long double is compiled as double, unless the native compiler name is changed from cc to
cc128, or the -qlongdouble option is specified. Run-time library support of 128-bit long double requires linking
with cc128, or explicit specification of the -lc128 library. The easiest way to build the mathcw library is then like
this:

% make CC=cc128 all check

The GNU compiler gcc version 2.95.3 does not support a 128-bit long double at all, and no newer version builds
successfully on AIX 4.2.

It is possible to compile a subset of the package, either manually to select replacements for deficient implementa-
tions in the native -lm library, or by precision, with the targets float, double, and longdouble. For example, pre-C99

xxxv

xxxvi

implementations of the C language may lack some or all of the float and long double elementary functions, pro-
viding only the double versions.

To clean up after a build, do this:

% make clean

To return to the original state of a freshly unpacked distribution, use the command

% make distclean

More details about the interpretation of the test results are given later in Chapter 22 on page 763.
The mathcw library distribution includes interfaces that make the library accessible from several other major

programming languages. The interfaces are described in appendices of this book, beginning on page 911.
For up-to-date information about building the library, run the command

% make help

to get further information about platform-specific targets, and about building shared libraries.

Quick start

1 Introduction

MANY PITFALLS AWAIT A SYSTEMS PROGRAMMER WHO

ATTEMPTS TO IMPLEMENT BASIC FUNCTION ROUTINES

USING INFORMATION GLEANED FROM A CALCULUS TEXT.

— W. J. CODY, JR. AND W. WAITE (1980).

The mathcw package contains source code files that provide replacements for C’s elementary functions. It exists
to provide improved code for use by hoc (and other software) on platforms where the native library versions are
deficient, to provide access to the full C99 math library at a time when few systems have it, and to provide an
insulating layer to shield other software from system dependencies. When it is important that software produce
(nearly) identical results on all platforms, avoiding the use of different underlying math libraries in favor of a single
consistent library can be of significant help.

Two landmark books [HCL+68, CW80] are good sources of decent algorithms for those functions. Those books
predate IEEE 754 arithmetic [IEEE85a, IEEE08, ISO11] and that of its radix-independent extension, IEEE 854 arith-
metic [ANS87], so modifications are required to make their algorithms correctly handle Infinity, NaN, and signed
zero (see Section 4.7 on page 69), and to extend them to handle the higher precisions of IEEE 754 arithmetic.

In the mathcw package, emphasis is on portability, precisely because the code must be able to be used on a wide
variety of platforms. In particular, the code does not require that IEEE 754 arithmetic be available, but it does assume
that it might be. Thus, it tests for Infinity and NaN as needed using isinf(), isnan(), and their companions for other
precisions. It also uses nextafter() and its companions. Versions of those functions are provided for systems that
lack them.

This book is intended to be a successor to that of Cody and Waite [CW80]. Their book supplies recipes for
computations of all of the elementary functions required by the Fortran programming language, which was the
most widely used, and most portable, language for numerical computation up through the mid 1980s. However, by
the 1990s, the common desktop operating systems and most of their utilities, compilers, and libraries, were written
in the C language. As a result, programming languages can interoperate more easily than they could a generation
ago, and a function library written in C can be relatively easily used by other languages as well, possibly via a thin
interface layer to provide alternate function names and/or calling sequences.

The functions in the C99 mathematical library are a superset of those required by most other programming
languages, so C is clearly the best language choice for a universal mathematical library at the time of writing this.
Although the C language certainly has plenty of pitfalls for the unwary, it also provides sufficient access to the
hardware that escapes to other languages, and notably, platform-specific assembly code, are rare. With care, C
programs can be written with a high degree of portability between operating systems and CPU architectures, and can
be compiled with both C and C++ compilers. Those practices expose C code to a much wider range of compilation
environments than is possible with any other programming language. Combining that broad exposure with rigorous
run-time testing can give the developer much more confidence in the correctness and reliability of the code than is
possible with languages that are restricted to a single compiler, a single operating system, or a single hardware
platform.

C and C++ are each specified by at least three international standards [C90, C99, C11b, C++98, C++03a, C++11a,
C++14] that precisely define the behavior of those languages and their standard libraries, and provide rigorous gram-
mars for the languages. As a result, programs in those languages are much more likely to preserve their meaning
in different environments. Few other programming languages are as carefully specified as C and C++ are, and even
fewer have been subjected to the wide implementation, scrutiny, use, and testing that C and C++ have experienced.
The roots of C go back to the late 1960s, and the patina of more than four decades of use has made it one of the best
understood and most reliable languages in the programmer’s toolbox.

This book deals almost exclusively with the C language for the implementation of the mathcw library. However,
interfaces for several other languages are presented in appendices:

� Ada in Appendix A on page 911;

© Springer International Publishing AG 2017
N.H.F. Beebe, The Mathematical-Function Computation
Handbook, DOI 10.1007/978-3-319-64110-2_1

1

2 Chapter 1. Introduction

� C# in Appendix B on page 917;

� C++ in Appendix C on page 923;

� Fortran in Appendix F on page 941;

� Java in Appendix J on page 979; and

� Pascal in Appendix P on page 989.

In each case, it is expected that the mathcw library implementation will remain in C, without the need for rewriting,
porting, testing, and maintenance, in multiple programming languages.

Although newer programming languages extol the virtues of classes, interfaces, modules, namespaces, and packages,
for the mathcw library, none of those fancy features is needed, and their use would only clutter the code and reduce its
portability and audience. The C preprocessor, the C typedef statement, the C standard header files, and a small set of
function primitives, together provide minimal, but sufficient, tools for the major abstractions required in the library
to provide independence from byte order, floating-point and integer data formats, floating-point architectures, hardware
architectures, operating systems, and numerical precision and range. In addition, the software design of the mathcw
library makes it easy to replace the algorithmic internals of any function without altering the user interface.

No use whatever has been made of graphical user interface (GUI) development environments during the prepa-
ration of either the mathcw library or this book. Instead, a superb text editor, emacs, a powerful typesetting system,
LATEX, and access to several dozen C and C++ compilers, and also compilers for Ada, C#, Fortran, Java, and Pascal,
on more than twenty different operating systems, have been quite sufficient.

Besides the language-interface appendices, there are additional ones that provide background reading and other
information:

� decimal floating-point arithmetic in Appendix D on page 927;

� errata in the Cody and Waite book in Appendix E on page 939;

� historical floating-point architectures in Appendix H on page 947;

� integer arithmetic in Appendix I on page 969.

1.1 Programming conventions

In order to guarantee portability, even to older systems, and algorithmic clarity, there are several required program-
ming practices for the library itself (not for code that calls it):

� Functions shall be declared and prototyped in C89 style. The separate ansi2knr program included with the
distribution can be used to convert the source code to old-style Kernighan-and-Ritchie C for systems with old
compilers.

� The C header file <math.h> cannot be included in the implementations, because it might redefine functions, or
have conflicting prototypes. Instead, include mathcw.h.

� The compile-time macro P defines the desired polynomial precision in bits. It is used to select different algo-
rithms or different polynomial approximations. Its default value is the IEEE 754 significand precision, defined
by the macro T, that corresponds to the precision of the function.

� Each function must be provided in a separate file, so that individual functions can be replaced as needed.

� To the greatest extent possible, each function should have its own separate implementation, depending only on
a small set of low-level primitives used by most of the library. Even when functions are related, independent
implementations are helpful in limiting the effects of inaccuracies or bugs.

� There shall be only a single point of return from any function, as the last executable statement in the body.

� The goto statement is forbidden.

1.1. Programming conventions 3

� Filenames must not exceed the 6 + 3 limit of older operating systems, with at most a single dot (filnam.ext).
The only permitted exceptions to that rule are the file Makefile, the UNIX manual-page files, which must
be named according to the functions that they document (some of those function names are long), the files
for decimal floating-point arithmetic, which may require three suffix letters, and the language-interface files,
whose names are constrained by other rules.

� Filenames must begin with a letter, followed by letters, digits, and at most one dot.

� Filenames must not collide when remapped to a single lettercase.

� Apart from function names required by the ISO C Standards, external names must be unique in the first six
characters without regard to lettercase. For the many long names in the C math library, provision must be
made to remap them to unique shorter names on older systems that limit external name lengths and lettercase.

� Numeric constants must be defined to high accuracy, and declared as type static const fp_t, instead of the
traditional approach of using #define preprocessor directives. Named constants are visible in debuggers,
whereas preprocessor symbols are hardly ever displayable.

� Floating-point constants with long fractional parts must be provided both in decimal and in C99-style hexa-
decimal. An exception to that rule is temporarily permitted for the rational polynomial coefficients.

� For each elementary function, there shall be only one algorithm file that is shared by all precisions. Exceptions
are made only for low-level primitives that manipulate bits, instead of doing numerical computations, because
their code cannot easily be made precision independent.

� Source code files shall be named after the function that they implement: sqrtf.c, sqrt.c, sqrtl.c, and so
on. Each such file defines the required precision, and then includes a common header file that provides the
implementation of the algorithm. The name of that header file is formed from the name of the double-precision
function suffixed with x.h, like this: sqrtx.h.

The separation of code and data is an important programming practice that is highlighted in Niklaus Wirth’s
outstanding and influential book Algorithms + Data Structures = Programs [Wir76]. The parser of an early
version of MATLAB was based on work described in that book.

� Each algorithm header file shall directly include at most one header file, differing in name only by the absence
of the suffix x in the base filename. For example, sqrtx.h includes only sqrt.h, but that file may include other
header files.

� Each header file shall protect its body from being included more than once, so that multiple includes of the
same file are guaranteed to be safe.

� No algorithm file shall declare function prototypes for any but its own private functions.

� Function prototypes shall not be duplicated, except as needed to support short external names.

� All functions shall be free of I/O, although output statements for analysis and debugging are permitted if they
are bracketed in preprocessor conditionals that normally hide them from the compiler.

� It is permissible to assume availability of C89’s standard header files <errno.h>, <float.h> and <limits.h>.
To support assertions during development, <assert.h> may be used. The header file <stddef.h> may be used
to obtain a definition of NULL in those few routines that need to check for null pointers.

� The library code requires a C89-compatible preprocessor. In particular, the preprocessor must recognize #elif
and #error directives, it must inhibit function-like macro expansion of parenthesized function names, and it
must support token pasting with the ## operator. The lcc compiler distribution1 contains a highly portable
standalone C89-conformant preprocessor written by Dennis Ritchie, the original designer of the C program-
ming language. It can be used if the local C preprocessor is inadequate.

1Available at ftp://ftp.math.utah.edu/pub/lcc/.

4 Chapter 1. Introduction

� The sole user interface to the C99 functions in the mathcw library shall be the single header file mathcw.h. About
a dozen other header files are required for access to all of the functions in the library. On UNIX systems, only
those header files, and the compiled object library file, libmcw.a, need to be installed. Support for building a
shared object library, called libmcw.so on most UNIX systems, is provided via the Makefile target shrlib.

� Dynamic memory management, such as with the C library functions malloc() and free(), is forbidden.

� In those few C99 routines that have pointer arguments for additional returned values, the implementation shall
check for a non-NULL value before attempting to dereference the pointer.

� Pointer arithmetic is deprecated, except for simple traversal of character strings. Use array notation instead,
and check that array indexes are within the array bounds.

There are recipes for decimal floating-point arithmetic in the Cody/Waite book, and all of them have been imple-
mented in the mathcw library. When such arithmetic is supported by the compiler, the library provides a repertoire
of mathematical and I/O functions that extends C99, making decimal arithmetic as accessible as binary arithmetic.

1.2 Naming conventions

The C programming language originally had only double-precision versions of elementary function routines, and
the names sqrt(), sin(), cos(), . . . carry no distinguishing prefix like they do in Fortran.

The 1990 ISO C Standard [C90, SAI+90] contains a section on future library directions, noting that suffix letters f
and l are reserved for float and long double versions, and the 1999 ISO C Standard [BSI03a, C99] finally includes
them. C99 also adds about three dozen new functions to the C mathematical library.

The experience of numerical computation shows that higher precision than even the 80-bit and 128-bit long
double formats is sometimes needed, and it is possible that future changes to C might introduce support for them
with new floating-point data types. Hewlett–Packard has already done something like that, as described later in
Section 4.26 on page 100, and the mathcw library supports those extensions.

One of the important design goals of this library is to provide a path to such extended precision. Thus, all
magic numerical constants are documented so that even more precise specifications can be given in the future, and
algorithms contain computational branches selected by compile-time preprocessor symbol tests on the bit precision,
T, or the decimal precision, D. Where possible, C99-style hexadecimal constants are provided as well, to ensure that
constants are correctly specified to the last bit, with additional trailing bits to determine the final rounded form. Alas,
at the time of writing this, few C compilers have reached that language level.

The symbolic-algebra language programs used to compute polynomial approximations to certain functions on
limited intervals are part of the library source code, so that even higher-precision results can be obtained in the
future. In the meantime, the C code supports computation with data types of up to 75 decimal digits, which is
enough to handle a future 256-bit octuple-precision floating-point type (perhaps called REAL*32 in Fortran 77, REAL
(SELECTED_REAL_KIND(75)) in Fortran 90, or long long double in C and C++).

Java regrettably supports only float and double floating-point data types at present, and has several other
floating-point deficiencies as well [KD98]. A Java class can be written to provide extended floating-point arithmetic,
but the lack of operator overloading in the language is a distinct inconvenience for users of such a class.

C# has much the same floating-point deficiencies as Java, but does supply operator overloading.
Libraries with operator overloading are already available for C++ and Fortran 90 in David Bailey’s arprec and

mpfun90 packages2 and for Fortran 90 in Lawrie Schonfelder’s vpa package.3 They all provide convenient access to
extended precision without the need to wrap every operation in a function call, as was traditionally necessary with
multiple-precision arithmetic packages in older programming languages.

Because the computational algorithms are similar, no matter what the precision, routines for each of the three
standard precisions are merely two-line wrappers for common code. Thus, sqrtf.c, sqrt.c, and sqrtl.c simply
define a single preprocessor symbol to identify the data type, and then include the common generic-precision code
in sqrtx.h.

Rudimentary testing of higher-precision approximations at lower precision is possible merely by selecting them
with a suitable P value at compile time. For example,

2Available at http://crd.lbl.gov/~dhbailey/mpdist.
3Available at http://pcwww.liv.ac.uk/~jls/vpa20.htm.

1.3. Library contributions and coverage 5

make CFLAGS=-DP=200 all check

would choose 200-bit approximations (60 decimal digits) for each of the three base precisions.
Complete validation is, of course, not possible until at least one C compiler offering better than 113-bit precision

is available, and that will require minor code modifications to support extended data types.
All of the floating-point data types in the mathcw library are parametrized as a generic type fp_t, and all floating-

point constants are wrapped in a macro, FP(), that supplies any required type-suffix letter. Once compiled, the
library routines have the normal float, double, and long double types, and for use with C++, have C-style linkage
from the extern "C" prefix on their prototypes in mathcw.h.

1.3 Library contributions and coverage

Although the initial goal of the mathcw library project was to supply implementations of the new functions intro-
duced by C99, it soon became clear that considerably more was needed. Most existing mathematical libraries for
the C language are targeted at a single floating-point architecture, and designed for fast execution. As such, they
make many internal assumptions about machine architecture, floating-point precision, and data storage formats,
tying their algorithms and code to specific platforms. Also, their algorithms are not designed to support any other
floating-point precisions or bases. Their code is then impractical to extend with support for other bases or precisions,
or to port to other platforms, including historical architectures of interest to this author.

The mathcw library is an entirely new software design that eliminates most of the assumptions made in past
libraries, and greatly extends the library repertoire, not only for floating-point arithmetic, but also for integer arith-
metic, and input and output. The reader may wish to peak ahead at Table 3.4 on page 58 through Table 3.6 on
page 60 to get a flavor of some of the offerings. There are numerous other support functions described in this book
that are not included in those tables.

The most significant advances made by the mathcw library are these:

� The library has been carefully designed and implemented for consistency by a single software architect, and
all of the code is freely available under an open-source license to facilitate its rapid dissemination and use.

� Architecture and programming pitfalls are discussed in depth in this book, and carefully dealt with in the
library code.

� There is constant interplay between mathematics and computer programming in this book, and it repeatedly
emphasizes the necessity of access to symbolic-algebra systems for mathematical and numerical analysis, and
for their offerings of arbitrary-precision arithmetic with wide exponent ranges.

� The computational algorithms are documented at length in this book, and their accuracy is analyzed in detail,
and illustrated graphically in error plots. In many cases, new numerical methods have been found that improve
library accuracy, extensibility, generality, and portability.

� For many functions, multiple algorithms provide alternate computational routes, and offer independent means
of testing accuracy and correctness.

� Separation of algorithms from floating-point precision makes it easy to extend the library code now, and in
the future. In particular, all functions that are available for the standard C data types float, double, and long
double already have companions for a future long long double type. On platforms with IEEE 754 floating-
point arithmetic, that new octuple-precision format occupies 256 bits (32 bytes), offering a precision equivalent
to about 70 decimal digits, and an exponent range of about six decimal digits, as recorded in Table 4.2 on
page 65, and Table D.1 and Table D.2 on page 929.

� For almost every function defined for binary floating-point arithmetic, there is a companion for decimal float-
ing-point arithmetic, providing a comfortable programming environment for decimal arithmetic in C and C++.
Although most programming practices for binary arithmetic also hold in decimal arithmetic, there are some
significant differences that are discussed in Appendix D on page 927, and particularly, in Section D.3 on
page 931. The programmer who wishes to enter the new decimal world is strongly advised to learn those
differences.

6 Chapter 1. Introduction

� Decimal arithmetic extends C and C++ to handle the needs of accounting, financial, and tax computations,
which have legal requirements that mandate decimal operation, and particular rounding rules. Binary arith-
metic is legally unacceptable in those fields.

� The function coverage in the mathcw library goes far beyond that required by ISO programming language
standards. In particular, it supplies a major portion of the contents of the famous NBS Handbook of Mathematical
Functions [AS64, OLBC10], with consistent programming style and naming conventions. It also supplies many
additional support functions for floating-point and integer arithmetic.

� A long-time bane of human–computer interaction has been that humans are most comfortable in decimal
arithmetic, while computers have been designed to work in binary arithmetic. As a result, the base-conversion
problem continues to plague humans, and causes surprises for users, and for novice programmers. Switching
to decimal arithmetic for most numerical work is the solution.

� Scripting languages play an increasing role in modern software development, yet with few exceptions, they
build on binary floating-point arithmetic and the functions supplied by the C library. This author has already
demonstrated with three scripting languages that their arithmetic can be converted from binary to decimal
with only a few hours of work. He believes that it would be beneficial to do so for all scripting languages, and
to use decimal arithmetic of the highest available precision. Indeed, in those languages, binary floating-point
arithmetic should probably be banished to the scrap heap of history and mistaken practices.

� Compilers for almost any programming language can likely be extended to fully support decimal floating-
point arithmetic with just a few days of work. The years of work that it took to develop the mathcw library can
be leveraged by all of them.

� The potential of rapid and wide access to decimal arithmetic should encourage numerical analysts to develop
new algorithms that address the needs of both binary and decimal arithmetic.

� Chapter 15 on page 441 on complex arithmetic, and Chapter 17 on page 475 on complex functions, discuss
the serious deficiencies of support for complex arithmetic on all computers. Much more numerical analysis
research is needed, and software implementations of complex arithmetic need immediate attention and im-
provement.

� Exact argument reduction (see Chapter 9 on page 243) for trigonometric functions eliminates a widespread
problem in existing libraries, and repairs a substantial deficiency in the accuracy of complex functions.

1.4 Summary

The writing of this chapter summary was deliberately delayed until this book, and all of the underlying software,
was completed. The design rules of earlier sections have proven their worth many times during the creation of the
book’s prose and its software. The library is fully operational on all of the systems in this author’s test laboratory,
and elsewhere, providing support for up to six binary, and four decimal, floating-point formats. Apart from suitable
selections of a compiler, library targets, and platform, the library builds without problems, and without further
configuration, on all supported systems, and never requires site-specific source-code changes. The software has been
subjected to many different compilers, and at least four independent source-code analyzers, to ruthlessly root out,
and remove, coding errors and portability problems.

The influence of Donald Knuth’s practice of literate programming is seen many times in this book, although we
have not used any special software tool for that purpose. The most important lesson of that programming style is
that explaining your software to another, even a teddy bear, as Brian Kernighan and Rob Pike write in their lovely
book, The Practice of Programming [KP99], is enormously helpful in discovering bugs, design flaws, limitations, and
oversights.

This book, and its software, has provided a lot of work, and great pleasure, to its author, who hopes that you,
the reader, can enjoy it as much as he, the writer, experienced in creating it. There are many lessons of mathematics,
numerical algorithms, computer hardware, and computer software, and their intermingled history, that are recorded
in this book for readers to learn without the time and struggles of real life. It is now your turn to go out and make
algorithms and software even better.

2 Iterative solutions and other tools

WHAT NEEDS THIS ITERATION, WOMAN?

— SHAKESPEARE’S Othello (1604).

Throughout much of this book, we need only a moderate amount of mathematics, mostly at the level that you learned
in high school, with an occasional excursion into first-year college calculus. If you find calculus unfamiliar, or have
simply forgotten most of what you learned about it, rest assured that the intent of this book is to use just enough
mathematics to understand how to solve the problems that we address. Theorems and proofs and clever tricks in
mathematics have their place, but we do not need them in this book.

Most of the functions that we deal with are venerable ones that have received extensive study, and their proper-
ties that lead to effective computational algorithms are tabulated in mathematical handbooks, or can be recovered
relatively easily with expert systems known as symbolic-algebra packages. We shall see that the more difficult prob-
lem is to turn well-known mathematical recipes into computationally stable, fast, and reliable algorithms that can be
implemented in computer programs adapted to the limitations of the finite precision and limited range of floating-point
arithmetic.

In this chapter, we review series expansions of functions, and show how they can lead to iterative solutions of
equations that often cannot be solved explicitly. Moreover, with a good starting guess for the solution, we shall see
that convergence to an accurate answer can be astonishingly fast.

2.1 Polynomials and Taylor series

The computation of some of the elementary functions can sometimes be reduced to finding a root, y, of an equation
f (y) = 0. For example, suppose that we want to compute the exponential function, y = exp(x), for a given x, and
that we have an accurate implementation of the logarithm. Take the logarithm of each side to get ln(y) = x. Then
the y that we seek is the solution of f (y) = ln(y)− x = 0.

If f (y) is a polynomial of degree less than five, then explicit formulas are known for its roots, and you can
probably recall from grade-school arithmetic what the roots of linear and quadratic equations are. If you wonder
why five is significant, see The Equation That Couldn’t Be Solved [Liv05] for the interesting story of how mathematicians
searched for hundreds of years for general formulas for the roots of polynomials, only to have a brilliant young
Norwegian mathematician, Niels Henrik Abel,1 prove in 1826 that no formulas using only addition, subtraction,
multiplication, division, and extraction of roots exist for arbitrary polynomials of degree five or higher. An English
translation of Abel’s paper is available in a collection of mathematical classics [Cal95, pages 539–541].

In most cases of interest for the computation of the elementary functions, f (y) is not a polynomial, and the
only practical way to find a root is to make a sequence of intelligent guesses, in the hope of converging to that
root. Systematic procedures for finding the root can be derived by expanding the function in a Taylor2 series (1715),
truncating the series to a manageable size, and then solving the now-polynomial equation for a root. We examine
that approach further in the next few sections.

The Taylor series of a function f (y) about a point h is given by

f (y) =
∞

∑
n=0

f (n)(h)
n!

(y − h)n

= f (h) + f ′(h)(y − h) + f ′′(h)(y − h)2/2! + f ′′′(h)(y − h)3/3! + · · · ,

1Niels Henrik Abel (1802–1829) also contributed to the theory of functions, and his name gave the adjective abelian used in some areas of
mathematics. There is a crater on the Moon named after him.

2Brook Taylor (1685–1731) was an English mathematician who is credited with the Taylor series and Taylor’s theorem. He also worked on the
calculus of finite differences and optical refraction.

© Springer International Publishing AG 2017
N.H.F. Beebe, The Mathematical-Function Computation
Handbook, DOI 10.1007/978-3-319-64110-2_2

7

8 Chapter 2. Iterative solutions and other tools

where f (n)(h) is the n-th derivative (see Section 4.1 on page 61) evaluated at y = h. The factorial notation, n!, means
n × (n − 1)× (n − 2) · · · × 2 × 1, with the convention that 0! = (−1)! = 1. The capital Greek letter sigma, Σ, is the
summation operator, and is often adorned with lower and upper index limits, written below and above the operator
when there is sufficient space, and otherwise, written as subscripts and superscripts. Primes indicate the order of
the first few derivatives, and ∞ is the symbol for infinity.

As long as y − h is small and less than one in magnitude, and provided that the derivatives do not grow exces-
sively, the decreasing values of powers of small numbers in the numerators, and the factorially increasing denom-
inators, ensure that the Taylor series converges rapidly. When y is close to h, summing the first few terms of the
series is often a computationally effective route to finding the function value. Otherwise, we can sometimes replace
the series by a few leading terms, plus a correction term that represents the remainder of the sum, but is easier to
compute.

Calculus textbooks discuss the conditions on f (y) for which the Taylor series exists, but all that we need in this
book is to know that almost all of the functions that we show how to compute do have a well-behaved series. General
methods for determining whether infinite series converge (sum to a finite value) or diverge (sum grows without
limit) are discussed at length in Mathematical Methods for Physicists [AW05, Chapter 5] and [AWH13, Chapter 1].

2.2 First-order Taylor series approximation

As a first approximation, truncate the Taylor series to the first two terms, and solve for the root:

f (y) = 0
≈ f (h) + f ′(h)(y − h),

y ≈ h − f (h)/ f ′(h).

Here, the operator ≈ means approximately equal. That solution suggests an iterative procedure starting with an initial
guess, y0:

yn+1 = yn − f (yn)/ f ′(yn).

That formula is so important that we highlight it in bold type. It is known as the Newton–Raphson method, from
work by Isaac Newton3 in 1665 and Joseph Raphson in 1690, or sometimes just the Newton method. It predates the
Taylor series, because it was originally derived by graphical arguments and binomial expansions. Special cases of the
iteration for finding square roots and cube roots were known to the Babylonians (ca. 1900 BCE), and independently,
in India (ca. 1000 BCE) and China (ca. 100 BCE).

Ypma [Ypm95] gives an interesting historical review of the Newton–Raphson method, and suggests that Newton–
Raphson–Simpson is a more accurate name, considering the later contributions of Thomas Simpson (1710–1761).

With a sufficiently good starting guess, Newton–Raphson convergence is quadratic, doubling the number of cor-
rect digits each iteration. Importantly, the iterations are self correcting: computational errors made in one iteration do
not carry over to the next iteration, because that iteration is just a fresh start with an improved guess.

The drawbacks of the Newton–Raphson iteration are that it does not necessarily converge if the initial guess is
too far from the root, and that it requires evaluation of both the function and its first derivative, which might be
computationally expensive, or even impossible.

If the first derivative is replaced by an approximate numerical derivative, f ′(yn) ≈ (f (yn)− f (yn−1))/(yn − yn−1),
the iteration is called the secant method, and its convergence is less than quadratic: the error decreases by powers of
the golden ratio, φ = (1 +

√
5)/2 ≈ 1.618. Here, φ is the Greek letter phi that is commonly used for that ratio. The

story of that remarkable number, which turns up in many different areas of mathematics, is told in A Mathematical
History of Golden Number [HF98] and The Golden Ratio [Liv02].

3The English scientist Isaac Newton (1643–1727) of Cambridge University is one of the most famous in history, with important contributions
to astronomy, mathematics, optics, philosophy, and physics. He and the German polymath Gottfried Leibniz (1646–1716) are jointly credited with
the development of calculus; see The Calculus Wars [Bar06] for the interesting history of that work. Newton’s 1687 masterpiece book Philosophiae
Naturalis Principia Mathematica described gravitation and the laws of motion of classical mechanics. He invented the reflecting telescope, which
gave a three-fold increase in magnification. He was President of the Royal Society for more than two decades, and in his last 30 years, Newton
was Warden and Master of the Royal Mint, charged with improving coinage and eliminating counterfeiting [Lev09]. Leibniz invented the binary
number system, and about 1671, designed the first mechanical calculator that could add, subtract, multiply, and divide.

2.3. Second-order Taylor series approximation 9

Despite the drawbacks, Newton–Raphson iteration is widely used in numerical computations, and we refer to it
often in this book. As long as we have an accurate starting value, the first-order iteration is an effective computa-
tional technique for many of the functions that we treat. Nevertheless, it can sometimes be useful to consider more
complicated algorithms that we derive in the next two sections.

2.3 Second-order Taylor series approximation

The next approximation for finding a solution of f (y) = 0 is to include one more term of the Taylor series, and then
regroup to form a quadratic equation:

f (y) = 0

≈ f (h) + f ′(h)(y − h) + f ′′(h)(y − h)2/2

≈ Ay2 + By + C.

The coefficients are given by these formulas:

A = f ′′(h)/2,
B = f ′(h)− f ′′(h)h,

C = f (h)− f ′(h)h + (f ′′(h)/2)h2.

The solution of the quadratic equation is the desired value, y. Developing a computer program for the robust deter-
mination of the roots of such equations from schoolbook formulas is more difficult than would appear, however, so
we delay treatment of that problem until Section 16.1 on page 465.

When the second derivative is zero, we have A = 0, and y = −C/B = h − f (h)/ f ′(h), which is just the Newton–
Raphson formula, as it must be, because it corresponds to dropping the third and higher terms of the Taylor series.

2.4 Another second-order Taylor series approximation

Another way to handle the three-term truncated Taylor series is to partly solve for y:

0 ≈ f (h) + f ′(h)(y − h) + f ′′(h)(y − h)2/2!
≈ f (h) + (y − h)[f ′(h) + f ′′(h)(y − h)/2],

y ≈ h − f (h)/[f ′(h) + f ′′(h)(y − h)/2].

Although that form does not immediately seem helpful, replacing y on the right-hand side by the value predicted by
the Newton–Raphson iteration, h − f (h)/ f ′(h), produces this result:

y ≈ h − f (h)/[f ′(h) + f ′′(h)((h − f (h)/ f ′(h))− h)/2]
≈ h − f (h)/[f ′(h)− f ′′(h)(f (h)/ f ′(h))/2]

≈ h − 2 f (h) f ′(h)/[2(f ′(h))2 − f (h) f ′′(h)].

That suggests an iterative scheme that we highlight like this:

yn+1 = yn − 2 f (yn) f ′(yn)/[2(f ′(yn))
2 − f (yn) f ′′(yn)]

That is called Halley’s method, after Edmund Halley (1656–1742), whose name is also attached to a famous comet that
orbits our Sun with a period of approximately 76 years, and was last close to the Earth in 1986. When the second
derivative is zero, the method reduces to the Newton–Raphson iteration. We show an application of Halley’s method
in Section 8.3 on page 227.

10 Chapter 2. Iterative solutions and other tools

2.5 Convergence of second-order methods

With suitable starting guesses, the quadratic iteration and Halley’s method are cubicly convergent, tripling the number
of correct digits each iteration. If we start with two correct digits, then Newton–Raphson iteration gives 4, 8, 16,
32, . . . digits, whereas the other two methods give 6, 18, 54, 108, . . . digits. In typical double-precision computation
on modern computers, we have about 16 digits, so the difference is just one iteration.

Halley’s method is cheaper to compute, and is therefore usually to be preferred over the quadratic iteration.
The cubicly convergent methods require both a second derivative, and extra work in each iteration. Also, that

additional computation increases rounding error, and has two opportunities for significance loss from subtraction.
When the target precision and the accuracy of the initial guess are known in advance, careful analysis, and timing
measurements of computer programs on multiple hardware platforms, are needed to determine which of those three
alternatives is computationally most efficient.

The best way to improve the speed of all of those iterative methods is to start with a better guess for y0, such as
with a polynomial approximation, which is the subject of Chapter 3.

2.6 Taylor series for elementary functions

For arbitrary-precision computation of elementary functions of the form f (x), the best approach is often just to sum
the Taylor series in a region near x = h where the series converges rapidly, and usually, we have h = 0.

Although mathematical handbooks tabulate the Taylor series for all of the important elementary and special
functions, we can more easily use a one-line Maple program to display the first few terms in the Taylor series of each
of the elementary functions handled in our library and treated by Cody and Waite:

% maple
|\^/| Maple 8 (SUN SPARC SOLARIS)

._|\| |/|_. Copyright (c) 2002 by Waterloo Maple Inc.
\ MAPLE / All rights reserved. Maple is a registered trademark of
<____ ____> Waterloo Maple Inc.

| Type ? for help.
> for f in [sqrt, exp, log, sin, cos, tan, cot, arcsin, arccos,

arctan, sinh, cosh, tanh] do
printf("Taylor series of %s:\n", f);
traperror(taylor(f(x), x = 0, 9));

end do;
Taylor series of sqrt:

"does not have a taylor expansion, try series()"

Taylor series of exp:
2 3 4 5 6 7

1 + x + 1/2 x + 1/6 x + 1/24 x + 1/120 x + 1/720 x + 1/5040 x +

8 9
1/40320 x + O(x)

Taylor series of log:
"does not have a taylor expansion, try series()"

Taylor series of sin:
3 5 7 9

x - 1/6 x + 1/120 x - 1/5040 x + O(x)

Taylor series of cos:
2 4 6 8 9

1 - 1/2 x + 1/24 x - 1/720 x + 1/40320 x + O(x)

2.6. Taylor series for elementary functions 11

Taylor series of tan:
3 5 17 7 9

x + 1/3 x + 2/15 x + --- x + O(x)
315

Taylor series of cot:
"does not have a taylor expansion, try series()"

Taylor series of arcsin:
3 5 7 9

x + 1/6 x + 3/40 x + 5/112 x + O(x)

Taylor series of arccos:
Pi 3 5 7 9

---- - x - 1/6 x - 3/40 x - 5/112 x + O(x)
2

Taylor series of arctan:
3 5 7 9

x - 1/3 x + 1/5 x - 1/7 x + O(x)

Taylor series of sinh:
3 5 7 9

x + 1/6 x + 1/120 x + 1/5040 x + O(x)

Taylor series of cosh:
2 4 6 8 9

1 + 1/2 x + 1/24 x + 1/720 x + 1/40320 x + O(x)

Taylor series of tanh:
3 5 17 7 9

x - 1/3 x + 2/15 x - --- x + O(x)
315

In those expansions, the big-oh notation, O(xn), is read order of xn. It means that the magnitude of the first omitted
term is bounded by |cxn|, where c is a constant, x is arbitrary, and the vertical bars mean absolute value.

We have already suggested that the square-root function can be computed from the Newton–Raphson iteration,
so the fact that Maple is unable to report its Taylor series does not matter. Because Cody and Waite effectively
compute cot(x) from 1/ tan(x), Maple’s inability to find a Taylor series for cot(x) does not matter either. Maple can
still provide a series for it, like this:

> Order := 9:
> series(cot(x), x = 0);

-1 3 5 7 9
x - 1/3 x - 1/45 x - 2/945 x - 1/4725 x + O(x)

Thus, we can move the reciprocal term to the left, and get a Taylor series like this:

> taylor(cot(x) - 1/x, x = 0, 9);
3 5 7 9

- 1/3 x - 1/45 x - 2/945 x - 1/4725 x + O(x)

The logarithm goes to negative infinity as x → +0, so it is not surprising that there is no Taylor series there.
Instead, we just ask for the series near x = 1:

12 Chapter 2. Iterative solutions and other tools

> taylor(log(x), x = 1, 9);
2 3 4 5

x - 1 - 1/2 (x - 1) + 1/3 (x - 1) - 1/4 (x - 1) + 1/5 (x - 1) -

6 7 8 9
1/6 (x - 1) + 1/7 (x - 1) - 1/8 (x - 1) + O((x - 1))

Notice that exp() and log() are the only ones with both even and odd powers in the Taylor series. All of the
others have only odd terms, or only even terms. Cody and Waite exploit that by rearranging the series to get the first
one or two terms exactly, and then using a low-order polynomial approximation to represent the remaining infinite
series with accuracy sufficient for the machine precision.

2.7 Continued fractions
THE THEORY OF CONTINUED FRACTIONS DOES NOT RECEIVE

THE ATTENTION THAT IT DESERVES.

— ANDREW M. ROCKETT AND PETER SZÜSZ (1992)

Mathematical handbooks often tabulate function expansions known as continued fractions. They take the recursive
form F(x) = constant + a/(b + c), where c itself is a fraction d/(e + f), and so on. At least one of the terms in each
numerator or denominator contains x. Such a fraction can be written out like this:

F(x) = b0 +
a1

b1 +
a2

b2 +
a3

b3 +
a4

b4 +
a5

b5 +
a6

b6 +
a7

b7 +
a8

b8 + · · ·
Because that display takes a lot of space, a more compact notation is common:

F(x) = b0 +
a1

b1 +

a2

b2 +

a3

b3 +

a4

b4 +

a5

b5 +

a6

b6 +

a7

b7 +

a8

b8 +
· · · .

It is not immediately evident how to evaluate a continued fraction, because each denominator involves another
denominator whose value we do not yet know. There are two common ways to do the evaluation:

� In backward evaluation, we start at term n and arbitrarily set an+1 = 0, cutting off the infinite fraction. The
resulting finite fraction, denoted Fn(x), is called the n-th convergent of the infinite continued fraction.

In practice, we are interested in a particular range of x, and numerical experiments over that range, and with
increasing values of n, let us determine how many terms are needed to achieve the desired accuracy. Aside
from the evaluation of each of the terms ak and bk (k = 1, 2, . . . , n), the computation requires n adds and n
divides.

� From the structure of successive convergents, Euler derived in 1737 a recurrence relation that allows forward
evaluation. It takes the form

A−1 = 1, B−1 = 0,
A0 = 0, B0 = 1,

for k = 1, 2, . . . , n, compute

Ak = bk Ak−1 + ak Ak−2, Bk = bkBk−1 + akBk−2,
Fn(x) = b0 + An/Bn.

2.7. Continued fractions 13

Apart from the terms ak and bk, the computation requires 2n + 1 adds and 4n multiplies, but just one divide.
It sometimes happens that either ak = 1 or bk = 1, in which case, the multiplies can be reduced from 4n to 2n.
Arrays of dimension n are not required, because only three successive entries of each of A and B are needed at
a time. Instead, they can each be stored in three scalars whose values are shuffled down on each iteration.

On most modern machines, division is comparatively expensive, often costing the time for 3 to 15 multiplications.
Thus, even though the operation count is smaller for backward evaluation, it might be more expensive than forward
evaluation because of the n− 1 extra divides. However, the code for backward evaluation is simpler to program than
that for forward evaluation, and has fewer memory references. On modern systems, memory traffic is costly, with a
load or store taking up to 500 times longer than a floating-point copy inside the CPU. If the value is available in the
intermediate memory cache, its access time may be much lower, of the order of 3 to 10 times slower than an in-CPU
copy. A good optimizing compiler, and a register-rich architecture, may make it possible for many of the scalars to
be held in CPU registers,4 eliminating most of the expensive memory accesses.

With backward evaluation, the number of terms, n, is fixed in advance by numerical experiment, even though
for some x values, fewer terms would suffice. With series evaluation, as long as successive terms decrease in magni-
tude, it is possible to exit the summation loop as soon as the term just added does not change the sum. With forward
evaluation of a continued fraction, early loop exit is possible as well, as soon as fl(Fn(x)) = fl(Fn−1(x)) to machine
precision. Here, fl(expr) means the floating-point computation of expr: it is not a library function, but rather, an indi-
cator of a transition from mathematics to finite-precision arithmetic. Unfortunately, rounding errors in the computed
convergents may prevent that equality from ever being satisfied, so a loop limit is still needed, and early exit cannot
be guaranteed.

In exact arithmetic, both forward and backward evaluation produce identical values of Fn(x). However, error
analysis for the floating-point computation of continued fractions [Bla64, JT74] shows that backward evaluation is
usually numerically more stable than forward evaluation. Also, even though the convergents may be of modest
magnitude, the terms Ak and Bk may become so large, or so small, that they can no longer be represented in the
limited exponent range of a floating-point number. It is then necessary to introduce intermediate rescaling of Ak and
Bk, complicating the computation significantly. Alternate forms of forward evaluation exist that eliminate the need
for scaling, but they increase the work in each iteration [GST07, pages 181–185]. We present them in Section 2.8 on
page 17.

In summary, it is usually not possible to predict which of the two evaluation methods is faster, except by making
numerical experiments with both, and the results of the experiments depend on the CPU, on the compiler, and on the
compiler’s optimization options. Error analysis favors backward evaluation, unless the speed penalty is too severe.

Because of those difficulties, continued fractions are often not even mentioned in books on numerical analysis,
and they are not commonly used in computer algorithms for the evaluation of elementary functions. Nevertheless,
they can lead to independent implementations of elementary functions that are of use in software testing, because
agreement of function values computed by completely different algorithms makes software blunders unlikely. In
addition, continued fractions have three advantages over conventional series representations:

� The domain of convergence (that is, the allowable argument range) of a continued fraction of an elementary
function may be much larger than that for its Taylor series.

� Fewer terms may be needed to achieve a given level of accuracy with continued fractions than with Taylor
series.

� Little code is needed to compute a continued fraction, especially by backward evaluation, making it easier to
get it right on the first try.

The special case where the numerators of the continued fraction are all equal to one, ak = 1, is called a simple
continued fraction, and is sometimes given a separate notation as a bracketed list of coefficients:

F(x) = b0 +
1

b1 +

1
b2 +

1
b3 +

1
b4 +

1
b5 +

1
b6 +

1
b7 +

1
b8 +

· · · ,

= [b0; b1, b2, b3, b4, b5, b6, b7, b8, . . .].
4A register is a storage area inside the CPU that provides much faster data access than external memory does. There are usually separate

register sets for integer and floating-point arithmetic, and sometimes additional sets for status flags. Most CPU designs since the mid-1980s
have 16 to 128 floating-point registers, sometimes with particular registers defined to be read-only, and hardwired to hold the commonly needed
constants 0.0 and 1.0.

14 Chapter 2. Iterative solutions and other tools

Some books, and the Maple symbolic-algebra system, use a comma instead of a semicolon after the first list entry.
All rational numbers can be uniquely written as finite simple continued fractions with integer coefficients, pro-

vided that, if the last coefficient is 1, it is discarded and absorbed into the next-to-last coefficient:

[b0; b1, b2, b3, . . . , bn, 1] → [b0; b1, b2, b3, . . . , bn + 1].

Every irrational5 number has a unique infinite simple continued fraction.
Four properties of simple continued fractions are of interest for computer arithmetic:

1/F(x) =
{
[0; b0, b1, b2, b3, b4, b5, b6, b7, b8, . . .], if b0 �= 0,
[b1; b2, b3, b4, b5, b6, b7, b8, . . .], if b0 = 0,

c + F(x) = [c + b0; b1, b2, b3, b4, b5, b6, b7, b8, . . .], for constant c,

cF(x) = [cb0; b1/c, cb2, b3/c, cb4, b5/c, cb6, b7/c, cb8, . . .],
−F(x) = [−b0;−b1,−b2,−b3,−b4,−b5,−b6,−b7,−b8, . . .],

= [−b0 − 1; 1, b1 − 1, b2, b3, b4, b5, b6, b7, b8, . . .].

That is, forming the reciprocal of a simple continued fraction requires just a left or right shift in the coefficient list,
adding a constant affects only the first coefficient, and scaling a simple continued fraction by a constant alternately
multiplies and divides the coefficients by that constant. That scaling is particularly easy, and exact, if c is a power of
the floating-point base. Negation is a special case of scaling, and can be done either by negating all of the coefficients,
or else by altering the first two as indicated, and inserting a 1 between them.

We can illustrate those properties for particular x values in Maple, whose conversion function takes an additional
argument that gives the number of coefficients to be reported. Some of these examples use the Greek letter pi, �,
π, the famous ratio of the circumference of a circle to its diameter [Bar92, Bec93, Bar96, Bla97, BBB00, AH01, EL04b,
Nah06], and others involve the golden ratio [HF98, Liv02]:

% maple
> convert(Pi, confrac, 15);

[3, 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1]

> convert(1 / Pi, confrac, 15);
[0, 3, 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2]

> convert(2 * Pi, confrac, 15);
[6, 3, 1, 1, 7, 2, 146, 3, 6, 1, 1, 2, 7, 5, 5]

> convert(-Pi, confrac, 15);
[-4, 1, 6, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2]

> convert(Pi - 3, confrac, 15);
[0, 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1]

> convert(1 / (Pi - 3), confrac, 15);
[7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, 1]

> phi := (1 + sqrt(5)) / 2: # the celebrated golden ratio

> convert(phi, confrac, 15);
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]

5An irrational number is a number that cannot be represented as the ratio of two whole numbers. For example, about 500BC, the Greeks
proved by geometrical arguments that

√
2 is irrational. We can show that with simple algebra. Assume that

√
2 is rational, so we can write√

2 = p/q, where p and q are whole numbers that have no factors in common. That means that at least one of those numbers must be odd, for if
they were both even, they would have a factor 2 in common. Square the equation and rearrange to find 2q2 = p2. That means that p2 is even, and
because only even numbers have even squares, p must be even. Thus, we can replace it by 2r, where r is another integer. We then have 2q2 = 4r2,
or q2 = 2r2, so q2, and thus, q, must be even. However, having both p and q even contradicts the original assertion, which must therefore be false.
Thus,

√
2 must be irrational.

2.7. Continued fractions 15

> convert(1 / phi, confrac, 15);
[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]

> convert(2 * phi, confrac, 15);
[3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4]

> convert(-phi, confrac, 15);
[-2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]

Notice in each case that the first coefficient in the simple continued fraction of x is just the nearest integer that is not
greater than x, a function that we treat later in Section 6.7 on page 136.

The particularly simple continued fraction for the golden ratio is due to its definition as the solution of φ = 1 +
1/φ: repeated substitutions of φ on the right-hand side show that bk = 1 for all k ≥ 0. Integral powers of the golden
ratio have a surprising closed form: φn = Fnφ + Fn−1, where the Fn are the famous Fibonacci numbers introduced
in 1202 CE [Sig02, Bee04b, PL07, Dev11] in the same book that brought the digit zero to the Western World, and
introduced the words algorithm and algebra, derived from the name of a Ninth Century Persian mathematician and
that of his book. Continued fractions of odd powers of φ have constant bk values, whereas those of even powers of φ
have only two different bk values after b0:

> for k from 1 to 20 by 2 do
> printf("%2d %30a %2d %30a\n", k, convert(phi^k, confrac, 5),
> k+1, convert(phi^(k+1), confrac,5))
> end do:
1 [1, 1, 1, 1, 1] 2 [2, 1, 1, 1, 1]
3 [4, 4, 4, 4, 4] 4 [6, 1, 5, 1, 5]
5 [11, 11, 11, 11, 11] 6 [17, 1, 16, 1, 16]
7 [29, 29, 29, 29, 29] 8 [46, 1, 45, 1, 45]
9 [76, 76, 76, 76, 76] 10 [122, 1, 121, 1, 121]

11 [199, 199, 199, 199, 199] 12 [321, 1, 320, 1, 320]
13 [521, 521, 521, 521, 521] 14 [842, 1, 841, 1, 841]
15 [1364, 1364, 1364, 1364, 1364] 16 [2206, 1, 2205, 1, 2205]
17 [3571, 3571, 3571, 3571, 3571] 18 [5777, 1, 5776, 1, 5776]
19 [9349, 9349, 9349, 9349, 9349] 20 [15126, 1, 15125, 1, 15125]

The Fibonacci numbers arise in a problem of rabbit populations, and satisfy the recurrence Fn+2 = Fn+1 + Fn, with
starting conditions F0 = 0 and F1 = 1. As n increases, the ratio Fn+1/Fn approaches the limit of φ ≈ 1.618, showing
that unchecked population growth is exponential. The Fibonacci numbers show up in an astonishing variety of
places in mathematics, and even in vegetable gardens, where some plants exhibit the Fibonacci number sequence in
their growth patterns. An entire journal, the Fibonacci Quarterly,6 is devoted to their study, which still remains active,
more than 800 years after they were first discovered.

Continued fractions for irrational numbers have the nice property of providing the best rational approximation, in
the sense that if t is irrational, its k-th convergent is the rational number a/b, where a and b have no common factors,
and no other rational number c/d with |d| < |b| is closer to t. All floating-point numbers are rational numbers, and
that property can be exploited to find function arguments x for which f (x) is almost exactly halfway between two
adjacent floating-point numbers. Such arguments provide challenging tests for software that attempts to guarantee
correct rounding of function values. They also offer information about how much numerical precision is needed for
argument reduction, an important topic that we treat in Chapter 9.

Successive convergents of irrational numbers are alternately lower and upper bounds. For example, some of the
approximations derived from the continued fraction for π may be familiar from schoolbooks:

π0 = 3
≈ π − 0.1416,

π1 = 3 + 1/7
= 22/7

6See http://www.math.utah.edu/pub/tex/bib/index-table-f.html#fibquart.

16 Chapter 2. Iterative solutions and other tools

≈ π + 1.264 × 10−3,
π2 = 3 + 1/(7 + 1/15)

= 333/106

≈ π − 8.322 × 10−5,
π3 = 3 + 1/(7 + 1/(15 + 1/1))

= 355/113

≈ π + 2.668 × 10−7.

With an additional argument to record the convergents, the Maple convert() function can easily produce many
more approximations to π:

> convert(Pi, confrac, 15, cvgts):
> cvgts;

333 355 103993 104348 208341 312689 833719
[3, 22/7, ---, ---, ------, ------, ------, ------, ------,

106 113 33102 33215 66317 99532 265381

1146408 4272943 5419351 80143857 165707065 245850922
-------, -------, -------, --------, ---------, ---------]
364913 1360120 1725033 25510582 52746197 78256779

We can then check the bounding and convergence properties like this:

> for k to 15 do printf("%2d % .3e\n", k, op(k,cvgts) - Pi) end do:
1 -1.416e-01
2 1.264e-03
3 -8.322e-05
4 2.668e-07
5 -5.779e-10
6 3.316e-10
7 -1.224e-10
8 2.914e-11
9 -8.715e-12

10 1.611e-12
11 -4.041e-13
12 2.214e-14
13 -5.791e-16
14 1.640e-16
15 -7.820e-17

Some common irrational or transcendental7 constants have easy-to-program simple continued fractions that allow
them to be computed at run time to arbitrary precision without the need to retrieve their coefficients from tables.
Here we generate them in Mathematica, which displays simple continued fractions as braced lists:

% math
In[1]:= ContinuedFraction[Sqrt[2], 15]
Out[1]= {1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2}

In[2]:= ContinuedFraction[Sqrt[3], 15]
Out[2]= {1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2}

In[3]:= ContinuedFraction[(1 + Sqrt[5])/2, 15]
Out[3]= {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}

7A transcendental number is an irrational number that cannot be the root of any finite polynomial with integer coefficients. The transcendental
property of e was proved by Hermite in 1873, and of π by von Lindemann in 1882. Most numbers on the real axis are transcendental, but there
are many open problems. For example, we do not know whether e + π, eπ , or πe are transcendental, and we cannot yet prove that the digits of π
are random.

2.8. Summation of continued fractions 17

In[4]:= ContinuedFraction[Exp[1], 18]
Out[4]= {2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, 10, 1, 1, 12}

In[5]:= ContinuedFraction[Tan[1/2], 18]
Out[5]= {0, 1, 1, 4, 1, 8, 1, 12, 1, 16, 1, 20, 1, 24, 1, 28, 1, 32}

Binary floating-point numbers can be converted to and from simple continued fractions with practical hardware,
and continued fractions for the computation of certain elementary functions have attracted the interest of a few
hardware designers [FO01, Chapter 12].

Continued fractions are not just for evaluation of irrational numbers, however. One of the oldest-known contin-
ued fractions is that for the trigonometric tangent function (Lambert, about 1760), which we treat later in Section 11.2
on page 302:

tan(x) = 0 +
x

1 +
x2

−3 +
x2

5 +
x2

−7 +
x2

9 +
x2

−11 +
· · · , x �= (2n + 1)π/2,

b0 = 0, bk = (−1)k+1(2k − 1), for k > 0,
a1 = x, ak = x2, for k > 1.

The coefficients are much simpler than those of the Taylor series, and convergence is rapid for small x. For example,
with x = 1/100, tan(x) and the truncated continued fraction x/(1 + x2/(−3 + x2/(5 + x2/(−7)))) agree to better
than 21 decimal digits. Lambert was able to prove that if x is a nonzero rational number, then tan(x) is irrational;
thus, because tan(π/4) = 1, π/4 and π cannot be rational, so they must be irrational.

2.8 Summation of continued fractions

We promised in the preceding section to show alternative ways of computing continued fractions from forward
summations that allow early exit on convergence.

The first of those handles the particular case of a continued fraction where all but the first of the bk are equal to
one, and there are subtractions, instead of additions, in the denominator:

F(x) = b0 +
a0

1 −
a1

1 −
a2

1 −
a3

1 −
a4

1 −
a5

1 −
a6

1 −
a7

1 − · · · .

A fraction of that type occurs in the incomplete gamma function that we consider later in this book in Section 18.4
on page 560. The continued fraction can be evaluated in the forward direction as a sum with easily computed term
recurrences:

F(x) = b0 +
∞

∑
k=0

tk,

r0 = 0, t0 = a0,

rk =
ak(1 + rk−1)

1 − ak(1 + rk−1)
, tk = rktk−1, k > 0.

The n-th partial sum of the terms tk, plus b0, is mathematically identical to the n-th convergent of the continued
fraction, Fn(x).

The second of those summation formulas was discovered by a mathematical physics researcher [BFSG74], and is
called Steed’s algorithm. A textbook description is available elsewhere [GST07, pages 181–183], so we merely exhibit
a code template that can be readily adapted in just six statements to evaluate any particular continued fraction:

static fp_t
eval_cf_steed(fp_t x)
{

fp_t a1, ak, b0, b1, bk, Ck, Ckm1, Ckm2, Dk, Dkm1, Ek, Ekm1;
int k;

18 Chapter 2. Iterative solutions and other tools

b0 = /* TO BE SUPPLIED */;
b1 = /* TO BE SUPPLIED */;
a1 = /* TO BE SUPPLIED */;
Ckm2 = /* TO BE SUPPLIED */;
Dkm1 = ONE / b1;
Ekm1 = a1 * Dkm1;
Ckm1 = Ckm2 + Ekm1;

for (k = 2; k <= MAXITER; ++k)
{

ak = /* TO BE SUPPLIED */;
bk = /* TO BE SUPPLIED */;
Dk = ONE / (Dkm1 * ak + bk);
Ek = (bk * Dk - ONE) * Ekm1;
Ck = Ckm1 + Ek;

if (Ck == Ckm1) /* converged */
break;

Ckm1 = Ck;
Dkm1 = Dk;
Ekm1 = Ek;

}

return (Ck);
}

The value of MAXITER limits the number of iterations, but its value needs to be determined by numerical experiment
for each particular choice of coefficients, and for each numerical precision.

Steed’s algorithm implicitly includes scaling of intermediate terms to reduce the likelihood of out-of-range num-
bers. Nevertheless, numerical experiments must verify that.

If the denominator Dkm1 * ak + bk in any iteration can become tiny, or zero, Steed’s algorithm may be unsat-
isfactory. That brings us to the final recipe in this section, the modified Lentz algorithm [TB86]. It handles rescaling
differently, and may be less sensitive to small denominators, although it requires a fudge factor that may need adjust-
ment for a particular continued fraction. A textbook treatment provides some background [GST07, pages 183–185],
so once again, we just present a code template:

static fp_t
eval_cf_lentz(fp_t x)
{

fp_t ak, b0, bk, Ck, Ckm1, Dk, Dkm1, Ek, Ekm1, eps, Hk;
int k;

b0 = /* TO BE SUPPLIED */;
eps = FP(1.0e10) / FP_T_MAX; /* may need to fudge the numerator */
Ckm1 = b0;

if (b0 == ZERO)
Ckm1 = eps;

Ekm1 = Ckm1;
Dkm1 = ZERO;

for (k = 1; k <= MAXITER; ++k)
{

ak = /* TO BE SUPPLIED */;
bk = /* TO BE SUPPLIED */;
Dk = bk + ak * Dkm1;

2.9. Asymptotic expansions 19

if (Dk == ZERO)
Dk = eps;

Ek = bk + ak / Ekm1;

if (Ek == ZERO)
Ek = eps;

Dk = ONE / Dk;
Hk = Ek * Dk;
Ck = Ckm1 * Hk;

if ((ONE + (Hk - ONE)) == ONE) /* converged */
break;

Ckm1 = Ck;
Dkm1 = Dk;
Ekm1 = Ek;

}

return (Ck);
}

Here, FP_T_MAX is the largest representable floating-point number, and eps, which replaces zero values that later
appear as divisors, must be chosen as a tiny value whose reciprocal is still a finite floating-point number. The value
FP(1.0e10) may therefore need to be adjusted for some historical floating-point systems. As with Steed’s algorithm,
the iteration limit MAXITER must be suitably adjusted for each application.

The three summation algorithms given in this section are not yet widely known, and are absent from the few text-
book treatments of numerical evaluation of continued fractions. The only other textbook presentations of the Steed
and Lentz algorithms known to this author are recent editions of the Numerical Recipes series [PTVF07, pages 206–
209].

In some later chapters of this book, we use those summation algorithms for evaluation of continued fractions,
but we do not repeat their code, because only the few lines that define the coefficients ak and bk need to be altered.

To learn more about the mathematics of continued fractions, see a recent reprint of the original 1948 edition
of Wall’s classic book, Analytic Theory of Continued Fractions [Wal00], two short monographs [RS92, KE97], and six
advanced books [JT84, Bre91, LW92, Hen06, Khr08, LW08]. The second last of those books shows interesting relations
of continued fractions to the computation of mathematical constants, to the design of accurate calendar systems, and
to the construction of Eastern and Western musical scales.

For their application to some of the functions covered in this book, see the Handbook of Continued Fractions for
Special Functions [CPV+08]. The authors of that book used symbolic-algebra systems to verify all of their formulas,
and in doing so, found and corrected many errors in earlier books and research articles. Computers cannot replace,
but can often help, mathematicians.

2.9 Asymptotic expansions

Functions can sometimes be formally represented by a series in inverse powers of the form

f (x) � c0 + c1/x + c2/x2 + · · ·+ cn/xn + · · · .

Here, the relational operator � indicates an asymptotic expansion. It has the property that partial sums to arbitrarily
high order diverge. However, the first few terms decrease in magnitude, and then increase. A partial sum up to the
term of smallest magnitude differs from f (x) by an error that is about the size of the first term omitted.

There is a long mathematical history of asymptotic expansions and their use in the evaluation of elementary and
special functions; see, for example, Asymptotics and Special Functions [Olv74].

20 Chapter 2. Iterative solutions and other tools

0

10

20

30

40

50

60

70

80

90

 0 1 2 3 4 5 6 7 8 9

d
ig

it
s

an
d

 t
er

m
s

x

Asymptotic expansion for erfc(x)

Figure 2.1: Accuracy of the asymptotic expansion for erfc(x). The solid lower curve shows the number of correct
decimal digits produced in 128-bit IEEE 754 arithmetic, and the dashed upper curve shows the number of terms
summed.

The problem with asymptotic expansions is that they cannot be used to evaluate a function to arbitrary accuracy
just by summing more and more terms. Instead, evaluation must stop as soon as the magnitude of the next term
increases. For arguments of large magnitude, high accuracy may be possible, but for arguments of small magnitude,
accuracy drops. Figure 2.1 illustrates that phenomenon for the asymptotic expansion of a function that we treat later
in Section 19.1 on page 593.

In numerical software that is designed to produce high accuracy for a range of floating-point precisions from a
common code base, as we do in the mathcw library, asymptotic expansions are usually inadvisable. Nevertheless,
they can be useful in software development and testing, by providing an alternate, and independent, computational
route to a function, just as we saw for continued fractions. For numerical work, they can sometimes be replaced by
shorter polynomial approximations, a topic that we address in Chapter 3.

Despite the caveat in the preceding paragraph, we use asymptotic expansions later in this book for large-argu-
ment computation of a few functions, including gamma, log-gamma, and psi functions (Chapter 18), the cumulative
distribution functions for the standard normal distribution (Section 19.4), and some of the Bessel functions (Chap-
ter 21). In each case, in the regions for which the asymptotic series are summed, the arguments are big enough that
full machine precision is attainable.

2.10 Series inversion

If we have a representation of a function as the series

f (x) = a0 + a1x + a2x2 + a3x3 + · · ·

with known coefficients ak, then for a given x, we can straightforwardly evaluate the right-hand side to find the
function value.

2.10. Series inversion 21

However, suppose that we know the value of the left-hand side, y = f (x), and we wish to determine the x value
that produces y. That problem is known as series inversion. That is, we seek an expansion

x = b0 + b1y + b2y2 + b3y3 + · · ·

where the coefficients bk are to be determined. To find them, substitute the expansion of x in the series for y, and
then rearrange the result to find coefficients of powers of y. The result is an equation of the form

y = [mess]0 + [bad mess]1y + [horrid mess]2y2 + [ghastly mess]3y3 + · · · .

Because that must hold for arbitrary y, all but one of the right-hand side coefficients must be zero, and the remaining
factor, [bad mess]1, must be one. Each coefficient therefore leads to an equation, and those equations can be solved
in the forward direction starting with the zeroth, [mess]0 = 0.

Series inversion is tedious to work out by hand, but symbolic-algebra systems make it easy. Here is an example
in Mathematica:

In[1]:= Replace[InverseSeries[Series[Sin[x], {x, 0, 11}], x], x->y, 1]

3 5 7 9 11
y 3 y 5 y 35 y 63 y 12

Out[1]= y + -- + ---- + ---- + ----- + ------ + O[y]
6 40 112 1152 2816

For comparison, we can ask for the expansion of the inverse of the sine function, known as the arcsine:

In[2]:= Series[ArcSin[y], {y, 0, 11}]

3 5 7 9 11
y 3 y 5 y 35 y 63 y 12

Out[2]= y + -- + ---- + ---- + ----- + ------ + O[y]
6 40 112 1152 2816

The two outputs are identical, as expected.
Maple can find the inverse series with its general equation solver, but we have to tell the series() function the

order of the highest term that we want in the output display:

> Order := 13:
> solve(series(sin(x), x = 0, 11) = y, x);

3 5 7 35 9 63 11 13
y + 1/6 y + 3/40 y + 5/112 y + ---- y + ---- y + O(y)

1152 2816

The syntax in the MuPAD algebra system is similar to that of Maple, but MuPAD has a separate function for
inverting series expansions:

>> subs(revert(series(sin(x), x = 0, 11)), x = y);

3 5 7 9 11
y 3 y 5 y 35 y 63 y 13

y + -- + ---- + ---- + ----- + ------ + O(y)
6 40 112 1152 2816

Many of the functions in this book have a companion function that is their inverse: square root and square,
exponential and logarithm, sine and arcsine, and so on, and you can easily find them on hand calculators and in
software libraries. However, the inverse functions are sometimes less well-known, and we consider some examples
later in Chapter 19.

22 Chapter 2. Iterative solutions and other tools

2.11 Summary

Iterative solutions of nonlinear equations with the first- and second-order procedures described in this chapter have
broad applicability in numerical computation. Importantly, the algorithms can be generalized to find numerical
solutions of problems involving more than the single variable that we generally consider in this book.

Representations of functions with Taylor series, asymptotic expansions, and continued fractions are essential
tools for developing practical computational algorithms for function evaluation. Although traditional textbooks in
numerical analysis often rely on mathematical encyclopedias, handbooks, and tables as sources of such expansions,
we have seen in this chapter that symbolic-algebra languages offer more accessible, and more powerful, ways for
finding, and then manipulating, such material. Those languages also permit numerical experimentation with arith-
metic of arbitrary precision, so they can be invaluable for prototyping algorithms before implementing them in more
conventional programming languages. We use symbolic-algebra systems often in this book, and we need more than
one of them, because none yet supplies all of the capabilities that we require.

The famed computer scientist Richard Hamming is widely cited for the quote The purpose of computing is insight,
not numbers. Mathematics, symbolic-algebra systems, and graphical displays of data and functions, are helpful tools
for developing that insight.

3 Polynomial approximations

ALL EXACT SCIENCE IS DOMINATED

BY THE IDEA OF APPROXIMATION.

— BERTRAND RUSSELL.

We begin this chapter by introducing a convenient notation that is common in some branches of mathematics for
indicating a numeric interval: a comma-separated pair of values, enclosed in square brackets or parentheses, with
the convention that a bracket means that the endpoint is included, and a parenthesis indicates that the endpoint is
excluded. Thus, [1, 2) is the set of values x for which 1 ≤ x < 2, and [2, 3] is the adjacent set for which 2 ≤ x ≤ 3.
Endpoint distinction is often important in numerical computation, and we use that interval notation extensively in
the rest of this book.

The computation of many of the elementary functions involves relating the value of f (x) on the full domain of the
function, often (−∞,+∞) or [0, ∞), to its value in a small interval near zero where it can be computed by a rapidly
convergent Taylor series, or a polynomial approximation to that series. The original function can then be obtained
by a few accurate operations from the approximated value.

In the Cody/Waite algorithms, the sole exception to that procedure is the square root. As we show later in
Section 8.1 on page 215, it can be computed by starting with an initial linear approximation that provides about
seven correct bits, and then using quadratically convergent Newton–Raphson iterations that double the number
of correct bits at each step. Even better, pairs of those iterations can be merged to eliminate one multiply, so the
double-step iteration quadruples the number of correct bits with just two adds, two divides, and one multiply.

Later in this chapter, we show how to find polynomial approximations to functions and series, but for now, we
assume that we have the polynomial, and simply want to evaluate the function accurately. The next three sections
first treat two special cases, and then the general case.

3.1 Computation of odd series

In this section, we consider the case of series having only odd-order terms, corresponding to functions that are
asymmetric about the origin, f (−x) = − f (x):

f (x) = c1x + c3x3 + c5x5 + · · · + c2n+1x2n+1 + · · · .

Move the first term to the left and divide by x3 to get

(f (x)− c1x)/x3 = c3 + c5x2 + · · · + c2n+1x2n−2 + · · · .

Now let g = x2, and write that as

R(g) = (f (
√

g)− c1
√

g)/(
√

g3)

= c3 + c5g + c7g2 + · · · + c2n+1gn−1 + · · ·
≈ P(g)/Q(g), computed rational approximation,

≈ P(x2)/Q(x2).

Once we have an approximation to R(g) as P(g)/Q(g), to be computed by methods described later in Section 3.4
on page 28 and Section 3.5 on page 32, we can obtain f (x) by a simple rearrangement:

f (x) ≈ c1x + (P(x2)/Q(x2))x3

≈ c1x + x(gP(g)/Q(g)).

© Springer International Publishing AG 2017
N.H.F. Beebe, The Mathematical-Function Computation
Handbook, DOI 10.1007/978-3-319-64110-2_3

23

24 Chapter 3. Polynomial approximations

Do not factor out x in that last result and compute the function from x(c1 + gP(g)/Q(g)): depending on the value
of c1, that form can lose up to three leading bits on systems with a hexadecimal base.

Most of the Cody/Waite algorithms contain those two steps, and eliminate the multiplication by c1, because it is
exactly one for all of the odd-order-term elementary functions considered in their book.

There are several convenient features of that computational scheme:

� Because x is small in the region of interest, g is even smaller. Thus, the right-hand side series converges rapidly,
and is close to linear if the two leading terms c3 + c5g dominate the remaining terms. Because R(g) is nearly
linear, low-order polynomials P(g) and Q(g) can produce highly accurate fits.

� When the term involving the rational polynomial is much smaller than the leading terms, and if those terms
can be computed exactly, or at least with only two or three rounding errors, then provided that the polynomial
is accurate, the computed result is usually close to the exact answer.

� Because g is the square of a real number, it is positive. If the coefficients in P(g) have the same sign, there is
no possibility of subtraction loss in its computation, and similarly for Q(g). Given a choice of several different
polynomials, we therefore prefer those with coefficients of constant sign.
When the coefficients are of mixed sign, our program that generates them makes numerical tests for subtraction
loss in the interval of approximation, and warns about such problems. Fortunately, such losses are rare, and
have been found only in the approximations for the error functions (Section 19.1 on page 593), the psi function
(Section 18.2 on page 536), and the reciprocal of the gamma function (Section 18.1 on page 521).

� The nested Horner1 form of polynomial computation,

Pn(g) =
n

∑
k=0

pkgk, summation form,

= p0 + p1g + p2g2 + · · ·+ pngn

= (· · · (png + pn−1)g · · ·+ p1)g + p0, Horner form,

computes the higher powers first, and they are the smallest terms because powers of g fall off rapidly. That
means that the terms are summed in increasing size, which is usually numerically better than summing from
largest to smallest term like a straightforward brute-force truncated Taylor series would do.

� Because only the ratio P(g)/Q(g) is needed, we can rescale both polynomials by a constant factor to make the
high-order coefficient in either of them exactly equal to one, allowing elimination of one multiply.
For example, with a ratio of two cubic polynomials, we normally have C code like this

Pg = ((p[3] * g + p[2]) * g + p[1]) * g + p[0] ;
Qg = ((q[3] * g + q[2]) * g + q[1]) * g + q[0] ;

so that six multiplies and six adds are needed, plus three more multiplies, one add, and one divide to obtain
f (x).
If we scale the coefficients so that q3 = 1 exactly, then we can rewrite the computation of Q(g) as:

Qg = ((g + q[2]) * g + q[1]) * g + q[0] ;

Alternatively, we could scale to make at least one of p0 and q0 have no leading zero bits in a hexadecimal base,
which is critically important for the wobbling precision of such systems. Otherwise, with a unit leading term,
we lose almost a decimal digit of accuracy.

� In at least one elementary function, the constant term is zero in either P(g) or Q(g), so it can be dropped from
the computation:

Pg = ((p[3]*g + p[2])*g + p[1])*g; /* + p[0] omitted */

� Most of the expressions involve combinations of multiply and add instructions, and some systems can achieve
much better speed and accuracy for them. We discuss that further in Section 4.17 on page 85.

1That rule is named after the English mathematician William George Horner (1786–1837). In 1834, Horner also invented the zoetrope, an early
device for displaying motion pictures.

3.2. Computation of even series 25

3.2 Computation of even series

We now turn to the case of series having only even-order terms, for functions that are symmetric about the origin,
f (−x) = f (x):

f (x) = c0 + c2x2 + c4x4 + · · · + c2nx2n + · · · .

As before, move the first term to the left-hand side, and then divide by x2:

(f (x)− c0)/x2 = c2 + c4x2 + · · · + c2nx2n−2 + · · · .

Now let g = x2, and write that as

R(g) = (f (
√

g)− c0)/g

= c2 + c4g + c6g2 + · · · + c2ngn−1 + · · ·
≈ P(g)/Q(g), computed rational approximation,

≈ P(x2)/Q(x2).

Once we have an approximation to R(g) as P(g)/Q(g), we can obtain f (x) by a simple rearrangement:

f (x) ≈ c0 + x2R(x2)

≈ c0 + gP(g)/Q(g).

That differs only slightly from the results for odd-order series.
Because all of the even-order-term elementary functions have c0 = 1, to reduce the effect of wobbling precision

on base-16 systems, it is better to halve the function to be approximated:

R(g) = (f (
√

g)− c0)/(2g)
≈ P(g)/Q(g), computed rational approximation.

Then compute
f (x) ≈ 2(1

2 + gP(g)/Q(g)).

The value 1
2 has no leading zero bits in a hexadecimal base, so the parenthesized expression is computed to full

precision. In addition, in the common case when the base is 2, the extra factor of two is handled exactly, so the cost
of making the code portable is a doubling that requires only one add or multiply.

3.3 Computation of general series

Of the functions treated by Cody and Waite and supported by the mathcw library, only the exponential and log
functions have Taylor series with both odd and even terms. The exponential function is represented like this:

exp(x) = 1 + x + x2/2! + x3/3! + · · · + xn/n! + · · · .

As before, move the first term on the right to the other side of the equation, and then divide by x:

(exp(x)− 1)/x = 1 + x/2! + x2/3! + · · · + xn/(n + 1)! + · · ·
≈ 1 + xR(x).

If we proceed as before, we let g = x2, and find

R(g) = ((exp(
√

g)− 1)/
√

g − 1)/
√

g.

Unfortunately, that function is far from linear in the interval [0, (ln(2)/2)2] ≈ [0, 0.1201] on which the reduced
exponential is computed, which we can readily see with another short Maple program shown in Figure 3.1 on the
following page.

26 Chapter 3. Polynomial approximations

% maple
...
> R := proc(g) return ((exp(sqrt(g)) - 1)/sqrt(g) - 1)/sqrt(g) end proc:
> plot(R(g), g = 0 .. ln(2) / 2);

+ AAAA
0.6 AAAAA

+ AAAAA
+ AAAAA
+ AAAA

0.58 AAAAA
+ AAAA
+ AAAA
+ AAAA
+ AAAA

0.56 AAAA
+ AAAA
+ AAAA
+ AAA

0.54 AA
+ AAA
+ AA
+ AA
+ AAA

0.52AA
+AA
+A
*
*-+-+-+--+-+-+-+-+-+-+-+--+-+-+-+-+-+-+--+-+-+-+-+-+-+--+-+-+-+-+-+-+--+-+-
0 0.05 0.1 0.15 0.2 0.25 0.3

Figure 3.1: Exponential function approximation, the wrong way. The text-terminal version of Maple produces plots
like this. Plots from a window-system version of Maple are more realistic, but less easily displayed everywhere.

Fortunately, Cody and Waite found a much better almost-linear function to approximate, shown in Figure 3.2 on
the next page. Thus, we find instead a rational polynomial approximation to the function

R(g) = (exp(
√

g)− 1)/
(√

g(exp(
√

g) + 1)
)

= (exp(x)− 1)/
(
x(exp(x) + 1)

)
≈ P(g)/Q(g), computed rational approximation,

from which we have
xR(g) = (exp(x)− 1)/(exp(x) + 1).

Rearrange that to find the exponential function:

exp(x) ≈ (1 + xR(g))/(1 − xR(g)).

Add and subtract the right denominator from the numerator:

exp(x) ≈ (1 − xR(g)− 1 + xR(g) + 1 + xR(g))/(1 − xR(g))
≈ 1 + 2xR(g)/(1 − xR(g)).

Finally, substitute R(g) = P(g)/Q(g) and rearrange:

exp(x) ≈ 1 + 2xP(g)/(Q(g)− xP(g))

≈ 2(1
2 + xP(g)/(Q(g)− xP(g))).

3.3. Computation of general series 27

% maple
...
> R := proc(g) return ((exp(sqrt(g)) - 1) /

(sqrt(g) * (exp(sqrt(g)) + 1))) end proc:
> plot(R(g), g = 0 .. ln(2) / 2);
0.5A

+AAA
+ AAA
+ AAA

0.498 AA
+ AAAA
+ AAAA
+ AAA

0.496 AAA
+ AAA
+ AA

0.494 AAAA
+ AAAA
+ AAAA
+ AAAA

0.492 AAA
+ AAA
+ AAA
+ AAA

0.49 AAA
+ AAAA
+ AAA

0.488 AAA
+ AAAA
+ AAAA
+ AAAA

0.486-+-+--+-+-+-+-+-+-+-+--+-+-+-+-+-+-+--+-+-+-+-+-+-+--+-+-+-+-+-+-+--+-+*
0 0.05 0.1 0.15 0.2 0.25 0.3

Figure 3.2: Exponential function approximation, the right way.

As before, the last form is computationally preferable in the presence of wobbling precision, and despite the subtrac-
tion, it is straightforward to show by direct evaluation of P(g) and Q(g) for exp(x) that there is no loss of leading
bits when x is in the interval [0, (ln(2)/2)2] where we use the rational polynomial approximation.

It is instructive to examine the Taylor-series expansion of the right-hand side of R(g):

F (x) = (exp(x)− 1)/
(
x(exp(x) + 1)

)
= (1/2)− (1/24)x2 + (1/240)x4 − (17/40320)x6 +

(31/725760)x8 −O(x10).

Terms of odd order are absent, so when x is small, the function is almost linear in the variable g = x2, as Figure 3.2
shows. In addition, even though the formation of x2 introduces a rounding error, the effect of that error on the sum
is tiny, and it should often be possible to compute F (x) correct to machine precision. That way, the only sources
of rounding error in the reconstructed elementary function come from the half-dozen operations that add a small
correction to the exact constant 1, and the rounding error in that last addition is the dominant one. That suggests
that the reconstruction should rarely be in error by more than one unit in the last digit.

The range of the graph in Figure 3.2 is small, so we could, if desired, gain about two decimal digits of precision
by using fits to G(x) = F (x)− 1

2 , and about four decimal digits from fits to H(x) = (F (x)− 1
2)/x2 + 1/24, provided

that we handle the reconstruction of F (x) carefully.

28 Chapter 3. Polynomial approximations

If the correction term can be computed in higher precision, then with high probability, the final result is correctly
rounded. For example, in IEEE 754 binary arithmetic, moving from single precision to double precision provides 29
additional bits, so incorrect rounding has a probability of approximately 2−29 ≈ 1.9 × 10−9. Because there are about
231 ≈ 2.1 × 109 possible single-precision values, we should find only about four single-precision results that are not
exact to machine precision.

If the arguments leading to those incorrectly rounded results were known in advance, such as by exhaustive
search, we could even check for them explicitly, and return correctly rounded constant values, thereby guaranteeing
correct rounding of the single-precision exponential for all arguments. Unfortunately, exhaustive search is infeasible
for higher precisions, but some researchers are working on finding hard cases for rounding of some of the elementary
functions, using a combination of clever mathematical analysis and computationally intensive numerical searches
[LM01, SLZ02, LM03a, LM03b, SLZ03, dDDL04, dDG04, SZ04, Lef05, SZ05, SLZ05, LSZ06, Zim06, HLSZ07, KLL+10,
JLMP11].

Auxiliary functions of the form of F (x) prove useful in several other elementary functions treated in this book,
including error functions, hyperbolic sine, hyperbolic tangent, inverse sine, inverse tangent, logarithm, power func-
tions, sine, and tangent.

3.4 Limitations of Cody/Waite polynomials

In IEEE 754 arithmetic, which we describe in more detail in Section 4.3 on page 63, the significand precisions are 24,
53, 64, and 113 bits. Cody and Waite usually tabulate polynomial coefficients for various approximations that are
accurate to 25 to 60 bits. We therefore have to extend their work to handle the higher precision needed for the IEEE
754 80-bit and 128-bit formats. The maple subdirectory of the mathcw library package contains programs to do that.

In general, much higher precision is needed to find the polynomial approximations: we found that 100-decimal-
digit computation was needed for approximations good to about 30 to 50 digits, and computation with up to 250
decimal digits was sometimes needed to extend the coverage to 75-digit accuracy. When the precision is too small,
Maple’s polynomial-fitting routines simply return failure.

Cody and Waite do not describe the origin of their polynomial approximations, or how they were computed. At
the time of their book, the choices would have likely been Richard P. Brent’s then-recent Fortran multiple-precision
library [Bre78a, Bre78b], or the venerable symbolic-algebra languages Macsyma or REDUCE, both of which were
developed in the 1960s, the first at MIT, and the second at Utah. A descendant of Macsyma, called Maxima, is avail-
able under an open-source license.2 In early 2009, REDUCE was released as free software [Hea09],3 and somewhat
earlier, its author published a 40-year historical retrospective [Hea05]. Neither Maple nor Mathematica existed in
1980, although together, they have dominated the commercial symbolic-algebra market since the late 1980s.

In Maple, you can use something like this

% maple
> with(numapprox): # load the library of approximation routines
> Digits := 100; # set the working precision in decimal digits
> the_approx := minimax(F(’x’), ’x’ = A .. B, [np,nq]):

to find a rational polynomial approximation P(x)/Q(x) of order np and nq for x in the interval [A, B] for the function
F(x).

The quotes around x prevent confusion with any existing variable of that name. The quotes can be omitted if x
has not yet been assigned a value. If it has, we can remove that value by the assignment x := ’x’:, a simple, and
often useful, technique in Maple sessions. We therefore omit the quotes in Maple code in the rest of this book.

For example, to find an approximation to the ordinary sine function in the interval [0, π/4], you can enter this
short program:

> with(numapprox): # load the library of approximation routines
>
> Digits := 20: # set the working precision in decimal digits
>

2See http://maxima.sf.net/.
3See http://reduce-algebra.com/.

3.4. Limitations of Cody/Waite polynomials 29

> minimax(sin(x), x = 0 .. Pi/4, [3,3]); # find a rational cubic fit
-8

(0.5607715527246 10 + (0.97501461057610330856

+ (0.03531206456923826426 - 0.11812024876078269427 x) x) x)/(

0.97501530982739456391 + (0.035297852598628351466

+ (0.044490309046633203134 + 0.0054941908797284936913 x) x) x)

Of course, that display form is not convenient for computation in other programming languages, nor does the re-
turned expression offer any hint of its accuracy. The *.map programs in the maple subdirectory of the mathcw dis-
tribution therefore go to a lot of extra trouble to compute error estimates, and to format and output the polynomial
data so that they are suitable for use in Fortran, C, C++, Java, and hoc. Here is a small example of their output, using
the modified function F (g) = (sin(

√
g)−√

g)/(g
√

g):

> pq_approx(2, 2):

Attempting minimax approximation of degree [2, 2]
OKAY

WARNING: Forcing F(0) = P(0) / Q(0) by resetting p[0] from -8.3333333326e-02 to -8.3333333333e-02

Fits computed with 20-digit precision
Number of correct bits at uniform spacing on [0, (PI/2)**2]:

0.00 33.31 32.64 32.41 32.38 32.48 32.69 32.99
33.41 33.96 34.70 35.77 37.70 39.55 43.29 36.95
35.48 34.58 33.94 33.46 33.10 32.82 32.60 32.45
32.35 32.30 32.31 32.36 32.49 32.68 32.97 33.38
33.99 34.97 37.00 37.84 39.14 34.89 33.32 32.25

Average number of correct bits on [0, (PI/2)**2] = 34.25
Average number of correct decimal digits on [0, (PI/2)**2] = 10.31
Maple minimax() error = 1.48e-11
Fits computed with 20-digit precision

Maximum relative error of 1.96e-10 at x = 2.467401101
where

F_exact() = -0.14727245909836825822
F_approx() = -0.14727245912726088799

==
Fortran data

*
* F(x) = (sin(sqrt(x)) - sqrt(x))/(x*sqrt(x))
* Maximum relative error in F(x) = 1.96e-10 = 2.0**-32.25
* at x = 2.4674e+00 for x on [0, (PI/2)**2] with minimax degree [2, 2]
* Average number of correct bits = 34.25
* Average number of correct decimal digits = 10.31
* Maple minimax() error = 1.48e-11
* Fits computed with 20-digit precision
*

INTEGER np
PARAMETER (np = 3)
REAL*16 p(0:np-1)

**
* NB: Remember to change all e exponents to q for use in Fortran!
**

DATA p /
X -8.3333333333333e-02,
X 2.4272274723755e-03,
X -2.6103416823681e-05 /

30 Chapter 3. Polynomial approximations

INTEGER nq
PARAMETER (nq = 3)
REAL*16 q(0:nq-1)

**
* NB: Remember to change all e exponents to q for use in Fortran!
**

DATA q /
X 5.0000000000000e-01,
X 1.0436634248973e-02,
X 8.3217137588379e-05 /

pgg = (((p(2)) * g + p(1)) * g + p(0)) * g
qg = ((q(2)) * g + q(1)) * g + q(0)
result = f + f * (pgg / qg)

==
C/C++/Java data

/***
*** F(x) = (sin(sqrt(x)) - sqrt(x))/(x*sqrt(x))
*** Maximum relative error in F(x) = 1.96e-10 = pow(2.0, -32.25)
*** at x = 2.4674e+00 for x on [0, (PI/2)**2] with minimax degree [2, 2]
*** Average number of correct bits = 34.25
*** Average number of correct decimal digits = 10.31
*** Maple minimax() error = 1.48e-11
*** Fits computed with 20-digit precision
***/

#define POLY_P(p,x) POLY_2(p,x)
#define POLY_Q(q,x) POLY_2(q,x)

static const
fp_t p[] = {

FP(-8.3333333333333e-02),
FP(2.4272274723755e-03),
FP(-2.6103416823681e-05) };

static const
fp_t q[] = {

FP(5.0000000000000e-01),
FP(1.0436634248973e-02),
FP(8.3217137588379e-05) };

pg_g = (((p[2]) * g + p[1]) * g + p[0]) * g;
qg = ((q[2]) * g + q[1]) * g + q[0];
result = f + f * (pg_g / qg);

==
hoc data

func P32(x) \
{

p0 = -8.3333333333333e-02
p1 = 2.4272274723755e-03
p2 = -2.6103416823681e-05

return (((p2) * x + p1) * x + p0)
}

func Q32(x) \
{

q0 = 5.0000000000000e-01
q1 = 1.0436634248973e-02
q2 = 8.3217137588379e-05

return (((q2) * x + q1) * x + q0)

3.4. Limitations of Cody/Waite polynomials 31

}

func R32(x) \
{

###
F(x) = (sin(sqrt(x)) - sqrt(x))/(x*sqrt(x))
Maximum relative error in F(x) = 1.96e-10 = 2**(-32.25)
at x = 2.4674e+00 for x on [0, (PI/2)**2] with minimax degree [2, 2]
Average number of correct bits = 34.25
Average number of correct decimal digits = 10.31
Maple minimax() error = 1.48e-11
Fits computed with 20-digit precision
###

return (P32(x) / Q32(x))
}

func F32(x) \
{

z = x
pz = P32(z)
qz = Q32(z)
return (pz / qz)

}

The polynomial arrays are named p and q, and there are short code fragments that show how to evaluate the
polynomials and reconstruct the fitted function. The hoc functions have a numeric suffix that records the number of
correct bits at the maximum error of the function fit in the argument interval.

Although Maple uses a square-bracketed list for the polynomial degrees of rational approximations, in this book
we avoid confusion with interval brackets by using the notation 〈m/n〉 for the ratio of a polynomial of degree m with
another of degree n.

Because we want to support a wide range of past, present, and future computer architectures, we need several
different rational polynomials for each elementary function. The Maple programs consider all possible total degrees
in a specified range, such as 2 to 20, and then compute all possible partitions of the total degree, ntotal = np + nq,
for rational approximations of degree 〈np/nq〉. The programs estimate the error by sampling the function uniformly
over the interval in which it is required, as well as in small intervals near the endpoints, tracking the maximum
relative error compared to the exact function. The value of that error is then expressed as a power of two, and the
floor (see Section 6.7 on page 136) of the negative of that power is the number of bits of precision.

John Rice wrote in his well-known book The Approximation of Functions [Ric64, page 147] about the problem of
finding optimal polynomial approximations:

There appears to be no systematic method of determining, in an a priori manner, which of these entries
provides the best approximation in a particular sense.

Thus, we simply have to try several candidate fits, and pick the best ones.
A small awk program then examines the Maple output, and produces a compact report of approximations of

decreasing accuracy, noting the IEEE 754 precision for which they are suitable, and flagging those that are balanced
(same degree in numerator and denominator), of uniform sign, or so inaccurate as to be useless. Here is an example
of its use (long lines have been wrapped to fit the page):

% awk -f summary.awk atan.out
atan.out:06346:* Maximum relative error in F(x) = 2.34e-25 = 2.0**-81.82 \

at x = 0.0000 for x on [0,(2 - sqrt(3))**2] with minimax \
degree [6,6] = 12 80-bit BALANCED!

atan.out:06469:* Maximum relative error in F(x) = 3.66e-25 = 2.0**-81.18 \
at x = 0.0000 for x on [0,(2 - sqrt(3))**2] with minimax \
degree [7,5] = 12 80-bit

atan.out:06224:* Maximum relative error in F(x) = 3.88e-25 = 2.0**-81.09 \
at x = 0.0000 for x on [0,(2 - sqrt(3))**2] with minimax \
degree [5,7] = 12 80-bit

...
atan.out:01457:* Maximum relative error in F(x) = 3.58e-11 = 2.0**-34.70 \

32 Chapter 3. Polynomial approximations

at x = 0.0000 for x on [0,(2 - sqrt(3))**2] with minimax \
degree [3,3] = 6 32-bit BALANCED!

atan.out:01556:* Maximum relative error in F(x) = 8.05e-11 = 2.0**-33.53 \
at x = 0.0000 for x on [0,(2 - sqrt(3))**2] with minimax \
degree [4,2] = 6 32-bit

...
atan.out:00049:* Maximum relative error in F(x) = 9.85e-02 = 2.0**-3.34 \

at x = 0.0000 for x on [0,(2 - sqrt(3))**2] with minimax \
degree [1,1] = 2 USELESS BALANCED!

atan.out:00136:* Maximum relative error in F(x) = 6.18e-01 = 2.0**-0.69 \
at x = 0.0000 for x on [0,(2 - sqrt(3))**2] with minimax \
degree [2,0] = 2 USELESS

For a given total degree, which determines the speed of the rational approximation, the one with balanced de-
grees, 〈(ntotal/2)/(ntotal/2)〉, usually offers the best accuracy, often as many as six bits better than a single poly-
nomial of degree ntotal. However, the latter form avoids a costly division, so there is a tradeoff of accuracy against
speed.

It is straightforward to copy the polynomial coefficients into a data header file (here, atan.h), wrapped by pre-
processor conditionals that select code according to a compile-time-specified precision, P:

#if P <= 24
...
#elif P <= 32
...
#elif P <= 50
...
#elif P <= 240
...
#else
#error "atan() family not yet implemented for binary precision P > 240"
#endif

The polynomial expression can be copied into a shared algorithm header file (here, atanx.h), although the code that
we actually use is slightly different:

else
{

fp_t g, pg_g, qg;

g = r * r;
pg_g = POLY_P(p, g) * g;
qg = POLY_Q(q, g);
result = FMA(r, pg_g / qg, r);

}

The POLY_P() and POLY_Q() macros hide the polynomial degrees, and are normally defined to expand inline to
Horner forms. The FMA(x,y,z) macro encapsulates the computation x * y + z for reasons that are described later
in Section 4.17 on page 85.

Not only does that give us flexibility in handling a wide range of hardware precisions, it also allows us to choose
any one of the polynomial approximations for use with any hardware precision. That proved useful during devel-
opment, because many of the polynomials had to be tediously retyped from tables in the Cody/Waite book. Having
multiple approximations available while the code was being checked made it easier to find typos in the manually
entered coefficients, separating that issue from the debugging of the algorithm implementations.

3.5 Polynomial fits with Maple

The Maple library numapprox contains several routines for computing rational polynomial approximations to a user-
specified function, but we describe only two of them here. We discuss a third method later in Section 3.9 on page 43.

3.6. Polynomial fits with Mathematica 33

The call pade(f, x = a, [m, n]) finds a Padé approximation of degree 〈m/n〉 to the function f (x) about the
point x = a, but gives no ability to specify the interval of interest.

In Section 3.4 on page 28, we have already seen a simpler version of the minimax fitting function. The gen-
eral form minimax(f, x = a..b, [m, n], w, ’maxerror’) computes the best minimax rational approximation of
degree 〈m/n〉 in the interval [a, b] with respect to the positive weight function w(x), and assigns the minimax error
norm to the variable maxerror. The last two arguments are optional, but we supply them in the Maple programs
that accompany that package, setting w(x) = 1, and we record the error estimate in comments that prefix the out-
put polynomial coefficients. If f (x) is nonzero on [a, b], then we could use w(x) = 1/ f (x) to minimize the relative,
rather than absolute, error. However, we have not done so. Only the last argument is modified by the function, so for
reasons discussed earlier in Section 3.4 on page 28, we use protecting quotes to ensure that its name, rather than its
current value, is passed to the function.

The lack of interval specification in the pade() routine, and its frequent tendency to return failure, make it unsat-
isfactory. Almost all of the new polynomial approximations in the mathcw library have therefore been computed by
minimax().

Because we strive for high accuracy, the polynomials that satisfy f (x) ≈ P(x)/Q(x) must ensure that f (x) and
P(x)/Q(x) be indistinguishable to machine precision, even when the function is small. Thus, the measure of the error
must be the relative error, rather than the absolute error. However, in many cases, we have f (x) = 0 at one or the
other endpoint of the interval of approximation, leading to a relative error of the form 0/0, which is computationally
undesirable.

The solution is to perturb the endpoint slightly, and modify the function definition to check for internal zero
divisors. For example, the Maple program for one of the auxiliary functions required by the power elementary
function has this code:

A := 1.0e-20:
A_name := "0":

B := 1/1024:
B_name := "1/1024":

F := proc(x)
if (evalb(x = 0)) then

return 0
else

return (log((2 + sqrt(x))/(2 - sqrt(x))) - sqrt(x))/sqrt(x)
end if

end proc:
F_name := "(log((2 + sqrt(x))/(2 - sqrt(x))) - sqrt(x))/sqrt(x)":

The variables suffixed _name are what appear in the output reports, but the computational endpoint A is moved
slightly away from the origin, and the function F(x) handles a zero argument specially.

There is one further consideration that is useful for those functions that include the origin in the interval of
approximation. In terms of the rational polynomials, the function is evaluated as F(0) = P(0)/Q(0) = p0/q0. The
coefficients produced by the minimax approximation do not satisfy that relation numerically, so if zero is contained
in the interval, the code sets p[0] = F(0) * q[0]. In particular, for functions that satisfy F(0) = 0, that forces
p0 = 0, and guarantees that the rational polynomial P(0)/Q(0) evaluates to zero exactly. In addition, it allows p0 to
be dropped entirely from the polynomial evaluation, saving an unnecessary addition.

Plots of the auxiliary functions to which the rational polynomials are fit show them to be close to linear in the
interval of approximation. Although that is necessary if the polynomials are to be of low degree, and thus, fast to
evaluate, it is gratifying that high accuracy is possible, as demonstrated by the results in Table 3.1 on the following
page.

3.6 Polynomial fits with Mathematica

Well after work on this book and the mathcw library began, the release in 2008 of version 6 of the Mathematica
symbolic-algebra system added support for function approximations. That facility provides an alternative to the
Maple minimax() function, and allows revisiting fit attempts where Maple was unsuccessful.

34 Chapter 3. Polynomial approximations

Table 3.1: Accuracy of rational polynomials for computation of an auxiliary function for exp(x) for x in the interval
[0, (ln(2)/2)2] ≈ [0, 0.12]. Adding two to the total polynomial degree buys about ten more decimal digits of accuracy.

total polynomial degree 2 4 5 6 7 9 12 14 16 18 20 22 24
− log10(maximum relative error) 9 18 22 26 31 40 55 65 75 86 96 107 118
average accurate bits 33 59 73 88 103 133 182 216 251 286 321 357 394
worst-case accurate bits 29 56 69 85 99 131 180 213 248 282 318 354 391

Although the Mathematica functions are straightforward to use, more work is required to turn their output into
text that can be copied unmodified into C source-code files. Because the facility is new, we present a detailed tutorial
for it here. We start with the simple example given earlier of fitting the sine function on a modest interval.

The first task is to load the function approximation library into a Mathematica session:

% math
In[1]:= << FunctionApproximations‘

The double angle brackets are a convenient shorthand for reading text file input; the statement could also have been
written in function form like this:

In[1]:= Get["FunctionApproximations‘"]

The peculiar final back quote is a Mathematica context mark, similar to a slash in a Unix pathname. It is essential here,
because it indicates that an entire subdirectory tree is to be read from somewhere inside the Mathematica installation.
Failure to include the back quote produces an error:

In[1]:= Get["FunctionApproximations"]
Get::noopen: Cannot open FunctionApproximations.
Out[1]= Failed

Interactive Mathematica sessions normally mark input and output as assignments to internal arrays called In[]
and Out[]. That is convenient, because it allows reuse of earlier input and output expressions. For example, In[3]
is the current value of the third input expression; to get its original form, use InString[3].

In an interactive session, Mathematica normally shows the result of each input expression, but that display can
be suppressed by suffixing the input with a semicolon.

Like the Lisp programming-language family, Mathematica is a functional language: it uses function calls, instead
of statements that each have a unique syntax. Its built-in function names are rarely abbreviated, and by convention,
are written with each word capitalized. Unlike many other modern languages, the underscore character is not
allowed in variable and function names, because it is given another meaning that we introduce later.

The function that produces minimax fits has some options that we need, and we can display them like this:

In[2]:= Options[MiniMaxApproximation]

Out[2]= { Bias -> 0,
> Brake -> {5, 5},
> Derivatives -> Automatic,
> MaxIterations -> 20,
> WorkingPrecision -> MachinePrecision,
> PrintFlag -> False,
> PlotFlag -> False }

If we do not change the software floating-point working precision, Mathematica uses hardware floating-point arith-
metic in the IEEE 754 64-bit binary format, corresponding to roughly 16 decimal digits:

In[3]:= $MachinePrecision

Out[3]= 15.9546

3.6. Polynomial fits with Mathematica 35

We now make our first attempt at a 〈3/3〉 fit of the sine function using default options:

In[4]:= rs = MiniMaxApproximation[Sin[x], {x, {0, Pi/4}, 3, 3}]

1
Power::infy: Infinite expression -- encountered. [twice]

0.

Infinity::indet: Indeterminate expression 0. ComplexInfinity
encountered. [twice]

LinearSolve::inf: Input matrix contains an infinite entry.

Pi
Out[4]= MiniMaxApproximation[Sin[x], {x, {0, --}, 3, 3}]

4

The internal failure results in the right-hand side being returned unevaluated.
The complaints of infinities are surprising, because the function sin(x) is smooth and well-behaved with values

in [0,
√

1
2] on the fit interval. However, the function’s documentation notes that the expression to be approximated

must not have a zero on the fit interval. Instead, we use endpoint perturbation, the same trick that solves similar
problems with Maple’s fitting functions:

In[5]:= rs = MiniMaxApproximation[Sin[x], {x, {2^(-53), Pi/4}, 3, 3}]

MiniMaxApproximation::conv: Warning: convergence was not complete.

-16
Out[5]= {{1.11022 10 , 0.00031017, 0.0534226, 0.198256, 0.395484,

> 0.591416, 0.73365, 0.785398},

-24 2 3
6.58177 10 + 1. x + 0.0297665 x - 0.119725 x -8

> {---, -2.91458 10 }}
2 3

1 + 0.0297639 x + 0.0469804 x + 0.00475105 x

The fit is partially successful, but there is a warning to deal with before we explain the output. We increase the
number of internal iterations beyond the default of 20:

In[6]:= rs = MiniMaxApproximation[Sin[x], {x, {2^(-53), Pi/4}, 3, 3},
MaxIterations -> 40]

-16
Out[6]= {{1.11022 10 , 0.000103875, 0.0531916, 0.19807, 0.395361,

> 0.591355, 0.733634, 0.785398},

-24 2 3
6.52019 10 + 1. x + 0.0297547 x - 0.119723 x -8

> {---, -2.91986 10 }}
2 3

1 + 0.029752 x + 0.0469828 x + 0.00474939 x

The fit is now complete, and successful. The returned approximation is a braced list of two elements, themselves
both lists. The first list element is a list of x values where the magnitude of the relative error in the fit reached a local
maximum. The second list has two elements: the desired rational polynomial approximation, and the maximum
relative error on the interval.

36 Chapter 3. Polynomial approximations

We notice that the leading coefficient in the numerator is tiny, but nonzero, so the rational polynomial reduces to
that value at x = 0, instead of the correct value, sin(0) = 0. It is therefore a good idea to instead produce a fit to a
function, sin(x)/x, that is nonzero over the fit interval:

In[7]:= rs = MiniMaxApproximation[Sin[x] / x,
{x, {2^(-53), Pi/4}, 3, 3},
MaxIterations -> 40]

-16
Out[7]= {{1.11022 10 , 0.0408088, 0.15429, 0.315766, 0.491015,

> 0.644846, 0.748815, 0.785398},
2 3

1. - 0.373319 x - 0.117448 x + 0.0450069 x
{--,

2 3
1 - 0.37332 x + 0.0492233 x - 0.0172495 x

-9
> 2.10223 10 }}

An even better choice is the smoother function that we used earlier, (sin(
√

x)−√
x)/(x

√
x). However, that does not

introduce new features, so we omit it here.
We now need to pick apart the returned lists to recover their separate elements. In Mathematica, if list is a

list, then we can extract its i-th element with a function call, Part[list, i], or with more compact double-bracket
notation, list[[i]]. Lists are indexed 1, 2, 3, . . . from the first element, and −1,−2,−3, . . . from the last element.
We have lists of lists, so we can extract the j-th element of the i-th sublist with Part[Part[list, i], j], or Part[i,
j], or, more easily, with list[[i, j]]. We extract the rational polynomial, and its error, like this:

In[8]:= rsratpoly = rs[[2,1]]

2 3
1. - 0.373319 x - 0.117448 x + 0.0450069 x

Out[8]= --
2 3

1 - 0.37332 x + 0.0492233 x - 0.0172495 x

In[9]:= rsmaxerr = rs[[2,2]]

-9
Out[9]= 2.10223 10

The Plot[] function makes it easy to get a simple screen plot of an expression, but more work is needed to enhance
it with axis labels, shading, and conversion to PostScript suitable for inclusion in a typeset document. The input

In[10]:= Export["sin-x-by-x-3-3.eps",
Plot[(1 - rsratpoly / (Sin[x] / x)) * 10^9,

{x, 0, Pi / 4},
AspectRatio -> 1 / 3,
AxesLabel -> { "x", "Relative error \[Times] 10^9" },
BaseStyle -> { FontFamily -> "Helvetica",

FontSize -> 8 },
Filling -> Axis,
FillingStyle -> { GrayLevel[0.90] },
PerformanceGoal -> "Quality",
PlotRange -> {-3, 3},
PlotStyle -> { Thickness[0.005] }

],
"EPS"
]

3.6. Polynomial fits with Mathematica 37

Figure 3.3: Error in minimax 〈3/3〉 rational-polynomial fit of sin(x)/x for x on [0, π/4].

Relative error � 10^9

produces the plot shown in Figure 3.3. Notice that the extrema have equal height (the minimax property), and that
two of them fall at the endpoints of the fit interval.

Next, we split the rational polynomial into its two parts:

In[11]:= rsnum = Numerator[rsratpoly]

2 3
Out[11]= 1. - 0.373319 x - 0.117448 x + 0.0450069 x

In[12]:= rsden = Denominator[rsratpoly]

2 3
Out[12]= 1 - 0.37332 x + 0.0492233 x - 0.0172495 x

We also need to be able to extract polynomial coefficients by specifying the variable and its integer power:

In[13]:= Coefficient[rsnum, x, 3]

Out[13]= 0.0450069

The next piece of Mathematica function wizardry that we need is a way to make the polynomial expressions easy
to use in another programming language, such as C or Fortran:

In[14]:= CForm[rsnum]

Out[14]//CForm=
0.999999997897774 - 0.37331936378440406*x -
0.11744824060104601*Power(x,2) + 0.045006876402198616*Power(x,3)

In[15]:= FortranForm[rsnum]

Out[15]//FortranForm=
0.999999997897774 - 0.37331936378440406*x -

- 0.11744824060104601*x**2 + 0.045006876402198616*x**3

The unfortunately chosen leading minus sign on the last line is not part of the expression, but instead is a Fortran
statement-continuation character that appears in column six of a source line in the traditional 80-character punched-
card image.

That output carries a surprise: the coefficients were previously displayed with fewer digits, but now they appear
with a precision matching the underlying hardware precision.

The power functions in the output are a poor way to compute the polynomials, so we switch to nested Horner
form:

0.2 0.4 0.6 0.8
x

�3

�2

�1

1

2

3

38 Chapter 3. Polynomial approximations

In[16]:= CForm[HornerForm[rsnum]]

Out[16]//CForm=
0.999999997897774 + x*(-0.37331936378440406 +

(-0.11744824060104601 + 0.045006876402198616*x)*x)

In[17]:= FortranForm[HornerForm[rsnum]]

Out[17]//FortranForm=
0.999999997897774 + x*(-0.37331936378440406 +

- (-0.11744824060104601 + 0.045006876402198616*x)*x)

For one-of-a-kind fits, we have now presented the minimal set of Mathematica function calls that are needed to
convert a rational polynomial fit to source code in a conventional programming language.

In the mathcw library, however, we require considerably more, because we need to compute the fits for arbitrary
specified precision, record the details of the fit in source-code comments, supply the polynomial coefficients with
suitable precision suffixes, and hide them in array initializers.

Mathematica provides only limited control over numeric output: it drops decimal points from numbers without
a fractional part, and it discards trailing zeros in fractions. We therefore provide polyfit.mth, a file of Mathematica
enhancements. That file starts with our earlier In[1] expression to load the function-approximation library, then
defines a wrapper function to improve output appearance by justifying a string into a field of fixed width:

StringJustifyRight[s_, targetwidth_ : 0] :=
Module[{ t },

t = s;
While[StringLength[t] < targetwidth, t = " " <> t];
t

]

Notice the unusual syntax: arguments in the function declaration on the left require trailing underscores that mark
them as pattern holders, but those underscores are absent from the definition on the right. The colon-equals operator
is a delayed assignment that prevents evaluation of the right-hand side until the function is actually called.

In the function argument list, the colon indicates a default value for an argument. That argument may therefore
be omitted in calls to our function, if the default is acceptable.

The Module[] function is a convenient way to supply a statement block for the right-hand side. Its first argument
is a comma-separated braced list of local variables, and its remaining arguments are semicolon-separated statements.

The StringJustifyRight[] function is crude, but clearly correct: it repeatedly prefixes a space to a copy of the
source string while the target string is shorter than the desired length. The While[] function loops, evaluating its
second argument, the body, only when the first argument evaluates to True.

The paired-angle-bracket operator, <>, is Mathematica shorthand for string concatenation. The statement in
which it appears could have been written in functional notation as

t = StringJoin[" ", t]

The final expression, t, in the body is the function result. That fact could be emphasized by writing it instead as
Return[t], but that function is rarely used.

We can provide a documentation string for our function like this:

StringJustifyRight::usage =
"StringJustifyRight[string, width] returns a copy of string
right-justified with space padding on the left, if needed, to
make it at least width characters long."

An input expression of the form ?StringJustifyRight displays that documentation. We supply usage strings for all
of the functions and global variables in polyfit.mth, but we omit them in the rest of this section.

Comments in Mathematica are delimited by (* ... *), and those delimiters can be nested, allowing a large
block of commented code to itself be turned into a comment if needed.

We format numbers with the help of this function:

3.6. Polynomial fits with Mathematica 39

CFormat[x_, nfrac_, digits_ : Digits] :=
Block[{ d, e, f, s, t, scale },

If[IntegerQ[digits] && digits > 0,
d = digits,
d = MiniMaxDefaultDigits];

scale = If[(10^(-6) < Abs[x]) && (Abs[x] < 10^6), 10^25, 1];
s = StringSplit[ToString[CForm[N[scale * x, d]]],

"." | "e"];

If[Length[s] == 1, s = AppendTo[s, "0"]];

If[Length[s] == 2, s = AppendTo[s, "0"]];

e = If[scale == 1,
s[[3]],
ToString[ToExpression[s[[3]]] - 25]];

(* force two digit exponents for better table alignment *)
If[(StringLength[e] == 2) && (StringTake[e, 1] == "-"),

e = "-0" <> StringTake[e, -1]];

If[StringLength[e] == 1, e = "0" <> e];

(* force explicit plus sign *)
If[StringTake[e, 1] != "-", e = "+" <> e];

f = StringTake[s[[2]], Min[StringLength[s[[2]]], nfrac]];

While[StringLength[f] < nfrac, f = f <> "0"];

t = s[[1]] <> "." <> f <> "e" <> e;
t

]

This time, we use a Block[] instead of a Module[], just to show an alternative way of grouping statements. The
differences between the two are subtle, and not relevant here. The default supplied by our global variable Digits
defines the number of digits wanted in the output values, because that is distinct from the WorkingPrecision or
$MachinePrecision used to compute them.

The If[] function supplies a corrected value for the digits argument, in case it is not numeric, or is not a positive
integer. Like the C-language short-circuiting ternary expression e ? a : b, the If[] function evaluates only one of
the second and third arguments, depending on whether the first argument evaluates to True or False.

The IntegerQ[] function tests whether its argument is an integer or not. The fallback value stored in our global
variable MiniMaxDefaultDigits is 36, which is sufficient for both IEEE 754 128-bit binary and decimal formats.

Because the built-in CForm[] function uses exponential form only for numbers outside the range [10−5, 10+5], we
choose a scale factor to ensure exponential form. We then split the output of CForm[] into a three-element list with
the integer, fraction, and exponent. We then do some further cleanup to ensure that the exponent has at least two
digits, and, if needed, we add trailing zeros to pad the fraction to the requested size. Finally, we rejoin the pieces and
return the result.

A polynomial can be defined by a constant array of coefficients that is produced with this function:

CPoly[poly_, var_, name_ : "p", digits_ : Digits] :=
Module[{ d, k, pagewidth },

If[IntegerQ[digits] && digits > 0,
d = digits,

40 Chapter 3. Polynomial approximations

d = MiniMaxDefaultDigits];

(* prevent gratuitous linewrapping *)
pagewidth = Options[$Output, PageWidth];
SetOptions[$Output, PageWidth -> Infinity];

Print["static const fp_t ", name, "[] = {"];

For[k = 0, k <= Exponent[poly, var], k = k + 1,
Print[" FP(",

StringJustifyRight[CFormat[
Coefficient[poly, var, k], d], d + 7],

")",
If[k == Exponent[poly, var], "", ","],
"\t/* ", k, " */"]];

Print["};\n"];
SetOptions[$Output, pagewidth];

]

The function begins by ensuring that d has a positive integer value. It then saves the current page-width limit, and
resets it to infinity to prevent unwanted line wrapping; the saved value is restored just before the function returns.

Each Print[] call produces a single output line, so we often need to supply multiple arguments to that function.
Mathematica recognizes most of the C-style escape sequences in strings, so we use \n (newline) and \t (tab) for
additional spacing control.

The Exponent[poly, x] function returns the maximum power of x in the polynomial.
The counted loop function has the form For[init, test, incr, body], similar to the C-language loop statement

for (init; test; incr) body. Notice that the Mathematica loop has comma separators, because the four fields are
just function arguments. If the loop body requires more than one statement, it can be given as a list of semicolon-
separated expressions, or if more control and loop-local variables are needed, with a Block[] or Module[] wrapper.

Another function makes it convenient to produce coefficient tables for both numerator and denominator of the
rational polynomial with a single call, with optional further scaling of the coefficients:

CRatPoly[ratpoly_, var_,
numname_ : "p", denname_ : "q", scale_ : 1] :=

Module[{ },
CPoly[scale * Numerator[ratpoly], var, numname];
CPoly[scale * Denominator[ratpoly], var, denname]

]

We also need to produce a lengthy comment header that records data about the fit:

CRatComment[ratapprox_, var_, funname_,
numname_ : "p", denname_ : "q"] :=

Module[{ },
Print[""];
Print["/***"];
Print[" ***\tF(", var, ") = ", funname];
Print[" ***\tMaximum relative error in F(", var, ") = ",

N[CForm[ratapprox[[2,2]]], 4]];
Print[" ***\tfor fit with minimax degree [",

Exponent[Numerator[ratapprox[[2,1]]], var], ", ",
Exponent[Denominator[ratapprox[[2,1]]], var], "]"

];
Print[" ***\tfor ",

var, " on [",
CForm[N[ratapprox[[1, 1]], 5]], ", ",
CForm[N[ratapprox[[1,-1]], 5]], "]"

3.6. Polynomial fits with Mathematica 41

];
Print[" ***/\n"];
Print["#define POLY_", ToUpperCase[numname],

"(p, ", var, ")\tPOLY_",
Exponent[Numerator[ratapprox[[2,1]]], var],
"(p, ", var, ")"

];
Print["#define POLY_", ToUpperCase[denname],

"(q, ", var, ")\tPOLY_",
Exponent[Denominator[ratapprox[[2,1]]], var],
"(q, ", var, ")"

];
Print[""]

]

The rational-polynomial list structure does not explicitly record the fit-variable range, but we can recover a close
approximation to it from the initial and final elements of the first list of locations of maximum errors.

We provide a helper function, modeled after a similar feature of our Maple code, to select a suitable coefficient-
dependent scale factor:

(*
** Return a scale factor for a rational polynomial. Scaling is
** determined by normoption:
** 0 larger of lowest-order coefficients is 1/2
** 1 highest-order numerator coefficient is 1
** 2 highest-order denominator coefficient is 1
** 3 lowest-order numerator coefficient is 1
** 4 lowest-order denominator coefficient is 1
** 5 lowest-order numerator coefficient is 1/2
** 6 lowest-order denominator coefficient is 1/2
**
** Out-of-range values of normoption are treated as 0.
*)

RatScale[ratpoly_, var_, normoption_ : 0] :=
Module[{ },

Switch[normoption,
0, 1 / (2 * Max[Abs[Coefficient[Numerator[ratpoly], var, 0]],

Abs[Coefficient[Denominator[ratpoly], var, 0]]]),
1, 1 / Coefficient[Numerator[ratpoly], var,

Exponent[Numerator[ratpoly]]],
2, 1 / Coefficient[Denominator[ratpoly], var,

Exponent[Denominator[ratpoly]]],
3, 1 / Coefficient[Numerator[ratpoly], var, 0],
4, 1 / Coefficient[Denominator[ratpoly], var, 0],
5, 1 / (2 * Coefficient[Numerator[ratpoly], var, 0]),
6, 1 / (2 * Coefficient[Denominator[ratpoly], var, 0]),
_, 1 / (2 * Max[Abs[Coefficient[Numerator[ratpoly], var, 0]],

Abs[Coefficient[Denominator[ratpoly], var, 0]]])
]

]

The Switch[] function is similar to a C switch statement: its first argument is a case selector, and each subsequent
pair of arguments is a case number, and an expression to evaluate for that case. The underscore in the final case is
a pattern holder that matches anything: it corresponds to the default block in a C switch statement. Unlike the C
switch statement, there is no fall-through from one case to another in the Switch[] function.

The reason for the different scaling options is that we often wish to control the form of the coefficients for better
accuracy. We usually want one of the low-order coefficients in the numerator or denominator to be an exactly
representable floating-point value, such as 1.0 or 0.5.

42 Chapter 3. Polynomial approximations

A final function reports the fit as C-language code:

CRatData[ratapprox_, var_, funname_, numname_ : "p", denname_ : "q",
normoption_ : 0] :=

Module[{ },
CRatComment[ratapprox, var, funname, numname, denname];
CRatPoly[ratapprox[[2,1]], var, numname, denname,

RatScale[ratapprox[[2,1]], var, normoption]]
]

Here is a fresh session that shows the minimal Mathematica input needed to produce a low-order rational poly-
nomial fit to a sample function:

% math
In[1]:= << polyfit.mth
In[2]:= re = MiniMaxApproximation[(Exp[x] - 1) / x,

{x, {10^(-10), 1/2}, 2, 3},
WorkingPrecision -> 20];

In[3]:= Digits = 9;
In[4]:= CRatData[re, x, "(exp(x) - 1) / x"]

/***
*** F(x) = (exp(x) - 1) / x
*** Maximum relative error in F(x) = -8.543e-11
*** for fit with minimax degree [2, 3]
*** for x on [1.e-10, 0.5]
***/

#define POLY_P(p, x) POLY_2(p, x)
#define POLY_Q(q, x) POLY_3(q, x)

static const fp_t p[] = {
FP(5.000000000e-01), /* 0 */
FP(5.409484790e-03), /* 1 */
FP(8.384744570e-03) /* 2 */

};

static const fp_t q[] = {
FP(5.000000000e-01), /* 0 */
FP(-2.445905090e-01), /* 1 */
FP(4.734653410e-02), /* 2 */
FP(-3.740454220e-03) /* 3 */

};

3.7 Exact polynomial coefficients

Minimax polynomials are computed in high precision, but the coefficients are truncated to machine precision for
subsequent polynomial evaluation. The truncations cause the computed polynomial to suffer a small error that we
would like to avoid. The Cody/Waite solution to that problem is to use the polynomial as a small correction to a
larger exact term.

Researchers have recently considered the problem of finding polynomial coefficients that are constrained to be
exact machine numbers and it is possible that symbolic-algebra systems may someday provide software for minimax
approximations under those constraints [BH07], [MBdD+10, Section 11.4.3]. We could, of course, truncate computed
coefficients to exactly representable values, and then recompute the fitting-error estimates before selecting particular
fits for use in our code.

3.8. Cody/Waite rational polynomials 43

The file fitrndx.map extends our support for polynomial fits with a new function pq_approx_rounded() that uses
the global Maple variables BASE and PRECISION to constrain the coefficients. Finding suitable constrained polynomi-
als is harder, for we now have the base and precision, as well as degrees, to vary. However, given an existing set of
unconstrained polynomial fits, it is usually possible to guess the required degrees for a constrained fit, because they
should rarely be more than one or two higher.

Another idea that may be worth investigating is to restrict the coefficient in the term c1x to have just one nonzero
decimal digit, or two or three nonzero bits, so that from a tenth to an eighth or a fourth of the products in the term
are exact. However, we leave that idea for future refinements of the library.

3.8 Cody/Waite rational polynomials

We noted earlier in Section 3.4 on page 28 that the Cody/Waite book does not document the polynomials that they
use for rational approximations. Because the mathcw package extends their work to higher precision, the polynomi-
als had to be reverse engineered from the algorithm descriptions, and then validated numerically. Table 3.2 on the
next page summarizes the results of that tedious exercise.

3.9 Chebyshev polynomial economization

Chebyshev4 polynomials of the first kind of degree n, written as Tn(u), have the useful property for function ap-
proximation that their values lie in the range [−1,+1] for u in [−1,+1], and they can be proved to give the smallest
maximum error in a fit to a smooth function over that interval by a single polynomial of fixed degree. The first few
polynomials, their recurrence relation, and values for special arguments, are shown in Table 3.3 on page 45, and
graphed in Figure 3.4 on page 46.

Although the recurrence relation is easy to apply, there is also a general summation formula for the Chebyshev
polynomials:

Tn(u) =
n
2

n/2�
∑
k=0

(−1)k

n − k

(
n − k

k

)
(2u)n−2k

The notation (n
k) represents a binomial coefficient, and can be pronounced binomial n over k. It is the coefficient of

the xk term in the polynomial expansion of (1 + x)n, and has the value n!/(k! (n − k)!). It is also the number of ways
of choosing k objects from a set of n objects, and in that context, can be pronounced n choose k. The upper limit of the
sum is the largest integer that does not exceed n/2, using a notation that we describe later in Section 6.7 on page 136.

Perhaps surprisingly, given the simple forms of the Chebyshev polynomials, there are closed-form representa-
tions in terms of trigonometric and hyperbolic functions whose properties we describe in Chapter 11 and Chapter 12:

Tn(u) =

⎧⎨
⎩

(−1)n cosh(n acosh(−u)), u in (−∞,−1),
cos(n acos(u)), u in [−1,+1],
cosh(n acosh(u)), u in (+1,+∞).

Manipulation of the trigonometric form shows that all of the zeros of Tn(u) lie inside the interval [−1,+1] at these
locations:

rk = cos((k − 1
2)π/n), Tn(rk) = 0, k = 1, 2, . . . , n.

4Pafnuty Lvovich Chebyshev [Pafnuti�i L�voviq Qebyxëv] (1821–1894) was a Russian mathematician noted for his work on the theory
of prime numbers, on probability and statistics, and on function approximation. A crater on the Moon, and Asteroid 2010 Chebyshev (1969 TL4),
are named in his honor.

His name is variously transliterated from the Cyrillic alphabet into Latin scripts as Chebyshev, Chebychev, Cebycev, Czebyszew, Tchebycheff, Tcheby-
chev, Tschebyscheff, and about two hundred other variants: see http://mathreader.livejournal.com/9239.html for a list. The first two are the
most common forms in English-language publications, although Chebyshóf, with the last syllable stressed, is closer to the Russian pronunciation.
However, many modern Russian mathematics texts spell his name as Qebyxev, which matches the commonest English form, Chébyshev, with
the first syllable stressed. The German transliterations begin with T, which perhaps explains the use of that letter for the Chebyshev polynomials
of the first kind.

44 Chapter 3. Polynomial approximations

Table 3.2: Low-level polynomial approximations. The second column indicates whether the algorithm is from the
Cody/Waite book (CW), or from the mathcw library (MCW). If an interval is not specified, then the function is
computed directly from the functions listed in the last column.

Function Source Interval Approximating function R(x)
acos(x) CW [0, 1/4] (asin(

√
x)−√

x)/(x
√

x)
acosh(x) CW log(x), log1p(x),

√
x

asin(x) CW [0, 1/4] (asin(
√

x)−√
x)/(x

√
x)

asinh(x) CW log(x), log1p(x),
√

x
atanh(x) CW log1p(x)
cbrt(x) MCW [1/2, 1) Newton–Raphson iteration
cos(x) CW [0, π/2] (sin(

√
x)−√

x)/(x
√

x)
cosh(x) CW exp(x)
cot(x) CW [0, π/2] tan(

√
x)/

√
x

erf(x) MCW [0, 27/32) (erf(
√

x)−√
x)/

√
x

erf(x) MCW [27/32, 5/4) erf(x)− 3456/4096
erf(x) MCW [5/4, 1/0.35) log(erfc(1/

√
x)/

√
x) + 1/x + 9/16

erf(x) MCW [0.35, 200) log(erfc(1/
√

x)/
√

x) + 1/x + 9/16
erfc(x) MCW [0, 27/32) (erf(

√
x)−√

x)/
√

x
erfc(x) MCW [27/32, 5/4) erf(x)− 3456/4096
erfc(x) MCW [5/4, 1/0.35) log(erfc(1/

√
x)/

√
x) + 1/x + 9/16

erfc(x) MCW [0.35, 200) log(erfc(1/
√

x)/
√

x) + 1/x + 9/16
exp(x) CW [− log(2)/2,+ log(2)/2] (1/

√
x)(e

√
x − 1)/(e

√
x + 1)

exp2(x) MCW [0, 1/4] (1/
√

x)(2
√

x − 1)/(2
√

x + 1)
exp10(x) MCW [0, (log10(2)/2)2] (1/

√
x)(10

√
x − 1)/(10

√
x + 1)

hypot(x,y) MCW
√

x
lgamma(x) MCW Γ(x), log(x)

log(x) CW [0, (2(
√

1
2 − 1)/(

√
1
2 + 1))2] (log((2 +

√
x)/(2 −√

x))−√
x)/(x

√
x)

log1p(x) MCW log(x)
log2(x) MCW log(x)
log10(x) CW log(x)
pow(x,y) CW [0, 1/1024] (log((2 +

√
x)/(2 −√

x))−√
x)/

√
x

pow(x,y) CW [−1/16, 0] 2x − 1
psi(x) MCW [1, 2] ψ(x)
psiln(x) MCW ψ(x)− log(x)
rsqrt(x) MCW [1/2, 1) Newton–Raphson iteration
sin(x) CW [0, π/2] (sin(

√
x)−√

x)/(x
√

x)
sinh(x) CW [0, 1/4] (sinh(

√
x)−√

x)/(x
√

x)
sqrt(x) CW [1/2, 1) Newton–Raphson iteration
tan(x) CW [0, π/2] tan(

√
x)/

√
x

tanh(x) CW [0, (log(3)/2)2] (tanh(
√

x)−√
x)/(x

√
x)

tgamma(x) MCW [1, 2] Γ(x)

In addition, inside that same interval, the polynomial Tn(u) has n + 1 extrema (minima and maxima) of equal mag-
nitude:

ek = cos(kπ/n), Tn(ek) = ±1, k = 0, 1, 2, . . . , n.

Outside the interval [−1,+1], for n > 0, the polynomials Tn(u) rise rapidly toward ±∞ as 2n−1un.

The Chebyshev polynomials are orthogonal in the sense of both a continuous integral with a specific weight func-

3.9. Chebyshev polynomial economization 45

Table 3.3: Chebyshev polynomials, recurrence relation, and special values.

T0(u) = 1, Tn(−1) = (−1)n,
T1(u) = u, Tn(+1) = +1,

T2(u) = 2u2 − 1, Tn(−u) = (−1)nTn(u),

T3(u) = 4u3 − 3u, T2n(0) = (−1)n,

T4(u) = 8u4 − 8u2 + 1, T2n+1(0) = 0,

T5(u) = 16u5 − 20u3 + 5u, T3n(− 1
2) = +1,

T6(u) = 32u6 − 48u4 + 18u2 − 1, T3n(+
1
2) = (−1)n,

T7(u) = 64u7 − 112u5 + 56u3 − 7u, T3n+1(− 1
2) = − 1

2 ,

T8(u) = 128u8 − 256u6 + 160u4 − 32u2 + 1, T3n+1(+
1
2) = (−1)n/2,

T9(u) = 256u9 − 576u7 + 432u5 − 120u3 + 9u, T3n+2(− 1
2) = − 1

2 ,

T10(u) = 512u10 − 1280u8 + 1120u6 − 400u4 + 50u2 − 1, T3n+2(+
1
2) = (−1)n+1/2,

Tn+1(u) = 2uTn(u)− Tn−1(u), n > 0.

tion, and a discrete sum:

∫ +1

−1

Tm(u)Tn(u)√
1 − u2

du =

⎧⎨
⎩

0, m �= n,
π/2, m = n, m > 0,
π, m = n = 0,

N

∑
k=1

Tm(rk)Tn(rk) =

⎧⎨
⎩

0, m �= n,
m/2, m = n, m > 0,
m, m = n = 0.

In the sum, the rk values are the roots of TN(u).
If f (x), the function to be represented by a Chebyshev expansion, is defined on an arbitrary finite interval [a, b],

then a variable transformation is needed to ensure that u moves from −1 to +1 as x moves from a to b:

u =
2x − (b + a)

b − a
.

In practice, it is desirable to choose a and b carefully, so that rounding error is minimized in the conversion of x to
u, even if that means widening the interval, and increasing the length of the Chebyshev expansion. If b − a can be
made a power of the base, then the division can be replaced by an exact multiplication.

For a semi-infinite interval [a,+∞), with a > 0, a reciprocal transformation given by

u = 2(a/x)p − 1, p > 0,

does the job, and the power p can be chosen to give the shortest expansion. However, in that case, the power and the
division by x both introduce unwanted rounding error in u, so it is advisable to compute the variable transformation
in higher precision, if it is cheaply available.

With one of the given mappings from x to u, the (n − 1)-th order Chebyshev approximation for a function takes
the form

f (x) ≈ 2
n

n−1

∑
k=0

ckTk(u)− 1
2 c0, for x on [a, b] and u on [−1,+1],

46 Chapter 3. Polynomial approximations

-1.0

-0.5

0.0

0.5

1.0

-1.0 -0.5 0.0 0.5 1.0

T
n
(u

)

u

T0(u)
T1(u)

T2(u)

T3(u)

T4(u)

T5(u)

 -4

 -2

 0

 2

 4

 -4 -2 0 2 4
T

n
(u

)
u

T0(u)

T1(u)
T2(u)

T3(u)

T4(u)

T5(u)

Figure 3.4: Two views of Chebyshev polynomials. The left plot shows the first six polynomials on the interval of
interpolation, [−1,+1]. The right plot shows the rapid increase of all but T0(u) outside that interval.

where the coefficients are defined by

wj =
(j + 1/2)π

n
, uj = cos(wj), xj = x(uj), for j = 0, 1, 2, . . . , n − 1,

ck =
2
n

n−1

∑
j=0

f (xj)Tk(uj) =
2
n

n−1

∑
j=0

f (xj) cos(kwj), for k = 0, 1, 2, . . . , n − 1.

To estimate the work required, notice that computation of all n coefficients needs just n values of each of wj, uj, xj,
and f (xj), but n2 values of cos(kwj). All n sums for the coefficients can then be found with n2 multiplications and
n(n − 1) additions. The total cost is roughly that of O(n2) cosines. In exact arithmetic, the sum for f (x) is exact at the
n zeros of Tn(u).

The irregularity at c0 is a nuisance, and many authors use sum-prime notation to indicate that the first coefficient
must be halved:

f (x) =
n

∑′

k=0
ckTk(u) = 1

2 c0T0(u) + c1T1(u) + · · · + cnTn(u), and map x → u.

Because T0(u) = 1, we can replace the computed c0 by half its value, and henceforth work with ∑ ckTk(u). Our
software, and Maple, do that, but be careful to check how the leading coefficient is defined and handled by other
software.

Fits to Chebyshev polynomials are popular representations of functions in numerical software, because the ex-
pansion coefficients generally decrease with increasing order, and because the error introduced by truncating the
expansion is the sum of the omitted terms. The decreasing terms in the omitted sum mean that the error is usually
well approximated by the first omitted coefficient. In particular, that means that a single Chebyshev expansion can
be used to fit a function to an accuracy that is easily tuned to the working precision of the computer, making it of
considerable interest for software that is required to be portable across a broad range of computer architectures.

The criterion for a good fit is usually low relative error, so when Chebyshev coefficients are computed by
our recipe, some experimentation with the value n may be needed. The worst-case relative error is given by

3.9. Chebyshev polynomial economization 47

∑∞
k=n |ck|/ ∑∞

k=0 |ck|, and it can be estimated reasonably well by truncating the sums after, say, n + 5 terms. Thus,
software needs to compute more ck values than are expected to be needed, and then discard the higher-order coeffi-
cients that contribute negligibly to the desired relative error.

The Maple symbolic-algebra system makes it easy to compute Chebyshev fits of smooth continuous functions to
any desired precision on any specified interval. Consider a polynomial approximation for the trigonometric tangent
on the interval [0, π/4]. Here is how to find its Chebyshev representation to an accuracy suitable for the C-language
data type double on many computers:

% maple
> with(numapprox):
> interface(prettyprint = 0, quiet = true, screenwidth = infinity):
> Digits := 20:
> a := 0:
> b := Pi/4:
> f := proc (x) return tan(x) end proc:
> c := chebsort(chebyshev(f(x), x = a .. b, 1.0e-16));
c := 0.45565217041349203532 * T(0, (8/Pi) * x - 1)

+ 0.48946864364506139170 * T(1, (8/Pi) * x - 1)
+ 0.42848348909108677383e-1 * T(2, (8/Pi) * x - 1)
+ 0.10244343354792446844e-1 * T(3, (8/Pi) * x - 1)
+ 0.14532687538039121258e-2 * T(4, (8/Pi) * x - 1)
+ 0.27878025345169168580e-3 * T(5, (8/Pi) * x - 1)
+ 0.44830182292260610628e-4 * T(6, (8/Pi) * x - 1)
+ 0.79925727029127180643e-5 * T(7, (8/Pi) * x - 1)
+ 0.13408477307061580717e-5 * T(8, (8/Pi) * x - 1)
+ 0.23312607483191536196e-6 * T(9, (8/Pi) * x - 1)
+ 0.39687542597331420243e-7 * T(10, (8/Pi) * x - 1)
+ 0.68406713195274508859e-8 * T(11, (8/Pi) * x - 1)
+ 0.11705047919536348158e-8 * T(12, (8/Pi) * x - 1)
+ 0.20114697552525542735e-9 * T(13, (8/Pi) * x - 1)
+ 0.34479027352473801402e-10 * T(14, (8/Pi) * x - 1)
+ 0.59189325851606462089e-11 * T(15, (8/Pi) * x - 1)
+ 0.10151982743517278224e-11 * T(16, (8/Pi) * x - 1)
+ 0.17421382436758336134e-12 * T(17, (8/Pi) * x - 1)
+ 0.29886998983518518519e-13 * T(18, (8/Pi) * x - 1)
+ 0.51281385648690992526e-14 * T(19, (8/Pi) * x - 1)
+ 0.87981510697734638763e-15 * T(20, (8/Pi) * x - 1)
+ 0.15095587991023089012e-15 * T(21, (8/Pi) * x - 1)
+ 0.25899583833164263991e-16 * T(22, (8/Pi) * x - 1)

The final argument passed to the chebyshev() function is the desired accuracy of the representation. The chebsort()
function ensures that the polynomials are in ascending order. Truncation of the expansion to 10 terms produces a fit
that is accurate to better than 4.8 × 10−8, a value obtained by summing coefficients, starting with that of T10(8x/π −
1).

We can now use the Maple function unapply() to convert the expression into a function q(x), and with the help
of the operand-extraction function, op(), we create another function, q10(x), to compute just the first 10 terms:

> q := unapply(c, x):
> s := 0:
> for k from 1 to 10 do s := s + op(k,c) end do:
> q10 := unapply(s, x):

We can write the same code more compactly like this:

> q := unapply(c, x):
> q10 := unapply(sum(op(k,c), k = 1 .. 10), x):

48 Chapter 3. Polynomial approximations

q(x)− tan(x) q10(x)− tan(x)

–6e–18

–4e–18

–2e–18

0

2e–18

4e–18

6e–18

0.1 0.2 0.3 0.4 0.5 0.6 0.7
x

–4e–08

–2e–08

0

2e–08

4e–08

0.1 0.2 0.3 0.4 0.5 0.6 0.7
x

Figure 3.5: Absolute errors in Chebyshev approximations q(x) and q10(x) to tan(x) on [0, π/4]. The number of
extrema in each plot corresponds to the degree of the approximating Chebyshev polynomial fit.

At this point, we have two functions that compute sums involving T(k, u), but we lack a definition of those
Chebyshev polynomials. We load the needed definition from the orthopoly package, and then we increase the pre-
cision and compute the maximum error in each approximating function, and its location in the interval, with the
infnorm() function:5

> with(orthopoly, T):

> Digits := Digits + 10:

> emax := infnorm(q(x) - f(x), x = a .. b, ’xmax’):
> printf("Maximum error = %.3g at x = %g\n", emax, xmax):
Maximum error = 5.36e-18 at x = 0.781785

> emax := infnorm(q10(x) - f(x), x = a .. b, ’xmax’):
> printf("Maximum error = %.3g at x = %g\n", emax, xmax):
Maximum error = 4.79e-08 at x = 0.785398

The largest error in q10(x) is close to the value that we predicted earlier by summing the truncated coefficients.
Figure 3.5 shows the differences between the approximations and the exact function. The oscillatory behavior of

the errors, and their roughly even distribution over the interval of approximation, is typical of both Chebyshev and
minimax polynomial fits.

3.10 Evaluating Chebyshev polynomials

The recurrence relation for the Chebyshev polynomials makes it easy to evaluate Chebyshev sums, without having to
know the Chebyshev polynomial expansions in powers of u [Bro73]. In addition, the Chebyshev form is numerically
more stable than the equivalent expansion in powers of u. Here is a C function to evaluate a Chebyshev expansion:

5The infinity norm of a set of numeric values is the value of largest magnitude.

3.10. Evaluating Chebyshev polynomials 49

double
echeb (double u, int n, const double c[/* n */])
{ /* evaluate a Chebyshev polynomial expansion, and return

sum(k=0:n-1) c[k]*T(k,u), where u should be in [-1,1] */
double b0, b1, b2, result, w;
int k;

if (n > 0)
{

b0 = 0.0;
b1 = 0.0;
w = u + u;

for (k = n - 1; k >= 0; --k)
{

b2 = b1;
b1 = b0;
b0 = w * b1 - b2 + c[k];

}

result = 0.5 * (c[0] + b0 - b2);
}
else /* n <= 0 */

result = nan("");

return (result);
}

The total floating-point work is n + 1 multiplies and 2n + 3 adds, and the terms are summed from smallest to largest,
which is the order generally preferred for numerical stability. By comparison, evaluation of the nested Horner form
of a polynomial of degree n takes only n multiplies and n adds, but it is then harder to estimate the error if the Horner
form is truncated.

Closer examination of the code in echeb() shows that the first two iterations can be optimized away to avoid
useless arithmetic with the initial zero values. A second version reduces the work to n multiplies and 2n adds:

double
echeb (double u, int n, const double c[/* n */])
{ /* evaluate a Chebyshev polynomial expansion, and return

sum(k=0:n-1) c[k]*T(k,u), where u should be in [-1,1] */
double b0, b1, b2, result, w;
int k;

if (n > 2)
{

w = u + u;
b0 = w * c[n - 1] + c[n - 2];
b1 = c[n - 1];

for (k = n - 3; k >= 0; --k)
{

b2 = b1;
b1 = b0;
b0 = w * b1 - b2 + c[k];

}

result = 0.5 * (c[0] + b0 - b2);
}
else if (n == 2)

50 Chapter 3. Polynomial approximations

result = c[1] * u + c[0];
else if (n == 1)

result = c[0];
else /* n <= 0 */

result = nan("");

return (result);
}

The mathcw library version of that function is similar, but it incorporates additional checks on the arguments.
If the sum-prime notation is in effect for special handling of the leading coefficient, the assignment of the final

result in echeb() must be rewritten:

result = 0.5 * (b0 - b2);

No such precaution is necessary if the coefficients are taken directly from the output of Maple’s chebyshev() func-
tion.

Here is a code fragment that illustrates how the Chebyshev approximation is used:

#include <math.h>

static const double C[] =
{ /* tan(x) = sum(k=0:n) C[k] T(n, (8/Pi) * x - 1) */

0.45565217041349203532, /* * T(0, (8/Pi) * x - 1) */
0.48946864364506139170, /* * T(1, (8/Pi) * x - 1) */
/* ... 19 more constants not shown here ... */
0.15095587991023089012e-15, /* * T(21, (8/Pi) * x - 1) */
0.25899583833164263991e-16 /* * T(22, (8/Pi) * x - 1) */

};

static int NC = (int)(sizeof(C) / sizeof(C[0]));
double a, e, r, u, x;
int n;

/* code omitted */

x = 0.125; /* x on [0, PI/4] */
u = (8.0 / M_PI) * x - 1.0; /* u on [-1, +1] */

for (n = 1; n <= NC; n += 2)
{

a = echeb(u, n, C); /* approximate value */
e = tan(x); /* ‘exact’ value */
r = (e == 0.0) ? a : ((a - e) / e); /* relative error */
(void)printf("n = %2d x = % 5.3f relerr = % .3g\n", n, x, r);

}

Its output, reformatted in two columns, shows the relative error for truncated Chebyshev approximations:

n = 1 x = 0.125 relerr = 2.63 n = 13 x = 0.125 relerr = -6.04e-10
n = 3 x = 0.125 relerr = -0.0533 n = 15 x = 0.125 relerr = 3.91e-11
n = 5 x = 0.125 relerr = -0.0013 n = 17 x = 0.125 relerr = 3.61e-13
n = 7 x = 0.125 relerr = 4.53e-05 n = 19 x = 0.125 relerr = -3.51e-14
n = 9 x = 0.125 relerr = 9.03e-07 n = 21 x = 0.125 relerr = 0
n = 11 x = 0.125 relerr = -4.23e-08 n = 23 x = 0.125 relerr = 4.42e-16

3.11 Error compensation in Chebyshev fits

Although Chebyshev coefficients can be computed with high precision, they are stored in working precision, and
each stored coefficient is therefore slightly in error. The coefficient magnitudes for a nearly linear function fall off

3.12. Improving Chebyshev fits 51

rapidly, so the error in the computed function approximation is dominated by the error in the first term of the sum,
c0T0(u). Because T0(u) = 1, the first term reduces to c0. If we represent that coefficient as a sum of exact high and
approximate low parts, we can easily include the error of the leading coefficient in the sum:

c0 ≈ chi
0 + clo

0 , f (x) ≈ chi
0 + (clo

0 +
n

∑
k=1

ckTk(u)).

A variant of our echeb() evaluator has an extra argument that supplies the rounding error in c0. The new function,
echeb2(u,n,c,err), then requires only a one-line modification to our original code:

result = 0.5 * (c[0] + (err + (b0 - b2))); /* obey parentheses! */

The error term is readily found by the caller like this:

err = (C0_HI - c[0]) + C0_LO; /* obey parentheses! */

If chi
0 = fl(c0), then we need separate splits for each machine precision. It is more convenient to make just two splits,

for binary and decimal arithmetic, so that chi
0 is exact for all systems. A reasonable choice for chi

0 is to limit it to just
twenty bits, or seven decimal digits. Our symbolic-algebra support code reports suitable values for each split.

3.12 Improving Chebyshev fits

As we saw with minimax fits, it is often better to replace the function to be approximated with another that is almost
linear over the interval of approximation. Continuing our example in the same Maple session, we have a new
endpoint, a new function, and a new fit:

> a := 0:
> b := (Pi/4)**2:
> g := proc (x) if evalb(x = 0)
> then return 0
> else return (f(sqrt(x)) - sqrt(x)) / sqrt(x)
> end if
> end proc:
> d := chebsort(chebyshev(g(x), x = a .. b, 1.0e-16));
d := 0.12691084927257050148 * T(0, 32/Pi^2 * x - 1)

+ 0.13592332341164079340 * T(1, 32/Pi^2 * x - 1)
+ 0.96589245192773693641e-2 * T(2, 32/Pi^2 * x - 1)
+ 0.69285924900047896406e-3 * T(3, 32/Pi^2 * x - 1)
+ 0.49740846576329239907e-4 * T(4, 32/Pi^2 * x - 1)
+ 0.35712028205685643000e-5 * T(5, 32/Pi^2 * x - 1)
+ 0.25640062114631155556e-6 * T(6, 32/Pi^2 * x - 1)
+ 0.18408734909194089299e-7 * T(7, 32/Pi^2 * x - 1)
+ 0.13216876910270244544e-8 * T(8, 32/Pi^2 * x - 1)
+ 0.94892906728768367893e-10 * T(9, 32/Pi^2 * x - 1)
+ 0.68130041723858627104e-11 * T(10, 32/Pi^2 * x - 1)
+ 0.48915169169379567226e-12 * T(11, 32/Pi^2 * x - 1)
+ 0.35119511366507908804e-13 * T(12, 32/Pi^2 * x - 1)
+ 0.25214674712430615756e-14 * T(13, 32/Pi^2 * x - 1)
+ 0.18103321835591076899e-15 * T(14, 32/Pi^2 * x - 1)

To avoid a run-time error of division by zero, the proper return value for a zero argument in the function g(x) must
be determined by taking the limit as x → 0. Maple can usually compute it like this:

> limit((f(sqrt(x)) - sqrt(x)) / sqrt(x), x = 0);
0

Otherwise, one may be able to derive it analytically from the leading terms of a series expansion, or failing that, to
estimate it by computing the function in high precision for tiny argument values. Such a numerical check is advisable
anyway to ensure that the assigned limit is consistent with a computed limit.

The new Chebyshev expansion for g(x) requires eight fewer terms to reach the same accuracy as the original fit
to f (x) = tan(x). However, a minimax approximation with a single polynomial of the same degree does better:

52 Chapter 3. Polynomial approximations

> e := minimax(g(x), x = a .. b, [14, 0], 1, ’maxerror’):
> printf("maxerror = %.3g\n", maxerror):
maxerror = 1.31e-17

A minimax rational polynomial of the same total degree is accurate to more than twice as many digits:

> Digits := 50:
> h := minimax(g(x), x = a .. b, [7, 7], 1, ’maxerror’):
> printf("maxerror = %.3g\n", maxerror):
maxerror = 1.56e-45

We can therefore reach the same accuracy of the Chebyshev fit with a minimax rational polynomial of smaller total
degree:

> i := minimax(g(x), x = a .. b, [3, 3], 1, ’maxerror’):
> printf("maxerror = %.3g\n", maxerror):
maxerror = 2.12e-17

The 〈3/3〉 approximation needs only six multiplies, six adds, and one divide, compared to 15 multiplies and 30 adds
for the degree-14 Chebyshev approximation with the optimized echeb() code, and as a result, might run two to four
times faster.

The general superiority of minimax rational polynomials perhaps led Cody and Waite to avoid mention of Cheby-
shev fits in their book. We introduced them here because Maple generates them much faster than it does minimax
fits, they are easy to evaluate, they are common in older software, and they can easily support a range of precisions
with a single table of coefficients. When speed is more important than accuracy, software can sometimes truncate
the Chebyshev expansion in intermediate computations, and then recover full precision for final results.

Occasionally, Maple cannot find a high-precision minimax polynomial for a difficult function because it runs
out of memory or time resources. One such example is the reciprocal of the gamma function (see Section 18.1 on
page 521), where a degree-35 minimax polynomial accurate to about 50 decimal digits can be obtained in a few hours,
whereas a degree-40 solution is unreachable. Maple produces a Chebyshev fit to that function, good to 75 decimal
digits, in just a few seconds.

3.13 Chebyshev fits in rational form

Although it is awkward to do so, Maple allows a Chebyshev expansion to be converted to a rational polynomial,
and that can then be further reduced into two coefficient tables, suitable for inclusion in a C, C++, or Java program.
We describe the process in several steps, with interleaved prose and code.

We start a new Maple session and limit the output width so that it fits on these pages. We then make a Chebyshev
fit, setting an accuracy goal suitable for the precision of the IEEE 754 64-bit binary type (a topic that we describe in
more detail in Section 4.2 on page 62), but we terminate the statement with a colon instead of a semicolon to suppress
output display:

% maple
> interface(screenwidth = 70):
> with(numapprox):
> Digits := 17:
> a := chebsort(chebyshev(sin(x), x = 0 .. Pi/4, 2**(-53))):
> nops(a);
12

The nops() function reports the number of operands to be 12, so the fit produces an expansion with terms up to
T11(8x/π − 1).

We next convert the Chebyshev expansion to a rational polynomial in the variable b, with terms that still in-
volve unspecified functions T(n,u). Loading the orthopoly package provides a definition of T(), which the normal()
function expands to a scale factor times a rational polynomial with coefficients involving π. The evalf() wrapper
reduces those symbolic coefficient expressions to raw numbers, so we assign the result to the variable c, and display
the result:

3.13. Chebyshev fits in rational form 53

> b := convert(a, ratpoly):
> with(orthopoly, T):
> c := evalf(normal(b));
c := - 0.31830988618379068 (-1047.0280656590893 x

2 -13
+ 235.37642837528475 x + 0.22111951452232001 10

6 3
+ 0.80792428436803832 x + 140.41239411078434 x

4 5 /
- 31.741270836138798 x - 3.5014761266900116 x) / (

/

2
333.27938441117513 - 74.922644126233599 x + 10.851910874408098 x

3 4
- 2.3835469747678011 x + 0.14587755374222137 x

5
- 0.030070357754595340 x)

We now reassign T to remove its function definition, and restore it to an unset function-like variable. Then we
use the type() function to verify the types of the two saved expressions:

> T := ’T’:
> type(b, ratpoly);

false
> type(c, ratpoly);

true

Even though b is a rational expression, the presence of the unknown T in its expansion prevents its interpretation as
a rational polynomial.

The variable c is a rational polynomial, but it has an unexpected outer scale factor that we need to eliminate. We
can use the operand-extraction function, op(), to pick the expression apart into the factor, the numerator, and the
denominator:

> op(1,c);
-0.31830988618379068

> op(2,c);
2

-1047.0280656590893 x + 235.37642837528475 x

-13 6
+ 0.22111951452232001 10 + 0.80792428436803832 x

3 4
+ 140.41239411078434 x - 31.741270836138798 x

5
- 3.5014761266900116 x

> op(3,c);
2

1/(333.27938441117513 - 74.922644126233599 x + 10.851910874408098 x

54 Chapter 3. Polynomial approximations

3 4
- 2.3835469747678011 x + 0.14587755374222137 x

5
- 0.030070357754595340 x)

The coefficients are displayed here in two-dimensional form, which is not convenient for incorporation in other
programs. Maple has a procedure for linear printing of expressions, so we try it to output the denominator:

> lprint(1 / op(3,c));
333.27938441117513-74.922644126233599*x+10.851910874408098*x^2-
2.3835469747678011*x^3+.14587755374222137*x^4-.30070357754595340e-1*x^5

That does not help much, because we certainly do not want to evaluate it with explicit powers, and the caret, which is
the power operator in Maple, means something quite different in the C family. Also, some programming languages
do not permit floating-point constants to start with a decimal point instead of a leading digit, and Maple lacks an
option to ensure that output style.

However, Maple has functions for converting expressions to input for a few programming languages and type-
setting systems, so we can use the one for C to try to get more usable output:

> CodeGeneration[C](1 / op(3,c));
cg0 = 0.33327938441117513e3 - 0.74922644126233599e2 * x +
0.10851910874408098e2 * x * x - 0.23835469747678011e1 * pow(x,
0.3e1) + 0.14587755374222137e0 * pow(x, 0.4e1) -
0.30070357754595340e-1 * pow(x, 0.5e1);

Although that assignment is syntactically correct, it is ugly, and horribly inefficient because of the calls to the power
functions.

We can remove the inefficiency by first converting the polynomial to Horner form, and we can change the target
variable name to something more sensible:

> CodeGeneration[C](convert(1 / op(3,c), horner), resultname = "den");
den = 0.33327938441117513e3 + (-0.74922644126233599e2 +
(0.10851910874408098e2 + (-0.23835469747678011e1 +
(0.14587755374222137e0 - 0.30070357754595340e-1 * x) * x) * x)
* x) * x;

That assignment is now efficient, but it is still grim, and is certainly not what we want to have in portable production
code, especially when that code needs to support computation in many different precisions.

We therefore introduce a private ctable() procedure to output a neatly formatted coefficient table with accuracy
suitable for the IEEE 754 64-bit binary format:

> ctable := proc(name, poly)
> local k:
> printf("\nstatic const fp_t %s[] =\n{\n", name):
> for k from 0 to nops(poly) - 1 do
> printf(" FP(% 23.16e)%s\t/* %s[%2d] */\n",
> coeff(poly,x,k),
> ‘if‘(k = nops(poly) - 1, "", ","),
> name, k)
> end do:
> printf("};\n\n")
> end proc:

The Maple conditional operator, ‘if‘(cond,true_expr,false_expr), inside the coefficient loop requires surround-
ing back quotes to prevent its being confused with the reserved name of a Maple conditional statement. We use it to
supply a comma after all but the last coefficient. Standard C allows an optional comma after the last constant in an
array or structure initializer, but some compilers are known to complain if a final comma is present.

We then call our coefficient-printing function twice to produce the coefficient tables for the numerator and the
denominator:

3.13. Chebyshev fits in rational form 55

> ctable("p", op(1,c) * op(2,c));

static const fp_t p[] =
{

FP(-7.0384527500614733e-15), /* p[0] */
FP(3.3327938441117923e+02), /* p[1] */
FP(-7.4922644126484048e+01), /* p[2] */
FP(-4.4694653188197324e+01), /* p[3] */
FP(1.0103560307180215e+01), /* p[4] */
FP(1.1145544673619578e+00), /* p[5] */
FP(-2.5717028700231081e-01) /* p[6] */

};

> ctable("q", 1 / op(3,c));

static const fp_t q[] =
{

FP(3.3327938441117513e+02), /* q[0] */
FP(-7.4922644126233599e+01), /* q[1] */
FP(1.0851910874408098e+01), /* q[2] */
FP(-2.3835469747678011e+00), /* q[3] */
FP(1.4587755374222137e-01), /* q[4] */
FP(-3.0070357754595340e-02) /* q[5] */

};

Notice that the numerator polynomial has a low-order coefficient, p[0], that is a tiny number, instead of being an
exact zero. More work is needed to ensure that requirement.

Turning the output of any symbolic-algebra system into code that is acceptable for another programming lan-
guage is always a challenging problem. The Maple code shown here is a much-simplified version of what we really
have to do in the support files in the maple subdirectory to handle binary and decimal bases, and arbitrary precision
set at output time to reflect the measured error in the fit.

What have we accomplished with that laborious effort? We now have a way to convert Chebyshev fits to rational
form that can be handled exactly like the results of minimax polynomial fits, so we can change initializers in header
data files, and leave algorithm files untouched. The work of n multiplies and 2n adds for a Chebyshev fit of order n
is reduced by n adds at the cost of a single divide. However, we have lost the convenient ability to truncate a single
Chebyshev expansion at compile time to a length suitable for a particular precision. Instead, we have to produce a
separate set of numerator and denominator coefficient tables for each run-time precision. We also do not have the
extra compactness of a real minimax fit. It would seem, therefore, to be of limited utility to proceed that way, and we
have refrained from doing so.

What is needed is an improved implementation of the Maple minimax() function that is fast, failure free, and
robust, and does not require precision far in excess of that needed for the final coefficients. Although it is possible to
examine the code for the minimax() function with the statements

> interface (verboseproc = 3):
> print(minimax):

that is proprietary licensed software that is best left unseen and unmodified in favor of developing completely new,
independent, and freely distributable code.

Muller describes the ideas behind the minimax fit in the second edition of his book [Mul06], and gives a simple
implementation in Maple. However, experiments with that code quickly show that it is not robust, and thus, not
suitable for our needs.

New code, if properly documented, could likely facilitate extensions to apply constraints to coefficients for preser-
vation of important mathematical properties, and to ensure that the output coefficients are exactly representable. It
would also be desirable to exploit the parallelism available in modern systems with multiple processors, each with
several CPU cores, to speed the computation, which is particularly onerous for the high-precision fits needed in the
mathcw library.

We also need to develop similar fitting routines for other symbolic-algebra systems, none of which currently
supplies anything comparable to the Maple and Mathematica fitting functions.

56 Chapter 3. Polynomial approximations

3.14 Chebyshev fits with Mathematica

In Section 3.6 on page 33, we described in detail how support for rational approximations in the Mathematica
symbolic-algebra system can be enhanced to make it convenient to convert fits to data suitable for direct inclusion in
a C program.

The FunctionApproximations package does not include Chebyshev fits, so we developed a file of support code,
chebfit.mth, to make such fits, and their output as C code, easy. The code is lengthy, so we omit it here, but a short
example shows how easy it is to use:

% math
In[1]:= << chebfit.mth

In[2]:= F[x_] = (Exp[x] - 1) / x;

In[3]:= ca = ChebyshevApproximation[F, x, 0, 1/2, 10^(-17), 20];

In[4]:= CChebyshevFit[ca, "x", "(exp(x) - 1) / x", "c", 16]

/***
*** Chebyshev fit of
*** F(x) = (exp(x) - 1) / x
*** by
*** Fapprox(x) = sum(c[k] * T(k, u(x)), k = 0 .. n)

*** for u(x) on [-1, +1] and x on [0.e+00, 5.e-01]
*** where u(x) = (x + x - (xmax + xmin)) / (xmax - xmin)
***/

#define XMIN FP(0.e+00)

#define XMAX FP(5.e-01)

#define XtoU(x) ((x + x - (XMAX + XMIN)) / (XMAX - XMIN))

#define UtoX(u) (XMIN + (FP(0.5) * u + FP(0.5)) * (XMAX - XMIN))

static const fp_t c[] = {
FP(1.142406442850953e+00), /* * T(0, u) : relerr = 1.19e-01 */
FP(1.485216799669541e-01), /* * T(1, u) : relerr = 5.02e-03 */
FP(6.309800086663982e-03), /* * T(2, u) : relerr = 1.57e-04 */
FP(1.994854176176553e-04), /* * T(3, u) : relerr = 3.95e-06 */
FP(5.025874182378426e-06), /* * T(4, u) : relerr = 8.26e-08 */
FP(1.052859572070425e-07), /* * T(5, u) : relerr = 1.47e-09 */
FP(1.887917064282244e-09), /* * T(6, u) : relerr = 2.31e-11 */
FP(2.959401185872932e-11), /* * T(7, u) : relerr = 3.21e-13 */
FP(4.120904413190384e-13), /* * T(8, u) : relerr = 4.02e-15 */
FP(5.162027111524086e-15) /* * T(9, u) : relerr = 4.57e-17 */

};

ChebyshevApproximation[f, x, xmin, xmax, relerr, digits] does the fit to f (x). Here, relerr is the desired
relative error in the approximation, and the optional last argument digits is the minimal number of decimal digits
in the output coefficients. If omitted, it takes the value of a global variable, Digits. The Chebyshev coefficients are
calculated with somewhat more than twice the requested precision.

The function returns a list that includes functions for computing the approximation and its error at the k-th term,
and for converting between x and u, followed by lists of coefficients, and the zeros of the n-th order Chebyshev
polynomial in units of both x and u. In exact arithmetic, the fit with n coefficients is exact at those zeros.

The Chebyshev fit never requires function values at the endpoints, so the computation avoids the numerical
artifact of f (0) = 0/0 that requires perturbations in some of our minimax fits.

3.15. Chebyshev fits for function representation 57

CChebyshevFit[chebappr, var, funname, cname, digits] produces the C data shown to record necessary in-
formation about the fit. Each coefficient is followed by a comment that gives the error in the fit if the sum is truncated
after that term. That feature makes it easy to select the correct number of terms needed for a given target precision.

3.15 Chebyshev fits for function representation

In several places later in this book, we fall back to Chebyshev fits when minimax rational polynomials cannot be
computed in a timely manner, or at all.

Although its results have not been used in this book, the Chebfun Project6 team has developed the technology for
numerical representation of smooth continuous functions with bounded first derivatives in the open-source package
chebfun for MATLAB. The current implementation is based on IEEE 754 binary arithmetic, without access to the
higher precision that we have seen is necessary if we are to derive fits that are ‘good to the last bit’ for use in
MathCW library code.

A clever feature of the Chebfun system is that it allows compact, familiar, and uniform notation for operations on
functions that are (possibly only) defined numerically. In particular, they can be convolved, differentiated, integrated,
plotted, and transformed, and all of their minima, maxima, and roots in a given interval can be located quickly. They
may also appear in differential and integral equations to be solved. Conveniently, much of the chebfun notation
and software can be transparently adapted for periodic functions, where the expansions are instead in trigonometric
functions. The chebfun package has recently been extended for functions of two and three variables, and for working
with polar and spherical coordinates. The state of the art of the project is summarized in a paper published shortly
before this book went to press [AT17].

3.16 Extending the library

The elementary functions covered in the Cody/Waite book are adequate for Fortran 77, Fortran 90, and Fortran
95. When that book was written, Fortran was by far the most important programming language for numerical
computation. The book’s algorithms are described only in prose and flowchart form, independent of any particular
programming language, so its authors were clearly targeting other languages too. However, the test package for
their functions is written in Fortran, and we discuss it later in Chapter 22 on page 763.

The coverage is almost sufficient for C89, which adds ceil(), fabs(), floor(), fmod(), frexp(), ldexp(), and
modf(). There are no float and long double companions in C89. Those additional functions are not elementary
functions in the traditional mathematical sense, but are nevertheless useful in numerical computation. Some require
access to the underlying floating-point representation, but apart from fmod(), none requires iteration or polynomial
approximation.

As we noted earlier in Section 1.2 on page 4, C99 adds a few dozen new functions to those of C89.
The C# Math class provides a subset of the C89 elementary functions, but with capitalized overloaded names,

plus BigMul() (for exact integer products), DivRem() (for integer arithmetic), IEEERemainder(), and Round().
The Java package java.lang.math supplies all of the standard elementary functions defined by Fortran, plus abs(),

ceil(), floor(), IEEEremainder(), max(), min(), random(), rint(), and round(). Except for IEEEremainder(), none
of those additional functions requires iteration or polynomial approximation either.

The 1998 ISO C++ Standard [C++98] requires the same elementary functions as C89, plus their float and long
double companions, and the 2003 ISO C++ Standard [C++03a] mandates the same <math.h> library as C++98 and
C89. Curiously, it does not require the C99 mathematical library extensions. As this book was in its final stages, a
proposal [C++10] appeared to include selected special functions in the C++ library: Hermite polynomials, Laguerre
polynomials, Legendre polynomials, beta function (not ours), complete and incomplete elliptic integrals of three
kinds, cylindrical and spherical Bessel functions, exponential integral, and Riemann zeta function. The proposal
function names are long, and the repertoire is seriously deficient.

The mathcw library supplies the full C89 repertoire defined in the system header file <math.h>, plus all of the
C99 math library additions, and about 400 other function families, as recorded in Table 3.4 on the next page through
Table 3.6 on page 60.

6See http://www.chebfun.org/ and http://www.math.utah.edu/pub/bibnet/authors/t/trefethen-lloyd-n.bib.

58 Chapter 3. Polynomial approximations

Table 3.4: Standard contents of the mathcw library. All of those routines have float and long double companions,
with suffix letters f and l. In addition, on HP-UX on IA-64, there are also extended and quad companions with
suffix letters w and q. The future long long double type has the suffix ll. When decimal floating-point arithmetic is
available, the suffix letters are df, d, dl, and dll.
C89 conformance requires only the double versions, and consequently, many C implementations lack the corre-
sponding float and long double routines.
The C99 macros are type generic and have corresponding functions of the same names. The macros use the sizeof
operator on their arguments to determine which function to call.
There is no support in the mathcw library for the rarely used wide-character functions; they are expected to be
supplied by the native C library. Most of the C89 and C99 string functions are omitted. because they usually have
optimized native implementations.

C89 acos() asin() atan2() atan() ceil() cosh() cos() exp() fabs() floor() fmod() fprintf()
frexp() fscanf() ldexp() log10() log() modf() pow() printf() scanf() sinh() sin()
sprintf() sqrt() sscanf() strtol() tanh() tan() vfprintf() vprintf() vsprintf()

C99 new functions acosh() asinh() atanh() cbrt() copysign() erfc() erf() exp2() expm1() fdim()
feclearexcept() fegetenv() fegetexceptflag() fegetexcept() fegetprec() fegetround()
feholdexcept() feraiseexcept() fesetenv() fesetexceptflag() fesetprec()
fesetround() fetestexcept() feupdateenv() fmax() fma() fmin() hypot() ilogb()
lgamma() llrint() llround() log1p() log2() logb() lrint() lround() nan() nearbyint()
nextafter() nexttoward() remainder() remquo() rint() round() scalbln() scalbn()
snprintf() strtold() strtoll() tgamma() trunc() vfscanf() vscanf() vsnprintf()
vsscanf()

C99 macros fpclassify() isfinite() isinf() isnan() isnormal() signbit()
C99 macros (and functions) isgreater() isgreaterequal() isless() islessequal() islessgreater() isunordered()
C99 symbols FP_INFINITE FP_NAN FP_NORMAL FP_SUBNORMAL FP_ZERO

3.17 Summary and further reading

We have seen in this chapter that minimax rational polynomial fits provide accurate, compact, and fast representa-
tions of functions over small argument ranges. Such fits provide the critical kernels of many of the elementary and
special functions supplied by mathematical libraries, and once the technique is understood, and the needed software
is at hand, they should be more-widely employed in user code. However, the state of the art of software for produc-
ing such fits is still immature, and there is much room for improvement. The required precision is such that most
conventional programming languages are hopelessly inadequate for generating such fits, so the arbitrary-precision
arithmetic, and large library-function repertoires, of symbolic-algebra systems are essential.

When it is impractical, or impossible, to compute a minimax fit to a function, we fall back to Chebyshev expan-
sions. They are much easier, and faster, to compute, and their errors can be almost as small as those of minimax fits.
However, it usually takes more terms to do so, resulting in lower performance. Our code always provides special
handling of the IEEE 754 exceptional values of Infinity, NaN, and negative zeros (and sometimes also for subnor-
mals), and it usually employs fast-converging Taylor series for small arguments to ensure correct limiting behavior.
When those cases do not apply, polynomial fits, or series expansions, or continued fractions, or iterative techniques,
are the primary tools for computation of the elementary and special functions treated in this book.

Although we have not remarked on it before, there is a hidden chicken-and-egg problem here. To compute a
polynomial fit that represents f (x), we first need f (x) itself. A large arbitrary-precision function library, or access to
higher precision for brute-force evaluation of Taylor series or continued-fraction representations, is essential.

Mathematical handbooks [AS64, JEL68, BF71, Zwi92, Zwi03, Gau04, GST07, GRJZ07, Bry08, CPV+08, JD08,
Wei09, OLBC10, Zwi12] are helpful resources that distill centuries of mathematics research to compact summaries of
function properties that provide the necessary clues for constructing fast, robust, and stable numerical algorithms.

Many books on numerical analysis include discussions of the use of Chebyshev polynomials for polynomial econ-
omization and fitting of functions, and there are a few books devoted entirely to them [FP68, Riv74, Riv90, MH03].
Although we discuss only the Chebyshev polynomials of the first kind, there are companions Un(u), Vn(u), and

3.17. Summary and further reading 59

Table 3.5: Extended contents of the mathcw library, part 1. These functions are not part of the Standard C library, but
represent the value-added features of the mathcw library. Functions that end in _r avoid the need for internal state
that is preserved across calls, or made available as global variables. However, the usual type suffixes precede the _r
suffix.

Cody/Waite primitives adx(), intxp(), setxp()
mathcw extensions acosdeg() acospi() acosp() agm() annuity() asindeg() asinpi() asinp() atan2deg()

atan2pi() atan2p() atandeg() atanpi() atanp() bernum() betam1() beta() betnm1()
betnum() bi0() bi1() binom() bin() bis0() bis1() bisn() bk0() bk1() bkn() bks0() bks1()
bksn() cadd() cconj() ccopy() cdiv() chisq() clp2() cmul() cneg() compound() cosdeg()
cospi() cosp() cotandeg() cotanpi() cotanp() cotan() csub() cvtia() cvtib() cvtid()
cvtig() cvtih() cvtio() cvtob() cvtod() cvtog() cvtoh() cvtoi() cvton() cvtoo() cxabs()
cxacosh() cxacos() cxadd() cxarg() cxasinh() cxasin() cxatanh() cxatan() cxcbrt()
cxconj() cxcopy() cxcosh() cxcos() cxdiv() cxexpm1() cxexp() cximag() cxipow()
cxlog1p() cxlog() cxmul() cxneg() cxpow() cxproj() cxreal() cxset() cxsinh() cxsin()
cxsqrt() cxsub() cxtanh() cxtan() dfabs() dfact() dfadd() dfdiv() dfmul() dfneg()
dfsqrt() dfsub() echeb() echeb2() eljaam() eljacd() eljacn() eljacs() eljadc() eljadn()
eljads() eljag() eljam() eljanc() eljand() eljans() eljasc() eljasd() eljasn() eljcd()
eljcn() eljcs() eljdc() eljdn() eljds() eljh4() eljh() eljnc() eljnd() eljns() eljsc()
eljsd() eljsn() eljt1() eljt2() eljt3() eljt4() eljta() eljtd1() eljtd2() eljtd3()
eljtd4() eljtda() eljt() eljz() elkm1() elk() elldi() ellec() ellei() elle() ellfi()
ellkc() ellkn() ellk() ellpi() ellrc() ellrd() ellre() ellrf() ellrg() ellrh() ellrj()
ellrk() ellrl() ellrm() elntc() elntd() elntn() elnts() elq1p() elqc1p() elqc() elq()
elwdp() elwe() elwg() elwip() elwk() elwo() elwp() elws() elwz() ercw_r() ercw()
ereduce() erfcs() eriduce() eulnum() exp10m1() exp10() exp16m1() exp16() exp2m1()
exp8m1() exp8() fact() fadj() fcoef() fexpon() fibnum() flp2() fmul() frexph() frexpo()
fsplit() gamib() gamic() gami()

Wn(u) of the second, third, and fourth kinds, and shifted Chebyshev polynomials, T∗
n (u) through W∗

n (u), defined
over the unit interval [0, 1]. The Handbook of Mathematical Functions [AS64, Chapter 22] also treats Chebyshev poly-
nomials Cn(t) and Sn(t) over the interval [−2, 2], but those functions are rarely encountered.

We noted that the Chebyshev polynomials are orthogonal polynomials, with the property that certain integrals and
sums over products Tm(u)Tn(u), possibly with a product weight function, are zero unless m = n. There are several
other commonly used families of polynomials that have that property as well, and they are attached to the names of
famous mathematicians of the 18th and 19th Centuries, including Gegenbauer, Hermite, Jacobi, Laguerre, Legendre,
and others.

The orthogonality property is significant for several reasons. One of the most important is that it means that
integrals and sums of products of two functions, each represented as n-term expansions in orthogonal polynomials,
possibly with an accompanying weight function, reduce from an O(n2) problem to a much simpler one of O(n).

There are several books devoted to orthogonal polynomials [Bec73, Chi78, vA87, Mac98, BGVHN99, LL01, Gau04,
El 06, MvA06, BKMM07, Khr08]. Scores more, including the proceedings of many mathematical conferences on the
subject, can be found in library catalogs. The MathSciNet and zbMATH databases each record more than 3500 re-
search articles on orthogonal polynomials. Symbolic-algebra systems usually have substantial loadable packages
that provide support for orthogonal polynomials.

Although few mathematics texts connect the two, there is a significant relation between continued fractions and
orthogonal polynomials. Most of the great mathematicians of the last four hundred years have worked in either, or
both, of those areas. See Orthogonal Polynomials and Continued Fractions [Khr08] for details.

There are many biographies of famous mathematicians listed in library catalogs, but we cite only a few of them
[Bel37, Der03, Dev11, Dun99, Dun55, DGD04, Fra99, Gau08, GBGL08, Haw05, HHPM07, MP98, Ten06, YM98]. Nu-
merous books provide accounts of the history of mathematics [Bre91, Bur07, Caj91, CKCFR03, CBB+99, Eve83,
GBGL08, GG98, Hel06, Ifr00, KIR+07, Kat09, Mao07, McL91, Rud07, Sig02, Smi58, Sti02, Suz02]. Some books concen-
trate on the history of important mathematical numbers [Bec93, BBB00, Bla97, Cle03, EL04b, Fin03, Gam88, Hav03,
HF98, Kap99, Liv02, Mao91, Mao94, Nah06, Rei06, Sei00]. There are also books about the great problems in mathe-

60 Chapter 3. Polynomial approximations

Table 3.6: Extended contents of the mathcw library, part 2. The Bessel functions j0(), j1(), jn(), y0(), y1(), and yn()
are required by POSIX Standards. Although they are provided by many UNIX C libraries, their implementations are
often substandard. Our implementations remedy that deficiency.

mathcw extensions ichisq() ierfc() ierf() ilog2() infty() iphic() iphi() ipow() iscinf() iscnan() iscxinf()
iscxnan() isqnan() issnan() issubnormal() is_abs_safe() is_add_safe() is_div_safe()
is_mul_safe() is_neg_safe() is_rem_safe() is_sub_safe() j0() j1() jn() ldexph() ldexpo()
lgamma_r() log101p() log161p() log16() log21p() log81p() log8() logbfact() lrcw_r() lrcw()
mchep() nlz() normalize() nrcw_r() nrcw() ntos() ntz() pabs() pacosh() pacos() padd() pasinh()
pasin() patan2() patanh() patan() pcbrt() pcmp() pcon() pcopysign() pcopy() pcosh() pcos()
pcotan() pdiv() pdot() peps() peval() pexp10() pexp16() pexp2() pexp8() pexpm1() pexp()
pfdim() pfmax() pfmin() pfrexph() pfrexp() pgamma() phic() phigh() phi() phypot() pierfc()
pierf() pilogb() pinfty() pin() pipow() pisinf() pisnan() pisqnan() pissnan() pldexph()
pldexp() plog101p() plog1p() plogb() plog() plow() pmul2() pmul() pneg() pop() pout()
pprosum() pqnan() pscalbln() pscalbn() pset() psignbit() psiln() psinh() psin() psi() psnan()
psplit() psqrt() psub() psum2() psum() ptanh() ptan() qert() qnan() quantize() rsqrt()
samequantum() sbi0() sbi1() sbin() sbis0() sbis1() sbisn() sbj0() sbj1() sbjn() sbk0() sbk1()
sbkn() sbks0() sbks1() sbksn() sby0() sby1() sbyn() second() sincospi() sincosp() sincos()
sindeg() sinhcosh() sinpi() sinp() snan() strlcat() strlcpy() tandeg() tanpi() tanp() ulpk()
ulpmh() urcw1_r() urcw1() urcw2_r() urcw2() urcw3_r() urcw3() urcw4_r() urcw4() urcw_r()
urcw() vagm() vbis() vbi() vbj() vbks() vbk() vby() vercw_r() vercw() vlrcw_r() vlrcw()
vnrcw_r() vnrcw() vsbis() vsbi() vsbj() vsbks() vsbk() vsby() vsum() vurcw1_r() vurcw1()
vurcw2_r() vurcw2() vurcw3_r() vurcw3() vurcw4_r() vurcw4() vurcw_r() vurcw() y0() y1() yn()
zetam1() zeta() zetnm1() zetnum()

matics, many of which remained unsolved [Sin97, Wil02, Der03, Sab03, Szp03, dS03, CJW06, Roc06, Szp07, Dev08a,
GBGL08].

4 Implementation issues

IN THEORY, THEORY AND PRACTICE ARE THE SAME.
IN PRACTICE, THEY ARE NOT.

— ATTRIBUTED TO BASEBALL PLAYER YOGI BERRA.

Cody and Waite specified their algorithms for the computation of the elementary functions in a language-indepen-
dent way, although they wrote the accompanying ELEFUNT test package in Fortran. In principle, it should be
straightforward to implement their recipes in any programming language on any operating system and any arith-
metic system. However, for any particular environment, there are likely to be issues that need to be considered. In
this chapter we discuss features of the C language and of the IEEE 754 arithmetic system that affect the implementa-
tion of the mathcw library, but we first examine a fundamental mathematical limitation on the accuracy of function
evaluation.

4.1 Error magnification

In assessing the accuracy of a computed function, an important question is: What is the sensitivity of the function to
errors in its argument? From calculus, the definition of the first derivative is

f ′(x) = lim
δx→0

f (x + δx)− f (x)
δx

.

Here, δ is the Greek letter delta that is commonly used in mathematics for small things, and lim is the limit operator.
Thus, the relative change in the function value is given by

f (x + δx)− f (x)
f (x)

≈ x
f ′(x)
f (x)

δx
x

.

That means that the relative error in the argument, δx/x, is magnified by the factor x f ′(x)/ f (x) to produce the relative
error in the function.

Table 4.1 on the next page summarizes the magnification factors for common elementary and special functions.
The factors in the exponential, gamma, and complementary error functions grow with x: accuracy for large argu-
ments requires higher precision. By contrast, the square root, reciprocal square root, cube root, and the ordinary
error function have factors that never exceed one: it should be possible to evaluate them accurately over the entire
argument range.

Some of the inverse trigonometric and hyperbolic functions have factors with denominators that go to zero as
x → ±1, and also as x approaches a zero of the function; they are thus quite sensitive to errors in arguments near
those values.

The cosine is sensitive to arguments near nonzero multiples of π/2, and the sine to arguments near nonzero
multiples of π. However, in both cases, the function values are near zero anyway, so the sensitivity may not be
noticed in practice.

The functions with poles (Γ(x) (capital Greek letter gamma), ψ(x) (Greek letter psi), psiln(x), log(x), ierf(x),
ierfc(x), tan(x), cot(x), atanh(x), and their companions) are extremely sensitive to small changes in arguments near
those poles. Testing such functions in the pole regions requires higher precision, so the test programs may simply
avoid those regions.

© Springer International Publishing AG 2017
N.H.F. Beebe, The Mathematical-Function Computation
Handbook, DOI 10.1007/978-3-319-64110-2_4

61

62 Chapter 4. Implementation issues

Table 4.1: Magnification factors for some of the elementary and special functions in the mathcw library. The factor
for ψ(x) requires the first polygamma function, pgamma(1, x).

Function Magnification factor Function Magnification factor√
x 1/2 cos(x) −x tan(x)

rsqrt(x) −1/2 sin(x) x/ tan(x)
cbrt(x) 1/3 tan(x) x(1 + tan2(x))/ tan(x)
pow(x, y) y (w.r.t. x) and y log(x) (w.r.t. y) cot(x) −x(1 + cot2(x))/ cot(x)
exp(x) x acos(x) −x/(

√
1 − x2 acos(x))

exp2(x) x log(2) asin(x) x/(
√

1 − x2 asin(x))
exp2m1(x) x exp2(x) log(2)/ exp2m1(x) atan(x) x/(

√
1 + x2 atan(x))

exp10(x) x log(10) cosh(x) x tanh(x)
exp10m1(x) x exp10(x) log(10)/ exp10m1(x) sinh(x) x/ tanh(x)
expm1(x) x exp(x)/ expm1(x) tanh(x) x(1 − tanh2(x))/ tanh(x)
erf(x) 2x exp(−x2)/(

√
π erf(x)) acosh(x) x/(

√
x2 − 1 acosh(x))

erfc(x) −2x exp(−x2)/(
√

π erfc(x)) asinh(x) x/(
√

1 + x2 asinh(x))
ierf(x)

√
π/4 x exp([ierf(x)]2)/ ierf(x) atanh(x) x/(

√
1 − x2 atanh(x))

ierfc(x) −√
π/4 x exp([ierfc(x)]2)/ ierfc(x) In(x) n + xIn+1(x)/In(x)

Γ(x) xψ(x) Jn(x) n − xJn+1(x)/Jn(x)
log(Γ(x)) xψ(x)/ log(Γ(x)) Kn(x) n − xKn+1(x)/Kn(x)
ψ(x) x pgamma(1, x)/ψ(x) Yn(x) n − xYn+1(x)/Yn(x)
psiln(x) (x pgamma(1, x)− 1)/ psiln(x) in(x) − 1

2 +
1
2 x(in−1(x) + in+1(x))/in(x)

log(x) 1/ log(x) jn(x) − 1
2 +

1
2 x(jn−1(x)− jn+1(x))/jn(x)

log1p(x) x/((1 + x) log1p(x)) kn(x) − 1
2 − 1

2 x(kn−1(x) + kn+1(x))/kn(x)
log21p(x) x/((1 + x) log1p(x)) yn(x) − 1

2 +
1
2 x(yn−1(x)− yn+1(x))/yn(x)

log101p(x) x/((1 + x) log1p(x))

4.2 Machine representation and machine epsilon

Floating-point arithmetic represents numerical values as rational numbers, with the denominators constrained to be
powers of the base. The base is conventionally denoted by β, the Greek letter beta. Radix is a name used by some
authors for the base, and it appears in the macro FLT_RADIX that is defined in the C header file, <float.h>. The
number of digits in the numerator, and the range of powers of the base, are fixed by storage constraints and by the
floating-point design. The fixed number of digits means that between any two floating-point values, there are in-
finitely many real numbers. Only those real numbers that exactly match a floating-point number can be represented,
and they are called machine numbers.

Numbers are said to be normalized when the numerator has the maximal number of digits, and the first of them
is nonzero. For a given exponent of the base, the spacing between consecutive numbers is constant, but the spacing
changes when the exponent changes.

To see that, consider a simple two-digit decimal floating-point system with a one-digit signed exponent, and
integer numerators. Apart from zero, that permits representation of normalized numbers of the form 10, 11, 12, . . . ,
97, 98, 99, each multiplied by a power 10−9, 10−8, . . . , 100, . . . , 108, 109. The number spacing is 1× 10−9 at the smallest
exponent, then 1 × 10−8 at the next higher exponent, and increases to 1 × 109 at the highest exponent.

For a general base β with t digits in that base, we adopt the convention that the fractional point follows the
first digit of the numerator, so numbers have the form d.ddd . . . dddβ × βn, where the subscript records the base.
There are then t − 1 fractional digits, and the last of them has the value d × β−(t−1). Each digit d is an integer in
the range [0, β − 1]. When n = 0, the smallest nonzero normalized number is 1.000 . . . 000β, and the next number
after it is 1.000 . . . 001β. The difference between those two values, β−(t−1) = β1−t, is called the machine epsilon. It
is denoted by the Greek letter epsilon, ε, which is commonly used in mathematics to mean something rather small.

4.3. IEEE 754 arithmetic 63

s exp significand

bit 0 1 9 31 single
0 1 12 47 single extended (unused)
0 1 12 63 double
0 1 16 79 double extended
0 1 16 127 quadruple
0 1 22 255 octuple

Figure 4.1: Extended IEEE-754-like binary floating-point data layout.
s is the sign bit (0 for +, 1 for −).
exp is the unsigned biased exponent field, with the smallest value reserved for zero and subnormal numbers, and
the largest value reserved for Infinity and NaN. Infinity has a zero significand, whereas quiet and signaling NaN
have nonzero significands, with an implementation-dependent bit in the significand to distinguish between them.
The remaining bits hold the significand. Except in the 80-bit format, it implicitly contains a high-order hidden (not
stored) bit that is 1 for normal numbers and 0 for subnormal numbers. The binary point follows the first significand
bit, after supplying any hidden bit.

The value ε is the smallest representable number that can be added to 1.0, such that the sum differs from 1.0, and is
therefore sometimes called the positive epsilon or the big epsilon. The number closest to 1.0, but below it, has the form
D.DDD . . . DDDβ × β−1, where D = β − 1 is the largest digit. The difference between 1.0 and that number is β−t,
and is called the negative epsilon or the little epsilon. It is a factor of β smaller than the machine epsilon, and thus has
the value ε/β.

4.3 IEEE 754 arithmetic

The floating-point arithmetic used in almost all computers designed since the early 1980s follows the IEEE 754 Stan-
dard for Binary Floating-Point Arithmetic [IEEE85a, IEEE85b, IEEE87]. The chief architect of that arithmetic is Professor
William Kahan of the University of California, Berkeley, and an interview with him [Sev98a, Sev98b] records a short
summary of its development. Appendix H on page 947 surveys some of the important historical machine families
and floating-point systems whose arithmetical deficiencies are largely corrected by the IEEE 754 design.

Starting in 1977, Kahan led a large team of hardware architects and experts in numerical computing, and building
on their long experience with earlier floating-point systems, they worked out the details, and published them for
early review and comment [Coo80, Cod81, Coo81a, Coo81b, Hou81, Ste81a, Ste81b]. In 1980, team members from
Intel produced the first hardware, the 8087 coprocessor chip, to implement the new design [PM84]. However, the
Standard was not finalized until 1985, and as might be expected, the early implementation in the 8087 does not fully
conform to the final Standard. Alas, by 1985, the 8087 user base was sufficiently large that Intel chose stability over
conformance, and members of the IA-32 architecture CPU family manufactured more than 25 years later still largely
adhere to the 8087 design.

We address more of the details of IEEE 754 arithmetic in later sections, but here, we summarize only the main
features:

� Floating-point numbers are represented in 32-bit, 64-bit, 80-bit, and 128-bit storage formats1 with a one-bit
sign, a power of two suitably biased to avoid the need for an additional sign, and a significand that for finite
nonzero normal numbers is considered to lie in the range [1, 2). The data layouts are illustrated in Figure 4.1.
The corresponding layouts for decimal floating-point arithmetic are shown in Figure D.1 and Figure D.2 on
page 930.

Only the 32-bit and 64-bit formats are considered essential, and most current platforms include just one of the
longer formats, if they do so at all.

1Although the IEEE 754 specification includes a single extended format, with at least 32 significand bits and at least 11 exponent bits, in practice,
it has never been widely implemented in desktop (and larger) computers. We make no further mention of it in this book.

64 Chapter 4. Implementation issues

� Because the sign is stored separately, both positive and negative zeros can be represented. Although they
compare equal, their signs may usefully reflect how they were computed.

� For normal numbers, significands are normalized so that the leading (high-order) bit is one. Except in the
80-bit format, that bit is not stored, and is therefore called a hidden bit.

� When the smallest (most negative) representable exponent is reached, the normalization requirement may be
relaxed, allowing significands to have leading zero bits so that small values experience gradual underflow with
progressive loss of significance until they finally become zero.

� Four dynamic rounding modes are available under program control. The default rounding mode minimizes
the average rounding error.

� Special representations of Infinity and NaN (Not A Number) allow nonstop computing when computed results
could not otherwise be represented as finite numbers. Two kinds of NaN, quiet and signaling, are provided.
The intent is that the arithmetic generates quiet NaNs, but programmers can initialize storage to signaling
NaNs whose subsequent use in numeric instructions can be trapped.

� Exceptional conditions are normally handled by setting sticky flags in a status field that can be read and written
by the user programs, rather than by trapping to an exception handler that might choose to terminate the job.

Once set, flags remain set until explicitly cleared. The program can clear the flags, perform an exception-free
computation, and later check to see whether any important flag is set. If so, the program can then take remedial
action, perhaps retrying the computation with a different algorithm.

The view of the original designers is that all of those features are essential. Alas, subsequent architects have
sometimes ignored one or more of the items in our list: Infinity might be replaced by the largest representable finite
number, underflow might be abrupt, exception flags might be eliminated, and only one rounding mode might be
available [KD98]. On some systems, the ignored features can be restored by special compiler options or run-time
library calls, but doing so may hurt performance.

An important lesson from many of the functions that we treat in this book is that higher intermediate precision
can often provide simple solutions to accuracy problems that are difficult to resolve in normal working precision.
The mathcw library is therefore designed to handle a future 256-bit format based on IEEE 754 arithmetic that would
naturally be selected by long long double in the C language family, or REAL*32 in old-style Fortran declarations.
Informally, we call it octuple precision. Lack of run-time library support is always a major impediment to adding any
new data type to a programming language. The mathcw library removes that obstruction for the C family, and other
languages for which library interfaces are available (see the appendices in this book).

It is important for numerical programmers to be familiar with the range and precision of floating-point arithmetic,
so we summarize the characteristics of IEEE 754 binary arithmetic in Table 4.2 on the next page. Parameters for
decimal arithmetic are given in Table D.1 and Table D.2 on page 929.

Although we do not describe them further in this book, it is worth noting that floating-point representations have
even been defined for 16-bit and 8-bit quantities. The 16-bit format is sometimes called half float or minifloat. They
find use in some computer-graphics and signal-processing applications, but their precision is too limited to be of
much interest elsewhere.

4.4 Evaluation order in C

Most programming languages adopt that convention that evaluation order of expressions can be controlled by paren-
theses: thus, (a + b) - c means that the addition must precede the subtraction. That is a sensible choice, because
computer arithmetic is not associative. The order in which arithmetic operations are carried out to evaluate an ex-
pression can affect the result dramatically: one order might produce a correct answer, another a mildly incorrect one,
and yet another, a totally incorrect result.

Unfortunately, prior to the 1990 ISO C Standard, the C language did not require parentheses to be obeyed. A
C compiler could then legally evaluate our sample expression as (a - c) + b or as (b - c) + a, and many did,
especially when optimization was selected. That reordering is completely unacceptable for numerical software.

4.5. The volatile type qualifier 65

Table 4.2: Extended IEEE-754-like binary floating-point characteristics and limits.

single double extended quadruple octuple
Format length 32 64 80 128 256
Stored significand bits 23 52 64 112 236
Precision (t) 24 53 64 113 237
Biased-exponent bits 8 11 15 15 19
Minimum exponent −126 −1022 −16 382 −16 382 −262 142
Maximum exponent 127 1023 16 383 16 383 262 143
Exponent bias 127 1023 16 383 16 383 262 143
Machine epsilon 2−23 2−52 2−63 2−112 2−236

(2−t+1) ≈ 1.19e−07 ≈ 2.22e−16 ≈ 1.08e−19 ≈ 1.93e−34 ≈ 9.06e−72
Largest normal (1 − 2−24)2128 (1 − 2−53)21024 (1 − 2−64)216 384 (1 − 2−113)216 384 (1 − 2−237)2262 144

≈ 3.40e+38 ≈ 1.80e+308 ≈ 1.19e+4932 ≈ 1.19e+4932 ≈ 1.611e+78 913
Smallest normal 2−126 2−1022 2−16 382 2−16 382 2−262 142

≈ 1.18e−38 ≈ 2.23e−308 ≈ 3.36e−4932 ≈ 3.36e−4932 ≈ 2.482e−78913
Smallest subnormal 2−149 2−1074 2−16 445 2−16 494 2−262 378

≈ 1.40e−45 ≈ 4.94e−324 ≈ 3.64e−4951 ≈ 6.48e−4966 ≈ 2.25e−78 984

Today, almost all C compilers on current systems support at least the 1990 ISO C Standard, and, thus, obey
parentheses. However, if you port software to an older system, perhaps one running on a simulator, you need to
investigate whether your C compiler respects parentheses or not.

The code in the mathcw library has been carefully written to evaluate order-dependent expressions in multiple
steps, storing intermediate results. Thus, our sample expression would be coded as t = a + b; t -= c;. However,
on some systems, that contains a pitfall that we address in the next section.

4.5 The volatile type qualifier

Besides the critical evaluation-order dependence of numerical operations that we discussed in the previous section,
there is a related issue that arises on some widely used platforms. Traditional programming languages assume that
the storage precision is the same as the computational precision, because that was historically nearly always the case.

However, General Electric and Honeywell mainframes of the 1960s, the Motorola 68000 of the 1980s, the Intel
IA-32 and IA-64, and the AMD AMD64 and Intel EM64T in IA-32 mode, all have floating-point CPU registers that
are wider than storage words. The wider register provides additional bits for both the significand and the exponent,
and most commonly, the extra precision and range are beneficial. Although the IBM POWER architecture supports
the IEEE 754 32-bit format in storage, its floating-point instructions operate on 64-bit values, so it too effectively
provides extended precision and range.

Nevertheless, in parts of the elementary-function algorithms, a series of operations are carried out that must be
done in storage precision, and higher intermediate precision can produce incorrect answers.

Prior to the 1990 ISO C Standard, the only portable way for numerical programmers to deal with that issue was
to force memory storage of intermediate results by a call to an external routine. Here is a simple example:

double
store(px)
double *px;
{

return (*px);
}
...
a = b + c; /* compute a = (((b + c) + d) + e) */
(void)store(&a);
a += d;

66 Chapter 4. Implementation issues

(void)store(&a);
a += e;

The store() function needs to be compiled separately, to prevent optimizing compilers from inlining it, and then
optimizing it away.

Because each call to store() passes the address of the argument, rather than its value, the compiler is forced to
store the variable in memory if it currently resides in a CPU register. Then, because the address of the variable was
passed, the called routine could have modified the variable, and thus, the compiler must generate code to reload the
variable from memory into a CPU register the next time that it is needed.

It is clearly tedious and error prone to have to program like that, and fortunately, a new feature introduced in
the 1990 ISO C Standard provides a way to force variables into memory. The volatile type qualifier was added to
the language primarily to deal with systems on which certain memory locations are special: reading or writing them
may cause communication with external processors or devices. Many architectures of the 1960s and 1970s, including
the DEC PDP-11 on which much of the early UNIX development was done, have that feature.

What volatile really does is to inform the compiler that the variable cannot be cached inside the CPU, but must
instead be accessed in memory, where it might be changed unpredictably and without notification. That is exactly
what we need for precision-controlled floating-point computation:

volatile double a;
double b, c, d, e;
...
a = b + c; /* compute a = (((b + c) + d) + e) */
a += d;
a += e;

We still cannot write the sum in one statement, because the right-hand side could then be evaluated (incorrectly) in
higher precision, but at least we can dispense with the messy store() wrappers.

The mathcw library code makes heavy use of both the store() function and the volatile qualifier to control
intermediate precision. If the code is compiled on one of the architectures with extended registers with an old
compiler that does not recognize the volatile keyword, you are at least alerted to the problem when the compiler
rejects the code. You can temporarily define the keyword to an empty string with a -Dvolatile= compiler option
to allow compilation to complete successfully, but you must then examine the package test reports carefully to see
whether higher intermediate precision is (paradoxically) causing accuracy loss.

4.6 Rounding in floating-point arithmetic

Rounding of the last stored digit in any computed result clearly depends on accurate knowledge of at least a few
additional digits, and to help our understanding, it is useful to show some details of how rounding works. We
use that material in later chapters where we consider the problem of computation of correctly rounded elementary
functions.

In binary arithmetic, with IEEE 754 default rounding, if the next bit beyond the last stored is zero, the stored
result is already correctly rounded. Otherwise, the next bit is one, and there are then two cases to consider. If all bits
beyond that one-bit are zero, then the default rounding rule in IEEE 754 says that the result should be rounded to
the nearest even value, so that the last stored bit is zero. Otherwise, at least two of the additional bits are nonzero,
and they represent a value greater than half of the last stored bit, so the result is rounded up by adding one to the
last stored bit. Those cases are most easily understood by close examination of the bit patterns shown in Table 4.3
on the next page.

Notice that rounding can affect more than the last two stored bits in only two of the twelve cases shown in
Table 4.3. There is then a carry into bits before the last two, and the changed bits are indicated by c. In the worst
case, all stored bits are affected, and the overflow of the first bit requires a right shift and an increase by one of the
power-of-two exponent. The rightmost bit that is shifted off is discarded without further rounding of the stored bits,
because the result is already properly rounded.

From the bit patterns in Table 4.3, we can see that only a few extra bits need to be known precisely to decide how
to round the result, except for the more difficult case of round to nearest with ties to even. If we know just the first two
extra bits, and in addition, whether all remaining bits are zero, then we have all that is required to handle even that

4.6. Rounding in floating-point arithmetic 67

Table 4.3: Rounding in binary arithmetic for the default IEEE 754 rounding mode. The letters b and c represent
arbitrary binary digits. The vertical bar in the first column separates stored bits from additional ones needed to
determine rounding.

Stored and extra bits Stored result Action
1.bbb . . . b00|0bbb . . . 1.bbb . . . b00 discard extra bits
1.bbb . . . b01|0bbb . . . 1.bbb . . . b01 discard extra bits
1.bbb . . . b10|0bbb . . . 1.bbb . . . b10 discard extra bits
1.bbb . . . b11|0bbb . . . 1.bbb . . . b11 discard extra bits
1.bbb . . . b00|1000 . . . 1.bbb . . . b00 round to nearest even
1.bbb . . . b01|1000 . . . 1.bbb . . . b10 round to nearest even
1.bbb . . . b10|1000 . . . 1.bbb . . . b10 round to nearest even
1.bbb . . . b11|1000 . . . cc.ccc . . . c00 round to nearest even and carry
1.bbb . . . b00|1bbb . . . 1.bbb . . . b01 add 1 to round up
1.bbb . . . b01|1bbb . . . 1.bbb . . . b10 add 1 to round up
1.bbb . . . b10|1bbb . . . 1.bbb . . . b11 add 1 to round up
1.bbb . . . b11|1bbb . . . cc.ccc . . . c00 add 1 to round up (maybe carry)

difficult case. That information can be encoded in just three bits, which some architecture manuals call the guard
bit, the rounding bit, and the sticky bit. The first, the guard bit, tells us whether we can truncate or must round. The
second, the rounding bit, is needed in case normalization is required: an example is given shortly. The third, the
sticky bit, is set to one if any other trailing bits are nonzero.

IEEE 754 binary arithmetic supports four rounding directions: to −∞, to zero (truncation), to +∞, and the default,
to nearest (or to nearest even number in the event of a tie). All of those can easily be accommodated with the three
extra bits, with roughly similar work, as summarized in Table 4.4 on the following page. Round to zero is the easiest
to implement, because all nonstored bits are simply truncated, and many historical floating-point architectures take
that approach.

Here is an example of the use of the three extra bits, adapted from Overton’s short book [Ove01, page 35]. Con-
sider a simple floating-point system with a sign bit, seven exponent bits, and nine significand bits (the first hidden),
as might be used in a 16-bit digital signal processor. Let us first carry out the subtraction 1 − (2−10 + 2−16) in exact
arithmetic, using a vertical bar to bound the stored bits:

1.0000 0000 | 0000 00002 × 20 pad for alignment,
− 0.0000 0000 | 0100 00012 × 20 align binary point,
= 0.1111 1111 | 1011 11112 × 20 subtract,
= 1.1111 1111 | 0111 11102 × 2−1 left shift to normalize,
= 1.1111 11112 × 2−1 truncate to stored result.

Now repeat the subtraction, but this time, keep only two extra bits:

1.0000 0000 | 002 × 20 pad for alignment,
− 0.0000 0000 | 012 × 20 align binary point,
= 0.1111 1111 | 112 × 20 subtract,
= 1.1111 1111 | 102 × 2−1 left shift to normalize,
= 10.0000 0000 | 102 × 2−1 round to nearest even,
= 1.0000 0000 | 012 × 20 right shift to renormalize,
= 1.0000 00002 × 20 final stored result.

The final result differs by one ulp (unit in the last place) from the exact result, so two extra bits are not sufficient to
produce correct rounding. Indeed, the same off-by-one-ulp result would have been obtained if we had kept as many
as seven extra bits (i.e., all bits up to, but excluding, the last nonzero bit).

A third attempt uses a final sticky bit that only records whether any bits shifted off were nonzero, which is easily

68 Chapter 4. Implementation issues

Table 4.4: IEEE 754 rounding-mode actions for the eight possible settings of the three extra bits (guard, round, and
sticky). The phrase if odd refers to the last storable bit.

sign G R S to −∞ to zero to +∞ nearest even
+ 1 1 1 truncate truncate add 1 add 1
+ 1 1 0 truncate truncate add 1 add 1
+ 1 0 1 truncate truncate add 1 add 1
+ 1 0 0 truncate truncate add 1 add 1 if odd
+ 0 1 1 truncate truncate add 1 truncate
+ 0 1 0 truncate truncate add 1 truncate
+ 0 0 1 truncate truncate add 1 truncate
+ 0 0 0 truncate truncate truncate truncate
− 0 0 0 truncate truncate truncate truncate
− 0 0 1 subtract 1 truncate truncate truncate
− 0 1 0 subtract 1 truncate truncate truncate
− 0 1 1 subtract 1 truncate truncate truncate
− 1 0 0 subtract 1 truncate truncate subtract 1 if odd
− 1 0 1 subtract 1 truncate truncate subtract 1
− 1 1 0 subtract 1 truncate truncate subtract 1
− 1 1 1 subtract 1 truncate truncate subtract 1

done in hardware by OR’ing each discarded bit with the sticky bit:

1.0000 0000 | 0002 × 20 pad for alignment,
− 0.0000 0000 | 0112 × 20 align binary point,
= 0.1111 1111 | 1012 × 20 subtract,
= 1.1111 1111 | 0102 × 2−1 left shift to normalize,
= 1.1111 11112 × 2−1 truncate to stored result.

This time, the final result is exact. A more detailed analysis ([Par00, pages 303–304] or [Kor02, Section 4.6]) shows
that the guard and rounding bits plus a sticky bit are always sufficient to support the IEEE 754 rounding rules.

Before IEEE 754 arithmetic, most historical floating-point architectures had at most two guard bits. The first IBM
System/360 models had no guard bits, but later models added four such bits (one hexadecimal digit). Although that
was an improvement, the lack of a sticky bit still prevents correct rounding.

The first Cray supercomputers had no guard bits, so 1 − (1 − ε) produced 2ε instead of the correct ε. Some Cray
models rounded operands after binary point alignment, computing 1 − (1 − ε) as 1 − 1 = 0. That could cause a
conditional statement like if (x != y) z = 1.0/(x - y) to fail to protect against division by zero.

The IEEE 754 Standard leaves rounding behavior at the overflow and underflow limits (see Section 4.9 on page 71
and Section 4.11 on page 77) up to the implementation. The issue is whether rounding is done before the limit check,
or after:

� At the underflow limit, if the smallest subnormal value (see Section 4.12 on page 78) is multiplied by 3/4,
the result is zero if the limit check is done first, but in default rounding, is the smallest subnormal number if
rounding is first. A small test program run on several platforms shows that 68000, AMD64, IA-32, IA-64, PA-
RISC, PowerPC, and SPARC CPUs round first, whereas Alpha and MIPS processors do the limit check first. It
is even conceivable that the order might change between different models of the same CPU family.

� A similar test at the overflow limit is harder, because it requires setting a nondefault rounding mode, a topic
that we address in Chapter 5. In addition, on Alpha processors, extra compilation flags are needed to allow
dynamic rounding, as mentioned in the front matter on page xxxv.

With downward rounding, multiplying the largest floating-point number by 1 + ε produces Infinity on pro-
cessors that check for overflow before rounding: Alpha and MIPS processors do so. When rounding precedes
the limit check, as it does on the other processors tested, the result is the largest floating-point number.

4.7. Signed zero 69

� In the only implementation of decimal floating-point arithmetic available at the time of writing this, rounding
precedes the underflow check on the AMD64 CPU. That is likely to hold for other architectures where decimal
arithmetic is provided in software. Investigation of rounding at the overflow limit is not yet feasible because
of the temporary inability to set the decimal rounding mode.

Although few programs are likely to be affected by that implementation flexibility, it is yet another example of the
difficulty of reproducing floating-point results across platforms.

4.7 Signed zero

IEEE 754 arithmetic, and also some historical arithmetic systems, use a sign-magnitude representation that permits
a zero to be either positive or negative. The signed zero is an intentional feature of the IEEE 754 design, and it is
expected that the sign of zero reflects how the zero was computed. If it is the underflow limit of a small negative
value, it should be negative.

In most computations, the sign of zero is not significant, but that is not always so: see Kahan’s famous paper
[Kah87] on why the sign is sometimes critical.

It is regrettable that about one C/C++ compiler in ten handles signed zero incorrectly, based on scores of tests
with this author’s features package.2

4.7.1 Detecting the sign of zero

In comparisons, negative and positive zero are equal to each other, so you cannot use a condition like (x == -0.0)
to test for a negative zero: it is true for a positive one as well.

Instead, to detect the sign of zero, you have to do one of two things. The best way is to use the copysign(x,y)
function, which copies the sign of y to the value of x, without further examination of the bits of y to see whether it
might be finite, infinite, or some kind of NaN. Another way to test the sign of zero is to reciprocate it, producing a
signed infinity that can be compared against zero:

if (x == 0.0)
return ((1.0/x) < 0.0) ? "negative" : "positive" ;

That works because 1/−0 → −∞ and 1/+0 → +∞, both of which differ from zero. However, on non-IEEE-
754 floating-point architectures, the computation is likely to abort with a zero-divide error, but then, few of those
architectures have signed zeros either.

From the Taylor series of the elementary functions shown in Section 2.6 on page 10, many of them satisfy f (x) ≈ x
for x → 0. Thus, when x = −0, the function result should also be a negative zero. That is easy to achieve in C without
having to extract the sign bit: simply write

if (x == 0.0)
result = x;

instead of

if (x == 0.0)
result = 0.0;

The first if statement preserves the sign of zero, whereas the second loses it.
IEEE 754 mandates that

√−0 = −0. That too can be handled easily by the technique of the preceding paragraph.

4.7.2 Signed-zero constants

It was the IEEE 754 designers’ intent that signed-zero constants should preserve the sign, but sadly, many C compilers
fail to do so. Thus, instead of

x = -0.0;

2Available at http://www.math.utah.edu/pub/features/.

70 Chapter 4. Implementation issues

you may have to write

x = 0.0;
x = -x;

Fortunately, the need for a negative zero constant is rare, so that subterfuge is not often needed. Nevertheless, it is
an impediment to defining a preprocessor symbol or a named initialized constant with a negative zero value.

4.7.3 Arc tangent and signed zero

The two-argument form of the arc tangent is affected by signed zeros. The 1990 ISO C Standard specifies it like this:

The atan2() function computes the principal value of the arc tangent of y/x, using the signs of both arguments to determine
the quadrant of the return value. A domain error may occur if both arguments are zero.

The 1999 ISO C Standard description is similar, but omits the adjective principal. Notice the wording of the last
sentence: whether or not an error occurs when both arguments are zero is not specified by the Standard, and is thus
left up to the implementation.

The 1978 ANSI Fortran Standard says that both arguments must not be zero, but does not specify what should
happen if they are. The 1995 ISO Fortran Standard is silent about the case where both arguments are zero. The 1982
ISO Pascal Standard [PAS82] defines only the single-argument arc tangent function, thereby avoiding the issue. The
Java and C# library documents do not describe what the return value of Math.atan2(0,0) should be.

Because 0/0 is mathematically undefined, there is no obvious answer to what the value of atan2(0.0, 0.0)
ought to be. The Cody/Waite algorithm raises an error.

One common application of the two-argument arc-tangent function is for coordinate conversion from Cartesian
(x, y) to polar (r, θ) (here, θ is the Greek letter theta):

r = hypot(x,y); /* (usually) exception-free sqrt(x*x + y*y) */
theta = atan2(y,x);

Because the Cartesian point (x, y) = (0, 0) is quite ordinary, there should be nothing exceptional in the polar point
(r, θ) = (0, θ), other than that the angle θ is arbitrary. Thus, θ = 0 is a reasonable choice, and for that application at
least, atan2() should not raise an exception for zero arguments.

Tests of the native math libraries on a wide range of UNIX systems produced the results shown in Table 4.5 on
the next page, and file atan2x.h in the mathcw package was modified to conform to the majority view, rather than
recording a domain error in the global errno variable and returning a NaN.

The lesson for programmers is that care must be taken to avoid invoking an arc tangent function with two zero
arguments, and shows the negative effect of programming-language standards that allow behavior to be defined by
the implementation.

4.8 Floating-point zero divide

In historical floating-point architectures, division by zero was often a fatal error, or else it caused a trap that reported
the error. The result of the operation could be the numerator, or zero, or the largest representable number, or some
arbitrary value.

In IEEE 754 arithmetic, the divbyzero exception flag is set on division of a finite nonzero value by a zero of either
sign, and the result is +Infinity if numerator and denominator are of like sign, and −Infinity if they are of opposite
sign.

If the numerator is Infinity of either sign, no exception flag is set, and the result is +Infinity if numerator and
denominator are of like sign, and −Infinity if they are of opposite sign.

If the numerator is a NaN, no exception flag is set, and the result is the numerator.
If the numerator is a zero of either sign, the signs are ignored, the invalid exception flag is set, and the result is a

NaN.

4.9. Floating-point overflow 71

Table 4.5: The nonstandardness of atan2(±0,±0) in C and Java libraries. The errno handling is inconsistent: on
several systems, the arc tangent functions in one or two precisions set it to EDOM (argument domain error), and in
others, leave it unset! On AIX and SOLARIS, the return values are inconsistent among the three precisions.

System errno atan2(0,0) atan2(0,-0) atan2(-0,0) atan2(-0,-0)
C/C++

Apple Mac OS X PowerPC unset 0 π −0 −π
FreeBSD 4.4 IA-32 unset 0 π −0 −π
FreeBSD 5.0 IA-32 unset 0 π −0 −π
GNU/Linux Alpha, AMD64, IA-32, MIPS, and SPARC unset 0 π −0 −π
GNU/Linux IA-64 EDOM 0 π −0 −π
HP HP-UX 10.20 PA-RISC unset QNaN QNaN QNaN QNaN
HP HP-UX 11 PA-RISC and IA-64 unset 0 π −0 −π
IBM AIX 4.1 PowerPC (atan2()) EDOM 0 π −0 −π
IBM AIX 4.1 PowerPC (atan2l()) EDOM QNaN QNaN QNaN QNaN
NetBSD 1.6 IA-32 EDOM 0 0 0 0
NetBSD 1.6.2 VAX (no negative zero) unset 0 0 0 0
NeXT Mach 3.3 Motorola 68040 unset 0 π 0 −π
OpenBSD 3.2 IA-32 EDOM 0 0 0 0
DEC/Compaq/HP OSF/1 4.0, 5.1 Alpha EDOM QNaN QNaN QNaN QNaN
DEC TOPS-20 PDP-10 (no negative zero) EDOM 0 0 0 0
SGI IRIX 6.5 MIPS EDOM 0 π −0 −π
Sun Solaris 7, 8, 9, 10 IA-32 and SPARC (atan2()) unset 0 0 0 0
Sun Solaris 7, 8, 9, 10 IA-32 and SPARC (atan2f() and
atan2l())

unset 0 π −0 −π

mathcw (all platforms) unset 0 π −0 −π

Java
Apple Mac OS X PowerPC n/a 0 π −0 −π
DEC/Compaq/HP OSF/1 4.0, 5.1 Alpha n/a QNaN QNaN QNaN QNaN
GNU/Linux AMD64, IA-32, IA-64 n/a 0 π −0 −π
SGI IRIX 6.5 MIPS n/a 0 π −0 −π
Sun Solaris 7 SPARC n/a 0 0 0 0
Sun Solaris 8, 9, 10 IA-32 and SPARC n/a 0 π −0 −π

hardware
Intel IA-32, EM64T, and IA-64 unset 0 π −0 −π

4.9 Floating-point overflow

An overflow occurs when a computed result is too large to represent. IEEE 754 arithmetic handles that gracefully by
returning a special value, Infinity, and usually, setting a sticky exception flag to record its occurrence.

The IEEE 754 overflow flag is a complex flag, because its setting depends on the rounding mode. Here are the
conditions in which it is set:

� Round to nearest produces an Infinity from overflow.

� Round to zero produces ±MAXNORMAL from overflow.

� Round to negative infinity produces +MAXNORMAL from positive overflow.

� Round to positive infinity produces −MAXNORMAL from negative overflow.

However, if the result is infinite because an operand is infinite, the flag is not set. Thus, Infinity * 2 does not set
the flag, but MAXNORMAL * 2 does. If the result is infinite because of division by zero, the overflow flag is not set, but
the divbyzero flag is set if the numerator is nonzero, and otherwise, the invalid flag is set.

72 Chapter 4. Implementation issues

Many historical floating-point systems simply terminated the job at the first overflow, although a few provided
the ability to trap the overflow and continue with a substitute value, such as the largest representable number.

Some systems did not detect the overflow, and the returned result was the result of dropping the overflowed
exponent bits, usually resulting in an effectively tiny value. Here is a run of a small test program in C that prints
positive powers of two on a PDP-10:

@cc ofl.c
@ofl

0 1
1 2
2 4
3 8
4 16
5 32

...
124 2.1267647933e+37
125 4.2535295865e+37
126 8.507059173e+37
127 1.4693679385e-39 # overflow wraps!
128 2.9387358771e-39
129 5.8774717541e-39

...

By contrast, the Fortran compiler on that system correctly traps the overflow, capping the results at the maximum
representable number, and reporting the total number of exceptions on job completion:

@exec ofl.for
FORTRAN: OFL
OFL
LINK: Loading
[LNKXCT OFL execution]

0 1.0000000000
1 2.0000000000
2 4.0000000000
3 8.0000000000

...
126 0.85070591730E+38

%Floating overflow at OFL+14 in OFL (PC 174)
127 0.17014118219E+39

%Floating overflow at OFL+14 in OFL (PC 174)
128 0.17014118219E+39
129 0.17014118219E+39

...
139 0.17014118219E+39
140 0.17014118219E+39

CPU time 0.06 Elapsed time 0.05
[15 Floating overflows]

By default, only the first two exceptions are reported to the terminal, along with the program locations where they
occurred.

4.10 Integer overflow

In the previous section, we discussed floating-point overflow, but it is important to remember that integers can
overflow as well, sometimes with disastrous consequences. Appendix I on page 969 summarizes the main features
of integer arithmetic, and may provide helpful background. There are several important points to note about the
limitations of integer arithmetic:

4.10. Integer overflow 73

� The range of representable integers is usually smaller than that of C’s double, and on common desktop systems,
is insufficient to count the number of people on Earth, or the number of nanoseconds in a minute, or the U.S.
national debt in dollars, or even the annual budget of a large European organization.

� There is no hardware representation of an integer infinity.

� In the now almost universally used two’s-complement representation of binary integers, negation of the most
negative number overflows, returning that negative value. That leads to the unexpected result that the absolute
value of the most negative number is negative.

� Most CPU architectures cannot interrupt, trap, or otherwise signal the occurrence of integer overflows. In-
stead, on some, integer-arithmetic instructions set condition code flags that must be explicitly tested to detect
exceptions, but generating additional code for such testing is rarely even a user-selectable compiler option.

� Integer arithmetic on MIPS processors does not set any flags, but the authors of MIPS RISC Architecture show
how overflow can be detected after integer add, subtract, and multiply operations [KH92, page C-8].

� The Java Virtual Machine specification of integer arithmetic is that it returns the low-order 32 bits of the exact
two’s-complement operation. No status flags are set, nor is any trap handler invoked on overflow.

� Almost all programming languages effectively suppress trapping and reporting of integer overflows, often by
defining the behavior to be implementation dependent, and thus, relegated to whatever the designers of the
underlying hardware chose to do.

� Unsigned integer arithmetic in C and C++ is defined as modular arithmetic, so by definition, it cannot overflow.

Some of those points are illustrated in this report of nonsensical results from a small test program run on a
machine with 32-bit int values:

% cc intofl.c && ./a.out
2147483647 + 1 = -2147483648
2147483647 * 2147483647 = 1
-(-2147483648) = -2147483648

In a small programming project implemented in about 50 different programming languages [Bee04b], this author
found only a single language, Algol 60, that detected an integer overflow.

Even the carefully written TEX typesetting system does not reliably detect integer overflow: it does so on multi-
plication and division, but not on addition or subtraction:

% tex
This is TeX, Version 3.1415 (C version 6.1.2.1)
**\relax
*\count0 = 2147483647
*\multiply \count0 by 2
! Arithmetic overflow.

*\showthe \count0
> 2147483647.

*\divide \count0 by 0
! Arithmetic overflow.

*\showthe \count0
> 2147483647.

*\advance \count0 by 1
*\showthe \count0
> -2147483648. % overflow wraps to negative value

*\dimen0 = 16383pt

74 Chapter 4. Implementation issues

*\advance \dimen0 by \dimen0
*\showthe \dimen0
> 32766.0pt.

*\advance \dimen0 by 2pt
*\showthe \dimen0
> --32768.0pt. % notice the double minus

*\dimen0 = 16383pt
*\advance \dimen0 by 1pt
*\showthe \dimen0
> -32767.0pt.

*\dimen0 = 3\dimen0
! Dimension too large.

Examination of programming language standards or specifications for C, C++, Fortran, and Pascal shows that
they either do not mention integer overflow, or else they define the behavior to be implementation dependent. Java’s
specification says that built-in integer operators do not indicate overflow in any way. Experiments show that some
C implementations detect an integer divide-by-zero and signal a SIGFPE exception, whereas others silently produce
an arbitrary result, such as zero, and continue execution.

4.10.1 Preventing integer overflow

It is instructive to consider how to program with integer arithmetic if you need to detect integer overflow before it
happens. What is required is a test function for each operation that can detect an overflowed result without actually
generating one. We could then write safe code like this:

if (is_add_safe(a,b))
c = a + b;

else
error("a + b would overflow");

A suitable definition of the error() macro can use the preprocessor macros __FILE__ and __LINE__ to print a
message identifying the source-code location, and then terminate the job.

In practice, for C99, we need versions of the test functions for arguments of types int, long int, and long
long int. The short int type is not supported by any standard numerical library functions, so we ignore it. By
analogy with the floating-point library, we give the test functions names with suffix letters l and ll: for example,
is_add_safe() for int arguments, is_add_safel() for long int arguments, and is_add_safell() for long long
int arguments.

As we do for the floating-point library routines, our implementations use a generic integer type, int_t, with
values in the range [INT_T_MIN,INT_T_MAX]. We hide constant type suffixes in a suitably defined wrapper macro
INT(). Short wrapper files then provide the required type definitions and value ranges before including the code
body from a common header file.

Two’s-complement representation destroys the symmetry about zero, and makes the test functions more complex.
However, all modern desktop and larger machines use two’s-complement for binary integer arithmetic, so our code
must cater to it, and must be revised if it is ever used on a computer with sign-magnitude, one’s-complement, or
any other representation of integer values. Important historical architectures that used one’s-complement integer
arithmetic include the 60-bit CDC 6000 and 7000 series and the 36-bit Univac 1100 series. Only the latter had the C
language, and then just on those few machines that ran the UNIX operating system [BHK+84].

We handle the operations of absolute value, add, divide, multiply, negate, remainder, and subtract, and present
the test functions now in alphabetical order in the following subsections.

4.10.1.1 Safe integer absolute value

Absolute value is safe, except for the most negative integer:

4.10. Integer overflow 75

int
IS_ABS_SAFE(int_t a)
{ /* return 1 if |a| will not overflow, 0 otherwise */

return (a != INT_T_MIN);
}

4.10.1.2 Safe integer addition

Addition is safe when the signs differ, but otherwise requires more care:

int
IS_ADD_SAFE(int_t a, int_t b)
{ /* return 1 if a + b will not overflow, 0 otherwise */

int result;

if ((a >= INT(0)) != (b >= INT(0)))
result = 1; /* signs differ */

else if ((a >= INT(0)) && ((INT_T_MAX - b) >= a))
result = 1; /* both nonnegative */

else if ((a < INT(0)) && ((INT_T_MIN - b) <= a))
result = 1; /* both negative */

else
result = 0; /* a + b overflows */

return (result);
}

4.10.1.3 Safe integer division

Although division is harder than addition and multiplication, its overflow test is one of the simplest, because we just
have to avoid two possibilities: division by zero, and the case INT_T_MIN/-1.

int
IS_DIV_SAFE(int_t a, int_t b)
{ /* return 1 if a / b will not overflow, 0 otherwise */

return ((b != INT(0)) &&
!((b == INT(-1)) && (a == INT_T_MIN)));

}

4.10.1.4 Safe integer multiplication

Multiplication is by far the hardest to test for overflow, and we have to take special care that the tests themselves do
not overflow.

int
IS_MUL_SAFE(int_t a, int_t b)
{ /* return 1 if a * b will not overflow, 0 otherwise */

int result;

if ((a == INT(0)) || (b == INT(0)))
result = 1; /* product is zero */

else if ((a >= INT(0)) == (b >= INT(0)))
{ /* signs identical */

if ((a > INT(0)) && (b <= (INT_T_MAX / a)))
result = 1;

else if ((a < INT(0)) &&

76 Chapter 4. Implementation issues

(a != INT_T_MIN) &&
(b != INT_T_MIN) &&
(b >= (INT_T_MIN / -a)))

result = 1;
else

result = 0;
}
else
{ /* signs differ */

if ((a > INT(0)) && (b >= (INT_T_MIN / a)))
result = 1;

else if ((a < INT(0)) && (a >= (INT_T_MIN / b)))
result = 1;

else
result = 0;

}

return (result);
}

In the worst case, we have to do a dozen numerical operations to determine whether integer overflow could occur.

4.10.1.5 Safe integer negation

Although negation is logically distinct from absolute value, its implementation is identical:

int
IS_NEG_SAFE(int_t a)
{ /* return 1 if -a will not overflow, 0 otherwise */

return (a != INT_T_MIN);
}

4.10.1.6 Safe integer remainder

Remainder is safe whenever division is safe, but allows one more safe case, INT_T_MIN % -1, that we have to test for:

int
IS_REM_SAFE(int_t a, int_t b)
{ /* return 1 if a % b will not overflow, 0 otherwise */

return (IS_DIV_SAFE(a,b) ||
((a == INT_T_MIN) && (b == INT(-1))));

}

4.10.1.7 Safe integer subtraction

The last test function, for subtraction, can use the test for addition, except when the second argument cannot be
safely negated:

int
IS_SUB_SAFE(int_t a, int_t b)
{ /* return 1 if a - b will not overflow, 0 otherwise */

return (IS_NEG_SAFE(b) ? IS_ADD_SAFE(a,-b) : (a < INT(0)));
}

4.11. Floating-point underflow 77

4.10.1.8 Safe integer operations: a retrospective

We do not include a test function for the left-shift operator, because that operator is most commonly used for bit-
field access in unsigned integer types, where by definition of unsigned integer arithmetic, there is no possibility of
overflow.

Because those test functions are nontrivial to program, they are good candidates for library inclusion, and the
mathcw library includes them as a bonus to users, with a separate header file, issafe.h, to define their function
prototypes.

4.11 Floating-point underflow

An underflow occurs when the computed result is too small to represent. Most historical systems replace the under-
flowed value with zero and continue the computation, sometimes after issuing a warning message. A few do not
detect the underflow, so that the exponent simply wraps from a small negative value to a large positive value. Here
is a run of a small test program in C that prints negative powers of two on a PDP-10:

@cc ufl.c
@ufl

0 1
-1 0.5
-2 0.25
-3 0.125
-4 0.0625
-5 0.03125

...
-127 5.8774717541e-39
-128 2.9387358771e-39
-129 1.4693679385e-39
-130 8.507059173e+37 # underflow wraps!
-131 4.2535295865e+37
-132 2.1267647933e+37

Such behavior can certainly make loop-termination tests unreliable.
The Fortran implementation on the PDP-10 correctly traps the underflow, replaces it with zero, and reports a

summary of exceptions on job completion:

@exec ufl.for
LINK: Loading
[LNKXCT OFL execution]

0 1.0000000000
-1 0.50000000000
-2 0.25000000000
-3 0.12500000000

...
-129 0.14693679385E-38
%Floating underflow at OFL+14 in OFL (PC 174)
-130 0.00000000000E+00
-131 0.00000000000E+00
...
-139 0.00000000000E+00
-140 0.00000000000E+00
CPU time 0.05 Elapsed time 0.10
[1 Floating underflow]

In the next section, we describe how underflow is handled in IEEE 754 arithmetic.

78 Chapter 4. Implementation issues

4.12 Subnormal numbers

IEEE 754 arithmetic is unusual compared to its predecessors in that, once a normalized value reaches the minimum
exponent, instead of underflowing abruptly to zero, the normalization requirement is relaxed, and with the exponent
fixed, the leading significand bit is permitted to march off to the right, reducing precision until finally no bits are left,
and the result is zero. Such numbers are called subnormal, and the process in which they are generated is called
gradual underflow.

The original term used in the IEEE 754 Standard for those numbers was denormalized, but that term is now dep-
recated. However, it is still commonly found in computer-architecture manuals and hardware descriptions.

Gradual underflow preserves an important mathematical property in floating-point numbers: if x �= y, then it is
always true that x − y �= 0. However, on systems that practice abrupt underflow, two small numbers can differ, yet
when subtracted, their difference is zero. Abrupt underflow is almost universal on historical computers, yet some
of them lack a floating-point comparison instruction, using subtraction and a test for zero instead. That produces
anomalies that we discuss further in Appendix H.2 on page 952.

Here is a hoc example that displays decreasing powers of two in 80-bit IEEE 754 arithmetic, showing the results in
decimal, in hexadecimal storage representation, and in C99 hexadecimal floating-point, which represents numbers
as a significand and a power of two:

hoc80> x = 2**(-16350)
hoc80> for (k = -16350; k >= -16446; --k) \
hoc80> { \
hoc80> printf("%6d %d %12.5g %s %a\n", \
hoc80> k, issubnormal(x), x, ftoh(x), x)
hoc80> x *= 0.5
hoc80> }
-16350 0 1.444e-4922 0021_80000000_00000000 0x8p-16353
-16351 0 7.2201e-4923 0020_80000000_00000000 0x8p-16354
-16352 0 3.61e-4923 001f_80000000_00000000 0x8p-16355
...
-16380 0 1.3448e-4931 0003_80000000_00000000 0x8p-16383
-16381 0 6.7242e-4932 0002_80000000_00000000 0x8p-16384
-16382 0 3.3621e-4932 0001_80000000_00000000 0x8p-16385
-16383 1 1.6811e-4932 0000_40000000_00000000 0x4p-16385
-16384 1 8.4053e-4933 0000_20000000_00000000 0x2p-16385
-16385 1 4.2026e-4933 0000_10000000_00000000 0x1p-16385
-16386 1 2.1013e-4933 0000_08000000_00000000 0x0.8p-16385
-16387 1 1.0507e-4933 0000_04000000_00000000 0x0.4p-16385
-16388 1 5.2533e-4934 0000_02000000_00000000 0x0.2p-16385
-16389 1 2.6266e-4934 0000_01000000_00000000 0x0.1p-16385
-16390 1 1.3133e-4934 0000_00800000_00000000 0x0.08p-16385
...
-16443 1 1.4581e-4950 0000_00000000_00000004 0x0.000000000000004p-16385
-16444 1 7.2904e-4951 0000_00000000_00000002 0x0.000000000000002p-16385
-16445 1 3.6452e-4951 0000_00000000_00000001 0x0.000000000000001p-16385
-16446 0 0 0000_00000000_00000000 0x0p+0

In the 80-bit format, the sign and exponent occupy the first four hexadecimal digits, and there is no hidden leading
significand bit. The onset of gradual underflow occurs at 2−16383, when the stored biased exponent reaches zero, and
the significand is no longer normalized. Although C99 does not require that subnormal numbers printed with the
%a format item be displayed with leading zeros, the GNU/LINUX implementation used in that example does so.

Subnormal numbers are relatively expensive to compute on some architectures, so compilers on those systems
may produce instructions that flush underflows abruptly to zero without generating subnormals; it may take a
special compile-time option to enable them. Alternatively, certain optimization levels may remove support for sub-
normals. On Silicon Graphics IRIX MIPS, subnormals are not supported at all unless library calls to get_fpc_csr()
and set_fpc_csr() are invoked at run time; the command man sigfpe gives details.

In conforming IEEE 754 arithmetic, an underflow exception is recorded in a sticky exception flag when the value
is too small to be represented as a normal number, and in addition, there is loss of accuracy because the result cannot

4.13. Floating-point inexact operation 79

be represented exactly as a subnormal number. Thus, computations of increasingly negative powers of two generate
normal, then subnormal, results without ever setting the underflow flag. Only when the smallest subnormal is mul-
tiplied by 1/2, producing zero, are the inexact and underflow flags set. Similarly, when subnormals are supported,
MINNORMAL / 4 does not set the underflow flag, because it is an exactly representable subnormal, but MINNORMAL / 3
does set the underflow flag, because it is not exactly representable as a subnormal.

For most of the elementary functions, the algorithms are not aware of computations near the underflow or over-
flow limits. However, for atan2(y,x), the Cody/Waite recipe explicitly checks for small and large ratios y/x and
handles those cases separately, returning either ±0 or ±π for small ratios, and ±π/2 for large ones. Because the
Taylor series (see Section 2.6 on page 10) tells us that atan x ≈ x as x → 0, the mathcw code changes the Cody/Waite
algorithm for atan2(y,x) to replace 0 by y/x. That may or may not be zero, but if it is representable as a subnormal,
it is correct to the precision of the subnormal, whereas an answer of 0 is simply wrong.

The most controversial feature of IEEE 754 arithmetic was, and remains, gradual underflow. Some hardware
designers argue that it is expensive to implement, costing chip circuitry that could better be used for other purposes.
Timing tests of arithmetic with and without subnormals on a wide range of platforms show large differences in the
relative cost of subnormals, but on IBM PowerPC, there is effectively no penalty for subnormals. That suggests that
chip implementation cost need not be an issue.

Numerical programmers raise concerns about subnormal values that are later scaled to larger values with silently
reduced precision, possibly contaminating the remainder of the computation. Although it is true that two sticky
exception flags record the generation of subnormals that have lost nonzero bits, most numerical programs never
check or report exception flags. In any event, the inexact flag is almost certain to have been set by other computations
with normal numbers. Nevertheless, detailed numerical analysis argues for generation of subnormals instead of
abrupt underflow [Coo81b, Dem81]. We discuss subnormals further in Section 5.4 on page 107.

Compilers on several platforms offer a choice between subnormals and flush-to-zero underflow, so on those
systems, one can make a numerical experiment by running a program both ways. If the program output from the
two tests differs substantially, then it is clear that subnormals have a noticeable effect, and also that cross-platform
portability is questionable. It may be possible to introduce suitable exact scaling at key points in the code to avoid
the subnormal regions, as we do for some of the Taylor-series computations for small arguments. Alternatively, one
can convert all, or parts, of the program to use a higher precision with a wider exponent range. Some compilers
provide an option to do that without code changes.

4.13 Floating-point inexact operation

The most commonly set exception flag in most floating-point operations is the inexact flag, which is set whenever the
computed result is inexact because of rounding. That can be done by a logical OR of the flag with each of the G, R,
and S bits. The flag is also set whenever overflow occurs without an exception trap, and when underflow happens.

However, at least one software implementation of IEEE 754 arithmetic fails to conform: 128-bit arithmetic on
Compaq OSF/1 Alpha does not set inexact for either overflow or underflow.

The primary use of that flag is in carefully written software libraries where exact floating-point arithmetic is
carried out inside a block of code. The inexact flag can be cleared before executing the block, and tested afterward
to make sure that it is still clear. If it is found to be set, then at least one operation incurred rounding, and remedial
action must then be taken to do the calculation some other way. Such code is clearly unusual.

4.14 Floating-point invalid operation

The IEEE 754 and 854 NaN (Not a Number) is a special value that is generated when the result of an operation cannot
produce a well-defined answer, or at least a clear indication of its limiting value.

The Standards define two types of NaN: quiet and signaling, and require that they be distinguished by a bit in
their significands, rather than the perhaps obvious choice of using the sign bit, because the sign of a NaN is never
significant.

When there is a need to distinguish between the two kinds in writing, we follow IEEE 754-2008, and use QNaN
and SNaN, although some authors call them NaNQ and NaNS instead.

80 Chapter 4. Implementation issues

Because the floating-point system in the Intel IA-32 was based on an early draft of the IEEE 754 Standard, and
put into commercial production five years before that Standard was published, it has only one kind of NaN. Most
hardware architecture families designed since 1985 supply both kinds.

The Java and C# virtual machines [LY97, LY99, HWG04, C#03b, CLI05] provide only one kind of NaN, perhaps
because their designers felt that it would require unacceptable additional overhead to implement both quiet and
signaling NaNs when the underlying hardware might supply only one.

The IEEE 754 Standard has two kinds of NaNs because the designers felt that it would be useful to have quiet
ones that make their way silently through arithmetic operations, or are produced as results of such operations, as
well as noisy ones that make their presence known by causing a trap when they are encountered.

For example, if storage locations of floating-point variables are initialized to signaling NaNs on program startup,
then any attempt to use the value of a variable before it has been assigned a valid value could be caught by the
hardware and reported to the user. That practice was common, for example, on CDC 6000 and 7000 series computers
in the 1960s and 1970s. They have a special floating-point representation called Indefinite that behaves much like a
NaN, and influenced the IEEE 754 design (see Appendix H.1 on page 949).

The invalid exception flag, one of the five standard floating-point sticky exception flags, records the occurrence
of a NaN in an arithmetic operation, but the circumstances in which that happens are complex. In a conforming
implementation, the invalid exception flag is set by any of these conditions:

� An operand is a signaling NaN.

� Subtraction of like-signed Infinity, or addition of opposite-signed Infinity.

� Multiplication of zero by Infinity.

� Division of zero by zero, or Infinity by Infinity, irrespective of sign.

� Square root of a negative nonzero number.

� Conversion of a binary floating-point value to an integer or to a decimal format when the result is not repre-
sentable.

� Ordered comparison (less than, less than or equal, greater than, or greater than or equal) when either, or both,
of the operands are NaNs.

In particular, common cases like QNaN + QNaN, QNaN - QNaN, QNaN * QNaN, and QNaN / QNaN do not set the invalid
flag, but the corresponding expressions with SNaN in place of QNaN do set it.

Comparisons for equality and inequality do not set the invalid flag.
Because those rules are complex, it is not surprising that they are sometimes disobeyed. The IA-32 architecture,

for example, does not set the invalid flag in every one of those cases.
When the definition of an elementary function calls for setting the invalid flag, the practice in the mathcw library is

to call one of the qnan() functions. They compute 0.0/0.0, and that operation generates a QNaN, and as a required
side effect, sets the invalid flag.

4.15 Remarks on NaN tests

NaNs have the property that they are not equal to anything, even themselves. The intent of the IEEE 754 designers
was that the feature could be used to test for a NaN in a way that is fast, universal, programming-language indepen-
dent, and that avoids any need to inspect the underlying bit representation. For example, in the C-language family,
the expression x != x is true if, and only if, x is a NaN. Regrettably, compilers on several systems botch that, either
by incorrectly optimizing it away at compile time, or by using integer instructions for comparison of floating-point
values, or by failing to test the proper flags after a correct floating-point comparison.

As a result, we need a separate isnan() function, instead of simple inline comparisons, for NaN tests. The mathcw
implementation of that function makes a one-time test at run time to see if NaN comparisons are mishandled. If they
are, it selects a more complex algorithm that is platform independent, without having to examine the underlying bit
representation. That algorithm computes the answer as ((x != 1.0) && (x != -1.0) && (x == 1.0/x)), but in a
convoluted way that works around the compiler errors. The equality test in the third part is written to invert the
result of faulty code generation that incorrectly reports that NaNs are equal.

4.16. Ulps — units in the last place 81

2n−1 2n 2n+1 2n+2 2n+3

x y

2 3 4 5 910n−1 10n 10n+1

x y

Figure 4.2: Number spacing in three-bit binary (β = 2, t = 3) and one-digit decimal (β = 10, t = 1) floating-point
systems. Machine numbers exist only at tics on the horizontal axis. The gap between any pair of adjacent tics is one
ulp. The size of the ulp changes by a factor of β at the longer tics marking the exponent boundaries.
The big machine epsilon, ε, is the ulp to the right of the tic at β0, and the little machine epsilon, ε/β, is the ulp to the
left of that tic.
An arbitrary (infinite-precision) real number x may lie between two adjacent machine numbers, and can only be
approximated by one of those numbers, according to the choice of rounding mode.
With x positioned as shown, Kahan’s ulp is the smaller one to the left of the exponent boundary, whereas the Muller–
Harrison ulp is the gap containing x.
By contrast, for most real numbers, such as that labeled y, both ulp measures are identical, and equal to the containing
gap.

4.16 Ulps — units in the last place

To assess the accuracy of floating-point computations, it is useful to remove the dependence on number range and
precision by normalizing errors to multiples of a machine epsilon, such that one unit of the measure corresponds to
a change of one unit in the last base-β digit.

The commonly used acronym ulp was introduced by William Kahan in unpublished work in 1960 with this
original definition [Kah04a]:

ulp(x) is the gap between the two floating-point numbers nearest x, even if x is one of them.

Here, x is an arbitrary (infinite-precision) real number, and thus unlikely to be exactly equal to a machine number.
Different authors have chosen varying definitions of the ulp measure, so be cautious when comparing results

from the literature, because the definitions may disagree near exponent boundaries, and at the underflow and over-
flow limits.

The introduction of Infinity in IEEE 754 arithmetic caused Kahan to modernize his definition of the ulp:

ulp(x) is the gap between the two finite floating-point numbers nearest x, even if x is not contained in that interval.

That revision shows how to handle x values above the overflow limit: the Kahan ulp is then the gap between the
largest finite floating-point number and the machine number just below it. Near the end of this section, we show
how to compute the Kahan-ulp function.

The diagrams in Figure 4.2 may be helpful for visualizing the ulp unit.
One simple use of the ulp is in the relative ulps function that divides the relative error by the big epsilon, an

expression that is readily computed from known quantities. We could write a draft version of such a function for
one data type in C like this:

82 Chapter 4. Implementation issues

#include <float.h> /* needed only for FLT_EPSILON */
#include <math.h> /* needed for fabs() prototype */

float
relulpsf(float approx, double exact)
{

return (float)fabs(((double)approx - exact) / exact) / FLT_EPSILON;
}

Here, the argument approx is the value computed in data type float, and exact is an estimate of the exact answer,
rounded to the nearest machine number in a higher-precision data type. We are rarely interested in more than the
first few digits of the answer from that function, so the higher precision of the second argument only needs to supply
a few extra digits beyond working precision.

Although it is simple to write, our relulpsf() function has several defects:

� If the second argument is zero, the function produces Infinity or a NaN in IEEE 754 arithmetic, and may
terminate the job with a divide-by-zero error in older arithmetic designs.

� If the second argument has the value 1.0 × βn, we are at a boundary where the size of the machine epsilon
increases by a factor of β, so there is an ambiguity from the choice of that epsilon.

� In IEEE 754 t-digit arithmetic, if the second argument is subnormal when coerced to the data type of the first
argument, then it has fewer than t significant digits, so we ought to reduce the epsilon accordingly.

� When the arguments are near the value 1.0 × βn, the computed result is a good approximation to the error
in the last digit. However, with fixed exponent, as the arguments increase to their representable maxima just
below β × βn, the division by the second argument makes the computed value almost β times smaller than the
machine epsilon. The returned value is then an overly optimistic estimate of the error.

� When the approximate value is computed in the highest working precision, there is no data type available to
represent a rounded exact value.

� If we try to solve the preceding problem by representing the exact value as a sum of high and low parts in
working precision (here, float), rather than the next higher precision, then we introduce new difficulties:

� The user interface is unpleasantly complex.

� We cause new defects when the low part becomes subnormal or underflows to zero, because we lose some
or all of the extra digits needed to compute the numerator difference, approx - exact, accurately.

� We are unable to closely represent the exact result when it is too large or too small for the working-
precision format.

Both extended precision and extended exponent range are required features of the data type of the exact argu-
ment. Regrettably, some computer designs, both historical and modern, fail to provide the required extended
range.

In summary, the computation of the error measured in units in the last place is not the simple task that we
expected when we coded the single-statement function body of relulpsf().

Jean-Michel Muller wrote a useful technical report [Mul05] that compares several existing textbook definitions of
the ulp measure. We leave the mathematical details to that report, but reproduce here some of its important results.

Muller proposes a function ulp(x) that returns the value of one unit in the last digit of x, defined like this [Mul05,
page 13]:

If x is a real number that lies between two finite consecutive floating-point numbers a and b, without being equal to one of them,
then ulp(x) = |b − a|, otherwise ulp(x) is the distance between the two finite floating-point numbers nearest x. Moreover,
ulp(NaN) is NaN.

Muller credits the behavior of that definition away from the overflow limit to John Harrison, and at or above the
overflow limit, to William Kahan, and gives Maple code to implement both functions.

4.16. Ulps — units in the last place 83

That definition is equivalent to Kahan’s when x is a machine number. However, the two specifications differ
when x is not a machine number, and x lies just above an exponent boundary. In that case, Kahan’s ulp(x) is the gap
below that boundary, whereas the Muller–Harrison ulp(x) is the gap above that boundary. For example, in a three-
digit decimal system with x = 1.004, the Kahan ulp is 0.001, because the nearest machine numbers are 0.999 and
1.00, whereas the Muller–Harrison ulp is 0.01. With x = 0.9995, both produce an ulp of 0.001, and with x = 1.005,
both yield an ulp of 0.01.

Careful reading of Muller’s definition shows us how to handle various cases:

� The definition involves only the (positive) distance between two machine numbers, so ulp(-x) = ulp(x), and
ulp(x) > 0.

� When x lies away from an exponent boundary (that is, it has the value s × βn where s is in (1, β)), ulp(x)
returns βn−t+1, which is the same as βnε.

� When x lies at an exponent boundary (that is, it has the value 1.0 × βn), we choose b = x, so ulp(x) returns
βn−t, equivalent to βnε/β.

� If x is larger than the overflow limit, then ulp(x) returns βEMAX−t+1, where EMAX is the exponent of the largest
normal number.

� If x is zero, or less than or equal to the smallest normal number, the function returns the smallest subnormal
value, equal to βEMIN−t+1, where EMIN is the exponent of the smallest normal number.

Because we have to deal with systems that lack support for subnormals, a situation that Muller does not
consider, the appropriate return value on such machines is the smallest normal value, βEMIN.

As long as the argument is not a NaN, the function value is always a finite nonzero number of the form 1.0 × βm, for
some integer m. Multiplication and division by ulp(x) is then exact in the absence of underflow or overflow.

We can better assess the error in a computed value with a revised function like this:

float
ulpsf(float approx, double exact)
{

return (float)fabs((double)approx - exact) / ulp(exact);
}

The singular and plural of ulp distinguish the names of the functions of one and two arguments.
Muller introduces four rounding functions, RN(x), RU(x), RD(x), and RZ(x), that round to nearest, up (to +∞),

down (to −∞), and to zero, respectively, and proves that his definition leads to several important properties of the
ulp function for an exact number x and a machine number X that approximates it. As usual in logic, a statement that
A implies B does not mean that B also implies A: fish are swimmers, but not all swimmers are fish. To disprove the
converse relation, we only need to supply a single counterexample that shows the relation to be false: penguins will
do!

Here is Muller’s list of properties for the Muller–Harrison ulp(x) function, and for Kahan’s revised function,
temporarily renamed to KahanUlp(x):

� If β = 2 and |X − x| < 1
2ulp(x) then X = RN(x).

The restriction to binary arithmetic is bothersome, but essential. Muller gives this general counterexample for
β > 2:

X = 1 − β−t, RN(x) = 1,

x < 1 + β−t/2, 1
2ulp(x) = 1

2 β1−t

|X − x| < 3
2 β−t, = 1

2 ββ−t.

The two < operators can be changed to ≤ when β > 3. The precondition is satisfied, but X �= RN(x).

A numeric counterexample in a three-digit decimal system is

X = 0.999, x = 1.0005, |X − x| = 0.0015, 1
2ulp(x) = 0.005, RN(x) = 1.

84 Chapter 4. Implementation issues

� For any integer base β, if X = RN(x) then |X − x| ≤ 1
2ulp(x). That is nearly the converse of the first property,

but is true for more bases.

� For any integer base β, if |X − x| < 1
2KahanUlp(x) then X = RN(x).

� If β = 2 and X = RN(x) then |X − x| ≤ 1
2KahanUlp(x). That is almost the converse of the third property, but

holds only for binary arithmetic.

This set of choices provides a suitable counterexample:

X = 1, 1 + 1
2 β−t < x < 1 + β−t, |X − x| < β−t, 1

2KahanUlp(x) = 1
2 β−t.

A numeric counterexample looks like this:

X = 1, x = 1.007, |X − x| = 0.007, 1
2KahanUlp(x) = 0.005.

� If |X − x| < ulp(x) then X lies in the interval [RD(x), RU(x)].

The converse does not hold. The same counterexample as in the first property can be used here. We have
RD(x) = 1 and RU(x) = 1 + β1−t, but X is outside the interval [1, 1 + β1−t]. Our three-digit decimal example
has X = 0.999, outside the rounded interval [1.00, 1.01].

There is no similar relation between the Kahan ulp and the round-down/round-up interval. The newer
Muller–Harrison definition is of particular use in interval arithmetic, a topic that receives only brief mention
later in this book (see Section 5.8 on page 115 and Appendix H.8 on page 966).

	 Regrettably, when β > 3, then there is no reasonable definition of an ulp(x) function that makes these relations
both true:

� if |X − x| < 1
2ulp(x) then X = RN(x);

� if X = RN(x) then |X − x| ≤ 1
2ulp(x).

The chief significance of those properties for the remainder of this book is this statement:

If we can show that all of a large number of measured errors of function values computed in binary arithmetic are below 1
2 ulp

using either the Kahan or the Muller–Harrison definition, then our function is, with high probability, correctly rounded.

However, we need to use Kahan’s definition of the ulp if we are to make the same conclusion for computation in
octal, decimal, or hexadecimal arithmetic.

Implementation of the ulp functions requires considerable care, and they are sufficiently complicated that they
deserve to be part of all mathematical software libraries. Regrettably, they are absent from standardized program-
ming languages. Here is the generic code from the mathcw library for Kahan’s definition:

#define EMAX (FP_T_MAX_EXP - 1) /* exponent of maximum normal */
#define EMIN (FP_T_MIN_EXP - 1) /* exponent of minimum normal */
#define ESUB (EMIN - T + 1) /* exponent of minimum subnormal */
#define T (FP_T_MANT_DIG) /* precision in base-B digits */

fp_t
ULPK(hp_t x)
{ /* Kahan ulp: return fp_t gap around or below ‘exact’ x */

hp_t result;

if (ISNAN((fp_t)x))
result = x;

else if (ISINF((fp_t)x))
result = HP_SCALBN(ONE, EMAX - T + 1);

else if (QABS(x) <= FP_T_MIN)
result = HP_SCALBN(ONE, ESUB);

else /* x is finite, nonzero, and normal */

4.17. Fused multiply-add 85

{
hp_t s; /* significand */
int e; /* unbiased base-B exponent */

e = HP_ILOGB(x);
s = HP_SCALBN(QABS(x), -e);
e -= T - 1;

if ((s - HP(1.0)) < (hp_t)(HALF * FP_T_EPSILON))
e--; /* special case at exponent boundary */

if (e < ESUB)
e = ESUB;

result = HP_SCALBN(ONE, e);
}

if ((fp_t)result == ZERO) /* subnormals are flushed to zero */
result = (hp_t)FP_T_MIN;

return ((fp_t)result);
}

That code works without change for any floating-point base. It runs on modern IEEE 754 systems and many historical
architectures, as long as the external functions are available, as they are with the mathcw library.

A separate function family, ULPMH(), provides the Muller–Harrison variant. Its code requires only a change in the
function name, and the exponent-boundary test, which becomes

if (s == ONE)

The data type fp_t corresponds to working precision, and the data type hp_t to the next higher precision. When
no such precision is available, the two types are equivalent, and we are then forced to approximate a real value x
by the closest machine number in working precision. In that case, the Kahan and Muller–Harrison ulp functions
produce identical output.

The HP_ILOGB() and HP_SCALBN() macros expand to C99 functions to return the unbiased floating-point exponent,
and to scale a number by a power of the base.

The private macro QABS() implements a quick inline absolute-value computation that is only safe after it is known
that the argument is neither Infinity nor a NaN. Its definition in prec.h is simple:

#define QABS(x) ((-(x) > (x)) ? -(x) : (x))

The ternary expression avoids reference to a precision-dependent zero constant. It has the misfeature that its argu-
ment is evaluated three times, and that QABS(-0.0) evaluates to a negative zero, but those infelicities are harmless in
our careful uses of the macro.

The final if statement tests for a zero result. That can happen only if subnormals are unsupported, or are flushed
to zero. The handling of subnormals on some platforms can be selected at compile time, and on a few architectures,
controlled at run time by library calls. That final test is mandatory, since we cannot determine portably at compile
time whether subnormals are possible.

4.17 Fused multiply-add

During the 1980s, building on earlier work at CDC, Cray, and IBM, research projects at Stanford University and
the University of California, Berkeley produced a promising new computer design model called the RISC (Reduced
Instruction Set Computer) architecture. The RISC idea was soon adopted by most of the major manufacturers, each
with its own unique processor design:

86 Chapter 4. Implementation issues

� In 1986, IBM announced the RT workstation based on the ROMP chip, a descendant of the 801 CPU that was
developed in the late 1970s, but never marketed. Also in 1986, Hewlett–Packard announced PA-RISC, and
MIPS introduced the R2000.

� MIPS announced the R3000 in 1988.

� In 1989, Intel introduced the i860, Motorola announced the 88100, and Sun Microsystems shipped their first
SPARC-based systems.

� IBM introduced its new RS/6000 product line based on the POWER architecture in 1990.

� DEC Alpha systems shipped in 1992.

RISC processors are characterized by large register sets (POWER has thirty-two 64-bit floating-point registers),
multiple functional units, relatively simple instructions designed to run no more than a few clock cycles, and memory
access only through load and store instructions.

POWER introduced a new instruction, the floating-point fused multiply-add, which computes xy + z in about the
same time as a single multiply or add. PA-RISC later added support for that instruction, and IA-64 does as well,
making it a critical component of divide and square-root instruction sequences [Mar00]. In 1999, IBM added the
G5 processor to the venerable System/360 mainframe family, providing for the first time both IEEE 754 arithmetic
(including 128-bit arithmetic in hardware), and a fused multiply-add instruction, on their mainframes.

Some of those processors do not really even have separate instructions for multiply or add: they use hardwired
constants with the fused multiply-add instruction to compute 1 × x + y for addition, and xy + 0 for multiplication.
Most systems have variants to handle xy − z, −xy + z, and −xy − z, so as to avoid the need for separate negation
instructions.

Some embedded graphics processors provide a multiply-add instruction, although it may be restricted to integer
or fixed-point operands. Most mainstream RISC processors have later been extended with video instruction sets,
and some of those extensions include a limited form of multiply-add.

Apart from roughly doubling floating-point performance, what is significant about the fused multiply-add in-
struction is that it computes an exact double-length product xy and then adds z to that result, producing a final
normal-length result with only a single rounding.

Here are three uses of the fused multiply-add instruction that are relevant for this book:

� Compute an exact double-length product with this simple code:

hi = x * y;
lo = fma(x, y, -hi); /* hi + lo = x * y exactly */

The term lo is the recovered error in multiplication.

� Recover the approximate error in division and square root like this:

q = fl(x/y), s = fl(
√

x),

x/y = q + e, x = (s + e)2,

e = x/y − q, = s2 + 2se + e2,

= (−qy + x)/y, e ≈ (−s2 + x)/(2s),
= fma(−q, y, x)/y, ≈ fma(−s, s, x)/(s + s).

The error terms e are accurate, but not exact, because the mathematical operations can produce results with an
unbounded number of digits.

� Reconstruct elementary functions from rational polynomial approximations, by replacing

result = c + x * R; /* R = P(x) / Q(x) */

with

4.17. Fused multiply-add 87

result = fma(x, R, c);

The fused multiply-add operation avoids cancellation errors when the terms of the sum have opposite signs,
and makes a correctly rounded result more likely.

Fused multiply-add instructions have been found to have an amazing variety of important applications: see
Markstein’s book [Mar00] for an extensive discussion of their great utility on IA-64, and Nievergelt’s article [Nie03]
for how the fused multiply-add instruction can be exploited to produce matrix arithmetic provably correct to the
next-to-last bit. Consequently, the 1999 ISO C Standard adds new math-library functions fmaf(x,y,z), fma(x,y,z),
and fmal(x,y,z) to provide programmer access to it. Compilers on architectures that support it in hardware may
generate it by default, or may require a certain optimization level to do so, or alternatively, may need a command-line
option to prevent its use. On IA-64, GNU gcc seems reticent about using fused multiply-add instructions, whereas
Intel icc employs them at every opportunity, even with debug-level compilation.

When hardware support is not available, there seems to be no simple way to implement a correct fused multiply-
add without resorting to multiple-precision arithmetic. Although you can readily split x and y into upper and lower
halves and compute an exact double-length product, it is quite hard to then do the addition of z with only a single
rounding. Thus, library implementations of the fma() family of functions may be slow. We show the mathcw library
code for the fma() functions in Section 13.26 on page 388.

Regrettably, tests show that virtually all GNU/LINUX versions of the fma() routines are incorrect: they compute
the result with the C expression x*y + z, and that is wrong unless the compiler happens to generate a hardware
multiply-add instruction. Whether it does or not depends on optimization flags chosen when the library was built.
POWER systems only have 64-bit fused multiply-add, although PowerPC later added the 32-bit companion. Thus,
even if fma() is correct on IBM AIX systems, fmaf() in the same executable may be correct on one machine, and
wrong on another, and fmal() is just plain wrong. The sad lesson is that the good intents of the ISO C Committee
have been thwarted by faulty implementations of those important library functions.

You can easily see the impact of the exact product by computing xy + z for x = y = 1 + δ and z = −(1 + 2δ).
For sufficiently small δ, the (incorrect) result is zero when computed by an ordinary multiply followed by an add,
whereas with the fused multiply-add, the answer is the mathematically correct δ2.

Here is a demonstration with hoc, which implements fma() correctly on all UNIX platforms, using hardware
when available, and otherwise, using a multiple-precision software package:

hoc> epsilon = macheps(1)
hoc> hexfp(epsilon)

+0x1.0p-52
hoc> delta = sqrt(epsilon)/2
hoc> hexfp(delta)

+0x1.0p-27
hoc> x = y = 1 + delta
hoc> z = -(1 + 2*delta)
hoc> x * y + z

0
hoc> fma(x,y,z)

5.5511151231257827e-17
hoc> hexfp(fma(x,y,z))

+0x1.0p-54
hoc> fma(x,y,z) / delta**2

1

The relevance of the fused multiply-add instruction to elementary-function computation, and indeed, most nu-
merical computation, is that the combination of a multiply followed by an add is common. For example, from the
body of the square-root function in sqrtx.h, the critical steps are

y = FP(0.41731) + FP(0.59016) * f;

followed by repeated application of these two statements:

z = y + f / y;
y = FP(0.25) * z + f / z;

88 Chapter 4. Implementation issues

At the cost of one more multiply, and slightly altered rounding from taking the reciprocal, they could be written as:

y = FMA(FP(0.59016), f, FP(0.41731));
z = FMA(f, FP(1.0) / y, y);
y = FMA(FP(0.25), z, f / z);

4.18 Fused multiply-add and polynomials

Rational polynomial approximations are at the core of algorithms for computing most of the elementary functions,
and the polynomial evaluations are full of multiply-add opportunities. Consider the 〈7/7〉-degree rational approxi-
mation for 116-bit precision in atanx.h:

pg_g = (((((((p[7] * g + p[6]) * g + p[5]) * g + p[4]) * g +
p[3]) * g + p[2]) * g + p[1]) * g + p[0]) * g;

qg = ((((((g[7] * g + q[6]) * g + q[5]) * g + q[4]) * g +
q[3]) * g +q[2]) * g + q[1]) * g + q[0];

With multiply-add wrappers, those statements turn into fourteen nested multiply-adds with only sixteen memory
loads and two stores, producing a 2 : 1 ratio of computation to memory access:

pg_g = FMA(FMA(FMA(FMA(FMA(FMA(FMA(p[7], g, p[6]), g, p[5]),
g, p[4]), g, p[3]), g, p[2]), g, p[1]), g, p[0]) * g;

qg = FMA(FMA(FMA(FMA(FMA(FMA(FMA(g[7], g, q[6]), g, q[5]),
g, q[4]), g, q[3]), g, q[2]), g, q[1]), g, q[0]);

Unlike the cases discussed earlier where additional precision must be prevented, here the extra precision of the fused
multiply-add can be helpful.

To avoid having order-dependent inline polynomial evaluation in the program source code, the polynomials
could be evaluated with code loops like this:

for (pg = p[np], k = np - 1; k >= 0; --k)
pg = pg * g + p[k];

pg_g = pg * g;

for (qg = q[nq], k = nq - 1; k >= 0; --k)
qg = qg * g + q[k];

Loop code with multiply-add wrappers looks like this:

for (pg = p[np], k = np - 1; k >= 0; --k)
pg = FMA(pg, g, p[k]);

pg_g = pg * g;

for (qg = q[nq], k = nq - 1; k >= 0; --k)
qg = FMA(qg, g, q[k]);

Because the loop bounds are compile-time constants, a good optimizing compiler might unroll them to the equivalent
of our explicit inline evaluation, but not all compilers are capable of that optimization.

We could even use an external polynomial-evaluation routine like this:

pg_g = POLY(p, np, g) * g;
qg = POLY(q, nq, g);

However, loops and function calls entail additional overhead that is avoided on all platforms by inline evaluation,
and that is important because the speed of the elementary functions is sometimes the limiting factor in inner loops
of numerically intensive programs.

4.19. Significance loss 89

The practice adopted in the mathcw library is to code the polynomial evaluations as macros that can be defined
to expand to inline code, or to calls to multiply-add macros. Those macros in turn can be either expanded inline,
or to calls to the C99-style fma(x,y,z) functions, which smart compilers can turn into single fused multiply-add
instructions on systems that have them. Thus, for the 〈7/7〉-degree rational approximation in atanx.h, the actual
code reads

pg_g = POLY_P(p, g) * g;
qg = POLY_Q(q, g);

The two macros hide the polynomial degrees, which are hidden in their definitions in atan.h. That code in turn is
macro-expanded to efficient inline code. That is shorter and clearer than the expanded form shown earlier, and for
hand coding, is more likely to be correct. To eliminate human error, the data and code for all of the new polynomial
evaluations used in the mathcw library are generated by a Maple program, and then copied into the source code
verbatim.

Perhaps surprisingly, it is possible to rearrange and refactor polynomials of degree five or higher to reduce oper-
ation counts. Knuth [Knu97, pages 490ff] shows that a fourth-order polynomial can be evaluated in three multiplies
and five adds, instead of four of each, and a sixth-order polynomial can be handled with four multiplies and seven
adds, instead of six of each. For general order-n polynomials, n/2� + 2 (see Section 6.7 on page 136) multiplies
and n adds suffice. However, the rearrangement may change the numerical stability, because the new coefficients
may have mixed signs when the original ones all had like signs. In addition, the new coefficients depend on the
roots of the polynomial, and it may be difficult to find those roots with sufficient accuracy unless higher-precision
computation is available.

We have therefore chosen to retain the simple Horner form in the mathcw library, wrapped inside invocations of
the POLY_n() macros.

The reliability of Horner’s rule computation has been the subject of recent research [HPW90, Pri92, BD03b, BD04,
GLL05, SW05, GLL06, BH07, LL07, RBJ16]. Inaccuracies arise mainly near zeros of the polynomial, and our use of
minimax polynomial fits in the mathcw library avoids those regions.

4.19 Significance loss

When two similar numbers of the same sign are subtracted, many leading digits can be lost, and the effective pre-
cision of the result may be sharply reduced. In the worst case, that lowered precision can contaminate subsequent
computations so badly that they become inaccurate, or even worthless.

Just when does significance loss occur? In binary arithmetic, it happens whenever the difference of two numbers
loses one or more leading bits in the subtraction, and that can happen only if the ratio of the absolute value of
the difference to the larger of the absolute values of the two numbers is less than or equal to 1/2. That is, we get
subtraction loss in x − y if |x − y|/ max(|x|, |y|) ≤ 1/2. More generally, for arbitrary base β, there is definitely
subtraction loss if |x − y|/ max(|x|, |y|) ≤ 1/β. However, when β > 2, subtraction loss is also possible for larger
ratios: the example in decimal arithmetic of x = 0.1999 . . . and y = 0.1000 . . . shows that ratios up to 1/2 can
sometimes result in subtraction loss.

Significance loss from subtractions is unfortunately common, often unnoticed, and generally a much larger source
of computational error in numerical programs than is cumulative rounding error. Programmers always need to be
alert for the possibility of significance loss, and take steps to reduce it, or prevent it entirely.

Sometimes significance loss can only be avoided by computing in higher precision, and that is an important rea-
son why such precision needs to be easily, and cheaply, available; sadly, that is rarely the case in most programming
languages.

In other cases, however, including several that we treat in this book, it is possible to rearrange the computation
so that part of the subtraction can be done analytically, and thus, exactly, so that what is finally computed can then
be much more accurate.

4.20 Error handling and reporting

Library designers must decide how to handle errors, whether they arise from erroneous user-provided arguments,
or because the computation cannot produce a valid result.

90 Chapter 4. Implementation issues

Some languages, such as C++, C#, Java, Lisp, and some symbolic-algebra systems, provide support for try, catch,
and throw statements. For example, a fragment of a C# program for investigating the limits and behavior of integer
arithmetic looks like this:

int k, n;

n = 0;
k = 1;

try
{

while (k > 0)
{

Console.WriteLine("2**(" + n + ") = " + k);
n++;
checked { k *= 2; }

}
}
catch (System.OverflowException)
{

Console.WriteLine("OverflowException caught: k = " + k);
}

The try block of the code attempts repeated doubling of k, reporting powers of two at each iteration. As we discuss
in Section 4.10 on page 72, generation of integer results that are too big to represent is normally not caught, but
that language has a checked statement that enforces detection of numeric errors. When the result can no longer be
represented, the compiler-generated code throws an exception that is then caught by the first catch block in the call
history with a matching exception type. Here, that block immediately follows the try block, and the code reports
the exception with a message

OverflowException caught: k = 1073741824

and execution then continues normally. From the output, we can conclude that the largest representable signed
integer is less than twice the last value of k; in fact, it is exactly 2k − 1 = 2 147 483 647 = 231 − 1. That corresponds to
a 32-bit int type, which C# mandates.

In such languages, there is a default catch block in the startup code that calls the user’s main() program. That
block fields any uncaught exception, reports it, and terminates the job. For example, if the try statement and its
companion catch block are commented out and the program is compiled and run, the output looks like this:

2**(0) = 1
2**(1) = 2
...
2**(29) = 536870912
2**(30) = 1073741824

Unhandled Exception: System.OverflowException: Number overflow.
in <0x003f7> IntOfl:Main ()

The motivation for that style of error handling is that it guarantees that uncaught errors are always reported, even
though that means terminating the job prematurely, and risking other possibly severe problems, such as an incom-
plete database transaction.

The C language, however, lacks the try/throw/catch style of error handling. Instead, it provides two similar
mechanisms, the signal and long jump facilities.

The first of those is supported by the standard header file, <signal.h>, and the raise() and signal() functions.
The operating system, or the run-time library, maintains a process-specific block of signal handlers for each defined
exception type, and when a named exception is signaled by a call to raise(), the last-registered handler for that
particular signal name is called. Handlers may be user defined, or provided by default, but it is usually not feasible
for them to do much more than report the error and terminate the job. Because it is possible on some systems for

4.20. Error handling and reporting 91

signals to be lost, they do not provide a reliable communication mechanism without further programming. Although
the signal feature appears simple, in practice, it is a complex topic that needs a large book chapter to treat properly
[SR05, Chapter 10].

The second is supplied by <setjmp.h>, and the functions longjmp() and setjmp(). The setjmp() function saves
the current calling environment in a user-provided argument, and a later call to longjmp() with that argument
returns control to the statement following the setjmp(), bypassing all of the intervening functions in the call history.
Interactive programming-language interpreters, and text editors, normally use that facility to catch error conditions,
report them, and continue execution at top level.

All three of those styles of exception handling require considerable programming care to minimize data cor-
ruption. For example, an exception that is thrown between the allocation and freeing of a dynamic memory block
results in a memory leak: a memory block is left allocated, but can no longer be used. If the memory allocator sup-
ports run-time garbage collection, then it may be possible to recover the lost block sometime later. Otherwise, as more
such exceptions are thrown and caught, the memory requirements of the running process continue to grow, and
eventually, it may run out of resources. That problem is commonly seen in long-running programs, such as desktop
window managers, document viewers, operating-system service daemons, text editors, and Web browsers, and is
evidently difficult to solve in complex software systems.

Older Fortran language standards provide nothing comparable to those error-handling facilities, so functions and
subroutines in libraries for that language often include additional arguments that, on return, are set to status values
that record success or failure.

The designers of the C run-time library take a simpler approach that avoids both run-time exception handling for
error reporting, and additional error-flag arguments. Instead, exceptional conditions are reported via the function
return value (such as the largest representable value, when the true result is bigger than that), and possibly in a
global error value, errno.

The name errno may be either a variable of type int, or a dereferenced pointer from a function that returns a
pointer to an int. For that reason, it should never be declared by user code, but instead be expected to be supplied
by <errno.h>. Before C89, some systems supplied a definition of errno in that file, whereas others did not, so it
was common for code to include a declaration extern int errno;, but that fatally conflicts with the declaration on
a system that uses a dereferenced pointer. Code that is expected to run on older systems may have to deal with that
aberration, and for that reason, it is a good idea in portable code never to include <errno.h> directly, but instead
provide access to it via a private wrapper header file that can clean up any system-dependent mess.

The header file <errno.h> also defines dozens of error-code macros to represent library errors. Each begins with
the letter E and has a distinct, positive, nonzero, and small, integer value. The standard way for library functions to
record an error condition is to set errno to one of those values.

Standard C mandates support for only three error codes:

EDOM domain error: an argument is outside the range for which the mathematical function is defined;

EILSEQ illegal sequence [C99 only]: an invalid or incomplete byte sequence is detected in a character string with
multibyte or wide-character encoding;

ERANGE range error: the mathematical function value is not representable in the host arithmetic.

All of the other error symbols defined in <errno.h> are available to user code, and to code in other libraries that
interface to the filesystem, networks, operating system, window system, and so on, but they are never used by the
Standard C library. Their use may be an impediment to portability, but because they are guaranteed to be macros,
their code can be guarded with suitable preprocessor conditionals.

User programs can set errno to zero before calling a library function, and then test it for a nonzero value on return
from that function. Library code never sets errno to zero, and never references it unless errors are detected. Thus,
errno is a sticky flag that records only its most-recently assigned value.

The C Standards require that errno be set to ERANGE if the exact mathematical result is too big to represent. The
function then should return a value of the largest representable magnitude, with the same sign as the correct result.
However, if the value is too small to represent, then a zero value is returned, but the implementation may optionally
set errno to ERANGE. Programs therefore cannot rely on errno being set when a zero is returned.

The largest representable floating-point value is problematic. C89 recommends use of the macro HUGE_VAL, which
is defined in <math.h>. It is a positive compile-time constant expression whose value is of type double. Older systems
may not supply such a value, or may give it a different name, such as HUGE. However, many vendors added support

92 Chapter 4. Implementation issues

for float and long double data types and library functions before they were officially recognized by C99, and
because the ranges of those types generally differ from that of double, a single definition of the largest representable
value is no longer adequate. C99 therefore adds HUGE_VALF and HUGE_VALL for the two extra limits. It allows the three
values to be positive infinities if the arithmetic supports such values, but does not require their use: an implementor
may set them to the largest finite values instead. A test program to display those values looks like this:

% cat huge.c
#include <stdio.h>
#include <stdlib.h>
#include <math.h>

int
main(void)
{

(void)printf("HUGE_VAL = %g\n", HUGE_VAL);

#if defined(HUGE_VALF)
(void)printf("HUGE_VALF = %g\n", (double)HUGE_VAL);

#endif

#if defined(HUGE_VALL)
(void)printf("HUGE_VALL = %Lg\n", HUGE_VALL);

#endif

return (EXIT_SUCCESS);
}

% cc huge.c && ./a.out
HUGE_VAL = Inf
HUGE_VALF = Inf
HUGE_VALL = Inf

When that program is run on the systems in this author’s test laboratory, it reports infinities on all but one (MINIX
on IA-32), where it reports the largest finite number. Some systems require a C99 compilation environment to expose
the float and long double constants, some do not have them at all, and a few others have them in the normal C
environment.

When a nondefault rounding mode, such as round-to-zero, is in effect, then an overflowed, but mathematically
finite, result should be returned as the largest finite number, rather than Infinity. The use of the HUGE_VAL constants is
then clearly wrong, but Standard C does not cater to that possibility. That point is relevant for functions, like exp(x),
that have cutoffs outside of which the function overflows or underflows. To conform to the current rounding mode,
and properly set the sticky floating-point exception flags, for finite arguments outside the interval defined by the
cutoffs, the computed value should be a run-time computation of an explicit overflow or underflow, such as with
code like this:

else if (x < UFL_CUTOFF)
{

volatile fp_t tiny;

tiny = FP_T_MIN;
STORE(&tiny);
result = SET_ERANGE(tiny * tiny);

}
else if (OFL_CUTOFF < x)
{

#if defined(HAVE_IEEE_754)
volatile fp_t big;

4.21. Interpreting error codes 93

big = FP_T_MAX;
STORE(&big);
result = SET_ERANGE(big * big);

#else
result = SET_ERANGE(FP_T_MAX);

#endif

}

To prevent premature underflow to zero, the algorithm should be designed to permit subnormal function results
to be generated. Whether subnormals are supported or not may depend on the CPU architecture and model, the
operating system, compilation options, and even on run-time library settings (see Section 4.12 on page 78), so it is
not in general possible to decide between subnormals and abrupt underflow when the library is built. The limit
UFL_CUTOFF should be set to the x value for which exp(x) is below half the smallest subnormal number, thereby
accounting for default rounding. That means that the subnormal region is handled together with the normal region
later in the code, and that code block should then check for a result that is smaller than FP_T_MIN, and if so, and the
library design goal is to report underflows via errno, record a domain error.

4.21 Interpreting error codes

The values of the error macros are system dependent, but the call to the C89 function strerror(number) returns a
pointer to a short message string that describes the error. That function is declared in <string.h>. Here is how it can
be used:

% cat strerr.c
#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int
main(void)
{

(void)printf("%-6s -> %s\n", "EDOM", strerror(EDOM));
(void)printf("%-6s -> %s\n", "EILSEQ", strerror(EILSEQ));
(void)printf("%-6s -> %s\n", "ERANGE", strerror(ERANGE));

return (EXIT_SUCCESS);
}

% cc strerr.c && ./a.out
EDOM -> Argument out of domain
EILSEQ -> Illegal byte sequence
ERANGE -> Result too large

Although most systems report for ERANGE something like Result too large, on GNU/LINUX systems, we find
Numerical result out of range, suggesting that both underflow and overflow limits may be considered when
errno is set.

Alternatively, an older mechanism from historical C, and still supported by C89 and C99, can be used. A call to
perror("msg") outputs its argument string to the standard error unit, followed by a colon, a space, a short descrip-
tion of the error currently recorded in errno, and a newline. The perror() function is declared in <stdio.h>. Here
is an example:

% cat perror.c
#include <errno.h>
#include <limits.h>
#include <math.h>

94 Chapter 4. Implementation issues

#include <stdio.h>
#include <stdlib.h>

int
main(void)
{

errno = -1; perror("errno == -1 means");
errno = 0; perror("errno == 0 means");
errno = EDOM; perror("errno == EDOM means");
errno = INT_MAX; perror("errno == INT_MAX means");

return (EXIT_SUCCESS);
}

% cc perror.c && ./a.out
errno == -1 means: Unknown error
errno == 0 means: Error 0
errno == EDOM means: Argument out of domain
errno == INT_MAX means: Unknown error

Explicit access to the error-description strings is provided by some systems via a global error-number index limit,
and a companion array of strings, that can be declared like this:

extern int sys_nerr;
extern char * sys_errlist[];

However, the programmer can never be sure whether a particular system provides those definitions in <errno.h>, or
in <stdio.h>, or in some other header file, or perhaps not at all. Some systems supply a const qualifier on the string
table declaration, which then conflicts with the conventional declaration. The sys_nerr and sys_errlist features
should therefore be scrupulously avoided in favor of strerror(). If an older system lacks that function, just supply a
private definition that uses that system’s version of sys_nerr and sys_errlist, or provides its own system-specific
definitions.

4.22 C99 changes to error reporting

C99 introduces a new feature in <math.h> that is not yet widely supported at the time of writing this: the macros
math_errhandling, MATH_ERRNO, and MATH_ERREXCEPT. The first may expand to an integer constant, or to a global int
variable, or to a dereferenced pointer from a function. The value of math_errhandling is either of the second or third
macros, or their bitwise-OR. When a domain error is detected, the function should then set errno to EDOM only if
math_errhandling & MATH_ERRNO is nonzero. If math_errhandling & MATH_ERREXCEPT is nonzero, then the invalid
floating-point exception should be raised. Here is a test program to investigate current practice:

% cat mtherr.c
#include <stdio.h>
#include <stdlib.h>
#include <math.h>

int
main(void)
{

#if defined(math_errhandling) && \
defined(MATH_ERREXCEPT) && \
defined(MATH_ERRNO)

(void)printf("C99 math_errhandling = %d\n", math_errhandling);
(void)printf("C99 MATH_ERRNO = %d\n", MATH_ERRNO);

4.23. Error reporting with threads 95

(void)printf("C99 MATH_ERREXCEPT = %d\n", MATH_ERREXCEPT);

#else

(void)printf("No support for C99 math_errhandling facility\n");

#endif

return (EXIT_SUCCESS);
}

On most systems:
% cc mtherr.c && ./a.out
No support for C99 math_errhandling facility

On a few systems:
% cc mtherr.c && ./a.out
C99 math_errhandling = 2
C99 MATH_ERRNO = 1
C99 MATH_ERREXCEPT = 2

The systems that report such support produce identical output, with the surprising result that errno would appar-
ently not be set for domain errors, deviating from decades-long practice!

Because the mathcw library conceals all access to errno in macros, we can easily support the C99 extension with
an alternate definition:

#define SET_EDOM(val) ((math_errhandling & MATH_ERRNO) && errno = EDOM, val)

We have not implemented that change, because it would prevent the setting of errno on some systems, and because,
in this author’s view, the designers of those systems have made an incorrect, and undesirable, implementation choice
that is likely to cause knowledgeable users to complain. Indeed, that new feature of C99 seems to have questionable
value for a language as mature and widely used as C is.

4.23 Error reporting with threads

Global variables are not reliable in the presence of multiple execution threads, a topic that we discuss later in Sec-
tion 5.3 on page 106. For example, one thread might clear errno immediately before calling a library function, and
then test errno on return. Even if that function does not set errno, it is possible that a function called in another
thread does set it, with the result that the first thread might wrongly change its execution behavior. Access to a
global variable in a multithreaded environment requires a locking mechanism to permit only one thread at a time to
access the variable, and there is no provision in Standard C for creating such a lock.

Tests on numerous modern systems at the time of writing this show that errno is thread-safe on most, because it
expands to a call to a thread-local function, but some compilers may require special options to ensure that choice.

To improve throughput and reduce chip heating, some time after the year 2000, vendors began to design and
manufacture CPUs that are split into multiple subunits, called cores. Each core may itself be capable of running
multiple threads, so multiple CPUs, multiple cores, and multiple threads are now a reality, even on small personal
computers. When threading is enabled, getting reliable behavior in languages that have freely accessible global
variables is likely to remain a challenging problem, and C programmers should therefore be cautious about relying
on the value of errno.

4.24 Comments on error reporting

The ambiguity of the meaning of HUGE_VAL and its companions is a nuisance for both library designers, and for users.
In addition, the C Standards do not entirely address the behavior of IEEE 754 arithmetic, in that return of the constant

96 Chapter 4. Implementation issues

HUGE_VAL does not set exception flags, whereas computation that actually produced such a value would set them. The
handling of NaN arguments and NaN results is not clearly specified either.

The uniform approach adopted in the mathcw library is normally to check for Infinity, NaN, and out-of-range
and special arguments first, with code like this fragment from the square-root function in sqrtx.h:

if (ISNAN(x))
result = SET_EDOM(x);

else if (x < ZERO)
result = SET_EDOM(QNAN(""));

else if (ISINF(x))
result = SET_ERANGE(x);

else if (x == ZERO)
result = x; /* preserve sign of zero, so sqrt(-0) = -0 */

The SET_Exxx() macros conceal errno, and are defined in a private header file, seterr.h, with C comma expressions
like this:

#define SET_EDOM(val) (errno = EDOM, val)
#define SET_ERANGE(val) (errno = ERANGE, val)

There are several effects of that design choice:

� For an argument NaN, errno is set to EDOM, and the NaN is returned unchanged. That preserves its quiet/
signaling status, and its significand payload, both of which may be of use to the caller. It does not set sticky
floating-point exception flags.

That is analogous to the handling of a quiet NaNs IEEE 754 arithmetic operations, as described in Section 4.14
on page 79, but differs from the behavior of those operations with a signaling NaN.

� A negative argument is outside the domain of the square-root function in real arithmetic, so the code sets errno
to EDOM and returns a quiet NaN that is generated at run time by our extended function family provided by the
QNAN() wrapper macro. The NaN has a unique payload that changes with each call to QNAN(), although it is
possible to run out of payload bits, and wrap around to the initial payload. Thus, our implementation always
sets sticky floating-point exception flags.

� For a positive infinite argument, the code sets errno to ERANGE, and returns that argument, without setting sticky
exception flags. That too follows the behavior of IEEE 754 arithmetic operations.

� For that particular function, because IEEE 754 requires that
√−0 evaluate to −0, the code returns a zero argu-

ment unchanged, thereby preserving its sign.

4.25 Testing function implementations

The ELEFUNT package uses two basic techniques for generating test function values: rapidly convergent Taylor
series for small arguments, and function addition relations. We can illustrate that for the function atanh(x), sketched
later in Figure 12.6 on page 350, and defined only when the argument x is restricted to the range [−1,+1]. That
function has a simple Taylor series

atanh(x) = x + (1/3)x3 + (1/5)x5 + · · ·+ (1/(2n + 1))x2n+1 + · · ·
= x(((((· · ·+ (1/9))x2 + (1/7))x2 + (1/5))x2 + (1/3))x2 + 1),

and this addition formula:

atanh(x)± atanh(y) = atanh
(

x ± y
1 ± xy

)
.

If those equations are used for comparison with results generated by an implementation of atanh(), then it
is essential to minimize errors in their computation. Errors arise in argument generation, term summation, and
function evaluation.

4.25. Testing function implementations 97

4.25.1 Taylor-series evaluation

We see from the nested Horner form of the Taylor series for atanh(x) that reciprocals of odd numbers and multipli-
cation by x2 are the key components.

For small |x|, the Taylor series converges rapidly and the Horner form sums the terms in the desirable order of
smallest to largest. Because x2 ≥ 0 and all coefficients are positive, there is no possibility of subtraction loss in the
summation.

The accuracy of the Taylor series can be improved in two ways: limiting the number of terms required by restrict-
ing the range of x, and reducing, or eliminating, the error in each term.

For example, if we truncate the inner series after (1/9)x8, then because the series begins with one, the first term
omitted, (1/11)x10, must be smaller than the rounding error. That error is half the machine epsilon, ε = β−(t−1), for
base β and a t-digit significand. We then pick a simple form of the cutoff, x = β−n, where n is to be determined, so
that we have

(1/11)x10 = (1/11)β−10n

< β−(t−1)/2,

β−10n < (11/2)β−(t−1),

β−10n+t−1 < 11/2,
(−10n + t − 1) log(β) < log(11/2).

We can then easily solve for n:
n > (t − 1 − log(11/2)/ log(β))/10.

For extended IEEE 754 binary arithmetic, we can use n = 3, 5, 7, 11, and 24, respectively, for the five significand
precisions (t = 24, 53, 64, 113, and 237). For decimal arithmetic, we find n = 1, 2, 4, and 7 for the four significand
precisions (t = 7, 16, 34, and 70).

Thus, in IEEE 754 32-bit binary arithmetic, we can use the five-term truncated Taylor series for test arguments
x in [−2−3,+2−3] = [−0.125,+0.125], and in single-precision decimal arithmetic, for test arguments x in [−10−1,
+10−1] = [−0.1,+0.1].

We can remove the rounding errors from the inexact coefficient divisions by factoring out the product 3× 5× 7×
9 = 945, rewriting the truncated Taylor series with exactly representable coefficients as:

atanh(x) ≈ (1/945)(945 + 315x2 + 189x4 + 135x6 + 105x8)x

≈ x + (x/945)(315x2 + 189x4 + 135x6 + 105x8).

The second form avoids contaminating the first term with three rounding errors, and the remaining terms then
provide a small correction to an exact result.

Because the number of bits required grows with the powers of x, each term of the truncated Taylor series is exact
if we can choose test arguments x to make the last term, 105x9, exact. Unfortunately, that is not achievable: the
constant 105 needs seven bits, and x9 needs nine times as many bits as there are in x. With t = 24, that only permits
one bit in x, and even with t = 113, we can have only 11 bits in x. Because we want to be able to test with a large
number of different randomly chosen x values, we cannot accept such a restriction. Instead, we can ask that the first
two terms, which are the larger ones in the series, be exact: the coefficient 315 needs nine bits, leaving us seven bits
for x when t = 24, and 22 or more bits for x when t ≥ 53. Seven bits gives only 27 = 128 different x values, so for
single precision, at least, that is too severe a restriction.

One reasonable solution is to compute the Taylor series in at least double precision, because that is almost always
available on desktop and larger computers. Otherwise, we have to give up on the refinement of limiting the precision
of test arguments in the Taylor series in single-precision computation.

4.25.2 Argument purification

The considerations of the last section lead to the question: how do we purify a random test argument x to reduce the
number of bits in its significand?

98 Chapter 4. Implementation issues

One obvious way would be to use bit-masking operations to clear low-order bits in the significand, but that has
a serious portability problem, because it requires knowledge of the machine-dependent storage representation of
floating-point numbers.

Fortunately, there is a much better way that is easier, faster, and completely portable: simply add and subtract a
suitable large number. For example, to clear the bottom two digits of x in [0, 1) in a six-digit decimal system, we
have x = 0.dddddd, so 10 + x = 10.dddd has lost the bottom two digits, and (10 + x)− 10 = 0.dddd is the desired
result. That technique of argument purification is used extensively in ELEFUNT.

Exact preservation of all but the low-order bits requires that the subtraction and addition be done in round-to-zero
(truncating) arithmetic. However, for argument purification, we can use any rounding mode, because the goal is
merely to obtain a result with a reduced number of significant bits.

4.25.3 Addition-rule evaluation

In the addition formula for atanh(x), we have two choices of sign:

atanh(x) =

⎧⎪⎪⎨
⎪⎪⎩

− atanh(y) + atanh
(

x + y
1 + xy

)
,

+ atanh(y) + atanh
(

x − y
1 − xy

)
.

When x ≥ 0, atanh(x) > 0, so if we pick y > 0 in the first of those, there could be subtraction loss in the sum of the
function values. If we use the second, then both functions are positive, but there can be subtraction loss in forming
the second argument. We also have the problem of argument purification: for any particular choice of y, we want
both x − y and 1− xy to be computed exactly. For a fixed y, the value atanh(y) is a constant that we can precompute,
and for improved accuracy, represent as a sum of an exact term and an approximate correction. In addition, we
require y to be exactly representable.

Because of the division in the function argument, we cannot guarantee that it is exact, but at least the other
possible sources of error in the argument have been eliminated. Addition rules for most of the other elementary
functions are simpler than that for atanh(x), and for all of the functions treated by Cody and Waite, they are able to
guarantee exact arguments in the ELEFUNT tests.

For the moment, assume the common case of binary arithmetic, and let y = 2−n = 1/N, where the integer n
satisfies n > 0. Then the second form of the addition rule says:

atanh(x) = atanh(1/N) + atanh
(

x − 1/N
1 − x/N

)

= atanh(1/N) + atanh
(

Nx − 1
N − x

)
.

Because x and y are limited to the range [−1,+1], and because N ≥ 2, the denominator N − x cannot suffer
subtraction loss, because

|N − y|/ max(|N|, |x|) = |N − y|/N
= |1 − y/N|
> 1 − 1/N
> 1/2,

where the last result holds only if we also ensure that N > 2.
The numerator is free of subtraction loss only if x is negative, or if (|x| − 1/N)/ max(|x|, 1/N) > 1/2. We have

already seen that the truncated Taylor series is optimal for small x, so we only need the addition rule for larger
values. In particular, if we choose 1/N at the Taylor-series cutoff, then we only need |x| values in [1/N, 1], and there
is then no subtraction loss if (|x| − 1/N)/|x| > (1/2), which we can rewrite as the condition |x| > 2/N. Thus, to
cover the complete range of x, we should revise our choice of 1/N to half the Taylor-series cutoff. Any larger value
of N is also acceptable, because that just extends the addition-rule range to overlap into the Taylor-series range.

For IEEE 754 binary arithmetic, using half the Taylor-series cutoffs, we have n = 3, 6, 7, and 12. For decimal
arithmetic, we need |x| > 10/N, or 1/N values that are a tenth of the Taylor-series cutoffs: n = 2, 3, and 5. In

4.25. Testing function implementations 99

particular, for single-precision binary arithmetic, n = 3 means N = 2n = 8. For the other three precisions, we have
N = 64, 128, and 4096. Similarly, for the three precisions of decimal arithmetic, we have N = 100, 1000, and 100000.
Argument purification is then achieved by adding and subtracting N from x.

We would prefer for the test program to be portable, and be usable for all practical precisions, so that only two
precomputed values of atanh(y) are needed: one for decimal arithmetic, and one for binary arithmetic. That means
that we should use the largest N values, with stored values of atanh(1/4096) and atanh(1/100000). Unfortunately,
that is a problem for single-precision decimal, where t = 7: we require six digits for N, leaving only one free digit
after argument purification. The requirements of a large N to shorten the Taylor series and avoid subtraction loss in
the addition rule conflict with the need to have many possible random arguments. Consequently, the ELEFUNT-style
test code in tatanh.c has three separate choices of N for each of binary and decimal.

4.25.4 Relative error computation

Each program in the ELEFUNT package computes the relative error of the test function compared to a carefully
computed ‘exact’ value, using purified random arguments in each of several test intervals. The programs produce
separate results for each test interval, reporting the number of times the test function was less than, equal to, or
greater than the ‘exact’ value, along with the largest absolute relative error, and the root-mean-square relative error.
The base-2 logarithm of the relative errors is then added to the precision to determine the number of bits lost.

A fragment of the report for the exponential function on a Sun Microsystems SOLARIS SPARC system with 128-bit
IEEE 754 arithmetic looks something like this:

TEST OF EXP(X- 2.8125) VS EXP(X)/EXP(2.8125)

2000 RANDOM ARGUMENTS WERE TESTED FROM THE INTERVAL
(-3.4657e+00, -1.1275e+04)

EXP(X-V) WAS LARGER 361 TIMES,
AGREED 1304 TIMES, AND

WAS SMALLER 335 TIMES.

THERE ARE 113 BASE 2 SIGNIFICANT DIGITS IN A FLOATING-POINT NUMBER

THE MAXIMUM RELATIVE ERROR OF 5.6809e-34 = 2 **-110.44
OCCURRED FOR X = -8.268208e+03

THE ESTIMATED LOSS OF BASE 2 SIGNIFICANT DIGITS IS 2.56

THE ROOT MEAN SQUARE RELATIVE ERROR WAS 8.6872e-35 = 2 **-113.15
THE ESTIMATED LOSS OF BASE 2 SIGNIFICANT DIGITS IS 0.00

The output is entirely in upper case, because that was the only portable choice when the ELEFUNT Fortran code was
written. This author’s C and Java translations (described later in Chapter 22 on page 763) of the ELEFUNT package
retain the same output format to facilitate comparing results with those from the Fortran version.

The original ELEFUNT code that computes the relative error looks like this:

W = ONE
IF (ZZ .NE. ZERO) W = (Z - ZZ) / ZZ

Here, ZZ is the ‘exact’ value, Z is the approximate value, and W is the relative error. Although that looks simple and
straightforward, it conceals two nasty bugs that turned up only after extensive testing.

The first bug was found when the number of tests was increased beyond the default. For some of the elementary
functions, it is possible to have Z = 0 and also ZZ = 0. When Z and ZZ are equal, the relative error is exactly zero, and
the initialization needs to be readjusted:

W = ONE
IF (Z .EQ. ZZ) W = ZERO
IF (ZZ .NE. ZERO) W = (Z - ZZ) / ZZ

That can be expressed more succinctly in C as

100 Chapter 4. Implementation issues

w = (z == zz) ? ZERO : ((zz == ZERO) ? ONE : (z - zz) / zz);

The second bug surfaced when new test programs were written to handle functions not covered by the original
ELEFUNT code, and in particular, when test regions for erf(x) and erfc(x) were chosen to examine their behavior
for subnormal results. Subnormals have one or more leading zero bits in their significands, and thus, have lower
precision than normal numbers. Because the relative error leads to a bit-loss determination, the lowered precision
needs to be taken into account. Consider, for example, what happens when zz is the smallest subnormal number
(hexadecimal 0000_0001 in the internal encoding of IEEE 754 32-bit arithmetic, or +0x1.0p-149 in C99-style hexa-
decimal encoding), and z is the next larger subnormal (hexadecimal 0000_0002). The ELEFUNT code then reports a
relative error of (2− 1)/1 = 1, and the bit loss is reported to be 24− log2(1) = 24. However, we really have not ‘lost’
24 bits: the two values are actually close, differing only in a single bit.

If both zz and z are positive, and zz is subnormal, then a better estimate of the relative error is (z - zz) / MAX-
SUBNORMAL, where MAXSUBNORMAL is the largest subnormal floating-point number. Let’s see why that is an improve-
ment. Consider first the case zz == MAXSUBNORMAL, and z subnormal and close to, but different from, that value. The
computed value is then close to (z - MAXSUBNORMAL) / MAXSUBNORMAL, which lies in [−1,+1], as expected for a rela-
tive error. Next, consider the case zz == MINSUBNORMAL: the computation is then roughly (z - zz) / MAXSUBNORMAL,
which reaches a maximum of almost 1.0 when z == MAXSUBNORMAL, and has a minimum of 0 when z == zz. That
case also lies in [−1,+1]. In practice, we can use MINNORMAL in place of the nearby MAXSUBNORMAL, because the former
is more readily available in ELEFUNT as the value xmin, and in C/C++ as one of FLT_MIN, DBL_MIN, or LDBL_MIN from
<float.h>.

Java’s Float.MIN_VALUE is not suitable: it corresponds to MINSUBNORMAL. Java is deficient in its failure to provide
standard named constants for the minimum normal floating-point number in each precision, but because its arith-
metic is guaranteed to be a subset of IEEE 754 arithmetic, portable definitions are easily supplied.

C# has similar deficiencies, but makes them worse with confusing and nonstandard names. In C#, the value
Single.MinValue is the negative number of largest magnitude, whereas Single.Epsilon is the minimum positive
subnormal number. There are no Single structure members for the machine epsilon, or the smallest normal number,
but because the arithmetic is a subset of IEEE 754 arithmetic, portable definitions can be readily provided.

4.26 Extended data types on Hewlett–Packard HP-UX IA-64

As the co-developer (with Intel) of the IA-64 architecture, Hewlett–Packard might be expected to have special sup-
port for the many interesting features of that platform, about which we say more in Chapter 25.4 on page 824.

The HP-UX IA-64 C compiler is unusual in treating the C long double data type as a 128-bit IEEE 754 type,
rather than the 80-bit type provided by hardware that is normally used for long double on other operating systems
for IA-32 and IA-64 systems. HP-UX is even more unusual in providing access to two additional floating-point data
types in C: they correspond to the 80-bit and 82-bit formats. Those new types are normally not visible unless the
-fpwidetypes compiler option is used, along with inclusion of at least one of <float.h>, <math.h>, or <stdlib.h>.

The 80-bit type is called extended, with constant suffix letter w (or W) instead of l (or L), an I/O specifier of hL
instead of L, and math library functions named with a suffix letter w instead of l. Here is an example of its use to
compute the machine epsilon and its square root:

% cat extended.c
#include <stdio.h>
#include <stdlib.h>

int
main(void)
{

extended x;
int k;

k = 0;
x = 1.0w;

while ((1.0w + x/2.0w) > 1.0w)
k--, x /= 2.0w;

4.27. Extensions for decimal arithmetic 101

(void)printf("extended machine epsilon = %.20hLe = 2**(%d)\n", x, k);
(void)printf("square root thereof = %.20hLe\n", sqrtw(x));

return (EXIT_SUCCESS);
}

% cc -fpwidetypes extended.c && ./a.out
extended machine epsilon = 1.08420217248550443401e-19 = 2**(-63)
square root thereof = 3.29272253991359623327e-10

By contrast, the 128-bit type is available with normal long double programming, but it can also be obtained through
a type synonym called quad, using a constant suffix letter of q (or Q), an I/O specifier of lL, and math-library functions
suffixed with q:

% cat quad.c
#include <stdio.h>
#include <stdlib.h>
#include <math.h>

int
main(void)
{

quad x;
int k;

k = 0;
x = 1.0q;

while ((1.0q + x/2.0q) > 1.0q)
k--, x /= 2.0q;

(void)printf("quad machine epsilon = %.35lLe = 2**(%d)\n", x, k);
(void)printf("square root thereof = %.35lLe\n", sqrtq(x));

return (EXIT_SUCCESS);
}

% cc -fpwidetypes quad.c -lm && ./a.out
quad machine epsilon = 1.92592994438723585305597794258492732e-34 = 2**(-112)
square root thereof = 1.38777878078144567552953958511352539e-17

For portability reasons, there is little need to use the quad style of programming, unless it is important to emphasize
that a 128-bit type is required in place of an 80-bit one. Even so, care would be needed to limit the exposure of
the new suffixes for constants and math library functions, and the new I/O specifiers, because none of them are
recognized by compilers on other architectures, not even HP-UX for PA-RISC, or on other operating systems.

The 82-bit data type corresponding to the IA-64 floating-point register format is called __fpreg: it differs from the
80-bit format only in having two additional bits in the exponent to guard against premature overflow and underflow.
It is not fully supported in C: there is no math library support, no I/O support, and no division. In storage, it occupies
16 bytes (128 bits). In general, it must be converted to other data types for full access.

More information on the IA-64 architecture can be found in Markstein’s book [Mar00].
The design of the mathcw library makes it easy to support the HP-UX extended and quad data types, because the

algorithm implementations are unaware of the floating-point data type, seeing it only as the generic type fp_t. The
new types are just typedef synonyms for implementation-specific types __float80 and __float128 that are always
known to the Hewlett–Packard and GNU C compilers on HP-UX for IA-64, even in the absence of -fpwidetypes
options or the inclusion of system header files. Recent releases of the gcc compiler family support those types on a
few other platforms.

4.27 Extensions for decimal arithmetic

Proposals have been submitted to the ISO C and C++ Committees to add support for decimal floating-point arith-
metic in those languages, and in late 2006, the GNU compiler family offered preliminary support for decimal types

102 Chapter 4. Implementation issues

and the four basic operations of add, subtract, multiply, and divide. However, the required run-time library was
absent, and the debugger was ignorant of decimal types.

Appendix D on page 927 summarizes the main features of the decimal arithmetic system. The Cody/Waite
algorithms are designed to support decimal arithmetic as well as binary arithmetic, and the mathcw library provides
a complete suite of decimal analogues of the binary floating-point function repertoire.

To insulate the mathcw library from changes to the proposals for decimal arithmetic, the suggested names for the
decimal data types are not used directly. Instead, typedef statements define these aliases for the proposed decimal
data types:

decimal_float decimal_double
decimal_long_double decimal_long_long_double

On modern machines, they might correspond to 32-bit, 64-bit, 128-bit, and 256-bit storage formats, respectively. Once
the type names are standardized, then a simple change to four typedef statements in a single header file will make
them conform.

To allow testing on systems lacking support for decimal arithmetic by at least one C or C++ compiler, the decimal
type aliases are normally defined to be binary floating-point types, but when certain compiler-defined macros that
indicate decimal support are recognized, code in the deccw.h header file defines the aliases to be true decimal types.

Library routines for the four decimal data types have names suffixed with df, d, dl, and dll. Thus, the complete
set of prototypes for the square-root functions looks like this:

float sqrtf (float x);
double sqrt (double x);
long double sqrtl (long double x);

extended sqrtw (extended x);
quad sqrtq (quad x);

long_long_double sqrtll (long_long_double x);

decimal_float sqrtdf (decimal_float x);
decimal_double sqrtd (decimal_double x);
decimal_long_double sqrtdl (decimal_long_double x);

decimal_long_long_double sqrtdll (decimal_long_long_double x);

The long_long_double type supports a future octuple-precision type, but until such support is available in compilers,
it is equivalent to the long double type. Its library functions have the suffix ll, and its constants are suffixed LL.

The decimal_long_long_double type is mapped to decimal_long_double until compilers recognize an octuple-
precision decimal type.

Elsewhere in this book, when the computation of particular elementary functions is described, we show the
prototypes only for the three standard floating-point types, float, double, and long double.

Decimal floating-point constants require distinct type suffixes: DF, DD, DL, and DLL. However, no code in the
mathcw package uses those suffixes directly. Instead, the usual wrapper macro for constants, FP(), supplies the
suffix. The decimal_double constant suffix is DD rather than D, because Java usurped the D suffix for the binary
double data type, even though that suffix is never needed, and rarely used. The considerable similarity between
the C, C++, C#, and Java languages mandates avoiding confusion from having the same syntax with quite different
meanings in those languages.

C# has a 128-bit scaled decimal type called decimal, intended primarily for monetary calculations. The C# dec-
imal data type offers a precision of about 28 digits, with an approximate range of [1.0 × 10−28, 7.8 × 1028], but lacks
Infinity, NaN, and subnormals. The exponent range is much too small to be of use for serious numerical floating-
point computation. Arithmetic with the C# decimal type underflows abruptly and silently to zero, throws a run-time
exception on overflow, has only one rounding direction (round to nearest), and lacks sticky exception flags. There is
no standard support for elementary functions of decimal type, not even power or square root, which are presum-
ably needed for interest calculations. Decimal constants are suffixed with M, either for Money, or for deciMal [JPS07,
page 91].

4.28. Further reading 103

Although the C# data type is called decimal, it is actually implemented in binary arithmetic, as demonstrated by
a run-time computation of its base with a standard algorithm [Mal72] as implemented in this function:

static void ShowBase()
{

decimal a, b;
int the_base;

a = 2.0M;

try
{

while ((((a + 1.0M) - a) - 1.0M) == 0.0M)
a += a;

}
catch (System.OverflowException) { }

b = 2.0M;

while (((a + b) - a) == 0.0M)
b += b;

the_base = (int)((a + b) - a);

Console.WriteLine("a = {0} b = {1} base = {2}",
a, b, the_base);

}

Execution of the function produces the output

a = 39614081257132168796771975168 b = 2 base = 2

Future implementations of the decimal type in C# are permitted to migrate to the 128-bit IEEE 754 decimal format
[JPS07, page 168].

The mathcw package provides the proposed standard system header file, <decfloat.h>. That file defines sym-
bolic names for the precisions, the smallest and largest exponents of ten, the machine epsilons, the largest numbers,
and the smallest normalized and subnormal numbers, in the decimal floating-point system. Its contents are summa-
rized in Table D.6 on page 937.

4.28 Further reading

We design the software in this book to work across a broad range of historical, current, and suggested future floating-
point architectures. The wide availability of IEEE 754 arithmetic makes it the most important, and although we
devote the next chapter to a study of more of its features, it is always wise to consider the views of multiple authors.

Two good sources about IEEE 754 arithmetic are Michael Overton’s short monograph Numerical Computing with
IEEE Floating Point Arithmetic [Ove01], and David Goldberg’s widely cited What Every Computer Scientist Should Know
About Floating-Point Arithmetic [Gol91b]. Its bibliography entry in this book points to corrections and commentary
by other authors, and some vendors include it in their online documentation. A revised version appears as an
electronic appendix [Gol02] in one volume of a famous series of books on computer architecture, organization, and
design written by architects John Hennessy and David Patterson [HP90, HP94, HP96, HP97, PH02, HP03, HP04,
PH08, HP12, PH12]. Although those books have appeared in five successive editions, the older ones remain of
interest because they include in-depth studies of important computer architectures, and the selection changes with
new editions. With a few exceptions, those books concentrate on post-1980 designs. Their coverage does not descend
to the circuit level, and they can easily, and usefully, be read by scientists and engineers outside the field of computer
science.

104 Chapter 4. Implementation issues

Software implementations of IEEE 754 arithmetic are described in [Knu99, Chapter MMIX-ARITH] and
[MBdD+10, Chapter 10]. Outlines of hardware implementations of fused multiply-add instructions can be found
in [EL04a, Section 8.5.6] and [MBdD+10, Section 8.5.4].

For older computer systems built before 1980, the best single source is Computer Architecture: Concepts and Evolu-
tion [BB97] by two of the leading architects of the IBM System/360, Gerry Blaauw and Fred Brooks. There is also a
book of selected papers from the early years of computing [Ran82].

Several members of the IEEE 754 design committee wrote technical articles to document the design decisions
behind that arithmetic system [CKP+79, Coo80, Coo81b, CCG+84, Ste84]. John Palmer and Stephen Morse’s book The
8087 Primer [PM84] describes Intel’s 1980 implementation of an early draft of the design. The IEEE 754 Standard was
officially published in 1985 [IEEE85a, IEEE87], augmented for nonbinary bases in the IEEE 854 Standard [ANS87],
and revised in 2008 [IEEE08, ISO11]. That latest specification requires both binary and decimal arithmetic, and a
fused multiply-add operation.

At a more technical level, the proceedings of the IEEE Conference on Computer Arithmetic continue to be a good
source of material from the world’s leading designers in that area. Although we cite only a few of them in this book,
the proceedings volumes, and all of the papers in them, are all documented in an online collection of bibliographic
entries for publications about floating-point arithmetic.3 The most recent prior to the completion of this book is the
23rd conference [MSH+16]. All of the conference papers are available online at a single site.4

Besides those conferences, many accounts of current research in computer arithmetic can be found in the journals
IEEE Micro and the more technical IEEE Transactions on Computers and IEEE Transactions on Circuits and Systems.

There are two volumes of reprints of important historical research papers on the design of computer arithmetic
[Swa90a, Swa90b].

The new Handbook of Floating-Point Arithmetic [MBdD+10] and Modern Computer Arithmetic [BZ11] appeared just
as most of the work on this book was completed, but too late to influence the material in the book.

4.29 Summary

In this chapter, we have discussed several topics that affect how software implements mathematical recipes for the
computation of the elementary functions. The most important topic is error magnification, because it sets the ultimate
mathematical limit on accuracy.

The next most important issue is the behavior of computer arithmetic, both floating-point and integer arithmetic.
The programmer must clearly understand the behavior of floating-point arithmetic in the presence of exceptional
conditions, such as underflow, overflow, and zero divide, and exceptional operands, such as IEEE 754 Infinity and
NaN, and design the code to handle them properly. Neither premature job termination, nor a nonsensical result, is
acceptable.

To write portable software, the programmer must be aware of the characteristics of particular implementations
of computer arithmetic. They include variations in the degree of conformance to the IEEE 754 Standard, such as
the presence or absence of subnormal numbers, one or two kinds of NaN, rounding behavior and mode, and the
handling of signed zeros. They also include the wobbling precision that arises for number bases other than 2 or 10.

Long internal registers and fused multiply-add instructions are often beneficial for numerical software, yet we
sometimes find in this book that we must take steps to prevent their use.

Testing with multiple compilers on the same platform, and on many different platforms, is imperative. Practical
experience shows that NaNs and signed zeros are mishandled by some compilers, so both need special care. Accurate
representation of constants may require that they be coded in rational form with exact numerators and denominators,
where the denominators are powers of the base, or else they must be reconstructed at run time from the sum of an
exact high part and an accurate, but inexact, low part.

The choice of programming language is significant, because some offer only a subset of floating-point types, or
lack access to the floating-point environment, or restrict the arithmetic, as C# and Java do. The operating system
and library implementations on modern machines make the C language the best choice for writing library software
that can be used from many other languages. Nevertheless, the mathcw library code can be used as a reference
implementation from which native code in other languages can be derived, often by a straightforward transcription.

3See http://www.math.utah.edu/pub/tex/bib/index-table-f.html#fparith.
4See http://www.acsel-lab.com/arithmetic/.

5 The floating-point environment

HISTORICALLY, MOST NUMERICAL SOFTWARE HAS BEEN

WRITTEN WITHOUT REGARD TO EXCEPTIONS . . . , AND MANY

PROGRAMMERS HAVE BECOME ACCUSTOMED TO ENVIRONMENTS

IN WHICH EXCEPTIONS CAUSE A PROGRAM TO ABORT IMMEDIATELY.

— SUN MICROSYSTEMS, Numerical Computation Guide (2000).

Prior to the 1999 ISO C Standard, no standard programming language offered a uniform way to access features of the
floating-point environment. Until the advent of IEEE 754 floating-point arithmetic, no such access was even possible,
because almost none of the older floating-point systems have programmable rounding directions or precision con-
trol, and floating-point exceptions are not dealt with by setting programmer-accessible flags, but instead are trapped
by software interrupt handlers that set underflows to zero, and usually terminate the job on overflow or division by
zero.

Some older systems do not even provide the luxury of a run-time fixup, but simply proceed with whatever results
the hardware generated, such as an overflow wrapped to a small number near the underflow limit, an underflow
wrapped to a large number near the overflow limit, and a suppressed zero divide returned as the numerator.

Most higher-level programming languages, including C, are defined so as to be largely independent of the un-
derlying hardware. The sizes of various numerical types are only required to form an ordered hierarchy, and their
range and precision are left unspecified, although helpful information may be available via environmental inquiry
routines, or predefined constants or macros.

The floating-point environment and the software access to it that is described in this chapter is an exception to
this generality, and it is certainly the part of the C99 language that comes closest to the hardware. The widespread
adoption of (most of the features of) a single floating-point system by almost all CPU vendors, and even by a few
programming languages, such as C#, Java, and PostScript, makes it possible to introduce a software interface to the
floating-point environment that is likely to be both useful, and actually used, in practical programs.

Although almost all of the mathcw library can be written without reference to the floating-point environment,
apart from use of constants that define range and precision, environment access is essential in one set of C99 functions
discussed later on page 139.

5.1 IEEE 754 and programming languages

IEEE 754 arithmetic defines four rounding directions, intended to be selectable during execution. Exceptions nor-
mally do not cause software interrupts, but instead are merely recorded in sticky exception flags that, once set,
remain set until explicitly cleared by the programmer.

Some floating-point implementations, notably on the Alpha processor, normally freeze the rounding choice at
compile time, by generating instructions that encode a fixed rounding direction. On the Alpha, it is possible to select
dynamic rounding with additional compiler options, possibly causing a subsequent run-time performance penalty.
Embedded processors may not even implement all four rounding modes. The Java language regrettably offers only
one of them [KD98], and C# inherits the floating-point deficiencies of Java.

The IEEE 754 Standard did not define a complete software interface when it was published in 1985, five years
after the first hardware implementation on the Intel 8087 coprocessor of a draft of the specification. The belief
was that such an interface was language dependent, and thus beyond the scope of a hardware standard. It was
up to language-standards committees, computer vendors, and compiler and library developers to invent suitable
interfaces to the floating-point environment.

Unfortunately, the 1990 ISO C Standard conservatively refuses to acknowledge IEEE 754 arithmetic, despite the
fact that tens of millions of processors implementing it in desktop computers were in world-wide use before the 1990
Standard was issued.

© Springer International Publishing AG 2017
N.H.F. Beebe, The Mathematical-Function Computation
Handbook, DOI 10.1007/978-3-319-64110-2_5

105

106 Chapter 5. The floating-point environment

The 1991 ISO Fortran Standard [BGA90, FTN91, MR90], known as Fortran 90, and its 1997 successor [ABM+97,
ANSI97], known as Fortran 95, similarly fail to acknowledge or support IEEE 754 arithmetic.

The 1998 and 2003 ISO C++ Standards [C++98, C++03a] add minimal support, mostly in the form of features-
inquiry constants in the numeric_limits class.

The 1999 ISO C Standard [C99] is the first international standard to define a uniform interface to most of the
features of IEEE 754 arithmetic.

The 2004 ISO Fortran Standard, known as Fortran 2003, supplies three modules for support of that arithmetic.

5.2 IEEE 754 and the mathcw library

Historically, it has taken at least five years for at least one compiler to conform to an ISO programming-language
standard, and about ten years for such conformance to be widely available from many compilers on many platforms.
The sad truth is that more than three decades will have elapsed from the first implementation of IEEE 754 arithmetic
until Fortran programmers will be able to access all of its features portably.

The lack of precise specifications of a programming interface by the various standards bodies left vendors of
compilers on their own. In the UNIX environment, at least five different and incompatible interfaces have been
offered on various systems. That needless variety strongly discourages access to the floating-point environment,
and impedes development of portable software.

The approach taken in the mathcw library is to provide the C99 interface to IEEE 754 features by implementing
them in terms of whatever support is provided by the underlying operating system. Fortunately, on all UNIX sys-
tems, that has been possible without having to resort to processor-specific assembly language, except for access to
precision control.

Although there are similarities in the handling of the IEEE 754 environment among some of those operating
systems, for clarity and reduction of code clutter, the mathcw library code provides separate implementations of
the C99 interface for each of them. A fallback implementation is provided when the host operating system is not
supported, or does not have IEEE 754 arithmetic. The implementation behaves sensibly, so that code that uses the
C99 routines can function, as long as it is prepared to handle a system that lacks some, or all, of the features of IEEE
754 arithmetic.

5.3 Exceptions and traps

The normal behavior of IEEE 754 floating-point arithmetic when any of the five standard exceptions occur is to record
them in the sticky exception flags and silently continue. That preserves run-time performance and control flow. A
program that needs to detect such exceptions would typically clear the flags before executing a critical code block,
test them on completion of the block, and take remedial action if any are set.

One example of such a situation is using floating-point arithmetic for computations that are believed to be exact,
but occasionally, perhaps due to algorithmic error, or unexpected data, might not be. A multiple-precision arithmetic
package that uses floating-point, rather than integer, coefficients, would almost certainly need to test exception flags,
and particularly, the inexact and underflow flags. Related examples are given later in Section 5.7 on page 112 and
Section 5.10 on page 120.

The IEEE 754 and 854 Standards also allow implementations to provide for exceptions to be caught by a trap
handler, which is a software routine that is invoked when the exception occurs. The routine diagnoses the cause of
the exception, and either terminates the job, or returns a specified value to be used in place of the normal result.
Normally, traps are disabled, but once the trap handler is registered, traps can be enabled and disabled at will.

The trap description in both standards is almost identical; here is what the more-recent IEEE 854 Standard says:

8. Traps
A user should be able to request a trap on any of the five exceptions by specifying a handler for it. He should be able to request
that an existing handler be disabled, saved, or restored. He should also be able to determine whether a specific trap handler for a
designated exception has been enabled. When an exception whose trap is disabled is signaled, it shall be handled in the manner
specified in Section 7 [Exceptions]. When an exception whose trap is enabled is signaled, the execution of the program in which
the exception occurred shall be suspended, the trap handler previously specified by the user shall be activated, and a result, if
specified in Section 7., shall be delivered to it.

5.4. Access to exception flags and rounding control 107

8.1 Trap Handler
A trap handler should have the capabilities of a subroutine that can return a value to be used in lieu of the exceptional operation’s
result; this result is undefined unless delivered by the trap handler. Similarly, the flag(s) corresponding to the exceptions being
signaled with their associated traps enabled may be undefined unless set or reset by the trap handler. When a system traps, the
trap handler invoked should be able to determine the following:

1. Which exception(s) occurred on this operation
2. The kind of operation that was being performed
3. The destination’s precision
4. In overflow, underflow, and inexact exceptions, the correctly rounded result, including information that might not fit in

the destination’s precision
5. In invalid operation and divide by zero exceptions, the operand values

8.2 Precedence
If enabled, the overflow and underflow traps take precedence over a separate inexact trap.

A trap handler is clearly complex, and on modern machines with heavily pipelined (overlapped) operation, its
requirements may be impossible to satisfy. When multiple instructions are in progress, perhaps even in multiple
functional units (adders, multipliers, or dividers), the instruction that caused the exception may not be identifiable,
and the exception might not be registered, forcing the trap, until sometime after the instruction that caused it has
completed. Floating-point exceptions are then called imprecise, and most high-performance computers built since the
late 1960s have that feature.

Threads, also known as lightweight processes, are separate instances of control flow through the same program
in the same address space, and sharing the same global variables. Traps are difficult to handle correctly in multi-
threaded programs, because the library support for traps is rarely generalized to handle thread-specific traps. If only
global traps are available, then registering, enabling, and disabling them requires threads to be able to restrict access
to the trap data structures during updates to the data. However, those data structures are usually inside run-time
libraries or even the operating-system kernel, and thus, not subject to thread data-access controls.

Even though the IEEE Standards suggest that trap handlers can return a replacement value and continue execu-
tion from the point of exception, some floating-point architects take the view expressed in the DEC Alpha architecture
handbook [SW95, page I-4-63]:

In general, it is not feasible to fix up the result value or to continue from the trap.

That is, you may be able to register a trap handler, but it will be invoked at most once, and can do little else but
terminate. Much the same situation exists with C signal handlers: you can register a handler to catch the SIGFPE
floating-point exception, but it may be able to do nothing but print a message and terminate the job.

Interpreted languages, such as hoc, may catch the exception, abort the current statement, print a message, and
then return control to top level, ready for the next statement. Here is an example from the PDP-10, where hoc uses
the setjmp() and longjmp() C-library functions to implement catch-and-continue operation:

@hoc36
hoc36> 1/0

/dev/stdin:1:division by zero
hoc36> MAXNORMAL * MAXNORMAL

/dev/stdin:2:floating point exception
hoc36> MINNORMAL * MINNORMAL

/dev/stdin:3:floating point exception

Trap handling is highly dependent on both the CPU and the operating system, and is unlikely to be available on
most systems anyway, so in the mathcw library, we simply pretend that traps do not exist, and that computation on
systems with IEEE 754 arithmetic is nonstop with sticky exception flags.

5.4 Access to exception flags and rounding control

The file fenvcw.c provides the mathcw library with access to the floating-point environment. It preprocesses to a
code-free file when the compilation environment is a C99 one with a working <fenv.h>, or else includes fenvx.h to
supply an interface to whatever native support for IEEE 754 features is available.

108 Chapter 5. The floating-point environment

By analogy with mathcw.h and <math.h>, we supply the user with the header file fenvcw.h as an alternative to
<fenv.h>.

The fenvcw.h file provides two opaque data types and a related macro,

fenv_t fexcept_t FE_DFL_ENV,

macros for the four rounding directions,

FE_DOWNWARD FE_TONEAREST FE_TOWARDZERO FE_UPWARD,

macros for the three precision controls,

FE_DBLPREC FE_FLTPREC FE_LDBLPREC,

and macros for at least six exception-flag masks,

FE_ALL_EXCEPT FE_DIVBYZERO FE_INEXACT
FE_INVALID FE_OVERFLOW FE_UNDERFLOW,

as required or recommended by C99.
The exception-flag and rounding-direction masks are specified in Section 7.6 of the 1999 ISO C Standard like this:

Each of the macros

FE_DIVBYZERO
FE_INEXACT
FE_INVALID
FE_OVERFLOW
FE_UNDERFLOW

is defined if and only if the implementation supports the floating-point exception by means of the functions in 7.6.2. Additional
implementation-defined floating-point exceptions, with macro definitions beginning with FE_ and an uppercase letter, may also
be specified by the implementation. The defined macros expand to integer constant expressions with values such that bitwise
ORs of all combinations of the macros result in distinct values.

The macro

FE_ALL_EXCEPT

is simply the bitwise OR of all floating-point exception macros defined by the implementation.
Each of the macros

FE_DOWNWARD
FE_TONEAREST
FE_TOWARDZERO
FE_UPWARD

is defined if and only if the implementation supports getting and setting the represented rounding direction by means of the
fegetround() and fesetround() functions. Additional implementation-defined rounding directions, with macro definitions
beginning with FE_ and an uppercase letter, may also be specified by the implementation. The defined macros expand to integer
constant expressions whose values are distinct nonnegative values.

There are several points that are important to note about these flags:

� They must be combined with the bitwise-OR operator, not by addition. That is an issue for interfacing the C
library functions to other programming languages, such as Fortran, that lack bitwise operators.

� None of them is guaranteed to be present, so code that uses them must first test for their existence with prepro-
cessor conditionals. It would have been much cleaner to mandate zero values for unsupported masks, because
that would have made them no-ops in bitwise-OR expressions.

� It would have been useful to survey existing practice, and standardize names for additional flags on common
processors. For example, the Alpha, AMD64, IA-32, and IA-64 processors all set a flag for subnormal results,
but vendors have chosen at least three different macro names for that flag. We check for each of them in
fenvcw.h, and when one is found, we define a new exception flag, FE_SUBNORMAL, with the value of the just-
found flag, thereby providing a sensible common name for the subnormal flag.

5.4. Access to exception flags and rounding control 109

� Apart from the subnormal flag, most CPU architectures provide only the five flags mandated by IEEE 754.
However, POWER and PowerPC have a particularly rich set, with nearly twenty additional exception flags.
GNU/LINUX on those CPUs defines macros for those extra flags, but fails to include them in the definition of
FE_ALL_EXCEPT. Apple MAC OS X defines symbols only for the basic five on both PowerPC and IA-32. IBM
AIX includes in FE_ALL_EXCEPT only the five standard exception flags.

� At least one platform, GNU/LINUX on SPARC, violates the specification by having two of the rounding-
direction flags overlap the sign bit.

� The proposed revision of the IEEE 854 Standard [ANS87] supplies one additional rounding direction: round to
nearest bigger or round-half-up. That is similar to round to nearest with ties to even, except that results that lie exactly
halfway between two representable numbers are always rounded to the representable value that is larger in
magnitude. The new mode might be called taxman’s rounding, and is provided because of its widespread use
in financial computation. Because few implementations of the C language provide access to decimal floating-
point arithmetic, there is no mention of, or support for, the round-half-up flag in the ISO C standards.

� A proposal for decimal floating-point arithmetic in C++ [Kla05] extends <fenv.h> to contain five additional
macros for decimal roundings:

FE_DEC_DOWNWARD FE_DEC_TONEARESTFROMZERO
FE_DEC_TONEAREST FE_DEC_TOWARDZERO
FE_DEC_UPWARD

The FE_DEC_TONEARESTFROMZERO flag corresponds to round to nearest bigger. For more on rounding in decimal
arithmetic, see Section D.6 on page 936.

� The IBM specification of decimal floating-point arithmetic [Cow05] defines two additional, but optional,
rounding modes: round half down (round halfway cases downward), and round up (round the magnitude of
any nonrepresentable value upward).

� The IBM PowerPC version 6 architecture manual [IBM07, page 13] defines four additional rounding modes:
round to nearest ties away from zero, round to nearest ties toward zero, round away from zero, and round to prepare for
shorter precision.

The <fenv.h> and fenvcw.h header files also supply prototypes of these 13 C99 functions, each of which is de-
scribed in more detail shortly:

int feclearexcept (int excepts);
int fegetenv (fenv_t *envp);
int fegetexceptflag (fexcept_t *flagp, int excepts);
int fegetprec (void);
int fegetround (void);
int feholdexcept (fenv_t *envp);
int feraiseexcept (int excepts);
int fesetenv (const fenv_t *envp);
int fesetexceptflag (const fexcept_t *flagp, int excepts);
int fesetprec (int prec);
int fesetround (int mode);
int fetestexcept (int excepts);
int feupdateenv (const fenv_t *envp);

It is important to note that in the original 1999 ISO C Standard, some of them were defined as functions of type void,
but that flaw was fixed by two subsequent technical corrigenda. The functions all return a negative value on failure
(−1 in the mathcw implementation), and a value of zero or greater on success.

110 Chapter 5. The floating-point environment

5.5 The environment access pragma

The fenvcw.h file sets the FENV_ACCESS pragma to serve as a warning to the compiler that the floating-point environ-
ment may be manipulated by the program, preventing certain optimizations, such as code movement, or retention
of variables in registers.

Here is what the Standard says about that pragma, with some paragraph breaks inserted to improve readability:

The FENV_ACCESS pragma provides a means to inform the implementation when a program might access the floating-point
environment to test floating-point status flags or run under non-default floating-point control modes. [The purpose of the
FENV_ACCESS pragma is to allow certain optimizations that could subvert flag tests and mode changes (e.g., global common
subexpression elimination, code motion, and constant folding). In general, if the state of FENV_ACCESS is “off”, the translator
can assume that default modes are in effect and the flags are not tested.]

The pragma shall occur either outside external declarations or preceding all explicit declarations and statements inside a
compound statement.

When outside external declarations, the pragma takes effect from its occurrence until another FENV_ACCESS pragma is
encountered, or until the end of the translation unit.

When inside a compound statement, the pragma takes effect from its occurrence until another FENV_ACCESS pragma is
encountered (including within a nested compound statement), or until the end of the compound statement; at the end of a
compound statement the state for the pragma is restored to its condition just before the compound statement.

If this pragma is used in any other context, the behavior is undefined.
If part of a program tests floating-point status flags, sets floating-point control modes, or runs under non-default mode

settings, but was translated with the state for the FENV_ACCESS pragma “off”, the behavior is undefined. The default state
(“on” or “off”) for the pragma is implementation-defined. (When execution passes from a part of the program translated with
FENV_ACCESS “off” to a part translated with FENV_ACCESS “on”, the state of the floating-point status flags is unspecified and
the floating-point control modes have their default settings.)

The Standard leaves the default state of FENV_ACCESS up to the implementation. However, the only safe setting
when the floating-point environment is accessed is “on”, so that is what fenvcw.h automatically sets. That may
inhibit some compiler optimizations, but only a few source files are likely to include that header file, so the run-
time penalty is likely to be small. Performance-conscious programmers should in any event bracket their use of the
floating-point environment functions like this:

#include "fenvcw.h"

#pragma FENV_ACCESS OFF
... ordinary code here ...
#pragma FENV_ACCESS ON
... delicate environment-manipulating code here ...
#pragma FENV_ACCESS OFF
... more ordinary code ...

5.6 Implementation of exception-flag and rounding-control access

The implementation code in fenvx.h is lengthy, with separate sections for each of several different platforms, so we
do not show all of it here. Instead, we exhibit a typical implementation, that for older Sun Microsystems SOLARIS
systems. Newer SOLARIS systems have full C99 support from the vendor.

Five of the functions provide the essential core of support. In the following sections, we present their code for
SOLARIS, prefixed with short descriptions from the 1999 ISO C Standard and its technical corrigenda.

5.6.1 Clearing exception flags: feclearexcept()

The feclearexcept() function attempts to clear the supported floating-point exceptions represented by its argument.
The feclearexcept() function returns zero if the excepts argument is zero or if all the specified exceptions were success-

fully cleared. Otherwise, it returns a nonzero value.

5.6. Implementation of exception-flag and rounding-control access 111

int
(feclearexcept)(int excepts)
{ /* return 0 on success, or -1 on failure */

(void)fpsetsticky(fpgetsticky() & ~((fp_except)(excepts)));

return (FE_SUCCESS);
}

5.6.2 Getting the rounding direction: fegetround()
The fegetround() function gets the current rounding direction.
The fegetround() function returns the value of the rounding direction macro representing the current rounding direction

or a negative value if there is no such rounding direction macro or the current rounding direction is not determinable.

int
(fegetround)(void)
{ /* return current rounding mode, or -1 on failure */

return ((int)fpgetround());
}

5.6.3 Raising exception flags: feraiseexcept()
The feraiseexcept() function attempts to raise the supported floating-point exceptions represented by its argument. [The

effect is intended to be similar to that of floating-point exceptions raised by arithmetic operations.]
Hence, enabled traps for floating-point exceptions raised by this function are taken. The specification in F.7.6 is in the same

spirit.
The order in which these floating-point exceptions are raised is unspecified, except as stated in F.7.6. Whether the feraise-

except() function additionally raises the inexact floating-point exception whenever it raises the overflow or underflow
floating-point exception is implementation-defined.

The feraiseexcept() function returns zero if the excepts argument is zero or if all the specified exceptions were success-
fully raised. Otherwise, it returns a nonzero value.

int
(feraiseexcept)(int excepts)
{ /* return 0 on success, or -1 on failure */

(void)fpsetsticky(fpgetsticky() | ((fp_except)(excepts)));

return (FE_SUCCESS); /* always succeeds (fpsetsticky()
has no documented return value) */

}

We assume a simple facility where exceptions set the sticky flags, but do not trap to an external interrupt handler.
The reason that raising the overflow or underflow flags can also raise the inexact flag is that on some architectures,

the only practical way to set the flags is to execute a floating-point instruction that has the exception as a side effect.
The IEEE 754 Standard requires that inexact be set whenever overflow or underflow are set.

5.6.4 Setting the rounding direction: fesetround()
The fesetround() function establishes the rounding direction represented by its argument round. If the argument is not

equal to the value of a rounding direction macro, the rounding direction is not changed.
The fesetround() function returns zero if and only if the requested rounding direction was established.

int
(fesetround)(int round)
{ /* return 0 on success, or -1 on failure */

int result;

112 Chapter 5. The floating-point environment

switch (round)
{
case FE_DOWNWARD: /*FALLTHROUGH*/
case FE_TONEAREST: /*FALLTHROUGH*/
case FE_TOWARDZERO: /*FALLTHROUGH*/
case FE_UPWARD:

(void)fpsetround((fp_rnd)(round));
result = FE_SUCCESS;
break;

default:
result = FE_FAILURE;
break;

}

return (result);
}

5.6.5 Testing exception flags: fetestexcept()

The fetestexcept() function determines which of a specified subset of the floating-point exception flags are currently
set. The excepts argument specifies the floating-point status flags to be queried. [This mechanism allows testing several
floating-point exceptions with just one function call.]

The fetestexcept() function returns the value of the bitwise OR of the floating-point exception macros corresponding to
the currently set floating-point exceptions included in excepts.

int
(fetestexcept)(int excepts)
{ /* return bitwise-OR of the floating-point sticky exception

flags */
return ((int)(fpgetsticky() & (fp_except)(excepts)));

}

5.6.6 Comments on the core five

The five functions are short, requiring little more than possibly a conditional test, the calling of one or two other
functions that provide the native IEEE 754 feature access, and a return.

The names of the five functions are parenthesized in our implementation to prevent unwanted macro expansion,
a valuable feature of the C preprocessor that seems not to be widely known or appreciated.

The private macros FE_FAILURE and FE_SUCCESS have the values −1 and 0, respectively. They are not available
externally to users of fenvcw.h.

5.7 Using exception flags: simple cases

To illustrate how the floating-point environment functions can be used in a computation, consider the following task:
Compute the largest factorial that can be represented exactly in the host arithmetic. What is needed to solve the problem
is to clear the exception flags, compute factorials iteratively until the next one to be used raises the inexact flag, and
then report the most recent exact result.

Here is a program to do that:

#include <fenv.h>
#include <stdio.h>
#include <stdlib.h>

5.7. Using exception flags: simple cases 113

#pragma FENV_ACCESS ON

int
main(void)
{

int k;
double nextfact, nfact;

(void)feclearexcept(FE_ALL_EXCEPT);
nfact = 1;

for (k = 1; k < 40; ++k)
{

nextfact = nfact * (k + 1);

if (fetestexcept(FE_INEXACT))
break;

nfact = nextfact;
}

(void)printf("Largest exact factorial: %d! = %.0f\n",
k, nfact);

return (EXIT_SUCCESS);
}

Here is what it reports on any system with IEEE 754 arithmetic:

Largest exact factorial: 22! = 1124000727777607680000

That result may seem surprising: log2(22!) ≈ 69.92, so about 70 bits are needed to represent the number, and we have
only 53 in the significand of the IEEE 754 64-bit format. However, examination of the hexadecimal representation,
22! = 0x3c_eea4_c2b3_e0d8_0000, shows that only the first 52 bits can be nonzero, so the number can indeed be
represented exactly in that format.

Sometimes, there is a fast way to compute a result, but the fast way is not always safe, and the safe way is always
slow. One such example is the computation of the Euclidean norm in two dimensions, or equivalently, finding
the longest side of a right triangle by Pythagoras’ Theorem. The desired result is just

√
x2 + y2, but if we use that

formula directly, premature overflow or underflow can produce wildly incorrect results. The C library provides a
standard function, hypot(), to do that computation, but we give our sample function a different name, e2norm(), to
distinguish it from the standard one, and as usual, we implement it for a generic floating-point type. We discuss the
hypot() function in more detail later in Section 8.2 on page 222 and Section 8.3 on page 227.

Because IEEE 754 arithmetic encourages nonstop computing, we can clear the exception flags, do the fast compu-
tation, test the exception flags to see if either underflow or overflow occurred, and if so, redo the computation more
carefully. Here is code that does just that:

#include "e2norm.h"

#pragma FENV_ACCESS ON

fp_t
E2NORM(fp_t x, fp_t y)
{

fp_t result;

if (x == ZERO)
result = FABS(y);

114 Chapter 5. The floating-point environment

else if (y == ZERO)
result = FABS(x);

else
{

(void)feclearexcept(FE_ALL_EXCEPT);
result = SQRT(x * x + y * y);

if (fetestexcept(FE_OVERFLOW | FE_UNDERFLOW))
{

fp_t ratio, xabs, yabs;

xabs = FABS(x);
yabs = FABS(y);

if (xabs > yabs)
{

ratio = yabs / xabs;
result = xabs * SQRT(ONE + ratio * ratio);

}
else
{

ratio = xabs / yabs;
result = yabs * SQRT(ratio * ratio + ONE);

}
}

}

return (result);
}

Notice that we test for zero arguments to guarantee an exact result in those cases, but there are no tests for Infinity
or NaN arguments. We do not need them here, but to see why, we must consider what happens for various inputs.
The computation is symmetric in x and y, so we only need to consider half the number of possible cases:

x is a NaN and/or y is a NaN: The first computation sets result to NaN, but sets only the invalid flag, so we are
done.

x = ∞ and/or y is a NaN: The first computation sets result to NaN, but sets only the invalid flag, so we are done.

x = ∞ and/or y = ∞: The first computation sets result to Infinity, but sets only the inexact flag, so we are done.

x = tiny and/or y = tiny: If underflow occurs in either product, then the underflow and inexact flags are set. The
result may be zero, which is incorrect, but we abandon it anyway, and recompute with a stable formula that
requires more work.

x = large and/or y = tiny: If either overflow or underflow occurs in the products, then an exception flag is set that
causes the stable computation to be done.

x = large and/or y = large: If overflow occurs in either of the products, then the overflow flag is set, causing the
stable computation to be done.

x = ±0 and y = ±0: No exceptions are set, and the computed result from the first absolute value assignment is zero
(correct).

x = moderate and y = moderate: No exceptions other than, probably, inexact are set, and the result from the first
computation is correct.

Whether our version of e2norm() is faster in practice than a version that uses only the stable algorithm is platform
dependent. It depends on the relative cost of division versus function calls to clear and test flags, and it also requires
that IEEE 754 exception-flag access be available. As long as flag clearing is reasonably fast, and if most of the calls

5.8. Using rounding control 115

Table 5.1: Interval-arithmetic operations. Each number X is strictly contained in an interval [x, x], where x ≤ x. The
complications from Infinity and NaN, and from division by intervals containing zero, are ignored here. Computation
of min(u, v) must be done with round-to-minus-infinity, and max(u, v) must be done with round-to-plus-infinity.

X + Y = [x + y, x + y]

X − Y = [x − y, x − y]

X · Y = [min(x · y, x · y, x · y, x · y), max(x · y, x · y, x · y, x · y)]

X/Y = [min(x/y, x/y, x/y, x/y), max(x/y, x/y, x/y, x/y)]

to the function have arguments that cause neither overflow nor underflow, then the slower computation is avoided
most of the time, and our version is faster on average than the alternative code.

Our example shows that the limitation of finite range in computer arithmetic makes mathematically simple com-
putations considerably more complex to do accurately on a computer.

5.8 Using rounding control

One of the most important applications for IEEE 754 rounding control is for the implementation of interval arith-
metic. That is an area of growing importance, and done properly, can provide rigorous upper and lower bounds
for computed results. When those bounds are close, one can have confidence in the computed values, though not
necessarily in the algorithm that led to them! When they are far apart, then it is likely that even tiny changes in the
input data would have produced a large change in the output, suggesting that the computational algorithm may be
unstable, or equivalently, that a result obtained by the same algorithm, but using normal scalar arithmetic, may not
be trustworthy.

The four primitive operations for interval arithmetic are summarized in Table 5.1. In reality, those four operations
are insufficient: interval versions of all of the elementary functions are required too, and they are decidedly nontrivial
to compute. However, for simplicity, here we consider only the case of addition in interval arithmetic.

Intervals can be represented in more than one way, but the simplest seems to be as pairs of endpoints. A suitable
data structure might then look like this:

typedef struct { fp_t lo; fp_t hi; } interval_t;

In the absence of operator overloading in the programming language, arithmetic expressions for interval data need
to be rewritten with function calls for every binary and unary operator. To make it easier to pass the result of one
operation to the next, it is desirable to make the interval functions return an interval object, so that we can use nested
function calls. The interval object requires storage, but we cannot safely use internal static storage for it, and we
certainly do not want the substantial overhead of dynamic storage, so we provide a pointer to the result object as the
first argument, and declare the result object as a local variable in the calling routine.

Although C89 added support for passing structure arguments, there is a long tradition in C programming of
passing pointers to structures instead. They require less stack space, fewer instructions in the caller to pass, and
fewer instructions to access in the called routine. We therefore use pointer arguments, and because the functions are
at the core of numerically intensive calculations, we reduce the overhead of their use by declaring them as inline
functions.

We also must assume that interval arithmetic is used together with normal arithmetic, so we need to make sure
that each interval primitive preserves the original rounding direction.

Here is one way to write a function for interval addition:

inline interval_t *
I_ADD(interval_t *sum, interval_t *x, interval_t *y)
{ /* interval sum of x + y */

int round;

116 Chapter 5. The floating-point environment

round = fegetround();
(void)fesetround(FE_DOWNWARD);
sum->lo = x->lo + y->lo;
(void)fesetround(FE_UPWARD);
sum->hi = x->hi + y->hi;
(void)fesetround(round);

return (sum);
}

Notice that our code requires four calls to get or set the rounding mode. We can eliminate one of them by noting that
rounding a sum upward is the same as the negative of rounding the sum of the negatives downward. Thus, we can
rewrite the addition function like this:

inline interval_t *
I_ADD(interval_t *sum, interval_t *x, interval_t *y)
{ /* interval sum of x + y */

int round;

round = fegetround();
(void)fesetround(FE_DOWNWARD);
sum->lo = x->lo + y->lo;
sum->hi = -(-x->hi + (-y->hi));
(void)fesetround(round);

return (sum);
}

5.9 Additional exception flag access

Six of the remaining eight functions use the opaque data types fenv_t and fexcept_t defined in fenvcw.h and
<fenv.h>. The structure and contents of those types are not standardized, and user code should never reference
their internals. The mathcw library uses simple definitions of those types:

typedef struct
{

int fe_sticky_flags;
int unused_padding[63]; /* longest native fenv_t is 100 bytes */

} fenv_t;

typedef struct
{

int fe_sticky_flags;
int unused_padding[3]; /* longest native fexcept_t is 8 bytes */

} fexcept_t;

For portability and safety, the data structures are padded to at least twice the longest known lengths of the native
types, in case code compiled with mathcw header files is linked with native libraries, instead of with the mathcw
library. The reverse case of compilation with native header files and linking with the mathcw library is less safe,
because a few systems represent fexcept_t with a short int.

The library also provides the standard macro that points to a default environment object:

extern fenv_t __mcw_fe_dfl_env;
#define FE_DFL_ENV (&__mcw_fe_dfl_env)

The default object is initialized like this in fenvx.h:

5.9. Additional exception flag access 117

const fenv_t __mcw_fe_dfl_env = { 0 };

Although we initialize only one cell of the data structure that way, the rules of C guarantee that the remaining cells
are also zero.

The six functions can be defined in terms of the core five presented in Section 5.6 on page 110, and our definitions
of the additional functions suffice for all platforms. As before, in the following sections, we prefix them with their
descriptions from the 1999 ISO C Standard and its technical corrigenda.

5.9.1 Getting the environment: fegetenv()
The fegetenv() function attempts to store the current floating-point environment in the object pointed to by envp.
The fegetenv() function returns zero if the environment was successfully stored. Otherwise, it returns a nonzero value.

For the mathcw library, the floating-point environment is just the complete set of sticky exception flags, which we
already know how to retrieve with fetestexcept(). The code is then straightforward:

int
(fegetenv)(fenv_t *envp)
{ /* store floating-point environment in *envp, return 0 on

success, or -1 on failure */
int result;

if (envp != (fenv_t*)NULL)
{

envp->fe_sticky_flags = fetestexcept(FE_ALL_EXCEPT);
result = FE_SUCCESS;

}
else

result = FE_FAILURE;

return (result);
}

5.9.2 Setting the environment: fesetenv()
The fesetenv() function attempts to establish the floating-point environment represented by the object pointed to by

envp(). The argument envp shall point to an object set by a call to fegetenv() or feholdexcept(), or equal a floating-point
environment macro. Note that fesetenv() merely installs the state of the floating-point status flags represented through its
argument, and does not raise these floating-point exceptions.

The fesetenv() function returns zero if the environment was successfully established. Otherwise, it returns a nonzero
value.

We assume that traps are never used, so that feraiseexcept() can be used to set the sticky exception flags saved
by a previous call to fegetenv(). If system-dependent traps are set, then we would have to first disable them, set
the flags, and then restore them; however, we cannot do so in a portable library because C99 does not provide an
interface to floating-point traps.

int
(fesetenv)(const fenv_t *envp)
{ /* set floating-point environment from *envp (possibly

FE_DFL_ENV), return 0 on success, or -1 on failure */
int result;

if (envp != (fenv_t*)NULL)
result = feraiseexcept(envp->fe_sticky_flags);

else
result = FE_FAILURE;

118 Chapter 5. The floating-point environment

return (result);
}

5.9.3 Getting exception flags: fegetexceptflag()
The fegetexceptflag() function attempts to store an implementation-defined representation of the states of the floating-

point status flags indicated by the argument excepts in the object pointed to by the argument flagp.
The fegetexceptflag() function returns zero if the representation was successfully stored. Otherwise, it returns a

nonzero value.

This function is little more than an alternate interface to fetestexcept(), storing the requested flags in a location
determined by a pointer argument, instead of returning them as a function value.

int
(fegetexceptflag)(fexcept_t *flagp, int excepts)
{ /* set floating-point exceptions flags in *envp, return 0 on

success, or -1 on failure */
int result;

if (flagp != (fexcept_t *)NULL)
{

flagp->fe_sticky_flags = fetestexcept(excepts);
result = FE_SUCCESS;

}
else

result = FE_FAILURE;

return (result);
}

5.9.4 Setting exception flags: fesetexceptflag()
The fesetexceptflag() function attempts to set the floating-point status flags indicated by the argument excepts to the

states stored in the object pointed to by flagp. The value of *flagp shall have been set by a previous call to fegetexceptflag()
whose second argument represented at least those floating-point exceptions represented by the argument excepts. This function
does not raise floating-point exceptions, but only sets the state of the flags.

The fesetexceptflag() function returns zero if the excepts argument is zero or if all the specified flags were successfully
set to the appropriate state. Otherwise, it returns a nonzero value.

As with fesetenv(), we assume that traps are never used, so that we can safely use feraiseexcept() to set the
sticky exception flags. The function is then a simple wrapper around a call to set the flags.

int
(fesetexceptflag)(const fexcept_t *flagp, int excepts)
{ /* set sticky flags selected by excepts to states stored in

*flagp, return 0 on success, or -1 on failure */
int result;

if (flagp != (const fexcept_t *)NULL)
result = feraiseexcept(flagp->fe_sticky_flags & excepts);

else
result = FE_FAILURE;

return (result);
}

5.9. Additional exception flag access 119

5.9.5 Holding exception flags: feholdexcept()
The feholdexcept() function saves the current floating-point environment in the object pointed to by envp, clears the

floating-point status flags, and then installs a non-stop (continue on floating-point exceptions) mode, if available, for all floating-
point exceptions. [IEC 60559 systems have a default non-stop mode, and typically at least one other mode for trap handling or
aborting; if the system provides only the non-stop mode then installing it is trivial. For such systems, the feholdexcept()
function can be used in conjunction with the feupdateenv() function to write routines that hide spurious floating-point
exceptions from their callers.]

Because we assume traps are absent, the function simply requires saving the current sticky exception flags, and
then clearing them.

int
(feholdexcept)(fenv_t *envp)
{ /* save current floating-point environment in *envp, clear

all exception flags, install nonstop mode, and return
0 on success, or -1 on failure */

int result;

if (envp != (fenv_t*)NULL)
{

envp->fe_sticky_flags = fetestexcept(FE_ALL_EXCEPT);
result = feclearexcept(FE_ALL_EXCEPT);

}
else

result = FE_FAILURE;

return (result);
}

5.9.6 Updating the environment: feupdateenv()
The feupdateenv() function attempts to save the currently raised floating-point exceptions in its automatic storage, install

the floating-point environment represented by the object pointed to by envp, and then raise the saved floating-point exceptions.
The argument envp shall point to an object set by a call to feholdexcept() or fegetenv(), or equal a floating-point environ-
ment macro.

The feupdateenv() function returns zero if all the actions were successfully carried out. Otherwise, it returns a nonzero
value.

Because we assume that no traps are set, we can update the floating-point environment just by restoring the
saved exception flags with feraiseexcept().

int
(feupdateenv)(const fenv_t *envp)
{

/* save exceptions, install environment from *envp, raise
saved exceptions, and return 0 on success, or -1 on
failure */

int result;

if (envp != (fenv_t*)NULL)
result = feraiseexcept(envp->fe_sticky_flags);

else
result = FE_FAILURE;

return (result);
}

120 Chapter 5. The floating-point environment

5.9.7 Comments on the six functions

These six functions are notably more complex than the core five described in Section 5.6 on page 110.
Because the fenv_t type is opaque, and no functions are provided to manipulate its contents, we can only use

fegetenv() and fesetenv() in pairs to save and restore the floating-point environment around a block of code. No
provision is made for setting or clearing of user-specified exception flags in a saved environment.

The functions fegetexceptflag() and fesetexceptflag() allow similar save/restore bracketing of computa-
tions, and in addition, allow us to set zero or more exception flags when the environment is restored. However, there
is no provision for clearing those flags. The feraiseexcept() function could almost do that job, but it can cause
exception traps to be taken.

It would appear to be a design flaw in C99 that the task of setting the flags is not separated from possible invo-
cation of a trap handler in feraiseexcept(). The reason that the separation of setting from trapping could not be
made is that some hardware implementations of IEEE 754 arithmetic do not permit that distinction. Had that not
been the case, it would have been cleaner to have two independent functions, fesetexcept() and fetrapexcept(),
each taking a single argument with a bitwise-OR of the flags to be set or trapped. Of course, we have fesetexcept-
flag() which could do the job, but it is burdened with an additional opaque argument that is supposed to have been
returned by a previous call to fegetexceptflag().

The function pair feholdexcept() and feupdateenv() can be used to wrap a block of code that starts with all
exception flags clear, and all traps disabled, so that nonstop operation is known to be in effect. On return from
feupdateenv(), all flags and traps are restored to their original settings.

The functions fegetenv() and feupdateenv() can be used to wrap a code block where the programmer does
not care what the initial environment for the block is, but just wants to restore the environment when the block
completes.

5.10 Using exception flags: complex case

In this section, we present a small test program that exercises several of the functions for manipulating the floating-
point environment. We start by defining a header block that can be used with either native C99 compilation, or with
the mathcw library:

#if defined(USE_MCW)

#include <mathcw.h>
#include <fenvcw.h>

#else /* native C99 environment */

#include <math.h>
#include <fenv.h>

extern double infty (void);
extern double j0 (double);
extern double j1 (double);
extern double yn (int, double);

#endif /* defined(USE_MCW) */

In the native environment, we supply prototypes for four library functions. The first is a convenient mathcw library
extension to C99 to compute Infinity at run-time. The other three are Bessel functions (see Chapter 21 on page 693)
that are not part of C99, but are mandated by POSIX. They are computationally difficult, and are certainly not
provided in hardware on any current desktop CPU architecture. We therefore expect their computation to set one or
more exception flags. Next, we introduce some macros to shorten and clarify the test code:

#define PRINTF (void)printf
#define CLR() result = feclearexcept(FE_ALL_EXCEPT)
#define TEST(s) { CLR(); s; show_flags(#s); }
#define TEST_NO_CLR(s) { s; show_flags(#s); }

5.10. Using exception flags: complex case 121

The last two macros exploit the C89 preprocessor # operator to convert an argument to a character string, so that we
can execute a test statement, and also display it in the output.

Although we expect the library functions to be successful, it is nevertheless a good idea to check their return
codes and report any failures, so we provide a function to do that:

void
check(int result, const char *s)
{

if (result != 0)
PRINTF("%s returned %d [FAILURE]\n", s, result);

}

To make the output compact, we define a function to display a list of the floating-point sticky exception flags that
are found to be set. Because printf() processing is complex, it could alter the flags, so we must be careful to save
them before printing their values:

void
show_flags(const char *s)
{

int r[6];

r[0] = fetestexcept(FE_DIVBYZERO);
r[1] = fetestexcept(FE_INEXACT);
r[2] = fetestexcept(FE_INVALID);
r[3] = fetestexcept(FE_OVERFLOW);

#if defined(FE_SUBNORMAL)
r[4] = fetestexcept(FE_SUBNORMAL);

#else
r[4] = 0;

#endif

r[5] = fetestexcept(FE_UNDERFLOW);

PRINTF("Flags after %37s :", s);

if (r[0]) PRINTF(" DIVBYZERO");
if (r[1]) PRINTF(" INEXACT");
if (r[2]) PRINTF(" INVALID");
if (r[3]) PRINTF(" OVERFLOW");
if (r[4]) PRINTF(" SUBNORMAL");
if (r[5]) PRINTF(" UNDERFLOW");

PRINTF("\n");
}

The FE_SUBNORMAL flag is not one of the IEEE 754 standard flags, but it is available on at least Alpha, AMD64, IA-32,
and IA-64 CPUs, although its native names in those environments differ. The name differences are hidden inside
fenvcw.h. We therefore check that the flag name is defined before using it.

We are now ready for the main() program. Its job is to execute a series of single floating-point statements, and
report the exception flags that they set. The flags are normally cleared before each test statement. All floating-
variables are declared volatile to prevent compile-time evaluation, and to keep the code simple, we assume that
the compiler obeys that keyword; otherwise, we would have to clutter the test code with calls to a store() function.
The variables x and y hold floating-point results, and z is always assigned a computed zero value.

int
main(void)
{

fenv_t env;

122 Chapter 5. The floating-point environment

int result;
volatile double x, y, z;

PRINTF("sizeof(fenv_t) = %u\n", sizeof(fenv_t));

TEST(result = feclearexcept(FE_ALL_EXCEPT));
check(result, "feclearexcept()");

TEST(x = j0(1.0));
TEST(z = x - x); /* 0.0 */
TEST(x = 1.0 / z); /* 1.0 / 0.0 -> Inf */

TEST(result = feholdexcept(&env));
check(result, "feholdexcept(&env)");

TEST(x = j1(1.0));
TEST(z = x - x); /* 0.0 */
TEST(x = 1.0 / z); /* 1.0 / 0.0 -> Inf */
TEST(x = z / z); /* 0.0 / 0.0 -> NaN */
TEST(x = nan(""));
TEST(y = x - x); /* NaN - NaN -> NaN */
TEST(x = infty());
TEST(z = x - x); /* Inf - Inf -> NaN */
TEST(x = yn(2,DBL_MIN)); /* should be Inf */
TEST(x = DBL_MIN; y = x / 256.0); /* exact subnormal */
TEST(x = DBL_MIN; y = x / 100.0); /* approximate subnormal */

TEST_NO_CLR(result = feupdateenv(&env));
check(result, "feupdateenv(&env)");

TEST(result = feupdateenv(&env));
check(result, "feupdateenv(&env)");

return (EXIT_SUCCESS);
}

A run of the test program on a SOLARIS SPARC system with a native C99 compiler looks like this:

% c99 fecmplx.c -lm ../libmcw.a && ./a.out
sizeof(fenv_t) = 100
Flags after result = feclearexcept(FE_ALL_EXCEPT) :
Flags after x = j0(1.0) : INEXACT
Flags after z = x - x :
Flags after x = 1.0 / z : DIVBYZERO
Flags after result = feholdexcept(&env) :
Flags after x = j1(1.0) : INEXACT
Flags after z = x - x :
Flags after x = 1.0 / z : DIVBYZERO
Flags after x = z / z : INVALID
Flags after x = nan("") :
Flags after y = x - nan("") :
Flags after x = infty() : DIVBYZERO
Flags after z = x - x : INVALID
Flags after x = yn(2,DBL_MIN) : INEXACT OVERFLOW
Flags after x = DBL_MIN; y = x / 256.0 :
Flags after x = DBL_MIN; y = x / 100.0 : INEXACT UNDERFLOW
Flags after result = feupdateenv(&env) : INEXACT UNDERFLOW
Flags after result = feupdateenv(&env) :

5.11. Access to precision control 123

This system has a well-engineered floating-point implementation, and as expected, the first test statement clears the
flags, and none of the environmental functions returns a failure code. The result of the first Bessel function call is
about 0.765, and we find only the inexact flag to be set. The subtraction x − x is exact, and sets no flags. The division
1.0/0.0 sets the divbyzero flag, and only that flag is set when the environment is saved by the call to feholdexcept().

The next four statements set the expected flags, but the failure of the nan() function to set flags tells us that the
implementation simply returns a stored quiet NaN, rather than generating one on-the-fly, as the mathcw version
does. The C99 Standard does not specify the behavior, so both implementations conform. Subtraction of two quiet
NaNs does not set an exception flag, as we reported in Section 4.14 on page 79. However, subtraction of two infinities
does set the invalid flag, and produces a quiet NaN.

The test system has a binary base, so division of the smallest normalized floating-point number, DBL_MIN, by
28 = 256.0 is an exact operation, although it produces a subnormal result, and no flags are set. However, division
by 100.0 is an inexact operation, and both the inexact and underflow flags are set, as we discussed in Section 4.12 on
page 78.

In the second-last test statement, we suppress clearing of the flags, and simply invoke feupdateenv(). After that
call, we should therefore see the previous two flags set, as well as the saved divbyzero flag. However, that flag is lost
by the implementation on this system.

The last test statement clears the flags, and once again restores the saved flags, but this implementation has lost
the divbyzero flag.

The test has been repeated on several different platforms, with native C99 implementations when available, and
on all systems, with the mathcw library. The results are generally similar. One system, GNU/LINUX on AMD64,
warns feupdateenv is not implemented and will always fail. The same operating system on IA-64 does not
produce a warning, but feholdexcept() reports failure.

Most native implementations lose the divbyzero flag, although the GNU/LINUX IA-64 system preserves it. The
OSF/1 Alpha system sets the subnormal flag in the call to yn(), but not in the division by 100.0; a debugger ses-
sion shows that the system uses abrupt underflow to zero, instead of generating a subnormal result. The GNU/
LINUX Alpha system has subnormals too, but defines the exception flags as enumeration constants, rather than as
preprocessor macros, so our code disables the test for the subnormal flag.

The experiments are useful, and tell us that although we can clear, set, and test exception flags fairly consistently
across platforms, we need to allow for abrupt underflow without subnormals, and saving and restoring the floating-
point environment around a block of code may not preserve flags that were in effect when feholdexcept() was
called. Because that is one of many functions that are new with C99, it is not yet in wide use, and the discrepancies
in behavior across platforms have yet to be settled by vendors and Standards committees.

The replacements

feholdexcept(&env) → fegetenv(&env)

feupdateenv(&env) → fesetenv(&env)

convert our code to a second test program. Similarly, the replacements

fenv_t → fexcept_t

env → flags

feholdexcept(&env) → fegetexceptflag(&flags, FE_ALL_EXCEPT)

feupdateenv(&env) → fesetexceptflag(&flags, FE_ALL_EXCEPT)

produce a third program. The files fecmplx.c, fecmplx2.c, and fecmplx3.c in the exp subdirectory of the mathcw
library distribution contain the three test programs.

5.11 Access to precision control

The remaining two functions provide access to precision control. They are not standardized in C99, but there are
recommendations for them in the accompanying Rationale document, which says:

The IEC 60559 floating-point standard prescribes rounding precision modes (in addition to the rounding direction modes
covered by the functions in this section) as a means for systems whose results are always double or extended to mimic systems
that deliver results to narrower formats. An implementation of C can meet this goal in any of the following ways:

124 Chapter 5. The floating-point environment

1. By supporting the evaluation method indicated by FLT_EVAL_METHOD equal to 0.

2. By providing pragmas or compile options to shorten results by rounding to IEC 60559 single or double precision.

3. By providing functions to dynamically set and get rounding precision modes which shorten results by rounding to IEC
60559 single or double precision. Recommended are functions fesetprec() and fegetprec() and macros FE_FLTPREC,
FE_DBLPREC, and FE_LDBLPREC, analogous to the functions and macros for the rounding direction modes.

This specification does not include a portable interface for precision control because the IEC 60559 floating-point standard
is ambivalent on whether it intends for precision control to be dynamic (like the rounding direction modes) or static. Indeed,
some floating-point architectures provide control modes suitable for a dynamic mechanism, and others rely on instructions to
deliver single- and double-format results suitable only for a static mechanism.

5.11.1 Precision control in hardware

As the quotation in Section 5.11 on the preceding page notes, precision control is not part of the IEEE 754 specifica-
tion, but the first implementations by Intel chose to provide only 80-bit arithmetic inside the floating-point coproces-
sor, and eventually, directly inside the CPU. The Motorola 68000 family, and the later IA-64 architecture, widen the
exponent by two bits, using an 82-bit format inside the CPU.

Those systems convert 32-bit and 64-bit values as they are loaded from external memory into CPU registers,
widening the exponent field, and padding the significand with trailing zeros. All subsequent floating-point arith-
metic inside the CPU is then normally done with the 80- or 82-bit format, and only on storage to memory are values
converted to storage precision.

In most cases, the extra precision of intermediate computations is beneficial, but it does mean that underflow,
overflow, and subnormal exceptions might not be raised until a store instruction is executed, and that double roundings
are common, once in each numerical operation, and once in the store instruction.

The extra precision also means that comparison with computations on other machines that do all arithmetic in
storage precision may be difficult. For that reason, the IA-32, IA-64, and 68000 architectures allow the programmer
to set a precision-control mask to request that, on completion of each floating-point operation, the result be rounded
and range reduced to either a 32-bit or a 64-bit format, instead of remaining in the default full-length format.

5.11.2 Precision control and the AMD64 architecture

The AMD64 architecture, and Intel’s clone of it, EM64T, is an extension of the IA-32 architecture, widening data paths
and integer registers from 32 bits to 64 bits, and adding new floating-point instructions. The latter work with sixteen
directly addressable 128-bit registers and can execute four 32-bit floating-point operations, or two 64-bit operations,
in a single parallel instruction. Alternatively, those registers can be used for sequential operations on 32-bit and
64-bit data. However, no data type longer than 64 bits is supported in those 128-bit registers, nor is precision control
provided.

The availability of several directly addressable registers, in addition to the stack of eight 80-bit registers of the
older IA-32 architecture, gives compilers more opportunities, but complicates life for the careful floating-point pro-
grammer.

Examination of code generated by several Fortran, C, and C++ compilers on AMD64 systems shows that they
use the new registers for 32-bit and 64-bit floating-point data, and the old registers for 80-bit data. That means that
precision control is effective only for the longest data type, such as long double in C and C++.

Given the lack of standardization of access to precision control, and its absence from several compilers and op-
erating systems on platforms that have it in hardware, it is doubtful whether any major important body of existing
code depends on it. Nevertheless, there are circumstances where it could be useful, so it makes sense to provide such
access in a uniform and easy-to-use way.

5.11.3 Precision control in the mathcw library

A survey of UNIX systems current when the mathcw library was written found that only two offered access to preci-
sion control on IA-32: FREEBSD with the functions fpgetprec() and fpsetprec(), and Sun Microsystems SOLARIS
10 with the C99-style primitives. Unfortunately, the SOLARIS ones have reversed return codes: nonzero on success,
and zero on failure. That is in contradiction to the other 11 routines defined in C99 for access to sticky exception
flags and rounding direction modes, so our implementation follows those ISO standard routines instead: a negative

5.11. Access to precision control 125

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
x x x IC RC PC x x PM UM OM ZM DM IM

Figure 5.1: IA-32 floating-point control word. Numbering is from the low-order bit on the right, and reserved bits
are marked with x. The one- or two-bit fields are IC (infinity control), RC (rounding control), PC (precision control),
PM (precision mask), UM (underflow mask), OM (overflow mask), ZM (zero-divide mask), DM (subnormal operand
mask), and IM (invalid operation mask).

return means failure, and zero or positive, success. Microsoft WINDOWS C and C++ provide access to precision
control through the library function _controlfp_s().

Most commonly, the return value of fesetprec() is ignored, and that of fegetprec() is used only to record the
current precision prior to a temporary precision change, and then later, the recorded value is passed to fesetprec()
to restore the original precision. The difference in failure codes for the SOLARIS versions and ours is not likely to
be a serious problem, and we anticipate that the definition of the SOLARIS versions will change in a future compiler
release, just as the type of several of the original C99 functions was changed from void to int to allow reporting a
return code.

For the systems with IA-32 processors, two private macros, _FPU_GETCW() and _FPU_SETCW(), expand either to a
single inline assembly-code instruction that gets or sets the floating-point hardware control word, or else to a short
function that wraps that assembly code. Those macros are modeled on ones of the same name provided on GNU/
LINUX in the platform-specific system header file <fpu_control.h>.

Once the control word is accessible via those two macros, the user-level code is straightforward, requiring only
knowledge of the location of the precision-control field in the IA-32 control word, as illustrated in Figure 5.1.

typedef unsigned short int fpu_control_t;

static fpu_control_t cw;

int
(fegetprec)(void)
{ /* return the current rounding precision as one of the

values FE_FLTPREC, FE_DBLPREC, or FE_LDBLPREC, or -1
if precision control is not available */

_FPU_GETCW(cw);

return ((int)((cw >> 8) & 0x3));
}

int
(fesetprec)(int prec)
{ /* set the rounding precision to prec (one of FE_FLTPREC,

FE_DBLPREC, or FE_LDBLPREC), and return that value on
success, or -1 on failure */

int result;

if ((prec == FE_FLTPREC) ||
(prec == FE_DBLPREC) ||
(prec == FE_LDBLPREC))

{
_FPU_GETCW(cw);
cw &= ~0x300; /* clear just the PC bits */
cw |= (prec << 8); /* set PC bits */
_FPU_SETCW(cw); /* store the control word */
result = prec; /* success */

126 Chapter 5. The floating-point environment

}
else

result = FE_FAILURE;

return (result);
}

The control word cw is defined at file scope, rather than inside functions, because of a compiler restriction on access
to it from short inline assembly-code fragments.

The actual code in fenvx.h is more complex than that, but only because we choose to implement support for
multiple operating systems in one body of code.

On architectures that lack precision control, those two functions are still provided, but they simply return
FE_FAILURE (−1).

5.12 Using precision control

As an example of how precision control can be used on the IA-32 architecture, we sum to machine precision the
Taylor series of the exponential function of a small argument with this program:

#include <stdio.h>
#include <stdlib.h>
#include <mathcw.h>
#include <fenvcw.h>

static int kmax = 0;

long double
exp_ts (long double x)
{

int k;
long double newsum, sum, term;

term = 1.0L; /* k = 0 */
sum = term;

for (k = 1; k < 50; ++k)
{

term *= x / (long double)k;
newsum = sum + term;

if (newsum == sum)
{

kmax = k;
break;

}

sum = newsum;
}

return (sum);
}

int
main(void)
{

long double x, y;

5.13. Summary 127

x = 1.0L / 64.0L;

(void)printf("Computing y = exp(%Lg) with "
"IA-32 precision control\n", x);

(void)fesetprec(FE_LDBLPREC);
y = exp_ts(x);
(void)printf("80-bit: kmax = %d y = %.21Lg = %La\n", kmax, y, y);

(void)fesetprec(FE_DBLPREC);
y = exp_ts(x);
(void)fesetprec(FE_LDBLPREC);
(void)printf("64-bit: kmax = %d y = %.21Lg = %La\n", kmax, y, y);

(void)fesetprec(FE_FLTPREC);
y = exp_ts(x);
(void)fesetprec(FE_LDBLPREC);
(void)printf("32-bit: kmax = %d y = %.21Lg = %La\n", kmax, y, y);

return (EXIT_SUCCESS);
}

When that program is compiled, linked, and run on a GNU/LINUX IA-32 system, the output looks like this:

% cc -I/usr/local/include prcctl.c && ./a.out
Computing y = exp(0.015625) with IA-32 precision control
80-bit: kmax = 9 y = 1.01574770858668574742 = 0x8.204055aaef1c8bdp-3
64-bit: kmax = 7 y = 1.01574770858668594897 = 0x8.204055aaef1dp-3
32-bit: kmax = 4 y = 1.01574766635894775391 = 0x8.20405p-3

The same code computes the sum in each case, but a global setting of the hardware floating-point precision affects
the number of terms required, and the number of bits in the final sum. On the test system, the native run-time
library trims trailing zero bits from values output with the hexadecimal format specifier, %a. On SOLARIS IA-32, the
%a format is handled differently:

% cc -I.. prcctl.c feprec.c -L/usr/local/lib -lmcw -lm && ./a.out
prcctl.c:
feprec.c:
Computing y = exp(0.015625) with IA-32 precision control
80-bit: kmax = 9 y = 1.01574770858668574744 = 0x1.04080ab55de3917ap+0
64-bit: kmax = 7 y = 1.01574770858668594906 = 0x1.04080ab55de3a000p+0
32-bit: kmax = 4 y = 1.01574766635894775392 = 0x1.04080a0000000000p+0

5.13 Summary

The C99 specification of a software interface to the floating-point environment, particularly for IEEE 754 systems, is
a substantial improvement over that available in older definitions or implementations of the C language. The new
interface is also considerably richer than that offered by most other programming languages. It is simply unfortunate
that it took so long to specify, implement, and deploy after IEEE 754 hardware came into wide use.

Although the exception and trap handling facilities are likely to remain a barrier to software portability, access
to the sticky exception flags can be of significant value in the design of numerical software that can exploit fast and
simple algorithms in most cases, and only rarely needs to fall back to more complex code when exception flags are
found to be set.

Precision control can also be of utility, and we comment in many places in this book about the difficulties that
higher intermediate precision poses for some numerical algorithms. However, programmers are advised that it is
usually better to write code for a wide range of architectures, and instead use the volatile and STORE() techniques
to restrict computational precision.

128 Chapter 5. The floating-point environment

Rounding control is essential in some applications, such as interval arithmetic. It is also useful for making numer-
ical experiments to determine whether a program’s final output is particularly sensitive to rounding directions. If it
is, then the program’s reliability is doubtful. Iterative processes that rely on numerical convergence tests may mis-
behave when a nondefault rounding mode is selected, so rounding control is a useful addition to the software-test
toolbox.

6 Converting floating-point values to integers

I HAVE FOUND A BUG ON QEMU SPARC:
THE FLOATING POINT TO INTEGER CONVERSION INSTRUCTIONS

(fstoi, fdtoi, fstox, fdtox) ARE NOT CORRECTLY EMULATED.

— AURELIEN JARNO

BUG REPORT TO Qemu-devel MAILING LIST (2007).

This chapter treats the important subject of converting arbitrary floating-point numbers to whole numbers, where
the results may be in either floating-point or integer data formats. A few important historical machines targeted at
the scientific computing market, and described in Appendix H on page 947, make such conversions easy by virtue
of not having a separate integer storage format. Integers are then just floating-point values with a zero exponent,
and conversions may require little more than bit shifting, and possibly, rounding. Some scripting languages provide
only numbers and strings, where all numbers are represented as floating-point values.

Conversions between numeric data types are common in computer software, and many programming languages
allow implicit conversions in assignments, expressions, and in passing arguments to other routines. Computer
languages also generally offer explicit conversions through calls to built-in or user-defined functions. The C language
and its descendants allow conversions with type casts, such as (int)x. Another style in languages with classes is
x.int(), meaning to apply the method function int() from the class of x to x itself.

Modern computer hardware provides substantial support for numeric conversions, often doing so with single
machine instructions. Although it might appear that the conversion problem is both well understood, and fully
supported, by hardware and software, we show in this chapter that this is far from the case. Almost all languages and
machines are severely lacking in numeric-conversion facilities, and too many of them fail to provide safe conversions.

6.1 Integer conversion in programming languages

The 1999 ISO C Standard defines 33 functions in seven different groups for converting floating-point values to inte-
gers. There are several reasons for that diversity and richness:

� Integer-valued results may be needed in any of three floating-point types (float, double, and long double),
or converted to either of two integer data types (long int and long long int).

� Conversions can be according to the current rounding mode (for example, any of the four standard IEEE 754
rounding directions), or can be defined to be independent of the rounding mode.

� Applications that need such conversions may want the nearest integer, or the next higher integer, or the next
lower integer, or the closest integer in the direction of zero.

� Although the conversions are simple to describe, they are not simple to program correctly.

� Their addition remedies a serious deficiency in the run-time library defined by the earlier 1990 ISO C Standard,
which, apart from type casts, requires only three such functions: ceil(), floor(), and modf().

The original 1956 definition of Fortran includes only intf(x) to produce the largest floating-point whole number
whose magnitude does not exceed x, and has the sign of x, xintf(x) that behaves the same way, but returns a result
of INTEGER type, and modf(x,y) to compute x − intf(x/y)× y.

Fortran 66 renames intf(x) to aint(x), xintf(x) to int(x), and modf(x,y) to amod(x,y). It also introduces
ifix(x) as a synonym for int(x), and idint(x) to truncate a DOUBLE PRECISION value to an INTEGER.

Fortran 77 adds dint(x) to truncate a DOUBLE PRECISION value to a whole number in floating-point format, and
functions anint(x), dnint(x), nint(x), and idnint(x) to convert to the nearest integer. Halfway cases round away
from zero, so nint(±2.5) produces ±3.

© Springer International Publishing AG 2017
N.H.F. Beebe, The Mathematical-Function Computation
Handbook, DOI 10.1007/978-3-319-64110-2_6

129

130 Chapter 6. Converting floating-point values to integers

Fortran 90 adds ceiling(x), floor(x), and modulo(x,y), where the latter computes x − x/y� × y. The Fortran
2003 and Fortran 2008 Standards leave the conversion facilities unchanged.

Pascal provides only trunc(x) and round(x), equivalent to Fortran’s int(x) and nint(x).
Common Lisp supplies conversion functions (ceiling ...), (fceiling ...), (ffloor ...), (floor ...),

(fround ...), (ftruncate ...), (mod ...), (rem ...), (round ...), and (truncate ...). For example, the call
(round ±2.5) returns ±2, and (round ±3.5) produces ±4, because that function uses a round-to-nearest-ties-to-even
rule to reduce rounding bias.

6.2 Programming issues for conversions to integers

Three important considerations guide our software design:

� The range and precision of floating-point data are often wider than that provided by integer data types, so
overflows must be dealt with if the conversion must yield an integer type.

� A floating-point number, x, can always be split exactly into the sum of a whole number and a fraction, x =
w + f , where both w and f have the same sign as x, and | f | < 1. All of the remaining conversions can be
described relatively easily in terms of that single operation.

� The ISO C Standard specifies that the treatment of overflows in such conversions is implementation dependent.
We address such overflows in our code for the functions returning integer data types by setting the global errno
value to ERANGE (result out of range for the target data type), and by returning an integer of the appropriate
sign and largest representable magnitude for that sign. The constants INT_MIN, INT_MAX, LONG_MIN, LONG_MAX,
LLONG_MIN, and LLONG_MAX in the C Standard header file, <limits.h>, provide the needed values.

In the following sections, we show prototypes for the 33 functions, but we omit header files. In each case, it
should be understood that the prototypes must be provided by either of these preprocessor statements:

#include <math.h>

#include <mathcw.h>

The second header file is effectively a superset of the first, because the mathcw library offers more functions than the
C99 math library does.

Similarly, in the implementations of the conversion functions, we do not show header files, but it should be
understood that each of them includes a single file with a lowercase name related to the function name of type
double, shortened to six characters in the base name if necessary to match the package design rules described on
page 3. For example, the file modfx.h looks something like this:

#if !defined(MODFX_H)
#define MODFX_H

#include "modf.h"

fp_t
MODF(fp_t x, fp_t *y)
{

/* ... code omitted ... */
}
#endif /* !defined(MODFX_H) */

Its single header file in turn includes a minimal set of other required header files. For that particular function, the
header file modf.h looks like this:

#if !defined(MODF_H)
#define MODF_H

#define HIDE_MATHCW_GENERICS

6.3. Hardware out-of-range conversions 131

Table 6.1: Out-of-range conversions to integers measured with type casts in C. The 64-bit long long int type on
several operating systems is handled by software arithmetic. For the 36-bit PDP-10, the input values are increased
by 24.

Processor O/S (short)(±218) (int)(±234) (long)(±234) (long long)(±266)
AMD64 GNU/Linux +0 −2147483648 ±17179869184 −9223372036854775808
Alpha GNU/Linux +0 +0 ±17179869184 +0
Alpha OSF/1 +0 +0 ±17179869184 +0
IA-32 FreeBSD −32768 −2147483648 −2147483648 −9223372036854775808
IA-32 GNU/Linux −32768 −2147483648 −2147483648 −9223372036854775808
IA-32 NetBSD +0 −2147483648 −2147483648 −9223372036854775808
IA-32 OpenBSD +0 −2147483648 −2147483648 −9223372036854775808
IA-32 Solaris +0 −2147483648 −2147483648 −9223372036854775808
IA-64 GNU/Linux +0 +0 ±17179869184 −9223372036854775808
IA-64 HP-UX +0 +0 +0 −9223372036854775808
Interdata Unix V6 ±262144 ±2147483647 ±2147483647 n/a
MC68040 Mach +32767 +2147483647 +2147483647 n/a

−32768 −2147483648 −2147483648 n/a
MIPS R4400SC GNU/Linux +0 +2147483647 +2147483647 ∓1
MIPS R10000 IRIX +0 +2147483647 +2147483647 +9223372036854775807
PA-RISC HP-UX +0 +2147483647, +2147483647, +9223372036854775807,

−2147483648 −2147483648 −9223372036854775808
PDP-10 TOPS-20 +0 +0 +0 n/a
PowerPC GNU/Linux +0 +2147483647, +2147483647, ∓1

−2147483648 −2147483648
PowerPC Mac OS X +0 +2147483647, +2147483647, ∓1

−2147483648 −2147483648
SPARC GNU/Linux +0 +2147483647, +2147483647 ∓1

−2147483648 −2147483648
SPARC Solaris +0 +2147483647, +2147483647, +9223372036854775807,

−2147483648 −2147483648 −9223372036854775808
VAX NetBSD +0 +0 +0 +0

#include "mathcw.h"
#include "prec.h"
#include "store.h"
#include <stddef.h>

#endif /* !defined(MODF_H) */

The outer conditionals protect against multiple inclusions of the same header file.

6.3 Hardware out-of-range conversions

Before we begin a description of the implementation of the C99 library support for converting floating-point values
to integers, a topic that occupies several following sections, it is worthwhile to investigate how hardware architects
have chosen to handle overflows in such conversions. Hardware conventions can sometimes guide software design,
but as we shall see in this case, there are none. Indeed, experiments show that there is surprising variety in how
common hardware platforms handle type conversions when the result is too large for the target data type. Table 6.1
records results from several systems.

132 Chapter 6. Converting floating-point values to integers

Table 6.2: Rounding to integer values with the C99 rint() function, which rounds its argument to a floating-point
whole number according to the current rounding direction.
Although we show negative-zero results, their signs are lost when they are converted to a two’s-complement integer
type, such as with the lrint() function.

rounding number to convert
direction −3.9 −3.1 −1.5 −0.5 −0.0 +0.0 +0.5 +1.5 +3.1 +3.9
downward −4 −4 −2 −1 −0 0 0 1 3 3
to nearest −4 −3 −2 −0 −0 0 0 2 3 4
toward zero −3 −3 −1 −0 −0 0 0 1 3 3
upward −3 −3 −1 −0 −0 0 1 2 4 4

The chief lesson from the tabulated results is that out-of-range conversions are handled inconsistently across
CPUs, across operating systems, and even across data types. The presence of many zeros and ones in the table
shows that one cannot rely on the result having a large magnitude, nor can one even expect to preserve the original
sign!

Using type casts to convert floating-point values to integer values is clearly risky, and should not be done unless
the range of the floating-point values is guaranteed to be small enough to avoid overflow in the conversion.

A much safer approach is to use the library functions described in the following sections, and for those that return
integer types, to check the value of errno after each such function call, and take remedial action if an out-of-range
conversion is detected. However, as we discuss in Section 4.23 on page 95 and Section 5.3 on page 106, it is worth
recalling that errno may be a single global value, so it may not be useful in multithreaded applications: a particular
execution thread cannot tell if errno was set by the thread itself, or by another thread. Fortunately, many systems
now define that value to be thread private.

6.4 Rounding modes and integer conversions

The IEEE 754 rounding modes affect the conversion of floating-point numbers to values of integer types in possibly
surprising ways. They can be understood if we recall the purpose of rounding. When we have an exact result that
is not representable in the target data type, we must choose one of the two representable values between which the
exact result lies, making that choice according to the current rounding direction.

Table 6.2 illustrates the actions taken for each of the four directions for several input values. Notice in particular
the rounding of the values ±0.5 and ±1.5 in the case of the default to nearest mode, which breaks such ties by choosing
the even result.

6.5 Extracting integral and fractional parts

The functions

float modff (float x, float *y);
double modf (double x, double *y);
long double modfl (long double x, long double *y);

carry out the split of x into the sum of a whole number and a fraction, x = w + f , with w and f having the same
sign as x, and | f | < 1, as described on page 130. They return the fraction f as the function value, and store the
whole number w in the location defined by the second argument. That location has the same type as x, so there is no
possibility of overflow or underflow.

The ISO C Standards do not address the issue of whether the second argument can be a NULL pointer. Our code
checks for that case, and avoids storage of the whole-number value.

6.5. Extracting integral and fractional parts 133

Table 6.3: Fixed-point representation of large integers.

βt 10000· · · 0000β

βt − 1 dddd· · · ddddβ (d = β − 1)
βt−1 1000· · · 0000β

βt−1 − (1/β) ddd· · · dddd.dβ

βt−2 100· · · 0000.0β

βt−3 10· · · 0000.00β

βt−1 + x 1yyy· · · yyyy.yyy· · · yyyβ (0 ≤ x < βt−1) (exact)
βt−1 + x 1yyy· · · yyyyβ (0 ≤ x < βt−1) (truncated)
(βt−1 + x)− βt−1 0yyy· · · yyyyβ (stored)

Appendix F of the 1999 ISO C Standard describes the behavior of the language when the environment supports
the IEC 60559:1989 Standard, Binary Floating-Point Arithmetic for Microprocessor Systems, Second Edition. That Stan-
dard is the international version of IEEE 754. For the modf() family, Appendix F of the C99 Standard requires that
when the first argument is a NaN, then both whole number and fraction are NaNs. When the first argument is ±∞,
the fraction returned as the function value is ±0, and the whole-number location is set to ±∞.

The GNU C mathematical library (glibc), Moshier’s Cephes library [Mos89], Plauger’s Standard C library [Pla92],
and the Sun Microsystems fdlibm library all use low-level bit manipulation to split the argument into fraction and
exponent, and then use tests against various magic constants that, after bit shifts and arithmetic, eventually lead
to the desired result. For related conversion functions, the glibc and fdlibm code also take care to raise the inexact
exception flag when appropriate.

Unfortunately, the floating-point-to-integer conversion code in those four libraries is messy, and certainly not
portable between floating-point precisions, or to older systems with non-IEEE 754 arithmetic. Even though we
observed in the introduction to this chapter that all of the conversions can be straightforwardly handled, once the
functions in the modf() family are available, those libraries have complex code for all of the conversion functions.

The mathcw library is intended to be usable on a wide range of architectures, and we need a much cleaner, and
much more portable, approach. Fortunately, that is possible, as we now show. Even better, our code is certainly
shorter than that in those other libraries, and thus, might even be faster, especially if the Infinity and NaN tests can
be compiled into efficient inline code.

In a fixed-point arithmetic system with n fractional digits, we could isolate the integer part by shifting right
by n digits to discard the fractional digits, then shifting left by n digits, supplying zero fractional digits. We can
accomplish the same thing in a floating-point system in a different way, by adding and subtracting a suitable large
number. The problem is now to find that special number.

Recall that in any unsigned arithmetic system with base β and t digits of precision, the largest exactly represent-
able whole number is βt − 1. However, in a floating-point system with a sufficiently wide exponent range, the next
larger whole number, βt, is also exactly representable, because it can be stored with a one-digit significand of one, and
an exponent of t, even though when written as an integer value, it really requires t + 1 digits. Table 6.3 summarizes
the digit sequences in those two values, and some related numbers.

Thus, in a floating-point arithmetic system, values βt−1 and larger have no fractional part, and are therefore whole
numbers. The modf() family functions for such values then can simply return zero, after storing their first argument
in the location of their second argument. Otherwise, for any finite |x| < βt−1, adding and subtracting βt−1 in round-
to-zero (truncating) arithmetic removes fractional digits, as shown in the bottom part of Table 6.3. The adjustment
operation must be done in storage precision, as discussed earlier in Section 4.5 on page 65.

Access to rounding-mode control is slow on some platforms, and nonexistent on others, particularly pre-IEEE 754
architectures. However, we do not need to manipulate rounding modes at all.

Consider what happens if the rounding mode is set to something other than round-to-zero (truncate). The inter-
mediate value, βt−1 + x, is then off by one about half the time: one too large for positive arguments, and one too
small for negative arguments. The result is a whole number, and in neither case can it differ from the mathematically

134 Chapter 6. Converting floating-point values to integers

exact result by more than one. The subsequent subtraction to form (βt−1 + x)− βt−1 involves only whole numbers.
It is therefore exact, and immune to rounding modes. If we can compensate for the unwanted rounding of βt−1 + x,
then we can recover the exact fraction by another subtraction.

The unwanted rounding is easily detected: for positive x, it happens when the sum exceeds x. The sum can then
simply be reduced by one, an exact operation, because the sum is a whole number.

Here is what our code looks like:

fp_t
MODF(fp_t x, fp_t *y)
{ /* x = w + f, |f| < 1, w and f have sign of x */

fp_t f;
volatile fp_t w;

if (ISINF(x))
{

w = SET_ERANGE(x);
f = COPYSIGN(ZERO, x);

}
else if (ISNAN(x))

w = f = SET_EDOM(QNAN(""));
else
{

fp_t xabs;

xabs = QABS(x);

if (xabs == ZERO)
w = f = ZERO;

else if (xabs >= B_TO_T_MINUS_ONE)
{

w = xabs;
f = ZERO;

}
else
{

w = B_TO_T_MINUS_ONE + xabs;
STORE(&w);
w -= B_TO_T_MINUS_ONE;
STORE(&w);

if (w > xabs) /* rounding occurred */
{

--w;
STORE(&w);

}

f = xabs - w; /* NB: exact! */
}

if (SIGNBIT(x))
{

w = -w;
f = -f;

}
}

if (y != (fp_t *)NULL)
*y = w;

6.6. Truncation functions 135

return (f);
}

We hide the data-type dependencies in the compile-time type fp_t and the uppercase macro names. The only ar-
chitecture dependence is the value of the compile-time constant B_TO_T_MINUS_ONE (= βt−1). That value is, alas, not
determinable by a legal compile-time expression using other symbolic constants defined in the header file <float.h>.
Subsidiary header files included by our private header file, prec.h, provide a definition, because it is needed in other
library functions as well.

There are several points to note about that code:

� The result of the computation of (βt−1 + x) must be in storage precision, a topic addressed earlier in Section 4.5
on page 65. For architectures with higher-than-storage-precision registers with old compilers that do not im-
plement the C89 volatile keyword, or fail to implement it correctly, the STORE() function call ensures storage
of its argument. On modern systems, it can be a macro that does nothing.

� Some compilers on systems with IEEE 754 arithmetic are sloppy about the handling of negative zero. In the
code for a first argument of Infinity, we used COPYSIGN() to ensure the correct sign of a zero result.

� The only IEEE 754 sticky exception flags that can be set are invalid, in the event that the first argument is a NaN,
and inexact, when the first argument is finite and its fraction is nonzero.

The invalid flag is intentionally set by the QNAN() function. Although a simple assignment w = f = x would
supply the required NaN results, it would not set the exception flag.

The 1999 ISO C Standard does not specify whether exception flags can be set by the modf() function family,
but inexact is commonly set by most floating-point operations. It is therefore unlikely that any realistic code
that uses any floating-point library function would depend on inexact not being set by the library code.

� Special treatment is required for two different cases with zero fractions: the first argument is a positive or
negative zero, or its magnitude is at least βt−1.

In the first case, we must set both whole number and fraction to zero. Otherwise, when the rounding mode is
set to downward, if we fell through to use the code in the final else block that computes w = (βt−1 + |x|)− βt−1,
we would get w = −0 instead of the correct w = +0. That subtle point was initially overlooked when our code
was developed, but the error was caught in testing.

In the second case, we can compute the almost-final results by simple assignment to f and w.

� Once the obligatory tests for Infinity, NaN, and a zero-fraction result are handled, the hot spot in the code is
the else block that computes (βt−1 + x)− βt−1. It requires on average just 3.5 additions, 4.5 loads, 2.5 stores,
one comparison, and 0.5 branches.

� We need to use SIGNBIT(), rather than a simple test, x < ZERO, to correctly handle the case where the first
argument is a negative zero.

For IEEE 754 single-precision computation, it is feasible to make an exhaustive test that compares our implemen-
tation with the native modff() library code for the 350 million or so possible arguments that have nonzero integer
parts and nonzero fractions: no differences are found. A relative timing test showed that our code ran 0.7 to 3.0 times
slower than the native version on a dozen systems with different CPU architectures or operating systems, and many
different compilers.

6.6 Truncation functions

The truncation functions

float truncf (float x);
double trunc (double x);
long double truncl (long double x);

136 Chapter 6. Converting floating-point values to integers

convert their argument to the nearest whole number whose magnitude does not exceed that of the argument, and
return that whole number as a floating-point value. Thus, trunc(−3.5) → −3.0 and trunc(3.9) → 3.0. Their values
always have the same sign as their arguments, so trunc(±0.0) → ±0.0.

The modf() function extracts the whole number, and the rest of the code is just a simple wrapper:

fp_t
TRUNC(fp_t x)
{

fp_t w;

(void)MODF(x, &w);

return (w);
}

The only IEEE 754 floating-point sticky exception flags that can be set are those set by modf(): inexact if x has a
nonzero fraction, and invalid if the argument is a NaN.

The errno global value is never set.

6.7 Ceiling and floor functions

The ceiling of a fractional number is defined to be the nearest whole number that is not less than that number.
Similarly, the floor of a fractional number is the nearest whole number that is not greater than that number. The
mathematical notations for those quantities are �x� for the ceiling, and x� for the floor.

The functions defined by 1999 ISO Standard C for those operations are:

float ceilf (float x);
double ceil (double x);
long double ceill (long double x);

float floorf (float x);
double floor (double x);
long double floorl (long double x);

Notice that the functions return floating-point results, not integer values. For example, ceil(−3.4) → −3.0,
floor(−3.4) → −4.0, and ceil(3.0) = floor(3.0) → 3.0.

The two functions satisfy the simple relation floor(x) = − ceil(−x), and their values always have the same sign
as their arguments, so ceil(±0.0) = floor(±0.0) → ±0.0. They are related to the truncation function as follows:
trunc(|x|) = floor(|x|) and trunc(−|x|) = ceil(−|x|).

The modf() function allows retrieval of the whole number, and a simple adjustment of that value provides the
ceiling or floor:

fp_t
CEIL(fp_t x)
{

fp_t w;

(void)MODF(x, &w);

return ((w < x) ? ++w : w);
}

fp_t
FLOOR(fp_t x)
{

fp_t w;

6.8. Floating-point rounding functions with fixed rounding 137

(void)MODF(x, &w);

return ((w > x) ? --w : w);
}

fp_t
FLOOR(fp_t x)
{

return (-CEIL(-x));
}

We showed two implementations of the floor function; the second is shorter, but requires one extra function call.
In IEEE 754 arithmetic, comparisons are exact, and neither overflow nor underflow. They may set the invalid

flag if an operand is a NaN, but that cannot happen in our code unless the argument is a NaN. The addition and
subtraction in the adjustments of w are exact, and can neither overflow nor underflow. Thus, the only IEEE 754
floating-point sticky exception flags that can be set are the same as those set by modf(): inexact if the argument has a
nonzero fraction, and invalid if the argument is a NaN.

The errno global value is never set.

6.8 Floating-point rounding functions with fixed rounding

The rounding functions

float roundf (float x);
double round (double x);
long double roundl (long double x);

convert their argument to the nearest whole number and return that whole number as a floating-point value. Halfway
cases are rounded away from zero, independent of the current rounding direction. For example, round(−3.4) →
−3.0, round(−3.5) → −4.0, and round(3.5) → 4.0, Their values always have the same sign as their arguments, so
round(±0.0) → ±0.0.

The modf() function allows retrieval of the whole number, and only a little extra work is needed to complete the
job:

fp_t
ROUND(fp_t x)
{

fp_t f, w;

f = MODF(x, &w);

if (f <= -HALF)
--w;

else if (f >= HALF)
++w;

return (w);
}

We do not require special handling of Infinity and NaN here, because modf() does the necessary work. An
argument of Infinity results in a zero fraction, neither conditional succeeds, and the result is Infinity. A NaN argu-
ment results in NaN values for both f and w, and even if the conditionals succeed, as they do with some defective
compilers, w remains a NaN.

The only IEEE 754 floating-point sticky exception flags that can be set are those set by modf(): inexact if the
argument has a nonzero fraction, and invalid if the argument is a NaN.

The errno global value is never set.

138 Chapter 6. Converting floating-point values to integers

6.9 Floating-point rounding functions with current rounding

The rounding functions

float rintf (float x);
double rint (double x);
long double rintl (long double x);

convert their argument to a whole number using the current rounding direction, and return that whole number. For
example, rint(−3.1) → −4.0 if the rounding direction is downward, and rint(−3.1) → −3.0 if the rounding direction
is toward zero, upward, or to nearest. More examples are given in Table 6.2 on page 132. Their values always have the
same sign as their arguments, so rint(±0.0) → ±0.0.

The modf() function allows retrieval of the whole number, but more work is needed to handle the rounding
properly. The brute-force approach would fetch the current rounding mode, and then take different actions for each
of the four possible modes. However, that is complex, and rounding-mode access is slow on some architectures.

A better approach is to let the floating-point hardware do the job for us. Recall that βt−1 is the start of the floating-
point range where there are no fractional parts. If we add the fraction returned by modf() to βt−1, the addition takes
place according to the current rounding mode, and we can then test the result to see whether the integer part needs
adjustment by comparing the sum to βt−1. If the sum is larger, increase the result by one, and if smaller, decrease the
result by one.

Unfortunately, that algorithm is not quite right. It fails for the IEEE 754 default to nearest rounding mode, which
rounds to an even result when the value is exactly halfway between two representable results. For example, as
suggested by Table 6.2 on page 132, rint(0.5) → 0.0, rint(1.5) → 2.0, rint(2.5) → 2.0, and rint(3.5) → 4.0. For the
split x = w + f returned by modf(), because βt−1 is even for the number bases that we find in practice (2, 4, 8, 10,
and 16), we can use βt−1 + f if w is even, but when w is odd, we must use βt−1 + 1 + f .

Here is our code to compute rint():

fp_t
RINT(fp_t x)
{

fp_t delta, f, w, w_half;
volatile fp_t sum;

f = MODF(x, &w);
(void)MODF(w * HALF, &w_half);

/* Ensure that delta has same parity as w to preserve
rounding behavior for to-nearest mode. */

if (w == (w_half + w_half)) /* w is even */
delta = B_TO_T_MINUS_ONE; /* delta is even */

else /* w is odd */
delta = B_TO_T_MINUS_ONE + ONE; /* delta is odd */

if (x >= ZERO)
{

sum = delta + f;
STORE(&sum);

if (sum > delta)
++w;

else if (sum < delta)
--w;

}
else
{

sum = -delta + f;
STORE(&sum);

6.10. Floating-point rounding functions without inexact exception 139

if (sum > -delta)
++w;

else if (sum < -delta)
--w;

}

return (w);
}

Overflow and underflow are impossible in the computation of sum, and for large magnitude arguments |x| >= βt−1,
modf() returns w = x and f = ±0, so no further adjustments are made on the result variable.

We handle positive and negative values separately to ensure that the magnitude of sum in exact arithmetic is
at least as large as δ, forcing rounding to occur when the fraction is nonzero. It is not practical to merge the two
branches of the if statement, because three of the four IEEE 754 rounding directions are not symmetric about zero,
and our code must work correctly in all of them.

No special code is needed to handle the case of negative zero. It is taken care of by the first part of the if
statement, where modf() sets w = −0, and sum gets the value delta. No further changes are made to w, so the
returned value has the correct sign.

The sum variable must be evaluated in storage precision. The volatile qualifier, or the STORE() function (or
macro), ensures that.

We do not require special handling of Infinity and NaN here, for the same reasons cited in Section 6.8 on page 137
for round().

The only IEEE 754 floating-point sticky exception flags that can be set are those set by modf(): inexact if the
argument has a nonzero fraction, and invalid if the argument is a NaN.

The errno global value is never set.

6.10 Floating-point rounding functions without inexact exception

The 1999 ISO C Standard defines a set of related functions

float nearbyintf (float x);
double nearbyint (double x);
long double nearbyintl (long double x);

which differ from those in the rint() function family only in that they do not raise the inexact exception flag. One
way to prevent that from happening is to use only low-level integer operations to construct the result, but as we
observed in Section 6.5 on page 132, that is messy and nonportable.

Use of the nearbyint() functions is likely to be uncommon, and we can therefore afford to sacrifice some speed
in favor of clarity and simplicity. We choose to implement them by saving the value of the inexact flag, doing the
computation, and then clearing the flag if it was set in the computation, but was not already set before.

fp_t
NEARBYINT(fp_t x)
{

fp_t result;
int new_flags, old_flags;

old_flags = fetestexcept(FE_INEXACT);
result = RINT(x);
new_flags = fetestexcept(FE_INEXACT);

if (((old_flags & FE_INEXACT) == 0) && ((new_flags & FE_INEXACT) != 0))
(void)feclearexcept(FE_INEXACT);

return (result);
}

140 Chapter 6. Converting floating-point values to integers

Alternatively, we can save the flag, do the computation, and then clear the flag if it was clear on entry:

fp_t
NEARBYINT(fp_t x)
{

fp_t result;
int old_flags;

old_flags = fetestexcept(FE_INEXACT);
result = RINT(x);

if ((old_flags & FE_INEXACT) == 0)
(void)feclearexcept(FE_INEXACT);

return (result);
}

No special handling of either Infinity or NaN arguments is required, because rint() does that for us.
Because the inexact flag is set on most floating-point operations in practical computations, it is likely to be already

set on entry, and thus, only rarely needs to be cleared before return. The extra overhead compared to rint() is then
mostly that of two calls to fetestexcept() in the first version, or one call to each of the exception routines in the
second version. That version is shorter, and is probably slightly faster because of the simpler if-expression.

The only IEEE 754 floating-point sticky exception flag that can be set by the nearbyint() function family is invalid,
and that happens only when the argument is a NaN.

The errno global value is never set.

6.11 Integer rounding functions with fixed rounding

The rounding functions

long int lroundf (float x);
long int lround (double x);
long int lroundl (long double x);

convert their argument to the nearest whole number and return that whole number as a long int value. Halfway
cases are rounded away from zero, independent of the current rounding direction. For example, lround(−3.4) → −3,
lround(−3.5) → −4, and lround(3.5) → 4. Because two’s-complement integer arithmetic has only one zero, the sign
of a zero argument is not preserved: lround(±0.0) → +0.

The companion functions

long long int llroundf (float x);
long long int llround (double x);
long long int llroundl (long double x);

behave the same away, except for the difference in the type of the returned value.
Those functions behave like those in the round() family, except that the final result requires conversion to an

integer type. Because that conversion involves a range reduction, the 1999 ISO C Standard says:

If the rounded value is outside the range of the return type, the numeric result is unspecified. A range error may occur if the
magnitude of x is too large.

The most reasonable approach for out-of-range results is to return the closest representable integer, and set errno.
Here is our code:

long int
LROUND(fp_t x)
{

long int result;

6.11. Integer rounding functions with fixed rounding 141

if (ISNAN(x))
result = SET_INVALID(EDOM, LONG_MIN);

else
{

fp_t w;

w = ROUND(x);

if (w < (fp_t)LONG_MIN)
result = SET_INVALID(ERANGE, LONG_MIN);

else if (w > (fp_t)LONG_MAX)
result = SET_INVALID(ERANGE, LONG_MAX);

else
result = (long int)w;

}
return (result);

}

long long int
LLROUND(fp_t x)
{

long long int result;

if (ISNAN(x))
result = SET_INVALID(EDOM, LLONG_MIN);

else
{

fp_t w;

w = ROUND(x);

if (w < (fp_t)LLONG_MIN)
result = SET_INVALID(ERANGE, LLONG_MIN);

else if (w > (fp_t)LLONG_MAX)
result = SET_INVALID(ERANGE, LLONG_MAX);

else
result = (long long int)w;

}
return (result);

}

The tests for a NaN argument are essential here, because the result of converting a NaN to an integer value by a
type cast is platform dependent. We choose to return the most negative integer and set errno to EDOM (argument is
out of the domain of the function), to distinguish the result from a finite value that is too large to represent, and for
which errno is set to ERANGE.

The convenience macro SET_INVALID() sets the invalid exception flag, as required by Appendix F of the 1999 ISO
C Standard. That could be done by calling the exception library routine feraiseexcept(FE_INVALID), but in practice,
it is faster to simply generate a quiet NaN by calling QNAN(""). The macro also sets errno to its first argument, and
returns its second argument. The C-language comma expression makes that easy, and the net effect is that the first
assignment in LROUND() looks like this after macro expansion:

result = ((void)QNAN(""), errno = EDOM, LONG_MIN);

The Standard is silent about the return values from those functions for a NaN argument. Our choice seems to be
the best that one can do, because traditional integer arithmetic on computers lacks the concept of not-a-number, and
as we noted in Section 4.10 on page 72, exceptions or traps on integer overflow are rarely possible.

142 Chapter 6. Converting floating-point values to integers

The only IEEE 754 floating-point sticky exception flags that can be set are inexact if the argument has a nonzero
fraction, and invalid if the argument is a NaN, or else the result is too big to represent in a value of the integer return
type.

The errno global value may be set to EDOM or ERANGE.

6.12 Integer rounding functions with current rounding

The rounding functions

long int lrintf (float x);
long int lrint (double x);
long int lrintl (long double x);

convert their argument to the ‘nearest’ whole number according to the current rounding direction, and return that
whole number. For example, lrint(−3.1) → −4 if the rounding direction is downward, and lrint(−3.1) → −3 if the
rounding direction is toward zero, upward, or to nearest. Because two’s-complement integer arithmetic has only one
zero, the sign of a zero argument is not preserved: lrint(±0.0) → +0.

The companion functions

long long int llrintf (float x);
long long int llrint (double x);
long long int llrintl (long double x);

are similar, differing only in the type of the returned value.
Those functions behave like those in the rint() family, except that the final result requires conversion to an

integer type. Because that conversion involves a range reduction, the 1999 ISO C Standard says:

If the rounded value is outside the range of the return type, the numeric result is unspecified. A range error may occur if the
magnitude of x is too large.

Appendix F of the 1999 ISO C Standard places a further requirement on those functions:

If the rounded value is outside the range of the return type, the numeric result is unspecified and the invalid floating-point
exception is raised. When they raise no other floating-point exception and the result differs from the argument, they raise the
inexact floating-point exception.

The most reasonable approach for out-of-range results is to return the closest representable integer, and set errno
and the exception flags. Here is our code:

long int
LRINT(fp_t x)
{

long int result;

if (ISNAN(x))
result = SET_INVALID(EDOM, LONG_MIN);

else
{

fp_t w;

w = RINT(x);

if (w < (fp_t)LONG_MIN)
result = SET_INVALID(ERANGE, LONG_MIN);

else if (w > (fp_t)LONG_MAX)
result = SET_INVALID(ERANGE, LONG_MAX);

else
result = (long int)w;

}

6.13. Remainder 143

return (result);
}

long long int
LLRINT(fp_t x)
{

long long int result;

if (ISNAN(x))
result = SET_INVALID(EDOM, LLONG_MIN);

else
{

fp_t w;

w = RINT(x);

if (w < (fp_t)LLONG_MIN)
result = SET_INVALID(ERANGE, LLONG_MIN);

else if (w > (fp_t)LLONG_MAX)
result = SET_INVALID(ERANGE, LLONG_MAX);

else
result = (long long int)w;

}

return (result);
}

As with the lround() function family, we need to handle NaN arguments explicitly, to avoid platform depen-
dence in the conversion of NaNs to integers.

The only IEEE 754 floating-point sticky exception flags that can be set are inexact if the argument has a nonzero
fraction, and invalid if the argument is a NaN, or else the result is too big to represent in a value of the integer return
type.

The errno global value may be set to EDOM or ERANGE.

6.13 Remainder

The 1999 ISO C Standard defines three families of functions related to the remainder in division:

float fmodf (float x, float y);
double fmod (double x, double y);
long double fmodl (long double x, long double y);

float remainderf (float x, float y);
double remainder (double x, double y);
long double remainderl (long double x, long double y);

float remquof (float x, float y, int *quo);
double remquo (double x, double y, int *quo);
long double remquol (long double x, long double y, int *quo);

Table 6.4 on the following page shows some typical results of those functions.
All of the remainder functions produce exact results. Their use is critical in the argument-reduction steps needed

by some of the algorithms for computing elementary functions.

144 Chapter 6. Converting floating-point values to integers

Table 6.4: Remainder function examples. The result of r = fmod(x, y) has the sign of x with |r| in [0, |y|). By contrast,
r = remainder(x, y) has r in [−|y/2|,+|y/2|].

n
−8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8

fmod(8, n)
0 1 2 3 0 2 0 0 QNaN 0 0 2 0 3 2 1 0

fmod(−8, n)
−0 −1 −2 −3 −0 −2 −0 −0 QNaN −0 −0 −2 −0 −3 −2 −1 −0

remainder(8, n)
0 1 2 −2 0 −1 0 0 QNaN 0 0 −1 0 −2 2 1 0

remainder(−8, n)
−0 −1 −2 2 −0 1 −0 −0 QNaN −0 −0 1 −0 2 −2 −1 −0

When x and y are finite, and y is nonzero, the functions satisfy these symmetry relations:

fmod(x, y) = fmod(x,−y) = − fmod(x, y) = − fmod(x,−y),
remainder(x, y) = remainder(x,−y) = − remainder(x, y) = − remainder(x,−y).

Section 7.12.10 of the 1999 ISO C Standard, and the subsequent Technical Corrigendum 2 (2005), define their
behavior in these words:

The fmod() functions return the value x − ny, for some integer n such that, if y is nonzero, the result has the same sign as
x and magnitude less than the magnitude of y. If y is zero, whether a domain error occurs or the fmod() functions return zero
is implementation-defined.

The remainder() functions compute the remainder x REM y required by IEC 60559:

When y �= 0, the remainder r = x REM y is defined regardless of the rounding mode by the mathematical
relation r = x − ny, where n is the integer nearest the exact value of x/y; whenever |n − x/y| = 1/2, then n is
even. Thus, the remainder is always exact. If r = 0, its sign shall be that of x. This definition is applicable for all
implementations.

The remquo() functions compute the same remainder as the remainder() functions. In the object pointed to by quo they
store a value whose sign is the sign of x/y and whose magnitude is congruent modulo 2N to the magnitude of the integral
quotient of x/y, where N is an implementation-defined integer greater than or equal to 3.

The remquo() functions return x REM y. If y is zero, the value stored in the object pointed to by quo is unspecified and
whether a domain error occurs or the functions return zero is implementation defined.

6.14 Why the remainder functions are hard

From their descriptions in the Standard, fmod(x,y) is just x - trunc(x/y)*y, and with the IEEE 754 default to nearest
rounding mode, remainder(x,y) is x - rint(x/y)*y.

Implementation looks trivial, but it is not, because those equations hold only in exact arithmetic. The simple
formula x − ny contains two nasty pitfalls for computer arithmetic: overflow and subtraction loss. Neither pitfall is
rare in remainder computations.

It is instructive to work through a simple example to see how the computation of the remainder can fail. Figure 6.1
on the next page shows four attempts in low-precision decimal arithmetic, leading to these observations:

� The value of (x/y) is 802.439· · · e16, so whether trunc() or rint() is used, the three-digit result is 802e16.
Thus, in that experiment, both fmod() and remainder() must give the same result.

6.14. Why the remainder functions are hard 145

Choose initial values near overflow and underflow limits:

x = 987 × 109 ,
y = 123 × 10−9.

First try: straightforward brute-force computation:

n = trunc(x/y)
= trunc(8 024 390 243 902 439 024), overflow!
= ∞,

r = x − ny
= 987 × 109 − ∞y
= ∞, wrong!

Second try: use larger exponent range to eliminate overflow:

n = trunc(x/y)
= trunc(8 024 390 243 902 439 024)
= 802 × 1016, truncate to 3 significant digits,

r = x − ny
= 987 × 109 − 802 × 1016 × 123 × 10−9

= 987 × 109 − 986.46 × 109, exact,
= 987 × 109 − 986 × 109, truncate to 3 significant digits,
= 1 × 109, wrong!

Third try: use fused multiply-add to reduce subtraction loss:

r = fma(−n, y, x)
= −802 × 1016 × 123 × 10−9 + 987 × 109

= 540 × 106, wrong!

Fourth try: use exact arithmetic:

r = x − ny
= 987 × 109 − 8 024 390 243 902 439 024 × 123 × 10−9

= 987 000 000 000 − 986 999 999 999.999 999 952
= 48.0 × 10−9, correct answer!

Figure 6.1: Computing the remainder, using low-precision decimal IEEE-like arithmetic. We have base β = 10 and
precision t = 3, and we assume a single-digit exponent. The correct remainder, r, must satisfy 0 ≤ |r| < |y|, yet the
first three attempts at computing it are grossly far off. We seem to need much wider precision, and a wider exponent
range, to get the correct answer, which experiences a loss of 19 leading digits in the subtraction.

� The first attempt suffers from destructive overflow, producing an infinite remainder.

That overflow can be eliminated by widening the exponent range. Such a feature is implemented in hardware
in the IA-64 and Motorola 68000 architectures, which have two additional bits in the exponent field in floating-
point registers. That allows computations like x/y�y and

√
x2 + y2 to be carried out inside the CPU without

possibility of overflow for any values x and y that are representable in external memory storage.

� Alas, even with a wider exponent range, the second attempt still gets a remainder that is far outside the possible
range, 0 ≤ |r| < |y|, of the correct answer. That is due to two problems: the product ny has insufficient
precision, and the subtraction x − ny loses accuracy.

� The fused multiply-add operation discussed in Section 4.17 on page 85 can often help to reduce accuracy loss,
because it computes fma(x, y, z) = xy + z with an exact double-length product xy and a single rounding after
the addition of z.

The third attempt introduces a fused multiply-add to try to repair the damage from the subtraction, but is still

146 Chapter 6. Converting floating-point values to integers

unsuccessful because n lacks adequate precision. It gets the right answer for the wrong n, and because the
answer is outside the allowed range, we know that it must be wrong.

� The fourth attempt retains all digits, doing the computation in exact arithmetic, and as expected, produces the
correct answer. Notice in particular that the subtraction of the 21-digit exact product ny from the 12-digit exact
x loses 19 digits, producing a tiny remainder that is exactly representable in our three-digit arithmetic system.

It is disturbing that, even if we did not use exact arithmetic, intermediate working precision seven times larger
than storage precision is needed to get the right answer.

What precision do we apparently need in the worst case? The largest exponent range that we need to handle in
binary arithmetic is that in the IEEE 754 128-bit format, whose nonzero positive range is about [10−4966, 10+4932],
and whose decimal precision is about 35 digits. The largest n comes from dividing the largest x by the smallest
y: it needs about 4932 + 4966 = 9898 decimal digits. The product ny then has about 9898 − 4966 = 4932 digits
before the decimal point, and 35 + 4966 = 5001 fractional digits. The subtraction x − ny therefore needs about
4932 + 5001 = 9933 decimal digits to obtain a result that we round to about 35 digits, after loss of 9898 digits
in the subtraction.

That looks computationally bleak, but fortunately, and perhaps surprisingly, it is possible to compute the
remainder correctly without access to any precision higher than storage precision. In the next section, we
show how to accomplish that task.

6.15 Computing fmod()

The discussion in the previous section makes it clear that computation of the functions fmod() and remainder() is
not going to be as easy as we might have hoped from their simple definitions, which require only a divide, a multiply
and an add. Indeed, in existing high-quality mathematical-function libraries, those functions are among the more
complex to implement, and most of the libraries do so by messing about with bits at a low level.

The Intel IA-32 architecture has hardware instructions, FPREM and FPREM1, that compute the two kinds of remain-
ders exactly over the entire domain of their arguments, and the Motorola 68000 architecture has similar instructions,
FMOD and FREM. The DEC VAX EMOD instructions compute the lower 32 bits of the integer part, and a floating-point
remainder from a product with the reciprocal of the divisor extended by 8 to 15 bits. However, after 1986, that in-
struction family was no longer provided in hardware, possibly due to its implementation complexity, and its use
was deprecated. The IBM System/390 DIEBR and DIDBR divide-to-integer instructions for 32-bit and 64-bit IEEE 754
arithmetic produce the integer and remainder as floating-point values, with the integer part holding the lower bits
of the true integer. There are no corresponding instructions for the IBM hexadecimal formats. No RISC architecture,
or IA-64, supplies a comparable instruction. However, a manual for the MIPS architecture [KH92, page E-4] gives
this hint about how the remainder might be computed:

The remainder() function is accomplished by repeated magnitude subtraction of a scaled form of the divisor, until the
dividend/remainder is one half of the divisor, or until the magnitude is less than one half of the magnitude of the divisor. The
scaling of the divisor ensures that each subtraction step is exact; thus, the remainder function is always exact.

The definition of the remainder is equivalent to subtracting |y| from |x| as many times as needed to obtain a result
smaller than |y|, provided that each subtraction is exact.

Given two positive numbers whose fractional points are aligned, subtraction of the smaller from the larger is an
exact operation. Thus, in a base-β floating-point system, if we scale y by a power of the base (an exact operation)
to obtain a number in the range (x/β, x], then the subtraction is exact. The scaling is by an integer k, so that all we
have done is produce a remainder r′ = x − ky. The key observation that leads to an effective algorithm is that the
remainder r′ has the same remainder with respect to y as x does, but is smaller than x. We can therefore iterate the
computation until 0 ≤ r′ < y, and the desired remainder is then r = r′. Here is an implementation of that algorithm:

fp_t
FMOD(fp_t x, fp_t y)
{

fp_t result;

6.15. Computing fmod() 147

if (ISNAN(x) || ISNAN(y) || ISINF(x) || (y == ZERO))
result = SET_EDOM(QNAN(""));

else
{

fp_t xabs, yabs;

xabs = FABS(x);
yabs = FABS(y);

if (xabs < yabs)
result = x;

else if (xabs == yabs)
result = COPYSIGN(ZERO, x);

else /* finite nonzero operands */
{

fp_t r;
int nr, ny;

r = xabs;
(void)FREXP(yabs, &ny);

while (r >= yabs) /* loop arithmetic is EXACT! */
{

fp_t yabs_scaled;
int n;

(void)FREXP(r, &nr);
n = nr - ny;
yabs_scaled = LDEXP(yabs, n);

if (yabs_scaled > r)
yabs_scaled = LDEXP(yabs, n - 1);

r -= yabs_scaled;
}

result = (x < ZERO) ? -r : r;
}

}
return (result);

}

The four tests in the outer if statement identify problem arguments that require special handling: for all of them,
we record a domain error and return a NaN. That seems more useful in IEEE 754 arithmetic than the zero value
suggested by the Standard for the result when the second argument is zero. Most implementations tested on about
twenty flavors of UNIX returned a NaN in that case; only on OSF/1 Alpha is the result zero. On the PDP-10, the
result returned by the native C library is also zero, but its floating-point system does not support NaN or Infinity.

Our code leaves to the QNAN() wrapper the decision of what to do about NaNs on systems that lack them. A
reasonable choice might be to return the largest floating-point number, in the hope of causing noticeable problems
later. Another reason for using a private function whose return value we can control, is that the 1999 ISO C Stan-
dard in Section 7.12.11.2 defines the functions nanf(), nan(), and nanl(), and requires that they return zero if the
implementation does not support quiet NaNs. The mathcw library code for the qnan() and snan() function families
behaves like the nan() family on systems that lack IEEE 754 arithmetic, but the functions can easily be replaced with
private versions if particular nonzero return values are preferred.

Otherwise, we save the arguments as positive values to avoid having to deal with signs in the inner loop.
If |x| < |y|, the result is just x. That also nicely handles the case of x being a signed zero, as required by the

Standard.

148 Chapter 6. Converting floating-point values to integers

Table 6.5: Loop counts in fmod(). Test values are selected from a pseudorandom logarithmic distribution over
the indicated ranges, averaging counts over 100 000 runs (or 10 000 for the higher counts). M and m represent the
largest and smallest normal numbers for the indicated data format. The counts for ranges (1, X), (Y, 1) are closely
approximated by log2(X/Y)/4. The 256-bit binary and decimal formats would require in the worst case more than
520 000 and 2 612 000 iterations, respectively.

x range y range Average loop count
32-bit 64-bit 80-bit 128-bit

(1, 16) (1/16, 1) 3 3 3 3
(1, 1024) (1/1024, 1) 6 6 6 6
(1, 10242) (1/10242, 1) 11 11 11 11
(1, 10244) (1/10244, 1) 21 21 21 21
(1, 10248) (1/10248, 1) 41 41 41 40
(1,

√
M) (

√
m, 1) 32 257 4109 4098

(1,
√

M) (m, 1) 48 384 6173 6109
(1, M) (

√
m, 1) 48 384 6148 6145

(1, M) (m, 1) 64 512 8237 8366
(M/2, M) (m, 2m) 127 1023 16383 16382

If |x| = |y|, then y divides x without a remainder, so we return a zero of the same sign as x, again following the
Standard.

The final else block is where the hard work happens.
The FREXP() function is the easiest way to get the floating-point exponent, and the void cast discards the signifi-

cand, which we do not require. Because y is constant inside the loop, its exponent does not change, so we only need
to extract its exponent once, outside the loop.

The variable r takes the place of |x| in our iteration, so it is initialized outside the loop to that value, and the
loop is only entered when r is at least as large as |y|. Because we already handled the case of arguments equal in
magnitude, the loop is always entered at least once.

Inside the loop, we extract the exponent of r, because r changes every iteration, and then form an exactly scaled
y by exponent adjustment using LDEXP() to do the work of multiplying y by βn. If the result is too big, we reduce
the exponent by one and rescale. Those actions produce a scaled y that can be subtracted exactly from r, reducing its
magnitude. Eventually, r is reduced to the required range, and the loop exits.

The final assignment sets the appropriate sign of the remainder, and the function returns the value of result.
The most critical part of fmod() is the loop. Its iteration count depends on the relative sizes of the arguments x

and y, and can be measured by instrumenting the code with a loop counter, and then making numerical experiments
that are summarized in Table 6.5. The iteration counts depend on the ratio x/y, and in the two longer formats
for wide data ranges, can run to thousands. The large counts are a primary reason why RISC architectures do not
support the remainder operation in hardware, because they are designed to have short instruction-cycle counts.

Timing tests on Intel IA-32 systems where the FPREM instruction does the work in the fmod() native-library routine
show that it too runs hundreds of times slower when the ratio x/y is large.

Because all of the arithmetic is exact, no floating-point sticky exception flags can be set in fmod() unless the result
is a run-time NaN, and errno is set to EDOM only when a NaN is returned.

6.16 Computing remainder()

Although the definitions of fmod() and remainder() are similar, their subtle differences make it nontrivial to com-
pute one from another, a topic that we address in Section 6.18 on page 152.

Instead, we produce code for remainder() by a straightforward modification of the code for fmod(). There is a
bit more work to be done, because remainder() requires that n be even when x − ny = ±1/2.

Because n can be much too large to represent, we cannot compute it, but we do not need to: we only require

6.16. Computing remainder() 149

knowledge of whether it is odd or even. In the inner loop of fmod(), we scaled y by a power of the base. That scale
factor is either an even number (assuming historical bases 2, 4, 8, 10, and 16) when the power is greater than one, or
else it is one, when the power is zero. We just need to count the number of times the zero-power case occurs, and
that is infrequent. Instrumentation of a version of our code shows that the average frequency of a zero power in the
scaling is about 1.005 in the almost-worst case of random x near the overflow limit, and random y just above the
smallest normal number. There is clearly no danger of an integer overflow in the frequency counter.

Here is the code that implements remainder(), with the lines that differ from the code for fmod() marked with a
comment /* REM */:

fp_t
REMAINDER(fp_t x, fp_t y)
{

fp_t result;

if (ISNAN(x) || ISNAN(y) || ISINF(x) || (y == ZERO))
result = SET_EDOM(QNAN(""));

else
{

fp_t xabs, yabs;

xabs = FABS(x);
yabs = FABS(y);

if (xabs < yabs)
result = x;

else if (xabs == yabs)
result = COPYSIGN(ZERO, x);

else /* finite nonzero operands */
{

fp_t r;
int nr, ny, parity; /* REM */

r = xabs;
(void)FREXP(yabs, &ny);
parity = 0; /* REM */

while (r >= yabs) /* loop arithmetic is EXACT! */
{

fp_t yabs_scaled;
int n;

(void)FREXP(r, &nr);
n = nr - ny;
yabs_scaled = LDEXP(yabs, n);

if (yabs_scaled > r)
{ /* REM */

--n; /* REM */
yabs_scaled = LDEXP(yabs, n);

} /* REM */

if (n == 0) /* REM */
++parity; /* REM */

r -= yabs_scaled;
}

if (r > HALF * yabs) /* REM */

150 Chapter 6. Converting floating-point values to integers

{ /* REM */
r -= yabs; /* REM */
++parity; /* REM */

} /* REM */

if ((parity & 1) && (r == (HALF * yabs)))/* REM */
r = -r; /* REM */

result = (x < ZERO) ? -r : r;
}

}
return (result);

}

When the loop exits, we have r in [0, |y|), but remainder() requires a result in [−|y/2|,+|y/2|]. We can readily
ensure that by subtracting |y| from r when r > |y/2|, and incrementing the frequency counter. The next step is to
check for the special case r = 1/2, and if the frequency counter is odd, to invert the sign of r. The last step fulfills the
symmetry relation on the first argument, just as in fmod(): if x is negative, then replace r by −r. The case of x = ±0
has already been handled in the first and second branches of the second-level if statement, so we do not need to use
SIGNBIT() in the test for a negative argument.

Because the code is so similar to that for fmod(), the execution time for remainder() is only a little bit longer. The
extra adjustment of r after the loop exits amounts to about half an iteration more, which is of little significance in
view of the counts recorded in Table 6.5 on page 148.

All of the arithmetic is exact, so no flags can be set in remainder() unless the result is a run-time NaN, and errno
is set to EDOM only when a NaN is returned.

6.17 Computing remquo()

The remquo() functions are a straightforward extension of the remainder() functions. Instead of tracking the parity
of n in r = x − ny, we now have to determine n modulo some power of two larger than two. The reason for that
peculiar choice is existing hardware: the Intel IA-32 remainder instructions, FPREM and FPREM1, record the three least-
significant bits of the quotient in status flags, and the Motorola 68000 family FMOD and FREM instructions produce the
seven least-significant bits.

One important application of the remainder is reduction of arguments to trigonometric functions. If at least three
low-order bits of the quotient are available, they can be used to select an octant, quadrant, or half-plane in which the
angle lies.

Here is the code for remquo(), with the changes from the code in remainder() marked with a comment
/* REMQUO */:

fp_t
REMQUO(fp_t x, fp_t y, int *quo)
{

fp_t result;
unsigned int q; /* REMQUO */

if (ISNAN(x) || ISNAN(y) || ISINF(x) || (y == ZERO))
{

result = SET_EDOM(QNAN(""));
q = UI(0); /* REMQUO */

}
else
{

fp_t xabs, yabs;

xabs = FABS(x);
yabs = FABS(y);

6.17. Computing remquo() 151

if (xabs < yabs)
{

result = x;
q = UI(0); /* REMQUO */

}
else if (xabs == yabs)
{

result = COPYSIGN(ZERO, x);
q = UI(1); /* REMQUO */

}
else /* finite nonzero operands */
{

fp_t r;
int nr, ny, parity;

r = xabs;
(void)FREXP(yabs, &ny);
parity = 0;
q = UI(0); /* REMQUO */

while (r >= yabs) /* loop arithmetic is EXACT! */
{

fp_t yabs_scaled;
int p;

(void)FREXP(r, &nr);
p = nr - ny;
yabs_scaled = LDEXP(yabs, p);

if (yabs_scaled > r)
{

--p;
yabs_scaled = LDEXP(yabs, p);

}

if (p == 0)
++parity;

if ((0 < p) && (p < UINT_BITS)) /* REMQUO */
q += (UI(1) << (unsigned int)p);/* REMQUO */

r -= yabs_scaled;
}

if (r > HALF * yabs)
{

r -= yabs;
++parity;
++q; /* REMQUO */

}

if ((parity & 1) && (r == (HALF * yabs)))
r = -r;

result = (x < ZERO) ? -r : r;
}

152 Chapter 6. Converting floating-point values to integers

}

q &= INT_MAX; /* modular reduction to int */ /* REMQUO */

if (quo != (int *)NULL) /* REMQUO */
*quo = ((COPYSIGN(ONE, x) * /* REMQUO */

COPYSIGN(ONE, y)) < ZERO) ? /* REMQUO */
-(int)(q) : (int)q; /* REMQUO */

return (result);
}

The five instances of the UI() wrapper macro reduce clutter and hide a portability issue. They return their argument
prefixed with an unsigned int type cast. In modern C code, their values would simply be written 0U and 1U, using
a type suffix to indicate an unsigned integer constant. The U suffix was introduced into the language by 1990 ISO
Standard C, but because the mathcw library is designed to work with compilers on older systems as well, we cannot
use that suffix. Although few compilers would complain if the wrapper, and thus, the cast, were omitted, the package
author considers it poor programming practice to mix signed and unsigned arithmetic.

In our software implementation, there is no good reason to restrict the number of bits returned to fewer than can
fit in the integer pointed to by the final argument of remquo(). For simplicity, we accumulate it as an unsigned value,
which provides the modulo property automatically during addition, and then just before return, we mask off the
sign bit to obtain a positive signed integer, and then apply the correct sign.

When q is incremented by (UI(1) << p), which is just a fast way to compute 2p, it is imperative to check that
the shift count is smaller than the number of bits in an unsigned integer. The reason for that check is this statement
about the bit-shift operators from Section 6.5.7 of the 1999 ISO C Standard:

If the value of the right operand is negative or is greater than or equal to the width of the promoted left operand, the behavior
is undefined.

When the shift count is too large, we want the result of the shift to be zero, because that corresponds to arithmetic
modulo 2N , and in that case, no increment of q is needed.

Curiously, we have to supply our own definition of UINT_BITS, because the standard header files define no con-
stants from which the number of bits in an unsigned integer can be easily obtained. The header file remqu.h defines
the macro UINT_BITS, and makes a sanity check with preprocessor arithmetic that its value is consistent with INT_MAX,
a constant that is provided in <limits.h>.

As in remainder(), all of the arithmetic is exact, and no floating-point sticky exception flags can be set in remquo()
unless the result is a run-time NaN, and errno is set to EDOM only when a NaN is returned.

Clearly, we could view remquo() as the fundamental remainder primitive, and then define remainder() like this:

fp_t
REMAINDER(fp_t x, fp_t y)
{

return (REMQUO(x, y, (int *)NULL));
}

All that would be lost would be a bit of speed, but even that is not much, because the two extra statements in the
time-consuming inner loop require only an integer comparison, shift, and unsigned addition, which is relatively
cheap compared to the floating-point arithmetic and exponent extraction and scaling.

In the mathcw library, however, we use our three independent implementations of fmod(), remainder(), and
remquo(), conforming to the design requirements given earlier in Section 1.1 on page 2.

6.18 Computing one remainder from the other

The description of the IEEE 754 Standard [CCG+84, page 92, column 2] contains this remark:

REM is defined as it is, instead of matching the “mod” function, found in many programming languages, because the latter
can always be computed from the former, but the converse is not always true. This is so because REM’s remainder is the smallest

6.18. Computing one remainder from the other 153

possible remainder in magnitude, and is always exact. . . . If y is near the underflow threshold (i.e., |y| < βEmin+t), it is possible
that r = x REM y may be subnormal.

As that quotation suggests, it is relatively straightforward to compute fmod() from remainder(), provided that
β = 2. We essentially have to move the result range from [−|y/2|,+|y/2|] to [0, |y|) by computing the IEEE-style
remainder for positive arguments, add y to a negative result, and then apply the correct sign, because fmod() has the
same sign as its first argument, provided that the arguments are finite numbers. Here is code to do just that:

fp_t
FMOD(fp_t x, fp_t y)
{ /* compute fmod(x,y) from remainder(x,y) */

fp_t r;

r = REMAINDER(FABS(x), FABS(y));

if (r < ZERO)
r += FABS(y);

return (COPYSIGN(r, x));
}

We dispense with the initial checks that lead to a NaN return value, because they are done again inside remainder().
If a NaN is returned, the only thing that can happen to it is for its sign to be changed, and that is acceptable because
the sign of NaN is never significant.

If r is negative, then r + |y| < |y|, so the adjustment to r cannot cause overflow when |y| is near the largest
floating-point number.

If r is subnormal, which can happen when x and y are both just above the smallest positive normal number, then
as long as subnormals are not flushed to zero, the code behaves correctly. If subnormals are not supported, then both
REMAINDER() and FMOD() return a zero result when the exact result would be subnormal.

Tests of that algorithm on several CPU architectures turned up problems with remainderf(), but not for re-
mainder(), on two platforms. On DEC OSF/1 Alpha, with subnormals enabled at compile time, a test for a NaN
produces an incorrect result for subnormal arguments. On SGI IRIX MIPS with subnormals enabled at run time,
a test for a zero denominator produces an incorrect result. Switching from native compilers to gcc restored correct
behavior. Although those failures of remainderf() are both vendor errors, they are in nondefault environments that
evidently received inadequate testing.

It is substantially harder to go in the reverse direction, because fmod() has lost information about whether n is
odd or even. Nevertheless, that is what Sun Microsystems’ fdlibm library does. As previously noted, that library
grovels around at the bit level, but we can rewrite its algorithm to be portable.

The critical clue to deriving remainder() from fmod() is to realize that if we first compute r = x − 2ny, or
equivalently, r = x − n(2y) = fmod(x, 2y), then we know that 2n is even. That produces a result r whose magnitude
is in the range [0, |2y|), whereas we need a result in [−|y/2|,+|y/2|]. If |r| is in (|y/2|, |2y|), we subtract |y| to
reduce the range to [−|y/2|,+|y|); otherwise, r is already in range. Then, if we did the subtraction, and r is now in
[|y/2|, |y|), we again subtract |y|, reducing the range to [−|y/2|, 0). The result of those adjustments is that r is now in
[−|y/2|,+|y/2|]. The last step is to copy the sign of x to r, obtaining a result in [−|y/2|,+|y/2|]. In the comparisons,
care is needed to handle the end-of-range tests properly.

The work is not quite done, however, because in forming 2y, that value overflows if |y| is bigger than half the
largest normal number. The solution is surprisingly simple: call FMOD() only if that overflow is impossible. When
that call is avoided, we have |y| > FP_T_MAX/2, and there are three possibilities that the remainder of the code
properly handles:

|x| > |y|: the result is |x| − |y|, an exact operation because both values have the same exponent;

|x| = |y|: the result is 0.0;

|x| < |y|: the result is |x|.

154 Chapter 6. Converting floating-point values to integers

At the other end of the floating-point range, if y is smaller than twice the smallest normal number, then y/2
underflows, either to zero if subnormals are not supported, or losing bits if a subnormal result is produced. Either
way, our requirement of exact arithmetic is violated.

Those additional complications make the code about two-thirds the size of our original code for the function,
and the complexity is such that the control-flow logic needs detailed thought by the programmer in order to have
confidence in its correctness.

const fp_t HALF_MAXNORMAL = FP(0.5) * MAXNORMAL;
const fp_t TWICE_MINNORMAL = FP(2.0) * MINNORMAL;

fp_t
REMAINDER(fp_t x, fp_t y)
{ /* compute remainder(x,y) from fmod(x,y) */

fp_t result;

if (ISNAN(x) || ISNAN(y) || ISINF(x) || (y == ZERO))
result = SET_EDOM(QNAN(""));

else
{

fp_t xabs, yabs;

xabs = FABS(x);
yabs = FABS(y);

if (y <= HALF_MAXNORMAL)
xabs = FMOD(xabs, yabs + yabs);

if (xabs == yabs)
result = COPYSIGN(ZERO, x);

else if (yabs < TWICE_MINNORMAL) /* near underflow limit */
{

if ((xabs + xabs) > yabs)
{

xabs -= yabs;

if ((xabs + xabs) >= yabs)
xabs -= yabs;

}
}
else /* safe from underflow */
{

fp_t yabs_half;

yabs_half = HALF * yabs;

if (xabs > yabs_half)
{

xabs -= yabs;

if (xabs >= yabs_half)
xabs -= yabs;

}
}
result = (x > ZERO) ? xabs : -xabs;

}
return (result);

}

6.19. Computing the remainder in nonbinary bases 155

Because all of the arithmetic is exact, no floating-point sticky exception flags can be set in either of those alternate
implementations of fmod() and remainder() unless the result is a run-time NaN, and errno is set to EDOM only when
a NaN is returned.

6.19 Computing the remainder in nonbinary bases

Throughout this book, and the design of the mathcw library, we avoid making assumptions about the base of floating-
point numbers, and we comment on the effect of wobbling precision from hexadecimal normalization, and modify
our algorithms to accommodate it.

The floating-point arithmetic in the remainder-function families of fmod(), remainder(), and remquo() has been
carefully arranged to be exact. We must ensure that ports of our software to additional platforms do not silently
invalidate that design requirement.

Unfortunately, our implementation of code in the C language has quietly introduced an assumption that the
floating-point base is two, as it is for IEEE 754 arithmetic, and most computers designed since 1965. That assumption
crept in through our use of the C library function families frexp() and ldexp(), which are defined to manipulate
numbers represented as a significand multiplied by a power of two. On IBM System/360 with hexadecimal normal-
ization, computation of (8 + ε) × 2−3 by ldexp(8.0 + epsilon, -3) loses three low-order bits in the significand,
violating our requirement of exact arithmetic.

What we need instead is for our wrapper macros FREXP() and LDEXP() to work in terms of the native base. With
decimal floating-point arithmetic, they should work with powers of 10. With hexadecimal normalization on IBM
mainframes, they need to work with powers of 16. The required functions are provided by the C99 logb() and
scalbn() family.

No further changes are needed in our code for FMOD() or REMAINDER(), but one more change is needed in
REMQUO(). In that function, we accumulate in the variable q the value of n modulo 2N , and we do so with the
statement

if (p < UINT_BITS)
q += (UI(1) << p);

When the floating-point base is not 2, the test is wrong, and the correct increment is βp, which cannot be optimized
to a simple bit shift. The C library contains no standard function for computing powers of integers, but we can get
what we need with the help of our base-β version of LDEXP(), and we can reduce the result modulo 2N with FMOD().
The accumulation then looks instead like this:

q += UI(fmodl(ldexpbl((long double)BASE, p), (long double)1.0 + (long double)UINT_MAX));

In order to do an exact unsigned integer computation in floating-point arithmetic, we need to ensure that the floating-
point range is sufficient to hold all values that are representable in the integer type. In practice, that requires double
if we have fewer than about 50 bits in an integer, and long double in the case of a 64-bit integer type.

If those constraints cannot be met, then the definition of the remquo() family gives us the freedom to reduce the
size of the modulo value, 2N . For example, to guarantee a 16-bit modular quotient, we could instead use this code:

q = (q + UI(fmod(ldexpb((double)BASE, p), 65536.0))) & UI(65535);

with the final increment and modular reduction statements

++q;

q &= INT_MAX;

replaced by this statement:

q = (q + UI(1)) & UI(65535);

In the implementation of REMQUO() that we showed earlier, we did not clutter the code with preprocessor conditionals
to handle those variants, but our actual library code has to do so.

156 Chapter 6. Converting floating-point values to integers

6.20 Summary

The functions in this chapter are important equipment in the programmer’s toolbox. Although the C-language family
makes it easy to convert floating-point values to integers with a type cast, that practice is not recommended unless
it is known that the floating-point value is finite and within the range of representable integers. As Table 6.1 on
page 131 shows, there is no consensus about what hardware should do for out-of-range conversions, and unchecked
conversions are likely to lead to surprises, and nasty bugs, when software is moved to a new platform.

C99, and the mathcw library, provide a powerful collection of functions for safe conversions with different round-
ing choices, and those functions deserve to be used more often in place of type casts. Checks for integer overflow are
generally advisable as well, and are too often omitted. Indeed, both programming-language architects and hardware
designers are guilty of making integer arithmetic unsafe, and violations of integer bounds are one of the commonest
causes of software failures. The safe-integer arithmetic functions described in Section 4.10 on page 72 offer additional
ways to make such arithmetic trustworthy.

Decomposition of a floating-point value into integer and fractional parts via the MODF() family is exact and fast.
That operation lies at the core of other functions for ceiling, floor, rounding, and truncation, all of whose results are
floating-point whole numbers.

The functions that compute remainders are always exact, and that property makes them particularly useful in the
argument reduction required for some of the elementary functions. However, they are not a complete solution to the
problem, for reasons that we describe in more detail in Chapter 9.

When the arguments of a remainder function can be negative, consider carefully what the result should be.
Programming languages differ in their definitions of remainder operations in such cases, and identically named
remainder functions in two languages may mean different things.

Section 6.14 on page 144 shows by a low-precision example why the remainder functions are hard, and why
simple shortcuts in their computation lead to catastrophically wrong results. As floating-point precision and range
increase, the remainder functions become computationally intensive in their worst cases (see Table 6.5 on page 148),
and can take much longer than ordinary division, and even much longer than most of the elementary functions.
They should therefore be viewed as potential hot spots when code is examined for efficiency.

7 Random numbers

ANY ONE WHO CONSIDERS ARITHMETICAL METHODS

OF PRODUCING RANDOM NUMBERS IS, OF COURSE,
IN A STATE OF SIN.

— JOHN VON NEUMANN (1951).

A RANDOM NUMBER GENERATOR CHOSEN

AT RANDOM ISN’T VERY RANDOM.

— DONALD E. KNUTH.

Certain kinds of computations, such as sampling and simulation, need a source of random numbers. However, there
are three significant problems when we try to compute such numbers:

� Numbers in computers, whether integer or floating-point, are rational numbers. Such numbers can only ap-
proximate mathematical real numbers, and therefore, truly random numbers cannot be produced by any com-
puter algorithm.

� Most algorithms for generation of ‘random’ numbers produce a sequence of almost-always-different values
that eventually repeats. The length of that sequence is called the period. By contrast, a stream of truly random
numbers has occasional repetitions, and is never periodic.

� Software for random-number generation often contains subtle dependencies upon the behavior, precision, and
range of integer and floating-point arithmetic.

We can therefore at best hope to create approximations to random numbers. Some authors prefer to call ‘random’
numbers produced by a computer algorithm pseudo-random, and such an algorithm is called a pseudo-random-number
generator, often shortened to the acronym PRNG. For brevity, in the rest of this chapter, we omit the qualifier ‘pseudo’.

Most random-number algorithms are characterized by a fixed set of parameters, together with one or more user-
settable values called seeds. For a given choice of initial seeds, the generator produces the same sequence of values.

7.1 Guidelines for random-number software

Several decades of computer use in many different fields show that software for producing random numbers should
have several desirable characteristics:

� The sequence of the random numbers, and any sequence of bits extracted from them, must be apparently unpre-
dictable.

� The range of possible numbers must be documented.

� The period must be large and documented.

� It must be possible to retrieve the current seed(s).

� It must be possible to set the seed(s) at any time, thereby starting a new sequence of random numbers.

� It should be possible to generate multiple simultaneous, independent, and nonoverlapping streams of random
numbers. Although that can be achieved by swapping seed(s), it is more convenient to have generator families,
with the family selected at the function call.

� The generator must be portable, and give identical results on each platform.

© Springer International Publishing AG 2017
N.H.F. Beebe, The Mathematical-Function Computation
Handbook, DOI 10.1007/978-3-319-64110-2_7

157

158 Chapter 7. Random numbers

� The generator must begin with the same initial seed(s) each time the user program is run, so that computations
are reproducible. The user may choose to alter that behavior by changing the seed(s) on each run.

� The generator must not require the user to call an initializing routine before calling the generator; any required
initialization must be handled internally.

� The generator must not require randomness in user-provided seeds to produce random output: seeds of
0, 1, 2, 3, . . . should be as satisfactory as random seeds.

� The central generator algorithm must produce integer results. Conversion to floating-point values is then a scal-
ing and translation, although as shown in Section 7.3 on page 160, considerable care is required to implement
that apparently simple operation correctly.

Algorithms that produce floating-point values directly are unlikely to be able to produce the same number
sequence on different platforms.

� The generator must be available as source code, rather than hidden in a vendor-provided binary load library,
so that user programs can be ported to other computers and still give the same results.

� The generator must be fast, costing no more than a few elementary arithmetic operations for each result. Speed
is a requirement because some applications may require as many as 1015 random numbers.

� There should be a simple validation check that can be used as a sanity test on the generator’s correct operation.
That should be done automatically when the generator is used for the first time, and should also be available
as a user-callable routine. It could, for example, verify that, after starting with a specified seed, and discarding
the first hundred random numbers, the next ten values match the expected ones.

� The generator algorithm should be implementable in multiple programming languages.

� There should be a routine to compute sequences of random numbers in batches of user-specified size consid-
erably faster than they can be computed by individual function calls.

It is surprising how often most of those requirements have been ignored by software developers: indeed, there
are programming languages with predefined random-number generators that fail to make the seed(s) accessible,
or do not document the period and range. It is a common failing in many random-number research publications
to leave out that essential information as well. The Scalable Parallel Random Number Generators (SPRNG) library
[MS00a] is a notable exception that addresses many of our points.

7.2 Creating generator seeds

Novices sometimes think that the generator should be set to produce different random-number sequences on each
run of the program. However, that is undesirable for three good reasons:

� Debugging may be infeasible if program behavior is not reproducible.

� It makes numerical experiments impossible to reproduce, violating one of the key tenets of the scientific
method.

� When multiple software models of a simulation are compared, it is essential that they receive identical streams
of random numbers. Otherwise, differences in model predictions could just be due to differing input data,
rather than to the models themselves. Research papers in that area often use the capitalized phrase Common
Random Numbers, or variance reducing, to indicate the choice of identical random streams.

If different sequences are required on each run, either supply the seed(s) as part of the input data, or create
a unique seed by combining data that distinguish one run from another. For example, modern computers have
a time() function that reports the value of a calendar clock that counts up, usually once per second, from a date
several decades in the past, and a clock() function that returns the number of CPU microseconds used since the
job began, although the job-timer resolution may be as poor as 50 ticks per second. Combining the clock counters
with other job attributes, such as process and thread numbers, produces a seed that is almost certain to be unique

7.2. Creating generator seeds 159

and nonreproducible. Although process numbers are often small and sequentially assigned, some newer operating
systems increase their range, and randomize them to defend against process-number guessing attacks. Here is a
short C function that creates a seed that way, using the exclusive-OR operation (the caret operator, ^) to mix bits
quickly and without overflow:

#include <limits.h>
#include <time.h>
#include <unistd.h>

typedef unsigned int UINT_T;

UINT_T
makeseed(void)
{ /* make unique generator seed */

UINT_T n, p, seed, t;
static UINT_T k = 0;
static const UINT_T c = 0xfeedface;
static const int half_wordsize = CHAR_BIT * sizeof(UINT_T) / 2;

n = 1 | (--k & 0x0f);

p = (UINT_T)getpid();
p ^= (p << half_wordsize);
p ^= p << n;

t = (UINT_T)time((time_t *)NULL);
t ^= (UINT_T)clock();
t ^= t << half_wordsize;
t ^= t << n;

seed = c ^ k ^ p ^ t;

return (seed);
}

Changing the initial typedef statement allows the code to produce unsigned integers of any supported size.
For each bit position in the operands, the exclusive-OR produces 0 when the corresponding input bits are iden-

tical, and 1 when they differ. It therefore produces 0 and 1 with equal probability when the input bits are random,
and for that reason, is often useful in software for generating random numbers.

The counter k decrements on each call. The variable n also changes each call, and is restricted to lie in [1, 15], so
that it is a legal shift count that always moves bits. The two shifts help to mix bits from the process number and
two time values, one in seconds, and the other in microseconds. Using the process number ensures that multiple
instances of the job started about the same time each get different seeds, and changing k and n produces different
results on repeated calls within the same process. The final seed is the exclusive-OR of a constant with the counter,
the mixed process number, and the scrambled time values.

To test our seed generator, we use a short test program that calls makeseed() repeatedly and outputs the returned
values, one per line. A command loop runs the test multiple times sequentially, sorting the output into unique lines
and counting the number of unique seeds produced in each test. The loop output is then formatted into lines of a
convenient size:

$ cc -O3 -DMAXTEST=1000000 test-makeseed.c
$ for k in ‘seq 1 40‘
> do
> ./a.out | sort -u | wc -l
> done | fmt -w70
999345 999654 999590 1000000 1000000 1000000 1000000 999870

1000000 999726 1000000 1000000 999315 999664 1000000 1000000
1000000 999893 1000000 1000000 999936 1000000 1000000 999550

160 Chapter 7. Random numbers

1000000 999686 999526 999904 1000000 999806 999798 1000000
1000000 1000000 1000000 1000000 1000000 999822 1000000 1000000

That demonstrates that the seed generator can often produce unique seeds in one million repeated calls, and at worst,
repeated seeds occur with a frequency below 0.001.

However, when a similar test is repeated on a large multiprocessor system with parallel, and longer, runs of the
test program, the results show repeated-seed frequencies up to about 0.012:

$ cc -O3 -DMAXTEST=100000000 test-makeseed.c
$ for f in ‘seq 1 40‘
> do
> ./a.out | sort -u | wc -l &
> done | fmt -w70
98875567 98844854 98885473 98885800 98907838 98829088 98813968
98903619 98838402 98815331 98879819 98862152 98879141 98844464
98836598 98874230 98883376 98856824 98854752 98838834 98818495
98893962 98831324 98848314 98810846 98864727 98898506 98837900
98854240 98908321 98891786 98879817 98839639 98854624 98847177
98868476 98799848 98880452 98845182 98861177

If the job uses threads, then the updates to the retained counter k, or else all calls to the makeseed() function, need
to be protected with locks to ensure access by only one thread at a time.

In most cases, however, the same starting seed should be used for reproducibility. The program output should
record the initial seed(s), and the first and last few random numbers, to allow checking results against supposedly
identical runs made on other computer systems.

7.3 Random floating-point values

Many applications of random numbers require a random floating-point value between zero and one. If we have a
random-number generator that returns an integer result n in the interval [a, b] it is almost straightforward to produce
a floating-point result x conforming to any of the four possible interval-endpoint conventions:

x = (n − a)/(b − a), x in [0, 1],
x = (n − a + 1)/(b − a + 1), x in (0, 1],
x = (n − a)/(b − a + k), x in [0, 1), k ≥ 1 to be determined ,
x = (n − a + 1)/(b − a + k), x in (0, 1), k > 1 to be determined .

Here, the divisions are done in floating-point arithmetic, and the scale factors 1/(b − a + 1) and 1/(b − a + k) must
be nonzero and representable in floating-point arithmetic. The width of the interval [a, b] is often 2p or 2p − 1, where
p = 15, 16, 31, 32, 63, or 64. The scale-factor requirement is easily met with current, and most historical, floating-point
systems.

The tricky cases are the last two: k must be carefully chosen to ensure that the correctly rounded result is strictly
less than one. Let M = b − a be the width of the range of the integer generator. We then need to find the smallest
k such that M/(M + k) < 1 in floating-point arithmetic. By dividing numerator and denominator by M, we can
rewrite that requirement as 1/(1 + k/M) < 1. Then we recall from school algebra that when the magnitude of x is
small compared to 1, the expansion 1/(1 + x) ≈ 1 − x + x2 − x3 + · · · converges rapidly. We therefore have

x = k/M

≥ β−t, the little, or negative, epsilon,

k ≥ �Mβ−t�.

The last equation gives a good starting guess for k, but is not guaranteed to be the smallest value that satisfies
M/(M + k) < 1, because of the approximations in its derivation, and because different implementations of floating-
point arithmetic may vary slightly in the accuracy of division. We therefore wrap it in a function, randoffset(), that
determines the correct value of k by direct measurement.

7.3. Random floating-point values 161

unsigned long int
randoffset(unsigned long int m)
{ /* return smallest k such that fl(m)/(fl(m) + fl(k)) < 1 */

double mm;
volatile double x;
unsigned long int d, k;

mm = (double)m;
k = (unsigned long int)ceil(mm * DBL_EPSILON / (double)FLT_RADIX);
d = (unsigned long int)nextafter((double)k, DBL_MAX) - k;
d = (d < 1) ? 1 : d;

for (;;)
{

x = mm / (mm + (double)k);
STORE(&x;)

if (x < 1.0)
break;

k += d;
}

return (k);
}

An accompanying test program in the file rndoff.c produces this report of offsets on a system with a 64-bit long
int data type, where the initial output lines contain n, m = 2n, k (from randoffset()), and fl(m)/(fl(m) + fl(k)):

% cc rndoff.c -lm && ./a.out
1 2 1 0.66666666666666663
2 4 1 0.80000000000000004
3 8 1 0.88888888888888884
4 16 1 0.94117647058823528
5 32 1 0.96969696969696972
...

51 2251799813685248 1 0.99999999999999956
52 4503599627370496 1 0.99999999999999978
53 9007199254740992 2 0.99999999999999978 0x1p+0
54 18014398509481984 3 0.99999999999999978 0x1p+0
55 36028797018963968 5 0.99999999999999978 0x1p+0
56 72057594037927936 9 0.99999999999999978 0x1p+0
57 144115188075855872 17 0.99999999999999978 0x1p+0
58 288230376151711744 33 0.99999999999999978 0x1p+0
59 576460752303423488 65 0.99999999999999978 0x1p+0
60 1152921504606846976 129 0.99999999999999978 0x1p+0
61 2305843009213693952 257 0.99999999999999978 0x1p+0
62 4611686018427387904 513 0.99999999999999978 0x1p+0
63 9223372036854775808 1025 0.99999999999999978 0x1p+0

When k is bigger than one, the output also reports the quotient for the next smaller representable divisor in hexadec-
imal floating-point form. That quotient must be exactly one if we have chosen k correctly. The output shows that the
requirement is satisfied.

The optimal choice of k clearly depends on the range of the integer random-number generator, whether that
range can be represented exactly as a floating-point value, and on the precision and rounding characteristics of the
host computer. That means that code that implements the conversion of random integers to floating-point values
on the intervals [0, 1) and (0, 1) is inherently not portable, unless k is determined at run time by a routine like our
randoffset().

162 Chapter 7. Random numbers

Sanity checks in the validation code should include tests of the endpoint behavior in the production of floating-
point random numbers.

Published code that produces floating-point values from integer random numbers often contains magic multipli-
ers, like 4.656612873e-10, for the conversion from integer to floating-point values. Closer examination shows that
those constants are approximations to the value 1/(M + k), and our cited example corresponds to M = 231 − 1 and
k = 1. That practice conceals three nasty problems:

� Floating-point constants are subject to base-conversion errors (see Chapter 27 on page 879), unless they can be
written as exact values in the floating-point base, or as rational decimal numbers that can be evaluated exactly.

� The magic constants implicitly depend on the host floating-point precision and on the accuracy and rounding
characteristics of its multiply and divide operations.

� If the IEEE 754 rounding mode is changed dynamically, then even though the sequence of random integers is
unaffected, the sequence of random floating-point values may be altered. Worse, but rarely, some values could
even be slightly outside the promised range of the generator.

Those issues make the code nonportable, and likely to produce surprises on at least one platform where the com-
puted result turns out to be exactly one, instead of strictly less than one. The conversion of integer random numbers
to floating-point values is another instance of the danger of replacing (slow) division with (fast) multiplication by
the reciprocal.

In this section, we have taken considerable care to show how a stream of random integers can be converted to
floating-point values on four variations of the unit interval. That is necessary if essentially identical (apart from
rounding error) floating-point values must be produced on every computing platform, which is usually the case.

If portability and identical streams are not important, then there is an easier approach: discard any unwanted
endpoint values, and try again. For example, suppose that we have an integer random-number generator that
produces values on [0, M]. A possible candidate is the C89 library function rand() that returns values of data type
int in the range [0, RAND_MAX]. The upper limit is typically either 215 − 1 = 32 767, or 231 − 1 = 2 147 483 647. A better
choice is the POSIX library routine, lrand48(), that returns long int values in the range [0, 231 − 1], independent
of the underlying architecture [Rob82]. It is a generator of a special kind that we discuss later in Section 7.7.1 on
page 169 with parameters A = 25 214 903 917, C = 11, and M = 248. We can then write the four functions like this:

#include <stdlib.h> /* for prototypes of rand() and lrand48() */

#if defined(_XPG4) /* switch to improved POSIX generator */
#define rand() lrand48()
#undef RAND_MAX
#define RAND_MAX 0x7fffffffL
#endif /* defined(_XPG4) */

double
rand1(void)
{ /* return random value on [0,1] */

volatile double r;

r = (double)RAND_MAX;
STORE(&r);

return ((double)rand() / r);
}

double
rand2(void)
{ /* return random value on [0,1) */

double result;

do { result = rand1(); } while (result == 1.0);

7.3. Random floating-point values 163

return (result);
}

double
rand3(void)
{ /* return random value on (0,1] */

double result;

do { result = rand1(); } while (result == 0.0);

return (result);
}

double
rand4(void)
{ /* return random value on (0,1) */

double result;

do { result = rand1();} while ((result == 0.0) || (result == 1.0));

return (result);
}

A compile-time definition of the macro _XPG4 selects a POSIX compilation environment, and exposes the needed
declarations of lrand48() and its family members in <stdlib.h>. The redefinitions of rand() and RAND_MAX then
replace them with settings appropriate for the improved POSIX generator.

There are subtle portability issues in the four functions:

� We assume that the number of bits in an int is not larger than the number of bits in the significand of a double.
That is almost always safe, but would not be on a system, such as an embedded processor, where double, float
and int might all be 32-bit types.

� If we simply divide the result of rand() by RAND_MAX, a compiler might replace the division by a compile-time
constant with multiplication by its reciprocal, which is unlikely to be an exactly representable value. That
introduces a rounding error that might prevent the value 1.0 from ever being generated. Our volatile and
STORE() subterfuges in rand1() force retention of the division.

� The range of possible values from rand() is implementation dependent, and on many systems, inadequate for
all but toy applications.

� The limited range of rand() propagates to our four derived functions, and their return values cannot contain
any more random bits than rand() can produce.

� Because of those dependencies, we cannot guarantee the same number stream on all platforms.

We cannot satisfy the identical-streams requirement without providing our own portable version of rand(), and
we revisit that issue later.

We can fix the problem of not having sufficient random bits by invoking the integer generator multiple times,
and combining its results with exact arithmetic to populate the full significand. Here is a new version of the [0, 1]
generator that implements those extensions:

double
rand1_new(void)
{ /* return random value on [0,1] */

double r, result;
int k;
static const double R = 1.0 / 32768.0; /* exact */

164 Chapter 7. Random numbers

assert(RAND_MAX >= 32767);

r = R;
result = 0.0;

for (k = 0; k < (DBL_MANT_DIG + 14) / 15 ; ++k)
{

result += (double)(rand() & 0x7fff) * r;
r *= R;

}

return (result);
}

The assertion guarantees that we do not proceed unless we have at least 15 bits from rand(). The loop iteration
count is �t/15�, which is the number of 15-bit chunks needed. The value R is a negative power of two that is exactly
representable for bases β = 2, 4, 8, and 16, and the scale factor r is also exact in those bases.

For decimal arithmetic, however, we should do something different, because repeated conversions from binary
to decimal are expensive. A reasonable approach is to first compute a random number in binary arithmetic, and
then make a single conversion of that value to decimal. That may be acceptable for the single- and double-precision
formats, but given that the precision of the decimal type decimal_long_double exceeds that of long double on many
systems, we would have to combine at least two binary values with suitable scaling to make one decimal result. The
ideal for decimal arithmetic would be to have a generator that works entirely in decimal, but most good algorithms
for generating random numbers require binary operations.

Unfortunately, our attempt to guarantee that all significand bits returned by rand1_new() are random has broken
our promise that the results lie in [0, 1]; instead, they lie in [0, 1). The right endpoint is no longer reachable, because
we do not know the largest significand that successive calls to rand() can produce, and thus, we cannot scale the final
significand correctly so that 1.0 is a possible value. Although it might be feasible for a simple generator to enumerate
all possible random numbers and find the sequence that produces the largest significand, that is impossible with
the good generators that have long periods. That deficiency is not serious for most applications, because even if we
used a generator that returned, with one call, enough bits for the t-bit significand, the probability of producing the
maximal value is likely to be much less than 2−t.

There is another issue that is often overlooked when a stream of random integers is scaled to obtain floating-point
values on the unit interval: their average. With a sufficiently large number of random floating-point values on [0, 1]
or (0, 1), we should expect that their average should tend to 1

2 . Suppose that our integer generator produces all
possible random integers, ri, in [0, M − 1] exactly once in each period. We then compute the average of the floating-
point values like this:

ui = ri/(M − 1 + k), uniform scaling,

average = (1/M)
M−1

∑
i=0

ui,

= (1/M)
M−1

∑
i=0

ri/(M − 1 + k),

=
1

M(M − 1 + k)
[0 + 1 + 2 + · · · + (M − 1)], sorted integers,

=
1

M(M − 1 + k)
M(M − 1)

2
,

=
(M − 1)

2(M − 1 + k)
.

Unless we choose k = 0, the average differs slightly from the expected value 1
2 , and if k > 0, is below that value.

Scaling therefore introduces a slight bias in the uniform distribution if we allow nonzero k values to avoid the
endpoints of the unit interval. That observation suggests that it is better to set k = 0, and then discard unwanted
endpoint values for unit intervals other than [0, 1].

7.4. Random integers from floating-point generator 165

7.4 Random integers from floating-point generator

Some programming-language environments offer only a floating-point generator for uniform distributions over the
unit interval. We look here at how to recover uniformly distributed integers from those floating-point values.

We showed in Section 7.3 on page 160 that there are unexpected subtleties in the conversion of random integers
to floating-point values, so we should be prepared for similar problems in the reverse direction.

To avoid tying our code to specific library random-number routines, we use the name urand() as a wrapper
for any function that generates uniformly distributed floating-point random numbers on the unit interval, without
being specific about the endpoint behavior. Similarly, we use the name uirand() as a wrapper for a generator that
returns random integers.

Many programmers incorrectly assume that m + (int)((n - m)*urand()) produces random integers uniformly
distributed on [m, n]. The results lie on that interval, but unfortunately, not with equal probability.

To see why, consider the small interval [0, 1]: the proposed conversion becomes (int)urand(), and that almost
always evaluates to exactly zero.

The first hack that programmers then make is to rewrite the conversion as m + (int)((n - m + 1)*urand()),
fudging the endpoint by one. That form gets the right answer for the two cited generator intervals, but erroneously
produces results on [m, n + 1] if the generator interval is either (0, 1] or [0, 1], and the endpoint n + 1 is produced
only rarely (about once in 232 ≈ 4 × 109 times for a 32-bit generator).

We pointed out earlier that it is regrettably common for the endpoint conditions of the floating-point generator
to be undocumented, so neither of those attempts produces portable and correct code.

As we saw in the nonportable versions of rand2() through rand4(), the proper solution of that problem requires
some of the random floating-point values to be discarded. Because of the generator endpoint uncertainty, we produce
numbers for an extended interval, and then discard out-of-range results. Here is a function that implements the
algorithm:

int
urandtoint(int lo, int hi)
{ /* return random integer in [lo, hi] */

double ext_range;
int k, result;
static const double MAXINT = (double)(1L << (DBL_MANT_DIG / 2)) *

(double)(1L << ((DBL_MANT_DIG + 1) / 2));

if (lo >= hi) /* sanity check */
result = lo;

else if ((hi < -MAXINT) || (MAXINT < hi)) /* sanity check */
result = lo;

else
{

ext_range = (double)hi - (double)lo + 2.0;

if (ext_range > MAXINT) /* sanity check */
result = lo;

else
{

do
{

k = lo - 1 + (int)floor(urand() * ext_range);
} while ((k < lo) || (hi < k));

result = k;
}

}
return (result);

}

166 Chapter 7. Random numbers

In the inner loop, it is critical that the reduction to an integer value from a floating-point value be done with the
floor() function, which always produces a result that does not exceed its argument. If the trunc() function were
used, and the interval [lo, hi] contained zero, then values in the range (−1,+1) would all be reduced to zero, making
that result twice as likely as any other. That would violate the contract that the function returns each possible integer
value with equal probability. That is an issue in translation to other programming languages, most of which lack the
floor() function.

7.5 Random integers from an integer generator

If we have a source of uniformly distributed random integers, we can produce random subsets of those numbers in
a specified interval [lo, hi], but once again, care is needed.

If the range of the results, plus one, is 2k, then we can take the k low-order bits as an integer, add it to lo and get
the desired result.

If the range is not of the form 2k − 1, however, we cannot replace the bit masking by a modulo operation and get
equally distributed results. To see why, consider a 5-bit generator used to produce integers in the interval [0, 4], and
compute all possible moduli with a short hoc program:

hoc> for (k = 0; k < 32; ++k) printf("%d ", k % 5);
hoc> printf("\n");

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1

Examination of the resulting digit frequencies shows that 0 and 1 occur once more than the other digits. That must
be the case, because 5 is not a divisor of 32: we simply cannot partition 32 things into 5 equal subsets.

One solution is to compute random integers in the next larger interval of size 2k + 1, add that integer to lo, and
then try again if the result is out of range.

To do that, we first need a way to find the smallest value 2k that is at least as large as the range to be selected from.
We could do that with an expression like (int)ceil(log2((double)(hi - lo + 1))), but that is comparatively
costly, and it discards most of the bits of the computed logarithm. There is a much better and faster way, however,
shown in Hacker’s Delight [War03, War13], a treasure trove of tricks with integer arithmetic:

unsigned int
clp2(unsigned int n)
{ /* return 2**ceil(log2(n)) (assume wordsize in [16,64]) */

n--;
n |= n >> 1;
n |= n >> 2;
n |= n >> 4;
n |= n >> 8;

#if UINT_MAX > 0xffff
n |= n >> 16;

#endif

#if UINT_MAX > 0xffffffff
n |= n >> 32;

#endif

return (n + 1);
}

That function, and variants lclp2() and llclp2() for the longer integer types, are included in the mathcw library.
There are also companion function families flp2(), nlz(), ntz(), and pop() to compute the nearest power of two
below the argument, the number of leading and trailing 0 bits, and the population count (the number of 1 bits). On
most architectures, their jobs can be done without loops or calls to other functions, in a time that is largely data
independent. A few CPU designs have single instructions that can be used to replace the bodies of some of the

7.5. Random integers from an integer generator 167

five function families, making them even faster. Analysis of the optimized assembly code produced by compilers
on eleven current and historical CPU architectures shows that clp2() takes between one dozen and two dozen
instructions, and the most complex of them, nlz(), takes just over twice as many.

The task in clp2() is to replicate the highest 1 bit into lower-order positions, creating a mask equivalent to 2k − 1,
and then to add one to the final result to recover 2k. The first shift-OR operation copies the highest 1 bit into the
next lower position, so that the result, after any leading string of 0 bits, begins with two 1 bits. The second shift-OR
copies those two 1 bits, producing a string of four 1 bits. Each step doubles the number of 1 bits, until bits are lost
in the shift, and that continues until the last shift-OR copies the remaining half word. The code works on unsigned
integers, so it does not depend on how negative numbers are represented (see Appendix I on page 969). We have to
include enough shift-OR operations to handle every word size in common use, but avoid shifts larger than the word
size, which are undefined according to ISO Standard C. Our code handles all word sizes from 16 to 64.

The questionable cases are those for the smallest and largest arguments. With a zero argument, the initial sub-
traction turns n into a word of 1 bits, and the shift-OR operations leave the value unchanged. The final addition
overflows to a zero return value, which we can regard as the definition of clp2(0). With any argument above
0x80000000, assuming a 32-bit word, the leading bit is 1, the shift-OR operations fill the word with 1 bits, and the
final addition again overflows to zero.

Here is a function that uses clp2() to implement an algorithm for selecting random integers in a given range:

static int
irandtoint(int lo, int hi)
{ /* return random integer in [lo, hi] */

int k, mask, n, result;

if (lo >= hi)
result = lo; /* sanity check */

else
{

k = 0;
n = (hi - lo) + 1; /* possible integer overflow here! */
mask = (int)clp2(n) - 1;

do
{

k = uirand() & mask;
} while (k >= n);

result = lo + k;
}

return (result); /* random integer in [lo, hi] */
}

In the worst case, when the requested range is (2k + 1)/2�, about half of the results from uirand() are discarded.
As the comment on the assignment to n notes, if the arguments are large and their range contains zero, there

could an undetected integer overflow.
Here is a simple test of the irandtoint() function, producing five runs of 20 values:

% cc -DMAXSHOW=20 irnint.c -L.. -lmcw && ./a.out
Test of generating random integers on [10,99]
10 32 49 96 62 83 87 38 51 10 40 59 38 52 86 40 93 68 12 53
34 58 79 24 20 88 40 52 83 61 38 25 65 18 90 78 20 66 10 16
36 10 65 56 97 10 24 73 77 82 76 80 67 17 98 86 19 33 88 43
46 29 51 48 76 31 94 53 86 67 98 51 30 83 74 42 10 81 88 33
65 51 74 93 64 62 56 83 67 86 34 72 36 65 58 99 51 41 48 65

As we intended, each sequence contains unordered integers on the interval [10, 99], and each differs from the other
sequences.

168 Chapter 7. Random numbers

As suggested in Practical Cryptography [FS03, page 184], we can largely eliminate the problem of wasting half our
random integers in the worst case with an alternate version of the code. If we ensure that the power of two is above
the largest representable multiple of the range, then discards are rare. For example, with a 32-bit generator and a
range of 10, the largest multiple of that range is 232 − 6 = 4 294 967 290. We then only need to discard the five integers
above that value, and otherwise, we can take the remainder with respect to 10 to get values uniformly distributed
on [0, 9]. Here is a version of our code that implements the idea:

static int
irandtoint_new(int lo, int hi)
{ /* return random integer in [lo, hi] */

unsigned int k, n, nq, q;
int result;

if (lo >= hi)
result = lo; /* sanity check */

else
{

n = (hi - lo) + 1; /* need random integers in [0, n - 1] */

if (n == 0) /* had integer overflow */
result = lo; /* sanity check */

else
{

k = 0; /* keep optimizers happy */
q = RAND_HI / n;
nq = n * q; /* large multiple of n */

for (;;)
{

k = uirand();

if (k < nq) /* almost always true */
{

k %= n; /* random integer in [0, n - 1] */
break;

}
}

result = lo + k;
}

}

return (result); /* random integer in [lo, hi] */
}

The code no longer requires clp2(), but needs an extra integer division and an integer remainder. The removal of
that function call, and as few as half the calls to uirand(), suggest that the new version could be about twice as fast
as the original. The problem of undetected integer overflow remains: the output in such a case fails an important
test suite (see Section 7.15.2 on page 200), whereas the output passes the tests when there is no overflow.

7.6 Random integers in ascending order

The next application of random numbers that we consider is the production of random integers in sorted order. Of
course, one can always produce a stream of random integers and then use a suitable sort library function in memory,
or a sort utility on a file: the good ones run in O(n log2 n) time for n objects.

AT&T Bell Labs researchers [BS80] discovered a clever way to avoid the sort, and get the results in nearly linear
time. A program that implements their algorithm looks like this:

7.7. How random numbers are generated 169

void
select(int m, int n)
{ /* output m random integers from [0,n) in ascending order */

int i, mleft, remaining;

mleft = m;
remaining = n;

for (i = 0; i < n; ++i)
{

if ((uirand() % remaining) < mleft)
{

(void)printf("%2d ", i);
mleft--;

}
remaining--;

}
(void)printf("\n");

}

Here is a demonstration of select() in action, with five experiments:

for (k = 1; k <= 5; ++k) select(20, 100);
0 7 10 14 32 39 45 48 51 58 61 64 66 67 81 85 88 90 95 96
0 3 4 5 6 8 11 13 24 33 39 62 68 70 73 78 79 85 86 97
4 6 10 11 12 20 25 28 30 41 42 43 47 49 54 57 72 79 82 83
0 11 18 21 24 39 42 49 51 57 58 59 62 70 72 78 83 91 95 98

21 22 25 26 48 49 50 53 54 55 57 59 65 71 74 77 80 84 89 97

Each experiment produces a different selection, and each output list is in ascending order. Although the sequences
are no longer random, because of their increasing order, their individual members are nevertheless chosen randomly.

7.7 How random numbers are generated

In this section, we look at how streams of random numbers can be produced by computer algorithms. We con-
sider several common techniques, showing how random numbers are computed with them, and why some of the
commonly used methods are deficient.

7.7.1 Linear congruential generators

The oldest, and most widely used, algorithm for generation of random numbers is called a linear congruential generator
(LCG). It was introduced in a classified paper by I. J. Good in 1948 [Goo69], and independently, and more widely
known, by D. H. Lehmer in 1949 [Leh51]. It takes the form

xn+1 = (Axn + C) mod M, x0 = initial seed, and n = 0, 1, 2, . . . ,

with these constraints on the unsigned integer parameters:

A > 1, C ≥ 0, M > 1, x0 = initial seed, 0 ≤ xn < M.

The mod operator means modulus: for integers p ≥ 0 and q > 0, the expression r = p mod q is the nonnegative
integer remainder when p is divided by q. Thus, p = nq + r, where n = floor(p/q) ≥ 0, and 0 ≤ r < q.

The right-hand side operations in the LCG must be carried out in exact arithmetic, a requirement that we return
to in Section 7.7.3 on page 171.

The special case C = 0 is called a multiplicative congruential generator (MCG), in which case, the last constraint
must be changed to 0 < xn−1 < M; otherwise, the generator would produce only zero from a zero seed.

The modulo operation means that the range of the LCG is [0, M − 1], and that of the MCG is [1, M − 1], but the
period depends on the choice of parameters. From number theory, it has been proved that the maximum period of
M for the LCG, or M − 1 for the MCG, can be reached when these three conditions are satisfied:

170 Chapter 7. Random numbers

� C and M are relatively prime (i.e., have no prime1 factors in common);

� A − 1 is a multiple of p for every prime number p that divides M;

� A − 1 is a multiple of 4 if M is a multiple of 4.

When M = 2n, the generator computation can sometimes be simplified. The maximum period is then M/4, and
it can be reached when A mod 8 is 3 or 5.

It is not necessary to remember those rules, and choose one’s own parameter values, because the LCG and
MCG have received intensive study, and many good choices of the parameters have been found and published
(see [FM82, FM86a, PM88, LBC93, KW96, DH97b, Wu97, DH00, Tan06, LS07, TC11] and [Knu97, page 106]). How-
ever, exceptionally good parameter values are not likely to be found by chance: an exhaustive study for the case
M = 231 − 1, a modulus that is convenient for use with signed-integer arithmetic, found fewer than one acceptable
(A, C) pair for every million pairs examined [FM86a].

Here is an example of a small LCG whose parameters are chosen according to the listed rules:

hoc> A = 32; C = 19; M = 31; x = 0
hoc> for (k = 1; k <= 72; ++k) { x = (A*x + C) % M; printf("%2d ", x) }
19 7 26 14 2 21 9 28 16 4 23 11 30 18 6 25 13 1 20 8 27 15 3 22
10 29 17 5 24 12 0

19 7 26 14 2 21 9 28 16 4 23 11 30 18 6 25 13
1 20 8 27 15 3 22 10 29 17 5 24 12 0

19 7 26 14 2 21 9 28 16 4

The period is M = 31, and each number in [0, 30] appears exactly once before the sequence repeats, as indicated by
the indented lines in the output.

7.7.2 Deficiencies of congruential generators

There are several problems with congruential generators:

� Good parameters are hard to find [FM86a].

� The modulus value M determines the maximum period, but arithmetic considerations limit its practical size to
values that are much too small for the requirements of many modern applications. Some limited investigations
of large M values may provide a solution to that problem [LBC93, DH97a, DH97b, Wu97, DH00, ESU01, TC11].

� Moduli of the form M = 2p are commonly chosen to simplify computation, but the sequences produced often
have obvious correlations.

� The low-order bits in the output numbers are less random than the high-order bits.

� Extra precision may be needed to form Ax + C exactly, and if that precision is not available in hardware, then
it must be simulated in software, making the programming more complex, and reducing the speed of the
generator.

� In an important paper, Random Numbers Fall Mainly in the Planes [Mar68], George Marsaglia gives a mathemat-
ical proof that random numbers from all LCGs and MCGs have strong correlations between values produced
at certain fixed intervals in the generator cycles.

The last of those is the most serious, and it is instructive to examine the problem graphically. A common applica-
tion of random-number generators is to produce uniformly distributed samples of points in an n-dimensional space.
Thus, in two dimensions, successive pairs of random numbers define (x, y) coordinates in the plane, and one would
expect them to cover the unit square fairly evenly, as shown in Figure 7.1(a). With a different set of parameters,
one can instead get the strongly correlated points plotted in Figure 7.1(b). The two plots have the same number of
coordinate pairs, but in the second one, many pairs fall at each plotted location.

1Prime numbers are integers that cannot be divided, without a remainder, by any integer other than 1 and themselves. The first few primes
are 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97,

7.7. How random numbers are generated 171

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(a) (b)

Figure 7.1: The correlation problem in linear congruential generators. Each plot shows the distribution of 10 000
(x, y) points determined by successive random values from a generator. Points in plot (a) are from a good generator,
MATLAB’s rand(). Those in plot (b) are from a bad LCG; its parameters are A = 27 − 1, C = 25 − 1, and M = 215 − 1.
The period of that LCG is only 175. Notice that many of the points fall along diagonal lines, and others form peculiar
repeating patterns, like the ‘bird’ flying along the center diagonal.

Those effects are harder to see in three (or higher) dimensions, because there are many more possible views of
the data. Figure 7.2 on the following page shows several frames from an animation that demonstrates the problem:
at certain view angles, the (x, y, z) points are seen to lie on planes, rather than being spread out fairly uniformly
through the unit cube. In that case, coordinates are collected every 105 cycles of the generator. If instead they are
collected every 104 or every 106 cycles, the correlations are not evident: see Figure 7.3 on page 173.

The correlations in congruential generators in practice mean that a generator may be in wide use for a long
time with apparently satisfactory behavior, until one day, a user happens to stumble on a cycle step size where the
correlations suddenly become evident. That happened to the infamous randu() generator introduced in the early
1960s in the IBM Scientific Subroutine Package, and widely used for several years on other systems as well. It has
parameters A = 216 + 3, C = 0, M = 231, and x0 = 1. The unavoidable correlations of random-number sequences from
congruential generators strongly suggest that such generators should not be used at all.

7.7.3 Computing congruential generators

The congruential generator algorithm

xn+1 = (Axn + C) mod M, n = 0, 1, 2, . . . ,

looks innocuous, requiring only a multiply, an add, and a remainder operation. The difficulty is that the computation
must be exact.

In the special case that M = 2wordsize, and if Axn + C can be computed in exact double-length unsigned-integer
arithmetic, the modulo operation is equivalent to dropping the high-order word of the result. For that reason, many
of the early recommendations for parameter sets for congruential generators made that restriction on the modulus
M, even though it reduces the maximum period to M/4.

The number of bits required for the multiply is the sum of the number of bits in the operands, and the add
may require one more than the number of bits in the larger operand. The modulo operation needs as many bits
as its larger operand. If we choose, for example, a 16-bit A and 31-bit C and M, the parameters can be stored in
32-bit signed integers on a typical desktop computer. The computation requires 48 bits for the product and sum, but

172 Chapter 7. Random numbers

Figure 7.2: Frames from animated rotation of LCG 3-D point sequence. The Greek letter phi, φ, is the angle of rotation
in degrees. The generator is xn = (2 396 548 189xn−1 + 0) mod 232, with samples taken every 105 steps. Each plot has
10 240 points. See Entacher [Ent98] for that example, and many others.

φ = 20◦

 0 0.5 1 0
 0.5

 1
 0.5

 1

φ = 21◦

 0 0.5 1 0
 0.5

 1
 0.5

 1

φ = 22◦

 0 0.5 1 0
 0.5

 1
 0.5

 1

φ = 23◦

 0 0.5 1 0
 0.5

 1
 0.5

 1

φ = 24◦

 0
 0.5

 1 0
 0.5

 1
 0.5

 1

φ = 25◦

 0
 0.5

 1 0
 0.5

 1
 0.5

 1

φ = 26◦

 0
 0.5

 1 0
 0.5

 1
 0.5

 1

φ = 27◦

 0
 0.5

 1 0
 0.5

 1
 0.5

 1

φ = 28◦

 0
 0.5

 1 0
 0.5

 1
 0.5

 1

φ = 29◦

 0
 0.5

 1 0
 0.5

 1

 0.5

 1

φ = 30◦

 0
 0.5

 1 0
 0.5

 1

 0.5

 1

φ = 31◦

 0
 0.5

 1 0
 0.5

 1

 0.5

 1

φ = 32◦

 0
 0.5

 1 0
 0.5

 1

 0.5

 1

φ = 33◦

 0
 0.5

 1 0
 0.5

 1

 0.5

 1

φ = 34◦

 0
 0.5

 1 0
 0.5

 1

 0.5

 1

φ = 35◦

 0
 0.5

 1 0
 0.5

 1

 0.5

 1

7.7. How random numbers are generated 173

Figure 7.3: Frames from animated rotation of LCG 3-D point sequence (φ = 27◦). The generator is the same as in
Figure 7.2, but samples are taken at varying numbers of steps.

the hardware often supports only 32-bit arithmetic. However, recall that IEEE 754 64-bit arithmetic provides 53-bit
precision, so the generator can be evaluated exactly in that arithmetic by code like this:

double x, A, C, M;
x = fmod(A*x + C, M);

Many publications of LCG and MCG parameters limit their values precisely to allow simple computation in double-
precision floating-point arithmetic.

If integer arithmetic is used, it may still be possible to use a one-line computation, if extended precision integer
data types are supported, such as with Fortran INTEGER*8, C/C++ unsigned long long int, or Java long. However,
except for Java, such extended precision is not universally available, and thus, cannot be used in portable software.
C99 requires support for such data, but compilers for that language level are not available on some systems at the
time of writing this.

Without access to a package for general multiple-precision integer arithmetic, the only choice left is to split the
computation into parts that can be done within the limits of normal integer arithmetic. We can then take advantage
of two properties of modular arithmetic:

(A + B) mod M = ((A mod M) + (B mod M)) mod M,
(A × B) mod M = ((A mod M)× (B mod M)) mod M.

The operands are then split into three parts, each with half as many bits:

A = a1a2 + a3,
B = b1b2 + b3.

The split reduces Ax mod M to (a1x mod M)a2 mod M without integer overflow if x is small enough. Otherwise,
we must split x as well, and get an even more complicated expression.

Here are two useful functions for modular arithmetic that implement splitting of each operand:

static const double MOD_SCALE = 8192.0 * 8192.0; /* 2**26 */
static const double MOD_A2_B2 = 8192.0 * 8192.0 * 8192.0 * 8192.0;

/* 2**52 */
double
mod_add (double A, double B, double M)
{ /* return exact (A + B) mod M */

steps = 104

 0
 0.5

 1 0
 0.5

 1
 0.5

 1

steps = 105

 0
 0.5

 1 0
 0.5

 1
 0.5

 1

steps = 106

 0
 0.5

 1 0
 0.5

 1
 0.5

 1

174 Chapter 7. Random numbers

double a1, a2, a3, b1, b2, b3;

a1 = floor(A / MOD_SCALE);
a2 = MOD_SCALE;
a3 = A - a1 * a2; /* Now A = a1*a2 + a3 */

b1 = floor(B / MOD_SCALE);
b2 = MOD_SCALE;
b3 = B - b1 * b2; /* Now B = b1*b2 + b3 */

return (fmod(fmod(fmod(a1 * a2, M) + fmod(b1 * b2, M), M) +
fmod(a3 + b3, M), M));

}

double
mod_mul (double A, double B, double M)
{ /* return exact (A * B) mod M */

double a1, a2, a3, b1, b2, b3;

a1 = floor(A / MOD_SCALE);
a2 = MOD_SCALE;
a3 = A - a1 * a2; /* Now A = a1*a2 + a3 */

b1 = floor(B / MOD_SCALE);
b2 = MOD_SCALE;
b3 = B - b1 * b2; /* Now B = b1*b2 + b3 */

/* NB: multiplication by a2 and b2 is an exact scaling */
return (mod_add(mod_add(mod_add(fmod((a1 * b1) * MOD_A2_B2, M), fmod((a3 * b1) * b2, M), M),

fmod((a1 * b3) * a2, M), M), fmod(a3 * b3, M), M));
}

The modular-multiplication function uses the modular-addition function to collect intermediate terms, and in both
functions, the code is much more complex than the simple mathematical expressions that they compute.

With those two functions, as long as the operands are whole numbers that are exactly representable in fewer than
53 bits as type double, the linear congruential generator operation (Ax + C) mod M can be done exactly with code
like this:

seed = mod_add(mod_mul(A, seed, M), C, M);

The code for the multiplicative congruential generator is even simpler:

seed = mod_mul(A, seed, M);

In each case, the old seed is the input x value, and the new seed is returned as the next random number. The variable
seed must be retained across calls to the generator, normally by declaring it with the static modifier.

7.7.4 Faster congruential generators

Apart from the need for extended precision, the modulo operations are the computational bottleneck in linear and
multiplicative congruential generators. For certain choices of the modulus M, it is possible to replace the expensive
divide by faster operations [Sch79b], and we show here how to do so. The conditions on the parameters A, C, and
M that we gave earlier suggest that M should be a prime number near the largest representable integer, where that
limit is 2p − 1 for a p-bit word. We can find candidates for M like this:

% maple
> for m from 1 to 59 by 2 do
> printf("%2d: ", m):

7.7. How random numbers are generated 175

> for p from 1 to 64 do
> if isprime(2^p - m) then printf("%2d ", p) end if
> end do:
> printf("\n")
> end do:
1: 2 3 5 7 13 17 19 31 61
3: 3 4 5 6 9 10 12 14 20 22 24 29
5: 3 4 6 8 10 12 18 20 26 32 36 56

...
25: 5 7 9 13 33 37 57 63
...
31: 7 11 13 17 19 35 37 41 61
...
59: 6 8 20 48 64

The choices M = 231 − 1 and M = 232 − 5 are suitable for signed and unsigned 32-bit arithmetic. For 36-bit arithmetic
on several historical machines, use M = 235 − 31 or M = 236 − 5. On newer 64-bit architectures, pick M = 263 − 25
or M = 264 − 59.

To simplify things, let us assume that the parameters and integer data type are chosen such that N = Ax + C is
exactly representable. We need to find the remainder x = N mod M, which simply means that N = mM + x, where
m = N/M�. To avoid the divide, we instead proceed like this:

K = 2p, one larger than maximum integer,

= M + d, for d = 1, 2, 3, . . . ,

y = N mod K, modulus to be related to x,

= and(N, K − 1), fast computation of y,

k = N/K�, by p-bit right shift or word extraction, not division,

N = kK + y, for y = 0, 1, 2, . . . , K − 1,

r = y + kd, initial estimate for x,

= (N − kK) + kd
= N − k(K − d)
= N − kM, form needed for x.

Because M ≈ K, we expect that m ≈ k, and also that m ≥ k. If r lies in [0, M), then we conclude that k = m and
x = r. Otherwise, we increase k by 1, reducing r by M. If that new value lies in [0, M), then we have found x without
division.

The paper [Sch79b, page 173] proves that the condition for the initial r to lie in [0, 2M) when C = 0, and thus
needing at most one downward step, is

A <
K(M − d + 1)

dM
= K

(
1
d
− 1

M
+

1
dM

)
.

In particular, for the choice M = 231 − 1, we have d = 1, and the condition reduces to A < K, which is satisfied if
we ensure that A ≤ M. For large M and d � M, the condition is approximately A < M/d. That is unlikely to be a
problem, because the preferred A values are often much smaller than M.

If the condition is not satisfied, then we could use a loop to reduce r by M in each iteration until we find an
acceptable value for x. However, it is then probably better to choose different LCG parameters.

The alternate route to the new random value x lets us replace the normal code

m = N / M; /* N = A * x + C; M = modulus of LCG */
x = N - m * M; /* x = N mod M = next random number */

that requires a slow integer division with new code that uses bit operations:

k = N >> p; /* k = floor(N / K); K = 2**p */

176 Chapter 7. Random numbers

x = (N & (K - 1)) + k * d; /* x = N mod K + k * d = trial remainder */

if (x >= M) /* check that x is in [0, M) */
x -= M; /* otherwise, force x into [0, M) */

If p is chosen to be the number of bits in a word, then the right shift might be replaced by a faster extraction of the
high part of the double word N. Tests on three dozen systems show that an LCG with the new code is on average
2.0 to 2.9 times faster, with a largest speedup of 9.3 times.

The technique of replacing slow integer divisions by fast bit operations is of interest for optimizing compilers, and
some can now do so for particular constant divisors. Chapter 10 of Hacker’s Delight [War03, War13] provides much
detail, and has been extended with a lengthy online supplement,2 but the treatment is mostly for small divisors.
Recent research [CW08, CW11] has generalized the idea to arbitrary integers, and demonstrates that integer division
can be replaced by faster code for about 80% of possible compile-time constant divisors.

7.7.5 Other generator algorithms

We described linear and multiplicative congruential generators in detail, because they have been widely used in
the past, and they are among the easiest to compute. Despite their simple mathematical formulas, we found that
limitations of hardware arithmetic require that more care be taken in their computation. However, the unavoidable
correlations in their random-number sequences suggest that we look for other methods.

The first possible improvement that one might think of is to make the next random number depend quadratically
on the seed:

xn+1 = (Ax2
n + Bxn + C) mod M.

That is called a quadratic congruential generator (QCG), and it has been shown that its period cannot exceed M. That
is no better than the period of a linear congruential generator, so quadratic generators are of little interest, although
they do eliminate the correlations of LCGs and MCGs.

Another approach is to make the next random number depend linearly on several preceding ones:

xn+1 = (A1xn + A2xn−1 + · · ·+ Akxn−k+1 + C) mod M.

That is called a multiple recursive congruential generator (MRCG), and if M is prime, with suitable conditions on the
other parameters, the period can be Mk − 1, which is a great improvement. Good parameters for two- and many-
term MRCGs have been published [Tan06, DSL12a], but some of the recommended parameter choices lead to serious
correlation problems [LS14].

Yet another variant is to drop A and C entirely, and instead depend on two earlier seeds spaced a fixed distance
apart in the sequence:

xn+1 = (xn−p + xn−q) mod M, for fixed integers q > p.

That is called a lagged Fibonacci generator. At startup, the generator has to be run for several cycles to generate the
two needed historical seeds. Alternatively, those seeds could be provided by the user, but that has recently been
shown to be perilous [MWKA07]. If M is prime, with suitable conditions on the other parameters, the period can be
Mq − 1. In particular, the period can be made enormous, while keeping a fast kernel that needs only an addition and
a modulo operation. However, if p and q are small, it is a poor generator.

Still another variant, invented by a distinguished researcher in the field, George Marsaglia, uses a combination
of exclusive-OR and shift operations, with the computation expressible in just three lines of C/C++ code [Mar03b]:

x ^= x << a;
x ^= x >> b;
x ^= x >> c;

Java code is similar: just replace the >> operator by Java’s unsigned right-shift operator >>>. Here, x is the initial seed
and the final result, and the shift values a, b, and c are known constants. The generator is extremely fast, requiring
just six instruction cycles on IA-64, and there is no expensive modulo operation. Some of Marsaglia’s proposed sets
of shift values produce poor generator-test results and exhibit strong correlations, but there are many good sets that

2See http://www.hackersdelight.org/divcMore.pdf.

7.7. How random numbers are generated 177

allow the method to provide a family of hundreds to thousands of distinct generator streams. The generator range
is [1, 2wordsize − 1], and the period is 2wordsize − 1. With a few changes to the kernel computation, the period can be
pushed to 2192 − 232 ≈ 1057 in 32-bit integer arithmetic.

7.7.6 Combined generators

It is sometimes possible to combine two different generator algorithms to get a new generator whose period is the
product of the periods of its components. One such generator that has performed well on extensive tests is the KISS
generator, which combines an LCG with an exclusive-OR-shift generator. Although it passes most test suites, and
it has a period of about 2123 ≈ 1037, its range has not been published. It appears to be excellent for sampling and
simulation, but not for cryptography, because it is possible to recover its parameters from as few as 70 output values
[Ros11].

Instrumentation and testing of the KISS generator with additional code in tstkis.c to track and report the current
extreme values each time they change demonstrates that the range is [0, 232 − 1]. With the default seed, the minimum
value is reached after about 2.17 × 109 calls, but the maximum value does not appear until about 10.28 × 109 calls,
equivalent to about 2.4 cycles through all possible 32-bit values. Experiments with a few other initial seeds show
both long and short cycle counts: the seed 0xffffffff produces extremal values after 0.96 cycles, but a zero seed
requires 3.83 cycles. On the fastest machine tested, a 3 GHz AMD64 processor, our scalar implementation of KISS
produces one result every 14.7 nsec, and the code from an optimized compilation needs only 37 CPU instructions.

The widely used Wichmann–Hill generator [WH82] combines the results of three small MCGs that can be safely
evaluated in 16-bit integer arithmetic. It has since been extended for 32-bit integers with four small MCGs, and
passes major test suites [WH06].

The combined Tausworthe generator [L’E96] passes important test suites. It uses a complex sequence of shift and
exclusive-OR operations, with a range of [0, 232 − 1] and a period of 288 ≈ 1026.

One of the best current generators is known as the Mersenne Twister [MN98], provided that code improvements
made by its authors after their article was published are incorporated. Its kernel operations include shifts, exclusive-
OR, and logical-AND, but optimized to maintain high performance. It passes almost all of the tests discussed in
Section 7.15 on page 196. The Mersenne Twister has a modest range of [0, 232 − 1], but it has an enormous period of
219937 ≈ 106001, a number that is too large to represent even in 128-bit IEEE 754 binary arithmetic.

George Marsaglia posted a compact generator based on a multiply-with-carry algorithm, called MWC1038. Its
kernel requires only a single multiply, add, and shift operation in 64-bit integer arithmetic. Its range is unspecified,
and its period is gigantic: 3 056 868 39233 216 − 1 ≈ 10315 063. The generator state is a vector of 1038 random integers,
plus one extra integer. MWC1038 passes most test suites, but its need for 64-bit integer arithmetic destroys porta-
bility, unless that arithmetic can be supplied in software, as we do with the function umul64() in Section 9.3 on
page 261.

Marsaglia and co-workers introduced a related generator family that uses an algorithm called add-with-carry
or subtract-with-borrow [Jam90, MNZ90, MZ91]. It requires no higher intermediate precision, and is fast. Un-
fortunately, tests show that its initial output is far from random unless its seed array is thoroughly mixed, failing
one of our original design criteria. Also, the algorithm has been proved to exhibit correlations in high dimensions
[TLC93, EH95].

In 1916, the famous mathematician and theoretical physicist Hermann Weyl found that, given an irrational num-
ber x, such as

√
2 or π, the fractional parts of the sequence nx, denoted as {nx}, for n = 1, 2, 3, . . . , are uniform on

(0, 1). They are easily computed with fmod(n * x, 1.0), or modf(n * x, NULL), or nx − floor(nx). Unfortunately,
they are also correlated. Decades later, physics researchers showed that the nested Weyl sequence {n{nx}} seems
to eliminate the correlations [HPWW94, TW99]. Combined with a technique that we describe in Section 7.9 on the
following page, they produce a satisfactory generator that passes important test suites. Importantly, its period is
effectively infinite, so picking widely separated starting values of n, or different starting irrational numbers, makes it
easy to generate multiple independent and nonoverlapping streams of uniformly distributed floating-point values.
If the starting irrational constant is fixed, the seed can be as simple as the single number n, and it can even be the
index in a buffer of computed random numbers that is recycled when the buffer is refilled. Alternatively, the seed
can be the most recent random value, with the sequence index n maintained internally. The drawback is that the
use of floating-point arithmetic makes it unlikely that the same sequence can be produced on other systems with
different floating-point chip models or designs.

Shift-register generators have been investigated by several authors, and pass extensive test suites. Ripley’s

178 Chapter 7. Random numbers

srg521() code [Rip90] is a sample implementation that needs somewhat complex state initialization from a single
seed, but has a fast generator in just four simple statements:

result = w[p];
w[p] = result ^ w[q];
if (--p < 0) p = MAX_W - 1;
if (--q < 0) q = MAX_W - 1;

They retrieve the next random number, update another, and then adjust the two staggered buffer indexes so that
they cycle through the buffer. The size of the buffer w[] is 521, and that buffer is the entire state of the generator. The
generator period is 2521 ≈ 6.86 × 10156, long enough that different starting seeds should give independent nonover-
lapping sequences, as long as each maintains its own state. The generator algorithm is independent of word size, so
simple type-statement changes can produce code for random integers of any desired size.

7.7.7 Cryptographic generators

The encryption functions from the Tiny Encryption Algorithm (TEA), and its extensions XTEA and XXTEA [WN95,
NW97, WN98], can be used as random-number generators. For that purpose, they receive as input two 32-bit un-
signed integers (the generator state) and output two new ones that can be used as two 32-bit random values, or joined
into a single 64-bit random number. Processing consists of iterations (called rounds in the cryptographic literature)
with a loop body containing shift, exclusive-OR, and addition operations. Cryptographic security is obtained by in-
creasing the number of rounds, and for that purpose, 64 or more are required. For random-number generation, fewer
suffice: six rounds are known to change at least half of the bits in the input, and eight rounds produce generators that
pass important test suites. The loop body compiles into about twenty instructions on many CPU architectures, and
function execution requires as few as two loads and two stores, so operation is fast. Tests on about 40 different CPUs
show that eight-round versions of TEA, XTEA, and XXTEA are on average about four times slower than the LCG
lrand48(), with run-time ratios relative to lrand48() from about 0.6 to 16. The periods may be effectively infinite,
and the small state makes them suitable for parallel processing: a unique 32-bit starting seed for each process should
guarantee distinct and nonoverlapping random-number sequences.

Researchers have investigated the NIST Advanced Encryption Standard (AES) as a source of random numbers,
and found it to be promising [HW03]. A generator based on the AES, and another that uses the NIST Secure Hash
Algorithm (SHA-1), are included in a test suite described later [LS07], and pass extensive tests. With suitable param-
eter choices, AES generator periods as high as 2128 ≈ 1038 are possible. Random-number generation is a require-
ment of the NIST SHA-3 algorithm [NIS15]. For a comprehensive review of quantum cryptographic generators, see
[HCGE17].

7.8 Removing generator bias

If a generator produces a bit stream where bits 0 and 1 are uncorrelated, and occur with constant, but unequal, proba-
bilities, there is an easy way to repair that bias. If the probability of getting a 0 bit is p, then the probability of getting
a 1 bit must be 1 − p. If we examine successive pairs of bits, then 0 0 occurs with probability p2, 0 1 and 1 0 each with
probability p(1 − p), and 1 1 with probability (1 − p)2. Thus, if we discard the first and last cases, and output the
rightmost bit from the pairs 0 1 and 1 0, then the output bits have equal probability.

Because the generator output must be processed two bits at a time, instead of a word at a time, and because we
discard roughly six of every eight generated bits, a software solution is slow. However, the processing can be done
quickly in hardware, and could be useful in devices that use physical phenomena to produce random numbers,
especially because some such devices fail tests of randomness badly.

7.9 Improving a poor random number generator

If you are stuck with a poor random-number generator, there is an easy way to improve it without revising either its
algorithm or its parameters: shuffle the order of its results. Bays and Durham [BD76] propose that idea in an article
with the same title as this section. They implement it like this for a generator that returns floating-point values
uniformly distributed in [0, 1]:

7.10. Why long periods matter 179

� Before starting, save n + 1 successive random numbers from the generator in an internal buffer, b0, b1, . . . , bn,
and set s by another call to the generator.

� To get the next random number, save the next result from the generator in a variable r, select a random index
k = floor(sn), set s = bk, bk = r, and return s.

If the generator returns integer values, rather than floating-point values, then floating-point arithmetic and inte-
ger divisions can be avoided in the index computation if we instead choose n = 2q, mask off q adjacent bits in s, and
use them for the index. For example, with q = 6, we get an index in [0, 63] from k = (s >> 20) & 0x3f, avoiding
the low-order bits that are known to be less random in an LCG.

A little thought shows that shuffling destroys, or at least lengthens, the period of the generator, because when
we reach the start of the next period, we instead swap that value with bk and return the old bk. Bays and Durham
analyzed their algorithm and found this estimate of its period:

Pshuffle ≈
√

πn!/(2Pgenerator), n � Pgenerator � n!.

Because of the rapid growth of the factorial, the buffer size n does not have to be very large. For a 32-bit generator
producing signed integers in [0, 231 − 1], n = 50 increases the period by a factor of about 261 ≈ 1018, and n = 100 by
about 2216 ≈ 1065. For a full-period 64-bit signed integer generator, with n = 75, the period increases by a factor of
287 ≈ 1026, and with n = 150, by 2342 ≈ 10103.

It is imperative that the saved previous random number s be used in the computation of the index k, because Bays
later showed that a slightly different earlier algorithm that uses the new value r to compute k does not lengthen the
effective period, and only marginally reduces correlations from an LCG [MM65, LL73, Bay90].

Shuffling is therefore a fast and easy way to remove the problem of too-short periods in commonly used random
number generators, and supply periods that are computationally inexhaustible. If the generator produces numbers
over the full representable range, shuffling may also provide a significant improvement in test-suite results.

7.10 Why long periods matter

In parallel programs that need independent streams of random numbers, the generator can be a resource bottleneck
if it must be shared by all subprocesses or threads. With processes on separate machines, large batches of random
numbers need to be sent over the network from a master process. With threads on the same machine, access to the
generator must be controlled with suitable locks that delay thread execution.

With linear congruential generators, advancing k steps be done like this, exploiting a property of the mod oper-
ation that allows us to remove it from intermediate expressions:

xn+1 = (Axn + C) mod M,
xn+2 = (A(Axn + C) + C) mod M,
xn+3 = (A(A(Axn + C) + C) + C) mod M,

. . . = . . .

xn+k = (Akx + (Ak−1 + Ak−2 + . . . + 1)C) mod M

= (Akx + ((Ak − 1)/(A − 1))C) mod M

= ((Ak mod M)x + ((((Ak − 1)/(A − 1))C) mod M)) mod M
= (A′xn + C′) mod M.

That is, starting a new stream at step k is equivalent to running a different generator with a revised multiplier and
additive constant. If k is known in advance, then those values can be worked out once and for all, and stored in tables
of starting parameters for increments 0, k, 2k, 3k, Each process or thread that needs a random number stream
is then given a different table index, and each then has a distinct nonoverlapping sequence of random numbers.
That technique is sometimes called the leap-frog method, and it can be applied to a few other generator algorithms
as well. The disadvantage is its lack of applicability to all generators, and that k must be decided in advance,
limiting the number of distinct random values available to each process. In many applications, the randomness
of the computation makes it impossible to predict the number of random values that might be needed.

180 Chapter 7. Random numbers

A mathematical analysis [Mac92] suggests that one should never use more than N2/3 values from a generator,
where N is the smaller of the period and the upper limit of the range. With the large processor and thread counts
now available to many scientists, LCGs by themselves do not provide sufficiently long independent streams.

However, if the period is large enough, then having each process or thread start with distinct generator seeds
makes the probability of sequence overlap vanishingly small, and no special techniques, like the leap-frog method,
are needed. Thus, if you must use an LCG, consider combining it with shuffling to expand the period enough to
ensure independent streams. Otherwise, use a different generator algorithm that has well-understood properties, a
huge period, and has been shown to pass numerous tests of randomness.

7.11 Inversive congruential generators

A new family of nonlinear random-number generators, called inversive congruential generators (ICGs), was introduced
in 1986 by Eichenauer and Lehn [EL86], and led to a series of more than 50 papers by the first author and his
coworkers. One of the more recent provides a survey of that extensive work [EHHW98], and an earlier tutorial
recommends particular parameter values [EH92].

The nonlinearity is achieved by an apparently small change in the generator formulas, replacing the input random
number by its multiplicative inverse:

xn+1 = (Axn + C) mod M, standard LCG ,
xn+1 = (Ax̄n + C) mod M, inversive CG ,

(x̄nxn) mod M = 1, x̄n is multiplicative inverse of xn.

As with linear congruential generators, restrictions on A and C are needed to ensure maximal period length and
optimum randomness. For a 32-bit generator family, recommended settings are A = 163 011 135, C = 1 623 164 762
and M = 231 − 1 (the largest signed 32-bit integer, and also a prime number). Another choice is A = 1, C = 13, and
M as before. With those parameters, the period length is 231 and the range is [0, 231 − 1], so the generator produces
all possible nonnegative integers. For a 64-bit generator family, a good choice is A = 5 520 335 699 031 059 059,
C = 2 752 743 153 957 480 735, and M = 263 − 25 (the largest prime for 64-bit signed integers). Alternatively, use
A = 1 and C = 1 with the same M.

All of the code from a software implementation of an LCG can be reused, including that needed for simulating
higher-precision arithmetic, except that xn in the product is replaced by a function call that computes the multiplica-
tive inverse. We show how to find that inverse shortly.

The extensive studies of inversive congruential generators have shown that, as with LCGs, it is undesirable to
choose M as a power of two, even though that can simplify the generator computation. With a prime modulus in
an ICG, the undesirable planar structures of LCGs disappear, and the advantage of a single seed is preserved, but
the period still cannot exceed the modulus M. With a 32-bit LCG, the period can be exhausted in a few minutes on
common desktop computers, and on the largest supercomputers, the full period of a 64-bit LCG can be reached in a
few hours.

With good parameter choices, inversive congruential generators perform well with the test suites described near
the end of this chapter, and unlike LCGs, subsets of bits, such as the top, middle, or bottom few from each word, also
pass the tests.

Thus, inversive congruential generators are promising, but the main question is, how much slower are they than
LCGs? The answer to that depends on how fast we can compute the multiplicative inverse, for which we require the
excursions of the next two subsections to obtain some new library functions that are needed for the job.

7.11.1 Digression: Euclid’s algorithm

The multiplicative inverse can be computed from an extension of the famous Euclid algorithm for finding the greatest
common divisor (gcd) of two integers. In this section, we treat that algorithm in detail, deferring its extension to a
shorter following section.

Computation of the greatest common divisor is one of the most important nontrivial operations in integer arith-
metic, yet computer instruction sets do not supply it as a single operation. The gcd operation is also useful in
multiple-precision integer arithmetic, and for symbolic computations with polynomials.

7.11. Inversive congruential generators 181

A brute-force solution of finding gcd(x, y) is easy to state, but slow to run: simply try all divisors from one up
to the smaller of the two argument magnitudes, and record the largest found that divides the arguments without
remainder. The execution time is clearly O(min(|x|, |y|)).

The solution of the gcd problem by the Greek mathematician, Euclid of Alexandria, dates from about 300 BCE,
and perhaps was found before him. It is regarded as the oldest computational algorithm known to humans, in the
sense that it requires arithmetic, repetition, and conditional tests. Euclid’s algorithm can be written as this recurrence:

gcd(x, 0) → x, for x > 0,
gcd(x, y) → gcd(y, x mod y), for x ≥ y ≥ 0.

The algorithm is most easily written in a language that supports recursion, and its code in the C family is short:

int
gcd(int x, int y)
{

int q, r;

assert((x > 0) && (y > 0));

q = x / y; /* integer quotient */
r = x - y * q; /* integer remainder */

return ((r == 0) ? y : gcd(y, r));
}

As written here, the code requires positive nonzero arguments, and the assertion guarantees immediate termination
if that condition is not satisfied. We show later how to remove that restriction in order to write a robust gcd function
that handles all representable integer arguments. Intermediate values during the recursion never exceed the sizes of
the original arguments, so extra internal precision is not needed.

Even though the mathematical recurrence uses the mod operator, we refrain from using the C remainder opera-
tor, %: its behavior is implementation-dependent when its operands are negative, and we need to handle such values
later. To avoid surprises, programmers should always be careful about negative operands in integer division and
remainder.

Because the sole recursive call to the function occurs just before the return, it is easy for a good optimizing
compiler to convert the tail recursion into a loop that requires no additional space on the call stack. We can easily do
so as well with this alternate version suitable for programming languages that lack recursion:

int
gcd(int x, int y)
{

assert((x > 0) && (y > 0));

for (;;)
{

int q, r;

q = x / y; /* integer quotient */
r = x - y * q; /* integer remainder */

if (r == 0)
break; /* here is the only loop exit */

x = y;
y = r;

}

return (y);
}

182 Chapter 7. Random numbers

The arguments to gcd(x, y) are unordered, but during the first call or iteration, if x < y, we find q = 0 and r = x,
so in the next step, we compute gcd(y, x), putting the smaller argument last. All subsequent steps retain that order.
Because integer division truncates, the remainder r is always nonnegative, and one of the arguments in the recursive
calls always decreases, so we eventually find that r is zero, and the algorithm terminates.

Here is an example of Euclid’s algorithm using the first eight digits of the mathematical constants e and π,
displaying the successive decompositions x = y ∗ q + r with an instrumented version in hoc:

hoc> gcd_trace(27_182_818, 31_415_926)
#
output: x = y * q + r
#
step = 1 27_182_818 = 31_415_926 * 0 + 27_182_818
step = 2 31_415_926 = 27_182_818 * 1 + 4_233_108
step = 3 27_182_818 = 4_233_108 * 6 + 1_784_170
step = 4 4_233_108 = 1_784_170 * 2 + 664_768
step = 5 1_784_170 = 664_768 * 2 + 454_634
step = 6 664_768 = 454_634 * 1 + 210_134
step = 7 454_634 = 210_134 * 2 + 34_366
step = 8 210_134 = 34_366 * 6 + 3_938
step = 9 34_366 = 3_938 * 8 + 2_862
step = 10 3_938 = 2_862 * 1 + 1_076
step = 11 2_862 = 1_076 * 2 + 710
step = 12 1_076 = 710 * 1 + 366
step = 13 710 = 366 * 1 + 344
step = 14 366 = 344 * 1 + 22
step = 15 344 = 22 * 15 + 14
step = 16 22 = 14 * 1 + 8
step = 17 14 = 8 * 1 + 6
step = 18 8 = 6 * 1 + 2
step = 19 6 = 2 * 3 + 0
2

The final answer for the gcd is 2. The x and y values reported on each line show that the arguments decrease
quickly at each step; indeed, it is known that the remainder at least halves every two iterations. Also, notice that
the preceding two remainders are the arguments for the current step, and the last nonzero remainder divides all
previous ones.

The slowest operation is the division in each recursion or loop iteration, and we show later how we can reduce
the number of divisions, and even eliminate them entirely.

What is perhaps most surprising about Euclid’s algorithm is that two critical questions about its efficiency com-
pared to the brute-force approach could not be answered with mathematical proofs until the 1970s and 1990s: what
are the average and worst-case recursion or iteration counts?

Presentation and analysis of Euclid’s gcd algorithm, and some variants that are often faster, occupies almost fifty
complicated pages of volume 2 of The Art of Computer Programming [Knu97, pages 333–379]. The answers to the two
questions are difficult to derive, and despite the fact that the algorithm involves just three arithmetic operations in the
body, and no constants other than zero, the answers contain π, logarithms, and Fibonacci numbers (see Section 2.7
on page 15 and Section 18.6 on page 575):

n = min(|x|, |y|),
Euclid gcd minimum count = 1

Euclid gcd average count = (12 ln 2/(π2)) ln n
≈ 1.9405 log10 n,

Euclid gcd maximum count ≈ (4.8 log10 n) + 0.06.

The best case happens when the arguments are equal, or one is a multiple of the other: we find r = 0 on the first
iteration, and can return immediately. The count in the average case is roughly twice the number of decimal digits
in the smaller argument. The worst case occurs when the arguments are successive Fibonacci numbers, yet it needs

7.11. Inversive congruential generators 183

less than three times the work for the average case. For 32-bit integers, the average and maximum counts are about
18 and 45, and for 64-bit integers, 36 and 91.

7.11.1.1 Euclid’s algorithm for any integers

The mathcw library provides functions for computing the greatest common divisor, and the related least common
multiple (lcm) operation, with these prototypes in the header file gcdcw.h

extern int gcd (int x, int y);
extern long int lgcd (long int x, long int y);
extern long long int llgcd (long long int x, long long int y);
extern int lcm (int x, int y);
extern long int llcm (long int x, long int y);
extern long long int lllcm (long long int x, long long int y);

The functions must be robust, and able to process correctly all possible integer arguments, so we have to supply
additional code to handle negative and zero arguments.

The functions should satisfy these relations for the gcd and lcm operations:

gcd(0, 0) = 0, standard mathematical convention,
gcd(0, y) = |y|, standard mathematical convention,
gcd(x, 0) = |x|, standard mathematical convention,
gcd(x, y) = gcd(y, x), argument exchange symmetry,
gcd(x, y) = gcd(x,−y), argument sign symmetry,

= gcd(−x, y)
= gcd(−x,−y),

gcd(x, y) ≥ 0, divisor is nonnegative by convention,
gcd(x, y) = gcd(x − ny, y) if x ≥ ny, and n = 1, 2, 3, . . . ,

gcd(nx, ny) = n gcd(x, y), argument scaling relation for n ≥ 0,
lcm(nx, ny) = n lcm(x, y), argument scaling relation for n ≥ 0,

|xy| = gcd(x, y) lcm(x, y), relation with least common multiple.

The first three equations define the special handling of zero arguments, and are clearly needed because we cannot
permit zero divisors. The last equation shows how to compute the least common multiple. Notice that, unlike
the gcd, the lcm is subject to integer overflow; our code silently returns the low-order word of a too-long product
|(x/ gcd(x, y))y|.

Apart from needing absolute-value wrappers on return values, negative arguments pose no special problem for
Euclid’s algorithm as we have presented it so far: the computations of q and r are valid for any sign combinations.
Here is a recursive version that incorporates the additional checks:

int
gcd(int x, int y)
{

int result;

if (x == 0)
result = QABS(y);

else if (y == 0)
result = QABS(x);

else
{

int q, r;

q = x / y; /* quotient */

184 Chapter 7. Random numbers

r = x - y * q; /* remainder */
result = ((r == 0) ? QABS(y) : gcd(y, r));

}

return (result);
}

Our QABS() macro provides a fast sign conversion.
The only anomaly in our function is that in two’s-complement arithmetic (see Appendix I.2.3 on page 972),

the most negative representable integer has no positive counterpart, and reproduces itself when negated. Thus,
on essentially all modern computers, gcd(0, INT_MIN), gcd(INT_MIN, 0), and gcd(INT_MIN, INT_MIN) all return
INT_MIN, a negative value. There is no reasonable alternative here, so programmers just need to remember that, like
the integer absolute-value function, while the gcd is normally positive, it can also be negative when an argument is
the most negative integer.

7.11.1.2 Division-free gcd algorithm

Several authors have studied Euclid’s algorithm in binary arithmetic with a view to reducing, or eliminating, the
expensive divisions. See the cited section of The Art of Computer Programming, and these papers: [Ste67, Har70,
Bre76a, SS94, Sor95, Bre99, Bre00, Har06]. Josef Stein is apparently the first to publish a binary variant of the greatest
common denominator computation that completely eliminates divisions, at the cost of more iterations, and more
complicated code. His work appears in a physics journal, and the article title is unrelated to Euclid or the gcd,
although his abstract mentions the gcd. Brent cites unpublished (and thus, likely unavailable) earlier work from
1962, and Knuth quotes a first-century Chinese manuscript that describes a procedure for reducing fractions that is
essentially a binary gcd method. Scientists often ignore history, or are unaware of it, so Stein gets the credit for the
first improvement on Euclid’s algorithm in more than two thousand years.

The binary gcd algorithms generally require positive nonzero arguments. Negative arguments, especially the
most negative representable number, must be transformed with special care to equivalents with positive num-
bers. Also, some algorithms may require longer integer types internally, and some need the fast ilog2(), ntz(),
and pop() functions introduced earlier in this chapter. Their average and worst-case iteration counts (not all of
which have been proven yet) have usually been shown to be O(log(max(|x|, |y|))), whereas Euclid’s algorithm has
O(log(min(|x|, |y|))). However, the binary algorithms replace most, or all, of the divisions by faster bit testing and
shifting operations, so they can still outperform Euclid’s.

A test program written by this author, and available in the file tgcd.c in the mathcw library distribution, im-
plements most of the proposals in the cited papers and allows comparison of iteration counts and run times across
different architectures, different compilers, and different optimization levels, as well as with different integer types.
Extensive tests show considerable variations, and no single algorithm is uniformly the winner. Knuth’s Algorithm B
[Knu97, page 338] is one of the best, and may run from two to ten times faster than Euclid’s. His procedure is a
six-step recipe with three goto statements. Such statements are forbidden in our library, but fortunately, it is possible
to replace them with loops, and our version has been tested against his original algorithm to ensure identical, and
correct, output. Here is the complete code for our replacement, with comments linking our code to Knuth’s original
prescription:

int
gcd_knuth_binary_new(int x, int y)
{

int result;

if (x == 0)
result = QABS(y);

else if (y == 0)
result = QABS(x);

else
{

int double_count, t;

7.11. Inversive congruential generators 185

double_count = 0;

if (IS_EVEN(x))
{

x = HALF_EVEN(x);

if (IS_EVEN(y)) /* both even */
{

y = HALF_EVEN(y);
double_count++;

}
}
else if (IS_EVEN(y)) /* x is known to be odd */

y = HALF_EVEN(y);

if (x < 0)
x = -x;

if (y < 0)
y = -y;

assert((x > 0) && (y > 0));

while (IS_EVEN(x) && IS_EVEN(y))/* Step B1: reduce even args */
{

double_count++;
x = HALF_EVEN(x);
y = HALF_EVEN(y);

}

assert(IS_ODD(x) || IS_ODD(y));

t = IS_ODD(x) ? -y : x; /* Step B2: initialize */

while (t != 0)
{

while (IS_EVEN(t)) /* Step B3: halve t */
t = HALF_EVEN(t);

if (IS_ODD(t)) /* Step B4: is t even or odd? */
{

if (t > 0) /* Step B5: reset max(x, y) */
x = t;

else
y = -t;

assert((x > 0) && (y > 0));

t = x - y; /* Step B6: subtract */
}

}

result = x;

if (double_count)
result <<= double_count;

}

186 Chapter 7. Random numbers

return (result);
}

As before, the assertions contain critical sanity checks that can be silently eliminated by defining the standard C-
language macro NDEBUG at compile time.

Tests for even and odd can be done with fast bit tests, but we hide the details behind obvious macro names.
Halving of binary integers can be done with a fast bit shift, rather than slow division, but correct halving of neg-

ative integers requires representation-dependent code that again is best hidden inside an obviously named macro.
The double_count variable records the number of doublings required to scale the final result, and we do that

inline with a left-shift operation. Because the result can never exceed the input arguments, the shift count is always
in bounds, and the operation is safe.

The most troublesome case for gcd algorithms is a value of INT_MIN for either or both arguments, so we should
think through what happens in that situation. The first two tests on entry handle the cases where one has that value,
and the other is zero. However, for calls gcd(INT_MIN, n) or gcd(n, INT_MIN) with n nonzero , execution reaches
the main block. In two’s-complement arithmetic, INT_MIN has the even value −(2w−1), where w is the integer width
in bits. The tests for even x and y safely produce INT_MIN / 2, and its negation is positive and representable.

7.11.2 Another digression: the extended Euclid’s algorithm

An extension of Euclid’s algorithm (see [Knu97, pages 342–345], [BB87a], and [Sil06, Chapter 6]) finds an integer
solution (a, b, c) to the equation pair

ax + by = c,
gcd(x, y) = c,

in time that is O(log(|x| + |y|)). The relation ax + by = c is sometimes called Bézout’s identity. A solution is not
unique, because we can increment a by ny, and decrement b by nx, for n = 1, 2, 3, . . . , giving (a + ny)x + (b − nx)y =
ax + nyx + by − nxy = ax + by = c. Indeed, all of the other possible solutions have that form.

The extended Euclid’s algorithm is of interest in this chapter because of its relation to the multiplicative inverse:

(x̄x) mod M = 1, definition of multiplicative inverse x̄,
x̄x = kM + 1, equivalent statement for integer k,

x̄x − kM = 1, extended Euclid’s algorithm form.

In general, that inverse exists if, and only if, x and M are coprime, that is, they have no integer factors in common
other than 1. Thus, if M is a prime number, then the multiplicative inverse exists for all integers x in (0, M), and also
for almost any integral multiple of those numbers: only multiples with integral-power factors, Mn (n = 1, 2, 3, . . .),
are disallowed.

When the multiplicative inverse exists, it is not unique: we can increase x̄ by any integer multiple of M. For
example, with M = 5 and x = 3, x̄ = . . . ,−8,−3, 2, 7, 12, . . . are all valid. It is conventional to choose the smallest
positive value of x̄.

If we have a function egcd(&a, &b, x, y) that implements the extended algorithm for signed integer arguments,
then we can easily write a function for the multiplicative inverse, with a small final fixup to ensure a nonnegative
result:

int
invmodp(int x, int p)
{ /*

** Return a multiplicative inverse of x modulo p.
** NB: x and p MUST be coprime, but that is not checked!
**
** Equivalents in symbolic-algebra systems:
**
** Maple: x^(-1) mod p
** Mathematica: PowerMod[x, -1, p]

7.11. Inversive congruential generators 187

** Maxima: power_mod(x, -1, p) and inv_mod(x, p)
** MuPAD: powermod(x, -1, p)
*/

int a, b;

p = QABS(p);
(void)egcd(&a, &b, x, -p);

return((a < 0) ? (a + p) : a);
}

The multiplicative inverse of zero is infinity, but that is not representable in integer arithmetic. Our invmodp(0, p)
always returns zero for any value of p, including zero.

Knuth’s Algorithm X for the extended Euclid’s algorithm employs three working arrays of three elements each,
and uses iteration and vector operations to solve for the three values a, b, and c. Coding is simplified if we define
four array operations as macros, so that most subscripts can be hidden from the function body:

#define COPY(t, u) (t[0] = u[0], t[1] = u[1], t[2] = u[2])

#define SET(t, a, b, c) (t[0] = a, t[1] = b, t[2] = c)

#define SUB(t, u, v) (t[0] = u[0] - v[0], t[1] = u[1] - v[1], t[2] = u[2] - v[2])

#define U_MINUS_V_Q(t, u, v, q) (t[0] = u[0] - v[0] * q, t[1] = u[1] - v[1] * q, t[2] = u[2] - v[2] * q)

Our implementation of the complete algorithm looks like this:

int
egcd(int *pa, int *pb, int x, int y)
{ /*

** Find a solution of a * x + b * y = c = gcd(x, y).
** Return c as the function value, and return a and b
** via the pointer arguments, if they are not NULL.
**
** Equivalents in symbolic-algebra systems:
**
** M2: gcdCoefficients(x, y) # returns list [a, b]
** Maple: gcd(x, y, ’a’, ’b’) # returns c, sets a and b
** Mathematica: ExtendedGCD[a, b] # returns list {c, {a, b}}
** Maxima: gcdex(x, y) # returns list [a, b, c]
** MuPAD: igcdex(x, y) # returns list [c, a, b]
** Pari/GP: bezout(x, y) # returns list [a, b, c]
*/

int q, t[3], u[3], v[3];

if (x == 0)
{

u[0] = 0;
u[1] = (y < 0) ? -1 : ((y == 0) ? 0 : 1);
u[2] = QABS(y);

}
else if (y == 0)
{

u[0] = (x < 0) ? -1 : 1;
u[1] = 0;
u[2] = QABS(x);

}

188 Chapter 7. Random numbers

else
{

SET(u, 1, 0, x); /* Step X1: Initialize */
SET(v, 0, 1, y);

while (v[2] != 0) /* Step X2: termination check */
{ /* loop invariant: u[0] * x + u[1] * y = u[2] */

q = u[2] / v[2];
U_MINUS_V_Q(t, u, v, q);
COPY(u, v);
COPY(v, t);

}
}

if (u[2] < 0) /* force gcd positive */
{

u[2] = -u[2];
u[1] = (u[2] < 0) ? u[1] : -u[1];
u[0] = -u[0];

}

if (pa != (int *)NULL)
*pa = u[0];

if (pb != (int *)NULL)
*pb = u[1];

return (u[2]);
}

The sign-inversion block that follows the loop includes a check for u[2] remaining negative, which happens only
when it is INT_MIN.

Knuth shows that the computation of the middle element of each array can be omitted in the loop, which we can
easily do by commenting out the relevant parts of the four macros. On loop exit, we can recover the needed value
u[1] from the loop invariant u[0] * x + u[1] * y = u[2]. However, doing so requires a double-length integer
type. Apart from that possibility, the code requires no arithmetic of higher precision than that for the argument
types.

Knuth also gives a binary version, Algorithm Y [Knu97, page 646], that replaces multiplications and divisions by
faster bit-shift operations, at the expense of more loop iterations. For brevity, we omit its code here, but we supply it
as a compile-time alternative in the algorithm file egcdx.h.

The mathcw library provides the extended Euclid’s algorithm, and the multiplicative inverse operation, in func-
tions with these prototypes supplied in the header file gcdcw.h:

extern int egcd (int *pa, int *pb,
int x, int y);

extern long int legcd (long int *pa, long int *pb,
long int x, long int y);

extern long long int llegcd (long long int *pa, long long int *pb,
long long int x, long long int y);

extern int invmodp (int x, int p);
extern long int linvmodp (long int x, long int p);
extern long long int llinvmodp (long long int x, long long int p);

Library functions for the greatest common divisor, least common multiple, and multiplicative inverse are a
first step in developing a toolbox for number theory. However, in practice, the limitations of fixed-width integers
soon become evident, and serious work with exact integer arithmetic generally requires multiple-precision integers.
Symbolic-algebra systems, and the Lisp language family, provide the machinery needed to support such integers
without the special programming needed in most other languages.

7.12. Inversive congruential generators, revisited 189

7.12 Inversive congruential generators, revisited

The excursions of the preceding subsections finally led us to the critical function, invmodp(x, p), needed to replace
xn in an LCG with invmodp(xn, M) to make an ICG.

Timing tests with compiler-optimized code were run on about three dozen CPU variants from all of the major
desktop architectures, using our version of invmodp() that calls the implementation of the egcd() function shown
in Section 7.11.2 on page 187. They show that the ICG is 8 to 60 times slower than the LCG, with a slowdown of 20
perhaps being ‘typical’. On some systems, a binary version of egcd() could reduce that gap somewhat. However, it
is worth reporting that similar tests of several other generator algorithms show that the quickest of them are up to 10
times faster than the LCG. The inversive congruential generator must therefore be regarded as sluggish, compared
to alternatives.

7.13 Distributions of random numbers

All of the random-number recipes that we have discussed so far in this chapter produce numbers that (ideally) are
nearly evenly sprinkled throughout the range of the generator. That is called a uniform distribution.

There are many other distributions than uniform, however, and we look at three of the important nonuniform
ones in the following subsections. It is almost always possible to compute random numbers for nonuniform dis-
tributions from uniformly distributed values, so the hard work of finding a good generator does not have to be
repeated.

To better understand distributions, it is helpful to make plots of them. In the following subsections, we look at
three kinds of characteristic plots. Except for really dreadful generators, it is usually not possible to tell anything
about generator quality from such plots, but it is easy to verify from them that the random numbers conform at least
roughly to their expected distribution.

7.13.1 The uniform distribution

For a uniform distribution of random numbers, if we count the number of values in each of a set of intervals evenly
spanning the range of the generator, we should expect to see about the same count in each interval. The totals can
be conveniently visualized as a histogram.

If we plot the random value along the vertical axis as a function of its position in the sequence measured along
the horizontal axis, then we should expect to see a uniform distribution of points in the plot.

We can get a third view of the data by sorting them, and plotting their values on the vertical axis against their
sorted position along the horizontal axis. The plot of that cumulative distribution function should be a straight line
rising from zero to one.

Those three views of a uniform distribution are shown in Figure 7.4 on the next page.

7.13.2 The exponential distribution

It is easy to compute random numbers in the exponential distribution, using a one-line function like this one:

double rnexp(void) { return (-log(urand())); }

The function urand() here should be defined on either of the intervals (0, 1] or (0, 1), so as to avoid the possibility of
a zero argument of the logarithm.

Here is another way to compute exponentially distributed random numbers from samples of a uniform distribu-
tion [DH97a]:

double
rnexp(void)
{ /* return random number exponentially distributed on (0,Inf) */

int n;
double beta1, betasum, t;

n = 1;

190 Chapter 7. Random numbers

(a)

0

50

100

150

0.0 0.2 0.4 0.6 0.8 1.0

co
un

t

x

Uniform Distribution Histogram

(b)

0.0

0.2

0.4

0.6

0.8

1.0

0 2500 5000 7500 10000

rn
01

()

output n

Uniform Distribution

(c)

0.0

0.2

0.4

0.6

0.8

1.0

0 2500 5000 7500 10000

rn
01

()

sorted n

Uniform Distribution

Figure 7.4: Views of uniform distributions of random numbers. Plot (a) shows a histogram of the counts of 10 000
values falling into each of 100 intervals of equal size. Plot (b) shows the 50% of the same values plotted against their
sequence number. Plot (c) shows sorted values plotted against their sequence number, showing an approximate
cumulative distribution function.

t = -1;

while ((n % 2) == 1)
{ /* tcov: average loop count = 1.58 */

beta1 = urand();
betasum = urand();
n = 2;

while (betasum < beta1)
{ /* tcov: average loop count = 0.72 */

n++;
betasum += urand();

}

t++;
}

return (t + beta1);
}

That variant uses a method first introduced in 1949 by John von Neumann [vN51] that avoids calls to elementary
functions. Timing tests on various platforms show it to be up to 1.3 times faster than the simple one-line form on
some systems, and twice as slow on others. The random values produced by the two methods differ, because they
consume different numbers of results from urand().

A test-coverage analysis of the second version of rnexp() shows that, despite the doubly nested loops, fewer than
four calls to urand() are required on average. Even though the function can return values on (0, ∞), in practice, the
results are never large: repeated tests with 109 calls to rnexp() produce a maximum return value of only 22.45, about
what is expected because exp(22.45 · · ·) ≈ 5.62 × 109.

Figure 7.5 on the facing page shows three views of an exponential distribution. Here, small random numbers are
more likely than large ones, and the histogram in Figure 7.5(a) falls off like a decaying exponential.

7.13.3 The logarithmic distribution

For sampling from a range of floating-point values, the logarithmic distribution is important. It can be readily com-
puted from a uniform distribution with a function like this:

double
randlog (double a, double b)

7.13. Distributions of random numbers 191

(a)

0

200

400

600

800

1000

0 1 2 3 4 5 6

co
un

t

x

Exponential Distribution Histogram

(b)

0

2

4

6

8

10

0 2500 5000 7500 10000

rn
ex

p(
)

output n

Exponential Distribution

(c)

0

2

4

6

8

10

0 2500 5000 7500 10000

rn
ex

p(
)

sorted n

Exponential Distribution

Figure 7.5: Views of exponential distributions of random numbers. See Figure 7.4 on the facing page for an explana-
tion of the three plots.

{
double t;

t = log(abs(b)) - log(abs(a))
return (a * exp(t * urand()));

}

The function has the property that it returns values logarithmically distributed on the interval [a, b], which must
not contain zero. That function can, of course, be optimized for a fixed interval by precomputing the logarithms,
or by saving them across calls. The intermediate value could be written more compactly as log(abs(b/a)), but the
division could then cause premature overflow or underflow.

Our function as written is still subject to premature overflow if the argument range is too wide, such as with a
call randlog(DBL_MIN, DBL_MAX) to sample over the entire floating-point range. To avoid overflow, that range must
be split into two parts, with calls randlog(DBL_MIN, 1.0) and randlog(1.0, DBL_MAX). We could use those values
as random arguments for testing a function f (x) defined for all real positive arguments. By contrast, if we use scaled
results of urand() to sample over those two intervals, almost all of the results are near their upper limits.

There is still another problem lurking in our function, and that is premature underflow or overflow from faulty
implementations of the exponential function. We encountered such defects during testing with native libraries on
several platforms. The final code in our library contains checks for special arguments and invalid ranges, caches
values of the logarithms, and rejects out-of-range results. It looks like this:

fp_t
LRCW(fp_t a, fp_t b)
{ /* return random number logarithmically distributed on [a,b] */

fp_t result;

if (ISNAN(a))
result = SET_EDOM(a);

else if (ISNAN(b))
result = SET_EDOM(b);

else if (SIGNBIT(a) != SIGNBIT(b))
result = SET_EDOM(QNAN(""));

else if ((a == ZERO) || (b == ZERO))
result = SET_EDOM(QNAN(""));

else if (ISINF(a))
result = SET_ERANGE(a);

else if (ISINF(b))
result = SET_ERANGE(b);

else
{

192 Chapter 7. Random numbers

static fp_t a_last = FP(0.0);
static fp_t b_last = FP(0.0);
static fp_t log_a = FP(0.0);
static fp_t log_b = FP(0.0);

if (a != a_last)
{

a_last = a;
log_a = LOG(a < ZERO ? -a : a);

}

if (b != b_last)
{

b_last = b;
log_b = LOG(b < ZERO ? -b : b);

}

do
{

result = a * EXP((log_b - log_a) * URAND());
}
while ((result < a) || (b < result));

}

return (result);
}

Figure 7.6 on the next page shows our three standard views for the logarithmic distribution. Notice the substan-
tial similarity to the exponential distribution in Figure 7.5 on the preceding page.

7.13.4 The normal distribution

The last important distribution that we treat is the famous normal distribution, also known as the bell-shaped curve.
The distribution is shown in Figure 7.7.

The normal distribution has received extensive study, and there are several good ways to compute normally
distributed random numbers from samples of a uniform distribution. The polar method is one of the simplest to
implement, and its code looks like this:

double
rnnorm(void)
{ /* polar method for normally distributed random numbers */

double s, v1, v2;

do
{

v1 = urand(); /* v1 in [0, +1] */
v2 = urand(); /* v2 in [0, +1] */
v1 += v1 - ONE; /* v1 in [-1, +1] */
v2 += v2 - ONE; /* v2 in [-1, +1] */
s = v1 * v1 + v2 * v2; /* s in [0, +2] */

}
while (s >= ONE);

return (v1 * sqrt(-TWO * log(s) / s));
}

In the return statement, we could replace v1 by v2, so with a bit more code, we could generate two values, saving
one of them for a fast return on the next call.

7.13. Distributions of random numbers 193

(a)

0

100

200

300

400

500

0 50 100 150 200 250

co
un

t

x

Logarithmic Distribution Histogram

(b)

0

200000

400000

600000

800000

1000000

0 2500 5000 7500 10000

ra
nd

l()

output n

Logarithmic Distribution

(c)

0

200000

400000

600000

800000

1000000

0 2500 5000 7500 10000

ra
nd

l()

sorted n

Logarithmic Distribution

Figure 7.6: Views of logarithmic distributions of random numbers from randlog(1.0, 1000000.0). See Figure 7.4
on page 190 for an explanation of the three plots.

(a)

0
50

100
150
200
250
300
350
400

-4 -3 -2 -1 0 1 2 3 4

co
un

t

x

Normal Distribution Histogram

(b)

-4
-3
-2
-1
0
1
2
3
4

0 2500 5000 7500 10000

rn
no

rm
()

output n

Normal Distribution

(c)

-4
-3
-2
-1
0
1
2
3
4

0 2500 5000 7500 10000

rn
no

rm
()

sorted n

Normal Distribution

Figure 7.7: Views of normal distributions of random numbers. See Figure 7.4 on page 190 for an explanation of the
three plots.

As with von Neumann’s method for the exponential distribution, the polar method for the normal distribution
consumes a variable number of random values from urand(), and that count depends on the properties of the host
arithmetic systems, as well as on the uniform generator. We therefore cannot expect to get the same sequence of
values from the code for the polar method when it is run on different CPU architectures.

The Box–Muller transformation [BM58] is another popular way to produce normally distributed random numbers
x, y from a uniformly distributed pair u, v:

x = cos(2πv)
√−2 log u, y = sin(2πu)

√−2 log v.

Because of the six function calls, it is more expensive than the polar method, but it consumes a fixed number of
values from a uniform generator. However, it is known to amplify correlations between pairs of normally distributed
values, so it might be better to compute and use only x or y. Avoid the Box–Muller and polar methods entirely if the
uniform generator is an LCG [Nea73, AW88].

Although a generator for the normal distribution can potentially produce any positive or negative floating-point
number, the rapid fall of the normal curve makes large normally distributed random values highly unlikely. In
Section 19.4 on page 610, we show that fewer than one in a million should lie outside [−5,+5], and only about one
in 1023 is expected outside [−10,+10].

194 Chapter 7. Random numbers

7.13.5 More on the normal distribution
THE

NORMAL

LAW OF ERROR

STANDS OUT IN THE

EXPERIENCE OF MANKIND

AS ONE OF THE BROADEST

GENERALIZATIONS OF NATURAL

PHILOSOPHY � IT SERVES AS THE

GUIDING INSTRUMENT IN RESEARCHES

IN THE PHYSICAL AND SOCIAL SCIENCES AND

IN MEDICINE AGRICULTURE AND ENGINEERING �
IT IS AN INDISPENSABLE TOOL FOR THE ANALYSIS AND THE

INTERPRETATION OF THE BASIC DATA OBTAINED BY OBSERVATION AND EXPERIMENT.

— W. J. YOUDON (1956)
FROM STEPHEN M. STIGLER, Statistics on the Table (1999).

The importance of the normal distribution is its relation to the most famous theorem of probability, the Central
Limit Theorem (de Moivre 1718, Laplace 1810, and Cauchy 1853), which can be stated informally like this:

A suitably normalized sum of independent random variables is likely to be normally distributed, as
the number of variables grows beyond all bounds. It is not necessary that the variables all have the same
distribution function or even that they be wholly independent.

— I. S. Sokolnikoff and R. M. Redheffer
Mathematics of Physics and Modern Engineering,

second edition (1966).

The quotation can be expressed mathematically like this:

P(nμ + r1
√

n ≤
n

∑
k=1

Xk ≤ nμ + r2
√

n) ≈ 1
σ
√

2π

∫ r2

r1

exp(−t2/(2σ2)) dt.

Here, the Xk are independent, identically distributed, and bounded random variables, μ (Greek letter mu) is their mean
value, σ (Greek letter sigma) is their standard deviation, and σ2 is their variance. The formula says that the probability
that the sum of the n variables lies between nμ + r1

√
n and nμ + r2

√
n is the area under the normal curve between

r1 and r2.
The integrand of the normal distribution’s probability function is shown in Figure 7.8. Although the curve ex-

tends to infinity in both directions, it falls off extremely rapidly, with almost all of the area within just a few multiples
of σ away from the origin.

It is common in scientific and medical experiments to report standard deviations and variances for experimental
measurements, and our brief description shows how they are related to the normal distribution. We consider the
computation of the normal distribution function, and discuss the meaning and significance of the standard deviation,
in Section 19.4 on page 610.

The distribution that our rnnorm() function produces is scaled to zero mean and unit standard deviation and
variance. Although the return values lie on (−∞,+∞), only one sample in 1080 (the approximate number of particles
in the universe) will exceed 19 in magnitude.

If x is normally distributed with zero mean and unit variance, then y = μ + σx is also normally distributed, but
with mean μ and standard deviation σ. A simple wrapper function hides the computation:

double
rnnorm_ext (double mu, double sigma)
{

return (mu + sigma * rnnorm());
}

7.14. Other distributions 195

0

1

2

-10 -5 0 5 10

N
or

m
al

(x
)

x

Normal Distribution

σ = 0.2
σ = 0.5
σ = 1.0
σ = 2.0
σ = 5.0

Figure 7.8: Normal curves for various σ values. The curve is most sharply peaked for small σ, and the area under
the curve is normalized to one.

7.14 Other distributions

Although we do not describe them in detail, or develop software for them, there are several other important dis-
tributions that are commonly encountered in applications of random numbers and analysis of data. They are often
divided into two classes, continuous and discrete, where in the latter case, probabilities can be worked out by simple
counting operations.

� The discrete binomial distribution describes the behavior of sets of experiments of random processes, each in-
dependent of the other, and having two possible outcomes. Samples are selected, measured, and replaced in
the original set. Examples include dice throws, picking (and replacing) beans from a jar of mixed red and blue
beans, and defects in product manufacturing.

� The discrete hypergeometric distribution is similar to the binomial distribution, but differs from it, because sam-
ples are removed, decreasing the original population of data.

� The continuous F distribution is used in the statistical analysis of ratios of sample variances.

� The continuous gamma distribution represents sums of independent identically distributed exponential random
variables. It is used in the analysis of waiting times.

The chi-square distribution, for which we consider a related quantity later in Section 7.15.1 on page 197, is a
special case of the gamma distribution.

� The continuous Laplace distribution (1812) describes the differences between independent identically distributed
exponential random variables, in contrast to the sums in the gamma distribution.

The Laplace distribution function has an exponential whose argument is an absolute value, instead of the
square found in the normal distribution, giving the distribution a cusp shape.

The Laplace distribution is sometimes called the double exponential distribution, but that name should be
avoided, because it is also used for a completely different distribution.

� The discrete Poisson distribution (1837) arises in the analysis of events that occur continuously with constant
probability, such as customers arriving at a service desk, and radioactive decay. In the limit of large sample
sizes with a finite mean, the binomial distribution becomes a Poisson distribution.

� The continuous Student’s t distribution is used in the analysis of small sample sizes, a common situation in
experimental science and medicine. As the sample size increases, the t distribution becomes a normal distri-
bution.

196 Chapter 7. Random numbers

Student is a pseudonym for W. S. Gosset [PGPB90], who published the analysis in 1908. Gosset was trained
in chemistry and mathematics at Oxford University, and was later employed as a statistician at the Guinness
Brewery in Dublin, Ireland, to help improve the process and product.

For an interesting account of the development of Gosset’s t-test, how credit for it was usurped by another,
and how it is too often abused and misused, see The Cult of Statistical Significance [ZM08]. See also Why Most
Published Research Findings Are False [Ioa05] and The Widespread Misinterpretation of p-Values as Error Probabili-
ties [Hub11] for detailed looks at common misinterpretations of statistical measures, and frequent failures to
consider properly the effect of small sample sizes.

� The continuous Weibull distribution (1939) [MXJ04] is a generalized distribution that can mimic several others,
including the exponential and normal distribution. It has extensive applications in the analysis of actuarial
data and product failure rates.

For compact or elementary coverage of those, and other distributions, see [AS64, Chapter 26], [BE92], [AW05,
Chapter 19], [AWH13, Chapter 23], [Law06, Chapter 8], [PTVF07, §6.14], [Dev08b, Chapters 3 and 4], and [AF09].
Advanced treatments are available in several volumes [JK77, Dev86, JKB94, JKB97, Che98, L’E98, KBJ00, HLD04,
MXJ04, JKK05]. There is also a recent survey article on univariate distributions [LM08], an excellent review of power-
law distributions [New05] that have broad applications in many areas of science and technology, and a survey of
Gaussian random-number generation [MH16].

7.14.1 Numerical demonstration of the Central Limit Theorem

With the help of a random-number generator for a uniform distribution, we can show the Central Limit Theorem
in action with a coin-tossing experiment implemented in hoc. Each coin flip is simulated by asking the generator to
return a random integer on [0, 1], and we use 1 for heads, and 0 for tails:

hoc> for (k = 1; k <= 10; ++k) print randint(0,1), ""; println ""
0 1 1 1 0 0 0 0 1 0

Here, we got four heads and six tails. Now, instead of printing the results, we count the number of heads by summing
the values that we previously printed. We wrap our program with another loop that repeats the experiment 100
times:

for (n = 1; n <= 100; ++n) \
{

sum = 0

for (k = 1; k <= 10; ++k) sum += randint(0,1)

print sum, ""
}
println ""

4 4 7 3 5 5 5 2 5 6 6 6 3 6 6 7 4 5 4 5 5 4 3 6 6 9 5 3 4 5 4 4 4 5 4 5 5 4 6 3 5 5 3 4 4 7 2 6 5 3
6 5 6 7 6 2 5 3 5 5 5 7 8 7 3 7 8 4 2 7 7 3 3 5 4 7 3 6 2 4 5 1 4 5 5 5 6 6 5 6 5 5 4 8 7 7 5 5 4 5

In Figure 7.9, we plot the measured frequencies of the numbers of heads found in the 100 experiments. The histogram
roughly approximates a normal curve, and from its header, we find that the coin flips produced five heads Y5 = 31
times.

Simply by increasing the experiment count in the outer loop limit, we can gather more and more samples. Fig-
ure 7.10 shows the results of 100 000 experiments, corresponding to a million coin tosses. As the Central Limit
Theorem predicts, the results fall nicely along a normal curve.

7.15 Testing random-number generators

Determining whether the output of a random-number generator is sufficiently random is much harder than testing
elementary functions, because there is no expected relation between function values: indeed, they should be entirely

7.15. Testing random-number generators 197

k 0 1 2 3 4 5 6 7 8 9 10

Yk 0 1 5
1
2

1
9

3
1

1
6

1
2 3 1 0

Figure 7.9: Counts of heads for 100 coin-flip experiments. The counts are displayed vertically from top to bottom
above each bar: the tallest histogram bar has a count of 31.

k 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70

Yk 1 4
1
2

3
4

4
7

7
0

1
1
8

2
4
2

4
1
8

8
0
2

1
0
8
6

1
6
3
3

2
2
5
9

3
1
1
2

3
9
8
7

4
8
8
0

5
6
0
9

6
5
8
7

7
3
2
0

8
1
1
3

8
2
2
7

7
8
2
8

7
1
7
1

6
6
0
7

5
6
0
4

4
7
4
0

3
9
6
2

3
0
2
9

2
2
1
2

1
5
4
4

9
9
6

6
5
4

4
7
4

2
5
7

1
4
1

1
0
7

4
3

3
7

2
1 5 5

Figure 7.10: Counts of heads for 100 000 coin-flip experiments.

unrelated. Instead, all that can be done is to use the generator to model a particular problem for which an exact
solution is known, and then compute statistical measures of how close the model is to the correct answer. Different
models have different dependencies on the generator’s randomness, and no single test suffices. Instead, we need to
have a suite of widely differing tests, and only after a generator has passed a large number of independent tests can
we begin to have confidence in it.

7.15.1 The chi-square test

One of the most important statistical measures is the famous chi-square test (for the Greek letter chi, χ), introduced
by the eminent American statistician Karl Pearson in 1900 [Pea00]. The test, which has been ranked among the top
twenty scientific discoveries of the Twentieth Century [Hac84], is simple. If the k-th experiment produces a measured
count Mk when the expected count is Ek, then for n experiments, we compute:

χ2 measure =
n

∑
k=1

(Mk − Ek)
2/Ek

Standard mathematical handbooks give tables of the chi-square measure, and Table 7.1 on the following page is a
small sample from such tables. We show later in Section 18.4 on page 560 how those values can be computed. For
sufficiently large n, the measure depends only on the number of degrees of freedom in the measurement.

198 Chapter 7. Random numbers

Table 7.1: Selected percentage points of the chi-square distribution for ν (Greek letter nu) degrees of freedom. For
example, from the shaded last entry in the first row, for one degree of freedom, such as in a coin-flip experiment,
there is a 99% probability that the chi-square measure does not exceed 6.635.

ν p = 1% p = 5% p = 25% p = 50% p = 75% p = 95% p = 99%
1 0.00016 0.00393 0.1015 0.4549 1.323 3.841 6.635
2 0.02010 0.1026 0.5754 1.386 2.773 5.991 9.210
3 0.1148 0.3518 1.213 2.366 4.108 7.815 11.34
4 0.2971 0.7107 1.923 3.357 5.385 9.488 13.28
5 0.5543 1.145 2.675 4.351 6.626 11.07 15.09
6 0.8721 1.635 3.455 5.348 7.841 12.59 16.81
7 1.239 2.167 4.255 6.346 9.037 14.07 18.48
8 1.646 2.733 5.071 7.344 10.22 15.51 20.09
9 2.088 3.325 5.899 8.343 11.39 16.92 21.67

10 2.558 3.940 6.737 9.342 12.55 18.31 23.21
11 3.053 4.575 7.584 10.34 13.70 19.68 24.72
12 3.571 5.226 8.438 11.34 14.85 21.03 26.22
15 5.229 7.261 11.04 14.34 18.25 25.00 30.58
20 8.260 10.85 15.45 19.34 23.83 31.41 37.57
30 14.95 18.49 24.48 29.34 34.80 43.77 50.89
50 29.71 34.76 42.94 49.33 56.33 67.50 76.15
99 69.23 77.05 89.18 98.33 108.1 123.2 134.6

100 70.06 77.93 90.13 99.33 109.1 124.3 135.8
999 898.0 926.6 968.5 998.3 1029 1074 1106

1000 898.9 927.6 969.5 999.3 1030 1075 1107

As a concrete example of the computation and application of the chi-square measure, we can use a random-
number generator to produce integers on the interval [0, 9]. There are ten possible digits, so the number of degrees of
freedom is nine, one less than the number of categories. Here are two functions and a test procedure to carry out the
experiment, which consists of sampling one-digit integers nrun times in function digit_frequency() and counting
the number of times a particular digit is found, and then in a second function, computing the chi-square measure:

double
digit_frequency(int digit, int nrun)
{

double sum;
int k;

sum = 0;

for (k = 0; k < nrun; ++k)
{

if (urandtoint(0,9) == digit)
sum++;

}

return (sum);
}

double
chisq_measure(int digit, int nrun)
{

double expect, sum, term;
int k;

expect = (double)nrun / 10.0;
sum = 0.0;

7.15. Testing random-number generators 199

for (k = 1; k <= 10; ++k)
{

term = digit_frequency(digit,nrun) - expect;
sum += term * term / expect;

}

return (sum);
}

void
test_chisq(int nrun)
{

double x;
int digit;

(void)printf("digit chi-square probability\n");

for (digit = 0; digit <= 9; ++digit)
{

x = chisq_measure(digit,nrun);
(void)printf("%5d %11.4f %11.4f\n", digit, x, chisq(9,x));

}
}

The test procedure test_chisq() uses an external function, chisq(), whose code is not shown here, as a convenient
substitute for a mathematical table, and makes a report like this when nrun is 100 000:

digit chi-square probability
0 10.5470 0.6920
1 9.1112 0.5729
2 22.6200 0.9929
3 13.4653 0.8573
4 7.5559 0.4206
5 5.4183 0.2036
6 10.6368 0.6986
7 5.8483 0.2450
8 5.9518 0.2553
9 11.2099 0.7384

For example, the computed chi-square measure for digit 9 is 11.2099, and the probability that a model-conforming
chi-square measure does not exceed that value is 0.7384. Here, all of the computed probabilities are reasonable
values, except possibly digit 2, but another run with a different generator seed gave it a probability of 0.5944.

Now watch what happens if we have a faulty generator that only returns digits in [0, 8]. We simply replace
randint(0,9) with randint(0,8), and rerun the experiment:

digit chi-square probability
0 1209.4584 1.0000
1 1309.8509 1.0000
2 1295.1959 1.0000
3 1239.8429 1.0000
4 1198.6093 1.0000
5 1270.2240 1.0000
6 1183.5953 1.0000
7 1199.0114 1.0000
8 1340.3970 1.0000
9 100000.0000 1.0000

The chi-square measures are now large, and all of the probability values are 1.0000, meaning that it is almost a
certainty that model-conforming measures should not be as large as they are found to be. In other words, the model

200 Chapter 7. Random numbers

of equal distributions of the ten digits is poorly met by our modified generator, and the large chi-square measure in
the last output line identifies the faulty digit.

Many tests of random-number generators produce probability values similar to those from the chi-square tests,
although sometimes, the statistics are based on other measures that are outside the scope of this book.

7.15.2 Random-number generator test suites

Unfortunately, most of the standard tests that have been historically recommended for checking the randomness of
a sequence of numbers, including the simpler ones discussed in Knuth’s comprehensive treatise [Knu97, Chapter 3],
turn out not to be very discriminating. Although they can often identify really bad generators, they are of little use
in distinguishing the mediocre from the superb.

Happily, there are now four good test suites that have proved to be effective:

� The Diehard Battery suite (http://stat.fsu.edu/pub/diehard/) was developed at Florida State University by
George Marsaglia in 1985, but never formally published, although there are descriptions of some of the tests in
the literature [MZ93, PW95]. The Diehard Battery suite is available in C and Fortran versions, and each expects
to read a file of about 10MB of random bits. That means that the program can be built once and for all, and
then run on test files produced by any generator. Any or all of 16 tests can be selected, and typical run times for
the complete set are one to three minutes on modern workstations. The one thing to be careful of is to ensure
that each file byte contains random bits: if the generator range is only [0, 231 − 1], an extra random bit needs to
be supplied for the high-order bit of each 32-bit word written to the file.

� The recent tuftest suite by Marsaglia and Tsang [MT02] consists of three new tests that have been found to
be as good as the entire Diehard Battery suite. Its authors report “. . . generators that pass the three tests seem to
pass all the tests in the Diehard Battery of Tests.” The code is in C, and instead of a data file, it requires a 32-bit
generator that can be called at run time.

This author has extended the tuftest suite as follows:

� A new driver program allows easy testing of many different generators.

� The driver allows selection of subsets of the tests.

� The driver can quickly create Diehard Battery test files without running the tuftest suite.

� Portability problems and faulty architectural assumptions are repaired. The code can now be used with
both C and C++ compilers, and on both 32-bit and 64-bit architectures.

Run times are typically 10 to 90 minutes on the same systems used for Diehard Battery tests.

� The NIST Statistical Test Suite [RSN+01] is similar to the Diehard Battery suite.

� The TestU01 suite [LS02, LS07] is accompanied by a 200-page manual. It includes the Diehard Battery and NIST
tests, and many others.

Except for the report from the tuftest suite, the test reports for those packages are much too long to show here,
and a complete understanding of the reports requires more background than some readers of this book might have.
However, the essential idea of the tests is that they report a special number, called a p-value, limited to the interval
[0, 1], and similar to the chi-square probability discussed in Section 7.15.1 on page 197. For a good generator, p is
expected to have values away from the endpoints. Normally, one should expect p values in, say, [0.1, 0.9], but it is
acceptable to have an occasional p value at or near the endpoints.

In the tuftest suite, the Birthday Spacings and the Euclid tests measure the randomness of successive elements in
the random number sequence. The Gorilla test measures the randomness in 8-bit sequences within the numbers,
with bit numbering from left (high-order) to right (low-order).

Here is the tuftest report for the Mersenne Twister, run on a 1.4 GHz IA-64 system:

Generator: mt ngen = 0
Birthday spacings test: 4096 birthdays, 2^32 days in year

Table of Expected vs. Observed counts:
Duplicates 0 1 2 3 4 5 6 7 8 9 >=10

7.15. Testing random-number generators 201

Expected 91.6 366.3 732.6 976.8 976.8 781.5 521.0 297.7 148.9 66.2 40.7
Observed 87 388 755 987 950 779 511 271 154 80 38
(O-E)^2/E 0.2 1.3 0.7 0.1 0.7 0.0 0.2 2.4 0.2 2.9 0.2

Birthday Spacings: Sum(O-E)^2/E = 8.882, p = 0.457

bday time = 23.268 sec calls to generator = 20480000

Euclid’s algorithm:
p-value, steps to gcd: 0.747254
p-value, dist. of gcd’s: 0.339220

gcd time = 7.790 sec calls to generator = 20000000

Gorilla test for 2^26 bits, positions 0 to 31:
Note: lengthy test---for example, ~20 minutes for 850 MHz PC
Bits 0 to 7---> 0.676 0.270 0.618 0.610 0.760 0.756 0.244 0.660
Bits 8 to 15---> 0.499 0.838 0.281 0.968 0.167 0.606 0.928 0.159
Bits 16 to 23---> 0.077 0.828 0.871 0.831 0.166 0.403 0.746 0.969
Bits 24 to 31---> 0.120 0.300 0.731 0.053 0.854 0.577 0.175 0.135
KS test for the above 32 p values: 0.320

gorilla time = 484.274 sec calls to generator = 2147483648

The Mersenne Twister does extremely well on those tests, because all reported p values are midrange, but many
generators fail all of the tuftest tests.

For comparison, here are the tuftest results for the bad randu() congruential generator (see Section 7.7.2 on
page 170):

Generator: urandu ngen = 0
Birthday spacings test: 4096 birthdays, 2^32 days in year

Table of Expected vs. Observed counts:
Duplicates 0 1 2 3 4 5 6 7 8 9 >=10

Expected 91.6 366.3 732.6 976.8 976.8 781.5 521.0 297.7 148.9 66.2 40.7
Observed 0 0 0 0 1 3 18 53 82 144 4699
(O-E)^2/E 91.6 366.3 732.6 976.8 974.8 775.5 485.6 201.1 30. 91.6 533681.

Birthday Spacings: Sum(O-E)^2/E = 538407.147, p = 1.000

bday time = 22.975 sec calls to generator = 20480000

Euclid’s algorithm:
p-value, steps to gcd: 1.000000
p-value, dist. of gcd’s: 1.000000

gcd time = 7.517 sec calls to generator = 20000000

Gorilla test for 2^26 bits, positions 0 to 31:
Note: lengthy test---for example, ~20 minutes for 850 MHz PC
Bits 0 to 7---> 0.000 0.000 0.000 0.000 0.000 1.000 1.000 1.000
Bits 8 to 15---> 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Bits 16 to 23---> 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Bits 24 to 31---> 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
KS test for the above 32 p values: 1.000

gorilla time = 249.136 sec calls to generator = 2147483648

Here, all of the p-values are either 0.000 or 1.000, indicating utter failure of the tests.

202 Chapter 7. Random numbers

The timing reports in the two output listings suggest that the Mersenne Twister runs at about half the speed of
a simple congruential generator, which is probably acceptable, given its much better test results. Indeed, generator
timing tests on about 40 different CPUs show relative times of the Mersenne Twister compared to lrand48() of 0.14
to 1.94, with an average of 0.7, making it often faster than an LCG. The KISS generator time is almost identical to the
Mersenne Twister time, and KISS also passes the tuftest tests. Both pass the Diehard Battery tests as well.

7.15.3 Testing generators for nonuniform distributions

Although the generation of random numbers for nonuniform distributions is almost always based on an underlying
generator for a uniform distribution, there is always the possibility that an error in the algorithm, the software, or
the compilation process, will result in numbers that fail to conform to the expected distribution.

The standard test packages assume uniform distributions, so to use them for testing nonuniform generators, we
need to recover uniformly distributed random numbers. Whether that is easy or not depends on the distribution.
We therefore record here procedures for the three nonuniform distributions that we discussed:

� For the exponential distribution, take the negative logarithm of the generator output, because
− log(exp(−random)) = random.

� For the logarithmic distribution, values log(randlog(a, b)/a)/ log(b/a) are uniformly distributed on the same
unit interval that urand() is defined on. That expression may need to be computed with three separate loga-
rithm calls to avoid underflow or overflow.

� For the normal distribution, consider successive pairs (x, y) as a two-dimensional vector, and express in polar
form (r, θ), like this:

r = hypot(x,y);
theta = atan2(y, x) + PI;

The angle θ is then uniformly distributed in [0, 2π), and θ/(2π) is in [0, 1).

7.16 Applications of random numbers

In this section, we look at two important uses of random numbers in computation: numerical integration, and cryptog-
raphy. The first of them involves finding areas under curves, volumes of solids, and extensions of those concepts to
higher dimensions. The second is of increasing importance for privacy, reliability, and security of electronic data and
electronic communications, whether personal, commercial, or governmental. A third application, sampling, appears
many times in the remainder of this book, in plots of errors in computed functions for arguments selected from
logarithmic or uniform distributions. A fourth application, unbiased decision making by coin toss, is demonstrated in
Section 7.14.1 on page 196. Other uses include color, intensity, and surface roughening in image processing, data
coarsening for evaluation of algorithm sensitivity, testing of hardware and software data and event processing, pa-
rameter determination in function optimization, adding unpredictability to computer-based games, image selection
for advertising displays, low-level noise generation for softening of audio and video signals, and so on.

7.16.1 Monte Carlo quadrature

In the Manhattan Project at Los Alamos during World War II, physicists were faced with calculating integrals that
could not be evaluated analytically, or accurately by standard numerical methods. Stanisław Ulam and John von
Neumann invented a simple way to handle them. Instead of using a standard quadrature formula [KMN89] of the
form ∫ b

a
f (x) dx ≈

n

∑
k=1

wk f (xk)

for specified weights wk and nodes xk, they observed that because the area under a curve is just its average height
times the interval width, it might be reasonable to evaluate the function at random points rk in (a, b) (the endpoints

7.16. Applications of random numbers 203

are excluded because integrands sometimes have singularities there), and then take the average of the function
values. The result is a quadrature formula like this:

∫ b

a
f (x) dx ≈ (b − a)

n

n

∑
k=1

f (rk).

When their work was later declassified and published [MU49], the formula was named Monte Carlo quadrature, after
the gaming casino town of Monte Carlo in Monaco.

Later analysis showed that the convergence of the method is poor: the error drops roughly as 1/
√

n. That means
that one has to work a hundred times harder to get an extra decimal digit. Nevertheless, the error behavior does
not depend on d, the number of dimensions in the integration, whereas application of standard quadrature rules
requires O(nd) numerical operations. Thus, for high-dimensional integration, Monte Carlo methods may be the
only practical game in town.

Here is a function that implements the Monte Carlo rule:

double
mcrule (double a, double b, int n, double (*f) (double))
{ /* n-point Monte Carlo quadrature of f(x) on [a,b] */

/* error Order(1/sqrt(n)) */
double sum;
int k;

sum = 0.0;

for (k = 1; k <= n; ++k)
sum += f(a + urand()*(b - a));

return ((b - a) * (sum / (double)n));
}

If necessary, premature overflow in the sum can be avoided by moving the division by n into the loop.
The poor convergence of Monte Carlo quadrature was improved in the 1950s by a variant known as quasi-Monte

Carlo quadrature [Nie78, Nie92, BFN94]. Its error falls as 1/n, so each additional decimal digit in the answer requires
only ten times as much work. The method still requires a source of random numbers, but is too complex to treat
further here.

7.16.2 Encryption and decryption

A dictionary definition of cryptography is the science or study of secret writing systems, particularly codes and ciphers. For
hundreds of years, studies of the subject were mostly secret and restricted to government and military organizations,
but that changed in the mid-1970s with the discovery of public-key cryptography.

The essential idea behind cryptography is that if one has a secret key, it can be used to encrypt a plaintext message.
Knowledge of the secret key is needed to decrypt the ciphertext to recover the original plaintext.

Public-key cryptography with sufficiently long keys is believed to be secure, but that could change in the future
if certain mathematical breakthroughs are made; at present, the required mathematics appears to be intractable.
However, keys known to humans can be obtained by extortion, threat, or eavesdropping during their entry: no
cryptographic system is ever totally secure.

7.16.2.1 Problems with cryptography

There are two fundamental problems in historical cryptography:

� The secret key must be known to both sender and receiver in order to carry out secure communications. If
the two are geographically separated, such as a government headquarters and its army in the field, then it is
possible that an attacker might have captured the key and used it to decipher communications, or to encipher
false messages, unknown to at least one of the parties.

204 Chapter 7. Random numbers

� If the encrypted text contains patterns, it may be possible by cryptanalysis to exploit those patterns to recover
the plaintext, and perhaps also the secret key.

Public-key cryptography mostly solved the first of those problems, by having keys come in pairs: a public one, and
a private one. Messages encrypted with one of the keys can be decrypted by the other, and vice versa. Not only
does that allow secure communications, it also allows the creation of digital signatures that can be used to verify the
authenticity of a document, either encrypted, or in plaintext.

The main problem with public-key cryptography is that it must be possible for the receiver to verify that the
sender’s public key is not a forgery, and that in itself is challenging. A solution in common use when the sender
and receiver cannot exchange public keys in person is to have the keys certified by a trusted third party, such as
a large commercial organization. However, that just transfers the problem of trust from an individual to a group,
which may or may not be an improvement. Web browser security-preference settings may list many examples of
such certificate authorities. Such sites are prime targets: some attacks on them have regrettably been successful, and
resulted in issuance of significant numbers of fraudulent certificates.

7.16.2.2 A provably secure encryption method

Virtually all methods for encryption ultimately produce patterns that allow eavesdroppers to cryptanalyze and per-
haps decipher messages, and possibly even determine the key. However, there is one method known that is un-
breakable, because it eliminates the patterns; it is called a one-time pad.

The idea of the one-time pad is simple: the sender and receiver are each in possession of the same secret list of
random numbers, and employ them to encrypt and decrypt messages, using each random number only once.

For example, if the text to be sent contains only the 26 Latin letters, assign them the numbers 0, 1, . . . , 25 in order,
and then encrypt each in turn by adding the next random number, taking the result modulo 26, and sending the letter
corresponding to that number. The receiver generates a table of remapped letters for each random number using the
same procedure, and can then use the received encrypted letter to recover the original letter by simple table lookup.
Because each letter is encrypted differently from every other letter, there are no correlations in the output to aid the
cryptanalyst, and the encrypted message is secure.

If the communications channel can be read by eavesdroppers, then traffic analysis can still reveal who is commu-
nicating, and how much is being sent, compromising security.

Radio and telephone transmissions can be easily tracked to identify the sender, and network packets used for
computer and telephone communication carry both source and destination addresses, or a virtual circuit identifier
that can be used to recover those addresses. Global Positioning System (GPS) sensors are increasingly common,
and provide geographic location records. In practice, therefore, in the design of secure communications, it must be
assumed that traffic can be read, and located, by an adversary.

7.16.2.3 Demonstration of a one-time pad

Encryption and decryption with a one-time pad is tedious to do by hand, but is quite easy for a computer. For ease of
presentation here, the encrypted message is further encoded in hexadecimal so that it contains only printable char-
acters. The encryption and decryption functions use a random-number generator as a replacement for the numbers
recorded on the one-time pad:

static void
encrypt(int key, const char * plaintext, char * ciphertext)
{

size_t k, np, np_padded;

np = strlen(plaintext);
np_padded = (((np + 31) / 32) * 32);

setseed(key);

for (k = 0; k < np_padded; ++k)
{

unsigned int c, u;

7.16. Applications of random numbers 205

u = (unsigned int)randint(0,255);

if (k < np)
c = (unsigned int)plaintext[k];

else
{

setseed(key + u);
c = (unsigned int)randint(0,255);

}

#if defined(USE_XOR_ENCRYPTION)
c ^= u;

#else
c = (c + u) & 0xff;

#endif

(void)snprintf(&ciphertext[2 * k], 3, "%02x", c);
}

ciphertext[2 * k] = ’\0’;
}

static void
decrypt(int key, char * plaintext, const char * ciphertext)
{

size_t k, nc;

setseed(key);
nc = strlen(ciphertext);

for (k = 0; k < nc; k += 2)
{

int c;

c = 16 * hexval((int)ciphertext[k]) + hexval((int)ciphertext[k+1]);

#if defined(USE_XOR_ENCRYPTION)
c ^= randint(0,255);

#else
c = (c + (256 - randint(0,255))) & 0xff;

#endif

if (c == 0)
break;

plaintext[k/2] = isprint(c) ? (char)c : ’?’;
}

plaintext[k/2] = ’\0’;
}

We omit the code for the short helper function, hexval(), that converts a hexadecimal character to its numerical
value, and for another function, dump(), that prints the ciphertext in four-byte hexadecimal blocks for improved
readability.

The key is the seed of the generator: it can be communicated by public-key cryptography if direct key exchange
in secret is not possible.

206 Chapter 7. Random numbers

Our representation of the key as data type int means that on common desktop systems, there are only 232 ≈
4.29 × 109 possible keys, a number that is small enough that the encryption is subject to a brute-force attack by an
adversary who simply tries all possible keys. The task is made easier by a mathematical curiosity known as the
Birthday Paradox [FS03, §3.6.6]: if there are n possible keys, and many encrypted messages, then the secret key can
be guessed after about

√
n attempts with random keys. Consequently, serious cryptography uses much longer keys,

sometimes with 256 or more bits, to make such attacks infeasible. The subdirectory exp in the mathcw distribution
contains two demonstration programs, crack1.c and crack2.c, that implement brute-force and Birthday-Paradox
attacks on an n-bit key.

Our default implementation of the one-time pad uses bit-masking to provide a fast modulo operation. A widely
used alternative is the exclusive-OR operation, primarily because it is a fast low-level hardware bit operation, and
compile-time definition of the symbol USE_XOR_ENCRYPTION selects that approach in our code. If the exclusive-OR
operator is not available in the programming language, then library functions might allow use of code similar to
either of these assignments:

c = xor(c, randint(0, 255)); c = xor(c, and(rand(), 0xff));

The encryption function uses the C string terminator character, NUL, to implicitly pad the message to a length
that is a multiple of 32 characters, but when it does so, it changes the key for every such character to obscure the
padding. In practice, the padding length would be chosen much larger, perhaps a few thousand characters, so that
most messages would have the same ciphertext length. Uniform message lengths make it harder for an attacker to
guess the contents: otherwise, the length of a short message containing either yes or no would reveal the contents
without decryption.

Here is a demonstration of how the encryption works at the sender. First, we encrypt some short messages and
show the ciphertext following each statement. The encryption does not reveal message length or where the padding
characters are, but it does reveal common plaintext prefixes:

encrypt(123, "A", ciphertext);
ded04643 a57468bc f6dbd17a a3d5ccf4 f20940be 5fe32b6f 61028717 d5ccf4f2

encrypt(123, "AB", ciphertext);
de3caafb 61028717 d5ccf4f2 0940be5f e32b6f61 028717d5 ccf4f209 40be5fe3

encrypt(123, "ABC", ciphertext);
de3cc9da 536d783a 4d325fe3 2b6f6102 8717d5cc f4f20940 be5fe32b 6f610287

encrypt(123, "ABCD", ciphertext);
de3cc96a a122975f 19be9576 5184b000 68bcf6db d17aa3d5 ccf4f209 40be5fe3

The common prefix is easily concealed by changing the key with each message: the bits in the next random number
from the one-time pad can be manipulated with logical or arithmetic operations to create the new key. However, for
simplicity here, we keep the key constant.3

The encryption does not reveal letter repetitions, showing that the one-time pad encrypts the same letter differ-
ently on each occurrence:

encrypt(123, "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA", ciphertext);
de3bc767 b9855e5d 9bdef442 649ece44 d45b654b 1aacfe8c fb08e73b 9bcca6a9

Now encrypt a famous message from American revolutionary history:

encrypt(123, "One if by land, two if by sea: Paul Revere’s Ride, 16 April 1775", ciphertext);
ec68eb46 e1aa3d7e d3bd1f62 91c1b923 0791932a 42d1ddad 33e7195f bbc52e6c
0c8fee9a c1837616 5d52e0da 4a5ad1fc 4fe96a3f 5e0cfa5f b54fd590 00a874dd
f8e7c67e 917e5ac4 b9a4cd5e 2981cf9a 1c9fe2a4 dba4f612 e43da39a b61702e3

The receiver uses the decryption function to recover the original message from the ciphertext. Three different keys
are tried, but only the correct one recovers the original plaintext, and the others produce unintelligible decryptions:

3Modern practice is to change encryption keys often. For example, some secure wireless network protocols require key changes at least once
per hour, and in addition, combine the base key with a serial number that is incremented with every network packet transmitted.

7.16. Applications of random numbers 207

decrypt(122, plaintext, ciphertext);
?????c??

decrypt(123, plaintext, ciphertext);
One if by land, two if by sea: Paul Revere’s Ride, 16 April 1775

decrypt(124, plaintext, ciphertext);
?:??Kj????AI

The failed decryptions are short because the incorrect key resulted in premature generation of the string-terminator
character.

7.16.2.4 Attacks on one-time-pad encryption

Although the one-time pad is completely secure against attack by an eavesdropper on the communications channel,
it is still subject to attack by capture of the one-time pad. Also, the pad needs to be larger than the total volume of
encrypted traffic, and that may be difficult to predict in advance. If the pad is used up, then secure communication
is no longer possible.

If we use a computer algorithm to generate the random numbers, as in encrypt() and decrypt(), instead of
taking them from a truly random stream on a one-time pad, then there are necessarily relations between successive
random numbers that may make cryptanalysis possible. For example, for any polynomial congruential generator,
the generator parameters can be recovered from knowledge of a subsequence of the stream [Ree77, Ree79, Knu85,
Boy89, Sch96, Mar03a], even if the sender has tried to make the job harder by discarding a few of the low-order bits,
which are known to be less random than high-order bits in LCG streams. There is no similar published analysis for
the Mersenne Twister generator, but that does not mean that no such study has been done: secret agencies do not
publish their research.

One approach that has been proposed is to further scramble the bits of each random number from an LCG used
for the one-time pad. However, it is probably better instead to use a superior generator.

The huge periods of good generators like the Mersenne Twister make it impossible to exhaust the pad, solving one
of the big problems of the one-time pad. However, it is likely that any important computer algorithm for generating
random numbers has already been studied, or will be in the future, with a view to cracking its use for a one-time
pad. The necessary key sharing between sender and receiver also remains an avenue of attack.

7.16.2.5 Choice of keys and encryption methods

Our encrypt() and decrypt() functions are examples of symmetric key cryptography: the same key serves in both
directions. Most fast algorithms for encryption have that symmetric-key property. Public-key cryptography does not,
because its keys come in public/private pairs. Apart from one-time pads based on truly random sequences, public-
key methods provide the currently strongest algorithms for protection against attacks. If the keys are sufficiently
long, practical attacks are believed to be infeasible.

Unfortunately, processing long keys requires multiword integer arithmetic, which is much slower than ordinary
arithmetic. Although several vendors offer specialized hardware assists called cryptographic accelerators, for most
purposes, public-key cryptography is impractical for high-volume data communications. Instead, most systems use
public-key methods just for the secure initial exchange of dynamically generated symmetric keys.

The symmetric keys are usually generated either from special devices that use physical phenomena, such as
electrical noise or radioactive decay, to produce random streams of bits, or from software simulations of such devices.
Several flavors of UNIX now support two software devices called /dev/random and /dev/urandom that return random
bytes when read [dRHG+99]. The first is usually cryptographically stronger, and may not return until sufficient
randomness has been gathered from other activities in the computer. However, that makes it subject to denial-of-
service attacks: repeated reads of the device by one process can prevent another process for ever getting enough data
from the device. The second device may be able to return random data immediately each time it is read, but to do
so, it may have to resort to invoking random-number algorithms, possibly making its output more predictable.

208 Chapter 7. Random numbers

7.16.2.6 Caveats about cryptography

We introduced the one-time pad example because it is an interesting application of random numbers to an important
problem in cryptography. However, the reader is cautioned that the field of cryptography is difficult and rapidly
changing. Toy encryption methods like our encrypt() should never be used for the protection of real data.

The best advice that can be given for use of encryption is to stick to well-studied and well-tested methods, such
as the Advanced Encryption Standard (AES): it is unlikely that any good cryptographic methods will be discovered by
amateurs. See In Code [FF01] for an initially promising algorithm that was later shown to be flawed.

In seeking off-the-shelf software solutions for encryption, remember that security by obscurity, practiced by dis-
reputable software vendors who claim uncrackable encryption from use of ‘secret’ algorithms, is evidence of crypto-
graphic incompetence: avoid them and their software.

Modern cryptographic methods are good enough that they are unlikely to be crackable by brute force. Thus,
a forgotten or lost encryption key for an encrypted file or filesystem probably means permanent loss of data. Or-
ganizations can suffer denial of access to data if a critical employee leaves with the only copy of the key, and they
can be blackmailed by the key holder. Once keys are entered into the computer, it may be necessary to retain them
in memory for an extended period, such as while remote communications are in progress, or while a filesystem is
accessed. The key memory is normally kept inside the operating system where it cannot be accessed by ordinary
user processes. However, sometimes software security holes are discovered that make such access possible. It has
recently been demonstrated that even after a computer is powered down, memory dumps can recover keys for some
time, and that time can be extended by cooling the memory chips [HSH+09]. A stolen portable computer with an
encrypted filesystem can thus be subject to key recovery and data theft.

There are many other issues in this area that we could discuss here, but we leave them to other books listed in
Section 7.18 on page 214.

7.17 The mathcw random number routines

Marsaglia’s KISS generator produces uniformly distributed random integers for the mathcw library. The KISS kernel
is small and fast, provides a full 32-bit unsigned integer range with an acceptably long period of about 2123 ≈ 1037,
and passes most tests of randomness.

Three statements in the KISS code require 64-bit unsigned arithmetic, but when support for that is lacking, we
fall back to using software routines already developed for the library.

The code for the generator looks like this:

#define DEFAULT_C ((UINT_LEAST32_T)129281L)
#define DEFAULT_JSR ((UINT_LEAST32_T)362436069L)
#define DEFAULT_X ((UINT_LEAST32_T)123456789L)
#define DEFAULT_Y ((UINT_LEAST32_T)871119182L)

static UINT_LEAST32_T c = DEFAULT_C;
static UINT_LEAST32_T jsr = DEFAULT_JSR;
static UINT_LEAST32_T x = DEFAULT_X;
static UINT_LEAST32_T y = DEFAULT_Y;

UINT_LEAST32_T
lrancw(void)
{ /* return random unsigned integer on [0,2^{32} - 1] */
#if defined(HAVE_UINT_LEAST64_T)

const UINT_LEAST64_T a = (UINT_LEAST64_T)333333314L;
UINT_LEAST64_T t;

#else
const UINT_LEAST32_T a = (UINT_LEAST32_T)333333314L;
UINT_LEAST32_T t[2];

#endif

UINT_LEAST32_T result;

7.17. The mathcw random number routines 209

y = (UINT_LEAST32_T)69069L * y + (UINT_LEAST32_T)12345L;

#if MAX_UINT_LEAST32 != 0xffffffffL
y &= (UINT_LEAST32_T)0xffffffffL;

#endif

jsr ^= (jsr << 13);
jsr ^= (jsr >> 17);
jsr ^= (jsr << 5);

#if defined(HAVE_UINT_LEAST64_T)
t = a * x + c;
c = (t >> 32);
x = t + c;

#else
umul64(t, a, x);
uadd32(t, c);
c = t[0];
uadd32(t, c);
x = t[1];

#endif

if (x < c)
{

x++;
c++;

}

x = ~x + 1;

#if MAX_UINT_LEAST32 != 0xffffffffL
x &= (UINT_LEAST32_T)0xffffffffL;

#endif

result = x + y + jsr;

#if MAX_UINT_LEAST32 != 0xffffffffL
result &= (UINT_LEAST32_T)0xffffffffL;

#endif

return (result);
}

The interface requires an unsigned integer data type of at least 32 bits, but C89 guarantees only a minimum of 16
bits for an int and 32 bits for a long int. Most desktop computer systems now provide a 32-bit int, but the size
of a long int is 32 bits on some systems, and 64 bits on others. C99 deals with that by introducing several new
integer types that provide at least a specified number of bits. The new types that are useful for the KISS genera-
tor are uint_least32_t and uint_least64_t, but because those names are not recognized by older compilers, we
use uppercase equivalents defined with typedef statements in our header file inttcw.h that is always included by
randcw.h, and that in turn is included by mathcw.h. If only the random-number support is required, then the header
file mathcw.h need not be included.

The preprocessor conditionals clutter the code, but are needed to deal with systems that lack an unsigned integer
type of at least 64 bits, and machines with wordsizes other than 32.

The state of the generator is represented by four unsigned 32-bit variables (c, jsr, x, and y) that are updated on
each call, so the simplicity of the single seed of the LCG and MCG is lost. However, most random-number algorithms
that pass the test suites also require a multiword state.

A second function combines two 32-bit random values to make a 64-bit value:

210 Chapter 7. Random numbers

UINT_LEAST64_T
llrancw(void)
{ /* return random unsigned integer on [0,2^{64} - 1] */

UINT_LEAST64_T n;

n = (UINT_LEAST64_T)lrancw();

return ((n << 32) | lrancw());
}

However, it is only usable when a 64-bit integer type is natively supported by the compiler, as is required for C99.
Because software random-number generators do not normally return the same value repeatedly, the combination

of two 32-bit values can produce neither a zero 64-bit value, nor the extreme value 264 − 1 = 0xffffffffffffffff.
Tests of the KISS generator show that duplicate return values are possible, though they occur only about once per 32-
bit cycle. The period of the KISS generator is so large that it is impossible to perform an exhaustive test to determine
the true extrema for 64-bit, 128-bit, and 256-bit sequences. In practice, that means that floating-point results on
the unit interval for data type double and longer always lie in (0, 1), with the smallest double value being about
2−64 ≈ 5.42 × 10−20, and the largest about 1 − ε/β.

Although the significand size of the float type is similar across current and most historical architectures, and the
same is true for the double type, the significand of long double can have as few as 64 bits, or as many as 113 bits. We
could construct the shorter significand from two 32-bit values, but the longer sizes would need four of them. Our
long double functions always use four 32-bit values to guarantee the same sequences (within rounding error) on all
platforms.

Much of the random-number support in the mathcw library is provided by constants and routines with these
definitions and prototypes:

static const UINT_LEAST32_T LRANDCW_MAX = (UINT_LEAST32_T)0xffffffffL;
static const UINT_LEAST64_T LLRANDCW_MAX = (UINT_LEAST64_T)0xffffffffffffffffLL;

UINT_LEAST32_T lrincw (UINT_LEAST32_T a, UINT_LEAST32_T b);
UINT_LEAST64_T llrincw (UINT_LEAST64_T a, UINT_LEAST64_T b);

void gscw (randcw_state_t state);
void sscw (const randcw_state_t state);

int sccw (void);

unsigned int mscw (void);
UINT_LEAST32_T lmscw (void);
UINT_LEAST64_T llmscw (void);

double ercw (void);
double lrcw (double a, double b);
double nrcw (void);

double urcw (void);
double urcw1 (void);
double urcw2 (void);
double urcw3 (void);
double urcw4 (void);

void vlrancw (int n, UINT_LEAST32_T u[]);
void vllrancw (int n, UINT_LEAST64_T u[]);
void vlrincw (int n, UINT_LEAST32_T u[], UINT_LEAST32_T a, UINT_LEAST32_T b);
void vllrincw (int n, UINT_LEAST64_T u[], UINT_LEAST64_T a, UINT_LEAST64_T b);

void vercw (int n, double u[]);
void vlrcw (int n, double u[], double a, double b);

7.17. The mathcw random number routines 211

void vnrcw (int n, double u[]);
void vurcw (int n, double u[]);
void vurcw1 (int n, double u[]);
void vurcw2 (int n, double u[]);
void vurcw3 (int n, double u[]);
void vurcw4 (int n, double u[]);

We omit the prototypes of the family members that produce floating-point values in nine other types: their names
have the usual type suffixes. The function names all contain the letters cw to make conflicts with names of other
generators unlikely.

The internal state means that most of those functions are not thread safe: simultaneous updates of the state in
two or more threads could change the sequence of random numbers. To solve that problem, function variants whose
names end in _r, for reentrant, store the generator state in a user-provided thread-unique array:

void incw_r (randcw_state_t state, UINT_LEAST32_T seed);

UINT_LEAST32_T lrancw_r (randcw_state_t state);
UINT_LEAST64_T llrancw_r (randcw_state_t state);

UINT_LEAST32_T lrincw_r (randcw_state_t state, UINT_LEAST32_T a, UINT_LEAST32_T b);
UINT_LEAST64_T llrincw_r (randcw_state_t state, UINT_LEAST64_T a, UINT_LEAST64_T b);

double ercw_r (randcw_state_t state);
double lrcw_r (randcw_state_t state, double a, double b);
double nrcw_r (randcw_state_t state);

double urcw_r (randcw_state_t state);
double urcw1_r (randcw_state_t state);
double urcw2_r (randcw_state_t state);
double urcw3_r (randcw_state_t state);
double urcw4_r (randcw_state_t state);

void vlrancw_r (randcw_state_t state, int n, UINT_LEAST32_T u[]);
void vllrancw_r (randcw_state_t state, int n, UINT_LEAST64_T u[]);

void vllrincw_r (randcw_state_t state, int n, UINT_LEAST64_T u[], UINT_LEAST64_T a, UINT_LEAST64_T b);
void vllrincw_r (randcw_state_t state, int n, UINT_LEAST64_T u[], UINT_LEAST64_T a, UINT_LEAST64_T b);

void vercw_r (randcw_state_t state, int n, double u[]);
void vlrcw_r (randcw_state_t state, int n, double u[], double a, double b);
void vnrcw_r (randcw_state_t state, int n, double u[]);

void vurcw_r (randcw_state_t state, int n, double u[]);
void vurcw1_r (randcw_state_t state, int n, double u[]);
void vurcw2_r (randcw_state_t state, int n, double u[]);
void vurcw3_r (randcw_state_t state, int n, double u[]);
void vurcw4_r (randcw_state_t state, int n, double u[]);

Once again, we have omitted prototypes for the family members of other supported floating-point types. Type suf-
fixes precede the reentrant suffix, so the generator that returns a decimal_float result on [0, 1] is called urcw1df_r().

The generator state is given its own data type in randcw.h with this simple definition:

typedef UINT_LEAST32_T randcw_state_t[4];

That makes randcw_state_t an array of four unsigned integers, and an integer array is easy to supply from languages
that can call routines written in C. Support for unsigned integers is lacking in most other programming languages,
but that does not matter here, because a signed type requires the same storage, and the state variables rarely need to
be set or examined in the calling program. Most C or C++ code that uses the reentrant routines can treat the data type

212 Chapter 7. Random numbers

as if it were opaque, without ever needing to know the size of the state array, which holds the KISS state variables c,
jsr, x, and y, in that order.

The functions lrincw() and llrincw() return random integers in the range [a, b], with code similar to that illus-
trated in urandtoint() in Section 7.4 on page 165.

The functions gscw() and sscw() get and set the state of the generator. An initial invocation of gscw() before
any other family members are called can provide a suitable default state for the reentrant functions that is identical
across separate runs of the job. Alternatively, one can ask one of the functions mscw(), lmscw(), and llmscw() to
make and return a unique seed with code similar to that shown in function makeseed() in Section 7.1 on page 157.
The seed-maker functions are independent of each other, and of the random-number generator, and do not affect the
generator internal state. User code could employ one of them to initialize the generator differently on each run like
this:

randcw_state_t state;

incw_r(state, lmscw());
sscw(state);

The second argument of the function incw_r() acts as a seed to initialize one of the components of the state, and the
others are filled with the generator’s default values. The call to sscw() copies the external state into the internal state
used by the nonreentrant routines.

The function sccw() performs a run-time sanity check. It saves the generator state with gscw(), sets it to a
known state with sscw(), then uses lrancw() to sample the generator, discarding the first one hundred values, and
verifying that the next ten values are as expected. The check is then repeated with lrancw_r(). If a 64-bit integer
type is supported, sccw() makes similar checks using llrancw() and llrancw_r(). Finally, it calls sscw() to restore
the original state of the generator at entry, and returns the number of mismatches, which should be zero if all is well.

The reentrant functions solve the thread problem, and they also satisfy one of the important goals listed at the
beginning of this chapter, by making it possible to have families of generators, each with its own state. For example, a
program could have initializing code like this:

#define NFAMILY 1000

randcw_state_t family[NFAMILY];

for (k = 0; k < NFAMILY; ++k)
incw_r(family[k], lmscw());

A subsequent reference to lrancw_r(family[k]) would then return a random integer from the k-th generator family,
without affecting the sequences produced for other families. The period of the generator is so large that there is
negligible chance of separate families producing identical sequences of even a few elements.

The reentrant functions also solve the problem of how to provide a block of code with its own private generator
without having to save and restore state:

{
randcw_state_t state;

incw_r(state, lmscw());

for (m = 0; m < MAXTEST; ++m)
test(lrancw_r(state));

}

The functions ercw(), lrcw(), and nrcw() return values from exponential, logarithmic, and normal distributions,
respectively, using the von Neumann, randlog(), and polar methods. The two arguments to lrcw() define the range
from which samples are taken, and that range must not include zero. Both endpoints of the range can be reached by
the generator.

The functions urcw1() through urcw4() return values from a uniform distribution on the unit intervals [0, 1],
[0, 1), (0, 1], and (0, 1), respectively. The function urcw() is recommended for general use; it is equivalent to urcw4().

7.17. The mathcw random number routines 213

In view of the scaling issue that we raised in Section 7.3 on page 160, it is worthwhile here to document exactly
how that problem is handled in two sample routines, one for float, and one for long double. The first of them looks
like this:

#define _MAXRANL 0xffffffffL

static const float FLT_MAXRANL_INV = (float)1.0 / (float)_MAXRANL;

float
(urcw2f)(void)
{ /* result in [0,1) */

float result;

result = (float)lrancw() * FLT_MAXRANL_INV;

if (result >= (float)1.0) /* rare, but necessary */
result = nextafterf((float)1.0, (float)0.0);

return (result);
}

The float significand contains fewer than 32 bits, so the conversion of the limit _MAXRANL loses trailing bits. When the
random integer from lrancw() is scaled by the stored reciprocal of that value, depending on the rounding behavior
and mode, the result could be at, or slightly above, 1.0. The code must therefore check for that unlikely case, and
reduce the result to 1 − ε/β. The nextafterf() function provides an easy way to get that value, whereas a stored
constant would require separate definitions for each floating-point architecture. We could also have used simpler
code for the exceptional case, using the fact that 1 − u is uniformly distributed if u is:

if (result >= (float)1.0) /* rare, but necessary */
result -= (float)1.0;

The long double code samples four random integers, and reduces an out-of-range result:

#define _MAXRANL 0xffffffffL

static const long double LDBL_MAXRANLL_INV = 1.0L /
((long double)_MAXRANL * _TWO_TO_96 + (long double)_MAXRANL * _TWO_TO_64 +
(long double)_MAXRANL * _TWO_TO_32 + (long double)_MAXRANL);

long double
(urcw2l)(void)
{ /* result in [0,1) */

long double result;

result = (long double)lrancw();
result = (long double)_TWO_TO_32 * result + (long double)lrancw();
result = (long double)_TWO_TO_32 * result + (long double)lrancw();
result = (long double)_TWO_TO_32 * result + (long double)lrancw();
result *= LDBL_MAXRANLL_INV;

if (result >= 1.0L) /* rare, but necessary */
result = nextafterl(1.0L, 0.0L);

return (result);
}

In the IEEE 754 default rounding mode, a result above 1.0 is not possible, but that is not the case in other IEEE 754
rounding modes, and in some historical systems. In any event, a value of 1.0 must be reduced to fit the documented
range, and the reduction introduces a slight perturbation in the probability of getting that endpoint result.

214 Chapter 7. Random numbers

The vector functions vurcw1() through vurcw4() take an array size and an array, and return the requested number
of random values from a uniform distribution. The function vurcw() is equivalent to vurcw4(). All of those functions
transform the results of the vector integer function vlrancw(), which contains a copy of the generator algorithm
wrapped inside a loop to remove function call overhead. The four internal state variables are shared by the scalar
and vector generators. Timing tests show that the vector functions provide a modest speedup of about 1.1 to 1.3 for
binary arithmetic, and 5 to 10 for decimal arithmetic.

7.18 Summary, advice, and further reading
THE GENERATION OF RANDOM NUMBERS IS TOO IMPORTANT TO BE LEFT TO CHANCE.

— ROBERT R. COVEYOU

OAK RIDGE NATIONAL LABORATORY.

The last two decades of the millennium saw great progress in the mathematical theory behind random-number
generation algorithms, as well as the development of software packages that provide reliable tests of the quality of
random numbers.

As a general rule, one should avoid random-number algorithms published before about 1990, because almost
all have been shown to be deficient, and much better methods are now known. Indeed, a 1988 survey of random-
number algorithms recommended in more than 50 textbooks [PM88] found that the recipes were all inferior to a
portable 32-bit MCG [Sch79b] with A = 75 = 16 907 and M = 231 − 1, and their periods, portability, and quality
varied from bad to dreadful.

If you select a particular random-number generator for serious work, revisit the guidelines given in Section 7.1
on page 157 and see how many of them are followed by your choice. Before you commit to it, validate your selec-
tion with one or more of the test suites discussed in Section 7.15.2 on page 200, and preferably, do so on different
computer architectures. Also, make sure that both the period and the range are adequate for your applications, and
be careful about the handling of range boundaries.

Because random numbers are used in many computational disciplines, the literature on random-number genera-
tion is huge, and it is often difficult to find, or recognize, the important publications. As a useful guide, the journals
ACM Transactions on Mathematical Software, ACM Transactions on Modeling and Computer Simulation, Applied Statistics,
Computer Physics Communications, and Journal of Computational Physics are generally reliable sources of reputable re-
search in this area. There are complete online bibliographies for all of those journals in the archives cited at the end
of this section, and a Web search should find publisher sites that may offer article search and retrieval services.

For textbook treatments, the definitive treatise on generation and testing of random numbers is a volume of The
Art of Computer Programming [Knu97, Chapter 3]. It should be augmented with more recent work, such as the de-
scription of the TestU01 suite [LS07], which includes test results for many popular generators. Another good source
with a strong emphasis on applications in statistics is Gentle’s book [Gen03]. For discussions of the problems of gen-
erating truly random numbers, which is of extreme importance for cryptography and thus, the security of modern
communications, computers, and networks, see Practical Cryptography [FS03, Chapter 10], Cryptography Engineering
[FSK10, Chapter 9], RFC 4086 [ESC05], and Gutmann’s work [Gut04, Chapter 6].

Cryptography is a fascinating and important subject, but its modern research requires deep understanding of
mathematical number theory. Nevertheless, a readable, and highly recommended, presentation of the field can be
found in The Code Book [Sin99], and its impact on society is well treated in Secrets and Lies [Sch00]. The latter should be
read before its predecessor, Applied Cryptography [Sch96], which gives the details of cryptographic algorithms, because
Secrets and Lies was written to dispel the widely held belief that cryptography is the complete answer to data security.

There are extensive bibliographies at
http://www.math.utah.edu/pub/tex/bib/index-table.html

that record most of the important publications in the field; look for those with crypt and prng in their names. One
of the journals in that collection is Cryptologia, which contains research articles on the long and interesting history of
cryptography. There is a bibliography of George Marsaglia’s collected works at

http://www.math.utah.edu/pub/bibnet/authors/m/.
He is one of the greatest experts on random numbers, and his ideas and advice are worthy of study.

Finally, remember that random-number generation is an area of computing where for most of its history, wide-
spread practices, software libraries, and textbook recommendations, have later been shown to be severely deficient.
When it matters, check with experts, and the recent literature of the field.

8 Roots

I CANNOT DELVE HIM TO THE ROOT.

— SHAKESPEARE’S Cymbeline (ABOUT 1611).

THE root OF ANY QUANTITY IS SUCH A QUANTITY AS,
WHEN MULTIPLIED BY ITSELF A CERTAIN NUMBER OF TIMES,

WILL EXACTLY PRODUCE THAT QUANTITY.

— New Century Dictionary (1914).

THE CHARACTER MARKING THE ROOT IS
√ (A MODIFICATION

OF r FOR radix, WHICH HAS BEEN USED PROBABLY

SINCE THE MIDDLE OF THE SIXTEENTH CENTURY).

— New Century Dictionary (1914).

The simplest of the elementary functions are those that compute roots of numbers. They are most easily calculated
by a combination of argument range reduction, polynomial approximation to get an accurate starting value, and a
rapidly convergent iterative solution. Some computer architectures include an instruction to compute the square
root, because the required circuits can often be shared with those of the divide instruction.

The IEEE 754 Standard mandates a correctly rounded square-root operation as one of the basic five arithmetic
operations on which all numerical computation is built. We show how to achieve that requirement in software, and
we approach that goal for other roots. Near the end of this chapter, we sketch how to take advantage of hardware
implementations of the square root.

8.1 Square root

The square root may be the most common elementary function, and it can be calculated quickly, and to high accuracy,
by Newton–Raphson iteration. Cody and Waite first reduce the argument of sqrt(x) to the representation x =
f × βn, with f in [1/β, 1). The solution of y = sqrt(x) with f (y) = y2 − x for a given fixed x comes from a few
iterations of yk+1 = 1

2 (yk + x/yk). The starting estimate y0 is computed from a 〈1/0〉 polynomial approximation to√
x for x in [1/β, 1).

Cody and Waite observe that if two successive iterations are combined and simplified, one multiply disappears.
The double-step iteration computes z = yk + f /yn followed by yk+2 = 1

4 z + f /z. Each double step quadruples the
number of correct bits with just two adds, two divides, and one multiply, and the multiply is exact for bases 2 and 4.
Because the precision is fixed at compilation time, the number of steps can be predetermined as well, so the code is
free of loops.

If n is odd, the final y is multiplied by the constant 1/
√

β and n is replaced by n + 1. The final function value is
then obtained by adding n/2 to the exponent of y.

After implementing and testing the Cody/Waite recipe, it occurred to this author that the multiplication by 1/
√

β
for odd n can be eliminated by moving the parity test on n before the iterations. If n is odd, replace f by f /β (an exact
operation) and increment n. Now n is guaranteed to be even, and the post-iteration adjustment factor 1/

√
β is no

longer required. However, the range of f is widened from [1/β, 1) to [1/β2, 1), so a new polynomial approximation
is required. Maple found a 〈2/0〉 polynomial that provides eight correct bits for base 2, a 〈2/1〉 polynomial for two
digits in base 10, and a 〈2/2〉 polynomial for eight bits in base 16. The rational polynomials are rescaled to make
the high-order coefficient in the denominator exactly one, eliminating a multiply. Because the computed result is
only a starting guess, the effects of wobbling precision in hexadecimal normalization are not of concern here. One
double-step iteration suffices for IEEE 754 32-bit arithmetic, and two double steps handle the three other IEEE 754
precisions. Two, three, and four steps handle the decimal precisions.

© Springer International Publishing AG 2017
N.H.F. Beebe, The Mathematical-Function Computation
Handbook, DOI 10.1007/978-3-319-64110-2_8

215

216 Chapter 8. Roots

The algorithm change improves accuracy: the ELEFUNT test results for the revised sqrt() function showed that
the worst-case error dropped by 0.5 bits, which is the reduction expected in rounding arithmetic from elimination of
the final multiplication by the adjustment factor, 1/

√
β.

The Newton–Raphson iteration is self-correcting, so the error in the computed result arises entirely from the five
floating-point operations in the last double step. At convergence, we expect to have y ≈ √

f , z ≈ 2
√

f , and the final
result is computed as y = 1

2

√
f + 1

2

√
f . With round-to-nearest arithmetic, the worst-case error is therefore expected

to be 2.5 bits, and the average error close to 0.0 bits. In the next two sections, we show how to eliminate those errors
entirely.

8.1.1 Considerations for rounding of the square root

Given the simplicity of the square-root function algorithm, we can ask how often the computed result can be expected
to be correctly rounded according to the rules described in Section 4.6 on page 66, and when it is not, whether the
result can be adjusted to the correct value. That question was first studied by Hull and Abrham [HA85] in the
context of decimal arithmetic in a programming language that supports variable-precision arithmetic. They found
that as long as the precision is at least three decimal digits, then carrying out the final iteration with two additional
decimal digits is almost sufficient to guarantee correct rounding. However, a fixup is still required: if the square of the
floating-point number 1

2 ulp below the computed result exceeds x, reduce the computed result by 1 ulp. Similarly, if
the square of the value 1

2 ulp above the computed result is below x, increase the result by 1 ulp. That fixup requires
higher precision, so it may be impractical with hardware arithmetic, but we revisit that issue shortly. Numerical
experiments showed that with four decimal digits, the pre-fixup results were 98.15% exact, 1.46% low, and 0.39%
high.

A pragmatic approach to determining whether function results are correctly rounded is to try all possible values
of the reduced f , and compare the computed square root with one computed in higher precision. The square roots
of other x values computed by our algorithm differ only by an exact scale factor from those of f , so only the values
of f need be considered.

In 32-bit IEEE 754 binary arithmetic, there are 24 bits in the significand, but the first bit is always one for nor-
mal numbers. Thus, we should expect 223 = 8 388 608 values of f for a given exponent. The interval [1

4 , 1) corre-
sponds to two different exponent values, so there are twice that many f values, 16 777 216, to consider. The test
program rndsq1.c implements a rounding-error test of sqrtf(), and can be run like this (here, with GNU/LINUX
on a 2.0 GHz AMD64 processor):

% cc rndsq1.c -L.. -lmcw && time ./a.out
Tests of rounding error in sqrtf(x)
Total tests = 16777216
sqrtf() exact = 12582107 (75.00%)
sqrtf() low = 2093860 (12.48%)
sqrtf() high = 2101249 (12.52%)
7.492u 0.000s 0:07.49 100.0% 0+0k 0+0io 0pf+0w

In the tests, care has to be taken to ensure that the compiler does not use a hardware instruction or a built-in function
instead of the sqrtf() function from the mathcw library: compilation may require suppression of optimization, or a
flag like the gcc compiler’s -fno-builtin option.

Tests on systems with Alpha, AMD64, IA-64, MIPS, PA-RISC, PowerPC, and SPARC processors produced re-
sults identical to those shown in the sample run. However, tests on GNU/LINUX IA-32 reported 87.59% correctly
rounded, 6.14% low, and 6.27% high, and on SOLARIS 10 IA-32, 99.96% correctly rounded, none low, and 0.04%
high. Those differences are likely due to use of 80-bit registers on IA-32; such differences were not observed on
IA-64, which also has long registers, but more nearly correct rounding.

On an old Motorola 68040 system, the tests reported that 70.58% are correctly rounded, 25.40% are low, and 4.01%
are high. The differences from other IEEE 754 systems are due to the compiler’s generating only single-precision
arithmetic instructions for intermediate expressions, instead of slightly more costly higher-precision instructions.

A test on the 36-bit DEC PDP-10 (hardware retired, but emulated in the KLH10 simulator) showed quite different
results: 42.24% exact, none low, and 57.76% high. The larger 27-bit significand requires eight times as many f values
as on 32-bit systems, and the test took 6765 seconds, or about 25.2 microseconds per call to a square-root function.

Test times on real hardware ranged from about 8 seconds on this author’s fastest machine, to 385 seconds on the
slowest. Clearly, a similar exhaustive numerical experiment to test the double-precision sqrt() function would be

8.1. Square root 217

impractical: there are 2 × 252 possible f values, so the experiment would take at least 8 × 253/224 ≈ 4 × 109 seconds,
or more than 136 years. An exhaustive test of the 128-bit sqrtl() would need much longer than the age of the
universe.

For double and higher precision, testing would have to be done with random sampling, or perhaps with sparse
uniform distributions, or using arguments of reduced precision. For the latter, we choose test arguments that are
exactly representable squares of numbers with half as many bits. For example, with the IEEE 754 64-bit format
and its 53-bit significand, we can use 26-bit numbers to form exact 52-bit squares. The test programs rndsq3.c and
rndsq4.c use that technique to test sqrt() and sqrtl(), comparing the returned results with the known exact values.
The test arguments for 64-bit and 128-bit arithmetic always have one or more trailing zero bits, which is undesirable
because not all significand bit positions are tested with both zeros and ones. That deficiency can be remedied by
adding a small perturbation, and computing the exact square root via a truncated Taylor series:

√
x2 + δ = x + δ/(2x)− δ2/(8x3) + δ3/(16x5)− · · · .

Choosing δ = 1
2 ε sets the last or second-last bit of the argument in the interval [1

4 , 1), and allows the series to be
evaluated to machine precision from just the first two terms. Rounding errors from the division in δ/(2x) do not
change the computed sum. Selecting δ = − 1

2 ε inverts most of the trailing argument bits. The programs rndsq5.c
and rndsq6.c implement such tests for sqrtl().

Hull and Abrham’s experiments with two extra decimal digits of working precision gave 98.15% exact results
compared to our 75.00%, showing the benefits of a little more precision. Indeed, on most desktop computers, we
could implement the single-precision square root with double-precision iterations at negligible cost, and almost
always get a correctly rounded result. Tests of sqrtf() with that modification produced 99.96% exact, none low,
and 0.04% high, using either sqrt() or sqrtl() as the comparison value. However, the double-precision square
root would need even higher precision, and that is only cheaply available on AMD64, EM64T, IA-32, IA-64, IBM
System/390 G5, and the now-obsolete Motorola 68000. For sqrtl(), extended precision in software is likely to be
required.

Although higher intermediate precision helps, it still does not guarantee correct rounding of the square-root
function, it is sometimes computationally expensive, and it is not universally available. In the next section, we show
how for some platforms, at least, we can solve the problem properly.

8.1.2 An algorithm for correct rounding of the square root

The correctly rounded value of the square root is an exactly representable number ȳ that lies within a half ulp of the
infinite-precision result:

√
x − 1

2 u ≤ ȳ ≤ √
x + 1

2 u.

Because u is the spacing between consecutive floating-point numbers, the interval of width u normally contains only
a single unique representable floating-point number. However, if the endpoints are themselves exactly representable,
then it would appear that the interval contains two machine numbers, and that ȳ must be precisely one of them. That
cannot happen, because with a t-bit significand, it would require that

√
x ± 1

2 u be representable in t bits. That is only
possible if

√
x requires exactly t + 1 bits. Its square, x, then needs 2t + 2 bits, contradicting the initial condition that

x is exactly representable in t bits.
We only need to deal with reduced values in the range [1

4 , 1), so suitable values of u are a quarter of the machine
epsilon for the range [1

4 , 1
2) and half the machine epsilon for the range [1

2 , 1).
We need to solve the inequality for ȳ, but unfortunately, we do not know

√
x, and we have only an approximate

value y from the Newton–Raphson iteration that we found by experiment to be correctly rounded only 75% of the
time. However, we know x exactly, so we can square and expand the terms of the inequality to get:

(x − u
√

x + 1
4 u2) ≤ ȳ2 ≤ (x + u

√
x + 1

4 u2).

By the definition of u, we know that the terms 1
4 u2 are negligible to machine precision, and because

√
x, y, and ȳ are

close (in IEEE 754 arithmetic, almost always within one ulp), we can simplify the relation to this:

x − uy ≤ ȳ2 ≤ x + uy.

218 Chapter 8. Roots

In order to achieve correct rounding, or equivalently, y = ȳ, if the square of the computed y is below x − uy, we
need to increase y. If y is above x + uy, then y must be decreased. The catch is that those terms both require higher
precision: without it, they each evaluate to x. In addition, they are to be compared against an almost identical value
y2: even a slight error in the comparison yields incorrect decisions.

The solution is to rearrange the computation so that the almost-identical terms that are subtracted are computed
with an exact double-length product: in other words, a fused multiply-add operation. Before we display the code
to do so, however, we need to address another issue. We know that the square root of an argument in [1

4 , 1) must
lie strictly within the interval [1

2 , 1). The left endpoint is, of course, exactly representable, and the largest exactly
representable value in that range is 1 − ε/β. Its exact square, 1 − 2ε/β + (ε/β)2, clearly lies within that range as
well, although it is not a machine number. The iterative computation of y could have produced values just outside
the interval [1

2 , 1 − ε/β). We therefore need to clamp the computed y to that interval, and at the endpoints, no
rounding-error adjustment is needed.

The code to implement the bounds restriction and the adjustment for correct rounding then looks like this, with
the FMA() macro concealing the precision suffixes on the C99-style fused multiply-add library functions:

#define u (FP_T_EPSILON / (fp_t)B)
#define LEFT_ENDPOINT (ONE / (fp_t)B)

if (y <= LEFT_ENDPOINT)
y = LEFT_ENDPOINT;

else if (y >= (ONE - u))
y = ONE - u;

else /* y is in (1/B,1) */
{

yy_f = FMA(y, y, -f);

if (FMA(y, u, yy_f) < ZERO)
y += u;

else if (FMA(-y, u, yy_f) > ZERO)
y -= u;

}

The tolerance and bounds are exactly representable, and are compile-time constants, except on GNU/LINUX on
IA-64, which violates the 1999 ISO C Standard by having a run-time expression for LDBL_EPSILON, the long double
value of FP_T_EPSILON. The entire adjustment costs at most five comparisons and three multiply-adds, compared to
the five operations of each doubled Newton–Raphson iteration. That is acceptable as long as the multiply-add is
done in hardware, but may be comparatively costly if it is entirely in software.

Our algorithm to ensure correct rounding is notably shorter than the Hull/Abrham approach with variable pre-
cision that the IBM decNumber library uses.

With GNU/LINUX on IA-64, exhaustive tests of sqrtf() with and without the fused multiply-add correction
showed less than 1% difference in the test timing with debug compilation (-g), and about 5% difference with opti-
mized compilation (-O3). With HP-UX on PA-RISC and IBM AIX on POWER, there was no significant timing differ-
ence. However, a similar experiment with Sun Microsystems SOLARIS 10 on IA-32 showed a 10.5 times slowdown
from the software fused multiply-add, and on SPARC, a 2.0 times slowdown. If sqrtf() were the only computation,
the penalty from software fused multiply-add would be larger.

We have assumed here that only a single adjustment is needed for y: that is experimentally true for IEEE 754
arithmetic, but almost certainly does not hold for older floating-point architectures. For those, we need to use a loop
to adjust y until the rounding requirement is satisfied:

... as before ...
else /* y is in (1/B,1) */
{
#define MAXSTEP 5

for (k = 1; k <= MAXSTEP; ++k)
{

yy_f = FMA(y, y, -f);

8.1. Square root 219

if (FMA(y, u, yy_f) < ZERO)
y += u;

else if (FMA(-y, u, yy_f) > ZERO)
y -= u;

else /* result is correctly rounded */
break;

}
}

In principle, the loop could be written as for (;;), without needing a counter, because the break statement exits
the loop when no adjustment is made. However, it is possible on especially aberrant historical systems that the
adjustments would sometimes oscillate, producing an infinite loop. Compared to the cost of the loop body, testing
and incrementing a loop counter is cheap, and provides an advisable level of safety.

Whether the host provides IEEE 754 arithmetic or not can be determined at compile time by various predefined
architectural identifiers, or by the existence of the C99 preprocessor symbol __STDC_IEC_559__. If it does, and
the rounding mode is known to always be the default round-to-nearest mode, then MAXSTEP could be defined as 1. An
optimizing compiler might then eliminate the loop entirely. However, on most IEEE 754 systems, the rounding mode
can be changed dynamically, so the safest and most portable approach for library code like the mathcw package is to
always use the loop, even though an extra iteration costs three more multiply-add operations that are almost always
unnecessary. The extra steps are taken on average 25% of the time, based on the measurements reported earlier, so
the total amortized cost for the code in sqrtx.h is about one extra multiply-add per call, which is relatively small.

When correctly working fused multiply-add support is available, the code in the file sqrtx.h produces correctly
rounded results. That is practical only on certain current platforms: G5, IA-64, some MIPS processors, PA-RISC,
POWER, and PowerPC. On others, fused multiply-add library support is either absent, incorrectly implemented,
or supplied in (slow) software, as we described in Section 4.17 on page 85. Here are sample runs on IA-64 of test
programs to demonstrate that our algorithm works perfectly:

% gcc -fno-builtin -g rndsq1.c -L.. -lmcw -lm && time ./a.out
Tests of rounding error in sqrtf(x)
Total tests = 16777216
sqrtf() exact = 16777216 (100.00%)
sqrtf() low = 0 (0.00%)
sqrtf() high = 0 (0.00%)
29.626u 0.000s 0:29.62 100.0% 0+0k 0+0io 77pf+0w

% gcc -fno-builtin -g rndsq3.c -L.. -lmcw -lm && time ./a.out
Tests of rounding error in sqrt(x)
Total tests = 33554432
sqrt() exact = 33554432 (100.00%)
sqrt() low = 0 (0.00%)
sqrt() high = 0 (0.00%)
34.370u 0.000s 0:34.37 100.0% 0+0k 0+0io 75pf+0w

% gcc -fno-builtin -g rndsq4.c -L.. -lmcw -lm && time ./a.out
Tests of rounding error in sqrtl(x)
Total tests = 2147483648
sqrtl() exact = 2147483648 (100.00%)
sqrtl() low = 0 (0.00%)
sqrtl() high = 0 (0.00%)
2013.228u 0.016s 33:33.27 99.9% 0+0k 0+0io 75pf+0w

% gcc -fno-builtin -g rndsq5.c -L.. -lmcw -lm && time ./a.out
Tests of rounding error in sqrtl(x)
Total tests = 2147483648
sqrtl() exact = 2147483648 (100.00%)
sqrtl() low = 0 (0.00%)

220 Chapter 8. Roots

sqrtl() high = 0 (0.00%)
2074.115u 0.021s 34:34.19 99.9% 0+0k 0+0io 75pf+0w

% gcc -fno-builtin -g rndsq6.c -L.. -lmcw -lm && time ./a.out
Tests of rounding error in sqrtl(x)
Total tests = 2147483648
sqrtl() exact = 2147483648 (100.00%)
sqrtl() low = 0 (0.00%)
sqrtl() high = 0 (0.00%)
2113.057u 0.099s 35:25.66 99.4% 0+0k 0+0io 75pf+0w

We also need to ask: what does our rounding correction do in the event that FMA(x,y,z) is incorrectly evaluated with
separate multiply and add instructions. Here is a numerical experiment with GNU/LINUX on AMD64 with such a
faulty library routine:

% cc -fno-builtin -g rndsq1.c -L.. -lmcw -lm && time ./a.out
Tests of rounding error in sqrtf(x)
Total tests = 16777216
sqrtf() exact = 14023830 (83.59%)
sqrtf() low = 1376926 (8.21%)
sqrtf() high = 1376460 (8.20%)
9.587u 0.002s 0:09.59 99.8% 0+0k 0+0io 0pf+0w

That can be compared with the original code, which gave correctly rounded results in 75% of the exhaustive tests.
Thus, although a simplistic multiply-add library function or hardware instruction, as on MIPS R10000, is undesirable,
at least it does not make matters worse here.

When y is clamped to the interval endpoints, it is important not to do further adjustments. Here is a numerical
experiment with hoc32 that demonstrates why, following the steps in our code to compute the square root of the
floating-point number just below one:

hoc32> u = macheps(1)/2
hoc32> hexfp(u)

+0x1.0p-24
hoc32> f = 1 - u
hoc32> hexfp(f)

+0x1.fffffep-1
hoc32> f

0.99999994
hoc32> y = 1
hoc32> yy_f = fma(y, y, -f)
hoc32> hexfp(yy_f)

+0x1.0p-24
hoc32> yy_f

5.96046448e-08
hoc32> fma(y, u, yy_f)

1.1920929e-07
hoc32> fma(-y, u, yy_f)

0

The second multiply-add is positive, so the upward adjustment of y would not be made. The third multiply-add is
zero, so the downward adjustment of y would not be made either. The result is that the returned value is incorrect
by one ulp. During development and testing, the report of that single failure from among the 16 777 216 tests led to
incorporation of the bound checks on y.

8.1.3 Variant iterations for the square root

The iteration based on finding a root of f (y) = y2 − x that we use in the mathcw library is a good choice, but there
are many other possible definitions of f (y). The tests in Section 8.1.1 on page 216 show that our standard algorithm

8.1. Square root 221

produces results that are correctly rounded about 75% of the time, so we compare that with three other minimizing
functions:

� Choosing f (y) = 1/y2 − 1/x gives an iteration that we can write in several mathematically, but not computa-
tionally, equivalent forms:

yk+1 = yk(3x − y2
k)/(2x)

= yk(3/2 − y2
k/(2x))

= yk + yk(1/2 − y2
k/(2x)),

= yk +
1
2 yk(1 − y2

k/x).

At convergence, yk+1 is the desired square root. Because x is a constant, the factor 1/(2x) can be precomputed
to replace an expensive divide by a cheaper multiply in each iteration. However, 1/(2x) is unlikely to be
exactly representable, so its computation introduces an extra rounding error, and the iteration is slightly less
accurate. That can be corrected by restoring the division by 2x in the last iteration.

For hexadecimal arithmetic, alter the iteration to z = yk(3/4 − y2
k/(4x)), with 1/(4x) computed outside the

loop, and set yk+1 = z + z.

Exhaustive tests in IEEE 754 32-bit binary arithmetic show that the first formula for yk+1 produces correctly
rounded results in 67% of the tests when the factor 1/(2x) is used. Using the second formula with a division
by 2x in the last iteration also gets a score of 67%. The third formula with a final division by 2x gets 77% correct.

� Let x = 1 − y, expand its square root in a Taylor series, and use the first three terms as an approximating
function:

√
x =

√
1 − y

= 1 − (1/2)y − (1/8)y2 − (1/16)y3 − (5/128)y4 − · · · ,

g(y) = 1 − (1/2)y − (1/8)y2, truncated Taylor series,
g′(y) = −(1/2)− (1/4)y,

f (y) = x − (g(y))2,

yk+1 = yk + (x − (g(yk))
2)/(2g′(yk)g(yk)).

The final square root is g(yk), which should be computed in Horner form, producing a small correction to an
exact constant. About 76% of the results are properly rounded.

� Proceed as in the last case, but use the first four terms as an approximating function:

g(y) = 1 − (1/2)y − (1/8)y2 − (1/16)y3, truncated Taylor series,

g′(y) = −(1/2)− (1/4)y − (3/16)y2,

f (y) = x − (g(y))2,

yk+1 = yk + (x − (g(yk))
2)/(2g′(yk)g(yk)).

The target square root is again g(yk). However, because g(y) is a closer approximation to the square root, we
expect the iterations to converge more quickly. The tradeoff is that g(y) and g′(y) each require one extra add
and one extra multiply. Test show that about 76% of the results are properly rounded, but the average iteration
count decreases by only 0.2.

Timing tests show that the second and third algorithms are about 1.3 to 1.5 times slower than the first, so they
offer no advantage. Computing the square root as the sum of a constant term and a small correction adds only about
2% to the fraction of results that are correctly rounded, so it does not provide an easy route to results that are almost
always correctly rounded.

222 Chapter 8. Roots

8.2 Hypotenuse and vector norms

The longest edge of a right triangle is called the hypotenuse, from a Greek phrase meaning the side subtending the right
angle. The hypotenuse is often needed in many areas of engineering, science, and technology, where it occurs in
problems of measurement, as well as in the polar form of complex numbers (see Section 15.2 on page 443), and in
the construction of rotation matrices.

Elementary-school pupils learn about the Greek mathematician and theologian Pythagoras and the discovery of
the famous Pythagoras’ Theorem that the sum of the squares of the lengths of the shorter edges of a right triangle is
equal to the square of the length of the longest edge, usually shortened in mathematics to a2 + b2 = c2. The square
root of the left-hand side is the length of the longest edge. That value is also the shortest distance between two points
on a flat plane, where it is called the Euclidean distance, after the Greek mathematician Euclid, who lived about two
hundred years after Pythagoras.

To simplify calculation, schoolbook applications usually concentrate on the Pythagorean Triples, which are integer
solutions that satisfy the Theorem. Integer multiples of Triples are also Pythagorean Triples, because (na)2 + (nb)2 =
n2(a2 + b2) = n2c2 = (nc)2. However, the important thing to remember is that there is always a real solution c for
which the Theorem holds for any real values a and b, and it satisfies the geometrically obvious triangle inequality:
|a − b| ≤ c ≤ a + b.

Here is a graphical representation of the first Triple, and a list of the 16 scale-unrelated Triples with c < 100:

(3, 4, 5) (5, 12, 13) (7, 24, 25) (8, 15, 17)
(9, 40, 41) (11, 60, 61) (12, 35, 37) (13, 84, 85)

(16, 63, 65) (20, 21, 29) (28, 45, 53) (33, 56, 65)
(36, 77, 85) (39, 80, 89) (48, 55, 73) (65, 72, 97)

For software testing purposes, one can easily generate Triples, albeit possibly scaled upward by a common integer
factor, like this:

m, n = arbitrary positive integers with m > n,

a = m2 − n2, b = 2mn, c = m2 + n2,

a2 + b2 = (m4 − 2m2n2 + n4) + 4m2n2,

= m4 + 2m2n2 + n4,

= (m2 + n2)2,

= c2.

As an example of mathematical curiosity, Fermat found in 1643 the smallest Pythagorean Triple for which both c
and a + b are squares of integers (see [Kna92, pages 55–56, 119–122] for the history and derivation of those numbers):

a = 1 061 652 293 520,
b = 4 565 486 027 761,

a + b = 5 627 138 321 281 = 2 372 1592,

c = 4 687 298 610 289 = 2 165 0172.

Euclid’s result extends to higher dimensions in flat spaces, so the distance between two points in three-dimen-
sional space is just d =

√
a2 + b2 + c2, with each of the values a, b, and c being the corresponding differences in

three-dimensional coordinates (x, y, z). For an n-element vector x = (x1, x2, . . . , xn), the Euclidean norm is defined

b

c
a

8.2. Hypotenuse and vector norms 223

to be the square root of the sum of the squares, written ||x|| =
√

x2
1 + x2

2 + · · ·+ x2
n. That norm is often called the

two-norm, after the superscripts and root order: it can be generalized to arbitrary order p, of which p = 1, 2, and +∞
are the most important:

||x||p = p
√
|x1|p + |x2|p + · · ·+ |xn|p, general p-norm, for p = 1, 2, 3, . . . ,

||x||1 = |x1|+ |x2|+ · · ·+ |xn|, one-norm,

||x||2 =
√
|x1|2 + |x2|2 + · · ·+ |xn|2, Euclidean norm, or two-norm,

||x||∞ = lim
p→∞

||x||p
= max(|x1|, |x2|, . . . , |xn|), infinity norm or inf-norm.

When the norm subscript is omitted, then often, the Euclidean norm is assumed.
The first satisfactory published algorithm [Blu78] to compute the vector Euclidean norm was complicated, and it

spurred further work [LHKK79] in the famous LINPACK and LAPACK Fortran libraries for numerical linear algebra.
Those libraries provide a family of routines for computation of the two-norm, and dnrm2() is the most popular
family member. The Fortran 2008 Standard [FTN10] adds norm2(x) to the language, and its Annex C notes that the
one-norm and infinity-norm can be computed as maxval(sum(abs(x))) and maxval(abs(x)), using standard array
intrinsics.

Unfortunately, when the Euclidean distance is needed, programmers too often write it in the obvious simple form

c = sqrt(a * a + b * b);

without realizing that the result is completely wrong when the squares overflow or underflow, or the sum overflows.1

Indeed, the computation is invalid for roughly half of all possible floating-point numbers, so more care is called for.
Few programming languages address the need for an accurate implementation of that important operation, but

it has been present on most UNIX systems since Version 7 in 1979. It is curiously absent from Ada, C89, C++, C#,
Fortran (prior to the 2008 definition), Java, Pascal, and most scripting languages, but was finally added to the C99
Standard, which describes it like this:

7.12.7.3 The hypot functions

Synopsis

#include <math.h>
double hypot (double x, double y);
float hypotf (float x, float y);
long double hypotl (long double x, long double y);

Description
The hypot functions compute the square root of the sum of the squares of x and y, without undue overflow or underflow. A

range error may occur.

Returns
The hypot functions return

√
x2 + y2.

In an Appendix, the C99 Standard specifies additional behavior:

F.9.4.3 The hypot functions

— hypot(x, y), hypot(y, x), and hypot(x, -y) are equivalent.

— hypot(x, ±0) is equivalent to fabs(x).

— hypot(±∞, y) returns +∞, even if y is a NaN.

An explanation of the last requirement is found in the accompanying C9X Rationale document, which says

1The gnuplot utility used for many of the function error plots in this book has that serious flaw. This author repaired the error in a private
patched version of that program.

224 Chapter 8. Roots

F.9.4.3 The hypot functions

Note that hypot(INFINITY,NAN) returns +INFINITY, under the justification that hypot(INFINITY,y) is +∞ for any
numeric value y.

A first attempt at reimplementing the function is based on the scaled forms |x|√1 + (y/x)2 and |y|√(x/y)2 + 1,
with a block that looks like this:

double q, r, result, s, t;

x = fabs(x);
y = fabs(y);

if (x < y) /* reorder to ensure x >= y >= 0 */
{

t = x;
x = y;
y = t;

}

q = y / x;
r = q * q;

result = x * sqrt(1.0 + r);

That resembles the code used in the original 1979 UNIX version of hypot() for the DEC PDP-11. The algorithm is
frequently good enough, but we can, and should, do better in a library implementation. The problem is that the
expression r takes twice as many digits as we have, and when it is small compared to one, we lose even more digits
in forming 1 + r.

The Taylor series of the scaled hypotenuse kernel looks like this:
√

1 + r = 1 + r/2 − r2/8 + r3/16 − 5r4/128 + · · · .

We can use it to handle the case of small r, but for larger r, the rounding error in r itself from the division in its
definition contaminates the argument to the square root.

We omit the straightforward initial code that handles Infinity, NaN, and zero arguments in the mathcw library
implementation of hypot(), and show only the code that is most commonly used.

When a fast fused multiply-add operation is available, as described later in this book (see Section 13.26 on page 388
through Section 13.29 on page 402), we use the following code in hypot(). The comment block describes the tricky
part of the computation:

#if defined(HAVE_FAST_FMA)

else
{

fp_t t;

x = QABS(x);
y = QABS(y);

if (x < y) /* reorder to guarantee x >= y > 0 */
{

t = x;
x = y;
y = t;

}

if (x > y)

8.2. Hypotenuse and vector norms 225

{
/***

When we compute
t = 1 + r*r

the exact result needs twice as many bits as we have
available. When we then compute

s = sqrt(t)
we lose accuracy that we can readily recover as follows.
Let the exact square root be the sum of the computed root,
s, and a small correction, c:

sqrt(t) = s + c (in exact arithmetic)
t = (s + c)**2 (in exact arithmetic)
t ~= s*s + 2*s*c (discard tiny c**2 term)
c = (t - s*s)/(2*s) (solve for correction)

Although the correction is small, it makes a difference:
without it, hypot(3,4) returns 5 + epsilon, instead of 5.
With the correction, we not only get the correct value for
hypot(3,4), we also repair any damage from an inaccurate
sqrt() implementation.

***/

fp_t c, s, r;

r = y / x;
t = ONE + r * r;
s = SQRT(t);
c = FMA(-s, s, t) / (s + s);
result = FMA(x, s, x * c);

}
else /* x == y */

result = FMA(x, SQRT_TWO_HI, x * SQRT_TWO_LO);

if (result > FP_T_MAX)
result = SET_ERANGE(result);

}

Otherwise, we proceed somewhat differently with this code block that uses Taylor-series expansions for small
ratios, and for larger ratios, a square root with an error correction:

#else /* FMA() is too slow */

#define QFMA(x,y,z) ((x) * (y) + (z))

else
{

fp_t h, q, r, t;
static fp_t RCUT_4 = FP(0.0);
static fp_t RCUT_8 = FP(0.0);
static int do_init = 1;

if (do_init)
{

RCUT_4 = SQRT(SQRT((FP(32768.0) / FP(1792.0)) * HALF * FP_T_EPSILON / (fp_t)B));
RCUT_8 = SQRT(SQRT(SQRT((FP(32768.0) / FP(715.0)) * HALF * FP_T_EPSILON / (fp_t)B)));
do_init = 0;

}

x = QABS(x);

226 Chapter 8. Roots

y = QABS(y);

if (x < y) /* reorder to guarantee x >= y > 0 */
{

t = x;
x = y;
y = t;

}

q = y / x;
r = q * q;

if (r < RCUT_4) /* 4th-order Taylor series region */
{

fp_t sum;

sum = FP(1792.0);
sum = QFMA(sum, r, -FP(2560.0));
sum = QFMA(sum, r, FP(4096.0));
sum = QFMA(sum, r, -FP(8192.0));
sum = QFMA(sum, r, FP(32768.0));
t = (r * (FP(1.0) / FP(65536.0))) * sum;
h = x;
h += x * t;
result = h;

}
else if (r < RCUT_8) /* 8th-order Taylor series region */
{

fp_t sum;

sum = FP(715.0);
sum = QFMA(sum, r, -FP(858.0));
sum = QFMA(sum, r, FP(1056.0));
sum = QFMA(sum, r, -FP(1344.0));
sum = QFMA(sum, r, FP(1792.0));
sum = QFMA(sum, r, -FP(2560.0));
sum = QFMA(sum, r, FP(4096.0));
sum = QFMA(sum, r, -FP(8192.0));
sum = QFMA(sum, r, FP(32768.0));
t = (r * (FP(1.0) / FP(65536.0))) * sum;
h = x;
h += x * t;
result = h;

}
else
{

h = x * SQRT(ONE + r);

/*
** Now compute a correction such that
**
** (h + d)**2 = x**2 + y**2
** (h**2 + 2*h*d) ~= x**2 + y**2 (drop d**2 term)
** d ~= (x**2 + y**2 - h**2)/(2*h)
** = ((x/h)*x + (y/h)*y - h)/2
*/

8.3. Hypotenuse by iteration 227

if (h <= FP_T_MAX) /* apply only for finite h */
{

fp_t d, u, v;

d = -h;
u = x / h;
d += u * x;
v = y / h;
d += v * y;
d *= HALF;
result = h + d;

}
else

result = h;

if (result > FP_T_MAX)
result = SET_ERANGE(result);

}
}

#endif /* defined(HAVE_FAST_FMA) */

The QFMA() macro expands inline here to separate multiply and add operations, but we use it to emphasize the
structure of the Taylor-series computation. The series coefficients are scaled to integer values to eliminate rounding
errors in their values. The outer rescaling of the series by 1/65 536 is exact for bases 2, 4, and 16. In tests with
Pythagorean Triples, the final correction pushes the frequency of incorrect rounding below 10−7.

8.3 Hypotenuse by iteration

The hypotenuse can be computed without requiring a square root with an iterative algorithm called pythag()
[MM83] that is used in the EISPACK library for solving certain kinds of matrix-algebra problems. The original
code was written before IEEE 754 arithmetic was widely available, and it goes into an infinite loop if either argument
is Infinity or a NaN. Here is a hoc translation that handles those two special values as required by C99:

func pythag(a,b) \
{ ## Return sqrt(a**2 + b**2) without destructive underflow

or overflow, and without an explicit square root

if (isinf(a)) p = fabs(a) \
else if (isinf(b)) p = fabs(b) \
else if (isnan(a)) p = a \
else if (isnan(b)) p = b \
else \
{

a = fabs(a)
b = fabs(b)
p = fmax(a, b)

if (p > 0) \
{

q = fmin(a, b)

while (1) \
{

r = (q / p)**2

if ((4 + r) == 4) break

228 Chapter 8. Roots

s = r / (4 + r)
p += p * (s + s)
q *= s

}
}

}

return (p)
}

Elimination of Infinity and NaN guarantees loop termination, which usually requires only three or four iterations in
64-bit arithmetic, and up to five in the 128-bit formats.

Moler2 & Morrison present the pythag() function with little hint of its origin. In an article that follows theirs in
the same journal issue, Dubrulle [Dub83] gives two derivations that are helpful in understanding the algorithm and
its speedy convergence. Jamieson [Jam89] later generalized their results to arbitrarily high order.

Dubrulle considers a sequence of points (xk, yk) on a quarter circle whose radius is the hypotenuse h that we
seek. The initial point is (x0, y0) = (x, y), where h =

√
x2 + y2. Each following point is closer to the final point

(xn, yn) = (h, 0), so that we have two monotone sequences:

x = x0 < x1 < x2 < · · · < xn−1 < xn = h,
y = y0 > y1 > y2 > · · · > yn−1 > yn = 0,

x2
k + y2

k = h2, for k = 0, 1, 2, . . . n.

Each point on the arc satisfies xk ≥ yk > 0, except for the last, where we permit yn = 0. The algorithmic goal is to
find relations between consecutive members of each sequence.

The first derivation of the pythag() algorithm is graphical, and to remove subscript clutter, we rename point
(xk, yk) to (a, b), and its successor point (xk+1, yk+1) to (c, d). We then relate some algebraic formulas to a diagram,
like this:

a2 + b2 = h2,

c2 + d2 = h2,
M = (a, b/2),

→
M •(−→

(c, d) −
−→
(a, b)

)
= 0,

2a(c − a) + b(d − b) = 0.

x

y

(0,b/2) M

(a,b)

(0,0)

(c,d)

(0,h)

(h,0)(a,0)

The two sums of squares are equal by definition. The point M lies exactly halfway between the x axis and the first

point (a, b). The vector from the origin through M, denoted
→
M, intersects the middle of the line between (a, b) and

(c, d), which is just their vector difference. Two vectors are perpendicular when their dot product is zero, and that
fact is stated in the expansion of the dot product in the final equation.

Solutions of the equations relating the four values a, b, c, and d to find values of c and d are tedious to derive by
hand, but Maple finds them easily:

2Cleve Moler is a famous American numerical analyst who has co-authored at least ten books on computation. Early in his career, he chaired
the Computer Science Department at the University of New Mexico. He made important contributions to the EISPACK and LINPACK software
projects for matrix algebra, and developed an interactive program prototype called matlab that provides a powerful and compact programming
language for easy access to matrix operations by those libraries. He later co-founded The MathWorks, a large and successful company that further
develops, markets, and supports MATLAB, Simulink R©, and other software for general numerical computation, modeling, and simulation. A
bibliography of his works is available in the BibNet Project archives at http://www.math.utah.edu/pub/bibnet/authors/m. Another bibliography
covers MATLAB: http://www.math.utah.edu/pub/tex/bib/index-table-m.html#matlab.

8.3. Hypotenuse by iteration 229

% maple
> solve({ a*a + b*b = c*c + d*d, 2*a*(c - a) + b*(d - b) = 0 }, [c, d]);

2 2 3
a (3 b + 4 a) b

[[c = a, d = b], [c = ---------------, d = ---------]]
2 2 2 2

b + 4 a b + 4 a

The first solution is the uninteresting trivial one where the points (a, b) and (c, d) coincide. We simplify the second
solution by introduction of new variables r and s to represent common subexpressions:

r = b2/a2, convenience variable,

s = r/(4 + r), another convenience variable,

c = a(3b2 + 4a2)/(b2 + 4a2), now divide bottom and top by a2,

= a(3r + 4)/(r + 4), regroup,

= a
(
(r + 4) + 2r

)
/(r + 4), divide by denominator,

= a
(
1 + 2r/(r + 4)

)
, and substitute with s,

c = a + 2as, solution for first unknown,

d = b3/(b2 + 4a2), divide bottom and top by a2,

= b
(
(b2/a2)/(b2/a2 + 4)

)
, then substitute with r,

= b
(
r/(r + 4)

)
, and finally substitute with s,

d = sb, solution for second unknown.

Dubrulle’s highlighted solutions for c and d correspond exactly to Moler & Morrison’s variables p and q in the
pythag() function.

To see how quickly the algorithm converges, we relate the new estimate of the error in the hypotenuse to the old
error:

h − c = h − a(3b2 + 4a2)/(b2 + 4a2), then substitute b2 = h2 − a2,

= h − a(3h2 + a2)/(h2 + 3a2), then make common denominator,

= (h3 + 3a2h − 3ah2 − a3)/(h2 + 3a2), then factor numerator polynomial,

= (h − a)3/(h2 + 3a2).

The new error is proportional to the cube of the old error, so convergence in cubic. Once a is close to h, the number of
correct digits in c triples with each iteration.

Here is a demonstration of how fast the pythag() algorithm converges, using the smallest Triple and the Fermat
Triple with a modified function that prints the relative error and the current estimate of the hypotenuse:

hocd128> h = pythagx(3,4)
3.60e-01 4
5.47e-03 4.986_301_369_863_013_698_630_136_986_301_37
1.03e-08 4.999_999_974_188_252_149_492_661_061_886_531
6.88e-26 4.999_999_999_999_999_999_999_999_828_030_177
0.00e+00 5

hocd128> h = pythagx(1_061_652_293_520, 4_565_486_027_761)
5.13e-02 4_565_486_027_761
9.13e-06 4_687_277_220_292.340_969_469_158_891_647_832
4.75e-17 4_687_298_610_288.999_888_639_829_215_045_638
0.00e+00 4_687_298_610_289

230 Chapter 8. Roots

Dubrulle’s second derivation of the pythag() algorithm solves a function-minimization problem. We define

r = b2/a2, our original convenience variable,

F(h) = a2 + b2 − h2, a and b fixed constants, and h to be found,

F′(h) = −2h, first derivative with respect to h,

F′′(h) = −2, second derivative with respect to h.

Given the function and its first two derivatives, we want to find the root h that satisfies F(h) = 0. The third-order
Halley’s method described in Section 2.4 on page 9 says that, given a value hk, we can find an improved estimate of
the root like this:

hk+1 = hk − 2F(hk)F′(hk)/
(
2(F′(hk))

2 − F(hk)F′′(hk)
)
, Halley’s formula,

= hk − 2F(hk)(−2hk)/
(
2(2hk)

2 − F(hk)(−2)
)

for our function F(h).

Next, eliminate messy subscripts by substituting hk = a and hk+1 = c:

c = a − 2F(a)(−2a)/
(
2(2a)2 − F(a)(−2)

)
,

= a + 4aF(a)/
(
8a2 + 2F(a)

)
,

= a + 2aF(a)/
(
4a2 + F(a)

)
.

Evaluate the function, substitute into the last result for c, and continue simplification:

F(a) = a2 + b2 − a2,
= b2,

c = a + 2ab2/(4a2 + b2), then divide bottom and top by a2,

= a + 2a(b2/a2)/
(
4 + (b2/a2)

)
, then substitute with r,

= a + 2ar/(4 + r), then substitute with s,
= a + 2as.

The last result is identical to that in pythag() and the first solution in the graphical derivation. The solution for d is
derived exactly as before: d = sb.

Moler, Morrison, and Dubrulle summarize the key features of the pythag() algorithm for finite nonzero argu-
ments, and we augment their observations:

� The input variables can be replaced internally by their absolute values and then reordered so that a ≥ b > 0.

� No magic constants or machine-specific parameters are needed.

� The code is short: each iteration requires only three adds, three multiplies, two divides, one comparison, and
four or five intermediate variables. That is an advantage on older systems with small memories, or where
the operands are not simple real scalars, but instead are complex, or software multiple-precision values, or
matrices.

� On many modern systems, the entire loop can run entirely in the CPU with all variables in registers, and no
memory accesses. Code-generation tests with optimizing compilers on several architectures show that the loop
code may be reduced to as few as 14 instructions.

� The results of the two divides are needed immediately, so there is no possibility of overlapping their execution
with other instructions until they complete. The software divide sequences in pythag() on IA-64 waste a third
of the instruction-packet slots with nop (no-operation) instructions.

� Convergence is soon cubic.

� The convergence test is simple. The value r decreases on each iteration by at least s4 ≤ (1/5)4 ≈ 0.0016, and
s falls by at least r/4 on each update, accelerating convergence, so that we soon have fl(4 + r) = 4 to machine
precision.

8.3. Hypotenuse by iteration 231

� The higher intermediate precision on some platforms is harmless, but its use in the convergence test may
sometimes cause one extra iteration. That problem can be repaired by declaring the variable r to be volatile
in C89 and C99, or by passing its address to an external routine. The tradeoff is then the cost of two or three
storage references against one iteration requiring in-CPU arithmetic. The references are almost certain to be
satisfied from cache memory, rather than main memory, and are therefore likely to be less costly than an
additional iteration.

� The largest intermediate value produced never exceeds h =
√

a2 + b2 ≤ √
2a. Overflow is avoided unless

a > (maximum normal number)/
√

2, in which case the overflow is inevitable because the exact result is too
big to represent.

� If b is much smaller than a, intermediate computations can underflow harmlessly to subnormals or zero.

� Unfortunately, in pythag(), underflow is not always harmless if it is abrupt. In the first iteration, r ≤ 1 and
s ≤ 1/5. Let μ be the smallest normal number. Then if b ≤ 5μ, and a is not much bigger, then at the end of
the first iteration, we have q < μ. If that value is abruptly set to zero, instead of becoming subnormal, the
iterations terminate early, and the final result is ≈ a. In particular, if a = 4μ and b = 3μ, the function returns
4.98μ instead of the correct 5μ. The problem is most easily solved by exact upward scaling of the arguments,
and we show how to do so shortly.

� A numerically robust computation of the vector Euclidean norm can be done with the help of hypot() or
pythag() and simple code like this:

e = ZERO;

for (k = 0; k < n; ++k)
e = HYPOT(e, v[k]);

That is less efficient than alternatives like dnrm2(), but much easier to code correctly. Moler & Morrison observe
that when a vector norm is needed, it is almost always outside other numerically intensive nested loops whose
run times are O(n2) or higher, so the inefficiency is unlikely to matter.

Despite its wide use in many other software packages, the original code for pythag() is not as accurate as our
implementation of hypot(), and has problems with arguments that are tiny, Infinity, or NaN. Gradual underflow
removes the problems with tiny arguments. The code is robust with respect to arguments near the floating-point
overflow limits. Here are some numerical experiments with the 128-bit decimal version of hoc that compare the
original pythag() with our hypot() function:

% hocd128
hocd128> load("opythag")
hocd128> __INDENT__ = "\t "

hocd128> MINSUBNORMAL * sqrt(2)
1e-6176

hocd128> hypot(MINSUBNORMAL, MINSUBNORMAL)
1e-6176

hocd128> pythag(MINSUBNORMAL, MINSUBNORMAL)
1e-6176

hocd128> MINNORMAL * sqrt(2)
1.414_213_562_373_095_048_801_688_724_209_698e-6143

hocd128> hypot(MINNORMAL, MINNORMAL)
1.414_213_562_373_095_048_801_688_724_209_698e-6143

hocd128> pythag(MINNORMAL, MINNORMAL)
1.414_213_562_373_095_048_801_688_724_209_698e-6143

hocd128> MAXNORMAL
9.999_999_999_999_999_999_999_999_999_999_999e+6144

232 Chapter 8. Roots

hocd128> hypot(MAXNORMAL/sqrt(2), MAXNORMAL/sqrt(2))
9.999_999_999_999_999_999_999_999_999_999_999e+6144

hocd128> pythag(MAXNORMAL/sqrt(2), MAXNORMAL/sqrt(2))
9.999_999_999_999_999_999_999_999_999_999_999e+6144

hocd128> hypot(3,4)
5

hocd128> pythag(3,4)
5

hocd128> hypot(8, 15)
17

hocd128> pythag(8, 15)
16.999_999_999_999_999_999_999_999_999_999_99

The Fortran version of pythag() in EISPACK differs slightly from the original published pseudocode in that p
is updated from (1 + 2s)× p instead of with the addition p + 2ps, and q is eliminated in favor of updating r from
its previous value. The first of those optimizations is unfortunate, because it reduces accuracy somewhat, and the
results for most Pythagorean Triples exhibit rounding errors.

Because of the irregularities near the underflow limit when abrupt underflow to zero is in effect, internal scaling
is required if the software is to be robust and portable. All that is needed is to move small arguments far enough
away from the underflow limit so that none of the loop expressions underflows prematurely before convergence is
reached. A suitable scale factor is the reciprocal of the machine epsilon. Before the main loop, we insert this code
block:

static const fp_t EPS_INV = FP(1.0) / FP_T_EPSILON;
static const fp_t X_MIN = FP_T_MIN / FP_T_EPSILON;
static const fp_t X_MAX = FP_T_MAX * FP_T_EPSILON;
...

if (a < X_MIN)
{

a *= EPS_INV; /* EXACT scaling */
b *= EPS_INV; /* EXACT scaling */
scale = FP_T_EPSILON;

}
else if (a > X_MAX)
{

a *= FP_T_EPSILON; /* EXACT scaling */
b *= FP_T_EPSILON; /* EXACT scaling */
scale = EPS_INV;

}
else

scale = ONE;

The block also scales large arguments away from the overflow limit to avoid problems with a tiny number of argu-
ments where intermediate rounding could temporarily push values into the overflow region.

After the main loop, we undo the scaling with a single statement:

p *= scale; /* EXACT scaling */

The authors of the two cited papers about pythag() coded the loop iterations to run until a suitable convergence
test is satisfied. However, they failed to ask whether the computed result is correctly rounded. Tests of pythag()
with all representable Pythagorean Triples using the available precisions of both binary and decimal arithmetic on
several architectures show that up to 22% of the results fail to be correctly rounded. The function values can be a few
machine epsilons off because of rounding-error accumulation in the loop iterations. Unlike the Newton–Raphson
iteration, the pythag() algorithm is not self correcting, and rounding errors are not just from the last update of the
root.

To illustrate the rounding problem, here is what the single-precision decimal version of pythag() reports:

8.4. Reciprocal square root 233

% hocd32
hocd32> load("pythag")
hocd32> pythag(3,4)

5.000_006
hocd32> 5 + macheps(1)

5.000_001

Even a school child can do better. The defect seems not to have been reported in the research literature, and it is
likely to surprise a naive user.

What is needed is a final corrective code block to bring the computed result closer to the correct answer. That
block is identical to that in the code for hypot() that begins in Section 8.2 on page 225. Its cost is similar to doing
one more iteration of the main loop.

We complete this section by noting that Dubrulle made some important extensions of pythag() by working out
higher-order iterations for roots of more complicated functions of the form

Fk(x) =
(
(h + x)k − (h − xk)

)
/(2h).

Higher powers are needed to prevent the higher derivatives becoming zero. Dubrulle’s details are littered with
subscripts and superscripts, but the good news is that the final formulas are reasonably simple, and tabulated for
orders two through nine. The third-order iteration is just our normal pythag(), and the formulas can be divided into
two classes — odd and even order — that require slightly different programs.

The file pythagn.c in the exp subdirectory of the mathcw distribution implements all of them, and tests on several
current architectures show that the fifth-order function is almost always the fastest, but only by a few percent.

Higher-order approximations converge faster, so fewer iterations (only one or two) are needed. Dubrulle found
that all of the formulas have the feature of pythag() that there are only two divisions in the loop. Thus, they are of
significant value for multiple-precision arithmetic and matrix arithmetic, where division is a particularly expensive
operation.

To give a flavor of the code required, here is the inner loop of the fifth-order algorithm that quintuples the number
of correct digits on each iteration:

for (;;)
{

fp_t p, s;

q = y_k / x_k;
r = q * q;

if ((ONE + r) == ONE)
break;

p = FP(8.0) + FP(4.0) * r; /* order dependent */
s = r / (FP(16.0) + (FP(12.0) + r) * r); /* order dependent */
x_k += x_k * p * s;
y_k *= r * s; /* order dependent */

}

return (scale * x_k);

Compared to pythag(), each iteration costs one more add and three more multiplies. The only code changes needed
for other odd orders are replacement of the polynomials that define p and s, and adjustment of the power of r that
appears in the final loop statement where yk is updated.

8.4 Reciprocal square root

Among UNIX vendors, only Hewlett–Packard HP-UX on IA-64 and IBM AIX on PowerPC provide the reciprocal
square-root function, rsqrt(). Neither C89 nor C99 defines it.

234 Chapter 8. Roots

You might wonder why it is not sufficient to just compute the function as 1.0/sqrt(x) or sqrt(1.0/x). There are
two reasons why a separate function is desirable:

� The division introduces an extra rounding error that can be avoided if 1/
√

x is computed independently of√
x.

� We noted earlier in Section 4.7.1 on page 69 that IEEE 754 requires that
√−0 = −0. That means that 1/

√−0 =

−∞, whereas
√

1/(−0) =
√−∞ → NaN. Thus, the mathematical relation 1/

√
x =

√
1/x does not hold in

IEEE 754 arithmetic when x is a negative zero.

The rsqrt() function is defined to compute 1/
√

x, so rsqrt(-0) returns −∞.
Like the square-root function, the reciprocal square root is best computed by Newton–Raphson iteration, finding

a solution y = rsqrt(x) to f (y) = y2 − 1/x = 0 for a given fixed x. The iteration is yk+1 = yk − f (yk)/ f ′(yk) =
1
2 (yk + 1/(xyk)).

Alternatively, use f (y) = (1/y)2 − x, which gives the iteration yk+1 = 1
2 yk(3 − y2

k x). For hexadecimal arithmetic,
compute it as z = yk(3/4− y2

k x/4) followed by yk+1 = z+ z, and replace the constants 3/4 and 1/4 by 0.75 and 0.25.
For x in [1

4 , 1), a 〈1/1〉 minimax polynomial produces a starting estimate of y0 good to eight bits, and minimizes
the total work for the number of iterations needed for the precisions of interest. The rational polynomial is scaled to
get a unit high-order coefficient in the denominator, eliminating one multiply. The effects of wobbling precision in
hexadecimal normalization do not matter for the computation of the starting guess.

As with the computation of the square root (see Section 8.1 on page 215), the double-step iteration saves one
multiply every two steps. Each double step takes the form z = yk + 1/(xyk) followed by yk+2 = 1

4 z + 1/(xz), and
just two double steps produce about 143 correct bits.

When the intermediate computations are done in higher precision, such as in the 80-bit format used on IA-32
and IA-64 systems, the computed reciprocal square root is almost always correct to the last bit. Even without extra
precision, the average error in the final result should normally not exceed 0.5 bits for rounding arithmetic, and 1 bit
for truncating arithmetic. The test results reported later in Chapter 24 on page 811 show that the average error is
0.00 bits on systems with IEEE 754 arithmetic.

8.4.1 Improved rounding of the reciprocal square root

The adjustment described in Section 8.1.2 on page 217 to obtain sqrt() values that are always correctly rounded is
readily adapted for the reciprocal square root. The correctly rounded value ȳ satisfies this inequality:

1/
√

x − 1
2 u ≤ ȳ ≤ 1/

√
x + 1

2 u.

We then square the inequality, expand, and drop terms that are O(u2), producing this relation:

1/x − u/
√

x ≤ ȳ2 ≤ 1/x + u/
√

x.

The difference between the values y, ȳ, and 1/
√

x is O(u), and the terms ±u/
√

x are also O(u), so we can replace
1/

√
x by y to get this condition:

1/x − uy ≤ ȳ2 ≤ 1/x + uy.

The bounds on the possible answers are determined as follows. The reduced argument, f , lies in the interval [1/β2,
1), so the result ȳ lies in (1, β] or [1, β] (we soon show which of them is correct), and thus, u = ε, the machine epsilon.
The largest possible value of f is the machine number closest to the right endpoint, 1 − ε/β. The Taylor-series
expansion for the reciprocal square root near that endpoint is

1/
√

1 − δ = 1 + (1/2)δ + (3/8)δ2 + (5/16)δ3 + · · · ,

so rsqrt(1 − ε/β) ≈ 1 + ε/(2β). To machine precision, that value rounds to exactly 1, so the computed y must be
restricted to the interval [1, β]. Combining the bounds restrictions with the inequality leads to this adjustment code:

#define u FP_T_EPSILON

if (y <= ONE)

8.4. Reciprocal square root 235

y = ONE;
else if (y >= (fp_t)B)

y = (fp_t)B;
else /* y is in (1,B) */
{

yy_finv = FMA(y, y, -ONE/f);

if (FMA(y, u, yy_finv) < ZERO)
y += u;

else if (FMA(-y, u, yy_finv) > ZERO)
y -= u;

}

Without the adjustments, a test of rsqrtf() with the program rndrs1.c produces results like this on IA-64:

% gcc -fno-builtin -g rndrs1.c -L.. -lmcw -lm && time ./a.out
Tests of rounding error in rsqrtf(x)
Total tests = 16777216
rsqrtf() exact = 12437813 (74.14%)
rsqrtf() low = 2169098 (12.93%)
rsqrtf() high = 2170305 (12.94%)
26.813u 0.003s 0:43.43 61.7% 0+0k 0+0io 76pf+0w

With the adjustment and a correctly working fused multiply-add operation, the results on IA-64 are:

% gcc -fno-builtin -g rndrs1.c -L.. -lmcw -lm && time ./a.out
Tests of rounding error in rsqrtf(x)
Total tests = 16777216
rsqrtf() exact = 14594678 (86.99%)
rsqrtf() low = 1091079 (6.50%)
rsqrtf() high = 1091459 (6.51%)
28.829u 0.003s 0:46.73 61.6% 0+0k 0+0io 76pf+0w

That is an almost 13% improvement in the fraction of correctly rounded results, but is still not good enough.
The division 1/ f is subject to rounding error, slightly contaminating the computed yy_finv, which in turn some-

times results in incorrect decisions in the conditionals. Scaling the inequality by f removes one source of rounding
error, but introduces another. A test with that variant produced nearly the same results: 86.94% exact.

When the multiply-add is done without an exact product, as on most GNU/LINUX systems, then the results look
like this (on AMD64):

% gcc -fno-builtin -g rndrs1.c -L.. -lmcw -lm && time ./a.out
Tests of rounding error in rsqrtf(x)
Total tests = 16777216
rsqrtf() exact = 13245833 (78.95%)
rsqrtf() low = 1765996 (10.53%)
rsqrtf() high = 1765387 (10.52%)
9.271u 0.001s 0:09.28 99.8% 0+0k 0+0io 0pf+0w

That is about 8% worse than with a correctly functioning fused multiply-add operation.
More work clearly needs to be done to obtain results that are always correctly rounded. In the next section, we

show how to approach that goal.

8.4.2 Almost-correct rounding of the reciprocal square root

The treatment of the adjustment of the computed reciprocal square root in the last section was deficient because we
did not eliminate the error inherent in forming 1/x. To remedy that, multiply the inequality in the previous section
by x to obtain

1 − uxy ≤ xy2 ≤ 1 + uxy.

236 Chapter 8. Roots

Then subtract xy2 from each term to obtain a form that is convenient for multiply-add operations:

−(uxy + (xy2 − 1)) ≤ 0 ≤ uxy − (xy2 − 1).

Because u is a power of the base, the product ux is exact, and thus ux and y supply the first two arguments of
the fused multiply-add function which computes uxy exactly. However, exact computation of the quantity xy2 − 1
requires three times as many bits as we have available, and the subtraction suffers massive cancellation, producing a
result of size O(u). To solve that problem, we split y into two parts, y = yhi + ylo, each with half as many bits as the
significand can represent. The term y2

hi is then exactly representable, and a term like xy2
hi − 1 can then be computed

accurately with a fused multiply-add operation. Because we know that y lies in [1, β], with a t-digit significand, the
split is easily done by adding and subtracting the constant β�t/2�, like this:

yhi = fl(fl(y + β�t/2�)− β�t/2�),
ylo = y − ylo.

We then expand xy2 − 1 in terms of yhi and ylo, factoring the terms to exploit fused multiply-add opportunities:

xy2 − 1 = x(yhi + ylo)
2 − 1

= x(y2
hi + 2yhiylo + y2

lo)− 1

= (xy2
hi − 1) + xylo(2yhi + ylo)

= fma(x, y2
hi,−1) + x fma(2yhi, ylo, y2

lo)

= fma(x, fma(2yhi, ylo, y2
lo), fma(x, y2

hi,−1)).

The C code for the bounding and adjustment of y is clearer if we use two intermediate variables for the inner fused
multiply-add operations:

#define u FP_T_EPSILON

if (y <= ONE)
y = ONE;

else if (y >= (fp_)B)
y = (fp_)B;

else /* y is in (1,B) */
{

y_hi = purify + y; /* purify is B**ceil(T/2) */
y_hi -= purify; /* y_hi now has only floor(T/2) digits */
y_lo = y - y_hi; /* y_lo has remaining ceil(T/2) digits */

s = FMA(f, y_hi * y_hi, -ONE);
t = FMA(y_hi + y_hi, y_lo, y_lo * y_lo);
fyy_1 = FMA(f, t, s); /* f*y*y - 1, accurately */

if (fyy_1 > ZERO) /* y may be too high */
{

alt_fyy_1 = fyy_1 + u * u * f;
alt_fyy_1 -= (u + u) * y * f; /* f*(y - u)**2 - 1 */

if (fyy_1 > QABS(alt_fyy_1))
y -= u;

}
else if (fyy_1 < ZERO) /* y may be too low */
{

alt_fyy_1 = fyy_1 + u * u * f;
alt_fyy_1 += (u + u) * y * f; /* f*(y + u)**2 - 1 */

if ((-fyy_1) > QABS(alt_fyy_1))

8.5. Cube root 237

y += u;
}

}

When y is possibly too high or too low, we compute a revised test value quickly, without further FMA() calls. If that
produced an improvement, we then adjust the final y by one ulp.

Here are exhaustive test results of our code on IA-64 with a correct fused multiply-add operation, first for the
32-bit rsqrtf() function, and then for the 64-bit rsqrt() function:

% gcc -fno-builtin -g rndrs1.c ../libmcw.a && time ./a.out
Tests of rounding error in rsqrtf(x)
Total tests = 16777216
rsqrtf() exact = 16776743 (100.00%)
rsqrtf() low = 234 (0.00%)
rsqrtf() high = 239 (0.00%)
15.109u 0.002s 0:15.11 99.9% 0+0k 0+0io 0pf+0w

% gcc -fno-builtin -g rndrs2.c ../libmcw.a && time ./a.out
Tests of rounding error in rsqrt(x)
Total tests = 16777216
rsqrt() exact = 16773141 (99.98%)
rsqrt() low = 2065 (0.01%)
rsqrt() high = 2010 (0.01%)
16.111u 0.001s 0:16.11 100.0% 0+0k 0+0io 0pf+0w

Those results suggest that our improved rsqrtf() produces incorrect rounding only once in about 35 000 random
arguments, and rsqrt() about once in 4000 arguments. However, the estimates are pessimistic, because tests of
our reciprocal-square-root functions for both binary and decimal arithmetic using comparison values computed in
higher precision in Maple show much lower rates of incorrect rounding.

8.5 Cube root

Berkeley UNIX 4.3BSD introduced the cube-root function, cbrt(), in 1987, and almost all UNIX vendors now include
it, although some omit the float and long double companions. It is standardized in C99.

The cube-root function is faster and more accurate than pow(x,1.0/3.0), and like the square root and reciprocal
square root, it too is computed by Newton–Raphson iteration. The algorithm finds a solution y = 3

√
x to f (y) = y3 − x

for a given x with the iteration yk+1 = yk − f (yk)/ f ′(yk) = (2yk + x/y2
k)/3. As with the other two functions, doubling

the iteration steps and simplifying saves one operation, a divide. The double-step iteration looks like this:

f3 = f + f + f; /* pre-iteration constant */
z = y + y + f / (y * y);
y = (z + z) / NINE + f3 / (z * z);

If the last statement is rewritten with a common denominator to save one division, the worst-case error reported by
the test suite increases by about 0.7 bits.

In the mathcw implementation, a seven-bit initial approximation with a 〈1/1〉-degree minimax rational polyno-
mial leads to an almost-correct IEEE 754 32-bit result in a double-step iteration at a cost of four adds, three divides,
and two multiplies. Consecutive single and double steps provide full accuracy for the 64-bit IEEE 754 format, and
two double steps suffice for the 80-bit and 128-bit formats. When the intermediate computations are done in higher
precision, such as in the 80-bit format used on IA-32 and IA-64 systems, the computed cube root is almost always
correct to the last bit. The test results reported later in Chapter 24 on page 811 show that the average error on systems
with IEEE 754 arithmetic is 0.33 bits in the 32-bit format, and 0.00 bits in higher precisions.

8.5.1 Improved rounding of the cube root

As with the square root and its reciprocal, it is possible to improve the result of the Newton–Raphson iteration by
application of a correction computed in higher precision with a fused multiply-add operation. The correctly rounded

238 Chapter 8. Roots

value ȳ satisfies this inequality:
3
√

x − 1
2 u ≤ ȳ ≤ 3

√
x + 1

2 u.

If we cube that inequality and expand, dropping terms that are O(u2) or higher, we find:

x − 3
2 u(3

√
x)2 ≤ ȳ3 ≤ x + 3

2 u(3
√

x)2.

Because the difference between the values y, ȳ, and 3
√

x is O(u), and the terms with the factor (3
√

x)2 are also O(u),
we can safely replace 3

√
x by y to get this inequality:

x − 3
2 uy2 ≤ ȳ3 ≤ x + 3

2 uy2.

Finally, to get a form that is convenient for the fused multiply-add operation, replace ȳ by y, and divide the inequality
by y to get:

x/y − 3
2 uy ≤ y2 ≤ x/y + 3

2 uy.

Before we show how that relation can be used to adjust y, we need to examine the endpoint conditions. The reduced
argument, f , lies in the interval [1/β3, 1), so its cube root must lie in the interval [1/β, 1). The left endpoint is exactly
representable, but the machine number closest to the right endpoint is 1 − ε/β. The Taylor-series expansion for the
cube root near that endpoint is

3
√

1 − δ = 1 − (1/3)δ − (1/9)δ2 − (5/81)δ3 − · · · ,

so cbrt(1 − ε/β) ≈ 1 − ε/(3β). To machine precision, with default rounding, that value rounds to exactly 1, so the
computed y must be clamped to the interval [1/β, 1]. We can readily turn that restriction and the inequality into
adjustment code:

#define B_INVERSE (ONE / (fp_t)B)
#define u (FP_T_EPSILON / (fp_t)B)
#define u15 (FP(1.5) * u)

if (y <= B_INVERSE)
y = B_INVERSE;

else if (y >= ONE)
y = ONE;

else /* y is in (1/B,1) */
{

yy_xy = FMA(y, y, -x/y);

if (FMA(y, u15, yy_xy) < ZERO)
y += u;

else if (FMA(-y, u15, yy_xy) > ZERO)
y -= u;

}

The variables u and u15 are compile-time constants, except on GNU/LINUX on IA-64, which violates the 1999 ISO C
Standard by having a run-time expression for LDBL_EPSILON, the long double value of FP_T_EPSILON.

Unfortunately, the computation of x/y itself introduces a rounding error that can change the outcome of the
conditional tests. Without the adjustment code, the test program rndcb1.c produces results like this (on IA-64):

% gcc -fno-builtin -g rndcb1.c -L.. -lmcw -lm && time ./a.out
Tests of rounding error in cbrtf(x)
Total tests = 25165824
cbrtf() exact = 18694652 (74.29%)
cbrtf() low = 3125325 (12.42%)
cbrtf() high = 3345847 (13.30%)
45.188u 0.004s 1:13.32 61.6% 0+0k 0+0io 75pf+0w

With the adjustment code, the results look like this when a correct fused multiply-add operation is available:

8.5. Cube root 239

% gcc -fno-builtin -g rndcb1.c -L.. -lmcw -lm && time ./a.out
Tests of rounding error in cbrtf(x)
Total tests = 25165824
cbrtf() exact = 23019920 (91.47%)
cbrtf() low = 1072895 (4.26%)
cbrtf() high = 1073009 (4.26%)
37.934u 0.002s 1:01.65 61.5% 0+0k 0+0io 76pf+0w

Almost identical results are obtained if the division by y is not done. Although the adjustment produces a 17%
improvement in the fraction of exact results, it is still not good enough.

If instead the multiply-add is merely done in higher precision, then the results look like this for GNU/LINUX on
AMD64:

% gcc -fno-builtin -g rndcb1.c -L.. -lmcw -lm && time ./a.out
Tests of rounding error in cbrtf(x)
Total tests = 25165824
cbrtf() exact = 22519809 (89.49%)
cbrtf() low = 1341769 (5.33%)
cbrtf() high = 1304246 (5.18%)
15.674u 0.000s 0:15.68 99.9% 0+0k 0+0io 0pf+0w

That is only 2% worse than with a correct fused multiply-add operation.
In the next section, we show how to make dramatic improvements, but still without a guarantee that results are

always correctly rounded.

8.5.2 Almost-correct rounding of the cube root

The difficulty with the adjustments of the last section is that exact computation of the inequality requires three times
as many bits as we have, because it needs an accurate value of ȳ3 − x. To achieve that, we need to resort to a multiple-
precision arithmetic package, or else split the computation into pieces, each of which can be computed exactly, or
almost exactly.

If we split y into two parts, a top part with a third of the bits, and a bottom part with the remaining two-thirds of
the bits, then the term y3

hi − x is exact because y3
hi is exactly representable, and the terms have the same exponent. To

accomplish the split, we can add and subtract the constant βt−1−t/3�, where t is the number of bits in the significand,
like this:

yhi = fl(y + βt−1−t/3�)− βt−1−t/3�,
ylo = y − yhi.

Next, we expand y3 − x in terms of yhi and ylo, factoring the terms to expose multiply-add opportunities:

y3 − x = (yhi + ylo)
3 − x

= y3
hi + 3y2

hiylo + 3yhiy2
lo + y3

lo − x

= (y3
hi − x) + ylo(3y2

hi + 3yhiylo + y2
lo)

= (y3
hi − x) + ylo fma(3yhi, ylo, 3y2

hi + y2
lo).

The corresponding C code is easier to follow if we introduce two temporary variables and handle each fused
multiply-add operation separately:

y_hi = purify + y; /* purify == B**(T - 1 - floor(T/3)) */
STORE(&y_hi);
y_hi -= purify; /* y_hi now has only floor(T/3) digits */
STORE(&y_hi);
y_lo = y - y_hi; /* y_lo has remaining ceil(2T/3) digits */
STORE(&y_lo);
s = y_hi * y_hi * y_hi - f; /* exact */

240 Chapter 8. Roots

t = FMA(THREE * y_hi, y_lo, THREE * y_hi * y_hi + y_lo * y_lo);
yyy_f = FMA(y_lo, t, s); /* y**3 - f, accurately */

if (yyy_f > ZERO) /* y may be too big */
{

alt_yyy_f = -u * u * u;
alt_yyy_f += -THREE * y * u * u;
alt_yyy_f += -THREE * y * y * u;
alt_yyy_f += yyy_f; /* (y - u)**3 - f, accurately */

if (yyy_f > QABS(alt_yyy_f))
y -= u;

}
else if (yyy_f < ZERO) /* y may be too small */
{

alt_yyy_f = u * u * u;
alt_yyy_f += THREE * y * u * u;
alt_yyy_f += THREE * y * y * u;
alt_yyy_f += yyy_f; /* (y + u)**3 - f, accurately */

if ((-yyy_f) > QABS(alt_yyy_f))
y += u;

}

The cost of the correction is 2 multiply-adds, 3 comparisons, 8 or 9 adds, and 14 multiplies.
As we observed for the square-root function in Section 8.1.2 on page 218, on historical floating-point architectures

with deficient rounding practices, the correction block should be wrapped in a loop that takes at most a few iterations,
with else break statements added to the two innermost if statements to allow early loop exit as soon as no further
improvement can be found.

Tests of the adjusted algorithm for cbrtf() and cbrt() look like this on an IA-64 system:

% cc -fno-builtin -g rndcb1.c ../libmcw.a && time ./a.out
Tests of rounding error in cbrtf(x)
Total tests = 25165824
cbrtf() exact = 25152589 (99.95%)
cbrtf() low = 6554 (0.03%)
cbrtf() high = 6681 (0.03%)
28.352u 0.024s 0:28.37 100.0% 0+0k 0+0io 0pf+0w

% cc -fno-builtin -g rndcb2.c ../libmcw.a && time ./a.out
Tests of rounding error in cbrt(x)
Total tests = 25165824
cbrt() exact = 25159744 (99.98%)
cbrt() low = 3032 (0.01%)
cbrt() high = 3048 (0.01%)
30.166u 0.001s 0:30.17 99.9% 0+0k 0+0io 0pf+0w

Those results suggest that incorrect rounding happens about once in 1900 random arguments in cbrtf(), and once in
4000 arguments for cbrt(). However, tests of those functions, and cbrtl(), with high-precision comparison values
in Maple show that incorrect rounding is much less frequent.

8.6 Roots in hardware

Several CPU architectures, including 68000, AMD64, IA-32, and PA-RISC, and later models of Alpha, MIPS,
PowerPC, and SPARC, provide single hardware instructions to compute a correctly rounded square root in the IEEE
754 32-bit and 64-bit formats, and for some, also the 80-bit format.

8.6. Roots in hardware 241

IBM added hardware square-root instructions in the System/360 family for the 32-bit, 64-bit, and 128-bit hexadec-
imal formats in 1991. The later z-Series processors also support IEEE 754 binary arithmetic, with hardware square
root for the three companion binary formats. There are, however, no equivalent instructions for z-Series decimal
floating-point arithmetic.

No current commercially significant desktop architecture provides single hardware instructions for the cube root,
or higher roots.

To permit graceful evolution of architectural extensions, a few operating systems provide run-time emulation
of unimplemented instructions, so that code compiled on a newer processor can still work on earlier models at the
same O/S level. However, most operating systems do not offer that convenience, so it is usually impractical to take
advantage of new instructions at a user site until all of the local hardware has been upgraded to new models.

Some C compilers make it possible to generate inline assembly-language instructions, and our sqrtx.h algorithm
file takes advantage of that feature, using code modeled on that shown later in Section 13.26 on page 388. However,
to permit independent testing and use of the software alternative, the hardware instructions are only exposed to the
compiler when the preprocessor symbol USE_ASM is defined. In the best case, with compiler optimization, the entire
body of the SQRT() function reduces to just two instructions: the square root, and a return.

The IA-64 architecture lacks single hardware instructions for floating-point divide and square root, but Markstein
[Mar00, Chapter 9] shows how they can be implemented with fused multiply-add (FMA) operations using 82-bit
registers with 64-bit significands to produce a final correctly rounded 53-bit significand in the IEEE 754 64-bit format.

The IA-64 executes bundles of up to three instructions simultaneously, although there are restrictions about how
many of each of several instruction classes can appear in a single bundle. For example, bundles may contain at
most one floating-point operation. In addition, bundles may contain, or end with, a stop, indicated by a double
semicolon in assembly code, that forces a delay until the results of previous instructions are available. We display
the computation of the square root as a transliteration of code shown in a vendor manual [IA6406, §6.3.3]. The actual
code is a direct mapping of each of these assignments to single instructions, where each line contains independent
instructions that can execute in parallel:

c = 0.5 g = frsqrta(x) ; ;
h = +c ∗ g + 0 g = +x ∗ g + 0 ; ;
r = −g ∗ h + c ; ;
h = +r ∗ h + h g = +r ∗ g + g ; ;
r = −g ∗ h + c ; ;
h = +r ∗ h + h g = +r ∗ g + g ; ;
r = −g ∗ h + c ; ;
h = +r ∗ h + h g = +r ∗ g + g ; ;
r = −g ∗ g + x ; ;

result = r ∗ h + g

The code cleverly interleaves an iterative algorithm for the square root with an iterative improvement of the estimate
of the reciprocal square root. The code is correct only for nonzero finite x, so the special arguments of ±0, quiet and
signaling NaN, and ±∞ must be handled separately

We assume that x is available in a register at the start of the bundle sequence, and each of the four other variables
is held in a register. Only five of the 128 floating-point registers are needed, and there are no memory accesses at all.
The reciprocal square-root approximation instruction, frsqrta(x), computes 1/

√
x to slightly more than 8 correct bits.

There are 10 instruction groups, 14 bundles, 13 FMA operations, and 27 wasted slots. The final FMA operation is a
variant that simultaneously rounds the 82-bit computation to the 64-bit format. The square root in the 32-bit format
can be handled with one less iteration by dropping the third and fourth stop groups, and the 80-bit format with one
more iteration.

An IEEE 754 64-bit divide on the IA-64 has a similar sequence that fits in 8 stop groups and 10 bundles with an
8-bit reciprocal approximation, 9 FMA operations, and 20 wasted slots.

The IA-64 designers’ intent is that compilers could become smart enough to map other nearby computations into
the empty slots of inline divide and square-root sequences, a technique that is known as software pipelining.

Markstein’s proofs of correct rounding for division and square root require both the higher intermediate preci-
sion, and the wider exponent range, of the 82-bit format on IA-64, so the instruction sequences are not directly usable

242 Chapter 8. Roots

on systems that provide only 64-bit FMA operations.
A subset of the architectures with hardware square root also provide instructions for approximating and iterating

the computation of the reciprocal square root. However, we do not take advantage of that hardware support because
of its uncertain rounding behavior. Markstein [Mar00, §9.4] reports that exhaustive testing of his compact algorithm
for the reciprocal square root shows that it is always correctly rounded for the 32-bit format, but finding proofs of its
rounding characteristics for the 64-bit and 80-bit formats is an open and unsolved problem.

8.7 Summary

The square root and inverse square root are common in computation, whereas the cube root, and higher roots, are
rare. In this chapter, we have shown how effective algorithms for close approximations to roots lead to relatively
short computer programs. However, achieving the goal of always-correct rounding of roots is difficult without access
to arithmetic of higher precision. The fused multiply-add operation is a critical component for correctly rounded
square root, and helpful, though not sufficient, for other roots.

The IA-64 algorithms for square root and divide are good examples of the value of the FMA instruction in practi-
cal computation. That operation is likely to be more widely available in future hardware platforms, and is required
by IEEE 754-2008, so it is worthwhile to design new algorithms to be able to exploit it. The FMA was added to some
AMD64 processors in late 2008, and to an implementation of the SPARC architecture in late 2009, although neither
is available to this author. Sadly, the FMA is absent from the most widely deployed desktop CPU architecture, the
IA-32 and AMD64, except in still-rare CPU models.

9 Argument reduction

REDUCTION, n.: (G) THE TRANSFORMATION OF AN

ALGEBRAIC EXPRESSION INTO ANOTHER OF A SIMPLER KIND.

— New Century Dictionary (1914).

Elementary functions whose argument range is large can often be related to similar functions with diminished
arguments, where those functions are more easily, and more accurately, computed. The ultimate accuracy of elemen-
tary functions depends critically on how well that argument reduction is carried out, and historically, that has been
the weak point in many vendor libraries. Although the argument-reduction problem is usually easy to state, it is not
easy to solve, because it often requires access to arithmetic of higher precision than is available.

The argument-reduction problem is most challenging for those trigonometric functions that are defined for argu-
ments over the entire real axis, yet are periodic, repeating their behavior in a small interval about the origin in other
intervals translated along the axis. The reduction problem also exists for logarithmic, exponential, and hyperbolic
functions, but is usually less severe, either because the reduction can be carried out exactly by decomposition of the
floating-point data format, or because the functions soon overflow or underflow, drastically limiting the argument
range over which they can be represented in floating-point arithmetic.

In this chapter, we examine the reduction problem primarily for the worst case of the trigonometric functions.
We describe how the problem can be simply solved for a sharply limited argument range, and then show how
the range can be extended to cover most practical needs with only a modest programming effort. Algorithmic
discoveries in the 1980s and 1990s provide a definitive solution of the argument-reduction problem, but at the cost of
significant programming complexity. However, once such a portable implementation is available, the major difficulty
in achieving high accuracy in the computation of some of the elementary functions is swept away. This book provides
possibly the first detailed exposition and programming of exact reduction.

9.1 Simple argument reduction

The trigonometric functions are defined over the entire real axis, but their values are completely determined by their
behavior over an interval [0, π/2]. We therefore need to be able to reduce an arbitrary argument x to the nearest
integer multiple of π, plus a remainder, as x = nπ + r, where r lies in [−π/2,+π/2]. Other reductions are possible
as well, as shown in Table 9.1 on the following page.

Because r can be negative, care must be taken to avoid loss of leading digits in table entries that require argument
shifting. For example, accuracy loss in the argument of the entry sin(π/4 + r) can be handled as follows. Replace
r by f π/4 to get sin(π/4 + r) = sin((1 + f)π/4). When r ≈ −π/4, we have f ≈ −1, so computation of 1 + f to
working precision requires both f and r accurate to about twice working precision. That problem is avoided if the
reduction is done with respect to π or π/2.

Although the reduction looks trivial, it is not, for exactly the same reasons that the remainder functions are hard
to compute (see Section 6.15 on page 146): when x is large, the subtraction r = x − nπ suffers massive loss of leading
digits. The value nπ needs at least t (the significant precision) more digits than there are in the integer part of the
largest floating-point number. Thus, for the IEEE 754 80-bit and 128-bit binary formats, it appears that we need both
n and π accurate to about 5000 decimal digits, where n is obtained from round(x/π). We investigate the minimum
precision required more carefully in the next section on page 251.

The traditional solution to the problem is to pretend that it does not exist, either by arguing that it is the user’s
responsibility to do a sensible argument reduction, preferably by exact analytical means in the computational for-
mulas that need the trigonometric functions, or by suggesting that higher precision should be used. For example,
when x > βt−1, x has no fractional digits at all in the available precision, so adjacent machine numbers sample the
trigonometric function at most six times per period of 2π. We can see that effect with a high-precision calculation in
Maple for IEEE 754 32-bit values in both binary and decimal formats by choosing x big enough to make ε = 1:

© Springer International Publishing AG 2017
N.H.F. Beebe, The Mathematical-Function Computation
Handbook, DOI 10.1007/978-3-319-64110-2_9

243

244 Chapter 9. Argument reduction

Table 9.1: Trigonometric argument reduction as x = n(π/k) + r for various choices of k. Larger k values increase
the number of regions in which separate approximations, such as fits to rational polynomials, must be applied, but
allow shorter polynomials and faster evaluation, and as described in the text, require r to higher precision.

x = nπ + r
n mod 2 0 1
cos(x) cos(r) − cos(r)
sin(x) sin(r) − sin(r)

x = nπ/2 + r
n mod 4 0 1 2 3
cos(x) cos(r) − sin(r) − cos(r) sin(r)
sin(x) sin(r) cos(r) − sin(r) − cos(r)

x = nπ/4 + r
n mod 8 0 1 2 3
cos(x) cos(r) cos(π/4 + r) − sin(r) − sin(π/4 + r)
sin(x) sin(r) sin(π/4 + r) cos(r) cos(π/4 + r)

n mod 8 4 5 6 7
cos(x) − cos(r) − cos(π/4 + r) sin(r) sin(π/4 + r)
sin(x) − sin(r) − sin(π/4 + r) − cos(r) − cos(π/4 + r)

x = nπ/8 + r
n mod 16 0 1 2 3
cos(x) cos(r) cos(π/8 + r) cos(π/4 + r) cos(3π/8 + r)
sin(x) sin(r) sin(π/8 + r) sin(π/4 + r) sin(3π/8 + r)

n mod 16 4 5 6 7
cos(x) − sin(r) − sin(π/8 + r) − sin(π/4 + r) − sin(3π/8 + r)
sin(x) cos(r) cos(π/8 + r) cos(π/4 + r) cos(3π/8 + r)

n mod 16 8 9 10 11
cos(x) − cos(r) − cos(π/8 + r) − cos(π/4 + r) − cos(3π/8 + r)
sin(x) − sin(r) − sin(π/8 + r) − sin(π/4 + r) − sin(3π/8 + r)

n mod 16 12 13 14 15
cos(x) sin(r) sin(π/8 + r) sin(π/4 + r) sin(3π/8 + r)
sin(x) − cos(r) − cos(π/8 + r) − cos(π/4 + r) − cos(3π/8 + r)

% maple
...
> Digits := 100:
> x := 2**23:
> for k from 0 to 5 do
> printf("sin(x + %d * epsilon) = % .7f\n", k, sin(x + k))
> end do:
sin(x + 0 * epsilon) = 0.4322482
sin(x + 1 * epsilon) = -0.5252557
sin(x + 2 * epsilon) = -0.9998419
sin(x + 3 * epsilon) = -0.5551781
sin(x + 4 * epsilon) = 0.3999139
sin(x + 5 * epsilon) = 0.9873269

> x := 10**6:
> for k from 0 to 5 do
> printf("sin(x + %d * epsilon) = % .7f\n", k, sin(x + k))

9.1. Simple argument reduction 245

> end do:
sin(x + 0 * epsilon) = -0.3499935
sin(x + 1 * epsilon) = 0.5991474
sin(x + 2 * epsilon) = 0.9974350
sin(x + 3 * epsilon) = 0.4786854
sin(x + 4 * epsilon) = -0.4801653
sin(x + 5 * epsilon) = -0.9975543

Cody and Waite take the view that a modest range of |x| somewhat greater than their reduced interval of [0, π/2]
should be supported. For example, if we allow |x| up to about 100π, then by working in a precision extended by
about three more decimal digits, we can often compute the remainder exactly.

If a sufficiently higher precision is available, then code like this

hp_t x_hp;
...
x_hp = (hp_t)x;
r = (fp_t)(x_hp - HP_ROUND(x_hp * HP_ONE_OVER_PI) * HP_PI);

does the job, with obvious definitions of the rounding function and the constants.
Otherwise, Cody and Waite first determine n by

fp_t n;
...
n = ROUND(x * ONE_OVER_PI);

where the constant is the closest machine number to 1/π. They next introduce two constants c1 and c2 such that
c1 + c2 approximates π to a few digits more than working precision. For binary arithmetic, they propose two pairs:

c1 = 201/64, use when t ≤ 32,
= 3.140 625, exact decimal value,
= 0o3.11p0, exact octal value,
= 0x3.24p0, exact hexadecimal value,

c2 = 9.676535897932e-04,

c1 = 3217/1024, use when t > 32,
= 3.141 601 562 5, exact decimal value,
= 0o3.1104p0, exact octal value,
= 0x3.244p0, exact hexadecimal value,

c2 = -8.9089102067615373566167205e-06.

The first pair provides about eight additional bits of precision, and the second pair, about twelve extra bits.
If the floating-point design has a guard digit for subtraction, as modern systems do, then the reduction can be

done like this:

volatile fp_t r;
/* ... code omitted ... */
r = ABS(x) - n * C1;
STORE(&r);
r -= n * C2;
STORE(&r);

When there is no guard digit, the reduction requires an additional step to split x into integer and fractional parts, to
make it more likely that, if a trailing digit is lost during any alignment needed for the subtraction, then it is a zero
digit:

volatile fp_t r;
fp_t x1, x2;

246 Chapter 9. Argument reduction

/* ... code omitted ... */
x1 = TRUNC(ABS(x));
x2 = ABS(x) - x1;
r = x1 - n * C1;
STORE(&r);
r += x2;
STORE(&r);
r -= n * C2;
STORE(&r);

In both cases, we have written the computation so as to avoid assuming that parentheses are obeyed, and to expose
opportunities for fast fused multiply-add operations.

The volatile keyword and STORE() calls are essential to preserve the required evaluation order. However, the
comma operator in C guarantees that its operands are evaluated in order, starting with the leftmost one, so we could
use comma expressions instead like this:

fp_t r;
/* ... code omitted ... */
(r = ABS(x) - n * C1, r -= n * C2); /* if guard digit */
(r = x1 - n * C1, r += x2, r -= n * C2); /* if no guard digit */

Many programmers find the comma operator uncomfortable in situations like those, so we henceforth stick with the
more verbose code that makes clear that the evaluation order is being strictly controlled. The comma and comma-free
versions are not computationally equivalent on some systems, because on architectures with long internal registers,
the comma expression permits r to be computed in higher precision. That extra precision is helpful, and does no
harm here.

Cody and Waite choose a limit YMAX with the value trunc(πβt/2) to ensure that these conditions are satisfied:

� n is exactly representable.

� Both nc1 and (n − 1
2)c1 are exactly representable.

� A rounding error in the last digit of y = |x| should produce a relative error in sin(y) no larger than β−t/2 for
y < YMAX.

If |x| > YMAX, then at least one of those conditions fails to hold, and remedial action is called for. Cody and Waite
suggest printing an error message, and then either returning 0.0, or accepting the reduced argument r as exact, and
continuing normally. Some implementations of the trigonometric functions instead return a NaN when they can no
longer do accurate argument reduction.

Although Cody and Waite do not do so, one can argue that if a return value of 0.0 is chosen for either cos(x) or
sin(x), then the return value for the other should be 1.0, so that the mathematical identity for the sum of the squares
of the cosine and sine is preserved.

Unfortunately, the Cody/Waite reduction is inaccurate when x is near a multiple of π. In the worst case, x is
the floating-point value just below or just above the nearest machine number to that multiple. The subtraction that
forms r loses all but the last digit of x, and their two-step reduction recovers only as many extra digits of nπ as the
sum c1 + c2 represents: eight to twelve bits.

We can improve the reduction by representing π to at least twice working precision as a sum of terms, for all but
the last of which the products nck are exact. A Maple procedure makes it easy to generate the needed terms as a C
array declaration with exactly representable rational numbers as initial values:

asplit := proc(x, n, base, kmax, Cname)
local b, c, d, j, k, sum:
b := base**(n):
sum := 0:
printf("\n"):
printf("static const fp_t C[] =\n{ /* sum(k) C[k] = %s */\n", Cname):
printf("#define D_ FP(%a.0)\n", b):

9.1. Simple argument reduction 247

for k from 1 do

if (evalb(k = kmax)) then
printf(" /* %d */ FP(%.*g)\n", k - 1, min(35,Digits), x - sum):
sum := x:
break

end if:

d := evalf(b**k):
c := evalf(round((x - sum) * d)):
printf(" /* %d */ FP(%a) / (D_", k - 1, c):

for j from 2 to k do printf(" * D_") end do:

printf("),\n"):
sum := sum + c / d:

if (evalb(evalf(abs((x - sum)/x)) < 10**(-Digits))) then
break

end if

end do:

printf("#undef D_\n"):
printf("};\n\n"):

end proc:

We can use that procedure to find expansions of π for the IEEE 754 32-bit binary and decimal formats like this:

> Digits := 40:

> asplit(Pi, 10, 2, 5, "pi"):

static const fp_t C[] =
{ /* sum(k) C[k] = pi */
#define D_ FP(1024.0)

/* 0 */ FP(3217.) / (D_),
/* 1 */ FP(-9.) / (D_ * D_),
/* 2 */ FP(-350.) / (D_ * D_ * D_),
/* 3 */ FP(134.) / (D_ * D_ * D_ * D_),
/* 4 */ FP(-3.30279907448531851112350178e-13)

#undef D_
};

> asplit(Pi, 4, 10, 5, "pi"):

static const fp_t C[] =
{ /* sum(k) C[k] = pi */
#define D_ FP(10000.0)

/* 0 */ FP(31416.) / (D_),
/* 1 */ FP(-735.) / (D_ * D_),
/* 2 */ FP(3590.) / (D_ * D_ * D_),
/* 3 */ FP(-2068.) / (D_ * D_ * D_ * D_),
/* 4 */ FP(3.8462643383279502884197e-17)

#undef D_
};

The mathcw library provides a general function to reduce a normal argument as x = n×C+ r, where n is returned via
a pointer argument, r is the function value, C is represented by the array c[n_c], and 1/C is supplied as c_inverse:

248 Chapter 9. Argument reduction

fp_t
REDUCE(fp_t x, fp_t c_inverse, int n_c, const fp_t c[/*n_c*/], int *pn, fp_t *perr)
{

fp_t r, xn;
volatile fp_t err;

err = ZERO;
xn = ROUND(x * c_inverse);

if (xn == ZERO) /* handle common case quickly */
r = x;

else
{

int k;
fp_t c_hi, c_lo;
volatile fp_t r_hi, r_lo, sum;

#if B == 2
fp_t c_half;

#else
volatile fp_t c_half;

#endif

#if defined(HAVE_GUARD_DIGIT)
sum = x - xn * c[0]; /* EXACT */
STORE(&sum);

#else
{ /* compute sum = (x1 + x2) - n*c[0] accurately */

volatile fp_t x1, x2;

x1 = TRUNC(x);
STORE(&x1);
x2 = x - x1; /* EXACT */
STORE(&x2);
sum = x1 - xn * c[0]; /* EXACT */
STORE(&sum);
sum += x2;
STORE(&sum);

}
#endif /* defined(HAVE_GUARD_DIGIT) */

c_hi = c[0];
c_lo = ZERO;
err = ZERO;

for (k = 1; k < n_c; ++k)
{

fp_t t;
volatile fp_t new_sum;

t = -xn * c[k]; /* EXACT */
new_sum = sum + t;
STORE(&new_sum);
err += sum - new_sum;
STORE(&err);
err += t;
STORE(&err);

9.1. Simple argument reduction 249

sum = new_sum;
c_lo += c[k];

}

r_hi = sum;
r_lo = err;

/*
** We now have computed the decomposition
**
** x = n * C + r,
** r = r_hi + r_lo
**
** where
**
** C = sum(k=0:(n_c-1)) c[k]
**
** However, if x is close to a half-integral multiple of C,
** perhaps we should instead have computed
**
** x = (n + 1) * C + s
** or
** x = (n - 1) * C + t
**
** We can tell whether one or the other of those adjustments
** is needed by checking whether r lies outside the interval
** [-C/2, +C/2].
*/

#if B == 2
c_half = HALF * (c_hi + c_lo);

#else
c_half = HALF * c_hi;
STORE(&c_half);
c_half += HALF * c_lo;

#endif

r = r_hi + r_lo;
err = r_hi - r;
STORE(&err);
err += r_lo; /* (r + err) == (r_hi + r_lo) */

if (r < -c_half)
{

xn--;
r += c_hi; /* EXACT */
r += c_lo;

if (r > c_half)
r = c_half;

}
else if (c_half < r)
{

xn++;
r -= c_hi; /* EXACT */
r -= c_lo;

250 Chapter 9. Argument reduction

if (r < -c_half)
r = -c_half;

}
}

if (perr != (fp_t *)NULL)
*perr = err;

if (pn != (int *)NULL)
{

if ((fp_t)INT_MAX < B_TO_T) /* INT_MAX + 1 is EXACT */
*pn = (int)FMOD(xn, (fp_t)INT_MAX + ONE);

else if ((TWO_TO_23 < B_TO_T) && ((sizeof(int)/sizeof(char)) * CHAR_BIT > 23))
*pn = (int)FMOD(xn, TWO_TO_23);

else
*pn = (int)FMOD(xn, FP(32768.0));

}

return (r);
}

Because the reduction code is intended primarily for controlled internal use in the mathcw library, it makes no checks
for Infinity and NaN arguments. The common case where the argument is already in the reduced range is detected
by the test for a zero value of xn, and treated quickly without further unnecessary computation.

The code handles the first entry in the constant array, c[0], differently, depending on whether there is a guard
digit or not. The loop accumulates the contributions of the remaining entries, c[k], to the function value, using the
pair sum and err to represent the result to roughly twice working precision.

Tests of the original and extended five-term argument reductions for random x values logarithmically distributed
in [0, 1000] show that they produce correctly rounded r values about 97% of the time for 32-bit arithmetic, and 99% of
the time for 64-bit arithmetic. However, in the remaining 1% to 3% of the tests where that is not the case, the original
reduction can produce errors of thousands of ulps, whereas the extended version keeps the errors below one ulp.

It is clear that improving the accuracy of the machine representation of π helps, so the argument reduction should
always be performed in the highest available hardware precision.

9.2 Exact argument reduction

About 1982, Mary Payne and Robert Hanek at DEC [PH83a, PH83b], and independently, Robert Corbett at the
University of California, Berkeley [Ng92], proposed and implemented trigonometric argument reduction that almost
always produces r values correct to the last digit, for all representable x values.

The obvious brute-force way to reach that goal is to use multiple-precision arithmetic, with the reduction con-
stants, such as π or π/2, represented to at least t digits more than those of a number whose digits span the entire
floating-point range. With a package developed by this author, the reduction then takes the form:

fp_t r, x;
mp_t r_mp, n_mp, x_mp;

MP_FROM_FP_T(&x_mp, x); /* convert x to m.p. */
MP_MUL(&n_mp, &x_mp, &one_over_pi); /* n = x * (1/PI) */
MP_ROUND(&n_mp, &n_mp); /* n = round(n) */
MP_FMS(&r_mp, &n_mp, &pi, &x_mp); /* r = n * PI - x */
r = -MP_TO_FP_T(&r_mp); /* r = x - n * PI */

Additional code is required to extract the low-order bit of n, which is needed to determine the correct sign of the
result (see the first block of Table 9.1 on page 244).

A one-time initialization computes the two stored constants from the decimal representation of π:

9.2. Exact argument reduction 251

static mp_t pi, one_over_pi;
mp_t one;

MP_FROM_STRING(&pi, PI_STR); /* convert PI string to m.p. */
MP_FROM_FP_T(&one, FP(1.0)); /* convert 1.0 to m.p. */
MP_DIV(&one_over_pi, &one, &pi); /* form 1/PI */

For t-digit arithmetic in base β, the number of base-β digits needed appears to be about EMAX− EMIN+ 2t, where the
two macros are the exponents of the largest and smallest normal numbers. We need 2t, rather than t, extra digits
to allow for subnormals, because their digits extend up to t more digits to the right in a fixed-point representation.
However, the computations should be done with a few extra digits to allow for correct rounding, with high proba-
bility, of halfway cases. The macro PI_STR is therefore defined to be a string of about 220 digits for 32-bit arithmetic,
810 digits for 64-bit arithmetic, and 12 370 digits for the 80-bit and 128-bit formats. Those string lengths suffice for
both binary and decimal arithmetic, as well as for most historical architectures (see Table 4.2 on page 65, Table D.1
on page 929, and Appendix H on page 947). However, a future 256-bit decimal format will require about 3 145 900
digits.

To make the required number of digits more precise, in unpublished notes dated March 1983 and titled Minimizing
q × m − n, Kahan shows how to compute the closest rational approximation, n/m, to an irrational number q, for m
in a prescribed interval, using continued fractions (see Section 2.7 on page 12). He implemented the idea in a BASIC
program, now apparently lost. Fortunately, the code was reimplemented in C a few months later by graduate student
Stuart McDonald in a program file nearpi.c that contains Kahan’s notes in a leading comment block, and that file is
available online [Kah83].

McDonald’s program is written in old-style C specifically for the VAX architecture, and requires an input file
with up to 2500 terms of the continued-fraction expansion of π, terminated with a negative value. Unfortunately,
that input file is not included with the program. This author cleaned up the code for use with modern compilers and
architectures to produce a companion file fixed-nearpi.c that is included with the mathcw library distribution. The
missing data file can be created with just two UNIX command lines when Maple is available:

% printf ’convert(Pi, confrac, 2400);’ | maple -q | sed -e ’s/[][,]/\n/g’ -e ’s/ //g’ > nearpi.dat
% printf "%d\n" -1 >> nearpi.dat

McDonald’s code is complex because it simulates arithmetic of high precision without providing a general multiple-
precision system. Also, it produces lengthy output that must be sorted to find the smallest residual, q × m − n, and
the corresponding values of m and n.

The work at DEC appeared only in a newsletter of small circulation and seems to have received little notice
outside the numerical-analysis community, and the Berkeley work was never published. About decade later, Roger
Smith at Motorola independently discovered and published the continued-fraction method for finding the worst
cases for argument reduction [Smi95].

Jean-Michel Muller gives a much shorter, and more general, program in Maple [Mul97, pages 152–153] that finds
the worst cases for argument reduction with respect to any constant C, because several other elementary functions
also require accurate reduction. Muller also provides a good description of the continued-fraction analysis. A version
of Muller’s program modified to produce more compact output is included in the file jmmred.map in the mathcw
library distribution. Muller’s algorithm requires experimentation to find a suitable precision for the computation,
so an extra procedure added to that file provides a way to repeat the job for a range of precisions, and yet another
procedure encapsulates the computations at the precisions needed for several floating-point systems.

Table 9.2 on the next page summarizes the results of Muller’s program for current and important historical
architectures for reduction with respect to π/2 (a common choice in many implementations of the cosine and sine)
and π. There are several points to note about the data in that table:

� Although the results for the smaller ranges are computed in a few seconds on a fast workstation, those for the
widest ranges take about 15 minutes each.

� The computations must be carried out in a decimal precision that is a few percent larger than the number of
decimal digits in the integer part of the maximum normal number.

� The worst-case argument for trigonometric reduction is not always a huge number, because four platforms in
that table have negative exponents in the fourth column, and the PDP-10 36-bit case has a small exponent. For

252 Chapter 9. Argument reduction

Table 9.2: Exactly representable values near nπ/2 and nπ. These are the worst cases for trigonometric argument
reduction.
Digits is the decimal precision required in Maple to determine the worst case, and t is the platform precision in
base-β digits. The base is recorded in the power in the fourth column.
The floor of entries in the second-last column is roughly the number of leading zero base-β digits in the residual
r = x − nπ/2. See the text for examples.
The last column is the minimum number of decimal digits required in the representation of π/2. The digit count
needed for reduction by π may differ by one from that number.
The largest exponent for the sample decimal calculator is 99, whereas that for the other systems is the expected EMAX.
That value is available as the constants FLT_MAX_EXP, DBL_MAX_EXP, and LDBL_MAX_EXP in <float.h>, and similar ones
in <decfloat.h>.
The worst cases for reduction with respect to π are double those for reduction by π/2, except for eight cases noted
in the first column.

Platform Digits t worst-case x − logβ(r) d(π/2)
Decimal 10D calculator (π/2) 120 10 8 248 251 512 ×10−6 11.67 121
Decimal 10D calculator (π) 120 10 4 125 967 807 ×1014 11.40 121
IBM S/360 32-bit (π/2) 90 6 13 953 140 ×1637 7.38 91
IBM S/360 32-bit (π) 90 6 10 741 887 ×163 6.97 91
IBM S/360 64-bit 100 14 14 635 640 253 018 919 ×1634 15.31 109
IBM S/360 128-bit (π, π/2) 120 28 5 148 095 012 591 940 008 617 327 381 075 435 ×1634 29.82 140
IEEE 754 32-bit 50 24 16 367 173 ×272 29.21 72
IEEE 754 64-bit 330 53 6 381 956 970 095 103 ×2797 60.89 380
IEEE 754 80-bit 5000 64 17 476 981 849 448 541 921 ×210531 75.54 5019
IEEE 754 128-bit 5000 113 8 794 873 135 033 829 349 702 184 924 722 639 ×21852 123.25 5082
IEEE 754 32-bit dec. (π, π/2) 110 7 4 327 189 ×1042 9.72 113
IEEE 754 64-bit dec. (π, π/2) 410 16 8 919 302 781 369 317 ×10296 19.22 420
IEEE 754 128-bit dec. (π, π/2) 6200 34 9 308 532 438 209 917 461 067 659 354 862 169 ×104639 37.68 6216
PDP-10 36-bit 50 27 133 620 862 ×22 30.83 75
PDP-10 KA10 72-bit 140 54 12 822 055 925 551 548 ×2−48 60.49 111
PDP-10 KL10 72-bit D-floating 140 62 2 539 651 352 978 210 059 ×2−52 67.21 121
PDP-10 KL10 72-bit G-floating 330 59 557 088 013 743 460 028 ×2871 66.84 387
VAX 32-bit F-floating 50 24 16 367 173 ×272 29.21 71
VAX 64-bit D-floating 60 56 25 644 111 851 103 096 ×2−49 60.49 113
VAX 64-bit G-floating 330 53 6 381 956 970 095 103 ×2797 60.89 379
VAX 128-bit H-floating 5000 113 8 794 873 135 033 829 349 702 184 924 722 639 ×21852 123.25 5082

the latter, the reduction looks like this:

x = 133 620 862 × 22

= 534 483 448,

n = round(x/(π/2))
= 340 262 731,

r = x − nπ/2
= 534 483 448 −

534 483 448.000 000 000 522 316 639 536 881 693 . . .
= − 0.000 000 000 522 316 639 536 881 693 . . .

The worst case in the ten-digit calculator for reduction with respect to π involves a string of 25 consecutive 9’s,

9.3. Implementing exact argument reduction 253

and loss of 35 leading digits:

r = 412 596 780 700 000 000 000 000 −
412 596 780 699 999 999 999 999.999 999 999 995 979 186 446 461 . . .

= 0.000 000 000 004 020 813 553 538 . . .

� Recovery of the residual r = x − nπ/2 needs as many digits in π/2 as there are before the point in x, plus
enough digits after the point to extract r to full accuracy. The decimal-digit counts in the last column are
notably smaller than our earlier rough predictions, and do not include extra digits needed for correct rounding.

� The number of leading zeros in r predicted by the second-last column when β = 2 is not far from the sum
of t and the exponent width. That allows us to make a reasonable estimate of the worst cases for the future
256-bit formats. Those cases are unlikely to be computable in Maple because of the much larger number of
digits required for the computation, and the much greater exponent range to be investigated.

� For the narrower exponent ranges of older systems and shorter formats, a few dozen words can represent π/2
to sufficient accuracy, and even a brute-force multiple-precision reduction should be reasonably fast.

9.3 Implementing exact argument reduction

The Payne/Hanek algorithm [PH83a, PH83b] is difficult to understand. Its presentation occupies several pages of
their articles, and they provide no information at all about its conversion into a computer program.

The critical observation that led to their discovery is that the reduction r = x − nc involves subtraction from x of
a product nc that possibly requires thousands of digits for current floating-point architectures, yet the result, r, needs
at most a few dozen digits. Because of the relations in Table 9.1 on page 244, we do not require an exact value for
n, but only knowledge of a few of its low-order bits. If we can avoid computing the digits that are discarded in the
subtraction, then we have a fast algorithm for argument reduction.

The many-digit integer n is obtained from round(x/c), so the most difficult job is the multiplication of x by 1/c.
If we consider that product as a binary number, then we can split it into three nonoverlapping parts, like this:

L: leftmost bits M: middle bits R: rightmost bits
↑
· binary point

The binary point lies somewhere inside M, and if we ensure that there are at least three bits in M to its left, then L,
extended with m (≥ 3) zero bits to the position of the point, must be an integer divisible by eight. For c = π, c = π/2,
and c = π/4, L × 2m × c is therefore a multiple of 2π. That value is the period of the cosine and sine, so L × 2m × c,
containing possibly thousands of digits, cannot affect the function values, and thus, need not be computed at all.

It is most convenient to compute r indirectly, by writing x = nc + r = (n + f)c, where | f | ≤ 1
2 and r = f c. Then

x/c = n + f , and when f is positive, it is just the fraction whose bits follow the binary point in M, and continue into
R. We defer consideration of negative f until later.

Smith [Smi95] splits x into the exact product of a t-bit integer, X, and a power of two, an operation for which we
have standard library functions.

To determine how many bits are required in M to compute a correctly rounded value for f , we need to know
how many zero bits there can be after the binary point, in the worst case. That question is answered by the results in
the second-last column of Table 9.2 on the preceding page. From that table, for IEEE 754 32-bit arithmetic, we have
at most w = 29 worst-case zero bits after the point. We need t = 24 more for the significand of r, plus a few more,
say g, guard bits for correct rounding of f .

If we include m + w + t + g bits in M, then f is determined to machine precision entirely from M, and the part R,
which contains an infinite number of bits when c is irrational, can be ignored. Although we know g, t, and w, we do
not yet know a precise value for m.

254 Chapter 9. Argument reduction

M is too big to represent in any standard integer or floating-point type, so we need to store it in a multiword
array. It is most convenient to use the same representation for M, 1/c, and X, as polynomials in a large base, D:

1/c =
n_c−1

∑
k=0

cinv[k]× D−k,

M = 2-nf
n_m

∑
k=0

cm[k]× Dk,

X =
n_x

∑
k=0

cx[k]× Dk.

The number of fractional bits in M is nf. It determines the position of the binary point, but we defer its evaluation.
The coefficients are whole numbers lying in [0, D), and they can be stored as either integer or floating-point

values, with the constraints that D must be chosen such that sums of a few products of coefficients can be computed
exactly, and that D is a power of the base β.

For example, we could pick D = 212 = 84 = 163 = 4096 for the case of an int representation, because all current
and historical implementations of C provide at least 16 bits for that data type. A product of two coefficients can then
be represented in 24 bits, and C89 guarantees that a long int contains at least 32 bits. That type provides the extra
bits needed for the sum of products.

For a floating-point representation of the coefficients, a reasonable choice for β = 2 and β = 16 is D = 220 =
165 = 1 048 576, because that can be stored in a float on all architectures (the wobbling precision of IBM System/360
limits portable code to at most 21 bits). For β = 8, choose D = 221 = 87 = 2 097 152 instead. A value of type double
can then hold an exact product of two coefficients on all current and historical platforms (see Table H.1 on page 948),
except for the deficient Harris systems.

The more bits that can be held in a coefficient, the fewer the number of terms in the expansions of 1/c, M, and
X. Computation of M × X requires two nested loops to form the coefficient products, so we expect that doubling
the number of bits in a coefficient should halve the loop limits, and make the loop pair run up to four times faster.
However, the platform-dependent relative speed of integer and floating-point arithmetic, and the additional compli-
cation of compiler optimization and our limited flexibility in the choice of D, makes it impossible to predict which
of the two data types is optimal. In the mathcw library, we therefore provide two families of functions for argument
reduction, with these prototypes:

fp_t EREDUCE(fp_t x, fp_t c, int n_c, const fp_t cinv[/* n_c */], int *pn, fp_t *perr, int b);
fp_t ERIDUCE(fp_t x, fp_t c, int n_c, const int cinv[/* n_c */], int *pn, fp_t *perr, int b);

The argument c is the reduction constant correct to working precision, and n_c is the number of coefficients stored
in cinv[], which represents 1/c to high precision. The eight low-order bits of n are returned through the pointer
pn, and b is the maximum number of bits used in a coefficient, implicitly defining D = 2b. The functions return the
correctly rounded reduced argument, r.

If their last pointer argument is nonzero, the functions also provide a correction such that the sum of the return
value and that correction represents the reduced argument to roughly twice working precision. The correction term
can later be used for fine-tuning computed results to adjust for the rounding error in the reduced argument.

Extensive testing of those function families on all major desktop architectures shows that the integer versions are
uniformly faster, by about 10% to 30%. In the following, we therefore present the code only for integer coefficients.
The code for the functions with floating-point coefficients differs in about 20 of the 150 or so nonempty lines of code
(excluding comments and assertions), due to the change in data types and operations needed to work on the data.

Although the argument reduction provided by our functions is primarily of interest for the trigonometric ele-
mentary functions, they might also be useful elsewhere, so we provide them as public functions, and take additional
precautions in their coding to ensure that they work as intended.

Because the reduction code is lengthy, we present it as a semi-literate program, with descriptive prose followed
by fragments of code. The algorithm depends upon exact extraction of powers of two, and is therefore usable only
when the base is two, or an integral power thereof. Thus, although we provide decimal companions, their invocation
generates a run-time error and job termination through a failing assertion:

fp_t
ERIDUCE(fp_t x, fp_t c, int n_c, const int cinv[/*n_c*/], int *pn, fp_t *perr, int b)

9.3. Implementing exact argument reduction 255

{
fp_t err, result;
int n;

#if !((B == 2) || (B == 8) || (B == 16))
err = ZERO;
n = 0;
result = SET_EDOM(QNAN(""));
assert((B == 2) || (B == 8) || (B == 16));

#else

With a suitable base, we can begin with the usual tests for NaN and Infinity arguments:

fp_t xabs;

err = ZERO;
n = 0;

if (ISNAN(x))
result = SET_EDOM(x);

else if (ISINF(x))
result = SET_ERANGE(x);

Next, we compute the absolute value of x, and test for the important case where the argument is already in the
reduced range [−c/2,+c/2]:

else if ((xabs = QABS(x), xabs <= HALF * c))
result = x; /* no reduction necessary: x = 0*c + r */

The trigonometric functions make a similar check, and use a faster algorithm when x is not too large. However,
because the code is available to users, we need the check here as well: assumptions in the next block require that n
be nonzero. Compared to the work in the remainder of the code, the cost of the three initial tests is negligible.

A negative x is accounted for later, just before the function returns.
When β �= 2, the expression HALF * c may not be computed exactly. On such systems, it is better to make the test

externally with a correctly rounded value of c/2, and avoid calling the function unless |x| > c/2.
The real work begins in the next block, which starts with declarations of three argument-dependent constants:

else
{

const fp_t D_ = (fp_t)((long int)1 << b);
const fp_t D_inv = ONE / D_;
const unsigned long int chunk_mask = (unsigned long int)(((long int)1 << b) - (long int)1);

We use D_ for the expansion base to avoid a conflict with the macro D that is used in the mathcw library header files
for the decimal precision. Both D_ and D_inv depend on the argument b, but are constant in the remainder of the
function. They are exact values, as long as b is reasonable; we check that requirement shortly.

The setting of chunk_mask uses type casts before the constants instead of the more compact 1L so that pre-C89
compilers accept the code.

Declarations of about two dozen local variables come next:

fp_t D_to_k, sum, X;
int c_first, cm[MAX_X_M], cx[MAX_X], e, k, k_first, k_last, m,

M_first, M_last, nf, n_m, n_rbp, n_x, n_xm, q, shift_count;
long int cxm[MAX_X_M];
qp_t cc_inv, dd, dd_inv, ff, rr, xm_int;
unsigned long int mask;

The array dimensions MAX_X and MAX_X_M are set in the header file erid.h. The coefficient arrays all reside on the
stack, so they do not take up permanent storage outside the function, and it does not matter if their lengths are a bit
larger than needed.

256 Chapter 9. Argument reduction

The data type qp_t is the highest available working precision, called quadruple precision on some systems. In
deficient C implementations, it may be the same as double.

Those declarations are followed by definitions of two compile-time constants:

static const int g = 30; /* number of guard bits */
static const int t = FP_T_MANT_DIG;

The value of g could be reduced to obtain a small speedup, or increased to make incorrect rounding less likely. The
chosen value suggests a rounding-error rate of about once in 230 ≈ 109 random arguments, but we soon show that
the rate is even lower.

The value of w is set from data in Table 9.2 on page 252, and overestimating the worst case by a few bits has little
or no cost. The guard bits provide additional insurance against an underestimate of w, such as for the case of the
future 256-bit type, where it may not be feasible to determine the worst case using Muller’s program:

#if T <= 27
static const int w = 30; /* worst-case leading zeros in r */

#elif T <= 56
static const int w = 61;

#elif T <= 64
static const int w = 67;

#elif T <= 113
static const int w = 123;

#elif T <= 237
static const int w = 250; /* reasonable estimate */

#else
#error "eriduce() family not yet implemented for precision > 237"
#endif

We are now ready for some initial setup:

n_x = (FP_T_MANT_DIG + b - 1) / b - 1;
result = ZERO;

The value of n_x is one less than the number of entries available in the array cx[] for holding the polynomial expan-
sion of X.

Next, we check that some critical properties hold in the remainder of the code:

assert(8 <= b);
assert(b < (int)bitsof(int));

#if defined(HAVE_LONG_LONG_INT)
assert(b * 2 < ((int)bitsof(long long int) - 5));

#else
assert(b < ((int)bitsof(long int) - 3));

#endif

assert(b * 2 <= QP_T_MANT_DIG);
assert((b / LOG2_B) * LOG2_B == b);
assert(n_x < (int)elementsof(cx));

The bitsof() macro has a simple definition in the header file prec.h:

#define bitsof(type) (CHAR_BIT * sizeof(type))

It localizes a potential portability problem for historical word-addressed machines, such as the early Cray systems,
and the DEC PDP-10. The C99 Standard has this to say:

The sizeof operator yields the size (in bytes) of its operand, which may be an expression or the parenthesized name of a
type. The size is determined from the type of the operand. The result is an integer. If the type of the operand is a variable length
array type, the operand is evaluated; otherwise, the operand is not evaluated and the result is an integer constant.

9.3. Implementing exact argument reduction 257

When applied to an operand that has type char, unsigned char, or signed char, (or a qualified version thereof) the result
is 1. When applied to an operand that has array type, the result is the total number of bytes in the array. When applied to an
operand that has structure or union type, the result is the total number of bytes in such an object, including internal and trailing
padding.

The value of the result is implementation-defined, and its type (an unsigned integer type) is size_t, defined in <stddef.h>
(and other headers).

On word-addressed systems, packing characters into words may leave bits unused, so the Standard’s assumption
that larger types are multiples of the byte size may not hold. On the 36-bit PDP-10, bytes can be any size from 1
to 36 bits, and characters are normally seven-bit values stored five to a word, with the rightmost (low-order) bit of
the word set to zero. Fortunately, the C implementations on that system by default store four nine-bit characters in
a memory word, and set CHAR_BIT to 9. The early Cray systems have 64-bit words, with CHAR_BIT set to 8, so they
pose no problems.

The six assertions test conditions that are always true when the function is invoked by other members of the
mathcw library, but might not be when it is called by user code:

� We guarantee that the eight low-order bits of n can be reported to the caller through the argument pn. Ensuring
that b is at least eight simplifies later code.

� Coefficient elements of type int must be able to hold a sign and b data bits.

� Sums of up to n_x + 1 products of two coefficients must be representable in values of long int. Our test
ensures that up to 25 = 32 products can be summed exactly. That is enough for sizes up to the 128-bit format
with t = 113: when b = 8, we have n_x+ 1 = 15. It also handles the future 256-bit type with t = 237, where
the worst case of b = 8 has n_x+ 1 = 30.

� Two b-bit chunks must be exactly representable in the significand of type qp_t, so that we can extract the
rightmost bits of the integer part, n.

� The value D = 2b must be a power of the base β. The asserted expression follows from the requirement 2b = βj.
Taking base-2 logarithms gives b = j log2(β), which means that b/ log2(β) must be an integer value.

� The array cx[] must be large enough to contain all of the bits of the significand of x.

Job-terminating assertions are normally undesirable in library code. However, our library is designed to be free of
direct I/O, and the only reasonable alternatives for indicating an argument-data error would be to return a NaN, or
to introduce an additional error-code argument, both of which require post-call checks in user code. A NaN return
provides no clue about what is wrong, and no other functions in the C library or the mathcw library use error-code
arguments. If an assertion fails, the termination message includes a report of the unsatisfied condition, which should
allow the programmer to correct the erroneous calling routine.

A library installer may exploit a requirement of the C language: defining the symbol NDEBUG at compile time
disables all assertions, without requiring code modifications.

Three initializations clear the coefficient arrays:

(void)memset(cxm, 0, sizeof(cxm));
(void)memset(cx, 0, sizeof(cx));
(void)memset(cm, 0, sizeof(cm));

The memset() calls set the coefficient arrays to numerical zeros, whether they are integers, or binary, octal, or hexa-
decimal floating-point values. A pattern of all bits zero is not a canonical decimal floating-point zero (see Section D.3
on page 931), but decimal arithmetic is excluded by our base restriction.

The first computational job is to determine X from |x|:
(void)FREXP(xabs, &e);
X = LDEXP(xabs, t - e);

That guarantees that X = |x| × 2t−e.
For c = π/4, |x| exceeds π/8 ≈ 0.785 × 2−1. The other choices of c = π and c = π/2 have larger minimal |x|

values. For argument reduction in the exponential functions, we are likely to need values c = ln(β), the smallest of
which is ln(2) ≈ 0.693 × 20. We conclude that for the likely choices of c, the condition e ≥ −1 always holds.

258 Chapter 9. Argument reduction

The next task is to split X into its coefficient array by solving for cx[k] in the expansion of X given earlier on
page 254:

D_to_k = LDEXP(ONE, n_x * b); /* D_**n_x */
assert(D_to_k < FP_T_MAX); /* check for overflow */
sum = ZERO;

for (k = n_x; k >= 0; --k)
{

cx[k] = (int)FLOOR((X - sum) / D_to_k);
sum += (fp_t)cx[k] * D_to_k;
D_to_k *= D_inv;

}

All operations inside the loop are exact, and cannot overflow.
Bits in M are numbered by their binary powers, like this, where b has the recommended value of 12:

chunk number

47

− 3
36 35

− 2
24 23

− 1
12 11

0
0 −1

1
−12 −13

2
−24 −25

3
−36

bit number

Smith’s results for the indexes of the first and last bits in M can be computed like this:

q = g + w + 1;
M_first = t - e + 1;
M_last = -(t + 1 + e + q);

We showed earlier that, for the likely choices of c, the smallest value of e is −1, for which M_first = t + 2. Larger
values of x and e reduce the value of M_first. In the worst case, M_first is positive, and we need to handle negative
chunk numbers, even though we don’t store any data at negative coefficient indexes.

The obvious way to convert between bit numbers and coefficient chunk numbers requires different code for
positive and negative numbers. Although we could handle that with a C ternary operator, a better solution is to
index bits starting with a chunk far enough to the left that it will never be referenced. Smith’s analysis shows that we
do not require references to more than a couple of dozen negative chunks, specifically, −�(t + 2)/b�. We therefore
pick chunk −63 as our starting point, and count bits to the right from that. Two macros in the header file erid.h hide
the indexing complexity:

#define LO_BITNUM_OF_WORDNUM(n) (-(n) * b)
#define WORDNUM_OF_BITNUM(n) (-63 + ((int)(64 * (unsigned int)b) - 1 - n) / b)

Because b is in [8, 13] on most systems, there is no possibility of integer overflow in the expansion of the macro WORD-
NUM_OF_BITNUM(). An optimizing compiler might recognize that an unsigned multiplication by 64 can be replaced
by a faster six-bit left shift, but the integer division cannot be avoided because b is not a compile-time constant. In
any event, there are only two evaluations of that macro for each call to ERIDUCE().

The indexes M_first and M_last allow us to determine how many bits there are in M, which we need to know to
estimate the cost of the argument reduction:

bitlength(M) = M_first− M_last+ 1
= (t − e + 1)− (−(t + 1 + e + q)) + 1
= 2t + q + 3
= 2t + g + w + 4.

Because we have chosen g = 30, and Table 9.2 on page 252 shows that w is approximately t + 5 to t + 15, we see
that M has at most 3t + 49 bits. In other words, even though we need 1/c to more than 16,000 bits for the 128-bit
formats, and to about a half-million bits for a future 256-bit format, we never need to compute with bit strings longer
than about 120, 210, 240, 390, and 760 bits in the five extended IEEE 754 binary formats. Because the complexity of

9.3. Implementing exact argument reduction 259

schoolbook multiplication is proportional to the square of the number of digits, that is a huge savings — it is almost
a million times faster for the 256-bit type.

For the limited precisions of older architectures, 200-bit computations could have provided exact argument re-
duction for elementary functions in all programming languages, had the Payne/Hanek discovery been made thirty
years earlier, and more clearly described with freely available, published, and portable, working code. Instead, at
the time of writing this, only a few compiler vendors have implemented exact argument reduction. That may be due
to insufficient interest or understanding, or to lack of programmer awareness of the technique, or to the complexity
of its original description.

The indexes of the coefficients in cm[] that contain the first and last bits of M are given by these variables:

k_first = WORDNUM_OF_BITNUM(M_first);
k_last = WORDNUM_OF_BITNUM(M_last);
assert(k_first <= k_last);

In the first word, we have to extract just the bits that we need before doing arithmetic, but any extra bits in the last
word are just bonus guard bits that enhance the probability of correct rounding.

Of course, it is possible, if unlikely, that there are x values for which our choice of g is too small. Kahan wrote this
remark about logarithm computations [Kah04a], and it applies equally well to the problem of argument reduction
with respect to an irrational constant c:

No general way exists to predict how many extra digits will have to be carried to compute a transcendental
expression and round it correctly to some preassigned number of digits. Even the fact (if true) that a finite number
of extra digits will ultimately suffice may be a deep theorem.

We are now ready to compute the limits for the arrays cm[] and cxm[], and verify that the compile-time storage
sizes are sufficient:

k = M_last - LO_BITNUM_OF_WORDNUM(k_last) + 1;
M_last -= k;
q += k;
n_m = k_last - k_first;
n_xm = n_x + n_m;

assert(0 <= n_m);
assert(n_m < (int)elementsof(cm));
assert(0 <= n_xm);
assert(n_xm < (int)elementsof(cxm));
assert(xabs == LDEXP(X, e - t));

We need a mask to remove any bits in the first chunk that lie before bit number M_first, and we make some more
sanity checks:

shift_count = M_first - LO_BITNUM_OF_WORDNUM(k_first) + 1;
assert(0 < shift_count);
assert(shift_count <= b);
mask = ~((~((unsigned long int)0)) << shift_count);

Later computation is simplified if we copy the bit string from M into its own array, cm[], taking care to provide
zero values for negative indexes in cinv[]:

c_first = (k_first < 0) ? 0 : cinv[k_first];
c_first &= mask;

cm[k_last - k_first] = c_first;

for (k = k_first + 1; k <= k_last; ++k)
cm[k_last - k] = (k < 0) ? 0 : cinv[k];

We are now ready to multiply X by M. This pair of loops is the hot spot of the code, taking most of the execution
time:

260 Chapter 9. Argument reduction

for (k = 0; k <= n_x; ++k)
{

long int cx_k;

cx_k = cx[k];

for (m = 0; m <= n_m; ++m)
{

long int hi, lo, sum;

sum = cxm[k + m] + cx_k * (long int)cm[m];
hi = sum >> b;
lo = sum & chunk_mask;
cxm[k + m] = lo;
cxm[k + m + 1] += hi;

}
}

if (cxm[n_xm + 1] != (long int)0)
n_xm++;

The if statement that follows the loop pair increments the element count if one more coefficient is needed.
Profiling with logarithmically distributed random arguments shows that the element cx[k] is zero with proba-

bility < 1/20 000, so we do not bother to skip the inner loop in that rare case. The integer multiply-add operation
that forms sum generally produces a value outside the range [0, D), so we split it into high and low parts. The low
part is stored directly, but the high part increments the next higher coefficient.

The original prototype for the code delayed the split until after the loop pair, making the code slightly faster
because the split is then done n_x+ 1 fewer times. However, the final version of the loop pair is more complex,
because we actually have three versions of it, one of which is dropped during preprocessing. The reason for the
extra code is that we want to remove the restriction that a sum of products must fit in a long int. On historical
and many current machines, that data type has at least 32 bits, forcing the restriction b < 14, and other constraints
asserted above reduce it further to b = 12. If we could use the C99 long long int, which is mandated to be at least
64 bits, we could allow b to increase to 24, and on some systems, 28, making the loop pair potentially four times
faster.

At the time of writing this, most C compilers on current systems provide a 64-bit integer type, although lim-
itations of the underlying hardware may force it to be implemented in software. The actual code therefore tests
the value of b, and when b < 14, uses a loop pair with a long int accumulator, and otherwise uses loops with an
unsigned accumulator of data type UINT_LEAST64_T, which is the mathcw library name for C99’s uint_least64_t
defined in the C99 system header file <stdint.h>. That header file is included by our header file inttcw.h only in a
C99 environment; otherwise, inttcw.h uses <limits.h> to determine whether a 64-bit type is available.

For older systems that have no support for a 64-bit integer type, we provide our own implementation as a pair of
UINT_LEAST32_T values. That loop pair looks like this:

for (k = 0; k <= n_x; ++k)
{

UINT_LEAST32_T cx_k;

cx_k = (UINT_LEAST32_T)cx[k];

for (m = 0; m <= n_m; ++m)
{

UINT_LEAST32_T result[2];
long int hi, lo;

umul64(result, cx_k, (UINT_LEAST32_T)cm[m]);
uadd32(result, (UINT_LEAST32_T)cxm[k + m]);
hi = (long int)((result[0] << (32 - b)) + (result[1] >> b));

9.3. Implementing exact argument reduction 261

lo = (long int)(result[1] & chunk_mask);
cxm[k + m] = lo;
cxm[k + m + 1] += hi;

}
}

The inner loop invokes two private functions: umul64() produces a double-length product, and uadd32() adds a
32-bit integer to that product. The split into high and low parts is slightly more complex, because the high part is a
b-bit chunk that overlaps both words of the sum of products. However, only four statements in the inner loop need to
be aware of the software arithmetic, whereas had we kept the original code that renormalized the coefficients cxm[]
outside the loop pair, the task would have been more difficult.

We do not address multiple-precision integer arithmetic elsewhere in this book, so we temporarily drop out of
the discussion of the body of ERIDUCE() to display the code for two new functions, and a helper function.

Because we only need positive numbers for the inner loops of the argument reduction, we can avoid the com-
plexity of signed arithmetic by using only unsigned data types. The multiplication to produce a two-word product is
straightforward: split the input factors into 16-bit chunks, then accumulate their four 32-bit products in the result[]
array:

#define MASK16 ((UINT_LEAST32_T)0xffff)

static void
umul64(UINT_LEAST32_T result[2], UINT_LEAST32_T a, UINT_LEAST32_T b)
{ /* result[0] = high product, result[1] = low product */

UINT_LEAST32_T aa[2], bb[2];

aa[0] = (a >> 16) & MASK16;
aa[1] = a & MASK16;

bb[0] = (b >> 16) & MASK16;
bb[1] = b & MASK16;

result[0] = aa[0] * bb[0];
result[1] = aa[1] * bb[1];

uacc16(result, aa[0] * bb[1]);
uacc16(result, aa[1] * bb[0]);

}

Two of the products are easy, but the other two products overlap the array elements, so we handed them off to this
helper function, which adds a shifted value to the double-length product:

#define MASK32 ((UINT_LEAST32_T)0xffffffff)

static void
uacc16(UINT_LEAST32_T result[2], UINT_LEAST32_T a)
{ /* return result + (a << 16) */

UINT_LEAST32_T old, t;

old = result[1];
t = (a & MASK16) << 16;
result[1] += t;

#if INT_MAX != 0x7fffffff
result[1] &= MASK32;

#endif

if ((result[1] < old) || (result[1] < t)) /* have carry bit */
result[0]++;

262 Chapter 9. Argument reduction

result[0] += (a >> 16) & MASK16;

#if INT_MAX != 0x7fffffff
result[0] &= MASK32;

#endif

}

The problem is that the sums can overflow, and we discuss in Section 4.10 on page 72 that integer overflow is
unreported on many systems, neither causing an interrupt, nor setting a status flag. Fortunately, we can detect the
overflow by exploiting a feature of unsigned arithmetic: an overflow bit in addition is simply dropped. Thus, if we
form the unsigned sum u + v and find that it is less than either u or v, overflow has occurred. In that case, we have
a carry bit that must be added to the high part.

Our code also handles machines with word sizes other than 32 bits, such as the 36-bit PDP-10. The preprocessor
then exposes two masking operations that truncate the two words of the result[] array to 32 bits.

The remaining function that adds a 32-bit value to a pair of 32-bit values also requires overflow detection, and
masking to 32 bits when the word size differs from 32:

static void
uadd32(UINT_LEAST32_T result[2], UINT_LEAST32_T a)
{ /* return result + a */

UINT_LEAST32_T old;

old = result[1];
result[1] += a;

#if INT_MAX != 0x7fffffff
result[1] &= MASK32;

#endif

if ((result[1] < old) || (result[1] < a)) /* have carry bit */
{

result[0]++;

#if INT_MAX != 0x7fffffff
result[0] &= MASK32;

#endif

}
}

You might wonder whether the extra complexity of three loop versions, and unsigned 64-bit software arithmetic,
is worthwhile. Timing tests on several systems show that our code with umul64() and uadd32() is a fast as compiler-
generated code that calls run-time library functions to implement 64-bit arithmetic, and our code also works on
systems where such compiler support is absent. When native 64-bit hardware instructions are available, the entire
argument reduction runs about 30% faster than when our 64-bit software arithmetic is used. Reductions with b = 12
and b = 28 run about the same speed when software arithmetic is needed. The important thing is that b can be made
larger everywhere, reducing the storage requirements for the array cinv[] that holds 1/c.

We now return to our discussion of the body of ERIDUCE(). The next task is to identify the location of the binary
point in preparation for extracting the low-order bits of n, and the fraction f :

nf = 2 * t + q; /* number of fractional bits */

The binary point may lie between two chunks, or within a chunk. The first case is easier to handle, because the low
bits of n are just the chunk to the left of the point. The fraction is then just the scaled sum of the remaining chunks in
M. By accumulating that sum in the highest available working precision from smallest to largest terms, we hope to
get a correctly rounded fraction. Once again, there are sanity checks to be made to ensure that all is well:

9.3. Implementing exact argument reduction 263

n_rbp = nf / b - 1; /* cxm[n_rbp] is RIGHT of binary point */
assert((n_rbp + 2) < (int)elementsof(cxm));
dd = QP_LDEXP(QP(1.0), -nf);
assert(dd > QP(0.0)); /* check for underflow disaster */
ff = (qp_t)cxm[0] * dd;

for (k = 1; k <= n_rbp; ++k)
{

dd *= (qp_t)D_; /* exact product */
ff += (qp_t)cxm[k] * dd; /* exact product, accurate sum */

}

The second case is more difficult, because we need to collect the integer and fractional bits separately. That is best
done by converting a two-chunk sequence to a floating-point whole number, scaling it by a power of two to correctly
position the binary point, and then using a member of the modf() family to extract the whole number and fraction.
We must work with two chunks, rather than one, because we promised to deliver at least eight low-order bits of n,
and the chunk containing the binary point may not have that many.

if ((nf % b) == 0) /* binary point BETWEEN coefficients */
xm_int = (qp_t)cxm[n_rbp + 1];

else /* binary point INSIDE coefficient */
{

int nbits;

nbits = nf - (n_rbp + 1) * b; /* fractional bits left */
assert(nbits >= 0);
ff += QP_MODF(QP_LDEXP((qp_t)cxm[n_rbp + 2] * (qp_t)D_ +

(qp_t)cxm[n_rbp + 1], -nbits), &xm_int);
}

It is critical that the first argument of QP_LDEXP() be exactly representable. We need 2b bits, which the earlier assertion
that 2b ≤ QP_T_MANT_DIG guarantees. Because qp_t is equivalent to double on some current systems, that in practice
prevents using b = 28, forcing us back to b ≤ 24.

At this point, we have at least b low-order bits of n in xm_int, and the fraction in highest precision in ff, such that
|x| = (n + f)c.

We assumed that n was computed by round(|x|/c), so that f lies in [0, 1
2]. However, most of n lies in L, the big

block of leading bits that we discarded. If the computed f lies outside its promised range, then we can bring it into
range by incrementing n by one, and replacing f by 1 − f . If f is close to one, then that subtraction suffers loss of
leading bits, preventing us from computing a correctly rounded value of f .

To avoid subtraction loss, and ensure correct rounding, we need to compute 1− f in more than twice the working
precision, but we may lack a large-enough floating-point data type to do so. Here is how to solve that problem.
To a mathematician, the values 1 and 0.99999. . . are equivalent, because they can be made arbitrarily close by
appending more nines. That means that 1 − f is the same as 0.99999 . . . − f . That subtraction can be done without
digit borrowing by appending trailing zeros to f , and then subtracting each decimal digit of that extended f from
nine. The subtraction is just the nine’s-complement operation, the decimal analog of the one’s-complement process
described in Appendix I.2.2 on page 972. We are not working with either binary or decimal numbers here, but
instead with base-D numbers, where the D’s-complement equivalent means that we can obtain 1 − f by subtracting
each base-D digit of f from D − 1, and then converting to a floating-point value by adding the base-D digits with
suitable scaling.

About half the time, we must therefore discard the value of ff, and recompute it in D’s-complement arithmetic:

if (ff > QP(0.5)) /* rounding needed */
{ /* produce 1 - f accurately with D_’s complement sum */

long int DM1;

xm_int++;

DM1 = (long int)D_ - (long int)1;

264 Chapter 9. Argument reduction

dd = QP_LDEXP(QP(1.0), -nf);
ff = (qp_t)(D_ - cxm[0]) * dd;

for (k = 1; k <= n_rbp; ++k)
{

dd *= (qp_t)D_; /* exact product */
ff += (qp_t)(DM1 - cxm[k]) * dd; /* exact product */

}

if ((nf % b) != 0) /* binary point INSIDE coefficient */
{

int nbits;
qp_t junk;

nbits = nf - (n_rbp + 1) * b;
ff += QP_MODF(QP_LDEXP((qp_t)(DM1 - cxm[n_rbp + 2]) * (qp_t)D_ +

(qp_t)(DM1 - cxm[n_rbp + 1]), -nbits), &junk);
}

ff = -ff;
}

Notice that the initial value of ff uses D, rather than D − 1; that is how we provide an unlimited number of trailing
zeros in cxm[] that are implicitly subtracted from digits D − 1.

There are enough bits to produce an accurate value of 1 − f because we have nf = 2t + q = 2t + g + w + 1 ≈
3t + g + 1 fraction bits.

We do not require the whole number that is returned via the second argument to the modf() family. Unfortunately,
the ISO C Standards do not specify whether a NULL pointer is acceptable for that argument, so we introduce the
variable junk just to get a valid pointer.

The job of argument reduction is almost done. We merely need to form r = f c. Although we have f as ff in
the highest-available precision, we only have c available to working precision. That multiplication would introduce
another rounding error that we can likely avoid by instead using the high-precision value of 1/c in the array cinv[]:

cc_inv = QP(0.0);
dd_inv = (qp_t)D_inv;

for (k = 1; k < n_c; ++k)
{

qp_t cc_inv_last;

cc_inv_last = cc_inv;
cc_inv += (qp_t)cinv[k] * dd_inv;

if (cc_inv == cc_inv_last)
break;

dd_inv *= (qp_t)D_inv;
}

cc_inv += (qp_t)cinv[0];
rr = ff / cc_inv;

Notice that the largest term is added last, after the loop has computed the remainder of the sum to working precision.
Even though n_c is large, only a few terms, roughly �t/b�, are summed before the break statement is executed.

All that remains now is a final conversion of rr to working precision, correction of the sign of the result if x is
negative, extraction and storage of the eight low-order bits of n, and a return from the function:

result = (fp_t)rr;

9.4. Testing argument reduction 265

err = (fp_t)(rr - (qp_t)result);
n = (int)QP_FMOD(xm_int, QP(256.0));

if (x < ZERO)
result = -result;

}
#endif /* !((B == 2) || (B == 8) || (B == 16)) */

if (perr != (fp_t *)NULL)
*perr = err;

if (pn != (int *)NULL)
*pn = n;

return (result);
}

When qp_t differs from fp_t, the conversion of rr to result introduces a second rounding whose probability is, alas,
much larger than that predicted earlier for the reduction. The worst case in current architectures occurs when those
types correspond to the IEEE 754 64-bit and 80-bit formats: the additional 11 bits in the significand of the larger type
suggest a frequency of incorrect rounding of about 2−11 = 1/2048.

9.4 Testing argument reduction

For the IEEE 754 32-bit format, it is feasible to enumerate every possible argument x in the range [1, FLT_MAX], and
compare the reduced arguments produced by the float and double exact reduction functions. The test programs
exered.c and exerid.c take a few hours to run on several architectures, and report no differences, giving confidence
in the accuracy of the reduction algorithm. The reductions for all of the worst cases in Table 9.2 on page 252 have
also been verified against high-precision Maple computations.

Tests provided by the files timred*.c compare the relative times and accuracy of the ereduce(), eriduce(), and
reduce() families for reductions with respect to π/2. On all of the major desktop CPU platforms, they show that the
exact reductions with integer cinv[] data are 5 to 45 times slower in 32-bit arithmetic, 8 to 67 times slower in 64-bit
arithmetic, 11 to 24 times slower in 80-bit arithmetic, and about 13 times slower in 128-bit arithmetic. The slowest
results are on systems where the data type qp_t is implemented in software. The faster reduce() family is usable to
about 100π/2 in 32-bit arithmetic, 1000π/2 in 64-bit arithmetic, and 1 000 000π/2 in 80-bit and 128-bit arithmetic, so
in most computations, exact reductions are unlikely to be needed.

9.5 Retrospective on argument reduction

Correctly rounded argument reduction is clearly an intricate process, and the Payne/Hanek algorithm is a significant
contribution to the computation of elementary functions. Instead of time-consuming multiple-precision multiplica-
tion, rounding, and subtraction with thousands of digits to accurately compute r = x − round(x/c)c, their algorithm
permits a much smaller computation that, in the worst case, needs roughly five times working precision. Its cost is
comparable to that of computing a trigonometric function once a reduced argument is available, and it need not
be invoked at all for arguments that are already in the range [−c/2,+c/2], or in a larger range where a simpler
reduction, like our REDUCE() function family, can be used.

Kahan’s continued-fraction analysis [Kah83] to find the worst cases for argument reduction is a critical compo-
nent of the reduction algorithm because it provides a suitable value for w. The worst case depends only on the
constant c, the precision t, and the exponent range [−1, FP_T_MAX_EXP]. They are all determined by mathematics
and by the floating-point architecture, so the worst cases need to be found just once: they do not require run-time
determination when the elementary functions are evaluated. The results that are collected in Table 9.2 on page 252
from Muller’s Maple program for Kahan’s method give a reasonable idea of the maximum number of leading zero
bits to be expected in any argument reduction with respect to an irrational constant. When in doubt, just make g or
w larger — an extra chunk or two in M does not cost much, and the reward of a correctly rounded reduction is large.

266 Chapter 9. Argument reduction

The payoff for correct argument reduction is substantial, because trigonometric functions are pervasive in science
and engineering, and users should not have to take special precautions to avoid large arguments, especially because,
in the absence of exact analytic reductions, they are likely to use inaccurate reduction techniques. In addition, as we
record later in Table 17.1 on page 479, trigonometric and hyperbolic functions are critical components needed for
computation of several other elementary functions in complex arithmetic. The lack of exact argument reduction in
most existing mathematical libraries has the possibly surprising side effect of making many functions in complex
arithmetic unreliable for most of the floating-point range.

10 Exponential and logarithm

THE FORMULA eiπ + 1 = 0 RELATES EULER’S NUMBER e
TO THE IMAGINARY VALUE i =

√−1, ARCHIMEDES’ CONSTANT π,
AND THE DIGITS OF THE BINARY NUMBER SYSTEM.

The exponential function, and its inverse, the logarithm function, are two of the most fundamental elementary
functions in all of mathematics, and in numerical computing. They also turn up hidden inside other important
functions, such as the hyperbolic functions, the power function, and in the computation of interest and investment
value, and lottery returns, in financial mathematics, a subject that we treat briefly at the end of this chapter.

Neither the exponential nor the logarithm is particularly difficult to compute when high accuracy is not a goal,
but we show in this chapter that considerable care is needed to develop suitable computational algorithms when
almost-always correctly rounded results are wanted. We also address the need for auxiliary functions for other
bases, and for arguments near zero and one.

10.1 Exponential functions

The exponential function, exp(x) = ex, where e ≈ 2.718 281 828 . . . is Euler’s1 number, is one of the most important
functions in all of mathematics. Euler proved in 1737 that e is irrational, and Hermite proved in 1873 that e is also
transcendental. The exponential function is graphed over a small range in Figure 10.1 on the next page.

Apart from the curious compact relation given in the epigraph to this chapter, the exponential function has the
fundamental property that its slope at a given point (that is, its derivative) is the function value itself, and the area
under the curve to the left of x is also the function value. That is, we have these relations:

d exp(x)/dx = exp(x),∫ x

−∞
exp(x) dx = exp(x).

Other properties follow easily from its definition as a power of e:

exp(−∞) = 0, exp(2x) = (exp(x))2,

exp(−1) = 1/e, exp(1
2 x) =

√
exp(x),

exp(0) = 1, exp(x + y) = exp(x) exp(y),
exp(1) = e, exp(x × y) = (exp(x))y

exp(+∞) = +∞, = (exp(y))x.

The exponential function has a Taylor series and a continued fraction (see Section 2.7 on page 12), both valid for any
finite complex argument z:

exp(z) = 1 + z + z2/2! + z3/3! + · · ·+ zn/n! + · · · ,

exp(z) = 0 +
1

1 −
z

1 +
z

2 −
z

3 +
z

2 −
z

5 +
z

2 −
z

7 +
z

2 −
z

9 +
+ · · · .

1The Swiss mathematician Leonhard Euler (pronounced oiler) (1707–1783) possessed a photographic memory, and was possibly the most
prolific mathematician in human history. Euler produced almost half of his works by dictation to secretaries after he went blind in 1771, and pub-
lications of his articles continued for several decades after his death. He introduced into mathematics the notations e (base of natural logarithms),
i (
√−1), π (circle constant), Δy (for finite differences), ∑ (summation), f (x) (function of x), and the modern names for trigonometric functions.

© Springer International Publishing AG 2017
N.H.F. Beebe, The Mathematical-Function Computation
Handbook, DOI 10.1007/978-3-319-64110-2_10

267

268 Chapter 10. Exponential and logarithm

0

5

10

15

20

-3 -2 -1 0 1 2 3

ex
p

(x
)

x

Figure 10.1: The exponential function, exp(x). The dashed line for exp(x) = 1 intersects the curve at x = 0. The func-
tion grows rapidly for positive x, with exp(6.908) ≈ 1000, exp(13.816) ≈ 1 000 000, and exp(20.724) ≈ 1 000 000 000.

For small x, the convergence of the series and the continued fraction is roughly the same. However, the latter is
subject to serious loss of leading digits for large x. That happens because the fraction evaluated last in the backward
direction has the form 1/(1 + s), and for large |x|, we have s ≈ −1.

The error-magnification formula (see Section 4.1 on page 61) for the exponential function looks like this:

errmag(exp(x)) = x.

Thus, the sensitivity of the function to argument errors is proportional to the argument, so when |x| is large, we need
high precision.

The number e can be defined by limits, and by a simple continued fraction that Euler first published in 1744:

e = lim
x→∞

(1 + 1/x)x,

1/e = lim
n→∞

(n!)1/n

n
,

e = [2; 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, 10, 1, . . .] coefficients [b0; b1, b2, b3, . . .]

= 2 +
1

1 +
1

2 +
1

1 +
1

1 +
1

4 +
1

1 +
1

1 +
1

6 +
1

1 +
1

1 +
1

8 +
+ · · · .

The two limits converge slowly: with x = n = 1010, they produce only about 10 and 9 correct digits of e, respectively.
By contrast, the simple continued fraction is computationally practical. The term bk of the fraction is 2(k + 1)/3 if
k + 1 is a multiple of 3, and otherwise, is 1. Numerical experiments show that after a few terms, each additional
term produces about one more decimal digit of e. There is also a recent algorithm, discovered only in 1995, that
can produce the first n consecutive fractional decimal digits of e. It requires only hardware integer arithmetic, and
uses O(n) storage and O(n2) time [BB04, page 140]. The file edigs.c implements the algorithm. Symbolic-algebra
systems make it easy to compute e, as in these short sessions:

% gp
? \p 60

realprecision = 77 significant digits (60 digits displayed)
? eval(exp(1))

10.1. Exponential functions 269

%1 = 2.71828182845904523536028747135266249775724709369995957496697

% maple
> evalf(exp(1), 60);

2.71828182845904523536028747135266249775724709369995957496697

% math
In[1]:= N[E,60]
Out[1]= 2.71828182845904523536028747135266249775724709369995957496697

% maxima
(%i1) fpprec : 60$ bfloat(exp(1));
(%o2) 2.71828182845904523536028747135266249775724709369995957496697b0

% mupad
>> DIGITS := 60: float(E);

2.71828182845904523536028747135266249775724709369995957496697

% reduce
1: on rounded$ precision 60$ E;
2.71828182845904523536028747135266249775724709369995957496697

% sage
sage: n(e,201)
2.71828182845904523536028747135266249775724709369995957496697

The book e: The Story of a Number [Mao94] chronicles the history of Euler’s number, and the Handbook of Mathe-
matical Functions [AS64, OLBC10, Chapter 4] summarizes many of the properties of the exponential function.

In floating-point arithmetic, the exponential function falls off so rapidly for negative x, and grows so rapidly for
positive x, that it soon reaches the underflow and overflow limits. In 64-bit IEEE 754 binary arithmetic, underflow
to subnormals happens for x < −708.397, and overflow for +709.783 < x.

In early work on computers, Hastings [Has55, pages 181–184] gave coefficients for polynomial approximations
to the exponential function of the form

exp(−x) = 1/(a0 + a1x + a2x2 + a3x3 + · · ·)4, for x ≥ 0.

Taking the reciprocal of the formula extends coverage to the other half of the real axis. With coefficients up to a3x3, he
claimed about three correct decimal digits, and with terms up to a6x6, almost seven correct decimal digits. Numerical
and graphical checks of his formulas demonstrate that the errors grow dramatically outside the small interval [0, 4],
and his error plots are overly optimistic. This must be the case, because the exponential function grows faster than
any finite polynomial of fixed degree.

We can find similar approximations with modern software technology using the Maple symbolic-algebra lan-
guage, but restricting the interval of approximation to just [0, 1]:

% maple
> with(numapprox):
> Digits := 60:
> F := proc(x) return root(exp(-x), 4) end proc:
> G := proc(x) return (exp(-x) - 1 + x)/x**2 end proc:
> H := proc(x) return exp(-1/x) end proc:
>
> c := minimax(F(x), x = 0 .. 1, [0, 3], 1, ’maxerror’):
> printf("maxerror = %.2g\n", maxerror):
maxerror = 1.1e-06

> c := minimax(G(x), x = 0 .. 1, [3, 0], 1, ’maxerror’):
> printf("maxerror = %.2g\n", maxerror):
maxerror = 27.7e-06

270 Chapter 10. Exponential and logarithm

> c := minimax(H(x), x = 0 .. 1, [3, 0], 1, ’maxerror’):
> printf("maxerror = %.2g\n", maxerror):
maxerror = 0.0044

> c := minimax(F(x), x = 0 .. 1, [3, 3], 1, ’maxerror’):
> printf("maxerror = %.2g\n", maxerror):
maxerror = 6.5e-14

> c := minimax(G(x), x = 0 .. 1, [3, 3], 1, ’maxerror’):
> printf("maxerror = %.2g\n", maxerror):
maxerror = 3.7e-12

> c := minimax(H(x), x = 0 .. 1, [3, 3], 1, ’maxerror’):
> printf("maxerror = %.2g\n", maxerror):
maxerror = 0.00029

The function F(x) is suitable for Hastings-like formulas, but minimax() reports failure when the interval of approxi-
mation is widened. The function G(x) is derived from the Taylor series, and H(x) uses a reciprocal argument to map
the entire positive axis [0, ∞) to (0, 1].

The key to accurate computation of the exponential function is to write it as the product of an exact power of the
base and a small correction factor:

exp(x) = βn exp(g),
x = n log(β) + g, by taking logarithms,

n = round(x/ log(β)), nearest multiple of log(β)

g = x − n log(β), g in [− 1
2 log(β), 1

2 log(β)].

The reduced argument g can be a small difference of two large numbers, so to compute it accurately, we must
represent the constant log(β) to high precision. The REDUCE() family described in Section 9.1 on page 243 finds g
reliably. With β = 2, we have g in [−0.347,+0.347], and we can use the same representation with a factor 2n for bases
of the form β = 2K, where K > 1.

For a decimal base, Cody and Waite recommend reducing the argument with respect to a power of
√

10 rather
than of 10, because that shrinks the range of g from [−1.152, 1.152] to [−0.576, 0.576]:

exp(x) = (
√

10)n exp(g).

Better approximations than those of Hastings have fits to intermediate functions that are almost linear over the
interval of approximation. Later books (see, for example, [HCL+68, page 104], [CW80, Chapter 6], and [Mos89,
Chapter 4]) use an expression with a rational polynomial, R(g2) = P(g2)/Q(g2), like this:

exp(g) ≈ Q(g2) + gP(g2)

Q(g2)− gP(g2)

≈ 1 + gR(g2)

1 − gR(g2)

≈ 1 − gR(g2) + 2gR(g2)

1 − gR(g2)

≈ 1 +
2gR(g2)

1 − gR(g2)

≈ 1 +
2gP(g2)

Q(g2)− gP(g2)
,

R(g2) ≈ exp(g)− 1
g(exp(g) + 1)

.

10.1. Exponential functions 271

For |g| in [0,+0.347], R(g2) decreases slowly, and lies entirely in the interval [0.495, 0.500]. The last equation for
exp(g) writes it as the sum of an exact term and a possibly small correction. Numerical evaluation of that correction
shows that it grows almost linearly over the range of g, and lies in [0, 0.415].

For the function R(g2), Maple achieves much better accuracy in the fit. It provides us with compact rational
polynomials suitable for each of the extended IEEE 754 formats, and all of the historical formats, that we support in
the mathcw library:

> R := proc(gg) local e, g: g := sqrt(gg): e := exp(g):
> return ((e - 1)/(e + 1))/g
> end proc:

> for pq in [[1,1], [2,2], [2,3], [4,4], [8,8]] do
> c := minimax(R(gg), gg = 0 .. 0.121, pq, 1, ’maxerror’):
> printf("%a : %.2g\n", pq, maxerror)
> end do:
[1, 1] : 2.7e-10
[2, 2] : 2.5e-18
[2, 3] : 1.3e-22
[4, 4] : 3.5e-36
[8, 8] : 6.1e-76

For the wider range of g needed for decimal arithmetic, the 128-bit and 256-bit formats need fits of degree 〈4/5〉 and
〈8/9〉.

Tests of an implementation of the Cody/Waite algorithm for the exponential function in IEEE 754 binary arith-
metic show that it produces errors up to about 0.92 ulp, with about 1/70 of the results having errors larger than
1
2 ulp. In decimal arithmetic, the peak error in expdf() is about 1.19 ulp, with about 1/40 of the results differing from
correctly rounded values. See Figure 10.2 on the next page for error plots.

Lowering the maximum error requires increasing the effective precision, and that is most easily done by decreas-
ing the range of g, so that we have exp(g) = 1 + smaller correction. Tang [Tan89] published a complicated algorithm
that relies on subtle properties of IEEE 754 and VAX binary arithmetic, and of the argument reduction for the expo-
nential, to push the maximum error in exp() down to 0.54 ulp in the absence of underflow, and otherwise, down to
0.77 ulp if the result is subnormal. Detailed further analysis [Fer95] supports Tang’s work.

With less complexity, more generality, and portability to all platforms supported by the mathcw library, we can
do almost as well as Tang’s algorithm. Implement a further reduction of g, like this:

g = k/p + r, for integer k and p,

k = round(p × g), find k first,

r = g − k/p, find exact r next,

exp(g) = exp(k/p) exp(r), factor exponential.

Here, p must be a power of the base, so that p × g and k/p are exact operations. The range of k depends on that
of g. With the Cody/Waite reductions for binary arithmetic, k lies in [−0.347p,+0.347p]; for decimal arithmetic, k
is in [−0.576p,+0.576p]. The values exp(k/p) are constants that are precomputed in high precision, and tabulated
as sums of exact high and accurate low parts, so we need about 0.70p entries for binary arithmetic, and about 1.15p
entries for a decimal base. The range of r is now [−1/(2p),+1/(2p)]. The maximal corrections c in exp(r) = 1 + c
are small, and provide another three to six decimal digits of effective precision:

p c p c
10 0.005 012 16 0.001 955

100 0.000 050 256 0.000 008

Tang’s algorithm involves a similar representation with p = 25 = 32.
The final result is then reconstructed like this:

exp(x) =

⎧⎪⎨
⎪⎩

2n(exp(k/p)hi + exp(k/p)lo)(1 + c),
10n/2(exp(k/p)hi + exp(k/p)lo)(1 + c), n even,

10(n−1)/2(
√

10hi +
√

10lo)(exp(k/p)hi + exp(k/p)lo)(1 + c), n odd.

272 Chapter 10. Exponential and logarithm

Figure 10.2: Errors in EXP() functions with the original Cody/Waite algorithm. The horizontal dotted line at 0.5 ulps
marks the boundary below which results are correctly rounded.

The powers of 2 and 10 are supplied by the ldexp() family, and the products of sums of high and low parts are
expanded and summed in order of increasing magnitude.

The files exp.h and expx.h contain preprocessor-selectable code for the Tang algorithm, the original Cody/Waite
algorithm, and our extended algorithm for the small-table case (p = 10 and p = 16) and the default large-table case
(p = 100 and p = 256). When the Tang algorithm is requested but is not applicable, the code reverts automatically
to the default method. The file exp.h contains new polynomial fits for our extended algorithms to take advantage
of the shorter argument range: a 〈1/2〉 rational polynomial provides 17 decimal digits in the small-table case, and a
〈1/1〉 fit gives that accuracy for the large tables.

Tang’s algorithm includes a two-term Taylor series when x is sufficiently small, and uses his exponential-specific
argument reduction scheme. The other three include code for two-term and five-term series for small x, and use the
REDUCE() family for the reduction x = n log(β) + g.

Tests show that the largest error in the small-table case is about 0.53 ulps, with 1/5650 of the results for random
arguments differing from exact values rounded to working precision. For the default of large tables, the maximum
error drops to 0.509 ulps in binary arithmetic with about 1/40 000 differing from correctly rounded exact results. For
decimal arithmetic, the corresponding values are 0.501 ulps and 1/600 000. These results are close to those measured
for Tang’s algorithm: 0.508 ulps and 1/102 000 for expf(), and 0.502 ulps and 1/750 000 for exp().

Figure 10.3 on the facing page shows the measured errors in four of the exponential functions. The improvements
over the plots in Figure 10.2 are evident.

The algorithms for the companion families EXP2(), EXP8(), EXP10(), and EXP16() are similar to that for the

0

1

2

-100 -50 0 50 100

u
lp

s

x

Errors in expf()

0

1

2

-200 -100 0 100 200

u
lp

s

x

Errors in expdf()

0

1

2

-600 -400 -200 0 200 400 600

u
lp

s

x

Errors in exp()

0

1

2

-600 -400 -200 0 200 400 600

u
lp

s

x

Errors in expd()

10.2. Exponential near zero 273

Figure 10.3: Errors in EXP() functions with the default large-table algorithm.

ordinary exponential function, although the cutoffs, Taylor series, and polynomial fits differ. Test show that those
extra functions produce results that are almost always correctly rounded, so we do not show error plots for them.

10.2 Exponential near zero

Berkeley UNIX 4.3BSD introduced the expm1() function in 1987. It is defined as expm1(x) = exp(x) − 1, and
handles the important case of small arguments. When x is small, it is clear from the Taylor series of exp(x) that
subtracting one from it loses accuracy in binary arithmetic in the region [log(1

2), log(3
2)] ≈ [−0.693,+0.405], so a

different algorithm is called for.
One reasonable approach is to rewrite the function in terms of another that is likely to be available in standard

programming-language libraries. Such a function is the hyperbolic tangent, which we treat later in this book in
Section 12.1 on page 341. We have

tanh(x) = (exp(x)− exp(−x))/(exp(x) + exp(−x))
= (1 − exp(−2x))/(1 + exp(−2x)).

Solve the second equation for the exponential function, scale its argument by − 1
2 , and simplify using the symmetry

relation tanh(−x) = − tanh(x):

exp(−2x) = (1 − tanh(x))/(1 + tanh(x)),

0

1

2

-100 -50 0 50 100

u
lp

s

x

Errors in expf()

0

1

2

-200 -100 0 100 200

u
lp

s

x

Errors in expdf()

0

1

2

-600 -400 -200 0 200 400 600

u
lp

s

x

Errors in exp()

0

1

2

-600 -400 -200 0 200 400 600

u
lp

s

x

Errors in expd()

274 Chapter 10. Exponential and logarithm

exp(x) = (1 + tanh(1
2 x))/(1 − tanh(1

2 x)).

The exponential less one is then given by

exp(x)− 1 = (1 + tanh(1
2 x)− (1 − tanh(1

2 x)))/(1 − tanh(1
2 x)),

= 2 tanh(1
2 x)/(1 − tanh(1

2 x)).

The subtraction in the denominator suffers leading digit loss only for x in [1.098, ∞], well away from the region
where direct computation of exp(x) − 1 loses digits. If the hyperbolic tangent function is accurate, and not itself
implemented with expm1(x), as is the case with the GNU glibc and Sun Microsystems fdlibm libraries, then the last
formula is a quick way to program the computation of expm1(x) for x in [−1, 1], although the computed value has
at least three rounding errors.

We can do better with a modification of our algorithm for the exponential function. For sufficiently small x, we
can sum a few terms of the Taylor series. Otherwise, we absorb the exponential growth into an exact power of the
base, multiplied by a small correction factor, and write

expm1(x) = βn exp(g)− 1
= βn(exp(g)− 1) + (βn − 1),

x = n log(β) + g, g in [− 1
2 log(β), 1

2 log(β)],
exp(g)− 1 = g + g2/2! + g3/3! + g4/4! + · · · , Taylor series,

≈ g + g2/2 + g3R(g), Taylor sum,
R(g) ≈ (exp(g)− 1 − g − g2/2)/g3, fit to rational polynomial .

The term βn − 1 is exactly representable for small n, but is negative for n < 0, hiding a subtraction in the final result.
The term exp(g)− 1 is given either as a Taylor series, or as the sum of three terms of decreasing magnitude, the first
of which is exact, or nearly so, if we use the REDUCE() family for accurate argument reduction.

We could do a further reduction, g = k/p + r, as we did with the exponential functions of the preceding section,
but we can do almost as well without it, provided that we evaluate the term sums accurately.

The code in expm1x.h starts with a one-time initialization block that computes cutoffs needed for later tests:

if (do_init)
{

BIGX = LOG(FP_T_MAX);
SMALLX = LOG(FP_T_MIN * FOURTH);
XCUT_4 = SQRT(SQRT(FP(60.0) * FP_T_EPSILON));
do_init = 0;

}

A few initial tests handle special cases and a short sum of the Taylor series:

if (ISNAN(x))
result = SET_EDOM(x);

else if (x == ZERO) /* only x for which expm1(x) is exact */
result = x; /* preserve sign of zero */

else if (x > BIGX) /* set overflow flag only for finite x */
result = ISINF(x) ? SET_ERANGE(x) : SET_ERANGE(INFTY());

else if (x < SMALLX) /* exp(x) below negative machine epsilon */
{

STORE(&tiny);
result = tiny - ONE; /* force inexact flag to be set */

}
else if (QABS(x) < XCUT_4)
{

fp_t sum;

sum = (FP(1.0) / FP(120.0)) * x;

10.2. Exponential near zero 275

sum = (FP(1.0) / FP(24.0) + sum) * x;
sum = (FP(1.0) / FP(6.0) + sum) * x;
sum = (FP(1.0) / FP(2.0) + sum) * x;
result = x + x * sum; /* FMA opportunity */

}

For sufficiently negative x, exp(x) is negligible compared to 1, but in order to handle rounding modes properly,
and set the inexact flag, we force run-time evaluation of the expression tiny - ONE, where tiny is declared volatile
and initialized to the smallest representable positive normal number.

Many compilers evaluate the rational numbers in the five-term sum in the Horner form of the Taylor series at
compile time, eliminating the divisions. The terms are accumulated in order of increasing magnitude, and the final
value of sum is sufficiently small that the rounding error in the final result is almost entirely from the last addition,
and almost always zero.

The final else block of the function handles the general case, but tests of an initial implementation suggest a
different approach for a decimal base, where the range of g is larger. The decimal code looks like this:

else
{

#if B == 10
if ((-FP(0.75) <= x) && (x <= FP(0.75))) /* digit loss region */

result = expm1ts(x);
else if ((FP(2.3) <= x) && (x <= FP(2.4)))
{

/*
** There is a slight inaccuracy in EXP(x) for x ~= log(10)
** that pushes errors in EXP() - 1 up to about 0.53 ulp.
** We can eliminate that error by special handling of this
** case with an accurate argument reduction. We have
**
** exp(x) - 1 = exp(1*log(10) + r) - 1
** = exp(log(10)) * exp(r) - 1
** = 10 * exp(r) - 1
** = 10 * (exp(r) - 1) + 9
**
** The result is therefore 9 + (small correction)
*/

fp_t r, sum;

r = x - LOG_10_HI; /* reduce x = 1 * log(10) + r */
r -= LOG_10_LO;
sum = expm1ts(r);
result = NINE + TEN * sum;

}
else

result = EXP(x) - ONE;

The summation of the general Taylor series is required in three places in our implementation, so we move the job to
a separate private function, expm1ts(), whose code is straightforward, and thus, omitted.

The digit loss region for direct computation of exp(x) − 1 in decimal arithmetic is [log(0.9), log(2)], or about
[−0.105,+0.693]. We widen that interval to [− 3

4 ,+ 3
4] and sum the general Taylor series. Otherwise, we just compute

exp(x)− 1 directly, except for the small region [2.3, 2.4], where we do an additional exact argument reduction to get
the result as a small correction to an exact value.

For bases of the form β = 2K, the chief sources of error are the three-term summation to find exp(g) − 1, the
computation of 1

2 g2, and the hidden subtraction of the term βn − 1 when n < 0.
We can account for the errors of addition by a technique introduced later in this book at the start of Chapter 13

on page 353, and made available in the mathcw library in the VSUM() function family, which returns the sum of an

276 Chapter 10. Exponential and logarithm

array, and an estimate of the error in the sum. We can recover the rounding error in multiplication by exploiting the
fused multiply-add operation:

error in fl(a × b) = fma(a, b,−fl(a × b)).

The code for a nondecimal base in the final else block in expm1x.h continues like this, and does not invoke the
exponential function at all:

#else /* B != 10 */
if ((FP(0.25) < QABS(x)) && (QABS(x) < FP(0.75)))

result = expm1ts(x);
else
{

fp_t e1, e2, e3, err, g, gg, pg, qg, scale, sum, t, v[5];
int n, nv;

g = REDUCE(x, INV_C, NC, C, &n, (fp_t *)NULL);

pg = POLY_P(p, g);
qg = POLY_Q(q, g);

gg = g * g;
e1 = g;
e2 = HALF * gg;
e3 = g * gg * (pg / qg);

/* recover error in e2 and add it to e3 */

t = e2 + e2;
err = FMA(g, g, -t);
e3 += HALF * err;

/*
** Reconstruct expm1(x) accurately, handling a few special
** cases of n explicitly to avoid the need to call LDEXP().
*/

switch (n) /* form sum = 2**n * (e1 + e2 + e3) + (2**n - 1) */
{ /* let s = e1 + e2 + e3 */
case 0: /* sum = s */

nv = 3;
v[2] = e1;
v[1] = e2;
v[0] = e3;
break;

case -1: /* sum = s/2 - 1/2 */
nv = 4;
v[3] = -HALF;
v[2] = HALF * e1;
v[1] = HALF * e2;
v[0] = HALF * e3;
break;

case 1: /* sum = 2*s + 1 */
nv = 4;
v[3] = ONE;
v[2] = e1 + e1;
v[1] = e2 + e2;

10.2. Exponential near zero 277

v[0] = e3 + e3;
break;

default:
scale = LDEXP(ONE, n);
nv = 5;

if (n < 0) /* move scale down in list */
{

v[4] = -ONE;
v[3] = scale;
v[2] = scale * e1;
v[1] = scale * e2;
v[0] = scale * e3;

}
else /* move -1 down in list */
{

v[4] = scale;
v[3] = scale * e1;
v[2] = scale * e2;
v[1] = scale * e3;
v[0] = -ONE;

}

break;
}

sum = VSUM(&err, nv, v);
sum += err;

result = sum;
}

#endif /* B == 10 */
}

In the region [1
4 , 3

4], we use the Taylor series to avoid loss from the hidden subtraction in βn − 1. Otherwise, we
construct an array of terms of increasing magnitudes and pass it to the vector-sum routine. The corrections from
the fused multiply-add and from the error estimate returned by VSUM() are small, but generally keep the total error
under 1

2 ulp. Without them, the worst-case errors rise by about 0.3 ulps.
Figure 10.4 on the next page shows the measured errors in four members of the EXPM1() family. The occasional

errors above 1
2 ulp in expm1(x) in the interval [−1, 3] could be removed by adding code to make the additional

argument reduction g = k/p + r, but we leave that improvement for future work.
The mathcw library also includes companion function families EXP2M1(), EXP8M1(), EXP10M1(), and EXP16M1() to

compute bx − 1, with b = 2, 8, 10, and 16. We can readily find the Taylor series with the help of Maple, and rewrite it
in nested Horner form for efficient numerical evaluation:

% maple
> taylor(b^(z/log(b)) - 1, z = 0, 8);

2 3 4 5 6 7 8
z + 1/2 z + 1/6 z + 1/24 z + 1/120 z + 1/720 z + 1/5040 z + O(z)

> convert(convert(taylor(b^(z/log(b)) - 1, z=0, 8), polynom), horner);
/ / / / / / z \ \ \ \ \ \
|1 + |1/2 + |1/6 + |1/24 + |1/120 + |1/720 + ----| z| z| z| z| z| z
\ \ \ \ \ \ 5040/ / / / / /

The intermediate variable z = x log(b) simplifies the series. The leading term introduces two rounding errors from
the multiplication and the truncation of the transcendental number constant, log(b). When z is negative, there can
also be subtraction loss in each pair of terms in the series.

278 Chapter 10. Exponential and logarithm

Figure 10.4: Errors in EXPM1() functions. The horizontal dotted line at 0.5 ulps marks the boundary below which
results are correctly rounded.

For arguments near the underflow limit, we have bx − 1 ≈ z, but if we compute z = x × (log(b)hi + log(b)lo), the
product with the low part may be subnormal, or underflow to zero. The solution is an exact scaling of x away from
the underflow region so that we can compute the products accurately, and then undo the scaling. A suitable scale
factor is the cube of the machine epsilon, ε3, and a short code block implements the computation:

else if (QABS(x) < XCUT_1)
{

fp_t t1;

t1 = SCALE * x; /* EXACT */
result = FMA(t1, LN_10_HI, t1 * LN_10_LO) * SCALE_INV;

}

The limit XCUT_1 is initialized to SCALE * FP_T_MIN. Instead of using a fused multiply-add operation to compute
an accurate product, we could instead split t1 into high and low parts, and add the products in order of increasing
magnitude, as we do later in the code. However, this block is expected to be entered rarely, and using FMA() simplifies
the programming.

We can eliminate the subtraction loss in the series summation by making z smaller, using two argument reduction

0

1

2

-25 0 25 50 75

u
lp

s

x

Errors in expm1f()

0

1

2

-100 -50 0 50 100 150 200

u
lp

s

x

Errors in expm1df()

0

1

2

-200 0 200 400 600

u
lp

s

x

Errors in expm1()

0

1

2

-200 0 200 400 600

u
lp

s

x

Errors in expm1d()

10.2. Exponential near zero 279

steps to the new variables g and r:

x =

⎧⎨
⎩

n log2(2) + g, when β = 2K and b = 2M,
n logb(2) + g, when β = 2K and b = 10,
n logb(10) + g, when β = 10,

g = k/p + r, where p = βN .

When b = 2, 8, or 16, and β = 2K, or when b = β = 10, the reductions simplify to x = n + g, where n = round(x),
and g = x − n is computed exactly, and lies in [− 1

2 , 1
2].

Otherwise, we provide an accurate tabular representation of the logarithm constant and hand the reduction job
off to the REDUCE() family. In that case, the range of g is [− 1

2 logb(2),+
1
2 logb(2)] for β = 2K, and [− 1

2 logb(10),
+ 1

2 logb(10)] for a decimal base. The largest g is then 1
2 log2(10) ≈ 1.66.

The second reduction variable, r, lies in [−1/(2p),+1/(2p)], and can be made small by choosing p to be large.
We then have for the nondecimal case

bx − 1 = bm logb(2)+g − 1
= 2mbg − 1
= 2m(bg − 1) + (2m − 1).

The decimal case is similar:

bx − 1 = bm logb(10)+g − 1
= 10mbg − 1
= 10m(bg − 1) + (10m − 1).

Although subtractions are still present, the terms 2m − 1 and 10m − 1 can usually be computed exactly, or with at
most one rounding error. We compute the reduced exponential, less one, as

bg − 1 = bk/p+r − 1

= bk/pbr − 1

= bk/p(br − 1) + (bk/p − 1).

The parenthesized expressions can have opposite signs if k is determined from round(p × g), instead of from
trunc(p × g). With the latter choice, the range of r doubles, but a subtraction is avoided. Numerical tests with
both variants show that errors are reduced slightly by using rounding instead of truncation.

The factor br − 1 is found either from its Taylor series, or from a polynomial approximation. For the latter, we use
a rational polynomial, R(r), for which

z = r log(b),

br − 1 ≈ z + 1
2 z2 + z3R(r),

R(r) ≈ (br − 1 − z − 1
2 z2)/z3.

Because r is small, the polynomial approximation provides a small correction to the first two terms, and there is no
subtraction loss when r is negative.

The constant log(b) is split into the sum of an exact 12-bit (or four-decimal-digit) high part, and a low part
accurate to working precision. The value r is split into the sum of an exact 9-bit (or three-decimal-digit) high part,
and an exact low part. The factor bk/p is obtained by lookup in a table of exact high and approximate low parts, and
bk/p − 1 can be evaluated accurately from those parts.

After expanding the product sums, the leading term in the expansion of br − 1 is exact, and the remaining terms
then provide a small correction. As in the EXPM1() family, we can get a slight improvement in accuracy by correcting
for the errors of multiplication and addition with the help of the VSUM() family.

To show how that works, here is the code block with the argument reduction and computation of exp10m1(x)
from the file e10m1x.h:

280 Chapter 10. Exponential and logarithm

#if B == 10

t = ROUND(x);
g = x - t; /* EXACT decomposition: g in [-1/2, +1/2] */
n = (int)t;

t = ROUND(g * FP(1.e1));
k = (int)t; /* overflow impossible */
r = g - t * FP(1.e-1); /* EXACT: r in [-1/20, +1/20] */

scale = LDEXP(ONE, n); /* EXACT: 10**n */
f = FREXP(r, &m); /* r = f * 10**n, with f in [1/10,1) */
r_hi = LDEXP(TRUNC(FP(1.e3) * f) * FP(1.e-3), m);/* 3 upper digits */
r_lo = r - r_hi; /* remaining decimal digits of r */

#else /* B != 10 */

g = REDUCE(x, ONE_OVER_LOG10_2, NC, C, &n, (fp_t *)NULL);

t = ROUND(FP(16.0) * g);
k = (int)t; /* overflow impossible */
r = g - t * FP(0.0625); /* EXACT product: r in [-1/32,+1/32] */

scale = LDEXP(ONE, n); /* EXACT: 2**n */
f = FREXP(r, &m); /* r = f * 2**n, with f in [1/2,1) */
r_hi = LDEXP(TRUNC(FP(512.0) * f) / FP(512.0), m); /* 9 upper bits */
r_lo = r - r_hi; /* remaining bits of r */

#endif /* B == 10 */

p_hi = P10[k + P10_OFFSET][0];
p_lo = P10[k + P10_OFFSET][1];

z_hi = r_hi * LN_10_HI; /* EXACT product */
z_lo = r_lo * LN_10_LO;
z_lo += r_hi * LN_10_LO;
z_lo += r_lo * LN_10_HI;

z = z_hi + z_lo; /* best approximation to r * ln(10) */
zz = z * z;

pr = POLY_P(p, r); /* exp10m1(r) = z + z**2/2 + z**3 * R(r) */
qr = POLY_Q(q, r); /* where z = r * ln(10) */
pq = pr / qr;

t3 = z * zz * pq;
t2 = HALF * zz;
t_hi = z_hi;
t_lo = z_lo + t3;
t_lo += t2;

if (n == 0)
{

if (p_hi == ONE)
sum = t_hi + t_lo;

else
{

10.2. Exponential near zero 281

v[6] = -ONE;
v[5] = p_hi;
v[4] = p_hi * t_hi;
v[3] = p_hi * t_lo;
v[2] = p_lo;
v[1] = p_lo * t_hi;
v[0] = p_lo * t_lo;
sum = VSUM(&err, 7, v);
sum += err;

}
}
else if (n > 0)
{

v[6] = p_hi;
v[5] = -ONE / scale; /* EXACT */
v[4] = p_hi * t_hi;
v[3] = p_hi * t_lo;
v[2] = p_lo;
v[1] = p_lo * t_hi;
v[0] = p_lo * t_lo;
sum = VSUM(&err, 7, v);
sum += err;
sum *= scale; /* EXACT */

}
else /* n < 0 */
{

v[6] = -ONE / scale; /* EXACT */
v[5] = p_hi;
v[4] = p_hi * t_hi;
v[3] = p_hi * t_lo;
v[2] = p_lo;
v[1] = p_lo * t_hi;
v[0] = p_lo * t_lo;
sum = VSUM(&err, 7, v);
sum += err;
sum *= scale; /* EXACT */

}

result = sum;

Here, we chose p = 16 for the nondecimal cases, and p = 10 for a decimal base.
The corresponding code for exp8m1(x) and exp16m1(x) is similar, except that REDUCE() is needed when β = 10,

and ROUND() when β = 2K.
For exp2m1(x), our code omits the second reduction to r, and for a nondecimal base uses VSUM() to add the

various contributions to 2g − 1, with code similar to that of exp10m1(x). For a decimal base, the code sums the Taylor
series for x in [−0.155,+1], the approximate region where there is loss of leading decimal digits in the subtraction
2x − 1. For r in [3.30, 3.42], the code uses the reduction x = log2(10) + g to construct

2x − 1 = 2log2(10)+g − 1
= 10 × 2g − 1
= 10 × (2g − 1) + 9.

It computes 2g − 1 from the Taylor series, multiplies that small value by 10 (an exact operation), and adds it to the
larger value 9. Outside those two regions, the code for a decimal base just returns exp2(x)− 1.

The results for the computation of bx − 1 with our functions exp2m1(), exp8m1(), exp10m1(), and exp16m1() are
almost-always correctly rounded, so we omit error plots for them.

282 Chapter 10. Exponential and logarithm

-3

-2

-1

0

1

2

3

0 1 2 3 4 5 6 7 8 9 10

ln
(x

)

x

Figure 10.5: The natural logarithm function, ln(x). The dashed line for ln(x) = 0 intersects the curve at x = 1. The
function grows slowly for increasing x, with ln(1000) ≈ 6.908, ln(1 000 000) ≈ 13.816, ln(1 000 000 000) ≈ 20.724,
and ln(10100) ≈ 230.259.

10.3 Logarithm functions

The Scottish mathematician, John Napier (1550–1617), is generally credited with the introduction of the logarithm
into mathematics in 1614, although his definition was rather different from the modern one. For an arbitrary base β,
we now define the logarithm in that base by

x = yp, where x > 0 and y > 0,
logβ(x) = p logβ(y), β > 1.

That is, the logarithm is the inverse of a power function, scaled by logβ(y). In real arithmetic, the logarithm is
undefined for negative arguments or bases.

When y = β, the scale factor disappears, and we have

x = βp,
logβ(x) = p.

Logarithms are usually introduced in middle school, often only for the case β = 10, and the subscript that indicates
the base is usually omitted. However, in higher mathematics, an omitted subscript on the logarithm generally means
the default base of Euler’s number, e ≈ 2.718 281 828 The notation ln(x), for natural or Napierian logarithm, is a
common synonym for loge(x), and that function is graphed in Figure 10.5.

The chief importance of logarithms for manual computation is that they convert the hard problems of multipli-
cation and division into the easier ones of addition and subtraction, because of these relations:

logβ(x × y) = logβ(x) + logβ(y),

logβ(x/y) = logβ(x)− logβ(y).

For hundreds of years, tables of logarithms and their inverses, called antilogarithms, were common in computation.
Locate the logs of x and y in the logarithm table, manually add or subtract them, and then look up that result in the
antilogarithm table to find the product or quotient of x and y.

10.3. Logarithm functions 283

Logarithms make it possible to represent extreme magnitudes with ease: the large number 10100 is called a googol,
but its base-10 logarithm is only 100. The much larger number, the googolplex, 10googol = 1010100

, would require more
digits to write in full than there are particles in the universe,2 but the logarithm of its logarithm, both in base 10, is
still only 100.

Mechanical calculators capable of multiplication and division were first constructed late in the Seventeenth Cen-
tury, but were not commonly available until after 1820, when the first mass production of calculators began. Nev-
ertheless, they were bulky and expensive, and seldom available to students. This author would prefer to forget the
distasteful drudgery of far too many study hours wasted with logarithm tables for lack of such a device, but that
work produced his enthusiasm for programming digital computers.

The first commercial application of the first successful integrated circuit, the 4-bit Intel 4004 in 1971, was for an
electronic calculator. Advances in electronics and large-volume manufacturing made such calculators affordable to
many by the 1980s. At the time of writing this, advanced programmable calculators with many built-in functions
and graphing facilities cost less than a textbook. As a result, students the world over are less familiar with logarithms
than their parents were.

A little manipulation of the rules for logarithms shows that we can relate their values in two different bases α
(Greek letter alpha) and β like this:

logα(x) = logβ(x)× logα(β).

For fixed α and β, the multiplier logα(β) is a constant that we can precompute, so we can find the logarithm in any
base from one in a particular base, usually β = e, at the expense of one multiply, and one extra rounding error. In
octal or hexadecimal arithmetic, because of wobbling precision, it may happen that logα(β) has leading zero bits,
reducing its precision, whereas logβ(α) has no leading zero bits. It is then more accurate to divide by the latter than
to multiply by the former.

The relation between the logarithms in two different bases can be rewritten in two useful forms:

logβ(x) = ln(x)/ ln(β),

logα(β)× logβ(α) = 1.

For the purposes of the mathcw library, we are interested in logarithms for β = 2, e, 8, 10, and 16, and the corre-
sponding functions are called log2(x), log(x), log8(x), log10(x), and log16(x). In computer-science applications,
the base-2 logarithm is so common that the notation lg(x) has been widely adopted for it, although that name is
absent from most programming languages, including the C-language family.

The standard representation of floating-point numbers as a fraction and an integer power of a base simplifies the
logarithm considerably, because the representation provides an exact range reduction:

x = (−1)s × f × βn, either f = 0 exactly, or f is in [1/β, 1),

logα(|x|) = logα(f) + n logα(β).

Our primary concern is then accurate computation of logα(f), combined with an accurate adjustment of the result
by n logα(β).

The error-magnification formula from Table 4.1 on page 62,

errmag(log(x)) = 1/ log(x),

shows that the computation is only sensitive to argument errors for arguments near one, which is the only zero of
the logarithm on the real axis.

We have these special limits and values for the logarithm:

lim
x→+0

logα(x) → −∞,

logα(1) = 0,
logα(α) = 1,

lim
x→+∞

logα(x) → +∞.

2That number is estimated to be about 1080, within a few powers of ten.

284 Chapter 10. Exponential and logarithm

For extreme arguments, the approach to infinity is slow, and the logarithms of the largest and smallest representable
floating-point numbers are of modest size. For the IEEE 754 64-bit format, the logarithm (to the base e) of the largest
number is just below 709.79. The logarithm of the smallest normal number is just above −708.40, and that of the
smallest subnormal number is about −744.44.

We should therefore expect any satisfactory implementation of the logarithm to be highly accurate, and to return
finite values for any finite argument larger than zero. In IEEE 754 arithmetic, we should expect that log(x) returns a
NaN when x < 0 or when x is itself a NaN, returns −∞ when x = 0, and returns +∞ only when x = +∞.

10.3.1 Computing logarithms in a binary base

Cody and Waite take two approaches for the logarithm, depending on the floating-point base. When the base is a
power of two, they choose f < 1, like this:

β = 2K, K = 1, 3, or 4 in practice,
x = f × βN , assume nonzero f in [1/β, 1),

log(x) = log(f) + N log(β),
= log(f) + KN log(2).

The exponent and fraction can be readily extracted with the functions INTXP() and SETXP() introduced by Cody
and Waite, or with the traditional FREXP() family, or with the C99 LOGB() and SCALBN() functions. All of them
produce exact results, not by numerical computation, but by decoding the bit representation of the native floating-
point representation.

Next, when β > 2, Cody and Waite adjust f into the interval [1
2 , 1) with a code fragment like this:

n = K * N; while (f < 0.5) { f += f; n--; }

Although their doubling of f appears to be inexact if β > 2, that is not the case. When β > 2 and f < 1
2 , f has leading

zero bits. The doubling then merely shifts nonzero bits into those positions, and zero bits into the low end of the
fraction.

We then have
log(x) = log(f) + n log(2), where f is exact, and in [1

2 , 1).

Now introduce a change of variable, and a rapidly convergent Taylor-series expansion of the logarithm in that
new variable:

z = 2(f − 1)/(f + 1),
f = (2 + z)/(2 − z),

log(f) = z + z3/12 + z5/80 + z7/448 + z9/2304 + z11/11264 + · · · .

The expansion suggests using a polynomial approximation of the form

log(f) ≈ z + z3P(z2).

Here, P(z2) could be a fit to a minimax rational polynomial, or to a Chebyshev polynomial expansion. Cody and
Waite provide minimax approximations, and for the mathcw library, we extend them for more, and higher, floating-
point precisions.

The range of z is [− 2
3 , 0) for f in [1

2 , 1), but we can reduce the magnitude of z, and shorten the fitting polynomial,

by one final upward adjustment in f . If f ≤
√

1
2 , implicitly double f and reduce n by one. For β > 2, if that were

done explicitly, it would introduce unwanted rounding error into f ; indeed, for β = 16, three nonzero low-order bits
are lost. We show shortly how to accomplish the doubling of f without that loss.

Now we have f in (
√

1
2 ,
√

2], with z in roughly [−0.3432,+0.3432]. Over that range of f , the term |z3P(z2)| never
exceeds |0.00999z|, so it effectively extends the precision by about two decimal digits, and a rounding error in the
polynomial evaluation is about a hundred times less likely to affect the computed logarithm.

The main contribution to log(f) is z, and care is needed in the evaluation of that value. Cody and Waite recom-
mend that it be done like this:

10.3. Logarithm functions 285

f >
√

1
2 : No implicit doubling of f is needed. Set znum = (f − 1

2)− 1
2 and zden = 1

2 f + 1
2 . In the numerator, the

first subtraction, f − 1
2 , is exact because the two values have the same exponent. The second subtraction of 1

2
may introduce a rounding error if there is no guard digit for subtraction, but otherwise, is exact. All modern
systems have the needed guard digit. The denominator requires one more bit than we have available, so about
half the time, it must be rounded. Record an estimate of the error in zden as fl(fl(1

2 − zden) +
1
2 f).

f ≤
√

1
2 : Incorporate the implicit doubling of f by first reducing n by one, and then rewriting z like this:

z(2 f) = 2 × 2 f − 1
2 f + 1

= 4 × f − 1
2

2 f + 1

=
f − 1

2
1
2 f + 1

4

=
f − 1

2
1
2 (f − 1

2) +
1
2

.

Record these two values for later use:

znum = f − 1
2 ,

zden = 1
2 znum + 1

2 .

Compute the denominator error estimate as fl(fl(1
2 − zden) +

1
2 znum). We do not require f again, so there is no

need to double it explicitly.

All divisions by two are, of course, replaced by multiplications by a half. Compute the logarithm of the reduced
argument like this:

z = znum/zden,

g = z2,
log(f) ≈ z + (z × g ×P(g)).

Obey the parentheses, and avoid factoring out z.
When f ≈ 1, we can find its logarithm more quickly by summing a few terms of the Taylor series:

f = 1 + d, where |d| � 1,
log(f) = d − d2/2 + d3/3 − d4/4 + d5/5 − d6/6 + · · · .

The computation of d as (f − 1
2)− 1

2 is exact when guard digits are available. As usual, the truncated Taylor series
is rewritten in nested Horner form, so that terms are summed from smallest to largest. With a six-term series, the
largest acceptable value of |d| in the IEEE 754 32-bit format is about 0.023, so the second term subtracts about 1% of
the value of d, and there is no possibility of loss of leading bits when d > 0.

Error plots from an implementation of that algorithm have a broad peak around x ≈ 1, reaching up to about
1.5 ulps. The problem is that in the polynomial region, the leading term, z, has two rounding errors. Although the
numerator f − 1 can be computed exactly, the denominator f + 1 generally requires one more digit than is available,
and thus must be rounded. The division introduces a second rounding error.

Improving the Cody/Waite recipe means eliminating the error in z. To do so, split z into the sum z1 + z2, where
z1 is larger than z2, z1 is exact, and z2 effectively extends the precision of z. In addition, it is helpful if z1 uses no more
than half of the available bits, so that it can be doubled and squared exactly. With that decomposition, and a new

286 Chapter 10. Exponential and logarithm

value r, we can obtain the core logarithm with these steps:

g = z2

= (z1 + z2)
2

= z2
1 + (2z1z2 + z2

2), z2
1 is exact,

r ≈ g ×P(g), |r| < 0.01,

log(f) ≈ z1 + z2 + (z1 + z2)× r
≈ z1 + (z1 × r + (z2 + z2 × r)).

The parentheses indicate the preferred evaluation order. Because the polynomial term contributes less than 1% of z
to the sum, we expand only one of its z factors.

The major sources of error are now in the additions, and in the multiplications needed for the products. We can
account for the errors of addition with the VSUM() family that we used earlier in this chapter, and recover the errors
of multiplication with the fused multiply-add operation. The sum of error terms then provides a small correction to
the array sum, producing an improved value of log(f).

The final reconstruction of the complete logarithm requires adding n log(2). We can do that accurately by splitting
the constant into the sum of exact high and approximate low parts:

log(2) = 0.693 147 180 559 945 309 417 232 121 458 176 568 075 . . .
≈ Chi + Clo.

The two parts of the constant are

Chi = 355/512, exact rational form requires just 9 bits,

= 0b1.0110_0011p-1, binary form,

= 0o1.306p-1, octal form,

= 0x1.63p-1, hexadecimal form,

= 0.693 359 375, exact decimal form,

and

Clo = log(2)− Chi

≈ -0x1.bd01_05c6_10ca_86c3_898c_ff81_a12a_17e1_979b...p-13

≈ −0.000 212 194 440 054 690 582 767 878 541 823 431 924 499

Because the number of bits required for n is limited by the exponent size, the product nChi can be represented
exactly, and often has trailing zero bits. We therefore obtain the final logarithm as

log(x) = n × Chi + (n × Clo + log(f)),

where the parentheses must be obeyed, and there are two opportunities for fused multiply-add operations.
Here is the code fragment from logx.h that implements the computation of log(x) in the region where the poly-

nomial approximation is used, with error corrections to the sum:

z = z_num / (z_den + err_den); /* used only to compute z1 */

z1 = TRUNC(FP(4096.0) * FREXP(z, &m));
z1 = LDEXP(z1, m - 12);

z2 = (FMA(-z1, z_den, z_num) - z1 * err_den) / (z_den + err_den);

g = z2 * z2;
g += ((z1 + z1) * z2);
g += z1 * z1; /* g = (z1 + z2)**2 */

10.3. Logarithm functions 287

pg = POLY_P(p, g);
qg = POLY_Q(q, g);
r = g * (pg / qg); /* r = z**2 * P(z**2) / Q(z**2) */

/* form the expansion of (z1 + z2) + (z1 + z2) * r in t[] */

t[3] = z1;
t[2] = z1 * r;
t[1] = z2;
t[0] = z2 * r;

if (n == 0)
sum = VSUM(&err, 4, t);

else
{

fp_t xn;

xn = (fp_t)n;
t[5] = LN_2_HI * xn; /* EXACT product */
t[4] = LN_2_LO * xn;
sum = VSUM(&err, 6, t);
err += FMA(LN_2_LO, xn, -t[4]);

}

err += FMA(z1, r, -t[2]);
result = sum + err;

The terms in the array t[] are carefully arranged in order of increasing magnitude for optimal summation. The
factor 4096 = 212 = 46 = 84 = 163 in the computation of z1 ensures exact scaling for β = 2, 4, 8, and 16, and the fused
multiply-add operation ensures that z2 is accurate.

Although the constant splits could be adjusted for each floating-point format, in practice, it suffices to set them
according to the worst case: the IBM System/360 hexadecimal format, with 7 exponent bits, and as few as 21 signifi-
cand bits. The high parts of constants must therefore contain no more than 9 bits if they are needed in products with
the 12-bit z1, and at most 14 bits if they are to be multiplied by an exponent.

Testing of the library code showed that, although the Cody/Waite polynomials are sufficiently accurate for their
original algorithm, they are deficient for our improved one. Fortunately, that problem is readily solved by reducing
the digit limits in the preprocessor conditionals that select the polynomials in the file log.h, forcing use of a fit of
higher degree.

For the base-10 logarithm in a binary base, instead of following the Cody/Waite recipe of computing log10(x)
from log(x)× (1/ log(10)), we eliminate the additional error of that scaling by computing the logarithm directly by
the algorithm described in the next section, using new polynomial fits, and differing reductions to f and z.

The improvement over the original Cody/Waite recipe is dramatic, as illustrated in Figure 10.6 on the following
page. Our computed logarithms are almost always correctly rounded. To quantify that, a test with ten million
arguments randomly selected from a logarithmic distribution over [0.25, 1.75] in IEEE 754 arithmetic found only
13 arguments each of logf() and log() with errors above 1

2 ulp. The largest error was 0.502 ulps. For the base-10
logarithm, 17 arguments of log10f() and 31 of log10() gave errors above 1

2 ulp, the largest of which was 0.505 ulps.
We therefore expect incorrect rounding in at most three of a million random arguments.

10.3.2 Computing logarithms in a decimal base

For a decimal base, the base-10 logarithm is the natural choice, and the decomposition of the argument into an
exponent and a fraction gives us a decimal representation:

x = (−1)s × f × 10n, either f = 0 exactly, or f is in [1/10, 1).

288 Chapter 10. Exponential and logarithm

Figure 10.6: Errors in mathcw LOG() and LOG10() functions in a binary base. Outside the argument region show here,
errors are always below 1

2 ulp.

If f ≤ √
1/10, set f = 10 × f and n = n − 1, so that f is now in the interval (

√
1/10,

√
10]. Then introduce a change

of variable, a Taylor-series expansion, and a polynomial representation of that expansion:

z = (f − 1)/(f + 1),
f = (1 + z)/(1 − z),

D = 2 log10(e)
= 2/ log(10),

log10(f) = D × (z + z3/3 + z5/5 + z7/7 + z9/9 + z11/11 + · · ·)
≈ D × z + z3Q(z2), polynomial fit incorporates D in Q(z2).

For f in (
√

1/10,
√

10], we have z in roughly [−0.5195,+0.5195]. The wider range of z requires longer polynomials
compared to the binary case, and also makes the correction term z3Q(z2) relatively larger. Its magnitude does not
exceed |0.35z|, so it provides barely one extra decimal digit of precision, instead of two. Accurate computation of z
is easier than in the binary case: just set z = fl(fl(f − 1

2)− 1
2)/ fl(f + 1).

For improved accuracy, the constant D can be represented with a split like this:

D = Dhi + Dlo

= 0.868 588 963 806 503 655 302 257 837 833 210 164 588 794 . . . ,
Dhi = 0.868 588,

 0

 1

 2

 0 1 2 3 4 5

u
lp

s

x

Errors in logf(x)

 0

 1

 2

 0 1 2 3 4 5

u
lp

s

x

Errors in log10f(x)

 0

 1

 2

 0 1 2 3 4 5

u
lp

s

x

Errors in log(x)

 0

 1

 2

 0 1 2 3 4 5

u
lp

s

x

Errors in log10(x)

10.3. Logarithm functions 289

Figure 10.7: Errors in mathcw LOG() and LOG10() functions in a decimal base. Outside the argument region show
here, errors are always below 1

2 ulp.

Dlo ≈ 0.000 000 963 806 503 655 302 257 837 833 210 164 588 794

The base-10 logarithm of f is then computed in this order:

log10(f) ≈ Dhi × z + (Dlo × z + z3Q(z2))

≈ fma(Dhi, z, fma(Dlo, z, z3Q(z2))).

Rewriting the computation with fused multiply-add operations takes advantage of the higher precision offered by
the split constant.

We can now compute the final result:

log10(|x|) = log10(f) + n.

The mathcw library code for the logarithm in a decimal base improves on the Cody/Waite procedure by splitting
z into a sum of two parts, and then using a function from the VSUM() family to compute the sum of contributions to
log(x) and an estimate of the error in that sum. The error term is then added to the sum to get the final value.

Figure 10.7 shows the measured errors in our implementations of the natural and base-10 logarithm by the algo-
rithms described in this section.

When the function families LOG2(), LOG8(), and LOG16() are implemented by scaling of the natural logarithm,
plots show errors up to about 1 ulp in IEEE 754 arithmetic. The mathcw library implementations of those functions

 0

 1

 2

 0 1 2 3 4 5

u
lp

s

x

Errors in logdf(x)

 0

 1

 2

 0 1 2 3 4 5

u
lp

s

x

Errors in log10df(x)

 0

 1

 2

 0 1 2 3 4 5

u
lp

s

x

Errors in logd(x)

 0

 1

 2

 0 1 2 3 4 5

u
lp

s

x

Errors in log10d(x)

290 Chapter 10. Exponential and logarithm

therefore compute each of them directly with code that differs by only a few lines from that used for LOG() and
LOG10(), but, of course, with separate polynomial approximations. That brings the errors of the base-2, -8, and -16
logarithms down below 1

2 ulp, so we do not show error plots for them.

10.4 Logarithm near one

In 1987, Berkeley UNIX 4.3BSD introduced the log1p() function, defined as log1p(x) = log(1+ x). As with expm1(),
the Taylor series (see Section 2.6 on page 10) shows serious accuracy loss in log(1 + x) for small x if log is used
directly.

One reasonable computational procedure arises from the answer to the question: if we know an accurate value of
log(w) for a value w that is near 1 + x, can we compute log(1 + x) from it? The argument w is the result of forming
w = fl(1 + x) in finite-precision computer arithmetic. The value w is exactly representable, but differs from the
exact mathematical 1 + x. The Maple symbolic-algebra system readily finds this series expansion for w �= 1, and
a = fl(w − 1):

log(1 + x) = log(w)(x/a)[1 + (1/(w log(w))− 1/a)(x − a) + · · ·]
The value (x − a) can be either positive or negative, and its magnitude is O(ε). The factor that multiplies it in the
second term increases monotonically from − 1

2 at w = 1, to about −0.28 at w = 2, then to −0 as w → +∞. Thus, the
first two terms may sum to 1−O(1

2 ε), 1, or 1+O(1
2 ε). With the IEEE 754 default of round to nearest, the sum is either

1 − 1
2 ε or 1. When β = 2, those two are adjacent representable numbers, but in larger bases, they enclose additional

machine numbers. Most libraries that supply the log1p(x) function include only the first term of the series, but for
correct rounding in all bases and rounding modes, we need to use both terms.

Accuracy is limited primarily by that of the logarithm function for arguments near one. That requirement is not
satisfied by arbitrary implementations of log(), but it is for the improved Cody/Waite algorithm used in the mathcw
package.

If fl(w) = 1 to machine precision, the denominator w − 1 is zero, but we can then evaluate log(1 + x) instead by
its Taylor series.

If we omit the usual tests for special arguments, and ignore all but the first term in the series expansion, the
implementation of log1p() is then just two statements in C:

w = ONE + x;
return (w == ONE) ? x : (LOG(w) * (x / (w - ONE)));

This code is correct for round to nearest arithmetic, but wrong for other rounding modes, including historical
systems with truncating arithmetic. The code has at least these problems:

� When |x| is smaller than half the machine epsilon, the computation w = fl(1 + x) in non-default rounding
modes may produce 1 − ε/β, 1, or 1 + ε. As a result, the Taylor-series code might never be selected, even
though it is simpler and faster.

� When the Taylor series is selected, it is not sufficient to include just its first term in the small-argument case.
Two terms of the series log(1 + x) = x − x2/2 + x3/3 − · · · are needed to get the right answer for some
rounding modes.

� When w �= 1, the second term in the bracketed series expansion is needed for correct rounding.

� On base-16 systems, the computation 1 + x loses about three bits when x is small. Such expressions should be
rewritten as 2(1

2 +
1
2 x), because 1

2 has no leading zero bits. For the same reason, the truncated series, x − 1
2 x2,

should be evaluated as x - HALF*x*x, not as x*(ONE - HALF*x).

An implementation of that algorithm is quickly done, and testing finds errors up to about 2 ulps. If you need the
log1p() function in a programming language that doesn’t provide it, you can use that recipe to supply the missing
function.

However, in the previous section, we saw that careful handling of the argument reduction eliminates almost all
of the rounding error in the logarithm functions. The implementations of the log1p() function family in the mathcw
library achieve comparable accuracy by a modification of the argument reduction, and reuse of the same polynomial
approximations from the log() family.

10.4. Logarithm near one 291

If |x| is sufficiently small, we use the six-term Taylor series to evaluate log(1 + x) directly. Otherwise, we use a
rational polynomial approximation. For any base b, we have

logb(1 + x) = logb(f × βN), where f is in [1/β, 1),
= logb(f) + N logb(β).

The problem is that explicit evaluation of 1 + x loses trailing digits when x is small, so f is inaccurate. Nevertheless,
the decomposition does give us an exact value of N.

For argument reduction in a nondecimal base, β = 2K, we have

logb(1 + x) = logb(f) + N logb(2
K)

= logb(f) + N × K × logb(2)
= logb(f) + n × logb(2),

n = N × K,

and as we did for β > 2, we can adjust f upward by successive doubling to move it into the interval [1
2 , 1), decre-

menting n each time. We then make one additional adjustment to f and n, if necessary, to move f into the interval

[
√

1
2 ,
√

2).
The task is now to compute z without using the inaccurate value of f in numeric computation. If we did not

make the final doubling in f , follow these steps:

s = 2n,
1 + x = f × s,
znum = f − 1,
Znum = s × znum

= f × s − s
= (1 + x)− s
= (1 − s) + x, computational form,

zden = 1
2 f + 1

2 ,
Zden = s × zden

= f × 1
2 s + 1

2 s

= 1
2 (1 + x) + 1

2 s

= (1
2 +

1
2 s) + 1

2 x, computational form,

z = znum/zden

= Znum/Zden.

The scaled numerator and denominator are computed directly from the exact s and x, avoiding f entirely. How-
ever, unlike the case of the ordinary logarithm, we now in general have rounding errors in both the numerator and
denominator that must be accounted for when we compute the split z = z1 + z2. We have

Errnum = fl(fl(fl(1 − s)− Znum) + x),
Errden = fl(fl(fl(1 + s)− Zden) + x),

z2 = z − z1

= (fma(−z1, Zden, Znum) + (Errnum − z1 × Errden))/(Zden + Errden).

If we did make the final doubling of f , then, omitting intermediate steps, we have

Znum = fl(fl(1 − s) + x),

Znum = fl(fl(1
2 +

1
2 s) + 1

2 x),
Errnum = fl(fl(fl(1 − s)− Znum) + x),

Errden = fl(fl(fl(1
2 +

1
2 s)− Zden) +

1
2 x),

292 Chapter 10. Exponential and logarithm

and we compute the split of z as before.
For a decimal base, we require a different intermediate variable, z = (f − 1)/(f + 1), producing different results

for the values of z1 and z2. We leave the details of the decimal computation to the source code file logx.h in the code
block selected when the base defined by the preprocessor variable B is 10.

For bases b �= e, the Taylor series must be scaled by a suitable split of the constant 1/ log(b), and that introduces
a small problem. For arguments near the underflow limit, the computation of products of powers of x with the high
and low parts of the split constant may require subnormals, introducing unwanted additional error. The solution
is to scale the terms of the series by a power of the base to move the intermediate values into the range of normal
numbers. The inverse cube of the machine epsilon is a suitable scale factor, and the Taylor-series block looks like
this:

fp_t sum, x1, x2;
static const fp_t SCALE = FP(1.0) / (FP_T_EPSILON * FP_T_EPSILON * FP_T_EPSILON);
static const fp_t SCALE_INV = FP_T_EPSILON * FP_T_EPSILON * FP_T_EPSILON;

sum = (-SCALE / FP(6.0)) * x;
sum = (SCALE / FP(5.0) + sum) * x;
sum = (-SCALE / FP(4.0) + sum) * x;
sum = (SCALE / FP(3.0) + sum) * x;
sum = (-SCALE / FP(2.0) + sum) * x;

x2 = x * sum; /* scaled partial sum */
x1 = SCALE * x; /* scaled leading term */

sum = x2 * INV_LN_B_LO;
sum += x2 * INV_LN_B_HI;
sum += x1 * INV_LN_B_LO;
sum = FMA(x1, INV_LN_B_HI, sum);

result = SCALE_INV * sum; /* EXACT scaling */

Because SCALE is fixed, a compiler can replace the rational coefficients with constants, eliminating the divisions.
Without that scaling, the measured errors in arguments near the underflow limit can reach several ulps.

Testing of that algorithm for the function log2(1 + x) showed errors slightly above 0.5 ulps in two small regions,
[−0.298,−0.293] and [0.414, 0.426], where the function values are close to ∓1/2, respectively. Code was therefore
added to l21px.h to compute the functions for the float and double data types with Taylor-series expansions in
those regions. For improved accuracy, the expansions compute the small corrections to be added to ∓1/2, and the
corrections have the same sign as those constants.

Figure 10.8 on the facing page shows measured errors in the base-e functions. Error plots for the companion
families log21p(), log81p(), log101p(), and log161p() are similar, and thus not shown.

10.5 Exponential and logarithm in hardware

Two architecture families, the Intel IA-32 and Motorola 68000, provide hardware instructions summarized in Ta-
ble 10.1 on page 294 for evaluation of selected exponential and logarithm functions.

When there is compiler support for inline assembly code (see the discussion in Section 13.26 on page 388), the
instruction is available on the host platform, the preprocessor symbol USE_ASM is defined, and the argument is in
range, the mathcw library code uses the hardware instructions. As an example, the value of 2x can be computed
from the expansions acceptable to the widely available gcc compiler family of these macro definitions:

#define IA32_HW_EXP2(result, x) \
{ __asm__ __volatile__("f2xm1" : "=t" (result) : "0" (x)); \

result += ONE; } /* valid ONLY for |x| <= 1 */

#define M68K_HW_EXP2(result, x) \
{ __asm__ __volatile__("ftwotoxx %1, %0": "=f" (result): "f" (x)); }

10.5. Exponential and logarithm in hardware 293

Figure 10.8: Errors in LOG1P() functions in binary and decimal bases.

The additional x on the Motorola instruction indicates that the operands are in the 80-bit format. The compiler
handles the needed format conversions automatically for the input and output operands.

Tests on several Intel CPUs show no significant speedup from those hardware instructions compared to our
software algorithms, but accuracy improves slightly.

Intel manuals do not describe the algorithms used to implement those instructions, nor do they document the
instruction accuracy. Sometimes, that information can be found in research papers, such as the description of the
transcendental functions in the AMD K5 processor which aims for errors below 1 ulp [LAS+95]. Tests on recent
processors suggest that the results are almost always correctly rounded. However, because of the large number of
CPU models, and hardware vendors, in that long-lived architecture family, testing of the comparative accuracy of
the software and hardware alternatives in the mathcw library code is advisable at end-user sites.

Motorola manuals note that the instructions use a 67-bit significand internally, providing three additional bits,
and suggest that the worst-case error is about 64 ulps in the final 64-bit significand in the 80-bit format. Results
for the 32-bit and 64-bit formats are therefore likely to be almost always correctly rounded. The only 68000 system
available to this author for testing during the mathcw library development does not provide a usable long double
data type, so testing of the Motorola hardware instructions has only been possible with the 32-bit float and 64-bit
double data types.

The IA-32 logarithm instructions include a multiplier, y, to allow use of the relation logα(x) = logα(2)× log2(x)
to find logarithms in other bases. To make that easier for common cases, the IA-32 hardware includes instructions
fld1, fldlg2, and fldln2 to load the constants 1, log10(2), and loge(2). However, we noted earlier in this chapter
that high accuracy demands a representation of such constants to more than working precision, so we only use the

0

1

2

-1 0 1 2 3 4 5

u
lp

s

x

Errors in log1pf()

0

1

2

-1 0 1 2 3 4 5

u
lp

s

x

Errors in log1pdf()

0

1

2

-1 0 1 2 3 4 5

u
lp

s

x

Errors in log1p()

0

1

2

-1 0 1 2 3 4 5

u
lp

s

x

Errors in log1pd()

294 Chapter 10. Exponential and logarithm

Table 10.1: Hardware instructions for exponential and logarithm functions.

Function IA-32 68000 Conditions
ex — fetox
ex − 1 — fetoxm1
2x — ftwotox
2x − 1 f2xm1 — |x| ≤ 1
10x — ftentox
log(x) — flogn
log(1 + x) — flognp1
log2(x) — flog2
y log2(x) fyl2x —
y log2(1 + x) fyl2xp1 — |x| ≤ 1 − 1/

√
2 ≈ 0.293

log10(x) — flog10

logarithm instructions for computing the base-2 logarithm functions, for which the multiplier y = 1 is exact.

10.6 Compound interest and annuities

The functions of this chapter provide accurate solutions to two problems of concern to many: compound interest on
loans, and investment returns. The mathcw library includes two families of functions that solve those problems with
numerically stable algorithms, and Sun Microsystems SOLARIS includes those functions in the -lsunmath library.
There is no mention of them in the ISO programming-language standards.

A loan has risks for the lender, and thus has associated costs, the largest of which is usually interest. The amount
of the loan is called the principal, P, and for an interest rate r for a fixed period of time, the amount owed for that
period is P × (1 + r). If the loan is held for a second period, the debt is now (1 + r) times that value, or P × (1 + r)2.
When the loan is compounded for n periods, the principal grows by a factor (1 + r)n.

Interest rates are usually quoted as annual percentages, and it is imperative to adjust them to actual rates by
dividing by 100, and to the period by dividing by the number of periods per year. Thus, an annual rate of 6%
corresponds to r = 0.06 for one year, r = 0.06/4 for one quarter, and r = 0.06/12 for one month.

The computational problem is thus to define a function compound(r,n) that computes (1+ r)n accurately. We can
rewrite that expression as follows, using the substitution x = exp

(
log(x)

)
:

compound(r,n) = (1 + r)n

= exp
(

log
(
(1 + r)n))

= exp
(
n log(1 + r)

)
= exp

(
n log1p(r)

)
.

The code in compound() then only needs to check that the rate is finite and larger than −1, and if so, call log1p() and
exp() to complete the job. Otherwise, it returns a NaN.

The error-magnification formulas (see Section 4.1 on page 61) look like this:

C(r, n) = (1 + r)n,
r(dC(r, n)/dr)/C(r, n) = rn/(r + 1),

n(dC(r, n)/dn)/C(r, n) = n log(1 + r).

On the right-hand side, r and log(1 + r) are usually small, so for most applications of compound(), argument sensi-
tivity is not a serious problem unless n is large.

An annuity is an investment device that pays an annual return once it has matured. These payments normally
continue until both the principal and the interest have been repaid. Many people buy annuities to provide assured

10.6. Compound interest and annuities 295

retirement income, and a fixed-deposit bank savings account is essentially an annuity. Maturity may be reached
either by the buyer’s making regular payments until an agreed-upon principal has been paid, or the buyer may pay
the entire principal immediately. The present value of an annuity of unit value is determined by working backward
through n periods of interest compounding at rate r, from which we obtain this formula:

annuity(r,n) =
n

∑
k=1

(1 + r)−k

=
1 − (1 + r)−n

r

=
1 − exp

(
log

(
(1 + r)−n

))
r

=
1 − exp

(− n log(1 + r)
)

r

=
− expm1

(− n log1p(r)
)

r
.

The second equation is just the series rewritten in closed form. Clearly, if r is small, the subtraction in the numerator
suffers loss of leading digits, decreasing the precision of the computed result. Straightforward application of the
second equation is not advisable unless the working precision is high enough to absorb the digit loss. However, the
last equation provides a stable way to compute the annuity using our implementations of the two functions in the
numerator, with an expected error below four ulps.

The error-magnification formulas for the annuity function take these forms:

A(r, n) =
1 − (1 + r)−n

r
,

r(dA(r, n)/dr)/A(r, n) =
nr

(1 + r)(compound(r,n)− 1)
− 1,

n(dA(r, n)/dn)/A(r, n) =
n log(1 + r)

r × compound(r,n)× annuity(r,n)
.

Numerical evaluation of those expressions shows that their magnitudes remain below 1.0 for typical values of r and
n, so argument sensitivity is small.

Here are some case studies of compound interest and annuities to illustrate the use of our library functions:

� The future value of an annuity is the sum of the future value of each payment P, where the payment is made at
the end of each period. The first payment therefore has n − 1 future periods in which to grow to P(1 + r)n−1.
The second payment has only n − 2 future periods, and grows to P(1 + r)n−2. The last payment brings the
annuity to maturity, but has no time left to grow. We therefore have these relations:

future value of annuity = P(1 + r)n−1 + P(1 + r)n−2 + · · ·+ P(1 + r)0

= P ×
n−1

∑
k=0

(1 + r)k

= P × (1 + r)n − 1
r

= P × (1 + r)n × 1 − (1 + r)−n

r
= P × compound(r,n)× annuity(r,n).

The sum is just a geometric series with the well-known closed form given in the third equation, and suitable
factoring then leads to the simple product of our two functions.

For example, an annual payment of $1000 into a 5% college tuition-fund annuity for fifteen years has a total

296 Chapter 10. Exponential and logarithm

payment of $15 000, but grows to

future value = $1000 × compound(0.05, 15)× annuity(0.05, 15)

≈ $1000 × 2.078 028 × 10.379 638
≈ $21 579.

Of course, that growth is reduced by inflation, which from 1900 to 2000 averaged about 3.10% annually in the
US, and about 4.25% annually in the UK, from historical consumer price index data. Yearly fluctuations can be
large, and both countries experienced years in that century with annual inflation rates above 20%. Repeating
the computation with the effective rate reduced to 5%− 3.10% = 1.9% produces a lower future value of $17 169.

� A mortgage for a borrower is essentially an annuity for the lender. If the lender provides a loan principal P, at
rate r for n payment periods, then the borrower must pay it back in equal installments of size P/annuity(r, n).
For example, a loan at an annual rate of 6% for 20 years requires a monthly repayment given by

P/annuity(0.06 / 12, 20 * 12) ≈ 0.007 164P,

or quarterly payments of
P/annuity(0.06 / 4, 20 * 4) ≈ 0.021 548P.

If annual interest is 12%, the monthly repayment is about 0.011 010P.

These computations lead to a handy rule of thumb for typical house mortgages: the monthly payment is about
1% of the loan principal. For a five-year vehicle loan, similar calculations produce a monthly payment estimate
of about 2% of the principal.

It is important to understand how much of the payment goes towards interest, enriching the lender, and how
much towards the principal, reducing the borrower’s debt. At the end of the first period, the payment must
cover the interest on the principal, r × P. For our example of a 20-year mortgage at 6%, paid annually, the
interest is 0.06P, and the payment is P/annuity(0.06,20) ≈ 0.087P. This means that only a fraction of ap-
proximately 0.087 − 0.06 = 0.027 of the principal is paid, giving the borrower an equity increase of just 2.7% of
the loan. The first payment is about 69% interest and 31% principal. A longer loan life decreases the payment
each period, but increases the total interest paid, and reduces the amount of principal paid in any period. If
the loan terms, and personal finances, permit, it is advantageous for the borrower to make additional principal
payments to increase equity, reduce debt and total interest paid, and shorten the loan life, unless the additional
payments instead could be separately invested at a notably higher rate of return.

� Is it better for the borrower to make monthly, quarterly, or annual payments on a loan? We take the same
example of 6% annually for 20 years, and compute the total amount repaid annually, as follows:

total (monthly payments) = 12P/annuity(0.06 / 12, 20 * 12)

≈ 0.085 971P,
total (quarterly payments) = 4P/annuity(0.06 / 4, 20 * 4)

≈ 0.086 193P,
total (one payment) = P/annuity(0.06, 20)

≈ 0.087 184P.

Monthly payments are clearly better for the borrower. The more frequent the loan payments, the sooner the
lender recovers the investment (and can then reinvest it), and the faster the borrower reduces the debt.

� A savings deposit of a principal P earning annual interest of 6% grows to P × compound(0.06, 10) ≈ 1.790P
after a decade, and doubles in about 11.9 years.

Credit cards carry higher risk for the lender because they are not backed by fixed assets, and thus, have higher
interest rates. The US average 19% annual interest rate for credit cards at the time of writing this doubles the
lender’s investment in just four years. This helps to explain why credit cards, once a convenience available
only to the wealthy, are now easily available to consumers in many countries, and have placed many users of
such cards in permanent debt when they are unable to pay the entire monthly balance.

10.6. Compound interest and annuities 297

Higher-risk payday loans are even worse for the consumer: a recent newspaper report in this author’s area
cited annual rates of up to 450%, doubling the debt in just over 21 weeks.

� The US stock market growth rate for common stocks,3 adjusted for inflation, was about 10.7% annually from
1926 to 2001. A diversified investment of one unit would grow in that time to compound(0.107, 75), or about
2047. The corresponding returns for 25 and 50 years are about 13 and 161.
The important lessons of interest compounding are that longer terms and higher rates are better for the investor
or lender, and worse for the borrower.

� A lottery-jackpot prize of $270 000 000 was offered to the winner in annual payments of $13 500 000 for twenty
years, or as an immediate, but reduced, single payment of $164 000 000. Which option should the winner
choose, ignoring inflation and taxes?
The immediate payment conservatively invested in government-backed bonds4 at 5% per year would grow
by a factor of compound(0.05,20) ≈ 2.65 in twenty years, to about $435 141 000, and an annual rate of just
2.525% would return the full prize. At the historical growth rate of the stock market, the principal could rise
by compound(0.107,20) ≈ 7.64, reaching about $1 252 500 000.
Alternatively, if the annual payments are chosen and reinvested, the formula for the future value of an annuity
shows that the principal could grow in twenty years to

$13 500 000 × compound(0.05, 20)× annuity(0.05, 20) ≈ $446 390 380 safe bonds,
$13 500 000 × compound(0.107, 20)× annuity(0.107, 20) ≈ $837 444 239 risky stocks.

The newspaper that carried that lottery-jackpot story reported that the winner chose an immediate single
payment, as our simple projections recommend.
For much more on this subject, including its history, the many kinds of state lotteries in the US, and an elemen-
tary description of how the chances of winning are calculated, see The Lottery Book [Cat03].

� If a lottery winner accepts n annual payments instead of a lump sum, how much money does the lottery have
to set aside in a separate fund pool to be able to meet that long-term obligation? Also, how does it determine
the lump-sum amount?
The Lottery Book gives without derivation a complicated formula that determines the pool amount required for
the jackpot [Cat03, page 92]:

annuity pool for n payments =
((1 + r)n−1 − 1

r(1 + r)n−1 + 1
)× jackpot

n

Here, the value of n is fixed by the rules of the lottery, usually at 20, 25, or 30 years, but the rate r is determined
from a complex mixture of the rates of bonds with different maturity periods in an attempt to model future
behavior of the bond market. The pool formula looks unpleasant until we remove a common factor in the first
fraction, and relate it to the annuity() function:

annuity pool for n payments =
(1 − (1 + r)−(n−1)

r
+ 1

)× jackpot
n

=
annuity(r,n - 1)+ 1

n
× jackpot

Let us again assume that the yearly rate is 5%, and compute the multiplier of the jackpot needed to determine
the annuity pool amount:

M(r, n) =
annuity(r,n - 1)+ 1

n
,

M(0.05, 20) ≈ 0.654 266,
M(0.05, 25) ≈ 0.591 946,
M(0.05, 30) ≈ 0.538 036.

3Stocks are usually shares of a company, and thus carry no time limit. They may or may not include voting rights in company business
decisions. Their value depends on the company’s financial health and success, and also on their perceived worth to other investors.

4Bonds, notes, and bills are investments of decreasing, but fixed, term lengths that carry a high probability of repayment at a rate promised at
the time of purchase, usually as a matter of law. They are normally issued by governments and large stable companies.

298 Chapter 10. Exponential and logarithm

Thus, at a 5% rate, between 53% and 66% of the jackpot must be reserved to pay the annuity that grows to
match it. However, the lottery could just give the winner that fraction of the jackpot in a single payment. That
is why the lump-sum option generally pays only about 1

2 to 2
3 of the full jackpot.

A conservative winner who sticks to the bond market is likely to find both payment choices to be of similar
value, but a less-cautious winner who accepts a lump sum and puts it into a diversified stock portfolio may do
much better.

For the lottery win that began our discussion, we have

M(r, 20) = 164 000 000/270 000 000
≈ 0.607 407.

There is no simple solution of the general equation for M(r, n) to find the rate, but a numerical search finds it
to be r ≈ 6.011% when n = 20.

10.7 Summary

The exponential and logarithm are important elementary functions, and Cody and Waite show that one can obtain
reasonable accuracy for them with relatively little code. Improving on their algorithms requires more accurate argu-
ment reduction, careful splitting of the contributions to the function values into sums of exact high and accurate low
parts, and accurate summation of error-compensation terms and products of those parts.

The related functions expm1(x) and log1p(x) simplify important applications where direct computation of
exp(x)− 1 and log(1 + x) for small x would suffer serious accuracy loss. The software-library functions expm1(x)
and log1p(x) deserve to be available in more programming languages, and we showed how simple versions of them
can be implemented quickly, although without achieving the high accuracy of our final code for them.

Once accurate implementations of expm1(x) and log1p(x) are available, compound interest and annuities can be
computed reliably. Buying, selling, borrowing, and lending are common in most human societies, and are the foun-
dation of modern economies. Having compound(r,n) and annuity(r,n) functions readily accessible makes it easy
to evaluate the costs of borrowing, and the returns on investments. Many economies have experienced downturns,
and even collapse, when financial arithmetic, opportunities, and risks, have not been sufficiently understood.

11 Trigonometric functions

SOH-CAH-TOA: MNEMONIC DEVICE FOR THE

TRIGONOMETRIC FUNCTIONS IN A RIGHT TRIANGLE.
SOH : sin = OPPOSITE/HYPOTENUSE,

CAH : cos = ADJACENT/HYPOTENUSE,
TOA : tan = OPPOSITE/ADJACENT.

Trigonometry, from the Greek words for triangle and measurement, has been of interest to (at least some) humans
for more than four millennia, with early evidence of use in Egypt, India, Mesopotamia, and Greece. The common
method of measuring angles in degrees, minutes, and seconds comes from the Babylonian sexagesimal (base-60)
number system, although in modern mathematics and computer software, circular measure of radians, where 2π
radians is the angle of one complete rotation through a circle, is preferred.

The work of Fourier1 on the expansions of functions in trigonometric series increased the importance of trigonom-
etry in mathematics, engineering and science. Later independent discoveries of fast ways to compute the coefficients
of Fourier series (see footnote in Appendix I on page 969) are revolutionary for numerical computation, although
they are outside the scope of this book. If you are interested in learning more about their use on computers, con-
sult almost any textbook on numerical analysis or signal processing, and particularly, [CHT02, KMN89, Van92]. For
more on Fourier’s place in the history of mathematics, see Hawking’s comments and an English translation of some
of Fourier’s writing [Haw05, pages 491–562].

The mnemonic in the epigraph at the start of this chapter makes it evident that the tangent has a simple relation to
the sine and cosine, as tan(θ) = sin(θ)/ cos(θ), where θ is the Greek letter theta that is commonly used in mathematics
for angles. However, the range of the sine and cosine is [−1,+1], and both can be zero, although never for the
same argument, so the range of the tangent is [−∞,+∞]. That range difference is significant for floating-point
computation, so most programming languages that offer mathematical functions provide three basic trigonometric
functions: cos(x), sin(x), and tan(x). Accurate computation of those three functions, and their inverses, is the
subject of the remainder of this chapter.

Although you may have learned in school about the secant, cosecant, and cotangent, which are the reciprocals of
the cosine, sine, and tangent, respectively, modern practice is to ignore those additional functions because of their
simple relation to the other three.

11.1 Sine and cosine properties

The sine and cosine are periodic functions defined over the entire real axis, and they are graphed over a short interval
in Figure 11.1. Their reciprocals, the cosecant and secant, are shown in Figure 11.2. Two mathematical notations,
csc(x) and cosec(x), are common for the cosecant function.

The sine and cosine functions satisfy these periodicity and symmetry relations, where n is an integer:

cos(x) = cos(x + 2nπ), cos(x) = − cos(x + (2n + 1)π),
sin(x) = sin(x + 2nπ), sin(x) = − sin(x + (2n + 1)π),
cos(x) = cos(−x), sin(x) = − sin(−x).

Those relations allow us to reduce the computation to an interval of width no more than 2π, and we only need to
consider nonnegative x values. Additional symmetry that is evident in the graph permits the interval of computation
to be further reduced to [0, 1

2 π].

1Jean Baptiste Joseph Fourier (1768–1830) was a French scientist who made important discoveries in mathematics and physics. The Fourier
series, an expansion of a function as an infinite series of sines and cosines, is named after him, as are the Fourier operator and the various Fourier
transforms. He also developed an analytical theory of heat, and in that field, the Fourier number or Fourier modulus is the ratio of the rate of heat
conduction to the rate of thermal-energy storage.

© Springer International Publishing AG 2017
N.H.F. Beebe, The Mathematical-Function Computation
Handbook, DOI 10.1007/978-3-319-64110-2_11

299

300 Chapter 11. Trigonometric functions

-1.0

-0.5

0.0

0.5

1.0

-3π -2π -1π 0π 1π 2π 3π

si
n

(x
)

an
d

 c
o

s(
x)

x

Figure 11.1: Three periods of the sine (solid) and cosine (dashed) functions.

-6

-4

-2

0

2

4

6

-3π -2π -1π 0π 1π 2π 3π

se
c(

x)
 a

n
d

 c
sc

(x
)

x

Figure 11.2: Three periods of the secant (solid) and cosecant (dashed) functions.

Addition formulas relate trigonometric functions of sums and differences of angles to functions of a single angle:

cos(x ± y) = cos(x) cos(y)∓ sin(x) sin(y),
sin(x ± y) = sin(x) cos(y)± cos(x) sin(y).

Those relations can be iterated to find functions of any integer multiple of x:

cos(nx) = 2 cos((n − 1)x) cos(x)− cos((n − 2)x),
sin(nx) = 2 sin((n − 1)x) cos(x)− sin((n − 2)x).

The mathematical formulas for arguments x ± y and nx are only useful for computation when there is no subtraction
loss.

Although it is common in mathematics texts to drop parentheses around a simple argument of a trigonometric
function, and to move a power before the argument, this book replaces the compact, but ambiguous, notation sinn x
with (sin(x))n.

11.1. Sine and cosine properties 301

From the multiple-angle relations, one can easily derive special cases that prove useful in further argument re-
duction, and for testing implementations of the functions:

(cos(x))2 + (sin(x))2 = 1,

cos(x + 1
2 π) = − sin(x),

sin(x − 1
2 π) = − cos(x),

cos(1
2 x) = ±

√
1
2 (1 + cos(x)),

sin(1
2 x) = ±

√
1
2 (1 − cos(x)),

cos(2x) = (cos(x))2 − (sin(x))2

= 2(cos(x))2 − 1

= 1 − 2(sin(x))2

=
1 − (tan(x))2

1 + (tan(x))2 ,

sin(2x) = 2 sin(x) cos(x)

=
2 tan(x)

1 + (tan(x))2 ,

cos(3x) = 4(cos(x))3 − 3 cos(x),

sin(3x) = 3 sin(x)− 4(sin(x))3.

For the half-angle formulas, consult the function graphs to determine the correct sign.
There are formulas that define sums and differences of trigonometric functions as products of other functions

[AS64, §4.3.34–§4.3.42] [OLBC10, §4.21], which may be helpful in reducing subtraction loss in computer arithmetic:

cos(x)− cos(y) = −2 sin(1
2 (x − y)) sin(1

2 (x + y)),

cos(x) + cos(y) = 2 cos(1
2 (x − y)) cos(1

2 (x + y)),

sin(x)− sin(y) = 2 sin(1
2 (x − y)) cos(1

2 (x + y)),

sin(x) + sin(y) = 2 sin(1
2 (x + y)) cos(1

2 (x − y)),

(cos(x))2 − (cos(y))2 = − sin(x + y) sin(x − y),

(cos(x))2 − (sin(y))2 = cos(x + y) cos(x − y),

(sin(x))2 − (sin(y))2 = sin(x + y) sin(x − y).

In some applications, including one that we encounter later in this chapter, we need to evaluate 1 − cos(x) or
1 − sin(x) when the values of the trigonometric functions are near 1. They are just special cases of the difference
formulas where we first substitute x → 1

2 π, and then y → x:

1 − cos(x) = 2
(

sin(1
2 x)

)2 1 − sin(x) = 2
(

cos(1
2 x + 1

4 π)
)2

= 2
(

cos(1
2 x + 1

2 π)
)2, = 2

(
sin(1

2 x − 1
4 π)

)2.

We can also find those equations by squaring and rearranging the half-angle formulas, and using an argument shift
by π/2 to convert a cosine to a sine.

As a historical note, the function 1 − cos(x) is called the versine, and 1 − sin(x) is the coversine. Those functions,
and half their values, called the haversine and the cohaversine, were often included in books of numerical tables
because accurate values for them are required in navigational formulas in spherical trigonometry. The need for them
disappeared as machines took over such computations, and they are rarely mentioned in modern mathematical texts.

The first derivatives have simple relations to the functions themselves, and are also restricted to the range [−1,
+1]:

d cos(x)/dx = − sin(x), d sin(x)/dx = cos(x).

302 Chapter 11. Trigonometric functions

-6

-4

-2

0

2

4

6

-3π -2π -1π 0π 1π 2π 3π

ta
n

(x
)

an
d

 c
o

ta
n

(x
)

x

Figure 11.3: Six periods of the tangent (solid) and cotangent (dashed) functions.

The Taylor series of the cosine and sine converge rapidly:

cos(x) = 1 − (1/2)x2 + (1/24)x4 − (1/720)x6 + (1/40 320)x8 −
(1/3 628 800)x10 + · · ·+ (−1)n(1/(2n)!)x2n + · · · ,

sin(x) = x − (1/6)x3 + (1/120)x5 − (1/5040)x7 + (1/362 880)x9 −
(1/39 916 800)x11 + · · ·+ (−1)n(1/(2n + 1)!)x2n+1 + · · · .

Those series produce the handy rules of thumb that, for small x, cos(x) ≈ 1 and sin(x) ≈ x.

11.2 Tangent properties

The tangent function, which is just the ratio of the sine and cosine, is periodic over an interval of width π, instead of
the width 2π for the other two functions. Three mathematical notations for its reciprocal, the cotangent, are common:
cot(x), cotan(x), and ctn(x). The tangent and cotangent are graphed over a small interval in Figure 11.3. For the
tangent, there are asymptotes at odd multiples of 1

2 π where the function goes to +∞ from the left, and to −∞ from
the right. The asymptotes of the cotangent occur at even multiples of 1

2 π.
The tangent satisfies these periodicity and symmetry relations, where n is an integer:

tan(x) = tan(x + nπ), tan(x) = − tan(−x).

Addition formulas connect tangents of sums and differences of angles to trigonometric functions of single angles:

tan(x ± y) =
tan(x)± tan(y)

1 ∓ tan(x) tan(y)
,

=
sin(x) cos(y)± cos(x) sin(y)
cos(x) cos(y)∓ sin(x) sin(y)

.

The second form avoids numerical problems from infinite operands when Infinity is not representable, and from
significance loss in a hexadecimal base for a denominator of the form 1+ small, although that particular problem can
be easily solved by halving the numerator and denominator.

The addition formulas readily lead to these special cases:

tan(1
2 x) = ±

√
1 − cos(x)
1 + cos(x)

tan(2x) =
2 tan(x)

1 − (tan(x))2 ,

11.2. Tangent properties 303

=
1 − cos(x)

sin(x)
tan(3x) =

3 tan(x)− (tan(x))3

1 − 3(tan(x))2 ,

=
sin(x)

1 + cos(x)
, tan(nx) =

tan((n − 1)x) + tan(x)
1 − tan((n − 1)x) tan(x)

.

For the first half-angle formula, consult the function graph to determine the correct sign.
Sums and differences of tangents and cotangents have representations that may help reduce subtraction loss in

computation:

tan(x)± tan(y) =
sin(x ± y)

cos(x) cos(y)
,

cotan(x)± cotan(y) =
sin(x ± y)

sin(x) sin(y)
.

The first derivative of the tangent has a simple relation to the tangent itself:

d tan(x)/dx = 1 + (tan(x))2.

Thus, the slope of the tangent function is never less than +1.
Unlike the sine and cosine, where the Taylor-series coefficients have simple forms, the Taylor series of the tangent

involves the famous, but complicated, Bernoulli numbers, B2n [AS64, Table 23.2, p. 804], [AW05, §5.9], [AWH13, §12.2],
[OLBC10, §24.2]. They are rational numbers that alternate in sign, grow factorially, and hide some deep mathematics.
For example, they have curious relations to prime numbers, and to the famous Riemann zeta function.2 We also
encounter the Bernoulli numbers later in this book in series for the hyperbolic tangent (Section 12.1 on page 342),
the gamma function (Section 18.1 on page 525), and the psi function (Section 18.2.6 on page 542):

tan(x) = x + (1/3)x3 + (2/15)x5 + (17/315)x7 + (62/2835)x9 +

(1382/155 925)x11 + (21 844/6 081 075)x13 + · · ·+
(B2n(−4)n(1 − 4n)/(2n)!)x2n−1 + · · · .

Clearly, for small x, we have tan(x) ≈ x.
Table 11.1 on the following page lists the first two dozen or so nonzero Bernoulli numbers, and we describe their

calculation in Section 18.5 on page 568 and Section 18.5.1 on page 574. They are difficult to compute accurately with
limited-precision arithmetic, and they soon reach the overflow limit of most floating-point systems. Fortunately, we
can often get by with just a few of the low-order Bernoulli numbers, expressing them directly in the code as exact
rational numbers that optimizing compilers can convert to accurate floating-point equivalents.

To help investigate how closely the computed tangent function can approach the asymptotes, here is the Taylor
series of its reciprocal:

1/ tan(x) = z + (1/3)z3 + (2/15)z5 + (17/315)z7 + · · · ,

z = 1
2 π − x.

Because 1
2 π ≈ 1.570 796 . . . is a transcendental number, it cannot be represented exactly as a floating-point number.

Instead, it lies between two adjacent machine numbers that are separated by the machine epsilon, ε. The closest
machine number may be just below, or just above, 1

2 π, depending on the value of the base and the precision, as
shown in Table 11.2 on page 305. The reciprocals of the numbers in the second column of that table are roughly the
largest values that tan(x) can reach in finite-precision arithmetic, although rarely, for large integer multiples of 1

2 π, it
is possible to get closer to an asymptote. Those reciprocals are far from the largest representable number on most of
the systems listed, so the software designer must decide whether HALF_PI should be treated as 1

2 π, which is probably
what humans expect, or as a nearby exact machine number. The tangents of those two values are quite different.

2Bernhard Riemann’s (1826–1866) hypothesis (1859) about the locations of the complex roots of the zeta function, ζ(z) = ∑∞
n=1 n−z,where ζ is

the Greek letter zeta, is possibly the greatest unsolved problem in all of mathematics [CJW06, Clay09, Dev02, Der03, Lap08, dS03, Roc06, Sab03].
Riemann also made fundamental contributions to the study of the geometry of curved spaces, and Albert Einstein (1879–1955) later built on
Riemann’s work in the General Theory of Relativity (1916), which accurately describes the structure and evolution of the Universe. Riemann died
of tuberculosis at the age of 39.

304 Chapter 11. Trigonometric functions

Table 11.1: Bernoulli numbers of even order. Those of odd order are all zero, except for B1 = − 1
2 . Growth is rapid:

the numerator of B100 has 83 digits, that of B200 has 222 digits, and that of B500 has 743 digits.

2n B2n 2n B2n

0 +1 28 −23 749 461 029/870
2 +1/6 30 +8 615 841 276 005/14 322
4 −1/30 32 −7 709 321 041 217/510
6 +1/42 34 +2 577 687 858 367/6
8 −1/30 36 −26 315 271 553 053 477 373/1 919 190

10 +5/66 38 +2 929 993 913 841 559/6
12 −691/2730 40 −261 082 718 496 449 122 051/13 530
14 +7/6 42 +1 520 097 643 918 070 802 691/1806
16 −3617/510 44 −27 833 269 579 301 024 235 023/690
18 +43 867/798 46 +596 451 111 593 912 163 277 961/282
20 −174 611/330 48 −5 609 403 368 997 817 686 249 127 547/46 410
22 +854 513/138 50 +495 057 205 241 079 648 212 477 525/66
24 −236 364 091/2730 52 −801 165 718 135 489 957 347 924 991 853/1590
26 +8 553 103/6 / . . .

Similarly, the Taylor series of cos(x) and sin(x) near x = 1
2 π are

cos(x) = z − (1/6)z3 + (1/120)z5 − · · · ,

sin(x) = 1 − (1/2)z2 + (1/24)z4 − · · · ,

z = 1
2 π − x,

so depending on software-design decisions, we may get a nonzero value for cos(HALF_PI), but we should find that
fl(sin(HALF_PI)) = 1 in a round-to-nearest mode when 1

2 z2 � ε/β (the little epsilon).

11.3 Argument conventions and units

In the introduction to this chapter, we noted that computer software usually follows the mathematical practice that
arguments of trigonometric functions are in radians. However, some languages, and some implementations of C,
provide companion functions with different argument units.

For example, Sun Microsystems SOLARIS includes the functions cospi(x), sinpi(x), and tanpi(x), where x is
in units of π. Thus, cospi(x) is defined to be cos(πx), which can be rewritten as cos((2π)(1

2 x)) and then with the
substitution 1

2 x = n + r, replaced by cos(2πr). The value r is the fractional part of 1
2 x, which is recovered exactly,

when HALF * x is exact, by either of these statements:

r = HALF * x - TRUNC(HALF * x);
r = MODF(HALF * x, NULL);

However, we note in Section 9.3 on page 264 that a NULL argument in the modf() family is not portable.
SOLARIS also offers three slightly different functions, cosp(x), sinp(x), and tanp(x), that use these argument

reductions:

x = n fl(2π) + r, for cosine and sine,
x = n fl(π) + r, for tangent .

That choice does not eliminate the argument-reduction problem, but it simplifies it, because the reduction can then
be done exactly with a call to a standard library function to compute either fmod(x,TWO_PI) or fmod(x,PI). We show
in Section 6.15 on page 146 how to implement that function to provide an exact remainder operation. Unfortunately,
use of those functions introduces a portability problem, because fl(π) depends on the precision, and may differ from
working precision if the library code, or hardware, uses higher internal precision for that constant.

11.3. Argument conventions and units 305

Table 11.2: Distances of closest machine numbers, HALF_PI, to 1
2 π for t-digit base-β floating-point formats.

t 1
2 π − HALF_PI Sample architectures

β = 2
13 −4.5e−06 Lawrence Livermore National Laboratory S-1
24 1.6e−08 DEC VAX, IEEE 754
27 9.9e−10 DEC PDP-10, S-1, General Electric 600, Honeywell 6000
48 −1.7e−15 CDC 6000 and 7000, Cray 1
53 −5.0e−17 DEC VAX, IEEE 754
54 5.7e−18 DEC PDP-10 KA10
56 5.7e−18 DEC VAX
57 −1.2e−18 S-1
59 5.2e−19 DEC PDP-10 KL10
62 8.3e−20 DEC PDP-10 KL10
63 −2.5e−20 General Electric 600, Honeywell 6000
64 −2.5e−20 IEEE 754
96 8.5e−32 CDC 6000 and 7000

113 4.3e−35 IEEE 754
237 −4.5e−73 extended IEEE 754

β = 8
13 7.4e−13 Burroughs B5700, B6700, B7700
26 6.4e−25 Burroughs B5700, B6700, B7700

β = 10
7 2.7e−08 IEEE 754

16 1.9e−17 IEEE 754
34 4.2e−35 IEEE 754
70 3.1e−72 extended IEEE 754

β = 16
6 1.6e−08 IBM System/360

14 5.7e−18 IBM System/360
28 4.3e−35 IBM System/360

OSF/1 and SOLARIS provide another three functions with arguments in degrees: cosd(x), sind(x), and tand(x).
Their names conflict with those of the new functions for decimal floating-point arithmetic, so they might be renamed
to use a longer prefix or suffix, such as degcos(x) or cosdeg(x). We use the latter form. The argument reduction for
degrees can be done exactly with a standard function: fmod(x,360.0).

In some military organizations, yet another angular unit is common: mils. The British mil is defined by
1000 British mils = 1 radian, but the NATO mil differs slightly: 6400 NATO mils = 2π radians. We therefore have
1 NATO mil ≈ 0.981 748 . . . British mil. To add to the confusion, there is also a US mil defined by 1000 US mils =
90◦ ≈ 1.570 796 radians.

Here is an explanation of the origin of the mil unit. The length of an arc of a circle of radius r is s = rθ when θ is
in radians. Thus, the range of a target of width w (in any convenient units) that subtends a small angle of b British
mils is just r ≈ (1000/b)w, providing an easy way to convert angles to distances for gunnery settings.

This author has never encountered a programming language with trigonometric functions for mil arguments,
but in view of the problem that we discuss in the next section, and in Section 11.6 on page 313, it is not sufficient to
simply define functions with scaled arguments, such as with preprocessor statements like these

#define cosbritishmil(x) cos((x) / 1000.0)
#define cosnatomil(x) cos((TWO_PI / 6400.0) * (x))
#define cosusmil(x) cos((HALF_PI / 1000.0) * (x))

if accuracy is to be maintained for large arguments that lie well outside the principal ranges (in radians) of [−π, π]
and [0, 1

2 π].

306 Chapter 11. Trigonometric functions

11.4 Computing the cosine and sine

After the special arguments of Infinity, NaN, and signed zero have been handled, and the argument magnitude has
been suitably reduced to the interval [0, 1

2 π], the Cody/Waite algorithm for the cosine and sine uses the relation
cos(x) = sin(x + 1

2 π) to further simplify the computation to just that of the sine. For tiny |r|, they use the first term
of the Taylor series, sin(r) ≈ r. Otherwise, they evaluate the sine by a polynomial approximation of the form

g = r2, sin(r) ≈ r + rgP(g)/Q(g),

valid for r in the range [0, 1
2 π]. For that range of r, the factor gP(g)/Q(g) lies in [0,−0.364], providing a modest

correction to an exact value. That negative correction is small enough that there is no significance loss in the implicit
subtraction that happens for all r > 0, because | sin(r)| ≤ |r|. Nevertheless, tests of that algorithm with decimal
arithmetic show that sindf(HALF_PI) and sind(HALF_PI) are smaller than the exact value by ε/β. We therefore
extend the Cody/Waite algorithm to switch to the formula

sin(r) = 1 − 2
(

sin(1
2 r − 1

4 π)
)2

when sin(|r|) > 0.9, or |r| > sin−1(0.9) ≈ 1.12. That choice extends the effective precision on the right-hand side by
one or more decimal digits, and produces the exact value of the sine of HALF_PI in both binary and decimal formats.

Argument reduction for the cosine requires additional care to avoid subtraction loss when x ≈ − 1
2 π. We clearly

cannot just compute the argument of the sine as x + 1
2 π, but we can do so analytically as follows:

|x| = nπ + r, |x|+ 1
2 π = (n + 1

2)π + r = Nπ + (r − 1
2 π).

Determine the integer N like this:

N = round((|x|+ 1
2 π)/π) = round(|x|/π + 1

2) = trunc(|x|(1/π) + 1).

The reduced argument of the sine is then

r = |x| − (N − 1
2)π.

As long as N − 1
2 is exactly representable, we can recover an accurate value of r by the stepwise reduction described

on page 245.
Cody and Waite derive their polynomial approximation from earlier work by Hart and others [HCL+68], and

set Q(g) = 1, eliminating division. Rational approximations are usually more accurate than single polynomials of
the same total degree, and numerical experimentation for the sine function shows that about six bits of accuracy
can be gained at the expense of one division. Our code normally uses the Cody/Waite polynomials for the preci-
sions for which they are suitable, and otherwise, uses rational approximations. However, testing shows that their
〈3/0〉 polynomial for 24-bit precision can produce errors slightly above 0.5 ulps, so we replace it with a new 〈4/0〉
approximation.

The key improvement that we make upon the Cody/Waite recipe is replacement of their argument-reduction
step by the more accurate reduce() and eriduce() routines that we describe in Chapter 9. That avoids accuracy
loss for arguments that are near multiples of 1

2 π, and allows us to eliminate their restriction to arguments |x| <

trunc(πβt/2), extending accurate coverage to the entire real axis. Because the reductions need long expansions of
irrational constants, we conserve memory and reduce code complexity by moving the job to a separate function,
defined in file rpx.h, that can be used by several others. We present it as a semi-literate program in parts, beginning
with its simple interface:

fp_t
RP(fp_t x, int *pn, fp_t *perr)
{

/*
** Reduce FINITE x (unchecked!) with respect to PI, returning a
** result in [-PI/2, PI/2] such that
**

11.4. Computing the cosine and sine 307

** r = (return value) + (*perr)
**
** satisfies x = n*PI + r to roughly twice working precision,
** and (*perr) is no larger than one ulp of the return value.
**
** A NULL value for perr indicates the error term is not needed.
*/

The first task is to declare and initialize some local variables, and then quickly dispense with the common cases
where the result would be identical to that computed on the last call, or where no reduction is needed:

fp_t err, result, xabs;
int n;
static fp_t last_x = FP(0.);
static fp_t last_result = FP(0.);
static fp_t last_err = FP(0.);
static int last_n = 0;

err = ZERO;
n = 0;
xabs = QABS(x);

if (x == last_x) /* return cached results from last call */
{

result = last_result;
err = last_err;
n = last_n;

}
else if (xabs <= PI_HALF)
{

result = x;
err = ZERO;
n = 0;

}

For decimal arithmetic, we use the REDUCE() family routine of highest precision when the argument magnitude
is not too large, or else we produce a quiet NaN:

else
{

#if B == 10

/* ereduce() and eriduce() do not work for a decimal base, so
do the reduction as accurately as we can */

if (xabs < XREDMAX)
{

decimal_long_long_double r, r_lo;

r = _reddll((decimal_long_long_double)x, ONE_OVER_PI_DLL, NC_PI_DLL, C_PI_DLL, &n, &r_lo);
result = (fp_t)r;
err = (fp_t)((r - (decimal_long_long_double)result) + r_lo);

}
else

result = SET_EDOM(QNAN(""));

The cutoff value, XREDMAX, depends on the number of digits supplied in the arrays that hold the expansion of the
reduction constant, through the requirement described in Section 9.1 on page 243 that nck be exactly representable.

308 Chapter 11. Trigonometric functions

For decimal arithmetic, XREDMAX is 108. For other bases, it is 8000 when there are at least 53 bits in the significand,
and otherwise, it is 1000.

Because we have a higher-precision representation of π, we can, with negligible cost, compute a correction to
the function value and later return the correction via the final pointer argument. The sum of the function value and
the correction then provides an argument reduction with double the working precision, and that can be exploited to
further reduce errors in computed functions.

For nondecimal arithmetic, a member of the REDUCE() family of at least type double does the job for smaller
arguments, and the slower exact-reduction routine, ERIDUCE(), handles larger arguments:

#else /* B != 10 */

if (xabs < XREDMAX) /* use simple and fast reduction
in at least double precision */

{

#if defined(HAVE_FP_T_SINGLE)
double r;

r = _red((double)x, ONE_OVER_PI_DBL, NC_PI_DBL, C_PI_DBL, &n, (fp_t *)NULL);
result = (fp_t)r;
err = (fp_t)(r - (double)result);

#else
result = REDUCE(x, ONE_OVER_PI, NC_PI, C_PI, &n, &err);

#endif /* defined(HAVE_FP_T_SINGLE) */

}
else /* use complex and much-slower reduction */

result = ERIDUCE(x, PI, NC_ONE_OVER_PI, C_ONE_OVER_PI, &n, &err, bits_per_chunk);

#endif /* B == 10 */

}

All that remains is possible storage of the error term and the multiplier n, preservation of the final results in static
variables, and a return to the caller:

if (perr != (fp_t *)NULL)
*perr = err;

if (pn != (int *)NULL)
*pn = n;

last_n = n; /* cache results for possible later use */
last_result = result;
last_x = x;

return (result);
}

A similar function, RPH(), in file rphx.h provides reductions with respect to 1
2 π. The functions RP() and RPH()

are intended only for internal library use, so they are not declared in mathcw.h, and their macro names expand to the
implementation-reserved forms _rp() and _rph() with the usual type suffixes.

The Cody/Waite argument reduction for the cosine is applicable only in a limited range, and we want to handle
all finite arguments, and still be able to reuse the polynomial approximations for the sine. The solution to that
problem is to use the RPH() family to reduce the cosine argument with respect to 1

2 π instead of π. We can then use
the formulas in the second block of Table 9.1 on page 244 and the relation cos(x) = sin(1

2 π − x) to further reduce
the computation to the sine of a reduced argument. The four cases are handled by code in cosx.h like this:

11.4. Computing the cosine and sine 309

else
{

hp_t f_abs, s, v[4];
int negate;

f_abs = QABS(f);
negate = 0;

switch (((n < 0) ? -n : n) & 0x3)
{
default:
case 2: /* cos(x) = -cos(f) = -cos(|f|) = -sin(PI/2 - |f|) */

negate = 1;
/* FALL THROUGH */

case 0: /* cos(x) = cos(f) = cos(|f|) = sin(PI/2 - |f|) */
v[0] = (f < HP(0.0)) ? f_err : -f_err;
v[1] = (hp_t)PI_HALF_LO;
v[2] = -f_abs;
v[3] = (hp_t)PI_HALF_HI;
f = HP_VSUM(&f_err, 4, v);

if (negate)
{

f = -f;
f_err = -f_err;

}

break;

case 1: /* cos(x) = -sin(f) = sin(-f) */
f = -f;
f_err = -f_err;
break;

case 3: /* cos(x) = sin(f) */
break;

}

f_abs = QABS(f);

/* ... code omitted ... */
}

The value of f at the start of the switch statement is restricted to [− 1
4 π, 1

4 π], and argument symmetry allows re-
placement of cos(−| f |) by cos(| f |), so the subtraction 1

2 π − | f | cannot suffer loss of leading bits. However, we need
a value of 1

2 π to twice working precision in order to recover an accurate difference, and the VSUM() family that we
used in Section 10.2 on page 273 does the job. We include the error term in the vector sum, and recover a new f and
f_err representing the further-reduced argument to twice working precision.

The remainder of the code then uses a two-term Taylor series for sin(f) if | f | is small, and otherwise, computes
a rational approximation. Just as we did in sinx.h, for | f | > sin−1(0.9), we use the alternate formula that com-
putes sin(f) as a small negative correction to the exact value 1. In both cases, the VSUM() family allows accurate
computation of the reduced argument 1

2 | f | − 1
4 π as 1

2 (| f | − 1
2 π).

From Table 4.1 on page 62, the error-magnification factor for the sine is x/ tan(x), and its value lies in [1, 0] for x
in [0, 1

2 π]. We therefore expect high accuracy for the sine function over that range.
When argument reduction is needed, we have x = nπ + r, and the value returned by RP() is fl(r), differing from

the exact r by at most one rounding error. We then compute the sine of that rounded value, when instead, we want

310 Chapter 11. Trigonometric functions

sin(r). RP() returns an estimate of the argument error, so we need to determine how to use it to correct the values of
sin(fl(r)) and cos(fl(r)). The Taylor series once again provide answers:

cos(rhi + rlo) = cos(rhi)− sin(rhi)rlo − 1
2 cos(rhi)r2

lo +O(r3
lo),

sin(rhi + rlo) = sin(rhi) + cos(rhi)rlo − 1
2 sin(rhi)r2

lo −O(r3
lo).

When r is tiny, cos(rhi) ≈ 1, so the correction to the sine of the accurate reduced argument is almost exactly rlo,
which is enough to perturb the computed answer by as much as one ulp. Similarly, when r is near an odd integer
multiple of 1

2 π, sin(rhi) ≈ ±1, and the correction to the cosine can be about one ulp.
We expect the argument reduction to contribute no more than one additional rounding error. That means that if

our polynomial approximation for x on [− 1
2 π, 1

2 π] is good enough, and we have round-to-nearest arithmetic, then we
expect errors below 0.5 ulps on that central interval, and no more than 1 ulp for all other possible values of x over
the entire floating-point range.

Those expectations are confirmed by error plots from a version of our code that uses working precision for the
internal computations. However, on all modern systems, there is relatively little difference in performance between
float and double types, and for the common Intel (and compatible) processor families, between those and long
double. Thus, we implement the kernel of the sine and cosine functions in the next higher precision, hp_t, although
the polynomial approximations are still selected according to the working precision, fp_t. A compile-time definition
of the macro USE_FP_T_KERNEL forces the kernel computation back to working precision, should that be desirable for
performance reasons on some systems.

The error-magnification factor for cos(x) is x tan(x). For x in [−1, 1], that factor lies in [0, 1.558], but it rises sharply
to infinity for |x| near 1

2 π. We therefore expect larger errors in the cosine than in the sine, and that is indeed observed
when the kernel code is in working precision.

The errors in our implementation of the cosine and sine functions are presented in Figure 11.4 on the next page
and Figure 11.5 on page 312. Although the argument range in those plots is restricted to allow the behavior in the
reduction-free region to be seen, plots over a wider range are qualitatively similar.

11.5 Computing the tangent

The Cody/Waite procedure for the tangent reduces the argument to the range [− 1
4 π,+ 1

4 π] using a technique similar
to that for the sine and cosine described on page 245. They handle tiny arguments with the first term of the Taylor
series, tan(r) ≈ r. Otherwise, they use an approximation of the form

g = r2, tan(r) ≈ rP(g)/Q(g),

valid for r in [0, 1
4 π]. The corresponding range of the factor P(g)/Q(g) is about [1, 1.28].

That form differs from that of their approximation for sin(r) by the absence of a leading term r. The reason
for that change is that it makes it possible to provide a separate routine for the cotangent that simply computes
cotan(r) ≈ Q(g)/(rP(g)). That avoids introduction of an additional rounding error if the cotangent were computed
as 1/ tan(r), and allows the same polynomial approximations to be used for both functions.

Unfortunately, the fact that the function value is not obtained as the sum of an exact value and a small correction
produces larger errors than we would like. Error plots for an implementation of their algorithm show peaks of
up to 1.5 ulps, with occasional errors over 2.5 ulps. The error-magnification factor for the tangent (see Table 4.1 on
page 62) grows with increasing x: for x on [0, 1

4 π], its range is [1, 1
2 π], but for x on [1

4 π, 1
2 π], its range is [1

2 π, ∞]. Higher
precision is essential for reducing that unavoidable mathematical error magnification. We therefore entirely replace
the Cody/Waite algorithm by a similar one, with a two-term Taylor series for tiny arguments, and a polynomial
approximation of the form used for the sine:

g = r2, tan(r) ≈ r + rgP(g)/Q(g).

We also use the Taylor series to find out how to incorporate a correction from the argument reduction:

tan(rhi + rlo) = tan(rhi) + (1 + tan(rhi))rlo+

tan(rhi)(1 + (tan(rhi))
2)r2

lo +O(r3
lo).

11.5. Computing the tangent 311

Figure 11.4: Errors in COS() functions.

We use the next higher precision for the argument reduction and evaluation of the polynomial approximation.
The core of our tangent routine, after arguments of NaN, Infinity, and signed zero have been handled, looks like this:

hp_t a, f, f_err;
int n;
volatile hp_t t, u;

f = HP_RPH(x, &n, &f_err);

if (ISNAN((fp_t)f)) /* |x| too big to reduce accurately */
result = SET_EDOM((fp_t)f);

else
{

if (QABS((fp_t)f) < EPS) /* tan(f) = f + f**3/3 for tiny |f| */
u = f * f * f / THREE;

else /* tan(f) = f + f * g * P(g)/Q(g) */
{

hp_t g, pg_g, qg;

g = f * f;
pg_g = POLY_P(p, g) * g;
qg = POLY_Q(q, g);

0

1

2

-10 -5 0 5 10

u
lp

s

x

Errors in cosf()

0

1

2

-10 -5 0 5 10

u
lp

s

x

Errors in cosdf()

0

1

2

-10 -5 0 5 10

u
lp

s

x

Errors in cos()

0

1

2

-10 -5 0 5 10

u
lp

s

x

Errors in cosd()

312 Chapter 11. Trigonometric functions

Figure 11.5: Errors in SIN() functions.

u = f * (pg_g / qg);
}

STORE((fp_t *)&u);
a = f + u; /* initial estimate of tan(f) */

if (QABS(a) < HP(1.0))
{

t = u + a * f_err;
STORE((fp_t *)&t);
t += f_err;
STORE((fp_t *)&t);

}
else /* reverse terms to add largest last */
{

t = u + f_err;
STORE((fp_t *)&t);
t += a * f_err;
STORE((fp_t *)&t);

}

0

1

2

-10 -5 0 5 10

u
lp

s

x

Errors in sinf()

0

1

2

-10 -5 0 5 10

u
lp

s

x

Errors in sindf()

0

1

2

-10 -5 0 5 10

u
lp

s

x

Errors in sin()

0

1

2

-10 -5 0 5 10

u
lp

s

x

Errors in sind()

11.6. Trigonometric functions in degrees 313

Figure 11.6: Errors in TAN() functions.

t += f; /* refined value of tan(f) */
result = (fp_t)(IS_EVEN(n) ? t : -HP(1.0) / t);

}

We also provide library routines for the cotangent. The code in cotanx.h differs from that in tanx.h only in the
handling of the case x = ±0, and in using the reciprocals of the final expressions before the cast to fp_t is applied.
The errors in our implementation of the tangent are shown in Figure 11.6. Plots of the errors in the cotangent are
similar, and thus, not shown.

Tests of our code for the tangent and cotangent against high-precision computations in Maple with logarith-
mically distributed random arguments show that about one in 2400 results fails to be correctly rounded, with a
worst-case error of about 0.62 ulps.

11.6 Trigonometric functions in degrees

We observed in Section 11.3 on page 304 that arguments in degrees can be exactly reduced to a single period with the
help of the fmod() function family. It might appear that all that is then required is to call the corresponding normal
trigonometric function with an argument scaled from degrees to radians by multiplication with π/180. Unfortu-
nately, that introduces a problem that we discuss in relation to Table 11.2 on page 305: trigonometric arguments in
degrees can exactly locate zeros, inflection points, and poles, but nonzero arguments in radians cannot. We can see
that in numerical experiments with the 32-bit binary and decimal versions of hoc:

0

1

2

-100 -50 0 50 100

u
lp

s

x

Errors in tanf()

0

1

2

-100 -50 0 50 100

u
lp

s

x

Errors in tandf()

0

1

2

-100 -50 0 50 100

u
lp

s

x

Errors in tan()

0

1

2

-100 -50 0 50 100

u
lp

s

x

Errors in tand()

314 Chapter 11. Trigonometric functions

% hoc32
hoc32> for (x = 0; x <= 360; x += 45) \
hoc32> printf("%3d % .9g\n", x, sin(x * (PI / 180)))

0 0
45 0.707106769
90 1

135 0.707106769
180 -8.74279067e-08
225 -0.707106709
270 -1
315 -0.707106888
360 1.74855813e-07

% hocd32
hocd32> for (x = 0; x <= 360; x += 45) \
hocd32> printf("%3d % .7g\n", x, sin(x * (PI / 180)))

0 0
45 0.7071067
90 1

135 0.7071071
180 6.535898e-07
225 -0.7071062
270 -1
315 -0.7071076
360 -1.30718e-06

The expected output is 0,
√

1
2 , 1,

√
1
2 , 0,−

√
1
2 ,−1,−

√
1
2 , 0, but we got tiny numbers instead of zeros, and we lost

important symmetry relations.
The solution to that problem is special handling of arguments at zeros, poles, and inflection points, and in gen-

eral, arguments that are multiples of 45◦. In addition, for both the cosine and sine, we reduce the computation to
evaluation of a sine function, so that we can ensure that sin(x) ≈ x when x is small.

We show here only the code for COSDEG(), because the code required for the other functions is analogous:

fp_t
COSDEG(fp_t x)
{

fp_t result;

if (ISNAN(x))
result = SET_EDOM(x);

else if (ISINF(x))
result = SET_EDOM(QNAN(""));

else
{

fp_t r, xabs;

xabs = FABS(x);
r = (xabs < FP(360.0)) ? xabs : FMOD(xabs, FP(360.0));

if (r == ZERO)
result = ONE;

else if (r == FP(45.0))
result = SQRT_HALF;

else if (r == FP(90.0))
result = ZERO;

else if (r == FP(135.0))
result = -SQRT_HALF;

else if (r < FP(180.0))

11.7. Trigonometric functions in units of π 315

result = -(fp_t)HP_SIN(DEG_TO_RAD * ((hp_t)r - HP(90.0)));
else if (r == FP(180.0))

result = -ONE;
else if (r == FP(225.0))

result = -SQRT_HALF;
else if (r == FP(315.0))

result = SQRT_HALF;
else

result = (fp_t)HP_SIN(DEG_TO_RAD * ((hp_t)r - HP(270.0)));
}

return (result);
}

Argument scaling uses higher precision to make correct rounding more likely, and the arguments are shifted relative
to the zeros of the cosine at 90◦ and 270◦ before scaling. We take the simpler approach of using higher-precision sine
functions, but with a bit more code, we could use working precision, and make a small correction for the argument
error.

11.7 Trigonometric functions in units of π

We mentioned in Section 11.3 on page 304 that a few vendors provide trigonometric functions whose arguments are
units of π. They are defined like this:

cospi(x) = cos(πx), cotanpi(x) = cotan(πx),
sinpi(x) = sin(πx), tanpi(x) = tan(πx).

Functions of that kind are uncommon, but they do show up in some applications, notably, the gamma and psi
functions that we treat in Chapter 18 on page 521. Like their companions with degree arguments, they can exactly
locate zeros, inflection points, and poles.

Their accurate computation contains several pitfalls, so we describe here how they are computed in the mathcw
library.

The first point to note is that the difficult problem of trigonometric argument reduction is completely eliminated
in those functions. No matter how large x is, we can always use the MODF() family to split it into an exact sum of a
whole number and a fraction, for which we have two flavors of argument reduction:

1
2 x = n + r x = n + r,

x = 2(n + r),
cospi(x) = cos(2π(n + r)) cotanpi(x) = cotan(π(n + r))

= cos(2πr) = cotan(πr)
= cospi(2r), = cotanpi(r),

sinpi(x) = sin(2πr) tanpi(x) = tan(π(n + r))
= sinpi(2r), = tanpi(r).

The catch for the left-hand set is that multiplication and division by two must always be exact, and that is only the
case in binary arithmetic with β = 2. There is no such problem for the cotangent and tangent: there, the base does
not matter.

For arguments above βt, the last of the contiguous sequence of positive integers starting at zero that is exactly
representable in floating-point arithmetic, we have x = 2n or x = n, and r = 0. We then have special cases that allow
early exit for large argument magnitudes:

cospi(x) = 1, cotanpi(x) = copysign(∞, x),
sinpi(x) = copysign(0, x), tanpi(x) = copysign(0, x).

316 Chapter 11. Trigonometric functions

Three of them are odd functions, so they acquire the sign of their argument. The same relations hold for smaller x = n
when r = 0, except that the cosine is then (−1)n. For x ≥ βt, n is even because all practical computer-arithmetic
systems have even values of β.

By using the function symmetry relations, we can restrict ourselves now to considering only the case of r in (0, 1).
It might appear then that all we need to do after the initial reduction is to call a standard function with a scaled
argument, like this: tan(PI * r). Unfortunately, that produces poor results, as we can see from simple numerical
calculations in decimal arithmetic with three precisions in hoc, and with higher precision in Maple:

% hocd128
hocd128> x = 0.999_999_9
hocd128> single(tan(single(single(PI) * x))); \

double(tan(double(double(PI) * x))); \
tan(PI * x)

3.464_102e-07
-3.141_592_652_384_73e-07
-3.141_592_653_589_896_592_718_244_382_322_819e-07

hocd128> x = 0.500_000_1
hocd128> single(tan(single(single(PI) * x))); \

double(tan(double(double(PI) * x))); \
tan(PI * x)

-1_485_431
-3_183_098.861_617_03
-3_183_098.861_837_801_995_622_555_604_656_751

% maple
> printf("%.45e\n", evalf(tan(Pi * 0.9999999), 60));
-3.141_592_653_589_896_592_718_244_386_760_350_269_051_308_781_e-07

> printf("%.38f\n", evalf(tan(Pi * 0.5000001), 60));
-3_183_098.861_837_801_995_622_555_606_986_643_448_569_747_78

The value of x is one seven-digit ulp below 1, or above 1
2 . The function value at the first x is tiny, and at the second,

is close to an asymptote, and thus large.
For the first test, single-precision computation gets the correct magnitude, but the sign is wrong, and only the

leading digit is correct. The 16-digit format gets the sign right, but only the first ten digits are correct. The 34-digit
format has only 27 correct digits. Results for the second test are hardly better.

Those errors are far too large, and we have to work hard to reduce them.

11.7.1 Cosine and sine in units of π

Despite the absence of asymptotes in the cosine and sine functions, cospi() and sinpi(), it is hard to produce
correctly rounded results for them without access to higher precision. This author experimented with several dif-
ferent function approximations, all of which had errors above 1 ulp, until, finally, a set was found that is reasonably
satisfactory.

The first step is exact reduction of the argument to the interval [0, 1] using the MODF() family and the symmetry
relations cos(−|x|) = cos(|x|) and sin(−|x|) = − sin(|x|). We then need to evaluate the standard trigonometric
functions only on the radian interval [0, π]. However, the constant π has two leading zero bits in systems with
hexadecimal normalization, introducing further unwanted argument error. The leading zero bits can be eliminated
if we work instead with 1

4 π, and use the private auxiliary functions

cospi4(w) = cos(1
4 πw), sinpi4(w) = sin(1

4 πw), for w on [0, 1].

We then require the reductions

x = m + f , for whole number m and fraction f in (0, 1],

cos(πx) = cos(π(m + f)),

11.7. Trigonometric functions in units of π 317

= cos(πm) cos(π f)− sin(πm) sin(π f), by addition rule,

= (−1)m cos(π f), because sin(πm) = 0,

= (−1)m cospi4(4 f),
sin(πx) = sin(π(m + f)),

= sin(πm) cos(π f) + cos(πm) sin(π f), by addition rule,

= (−1)m sin(π f), because sin(πm) = 0,

= (−1)m sinpi4(4 f).

The multiplications by four are exact only when β = 2 or β = 4. For other bases, we require yet another reduction:

4 f = u + v, for whole number u in [0, 3] and fraction v in (0, 1],

f = u/4 + d, for d in [0, 1
4],

v = 4d, exact in any integer base.

In practice, we employ that reduction for all bases, because it produces a useful simplification that we discover
shortly.

Another application of the trigonometric argument addition rules allows further decomposition, because for u =
0, 1, . . . , 7, the factor sin(1

4 πu) takes on the values 0,
√

1/2, 1,
√

1/2, 0, −√
1/2, −1, and −√

1/2. Those constants then
repeat cyclically for larger values of u. Similarly, the factor cos(1

4 πu) cycles through the values 1,
√

1/2, 0, −√
1/2,

−1, −√
1/2, 0, and

√
1/2. With some careful study, and more applications of the addition rules, the constants can be

eliminated to produce these results:

cos(1
4 π(u + v)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

+ cos(1
4 πv), if u mod 8 = 0,

+ sin(1
4 π(1 − v)), if u mod 8 = 1,

− sin(1
4 πv), if u mod 8 = 2,

− cos(1
4 π(1 − v)), if u mod 8 = 3,

− cos(1
4 πv), if u mod 8 = 4,

− sin(1
4 π(1 − v)), if u mod 8 = 5,

+ sin(1
4 πv), if u mod 8 = 6,

+ cos(1
4 π(1 − v)), if u mod 8 = 7,

sin(1
4 π(u + v)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

+ sin(1
4 πv), if u mod 8 = 0,

+ cos(1
4 π(1 − v)), if u mod 8 = 1,

+ cos(1
4 πv), if u mod 8 = 2,

+ sin(1
4 π(1 − v)), if u mod 8 = 3,

− sin(1
4 πv), if u mod 8 = 4,

− cos(1
4 π(1 − v)), if u mod 8 = 5,

− cos(1
4 πv), if u mod 8 = 6,

− sin(1
4 π(1 − v)), if u mod 8 = 7.

Our decision to use the reduction 4 f = u + v for all bases reduces u from the range [0, 7] to [0, 3], so we only need
the first four of each of the eight cases. However, we may require either cospi4() or sinpi4() with exact arguments v
or 1 − v to find cospi(x), and similarly for sinpi(x).

Here is how we evaluate the two auxiliary functions:

r = 1
4 πx, scaled argument in radians,

cospi4(x) = cos(r)

≈
{

1 + r2P(x2), for x in [0, 1
2],

25/32 +Q(x2), for x in [
√

1
5 , 1],

sinpi4(x) = sin(r)

318 Chapter 11. Trigonometric functions

≈
{

r + r3R(x2), for x in [0, 1],

r − r3/6 + r5/120 − r7/5040 + r9/362 880, Taylor series.

The polynomial approximations P(x2), Q(x2), and R(x2) are Chebyshev fits, for which the 32-bit floating-point
formats require only four or five terms. They are defined in terms of x2, rather than r2, to avoid introducing additional
error into their arguments. Each approximation formula computes the function as the sum of an exact term and a
correction that is never much bigger than about 10% of the result, and the sum is free of subtraction loss.

There is a small overlap in the two regions for cospi4(x) because
√

1
5 ≈ 0.447. That peculiar endpoint was

selected to simplify the conversion to the Chebyshev polynomial variable and reduce its error. The Chebyshev
variable t = 5

2 x − 3
2 lies on [−1,+1]. The correction to the first term is about twice as large in the overlap region with

the second formula, so we use it only for x > 1
2 .

The scaled argument r is represented as a sum of two parts computed like this:

fl(r) = fma((1
4 π)hi, x, (1

4 π)lo × x),

δ = fma((1
4 π)hi, x,−fl(r)) + (1

4 π)lo × x.

As usual, the constant is split so that the high part is exact to working precision, and the low part is rounded to
working precision, so that their sum represents 1

4 π to twice working precision. The computed value fl(r) is then
almost certainly the floating-point number closest to the exact product.

The correction δ ≤ εr is included only to first order in each of the remaining formulas for powers of r up to three:

r ≈ fl(r) + δ, r2 ≈ fl(r)2 + 2δ fl(r), r3 ≈ fl(r)3 + 3δ fl(r)2.

Sums of terms are computed in order of increasing magnitudes to minimize the final rounding error.
The Taylor series is used for small arguments, and evaluated in Horner form, but modified to include the δ

corrections. In addition, because r and its higher powers can be subnormal, or underflow to zero, when x is tiny
but normal, terms in the Taylor series are scaled by 1/ε3 to keep the numerically important parts of the computa-
tion away from the underflow region. That ensures accurate results after unscaling by ε3, even when x is tiny or
subnormal.

Numerical experiments show that a five-term Taylor series for sin(r) is more accurate for small arguments than
the polynomial alternative, and using fewer than five terms results in errors above the target of 1

2 ulp.
The files cospix.h and sinpix.h contain the code that handles the usual argument checking, and does the outer

argument reductions. Their header files include the shared header file scpi4.h that defines the Chebyshev polyno-
mial coefficients, and the code for the private functions cospi4() and sinpi4(). Those functions are defined only for
a restricted argument range, and do no argument checking, so they are not directly callable from user code.

Extensive testing against high-precision computation in Maple shows that the results produced by our COSPI()
and SINPI() family are correctly rounded in binary arithmetic, except for about 1 in 2000 random arguments taken
from a logarithmic distribution in [0, 1]. In decimal arithmetic, the error rate is about 1/200 for the sine, but the
cosine appears to be perfectly rounded. The maximum error is below 0.82 ulps. Error plots are therefore omitted.

11.7.2 Cotangent and tangent in units of π

For the tangent, we can find approximating functions on the interval (0, 1) by first examining series expansions
analytically and numerically:

% maple
> taylor(tan(Pi * r), r = 0, 8);

3 5 7
Pi 3 2 Pi 5 17 Pi 7 9

Pi r + --- r + ----- r + ------ r + O(r)
3 15 315

> evalf(%, 6);
3 5 7 9

3.14159 r + 10.3354 r + 40.8026 r + 163.000 r + O(r)

11.7. Trigonometric functions in units of π 319

> series(tan(Pi * (1/2 + h)), h = 0, 8);
3 5 7

1 -1 Pi Pi 3 2 Pi 5 Pi 7 9
- ---- h + ---- h + --- h + ----- h + ---- h + O(h)

Pi 3 45 945 4725

> evalf(%, 6);
-1 3 5

-0.318310 h + 1.04720 h + 0.689026 h + 0.647656 h +

7 9
0.639212 h + O(h)

The series coefficients are complicated by Bernoulli numbers, and not easily generated by a recurrence.
The first series is usable for tanpi(x) for x ≈ 0, and also for x ≈ 1, because we can use the angle-sum formula

with r = 1 + d to find

tan(π(1 + d)) =
tan(π) + tan(πd)

1 + tan(π) tan(πd)
= tan(πd)

≈ πd + d3G(d2), first polynomial fit.

The expansion coefficients in the first series are large, so direct summation using a stored table of coefficients is
unwise.

The coefficients in the second series do not decrease much, even at high order, so direct series summation is
inadvisable. Instead, we use the approximation

tan(π(1
2 + h)) ≈ −1

πh
+ hH(h2), second polynomial fit,

with h = r − 1
2 , which is also exact.

A Chebyshev fit of the function H(h2) for h on the interval [− 1
4 , 1

4] needs only 4 terms for 7-digit accuracy, 9 terms
for the 16-digit format, and at most 40 terms for the 70-digit format. Minimax fits could do even better, but need to
be customized for each precision, whereas a single Chebyshev table, suitably truncated, serves for all precisions and
bases.

Alternatively, we can exploit an identity to reuse the first polynomial fit, at the cost of an extra division:

tan(π(1
2 + h)) = −1/ tan(πh)

≈ −1/(πh + h3G(h2)), first polynomial fit.

However, that gives us an extra rounding error that we wish to avoid, so we use two Chebyshev fits instead of one.
Away from the regions of x ≈ 0 and x ≈ 1, the tangent of a scaled argument can be safely used, and we do

so in the code in tanpix.h. However, by choosing the ranges of d and h each to be [− 1
4 ,+ 1

4], the two polynomial
fits cover the complete range of r on (0, 1), and with the argument reduction from x, and the symmetry relation
tan(−x) = − tan(x), we can extend coverage to the entire real axis.

The rounding errors associated with representing the transcendental constant π = πhi +πlo, and products with it,
require careful handling in finite-precision arithmetic. For x near the underflow limit, scaling is required to prevent
the lower product πlox from underflowing into the subnormal region, or to zero. The code in tanpix.h for a three-
term series expansion of tan(πx) looks like this:

static fp_t
tan_0_series(fp_t x)
{ /* tan(Pi * x) = tan(Pi * (1 + x)) for tiny |x| */

fp_t err_scaled, g, gg, g_scaled, result, sum, x_scaled;
static int do_init = 1;
static fp_t SCALE = FP(1.0);

320 Chapter 11. Trigonometric functions

static fp_t SCALE_INV = FP(1.0);

if (do_init)
{ /* some systems do not allow these as compile-time constants */

SCALE_INV = FP_T_EPSILON * FP_T_EPSILON * FP_T_EPSILON;
SCALE = ONE / SCALE_INV;
do_init = 0;

}

x_scaled = x * SCALE; /* EXACT */
g_scaled = FMA(PI_HI, x_scaled, PI_LO * x_scaled);
err_scaled = FMA(PI_HI, x_scaled, -g_scaled) + PI_LO * x_scaled; /* scaled rounding error in g */
g = g_scaled * SCALE_INV; /* EXACT */
gg = g * g;

sum = FP(62.0) / FP(2835.0);
sum = sum * gg + FP(17.0) / FP(315.0);
sum = sum * gg + FP(2.0) / FP(15.0);
sum = sum * gg + FP(1.0) / FP(3.0);
sum = sum * gg;
sum = sum * g_scaled + err_scaled;
result = (g_scaled + sum) * SCALE_INV;

return (result);
}

Error compensation is needed in the second series expansion as well, but we omit the code here. Extensive test-
ing against high-precision computation in Maple shows that the TANPI() family appears to produce results that
are always correctly rounded in the decimal functions. In the binary functions, only about one in 60 000 results is
incorrectly rounded, and no error exceeds 0.53 ulps.

For the cotangent, instead of doing a new set of series expansions and polynomial fits, we can leverage two
identities:

cotanpi(r) = − tanpi(r ± 1
2), true for both signs in the argument,

= 1/ tanpi(r).

When r ≥ 1
4 , the difference r − 1

2 is exact, so the first formula requires only a negation of the tangent. For r < 1
4 ,

the argument in the first formula requires more precision than we have, but the second formula does not; the final
division introduces a single rounding error. We can largely eliminate that error by computing the tangent and its
reciprocal in the next higher precision. That means that our single-precision cotangent of units-of-π argument, and
on many systems, our double-precision one as well, are almost always correctly rounded.

11.8 Computing the cosine and sine together

Because the cosine and sine are often required for the same argument, and because their computations are closely
related, it may be desirable, and efficient, to have a function to return both of them. SOLARIS provides two such
function families, with typical prototypes like these:

void sincos (double x, double *s, double *c);
void sincosd (double x, double *s, double *c);

The GNU -lm math library provides just the sincos() family, with the same prototypes as on SOLARIS. OSF/1
provides functions of the same name, but returns the pair as a structure value:

double_complex sincos (double x);
double_complex sincosd (double x);

11.8. Computing the cosine and sine together 321

Here too, for the functions with arguments in degrees, there are conflicts with the naming conventions of the new
decimal floating-point functions.

A straightforward implementation of the sincos() function might look like this:

void
SINCOS(fp_t x, fp_t *s, fp_t *c)
{

if (c != (fp_t *)NULL)
*c = COS(x);

if (s != (fp_t *)NULL)
*s = SIN(x);

}

However, it is interesting to consider how the two functions could be computed more quickly together, because they
share the same checks for Infinity, NaN, and signed zero arguments, and they require similar argument reductions.

The angle-addition formulas

cos(x + d) = cos(x) cos(d)− sin(x) sin(d),
sin(x + d) = sin(x) cos(d) + cos(x) sin(d),

provide a way to compute both functions with much of the work shared. If we tabulate nearly evenly spaced, and
exactly representable, values xk together with high-precision values of their sines and cosines, then once we have a
reduced argument r = |x| − nπ, we can quickly find the interval [xk, xk+1] that contains r. If that interval is small,
then the calculation d = r − xk is exact, and d is small enough that two short polynomial approximations can be
used to compute sin(d) and cos(d). For the sine, we have d ≥ 0, and both terms of the addition formula are positive.
However, for the cosine, the condition d > 0 produces a subtraction loss. The solution, if r is not at a tabulated point,
is to make d negative by moving into the following interval [xk+1, xk+2], and that requires storage of one extra table
entry.

There is, however, an additional problem: if sin(xk+1) is negative, then subtraction loss creeps back in. We can
resolve that problem by reducing the interval [0, 1

2 π] to [0, 1
4 π] according to the formulas in Table 9.1 on page 244:

r = RPH(x < ZERO ? -x : x, &n, &err);
rabs = QABS(r);

Once the argument reduction has been done, the sine and cosine can be obtained by evaluating two truncated
Taylor series when |r| is tiny, or by using the addition formulas. In both cases, we make use of the correction to the
reduced argument.

The Taylor-series code adds the correction only to first order:

if (rabs < EPS)
{

fp_t rr;

rr = r * r;

the_sin = FP(1.0) / FP(120.0);
the_sin = the_sin * rr + FP(-1.0) / FP(6.0);
the_sin = the_sin * rr * r + delta;
the_sin += r;

the_cos = FP(-1.0) / FP(720.0);
the_cos = the_cos * rr + FP(1.0) / FP(24.0);
the_cos = the_cos * rr + FP(-1.0) / FP(2.0);
the_cos = the_cos * rr - r * delta;
the_cos += ONE;

}

The code for the addition formula looks like this:

322 Chapter 11. Trigonometric functions

else
{

hp_t d, sum, xx; /* xx is used in rcos() and rsin() macros */
int k;

k = (int)FLOOR(rabs * FOUR_OVER_PI_TIMES_N);

if (rabs < x_sin_cos[k].x)
k--;

else if (rabs >= x_sin_cos[k+1].x)
k++;

d = (hp_t)rabs - x_sin_cos[k].x; /* EXACT */
d += (r < ZERO) ? -delta : delta;

if ((d < HP(0.0)) && (k > 0)) /* rarely taken branch */
{

k--;
d = (hp_t)rabs - x_sin_cos[k].x; /* EXACT */
d += (r < ZERO) ? -delta : delta;

}

sum = (hp_t)rsin(d) * C(k);
sum += (hp_t)rcosm1(d) * S(k);
sum += S(k);
the_sin = (fp_t)sum;

if (r < ZERO)
the_sin = -the_sin;

if ((d != HP(0.0)) && (k < (N + 1))) /* maybe advance k */
{

if (rabs <= x_sin_cos[k+1].x)
{ /* almost-always taken branch that makes |d| smaller */

k++;
}

d = (hp_t)rabs - x_sin_cos[k].x; /* EXACT */
d += (r < ZERO) ? -delta : delta;

if ((d > HP(0.0)) && (k < (N + 1))) /* rarely taken branch */
{

k++;
d = (hp_t)rabs - x_sin_cos[k].x; /* EXACT */
d += (r < ZERO) ? -delta : delta;

}
}

sum = -(hp_t)rsin(d) * S(k);
sum += (hp_t)rcosm1(d) * C(k);
sum += C(k);
the_cos = (fp_t)sum;

}

The initial value of k may be off by 1 when |r| is close to a tabulated xk, so it may require adjustment up or down,
and that change may need to be repeated after the correction to the reduced argument is applied.

The tabulated sines and cosines are in the next higher precision, and intermediate computations are done in that
precision.

11.9. Inverse sine and cosine 323

The macros rcos(), rcosm1(), and rsin() expand inline to short polynomials. For the limited argument range
in which they are valid, numerical fits find no advantage of rational polynomials over single polynomials, so we can
avoid a division. Our implementation uses N = 64, for which polynomials of orders 2, 5, and 11 produce 15, 33,
and 72 correct digits, respectively. There are N + 2 values of x in the table, along with their sines and cosines. The
first N + 1 values of x are at intervals of approximately (1

4 π)/N, but rounded to working precision, so each host
precision requires its own table. The last x value is fl(1

4 π), so the interval [xN, xN+1] is generally much smaller than
the preceding ones.

The final function results are then easily generated from one of four cases, and a possible negation of the sine
value:

switch (n % 4)
{
default:
case 0: result_cos = the_cos; result_sin = the_sin; break;
case 1: result_cos = -the_sin; result_sin = the_cos; break;
case 2: result_cos = -the_cos; result_sin = -the_sin; break;
case 3: result_cos = the_sin; result_sin = -the_cos; break;
}

if (x < ZERO)
result_sin = -result_sin;

Extensive tests of SINCOS() against values computed in high-precision arithmetic in Maple show that the results are
almost always correctly rounded for any finite representable argument, so we omit error plots. They look similar to
those in Figure 11.4 on page 311 and Figure 11.5 on page 312.

Timing tests of SINCOS() relative to separate computation of SIN() and COS() show considerable variation across
systems, and also a strong dependence on the argument range. In most cases, the combined approach wins.

11.9 Inverse sine and cosine

The Taylor series for the inverse sine and cosine functions are

asin(x) = x + (1/6)x3 + (3/40)x5 + (5/112)x7 + · · ·+(
(2n)!/(4n(n!)2(2n + 1))

)
x2n+1 + · · · ,

acos(x) = 1
2 π − (

x + (1/6)x3 + (3/40)x5 + (5/112)x7 + · · ·+(
(2n)!/(4n(n!)2(2n + 1))

)
x2n+1 + · · ·).

Some programming languages use the names arcsin(x) and arccos(x) instead, and mathematics literature often
writes them as sin−1(x) and cos−1(x). The functions are graphed in Figure 11.7 on the following page.

The argument range of acos(x) is [−1,+1], and the corresponding function range is [π, 0]. The argument range
of asin(x) is [−1,+1], and the function range is [− 1

2 π,+ 1
2 π]. The limited argument range means that there is no

serious argument-reduction problem for those functions.
The symmetry relations are

acos(−x) = 1
2 π + asin(x),

asin(−x) = − asin(x).

The two functions are related by equations that allow the inverse cosine to be computed from the inverse sine:

acos(x) = 2 asin
(√ 1

2 (1 − x)
)
, use for x > 1

2 ,

= π − 2 asin
(√ 1

2 (1 + x)
)
, use for x < − 1

2 ,

= 1
2 π − asin(x), use for |x| ≤ 1

2 ,

324 Chapter 11. Trigonometric functions

−1 −0.5 0 0.5 1
0

1

2

3

x

ac
os

(x
)

−1 −0.5 0 0.5 1
−2

−1

0

1

2

x

as
in

(x
)

Figure 11.7: The inverse cosine and sine functions.

asin(x) = 1
2 π − 2 asin

(√ 1
2 (1 − x)

)
, use for |x| > 1

2 , but see text.

The factors (1 ± x) lose leading digits in the regions where they are used, but as we describe shortly, they can
nevertheless be computed exactly. The subtractions from π and 1

2 π also suffer digit loss, and require considerably
more care to program.

The error-magnification factors (see Table 4.1 on page 62) for the two functions are proportional to 1/
√

1 − x2, so
both are sensitive to argument errors for x ≈ ±1.

For a zero argument, Cody and Waite set asin(x) = x to preserve the sign of zero, and set acos(x) = 1
2 π. For tiny

|x|, they use just the leading term of the Taylor series, but we extend that to two terms, asin(x) ≈ x + x3/6, to set the
inexact flag and guarantee correct rounding. For |x| ≤ 1

2 , they use a rational polynomial approximation of the form

g = x2, asin(|x|) ≈ |x|+ |x|P(g)/Q(g),

for which the range of the factor P(g)/Q(g) is about [0, 0.048], giving a small correction to an exact value.
Our extensions for higher precision use a slightly different form for improved accuracy with the same computa-

tional effort:
asin(|x|) ≈ |x|+ |x|gP(g)/Q(g).

For arguments |x| > 1/2, the inverse sine reduction requires computing
√

1
2 (1 − |x|), which can be done ac-

curately when there are guard digits for subtraction and multiplication, as is the case for all modern systems, by
setting

g = 1
2 (1 − |x|), r =

√
g.

The polynomial variable g is computed exactly in binary and decimal bases, and loses at most one bit in a hexa-
decimal base. With our accurate square root function, the reduced argument r should almost always be correctly
rounded in binary and decimal bases.

When there are no guard digits, the computation of g requires more care:

g = 1
2

(1
2 + (1

2 − |x|)).

That assignment must be coded to prevent the compiler from replacing the constants 1
2 by their sum at compile time.

Because |x| is known to lie in (1
2 , 1], the innermost subtraction does not require a normalizing shift, so no digits

are lost before the difference is computed. If there is a guard digit for multiplication, the division by two can be
replaced by a multiplication by a half. Historical systems vary in their provision of guard digits, so for them, our
code assumes the worst case, and does the outer division.

The constant 1
2 π loses three bits of precision in a hexadecimal base, so we replace expressions of the form 1

2 π + z
by 1

4 π + (1
4 π + z), because 1

4 π has no leading zero bits with hexadecimal normalization.
To avoid further accuracy loss, Cody and Waite preserve the exact computation of g by making the code for the

two functions be simple wrappers that invoke a common routine with a distinguishing additional argument:

11.9. Inverse sine and cosine 325

fp_t
ACOS(fp_t x)
{

return (ACOSSIN(x, 1));
}

fp_t
ASIN(fp_t x)
{

return (ACOSSIN(x, 0));
}

The common code in ACOSSIN() is intended for internal library use only, so its prototype is absent from the mathcw.h
header file, and the macro name ACOSSIN() expands to an implementation-reserved name, __acs(), with the usual
type suffix letters.

Testing of an implementation of the Cody/Waite algorithm for the inverse sine and cosine shows peaks in the
error plots up to about 2 ulps when |x| ≈ 1

2 , and investigations of alternatives lead to small, but significant, changes
in the original algorithm:

� Reduce the error peaks by extending the interval of the polynomial approximation from [0, 1
2] to [0,

√
1
2] ≈ [0,

0.707], using the representation asin(r) ≈ r + rgP(g)/Q(g). The larger range increases the total polynomial
degree by at most two.

� Do not form asin(r) directly. Instead, keep the terms r and rgP(g)/Q(g) separate as the high and low parts of
what is effectively a value that is more accurate than working precision by about four bits.

� Because acos(0) = 1
2 π cannot be represented exactly, set the inexact flag by returning PI_HALF + TINY. That

change also accommodates rounding modes of other than the IEEE 754 default.

� For the intervals where we compute asin(
√

1
2 (1 + |x|)), borrow a technique from the Sun Microsystems fdlibm

library to recover the rounding error made in setting r =
√

g ≈ fl(
√

g). Represent the exact r as a sum of an
exact high part and an approximate low part, and then solve for those parts, like this:

r = rhi + rlo,

rhi = high 1
2 t� digits of r,

rlo = r − rhi

= (r − rhi)
r + rhi

r + rhi

= (r2 − r2
hi)/(r + rhi)

= (g − r2
hi)/(r + rhi).

The computation of rhi is accomplished by a simple technique described in Section 13.11 on page 359 that
requires addition and subtraction of a known constant, converting low-order digits of r to zero.

Because r2
hi can be represented exactly in t-digit arithmetic, and is close to g, the product and difference in the

numerator of the last expression for rlo are exact, and the sum rhi + rlo represents
√

g more accurately than
fl(

√
g).

� Split the constants π and 1
4 π into high and low parts where the high part has one less decimal digit, or three

fewer bits, than the native precision. The reduced precision in the high part allows it to be added to a term of
comparable size without causing an additional rounding error.

� When a fast higher-precision type is available, use it to construct the results from the split constants and the
expansion of asin(r), summing the smallest terms first.

326 Chapter 11. Trigonometric functions

Figure 11.8: Errors in ACOS() functions.

� Otherwise, use the simplest of the Kahan–Møller summation formulas that we introduce at the start of Chap-
ter 13 on page 353 to recover the error, and carry it over to the next term, where it is incorporated into the larger
of the next two terms to be summed. The code is simplified by using the macro

#define SUM(x,y) (_x = x, \
_y = y, \
sum = _x + _y, \
err = _x - sum, \
err += _y, \
sum)

that is defined in the asin.h header file. The SUM() macro uses the C comma expression to control evaluation
order, avoiding the need for the volatile attribute and calls to the STORE() macro. The first argument of SUM()
must be that of larger magnitude.

Implementing those changes adds several dozen lines of code, but pushes the peaks in the error plots sharply down,
so they reach only about 0.75 ulps for acosf(), with the function results over most of the argument range [−1,+1]
expected to be correctly rounded, as illustrated in Figure 11.8 and Figure 11.9 on the next page. The results for
decimal arithmetic are superior because rounding in addition and subtraction is less frequent in a larger base.

The code for our final version of ACOSSIN() looks like this:

fp_t

0

1

2

-1 0 1

u
lp

s

x

Errors in acosf()

0

1

2

-1 0 1

u
lp

s

x

Errors in acosdf()

0

1

2

-1 0 1

u
lp

s

x

Errors in acos()

0

1

2

-1 0 1

u
lp

s

x

Errors in acosd()

11.9. Inverse sine and cosine 327

Figure 11.9: Errors in ASIN() functions.

ACOSSIN(fp_t x, int flag)
{ /* common code: flag = 0 for asin(), flag = 1 for acos() */

static fp_t EPS;
static int do_init = 1;
static volatile fp_t TINY;
volatile fp_t result;

if (do_init)
{ /* once-only initialization */

EPS = B_TO_MINUS_HALF_T;
TINY = FP_T_MIN;
STORE(&TINY);
do_init = 0;

}

result = FP_T_MAX; /* inhibit use-before-set warning */

if ((flag != 0) && (flag != 1)) /* sanity check */
result = SET_EDOM(QNAN(""));

else if (ISNAN(x))
result = SET_EDOM(x);

0

1

2

-1 0 1

u
lp

s

x

Errors in asinf()

0

1

2

-1 0 1

u
lp

s

x

Errors in asindf()

0

1

2

-1 0 1

u
lp

s

x

Errors in asin()

0

1

2

-1 0 1

u
lp

s

x

Errors in asind()

328 Chapter 11. Trigonometric functions

else if (ISINF(x))
result = SET_EDOM(QNAN(""));

else if ((x < -ONE) || (ONE < x))
result = SET_EDOM(QNAN(""));

else if (QABS(x) == ONE)
{

if (flag == 0)
result = COPYSIGN(PI_HALF, x);

else
result = (x == ONE) ? ZERO : PI;

}
else if (x == ZERO) /* asin(0) or acos(0) */

result = (flag == 0) ? x : (PI_HALF + TINY);
else
{

fp_t err, f, f_hi, f_lo, g, pg_g, qg, r, s, sum, _x, _y;
int done, i;

done = 0;
f_hi = f_lo = pg_g = qg = s = FP_T_MAX; /* inhibit warnings */
r = FABS(x);

if (r > SQRT_HALF)
{

i = 1 - flag;

#if defined(HAVE_GUARD_DIGIT)
g = (ONE - r) * HALF;

#else
g = HALF - r;
g += HALF;
g /= TWO;

#endif

s = SQRT(g);
r = -s;
r += r; /* r = -2 * SQRT(g) */

}
else /* r <= SQRT_HALF */
{

i = flag;

if (r < EPS) /* use 2-term Taylor series */
{

g = ZERO; /* avoid compiler warnings */
f_lo = r * r * r / SIX;
f_hi = r;
done = 1;

}
else

g = r * r;
}

if (!done)
{

pg_g = POLY_P(p, g) * g;
qg = POLY_Q(q, g);

11.9. Inverse sine and cosine 329

/* f = f_hi + f_lo (kept separate), where
f = asin(|x|) (cases 0 and 3), or
f = -2*asin(sqrt((1-|x|)/2)) (cases 1 and 2) */

f_lo = r * pg_g / qg;
f_hi = r;

}

switch (2*flag + i)
{
default: /* asin(x) = +/-asin(|x|) */
case 0: /* x in [-sqrt(1/2),+sqrt(1/2)] */

f = f_hi + f_lo;
result = (x < ZERO) ? -f : f;
break;

case 1: /* x in [-1,-sqrt(1/2)) or (sqrt(1/2),1] */

#if defined(HAVE_FAST_HP_T)
{

volatile hp_t t, u;

t = (hp_t)PI_QUARTER_HI + (hp_t)f_hi;
STORE((fp_t *)&t);
t += (hp_t)PI_QUARTER_HI;
u = (hp_t)PI_QUARTER_LO + (hp_t)PI_QUARTER_LO;
STORE((fp_t *)&u);
u += (hp_t)r * (hp_t)pg_g / (hp_t)qg;
result = (fp_t)(t + u);

}
#else

result = SUM(f_lo, PI_QUARTER_LO + PI_QUARTER_LO);
STORE(&result);
result = SUM(f_hi + err, result);
STORE(&result);
result = SUM(PI_QUARTER_HI + err, result);
STORE(&result);
result = SUM(PI_QUARTER_HI + err, result);
STORE(&result);

#endif /* defined(HAVE_FAST_HP_T) */

if (x < ZERO)
result = -result;

break;

case 2: /* x in [-1,-sqrt(1/2)) or (sqrt(1/2),1] */
if (x < ZERO) /* acos(x) = PI - 2*asin(sqrt((1-|x|)/2)) */
{

#if defined(HAVE_FAST_HP_T)
hp_t t, u;

t = (hp_t)PI_HI + (hp_t)f_hi;
u = (hp_t)PI_LO + (hp_t)r * (hp_t)pg_g / (hp_t)qg;
result = (fp_t)(t + u);
STORE(&result);

330 Chapter 11. Trigonometric functions

#else
result = SUM(f_lo, PI_LO);
STORE(&result);
result = SUM(f_hi + err, result);
STORE(&result);
result = SUM(PI_HI + err, result);
STORE(&result);

#endif /* defined(HAVE_FAST_HP_T) */

}
else /* acos(x) = 2*asin(sqrt((1-|x|)/2)) */
{ /* result = -f (but accurately!) */

fp_t r_lo, t;
volatile fp_t r_hi;

r = s; /* sqrt(g) */
r_hi = r + B_TO_CEIL_HALF_T;
STORE(&r_hi);
r_hi -= B_TO_CEIL_HALF_T;
r_lo = (g - r_hi * r_hi) / (r + r_hi);
t = pg_g / qg;
result = SUM(r_lo, r_lo * t);
STORE(&result);
result = SUM(r_hi * t + err, result);
STORE(&result);
result = SUM(r_hi + err, result);
STORE(&result);
result += result;
STORE(&result);

}
break;

case 3: /* x in [-sqrt(1/2),+sqrt(1/2)] */
if (x < ZERO) /* acos(x) = PI/2 - asin(x) */
{ /* = PI/2 + asin(|x|) */

result = PI_QUARTER_LO + PI_QUARTER_LO + f_lo;
STORE(&result);
result += PI_QUARTER_HI;
STORE(&result);
result += f_hi;
STORE(&result);
result += PI_QUARTER_HI;
STORE(&result);

}
else /* acos(x) = PI/2 - asin(x) */
{

#if defined(HAVE_FAST_HP_T)
hp_t t, u;

u = (hp_t)PI_QUARTER_LO - (hp_t)f_lo;
u += (hp_t)PI_QUARTER_LO;
t = (hp_t)PI_QUARTER_HI - (hp_t)f_hi;
t += (hp_t)PI_QUARTER_HI;
result = (fp_t)(t + u);
STORE(&result);

#else

11.10. Inverse tangent 331

result = SUM(-f_lo, PI_QUARTER_LO);
STORE(&result);
result = SUM(PI_QUARTER_LO + err, result);
STORE(&result);
result = SUM(PI_QUARTER_HI + err, result);
STORE(&result);
result = SUM(-f_hi + err, result);
STORE(&result);
result = SUM(PI_QUARTER_HI + err, result);
STORE(&result);

#endif /* defined(HAVE_FAST_HP_T) */

}
break;

}
}

return (result);
}

The control flow in ACOSSIN() is complex, with eight subcases treated in the switch statement. A few early
assignments are done solely to eliminate superfluous warnings from compilers that attempt to detect errors of use
before definition, following our policy of providing warning-free compilation of the entire mathcw library.

The code contains two instances of sums of the low parts of 1
4 π. They are written that way, rather than replaced

by the corresponding low part of 1
2 π, because that would then place a requirement on the split of 1

2 π that we prefer
to avoid. There are multiple versions of those splits, one for each supported host precision, and particularly for a
decimal base, the separate splits of 1

2 π and 1
4 π may not differ by an exact factor of two. Optimizing compilers can

evaluate the sums at compile time, because the values added are constants.
In the second case of the switch statement, we reevaluate rgP(g)/Q(g), computing the factors in higher precision

to gain a bit more accuracy. Although that duplicates earlier code that uses working precision, it is done only for the

argument region [−1,−
√

1
2], and is minor compared to the rest of the code.

11.10 Inverse tangent

The Taylor series for the inverse tangent function is:

atan(x) = x − (1/3)x3 + (1/5)x5 − (1/7)x7 + (1/9)x9 − · · · .

Section 23.9 on page 801 introduces some additional series expansions for that function, but we do not require them
here.

The argument range of atan(x) is (−∞,+∞), and the function range is [− 1
2 π,+ 1

2 π]. The function is graphed in
Figure 11.10 on the next page.

The symmetry relation
atan(−x) = − atan(x)

allows us to compute with only positive arguments.
The infinite argument range of the inverse tangent requires further argument reduction, through these relations:

r =
(
(
√

3)x − 1
)
/(x +

√
3), use if β �= 16,

=
(
(((

√
3 − 1)x − 1

2)− 1
2) + x

)
/(x +

√
3), use if β = 16,

atan(x) = 1
2 π − atan(1/x), use if |x| > 1,

= 1
6 π + atan(r), use if |x| > 2 −√

3.

For arguments of large magnitude, atan(1/x) is a small correction to 1
2 π, so we expect that the correctly rounded

inverse tangent of large |x| should be easy to compute.

332 Chapter 11. Trigonometric functions

−5 −4 −3 −2 −1 0 1 2 3 4 5
−2

−1

0

1

2

x

at
an

(x
)

Figure 11.10: The inverse tangent function. It is defined for arguments over the entire real axis, with limits ∓ 1
2 π as x

approaches ∓∞.

For a zero argument, we set atan(x) = x to preserve the sign of zero. For tiny arguments, Cody and Waite use
only the first term of the Taylor series, but we use two terms, atan(x) ≈ x − x3/3, for correct rounding and setting of
the inexact flag. Otherwise, they use a rational polynomial approximation

g = x2, atan(|x|) ≈ |x|+ |x|gP(g)/Q(g),

valid for |x| in the interval [0, 2 −√
3], or about [0, 0.268]. In that interval, the range of the factor gP(g)/Q(g) is

[0,−0.023], and its magnitude is never bigger than 9.5% of |x|, so the inverse tangent is computed from the sum of
an exact value and a small correction.

The computation of r suffers loss of leading digits as |x| nears
√

1/3, causing r and atan(r) to approach zero.
Cody and Waite argue that the accuracy loss is compensated by the addition of 1

6 π, so the loss can be ignored.
However, error plots for a direct implementation of their algorithm show that atan(x) is correctly rounded for almost
all arguments, except for the intervals [− 1

2 ,− 1
4] and [+ 1

4 ,+ 1
2], where some errors rise to about two ulps. Tracing the

computational steps with an argument that produces one of the largest errors reveals the reason for the peaks in the
error plots: a one-ulp error in the polynomial evaluation sometimes coincides with a one-ulp error in the subtraction
from 1

6 π, doubling the error in the inverse tangent. Computing r in the next higher precision helps, but still leaves
peak errors of about 1.5 ulps in the two problem regions.

A solution to that problem is to extend the Cody/Waite algorithm with an additional argument-reduction for-
mula that avoids both the irrational constant and a subtraction from that constant. Use the angle-sum formula for
the tangent (see Section 11.2 on page 302) to find the inverse tangent as the sum y = c + d, like this:

y = atan(x), the function value that we seek,

x = tan(y),
= tan(c + d), c a chosen constant,

=
(

tan(c) + tan(d)
)
/
(
1 − tan(c) tan(d)

)
,

r = tan(d),
=
(
x − tan(c)

)
/
(
x tan(c) + 1

)
, by solving x for tan(d),

d = atan(r).

Thus, for a fixed value of c, tan(c) is a constant, and r can be computed with just four arithmetic operations. We then
use the polynomial approximation for the inverse tangent to find d, and then add that value to c to recover atan(x).

We want c to be exactly representable, and we need to ensure that the reduced argument, r, lies in the range
where the polynomial approximation is valid. A suitable choice is

c = 1/4, tan(c) = 0.255 341 921 221 036 266 504 482 236 490 473 678

11.10. Inverse tangent 333

Figure 11.11: Errors in ATAN() functions. Outside the interval shown in the plots, the errors remain well below 1
2 ulp,

indicating correct rounding. For atanf(x), fewer than 0.6% of the results differ from the rounded exact result for x
in [16, 1000]. About 7% differ for x in [1, 16], and about 11% differ for x in [1

4 , 1].

For x in [2 −√
3, 1

2] ≈ [0.268, 1
2], we have r inside [0.011, 0.217], which is contained in the polynomial-approximation

interval. For that range of r, the value d = atan(r) lies within [0.011, 0.214]. In binary arithmetic, for d in the interval
[1

8 , 1
4], the sum y = 1

4 + d is computed exactly, and otherwise, it should be correctly rounded.
When we compute r, the numerator x − tan(c) suffers loss of leading bits near the left end of the interval of x, but

we can recover those bits by computing it as (x − 1
4)− (tan(c)− 1

4), where x − 1
4 is exact, and tan(c)− 1

4 is split into
exact high and approximate low parts.

We gain additional accuracy by representing the constants that are fractions of π as a sum of high and low parts,
where the high part is carefully chosen to use as many digits as can be represented exactly for the given precision.
The low part of each split constant is added before the high part.

Error plots show a distinct improvement from computing the reduced argument r in the next higher precision, so
we include that refinement. Figure 11.11 shows the measured errors in our final implementation, whose code looks
like this:

fp_t
ATAN(fp_t x)
{

volatile fp_t result;

if (ISNAN(x))

0

1

2

-6 -4 -2 0 2 4 6

u
lp

s

x

Errors in atanf()

0

1

2

-6 -4 -2 0 2 4 6

u
lp

s

x

Errors in atandf()

0

1

2

-6 -4 -2 0 2 4 6

u
lp

s

x

Errors in atan()

0

1

2

-6 -4 -2 0 2 4 6

u
lp

s

x

Errors in atand()

334 Chapter 11. Trigonometric functions

result = SET_EDOM(x);
else if (x == ZERO)

result = x; /* preserve sign of zero argument */
else
{

fp_t r, xabs;
int n;
static const fp_t EPS = MCW_B_TO_MINUS_HALF_T;

n = 0;
xabs = FABS(x);
r = xabs;

if (r > ONE)
{

r = ONE / r;
n = 2;

}

if (r > TWO_MINUS_SQRT_THREE)
{

hp_t rr;
volatile hp_t tt;

if (r >= HALF)
{

rr = (n == 2) ? (HP(1.0) / (hp_t)xabs) : (hp_t)r;

#if defined(HAVE_WOBBLING_PRECISION)
tt = rr * HP_SQRT_THREE_MINUS_ONE - (hp_t)HALF;
STORE(&tt);
tt -= (hp_t)HALF;
STORE(&tt);
tt += rr;

#else
tt = rr * HP_SQRT_THREE - (hp_t)ONE;

#endif

r = (fp_t)(tt / (rr + HP_SQRT_THREE));
n++;

}
else
{

rr = (n == 2) ? (HP(1.0) / (hp_t)xabs) : (hp_t)r;
tt = rr - HP(0.25);
STORE(&tt);
tt -= (hp_t)TAN_QUARTER_MINUS_QUARTER_LO;
STORE(&tt);
tt -= (hp_t)TAN_QUARTER_MINUS_QUARTER_HI;
r = (fp_t)(tt / (HP(1.0) + rr * HP_TAN_QUARTER));
n += 4;

}
}

if (QABS(r) < EPS) /* use two-term Taylor series */
{

result = -r * r * r / THREE;

11.10. Inverse tangent 335

result += r;
}
else
{

fp_t g, pg_g, qg;

g = r * r;
pg_g = POLY_P(p, g) * g;
qg = POLY_Q(q, g);
result = FMA(r, pg_g / qg, r);

}

switch (n)
{
default:
case 0: /* |x| in [0, 2 - sqrt(3)] */

break; /* atan(|x|) = atan(r) */

case 1: /* |x| in [1/2, 1] */
result += PI_SIXTH_LO;
result += PI_SIXTH_HI;
break; /* atan(|x|) = PI/6 + atan(r) */

case 2: /* 1/|x| in [0, 2 - sqrt(3)] */
result = -result;
result += PI_HALF_LO;
result += PI_HALF_HI;
break; /* atan(|x|) = PI/2 - atan(1/|x|) */

case 3: /* 1/|x| in [1/2, 1] */
result = -result;
result += PI_THIRD_LO;
result += PI_THIRD_HI;
break; /* atan(|x|) = PI/2 - (PI/6 + atan(1/|x|)) */

case 4: /* (|x| in (2 - sqrt(3), 1/2)) OR
(1/|x| in (2 - sqrt(3), 1/2)) */

result += FOURTH;
break; /* atan(|x|) = 1/4 + atan(r) */

case 6: /* 1/|x| in (2 - sqrt(3), 1/2) */
result += FOURTH;
result = -result;
result += PI_HALF_LO;
result += PI_HALF_HI;
break; /* atan(|x|) = PI/2 - (1/4 + atan(r)) */

}

if (x < ZERO)
result = -result;

}

return (result);
}

336 Chapter 11. Trigonometric functions

11.11 Inverse tangent, take two

The atan() function family is accompanied in several programming languages by a two-argument form, atan2(y,x),
that preserves important sign information, and avoids the need for an explicit Infinity for its argument. The argu-
ments of atan2(y,x) can be considered the opposite and adjacent sides of a right triangle defining the positive
(counterclockwise) angle of rotation about the origin.

The C99 Standard defines that function briefly as follows:

7.12.4.4 The atan2 functions
Synopsis

#include <math.h>
double atan2 (double y, double x);
float atan2f (float y, float x);
long double atan2l (long double y, long double x);

Description
The atan2() functions compute the value of the arc tangent of y/x, using the signs of both arguments to determine the quadrant
of the return value. A domain error may occur if both arguments are zero.
Returns
The atan2() functions return arctan y/x in the interval [−π,+π] radians.

The Standard later places requirements on the function’s behavior in about two dozen special cases:

F.9.1.4 The atan2 functions

� atan2(±0,−0) returns ±π. [Footnote: atan2(0, 0) does not raise the invalid floating-point exception, nor does
atan2(y, 0) raise the divbyzero floating-point exception.]

� atan2(±0,+0) returns ±0.

� atan2(±0, x) returns ±π for x < 0.

� atan2(±0, x) returns ±0 for x > 0.

� atan2(y,±0) returns − 1
2 π for y < 0.

� atan2(y,±0) returns 1
2 π for y > 0.

� atan2(±y,−∞) returns ±π for finite y > 0.

� atan2(±y,+∞) returns ±0 for finite y > 0.

� atan2(±∞, x) returns ± 1
2 π for finite x.

� atan2(±∞,−∞) returns ± 3
4 π.

� atan2(±∞,+∞) returns ± 1
4 π.

We discuss that function, and portability issues from its incomplete definition in various programming languages
and floating-point hardware designs, in Section 4.7.3 on page 70. The most troublesome case is that where both
arguments are zero, even though that situation is addressed in the C89 and C99 Standards.

Cody and Waite give an algorithm for atan2(y, x), although they do not address the issue of signed zeros or
subnormal arguments, because their book preceded the IEEE 754 design. Our code for that function follows the C99
specification, and looks like this:

fp_t
ATAN2(fp_t y, fp_t x)
{

fp_t result;

if (ISNAN(y))
result = SET_EDOM(y);

else if (ISNAN(x))
result = SET_EDOM(x);

else if (y == ZERO)
{

11.11. Inverse tangent, take two 337

if (x == ZERO)
result = (COPYSIGN(ONE,x) >= ZERO) ? y : COPYSIGN(PI, y);

else if (x < ZERO)
result = COPYSIGN(PI, y);

else
result = COPYSIGN(ZERO, y);

}
else if (x == ZERO)

result = (y < ZERO) ? -PI_HALF : PI_HALF;
else if (ISINF(x))
{

if (ISINF(y))
{

if (x < ZERO)
result = COPYSIGN(THREE_PI_QUARTER, y);

else
result = COPYSIGN(PI_QUARTER, y);

}
else

result = (x < ZERO) ? COPYSIGN(PI, y) : COPYSIGN(ZERO, y);
}
else if (ISINF(y)) /* x is finite and nonzero */

result = (y < ZERO) ? -PI_HALF : PI_HALF; /* y / x overflows */
else /* x and y are finite and nonzero */
{

fp_t xabs, yabs;

xabs = FABS(x);
yabs = FABS(y);

if ((yabs > xabs) && (xabs < ONE) && (yabs > (xabs*FP_T_MAX)))
result = (y < ZERO) ? -PI_HALF : PI_HALF; /* y / x ofl */

#if defined(HAVE_IEEE_754)
else if ((yabs < xabs) && (yabs < (xabs * FP_T_MIN)))

#else
else if ((yabs < xabs) && (xabs > ONE) && (yabs < (xabs * FP_T_MIN)))

#endif

{ /* y / x underflows to subnormal or zero */

#if defined(HAVE_IEEE_754)
result = y / x; /* set underflow and inexact */

#else
result = ZERO;

#endif

if (x < ZERO)
result = PI - result; /* set inexact */

if (y < ZERO)
result = -result;

}
else /* normal case: atan() completes the job */

result = ATAN(y / x); /* y / x is finite and nonzero */
}

338 Chapter 11. Trigonometric functions

Table 11.3: Hardware instructions for trigonometric functions.

Function IA-32 68000
inverse cosine — facos
inverse sine — fasin
inverse tangent fpatan fatan
cosine fcos fcos
sine fsin fsin
cosine & sine fsincos —
tangent fptan ftan

return (result);
}

The constants involving fractions of π are all stored values to ensure that they are correct to the last digit. The
first half of the code handles the special cases required by C99. The second half, the final outer else block, treats
the cases where y/x would overflow or underflow. The tests are complicated because they check for overflow and
underflow without normally causing those conditions.

The value FP_T_MIN is the smallest normal number, and no standard names are available in C for the smallest
and largest subnormals. If y is subnormal, y/x can be subnormal for |x| values just below one. In that case, the
expression xabs * FP_T_MIN underflows to a subnormal or zero, likely setting the underflow and inexact exception
flags prematurely. However, the next statement executed in each block then computes y/x, which sets the same
flags.

For other arithmetic systems, ensuring that |x| > 1 before evaluating the product xabs * FP_T_MIN prevents
premature underflow, and if y/x would underflow, we assign a zero value to result, avoiding the underflow.

The atan2() function has more than two dozen nested logical tests, making its flow control among the most com-
plex in the entire C library. Extensive validation is therefore essential, and the test files chkatan2.c and chkatan2d.c
perform more than 40 checks on each member of the function family, supplementing the accuracy tests made by the
ELEFUNT test suite.

11.12 Trigonometric functions in hardware

Given the considerable complexity of computing trigonometric functions, it is perhaps surprising that two architec-
ture families, the Intel IA-32 and the Motorola 68000, provide them in hardware. The instructions listed in Table 11.3
include argument reduction, but the reduced argument is correctly rounded only in a limited range. Motorola doc-
umentation is vague about that range, but Intel manuals note that the instruction fails unless the magnitude of the
argument operand is smaller than 263. For the inverse tangent, the Intel instruction corresponds to the two-argument
form, atan2(y, x), but the Motorola instruction computes only atan(x).

The mathcw library code uses the trigonometric hardware instructions under these conditions:

� the host architecture provides the instructions;

� the compiler supports the gcc syntax for inline assembly code;

� special arguments (Infinity, NaN, and signed zero) are handled separately;

� the many special cases of the two-argument inverse tangent function, atan2(y, x), have been dealt with accord-
ing to the C language standards;

� accurate argument reduction has already been completed;

� the preprocessor symbol USE_ASM is defined.

The hardware instructions provide only a partial solution to the trigonometric function computation, because they
replace only the code block that computes a polynomial approximation.

11.13. Testing trigonometric functions 339

As an example of how a trigonometric hardware instruction can be used, after the reduction rhi + rlo = x− n(1
2 π),

the cosine and sine can be computed together on IA-32 and compatible systems like this:

long double cos_r_hi, rr, sin_r_hi;

rr = (long double)r_hi;

__asm__ __volatile__("fsincos" : "=t" (cos_r_hi), "=u" (sin_r_hi) : "0" (rr));

the_cos = (fp_t)(cos_r_hi - sin_r_hi * (long double)r_lo);
the_sin = (fp_t)(sin_r_hi + cos_r_hi * (long double)r_lo);

The syntax of the inline assembly-code directive is discussed in Section 13.26 on page 388, so we do not describe it
further here. The high part of the reduced argument is first converted exactly to the 80-bit format used by the floating-
point hardware and stored in the variable rr. In the absence of precision control, the fsincos instruction produces
results in the 80-bit format for cos(rhi) and sin(rhi). Those values are used in the corrections for the argument error,
and the two expressions are then converted to working precision. The computed cosine and sine values are, with
high probability, correctly rounded in the 32-, 64-, and 80-bit formats, although in the shorter formats, there is a
double rounding that may sometimes cause an error of 1

2 ulp in the default round-to-nearest mode.
It is likely that implementations of the trigonometric instructions on differing CPU designs or architecture gen-

erations vary in accuracy. Extensive testing of the code with logarithmically distributed random arguments on Intel
Pentium and Xeon, and AMD Opteron, CPUs finds no examples of incorrect rounding in up to 107 tests. However,
there are so many different chip vendors and models of CPUs in the IA-32 family that further testing is advisable.

Speed tests of the hardware instructions against our software code show considerable variation across platforms,
and on some systems, the hardware approach is found to be slower. The main benefit of trigonometric hardware
instructions seems to be enhanced function accuracy.

11.13 Testing trigonometric functions

The data for the error plots shown in this chapter, and elsewhere in this book, are produced with test programs
that invoke two versions of the function, one at working precision, and the other at the next higher precision. Test
arguments are randomly selected from a logarithmic distribution in each of several regions where the function is
defined, with special attention to trouble spots, and regions where different algorithms are used. The errors in ulps
with respect to the higher-precision values are recorded in an output file for graphing.

By controlling the order of source files and load libraries, the two functions can be chosen from different, and
independent, packages. That is a useful test, because our use in the mathcw library of a single algorithm file for all
floating-point types could mask a systematic error in the computational recipes.

The ELEFUNT test suite checks particular known values of the functions, as well as arguments that are out-of-
range, or that might be expected to cause underflows and overflows. It also uses logarithmically distributed random
arguments to verify how well certain carefully chosen mathematical identities are satisfied. The selected identities
are unlikely to be used in the computational algorithm, and usually require the arguments to be purified to avoid
introducing additional rounding errors into the tests.

For example, for the sine and cosine, ELEFUNT tests the identities

sin(x) ≡ 3 sin(1
3 x)− 4(sin(1

3 x))3,

cos(x) ≡ 4(cos(1
3 x))3 − 3 cos(1

3 x),
sin(x) ≡ − sin(−x),
cos(x) ≡ cos(−x),
sin(x) ≡ x, for sufficiently small x.

For the tests with arguments of 1
3 x, the random values are adjusted so that 1

3 x and 3(1
3 x) are exactly representable,

with code like this:

x = randab(a,b); /* log-distributed random value on [a,b] */
y = x / FP(3.0); /* form y = (x + x/3) - x, carefully */

340 Chapter 11. Trigonometric functions

y += x;
y -= x;
x = FP(3.0) * y; /* now x is exactly 3*y */

For the tangent and cotangent, these identities are tested:

tan(x) ≡ 2 tan(1
2 x)

1 − (tan(1
2 x))2

,

cotan(x) ≡ (cot(1
2 x))2 − 1

2 cot(1
2 x)

.

The inverse sine, cosine, and tangent are tested against their Taylor series expansions. The ELEFUNT suite also
checks these identities for the inverse tangent:

atan(x) ≡ atan(1/16) + atan((x − 1/16)/(1 + x/16)),

2 atan(x) ≡ atan(2x/(1 − x2)).

11.14 Retrospective on trigonometric functions

There are three main difficulties in programming the trigonometric functions: their variety, the complexity of their
argument reduction, and achieving high accuracy over the complete argument range.

In this chapter, we covered the most important functions in that family that are provided by the C library. The
mathcw library offers several convenient extensions, some of which are also provided by a few vendor libraries,
including the asindeg(), asinp(), asinpi(), sindeg(), sinp(), and sinpi() families, and their companions for the
cosine, cotangent, and tangent, plus sincos().

Chapter 9 covers argument reduction, showing that there is a fast way for small arguments, and a slow way
for large ones, as provided by the function families REDUCE(), EREDUCE(), and ERIDUCE(). To hide that problem, we
introduced in this chapter the private function families RP() and RPH() to handle reductions with respect to π and
1
2 π.

Cody and Waite generally do not require more than working precision in their algorithms, although they do
mention that the accuracy of their recipe for trigonometric-argument reduction can be improved by using higher
precision. We found that some limited use of higher precision in part of the code is essential to push the peaks
in the error plots below one ulp, especially for functions with large mathematical error magnification, such as the
tangent function. At the highest available precision, which is just double on some systems, accuracy unavoidably
decreases. Libraries that solve that problem generally do so by using software extended precision, with considerable
code complexity.

The two-argument form of the inverse tangent, atan2(), requires care in handling of the special cases required
by the C Standards, and we discuss in Section 4.7.3 on page 70 some of the hardware and language portability
issues related to signed zeros. Our implementation of that function passes the tests of our validation programs, but
all vendor libraries that have been subjected to those tests fail several of them. Tests of several symbolic algebra
systems show that they too disagree in many of the special cases. The lessons are that complexity in language
specifications does not lead to reliable code, and that users of the atan2() function family cannot expect consistency
across compilers and platforms. There is an even greater problem when translating code between different languages
that supply a two-argument tangent, because language specifications of the two-argument inverse tangent, and the
misimplementations of it, differ.

12 Hyperbolic functions

OUT, HYPERBOLICAL FIEND! HOW VEXEST THOU THIS MAN!

— SHAKESPEARE’S Twelfth Night (1602).

PERFORMANCES ARE LARGELY SATISFACTORY, EVEN IF THE

LEAD ACTRESS TENDS TO GO HYPERBOLIC AT TIMES.

— FILM REVIEW FOR Khoey Ho Tum Kahan (2001).

The hyperbolic functions are often treated with the trigonometric functions in mathematical texts and handbooks
[AS64, OLBC10, Chapter 4], because there are striking similarities in their series expansions, and the relations be-
tween family members, even though their graphs are quite different.

IBM 709 Fortran provided the hyperbolic tangent function in 1958, and that remained the only family member
through the first Fortran Standard in 1966. The 1977 Fortran Standard [ANSI78] adds the hyperbolic cosine and
sine, but even the 2004 Standard [FTN04a] fails to mention the inverse hyperbolic functions, although a few vendor
libraries do provide them.

Fortran versions of the hyperbolic functions and their inverses are available in the PORT library [FHS78b]. The
FNLIB library [Ful81b, Ful81a] provides only the inverse hyperbolic functions. Both libraries were developed in the
1970s by researchers at AT&T Bell Laboratories. We discuss their accuracy in the chapter summary on page 352.

Neither Java nor Pascal has any hyperbolic functions in its mathematical classes or libraries, but C# supplies the
hyperbolic cosine, sine, and tangent.

Common Lisp requires the hyperbolic functions and their inverses, but the language manual notes that direct
programming of mathematical formulas may be inadequate for their computation [Ste90, page 331]. Tests of those
functions on two popular implementations of the language suggest that advice was not heeded.

The C89 Standard requires the hyperbolic cosine, sine, and tangent, and the C99 Standard adds their inverse
functions. In this chapter, we show how those functions are implemented in the mathcw library.

12.1 Hyperbolic functions

The hyperbolic companions of the standard trigonometric functions are defined by these relations:

cosh(x) = (exp(x) + exp(−x))/2,
sinh(x) = (exp(x)− exp(−x))/2,
tanh(x) = sinh(x)/ cosh(x)

= (exp(x)− exp(−x))/(exp(x) + exp(−x)).

They are connected by these equations:

(cosh(x))2 − (sinh(x))2 = 1,
tanh(x) = sinh(x)/ cosh(x).

Those functions exist for all real arguments, and vary smoothly over the ranges [1, ∞) for cosh(x), (−∞,+∞) for
sinh(x), and [−1,+1] for tanh(x). Figure 12.1 on the following page shows plots of the functions.

The hyperbolic functions have simple reflection rules:

cosh(−|x|) = + cosh(|x|),
sinh(−|x|) = − sinh(|x|),
tanh(−|x|) = − tanh(|x|).

© Springer International Publishing AG 2017
N.H.F. Beebe, The Mathematical-Function Computation
Handbook, DOI 10.1007/978-3-319-64110-2_12

341

342 Chapter 12. Hyperbolic functions

 0

 2000

 4000

 6000

 8000

 10000

 12000

-10 -5 0 5 10

co
sh

(x
)

x

-15000

-10000

-5000

 0

 5000

 10000

 15000

-10 -5 0 5 10
si

n
h

(x
)

x

-1.0

-0.5

0.0

0.5

1.0

-4 -2 0 2 4

ta
n

h
(x

)

x

Figure 12.1: The hyperbolic functions.

We can guarantee those symmetries by computing the functions only for the absolute value of the argument, and
then, for sinh(x) and tanh(x), if the argument is negative, inverting the sign of the computed result. That practice
is common in mathematical software, but is incorrect for rounding modes other than the default of round to nearest.
Preservation of mathematical identities is usually more important than how inexact results are rounded, but that
would not be true for computation with interval arithmetic.

The Taylor series of the hyperbolic functions for x ≈ 0 are:

cosh(x) = 1 + (1/2!)x2 + (1/4!)x4 + · · · + (1/(2n)!)x2n + · · · ,

sinh(x) = x + (1/3!)x3 + (1/5!)x5 + · · · + (1/(2n + 1)!)x2n+1 + · · · ,

tanh(x) = x − (1/3)x3 + (2/15)x5 − (17/315)x7 + (62/2835)x9 + · · ·

=
∞

∑
k=1

4k(4k − 1)B2k

(2k)!
x2k−1.

The first two converge quickly, and have simple coefficients, but the series for the hyperbolic tangent converges
more slowly, and involves the Bernoulli numbers, B2k, that we first met in the series expansion of the tangent (see
Section 11.2 on page 302), and that we discuss further in Section 18.5 on page 568.

Like trigonometric functions of sums of two angles, hyperbolic functions with argument sums can be related to
functions of each of the arguments:

cosh(x + y) = cosh(x) cosh(y) + sinh(x) sinh(y),
sinh(x + y) = sinh(x) cosh(y) + cosh(x) sinh(y),

tanh(x + y) =
tanh(x) + tanh(y)

1 + tanh(x) tanh(y)
.

Those relations are used in the ELEFUNT tests of the hyperbolic functions.
The exponential function of a real argument is always positive, and satisfies the reflection rule exp(−|x|) =

1/ exp(|x|), so it would appear that the hyperbolic functions could be computed from a single exponential and at
most four additional elementary operations.

There are three serious computational problems, however:

� The argument at which overflow happens in cosh(x) and sinh(x) is larger than that for exp(x). Thus, it is
impossible to compute the two hyperbolic functions correctly by direct application of their definitions for
arguments in the region where the hyperbolic functions remain finite, but exp(x) overflows.

� The subtractions in the definitions of sinh(x) and tanh(x) produce serious significance loss for x ≈ 0.

� Hexadecimal arithmetic requires special consideration to combat the accuracy loss from wobbling precision.

12.1. Hyperbolic functions 343

We address those problems by dividing the argument interval [0, ∞) into five consecutive regions:

[0, xTS] : use two terms of the Taylor series;

(xTS, xloss] : use rational polynomial approximation where there is bit loss from subtraction in sinh(x) and tanh(x),
and otherwise, use the mathematical definition of cosh(x);

(xloss, xc] : use the mathematical definitions;

(xc, xovfl] : special handling near function overflow limits;

(xovfl, ∞) : cosh(x) = sinh(x) = ∞, and tanh(x) = 1.

Cody and Waite observe that premature overflow can be avoided by suitable translation of the argument, using
the relation exp(x)/2 = exp(x) × exp(− log(2)) = exp(x − log(2)). Unfortunately, because log(2) is a transcen-
dental number, we have to approximate it, thereby introducing an argument error. Because the error-magnification
factor of exp(x), and thus also of cosh(x) and sinh(x), is proportional to x (see Table 4.1 on page 62), and x is large,
that translation introduces large errors in the function, and is unsatisfactory.

Instead, we write exp(x)/2 = exp(x)/2 × (v/v) = v exp(x − log(v))/2, and choose log(v) to be a constant
slightly larger than log(2), but having the property that the number of integer digits in x plus the number of digits
in log(v) does not exceed the significand size. The subtraction is then exact, and the argument translation introduces
no additional error. Of course, we then have an additional error from the multiplication by v/2, but that should be
at most one ulp, and independent of the size of x.

For bases that are powers of two, the value 45427/65536 is a suitable choice for the constant log(v). That value
needs only 16 bits, and the overflow limit for the exponential in single-precision arithmetic requires at most 8 integer
bits for current and historical architectures, so their sum can be represented in the 24 significand bits available. We
need these stored constants:

log(v) = 45427/65536,

v/2 − 1 = 1.383 027 787 960 190 263 751 679 773 082 023 374 . . . × 10−5,

1/v2 = 0.249 993 085 004 514 993 356 328 792 112 262 007

For base 10, assuming at least six significand digits, we use these values:

log(v) = 0.6932,

v/2 − 1 = 5.282 083 502 587 485 246 917 563 012 448 599 540 . . . × 10−5,

1/v2 = 0.249 973 591 674 870 159 651 646 864 161 934 786

It is imperative to use the value v/2 − 1 directly, instead of v/2, because the latter loses about five decimal digits.
The PORT library authors recognize the problem of premature overflow, and compute the hyperbolic cosine with

simple Fortran code like this:

t = exp(abs(x / 2.0e0))
cosh = t * (0.5e0 * t) + (0.5e0 / t) / t

The argument scaling is only error free in binary arithmetic, and the factorization introduces for all arguments two
additional rounding errors that could easily be avoided. The PORT library hyperbolic sine routines use a similar
expression with a subtraction instead of an addition, but do so only for |x| ≥ 1/8. Otherwise, the PORT library code
sums the Taylor series to convergence, starting with the largest term, thereby losing another opportunity to reduce
rounding error by adding the largest term last.

In order to preserve full precision of the constants, and avoid problems from wobbling precision in hexadecimal

344 Chapter 12. Hyperbolic functions

arithmetic, for arguments near the function overflow limit, we compute the hyperbolic cosine and sine like this:

u = exp(x − log(v)),

y = u + (1/v2)(1/u),

z = u − (1/v2)(1/u),

cosh(x) = (v/2)
(
u + (1/v2)(1/u)

)
= y + (v/2 − 1)y,

sinh(x) = (v/2)
(
u − (1/v2)(1/u)

)
= z + (v/2 − 1)z.

For hexadecimal arithmetic, those formulas should be used even for moderate |x| values, because if exp(x) has
leading zero bits from hexadecimal normalization, exp(x − log(v)) is about half that size, has no leading zero bits,
and retains full accuracy. When cosh(x) or sinh(x) have leading zero bits, they are computed from an exponential
with a similar number of leading zero bits, so accuracy of the two hyperbolic functions is no worse. That special
handling is easily done by reducing the limit xovfl for β = 16.

For large-magnitude arguments, tanh(x) quickly approaches its limits of ±1. We could simply return those values
as soon as exp(x)± exp(−x) is the same as exp(x) to machine precision. However, to produce correct rounding, and
setting of the inexact flag, at the limits, the return value must be computed as ±(1− τ) (Greek letter tau) for a suitable
tiny number τ, such as the machine underflow limit, and that computation must be done at run time, rather than at
compile time.

To find the cutoff for the limits in tanh(x), multiply the numerator and denominator by exp(−x), and then add
and subtract 2 exp(−2x) in the numerator to find:

tanh(x) = (1 − exp(−2x))/(1 + exp(−2x))
= (1 + exp(−2x)− 2 exp(−2x))/(1 + exp(−2x))
= 1 − 2/(exp(2x) + 1).

The right-hand side is 1 to machine precision when the second term falls below half the negative machine epsilon,
ε/β, where ε = β1−t for t-digit arithmetic:

1
2 ε/β = 1

2 (β1−t/β)

= 1
2 β−t

= 2/(exp(2xc) + 1)
≈ 2/ exp(2xc),

exp(2xc) = 4βt,

xc =
1
2 (log(4) + t log(β)).

Similar considerations for cosh(x) and sinh(x) show that the exp(−x) terms can be ignored for x values larger than
these:

xc =

{
1
2 (log(2) + (t − 1) log(β)), for cosh(x),
1
2 (log(2) + t log(β)), for sinh(x).

The cutoff values, xc, can be easily computed from stored constants. Our result for tanh(x) differs slightly from
the result 1

2 (log(2) + (t + 1) log(β)) given by Cody and Waite [CW80, page 239], but the two are identical when
β = 2. For other bases, their cutoff is slightly larger than needed.

For small-magnitude arguments, cosh(x) can be computed stably like this:

w =

{
exp(|x|), usually,
exp(−|x|), sometimes when β = 16: see text,

cosh(x) = 1
2 (w + 1/w).

12.2. Improving the hyperbolic functions 345

We have exp(|x|) ≥ 1, so the reciprocal of that value is smaller, and the rounding error of the division is minimized.
However, when β = 16, we need to be concerned about wobbling precision. Examination of the numerical values of
exp(|x|) show that it loses leading bits unless |x| lies in intervals of the form [log(8 × 16k), log(16 × 16k)], or roughly
[2.08, 2.77], [4.85, 5.55], [7.62, 8.32], Outside those intervals, the computed value of exp(−|x|) is likely to be more
accurate than that of exp(|x|). However, the growth of the exponential soon makes the first term much larger than
the second, so in our code, we use a block that looks similar to this:

#if B == 16
if ((FP(2.079442) < xabs) && (xabs < FP(2.772589)))

z = EXP(xabs);
else

z = EXP(-xabs);
#else

z = EXP(xabs);
#endif

result = HALF * (z + ONE / z);

For tiny arguments, the three functions can be computed from their Taylor series. From the first two terms of the
series, and the formulas for the machine epsilons, we can readily find these cutoffs:

xTS =

{√
6β−t/2 for sinh(x) and tanh(x),√
2ββ−t/2 for cosh(x).

For simplicity, Cody and Waite use a smaller value, β−t/2, for each of those cutoffs, and they keep only the first term
of each of the series. However, in the mathcw library implementation, we sum two terms to set the inexact flag and
obey the rounding mode.

For arguments of intermediate size, because of significance loss in the subtraction, sinh(x) and tanh(x) require
rational polynomial approximations. In binary arithmetic, bit loss sets in as soon as exp(−x) exceeds 1

2 exp(x), which
we can rearrange and solve to find

xloss =
1
2 log(2)

≈ 0.347.

However, Cody and Waite base their rational approximations on the wider interval [0, 1], so we do as well. The
polynomials provide as much accuracy as the exponential function, and are faster to compute, although they could
be slightly faster if they were fitted on the smaller interval [0, 0.347], reducing the total polynomial degree by about
one.

If the macro USE_FP_T_KERNEL is not defined when the code is compiled, the next higher precision is normally
used for 1

2 (exp(x) ± exp(−x)) in order to almost completely eliminate rounding errors in the computed results,
which for x in [1, 10] otherwise can approach one ulp with round-to-nearest arithmetic. Experiments with Chebyshev
and minimax polynomial fits over that interval demonstrate that polynomials of large degree defined on many
subintervals would be necessary to achieve comparable accuracy, at least until we can identify a better approximating
function that can be easily computed to effective higher precision using only working-precision arithmetic. A variant
of the exponential function that returns a rounded result, along with an accurate estimate of the rounding error,
would be helpful for improving the accuracy of the hyperbolic functions.

We omit the code for the hyperbolic functions, but Figure 12.2 on the following page shows measured errors
in the values returned by our implementations. The largest errors are 0.95 ulps (cosh()), 1.00 ulps (sinhf()), and
1.21 ulps (tanh()), but the results from the decimal functions tanhdf() and tanhd() are almost always correctly
rounded.

12.2 Improving the hyperbolic functions

Plots of the errors in the hyperbolic cosine and sine functions show that the difficult region is roughly [1, 10], where
the roundings from the reciprocation and addition or subtraction in 1

2 (exp(x)± 1/ exp(x)) have their largest effect.

346 Chapter 12. Hyperbolic functions

Figure 12.2: Errors in the single-precision hyperbolic functions for binary and decimal arithmetic without use of
intermediate higher precision. Plots for the double-precision functions are similar, and thus, not shown.
The mathcw library code for cosh(x) and sinh(x) normally uses the next higher precision for the exponentials. When
that is possible, for randomly chosen arguments, fewer than 1 in 107 function results are incorrectly rounded.

0

1

2

-100 -50 0 50 100

u
lp

s

x

Errors in coshf()

0

1

2

-200 -100 0 100 200

u
lp

s

x

Errors in coshdf()

0

1

2

-100 -50 0 50 100

u
lp

s

x

Errors in sinhf()

0

1

2

-200 -100 0 100 200

u
lp

s

x

Errors in sinhdf()

0

1

2

-15 -10 -5 0 5 10 15

u
lp

s

x

Errors in tanhf()

0

1

2

-15 -10 -5 0 5 10 15

u
lp

s

x

Errors in tanhdf()

12.2. Improving the hyperbolic functions 347

When higher precision is available, those errors are negligible. However, some platforms do not supply a usable
long double type in C, and for all platforms, we would like to improve the accuracy of the functions at the highest
available precision. Doing so requires computing the exponential function in even higher precision.

Because the Taylor series of the exponential function begins 1 + x + x2/2! + . . . , when x is small, we can achieve
that higher precision by delaying addition of the leading term. Fortunately, we do not need to reimplement the
exponential function, because we already have expm1(x) to compute the value of exp(x)− 1 accurately. For larger x
values, we can obtain small arguments as differences from tabulated exact arguments like this:

ex = ex−ck eck

= (1 + expm1(x − ck))× (exp(ck)hi + exp(ck)lo)

= exp(ck)hi + (expm1(x − ck)× (exp(ck)hi + exp(ck)lo) + exp(ck)lo)

= exp(ck)hi + fma(expm1(x − ck), exp(ck)hi, fma(expm1(x − ck), exp(ck)lo, exp(ck)lo))

= exp(x)hi + exp(x)lo.

We need to choose enough ck values on [1, 10] to ensure that 1 + expm1(x − ck) represents exp(x − ck) to a few
extra digits, and so that k and ck can be found quickly. Evenly spacing the ck values 1/8 unit apart means that
|x − ck| < 1/16, for which expm1(x − ck) lies in [−0.061,+0.065], giving us roughly two extra decimal digits at
the expense of storing a table of 144 high and low parts of exp(ck). For decimal arithmetic, we use a more natural
spacing of 1/10. The fused multiply-add operations allow accurate reconstruction of high and low parts of exp(x),
such that their sum gives us about two more digits. That technique does not scale well: to get one more digit, we
need a spacing of 1/64, and a table of 1152 parts.

Once we have the higher-precision exponential, we can find the hyperbolic functions by careful evaluation of
these expressions:

H = exp(x)hi,
L = exp(x)lo,

cosh(x) = 1
2 ((H + L) + 1/(H + L)),

sinh(x) = 1
2 ((H + L)− 1/(H + L)).

We can recover the error, e, in the division like this:

D = 1/(H + L), exact ,
d = fl(D), approximate,

D = d + e, exact ,
e = D − d, exact ,
= (D × (H + L)− d × (H + L))/(H + L), exact ,
= D × (1 − d × (H + L)), exact ,
≈ d × (1 − d × (H + L)), approximate,
≈ d × (fma(−d, H, 1)− d × L).

Finally, we reconstruct the hyperbolic functions

cosh(x) = 1
2 (H + (d + (L + e))),

sinh(x) = 1
2 (H + (−d + (L − e))).

using the accurate summation function family, VSUM(), to sum the four terms in order of increasing magnitudes.
Although that technique does not require a higher-precision data type, it gains only about two extra decimal

digits in the exponential. We therefore use it only for the hyperbolic functions of highest available precision.
Tests of the code that implements that algorithm shows that it lowers the incidence of incorrect rounding of the

hyperbolic cosine and sine to about 10−4, with a maximum error of about 0.53 ulps. By contrast, using the next
higher precision lowers the rate of incorrect rounding to below 10−7, with a maximum error of about 0.51 ulps.

348 Chapter 12. Hyperbolic functions

−3 −2 −1 0 1 2 3
−4

−3

−2

−1

0

1

2

3

4

x
f(

x)

asinh(x)
acosh(x)
atanh(x)

Figure 12.3: Inverse hyperbolic functions near the origin. An artifact of the MATLAB graphing software prevents
display of the upper part of atanh(x).

12.3 Computing the hyperbolic functions together

Just as we found it efficient in Section 11.8 on page 320 to compute the trigonometric cosine and sine together, we
can do the same thing with their hyperbolic companions. The file shchx.h defines the function sinhcosh(x, &sh,
&ch) and its companions with the usual suffixes for other data types.

The code in shchx.h is a straightforward interleaving of that from coshx.h and sinhx.h. They use the same algo-
rithms, guaranteeing identical function results. When both the hyperbolic cosine and sine are needed, sinhcosh() is
the recommended, and faster, way to compute them.

12.4 Inverse hyperbolic functions

The inverse hyperbolic functions, illustrated in Figure 12.3 through Figure 12.6 on page 350, all bear simple relations
to the logarithm function that make them straightforward to compute:

acosh(x) = log(x +
√

x2 − 1), for x ≥ 1,

asinh(x) = sign(x) log(|x|+
√

x2 + 1), for x in (−∞,+∞),

atanh(x) = 1
2 log(1 + 2x/(1 − x)), for x in [−1,+1].

The primary computational issues are premature overflow of x2, and loss of significance from subtractions in the
square roots and from evaluation of the logarithm for arguments near 1.0. For the latter, the log1p(x) function
provides the required solution.

The inverse hyperbolic functions have these Taylor series:

acosh(1 + d) =
√

2d
(
1 − (1/12)d + (3/160)d2 − (5/896)d3+

(35/18 432)d4 − (63/90 112)d5 + · · ·)
asinh(x) = x − (1/6)x3 + (3/40)x5 − (5/112)x7 + (35/1152)x9−

(63/2816)x11 + (231/13 312)x13 − · · ·
atanh(x) = x + (1/3)x3 + (1/5)x5 + · · ·+ (1/(2k + 1))x2k+1 + · · ·

For a truncated series, we can reduce rounding error by introducing a common denominator to get exactly rep-
resentable coefficients. For example, a five-term series for the inverse hyperbolic tangent can be evaluated with this
code fragment from atanhx.h:

/* atanh(x) ~= (((945+(315+(189+(135+105 x^2)x^2)x^2)x^2)x^2)x)/945 */

12.4. Inverse hyperbolic functions 349

−30 −20 −10 0 10 20 30
0

1

2

3

4

5

x
ac

os
h(

x)

Figure 12.4: Inverse hyperbolic cosine. The function acosh(x) is defined only for x on the interval [+1, ∞), and is
slow to approach the limit lim

x→∞
acosh(x) → ∞. In the IEEE 754 32-bit format, the largest finite acosh(x) is less than

89.5, in the 64-bit format, about 710.5, and in the 80-bit and 128-bit formats, just under 11357.3.

−30 −20 −10 0 10 20 30
−5

−4

−3

−2

−1

0

1

2

3

4

5

x

as
in

h(
x)

Figure 12.5: Inverse hyperbolic sine. The function asinh(x) is defined for x on the interval (−∞,+∞), and is slow to
approach the limit lim

x→∞
asinh(x) → ∞. In the IEEE 754 32-bit format, the largest finite asinh(x) is less than 89.5, in

the 64-bit format, about 710.5, and in the 80-bit and 128-bit formats, just under 11357.3.

x_sq = x * x;
sum = (FP(105.0)) * x_sq;
sum = (FP(135.0) + sum) * x_sq;
sum = (FP(189.0) + sum) * x_sq;
sum = (FP(315.0) + sum) * x_sq;
sum *= xabs / FP(945.0);
result = xabs + sum;

Cody and Waite do not treat the inverse hyperbolic functions, so we base our code for those functions on the
approach used in the Sun Microsystems’ fdlibm library, but we also use the Taylor-series expansions to ensure correct
behavior for small arguments. After the argument-range limits have been checked, the algorithms look like this for
base β and a t-digit significand:

acosh(x) =

⎧⎨
⎩

log(2) + log(x) for x >
√

2βt,

log(2x − 1/(
√

x2 − 1 + x)) for x > 2,

log1p(s +
√

2s + s2) for s = x − 1,

350 Chapter 12. Hyperbolic functions

−1 −0.5 0 0.5 1
−5

−4

−3

−2

−1

0

1

2

3

4

5

x
at

an
h(

x)

Figure 12.6: Inverse hyperbolic tangent. The function atanh(x) is defined only for x on the interval [−1,+1], and has
poles at x = ±1 that are only approximated in this plot.

asinh(x) =

⎧⎪⎪⎨
⎪⎪⎩

sign(x)(log(2) + log(x)) for x >
√

2βt−1,

sign(x) log(2|x|+ 1/(|x|+√
x2 + 1)) for |x| > 2,

x if fl(x2 + 1) = 1,

sign(x) log1p(|x|+ x2/(1 +
√

1 + x2)) otherwise,

atanh(x) =

⎧⎪⎨
⎪⎩

− atanh(−x) for x < 0,
1
2 log1p(2x/(1 − x)) for x ≥ 1/2,
1
2 log1p(2x + 2x2/(1 − x)) for x in [0, 1/2).

Notice that for acosh() and asinh(), log(2x) is computed as log(2) + log(x) to avoid premature overflow for large x.
The cutoff

√
2βt is the value above which fl(x2 − 1) = fl(x2) to machine precision, and

√
2βt−1 is the corresponding

cutoff that ensures fl(x2 + 1) = fl(x2).
At most seven floating-point operations are needed beyond those for the logarithm and square-root functions, so

as long as those two functions are accurate, the inverse hyperbolic functions are expected to be as well.
Figure 12.7 shows measured errors in the values returned by our implementations of the inverse hyperbolic

functions when arithmetic is restricted to working precision. The largest errors found are 0.91 ulps (acoshf()),
0.88 ulps (asinh()), and 0.85 ulps (atanhd()). For the ATANH() family, computing just the argument of LOG1P() in the
interval [xTS, 1

2) in higher precision, and then casting it to working precision, reduces the maximum error by about
0.10 ulps. Code to do so is present in the file atanhx.h, but is disabled because we can do better.

The errors can be almost completely eliminated by excursions to the next higher precision in selected argument
ranges. When possible, we do so for acosh() and asinh() for argument magnitudes in (2, 70] for a nondecimal base,
and in [xTS, 2] for all bases. We do so as well for atanh() for argument magnitudes in [xTS, 1). The Taylor-series
region covers 16% to 21% of the argument range for the single-precision functions atanhf() and atanhdf(). As with
the trigonometric functions and the ordinary hyperbolic functions, compile-time definition of the USE_FP_T_KERNEL
macro prevents the use of higher precision.

When higher precision is not available, the code in atanhx.h uses separate rational polynomial approximations
of the form atanh(x) ≈ x + x3R(x2) on the intervals [0, 1

2] and [1
2 , 3

4] to further reduce the errors. In binary arithmetic,
that has better accuracy than the logarithm formulas. In decimal arithmetic, the results are almost always correctly
rounded.

12.5 Hyperbolic functions in hardware

Although the Intel IA-32 architecture provides limited hardware support for the square root, exponential, logarithm,
and trigonometric functions, it has no specific instructions for the hyperbolic functions. However, they can be com-
puted with hardware support from their relations to logarithms tabulated at the start of Section 12.4 on page 348, as

12.5. Hyperbolic functions in hardware 351

Figure 12.7: Errors in the single-precision hyperbolic functions for binary and decimal arithmetic without use of
intermediate higher precision. Plots for the double-precision functions are similar, and thus, not shown.
The mathcw library code for those functions normally uses the next higher precision for the logarithms and square
roots. When that is possible, for randomly chosen arguments, fewer than 1 in 107 function results are incorrectly
rounded.

0

1

2

 0 10 20 30 40 50

u
lp

s

x

Errors in acoshf()

0

1

2

 0 10 20 30 40 50

u
lp

s

x

Errors in acoshdf()

0

1

2

-50 -25 0 25 50

u
lp

s

x

Errors in asinhf()

0

1

2

-50 -25 0 25 50

u
lp

s

x

Errors in asinhdf()

0

1

2

-1 0 1

u
lp

s

x

Errors in atanhf()

0

1

2

-1 0 1

u
lp

s

x

Errors in atanhdf()

352 Chapter 12. Hyperbolic functions

Table 12.1: Maximum errors in units in the last place (ulps), and percentages of results that are correctly rounded,
for hyperbolic functions in the PORT library on AMD64.

Function 32-bit 64-bit
max err OK max err OK

acosh() 512.4 95.9% 5619.8 89.7%
asinh() 4.7 94.3% 4.8 94.5%
atanh() 2.2 80.8% 3.8 76.5%
cosh() 1.9 72.1% 1.9 70.2%
sinh() 10.7 68.3% 9.3 66.9%
tanh() 3.5 82.6% 3.7 81.6%

Table 12.2: Maximum errors in units in the last place (ulps), and percentages of results that are correctly rounded,
for inverse hyperbolic functions in the FNLIB library on AMD64.

Function 32-bit 64-bit
max err OK max err OK

acosh() 109 0.0% 1790.0 94.8%
asinh() 107 7.3% 1.1 96.6%
atanh() 105 34.4% 1.0 85.6%

long as the argument x is not so large that x2 overflows. A better approach is to employ the three alternate forms
involving logarithms of modified arguments. The mathcw library code does not use inline IA-32 assembly code for
the hyperbolic functions, but it can do so for the needed logarithms, at the slight expense of an additional function
call.

The Motorola 68000 has fatanh, fcosh, fsinh, and ftanh instructions. No single instructions exist for the inverse
hyperbolic cosine and sine, but they can be computed with the help of the 68000 hardware instructions flogn and
flognp1 for the logarithms. The mathcw library uses those hardware instructions when it is built on a 68000 system
with a compiler that supports inline assembly code, and the preprocessor symbol USE_ASM is defined. The only 68000
machine available to this author during the library development lacks support for the long double data type, so it
has been possible to test the hyperbolic-function hardware support only for the 32-bit and 64-bit formats.

12.6 Summary

Simplistic application of the mathematical definitions of the hyperbolic functions and their inverses in terms of the
exponential, logarithm, and square root does not lead to acceptable accuracy in software that uses floating-point
arithmetic of fixed precision.

Plots of the errors of those functions as implemented in the PORT library [FHS78b] show reasonable accuracy,
except for the acosh() pair, as summarized in Table 12.1. Errors in the acosh() functions rise sharply above 2 ulps
for x in [1, 1.1], and the errors increase as x decreases.

Results of tests of the inverse hyperbolic functions in the earlier FNLIB library [Ful81b, Ful81a] are shown in
Table 12.2. Although 85% or more of the function values are correctly rounded, the tests find huge errors for x ≈ 1
in the inverse hyperbolic cosine and sine, and for x ≈ 0.5 in the inverse hyperbolic tangent.

Tests with the newer software technology in the GNU math library show worst case errors of 1.32 ulps in tanhf()
and tanh(), and 1.11 ulps for the other hyperbolic functions. From 88% (tanhf()) to 98% (acosh()) of the results are
correctly rounded. Tests of the fdlibm library show similar behavior.

Our implementations of the hyperbolic functions and their inverses provide results that are almost always cor-
rectly rounded, and have accuracy comparable to our code for the related exponential and logarithm functions.
Achieving that goal requires considerable care in algorithm design, and in programming.

13 Pair-precision arithmetic

THE COMPUTATION OF a*b - c*d IN JAVA WILL

PRODUCE THE SAME RESULT EVERYWHERE, BUT IT MAY

BE THE SAME VERY WRONG RESULT EVERYWHERE!

— FRED G. GUSTAVSON, JOSÉ E. MOREIRA

AND ROBERT F. ENENKEL (1999).

In a few places in the mathcw library, we need to work with an intermediate precision having at least twice as many
digits as storage precision. In almost all historical floating-point architectures, for single-precision computation, the
double-precision format satisfies that requirement (see Table H.1 on page 948). However, for double-precision work,
higher precision may be unavailable, as is the case in many programming languages, or it may be insufficiently
precise, such as the IEEE 754 80-bit format compared to the 64-bit format.

The solution to that problem is to represent floating-point numbers as the sum of two values, a high-order part,
and a low-order part. That technique is sometimes referred to as doubled-double arithmetic, but that term can be
confusing, and in any event, we want to use that idea for any machine precision. A better description seems to be
the phrase pair-precision arithmetic that we use in the title of this chapter.

In 1965, Kahan [Kah65] and Møller [Møl65b] independently reported that the rounding error in floating-point
summation can be recovered like this:

sum = x + y;
err = (x - sum) + y;

The parentheses indicate the order of computation, and the expression requires that |x| ≥ |y|, for otherwise, the
computed error may be zero, when the true error is nonzero.

Mathematically, the error in summation is always exactly zero. Computationally, because of finite precision, with
numbers of similar sign and magnitude, and round-to-nearest addition, the computed error is nonzero about half the
time.

Kahan’s one-column note reports that the error term can be computed as indicated only on certain machines,
such as the IBM models 704, 709, 7040, 7044, 7090, 7094, and System/360, which normalize results before rounding
or truncating. The computation fails to produce a correct error term on those that round or truncate before normal-
ization, such as the CDC 3600, the IBM 620 and 1650, and the Univac 1107. Most CPU architectures produced since
the early 1970s fall into the first group, and IEEE 754 arithmetic certainly does.

In his much longer paper, after a detailed analysis of floating-point error, Møller gives a more complex correction
that he terms ‘monstrous’:

err = (y - (sum - x)) +
(x - (sum - (sum - x))) +
(y - ((sum - x) + (y - (sum - x))));

The term in the first line matches that of Kahan, and is the largest of the three.
Møller credits his insight to earlier work by Gill in 1951 in fixed-point computation of solutions of ordinary differ-

ential equations on the EDSAC computer at the Cambridge University Mathematical Laboratory [Gil51]. However,
although Gill carried an error term in his computations, it is not clear whether he realized how it could be computed,
and no simple formula for the error term is evident in his paper.

In 1971, Dekker [Dek71] took the simpler Kahan/Møller formula, and developed portable algorithms for add,
subtract, multiply, divide, and square root, without needing to decode the floating-point format. He wrote the code
in Algol 60, but the translation to C is simple.

This chapter describes implementations of Dekker’s primitives, and more than a dozen others, that allow pro-
gramming with pair-precision arithmetic. In one important case, we use results of later work that broadens the
applicability of Dekker’s algorithms (see Section 13.16 on page 368).

© Springer International Publishing AG 2017
N.H.F. Beebe, The Mathematical-Function Computation
Handbook, DOI 10.1007/978-3-319-64110-2_13

353

354 Chapter 13. Pair-precision arithmetic

Near the end of this chapter, we include an important routine for accurate summation, based on the Kahan/
Møller idea, because the results (sum,err) are nicely representable in pair-precision arithmetic. That routine then
serves as the basis for accurate computation of dot products, which lie at the core of algorithms for arithmetic with
complex numbers, for calculating the roots of quadratic equations, and for computing the areas of thin triangles
[GME99]. The simplest case to which the dot-product code applies is mentioned in the epigraph that begins this
chapter.

13.1 Limitations of pair-precision arithmetic

Pair-precision arithmetic is not ideal. What we would much prefer to have is hardware-assisted arithmetic of any
user-specifiable precision, with range increasing with precision. Increased range is essential if we are to be able to
compute products without danger of overflow or underflow. Pair-precision arithmetic doubles precision, but leaves
the exponent range the same, so we still have to deal with issues of scaling to prevent destructive overflow and
underflow. The economic realities of computer-chip manufacturing make it unlikely that such hardware support
will be available in the foreseeable future, so we have to make do with software solutions.

Pair-precision arithmetic can lead to computational surprises. For example, the machine epsilon can normally be
obtained by this C code:

eps = 1.0;

while ((1.0 + eps/BASE) != 1.0)
eps /= BASE;

Besides the many uses of the machine epsilon in numeric computations, the floor of the negative base-10 logarithm of
the machine epsilon is the number of decimal digits that the arithmetic supports. Although the C and C++ languages
provide standard names in system header files for the machine epsilons in each precision, most languages do not. It is
therefore useful to be able to compute the machine epsilon dynamically, instead of relying on a platform-dependent
compile-time constant.

In pair-precision arithmetic, after several iterations of the loop, the high part is exactly 1.0, and the low part
holds the value eps/BASE. The low part remains nonzero until eps reaches the smallest representable floating-point
value, that is, the underflow limit. That value is much smaller than the machine epsilon, and the loop computation
therefore produces a wildly wrong, or at least unexpected, answer. The basic problem is that there is no constraint
on the relative sizes of the high and low parts, as there would be if we had a single exponent and a double-length
significand. We show an alternate algorithm for computing the pair-precision machine epsilon in Section 23.2 on
page 779.

Code similar to the machine-epsilon loop exists in many iterative solvers, which continue computation until a
computed tolerance is negligible to machine precision, using code with this outline:

do
{

... some computation ...
tolerance = ... estimate of error ...

}
while (1.0 != (1.0 + tolerance))

In ordinary floating-point arithmetic, with reasonable rounding behavior, the loop terminates once the tolerance
falls below the machine epsilon. In pair-precision arithmetic, it may take much longer to complete, or it may fail to
terminate if the computed tolerance never reaches zero.

For sufficiently small values, the low component can underflow to a subnormal number, or abruptly to zero. Low-
order bits are gradually or precipitously lost, and the precision of the number can be reduced to half its normal value.
That happens in base β and t-digit precision as soon as the number comes within βt of the smallest normal number.
If a proper double-length significand with a single exponent were used, loss of trailing bits would not happen until
numbers below the smallest normal number were reached. That misfeature of pair-precision arithmetic strikes in the
computation of elementary functions (see Chapter 23 on page 777), where normally exact scaling operations become
inexact. Test programs for the elementary functions have to take that abnormal precision loss into account.

13.2. Design of the pair-precision software interface 355

Another issue with pair-precision arithmetic is that the signs of the two parts may differ, because they are ob-
tained independently by floating-point computations. The approach that we adopt in this chapter when the sign is
needed is to test the sign of the sum of the two parts.

Signed zero, Infinity, and NaN components also pose problems: if the high part is one of those special values,
then the low part should be as well, but might not be, because of its separate computation. When we need to generate
explicitly a pair-precision number that has the value of a signed zero, Infinity or NaN, we set both parts to the same
value.

Finally, comparisons of pair-precision numbers need careful handling. It is not sufficient to compare just the high
parts, because even if they are equal, the low parts could have opposite signs. We therefore compare the difference
against zero.

Pair-precision arithmetic was used in some historical systems to implement double precision when the hardware
supported only single-precision computation. Among systems available to the author during the development of the
mathcw library, pair-precision arithmetic is used for the C long double data type on IBM AIX PowerPC and Silicon
Graphics IRIX MIPS systems.

13.2 Design of the pair-precision software interface

Modern programming practice is to provide a software interface that supplies an extensive, or better, complete, set
of operations on data, without exposing implementation details to the user. Once the interface is specified, then
internal implementation details can be modified without impacting user software. If the data are more than just
simple scalars represented with standard data types, then new data types are called for. The data types should be
opaque, providing type names, but hiding implementation details. Type names and function names should be related,
so that the programmer can learn how to use the package more easily. In addition, the programmer should be able
to program with the new data types without knowledge of their internal representation. That requires provision
of functions for at least creation, destruction, initialization, assignment, member access, and type conversion. I/O
support is also highly desirable. For numerical data, it should be possible to overload the arithmetic operators for
add, subtract, multiply, and divide, as well as the relational operators, so the programmer can write conventional
numeric and logical expressions, instead of a series of function calls.

We cannot meet all of those goals without restricting ourselves to a handful of newer programming languages.
Ada, C++, and Fortran 90 offer the needed capabilities, but C does not. Nevertheless, as several appendices of this
book demonstrate, by writing code in C, we can make it available to other programming languages, and portable to
all major computing platforms.

The interface to the pair-precision functions is defined in a single header file, paircw.h, that is one of several such
files provided for general use when the mathcw library is built and installed. That header file declares prototypes of
all of the functions, and definitions of the opaque data types.

The type names are made by suffixing the underlying numeric type name with the word pair, and then con-
verting spaces to underscores. Thus, we provide types named float_pair, double_pair, long_double_pair, and
long_long_double_pair. Hewlett–Packard HP-UX IA-64 systems have two more: extended_pair and quad_pair,
with synonyms __float80_pair and __float128_pair, respectively. When compiler support for decimal types is
available, we also have the types decimal_float_pair, decimal_double_pair, decimal_long_double_pair, and dec-
imal_long_long_double_pair.

Table 13.1 on the next page shows a complete summary of the functions, which are all named with the prefix
p, for pair. Because few programming languages support the returning of multiple function values, the functions
return the pair result in the first argument. That design choice is analogous to assignment statements: in almost all
programming languages, the destination precedes the source.

Following the conventions used throughout this book, we show implementation code that is independent of the
precision, and we name functions with uppercase macros that expand to lowercase names with one of the conven-
tional precision suffixes. Thus, the macro PADD() represents the functions paddf(), padd(), and paddl() for the three
C types float, double, and long double, respectively. There are additional companion functions for extended data
types supported by some compilers.

The function implementations use private generic types fp_pair_t and fp_t. Those types expand to suitable
public pair-precision and scalar data types, as defined and used in the header file paircw.h.

With the exception of four functions, the pair-precision functions are all of type void: their actions are recorded

356 Chapter 13. Pair-precision arithmetic

Table 13.1: Pair-precision primitives. Only the double versions are listed here, but variants for all other supported
precisions are available, with standard suffixes. Functions with an initial argument r are of type void, and return
their result in that argument. Arguments a, b, c, and d are scalar floating-point values. Arguments v and w are
n-element floating-point vectors. Arguments r, x, and y are scalar pair-precision values.

pabs(r,x) absolute value pmul2(r,a,b) multiply scalars
padd(r,x,y) add pmul(r,x,y) multiply
pcbrt(r,x) cube root pneg(r,x) negate
pcmp(x,y) compare pprosum(r,a,b,c,d) product and sum
pcopy(r,x,y) copy pset(r,x,y) set
pdiv(r,x,y) divide psplit(r,x) split
pdot(r,n,v,w) vector dot product psqrt(r,x) square root
peval(x) evaluate psub(r,x,y) subtract
phigh(x) high part psum2(r,x,y) sum and error
plow(x) low part psum(r,n,v) vector sum

entirely through their result arguments. The exceptions are PCMP(), which returns an int value, and PEVAL(),
PHIGH(), and PLOW(), which return a value of the generic type fp_t.

Because we want to be able to interface the mathcw library to other languages, pair-precision types are imple-
mented as two-element arrays, which almost all programming languages can easily handle. The C language guar-
antees that array arguments are passed by address, rather than by value, and that practice is almost universal among
other programming languages. For efficiency, we use array-element indexing inside most of the functions. However,
user code should avoid doing so, and call the accessor functions instead.

We guarantee that the result argument can overlap any of the input arguments, because that often proves conve-
nient in a chain of pair-precision operations, and avoids unnecessary data copying in user code.

Except for the result argument, all arguments that are not simple scalar types are declared with the const qualifier,
to make it clear that their contents are not modified in the pair-precision routines. That is, of course, not true if any
input argument coincides with the result argument.

13.3 Pair-precision initialization

The constructor function PSET() initializes the components of a pair-precision value from scalar values:

void
PSET(fp_pair_t result, fp_t hi, fp_t lo)
{

/* set result from high and low parts */

result[0] = hi;
result[1] = (lo == ZERO) ? COPYSIGN(lo, hi) : lo;

}

The special handling of the sign of a zero low part ensures correct behavior later.
The PSET() function receives extensive use in the other pair-precision routines, because it enhances data abstrac-

tion and shortens code.
Our code for PSET() does not enforce the requirement of some of Dekker’s algorithms that the magnitude of the

low part not exceed an ulp of the high part. The PSUM2() function that we describe later does that job, and it should
be used when the relative magnitudes of the two parts are unknown.

PSET() is the type-cast function for converting ordinary floating-point values to pair-precision numbers. Its
inverse is the PEVAL() function presented in the next section.

13.4. Pair-precision evaluation 357

13.4 Pair-precision evaluation

We define the floating-point value of a pair-precision number to be the sum of its components:

fp_t
PEVAL(const fp_pair_t x)
{

/* return the value of a pair-precision number as its sum of parts */

return (x[0] + x[1]);
}

The PEVAL() function serves as the type-cast function for converting a pair-precision number to an ordinary
floating-point number. Its inverse operation is PSET().

13.5 Pair-precision high part

The accessor function PHIGH() returns the high part of a pair-precision number:

fp_t
PHIGH(const fp_pair_t x)
{

/* return the high part of x */

return (x[0]);
}

For reasons of low-level efficiency, we do not invoke accessor functions internally in the pair-precision routines,
but user code should do so to avoid exposing details of the implementation of the pair types as two-element arrays.
Such access should be rare in any event, because the representation of pair-precision numbers is seldom of interest
to user code.

13.6 Pair-precision low part

The accessor function PLOW() returns the low part of a pair-precision number:

fp_t
PLOW(const fp_pair_t x)
{

/* return the low part of x */

return (x[1]);
}

User code should use the PLOW() function family instead of explicit array-element access.

13.7 Pair-precision copy

The code to copy one pair-precision value to another is simple:

void
PCOPY(fp_pair_t result, const fp_pair_t x)
{

/* return a copy of the pair-precision value of x in result */

result[0] = x[0];
result[1] = x[1];

}

358 Chapter 13. Pair-precision arithmetic

For data abstraction and brevity, we use PCOPY() several times in the pair-precision routines.

13.8 Pair-precision negation

We sometimes need to negate a pair-precision number. That simple operation is defined by −(x + y) = −x − y, and
the code is obvious:

void
PNEG(fp_pair_t result, const fp_pair_t x)
{

/* return the pair-precision negative of x in result */

PSET(result, -x[0], -x[1]);
}

13.9 Pair-precision absolute value

The absolute value of a pair-precision number is not simply the absolute value of each component, because we
cannot guarantee that the signs of the components are the same. Instead, we use the comparison function, PCMP()
(see Section 13.15 on page 368), and then either copy or negate the value, depending on the sign of the comparison
result:

void
PABS(fp_pair_t result, const fp_pair_t x)
{

/* return the absolute value of x in result */

static fp_pair_t zero = { FP(0.0), FP(0.0) };

if (PCMP(x, zero) >= 0)
PCOPY(result, x);

else /* negative or unordered */
PNEG(result, x);

}

As long as the magnitude of the input high part exceeds that of the low part, the high part of the result is positive,
but the low part need not be.

13.10 Pair-precision sum

The error-corrected sum of two scalar floating-point values is one of three central operations in pair-precision arith-
metic. The Kahan/Møller summation formula introduced at the beginning of this chapter looks trivial, in that it can
be expressed in just two simple statements, once the magnitudes of the summands are known.

The simplicity of the summation formula hides peril: if the compiler uses higher-precision arithmetic for the
computation, or ‘optimizes’ the computation by discarding the error term, the results are incorrect, and many of the
pair-precision routines are then also wrong. Thus, it is unwise to code the summation formula inline, as is commonly
done in numerical software. Instead, we provide it as a function that hides the details.

As we discuss elsewhere in this book, two solutions to the problem of higher intermediate precision are available
to the C programmer. With C89 and C99 compilers, the volatile qualifier forces the compiler to keep the variable
in memory. With older compilers, and in other programming languages, it is necessary to force the compiler to
move the variable from the CPU to memory by calling a routine that receives the address of the variable. On return
from the storage routine, the value must then be loaded from memory into the CPU when it is next required. By
compiling the storage routine separately, we conceal from the compiler of PSUM2() the fact that the routine does

13.11. Splitting numbers into pair sums 359

nothing, and thereby prevent the compiler from optimizing away the call. Because almost all C compilers now
support the volatile qualifier, the default definition of STORE() is an empty expansion.

Here is the code for the PSUM2() procedure:

void
PSUM2(fp_pair_t result, fp_t x, fp_t y)
{

/* return the pair sum and error for x + y in result */

volatile fp_t err, sum;

sum = x + y;
STORE(&sum);

if (FABS(x) >= FABS(y))
{

err = x - sum;
STORE(&err);
err += y;
STORE(&err);

}
else
{

err = y - sum;
STORE(&err);
err += x;
STORE(&err);

}

PSET(result, sum, err);
}

The reader should note the difference between that routine and the PSET() routine. PSUM2() alters the two com-
ponents so that the high part is large, and the low part is a correction that is smaller by a factor about the size of the
machine epsilon. By contrast, PSET() simply stores the two parts in the result, and adjusts the sign of a zero low part.

When the relative sizes of the components are unknown, use PSUM2() instead of PSET() for initialization.
In recent research articles on floating-point arithmetic, the PSUM2() operation is often called twosum(). A compan-

ion function, quicktwosum(), is sometimes defined as well; it assumes that the first argument has a larger magnitude
than the second, without checking whether that is true or not. Having two similar functions available to users is
likely to be confusing and error prone, and the presence of the phrase quick in the function name is likely to encour-
age its use, even when it is not valid. We therefore omit such a function from the mathcw library.

Conditional tests are undesirable in high-performance code, because they can flush and refill the instruction
pipeline, delaying processing. There is a variant of the PSUM2() operation that does more computation, but avoids
the conditionals. It is based on code like this:

sum = x + y;
tmp = sum - x;
err = (x - (sum - y)) + (y - tmp);

As usual, parentheses must be obeyed, and higher intermediate precision suppressed. Depending on the compiler
and the platform, it may be faster or slower than the PSUM2() code. We do not provide a separate function for the
conditional-free algorithm because two different functions for the same purpose would confuse users.

13.11 Splitting numbers into pair sums
DOUBLE ROUNDING IS HARMFUL.

— EXPERIMENTAL EVIDENCE

IN THIS SECTION (2006).

360 Chapter 13. Pair-precision arithmetic

Table 13.2: Splitting numbers into sums of parts. We take a simple case of precision t = 5, and display the binary
representations of all numbers in [1, 2), splitting them into sums and differences. The bold entries show the cases
with the minimal number of bits in the low part. The two bold cases marked with the arrow (⇐) have a low part of
0.0100, but that in reality requires only one or two bits, because the floating-point exponent can be adjusted upward
to represent 0.0010 and 0.0001.

1.0000 = 1.0000 + 0.0000 = 1.1000 − 0.1000
1.0001 = 1.0000 + 0.0001 = 1.1000 − 0.0111
1.0010 = 1.0000 + 0.0010 = 1.1000 − 0.0110
1.0011 = 1.0000 + 0.0011 = 1.1000 − 0.0101
1.0100 = 1.0000 + 0.0100 = 1.1000 − 0.0100 ⇐
1.0101 = 1.0000 + 0.0101 = 1.1000 − 0.0011
1.0110 = 1.0000 + 0.0110 = 1.1000 − 0.0010
1.0111 = 1.0000 + 0.0111 = 1.1000 − 0.0001
1.1000 = 1.1000 + 0.0000 = 10.000 − 0.1000
1.1001 = 1.1000 + 0.0001 = 10.000 − 0.0111
1.1010 = 1.1000 + 0.0010 = 10.000 − 0.0110
1.1011 = 1.1000 + 0.0011 = 10.000 − 0.0101
1.1100 = 1.1000 + 0.0100 = 10.000 − 0.0100 ⇐
1.1101 = 1.1000 + 0.0101 = 10.000 − 0.0011
1.1110 = 1.1000 + 0.0110 = 10.000 − 0.0010
1.1111 = 1.1000 + 0.0111 = 10.000 − 0.0001

The key idea in Dekker’s operations is that floating-point arithmetic can be exact, provided that we can avoid pro-
ducing more digits than we can store, and provided that the underlying floating-point system is not badly botched,
as was unfortunately the case on some systems before IEEE 754 arithmetic was developed. We can do that by split-
ting each number into the exact sum of two parts. The high part has no more than half the digits, and the low part
has the remaining digits.

Dekker made this critical observation: if the low part is permitted to be negative as well as positive, then it can
be represented with one less bit than otherwise, as long as the floating-point base is 2. That is not obvious, but Dekker
gave a mathematical proof that we can give a flavor of by looking at the five-bit numerical experiments shown in
Table 13.2. In each of the bold entries in the table, the high part is represented in two bits, and the low part also in
two bits, instead of the expected three. The fifth bit has not disappeared: it has just moved into the sign bit of the
low part.

That discovery means that products of two high parts, or of a high and a low part, or of two low parts, are
then exactly representable. That in turn makes it possible to compute exact double-length products as the sum of four
ordinary floating-point values that can be closely represented by a sum of two values.

In integer arithmetic, we can extract the high part of an n-digit value by first shifting right by ceil(n/2) digits,
discarding low-order digits, and then shifting left by the same amount, inserting zeros. For example, in a five-digit
decimal integer system, 12345 is reduced to 12000 by the three-digit shift operations. The low part is then easily
recovered by subtraction: 12345 − 12000 = 345. The original number has thus been split into an exact sum of high
and low parts: 12345 = 12000 + 345.

In floating-point arithmetic, shift operations are not available, but we can simulate them by multiplication by an
integral power of the base, an operation that is always exact, as long as underflow and overflow are avoided. For a general
t-digit floating-point system with base β, we can split a number into high and low parts like this:

s = β�t/2�,
xhi = (sx + x)− sx

= (s + 1)x − sx,
xlo = x − xhi.

Given precomputed values of s + 1 and s, the formula for the high part requires two multiplies and one add. How-
ever, we can change a slower multiply into a faster add by adding and subtracting x in the first equation for the high

13.11. Splitting numbers into pair sums 361

part:

xhi = (sx + x)− sx + x − x
= (s + 1)x − ((s + 1)x − x)
= (s + 1)x + (x − (s + 1)x),

p = (s + 1)x,
q = x − p,

xhi = p + q,
xlo = x − xhi.

Experiments show that the two alternatives do not always produce the same splits when the number of significand
bits is even. For example, the value 0x1.ffe73cp-5 is split into 0x1.000000p-4 - 0x1.8c4000p-17 with the first
algorithm, and into 0x1.ffe000p-5 + 0x1.cf0000p-19 with the second. Such differences are harmless and rare.

In most programming languages, for a given floating-point data type, the precision and base are architecture-
dependent constants. That means that the split value, s + 1, can be a compile-time constant. The split cost is one
multiply, three adds, five loads, and four stores. On modern systems, the loads and stores are likely to be the most
expensive part.

Dekker notes three important restrictions on the applicability of the splitting algorithm:

� The floating-point base must be 2.

� Multiplication must be “faithful”, rounding up or down, with at most a one-ulp error.

� Addition and subtraction must be “optimal”, producing a result with at most a half-ulp error.

With those limitations, then the low part has the required sign that permits it to be represented with one less bit.
Those restrictions can be severe. The algorithm does not work properly with decimal arithmetic, or with IBM

System/360 hexadecimal arithmetic, or in rounding modes other than the default in IEEE 754 arithmetic. It does
produce a split into high and low parts, but for t-digit precision, the low part has ceil(t/2) digits instead of ceil(t/2)−
1 digits, and the product of two low parts is then exact only if t is even. The IEEE 754 specification of decimal floating-
point arithmetic has precisions of t = 7, 16, and 34, so for the first of them, splitting does not lead to exact products
of low parts. We show later that the third restriction on the accuracy of addition and subtraction can be loosened.

Dekker’s mathematical proof of the splitting algorithm [Dek71, pages 234–235] is complex, and we omit proofs
in this book. However, we can see what happens by doing the split for just one of the entries in Table 13.2 on the
facing page. Once again we work in binary arithmetic:

x = 1.1101,
s = 1000,
p = (s + 1)x
= 10000.0101
= 10000 round or truncate to five bits,

q = x − p
= 1.1101 − 10000
= −1110.00110
= −1110.0 round to five bits,

xhi = p + q
= 10000 +−1110.0
= 10.000,

xlo = x − xhi

= 1.1101 − 10.000,
= −0.0011,

362 Chapter 13. Pair-precision arithmetic

x = 10.000 − 0.0011.

Although binary arithmetic is simple, it is less familiar to humans than decimal arithmetic. The UNIX bc calcula-
tor makes it easy to do the needed computations with input and output in binary instead of decimal:

% bc
ibase = 2
obase = 2
x = 1.1101
s = 1000
(s + 1) * x
10000.01010000000000
x - 10000
-1110.00110000000000
...

We then just have to do the rounding manually.
It is imperative that the splitting computation not be carried out in higher intermediate precision, as is common

on computer systems based on the 68000, AMD64, EM64T, IA-32, and IA-64 CPU architectures, or on systems where
the compiler uses fused multiply-adds to compute ab + c = (s + 1)x + q with only a single rounding. In C89 and
C99, we can ensure that does not happen by declaring the high part with the volatile keyword, and computing
it in steps. In older C implementations, and most other programming languages, we need to resort to the STORE()
routine subterfuge that we have used several times earlier in this book.

13.12 Premature overflow in splitting

The splitting code suffers from premature overflow when |x| is large. It might appear that the solution is to first
scale x by a suitable power of the base, such as s−2, compute p, and then rescale that value by s2. Unfortunately, that
does not work. For example, in IEEE 754 arithmetic, when x is near the largest normal number, the scaled algorithm
computes a larger xhi, and a negative xlo, producing the pair (∞,−∞). Subsequent use of the split in multiplication
is almost certain to produce Infinity and NaN. The appearance of those special values in the split of large numbers
is unacceptable, so for large values, we use a scaled version of the original algorithm:

xscaled = x/s2,

xhi = ((s + 1)xscaled − sxscaled)s2,
xlo = x − xhi.

The algorithm produces components of the same sign, and avoids overflow. That split slightly reduces the accuracy
of multiplication and division with pair-precision numbers near the overflow limit, but that seems to be unavoidable.

The cost of scaling to avoid premature overflow is two extra multiplies, both exact. The additional expense
means that we should do the scaling only when it is essential. We can compare the magnitude of x with an exact
compile-time constant that is the largest normal floating-point value divided by s2: if x is larger, then we may need
the scaling.

The revised scaling algorithm looks simple, but extensive testing on multiple platforms exposes a problem that
arises from the double rounding that occurs on systems with extended-precision CPU registers. In a single case, the
largest representable number in the IEEE 754 64-bit format, the split unexpectedly produces a pair (+∞,−∞). Here
is how that happens:

s = +0x1.0p+27,
x = +0x1.ffff_ffff_ffff_fp+1023,

xscaled = +0x1.ffff_ffff_ffff_fp+969,
(s + 1)xscaled = +0x1.0000_001f_ffff_f7ff_ffffp+997 exact

= +0x1.0000_001f_ffff_f800p+997 round to 64

= +0x1.0000_0020_0000_0p+997 round to 53 ,

13.12. Premature overflow in splitting 363

sxscaled = +0x1.ffff_ffff_ffff_fp+996,
(s + 1)xscaled − sxscaled = +0x1.0000_0040_0000_0p+970,

xhi = +0x1.0000_0040_0000_0p+1024 overflow

= +∞,
xlo = x − xhi

= −∞.

The double rounding from exact to 80-bit format to 64-bit format produced two upward roundings, leading to
overflow in xhi. That behavior is reproducible on AMD64, IA-32, IA-64, and Motorola 68000 systems. The error dis-
appears when the compiler generates 64-bit instructions, but that depends on the particular compiler or optimization
level, and such instructions are not available at all on IA-32 systems.

The volatile type qualifier in the code does not prevent that problem, because both roundings happen before
the result leaves the CPU register. Higher intermediate precision is frequently beneficial, but it forces two roundings
before data are stored, and that can introduce subtle and expected surprises, as it does in the split.

On systems that do not use higher precision for intermediate results, the computation produces a correct split:

(s + 1)xscaled = +0x1.0000_001f_ffff_fp+997,
sxscaled = +0x1.ffff_ffff_ffff_fp+996,

(s + 1)xscaled − sxscaled = +0x1.ffff_ff80_0000_0p+969,
xhi = +0x1.ffff_ff80_0000_0p+1023,
xlo = +0x1.ffff_ffc0_0000_0p+997.

Although the erroneous split happens only for a single value, and only in the 64-bit format, the value for which it
occurs is a special one that may well be used in software, as it was in the test programs that revealed the error. One
way to mask it is to use precision control (see Section 5.11 on page 123) to reduce the working precision from 64
bits to 53 bits. Another way would be to alter the rounding direction for that single case. However, those features
may not be available on all systems. A satisfactory alternative splitting algorithm is not obvious, so the only choice
appears to be architecture-dependent code. That is unpleasant, but it is one of the few instances in the entire mathcw
library where such a platform dependence appears.

The code for the split operation is short enough that it is often programmed inline, but usually without consid-
eration of premature overflow, or protection from unwanted higher intermediate precision, or explanation of the
meaning and origin of the magic splitting constants. We prefer robustness, and hiding of details, so we provide a
function to do the job:

void
PSPLIT(fp_pair_t result, fp_t x)
{

/* split x into (hi,lo) pair in result */

if ((x == ZERO) || ISINF(x) || ISNAN(x))
PSET(result, x, x);

else
{

volatile fp_t hi, lo;

if (((x < ZERO) ? -x : x) > XBIG)
{

#if B == 2
volatile fp_t x_scaled;

#if defined(HAVE_FP_T_DOUBLE) && \
(defined(FP_ARCH_AMD64) || defined(FP_ARCH_IA32) || \

defined(FP_ARCH_IA64) || defined(FP_ARCH_M68K))
if (x == FP_T_MAX)

364 Chapter 13. Pair-precision arithmetic

hi = ldexp(67108863.0, 998);
else if (x == -FP_T_MAX)

hi = -ldexp(67108863.0, 998);
else
{

x_scaled = x * split_square_inverse;
STORE(&x_scaled);
hi = one_plus_split * x_scaled;
STORE(&hi);
hi -= split * x_scaled;
STORE(&hi);
hi *= split_square;

}
#else

x_scaled = x * split_square_inverse;
STORE(&x_scaled);
hi = one_plus_split * x_scaled;
STORE(&hi);
hi -= split * x_scaled;
STORE(&hi);
hi *= split_square;

#endif

#elif B == 10

fp_t s;
int e;

s = FREXP(x, &e);
hi = LDEXP(TRUNC(s * S_SCALE), e - E_SHIFT);

#else
#error "psplit() family not yet implemented for this base"
#endif /* B == 2 */

STORE(&hi);
}
else /* |x| <= XBIG */
{

volatile fp_t p, q;

p = x * one_plus_split;
STORE(&p);
q = x - p;
STORE(&q);
hi = p + q;
STORE(&hi);

}

lo = x - hi;

if (lo == ZERO)
lo = COPYSIGN(lo, hi);

PSET(result, hi, x - hi);
}

}

We must handle signed zero, Infinity, and NaN arguments specially, so as to preserve their sign and values.

13.13. Pair-precision addition 365

Otherwise, direct application of our splitting formulas to a negative zero gives the pair (+0,−0), and to an argument
that is either Infinity and NaN, produces the pair (NaN, NaN). The special handling of a zero low part before the
last call to PSET() ensures correct behavior later.

The necessary compile-time architecture constants are defined in pspli.h as macros prefixed with MCW in private
mathcw header files included by the header file const.h, and we assign them at compile time to const-qualified
meaningful names. Regrettably, the constants cannot be derived from constant expressions involving other constants
in the C system header files, nor can the constant expressions contain other const-qualified names. C++ permits such
constant expressions, but C does not.

The STORE() calls can be dispensed with if the volatile keyword is properly supported, as is now common in C
compilers. The store.h header file therefore normally defines the STORE() macro to have an empty expansion, but
that can be changed by defining the symbol HAVE_STORE at compile time, in which case, the STORE() macro generates
a call to a suitable storage function. At run time, that call forces the value of hi out of the CPU and into memory
before the call; hi is reloaded into the CPU the next time that it is needed. Only two other functions in the elementary
operations of the pair-precision family, PMUL2() and PSUM2(), require the volatile keyword and STORE() calls.

For the decimal case, arguments near the overflow limit require special handling. No simple algorithm seems to
do the job, so we fall back to splitting the argument into a significand and a power of ten, then scale and truncate
the significand, and construct the high part. For example, in the case of 32-bit decimal arithmetic, for the largest
representable finite number, the normal algorithm produces the incorrect split

9.999 999e96 = 10.000 000e96 + (−0.000 001e96)
= ∞ + (−0.000 001e96),

whereas the special-case code gives the correct answer:

9.999 999e96 = 9.99e96 + 0.009 999e96.

Timing tests on several systems show that the cost of the volatile keyword in PSPLIT() is a slowdown by a
factor of 1.1 to 4.0, with 1.5 to 2.0 being typical. We pay a penalty for portability on those systems where volatile
might not be needed. However, on systems with extra-length registers, or fused multiply-add instructions, the fast
code is wrong, and thus, useless.

13.13 Pair-precision addition

The addition operation in Dekker’s primitives is just the simple form of the Kahan/Møller summation formula given
at the start of this chapter:

sum = x + y;
err = (x - sum) + y;

with the restriction |x| ≥ |y|.
Dekker [Dek71] cites several necessary conditions on the floating-point system for his pair-precision arithmetic

operations to be correct:

� The floating-point base must be 2.

� For the pair-precision addition operation, the host floating-point addition must be “optimal” (rounding to
nearest, with at most a half-ulp error), and subtraction must be “faithful”, rounding up or down, with at most
a one-ulp error. Error bounds are improved if arithmetic is “optimal”.

Implementations of IEEE 754 arithmetic satisfy that in the default rounding mode, although some (IA-32 and
IA-64) do not fully conform in those rounding requirements. DEC VAX and IBM System/360 architectures also
satisfy the requirements, but some models of now-retired CDC and Cray machines do not.

� The functions require a specific evaluation order, indicated by parentheses in expressions. Parentheses are
obeyed in C89, but not in earlier implementations of the language.

� The functions assume that abs(hi) ≥ abs(lo), but place no further constraint on the relative sizes of hi and
lo. In particular, their exponents are not linked by a constant offset.

366 Chapter 13. Pair-precision arithmetic

The restriction to a binary base can be eliminated if one more digit is available for addition and subtraction;
however, in practice, that may not be feasible.

The precise conditions for correct operation of pair-precision arithmetic have been analyzed in more detail by
Bohlender et al [BWKM91], with later corrections by Boldo and Daumas [BD03a]. In his book section titled Accuracy
of Floating Point Arithmetic, Knuth treats the problem in great detail [Knu97, §4.2.2, p. 229].

Although we do not do so in the mathcw library, it is worth noting that one can certainly go further than pair-
precision arithmetic, without going all the way to a general multiple-precision arithmetic package. Hida, Li, and
Bailey extend pair-precision arithmetic to quad-precision, using four numbers of decreasing magnitude, instead of
two [HLB00].

Because the mathcw library is designed to work on a wide range of systems, our implementation does not rely
on use of parentheses to control evaluation order, but instead, computes the expressions in multiple steps.

Dekker’s pair-precision addition algorithm computes the high part of the result as the sum of the input high
parts, r, plus a small correction, s. That correction is computed starting with the high part of larger magnitude. The
low part of the result is then recovered as a Kahan/Møller error term using the PSUM2() primitive:

PADD(fp_pair_t result, const fp_pair_t x, const fp_pair_t y)
{

/* return the pair-precision sum x + y in result */

fp_t r, s;

r = x[0] + y[0];

if (ISINF(r))
PSET(result, r, r);

else
{

if (FABS(x[0]) > FABS(y[0]))
{

/* s = (((x[0] - r) + y[0]) + y[1]) + x[1]; */
s = x[0] - r;
s += y[0];
s += y[1];
s += x[1];

}
else
{

/* s = (((y[0] - r) + x[0]) + x[1]) + y[1]; */
s = y[0] - r;
s += x[0];
s += x[1];
s += y[1];

}

if (s == ZERO)
s = COPYSIGN(s, r);

PSUM2(result, r, s);
}

}

The declaration of s does not require a volatile qualifier. Indeed, it is helpful if the compiler can make use of
any available higher intermediate precision, because that reduces the error in s. However, the code requires a check
for Infinity, because otherwise, the expression x[0] - r produces an unwanted NaN from ∞ − ∞.

The sign of a zero low part is set to that of the high part to ensure proper handling of negative zero.
In Section 13.20 on page 379, we measure and discuss the accuracy of the pair-precision primitives.

13.14. Pair-precision subtraction 367

13.14 Pair-precision subtraction

Dekker’s algorithm for pair-precision subtraction is a straightforward modification of the code in PADD(), inverting
the sign of the second input argument:

void
PSUB(fp_pair_t result, const fp_pair_t x, const fp_pair_t y)
{

/* return the pair-precision difference x - y in result */

fp_t r, s;

r = x[0] - y[0];

if (ISINF(r))
PSET(result, r, r);

else
{

if (FABS(x[0]) > FABS(y[0]))
{

/* s = (((x[0] - r) - y[0]) - y[1]) + x[1]; */
s = x[0] - r;
s -= y[0];
s -= y[1];
s += x[1];

}
else
{

/* s = (((-y[0] - r) + x[0]) + x[1]) - y[1]; */
s = -y[0] - r;
s += x[0];
s += x[1];
s -= y[1];

}

if (s == ZERO)
s = COPYSIGN(s, r);

PSUM2(result, r, s);
}

}

Dekker’s original primitives lacked our negation primitive. With it, the PSUB() code can be written more simply
as

void
PSUB(fp_pair_t result, const fp_pair_t x, const fp_pair_t y)
{

fp_pair_t t;

PNEG(t, y);
PADD(result, x, t);

}

but the mathcw library uses the first version.

368 Chapter 13. Pair-precision arithmetic

13.15 Pair-precision comparison

The comparison of pair-precision values is best defined as a test for unordered data, in case either value is a NaN,
followed by a test of the sign of their difference. The result of the comparison is a small integer that can be tested by
the caller. The code is not difficult:

int
PCMP(const fp_pair_t x, const fp_pair_t y)
{

/* Pair-precision comparison: return
-2 if either x or y is a NaN,
-1 if x < y,
0 if x == y, and

+1 if x > y. */

int status;

if (ISNAN(x[0]) || ISNAN(y[0]) ||
ISNAN(x[1]) || ISNAN(y[1]))

status = -2;
else
{

fp_pair_t result;

PSUB(result, x, y); /* |result[0]| >> |result[1]|, or both are zero */

if (result[0] < ZERO)
status = -1;

else if (result[0] == ZERO)
status = 0;

else
status = 1;

}

return (status);
}

In principle, we could test only the high components for a NaN, but we prefer to be thorough. Infinity arguments
pose no problems, because they obey the same ordering relations as finite values.

13.16 Pair-precision multiplication

Dekker defines two primitives for pair-precision multiplication. The first function, PMUL2(), does the easier job of
producing a pair-precision representation of the double-length product of two scalars. The second function, PMUL(),
handles the more complex task of multiplying two pair-precision numbers.

The product xy of scalars x and y is handled by using PSPLIT() to split each of them into two parts, such that

x = x0 + x1,
y = y0 + y1,

xy = x0y0 + x0y1 + x1y0 + x1y1.

From the discussion of the splitting algorithm in Section 13.11 on page 359, in a binary floating-point system with
reasonable constraints on the accuracy of addition and subtraction, and on the range of the arguments, each of the
four terms is exact. For other bases, or less accurate arithmetic, the fourth term may be rounded. Dekker’s algorithm

13.16. Pair-precision multiplication 369

then computes

p = x0y0,
q = x0y1 + x1y0,
r = x1y1,

xy = p + q + r.

using the Kahan/Møller summation formula to form hi = p + q and lo = (p − hi) + q. Because the low parts
require one less bit than expected, each of the products x0y1 and x1y0 requires one bit less than is available, and their
sum can use that extra bit, so q is exact. The algorithm then adds the fourth term, r, to lo, and applies the summation
formula once more to obtain the final result.

If Dekker’s conditions on the arithmetic system for the split operation are not met, then p may be exact, but q and
r each require one or two more digits than are available, and thus, have to be rounded.

When the conditions are met, then the sum of the three values p + q + r is exact, but the reduction to a sum of two
values in the pair-precision representation introduces additional rounding errors. Thus, in general, the pair-precision
result is not correctly rounded, but it should be within one or two pair-precision ulps of the exact answer.

The code for PMUL2() follows the above analysis reasonably closely, but it replaces the variable r by its value, the
low-order product:

void
PMUL2(fp_pair_t result, fp_t x, fp_t y)
{

/* return the nearly double-length product x * y in pair precision in result */

volatile fp_t hi;
fp_t lo, p, q;
fp_pair_t xx, yy;

PSPLIT(xx, x);
PSPLIT(yy, y);

p = xx[0] * yy[0];
q = xx[0] * yy[1] + xx[1] * yy[0];

hi = p + q;
STORE(&hi);

/* lo = ((p - hi) + q) + xx[1] * yy[1]; */
lo = p - hi;
lo += q;
lo += xx[1] * yy[1];

if (lo == ZERO)
lo = COPYSIGN(lo, hi);

/* Apply extra correction (Dekker’s paper, eq. 5.14, pages
233--234), to reduce error by factor of 2 or 3. */

PSUM2(result, hi, lo);
}

In recent research literature, the PMUL2() algorithm is sometimes called twoproduct(). That function, and its
companions PSUM2() (or twosum()) and PSPLIT(), form the basis of all pair-precision arithmetic.

If a fast correct fused multiply-add operation is available, a faster and more compact PMUL2() can be written like
this:

void

370 Chapter 13. Pair-precision arithmetic

PMUL2(fp_pair_t result, fp_t x, fp_t y)
{

/* return the nearly double-length product x * y in pair precision in result */
volatile fp_t xy_neg;

xy_neg = -x * y;
STORE(&xy_neg);
PSET(result, -xy_neg, FMA(x, y, xy_neg));

}

We computed the negative of the product so that the FMA() operation appears to have positive arguments. That
tricks compilers that recognize x * y + z as a fused multiply-add opportunity, but handle x * y - z as a separate
product and a sum.

We do not provide the fused multiply-add variant of PMUL2() in the mathcw library, because among CPU archi-
tectures current at the time of writing this, only IA-64, PA-RISC, POWER, PowerPC, and IBM System/390 G5 have
such instructions. Also, POWER provides only the 64-bit version, and PA-RISC, PowerPC, and G5 only the 32-bit and
64-bit ones. On other systems, the fused multiply-add operation is either unavailable, or is implemented in software
multiple-precision arithmetic. On the GNU/LINUX operating system, which can run on all of the major CPU types,
the library version is wrong, because it just computes x * y + z inline; on most systems, that gives a single-length
product and suffers two roundings. A correct fused multiply-add operation requires an exact double-length product
and a single rounding.

Living with serious library errors, and relying on compiler (mis)behavior, is certainly not a recipe for writing
portable code!

The conditions for Dekker’s algorithms mean that we can use that function only for systems with rounding
arithmetic, and that excludes three of the four IEEE 754 rounding modes, all of which are easily accessible in C99 or
with the mathcw library. Fortunately, a decade later, Linnainmaa [Lin81] showed how to extend the pair-precision
primitives under less strict conditions, allowing correct operation under all four IEEE 754 rounding modes. In the
mathcw library, we use his algorithm for PMUL2(). Its code looks like this:

void
PMUL2(fp_pair_t result, fp_t x, fp_t y)
{

/* return the nearly double-length product x * y in pair precision in result, using
the algorithm from Seppo Linnainmaa’s TOMS 7(3) 272--283 (1981) paper, p. 278 */

volatile fp_t hi;
fp_t lo;
fp_pair_t xx, yy, zz;

PSPLIT(xx, x);
PSPLIT(yy, y);
PSPLIT(zz, yy[1]);

hi = x * y;
STORE(&hi);
lo = xx[0] * yy[0] - hi;
lo += xx[0] * yy[1];
lo += xx[1] * yy[0];
lo += zz[0] * xx[1];
lo += zz[1] * xx[1];

if (lo == ZERO)
lo = COPYSIGN(lo, hi);

PSET(result, hi, lo);
}

13.17. Pair-precision division 371

Dekker’s algorithm for multiplication of two pair-precision values starts out as before, except that the high and
low parts are already available, so PSPLIT() is not required:

x = x0 + x1,
y = y0 + y1,

xy = x0y0 + x0y1 + x1y0 + x1y1.

Now, however, none of the product terms is exact, because each component is a full-length number. We could
therefore apply PMUL2() four times to the products, and then use PSUM2() to track the sum and error. Dekker instead
economized the computation, discarding the last term, x1y1, on the grounds that dropping it produces a relative
error in xy that is O(β−2t), or about the same size as the pair-precision ulp. Similarly, the middle terms x0y1 and
x1y0 affect the final product with relative error of O(β−3t), so they are computed with ordinary arithmetic. Their
sum then contributes a relative error of O(β−3t) to the product. The net result is that Dekker accepts six rounding
errors in the final product, but they have sharply decreasing weights: two of O(β−2t), three of O(β−3t), and one of
O(β−4t). The net effect is that we expect about one or two ulps of error. We discuss experimental measurements of
the accuracy of pair-precision arithmetic later in Section 13.20 on page 379.

The code for PMUL() adds the second and third terms to the error in the first term, drops the fourth term, and then
uses PSUM2() to produce a pair-precision result:

void
PMUL(fp_pair_t result, const fp_pair_t x, const fp_pair_t y)
{

/* return the pair-precision product x * y in result */

fp_pair_t c;
fp_t tmp;

PMUL2(c, x[0], y[0]);

/* c[1] = ((x[0] * y[1]) + (x[1] * y[0])) + c[1]; */

tmp = x[0] * y[1];
tmp += x[1] * y[0];
c[1] += tmp;

if (c[1] == ZERO)
c[1] = COPYSIGN(c[1], c[0]);

PSUM2(result, c[0], c[1]);
}

As in PADD() and PSUB(), higher intermediate precision in the computation of c[1] is beneficial, and volatile
modifiers are not needed.

13.17 Pair-precision division

The most complex of the pair-precision primitives is division, because it requires iterative computation of successive
approximations to the quotient, using a good starting value obtained from x0/y0. Convergence is rapid, so only one
or two iterations are needed.

However, Dekker proceeded differently. His algorithm makes use of the expansion 1/(a + b) = (1/a)(1 − b/a +
(b/a)2 − · · ·), and is derived as follows. First, obtain a pair-precision formula for the full quotient:

c0 = x0/y0,
x/y = (x0/y0) + (x/y − x0/y0)

= c0 + (x/y − c0)

372 Chapter 13. Pair-precision arithmetic

= c0 + (x − c0y)/y
= c0 + (x0 + x1 − c0y0 − c0y1)/y

= c0 +
(
(x0 + x1 − c0y0 − c0y1)/y0

)(
1 − y1/y0 + (y1/y0)

2 − · · ·)
= c0 + c1.

Next, simplify the low-order part by dropping all but the first term in the denominator, because the dropped terms
contribute a relative error of O(β−2t) to the full quotient:

c1 =
(
(x0 + x1 − c0y0 − c0y1)/y0

)(
1 − y1/y0 + (y1/y0)

2 − · · ·)
≈ (x0 + x1 − c0y0 − c0y1)/y0.

Finally, regroup and evaluate the high-order product in pair precision:

c1 = (x0 − c0y0 + x1 − c0y1)/y0,
u = c0y0

= u0 + u1 compute with PMUL2(),

c1 =
((
((x0 − u0)− u1) + x1

)− c0y1
)
/y0.

The code in PDIV() is a straightforward translation of the formulas that we derived for c0 and c1:

void
PDIV(fp_pair_t result, const fp_pair_t x, const fp_pair_t y)
{ /* return the pair-precision quotient of x / y in result */

fp_pair_t c, u;

if (y[0] == ZERO)
{

if ((x[0] == ZERO) || ISNAN(x[0]))
PSET(result, QNAN(""), QNAN(""));

else
PSET(result, INFTY(), INFTY());

}
else
{

c[0] = x[0] / y[0];

if (ISINF(c[0]))
PSET(result, c[0], c[0]);

else
{

PMUL2(u, c[0], y[0]);

/* c[1] = ((((x[0] - u[0]) - u[1]) + x[1]) - c[0] * y[1]) / y[0]; */

c[1] = x[0] - u[0];
c[1] -= u[1];
c[1] += x[1];
c[1] -= c[0] * y[1];
c[1] /= y[0];

if (c[1] == ZERO)
c[1] = COPYSIGN(c[1], c[0]);

PSUM2(result, c[0], c[1]);
}

}
}

13.18. Pair-precision square root 373

We handle a zero divisor explicitly, producing Infinity for a finite numerator, and otherwise a NaN. After an
explicit division, a test for Infinity is essential to avoid generating spurious NaNs from later subtractions of Infinity.
No additional NaN tests are needed, because if either x or y is a NaN, the NaN correctly propagates into the result.

As in PADD(), PSUB(), and PMUL(), higher intermediate precision in the computation of c[1] is helpful. The
PSUM2() routine produces a final result that incorporates the sum c0 + c1 in the high component, and a small error
term in the low component.

Because of the dropped terms, and the fact that the sum of terms, the term c0y1, and the division by y0, are
computed in ordinary precision, the final value for c1 suffers about six rounding errors, but as with multiplication,
the errors differ sharply in size. At first glance, the total error would appear to be dominated by the error in the
initial term, x0 − u0. However, because u0 ≈ c0y0 ≈ x0, the initial term suffers massive subtraction loss, and is
O(u1). Nevertheless, the error in that subtraction is normally zero. Indeed, if both x0 and u0 have the same exponent,
as is often the case, the floating-point subtraction is exact, because it is just the scaled difference of two integers,
and integer subtraction is exact. If the exponents differ, there can be a rounding error of O(β−tx0). That means
that Dekker’s pair-precision division algorithm is about as accurate as that for multiplication. See Section 13.20 on
page 379 for more on the subject.

13.18 Pair-precision square root

Dekker’s algorithm for the square root of a pair-precision value is essentially one step of the Newton–Raphson
iteration, with a starting estimate obtained from the ordinary square root of the high component. We discuss the
square-root algorithm in much more detail in Section 8.1 on page 215, but for the purposes of this description, we
only need to borrow a bit of material from that section.

Given a starting estimate, y0, of the solution of y =
√

x for a given fixed x, we apply Newton–Raphson iteration
to find a zero of F(y) = y2 − x. That produces an improved estimate, y1 =

1
2 (y0 + x/y0). Dekker turned that into an

effective algorithm for the pair-precision square root, c0 + c1 =
√

x0 + x1, as follows:

y0 =
√

x0,

y1 =
1
2 (y0 + x/y0),

c0 = y0 high part is initial estimate,

c1 = y1 − y0 low part is correction to initial estimate

= 1
2 (y0 + x/y0)− y0 one step of Newton–Raphson iteration

= 1
2 (x/y0 − y0)

= (x − y2
0)/(2y0),

y2
0 = u
= u0 + u1 compute with PMUL2(),

c1 = (x − u)/(2y0)

= (x0 − u0 − u1 + x1)/(2y0)

= (x0 − u0 − u1 + x1)/(2c0).

Notice that in the expansion of c1 in the middle of that display, we eliminated the term x/y0 by factoring out the
divisor y0. That is necessary, because Dekker does not define a primitive to compute a pair-precision result for the
division of a pair-precision value by a scalar.

In the last two equations for the expansion of c1, terms have been arranged so that the two high-order terms occur
first, and they should be evaluated from left to right, using ordinary floating-point arithmetic.

To conform to IEEE 754 conventions for negative, signed zero, Infinity, and NaN arguments of the square-root
function, we have to extend Dekker’s algorithm with an enclosing if statement that handles those arguments spe-
cially. The original code forms the body of the innermost else block, and closely follows the algorithm that we
derived from the Newton–Raphson iteration:

void
PSQRT(fp_pair_t result, const fp_pair_t x)

374 Chapter 13. Pair-precision arithmetic

{ /* return the pair-precision square root of x in result */

fp_t x_val;

x_val = PEVAL(x);

if (ISNAN(x_val))
PSET(result, SET_EDOM(x[0]), x[0]);

else if (x_val == ZERO) /* preserve sign of zero */
PSET(result, x[0], x[0]);

else if (x_val < ZERO)
{

fp_t q;

q = SET_EDOM(QNAN(""));
PSET(result, q, q);

}
else if (ISINF(x[0]))

PSET(result, SET_ERANGE(x[0]), x[0]);
else /* finite x_val > ZERO */
{

fp_pair_t c, u;

c[0] = SQRT(x[0]);
PMUL2(u, c[0], c[0]);

/* c[1] = ((((x[0] - u[0]) - u[1]) + x[1]) * HALF) / c[0]; */

c[1] = x[0] - u[0];
c[1] -= u[1];
c[1] += x[1];
c[1] = (c[1] / c[0]) * HALF;

if (c[1] == ZERO)
c[1] = COPYSIGN(c[1], c[0]);

#if B == 10

/* A second iteration improves the decimal square root slightly, reducing scattered errors
from about 0.5 ulp to 0.25 ulp, and the average error from 0.09 ulps to 0.07 ulps. */

c[0] = PEVAL(c);
PMUL2(u, c[0], c[0]);

/* c[1] = ((((x[0] - u[0]) - u[1]) + x[1]) * HALF) / c[0]; */

c[1] = x[0] - u[0];
c[1] -= u[1];
c[1] += x[1];
c[1] = (c[1] / c[0]) * HALF;

if (c[1] == ZERO)
c[1] = COPYSIGN(c[1], c[0]);

#endif /* B == 10 */

PSUM2(result, c[0], c[1]);

13.18. Pair-precision square root 375

}
}

As with earlier pair-precision primitives, higher intermediate precision in the computation of c[1] is desirable.
Notice that in the final assignment to c[1], we computed the right-hand side as (c[1] / c[0]) * HALF instead of
the expected (c[1] * HALF) / c[0]. That avoids unnecessary precision loss on systems with wobbling precision,
such as the hexadecimal arithmetic on the IBM System/360 mainframe family. Multiplication by a half is only exact
when the floating-point base is 2. In a hexadecimal base, that multiplication can cause the loss of three bits, or almost
one decimal digit. Although we may suffer that loss anyway, it is better to first compute the quotient c[1] / c[0]
to full precision.

Because of the self-correcting feature of the Newton–Raphson iteration (see Section 2.2 on page 8), the errors in
the computed square root arise from the four inexact operations in forming c1, plus a small, and usually negligible,
error in computing the low-order part in PSUM2(). The net effect should be an error of at most two ulps in rounding
arithmetic, and four ulps in truncating arithmetic.

Instead of using Dekker’s decomposition for the square root, we can code the Newton–Raphson iteration more
simply by using pair-precision arithmetic directly:

void
PSQRT(fp_pair_t result, const fp_pair_t x)
{ /* return the pair-precision square root of x in result */

static const fp_pair_t zero = { FP(0.), FP(0.) };

if (PISNAN(x))
{

(void)SET_EDOM(ZERO);
PCOPY(result, x);

}
else if (PCMP(x, zero) == 0)

PCOPY(result, x);
else if (PCMP(x, zero) < 0)
{

(void)SET_EDOM(ZERO);
PSET(result, QNAN(""), QNAN(""));

}
else if (PISINF(x))
{

(void)SET_ERANGE(ZERO);
PCOPY(result, x);

}
else
{

fp_pair_t t, u, y_k;
int k;

#if B != 2
static const fp_pair_t half = { FP(0.5), FP(0.) };

#endif

PSET(y_k, SQRT(PEVAL(x)), ZERO); /* accurate estimate */

for (k = 0; k < 2; ++k) /* two Newton--Raphson iterations */
{ /* y[k+1] = (y[k] + x / y[k]) / 2 */

PDIV(t, x, y_k);
PADD(u, y_k, t);

#if B == 2
y_k[0] = u[0] * HALF;
y_k[1] = u[1] * HALF;

376 Chapter 13. Pair-precision arithmetic

Figure 13.1: Errors in pair-precision square-root functions. The horizontal dotted line at 0.5 ulps marks the boundary
below which results are correctly rounded. The plots on the left show the measured errors for Dekker’s algorithm
for the square root, and those on the right for the algorithm using direct pair-precision arithmetic.

#else
PMUL(y_k, u, half);

#endif

}

PCOPY(result, y_k);
}

}

The two approaches are compared on a logarithmic argument scale in Figure 13.1 using two different rounding
modes. Errors for the round-to-zero and round-downward modes are smaller than for the upward rounding mode, and
thus, are not shown. The direct pair-precision algorithm is clearly superior, and is the default in the file psqrtx.h.
However, the code for the original Dekker algorithm is retained in that file, and can be selected by defining the
symbol USE_DEKKER_SQRT at compile time.

Figure 13.2 on the next page shows errors in four pair-precision square root functions with the default algorithm
and a linear argument scale. Our error estimates are pessimistic: the measured errors are usually below one ulp in
binary arithmetic, and the function results are often correctly rounded in decimal arithmetic.

 0

 1

 2

 3

 4

-30 -20 -10 0 10 20 30

u
lp

s

log10(x)

Errors in psqrtf(x)
[Dekker: round to nearest]

 0

 1

 2

 3

 4

-30 -20 -10 0 10 20 30

u
lp

s

log10(x)

Errors in psqrtf(x)
[pp: round to nearest]

 0

 1

 2

 3

 4

-30 -20 -10 0 10 20 30

u
lp

s

log10(x)

Errors in psqrtf(x)
[Dekker: round upward]

 0

 1

 2

 3

 4

-30 -20 -10 0 10 20 30

u
lp

s

log10(x)

Errors in psqrtf(x)
[pp: round upward]

13.19. Pair-precision cube root 377

Figure 13.2: Errors in pair-precision square-root functions in binary (left) and decimal (right) arithmetic with the
default (non-Dekker) algorithm.

13.19 Pair-precision cube root

Dekker does not define a primitive for the pair-precision computation of the cube root. Because cube-root functions
are provided in C99, we implement an algorithm modeled on Dekker’s procedure for the square root. There is much
more detail on the computation of cube roots in Section 8.5 on page 237, but here, we only need the formula for the
iteration from that section.

Given an initial estimate, y0, of the solution of y = 3
√

x for a given fixed x, the Newton–Raphson iteration applied
to the problem of finding a zero of F(y) = y3 − x produces an improved estimate y1 = (2y0 + x/y2

0)/3. To find a
pair-precision cube root, we proceed as follows:

y0 = 3
√

x0,

y1 = (2y0 + x/y2
0)/3,

c0 = y0 high part is initial estimate,

c1 = y1 − y0 low part is correction to initial estimate

= (2y0 + x/y2
0)/3 − y0 one step of Newton–Raphson iteration

= (x/y2
0 − y0)/3

= (x − y3
0)/(3y2

0),

0

1

2

 0 1 2 3 4 5

u
lp

s

x

Errors in psqrtf()

0

1

2

 0 1 2 3 4 5

u
lp

s

x

Errors in psqrtdf()

0

1

2

 0 1 2 3 4 5

u
lp

s

x

Errors in psqrt()

0

1

2

 0 1 2 3 4 5

u
lp

s

x

Errors in psqrtd()

378 Chapter 13. Pair-precision arithmetic

y2
0 = u
= u0 + u1 compute with PMUL2().

We need an accurate value for the cube of y0, but that would seem to require triple-precision computation. We
therefore compute the cube in steps, using two reductions with PMUL2():

y3
0 = y0u
= v + w,

v = y0u0

= v0 + v1 compute with PMUL2(),

w = y0u1

= w0 + w1 compute with PMUL2(),

c1 = (x − v − w)/(3c2
0)

= (x0 − v0 + x1 − v1 − w0 − w1)/(3c2
0).

As with the square-root algorithm, the value of c1 is to be computed from left to right in the term order shown in the
last line of the display. The w terms appear last because they are much smaller than the x and v terms.

We handle NaN, Infinity, and zero arguments first. The final else block is a straightforward implementation of
the computation of c0 and c1:

void
PCBRT(fp_pair_t result, const fp_pair_t x)
{

fp_pair_t c, u, v, w;
fp_t p, q;

p = PEVAL(x);

if (ISNAN(p))
{

q = SET_EDOM(QNAN(""));
PSET(result, q, q);

}
else if (ISINF(p))
{

q = SET_ERANGE(x[0]);
PSET(result, q, q);

}
else if (p == ZERO)

PSET(result, x[0], x[0]);
else
{

c[0] = CBRT(x[0]);
PMUL2(u, c[0], c[0]);
PMUL2(v, c[0], u[0]);
PMUL2(w, c[0], u[1]);

/* c[1] = (((((x[0] - v[0]) + x[1]) - v[1]) - w[0]) - w[1]) / (THREE * c[0] * c[0]); */

c[1] = x[0] - v[0];
c[1] += x[1];
c[1] -= v[1];
c[1] -= w[0];
c[1] -= w[1];
c[1] /= THREE * c[0] * c[0];

13.20. Accuracy of pair-precision arithmetic 379

if (c[1] == ZERO)
c[1] = COPYSIGN(c[1], c[0]);

#if B == 10

c[0] = PEVAL(c);
PMUL2(u, c[0], c[0]);
PMUL2(v, c[0], u[0]);
PMUL2(w, c[0], u[1]);

/* c[1] = (((((x[0] - v[0]) + x[1]) - v[1]) - w[0]) - w[1]) / (THREE * c[0] * c[0]); */

c[1] = x[0] - v[0];
c[1] += x[1];
c[1] -= v[1];
c[1] -= w[0];
c[1] -= w[1];
c[1] /= THREE * c[0] * c[0];

if (c[1] == ZERO)
c[1] = COPYSIGN(c[1], c[0]);

#endif /* B == 10 */

PCOPY(result, c);
}

}

Higher intermediate precision in the computation of c[1] is welcome.
As with the square root, the self-correcting behavior of Newton–Raphson iteration means that the error in the

computed cube root comes entirely from the term c1, which involves eight inexact operations. With rounding arith-
metic, we therefore expect a worst-case error of about four ulps, and with truncating arithmetic, eight ulps.

Instead of using a Dekker-like algorithm for the cube root, we can program the Newton–Raphson iteration di-
rectly in pair-precision arithmetic. The code is similar to that for the square root, so we do not display it here. Fig-
ure 13.3 on the next page compares the two approaches in two rounding modes, and shows that the direct algorithm
is a better choice. Plots for the other two rounding modes show smaller errors than for upward rounding, and are
therefore omitted. The alternative algorithm in the file pcbrtx.h can be selected by defining the preprocessor symbol
USE_DEKKER_CBRT at compile time. Figure 13.4 on page 381 shows the errors in four of our final implementations of
cube-root functions in binary and decimal arithmetic.

13.20 Accuracy of pair-precision arithmetic

Dekker derives theoretical estimates of the errors in his pair-precision primitives [Dek71, pages 237–238] for binary
floating-point arithmetic. For multiplication, division, and square root, where there is no possibility of massive
significance loss in subtraction, the errors are a small constant, not much larger than one, times 2−2t. The pair-
precision ulp is 2−2t+1, so the predicted errors are about a half ulp.

As long as leading digits are not lost in subtractions, the predicted errors in addition and subtraction are about
four times as large, or about two ulps.

Nevertheless, it is also essential to perform numerical tests of the accuracy, for at least these reasons:

� The theoretical estimates depend on details of floating-point arithmetic that vary between systems, especially
for historical architectures.

� Even though modern systems with IEEE 754 arithmetic should behave almost identically for pair-precision
arithmetic, some do not obey rounding rules entirely correctly, and the Standard allows rounding behavior

380 Chapter 13. Pair-precision arithmetic

Figure 13.3: Errors in pair-precision cube-root functions. The horizontal dotted line at 0.5 ulps marks the bound-
ary below which results are correctly rounded. The plots on the left show the measured errors for a Dekker-style
algorithm for the cube root, and those on the right for the algorithm using direct pair-precision arithmetic.

near underflow and overflow limits to be implementation dependent. See the discussion in Section 4.6 on
page 68 for details.

� We have seen several times in this chapter that the transformation from algorithm to code can be tricky, so
there could be coding errors.

� Our code is further processed by a compiler, so there could be translation errors, especially from code rear-
rangement, optimization, and use of higher intermediate precision where it cannot be tolerated.

� For historical systems now implemented with virtual machines, the architects of those virtual machines some-
times have difficulty finding precise specifications of how the floating-point instructions in the often no-longer-
running hardware actually worked, or discover that the floating-point hardware behavior varied across differ-
ent models of computer systems that were shipped to customers.

Severe deviations from the theoretical predictions indicate implementation errors or compiler errors, or perhaps
even the effects of floating-point hardware designs that fail to meet Dekker’s conditions. Detection and reporting of
such deviations must be part of the software validation suite. A significant failure of the test suite strongly suggests
that the software should not be installed until the problem is found, repaired, and the validation tests subsequently
passed.

 0

 1

 2

 3

 4

-30 -20 -10 0 10 20 30

u
lp

s

log10(|x|)

Errors in pcbrtf(x)
[Dekker: round to nearest]

 0

 1

 2

 3

 4

-30 -20 -10 0 10 20 30

u
lp

s

log10(|x|)

Errors in pcbrtf(x)
[pp: round to nearest]

 0

 1

 2

 3

 4

-30 -20 -10 0 10 20 30

u
lp

s

log10(|x|)

Errors in pcbrtf(x)
[Dekker: round upward]

 0

 1

 2

 3

 4

-30 -20 -10 0 10 20 30

u
lp

s

log10(|x|)

Errors in pcbrtf(x)
[pp: round upward]

13.20. Accuracy of pair-precision arithmetic 381

Figure 13.4: Errors in pair-precision cube-root functions in binary (left) and decimal (right) arithmetic with the
default (non-Dekker) algorithm.

During development, this author found it helpful to insert assertions at critical points in the code to cause abrupt
termination with an error report if the tested condition is found to be false. Those assertions twice caught typos in the
code that were quickly fixed. However, they entail additional runtime overhead in time-critical primitives, so they
have been removed from the final code on the grounds that their job can be handled at build time by the validation
suite. Of course, that does not help in the detection of intermittent hardware errors on a particular system, but such
errors are rare.

Table 13.3 on the following page and Table 13.4 show the results of numerical experiments to measure the ac-
curacy of those pair-precision primitives that involve significant computation. Table 13.5 and Table 13.6 show the
distribution of errors for the collected primitives.

In Table 13.4, the error determination requires independent computation of the function values in IEEE 754 128-
bit arithmetic. That is implemented in software on the test systems, and is thus substantially slower than hardware
arithmetic. The number of test values was therefore reduced a hundredfold compared to the experiments for the
float_pair primitives. That in turn means that the search for maximum errors is a hundred times less thorough,
and consequently, those errors underestimate what could be found with more computation.

The high parts of the test values are random values from the unit interval, possibly scaled to a few units wide.
The low parts are similarly selected, but are smaller by a factor of 2−t, and have random signs. In addition, they are
purified so that the sum of the high and low parts is exactly representable. The two parts are determined by code
like this:

0

1

2

-5 -4 -3 -2 -1 0 1 2 3 4 5

u
lp

s

x

Errors in pcbrtf()

0

1

2

-5 -4 -3 -2 -1 0 1 2 3 4 5

u
lp

s

x

Errors in pcbrtdf()

0

1

2

-5 -4 -3 -2 -1 0 1 2 3 4 5

u
lp

s

x

Errors in pcbrt()

0

1

2

-5 -4 -3 -2 -1 0 1 2 3 4 5

u
lp

s

x

Errors in pcbrtd()

382 Chapter 13. Pair-precision arithmetic

Table 13.3: Accuracy of float_pair primitives. These results were generated on an AMD64 system, and closely
reproduced on an IA-64 system, with 100 million random test values for each of the high and low parts, and random
signs for the low parts. Random test values were taken from a uniform distribution on [0, 1).
The ulp value is 2−47 ≈ 7.105 × 10−15.
The Exact column shows the percentage of results that have zero error.
The σ column is the standard deviation of the arithmetic mean.

Function Exact Average Maximum σ
error (ulps) error (ulps) (ulps)

Round to nearest (IEEE 754 default)
paddf() 28.38% 0.124 1.370 0.140
psubf() 26.08% 0.162 1.669 0.182
pmulf() 3.67% 0.252 2.850 0.234
pdivf() 4.22% 0.311 3.904 0.344
pcbrtf() 7.60% 0.193 3.396 0.236
pcbrt2f() 7.97% 0.155 1.895 0.169
psqrtf() 16.33% 0.109 1.491 0.141

Round to −∞

paddf() 17.15% 0.334 2.644 0.326
psubf() 18.87% 0.355 2.745 0.346
pmulf() 0.60% 0.640 5.229 0.478
pdivf() 1.64% 0.775 7.121 0.809
pcbrtf() 2.28% 0.443 4.979 0.404
pcbrt2f() 1.97% 0.525 4.452 0.467
psqrtf() 5.53% 0.343 3.556 0.332

Round to 0
paddf() 17.33% 0.321 2.644 0.324
psubf() 18.82% 0.348 2.721 0.348
pmulf() 1.40% 0.531 5.229 0.468
pdivf() 1.30% 0.911 8.129 0.948
pcbrtf() 3.43% 0.343 4.951 0.370
pcbrt2f() 1.95% 0.525 4.452 0.467
psqrtf() 5.50% 0.336 3.556 0.333

Round to +∞

paddf() 17.93% 0.349 2.655 0.330
psubf() 18.77% 0.383 2.749 0.346
pmulf() 0.36% 0.667 4.145 0.401
pdivf() 2.02% 0.567 5.449 0.571
pcbrtf() 2.38% 0.974 9.840 1.027
pcbrt2f() 0.51% 1.916 9.509 1.355
psqrtf() 3.40% 0.696 5.568 0.626

exact_t x10;

u = UNIRAN();
x0 = u * ONE;

u = UNIRAN();
u *= RANSIGN();
x1 = x0 * u * EPS_1 * FP(0.5);

x10 = (exact_t)x1 + (exact_t)x0;
x1 = (fp_t)(x10 - (exact_t)x0); /* purify */

The UNIRAN() call returns a uniformly distributed random value on [0, 1). The RANSIGN() call returns +1 or −1
with equal probability. The final adjustment on x1 handles the purification, so that x0 + x1 is exact in the precision
exact_t, which must have at least twice the precision of the type fp_t.

For the subtraction tests, the second operand, y = y0 + y1, is further constrained by the choice

u = UNIRAN();

13.20. Accuracy of pair-precision arithmetic 383

Table 13.4: Accuracy of double_pair primitives. The results presented here were found to be identical on Sun
Microsystems SPARC and Hewlett–Packard PA-RISC systems. A Hewlett–Packard IA-64 system produced largely
similar results.
There were one million random test values for each of the high and low parts, and random signs for the low parts.
Random values were taken from a uniform distribution on [0, 1).
The ulp value is 2−105 ≈ 2.465 × 10−32.
The Exact column shows the percentage of results that have zero error.
The σ column is the standard deviation of the arithmetic mean.

Function Exact Average Maximum σ
error (ulps) error (ulps) (ulps)

Round to nearest (IEEE 754 default)
padd() 39.69% 0.065 0.484 0.078
psub() 24.73% 0.162 1.780 0.182
pmul() 0.89% 0.249 2.168 0.227
pdiv() 1.10% 0.310 3.853 0.343
pcbrt() 3.02% 0.174 2.808 0.205
pcbrt2() 3.06% 0.153 2.005 0.167
psqrt() 4.24% 0.145 1.904 0.190

Round to −∞

padd() 25.64% 0.208 0.989 0.211
psub() 18.35% 0.370 2.949 0.346
pmul() 0.13% 0.659 4.280 0.470
pdiv() 0.41% 0.798 7.926 0.806
pcbrt() 0.73% 0.476 3.605 0.403
pcbrt2() 0.78% 0.558 4.265 0.474
psqrt() 0.96% 0.369 2.333 0.296

Round to 0
padd() 26.08% 0.169 0.988 0.172
psub() 18.34% 0.361 2.678 0.347
pmul() 0.36% 0.539 4.280 0.462
pdiv() 0.32% 0.935 8.174 0.949
pcbrt() 1.70% 0.301 3.328 0.312
pcbrt2() 0.78% 0.558 4.265 0.474
psqrt() 0.99% 0.490 3.653 0.496

Round to +∞

padd() 26.37% 0.209 0.991 0.212
psub() 18.36% 0.371 2.916 0.346
pmul() 0.08% 0.657 3.540 0.397
pdiv() 0.53% 0.557 5.705 0.572
pcbrt() 0.83% 0.696 6.667 0.711
pcbrt2() 0.04% 1.896 9.490 1.355
psqrt() 0.24% 0.599 3.766 0.472

y0 = u * x0 * FP(0.5);
u = UNIRAN();
y1 = y0 * u * EPS_1 * FP(0.5);

That makes the high components differ by at least a factor of two, preventing all loss of leading digits in the subtrac-
tion. Without that constraint, the errors in subtraction can be much larger, and they hide the trailing-digit errors that
we want to measure.

The standard deviations from the mean that are given in the σ column of the tables identify the spread of the
results around the mean. From introductory statistics, or Table 19.3 on page 616, only about 0.3% of the results lie
more than 3σ away from the mean, and fewer than 0.6 in a million are more than 5σ away.

The good news from the data in the two tables is that when the rounding mode is the IEEE 754 default of round
to nearest, the pair-precision primitives are, on average, accurate to better than a half ulp, which is almost the same as
correctly rounded to the representable value closest to the exact value.

In the three other rounding directions supported by IEEE 754, the average errors are still below one ulp, and for

384 Chapter 13. Pair-precision arithmetic

Table 13.5: Error distribution for float_pair primitives. Results are cumulative for the seven primitives.

Rounding mode Frequency of errors (ulps)
[0, 1/2) [1/2, 1) [1, 2) [2, 3) [3, 4) [4, 5) [5, ∞)

to nearest 91.17% 7.72% 1.06% 0.04%
to −∞ 59.89% 27.31% 11.23% 1.27% 0.24% 0.05% 0.01%
to 0 63.61% 23.90% 10.45% 1.53% 0.39% 0.11% 0.02%
to +∞ 49.48% 25.85% 14.31% 5.47% 2.92% 1.27% 0.70%

Table 13.6: Error distribution for double_pair primitives. Results are cumulative for the seven primitives.

Rounding mode Frequency of errors (ulps)
[0, 1/2) [1/2, 1) [1, 2) [2, 3) [3, 4) [4, 5) [5, ∞)

to nearest 91.78% 7.16% 1.02% 0.04%
to −∞ 61.01% 26.54% 10.90% 1.26% 0.24% 0.05% 0.01%
to 0 63.61% 23.90% 10.45% 1.53% 0.39% 0.11% 0.02%
to +∞ 50.66% 25.01% 13.88% 5.50% 2.96% 1.28% 0.72%

add and subtract, are below a half ulp, or almost correctly rounded.
In all rounding modes, the maximum errors, however, can reach several ulps, which would not be expected of

properly implemented hardware arithmetic, if it were available. The occasional large errors complicate the error
analysis of code that uses pair-precision arithmetic.

The pcbrt2f() and pcbrt2() results are for special variants of the normal cube-root routine that we describe in
Section 13.19 on page 377. In the variant routines, the final else block contains two Newton–Raphson iteration steps.
That roughly doubles the amount of work, and the measurements for the default case of round to nearest, show that,
although there is little effect on the average error, it reduces the maximum error and standard deviation by a third.
However, for the other three IEEE 754 rounding directions, the average error, the maximum error, and the standard
deviation, are made worse by the extra computation.

13.21 Pair-precision vector sum

The Kahan/Møller summation error term is easy to incorporate into a loop that sums the elements of a vector. Instead
of adding a vector element to a scalar sum in the loop body, add the element and the current error estimate, and then
compute a new error estimate. On completion of the loop, the last sum and error term provide a pair-precision result.

Here is code to compute the pair-precision sum of a vector of ordinary floating-point values:

void
PSUM(fp_pair_t result, int n, const fp_t x[/* n */])
{

/* compute x[0] + ... + x[n-1] with Kahan/Møller error
compensation to produce the pair-precision result */

int k;
fp_pair_t sum;

PSET(sum, ZERO, ZERO);

for (k = 0; k < n; ++k)
PSUM2(sum, sum[0], x[k] + sum[1]);

PCOPY(result, sum);

13.22. Exact vector sums 385

}

The dimension precedes the array in the argument list to conform to the requirement of declaration before use in
the new C99 support of run-time dimensioning of arrays, a feature that has been available in Fortran for decades.

The argument array is not referenced if the loop count is zero or negative, and the result array is not referenced
until the loop completes, so that it can overlap with the input x[] array if that proves convenient.

The loop body contains only the ordinary arithmetic inside PSUM2(), not further calls to pair-precision arithmetic
routines. Apart from the loop-counter and function-call overhead, each iteration requires three additions and one
subtraction, instead of the single addition of a simple vector sum. We therefore expect the loop to be about four times
slower, but the improvement in accuracy can be significant.

Although more accurate vector-summation algorithms have been developed since the Kahan/Møller work, they
are considerably more complex to program, and to understand. The bibliography of floating-point arithmetic1 lists
about 100 publications on that topic; the state of the art at the time of writing this is represented by the work of
Priest [Pri91], Demmel and Hida [DH04], Ogita, Rump, and Oishi [ORO05, ROO08a, ROO08b, Rum09, Rum12], Zhu
and Hayes [ZH10], and Kornerup and others [KLLM12, CBGK13, KGD13, BCD+14, AND15, CDGI15, ML15, Nea15,
AND16, KGD16, Lef16, OOO16]. Priest’s work shows how to extend the idea of pair-precision arithmetic to arrays
of n components of decreasing magnitude, using only ordinary floating-point operations for the componentwise
arithmetic.

In an amazing feat of lengthy and complicated analysis, Rump, Ogita, and Oishi show how to reduce the math-
ematics to algorithms in MATLAB, each of which fills less than a page. Their AccSum(), AccSumK(), FastAccSum(),
and NearSum() functions compute sums that provably return the nearest floating-point number to the exact value,
and have the desirable properties that they require only one IEEE 754 floating-point format, need no unpacking
of exponent or significand, contain no performance-sapping branches in the inner loops, and compute easy sums
quickly, and difficult ones more slowly. Translations of their algorithms to C are straightforward, but they do require
dynamic-memory allocation of internal arrays. That feature violates the design requirements of the mathcw library,
so we do not discuss them further here.

13.22 Exact vector sums

It is worth thinking about how one might implement an exact floating-point summation algorithm by brute force.
The problem is most simply illustrated by considering the three-term sum M + m − M, where M is the maximum
normal number, and m is the minimum subnormal number. The first and last terms exactly cancel, and the result
is the tiny middle term. If we have a fixed-point accumulator that is wide enough to hold any of the representable
numbers in the floating-point range, we can dispense with floating-point exponents and do the computation in exact
fixed-point arithmetic. The only rounding is that incurred when the value in the accumulator is finally converted
to storage precision. We require accumulators of width at least EMAX− EMIN+ t bits. For the five extended IEEE 754
binary formats, the widths are 277, 2098, 32 829, 32 878, and 524 522 bits, respectively. In practice, several more bits
are needed to accommodate sums with large numbers of terms: increasing the width by 50 bits can handle sums
with up to 1015 terms.

Several proposals to build long accumulators in hardware have been published (see [Knö91, MRR91, MRR96,
SvG12, BK15] and their references to earlier work), but no mainstream CPU designs offer such a facility. The chal-
lenge is to make the common case of much more limited range run about as fast as straightforward floating-point
summation, then to provide a standard interface to the long accumulator in major programming languages, train
compiler writers and programmers how to use it, and convince them to do so. Recent software solutions are sketched
in journals [Rum09, ZH10], but are complicated to program.

13.23 Pair-precision dot product

The dot product of two n-element vectors is defined by

x · y =
n−1

∑
k=0

xkyk.

1See http://www.math.utah.edu/pub/tex/bib/index-table-f.html#fparith.

386 Chapter 13. Pair-precision arithmetic

Its accurate computation is difficult, especially if some terms are positive, and others are negative, because severe
subtraction loss is then possible. As we observed in the previous section, a brute-force approach would require exact
products and sums in a wide accumulator, and support for two-element products roughly doubles the accumulator-
width requirements, because of the doubled exponent range.

Pair-precision arithmetic provides a reasonable way to compute the dot product, when we realize that splitting
x[k] and y[k] into pairs with PSPLIT() leads to a four-term sum for the product in each iteration. As long as we
have a base-2 floating-point system, and the values are away from the underflow and overflow limits, each of the
four products is exact (see Section 13.11 on page 359). If we represent the accumulating dot product in pair precision,
then one application of PSUM() reduces the inner sum to a single pair, ready for the next iteration.

The code for the dot-product operation is then clear and simple:

void
PDOT(fp_pair_t result, int n, const fp_t x[], const fp_t y[])
{

/* compute vector dot product x * y in pair precision
in result */

fp_t t[6];
fp_pair_t xx, yy;
int k;

PSET(t, ZERO, ZERO);

for (k = 0; k < n; ++k)
{

PSPLIT(xx, x[k]);
PSPLIT(yy, y[k]);
t[2] = xx[0] * yy[0];
t[3] = xx[0] * yy[1];
t[4] = xx[1] * yy[0];
t[5] = xx[1] * yy[1];
PSUM(t, 6, t);

}

PCOPY(result, t);
}

We arrange to keep the accumulating dot product in the first two elements of t[], and put the four intermediate
products in the next four elements. After the call to PSUM(), the pair sum of the six elements is in the first two
elements, ready for the next loop iteration. That is only possible because of our design specification that allows
overlap of the input and output arguments of the pair-precision primitives.

13.24 Pair-precision product sum

Although PDOT() makes it possible to evaluate an n-element dot product, there is one important special case that
appears in a few places in the mathcw library code: the expression ab + cd. If the terms are of opposite sign, then
severe subtraction loss is possible. By using pair-precision arithmetic, we can work with almost exact products ab
and cd, and the subtraction results in a nearly correct answer, as long as only a few leading digits are lost in the
subtraction.

The product-sum routine PPROSUM() makes it convenient to compute an accurate value of ab+ cd in pair precision,
after which PEVAL() can reduce the result to working precision. The code is straightforward, and free of loops and
conditionals:

void
PPROSUM(fp_pair_t result, fp_t a, fp_t b, fp_t c, fp_t d)
{

13.25. Pair-precision decimal arithmetic 387

/* Compute a*b + c*d in pair precision in result */

fp_t x[4];
fp_pair_t aa, bb, cc, dd, ab, cd;

PSPLIT(aa, a);
PSPLIT(bb, b);
PSPLIT(cc, c);
PSPLIT(dd, d);

x[0] = aa[0] * bb[0];
x[1] = aa[0] * bb[1];
x[2] = aa[1] * bb[0];
x[3] = aa[1] * bb[1];

PSUM(ab, 4, x);

x[0] = cc[0] * dd[0];
x[1] = cc[0] * dd[1];
x[2] = cc[1] * dd[0];
x[3] = cc[1] * dd[1];

PSUM(cd, 4, x);

x[0] = ab[0];
x[1] = cd[0];
x[2] = ab[1];
x[3] = cd[1];

PSUM(result, 4, x);
}

The call to PSPLIT(), followed by collection of each of the products in descending magnitude in the vector x[],
produces four exact terms (see Section 13.11 on page 359). A call to PSUM() then accumulates an accurate sum of the
products. After doing that for both ab and cd, we again have four terms to sum, and a final call to PSUM() produces
an accurate result for ab + cd.

13.25 Pair-precision decimal arithmetic

The base restrictions in some of Dekker’s algorithms prevent their use for decimal floating-point arithmetic. Never-
theless, the general ideas of pair-precision arithmetic still apply, as long as we can provide suitable implementations
of the basic operations of add, subtract, multiply, and divide. Most of the other pair-precision functions that we
discuss in this chapter, and in Chapter 23 on page 777, are independent of the base, or are already parameterized to
work with any reasonable base.

From the parameters of decimal floating-point arithmetic summarized in Table D.6 on page 937, we see that
the precision more than doubles when the length of the data type increases. That means that we can represent
products exactly in the next higher precision, and we can do a reasonably accurate job for sums, differences, and
quotients. At the highest available precision, we have to do something different, but there, we can fall back to the
software implementation of decimal arithmetic provided by the underlying decNumber library [Cow07]. The major
deficiency lies in splitting of single-precision decimal values into high and low parts: with seven digits, the low part
has four digits, so products of two low parts can no longer be exactly represented. The higher precisions have even
numbers of digits, eliminating that problem.

Accuracy tests of the decimal versions of the four basic operations show that the average relative error is below
0.01 ulps, and the maximum relative error does not exceed 0.50 ulps, considerably better than is obtainable with
the binary versions. For square root and cube root, the average relative error is below 0.11 ulps, and the maximum
relative error is below 4.85 ulps.

388 Chapter 13. Pair-precision arithmetic

13.26 Fused multiply-add with pair precision

The discussion of exact summation in Section 13.22 on page 385 and the C99 requirement that the fused multiply-
add operation to compute xy + z be done with an exact product xy and a single rounding from the sum suggests that
a software implementation is likely to be difficult.

The pair-precision arithmetic primitives allow the computation to be done as follows:

x = xhi + xlo compute with PSPLIT(),

y = yhi + ylo compute with PSPLIT(),

xy + z = xhiyhi + xhiylo + xloyhi + xloylo + z.

The four componentwise products can each be done exactly in binary floating-point arithmetic, and they each require
one less bit than is available. The sum xhiylo + xloyhi involves terms with the same exponent, so that sum is exact.
However, it is not obvious that the remaining three sums can be done without introducing multiple rounding errors.
What we do know is that, as long as the products are nonzero, the last product is almost negligible compared to the
first, so it is unlikely to affect the rounding. The sum of the high-low products is larger, but still small compared
to the high-high product, so it too should have little effect on the rounded sum of products. The sign and size of z
relative to xy is unknown, and in the worst case, the final sum could have a large effect on the outcome.

We thus expect that computation of the fused multiply-add operation with pair-precision arithmetic should often
be accurate, but we certainly have no proof that the computation always satisfies the single-rounding requirement.

Test programs for float, double, and long double versions of a prototype of a pair-precision arithmetic algorithm
for the fused multiply-add operation are amazingly successful:

� On current systems with native fused multiply-add hardware (G5, IA-64, PA-RISC, and PowerPC), the tests
find not a single instance where the error of the pair-precision code is as large as a half ulp, conforming to the
C99 requirement.

The tests are done in all four IEEE 754 rounding modes, and use up to 108 arguments from logarithmically
distributed random samples over the entire range of floating-point numbers, except for the region of small
arguments where the low parts become subnormal.

� Tests on systems with library software implementations of the operation, including Hewlett–Packard HP-UX
cc on PA-RISC, Intel icc on AMD64 and IA-32, and Sun Microsystems SOLARIS cc on IA-32 and SPARC, are
similarly successful.

� On SOLARIS SPARC, the tests report ‘errors’ of up to 180 ulps, but that reveals inaccuracies in the vendor library.
Recomputation of the worst case in 100-digit precision in Maple shows exact agreement with our FMA() code.

Except for some subtleties that we discuss in the remainder of this chapter, we conclude that the following im-
plementation of the fused multiply-add is usually correct, and we therefore use code similar to it in the mathcw
library:

fp_t
FMA(fp_t x, fp_t y, fp_t z)
{

#if defined(__GNUC__) && defined(HAVE_FP_T_SINGLE) && \
defined(FP_ARCH_PA_RISC)

fp_t result;

__asm__("fmpyfadd,sgl %1, %2, %3, %0" : "=f" (result) :
"f" (x), "f" (y), "f" (z));

return (result);

#elif defined(__GNUC__) && defined(HAVE_FP_T_SINGLE) && \
defined(FP_ARCH_IA64)

13.26. Fused multiply-add with pair precision 389

fp_t result;

__asm__("fma.s %0 = %1, %2, %3" : "=f" (result) :
"f" (x), "f" (y), "f" (z));

return (result);

#elif defined(__GNUC__) && defined(HAVE_FP_T_SINGLE) && \
defined(FP_ARCH_MIPS) && defined(HAVE_CORRECT_MADD_S)
/* CODE DISABLED! */

fp_t result;

/* The madd.s instruction does not exist on the MIPR R4000
series, and is implemented incorrectly as a separate
multiply and add on the R10000, sigh... This code is
therefore disabled on all MIPS processors, because we
cannot tell at compile time which one we have, and the
code would produce CPU-dependent results if we ignored
processor differences. */

/* "madd.s fd,fz,fx,fy" produces x * y + z in fd */
__asm__("madd.s %0, %3, %1, %2" : "=f" (result) :

"f" (x), "f" (y), "f" (z));

return (result);

#elif defined(__GNUC__) && defined(HAVE_FP_T_SINGLE) && \
defined(FP_ARCH_POWERPC)

fp_t result;

__asm__("fmadds %0, %1, %2, %3" : "=f" (result) :
"f" (x), "f" (y), "f" (z));

return(result);

#elif defined(__GNUC__) && defined(HAVE_FP_T_SINGLE) && \
defined(FP_ARCH_S390)

/* MADBR rz,rx,ry overwrites rz with x * y + z */
__asm__("maebr %1, %2, %3" : "=f" (z) :

"0" (z), "f" (x) , "f" (y));

return (z);

#elif defined(__GNUC__) && defined(HAVE_FP_T_SINGLE) && \
defined(FP_ARCH_SPARC) && defined(__FP_FAST_FMAF__)

fp_t result;

__asm__("fmadds %1, %2, %3, %0" : "=f" (result) :
"f" (x), "f" (y), "f" (z));

return(result);

390 Chapter 13. Pair-precision arithmetic

#elif defined(__GNUC__) && defined(HAVE_FP_T_DOUBLE) && \
defined(FP_ARCH_PA_RISC)

fp_t result;

__asm__("fmpyfadd,dbl %1, %2, %3, %0" : "=f" (result) :
"f" (x), "f" (y), "f" (z));

return (result);

#elif defined(__GNUC__) && defined(HAVE_FP_T_DOUBLE) && \
defined(FP_ARCH_IA64)

fp_t result;

__asm__("fma.d %0 = %1, %2, %3" : "=f" (result) :
"f" (x), "f" (y), "f" (z));

return (result);

#elif defined(__GNUC__) && defined(HAVE_FP_T_QUADRUPLE) && \
defined(FP_ARCH_IA64)

fp_t result;

__asm__("fma %0 = %1, %2, %3" : "=f" (result) :
"f" (x), "f" (y), "f" (z));

return (result);

#elif defined(__GNUC__) && defined(HAVE_FP_T_EXTENDED) && \
defined(FP_ARCH_IA64)

fp_t result;

__asm__("fma %0 = %1, %2, %3" : "=f" (result) :
"f" (x), "f" (y), "f" (z));

return (result);

#elif defined(__GNUC__) && defined(HAVE_FP_T_DOUBLE) && \
defined(FP_ARCH_MIPS) && defined(HAVE_CORRECT_MADD_D)
/* CODE DISABLED! */

fp_t result;

__asm__("madd.d %0, %3, %1, %2" : "=f" (result) :
"f" (x), "f" (y), "f" (z));

return (result);

#elif defined(__GNUC__) && defined(HAVE_FP_T_DOUBLE) && \
defined(FP_ARCH_POWER)

fp_t result;

__asm__("fmadd %0, %1, %2, %3" : "=f" (result) :

13.26. Fused multiply-add with pair precision 391

"f" (x), "f" (y), "f" (z));

return(result);

#elif defined(__GNUC__) && defined(HAVE_FP_T_DOUBLE) && \
defined(FP_ARCH_S390)

/* MADBR rz,rx,ry overwrites rz with x * y + z */
__asm__("madbr %1, %2, %3" : "=f" (z) :

"0" (z), "f" (x) , "f" (y));

return (z);

#elif defined(__GNUC__) && defined(HAVE_FP_T_DOUBLE) && \
defined(FP_ARCH_SPARC) && defined(__FP_FAST_FMA__)

fp_t result;

__asm__("fmaddd %1, %2, %3, %0" : "=f" (result) :
"f" (x), "f" (y), "f" (z));

return(result);

#elif defined(HAVE_FP_T_SINGLE) && \
(DBL_MANT_DIG >= (2 * FLT_MANT_DIG)) && \
(DBL_MAX_EXP >= (2 * FLT_MAX_EXP))

return ((fp_t)((double)x * (double)y + (double)z));

#elif defined(HAVE_FP_T_DOUBLE) && defined(HAVE_LONG_DOUBLE) && \
!defined(HAVE_BROKEN_LONG_DOUBLE) && \
(LDBL_MANT_DIG >= (2 * DBL_MANT_DIG)) && \
(LDBL_MAX_EXP >= (2 * DBL_MAX_EXP))

return ((fp_t)((long double)x * (long double)y +
(long double)z));

#else

/* code presented later in this section */

#endif

}

The code for FMA() in file fmaxxx.h is exceptional in the mathcw library in that it uses inline assembly code to
access hardware instructions, where available. That is not only platform dependent, but also compiler dependent,
because few compilers, other than GNU gcc, provide an interface to assembly code. However, the performance gain
is definitely worthwhile.

The code is intentionally written with only a single level of preprocessor directives and complex conditional
expressions, because it is then easier to see the precise conditions that select a block of code for compilation.

Hardware support for the fused multiply-add operation is regrettably incomplete. For each platform, we need
code for the float, double, and long double function types, but POWER lacks the float variant, and only IA-64 has
the long double instruction.

Although the FMA() code has conditional blocks for the MIPS processors, they are normally disabled by the final
test in the selector expressions. The madd.d and madd.s instructions were introduced with the MIPS IV architecture
specification in 1994, and a vendor architecture manual describes a correct fused multiply-add operation. However,

392 Chapter 13. Pair-precision arithmetic

tests on the R5000 and R10000 CPUs show that the instructions instead perform separate multiply and add operations
with two roundings, making them useless for their intended purpose. It is uncertain whether that flaw exists in
other CPUs in the MIPS IV family, so it is unsafe to use the fused multiply-add instructions in an environment with
mixed CPU models. However, we leave the code in place so that it can be enabled by compile-time definition of
the symbols HAVE_CORRECT_MADD_D and HAVE_CORRECT_MADD_S in more restricted environments where the CPUs are
known to implement the specification correctly.

In 2007, the SPARC architecture definition was extended to include 32-bit and 64-bit fused multiply-add instruc-
tions. That hardware support is not yet available to this author, but recent releases of the native compilers can
generate those instructions when requested by command-line options. When they do so, they define the macros
__FP_FAST_FMAF__ and __FP_FAST_FMA__, and we therefore test for their presence before selecting inline code. As
that CPU family has evolved, the vendor has provided run-time compatibility by trapping and emulating instruc-
tions that are unimplemented on some processor models. Library code built with the fused multiply-add instructions
should then work on all SPARC systems that have the required software assist in the operating system.

The gcc __asm__() macro is complex, and instruction operand order may disagree with hardware manuals. It
is not as well documented as one might wish, and not used often enough to ensure that the documentation matches
the compiler support. The macro argument takes the form of three colon-separated fields:

� The first provides a list of one or more assembly-code instructions to be generated, with operands indicated by
percent and a digit, and numbered from zero.

� The second field describes the output of the instruction (operand %0). In each case, "=f" means that a value
is produced in a floating-point register associated with the parenthesized variable name following the code
string.

� The third string contains a comma-separated list of items describing the input operands (%1, %2, . . .). The
code "f" means an input operand in a floating-point register, and "0" means an input register operand that is
overwritten with the result. Each code string is followed by the corresponding variable name in parentheses.

The compiler ensures that, before the instruction begins, all operands have been properly initialized from their
associated variables, and that, on completion, the result is stored in the output variable. In practice, the optimizer
removes redundant loads and stores. On IA-64, PA-RISC, PowerPC, and SPARC, with optimization selected, the
entire body of FMA() compiles into just two instructions: the fused multiply-add, and a return, and memory is not
referenced at all. On MIPS, when the code is enabled, only the fma() function reduces to two instructions.

When higher precision with at least twice as many digits is available, the code uses a single inline multiply and
add. That is faster than pair-precision arithmetic, and because the product xy is exact, the correct result is usually,
but not always, obtained with only a single rounding. We examine it more carefully in the next section.

We delayed presentation in the code for FMA() of the final block that uses pair-precision arithmetic when neither
hardware, nor adequate higher precision, are available. Here is what it looks like:

fp_t result;

if (ISNAN(x))
result = x;

else if (ISNAN(y))
result = y;

else if (ISNAN(z))
result = z;

else if (ISINF(x) || ISINF(y) || ISINF(z))
result = x * y + z;

else if (z == ZERO)
{

volatile fp_t xy;

xy = x * y;
STORE(&xy);

if ((x != ZERO) && (y != ZERO) && (xy == ZERO))

13.27. Higher intermediate precision and the FMA 393

result = xy; /* sign independent of z */
else /* x == 0 && y == 0 */

result = xy + z; /* sign depends on z */
}
else if ((x == ZERO) || (y == ZERO)) /* and z is nonzero */

result = z;
else
{

fp_pair_t rr, t00, t01, t10, t11, xx, yy, zz;

PSPLIT(xx, x);
PSPLIT(yy, y);
PMUL2(t00, xx[0], yy[0]);
PMUL2(t01, xx[0], yy[1]);
PMUL2(t10, xx[1], yy[0]);
PMUL2(t11, xx[1], yy[1]);
PSET(zz, z, ZERO);
PADD(rr, t11, zz);
PADD(rr, rr, t10);
PADD(rr, rr, t01);
PADD(rr, rr, t00);

result = PEVAL(rr);
}

return (result);

Because pair-precision arithmetic often produces a NaN when Infinity is present, we supply special handling for
NaN, Infinity, and zero arguments.

If any argument is a NaN, we return that NaN.
Otherwise, if any argument is Infinity, we let the hardware compute x * y + z: the result may be a signed

Infinity, or a NaN.
All arguments are now known to be finite. However, we need special treatment for a zero z because straightfor-

ward computation of x * y + z can produce a result of the wrong sign. The culprit here is underflow:

� Higher intermediate precision must be prevented by the usual subterfuge of the volatile qualifier for the
product, or the STORE() function.

� If either factor in the product is exactly zero, then the product is an exact zero of suitable sign, and the addi-
tion of a signed zero produces the correct sign, which depends on those signs, and on the current rounding
direction.

� If both factors are nonzero, but their product underflows, then the result must be just x * y, because that
would be nonzero in exact arithmetic, and the subsequent addition of a signed zero cannot change the sign of
the result.

Now z is known to be nonzero, and if x or y is zero, we can avoid further arithmetic entirely.
Otherwise, all three arguments are finite and nonzero, and the last braced block contains the pair-precision arith-

metic that does the job in a dozen statements.
Despite the encouraging test results that we reported earlier, two problems remain: the tricky case of rounding re-

sults that lie almost exactly between two adjacent representable numbers, and intermediate overflow and underflow
in the products because of inadequate exponent range. The next two sections describe how we can handle them.

13.27 Higher intermediate precision and the FMA

When a higher precision type with at least twice as many significand digits, and with sufficiently extended exponent
range, is available, the simple statement

394 Chapter 13. Pair-precision arithmetic

return ((fp_t)((hp_t)x * (hp_t)y + (hp_t)z));

similar to that used in the code of the preceding section is almost always correct. The product is exact, and there is
only a single rounding in computing the sum. However, the easy-to-overlook point is that there is a second rounding
in the outer cast to working precision.

Here is an example in decimal arithmetic that shows what happens in a bad case. We assume 7-digit single-
precision operands, but work in 16-digit double precision:

hocd64> x = 15
hocd64> y = 3733333
hocd64> z = 1e-8

hocd64> x * y + z
55_999_995.000_000_01

hocd64> x * y - z
55_999_994.999_999_99

hocd64> single(x * y + z) ; single(x * y - z)
56_000_000 # CORRECT: just above halfway case, so rounded up
55_999_990 # CORRECT: just below halfway case, so rounded down

Here, the product lies exactly halfway between two single-precision numbers, and the sum of a small value then
decides the rounding direction, producing results that depend on the sign of the addend.

However, if z is a bit smaller, the sum is no longer exactly representable in the higher precision. The sum must
then be rounded, and the second rounding to single precision makes one of the results incorrect:

hocd64> z = 1e-9
hocd64> single(x * y + z) ; single(x * y - z)

56_000_000
56_000_000 # WRONG: should be 55_999_990

The fma() function in hoc handles even the tiniest possible z correctly:

hocd32> x = 15; y = 3733333; z = MINSUBNORMAL
hocd32> z; fma(x, y, z); fma(x, y, -z)

1e-101
5.6e+07
5.599_999e+07

Clearly, we need additional code that checks for the halfway case, and takes remedial action to avoid the double
rounding that produces the wrong answer. Here is a private function from fmaxxx.h that does the fused multiply-
add more carefully:

static fp_t
hp_fma(fp_t x, fp_t y, fp_t z)
{ /* return x * y + z computed in hp_t, with special handling of halfway rounding */

fp_t result;
hp_t xxyy, xxyyzz, zz;

zz = (hp_t)z;
xxyy = (hp_t)x * (hp_t)y;

xxyyzz = xxyy + zz; /* x * y + z in higher precision */

if ((xxyy == xxyyzz) && (zz != HP_ZERO))
{ /* check for worst case of x * y = +/-ddd..ddd500...000 */

hp_t ff, rr;
int nn;

13.28. Fused multiply-add without pair precision 395

/* rr is difference between exact and rounded product */
rr = xxyy - (hp_t)((fp_t)xxyy);
rr = HP_COPYSIGN(rr, xxyy);
ff = HP_FREXP(rr, &nn); /* significand of |rr| is in [1/B,1) */

if (QABS(ff) == HP_HALF)/* worst case of trailing 500...000 */
{

if (HP_SIGNBIT(xxyy) == HP_SIGNBIT(zz))
rr *= HP_HALF; /* change to +/-250...000 to force xxyy magnitude to round up */

else
rr *= -HP_HALF; /* change to -/+250...000 to force xxyy magnitude to round down */

/* adjust trailing digits to force correct rounding */
result = (fp_t)(xxyy + rr);

}
else /* easy case: type cast is safe and correctly rounded */

result = (fp_t)xxyy;
}
else /* easy case: type cast is safe and correctly rounded */

result = (fp_t)xxyyzz;

return (result);
}

If z is nonzero and fl(x × y + z) is identical to fl(x × y), then z is tiny and rounding must have occurred. The larger
block of the if statement then checks for the halfway case, and adds or subtracts a reduced remainder to obtain
correct rounding. Otherwise, we are not at the halfway case, or the initial computation of fl(x × y + z) is exact. In
both those cases, the final type cast is correct, and safe.

It is possible for the final result to be finite, yet the product fl(x × y) exceeds the exponent range of working
precision. The higher precision must therefore offer at least one extra bit in the exponent. The IEEE 754 formats
satisfy that requirement, as do a few hardware architectures, such as the floating-point registers of the Motorola
68000 and the Intel IA-64. Many historical architectures, however, have the same exponent range in all precisions, so
for them, premature overflow or underflow in our fused multiply-add code invalidate the results, unless we supply
intermediate scaling.

13.28 Fused multiply-add without pair precision

The fused multiply-add operation is of such importance that it is worthwhile to revisit its implementation, this time
without using our pair-precision arithmetic primitives. A few key design points lead to a workable implementation
that we present shortly:

� If a correct hardware fused multiply-add instruction is available, use it.

� Otherwise, if a higher-precision type provides at least twice as many significand bits, and at least twice the
exponent range, then use the hp_fma(x, y, z) function of the preceding section.

Except for some embedded systems where all floating-point types are treated as equivalent to a single hardware
type, that solution is fast, and nearly optimal for the float data type, and may be usable for the double data
type on some platforms.

For decimal arithmetic in software, as long as the decimal library provides user-settable precision, the single
statement can implemented with about a dozen library calls. We show how to do that later in Section 13.29 on
page 402.

� Otherwise, decompose x and y into sums of terms of descending magnitudes, x = ∑i xi and y = ∑j yj, where
each of the terms requires no more than half the number of significand bits. Term products xiyj can then be
computed exactly with ordinary floating-point arithmetic, provided that they are representable.

396 Chapter 13. Pair-precision arithmetic

� If we can compute an exact sum of two terms as a rounded high part, plus a tiny low part that is no larger than
half a unit in the last place of the high part, then we should be able to sum a small number of terms almost
exactly to machine precision.

� The value of xy + z = (∑i ∑j(xiyj)) + z can then be computed with a single significant rounding in the final
addition. For best accuracy, the double sum should accumulate the products in order of increasing magnitudes.

� Intermediate overflow, underflow, and digit-depleting subnormals, must be avoided by suitable scaling.

� Higher intermediate precision must be prevented, and the problem of double rounding on such machines must
be recognized and accepted, or eliminated with dynamic precision control.

The first task is to provide a function that splits a number into an exact sum of terms. With the exceptions of two
aberrant historical architectures (the CDC 1700 and the Harris systems listed in Table H.1 on page 948), and some
embedded systems, all floating-point architectures provide at least twice as many significand bits in the double data
type as there are in the float type, so a compact representation can use the shorter type for the terms. We therefore
introduce a type definition that makes it easy to treat the term representation as a single object that is scaled away
from the underflow and overflow limits:

typedef struct
{ /* Represent x as B**e * (typeof(x))(sum(k = 0 : n-1) f[k]) */

int n; /* number of elements used in f[] */
int e; /* exponent of base B */
float f[10]; /* enough for 256-bit long long double */

} split_t;

The splitting function then just needs a loop that repeatedly extracts the higher bits until the remainder is zero:

static void
SPLIT(split_t *s, fp_t x)
{ /* x MUST be finite and nonzero (not NaN or Infinity): unchecked */

fp_t t;

t = FREXP(x, &s->e); /* t in [1/B,1) */

for (s->n = 0; (s->n < (int)elementsof(s->f)) && (t != ZERO); s->n++)
{

float hi;

hi = (float)t;
t -= (fp_t)hi;
s->f[s->n] = hi;

}
}

The scaling from x to t is done first, so that the terms are representable in the smaller range (on most systems) of the
float data type. We make no effort to check for Infinity, NaN, or zero arguments, because they are assumed to be
handled separately. The SPLIT() function is not robust enough for general use, and is therefore declared static to
make it invisible outside the source file in which it is defined.

For IEEE 754 arithmetic, three terms suffice for the 64-bit and 80-bit types, five for the 128-bit type, and ten for
the 256-bit type, but our loop test allows early exit as soon as no bits are left. The loop is not entered at all for a zero
argument, so the sign of zero is lost: zero arguments are therefore excluded.

Because the loop limit is known at compile time for a given floating-point architecture and data type, we could
replace the entire function with macros that provide the split with inline code, such as this definition for double
arithmetic:

#if DBL_MANT_DIG <= 3 * FLT_MANT_DIG

#define SPLIT(s,x) \

13.28. Fused multiply-add without pair precision 397

do \
{ \

double t; \
float hi; \
t = frexp(x, &(s)->e); \
hi = (float)t; t -= (double)hi; (s)->f[0] = hi; \
hi = (float)t; t -= (double)hi; (s)->f[1] = hi; \
hi = (float)t; t -= (double)hi; (s)->f[2] = hi; \
(s)->n = 3; \

} while (0)

#endif /* DBL_MANT_DIG <= 3 * FLT_MANT_DIG */

The one-trip loop is necessary in C to allow the macro to be used as the true branch of an if–else statement. Al-
though we do not require that protection here, it is good practice to define statement blocks in macros that way.

The next task is writing a function for computing an exact sum. Here is a variant of our pair-precision sum given
by Boldo and Muller [BM05, BM11], enhanced with mandatory protection against higher intermediate precision:

static void
exact_add(double result[/* 2 */], double a, double b)
{ /* a + b == result[0] + result[1] == HI + LO EXACTLY */

/* Property: |LO| <= 0.5 * ulp(HI) */
volatile double c, d, err, err_a, err_b, sum;

sum = a + b; STORE(&sum);
d = sum - a; STORE(&d);
c = sum - d; STORE(&c);
err_a = a - c; STORE(&err_a);
err_b = b - d; STORE(&err_b);
err = err_a + err_b;
result[0] = sum;
result[1] = err;

}

The following fused multiply-add function is long, and contains several subtleties that we need to discuss. How-
ever, it is devoid of all knowledge of the bit layout of floating-point data. Except for some constants that define
floating-point limits, the code is also independent of floating-point data type, precision, and range. Because of its
length, we present it in pieces, as a semi-literate program.

We begin by handling the simple case where type casting, higher precision, extended exponent range, and care
for the halfway cases, do the job. As usual, we use generic types and uppercase macro wrappers for function names:

fp_t
FMA(fp_t x, fp_t y, fp_t z)
{

#if (2 * FP_T_MANT_DIG <= HP_T_MANT_DIG) && \
(2 * FP_T_MAX_EXP <= HP_T_MAX_EXP) && \
!defined(HAVE_BROKEN_LONG_FP_T)

return (hp_fma(x, y, z));

#else

Otherwise, we have the hard case that occupies the rest of the function body.
We handle NaN, Infinity, and zero arguments as described earlier in the final conditional block for the FMA()

function.
All arguments are now known to be finite and nonzero, but may be subnormal. The code must work properly

in all rounding modes, and be able to correctly handle the case of intermediate overflow with a finite normal result,

398 Chapter 13. Pair-precision arithmetic

such as in the call FMA(FP(2.0), FP_T_MAX, -FP_T_MAX). It must also handle the case of intermediate underflow
with a nonzero normal result, such as in the call FMA(FP(0.5), FP_T_MIN, -1.5 * FP_T_MIN).

We begin the final outer else block by splitting x and y, and scaling z with the scale factor from the split of the
product xy:

else
{

split_t sx, sy;
volatile fp_t z_scaled;

SPLIT(&sx, x);
SPLIT(&sy, y);
z_scaled = LDEXP(z, -(sx.e + sy.e));

The new variable z_scaled can overflow or underflow. If it overflows, the magnitude of the result may be
Infinity, but in a nondefault rounding mode, it may instead be the largest finite floating-point number. We therefore
check whether it is outside the range (-FP_T_MAX, FP_T_MAX), and if so, we compute the result as the sum of z and a
tiny number having the sign of xy. That ensures correct rounding in nondefault modes, and is acceptably accurate
because the product of the scaled x and y is nonzero and in the small interval [1/β2, 1):

if (QABS(z_scaled) >= FP_T_MAX)
{ /* |x * y| << |z|: result is sign(x * y)*tiny + z */

int nz;

z_scaled = FREXP(z, &nz);
z_scaled += COPYSIGN(ONE, x) * COPYSIGN(FP_T_MIN, y);
STORE(&z_scaled);
result = LDEXP(z_scaled, nz);

}

If z_scaled underflows, the result is just xy, rather than xy+ z, because the latter introduces two rounding errors,
instead of the single error permitted in the fused multiply-add operation. The underflowed value may be zero, or a
subnormal, or in nondefault rounding modes, the smallest representable normal magnitude with the sign of z:

else if (QABS(z_scaled) <= FP_T_MIN)
result = x * y; /* |x * y| >> |z|: allow 1 rounding */

Notice that we do not need to call ISSUBNORMAL(), because a simple range test does the job.
Most calls to FMA() reach the inner else block, which handles the case where all three scaled variables are away

from the underflow and overflow limits:

else /* normal case: z_scaled finite and nonzero */
{

fp_t err, pair[2], sum, txi;
int i, j, n;

err = ZERO;
sum = ZERO;

for (i = sx.n - 1; i >= 0; --i)
{

txi = sx.f[i];

for (j = sy.n - 1; j >= 0; --j)
{

EXACT_ADD(pair, txi * sy.f[j], sum);
err += pair[1];
sum = pair[0];

}
}

13.28. Fused multiply-add without pair precision 399

The nested loops run backwards so that the smallest products are computed first. The variable sum is a correctly
rounded approximation to the double sum, but the correction term, err, may have rounding errors from the direct
addition of pair[1]. Because there are only a few terms in the double sum (9 to 100, depending on the data type),
the final correction term may be in error by a few units in the last place. The probability of that error affecting the
final result is small, but if desired, we could reduce it substantially by using another EXACT_ADD() call to represent
the correction as a pair.

On completion of the loops, the scaled product xy is now accurately represented as sum + err, and it lies in
[1/β2, 1). We can now safely add z_scaled with EXACT_ADD(), form sum + err to get correct rounding behavior, and
then undo the scaling to get the final result:

EXACT_ADD(pair, sum, z_scaled);
err += pair[1];
sum = pair[0];
result = sum + err; /* only significant rounding */
n = sx.e + sy.e;
result = LDEXP(result, n);

Although it appears that we have completed the job, there is one final subtlety. If the result is subnormal after
scaling, then that action introduced an additional, and unwanted, rounding when low-order bits are lost in normal-
ization. We therefore check for that case, adjust the correction term by the scaling error, and update the final result
accordingly:

if (QABS(result) < FP_T_MIN)
{ /* subnormal result: adjust for scaling error */

double err_result, sum_plus_err;
volatile double err_sum_plus_err;

sum_plus_err = sum + err;
err_result = sum_plus_err - LDEXP(result, -n);
err_sum_plus_err = sum - sum_plus_err;
STORE(&err_sum_plus_err);
err_sum_plus_err += err;
result += LDEXP(err_sum_plus_err + err_result, n);

}
}

}

The rest of the code just needs to return the result computed in one of the if-statement branches:

return (result);

#endif /* (2 * FP_T_MANT_DIG < HP_T_MANT_DIG) && ... */

}

Extensive tests of float, double, and long double versions of that code against the fused multiply-add hardware
instructions on IA-64 have been done in all four IEEE 754 rounding modes, with multiple compilers and different
optimization levels. The tests include specially selected difficult arguments, arguments drawn from uniform distri-
butions, and arguments taken from logarithmic distributions covering the entire floating-point range. The results
show exact agreement in thousands of millions of tests.

Similar tests of the software against the 32-bit and 64-bit hardware instructions on PowerPC with GNU/LINUX
and MAC OS X find exact agreement.

Tests against the SOLARIS SPARC native software implementations of the fmaf(), fma(), and fmal() functions
show perfect agreement.

With one exception discussed next, tests on all of the modern operating systems and CPU architectures available
to this author against versions of the fused multiply-add functions implemented with multiple-precision arithmetic
(see Section 13.29 on page 401) are similarly successful.

400 Chapter 13. Pair-precision arithmetic

Unfortunately, tests on IA-32 systems with various operating systems show instances of one-ulp errors in the
default round-to-nearest mode, but not in other modes, for arguments and results well away from overflow and
underflow limits. Further investigation shows that the culprit is the double rounding that plagues architectures with
extended internal precision. Here is an example, simplified from one of the test reports, that shows the effect:

hoc80> proc show(mode, sum, err) \
hoc80> {
hoc80> status = fesetround(mode)
hoc80> println hexfp(sum + err)
hoc80> println hexfp(double(sum + err))
hoc80> println ""
hoc80> }

hoc80> sum = 0x1.0000_0000_0000_bp0

hoc80> err = 0x1.fffp-54

hoc80> show(FE_TONEAREST, sum, err)
+0x1.0000_0000_0000_b8p+0
+0x1.0000_0000_0000_cp+0

hoc80> show(FE_UPWARD, sum, err)
+0x1.0000_0000_0000_b8p+0
+0x1.0000_0000_0000_cp+0

hoc80> show(FE_DOWNWARD, sum, err)
+0x1.0000_0000_0000_b7fep+0
+0x1.0000_0000_0000_bp+0

hoc80> show(FE_TOWARDZERO, sum, err)
+0x1.0000_0000_0000_b7fep+0
+0x1.0000_0000_0000_bp+0

The result in the default to-nearest rounding disagrees in the last digit with an exact computation:

hoc128> show(FE_TONEAREST, sum, err)
+0x1.0000_0000_0000_b7ff_cp+0
+0x1.0000_0000_0000_bp+0

Results for that example in the other three rounding directions are identical in 80-bit and 128-bit arithmetic.
The first rounding in the 80-bit format comes in the initial addition, producing a result that is rounded upward,

and the second rounding on storage to a 64-bit result introduces another upward rounding that gives a wrong
answer.

Without precision control, it is difficult to prevent that unwanted double rounding. Here is how to introduce that
control in hoc:

hoc80> status = fesetprec(FE_DBLPREC)

hoc80> show(FE_TONEAREST, sum, err)
+0x1.0000_0000_0000_bp+0
+0x1.0000_0000_0000_bp+0

In our C code, we can wrap the final addition like this:

#if defined(FP_ARCH_IA32) && defined(HAVE_FP_T_DOUBLE)
{ /* final, and only significant, rounding */

int old_prec;

old_prec = fegetprec();

13.29. Fused multiply-add with multiple precision 401

(void)fesetprec(FE_DBLPREC);
result = sum + err;
(void)fesetprec(old_prec);

}
#else

result = sum + err;
#endif /* defined(FP_ARCH_IA32) && defined(HAVE_FP_T_DOUBLE) */

The conditional limits the variant to the 64-bit fma() on IA-32. All of the compilers tested on systems with IA-64 and
68000 CPUs generate 64-bit instructions, instead of 80-bit ones, for arithmetic with operands of data type double,
so no precision control is needed for them. Although the mathcw library provides the necessary, but nonstandard,
interface functions, they may be absent from native libraries on some platforms.

13.29 Fused multiply-add with multiple precision

Yet another way to implement a correct fused multiply-add operation is to resort to multiple-precision arithmetic.
Although several such libraries are available, GNU MP: The GNU Multiple Precision Arithmetic Library [GSR+04] is

particularly noteworthy, because it is highly optimized and well tested, and it sees wide use, including in the kernels
of versions 10 (2005) and later of the Maple symbolic-algebra system, and version 5 (2003) and later of Mathematica.

A second library, MPFR: The Multiple Precision Floating-Point Reliable Library [MPFR04, FHL+07], builds on the
first to provide correct rounding for binary arithmetic.

Those libraries are usable only on modern systems with IEEE 754 arithmetic, but are otherwise highly portable
and easy to build from source code. Recent distributions of GNU/LINUX for several CPU architectures include them
as native libraries, and gcc uses them internally for accurate compile-time conversions.

This author’s major extension of hoc was done before the mathcw library development, so hoc uses the MPFR li-
brary for its fused multiply-add functions when they are unavailable, or incorrectly implemented, in native libraries.
The code is relatively short, and with a support routine, looks like this for one of the functions:

#if defined(HAVE_GMP_H) && defined(HAVE_MPFR_H) && \
defined(HAVE_MPFR_RND_T)

#include <gmp.h>
#include <mpfr.h>

static mpfr_rnd_t
get_mpfr_rounding(void)
{

mpfr_rnd_t gmp_rounding_mode;

switch (fegetround())
{
case FE_DOWNWARD:

gmp_rounding_mode = GMP_RNDD;
break;

case FE_TOWARDZERO:
gmp_rounding_mode = GMP_RNDZ;
break;

case FE_UPWARD:
gmp_rounding_mode = GMP_RNDU;
break;

case FE_TONEAREST:
default:

gmp_rounding_mode = GMP_RNDN;

402 Chapter 13. Pair-precision arithmetic

break;
}

return (gmp_rounding_mode);
}

#if !defined(HAVE_USABLE_FMA)

#define MP (2 * DBL_MANT_DIG)

double
(fma)(double x, double y, double z)
{

mpfr_rnd_t gmp_rounding_mode;
static int first = 1;
static mpfr_t xx, yy, zz, rr;

if (first)
{

mpfr_init2(xx, MP);
mpfr_init2(yy, MP);
mpfr_init2(zz, MP);
mpfr_init2(rr, MP);
first = 0;

}

gmp_rounding_mode = get_mpfr_rounding();

(void)mpfr_set_d(xx, x, gmp_rounding_mode);
(void)mpfr_set_d(yy, y, gmp_rounding_mode);
(void)mpfr_set_d(zz, z, gmp_rounding_mode);

(void)mpfr_mul(rr, xx, yy, gmp_rounding_mode);
(void)mpfr_add(rr, rr, zz, gmp_rounding_mode);

return ((double)mpfr_get_d(rr, gmp_rounding_mode));
}

#endif /* !defined(HAVE_USABLE_FMA) */

#endif /* defined(HAVE_GMP_H) && defined(HAVE_MPFR_H) && ... */

On the first call to fma(), the if block creates and initializes four static data structures that are preserved across
calls. The call to the private function get_mpfr_rounding() returns the GMP rounding mode that matches the current
IEEE 754 rounding mode. The three arguments for the fused multiply-add operation are then converted to multiple-
precision format. Although the conversion calls include the rounding mode, it has no effect because both formats
are binary, and the target format has higher precision. Two further calls handle the multiply and add, and a final call
converts the multiple-precision result back to a double value. In those three calls, the rounding mode matters.

For decimal arithmetic at the higher precisions, the mathcw library implementation of the fused multiply-add
operation uses the IBM decNumber library, with code like this for one of them:

#elif defined(HAVE_FP_T_DECIMAL_LONG_DOUBLE)

fp_t result;
decContext set;
decNumber dn_result, dn_x, dn_y, dn_z;
decimal128 d128_result, d128_x, d128_y, d128_z;

13.30. Fused multiply-add, Boldo/Melquiond style 403

decContextDefault(&set, DEC_INIT_DECIMAL128);
set.digits *= 2;

host_to_ieee_128(x, &d128_x);
host_to_ieee_128(y, &d128_y);
host_to_ieee_128(z, &d128_z);

(void)decimal128ToNumber(&d128_x, &dn_x);
(void)decimal128ToNumber(&d128_y, &dn_y);
(void)decimal128ToNumber(&d128_z, &dn_z);

(void)decNumberMultiply(&dn_result, &dn_x, &dn_y, &set);
(void)decNumberAdd(&dn_result, &dn_result, &dn_z, &set);

set.digits /= 2;
(void)decimal128FromNumber(&d128_result, &dn_result, &set);

ieee_to_host_128(d128_result, &result);

return (result);

That code does not handle decimal rounding modes, because they are not yet supported in the early implementations
of decimal arithmetic available during the development of the mathcw library.

Newer versions of the decNumber library provide optimized FMA routines that operate directly on the 64-bit and
128-bit decimal data types. Timing tests show that they run about twice as fast as the older code with its multiple
format conversions. With the new routines, the last code block simplifies to just two function calls:

#elif defined(HAVE_FP_T_DECIMAL_LONG_DOUBLE) && \
defined(HAVE_DECNUMBER_FMA)

decContext set;

decContextDefault(&set, DEC_INIT_DECIMAL128);
(void)decQuadFMA(&result, &x, &y, &z, &set);

return (result);

13.30 Fused multiply-add, Boldo/Melquiond style

In 2004, Sylvie Boldo and Guillaume Melquiond reported an investigation of a never-before-implemented rounding
mode: round to odd [BM04]. They used an automatic proof checker to validate their work, and showed that such
a mode could be used to eliminate the nasty problem of double rounding from extended CPU formats to shorter
storage formats. That discovery is largely of theoretical interest, because the hardware in the huge installed base of
systems that provide 32-bit, 64-bit, and 80-bit formats cannot be changed.

However, those authors later formally proved [BM08, BM11] that the new rounding mode leads to a compact and
fast algorithm for a correct fused multiply-add in a binary base, provided that the product and sum do not overflow
or underflow. Their pseudocode for fma(x, y, z) is short, just four lines:

(uhi, ulo) ← ExactMult(x, y),
(thi, tlo) ← ExactAdd(z, uhi),

v ← RO(tlo + ulo), round to odd,

result ← RN(thi + v), round to nearest, with ties to even.

Any algorithm that computes an exact product or sum as a pair-precision result can be used in the first two lines.

404 Chapter 13. Pair-precision arithmetic

The unusual rounding operation can be implemented by this pseudocode:

d ← RD(x + y), round down (to −∞),

u ← RU(x + y), round up (to +∞),

e ← RN(d + u), round to nearest, with ties to even,

f ← e × 0.5, exact in binary base,

g ← RN(u - f),
result ← RN(g + d), completion of RO(x + y).

Turning their pseudocode into a practical algorithm in C is straightforward, and implemented in the file bm-fma.c,
and its companions for other IEEE 754 binary-format precisions. Here, we show only the essential parts.

The first task is to supply the split operation needed for the exact multiplication:

#define HI result[0]
#define LO result[1]

static void
safe_split(fp_t result[/* 2 */], fp_t x)
{

volatile fp_t p, q;

p = one_plus_split * x;
STORE(&p);
q = x - p;
STORE(&p);
HI = p + q;
LO = x - HI;

}

static void
split(fp_t result[/* 2 */], fp_t x)
{

if (QABS(x) > split_overflow_limit)
{

fp_t f, s;
int n;

f = FREXP(x, &n);
safe_split(result, f);
s = LDEXP(ONE, n);
HI *= s;
LO *= s;

}
else

safe_split(result, x);
}

The exact-multiplication function looks like this:

static void
exact_mul(fp_t result[/* 2 */], fp_t x, fp_t y)
{

fp_t p, q, r, rx[2], ry[2];

split(rx, x);
split(ry, y);

13.30. Fused multiply-add, Boldo/Melquiond style 405

/* Form exact (when base is 2) x * y as p + q + r */

p = rx[0] * ry[0];
q = rx[1] * ry[0] + rx[0] * ry[1];
r = rx[1] * ry[1];

HI = p + q;
LO = p - HI;
LO += q;
LO += r;

}

One possibility for the exact-add function is given earlier in Section 13.10 on page 359, and another in Sec-
tion 13.28 on page 397, so we do not repeat their code here.

Implementation of round-to-odd addition requires C99 access to IEEE 754 rounding-mode control:

static fp_t
round_odd_sum(fp_t x, fp_t y)
{

volatile fp_t d, e, f, g, result, u;

#pragma FENV_ACCESS ON

(void)fesetround(FE_DOWNWARD);
d = x + y; /* RD(x + y) */
STORE(&d);

(void)fesetround(FE_UPWARD);
u = x + y; /* RU(x + y) */
STORE(&u);

(void)fesetround(FE_TONEAREST);
e = d + u; /* RN(d + u) */
STORE(&e);

#pragma FENV_ACCESS OFF

f = e * FP(0.5); /* exact because beta == 2 */
g = u - f; /* RN(u - f) */
STORE(&g);
result = g + d; /* RN(g + d) */
STORE(&result);

return (result);
}

On return, the function leaves the rounding mode in the IEEE 754 default of round-to-nearest. To eliminate that
assumption, just two more lines of code could save and restore the current rounding mode.

A more cautious implementation, also included in bm-fma.c, but not shown here, checks the return codes from
fesetround(), because a failing return code invalidates the algorithm.

The final fused multiply-add function matches the pseudocode closely:

fp_t
BM_FMA(fp_t x, fp_t y, fp_t z)
{

fp_t t[2], u[2], v, result;

exact_mul(u, x, y);

406 Chapter 13. Pair-precision arithmetic

exact_add(t, z, u[0]);
v = round_odd_sum(u[1], t[1]);
result = t[0] + v;

return (result);
}

Although we implemented and tested the Boldo/Melquiond algorithm, we have not used it in the mathcw library
for fma(x, y, z) because the algorithm applies only in IEEE 754 arithmetic when β = 2, round-to-nearest is in effect
at entry, and C99 access to rounding control is available. The latter constraint is unlikely to be satisfied for software
implementations of the 128-bit and 256-bit formats. The algorithm also needs to be extended to scale sums and
products away from the overflow and underflow regions. Nevertheless, we introduced it here because it is novel
and unexpected, and likely to encourage further research into fast ways to compute the fused multiply-add operation
in software.

Timing tests on several CPU platforms show that BM_FMA() is about 35% slower than an incorrect version that
implements round_odd_sum(x,y) as RN(x,y). That difference could be entirely eliminated if floating-point hardware
supplied the new rounding mode. Regrettably, the discovery of the utility of round-to-odd came too late for its incor-
poration in the revised IEEE 754-2008 Standard. It would then have made sense also to supply the companion, but
currently nonexistent, modes round-to-even and round-to-nearest-ties-to-odd.

13.31 Error correction in fused multiply-add

Just as it is possible to compute the error in floating-point addition or multiplication, we can recover the error made
in rounding an infinite-precision fused multiply-add operation to working precision. However, the code to do so
is not obvious, and little known, so it is worth recording here. The algorithm may have first been published in the
previously cited work of Boldo and Muller [BM05, BM11]. We enhance it with protection against higher intermediate
precision:

static fp_t
FMA_AND_ERR(fp_t result[/* 2 */], fp_t x, fp_t y, fp_t z)
{ /* x * y + z == r1 + r2 + r3 == FMA + HI + LO

** r1 is FMA value, result[0] = r2, result[1] = r3
** FMA == fma(x, y, z)
** |HI + LO| <= 0.5 * ulp(FMA)
** |LO| <= 0.5 * ulp(|HI|)
*/

fp_t alpha[2], beta[2], r1, u[2];
volatile fp_t g;

r1 = FMA(x, y, z);
EXACT_MUL(u, x, y);
EXACT_ADD(alpha, z, u[1]);
EXACT_ADD(beta, u[0], alpha[0]);
g = beta[0] - r1;
STORE(&g);
g += beta[1];
STORE(&g);
EXACT_ADD(result, g, alpha[1]);

return (r1);
}

The code requires this private helper function for recovering the error in multiplication:

static void
EXACT_MUL(double result[/* 2 */], double a, double b)

13.32. Retrospective on pair-precision arithmetic 407

{ /* a * b == result[0] + result[1] == HI + LO EXACTLY */
/* Property: |LO| <= 0.5 * ulp(HI) */
result[0] = a * b;
result[1] = FMA(a, b, -HI);

}

The helper function is equivalent to the mathcw library FMUL() family, except that its implementation here assumes
that a fused multiply-add function is available.

The mathcw library does not provide public functions that implement the FMA_AND_ERR() family.
A hoc translation of our C code is straightforward, if we follow our convention of returning two-part results in

global variables. We can exercise it with the example from Section 13.27 on page 393:

hocd32> load("fma_and_err"}
hocd32> x = 15; y = 3733333; z = 1e-9
hocd32> fma_and_err(x, y, z); __HI__; __LO__

5.6e+07
-5
1e-09

The output is 56 000 000 − 5 + 10−9 = 55 999 995.000 000 001, in exact agreement with x × y + z. Further tests with
smaller z values show that the function correctly handles such values down to the smallest possible, MINSUBNORMAL.

13.32 Retrospective on pair-precision arithmetic

Near the beginning of this chapter, in Section 13.1 on page 354, we noted several limitations of pair-precision arith-
metic. Now, having seen the internal code for a score of routines, we can better judge the difficulty of programming
with pair-precision arithmetic. Here are several points to consider:

� Dekker’s original five primitives (add, subtract, multiply, divide, and square root) are inadequate for practi-
cal programming. We found a need to introduce fifteen more routines, and we still have not provided any
additional support for I/O of pair-precision data.

� Although the tables and discussion in Section 13.20 on page 379 show that the routines are on average correctly
rounded, they are not always so. It would be better to have implementations that can be guaranteed to be
always correctly rounded, because that facilitates error analysis and prediction. Achieving correct rounding
is difficult, because it requires attention to many subtle details at the bit level [Omo94, Chapter 6], [EL04a,
Chapter 8], [MBdD+10, Chapters 8 and 10], [BZ11, Chapter 3], as IEEE 754 hardware does.

� Because the six core operations (Dekker’s five, plus cube root) are not “faithful” (having at most a one-ulp
error), we cannot use them to define arithmetic of even higher precision, using pairs of pairs, triples of pairs,
and so on. The cited works of Hida, Li, and Bailey [HLB00], and of Priest [Pri91], point the way to extensions
to higher precision. However, it might be better to use a portable general multiple-precision package, such as
GNU MP: The GNU Multiple Precision Arithmetic Library [GSR+04], or its extension, MPFR: The Multiple Preci-
sion Floating-Point Reliable Library [MPFR04, FHL+07], because that has the significant advantage of offering
dynamic choice of precision, and a much wider exponent range.

� For values within 1/β2 of the overflow limit, we had to change the splitting algorithm to avoid production of
Infinity and NaN, and thereby lost the property that allows the product of two numbers to be represented by
an exact sum of four exact products of pairs.

� For magnitudes below βt times the smallest normal number, the split produces a low component that is sub-
normal or zero. In the worst case, that halves the expected precision.

� The exponent range of pair-precision arithmetic is the same as that of the base type, and that range is often
grossly inadequate for the higher precision. The exponent sizes allocated for the four IEEE 754 formats grow
by about four bits for each doubling of precision, suggesting that the exponent range should increase by at
least a factor of 16. Current packages for decimal arithmetic and multiple-precision arithmetic have even wider
exponent ranges, because in practice, the exponent range can be as much a barrier to increasing accuracy as
the precision is.

408 Chapter 13. Pair-precision arithmetic

� Only two elementary functions, square root and cube root, are provided in this chapter. There are several addi-
tional elementary functions for pair-precision arithmetic in the mathcw library, but we delay their presentation
until algorithms for their computation have been described later; see Chapter 23 on page 777.

� Every nontrivial numerical constant must be represented in pair precision in such a way that the high part is
exactly representable. That makes each such constant dependent on the host floating-point system, possibly
limiting portability. For example, we might require code like this to record the value of π for pair precision on
a system with 64-bit IEEE 754 arithmetic:

double_pair PI;
pset(PI, 28296951008113760.0 / 9007199254740992.0,

9935515200043022.0 / (9007199254740992.0 * 9007199254740992.0));

The peculiar constant that occurs repeatedly in the denominators is 253. Expressions in rational form with
exactly representable numerators and denominators, where the denominators are powers of the base, are es-
sential to guarantee exact conversion.

To compute the numerators and denominators, we need access to arithmetic with higher than pair precision.
For example, in Maple, we can calculate them like this:

% maple
> Digits := 40;

> 2**53;
9007199254740992

> pi_high := round((Pi/4) * 2**53) / ((1/4) * 2**53):

> pi_low := round((Pi - pi_high) * 2**106) / 2**106:

> pi_high * 2**53;
28296951008113760

> pi_low * 2**106;
9935515200043022

Notice that we had to use the value of π/4 in the computation of the high part to ensure that we get an exactly
representable numerator. The file split.map in the mathcw package maple subdirectory contains a Maple
function to simplify the task: the call split(53,Pi) reports high and low components in rational integer form.

A similar calculation with the 128-bit version of hoc looks like this:

% hoc128
hoc128> pi_high = round((PI/4) * 2**53) / ((1/4) * 2**53)

hoc128> pi_low = round((PI - pi_high) * 2**106) / 2**106

hoc128> 2**53
9007199254740992

hoc128> pi_high * 2**53
28296951008113760

hoc128> pi_low * 2**106
9935515200043022

With a bit more difficulty, we can coax the answers out of the standard UNIX multiple-precision calculator, bc,
using the relation atan(1) = π/4, and checking the relative error of the pair sum:

13.32. Retrospective on pair-precision arithmetic 409

% bc -l
scale = 40

p = 4 * a(1)

p * 2^53
28296951008113761.1030637736600980854978913107503539552256

h = 28296951008113760 / 2^53

l = p - h

l * 2^106
9935515200043021.7570353844131295999164978322961210540032

l = 9935515200043022 / 2^106

(h + l - p) / p
.0000000000000000000000000000000009532649

Variables and built-in functions in bc are limited to a single letter; a(x) is the arc tangent of x. The calculator
lacks rounding functions, so we have to do that job manually.

If a C99 compiler is available, we can express the constants in hexadecimal floating point, and check the relative
accuracy of their sum:

hoc128> hexfp(pi_high)
+0x1.921fb54442d18p+1

hoc128> hexfp(pi_low)
+0x1.1a62633145c07p-53

hoc128> (+0x1.921fb54442d18p+1 + +0x1.1a62633145c07p-53 - PI) / PI
9.80868066233368547287978295469524658e-34

The pair-precision initialization code is then shorter, but probably equally puzzling to a human reader:

pset(PI, +0x1.921fb54442d18p+1, +0x1.1a62633145c07p-53);

If there are lots of constants to express in pair precision, splitting them into high and low parts is tedious
and error prone. If the constants are not sensibly named, the reader cannot easily tell from their rational
representation in pair precision what they are supposed to be, and whether they are correct or not.

The alternative to that messy specification of pair-precision floating-point constants is accurate run-time con-
version from lengthy hexadecimal and decimal representations. That is what most existing packages for
higher-precision arithmetic provide, and our pair-precision primitives should clearly be augmented to offer
something similar. Programming such a conversion routine is a nontrivial task, and made even more diffi-
cult by the irregular rounding-error behavior of pair-precision arithmetic. We show a partial solution to that
problem in Section 23.4 on page 788.

� Without operator overloading, coding with pair-precision arithmetic routines, or any other multiple-precision
package, is mind numbing.

� Most seriously, as the algorithms for at least divide, square root, and cube root show, correct handling of the
programming of arithmetic with high and low parts is difficult. Subtle issues of component ordering, and
sometimes-unwanted higher intermediate precision, make programming mistakes likely. Testing in multiple
environments, including systems that support higher intermediate precision, and systems that do not, and
using a variety of compilers and optimization options, are essential.

410 Chapter 13. Pair-precision arithmetic

The last point suggests that large-scale programming with pair-precision arithmetic routines is unwise, unless
the details of the arithmetic can be largely abstracted and hidden away in suitable primitives. The vector sum and
vector dot-product routines, PSUM() and PDOT(), are good examples of how clear and easily understandable code
can be written using pair-precision arithmetic primitives.

A major challenge in software design is finding the right set of library primitives. The fused multiply-add func-
tion, fma(), was introduced in C99 almost a decade after it became available in hardware on the IBM POWER ar-
chitecture. That operation has since been shown to be of great value in diverse numerical software; see Markstein’s
book [Mar00] for many examples. The pair-precision routines PSUM2(), PMUL2(), PSPLIT(), PSUM(), and PDOT(), are
in that category as well, especially if the internals of the latter two can be replaced by code that does the job exactly.

Elsewhere in the mathcw library code, we need pair-precision arithmetic in only a few places, and the required
code is clean and simple enough that we can have confidence in its correctness.

If you need to extend existing software in C or C++ to use multiple-precision arithmetic, one promising approach
is automated conversion to operator-overloaded C++ [SC08]; such conversions have been successfully applied to
two large mathematical software libraries.

14 Power function

TO UNDERCREST YOUR GOOD ADDITION

TO THE FAIRNESS OF MY POWER.

— SHAKESPEARE’S Coriolanus (1608).

The 1999 ISO C Standard describes the behavior of the power function like this:

7.12.7.4 The pow functions

Synopsis

#include <math.h>
double pow (double x, double y);
float powf (float x, float y);
long double powl (long double x, long double y);

Description
The pow functions compute x raised to the power y. A domain error occurs if x is finite and negative and y is finite and not

an integer value. A domain error may occur if x is zero and y is less than or equal to zero. A range error may occur.

Returns
The pow functions return xy.

ISO Standards for other programming languages, such as Fortran and Pascal, provide even less information about
the behavior of that function.

Fortran and a few other programming languages use an operator notation for the power function: x**y. Some
symbolic-algebra systems, and the TEX typesetting system, use the caret operator instead: x^y. However, double
asterisk and caret are assigned other meanings in the C-language family, so those languages have always used a
function call for the power function. Programmers need not be concerned about the relative efficiency of inline
operators versus calls to external functions: hardware does not implement the power function as a single instruction.

A few programming languages provide a restricted version of the power function that only permits powers of
positive or negative whole numbers. That is unfortunate, because the power function is so common in numerical
computation that users of those languages are then forced to implement their own versions, and as we shall see, their
results are likely to be poor.

14.1 Why the power function is hard to compute

The power function has a simple mathematical definition:

xy = exp(y ln(x)).

The exponential and logarithm functions are available in standard mathematical software libraries, so one might
erroneously assume that the power function should be a simple one-line routine. As often happens, apparent math-
ematical simplicity obscures substantial computational difficulty. Cody and Waite [CW80, Chapter 7] devote the
longest chapter of their book to the power function, and the code that results from their algorithm is by far the most
complex of the routines whose implementations they describe. In the mathcw library, the code in the algorithm files
for the power function, powx.h and pxyx.h, is about six times longer than that for most other functions, with about a
dozen instances of differing code for decimal and nondecimal floating-point systems.

The Cody/Waite algorithm for the power function contains more computational subtleties than any other in their
book, and unfortunately, their description of it sometimes leaves out critical details. Worse, the careful initial imple-
mentation of their algorithm in the mathcw library revealed several errors in their presentation (see Appendix E),

© Springer International Publishing AG 2017
N.H.F. Beebe, The Mathematical-Function Computation
Handbook, DOI 10.1007/978-3-319-64110-2_14

411

412 Chapter 14. Power function

and uncovered unnecessary numerical deficiencies. The treatment in this book provides the additional detail that
this important function deserves.

Although the ELEFUNT tests for most of the other elementary functions that are discussed in Chapter 24 on
page 811 show worst-case losses of one or two bits, the long double version of the power function loses up to eight
bits when computed by the original Cody/Waite algorithm. That is unacceptably high, and we show later how to
do much better.

Why is the computation of the power function so hard? The answer lies in the error-magnification factor that we
discussed in Section 4.1 on page 61:

d(xy)/dx = yxy−1, derivative,

δ(xy)/(xy) = y(δx/x), error magnification.

That says that the relative error in the computed power function value is the relative error in x magnified by y.
If we use the mathematical definition to compute the power function, we find

z = exp(y ln(x)),
w = y ln(x),

dz/dw = exp(w), derivative,

δw = δz/ exp(w)

= δz/z, error magnification.

The last result means that the relative error in the computed power function value is approximately the absolute error
in the product of y and ln(x). Thus, when either x or |y| is large, the relative error in the power function is large.

The only way to decrease the relative error in the power function is either to keep w small, or to increase its
precision. The former is impossible, because we require w over many orders of magnitude between the underflow
and overflow limits of exp(w).

To show the severity of the problem, from Table 4.2 on page 65 and Table D.1 on page 929, we observe that in
the long double versions of the power function in IEEE 754 arithmetic, the range of w is about [−11 433,+11 356],
and in the companion type for decimal arithmetic, the range is about [−14 145,+14 150]. For a 256-bit decimal
type, w ranges over approximately [−3 621 810,+3 621 656]. Thus, direct computation of the power function via the
exponential and logarithm functions can lose up to five decimal digits in the 128-bit formats, and seven in the 256-bit
formats.

We conclude that higher-precision computation of the power function is essential if we are to obtain a low relative
error. Cody and Waite show that most of that need can be met without access to a data type of higher precision
by careful computation of critical steps with variables consisting of sums of exact high- and approximate low-order
parts. Nevertheless, there are limits to what can be achieved that way, as the ELEFUNT test results show.

Because we are interested in accuracy as well as reliability and portability of the mathcw library code, we de-
viate from the Cody/Waite algorithm when it is necessary to do so to improve accuracy. In particular, our power
function is one of the few in the library where a higher-precision data type is used internally for small parts of the
computation.

Markstein’s algorithm for the power function [Mar00, Chapter 12] uses the formula with the exponential and log-
arithm directly, but exploits features of the IA-64 architecture to compute both of those functions in higher precision
in software, with just enough extra bits to obtain results that are almost always correctly rounded. That approach is
not easily employed in portable code.

14.2 Special cases for the power function

The mathematical definition of the power function does not apply when x is zero or negative, because in real arith-
metic, the logarithm is undefined for those cases. However, it is perfectly reasonable to raise a negative value to
an integer power, and the ISO C Standards require support for that case. Historical Fortran Standards and Fortran
implementations consulted during this work are silent on the issue of powers of negative x.

In IEEE 754 arithmetic, we know that special handling is almost always required for Infinity, NaN, and signed
zero arguments, and sometimes, also for subnormal arguments. However, for the power function, there are addi-
tional cases that it is desirable to treat separately, either for speed, or for accuracy, or to ensure important mathe-
matical identities, or even to conform to the sometimes peculiar requirements of C99. We summarize more than two

14.2. Special cases for the power function 413

Table 14.1: Special cases in the power function, in the order in which they must be tested for. Nested simple if
statements reduce the number of outermost tests compared to code using complex Boolean expressions implied by
the conditions at the right.
It should be noted that most existing implementations of the power function in various programming languages
handle only a subset of those special cases, with the result that the functions lose accuracy unnecessarily, or produce
computational or mathematical anomalies.

Input Output Condition
xy NaN either x or y is a NaN (exceptions below)

(−∞)y −0 y < 0 and y is an odd whole number
(+∞)y +0 y < 0
(±∞)y +1 y = ±0
(−∞)y −∞ y > 0 and y is an odd whole number
(−∞)y +∞ y > 0
(+∞)y +∞ y > 0

x+∞ +1 |x| = 1
x+∞ +∞ |x| > 1
x+∞ +0 |x| < 1
x−∞ +1 |x| = 1
x−∞ +0 |x| > 1
x−∞ +∞ |x| < 1
x±0 +1 all x, including ±0 and NaN

(+1)y +1 all y, including NaN
(−1)y −1 y is an odd whole number
(−1)y +1 y is an even whole number
(−1)y NaN y is not a whole number
(−0)y −0 y > 0 and y is an odd whole number
(±0)y +0 y > 0
(−0)y −∞ y < 0 and y is an odd whole number
(±0)y +∞ y < 0
x1/2 sqrt(x) all finite or infinite x > 0

x−1/2 rsqrt(x) all finite or infinite x > 0
(±β)y exact β is base and y is a whole number

xy x × x × · · · × x y > 0 and y is a limited whole number
xy 1/(x × x × · · · × x) y < 0 and y is a limited whole number

(−|x|)y −(|x|y) y is an odd whole number
(−|x|)y +(|x|y) y is an even whole number
(−|x|)y NaN y is not a whole number

dozen of them in Table 14.1 and Table 14.2 on the next page, and also note a detailed study of the special cases that
was published after this book was completed [SF16].

Whenever the result is a NaN, the code must also set a domain error. If the result is ±∞ (or the signed largest
representable magnitude when infinities are not supported) and the arguments are finite, the code must also set a
range error. However, a range error is not set if the result is ±∞ and either argument is itself an infinity. If the result
underflows, the code must set the underflow and inexact flags, which is most easily done by returning the run-time
square of a tiny number, such as the smallest nonzero normal floating-point number.

The handling of 00 is the most hotly debated special case, and although it is mathematically undefined, and thus
should produce a NaN, reasonable arguments have been published for other return values. However, all of the many
C implementations tested by this author return 00 = 1, so our code does as well. The C89 Standard does not discuss
that case, but an appendix in the C99 Standard says that pow(x,0) must return 1 for any x, including a NaN. C99
also requires a return value of +1 for 1NaN. Those two requirements are indefensible in this author’s view, because
NaNs should propagate in computations, and the code would be simpler, and easier for humans to understand, if it
could return a NaN if either argument is a NaN. Nevertheless, our code follows C99, but notice that the similar case
of (−1)NaN produces a NaN.

Special handling for x = ±0, x = ±1, and x = ±β is important because the results have a simple form that can be
computed quickly, either by direct assignment, or by calling a function in the ldexp() family. Novice programmers
are likely to call the power function for common factors like (−1)n, 2n, and 10n. Most implementations of the

414 Chapter 14. Power function

Table 14.2: More on special cases in the power function. Shaded entries indicate abnormalities required by C99.
Except for those entries, the return value for a NaN argument is the second argument if it is a NaN, and otherwise,
is the first argument.

x \ y −0 +0 −1 +1 −∞ +∞ −QNaN +QNaN −SNaN +SNaN
−0 +1 +1 −∞ −0 +∞ +0 −QNaN +QNaN −SNaN +SNaN
+0 +1 +1 +∞ +0 +∞ +0 −QNaN +QNaN −SNaN +SNaN
−1 +1 +1 −1 −1 +1 +1 −QNaN +QNaN −SNaN +SNaN
+1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1
−∞ +1 +1 −0 −∞ +0 +∞ −QNaN +QNaN −SNaN +SNaN
+∞ +1 +1 +0 +∞ +0 +∞ −QNaN +QNaN −SNaN +SNaN

−QNaN +1 +1 −QNaN −QNaN −QNaN −QNaN −QNaN +QNaN −SNaN +SNaN
+QNaN +1 +1 +QNaN +QNaN +QNaN +QNaN −QNaN +QNaN −SNaN +SNaN
−SNaN +1 +1 −SNaN −SNaN −SNaN −SNaN −QNaN +QNaN −SNaN +SNaN
+SNaN +1 +1 +SNaN +SNaN +SNaN +SNaN −QNaN +QNaN −SNaN +SNaN

power function do not provide special handling for those cases, with the unexpected result that exactly representable
powers can be incorrect by a few ulps. For reasons discussed later in Section 14.6 on page 423, the original Cody/
Waite algorithm has that defect when x = 1 or x = β.

The cases of y = ± 1
2 are diverted to sqrt(x) and rsqrt(x), respectively, because their implementations in the

mathcw library guarantee always, or almost-always, correctly rounded results, and are faster than the general power-
function algorithm.

We treat integer powers specially, as described in the next two sections.
The additional special-case handling that we provide compared to other implementations of the power function

adds a bit of overhead on each call, but it is modest compared to the work involved in the rest of the computation,
and its significant benefits outweigh the small cost of extra argument checks.

14.3 Integer powers

Powers that are small integers are worth special treatment: they are common, there are fast ways to compute them,
and we can produce results that are almost always correctly rounded. Base conversion for input and output needs
exact powers and the functions described in this section provide a solution that does not require large tables of
precomputed powers.

For maximum accuracy, we handle negative powers by first computing the positive power, and then taking the
reciprocal of the result. That introduces only a single extra rounding error, but does mean that x|n| can overflow
or underflow prematurely even though the reciprocal x−|n| is representable. In IEEE 754 arithmetic, reciprocals of
numbers near the overflow limit are subnormal, and thus lose precision, or might even be flushed to zero. Reciprocals
of values near the underflow limit are normal, and pose no problems. The ranges of some older floating-point designs
are less symmetrical; see in particular Appendix H.1 on page 951.

We can avoid the issues of premature underflow and overflow by computing a negative power as (1/x)|n|, intro-
ducing an error in 1/x that is magnified by |n| in the final result. That error can be made negligible by computing
the reciprocal and its powers in higher precision. In IEEE 754 arithmetic, only premature underflow is of concern in
the power computation, and we can handle its rare occurrence by checking for a zero result, and then redoing the
computation with the reciprocal.

The obvious way to compute xn as a product of n values can easily be improved on by repeated squaring. For
example, to find x16, compute x2 as x × x, square that to get x4, square again to produce x8, and square once more to
arrive at the final answer with just four multiplications instead of 15. In general, xn can be computed that way with
just ceil(log2 n) multiplications.

In order to program that algorithm, we need to be able to decompose n into a sum of powers of two. For example,
25 = 24 + 23 + 20 = 16 + 8 + 1, so x25 = x16 × x8 × x needs six multiplications if we store the intermediate powers.
The decomposition into powers of two is easy when we recall that the binary representation of n supplies the answer.

14.3. Integer powers 415

For our example, 2510 = 11 0012, and the 1-bits select the required power of two. We only need to store two values
if we loop over the bits of n from right to left: one value records the developing result, and the other holds x2k

at bit
position k = 0, 1, 2, . . . , counting from the right.

Although we could do the bit extraction by shifting a one-bit mask left on each iteration, AND’ing it with n, and
testing for a nonzero result, doing so requires a loop count equal to the number of bits in a word. A better approach
is to abandon the mask, and instead, test the rightmost (low-order) bit of n, shift n one bit to the right, and exit the
loop as soon as that shift produces a zero.

Here is the integer-power implementation in hoc code:

func ipow(x, n) \
{ # return x**n, for integer n

v = 1
k = fabs(int(n))
xpow = x

while (k > 0) \
{

if (k & 1) v *= xpow

k >>= 1

if (k > 0) xpow *= xpow
}

if (n < 0) \
{

v = 1 / v

if (v == 0) v = ipow(1 / x, -n)
}

return (v)
}

The total number of multiplications is at least ceil(log2 n), and at most 2 ceil(log2 n) − 1. The minimal count
happens when n is a power of two, and thus, has only a single nonzero bit. The maximal count is reached for n of
the form 2m − 1, which has m nonzero bits.

The check for a positive k value before the final squaring in the loop adds to the cost, because it is executed on
every iteration, and saves at most one multiplication for the entire loop. However, it prevents premature setting of
the overflow or underflow exception flags in IEEE 754 arithmetic.

Zero arguments are handled by defining 00 ≡ 1, which is what our function produces. There is no consensus
among numerical programmers for what should be done for that special case. Our choice is simple to explain, needs
no extra code to check for zero arguments, and conforms to C99 requirements.

Negative values of x need no special treatment, because the power operation for integer exponents involves only
multiplications, not logarithms.

If underflow or overflow happens, the function result is subnormal, zero, or Infinity, as expected.
In the rare case where 1/v underflows to zero for a negative power, we recursively recompute the power as

(1/x)|n|, sacrificing some accuracy to possibly obtain a tiny nonzero result.
When the power is an integer type in two’s-complement arithmetic, negation of the most negative integer pro-

duces that number, so a bit more code is needed to check for that case in the handling of negative powers. When x is
near 1, such large powers may well be finite.

No checks for Infinity or NaN arguments are needed, because any such arguments simply propagate to the
returned function value, as expected. However, our handling of zero powers means that we also define ±∞0 ≡ 1,
and ±NaN0 ≡ 1. That decision could be controversial, but it is easy for users to remember the design choice that
x0 ≡ 1 for all possible floating-point values of x. That practice agrees with C99, but conflicts with the general rule
that NaNs should always propagate.

416 Chapter 14. Power function

The binary-decomposition-and-squaring algorithm is reasonably easy to program, and keeps the multiplication
count low. However, it is not always optimal, and extensive mathematical analysis of integer-power computation
[Knu97, Section 4.6.3] show that it is sometimes possible to do better. The first case where that is so is x15. The binary
decomposition computes that power as x8 × x4 × x2 × x with six multiplications, but the result can be obtained
with only five multiplications from x3 = x × x × x, x6 = (x3)2, and x15 = x6 × x6 × x3. The cited reference gives a
minimal-power table that shows how any power up to n = 100 can be computed with at most nine multiplications.

For higher speed and inline loop-free computation, we can use a switch statement to quickly select particular
cases from the minimal power table, with code that looks like this:

switch ((n < 0) ? -n : n)
{

/* cases 0 to 14 omitted */

case 15:
xxx = x * x * x;
r = xxx * xxx;
r *= r * xxx;
break;

/* cases 16 to 100, and default, omitted */

}

Examination of the assembly-language code generated by optimizing compilers on several architectures shows
that the switch statement uses an indirect branch through a table of addresses to reach the code for the selected
case, and the intermediate variables are stored in registers. Each case code block consists exclusively of multiply
instructions, followed by a single branch instruction to break out of the switch statement.

In order to guarantee correctly rounded integer powers, we need to solve the problem of accumulation of round-
ing errors. As long as xn is exactly representable in working precision, the computation is exact, but that is only
possible when both x and n are small. For example, in IEEE 754 64-bit arithmetic, the powers 253, 333, 426, 522, . . . ,
2910, . . . , 1007, . . . , 10005, . . . , 10 0003, . . . are exactly representable.

Extensive numerical experiments with 108 random arguments in all four rounding modes of IEEE 754 arithmetic
show that at most five multiplications can be done in working precision before the computed result sometimes differs
from the exactly rounded power. When a floating-point type of higher precision is available, we use variables of that
type for the product accumulation. Otherwise, a preprocessor conditional disables the inline cases that require more
than five multiplications, reducing the number of cases from 101 to 22.

For the application of the integer-power function to base conversion, traditional code uses lookup in a table of
correctly rounded powers of ten when the exponent range is small, as was the case in most historical architectures.
However, the wider exponent range of the binary IEEE 754 80-bit and 128-bit formats would need nearly 10 000
table entries, and the future 256-bit format, more than 630 000. One solution is to store a small table of powers of
52k

or 102k
. Just 13 table entries suffice for the 128-bit format, and only 18 for the 256-bit format, and then 10n can

then be computed from products of table entries with a procedure similar to the code in the sample ipow() function.
Unfortunately, numerical tests show that a few powers of ten with values near the underflow and overflow limits
have errors larger than 1

2 ulp, and thus fail to be correctly rounded. That happens even in a version of the code where
the table entries are split into pairs of exact high and accurate low parts.

The table approach is of no use for computing integer powers of general x, so the general solution that we adopt
is to use the code from the ipow() prototype, with either a higher-precision floating-point type, or else inline pair-
precision arithmetic, for powers that are not handled by the switch statement.

Here is what the pair-precision implementation of the integer power function looks like:

static fp_t
unchecked_ipow (fp_t x, int n)
{

fp_t result;
int k;
fp_t the_power_hi, the_power_lo, xx_hi, xx_lo;

14.3. Integer powers 417

/* Compute the powers with inline pair-precision arithmetic */

k = (n < 0) ? -n : n;
the_power_hi = ONE;
the_power_lo = ZERO;
xx_hi = x;
xx_lo = ZERO;

while (k > 0)
{

if (k & 1) /* compute the_power *= xx in pair precision */
PPMUL(the_power_hi, the_power_lo, the_power_hi, the_power_lo, xx_hi, xx_lo);

k >>= 1;

if (k > 0) /* compute xx *= xx in pair precision */
PPMUL(xx_hi, xx_lo, xx_hi, xx_lo, xx_hi, xx_lo);

}

if (ISNAN(the_power_hi) || ISNAN(the_power_lo))
{

if (n < 0)
result = (IS_ODD(n) && (x < ZERO)) ? COPYSIGN(ZERO, -ONE) : ZERO;

else
result = (IS_ODD(n) && (x < ZERO)) ? SET_ERANGE(-INFTY()) : SET_ERANGE(INFTY());

}
else if (n < 0)
{

fp_t one_hi, one_lo;

one_hi = ONE;
one_lo = ZERO;
PPDIV(the_power_hi, the_power_lo, one_hi, one_lo, the_power_hi, the_power_lo);

if (ISNAN(the_power_hi) || ISNAN(the_power_lo))
{

if (QABS(x) >= ONE)
result = (IS_ODD(n) && (x < ZERO)) ? COPYSIGN(ZERO, -ONE) : ZERO;

else
result = (IS_ODD(n) && (x < ZERO)) ? SET_ERANGE(-INFTY()) : SET_ERANGE(INFTY());

}
else
{

result = the_power_hi + the_power_lo;

if (result == ZERO) /* possible premature underflow */
result = unchecked_ipow(ONE / x, -n);

}
}
else

result = the_power_hi + the_power_lo;

return (result);
}

That function is available only to its caller, a library-internal function _IPOW() that includes the switch statement for
fast processing of small powers. That function in turn is called by the user-level function IPOW(), which also handles

418 Chapter 14. Power function

Infinity, NaN, and signed zero arguments, as well as the special case where the power is the most negative integer,
which cannot be negated in two’s-complement arithmetic. The intermediate function _IPOW() can be used elsewhere
in the library when it is already known that the first argument is finite.

The complexity of pair-precision arithmetic is concealed in the PPDIV() and PPMUL() macros, but their definitions
are omitted here. Both invoke the macro FFMUL() to compute the double-length product of its last two arguments.
That macro has two reasonable definitions. One uses a fused multiply-add to recover the low part of the product:

#define FFMUL(hi, lo, a, b) \
{ \

hi = a * b; \
lo = FMA(a, b, -hi); \

}

The second uses a mathcw library primitive described later in this chapter (see Section 14.10 on page 430):

#define FFMUL(hi, lo, a, b) \
{ \

fp_t ab[2]; \
FMUL(ab, a, b); \
hi = ab[0]; \
lo = ab[1]; \

}

As we observe in the retrospective on pair-precision arithmetic (see Section 13.32 on page 407), there is accuracy
loss if any of the digits in the low component of a pair descends into the subnormal region. That means that,
when pair-precision arithmetic is used instead of a higher-precision native data type, powers with values near the
underflow limit are computed less accurately than we would like. We can prevent that accuracy loss by instead
computing an exactly scaled power away from the underflow region, and then rescale that result. When |x| > 1 and
n < 0, we can write

q = 2t/n�, q < 0 and t is significand precision,
y = xβq, no overflow possible, because |y| < |x|,
= scalbn(x, q), exact scaling,

yn = xnβnq, compute with _IPOW(y,n),
xn = ynβ−nq

= scalbn(yn,−nq).

We can also approach the underflow limit when |x| < 1 and n > 0. A little thought shows that a similar scaling
works, except that we now must define q by

q = �2t/n�, q > 0.

There is one final piece that we have not yet presented: reduction of powers of integers. Consider the power 1022

that might be required for base conversion. Its exact value takes 73 bits to represent, which is longer than the 53-bit
significand size of type double in IEEE 754 arithmetic. However, 522 can be exactly represented in only 52 bits, and
because 1022 = 522 × 222, we can compute the larger power exactly as LDEXP(_IPOW(5, 22), 22) without needing
higher precision. In general, to compute mn, if we can represent m exactly as kβr, then _IPOW(m,n) can be replaced
by SCALBN(_IPOW(k,n), n * r). When that is possible, we effectively gain n × r extra bits of precision in the power
computation, making a correctly rounded result more likely.

The needed decomposition is provided by this function, which removes powers of the base from the first argu-
ment, returning the power count via the final pointer argument, and the reduced m as the function value:

static long int
factor (long int m, int base, int *power)
{ /* factor m = f * base**(*power), and return f and *power */

int k;
long int f;

14.3. Integer powers 419

f = (m < 0) ? -m : m;

for (k = 0; (k < (int)(CHAR_BIT*sizeof(long int))) && (f >= base); ++k)
{

long int q;

q = f / base;

if (q * base != f)
break;

f = q;
}

*power = k;

return ((m < 0) ? -f : f);
}

Profiling a test of _IPOW() with a large number of random integer arguments shows that the inner loop in factor()
executes roughly twice on average, and the time spent there is negligible compared to the rest of the code.

The private factor() function is used in _IPOW() in the switch statement for the default case that is chosen
when none of the inline minimal-power computations is selected:

default:
r_set = 0;

if ((x == TRUNC(x)) && ((fp_t)LONG_MIN < x) && (x <= (fp_t)LONG_MAX))
{

fp_t f;
int k;

k = 0; /* keep optimizers happy */
f = (fp_t)factor((long int)x, B, &k);

if (k == 0)
result = unchecked_ipow(x, n);

else
{

if (IS_MUL_SAFE(n, k))
result = SCALBN(unchecked_ipow(f, n), n * k);

else
result = unchecked_ipow(x, n);

}
}
else

result = unchecked_ipow(x, n);

The determination of whether x is a whole number is based on the outcome of the equality test x == TRUNC(x),
rather than a test like x == (int)x. As we discuss in Section 4.10 on page 72, conversion of floating-point numbers
to integer values is unsafe and nonportable without range tests.

Our treatment of the integer power function shows that the major cause of inaccuracy in the function result is the
accumulated rounding error from the multiplications needed to compute the power. We showed how to minimize
the operation count, and how, with suitable attention to scaling near the underflow limit, we can use pair-precision
arithmetic to make the rounding errors negligible.

By providing special handling of integer powers from within the general power function, we can guarantee fast
execution and high accuracy, and we extend the C99 library by making the ipow() family available to the user. We

420 Chapter 14. Power function

also avoid the anomalies seen in some Fortran implementations, where the computed results for mathematically
equivalent expressions like x**3 and x**3.0 can disagree, because many implementations of that language treat int-
eger and floating-point exponents in the power operator differently. Even worse, when x is negative, x**3 succeeds,
but x**3.0 fails with a negative-argument error report from the logarithm function that the user did not even call.

14.4 Integer powers, revisited

Long after the preceding section was written, an important new paper with the title Computing correctly rounded
integer powers in floating-point arithmetic appeared [KLL+10]. Its authors set out to answer the question of how much
additional precision is needed for that job, by finding worst cases for integer powers. The worst cases arise when the
exact power lies almost exactly halfway between two machine numbers.

Only x values in [1, β) need to be tested in the search, because all other finite floating-point numbers in the same
representation can differ from those values only by an integer power of the base. Thus, if y = βpx, then yn = βpnxn,
so the powers xn and yn have the same significand. Despite that simplification, the effort required is substantial. The
researchers report that a search using all integer powers from 3 to 733 consumed nearly 75 CPU years on a network
of processors! The search time grows with the powers, and the largest powers each require almost a CPU month.

For the IEEE 754 64-bit binary format, the worst case found by their exhaustive search is the power n = 458 of
the value

x = 0x1.0f38_cfaa_cb71_ap0

= 1.059_460_620_115_209_028_568_870_053_277_350_962_162_017_822_265_625 exact decimal value,

for which

x458 = +0x1.1f0b_0876_ba02_5800_0000_0000_0000_3bbf_· · · p+38
= +0x1.1f0b_0876_ba02_6p+38 correctly rounded.

The 1-bit following the last stored bit is the rounding bit, and forms the halfway case. It is followed by 61 0-bits
before another 1-bit is met that forces upward rounding of the halfway case.

That result shows that correctly rounded integer powers up to n = 733 of all IEEE 754 64-bit values can be
computed if we generate intermediate products with at least 53 + 1 + 61 + 1 = 116 bits of precision. Unfortunately,
that is more than we have with the 64-bit significand of the 80-bit format, or with pair-precision arithmetic (53+ 53 =
106 bits), or with the 113-bit significand of the IEEE 754 128-bit format.

The paper’s authors examined the lengths of runs of 0-bits following the rounding bit, and showed that the
counts of worst-case powers that produce a particular run length drop rapidly as those lengths increase, suggesting
that powers n > 733 are unlikely to produce much longer runs. However, it is at present computationally impractical
to continue the search for worst cases with even higher powers.

They then go on to consider various alternatives for computing integer powers with sufficient precision to guar-
antee correctly rounded results, including tricks on particular hardware platforms, and computation of xn from
exp(n log(x)).

Because we want our library code to work on a wide range of architectures, the simplest implementation choice
seems to be to implement our bitwise-reduced power algorithm using pair-precision arithmetic of the highest available
precision. On systems that provide at least one precision beyond the normal float and double offerings of C89, we
can then guarantee correct rounding for all integer powers of those two basic types up to n = 733, and with high
probability, for even higher powers. On those deficient systems that provide only two floating-point formats, we
cannot guarantee that integer powers (up to n = 733) are always correctly rounded, but using normal pair-precision
arithmetic reduces the incidence of incorrect rounding to negligible levels for most users.

The revised code in ipowx.h that implements the new algorithm is therefore selected by default, but can be
suppressed by a suitable compile-time definition of a preprocessor symbol.

Extensive numerical tests of our new code with more than 1012 random arguments x in [1, 2), and random int-
eger powers in [0, 6145], compared to high-precision symbolic algebra computations, find no instances of incorrect
rounding.

The paper’s authors do not address negative powers. We handle them by computing the corresponding positive
power in extended pair-precision arithmetic and then reciprocating that result with error correction.

14.5. Outline of the power-function algorithm 421

14.5 Outline of the power-function algorithm

The key to accurate computation of the power function is a product representation of the function where most of the
factors can be computed exactly. We begin by rewriting the function in terms of the exponential and logarithm of a
number n related to the base of the floating-point system:

z = pow(x, y)
= xy

= ny logn x

= nw,
w = y logn x.

Define n by β = nK. For β = 2, 4, 8, and 16, choose n = 2 so that K = 1, 2, 3, and 4. For β = 10, let n = 10 so that
K = 1.

Next, assume that the cases of x = ∞, x is a NaN, and x ≤ 0 have been handled according to Table 14.1 on
page 413, so that we can henceforth assume that x is finite, positive, and nonzero. Then decompose x into a fraction
and a power of the base:

x = f βm where f lies in [1/β, 1).

That is an exact operation for which we can use either this C-style code

f = FREXP(x, &m);

or the Cody/Waite primitives:

m = INTXP(x);
f = SETXP(x, 0);

In all floating-point architectures used for high-performance computation, the number of bits in an exponent field is
smaller than the number in a default-sized integer, so the variable m can be of type int.

Because we want to handle different bases of floating-point systems, introduce four new integers, C, p, q, and r
defined as follows. First, pick C like this:

C =

{
10q for a decimal base,
16q for nondecimal bases.

We discuss the choice of q later in Section 14.13 on page 438. Cody and Waite do not consider values of C other than
10 or 16, so they always have q = 1.

By a procedure described in Section 14.6 on page 423, choose p in [0, C] and r in [0, K) such that

a = n−p/C exact by lookup in a (C + 1)-entry table,

g = f nr exact product,

g in [1/n, 1) implicit definition of r.

For β = 2 and 10, we always have r = 0 and g = f . For β = 4, 8, and 16, we have r = 0, 1, 2, and 3, and r > 0 is
possible only when f < 1

2 .
Although it is not immediately evident, the computation of g is always exact, because when r > 0, g has leading

zero bits, and scaling by nr = 2, 4, or 8 merely results in shifting the fraction bits to the left, introducing zero bits on
the right. No bits are lost by that process. The code to find r is simple, and not even required when β = 2 or 10:

g = f;
r = 0;

while (g < HALF) /* move g from [1/beta,1) to [1/2,1) */
{

g += g;
r++;

}

422 Chapter 14. Power function

Next, rearrange the expansion of f to read

f = gn−r

= (g/a)n−r−p/C

and take the base-n logarithm of both sides to find

logn f = logn(g/a)− r − p/C.

We compute the logarithm on the right by a polynomial approximation, and the other two terms are exactly repre-
sentable because r and p are small integers, and C is a small power of the base β.

We then have

w = logn z
= y logn x
= y logn(f βm)

= y(logn f + m logn β)

= y(logn f + m logn(n
K))

= y(logn f + mK)
= y(Km − r − p/C + logn(g/a))
= y(u1 + u2),

where the two critical quantities to be computed are

u1 = Km − r − p/C, exactly representable,

u2 = logn(g/a), via polynomial approximation.

and |u1| is strictly greater than |u2|, so that the digits of those two values cannot overlap.
Finally, split the computed w into a sum of two parts:

w = w1 + w2,
w1 = Km′ − r′ − p′/C exactly representable,

w2 in (−1/C, 0].

Here as well, the digits of w1 and w2 cannot overlap.
The new variables in the definition of w1 are whole numbers defined by these conditions:

m′ ≥ 0, p′ in [0, C], r′ in [0, 3].

As written here, m′ could be too large to represent as an integer, but we show later that we can delay computing its
value until w1 is known to be sufficiently small that an int data type suffices for m′, p′, and r′.

The accurate computation of w, w1, and w2 is the hardest part of the algorithm, but we delay the details until
Section 14.11 on page 433.

Finally, we recover the power function like this:

z = pow(x, y)
= nw1+w2

= nKm′−r′−p′/C+w2

= (nK)m′
n−r′−p′/C+w2

= βm′
(n−r′ n−p′/C nw2).

The factor n−r′ is exact, and obtained by lookup in a small table. The factor n−p′/C is not exactly representable, but is
correctly rounded to working precision and obtained by table lookup. The final factor nw2 is not exactly representable

14.6. Finding a and p 423

either, but is computed by another polynomial approximation. None of the magnitudes of those three factors exceeds
one, and all are close to that number, so there is no possibility of underflow in their product. We therefore compute
their product first, and then carry out the final exact scaling by βm′

, not by direct multiplication, but instead by
exponent adjustment using a function from the ldexp() or setxp() families.

The final scaling by βm′
can overflow or underflow, but that merely indicates that the power is too large or

too small to represent. The function return value is then either an infinity (or the largest representable number, if
infinities are not supported), or zero. We show later how to detect the overflow and underflow conditions before
they happen, allowing early exit before even computing the three powers of n.

If we compute the three powers of n on the right to higher than working precision, their product will almost
always be correctly rounded. For example, if we have k extra digits, then we expect a rounding error only about
once in βk times. To see that, take β = 10 and k = 2: the extra k digits are then 00, . . . , 49, 50, 51, . . . , 99. Only when
the extra digits are 50 is the rounding in question: we then need to know even more digits to find out whether they
are all zero, in which case the current rounding rule decides whether we round up or down. Otherwise, one or more
of the trailing digits is nonzero, and we round up. From that example, we see that only once in βk = 100 times does
correct rounding require more than k = 2 extra digits.

On floating-point architectures that support both single- and double-precision data types (see Table H.1 on
page 948), there is sufficient extra precision in the latter that, by using it, we can guarantee correctly rounded re-
sults for the single-precision power function for at least all but one in 108 to 1010 random argument pairs.

Of the four factors in the product that defines z, all but nw2 are either exact, or known to be correct to working
precision. Thus, the accuracy of the power function depends critically on that of nw2 , and it is precisely that step
where most algorithms for the power function, including that of Cody and Waite, fail to deliver the needed accuracy.

14.6 Finding a and p

From the definition of logn f = logn(g/a)− r − p/C, we want to make the magnitude of the logn(g/a) term as small
as possible, because the two exact terms then dominate the sum when their contribution is nonzero. In such a case,
we have effectively extended the precision of logn f beyond working precision. The logarithm on the right has small
magnitude when g/a ≈ 1.

We have table values A[p] = n−p/C whose entries decrease from A[0] = 1 to A[C] = 1/n. There are no leading
zero bits in any entry when β = 4, 8, or 16, because the entries all lie in [1

2 , 1], so there are no problems from wobbling
precision. We need to find the index p for which choosing a = A[p] makes g/a closest to one. Because f < 1, we
know that g < 1, so we have g < A[0]. If we can find an interval such that

A[k] > g ≥ A[k + 1] k in [0, C),

then p = k or p = k + 1. We make the choice between them by comparing 1 − g/A[k] with g/A[k + 1] − 1. Both
expressions are nonnegative, but require two relatively costly divides, so we multiply them by A[k]A[k + 1] and
instead compare A[k + 1](A[k]− g) with A[k](g − A[k + 1]). If the first is smaller, set p = k; otherwise, set p = k + 1.

A linear search in a table of N entries requires on average �N/2� comparisons, but because we know that A[0] >
g ≥ A[C], we need not compare g with either endpoint, so we have an average of only �(N − 2)/2� = �(C − 1)/2�
comparisons.

A binary search for the containing interval in an ordered table of N entries takes at most �log2 N� comparisons.
We describe it later in this section.

We show in Section 14.8 on page 426 that we require A[k] to higher than working precision, so we represent it
as two tables, such that A[k] = A1[k] + A2[k], where A1[k] is correctly rounded to working precision, and A2[k] is a
small correction that may be either positive, zero, or negative. Only A2[0] and A2[C] are zero, because only A1[0] = 1
and A1[C] = 1/n are exact.

It is critical that the entries in the tables A1[] and A2[] be represented exactly to working precision, and because
their computation would need more than double the normal working precision, we cannot compute them on-the-fly
in the initialization code. Instead, we compute them to high accuracy in a symbolic-algebra system and store their
values as compile-time initializers in header files. Here is a fragment of that code for decimal arithmetic:

#define TEN_TO_7__ FP(10000000.0)

static const fp_t A1[] =

424 Chapter 14. Power function

{
/* exact: A1[p] == 10^(-p/10) rounded to T digits */
/* 0 */ FP(10000000.0) / TEN_TO_7__,
/* 1 */ FP(7943282.0) / TEN_TO_7__,

...
/* 9 */ FP(1258925.0) / TEN_TO_7__,
/* 10 */ FP(1000000.0) / TEN_TO_7__

};

static const fp_t A2[] =
{

/* correction: A2[p] == 10^(-p/10) - A1[p] */
/* 0 */ (FP(0.0) / TEN_TO_7__) / TEN_TO_7__,
/* 1 */ (FP(3472428.0) / TEN_TO_7__) / TEN_TO_7__,

...
/* 9 */ (FP(4117942.0) / TEN_TO_7__) / TEN_TO_7__,
/* 10 */ (FP(0.0) / TEN_TO_7__) / TEN_TO_7__

};

Each value is defined in rational form, such that both numerator and denominator are exactly representable, and the
denominator is a power of the base. Their compile-time evaluation is then exact.

We need those tables for each supported host precision, so there are several different sets: at the time of writing
this, four for decimal arithmetic, and eleven for binary arithmetic.

Cody and Waite choose C = 10 or C = 16. However, they also introduce a small storage economization that
keeps only odd-numbered entries in A2[]. Their search condition then requires finding A[k] > g ≥ A[k + 2] where k
is even, and they then choose p = k + 1. The storage savings of five or eight words, even with computer memories
of a few hundred kilobytes in the 1970s, is not much, and anyway, might be offset in increased code size from more
complicated indexing of the arrays. Unfortunately, the storage parsimony introduces a serious problem. When g
matches a table entry A[k], the most important of which is g = A[C] = 1/n, their algorithm chooses a = A[k − 1],
making g/a as far as possible from 1, so subsequent errors in the computation of logn(g/a) can result in powers of
the base, and of one, being slightly incorrect. The optimal choice is a = A[k], for which logn(g/a) = 0 exactly. With
that choice, powers of the base and of one are always exact. Our new code handles those two cases separately for
speed (see Table 14.1 on page 413), but also enhances accuracy when the old algorithm is used.

We improve on the Cody/Waite algorithm by always choosing the optimal a value, and thus, we must store all
entries of A2[]. No special indexing of that table is then required.

14.7 Table searching

For C = 10, a linear search averages five comparisons. By contrast, a binary search would need at most four, but
requires more complex code. Therefore, for C = 10, Cody and Waite pick the simpler linear search, but unfortunately,
they make an error. They use a search equivalent to this code fragment:

k = 0;

while (g <= A1[k+2])
k += 2;

p = k + 1;

The loop exits when g > A1[k + 2]. That works correctly for all but values of g identical to some A1[k], in particular,
g = A1[C] = 1/10. In that case, the last iteration has k = C− 2 with the test g ≤ A1[C], which is true, so k advances to
C. The next iteration compares g with the nonexistent table entry A1[C + 2], and the loop continues until the bounds
violation is detected and the job is terminated, or unpredictable storage contents treated as a floating-point number
cause the loop to exit. The value of p is then certainly incorrect. That error was caught by assert calls placed in our
early code for the decimal power function, and together with other errors found in their algorithm for the decimal
case, suggests that the power function for decimal arithmetic was never actually implemented and tested.

Here is how to do the linear search correctly and find the optimum a:

14.7. Table searching 425

assert((A1[0] > g) && (g >= A1[C]));

k = 0;

while (A1[k+1] > g)
k++;

assert((A1[k] > g) && (g >= A1[k+1]));

p = ((A1[k+1]*(A1[k] - g)) < (A1[k]*(g - A1[k+1]))) ? k : k + 1;
a = A1[p];

When C = 16, a linear search takes seven comparisons on average, and a binary search takes at most four. Binary
search in an ordered table is a divide-and-conquer algorithm: split a big problem into two roughly equal parts, one
of which can easily be determined to contain the solution, and the other discarded. Then repeat the split on the now
half-size problem, until the problem can be solved by inspection. As long as the splits produce equal-sized parts,
the computation terminates after �log2 N� steps for a problem of size N. For binary search, we compare g with the
middle element, and then continue with whichever half of the table is known to contain g.

Although the description of binary search makes it appear simple, it is not easy to program. The key to correct
code for binary search is to maintain a loop invariant, namely that, given two table indices lo and hi marking the left
and right ends of the array section to be searched, we then guarantee that the conditions

(lo < (hi − 1)) AND (A[lo] > g) AND (g ≥ A[hi])

hold during each iteration of the loop. The loop terminates as soon as any one of them fails.
This function does the job of finding p such that g lies in (A[p], A[p + 1]]:

static int
binsearch (fp_t g, const fp_t A[], int C)
{ /* return p such that (A[p] > g) && (g >= A[p+1]) */

int lo, hi, middle; /* array indices in [0,C] */

/* verify initial condition */
assert((C > 0) && (A[0] > g) && (g >= A[C]));

lo = 0;
hi = C;

while (lo < (hi - 1)) /* first loop invariant */
{

middle = lo + (hi - lo)/2;

if (A[middle] > g)
lo = middle;

else
hi = middle;

/* remaining invariants: (A[lo] > g) && (g >= A[hi]) */
}

return (lo);
}

The requirement that lo and hi be separated by at least two when the loop body is entered ensures that middle differs
from both, forcing the index range to shrink on each iteration, and guaranteeing loop termination. The computation
of middle as written avoids a possible uncaught integer overflow from the traditional form (lo + hi)/2, as described
in Appendix I.5 on page 976. For the special case C = 16, Cody and Waite unroll the function and its loop into three
inline tests, but we add a fourth and final test to find the precise interval:

426 Chapter 14. Power function

p = 0;

if (A1[p + 8] > g) p += 8;
if (A1[p + 4] > g) p += 4;
if (A1[p + 2] > g) p += 2;
if (A1[p + 1] > g) p += 1;

Because C is in practice a compile-time constant, larger values of C can be handled similarly, as long as C is a power
of two. Start with the first test like this:

if (A1[p + C/2] > g) p += C/2;

Then repeat it with successive halving of the constant C/2 until the last test is against A1[p + 1]. However, for larger
values of C, we are more likely to use the general binsearch() function instead.

14.8 Computing logn(g/a)

The first approximation that we need to make in the computation of the power function is finding logn(g/a), where
g/a ≈ 1. We discuss that problem in Section 10.4 on page 290, where we show that it is computationally much
better to use the companion log1p() function: log(g/a) = log(1 + (g/a − 1)) = log1p(g/a − 1), as long as we can
compute the argument g/a − 1 accurately. However, that function has only recently been included in the C library,
and is absent from most other programming languages.

Cody and Waite recognize the difficulty of accurate computation of the logarithm of arguments near one. They
prefer to keep the elementary functions largely independent of one another, and because a faster algorithm is possible
when the argument range is small, they handle the problem by first introducing a change of variable:

s = (g/a − 1)/(g/a + 1)
= (g − a)/(g + a),

g/a = (1 + s)/(1 − s), inverse relation.

Digit loss in the subtraction g − a could produce an inaccurate s, but we can prevent that by observing that
because our choice of g and a guarantees that they have the same floating-point exponent, the subtraction is exact,
and the loss is entirely due to insufficient precision in a. We therefore compute s with code like this:

s = g - A1[p]; /* exact (rounding-free) subtraction */
s -= A2[p];
s /= (g + A1[p]);

Because a = A1[p] + A2[p] to twice the working precision, the two-stage subtraction is correct to at least working
precision.

In terms of the new variable s, the Taylor-series expansion of logn(g/a) about s = 0 (that is, g/a = 1), is

logn(g/a) = logn((1 + s)/(1 − s))

= (2/ ln(n))(s + s3/3 + s5/5 + s7/7 + · · ·)
= (2/ ln(n))(s + s3(1/3 + s2/5 + s4/7 + · · ·))
= (2/ ln(n))s + s3((2/ ln(n))(1/3 + s2/5 + s4/7 + · · ·)).

Because g/a is close to one, s is small, and the series converges quickly. The inner series is almost a straight line, and
is therefore likely to be well-represented by a low-order fit to a polynomial, or a ratio of polynomials. We therefore
compute the needed logarithm like this:

logn(g/a) = (2/ ln(n))s + s3Rn(s2), default computation,

= s × fma(s2, Rn(s2), (2/ ln(n))), improved computation.

14.8. Computing logn(g/a) 427

Table 14.3: Variable limits in the computation of logn(g/a). The range of s is symmetric: [−smax,+smax]. For n = 2,
ζ = 2s and t = ζ2. For n = 10, v = s2.

n C smax tmax
2 16 1.09473e-02 4.79371e-04
2 256 6.77360e-04 1.83526e-06
2 4096 4.23081e-05 7.15991e-09
n C smax vmax

10 10 6.07959e-02 3.69615e-03
10 100 5.78953e-03 3.35187e-05
10 1000 5.75978e-04 3.31750e-07
10 10000 5.75679e-05 3.31407e-09

We introduce another change of variable, v = s2, which is even smaller than s, and guaranteed to be nonnegative,
and then solve for Rn(v):

Rn(v) = (logn((1 + s)/(1 − s))− (2/ ln(n))s)/s3

= (logn((1 +
√

v)/(1 −√
v))− (2/ ln(n))

√
v)/(v

√
v).

In order to avoid a divide-by-zero condition during the polynomial fit for Rn(v), we need to know the value of
Rn(0), which is just the first term of the inner series:

lim
v→0

Rn(v) = 2/(3 ln n).

For the fit, we also need to know the range of v, which must have the form [0, vmax]. To investigate that, we solve for
the g value, gc, at the point where the definition of a changes:

1 − gc/A[p] = gc/A[p + 1]− 1,
gc = 2A[p]A[p + 1]/(A[p] + A[p + 1]).

The value gc produces the g/a ratio furthest from one, and that is where we have the maximum value of |s|:
smax = −(gc − A[p])/(gc + A[p])

= (1 − A[1])/(3A[1] + 1).

We see that smax is independent of p, but depends on the constants n and C. The range of s is [−smax,+smax], so the
range of v is [0, s2

max]. Sample values are shown in Table 14.3.
As we have seen with other functions approximated by polynomials, we cannot predict the polynomial degree

needed to achieve a particular accuracy. Instead, we make several different fits, and then tabulate the accuracy
obtained for each polynomial degree. For logn(g/a), some useful results are given in Table 14.4 on the next page.
From that table, it should now be clear why we generalized the original Cody/Waite choice of C from 10 and 16 to
powers of those numbers. Larger C values mean bigger storage requirements for the tables A1[] and A2[], but they
also reduce the polynomial degree required to achieve a specified accuracy, and therefore make the computation
faster. Memory sizes on historical machines could not justify larger tables, but modern machines can easily handle
them.

Because we need to support a broad range of precisions in the mathcw library, we include data for several different
polynomial fits in the header files pxy*.h. The more accurately that we can compute u2 = logn(g/a), the better job
we can do for w2, and for the power function.

For nondecimal bases, Cody and Waite proceed slightly differently, and make yet another change of variable:
ζ = 2s. We show the reason for that substitution at the end of this section. To counteract the effect of wobbling
precision, compute ζ like this:

ζ =

{
s + s when β = 2,

((g − A1[p])− A2[p])/(1
2 g + 1

2 A1[p]) when β = 4, 8, or 16.

428 Chapter 14. Power function

Table 14.4: Accuracy in decimal digits of rational polynomial fits of degree 〈p/q〉 to the auxiliary functions R(v) and
R(t) needed to compute logn(g/a).

Degree
C vmax 〈1/1〉 〈1/2〉 〈2/2〉 〈3/3〉 〈5/5〉 〈7/7〉 〈9/9〉 〈9/10〉

10 3.69615e-03 10 14 18 25 40 54 69 72
100 3.35187e-05 17 22 28 39 62 85 108 113

1000 3.31750e-07 23 30 38 53 84 115 146 153
10000 3.31407e-09 29 38 48 67 106 145 184 193

Degree
C tmax 〈1/1〉 〈1/2〉 〈2/2〉 〈3/3〉 〈5/5〉 〈7/7〉 〈9/9〉 〈9/10〉

16 4.79371e-04 13 17 22 31 49 67 85 101
256 1.83526e-06 20 27 34 48 75 103 131 138

4096 7.15991e-09 27 37 46 64 102 139 177 186

The factor 1
2 has no leading zero bits for β = 16, whereas 2 has two leading zero bits, and could unnecessarily reduce

the accuracy of ζ if we just computed 2s or s + s directly.
The logarithm then becomes:

logn(g/a) = logn((1 + (ζ/2))/(1 − (ζ/2)))
= logn((2 + ζ)/(2 − ζ))

= (1/ ln n)(ζ + (1/12)ζ3 + (1/80)ζ5 + (1/448)ζ7 + · · ·)
= (logn e)(ζ + (1/12)ζ3 + (1/80)ζ5 + (1/448)ζ7 + · · ·)
= (logn e)(ζ + ζ3((1/12) + (1/80)ζ2 + (1/448)ζ4 + · · ·))
= (logn e)(ζ + ζ3Rn(ζ

2)),

Rn(ζ
2) = ((ln n) logn((2 + ζ)/(2 − ζ))− ζ)/ζ3.

With another variable transformation, t = ζ2, the new approximating function to which we fit rational polynomials
is then defined by:

Rn(t) = ((ln n) logn((2 +
√

t)/(2 −√
t))−√

t)/(t
√

t).

This time, the outer logarithmic constant is not factored into the approximating function.
The value of Rn(0) is needed to prevent a zero divide during the polynomial fit, and from the first term of the

inner series, we find this limit:
lim
t→0

Rn(t) = 1/12.

There is one final issue to be dealt with: the outer constant multiplier, logn e ≈ 1.44269 . . . , has up to three leading
zero bits in binary bases when β > 2, and thus effectively reduces overall accuracy by almost one decimal digit.
Cody and Waite therefore split the constant into two parts: 1 + L, where L = logn e − 1 is a stored constant with only
one leading zero bit when β > 2. We can then find the logarithm like this:

logn(g/a) = (ζ + ζ3Rn(ζ
2)) + L(ζ + ζ3Rn(ζ

2))

= (ζ + ζtRn(t)) + L(ζ + ζtRn(t))
= ζ + Lζ + (LζtRn(t) + ζtRn(t)),

b = ζtRn(t),
logn(g/a) = ζ + (Lζ + (Lb + b)), default computation,

= ζ + fma(L, ζ, fma(L, b, b)), improved computation.

In that form, the leading term is exact, and that is why Cody and Waite made the variable change ζ = 2s.
The fused multiply-add operations should be used when available, and otherwise, the computation must obey

the parentheses in the preceding expression. The variable ζ must not be factored out of the right-hand side, because
that would put wobbling precision back into the computation in the second factor of ζ(1 + · · ·).

14.9. Accuracy required for logn(g/a) 429

14.9 Accuracy required for logn(g/a)

The part of the power-function algorithm that has the largest effect on the overall accuracy is the computation and
splitting of the product w, where

w = y(u1 + u2)

= w1 + w2,
w1 = Km′ − r′ − p′/C exactly representable,

w2 in (−1/C, 0].

Exact computation of the sum u1 + u2 in general requires more than working precision, and its exact product with
y thus needs more than twice working precision. We show later that when we require the decomposition of w1, it
has at most as many digits before the point as there are digits in the floating-point exponent, and we need w2 to full
precision, and preferably, correctly rounded.

As a concrete example, consider the IEEE 754 32-bit decimal format, for which the exponent range is [−101,+96],
and the precision is seven decimal digits. Then w1 takes the form ddd.d and w2 looks like 0.0ddddddd. The last digit
in w2 has value d × 10−8. The power function xy = nw overflows for w ≥ 97, and underflows for w < −101. The
smallest nonzero magnitude of log10(g/a) = log10((1 + s)/(1 − s)) is obtained with s = 10−6, where the Taylor
series expansion shows that u2 ≈ 10−6, and the last stored digit of u2 has value d × 10−12. The largest possible y that
does not cause overflow is thus y ≈ 102/10−6 ≈ 108, so the product yu2 shifts digits of u2 left eight places, and the
low-order digit of u2 affects w2 in the fourth decimal place. Because we must determine w2 to eight decimal places,
we need at least four more digits in u2.

More generally, consider base β and t digits of precision in w2, and T digits of precision in u2, where T is to be
determined. Let w2 have j > 0 leading zero digits after the point, and u2 have k > 0 such digits. The value of a unit
last digit in w2 is then β−(t+j), and that of a unit final digit in u2 is β−(T+k). Further, let there be e digits before the
fractional point in y. The product yu2 then shifts the effect of the last digit of u2 left by e places, and we want that to
be in the last digit of w2. We then compare digit values to find T like this:

−(t + j) = −(T + k) + e
T = t + j − k + e

Evidently, T is maximal when j is large and k = 1, minimal when j = 1 and k is large, and in the common case where
j = 1 and k = 1, we have T = t + e.

From the Taylor series expansion, the smallest nonzero magnitude of u2 is (2/ ln(n))s = (2/ ln(n))β1−t, so we see
that k < t because the logarithm factor is 2/ ln(n) = 2.885 . . . for n = 2, and 0.868 . . . for n = 10. The smallest value
of T is therefore t + 1 − (t − 1) + e = e + 2, and when w2 has j = t − 1 leading fractional zero digits, the maximal
value of T is 2t − 2 + e. Because we have e ≥ 2 in all reasonable floating-point systems, we require T > 2t digits in u2.

Our rough analysis leads to the inescapable conclusion that we are doomed to an inaccuracy of a few trailing
digits in results from the power function unless we can compute u2 with at least twice the working precision. The
Cody and Waite algorithm does not do so, but in the mathcw library, we do. The design of that library has, for each
function, a single algorithm file with a parametrized working-precision data type, fp_t, and a secondary type, hp_t,
that represents the next higher precision, when available, and otherwise, is identical to fp_t. The simplest solution
that makes higher-precision computation of u2 possible, at least for the shorter data types, is to make visible the
internal function that handles the computation of xy for finite positive nonzero x, after all of the special cases have
been handled. That function is normally a private one with code that looks like this:

static fp_t
powpy (fp_t x, fp_t y) /* POW(positive nonzero x, non-NaN y) */
{

/* ... body omitted ... */
}

We then move the body into another function in the separate algorithm file, pxyx.h, and replace the body of powpy()
with this statement:

return ((fp_t)HP_POWPY((hp_t)x, (hp_t)y));

430 Chapter 14. Power function

The macro HP_POWPY() is defined to be a name like _pxy(), where the leading underscore indicates that it is a private
internal function that must not be called directly by user code.

Thus, calls to the private powpy() function elsewhere in the algorithm file are trapped, the arguments are pro-
moted to hp_t, a higher-precision function compiled from one of the companion files, pxy*.c, is called to do the
work, and the result is then coerced back to fp_t and returned to the caller.

When fp_t is the highest available precision, HP_POWPY() is simply defined to be the name of the function at that
precision, for example, _pxyll(). The computation is then done at working precision, and is therefore less accurate
than we would like. One way to repair that problem is to implement an even higher precision in software, but we
show an easier way later in Section 14.13 on page 438.

Once that change was made to the library, the ELEFUNT test results improved dramatically, reporting zero bit
loss for all but the highest available precision.

The need for an excursion into higher precision for part of the computation, and the coding practices of the
mathcw library, mandate the separation of the power-function computation into two algorithm files, powx.h and
pxyx.h. That is the only instance in the mathcw library where that has been necessary.

14.10 Exact products

In the next section, and elsewhere in the mathcw library, we need to compute exact products. Although many
early computer architectures provided instructions for computing the 2t-digit product of two t-digit numbers, such
hardware support is rare on modern systems. A software solution is therefore required to produce the result as an
exact sum of high and low parts.

When a floating-point format of at least twice the working precision, and extended exponent range, is available,
then type promotion provides an easy implementation. If the product magnitude exceeds the overflow limit of the
working precision, then scaling must also be provided. In our applications, product overflow is not expected, so we
ignore the scaling problem.

When a fused multiply-add operation is available, and the arguments are finite and nonzero, the code is short:

#define HI result[0]
#define LO result[1]

void
FMUL(fp_t result[/* 2 */], fp_t x, fp_t y)
{ /* x * y = result[0] + result[1] (exact if no over/underflow) */

HI = x * y;
LO = (ISINF(HI) || (HI == ZERO)) ? HI : FMA(x, y, -HI);

}

That works because the high part is the product rounded to working precision, and the low part is the rounding
error in the product. Extra code must be supplied to handle the cases of zero, Infinity, and NaN arguments, but we
delay its presentation until our second implementation of FMUL() later in this section.

In the absence of FMA() support, we need to reduce the double-length product to a sum of terms, each of which
can be computed exactly, except possibly for the term of smallest magnitude. That requires splitting each operand
into a sum of high and low parts, where the high part has t/2� digits, and the low part has the remaining �t/2�
digits.

If the number to be split is far from the overflow limit, then the split can be done with private code like this:

static void
safe_split(fp_t result[/* 2 */], fp_t x)
{ /* exact split of x as result[0] + result[1] (if no overflow) */

static const fp_t one_plus_split = FP(1.0) + MCW_B_TO_CEIL_HALF_T; /* 1 + beta**ceil(t/2) */
volatile fp_t p, q;

p = one_plus_split * x;
STORE(&p);
q = x - p;
STORE(&q);

14.10. Exact products 431

HI = p + q;
LO = x - HI;

}

We discuss that operation, and the conditions under which it is valid, in more detail in Section 13.11 on page 359.
Our public code is more general, supplying checks for special arguments, and avoiding premature overflow:

void
FSPLIT(fp_t result[/* 2 */], fp_t x)
{ /* return exact split of x as result[0] + result[1] */

static int do_init = 1;
static fp_t one_minus_tad = FP(0.);

if (do_init)
{

one_minus_tad = ONE - LDEXP(ONE, -(T / 2));
split_overflow_limit = FP(0.75) /* fudge factor */ *

FP_T_MAX / (FP(1.0) + MCW_B_TO_CEIL_HALF_T);
do_init = 0;

}

if (ISNAN(x) || ISINF(x) || (x == ZERO))
HI = LO = x;

else
{

if (QABS(x) > split_overflow_limit)
{

fp_t f, s;
int n;

f = FREXP(x, &n); /* x = f * BASE**n */
safe_split(result, f);

if (n >= FP_T_MAX_EXP) /* rare case: prevent overflow */
{

if (QABS(HI) == ONE) /* special case needs new split */
{

/* e.g., for BASE = 10, T = 7, and f = HI + LO = 1,
we have HI = 1 - 0.001 = 0.999, LO = 0.001 */

HI = COPYSIGN(one_minus_tad, HI);
STORE(&HI);
LO = f - HI;
STORE(&LO);

}

HI = LDEXP(HI, n);
LO = LDEXP(LO, n);

}
else /* common case needs only one LDEXP() */
{ /* call and overflow is impossible */

s = LDEXP(ONE, n);
HI *= s; /* exact */
LO *= s; /* exact */

}

}
else

safe_split(result, x);

432 Chapter 14. Power function

if (LO == ZERO)
LO = COPYSIGN(LO, HI);

}
}

The one-time initialization block computes the value 1 − β−t/2�, and a large cutoff somewhat below the limit
where the safe split would suffer overflow.

If x is Infinity, NaN, or a signed zero, we return that argument in the high and low parts with no further
computation, and no error indication. Including a test for zero ensures consistent handling of its sign, so that
−0 = (−0) + (−0) and +0 = (+0) + (+0).

If x is large enough to cause overflow in the split, we use FREXP() to reduce it to the exact product of a fraction f
in [1/β, 1), and a power of the base, βn. The split of f is then safe, and we can usually scale the two parts exactly by
βn computed with LDEXP(). However, when the exponent is at its maximum and f is close to one, the split returns
f = 1− δ. Rescaling the high part would then overflow. The solution is to check for that rare case, and resplit so that
the high part has the required number of digits, and is less than one.

The code in FSPLIT() is nontrivial, and useful elsewhere, so it is supplied as a standard part of the mathcw library.
Programming the exact double-length product function is now straightforward, provided that we take care to

check for several special cases where the arguments are Infinity, NaN, or signed zero. The code is adapted from
that of our final PMUL2() function (see Section 13.16 on page 370), but adds internal scaling to prevent premature
overflow and underflow:

void
FMUL(fp_t result[], fp_t x, fp_t y)
{ /* x * y = result[0] + result[1] (exact if no overflow) */

if (ISNAN(x)) /* NaN * any -> NaN */
HI = LO = x;

else if (ISNAN(y)) /* any * NaN -> NaN */
HI = LO = y;

else if (ISINF(x) || ISINF(y))
{ /* Inf * nonNaN -> Inf (with correct sign) or NaN */

if ((x == ZERO) || (y == ZERO)) /* Inf * 0 -> NaN */
HI = LO = QNAN("");

else /* Inf * nonzero -> Inf (with correct sign) */
HI = LO = (SIGNBIT(x) ^ SIGNBIT(y)) ? -INFTY() : INFTY();

}
else if ((x == ZERO) || (y == ZERO))

HI = LO = (SIGNBIT(x) ^ SIGNBIT(y)) ?
COPYSIGN(ZERO, -ONE) : ZERO;

else /* x and y are finite and nonzero */
{

fp_t lo, xx[2], yy[2], zz[2];
int nx, ny, nxy;
volatile fp_t hi;

x = FREXP(x, &nx);
y = FREXP(y, &ny);
nxy = nx + ny; /* exponent of product */

FSPLIT(xx, x);
FSPLIT(yy, y);
FSPLIT(zz, yy[1]);

hi = x * y;
STORE(&hi);
lo = xx[0] * yy[0] - hi;
lo += xx[0] * yy[1];

14.11. Computing w, w1 and w2 433

lo += xx[1] * yy[0];
lo += zz[0] * xx[1];
lo += zz[1] * xx[1];

if (lo == ZERO)
lo = COPYSIGN(lo, hi);

HI = LDEXP(hi, nxy);
LO = (ISINF(HI) || (HI == ZERO)) ? HI : LDEXP(lo, nxy);

}
}

For reasons discussed in Section 13.11 on page 359, the decomposition of x × y as a sum of terms is exact only
when β = 2 and none of the intermediate products underflows. Our initial scaling prevents product underflow, but
if there is underflow in the final scaling, then trailing digits are lost. The programmer is therefore advised to work
with suitably scaled x and y when FMUL() is used.

The best solution for nonbinary bases, β > 2, is the FMA() approach, because that guarantees a two-part split of
the product with at most one rounding error.

14.11 Computing w, w1 and w2

In Section 14.9 on page 429, we showed that u2 must be accurate to more than working precision to compute the
product w = y(u1 + u2) satisfactorily. It is now time to examine how to do that.

Because the digits of u1 and u2 do not overlap, their sum requires even more precision, so roughly, we need
nearly triple the working precision to find w. Cody and Waite suggest that when a higher-precision data type is
available, then the simplest approach is to promote the operands to that precision, do the add and multiply, and then
split the product into the sum w1 + w2. Unfortunately, that is still not good enough, because typical floating-point
designs allocate only slightly more than twice the number of significand digits in each higher precision, and we need
almost three times as many. Indeed, if the number of extra digits for u2 cited in the preceding section is taken into
account, none of the IEEE 754 formats is adequate, unless we promote from a 32-bit format to a 128-bit format, but
the most widely available CPUs at the time of writing this provide no more than the 80-bit format, and some systems
or compilers offer nothing beyond the 64-bit format.

Two alternatives present themselves. The first, and most obvious, is to supplement the elementary-function
library with a multiple-precision arithmetic library, and do the computation and split of w that way. Few existing
libraries take that approach, partly because it reduces performance, and partly because multiple-precision packages
are neither standardized, nor particularly portable across a wide range of historical and current architectures.1 For
decimal floating-point arithmetic, code in pxyx.h employs the 128-bit data type for internal computations in the
single-precision case, and for the other three precisions, uses IBM decNumber library routines [Cow07] to compute
w, w1, and w2 in triple the working precision before converting them back to working precision. That ensures values
of w2 that are always correctly rounded, and because the early support for decimal arithmetic is implemented in
software anyway, provides enhanced performance over alternative algorithms.

The second approach, and the one used by Cody and Waite, is to simulate the extra precision with inline code to
handle just the single add and multiply needed for w. That is neither easy, nor obvious, and their code is particularly
inscrutable, and offered without derivation or explanation. It is worthwhile to dissect their algorithm, so that we can
see why, despite their care, it is still impossible to avoid loss of a few trailing digits in xy for large y.

The critical operation that Cody and Waite introduce is called REDUCE(). Its job is to discard fractional digits after
the first from its argument, where a digit is in base C, with C = 10q or 16q for all practical floating-point architectures.
They observe that there are multiple ways to do that, one of which is low-level bit manipulation on the floating-point
representation. That way is unsatisfactory in a portable library, because it requires special code for each precision,
each floating-point design, and even for different byte-addressing conventions.

The simplest approach based on tools that we already have is also portable: multiply the argument by C, convert
to a whole number, and then multiply the result by 1/C. For example, when C = 10, those operations convert

1Although the GNU GMP multiple-precision library for binary arithmetic and the IBM decNumber library for decimal arithmetic are generally
easy to build and install on any system with IEEE 754 arithmetic, they would require major revisions for historical architectures, and those
revisions are unlikely to be accepted or supported by the library developers.

434 Chapter 14. Power function

123.456 to 1234.56 to 1234 to 123.4. That number has the same exponent as the original argument, and thus, we can
subtract the two to recover the low-order part exactly: 123.456 − 123.4 = 0.056. The catch is that the argument can
be too large to represent as an integer data type, so we need to avoid a type conversion, and instead use a definition
like this:

#define REDUCE(v) (TRUNC(C * (v)) * ONE_OVER_C)

Thus, we recover the high and low parts exactly like this:

v1 = REDUCE(v);
v2 = v - v1;

Armed with that reduction, there are three important observations:

� Sums of high parts cannot introduce digits into the low part, but the reverse is not true: sums of low parts can
produce a carry into the high part, requiring a second split.

� Products of high parts can spill into the low part, requiring a second split, but products of low parts cannot
produce a high part.

� The two-part representation is the key to organizing the computation, because it allows us to keep the parts
separate: the sum of all of the low parts determines w2, although any carry has to be moved into the sum of all
of the high parts that contribute to w1.

With those points in mind, here is a code equivalent to the opaque Cody/Waite computation of w:

#define SPLIT(x1,x2,x) (x1 = REDUCE(x), x2 = x - x1)

/* compute w = w1 + w2
= y * (u1 + u2)
= (y1 + y2) * (u1 + u2)
= y1 * u1 + y2 * u1 + y1 * u2 + y2 * u2
= y1 * u1 + y2 * u1 + y * u2

*/
SPLIT(y1, y2, y);

tmp = y * u2 + y2 * u1; /* three of four needed terms */
SPLIT(a1, a2, tmp); /* a1 + a2 is sum of three terms */

tmp = a1 + y1 * u1; /* add the fourth term to high part */
SPLIT(b1, b2, tmp); /* b1 + b2 holds high part */

tmp = b2 + a2; /* sum of low parts (carry possible) */
SPLIT(c1, c2, tmp); /* c1 is carry, c2 is low part */

w1 = b1 + c1; /* collect high parts */
w2 = c2; /* copy low part */
iw1 = TRUNC(C * w1); /* high part scaled to whole number */

The four splits are exact, but alas, the first two assignments to tmp involve products whose trailing bits are lost,
because they are computed only to working precision. Thus, although the code recovers w1 and w2 reasonably well,
the latter still suffers unacceptable accuracy loss.

Although the pxyx.h algorithm file in the mathcw library contains code equivalent to that, the code is no longer
used unless it is enabled by defining a certain preprocessor symbol. Instead, we improve upon it by eliminating
the trailing-digit loss in the three products. To do so, we employ our library primitive FMUL() to compute the exact
double-length product as a sum of high- and low-order terms: xy = r1 + r2. That split is not quite what we need for
computing w1 and w2, because the high part, r1, has full precision, whereas w1 has only one base-C fractional digit,
but we can use FMUL() with this wrapper function:

14.11. Computing w, w1 and w2 435

static void
fmul2(fp_t result[], fp_t x, fp_t y)
{ /* split exact x * y into exact high and accurate, but approximate, low parts in result[] */

fp_t r[2], s[2], t[2];

FMUL(r, x, y); /* x * y = r[0] + r[1] (exact) */

if (ISNAN(r[0]) || ISINF(r[0])) /* r[0] and r[1] identical */
result[0] = result[1] = r[0];

else
{

split(s, r[0]);
split(t, r[1]);
split(result, s[1] + t[1]);
result[0] += s[0] + t[0];

}
}

That function in turn needs this split() function:

static void
split (fp_t result[], fp_t x)
{ /* split x exactly into high and low parts in result[] */

/* with just one base-C digit in high part */

if (QABS(x) >= (FP_T_MAX / C))
{ /* fast split would suffer intermediate overflow: rescale */

if (ISINF(x))
result[0] = result[1] = x;

else
{

x *= C_INVERSE; /* exact */
result[0] = REDUCE_POW(x);
result[1] = x - result[0];
result[0] *= C; /* exact */
result[1] *= C; /* exact */

}
}
else
{

result[0] = REDUCE_POW(x);
result[1] = x - result[0];

}
}

The function to compute the split of w is then straightforward:

static void
wsplit (fp_t *w1, fp_t *w2, fp_t y, fp_t u1, fp_t u2)
{ /* compute (w1 + w2) = y * u1 + y * u2 accurately */

fp_t yu2[2];

fmul2(yu2, y, u2);

if (u1 == ZERO)
{

*w1 = yu2[0];
*w2 = yu2[1];

}

436 Chapter 14. Power function

else
{

fp_t r[2], yu1[2];

fmul2(yu1, y, u1);
split(r, yu1[1] + yu2[1]);
w1 = yu2[0] + r[0]; / add smaller high parts first */
w1 += yu1[0]; / add largest high part last */
*w2 = r[1];

}
}

We include special handling for the common case u1 = 0, which happens with small-magnitude y arguments, be-
cause the computation is then simpler, faster, and more accurate. Otherwise, the job is straightforward bookkeeping
of high and low parts of two double-length multiplications. ELEFUNT test results for the power function with that
new code for computing w report bit loss smaller by a fraction of a digit compared to the original simpler algorithm.

Having computed w1 and w2, we can now easily determine whether z = xy = nw would overflow or underflow.
We just have to compare w against two limits, BIGW and SMALLW. The first is just logn(largest finite), and the second
is logn(smallest subnormal), or if subnormal numbers are not supported, logn(smallest normal). On some systems,
they could be precomputed constants defined at compile time, but on others, whether subnormals are available or not
depends on compiler options or on library calls (see Section 4.12 on page 78), so we compute them at run time in an
initialization block that is executed only on the first call to the power function, and depends on a reasonably accurate
logarithm function. However, because handling of subnormals may be suspect on some systems, we compute the
logarithm of the smallest subnormal stepwise from that of the smallest normal. Here is what part of the initialization
code looks like:

BIGW = LOGN(FP_T_MAX); /* overflow if n**w has w > BIGW */
SMALLW = LOGN(FP_T_MIN); /* underflow if n**w has w < SMALLW */
TINY = FP_T_MIN;
STORE(&TINY);
xmin = FP_T_MIN;

while ((xmin * BASE_INVERSE) > ZERO) /* we have subnormals */
{

xmin *= BASE_INVERSE;
SMALLW -= ONE;

}

TINY is used to generate a run-time underflow from the expression TINY * TINY. The variable is declared with the
volatile qualifier, or storage is forced with the STORE() call, to prevent compile-time evaluation of the underflowing
product.

At this point, we assume that w is in the range [SMALLW, BIGW], so underflow and overflow are excluded, or at least
can only happen for w values that differ from those limits by only a few ulps. Values of w outside that range are
handled by direct assignment of underflowed or overflowed values to the final result, avoiding further unnecessary
computation.

The split of w can produce a positive w2, but our polynomial fit requires w2 in (−1/C, 0], so we check for that
case, and adjust accordingly:

iw1 = (int)TRUNC(C * w1); /* integer overflow impossible */

if (w2 > ZERO)
{

iw1++;
w1 += C_INVERSE; /* exact */
w2 -= C_INVERSE; /* approximate */

}

assert((-C_INVERSE < w2) && (w2 <= ZERO)); /* sanity check */

14.12. Computing nw2 437

Table 14.5: Accuracy in decimal digits of rational polynomial fits of degree 〈p/q〉 to S(w) = (nw − 1)/w. The range
of w is (−1/16, 0] when n = 2, and (−1/10, 0] when n = 10.

Degree
n 〈2/2〉 〈3/3〉 〈4/4〉 〈5/5〉 〈7/7〉 〈9/9〉 〈11/11〉 〈13/13〉 〈14/14〉
2 8 13 19 25 39 53 68 83 93

10 9 14 19 24 35 46 57 69 76

The last bit of code that we need to describe in this section is that for the decomposition w1 = Km′ − r′ − p′/C.
When β = 2 or 10, we have K = 1 and r′ = 0, so the code is simple, and the computations are exact:

i = (iw1 < 0) ? 0 : 1;
m_prime = (int)TRUNC(w1) + i; /* in [SMALLW + i, BIGW + i] */
p_prime = (int)((long int)C * (long int)m_prime -

(long int)iw1); /* in [0,C] */

Notice that higher-precision computation is essential for p_prime, even though its final value is small. The i term
eliminates the need for separate handling of positive and negative w1 values.

Otherwise, when K > 1, we need slightly more complex code:

i = (iw1 < 0) ? 0 : 1;
N = (int)TRUNC(w1) + i;
m_prime = N / K + i; /* in [SMALLW/K + i,BIGW/K + i] */
p_prime = (int)((long int)C * (long int)N - (long int)iw1);

/* in [0,C] */
r_prime = (int)((long int)K * (long int)m_prime - (long int)N);

/* in [0,K) */

14.12 Computing nw2

Because w2 is known to be in the small interval (−1/C, 0], the value of nw2 is near one, and as with logn(g/a), there
is danger of significance loss in its computation. We eliminate the problem by instead computing the difference,
nw2 − 1, with an accurate polynomial approximation. The Taylor series expansion looks like this:

nw − 1 = ln(w)w + (1/2!)(ln(w)w)2 + (1/3!)(ln(w)w)3 + · · ·
= w(ln(w) + (1/2!)(ln(w))2w + (1/3!)(ln(w))3w2 + · · ·)
= wS(w).

We therefore require a polynomial approximation to this function:

S(w) = (nw − 1)/w.

Table 14.5 shows the accuracy of fits to S(w).
We can mitigate the effect of wobbling precision in computing nw2 = 1 + w2S(w2) by combining the final two

factors in the computation of the power function:

n−p′/C nw2 = A1[p′]nw2

= A1[p′](1 + w2S(w2))

= A1[p′] + A1[p′]w2S(w2), default computation

= fma(A1[p′], w2S(w2), A1[p′]), improved computation.

Because w2 is always negative, it might appear that there is possible subtraction loss here. For the nondecimal
case, 2w − 1 lies in (−0.0424, 0], and from the rule in Section 4.19 on page 89, subtraction loss is not possible in
implicitly forming 1 + (2w − 1).

438 Chapter 14. Power function

For the decimal case, 10w − 1 lies in (−0.206, 0], and the implicit computation of 1 − (10w − 1) potentially loses
one decimal digit. The solution is to either compute nw2 − 1 in higher precision, or to increase C (see Section 14.13),
or to use the fused multiply-add operation. For the mathcw library, we choose the latter. Most systems are likely
to have only software implementations of decimal floating-point arithmetic, and the fma() function might even be
faster than calls to separate functions for the multiply and add operations, as it is in the mathcw library. IBM z-Series
systems from about 2005 have hardware support for decimal floating-point arithmetic, although fused multiply-add
instructions are provided only for the 32-bit and 64-bit formats. The IBM PowerPC chips introduced in 2007 have
similar hardware support.

14.13 The choice of q

In Section 14.5 on page 421, we defined C = 10q for a decimal base, and C = 16q for nondecimal bases, and noted
that Cody and Waite only considered the case q = 1. We need C + 1 entries in each of the tables A1[] and A2[],
and we observed in Section 14.8 on page 426 and Section 14.12 on the previous page that larger C values have the
virtue of reducing the interval of approximation for logn(g/a) and for nw2 , allowing use of smaller and faster rational
polynomials.

There are no loops that depend on C, apart from the table search needed to find A[p]. We showed in Section 14.6
on page 423 that only four or five comparisons are needed when q = 1. Using binary search for larger tables keeps
the number of comparisons small: 14 for q = 4 in the decimal case, and 12 for q = 3 in the nondecimal case.

There is another reason, however, for picking q > 1. The usplit() and wsplit() operations that produce u1, u2,
w1, and w2 move a base-C digit from the low part to the high part when q is increased by one. That has two effects:

� The accuracy of u2 is largely independent of C because our polynomial approximations for logn(g/a) are
tailored to produce full accuracy on the interval determined by the choice C. There may, of course, be a slight
improvement in accuracy in the subsequent computations (2/ ln(n))s+ s3Rn(s2) and ζ + ζ3Rn(ζ2) because the
results in Table 14.3 on page 427 show that s2 and ζ2 drop by about two orders of magnitude for a unit increase
of q, effectively adding about two decimal digits of precision.

� The bigger, and more important, effect, however, is that the product yu2 is made smaller by a factor of 10 or
16, with the result that the effect of the last digit of u2 on w2 moves right by one decimal digit, or four bits,
improving the accuracy of w2. The improvement on accuracy is dramatic, as shown in Table 14.6 on the facing
page. The corresponding memory requirements are given in Table 14.7.

As a result of those measurements, the pxy.h file selects default table sizes to keep the average loss well below
1.00 bit or digit on modern systems, but the installer can override the defaults by compile-time definition of special
symbols. The defaults always have q > 1, and they ensure that the accuracy of our power functions is often better
than that of power functions in vendor-provided or other libraries, and competitive with the accuracy of the other
elementary functions in the mathcw library.

Our use of q > 1 is thus an essential improvement over the original Cody/Waite algorithm, and our analysis
shows that the only way to reduce q while preserving accuracy is to use almost triple-precision software arithmetic
for the computation of w. However, ELEFUNT testing shows that it is still advantageous to use larger table sizes,
even for decimal floating-point arithmetic, where our code for wsplit() produces always-correct w2 values.

14.14 Testing the power function

Our tests of the power function are an extended version of the ELEFUNT tests, which check four important identities
with suitably purified arguments selected from logarithmic distributions over the indicated argument ranges:

� Compare xy with x for y = 1 and random x in [1/β, 1]. That test finds no errors if the case y = 1 is treated
specially, as it is in the mathcw library, but is not in the original Cody/Waite algorithm. Because y is small and
exactly representable, there is no error magnification. We should have w1 = u1 and w2 = u2, and inaccuracies
in the normal decomposition of w should be absent. Any small errors found therefore reflect inaccuracies in
the computation of u2 = logn(g/a).

14.14. Testing the power function 439

Table 14.6: Effect of q on power-function accuracy, from ELEFUNT measurements for the functions powl() and
powdl().

Bit or digit loss: average(worst)
q

CPU β 1 2 3 4
Alpha 2 0.40 (3.10) 0.00 (0.99) 0.00 (0.93) n/a
AMD64 2 4.28 (6.83) 0.33 (2.86) 0.00 (0.99) n/a
IA-32 2 4.28 (6.83) 0.33 (2.86) 0.00 (0.99) n/a
MIPS 2 1.12 (3.84) 0.00 (1.00) 0.00 (0.96) n/a
PowerPC 2 0.40 (3.10) 0.00 (0.99) 0.00 (0.93) n/a
SPARC 2 4.04 (6.47) 0.31 (3.04) 0.00 (1.00) n/a
AMD64 10 2.41 (3.14) 1.48 (2.24) 0.53 (1.32) 0.00 (1.00)

Table 14.7: Effect of q on power-function memory size for the private internal functions _pxyl() and _pxydl() that
compute xy for finite arguments when x > 0. The sizes include compiler-generated symbol tables and the static
functions binsearch(), find_a(), fmul2(), split(), usplit(), and wsplit().

Code and data (KB)
q

CPU β 1 2 3 4
AMD64 2 5 12 132 n/a
Alpha 2 5 9 69 n/a
IA-32 2 4 10 100 n/a
MIPS 2 8 15 137 n/a
PowerPC 2 3 7 67 n/a
SPARC 2 20 28 148 n/a
AMD64 10 8 11 39 320

� Compare (x× x)3/2 with x3 and random x in [1/β, 1], purified so that the product x× x is exactly representable.

The purification is easily done as follows. If t is the working precision, then given a random x, compute
σ = xβ(t+1)/2�. That is an exact scaling as long as we precompute the power of β by direct multiplication,
or else use the exact ldexp() or setxp() primitives. Then replace x with (x + σ) − σ. As usual, obey the
parentheses, and force storage of intermediate results to thwart machines with higher-precision registers.

There is then at most one rounding error in the computation of x3, but that value should be the one closest to
the exact cube in a round-to-nearest floating-point system, in which case it can be regarded as exact to working
precision.

Because y = 3/2, it is less likely to be detected by special-case code, and computation of w will require a
decomposition where the major source of error is again in the computation of u2 = logn(g/a).

� Make the same test as the preceding one, but this time, select random x values from the interval [1,
(maximum normal)1/3]. The larger x values mean larger u1 and w, increasing the error magnification.

� Compare (x × x)y/2 with xy, with random x on [1/100, 10], and random y on [−Y,+Y], where Y is the largest
number that avoids both underflow and overflow in xY. Purify x as in the first test, so that x2 is exact. Purify
y so that y/2 is exact like this: compute a = y/2 and b = (a − y) + y (obey parentheses and force storage of
(a − y)), and then set y = b + b.

That is the most demanding test, because y is large, and unlikely to have multiple trailing zeros. It tests the
accuracy of the decomposition w1 + w2 = y(u1 + u2) more than the earlier tests, because the trailing digits of
both y and u2 affect the final digits of w2, and because y can be large, error magnification is also large.

We augment the four ELEFUNT tests in response to the observation of the effect of a suboptimal choice of g (see
Section 14.6 on page 424) on the computation of powers of 1 and β. Those powers are exactly representable in all

440 Chapter 14. Power function

floating-point systems, but are likely to be slightly inaccurate if the computation of logn(g/a) does not handle them
carefully. We therefore make these extra tests:

� For all possible exponents n in the floating-point representation, compare (−1)n with +1 (n even) or −1 (n
odd), and 1n with 1.

� For all possible exponents n in the floating-point representation, compare (−β)n, (β)n, (−1/β)n, and (1/β)n

with exact n-term products.

If the power function handles x = ±1 and x = ±β separately when y is a whole-number power, the first, and part of
the second, test should find no errors. The powers of x = 1/β are unlikely to receive special handling, and should
force a normal path through the power function, even though the result can be represented exactly.

14.15 Retrospective on the power function

We devoted an entire chapter to the power function, which is the most difficult elementary function in the mathcw
library repertoire, primarily because its accurate computation needs almost triple the working precision, and few
programming languages provide floating-point arithmetic with a precision that can be chosen arbitrarily at run
time.

We therefore have to simulate the higher precision by representing several different values in the computation as
the sum of two components, where the high part is exact, and where the exact sum would require more than working
precision. Decomposing a computation into a sum or product of parts, some of which can be computed exactly, is a
valuable technique that deserves to be more widely used.

The power function requires two sets of polynomial approximations, one for logn(g/a), and another for nw − 1,
and we must be able to compute the first of them in higher than working precision.

Finally, we demonstrated that generalization of the algorithm to support larger values of C permits lower-order,
and thus faster, polynomial approximations for logn(g/a), at the expense of storage of larger tables A1[] and A2[].
Indeed, several papers on the computation of elementary functions that have been published since the influential
book by Cody and Waite improve both speed and accuracy by trading storage for performance. Serendipitously, by
increasing C, we are then able to reach a level of accuracy competitive with other elementary functions in the mathcw
library.

15 Complex arithmetic primitives

GAUSS1 ESTABLISHED THE MODERN THEORY OF NUMBERS,
GAVE THE FIRST CLEAR EXPOSITION OF COMPLEX NUMBERS,

AND INVESTIGATED THE FUNCTIONS OF COMPLEX VARIABLES.

— The Columbia Encyclopedia (2001).

Apart from Fortran and symbolic-algebra systems, few programming languages support complex arithmetic. The
1998 ISO C++ Standard adds a standard header file, <complex>, to provide a complex data-type template, and pro-
totypes of complex versions of a dozen or so elementary functions. The 1999 ISO C Standard goes further, offering
a standard header file, <complex.h>, and a new language keyword, _Complex. When <complex.h> is included, the
name complex can be used as a synonym for the new keyword, allowing declaration of objects of type float com-
plex, double complex, and long double complex. The header file declares nearly two dozen function prototypes for
each of those three data types.

The C99 Standard also specifies a built-in pure imaginary data-type modifier, called _Imaginary, and a new key-
word, _Imaginary_I, representing the constant i =

√−1 as one solution of the equation i2 = −1. The <complex.h>
header file defines macro synonyms imaginary for the type and I for the constant. However, the Standard makes
the imaginary type optional: it is available if, and only if, the macros imaginary and _Imaginary_I are defined. If
the imaginary type is not supported, then I is defined to be the new keyword _Complex_I, which has the value of
the imaginary unit, and type of float _Complex. Because of its optional nature, we avoid use in the mathcw library
of the imaginary type modifier; the complex data types are sufficient for our needs.

The IEEE Portable Operating System Interface (POSIX) Standard [IEEE01] requires the same complex arithmetic
support as C99, but defers to that Standard in the event of differences.

Annex G of the C99 Standard contains this remark:

A complex or imaginary value with at least one infinite part is regarded as an infinity (even if its other part is a NaN). A
complex or imaginary value is a finite number if each of its parts is a finite number (neither infinite nor NaN). A complex or
imaginary value is a zero if each of its parts is a zero.

That first statement is surprising, because it implies different computational rules that might ignore, or fail to propa-
gate, the NaN. That is contrary to the usual behavior of NaNs in the operations and functions of real arithmetic, and
in this author’s view, likely to be more confusing than useful.

The C99 Standard requires implementations of the complex data type to satisfy this condition [C99, §6.2.5, ¶13,
p. 34]:

Each complex type has the same representation and alignment requirements as an array type containing exactly two elements
of the corresponding real type; the first element is equal to the real part, and the second element to the imaginary part, of the
complex number.

The mandated storage layout follows the practice in Fortran, and means that, in C99, a complex argument passed by
address can be received as a pointer to a two-element array. That simplifies interlanguage communication.

The C89 Standard adds support for struct return values, and the C99 Standard allows complex return values
from functions. However, the C language has never permitted arrays to be returned from functions, nor does it
support operator overloading. The only solution seems to be implementation of the type as a struct instead of
an array. Otherwise, it is impossible to retrofit full support for complex types into older C implementations without
modifying the compiler itself.

1The German scientist Carl Friedrich Gauss (1777–1855) was one of the most influential mathematicians in history, with important contribu-
tions in algebra, astronomy, complex analysis, geodesy, geometry, magnetism, number theory, numerical quadrature, probability, statistics, and
telegraphy. The unit of magnetic induction is named after him. He was a child prodigy, a mental calculating savant, and a polyglot. He also
invented the heliotrope, a device for using mirrors to reflect sunlight over long distances in land surveying.

© Springer International Publishing AG 2017
N.H.F. Beebe, The Mathematical-Function Computation
Handbook, DOI 10.1007/978-3-319-64110-2_15

441

442 Chapter 15. Complex arithmetic primitives

For that reason, the complex-arithmetic primitives that we describe in this chapter take a different approach:
when a complex function result is required, it appears as the first argument. The function is then declared to be of
type void, and the code guarantees that the result argument can overlap with an input argument, because that often
proves convenient in a chain of complex-arithmetic operations.

In addition, to avoid collisions with the C99 function names, we use prefix letters cx instead of the standard prefix
letter c. Thus, our cxabs() corresponds to C99’s cabs().

Our implementation of support for complex arithmetic then provides a completely portable set of functions. When
the compiler can support the C99-style extensions, as indicated by the compile-time definition of the standard macro
__STDC_IEC_559_COMPLEX__, it is easy to provide the new functions as wrappers around calls to our own set. Al-
though the C99 Standard requires the enabling macro to be defined by the language, at the time of writing this, some
implementations that claim at least partial support of that Standard require <complex.h> to be included to have the
symbol defined. That is backwards, because the symbol should indicate the availability of the header file, not the
reverse. Our code caters to the problem by using instead a private compile-time symbol, HAVE_COMPLEX, to enable
code that references the complex data type. The <complex.h> header file is then expected to be available, and the
mathcw library version of that file, complexcw.h, includes the standard file, and then declares prototypes for our
additional functions.

At the time of writing this, the GNU gcc and Intel icc compilers do not permit combining the complex modifier
with decimal floating-point types. Compilation of the complex decimal functions is therefore suppressed by omitting
them from the decimal source-file macros in the mathcw package Makefile.

In the following sections, after we define some macros and data types, we present in alphabetical order the dozen
or so primitives for portable complex arithmetic, along with their C99 counterparts.

15.1 Support macros and type definitions

To simplify, and hide, the representation of complex-as-real data, we define in the header file cxcw.h public types
that correspond to two-element arrays of each of the supported floating-point types:

typedef float cx_float [2];
typedef double cx_double [2];
typedef decimal_float cx_decimal_float [2];
typedef decimal_double cx_decimal_double [2];
typedef long double cx_long_double [2];
typedef __float80 cx_float80 [2];
typedef __float128 cx_float128 [2];
typedef long_long_double cx_long_long_double [2];
typedef decimal_long_double cx_decimal_long_double [2];
typedef decimal_long_long_double cx_decimal_long_long_double [2];

Unlike Fortran, which has built-in functions for creating a complex number from two real numbers, C99 instead
uses expressions involving the imaginary value, I. That value is defined in <complex.h> as a synonym for either the
new keyword _Imaginary_I, if the compiler supports pure imaginary types, or else the new keyword _Complex_I.
To clarify the creation of complex numbers from their component parts, the header file complexcw.h defines the
constructor macro

#define CMPLX(x,y) ((x) + (y) * I)

that we use in the remainder of this chapter. That header file also defines the macro

#define CTOCX_(result,z) CXSET_(result, CREAL(z), CIMAG(z))

for converting from native complex to the complex-as-real type fp_cx_t.
Our C99 complex functions use a new type, fp_c_t, for floating-point complex data. It is defined with a typedef

statement to one of the standard built-in complex types.
The header file cxcw.h provides a few public macros for inline access to the components of complex-as-real data

objects, and their conversion to native complex data:

15.2. Complex absolute value 443

#define CXCOPY_(z,w) CXSET_(z, CXREAL_(w), CXIMAG_(w))
#define CXIMAG_(z) (z)[1]
#define CXREAL_(z) (z)[0]
#define CXSET_(z,x,y) (CXREAL_(z) = (x), CXIMAG_(z) = (y))
#define CXTOC_(z) CMPLX(CXREAL_(z), CXIMAG_(z))

We use them extensively to eliminate explicit array subscripting in all of the complex functions.
Experiments on several platforms with multiple compilers show that code-generation technology for complex

arithmetic is immature. The simple constructor function

double complex
cmplx(double x, double y)
{

return (x + y * I);
}

can compile into a dozen or more instructions, including a useless multiplication by one in the imaginary part. With
high optimization levels, some compilers are able to reduce that function to a single return instruction, when the
input argument and the output result occupy the same registers.

For the common case of conversion of fp_cx_t data to fp_c_t values, we can use the storage-order mandate to
reimplement the conversion macro like this:

#define CXTOC_(z) (*(fp_c_t *)(&(CXREAL_(z))))

Tests show that our new version eliminates the useless multiply, and produces shorter code.
On most architectures, access to the imaginary or real parts requires only a single load instruction, and the as-

signments in CXSET_() can sometimes be optimized to two store instructions, and on some platforms, to just one
double-word store instruction. The conversion to native complex data by CXTOC_() can often be reduced to two store
or register-move instructions, or one double-word store instruction.

Because most of the functions defined in this chapter are short and time critical, we use the underscore-terminated
macros to get inline code. For slower code that requires function calls and allows debugger breakpoints, any of the
macros that end with an underscore can be replaced by their companions without the underscore.

15.2 Complex absolute value

A complex number z = x + yi can be represented as a point in the plane at position (x, y), as illustrated in Figure 15.1
on the following page. The notation x + yi is called the Cartesian form. Using simple trigonometry, we can write it in
polar form as

z = r cos(θ) + r sin(θ)i,
= r exp(θi), polar form,

where r is the distance of the point (x, y) from the origin (0, 0), the angle θ is measured counterclockwise from the
positive x axis, and the exponential is obtained from the famous Euler formula for the imaginary exponential:

exp(θi) = cos(θ) + sin(θ)i, Euler formula.

The combination of trigonometric functions on the right-hand side is so common that many textbooks give it the
name cis(θ). In this book, we prefer the exponential form on the left-hand side.

The substitution θ = π in the Euler formula produces

exp(πi) = cos(π) + sin(π)i
= −1 + 0i
= −1.

444 Chapter 15. Complex arithmetic primitives

θy = r sin

θx = r cos

r = |z|

z = x+yi

θ

0

1

2

3

4

5

y

1 2 3 4 5

x

Figure 15.1: Cartesian and polar forms of a point in the complex plane. The angle θ is positive when measured
counterclockwise from the positive x axis.

That can be rearranged to produce the Euler identity that connects the two most important transcendental numbers
in mathematics with the complex imaginary unit and the digits of the binary number system:

eπi + 1 = 0, Euler identity.

The absolute value of a complex number x+ yi is the Euclidean distance of the point (x, y) from the origin: |z| = r =√
x2 + y2. Because the standard hypot() function already provides that computation, the C99 Standard mandates

use of that function, or equivalent code:

fp_t
CXABS(const fp_cx_t z)
{ /* complex absolute value: return abs(z) */

/* WARNING: this function can overflow for component magnitudes
larger than FP_T_MAX / sqrt(2): rescale carefully! */

return (HYPOT(CXREAL_(z), CXIMAG_(z)));
}

No special handling of Infinity and NaN components in the complex number is needed, because HYPOT() does that
work for us.

The commented warning about possible overflow is significant, because the real function family ABS() is never
subject to overflow. Whenever an algorithm requires the complex absolute value, it is essential to provide suitable
scaling to prevent premature overflow.

The code for the C99 complex functions, and their function prototypes, is bracketed with preprocessor condition-
als that emit code only if HAVE_COMPLEX is defined. However, we omit those conditionals in the code presented in
this book.

With a few exceptions where efficiency is imperative, and the code is simple, we implement the C99-style func-
tions in terms of our portable functions, as here for the complex absolute value:

15.3. Complex addition 445

fp_t
CABS(fp_c_t z)
{ /* complex absolute value: return abs(z) */

/* WARNING: this function can overflow for component magnitudes
larger than FP_T_MAX / sqrt(2): rescale carefully! */

fp_cx_t zz;

CTOCX_(zz, z);

return (CXABS(zz));
}

15.3 Complex addition

The addition operation for complex numbers is simple: just sum the real and imaginary parts separately:

void
CXADD(fp_cx_t result, const fp_cx_t x, const fp_cx_t y)
{ /* complex addition: result = x + y */

CXSET_(result, CXREAL_(x) + CXREAL_(y), CXIMAG_(x) + CXIMAG_(y));
}

The code works correctly even when result is the same as either, or both, of x or y.
The C99-style companion function for complex addition is not likely to be used, but we include it for com-

pleteness, because it facilitates machine-assisted translation to C99 code from code that uses the portable complex
arithmetic primitives:

fp_c_t
CADD(fp_c_t x, fp_c_t y)
{ /* complex addition: return x + y */

return (x + y);
}

15.4 Complex argument

The argument, or phase, of a complex number x + iy is the angle in radians between the positive x axis and a line from
the origin to the point (x, y). That is exactly what the two-argument arc tangent function computes, so the code is
easy:

fp_t
CXARG(const fp_cx_t z)
{ /* complex argument: return argument t of z = r * exp(i*t) */

return (ATAN2(CXIMAG_(z), CXREAL_(z)));
}

The C99 function is a simple wrapper that calls the portable function:

fp_t
CARG(fp_c_t z)
{ /* complex argument: return argument (angle in radians) of z */

fp_cx_t zz;

CTOCX_(zz, z);

return (CXARG(zz));
}

446 Chapter 15. Complex arithmetic primitives

From the polar form of complex numbers, it is easy to see that the argument of a product is the sum of the
arguments:

arg(w × z) = arg(w) + arg(z).

The argument of a quotient is the difference of the arguments, and the argument of a reciprocal is the negation of the
argument:

arg(w/z) = arg(w)− arg(z),
arg(1/z) = − arg(z).

15.5 Complex conjugate

The conjugate of a complex number x + iy is just x − iy, so the code is easy:

void
CXCONJ(fp_cx_t result, const fp_cx_t z)
{ /* complex conjugate: result = complex_conjugate(z) */

CXSET_(result, CXREAL_(z), -CXIMAG_(z));
}

We implement the C99 function with inline code:

fp_c_t
CONJ(fp_c_t z)
{ /* complex conjugate: return complex_conjugate(z) */

return (CMPLX(CREAL(z), -CIMAG(z)));
}

15.6 Complex conjugation symmetry

There are two common notations for complex conjugation of a variable or expression in mathematical texts: a super-
script star, z�, or an overbar, z̄. In this chapter, we use the star notation because it is easier to see.

The conjugate of a complex number is the reflection of its point on the complex plane across the real axis. In the
Cartesian form of complex numbers, we have

w = u + vi, z = x + yi, for real u, v, x, and y,
w� = u − vi, z� = x − yi, complex conjugate.

In the equivalent polar form, we have

z = r exp(θi), for real r and θ,
z� = r exp(−θi), by reflection across the real axis.

The operation of complex conjugation appears in an important symmetry relation for many complex functions
of a single variable, f (z):

f (z�) =
(

f (z)
)�, symmetry under complex conjugation.

To understand the origin of that special symmetry of some complex functions, we look first at how complex
conjugation behaves with the low-level operations of complex arithmetic:

(−z)� = (−x − yi)�

= (−x + yi)
= −(x − yi)

15.6. Complex conjugation symmetry 447

= −(z�), symmetry under negation,

(w + z)� =
(
(u + x) + (v + y)i

)�
= (u + x)− (v + y)i
= (u − vi) + (x − yi)
= w� + z�, symmetry under addition,

(w × z)� =
(
(ux − vy) + (uy + vx)i

)�
= (ux − vy)− (uy + vx)i
= (u − iv)(x − iy)
= w� × v�, symmetry under multiplication,

(1/z)� =
(
1/(x + yi)

)�
=
(
(x − yi)/(x2 + y2)

)�
= (x + yi)/(x2 + y2)

= 1/(x − yi)
= 1/(z�), symmetry under reciprocation,

(w/z)� = w�/z�, symmetry under division.

The last relation follows by combining the symmetry rules for multiplication and reciprocation, but can also be
derived by tedious expansion and rearrangement of the numerator and denominator. Thus, the operation of complex
conjugation distributes over negations, sums, differences, products, and quotients. Because it holds for products, we
conclude that it also holds for integer powers:

(zn)� = (z�)n, for n = 0,±1,±2,

Because it applies for products and sums, it is also valid for polynomials and convergent series with real coefficients,
pk:

(P(z)
)�

= (p0 + p1z + p2z2 + p3z3 + · · ·)�
= (p0)

� + (p1z)� + (p2z2)� + (p3z3)� + · · ·
= p�

0 + p�
1z� + p�

2(z
�)2 + p�

3(z
�)3 + · · ·

= p0 + p1z� + p2(z�)2 + p3(z�)3 + · · ·
= P(z�).

If a function with a single complex argument has a convergent Taylor-series expansion about some complex point z0
given by

f (z) = c0 + c1(z − z0) + c2(z − z0)
2 + c3(z − z0)

3 + · · · ,

then as long as the coefficients ck are real, we have the conjugation symmetry relation
(

f (z)
)�

= f (z�). The elemen-
tary functions that we treat in this book have that property, and it is of utmost importance to design computational
algorithms to ensure that the symmetry property holds for all complex arguments z, whether finite or infinite. How-
ever, NaN arguments usually require separate consideration.

The product of a complex number with its conjugate is the square of its absolute value. We can show that in both
Cartesian form and in polar form:

zz� = (x + yi)× (x − yi) zz� = r exp(θi)× r exp(−θi)

= x2 − xyi + yxi + y2 = r2 exp(θi − θi)

= x2 + y2 = r2

= |z|2, = |z|2.

448 Chapter 15. Complex arithmetic primitives

Rearranging the final identity produces a simple formula for the complex reciprocal that is helpful for converting
complex division into complex multiplication and a few real operations:

1
z
=

z�

|z|2 .

From the Cartesian form, these further relations are evident:

z = z�, if, and only if, z is real ,
real(z) = 1

2 (z + z�),

imag(z) = − 1
2 (z − z�)i.

15.7 Complex conversion

The type-conversion macros defined on page 442 make it easy to provide companion functions:

void
CTOCX(fp_cx_t result, fp_c_t z)
{ /* convert native complex z to complex-as-real */

CTOCX_(result, z);
}

fp_c_t
CXTOC(fp_cx_t z)
{ /* convert complex-as-real z to native complex */

return (CXTOC_(z));
}

Those macros and functions reduce the need to reference the imaginary and real parts separately, shorten code that
uses them, and make the type conversions explicit.

15.8 Complex copy

Because C does not support array assignment, we need a primitive for the job, so that user code can avoid referring
to array subscripts, or individual components:

void
CXCOPY(fp_cx_t result, const fp_cx_t z)
{ /* complex copy: result = z */

CXCOPY_(result, z);
}

The C99-style companion is unlikely to be needed, except for machine-assisted code translation, but we provide it
for completeness:

fp_c_t
CCOPY(fp_c_t z)
{ /* complex copy: return z */

return (z);
}

15.9. Complex division: C99 style 449

15.9 Complex division: C99 style

The most difficult operation in the complex primitives is division. If x = a + ib and y = c + id, then complex division
is defined by introducing a common factor in the numerator and denominator that reduces the complex denominator
to a real number that can then divide each component:

x/y = (a + bi)/(c + di)

=
(
(a + bi)(c − di)

)
/
(
(c + di)(c − di)

)
=
(
(ac + bd) + (bc − ad)i

)
/(c2 + d2)

=
(
(ac + bd)/(c2 + d2)

)
+
(
(bc − ad)/(c2 + d2)

)
i.

In the last result, we can readily identify two serious problems for implementation with computer arithmetic
of finite precision and range: significance loss in the additions and subtractions in the numerator, and premature
overflow and underflow in both the numerator and the denominator.

There are more difficulties lurking, however. We also have to consider the possibility that one or more of the four
components a, b, c, and d are Infinity, a NaN, or zero.

Infinities introduce problems, because IEEE 754 arithmetic requires that subtraction of like-signed Infinities, and
division of Infinities, produce a NaN. Thus, even though we expect mathematically that (1 + i)/(∞ + i∞) should
evaluate to zero, the IEEE 754 rules applied to the definition of division produce a NaN result:

(1 + i)/(∞ + i∞) = ((∞ + ∞) + (∞ − ∞)i)/(∞2 + ∞2)

= (∞ + NaNi)/∞
= NaN + NaNi.

Division by zero is also problematic. Consider a finite numerator with positive parts. We then have three different
results, depending on whether we divide by a complex zero, a real zero, or an imaginary zero:

(a + bi)/(0 + 0i) = 0/0 + (0/0)i
= NaN + NaNi,

(a + bi)/0 = a/0 + (b/0)i
= ∞ + ∞i,

(a + bi)/(0i) = b/0 − (a/0)i
= ∞ − ∞i.

Thus, a complex-division routine that checks for zero real or imaginary parts to simplify the task to two real divides
gets different answers from one that simply applies the expansion of x/y given at the start of this section.

Experiments with complex division in C99 and Fortran on various platforms show that their handling of Infinity
is inconsistent. The ISO standards for those languages offer no guidance beyond a recommended algorithm for
complex division in an informative annex of the C99 Standard [C99, §G.5.1, p. 469]. However, that annex notes in its
introduction:

This annex supplements annex F to specify complex arithmetic for compatibility with IEC 60559 real floating-point arith-
metic. Although these specifications have been carefully designed, there is little existing practice to validate the design decisions.
Therefore, these specifications are not normative, but should be viewed more as recommended practice.

The possibility of Infinity and NaN components could require extensive special casing in the division algorithm, as
well as multiple tests for such components. That in turn makes the algorithm slower for all operands, even those
that require no special handling.

To eliminate most of the overhead of special handling, the algorithm suggested in the C99 Standard follows the
policy of compute first, and handle exceptional cases later, which the IEEE 754 nonstop model of computation easily sup-
ports. Older architectures may require additional coding, however, to achieve documented and predictable results
for complex division.

Here is our implementation of the C99 algorithm for complex division:

450 Chapter 15. Complex arithmetic primitives

void
CXDIV(fp_cx_t result, const fp_cx_t x, const fp_cx_t y)
{ /* complex division: result = x / y */

fp_t a, b, c, d, logb_y, denom;
fp_pair_t ac_bd, bc_ad;
volatile fp_t e, f;
int ilogb_y;

ilogb_y = 0;
a = CXREAL_(x);
b = CXIMAG_(x);
c = CXREAL_(y);
d = CXIMAG_(y);

logb_y = LOGB(FMAX(QABS(c), QABS(d)));

if (ISFINITE(logb_y))
{

ilogb_y = (int)logb_y;
c = SCALBN(c, -ilogb_y);
d = SCALBN(d, -ilogb_y);

}

denom = c * c + d * d;
fast_pprosum(ac_bd, a, c, b, d);
fast_pprosum(bc_ad, b, c, -a, d);

e = SCALBN(PEVAL(ac_bd) / denom, -ilogb_y);
STORE(&e);
f = SCALBN(PEVAL(bc_ad) / denom, -ilogb_y);
STORE(&f);

if (ISNAN(e) && ISNAN(f))
{

fp_t inf;

/* Recover infinities and zeros that computed as NaN +
I*NaN. The only cases are nonzero/zero, infinite/finite,
and finite/infinite */

if ((denom == ZERO) && (!ISNAN(a) || !ISNAN(b)))
{

inf = INFTY();
e = COPYSIGN(inf, c) * a;
f = COPYSIGN(inf, c) * b;

}
else if ((ISINF(a) || ISINF(b)) && ISFINITE(c) && ISFINITE(d))
{

inf = INFTY();
a = COPYSIGN(ISINF(a) ? ONE : ZERO, a);
b = COPYSIGN(ISINF(b) ? ONE : ZERO, b);
e = inf * (a * c + b * d);
f = inf * (b * c - a * d);

}
else if (ISINF(logb_y) && ISFINITE(a) && ISFINITE(b))
{

c = COPYSIGN(ISINF(c) ? ONE : ZERO, c);
d = COPYSIGN(ISINF(d) ? ONE : ZERO, d);

15.10. Complex division: Smith style 451

e = ZERO;
f = ZERO;
e *= (a * c + b * d);
f *= (b * c - a * d);

}
}

CXSET_(result, e, f);
}

The complex division algorithm is complicated, and several subtle points are worth noting:

� Premature overflow and underflow are avoided by scaling the denominator and the numerator. Mathemati-
cally, that could be done by dividing each component by the larger magnitude, |c| or |d|. However, that division
introduces into the scaled components at least one rounding error each, and for older architectures, even more,
because division was often less accurate than addition and multiplication. The C99 algorithm trades execution
time for better accuracy by scaling by the power of the base near the larger of |c| and |d|. That scaling is exact,
so no additional rounding error is introduced. The C99 LOGB() and SCALBN() functions provide the needed
tools, and we can use them on all systems because they are also members of the mathcw library.

� Even though division is more expensive than multiplication, the computation of the result components, e and
f , uses two divisions, rather than precomputing the reciprocal of denom and then using two multiplications.
Doing so would introduce additional rounding errors that are unnecessary if we pay the cost of an extra divi-
sion.

� The biggest loss of accuracy in the division comes from the product sums ab + bd and bc − ad. The algo-
rithm recommended by the C99 Standard computes them directly, but we replace that computation by calls
to the functions PPROSUM() and PEVAL() for enhanced accuracy. We comment more on that problem later in
Section 15.13 on page 455 and Section 15.16 on page 458.

� If the result components are finite or Infinity, or just one of them is a NaN, no further computation is needed.

� Otherwise, both components are a NaN, and three separate cases of corrective action are required, each of
which involves from two to six property checks with the ISxxx() functions.

C99 does not provide a function for complex division, because that operation is built-in. For completeness, we
provide a C99-style function that uses the code in CXDIV():

fp_c_t
CDIV(fp_c_t x, fp_c_t y)
{ /* complex division: return x / y */

fp_cx_t xx, yy, result;

CTOCX_(xx, x);
CTOCX_(yy, y);
CXDIV(result, xx, yy);

return (CXTOC_(result));
}

15.10 Complex division: Smith style

The first published algorithm for complex division known to this author is Robert L. Smith’s ACM Algorithm 116
[Smi62], which addresses the overflow and underflow problems by scaling the denominator by the larger of its two
components. If |c| ≥ |d|, we rewrite the division given at the start of the previous section with two intermediate
variables r and s like this:

x/y = (a + bi)/(c + di)

452 Chapter 15. Complex arithmetic primitives

=
(
(ac + bd)/(c2 + d2)

)
+
(
(bc − ad)/(c2 + d2)

)
i,

=
(
(a + bd/c)/(c + d2/c)

)
+
(
(b − ad/c)/(c + d2/c)

)
i,

r = d/c,
s = dr + c,

x/y =
(
(a + br)/s

)
+
(
(b − ar)/s

)
i.

Otherwise, when |c| < |d|, similar steps produce

r = c/d,
s = cr + d,

x/y =
(
(ar + b)/s

)
+
(
(br − a)/s

)
i,

The total floating-point work is 2 fabs() operations, 1 compare, 3 adds, 3 divides, and 3 multiplies.
The inexact scaling contaminates both components of the result with an additional rounding error. With some-

what more work, that scaling can be made exact [LDB+00, Appendix B, page 61], but we do not discuss it here
because we can do even better.

The fused multiply-add operation was not invented until much later, but it clearly could be of use here, speeding
the calculations, and largely eliminating subtraction loss.

15.11 Complex division: Stewart style

About two decades after ACM Algorithm 116 [Smi62], G. W. Stewart revisited Smith’s method and pointed out that
premature overflow and underflow can be made less likely by rearranging the computation to control the size of
intermediate products [Ste85]. The revised algorithm requires additional control logic, and looks like this when
rewritten to use the same variables for real and imaginary parts as we have in CXDIV():

#include <stdbool.h>

#define SWAP(x,y) (temp = x, x = y, y = temp)

void
stewart_cxdiv(fp_cx_t result, const fp_cx_t z, const fp_cx_t w)
{ /* complex-as-real division: set result = z / w */

fp_t a, b, c, d, e, f, s, t, temp;
bool flip;

a = CXREAL_(z);
b = CXIMAG_(z);
c = CXREAL_(w);
d = CXIMAG_(w);
flip = false;

if (QABS(d) > QABS(c))
{

SWAP(c, d);
SWAP(a, b);
flip = true;

}

s = ONE / c;
t = ONE / (c + d * (d * s));

if (QABS(d) > QABS(s))
SWAP(d, s);

15.12. Complex division: Priest style 453

if (QABS(b) >= QABS(s))
e = t * (a + s * (b * d));

else if (QABS(b) >= QABS(d))
e = t * (a + b * (s * d));

else
e = t * (a + d * (s * b));

if (QABS(a) >= QABS(s))
f = t * (b - s * (a * d));

else if (QABS(a) >= QABS(d))
f = t * (b - a * (s * d));

else
f = t * (b - d * (s * a));

if (flip)
f = -f;

CXSET_(result, e, f);
}

In the first if block, Stewart exploits the complex-conjugation symmetry rule for division:
(
(a + bi)/(c + di)

)�
= (a + bi)�/(c + di)�

= (a − bi)/(c − di), then multiply by i/i,
= (b + ai)/(d + ci).

If necessary, the real and imaginary components are swapped to ensure that |c| ≥ |d|, and the flip variable records
that action. Subsequent operations then compute the conjugate of the desired result, and the sign is inverted in the
final if statement.

Stewart’s code requires parentheses to be obeyed, but as we recorded in Section 4.4 on page 64, that was not true
in C before the 1990 ISO Standard.

The floating-point operation count is 8 to 12 QABS() tests, 4 to 6 compares, 3 adds, 2 divides, 8 multiplies, and
possibly 1 negation. Unless divides are exceptionally slow, Stewart’s algorithm is likely to be somewhat slower than
Smith’s, but it has better numerical behavior at the extremes of the floating-point range.

Extensive tests of both Smith’s and Stewart’s algorithms on several platforms against more accurate code for com-
plex division show that, with millions of random arguments, the relative error of the quotient lies below 3.0 ulps.
However, it is certainly possible with specially chosen components to exhibit cases that suffer catastrophic subtrac-
tion loss.

Although we do not show the needed code, special handling of Infinity and NaN arguments is required, because
both Smith’s and Stewart’s algorithms produce NaN results, instead of Infinity, for ∞/finite and zero for finite/∞.

15.12 Complex division: Priest style

Two decades more passed before complex division was again revisited. In a lengthy article with complicated numer-
ical analysis [Pri04], Douglas Priest shows that the inexact scaling in the Smith [Smi62] and Stewart [Ste85] methods
can be eliminated without the overhead of the logb() and scalbn() calls used in the C99 algorithm, provided that
the programmer is willing to commit to a particular floating-point format, and grovel around in the bits of the
floating-point representation. Priest’s detailed examination shows that there is some flexibility in the choice of scale
factor, that absolute-value operations can be eliminated by bit masking, and that a two-step scaling can eliminate all
premature underflow and overflow.

The major difficulty for the programmer is decoding the floating-point representation and choosing suitable bit
masks and constants to accomplish the scaling. Priest exhibits code only for IEEE 754 64-bit arithmetic, and hides the
architecture-dependent byte storage order by assuming that long long int is a supported 64-bit integer data type.
With the same variable notation as before, here is what his code looks like:

454 Chapter 15. Complex arithmetic primitives

void
priest_cxdiv(cx_double result, const cx_double z, const cx_double w)
{ /* set result = z / w */

union
{

long long int i; /* must be 64-bit integer type */
double d; /* must be 64-bit IEEE 754 type */

} aa, bb, cc, dd, ss;
double a, b, c, d, t;
int ha, hb, hc, hd, hz, hw, hs; /* components of z and w */

a = CXREAL_(z);
b = CXIMAG_(z);
c = CXREAL_(w);
d = CXIMAG_(w);
aa.d = a; /* extract high-order 32 bits to estimate |z| and |w| */
bb.d = b;
ha = (aa.i >> 32) & 0x7fffffff;
hb = (bb.i >> 32) & 0x7fffffff;
hz = (ha > hb) ? ha : hb;
cc.d = c;
dd.d = d;
hc = (cc.i >> 32) & 0x7fffffff;
hd = (dd.i >> 32) & 0x7fffffff;
hw = (hc > hd) ? hc : hd; /* compute the scale factor */

if (hz < 0x07200000 && hw >= 0x32800000 && hw < 0x47100000)
{ /* |z| < 2^-909 and 2^-215 <= |w| < 2^114 */

hs = (((0x47100000 - hw) >> 1) & 0xfff00000) + 0x3ff00000;
}
else

hs = (((hw >> 2) - hw) + 0x6fd7ffff) & 0xfff00000;

ss.i = (long long int)hs << 32; /* scale c & d, & get quotient */
c *= ss.d;
d *= ss.d;
t = ONE / (c * c + d * d);
c *= ss.d;
d *= ss.d;

CXSET_(result, (a * c + b * d) * t, (b * c - a * d) * t);
}

The variables ha through hd hold the top 32 bits of the four components with the sign bits masked to zero, and
the larger of each pair are then used to determine hs, which has the top 32 bits of the scale factor. That scale factor is
an exact power of the base, and is constructed in the structure element ss.i, and used as its memory overlay ss.d.
The scale-factor selection is intricate and takes three journal pages to describe; see [Pri04, §2.2] for the details.

Determining the scale factor requires only fast 32-bit and 64-bit integer operations, and once it is available, the
final result is constructed with 3 adds, 1 divide, and 12 multiplies.

Priest observes that the product-sums in the last statement are subject to catastrophic subtraction loss, but does
not attempt to correct that problem.

Instead of laboriously deriving new scale-factor code for a float version of Priest’s method for complex division,
it is more sensible to promote the float operands to double and call priest_cxdiv(), since all internal products are
then exact, and subtraction loss is eliminated. The long double type is more difficult to handle, since it too needs
new scale-factor code, and there are 80-, 96-, and 128-bit storage conventions for the 80-bit type, a paired-double
128-bit format, and a separate 128-bit representation, plus differing byte-addressing practices.

Priest claims that his algorithm also correctly handles the case of complex infinite operands: when the exact result

15.13. Complex division: avoiding subtraction loss 455

is infinite, at least one component of the result is Infinity, and the other may be a NaN, as permitted by C99 and noted
at the beginning of this chapter.

Timing tests on several architectures with arguments of random signs, and magnitudes drawn from both uniform
and logarithmic distributions, show that Priest’s algorithm is always faster than Stewart’s, and is much faster than
the C99 algorithm that we present in Section 15.9 on page 449.

15.13 Complex division: avoiding subtraction loss

The problem of catastrophic subtraction loss remains in the four algorithms for complex division ([C99, §G.5.1,
p. 469], [Smi62], [Ste85], and [Pri04]) that we have presented in the preceding sections. It is a requirement of IEEE
754 arithmetic that results of the five basic operations of real arithmetic are always correctly rounded. Even though
complex arithmetic is more difficult than real arithmetic, a library implementation of the basic complex operations
should guarantee relative errors that are no worse than a few units in the last place for all possible operands.

In each algorithm, subtraction loss lurks in the expression forms ab + cd and ab + c. In Section 15.9 on page 449,
we proposed handling the first form with our pair-precision product-sum function family, PPROSUM(). In Sec-
tion 15.10 on page 451, we suggested using the FMA() fused multiply-add family for the second form.

When we recall that each product can be represented exactly as a sum of pairs, then we can apply our VSUM()
primitive for accurate vector summation:

fp_t v[4], result;
v[3] = a * b; /* hi(a * b) */
v[2] = c * d; /* hi(c * d) */
v[1] = FMA(a, b, -v[3]); /* lo(a * b) */
v[0] = FMA(c, d, -v[2]); /* lo(c * d) */
result = VSUM((ft_t)NULL, 4, v); /* a * b + c * d, accurately */

When a fast fma() operation is available, the problem expression can, and should, be computed that way. However,
when the fma() function is comparatively slow, it is better to use it only when subtraction loss is known to happen:
in a binary base, the terms must be of opposite sign, and ratio of their magnitudes must lie in [1

2 , 3
2] (see Section 4.19

on page 89).
We therefore replace the call to PPROSUM() with a call to this faster version:

static void
fast_pprosum(fp_pair_t result, fp_t a, fp_t b, fp_t c, fp_t d)
{ /* compute result = a * b + c * d accurately and quickly */

fp_t ab, ab_abs, cd, cd_abs;

ab = a * b;
cd = c * d;
result[1] = ZERO;

if ((ab >= ZERO) && (cd >= ZERO)) /* same signs */
result[0] = ab + cd;

else if ((ab < ZERO) && (cd < ZERO)) /* same signs */
result[0] = ab + cd;

else /* opposite signs */
{

ab_abs = QABS(ab);
cd_abs = QABS(cd);

if (((cd_abs + cd_abs) < ab_abs) || ((ab_abs + ab_abs) < cd_abs))
result[0] = ab + cd;

else /* certain loss */
{

fp_t err_ab;

456 Chapter 15. Complex arithmetic primitives

err_ab = FMA(a, b, -ab);
result[0] = FMA(c, d, ab);
result[1] = err_ab;

}
}

}

In that code, PSET_() is a macro that expands inline to set both components of its first argument, without worrying
about the sign of zero in the second component, as the function PSET() does.

15.14 Complex imaginary part

The imaginary part of a complex number is just its second component, so retrieving it is simple:

fp_t
CXIMAG(const fp_cx_t z)
{ /* complex imaginary part: return imag(z) */

return (CXIMAG_(z));
}

The C99 companion function exploits the storage mandate cited earlier on page 441 to cast a complex-value
pointer to an array-element pointer via our conversion macro:

fp_t
CIMAG(fp_c_t z)
{ /* complex imaginary part: return imag(z) */

return (CXIMAG_((fp_t *)&z));
}

15.15 Complex multiplication

After division, the next most difficult operation in the complex primitives is multiplication. If x = a + ib and
y = c + id, then complex multiplication is defined like this:

xy = (a + ib)(c + id)
= (ac − bd) + i(ad + bc).

That looks straightforward, but as happens with division, the problems of significance loss and premature overflow
and underflow, and the introduction of spurious NaN results from subtraction and division of Infinity, must be dealt
with.

Our algorithm follows the procedure recommended in a non-binding annex of the C99 Standard [C99, §G.5.1,
p. 468], and like the division algorithm, it computes first, and handles exceptional cases later:

void
CXMUL(fp_cx_t result, const fp_cx_t x, const fp_cx_t y)
{ /* complex multiply: result = x * y */

fp_t a, b, c, d;
fp_pair_t ac_bd, ad_bc;

a = CXREAL_(x);
b = CXIMAG_(x);
c = CXREAL_(y);
d = CXIMAG_(y);

PPROSUM(ac_bd, a, c, -b, d);
PPROSUM(ad_bc, a, d, b, c);

15.15. Complex multiplication 457

CXSET_(result, PEVAL(ac_bd), PEVAL(ad_bc));

if (ISNAN(CXREAL_(result)) && ISNAN(CXIMAG_(result)))
{

int recalc;

recalc = 0;

if (ISINF(a) || ISINF(b)) /* x is infinite */
{ /* Box the infinity and change NaNs in other factor to 0 */

a = COPYSIGN(ISINF(a) ? ONE : ZERO, a);
b = COPYSIGN(ISINF(b) ? ONE : ZERO, b);

if (ISNAN(c))
c = COPYSIGN(ZERO, c);

if (ISNAN(d))
d = COPYSIGN(ZERO, d);

recalc = 1;
}

if (ISINF(c) || ISINF(d)) /* y is infinite */
{ /* Box infinity and change NaNs in other factor to 0 */

c = COPYSIGN(ISINF(c) ? ONE : ZERO, c);
d = COPYSIGN(ISINF(d) ? ONE : ZERO, d);

if (ISNAN(a))
a = COPYSIGN(ZERO, a);

if (ISNAN(b))
b = COPYSIGN(ZERO, b);

recalc = 1;
}

if (!recalc && (ISINF(a * c) || ISINF(b * d) || ISINF(a * d) || ISINF(b * c)))
{ /* Recover infinities from overflow: change NaNs to zero */

if (ISNAN(a))
a = COPYSIGN(ZERO, a);

if (ISNAN(b))
b = COPYSIGN(ZERO, b);

if (ISNAN(c))
c = COPYSIGN(ZERO, c);

if (ISNAN(d))
d = COPYSIGN(ZERO, d);

recalc = 1;
}

if (recalc)
{

fp_t inf;

458 Chapter 15. Complex arithmetic primitives

inf = INFTY();
CXSET_(result, inf * (a * c - b * d),

inf * (a * d + b * c));
}

}
}

The code deals with the common case quickly, but when both components of the result are found to be NaNs, fur-
ther testing, and possible computation of properly signed infinities, is needed. We improve upon the recommended
algorithm by using PPROSUM() and PEVAL() for the computation of ac − bd and ad + bc. In practice, we can use our
fast_pprosum() private function (see Section 15.13 on page 455) instead of PPROSUM().

As with division, C99 does not provide a function for complex multiplication, because that operation too is built-
in. Following our practice with CDIV(), we provide a C99-style function that uses the code in CXMUL():

fp_c_t
CMUL(fp_c_t x, fp_c_t y)
{ /* complex multiply: return x * y */

fp_cx_t xx, yy, result;

CTOCX_(xx, x);
CTOCX_(yy, y);
CXMUL(result, xx, yy);

return (CXTOC_(result));
}

15.16 Complex multiplication: error analysis

The accuracy of multiplication with complex arithmetic has been studied with detailed mathematical proofs that
occupy about ten journal pages [BPZ07]. That work has been recently extended to algorithms using fused multiply-
add operations [JKLM17], slightly improving the bounds cited here. The authors show that for floating-point base β
under the conditions

� subnormals, overflow, and underflow are avoided,

� round-to-nearest mode is in effect for real arithmetic operations,

� the number of significand bits is at least five, and

� expressions of the form ab ± cd are computed accurately,

then complex multiplication has a maximum relative error below 1
2

√
5β1−t, where t is the number of significand

digits. For binary IEEE 754 arithmetic, their bound corresponds to 1.118 ulps. Importantly, their analysis leads to
simple test values that produce the worst-case errors:

β = 2,
t = 24 or 53,

e = 1
2 β1−t,

z0 = 3/4 +
(
(3(1 − 4e))/4

)
i, 32-bit IEEE 754 format,

=
3
4
+

12 582 909
16 777 216

i

= 0x1.8p-1 + 0x1.7fff_fap-1 * I,

z1 =
(
2(1 + 11e)

)
/3 +

(
(2(1 + 5e))/3

)
i

15.17. Complex negation 459

=
5 592 409
8 388 608

+
5 592 407
8 388 608

i

= 0x1.5555_64p-1 + 0x1.5555_5cp-1 * I,

exact z0z1 = (5e + 10e2) + (1 + 6e − 22e2)i

=
41 943 045

140 737 488 355 328
+

140 737 538 686 965
140 737 488 355 328

i

= 0x1.4000_028p-22 + 0x1.0000_05ff_ffeap+0 * I,

w0 =
(
3(1 + 4e)

)
/4 + (3/4)i, 64-bit IEEE 754 format,

=
6 755 399 441 055 747
9 007 199 254 740 992

+
3
4

i

= 0x1.8000_0000_0000_3p-1 + 0x1.8p-1 * I,

w1 =
(
2(1 + 7e)

)
/3 +

(
2(1 + e)/3

)
i

=
3 002 399 751 580 333
4 503 599 627 370 496

+
3 002 399 751 580 331
4 503 599 627 370 496

i

= 0x1.5555_5555_5555_ap-1 +

0x1.5555_5555_5555_6p-1 * I,

exact w0w1 = (5e + 14e2) + (1 + 6e + 2e2)i

=
22 517 998 136 852 487

40 564 819 207 303 340 847 894 502 572 032
+

40 564 819 207 303 367 869 492 266 795 009
40 564 819 207 303 340 847 894 502 572 032

i

= 0x1.4000_0000_0000_1cp-51 +

0x1.0000_0000_0000_3000_0000_0000_008p+0 * I.

Despite the factors of 2/3 in the expressions for z1 and w1, all of the components are exactly representable in binary
arithmetic.

Using those worst-case values for the float and double formats, this author wrote two short test programs,
tcmul2.c and tcmul3.c, in the exp subdirectory. The first uses native complex arithmetic and is run with the native
math library. The second replaces the complex multiplications by calls to our CMUL() family members, and thus
requires the mathcw library. The programs were then run on several architectures, including GNU/LINUX (Alpha,
AMD64, IA-32, IA-64, PowerPC, and SPARC), FREEBSD (IA-32), OPENBSD (IA-32), and SOLARIS (AMD64 and
SPARC), with multiple C99-level compilers.

All of the tests show relative errors below 0.539 ulps for the 32-bit native complex multiply. For the 64-bit native
complex multiply, all systems produce a correctly rounded imaginary part, but almost all of the test systems lose 49
of the 53 significand bits for the real part of the product! Only on the FREEBSD IA-32 and SOLARIS AMD64 tests,
and with one uncommon commercial compiler on GNU/LINUX AMD64, is the real part correctly rounded. By
contrast, the test program that uses the mathcw library routines produces correctly rounded results for those tests on
all platforms. The lesson is that complex arithmetic in C is not yet trustworthy.

15.17 Complex negation

The negative of a complex number x + iy is just −x − iy, so the implementation is simple:

void
CXNEG(fp_cx_t result, const fp_cx_t z)
{ /* complex negation: result = -z */

CXSET_(result, -CXREAL_(z), -CXIMAG_(z));
}

There is no C99 Standard function for complex negation, because the operation is built-in, but we provide a
companion function that uses inline code, rather than calling CXNEG():

460 Chapter 15. Complex arithmetic primitives

fp_c_t
CNEG(fp_c_t z)
{ /* complex negation: return -z */

return (-z);
}

15.18 Complex projection

The projection function may be unique to C99, and the Standard describes it this way [C99, §7.3.9.4, p. 179]:

The cproj() functions compute a projection of z onto the Riemann2 sphere: z projects to z except that all complex infinities
(even those with one infinite part and one NaN part) project to positive infinity on the real axis. If z has an infinite part, then
cproj(z) is equivalent to

INFINITY + I * copysign(0.0, cimag(z)).

That description readily leads to obvious code:

void
CXPROJ(fp_cx_t result, const fp_cx_t z)
{ /* complex projection of z onto Riemann sphere: result = proj(z) */

if (ISINF(CXREAL_(z)) || ISINF(CXIMAG_(z)))
CXSET_(result, INFTY(), COPYSIGN(ZERO, CXIMAG_(z)));

else
CXSET_(result, CXREAL_(z), CXIMAG_(z));

}

The C99 companion function uses CXPROJ() for the real work:

fp_c_t
CPROJ(fp_c_t z)
{ /* complex projection of z onto Riemann sphere: return proj(z) */

fp_cx_t zz, result;

CTOCX_(zz, z);
CXPROJ(result, zz);

return (CXTOC_(result));
}

If a sphere of radius one is centered at the origin on the complex plane (see Figure 15.2), then a line from any
point w = (u, v) on the plane outside the sphere to the North Pole of the sphere intersects the sphere in exactly two
places, like an arrow shot through a balloon. Thus, every finite point (u, v) has a unique image point on the sphere
at the first intersection. As we move further away from the origin, that intersection point approaches the North Pole.
The two intersections with the sphere coincide only for points where one or both components of the point on the
plane are infinitely far away. That is, all complex infinities project onto a single point, the North Pole, of the Riemann
sphere.

15.19 Complex real part

The real part of a complex number is just its first component, so retrieving it is easy:

fp_t
CXREAL(const fp_cx_t z)
{ /* complex real part: return real(z) */

return (CXREAL_(z));
}
2See the footnote in Section 11.2 on page 303.

15.20. Complex subtraction 461

Figure 15.2: Projecting a complex point onto the Riemann sphere.

As with CIMAG(), the corresponding C99 function for the real part uses the storage requirement to convert a
complex-value pointer to an array-element pointer:

fp_t
CREAL(fp_c_t z)
{ /* complex real part: return real(z) */

return (CXREAL_((fp_t *)&z));
}

15.20 Complex subtraction

The subtraction operation for complex numbers simply requires computing the difference of their real and imaginary
components, so the code is obvious:

void
CXSUB(fp_cx_t result, const fp_cx_t x, const fp_cx_t y)
{ /* complex subtraction: result = x - y */

CXSET_(result, CXREAL_(x) - CXREAL_(y), CXIMAG_(x) - CXIMAG_(y));
}

There is no C99 function for complex subtraction, because it is a built-in operation, but we can easily provide
a C99-style function. Because the operation is so simple, we code it directly, rather than calling CXSUB() to do the
work:

fp_c_t
CSUB(fp_c_t x, fp_c_t y)
{ /* complex subtraction: return x - y */

return (x - y);
}

w = u + v i

x
y

z

462 Chapter 15. Complex arithmetic primitives

15.21 Complex infinity test

The peculiar C99 definition of complex infinite values cited on page 441 suggests that we provide a primitive for
testing for a complex infinity, even though the ISO Standard does not specify test functions for complex types. The
code for our two families of complex types is short:

int
ISCXINF(const fp_cx_t z)
{ /* return 1 if z is a complex Infinity, else 0 */

return (ISINF(CXREAL_(z)) || ISINF(CXIMAG_(z)));
}

int
ISCINF(fp_c_t z)
{ /* return 1 if z is a complex Infinity, else 0 */

return (ISINF(CREAL(z)) || ISINF(CIMAG(z)));
}

15.22 Complex NaN test

The C99 definition of complex infinite values complicates NaN tests, so we extend the ISO Standard with test func-
tions to hide the mess. Their code looks like this:

int
ISCXNAN(const fp_cx_t z)
{ /* return 1 if z is a complex NaN, else 0 */

fp_t x, y;
int result;

x = CXREAL_(z);
y = CXIMAG_(z);

if (ISINF(x) || ISINF(y))
result = 0;

else if (ISNAN(x) || ISNAN(y))
result = 1;

else
result = 0;

return (result);
}

int
ISCNAN(fp_c_t z)
{ /* return 1 if z is a complex NaN, else 0 */

fp_cx_t zz;

CTOCX_(zz, z);
return (ISCXNAN(zz));

}

15.23. Summary 463

15.23 Summary

At the time of writing this, support for complex arithmetic in compilers for the C language family is limited, and
on many systems, of doubtful quality. Consequently, the functions for complex arithmetic described in this chapter
have not received extensive use.

Most of the functions are simple, and good candidates for inline expansion by compilers. We encouraged such
expansion by using the macros CXIMAG_(), CXREAL_(), CXSET_(), CXTOC_() and CTOCX_() to produce inline code
instead of a function call, and conceal all array-element references.

The functions for complex absolute value and complex argument are numerically troublesome, but can easily be
expressed in terms of the HYPOT() and ATAN2() families which are carefully implemented to produce high accuracy.

The functions for multiplication and division are subject to premature underflow and overflow, and to massive
subtraction loss. We discussed four different algorithms for complex division, and showed how careful handling
of expressions of the forms a × b + c × d and a × b + c with the occasional help of fused multiply-add operations
can eliminate subtraction loss in both complex division and complex multiplication. Since the mathcw package
and this book were completed, several additional papers on the problem of accurate complex multiplication and
division have appeared [BS12, WE12, JLM13b, JLM13a, Mul15, Jea16, JLMP16, JKLM17], but comparison with our
code remains a project for future study.

The last of those papers also points out an issue that we have not treated in this chapter: computer algorithms
for complex multiplication may not obey the expected mathematical property of commutativity (w × z ≡ z × w),
and thus, may incorrectly produce a nonzero imaginary part in the computation z × z� = (x + yi) × (x − yi) =
x2 − x × yi + y × xi + y2 = x2 + y2, a value that, mathematically, is purely real.

The difficulties in producing fast and correctly rounded complex multiply and divide cry out for a hardware so-
lution. If hardware provided multiple functional units with extended range and double-width results, then complex
absolute value, complex division, and complex multiplication could be done quickly, and without premature under-
flow or overflow, or unnecessary subtraction loss. Sadly, only a few historical machines seem to have addressed that
need:

� Bell Laboratories Model 1 through Model 4 relay computers with fixed-point decimal arithmetic (1938–1944)
(ten digits, only eight displayed) [Sti80],

� Bell Laboratories Model 5 relay computer with seven-digit floating-point decimal arithmetic (1945) [Sti80], and

� Lawrence Livermore National Laboratory S-1 (see Appendix H.7),

No current commercially significant computer architecture provides complex arithmetic in hardware, although there
are several recent papers in the chip-design literature on that subject.

Unlike Fortran, C99 does not offer any native I/O support for complex types. The real and imaginary parts
must be handled explicitly, forcing complex numbers to be constructed and deconstructed by the programmer for
use in calls to input and output functions for real arithmetic. Maple provides a useful extension in printf() format
specifiers that could be considered for future C-language standardization: the letter Z is a numeric format modifier
character that allows a single format item to produce two outputs, like this:

% maple
> printf("%Zg\n", 1 + 2*I);
1+2I
> printf("%5.1Zf\n", 1 + 2*I);

1.0 +2.0I

The _Imaginary data type is a controversial feature of C99, and its implementation by compilers and libraries
was therefore made optional. That decision makes the type practically unusable in portable code. Although mathe-
maticians work with numbers on the real axis, and numbers in the complex plane, they rarely speak of numbers that
are restricted to the imaginary axis. More than four decades of absence of the imaginary data type from Fortran, the
only widely used, and standardized, language for complex arithmetic, suggests that few programmers will find that
type useful. The primary use of an imaginary type may be to ensure that an expression like z * I is evaluated with-
out computation as -cimag(z) + creal(z) * I to match mathematics use, instead of requiring an explicit complex
multiplication that gets the wrong answer when one or both of the components of z is a negative zero, Infinity, or
NaN.

464 Chapter 15. Complex arithmetic primitives

We provided complex companions for the real ISxxx() family only for Infinity and NaN tests, because they are
nontrivial, and likely to be programmed incorrectly if done inline. Most of the relational operations do not apply to
complex values, and it is unclear whether tests for complex finite, normal, subnormal, and zero values are useful.
We have not missed them in writing any of the complex-arithmetic routines in the mathcw library. Should they prove
desirable in some applications, they could easily be generated inline by private macros like these:

#define ISCFINITE(z) ISFINITE(CREAL(z)) && ISFINITE(CIMAG(z))
#define ISCNORMAL(z) ISNORMAL(CREAL(z)) && ISNORMAL(CIMAG(z))
#define ISCSUBNORMAL(z) ISSUBNORMAL(CREAL(z)) && ISSUBNORMAL(CIMAG(z))
#define ISCZERO(z) (CREAL(z) == ZERO) && (CIMAG(z) == ZERO)

#define ISCXFINITE(z) ISFINITE(CXREAL_(z)) && ISFINITE(CXIMAG_(z))
#define ISCXNORMAL(z) ISNORMAL(CXREAL_(z)) && ISNORMAL(CXIMAG_(z))
#define ISCXSUBNORMAL(z) ISSUBNORMAL(CXREAL_(z)) && ISSUBNORMAL(CXIMAG_(z))
#define ISCXZERO(z) (CXREAL_(z) == ZERO) && (CXIMAG_(z) == ZERO)

However, the programmer needs to decide what should be done about cases where one component is, say, subnor-
mal, and the other is not. For example, it might be desirable to change && to || in the definition of ISCXSUBNORMAL().

We defer presentation of the computation of complex versions of the elementary functions required by C99 to
Chapter 17 on page 475, because now is a good time to apply the primitives of this chapter to one of the simplest
problems where complex arithmetic is required: solution of quadratic equations, the subject of the next chapter.

16 Quadratic equations

THE FIRST KNOWN SOLUTION OF A QUADRATIC EQUATION

IS THE ONE GIVEN IN THE BERLIN PAPYRUS FROM THE

MIDDLE KINGDOM (CA. 2160–1700 BC) IN EGYPT.

— ERIC W. WEISSTEIN

WOLFRAM MathWorld
TM

(2006).

We mentioned in Chapter 2 the need for solving quadratic equations, but we deferred further discussion of how
to do so until we could develop some essential tools. It is now time to tackle the problem.

16.1 Solving quadratic equations
THE QUADRATIC EQUATION IS ONE OF THE SIMPLEST MATHEMATICAL

ENTITIES AND IS SOLVED ALMOST EVERYWHERE IN APPLIED MATHEMATICS.
ITS ACTUAL USE ON A COMPUTER MIGHT BE EXPECTED TO BE ONE OF THE

BEST UNDERSTOOD OF COMPUTER ALGORITHMS. INDEED IT IS NOT, . . .

— GEORGE E. FORSYTHE

Solving a Quadratic Equation on a Computer (1969).

In Section 2.3 on page 9, we found a need for the roots of a quadratic equation

Ax2 + Bx + C = 0

arising from a truncated second-order Taylor-series approximation. In grade school, you learned its solution:

x = (−B ±
√

B2 − 4AC)/(2A).

In our Taylor-series application, the coefficient A depends on the second derivative, which may be small, or hard to
compute accurately. With the schoolbook formula for the roots, inaccuracies in A therefore contaminate both roots,
whatever the values of B and C may be.

If we multiply the numerator and denominator by a common factor, and simplify, we obtain an alternate formula
for the roots:

x = (−B ∓
√

B2 − 4AC)(−B ±
√

B2 − 4AC)/(
(−B ∓

√
B2 − 4AC)(2A)

)
=
(

B2 − (B2 − 4AC)
)
/
(
(−B ∓

√
B2 − 4AC)(2A)

)
= 2C/(−B ∓

√
B2 − 4AC).

Because we have two roots to choose from, we pick the one that avoids possible subtraction loss:

x =

{
2C/(−B −√

B2 − 4AC) for B > 0,

2C/(−B +
√

B2 − 4AC) for B ≤ 0.

In that form, inaccuracies in A have little effect on the accuracy of the roots if B2 � |4AC|. In addition, for our
Taylor-series application, the value C corresponds to the leading term of the series, which is almost always a small,
and exactly representable, constant for the functions of interest in this book, in which case, no additional rounding
error is propagated to the roots from the numerator 2C.

© Springer International Publishing AG 2017
N.H.F. Beebe, The Mathematical-Function Computation
Handbook, DOI 10.1007/978-3-319-64110-2_16

465

466 Chapter 16. Quadratic equations

–0.3

–0.2

–0.1

0.1

0.2

0.3

y

–3 –2 –1 1 2 3 4

x

Figure 16.1: The three possible cases for the roots of a quadratic equation

y(x) = (x − x1)(x − x2) = Ax2 + Bx + C = 0,

with real coefficients A, B, and C.
In the red left curve, y(x) = (x + 2)(x + 1) = x2 + 3x + 2, the roots differ: x1 = −2 and x2 = −1.
In the blue middle curve, y(x) = (x − 1)2 = x2 − 2x + 1, the roots coincide: x1 = x2 = 1.
In the black right curve, formed by moving y(x) = (x − 3)2 = x2 − 6x + 9 upward by 1

10 , the formerly coincident

real roots now differ and are complex: x1,2 = 3 ±
√

1
10 i.

If the discriminant, B2 − 4AC, is positive and nonzero, the roots are real and different. If the discriminant is
zero, the two roots are real and identical. Otherwise, when the discriminant is negative, the roots are complex and
different. The three cases are illustrated in Figure 16.1.

In approximations to real functions, we expect only real roots, so we could treat a negative discriminant as a
numerical artifact, and arbitrarily set it to zero. However, in the following discussion, we allow for complex roots.

A general numerical solver for the roots of a quadratic equation needs to handle cases where one or more of the
coefficients are zero, infinity, or NaN. We summarize the possibilities in Table 16.1 on the next page.

Apart from errors in the coefficients A, B, and C, there are three major sources of computational error in the roots:

� The discriminant suffers subtraction loss, that is, B2 ≈ 4AC.

� Either, or both, of the terms B2 and 4AC in the discriminant, or their difference, are too large or too small to
represent in the finite precision and range of floating-point arithmetic: they suffer overflow or underflow.

� The divisions underflow or overflow.

The roots of the quadratic equation are invariant under uniform exact scaling of the coefficients, because that
just corresponds to multiplying both sides of the equation by a constant. We can therefore largely eliminate the
possibility of destructive premature overflow and underflow by rescaling the coefficients by a common power of the
base. The C99 and mathcw libraries provide the ILOGB() and SCALBN() functions that do the job.

The remaining problem is then the accurate computation of
√

B2 − 4AC. If we have higher precision available
such that B2 and 4AC can be computed exactly, then the subtraction incurs one rounding error in the higher precision,
and the error in the square root then corresponds to roughly one rounding error in the original (lower) precision.

Most commonly, however, higher precision is not available, so we then ask: what is the worst-case error? Clearly,
the error is largest when the subtraction loses all significant digits, producing a zero result, even though the exact
answer may be nonzero. It is easy to exhibit a case where that happens:

� Observe that in any finite-precision arithmetic system, there is always a smallest value, ε, such that fl(1 + ε) �=
1, but any smaller value, say ε/2, results in fl(1 + ε/2) = 1. The value ε is called the machine epsilon.

16.1. Solving quadratic equations 467

Table 16.1: Special cases in the solution of the quadratic equation, Ax2 + Bx+C = A(x− x1)(x− x2) = 0. Expansion
of the middle part shows that the roots are related by x1x2 = C/A, so once one of them has been determined by a
numerically stable formula, the other is readily obtained.
Indeterminate roots are best represented as NaNs, when IEEE 754 arithmetic is available.
Cases −6 through −1 must be checked first, in any order, but cases 0 through 7 should be handled in ascending
order.
When the coefficients are real, complex numbers can arise only in cases 5 and 7, and then only if the value under
the square-root operation is negative. In IEEE 754 arithmetic, a reasonable representation of a complex root in real
arithmetic is a NaN, and the sqrt() function ensures that result.

Case A B C Roots
-6 any any NaN indeterminate solution
-5 any NaN any indeterminate solution
-4 NaN any any indeterminate solution
-3 any any ±∞ indeterminate solution
-2 any ±∞ any indeterminate solution
-1 ±∞ any any indeterminate solution
0 0 0 0 indeterminate solution
1 0 0 nonzero no solution
2 0 nonzero 0 x1 = 0, no x2

3 0 nonzero nonzero x1 = −C/B, no x2

4 nonzero 0 0 x1 = 0, x2 = 0
5 nonzero 0 nonzero x1 = +

√−C/A, x2 = −√−C/A
6 nonzero nonzero 0 x1 = 0, x2 = −B/A
7 nonzero nonzero nonzero z = −

(
B + sign(B)

√
B2 − 4AC

)
/2,

x1 = C/z, x2 = z/A

� Choose coefficients of the quadratic equation as follows:

δ =
√

ε/2,
A = 1/4,
B = 1 + δ,
C = 1 + 2δ.

� Compute the exact and floating-point discriminants:

exact(B2 − 4AC) = (1 + δ)2 − 4(1/4)(1 + 2δ)

= (1 + 2δ + δ2)− (1 + 2δ)

= δ2,

fl(B2 − 4AC) = fl
(
(1 + δ)2 − 4(1/4)(1 + 2δ)

)
= fl(1 + 2δ)− fl(1 + 2δ)

= 0.

� Compute the exact and floating-point values of the value z defined in case 7 of Table 16.1:

exact(z) = exact
(− (B + sign(B)

√
B2 − 4AC)/2

)
= −((1 + δ) +

√
δ2
)
/2

= −(1 + 2δ)/2,

fl(z) = fl
(− (B + sign(B)

√
B2 − 4AC)/2

)
= −(1 + δ + 0)/2
= −(1 + δ)/2.

468 Chapter 16. Quadratic equations

� Finally, compute the relative error in the computed z, and simplify with the reciprocal formula 1/(1 + x) =
1 − x + x2 − x3 + · · · :

relerr
(

fl(z), exact(z)
)
=
(

fl(z)− exact(z)
)
/ exact(z)

= δ/(1 + 2δ)

= δ(1 − (2δ) + (2δ)2 + · · ·)
≈ δ

≈ √
ε/2.

The last result shows that, when there is severe subtraction loss in the discriminant, as many as half of the digits in
the roots can be in error.

As we noted earlier, if we could just compute B2 − 4AC exactly, then we could produce the roots with small total
error, no more than that from four rounding errors. To do so, we need a temporary precision that is at least double
that of our working precision. Because we often do not have that luxury, we have to simulate the higher precision in
working precision, and the traditional way to do that is to split each number into a sum of two terms: a high-order
term whose square is exactly representable, plus a low-order term. We showed how to do the split in Section 13.11
on page 359.

We can then write the splitting and discriminant relations like this:

A = Ahi + Alo,
B = Bhi + Blo,
C = Chi + Clo,

B2 − 4AC = (B2
hi − 4AhiChi) +(

(2BhiBlo − 4AhiClo − 4AloChi) +

(B2
lo − 4AloClo)

)
.

The first parenthesized term contributing to the discriminant contains the high-order part, and is computed exactly.
It is where most of the subtraction loss happens. The second and third terms contain the middle and low-order parts,
providing an essential correction to the discriminant.

The code that implements the computation of the roots of the quadratic equation is lengthy, but follows the
fourteen cases in order. It looks like this:

int
QERT(fp_t a, fp_t b, fp_t c, fp_cx_t x1, fp_cx_t x2)
{

int result;

result = QERT_REAL;

if (ISNAN(a) || ISNAN(b) || ISNAN(c) || ISINF(a) || ISINF(b) || ISINF(c))
{ /* cases -6, -5, -4, -3, -2, -1 */

x1[0] = x1[1] = x2[0] = x2[1] = SET_EDOM(QNAN(""));
result = QERT_INDETERMINATE;

}
else
{

if (a == ZERO)
{ /* cases 0, 1, 2, 3 */

result = QERT_INDETERMINATE;
x2[0] = x2[1] = SET_EDOM(QNAN(""));

if (b == ZERO) /* cases 0 and 1 */
x1[0] = x1[1] = x2[0];

else if (c == ZERO) /* case 2 */

16.1. Solving quadratic equations 469

x1[0] = x1[1] = ZERO;
else /* case 3 */
{ /* NB: can underflow or overflow */

x1[0] = -c / b;
x1[1] = ZERO;

}
}
else /* a is nonzero */
{ /* cases 4, 5, 6, 7 */

volatile fp_t r;

if (b == ZERO) /* cases 4 and 5 */
{

if (c == ZERO) /* case 4 */
x1[0] = x1[1] = x2[0] = x2[1] = ZERO;

else
{ /* case 5 */

/* NB: can underflow or overflow */
r = -c / a;
STORE(&r);

if (r >= ZERO) /* real root */
{

x1[0] = SQRT(r);
x1[1] = ZERO;

}
else /* imaginary root */
{

x1[0] = ZERO;
x1[1] = SQRT(-r);

}
x2[0] = -x1[0];
x2[1] = -x1[1];

}
}
else /* cases 6 and 7 */
{

if (c == ZERO)
{ /* case 6 */

x1[0] = x1[1] = ZERO;
x2[0] = -b / a;
x2[1] = ZERO;

}
else /* case 7 */
{

fp_t discr_sqrt;
fp_pair_t bb_4ac;
int n, na, nb, nc;

na = ILOGB(a);
nb = ILOGB(b);
nc = ILOGB(c);
n = IMAX(IMAX(na, nb), nc);
a = SCALBN(a, -n);
b = SCALBN(b, -n);
c = SCALBN(c, -n);
PPROSUM(bb_4ac, b, b, -FOUR * a, c);

470 Chapter 16. Quadratic equations

#if (B != 2) && (B != 4)
{ /* 4*a may not be exact: add error term */

fp_t err;

err = FMA(FOUR, a, -FOUR * a);
bb_4ac[0] = FMA(-err, c, bb_4ac[0]);

}
#endif

r = PEVAL(bb_4ac); /* r = b*b - 4*a*c */
STORE(&r);

if (r >= ZERO)
{ /* real discriminant and roots */

fp_t z;

discr_sqrt = SQRT(r);

if (b < ZERO)
z = -HALF * (b - discr_sqrt);

else
z = -HALF * (b + discr_sqrt);

x1[0] = c / z;
x1[1] = ZERO;
x2[0] = z / a;
x2[1] = ZERO;

}
else
{ /* imaginary discriminant and

complex roots */
fp_t cc[2], zz[2];

result = QERT_COMPLEX;

discr_sqrt = SQRT(-r);

if (b < ZERO)
{

zz[0] = -HALF * b;
zz[1] = HALF * discr_sqrt;

}
else
{

zz[0] = -HALF * b;
zz[1] = -HALF * discr_sqrt;

}

cc[0] = c;
cc[1] = ZERO;

CXDIV(x1, cc, zz);
x2[0] = zz[0] / a;
x2[1] = zz[1] / a;

}
}

16.2. Root sensitivity 471

}
}

if (x1[0] > x2[0])
{ /* order roots so that Real(x1) <= Real(x2) */

SWAP(x1[0], x2[0]);
SWAP(x1[1], x2[1]);

}
else if ((x1[0] == x2[0]) && (x1[1] > x2[1]))

SWAP(x1[1], x2[1]);
}

return (result);
}

The QERT() function returns a status report of −1 if either or both roots are indeterminate, 0 if both roots are real,
and +1 if the roots are complex or pure imaginary. With IEEE 754 arithmetic, tests for NaN could identify the return
of indeterminate roots, and tests for zero imaginary parts could identify the case of real roots. However, with older
arithmetic systems, we could only transmit that information through the roots by declaring at least one floating-point
value to be of special significance. A status return value is clearly preferable, and it can be discarded when it is not
required.

The volatile qualifier in one declaration statement forces the compiler to use memory values of the declared
variables, instead of using values cached inside the CPU, possibly in higher precision. The STORE() macro takes care
of systems where volatile is not supported, or is handled improperly or unreliably.

The splitting task required for accurate evaluation of the discriminant is hidden inside a separate function, PPRO-
SUM(), because similar computations are present elsewhere in the library.

Complex arithmetic is required for at most one root, in the computation x1 = C/z; we use the CXDIV() primitive
to do the work. The second root, x2 = z/A, has a real divisor, so we simply divide each component by that value,
instead of invoking CXDIV() again. That could produce a different value than CXDIV() would return, in the case of
Infinity or NaN components. However, that is unlikely to matter.

The final ordering of the roots is not strictly necessary, but can be convenient for the user.

16.2 Root sensitivity

KEEP CALM, AND DON’T BITE THE DENTAL SURGEON.

— SYMPATHY CARD HUMOR.

To better understand the relation between the coefficients and the roots of quadratic equations, it is useful to
examine the effect on the roots of small changes in the coefficients. That is, we want to know the error-magnification
factors that we introduced in Section 4.1 on page 61. With some straightforward calculus, and introduction of the
variable s for the square root of the discriminant, we can simplify the results to these equations:

x = (−B ±
√

B2 − 4AC)/(2A),

s =
√

B2 − 4AC,
(δx/x) = (−1 ∓ C/(xs))(δA/A),

= ∓(B/s)(δB/B),
= ∓(C/(xs))(δC/C).

The last three relations show how changes in the coefficients affect the roots, and each of them involves a coefficient
divided by s. We conclude that when the discriminant is small compared to the coefficients, or equivalently, when
the roots are close together, then small changes in coefficients produce large changes in the roots.

472 Chapter 16. Quadratic equations

16.3 Testing a quadratic-equation solver
I VENTURE TO GUESS THAT NOT MORE THAN FIVE QUADRATIC SOLVERS

EXIST ANYWHERE THAT MEET THE GENERAL LEVEL OF SPECIFICATIONS.

— GEORGE E. FORSYTHE,
What is a Satisfactory Quadratic Equation Solver? (1969).

Our solver QERT() is essentially a three-input function with five outputs, so exhaustive testing with all possible
floating-point arguments is impossible. However, we know that the schoolbook formula for the roots of a quadratic
equation contains two subtractions, and the possibility of intermediate underflow or overflow or digit loss in the
products B2 and 4AC. The worst cases for computing the discriminant B2 − 4AC arise when the products are large
and the difference is small, but nonzero. Testing should therefore concentrate on finding suitable values of the
coefficients that produce those worst cases, and should include samples with real roots, with complex roots, and
with pure imaginary roots.

Scaling of the coefficients does not change the roots, so we can easily find test values that cause premature over-
flow or underflow by using scale factors of the form βk, where k is a positive or negative integer.

Although we can easily choose small or large random coefficients that cause underflow or overflow, it may be
hard to guess values that produce a small discriminant. For example, choose two moderately large random integers
M and N, set the roots to xk = M ± iN, and expand the quadratic (x − x1)(x − x2). The coefficients are then A = 1,
B = 2M, and C = M2 + N2, but we must ensure that both B and C are exactly representable. That is easily done if
we pick random integers in the range [βt/2�, βt/2+1� − 1], as long as we are prepared to discard those choices where
C > βt, the value at the end of the range of exactly representable integers. That approach produces two complex
roots, but the discriminant, −4N2, is large.

The random integers can be chosen with the help of an arbitrary random-number generator that produces uni-
formly distributed values in [0, 1] and a code fragment like this:

fp_t M, N, w;

w = SCALBN(FP(1.0), FP_T_MANT_DIG / 2); /* w = beta**(floor(t/2)) */
M = FLOOR(w + URAND() * (w * (BASE - ONE) - ONE));
N = FLOOR(w + URAND() * (w * (BASE - ONE) - ONE));

By scaling M or N by a power of the base, we can control the relative magnitudes of the real and imaginary parts,
as long as we continue to ensure exact coefficients. Tests for roots with large or small ratios of real and imaginary
parts are then easy to construct. To get pure imaginary roots, set B = M = 0. To generate another test set of
coefficients and roots, swap A and C and scale the exact roots by A/C.

There are a few good ways to find coefficients that produce the smallest discriminant, ±1.
The first is to choose B to be a large random odd integer, and then set A = (B − 1)/2 and C = (B + 1)/2. The

discriminant is then +1, and the roots are real with values −1 and −(B + 1)/(B − 1). If B is not random, but chosen
to have the special form βn + 1, then with positive integer values of n, the second root is also exactly representable.
When β �= 2, scale the coefficients by two to ensure exact representability.

The influential numerical analyst George Forsythe quoted in the epigraph for this section considers some hard
cases [For69a, For69b] of quadratic equations. He points out the need for computation of the discriminant in higher
precision, and for scaling to avoid premature overflow and underflow. However, he does not exhibit a practical
algorithm for their solution.

Kahan [Kah04b] discusses the problems of accurate computation of the discriminant, and testing of the solver,
but leaves a proof of his discriminant algorithm for future work. That task was completed by Sylvie Boldo [Bol09]
as this book was nearing completion, and is astonishingly difficult. In the conclusion to her paper, she remarks:

The proofs are still “far longer and trickier than the algorithms and programs in question.” . . . The
ratio 1 line of C for 500 lines of formal proof will certainly not convince Kahan.

In his notes, Kahan points out that the famous Fibonacci sequence that we discussed in Section 2.7 on page 15
provides a nice way to generate test values for quadratic solvers. Each Fibonacci number is the sum of the preceding
two, with the simple recurrence

F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2, for n = 2, 3, 4, . . . ,

16.3. Testing a quadratic-equation solver 473

The numbers grow exponentially, and Fn ≈ φFn−1 for large n. Here, φ = (1 +
√

5)/2 ≈ 1.618 is the golden ratio. The
largest exactly representable Fn values are for n = 36, 78, 93, 164, and 343 in the five formats of extended IEEE 754
binary arithmetic.

The relevance of the Fibonacci numbers to testing solvers of quadratic equations is this relation:

F2
n−1 − FnFn−2 = (−1)n.

We can therefore choose coefficients

A = Fn/2, B = Fn−1, C = Fn−2/2,

to get discriminants of the minimum nonzero magnitude, although, in practice, we scale the coefficients by a factor
of two to keep them whole numbers. That scaling increases the discriminants to ±4. The roots are given by

xk =

{
(−Fn−1 ± 1)/Fn, when n is even,
(−Fn−1 ± i)/Fn, when n is odd.

For large n, their real parts tend to 1/φ = φ − 1 ≈ 0.618, and their imaginary parts, 1/Fn, are tiny.
We can mix in some randomness by scaling the coefficients with a factor S chosen like this:

M = random integer in [βt−1, βt − 1],
= 1/ε + URAND()× ((β − 1)/ε − 1),

S = floor(M/Fn).

As Fn grows, the number of distinct S values drops, so the number of unique scale factors is limited when n is large,
but O(βt) different scale factors are possible when n is small.

Kahan further observed that a simple generalization of the Fibonacci sequence of the form

G0 = 0, G1 = 1, Gn = mGn−1 + Gn−2, for n = 2, 3, 4, . . . and integer m > 1,

quickly produces large numbers that have the same discriminant relation as the Fibonacci sequence, and can be used
for test coefficients with F replaced by G. Varying the parameter m and randomization with M and S lets us produce
many more random test values.

The file tqert.c, and its companions with the usual type suffixes, implement tests using numbers chosen accord-
ing to those algorithms. The coefficients are used with different scaling factors and sign changes to produce further
test values. The programs also check for the solver’s correct handling of coefficients that are Infinity or NaN, and
include Forsythe’s hard cases with additional coefficient scaling over most of the floating-point range.

Extensive tests on several current CPU architectures, and the VAX, suggest that the functions in our QERT() fam-
ily compute roots that agree with exact roots with a relative error no worse than 2.85 ulps with round-to-nearest
arithmetic, which is acceptably accurate considering that the schoolbook formula for the roots has five or six oppor-
tunities for rounding error. Boldo’s proof gives an upper bound of two ulps for the error in Kahan’s discriminant
computation, which differs from ours.

In practice, the results from the QERT() family are often correctly rounded, as this worst-case fragment of the test
output for IEEE 754 32-bit decimal arithmetic shows:

Test 3: scaled Fibonacci-like: a = G[n], b = 2 * G[n-1], c = G[n-2]

Total tests of QERT(): 10179288 (1191744 >= 1/2 ulp)
Worst error = 1.970 ulps
Average error = 0.238 ulps
Variance = 0.051 ulps
Standard deviation = 0.226 ulps
Root mean square = 0.314 ulps

a = 2465455.
b = 2042448.
c = 423007.0
x1 = (-0.4142132, -0.001015200)
e1 = (-0.4142132, -0.001015200)
x2 = (-0.4142135, 0.001015200)
e2 = (-0.4142132, 0.001015200)

474 Chapter 16. Quadratic equations

The average error is small, and only about 12% of the results have errors larger than 1
2 ulp. The last seven lines

show the coefficients that produce the largest error, and the computed and exact roots.

16.4 Summary

Despite their schoolbook simplicity, robust solution of quadratic equations on a computer is a challenging problem
that requires great care in programming, and access to higher-precision arithmetic. As Forsythe remarked, School
examples do factor with a frequency bewildering to anyone who has done mathematics outside of school [For69a, pp. 144–
145]. Real applications are much more demanding, and the roots are rarely simple integers. Extreme differences
in coefficient magnitudes, and cases where one or more coefficients are zero, are common in practice. When the
coefficients are determined from experimental measurements, or from computer approximations, it is essential to
be aware of the error-magnification problem described in Section 16.2 on page 471 that can produce huge changes
in the roots from tiny changes in the coefficients. Such changes may reflect low-level details of the design of the
floating-point arithmetic system, such as rounding behavior, or be caused by instruction reordering during compiler
optimizations, or by inaccuracies in input and output conversions.

17 Elementary functions in complex arithmetic

ONE OF THE MOST PROFOUND JOKES OF NATURE IS THE SQUARE ROOT OF

MINUS ONE THAT PHYSICIST ERWIN SCHRÖDINGER PUT INTO HIS WAVE

EQUATION WHEN HE INVENTED WAVE MECHANICS IN 1926. . . . THE

SCHRÖDINGER EQUATION DESCRIBES CORRECTLY EVERYTHING WE KNOW

ABOUT THE BEHAVIOR OF ATOMS. IT IS THE BASIS OF ALL OF CHEMISTRY

AND MOST OF PHYSICS. AND THAT SQUARE ROOT OF MINUS ONE MEANS THAT

NATURE WORKS WITH COMPLEX NUMBERS AND NOT WITH REAL NUMBERS.1

— FREEMAN DYSON

Birds and Frogs (2008 AMS Einstein Lecture).

Since the invention of complex arithmetic about two centuries ago, mathematicians have learned how to extend
functions from the real line to the complex plane. The field of complex analysis is now well understood, and mathe-
matics courses in that area are commonly offered in the first years of undergraduate college eduction.

Most of the real functions that we consider in this book have companions in the complex domain, but the com-
putational techniques that are required to handle them may be quite different. Computation of real functions can
often be reduced to a smaller interval where a one-dimensional polynomial fit of low order provides an accurate
representation of the function. Extending that idea to complex functions would require fits to polynomials in two
variables that approximate a surface instead of a line, and achieving high accuracy with such fits is difficult.

Surface fits with bivariate polynomials are commonly used in computer visualization of three-dimensional ob-
jects, and since the 1960s, have seen increasing use in design of automobiles, ships, aircraft, and other products.
Since the 1990s, computer animations have become practical for television and film production, and there is now
a world-wide video-game industry whose computational needs have driven floating-point hardware development,
especially in graphics processing units (GPUs). However, in all of those applications, accuracy beyond three to six
decimal digits is unlikely to be needed, and the floating-point hardware in current GPUs provides only rough con-
formance to a subset of IEEE 754 arithmetic, and may support only the 32-bit format. Newer GPU designs offer the
64-bit format, but at the time of writing this, none provides longer formats. In this book, our goal is to approach
machine precision, requiring up to 70 decimal digits for the longest supported data types.

Fortunately, for some of the complex elementary functions that we cover in this chapter, it is possible to express
their real and imaginary parts separately in terms of real elementary functions that can be computed accurately, with
only a few additional floating-point operations. Even with perfect rounding of the real elementary functions, the
final results for the complex functions inevitably suffer a few rounding errors.

Unfortunately, there is a hidden problem that can cause catastrophic accuracy loss in small regions of the complex
plane: all four of the basic operations of complex arithmetic are subject to subtraction loss. The tests in Section 15.16
on page 458 show that bit loss is likely to be common until the quality of implementations of complex arithmetic is
improved substantially. The simplest way to reduce that loss is to use higher intermediate precision. We can easily
do that for the float data type, but some platforms offer nothing longer than the double type.

17.1 Research on complex elementary functions

Numerical analysts have paid much less attention to the computation of complex functions than to real functions.
For example, the important journal ACM Transactions on Mathematical Software (TOMS) contains about 50 articles on

1In 1928, the British theoretical physicist Paul Dirac developed the first relativistic wave equation that successfully combined Einstein’s Special
Relativity with quantum mechanics, albeit for only a single particle. Positive and negative solutions of a square root in his equation led him to
predict the existence of holes, or equivalently, positively charged electrons. In August 1932, 27-year-old American physicist Carl Anderson found
the new particles in experiments, and called them positrons. Dirac shared the Nobel Prize in Physics with the Austrian theoretical physicist Erwin
Schrödinger in 1933 for their work on the quantum theory of atoms. Anderson shared the Nobel Prize in Physics in 1936 with Austrian–American
physicist Victor Hess for their discovery of the positron and cosmic rays.

© Springer International Publishing AG 2017
N.H.F. Beebe, The Mathematical-Function Computation
Handbook, DOI 10.1007/978-3-319-64110-2_17

475

476 Chapter 17. Elementary functions in complex arithmetic

complex arithmetic among the 1500 published since the first issue in 1975. The more theoretical journal Mathematics
of Computation has about 90 such articles among the more than 6700 published since 1943. In BIT and Numerische
Mathematik, about one in 250 articles deals with complex arithmetic.

Among the TOMS articles are two on complex division [Ste85, Pri91], one on the complex inverse cosine and sine
[HFT97], three on larger collections of complex elementary functions [HFT94, Neh07, Smi98], and just one on testing
their accuracy [Cod93a]. Smith’s paper discusses their computation with multiple-precision arithmetic, and Neher
treats them with 64-bit interval arithmetic. An important recent paper in Mathematics of Computation investigates the
accuracy of complex multiplication [BPZ07].

There is an extensive discussion of computational and mathematical issues in defining the elementary functions
for complex arguments in the book Common Lisp — The Language [Ste90, Chapter 12].

17.2 Principal values

In the polar representation of complex numbers, z = r exp(θi), we can augment θ by any integer multiple of 2π
without changing the value of z, because that operation corresponds to repeated traversals of a circle of radius r = |z|,
bringing us back to the same point in the complex plane. Using the trigonometric expansion of the exponential of a
pure imaginary value,

exp(αi) = cos(α) + sin(α)i, for real α,

we can write that observation like this:

exp
(
(θ + k(2π))i

)
= exp(θi) exp(2kπi), for k = 0,±1,±2, . . . ,

= exp(θi)
(

cos(2kπ) + sin(2kπ)i
)

= exp(θi)(1 + 0i)
= exp(θi).

Thus, although z is a unique point in the complex plane, it has multiple representations that are mathematically equiv-
alent. When we compute a function of z, the different representations of z can give different answers. A simple
example is the logarithm function, which we evaluate like this:

log(z) = log(r exp(θi))
= log(r exp((θ + k(2π))i))
= log(r) + (θ + k(2π))i.

The real part is always the same, but the imaginary part depends on our choice of k. The usual convention is to
restrict the angle θ to the interval [0, 2π) and set k = 0. That choice selects a unique value of the function, called the
principal value. Textbooks and research literature sometimes use capitalized function names to indicate the principal
value, but in programming languages that support complex arithmetic, library algorithms for complex functions are
simply chosen to produce principal values, and the function names are not altered.

17.3 Branch cuts

Kahan’s often-cited article Branch Cuts for Complex Elementary Functions or Much Ado About Nothing’s Sign Bit [Kah87]
appears in a conference-proceedings volume, and is recommended reading for reaching a better understanding of
the subject of this chapter. Kahan discusses important issues in complex binary and decimal arithmetic, accurate
computation of complex elementary functions, and the need for a signed zero. He also treats a feature of complex
functions that we have not previously encountered — branch cuts.

We introduce branch cuts by analogies with functions in real arithmetic. Some otherwise well-behaved real
functions have discontinuities along the real axis:

� The inverse hyperbolic tangent, shown in Figure 12.6 on page 350, grows to −∞ as x approaches −1 from the
right, and to +∞ as x moves toward +1 from the left. It is undefined in real arithmetic for arguments outside
the interval [−1,+1].

17.3. Branch cuts 477

� The tangent, graphed in Figure 11.3 on page 302, is a different example: tan(x) grows with increasing x until
the function approaches an asymptote where it rises to +∞. It then continues to grow from −∞ as x passes the
position of the asymptote. The discontinuities in tan(x) lie at odd multiples of 1

2 π.

� The Heaviside step function defined by

H(x) =

⎧⎨
⎩

0, if x < 0,
arbitrary value in [0, 1], if x = 0,
1, if x > 0,

jumps from zero to one as x moves from left to right across the origin.

All of those kinds of behaviors are seen in complex functions, but they seem to occur more often than in real
functions.

� In the complex plane, a point z0 where the function f (z) grows to infinity is called a pole. The coefficient of
1/(z − z0) in a series expansion of f (z) in powers of (z − z0)k about that point is called the residue. We can
illustrate that with a Mathematica session:

% math
In[1]:= Series[Tan[z], {z, Pi/2, 3}]

-Pi -Pi 3
(--- + z) (--- + z)

1 2 2 -Pi 4
Out[1]= -(-------) + --------- + ---------- + O[--- + z]

-Pi 3 45 2
--- + z
2

In[2]:= Residue[Tan[z], {z, Pi/2}]

Out[2]= -1

Although we do not discuss them further in this book, residues are of utmost importance in complex analysis,
and figure prominently in the integration of complex functions.

� The analogue of a finite jump on a line is a tear in a surface, and is called a branch cut. For example, the complex
square root function,

√
z =

√
x + yi, and in general, the complex power function, za, for nonintegral values of

a, have a branch cut in the imaginary part along the entire negative real axis as Figure 17.1 on page 481 clearly
shows. We can see that both numerically and symbolically in a short Maple session by fixing x and letting y
approach zero from above and from below, and then asking for the mathematical limits of that process:

% maple

> Digits := 10:

> evalf(sqrt(-25 + 1.0e-10 * I));
-10

0.1000000000 10 + 5.000000000 I

> evalf(sqrt(-25 + 1.0e-100 * I));
-100

0.1000000000 10 + 5.000000000 I

> evalf(sqrt(-25 + 1.0e-10000000 * I));
-10000000

0.1000000000 10 + 5.000000000 I

478 Chapter 17. Elementary functions in complex arithmetic

> evalf(sqrt(-25 - 1.0e-10000000 * I));
-10000000

0.1000000000 10 - 5.000000000 I

> evalf(sqrt(-25 - 1.0e-100 * I));
-100

0.1000000000 10 - 5.000000000 I

> evalf(sqrt(-25 - 1.0e-20 * I));
-20

0.1000000000 10 - 5.000000000 I

> limit(sqrt(-25 + y * I), y = 0, left);
-5 I

> limit(sqrt(-25 + y * I), y = 0, right);
5 I

Mathematically, the last examples say that limy→±0
√−|x|+ yi = ±√|x|i. It is clear that the sign of zero is of

considerable significance here. If the host floating-point system has only a positive zero, or a platform with IEEE 754
arithmetic has carelessly implemented library routines, or faulty code optimization or instruction generation, that
lose the sign of zero, there are likely to be computational anomalies in the neighborhood of the branch cut. In the rest of this
chapter, we often use explicit signs on zeros.

17.4 Software problems with negative zeros

This author’s extensive experience with multiple compilers, operating systems, and CPU architectures shows that
one cannot guarantee production of a true negative zero with C code like this:

static const double negzero = -0.0;

This two-step process does not always succeed either:

double negzero;
static const double zero = 0.0;
negzero = -zero;

Adding a volatile qualifier should fix the problem, but does not if the hardware negation instruction loses the sign:

static volatile double zero = 0.0;
negzero = -zero;

The safe way to get a negative zero is to use the sign-transfer function:

negzero = copysign(0.0, -1.0);

In IEEE 754 arithmetic, the expression −1.0/infty() generates a negative zero, but also sets floating-point exception
flags.

Even after the required value has been generated, its sign may be invisible in output reports, because some library
output routines may erroneously suppress the signs of zero, and also of NaNs. The mathcw library remedies those
defects.

Signed floating-point zeros are uncommon in older architectures, although their bit patterns are usually repre-
sentable. IBM System/360 treats a negative zero input operand as positive, but hardware generates only the positive
form. The DEC PDP-11 and VAX architectures define a negative zero to be a reserved operand that causes a run-time
instruction fault, even with move instructions; see Appendix H.4 on page 956 for details. On the DEC PDP-10, a
negative zero is an unnormalized value equal to −1, but it misbehaves in arithmetic instructions that expect normal-
ized operands. The hardware instructions on those DEC architectures never generate negative zeros; they have to be
created in software by compile-time storage initialization, or by run-time bit masking.

17.5. Complex elementary function tree 479

Table 17.1: Complex elementary function dependency tree. Notice that complex arithmetic joins trigonometric and
hyperbolic functions into groups with common dependencies.

Function Dependent functions
cabs() hypot()
carg() atan2()
ccbrt() cabs(), cbrt()
cexp() cos(), exp(), sin()
clog() cabs(), carg(), log()
csqrt() cabs(), sqrt()
cpow() cexp(), clog()
ccos()
csin()
ctan()
ccosh()
csinh()
ctanh()

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

cos(), cosh(), sin(), sinh()

cacos()
casin()
catan()
cacosh()
casinh()
catanh()

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

clog(), csqrt()

17.5 Complex elementary function tree

Apart from the basic four arithmetic operations, the key low-level operations in the computation of the complex
elementary functions are the absolute value and argument functions that are needed for conversion of complex
numbers from Cartesian to polar form. Once those operations are available, we can compute roots and logarithms.
The complex exponential needs the real cosine and sine. The complex trigonometric and hyperbolic families need
the real trigonometric and hyperbolic cosine and sine. The inverse trigonometric and hyperbolic functions need only
the complex logarithm and complex square root. Those relations are summarized in Table 17.1. Of particular interest
is that cosines and sines are always needed in pairs, and for the same argument. The mathcw library exploits that
by using the sincos() and sinhcosh() families that avoid unnecessary duplicate computations. For that reason,
those combined functions ought to be part of standard libraries for all programming languages that offer complex
arithmetic.

The key observation from Table 17.1 is that cabs(), carg(), cexp(), and clog() are needed for the computation of
other elementary functions of complex arguments. The accuracy attainable for the remaining elementary functions is
limited by the accuracy of those four functions, and of the functions that implement complex add, subtract, multiply,
and divide.

17.6 Series for complex functions

We show many examples of Taylor-series expansions of real functions in this book. For all of the elementary func-
tions, those expansions also apply for complex arguments, but in some cases, additional restrictions on those argu-
ments are necessary. The general relations given throughout this chapter hold mathematically, but in most cases,
they are computationally unsatisfactory when arguments are small, because they either lose digits, or they botch the
sign of zero. Thus, for the complex elementary functions, summation of Taylor series is an essential element of the
computations.

For the elementary functions of real arguments, we can often sum a few terms, and handle zero arguments
separately to guarantee correct handling of signed zeros. For the functions of complex arguments, we always have
a pair of numbers to deal with, and both must be treated carefully. For that reason, for most functions, we adopt a
uniform approach of summing series of one, two, four, eight, or sixteen terms, because all that we need to compute
the associated cutoffs is the real square-root function. The one-term case is included so as to handle the sign of zero

480 Chapter 17. Elementary functions in complex arithmetic

properly.
The sixteen-term summation extends the range of z that can be handled, and is longer than we normally use

for the real functions. With complex arithmetic, the alternative to series summation is evaluation of transcendental
functions, often of complex arguments, so the series approach is faster.

For real functions, we select truncated series by comparing |x| with a cutoff value chosen to ensure that the sum of
the discarded terms would not change the last stored digit. For complex functions, we could use |z| in that selection,
but that involves the hypotenuse function (see Section 8.2 on page 222 and Section 8.3 on page 227). Instead, we use
the cheaper one-norm, which produces lower and upper bounds on |z|:

z = x + yi, for real x and y,

||z||1 = |x|+ |y|, one-norm,

||z||2 = |z|, complex absolute value,

=
√

x2 + y2, two-norm, or Euclidean norm, or hypotenuse,

1
2 ||z||1 ≤ |z| ≤ ||z||1, by geometrical observation.

Equality is only possible in the last relation if z = 0, or if z has only one nonzero component. The relation is clearly
true from inspection of the sides of a right triangle. Using half the one-norm also prevents the overflow that is
possible in the two-norm, but means that we must incorporate an outer factor of a half in the cutoffs computed in
the one-time initialization blocks.

If we sum the first n terms c0 + c1z + · · · + cn−1zn−1, then we want the discarded sum cnzn + cn+1zn+1 + · · · to
add up to less than half the machine epsilon, ε, if all terms are positive, or half the little machine epsilon, ε/β, if
term signs may differ. If we further assume that successive terms of the Taylor series decrease by at least a factor of
two, then the discarded sum is no larger than cnzn(1 + 1

2 + 1
4 + 1

8 + · · ·) ≤ 2cnzn. The cutoff condition then is that
cnzn/c0 <

1
4 ε/β, or

u = 1
4 ε/β,

zn <
(
(c0/cn)u

)1/n,

ZCUTn = 1
2 zn.

The cutoff value in the last equation is to be compared with 1
2 ||z||1.

17.7 Complex square root

The complex square root is graphed in Figure 17.1 on the next page, and is the first function that we consider in this
chapter with a branch cut. It is conventionally defined by this relation:

√
z = exp(1

2 log(z)), definition of complex square root.

In this section, we show how to compute it more accurately, and faster, than via its definition in transcendental
functions.

The complex square root and complex logarithm both have a branch cut on the surface of the imaginary part
along the negative real axis.

The complex square root has this important symmetry relation under conjugation:

z = x + yi, for real x and y,

z� = x − yi, conjugation operation,√
z� = (

√
z)�, mathematical notation,

csqrt(conj(z)) = conj(csqrt(z)), computer software notation.

It also satisfies a critical reciprocal symmetry relation:
√

1/z = 1/
√

z,

17.7. Complex square root 481

–5

0

5
x

–5

0

5

y

–2
0

2
 Re(f(z))

–5

0

5
x

–5

0

5

y

–2
0

2
 Im(f(z))

Figure 17.1: Real (left) and imaginary (right) surfaces of csqrt(z), the complex square root function defined by√
z =

√
x + yi = z1/2. There is a cusp along the entire negative real axis in the real component, and a branch cut

along that same axis in the imaginary component.

csqrt(1.0 / z) ≈ 1.0 / csqrt(z).

The reciprocal relation holds only approximately in computer software because of rounding, and possible subtraction
loss, in the two division operations.

We can relate the real and imaginary parts of the complex square root to the parts of z = x + yi like this [Str59,
Fri67]:

√
z = a + bi, for real a and b,

|√z|2 = |z|
= a2 + b2,

z = (a + bi)2

= (a2 − b2) + 2abi,
x = a2 − b2,
y = 2ab.

We now expand x in two ways and solve for the unknowns:

� Add and subtract b2, and solve for b and then a:

x = (a2 + b2)− 2b2

= |z| − 2b2,

b = ±
√

1
2(−x + |z|),

a = y/(2b).

� Add and subtract a2, and solve for a and then b:

x = 2a2 − a2 − b2

= 2a2 − |z|,
a = ±

√
1
2(x + |z|),

b = y/(2a).

482 Chapter 17. Elementary functions in complex arithmetic

Table 17.2: Special cases for the complex square root function, csqrt(z), according to Kahan [Kah87] and the C99
Standard [C99, TC3 §G.6.4.2, page 479]. The variable f is any finite value, g is any positive-signed finite value, and x is
any floating-point value, including Infinity and NaN.

z
√

z Remark
conj(z) conj(csqrt(z)) conjugation symmetry relation
−g ± 0i +0 ±√

gi
x ± ∞i +∞ ± ∞i unusual; Kahan: set invalid flag if x is a NaN
+∞ ± f i +∞ ± 0i
+∞ ± NaNi +∞ ± NaNi unusual
−∞ ± f i +0 ± ∞i
−∞ ± NaNi NaN ± ∞i unusual: sign of imaginary part unspecified
NaN + f i NaN + NaNi C99: optionally raise invalid exception
f + NaNi NaN + NaNi C99: optionally raise invalid exception
NaN + NaNi NaN + NaNi

To avoid subtraction loss, and get the conventional positive sign of the square root for nonnegative real arguments,
we use the formulas like this:

a = +
√

1
2 (|x|+ |z|), when x ≥ +0,

b = y/(2a);

b =

⎧⎨
⎩+

√
1
2 (|x|+ |z|), when x ≤ −0 and y ≥ +0,

−
√

1
2 (|x|+ |z|), when x ≤ −0 and y ≤ −0,

a = y/(2b).

Notice that for negative x, the sign of b is that of y, guaranteeing correct behavior in the neighborhood of the branch
cut. Also, the conjugation symmetry rule clearly holds exactly, because the replacement y → −y forces the change
b → −b.

Provided that the real square root function and complex absolute value functions are accurate, as ours are, then
we expect no more than six rounding errors in each component of the computed complex square root, and most
commonly, only two (β = 2) or three (β > 2) per component.

Although the formulas for a and b look simple, they are subject to premature overflow and underflow, and cannot
be used directly without further scaling. We show how to make that adjustment shortly.

Kahan recommends, and the C99 Standard requires, particular handling of special values, as summarized in
Table 17.2. Some of them are not obvious, particularly the cases where one argument component is a NaN, yet the
output result is not NaN ± NaNi. The C99 rule quoted in Chapter 15 on page 441 requires that a complex number
with one infinite component be treated as Infinity, even if the other component is a NaN.

At the origin, our formulas produce
√
+0 ± 0i = +0 ± (0/0)i,√−0 ± 0i = −0 ± (0/0)i.

The value of the real part is in conformance with the IEEE 754 requirement that
√−0 = −0, but the imaginary

part is a NaN. Unfortunately, the second case conflicts with the requirement of the second line of Table 17.2, which
demands that

√−0 ± 0i = +0 ± 0i. We therefore need to check for the special case z = 0, and handle it separately.
Kahan’s code uses scalb() to scale the computation away from the underflow and overflow regions. We take a

different and faster approach that accomplishes the same goal: compute w = s−2z, where s is a suitable power of the
base so that the scaling is exact, find the complex square root of w, and then unscale to recover

√
z = s

√
w.

Our code for complex square root using the complex-as-real representation is longer than the simple formulas
for a and b would suggest:

17.7. Complex square root 483

void
CXSQRT(fp_cx_t result, const fp_cx_t z)
{ /* complex square root: result = sqrt(z) */

fp_t x, y;

x = CXREAL_(z);
y = CXIMAG_(z);

if (ISINF(y))
{

if (ISNAN(x))
(void)QNAN(""); /* Kahan requires, C99 does not */

CXSET_(result, COPYSIGN(y, ONE), y);
}
else if (ISINF(x))
{

if (x > ZERO)
CXSET_(result, x, ISNAN(y) ? y : COPYSIGN(ZERO, y));

else
CXSET_(result, ISNAN(y) ? y : ZERO, COPYSIGN(x, y));

}
else if (ISNAN(x))

CXSET_(result, x, COPYSIGN(x, y));
else if (ISNAN(y))

CXSET_(result, y, y);
else
{

fp_t a, b, s, s_inv_sq, t, u, v;
fp_cx_t w;
static const fp_t B_SQ = (fp_t)(B * B);
static const fp_t B_INV = FP(1.) / (fp_t)B;
static const fp_t B_INV_SQ = FP(1.) / (fp_t)(B * B);

if ((QABS(x) > ONE) || (QABS(y) > ONE))
{

s = (fp_t)B;
s_inv_sq = B_INV_SQ;

}
else
{

s = (fp_t)B_INV;
s_inv_sq = B_SQ;

}

CXSCALE_(w, z, s_inv_sq); /* w = z / s**2 */
u = CXREAL_(w);
v = CXIMAG_(w);
t = SQRT(HALF * (QABS(u) + CXABS(w)));

if (t == ZERO) /* then x = +/-0, y = +/-0 */
CXSET_(result, ZERO, y);

else if (u >= ZERO)
{

a = t;
b = v / (a + a);
CXSET_(result, s * a, s * b);

484 Chapter 17. Elementary functions in complex arithmetic

 0

 1

 2

-4 -3 -2 -1 0 1 2 3 4

u
lp

s

x

Errors in |csqrt(z)|

 0

 1

 2

-4 -3 -2 -1 0 1 2 3 4

u
lp

s

y

Errors in |csqrt(z)|

Figure 17.2: Errors in the csqrt() function. The error is measured in the function magnitude, rather than in its
individual components, because the relative error in the smaller component can be large. Although the horizontal
range is limited, plots over a wider range are similar to these. The apparent spike near zero is an artifact caused by
using random arguments taken from a logarithmic distribution.

}
else
{

b = COPYSIGN(t, v);
a = v / (b + b);
CXSET_(result, s * a, s * b);

}
}

}

Because the case z = 0 is expected to be rare, we do not test both parts for a zero value: instead, we check the scaled
real value t =

√
(|u|+ |w|)/2.

The special-case tests require run-time overhead on every call, but are unavoidable, because Infinity and NaN
inputs to the normal formulas tend to produce NaN outputs.

The companion function that provides a native complex square root is a simple wrapper that looks like this:

fp_c_t
CSQRT(fp_c_t z)
{ /* complex sqrt: return sqrt(z) */

fp_cx_t zz, result;

CTOCX_(zz, z);
CXSQRT(result, zz);

return (CXTOC_(result));
}

Most of the native complex functions in the mathcw library look much like that one, so we omit their code in the
remainder of this chapter.

In order to show the errors of the computed function values, we could show the errors in the real and imaginary
components of the function as surfaces on the x–y plane. However, point plots of those surfaces are too cluttered
to be useful. Also, when the magnitudes of the function-value components differ sharply, the smaller is likely to
have a large relative error that cannot be removed without working in higher precision. In this chapter, we therefore
display the errors in | f (z)| as two plots, one for the real component of the argument, and the other for the imaginary
component. Although the two plots often look alike, that is not always the case. Figure 17.2 shows the measured

17.8. Complex cube root 485

–5

0

5
x

–5

0

5

y

–1
1

 Re(f(z))

–5

0

5
x

–5

0

5

y

–1
1

 Im(f(z))

Figure 17.3: Real (left) and imaginary (right) surfaces of cbrt(z) = cbrt(x + yi) = z1/3, the complex cube root
function. There is a cusp along the entire negative real axis in the real component, and a branch cut along that same
axis in the imaginary component.

errors in csqrt(z) for the IEEE 754 64-bit format. The plots provide a test of that function, as well as of the complex-
as-real function cxsqrt(result,z) that serves as the kernel of the complex function. Similar plots are expected for
other data sizes, and also for decimal arithmetic.

17.8 Complex cube root

The complex cube root is plotted in Figure 17.3, and its surfaces are similar to those for the square root. Both
functions have a branch cut along the negative real axis, and they inherit that feature from their definitions in terms
of the exponential and logarithm. For the cube root, we have the definition

3
√

z = exp(1
3 log(z))

and the symmetry relations

3
√

z� = (3
√

z)�, mathematical notation,

ccbrt(conj(z)) = conj(ccbrt(z)), computer software notation,

3
√−z = − 3

√
z,

1/ 3
√

z = 3
√

1/z,
ccbrt(1.0 / z) ≈ 1.0 / ccbrt(z).

The complex cube root, ccbrt(z), is not required by C99, but we provide it because we have its real counterpart,
cbrt(x). The expansion of the Cartesian form of the square root in Section 17.7 on page 481 led to an effective
algorithm for its computation, but the technique does not readily work for the cube root. Instead, we derive a
straightforward algorithm from the polar form:

z = r exp(θi), for real r and θ,
3
√

z = exp
(1

3 log(r exp(θi))
)

= exp
(1

3 (log(r) + θi)
)

= 3
√

r × (cos(1
3 θ) + sin(1

3 θ)i).

We find the desired handling of special cases summarized in Table 17.3 on the next page by analogies with those of
the square-root function, and from numerical and symbolic experiments in symbolic-algebra systems.

486 Chapter 17. Elementary functions in complex arithmetic

Table 17.3: Special cases for the complex cube root function, ccbrt(z). The variable f is any finite value, g is any
positive-signed finite value, and x is any floating-point value, including Infinity and NaN.

z cbrt(z) Remark
conj(z) conj(ccbrt(z)) conjugation symmetry relation
+0 ± 0i +0 ± 0i
−0 ± 0i +0 ± 0i
x ± ∞i +∞ ± ∞i unusual; optionally raise invalid exception if x is a NaN
+∞ ± f i +∞ ± 0i
+∞ ± NaNi +∞ ± NaNi unusual
−∞ ± NaNi NaN ± ∞i unusual: sign of imaginary part unspecified
NaN + f i NaN + NaNi optionally raise invalid exception
f + NaNi NaN + NaNi optionally raise invalid exception
NaN + NaNi NaN + NaNi

There are three possible cube roots for any argument z, and when z is a negative real value, one of the roots is
negative and real, and the other two are complex conjugates. For example,

3
√−1 = {−1, cos(1

3 π) + sin(1
3 π)i, cos(1

3 π)− sin(1
3 π)i}

= {−1, 1
2

√
3 + 1

2 i, 1
2

√
3 − 1

2 i}.

For 3
√−|x| ± 0i, our formula produces the complex root − 3

√|x|(1
2

√
3 ± 1

2 i) as the principal value, instead of the
simpler real root, − 3

√|x|.
Because the root functions are multivalued, taking the n-th root of the n-th power does not in general recover the

starting value. We can see that in a Maple session:

% maple
> z := 1 + 2*I:
> evalf((z**(1/3))**3);

1. + 2. I
> zzz := z**3;

-11 - 2 I
> evalf(zzz**(1/3));

1.232050808 - 1.866025404 I
> evalf((zzz**(1/3))**3);

-11. - 2. I
> solve(’z’**3 = -11 - 2*I, ’z’);

1/2 1/2 1/2 1/2
-1/2 - I + 3 - 1/2 I 3 , -1/2 - I - 3 + 1/2 I 3 , 1 + 2 I

> evalf(%);
1.232050808 - 1.866025404 I, -2.232050808 - 0.1339745960 I, 1. + 2. I

Here, the principal-value root returned by the cube-root operation differs from the simpler root 1+ 2i that we started
with. Thus, the expression (zn)1/n cannot be simplified to z when z is complex.

Our code for the complex cube root is a straightforward transcription of our transcendental formula, with special
case handling to satisfy the requirements of Table 17.3, and exact scaling to avoid premature overflow in |z|:

void
CXCBRT(fp_cx_t result, const fp_cx_t z)
{ /* complex cube root: result = cbrt(z) */

fp_t x, y;

x = CXREAL_(z);
y = CXIMAG_(z);

17.9. Complex exponential 487

if (ISINF(y))
{

if (ISNAN(x)) /* set invalid flag */
(void)QNAN("");

CXSET_(result, COPYSIGN(y, ONE), y);
}
else if (ISINF(x))
{

if (x > ZERO)
CXSET_(result, x, ISNAN(y) ? y : COPYSIGN(ZERO, y));

else
CXSET_(result, ISNAN(y) ? y : ZERO, COPYSIGN(x, y));

}
else if (ISNAN(x))

CXSET_(result, x, COPYSIGN(x, y));
else if (ISNAN(y))

CXSET_(result, y, y);
else
{

fp_t c_3, r, r_3, s, s_3, s_inv_cube, t_3;
fp_cx_t w;
static const fp_t B_CUBE = (fp_t)(B * B * B);
static const fp_t B_INV = FP(1.) / (fp_t)B;
static const fp_t B_INV_CUBE = FP(1.) / (fp_t)(B * B * B);

if ((QABS(x) > ONE) || (QABS(y) > ONE))
{

s = (fp_t)B;
s_inv_cube = B_INV_CUBE;

}
else
{

s = (fp_t)B_INV;
s_inv_cube = B_CUBE;

}

CXSCALE_(w, z, s_inv_cube); /* w = z / s**3 */
r = CXABS(w);
t_3 = CXARG(w) / THREE;
SINCOS(t_3, &s_3, &c_3);
r_3 = s * CBRT(r);
CXSET_(result, r_3 * c_3, r_3 * s_3);

}
}

The function family CCBRT(z) is provided by a short interface to the code for CXCBRT(z), similar to that for CSQRT
(z); we therefore omit its code.

The measured errors in the IEEE 754 64-bit function ccbrt(z) are graphed in Figure 17.4 on the next page, and
the remarks in the caption for the square function in Figure 17.2 on page 484 apply equally well to the cube root.

17.9 Complex exponential

The complex exponential function is graphed in Figure 17.5 on page 489. The function is smooth and defined every-
where on the complex plane: there are neither branch cuts nor poles.

488 Chapter 17. Elementary functions in complex arithmetic

 0

 1

 2

-4 -3 -2 -1 0 1 2 3 4

u
lp

s

x

Errors in |ccbrt(z)|

 0

 1

 2

-4 -3 -2 -1 0 1 2 3 4

u
lp

s

y

Errors in |ccbrt(z)|

Figure 17.4: Errors in the ccbrt() function.

The complex exponential function satisfies an important symmetry relation under conjugation, as well as the
usual reciprocation, argument sum and product, and power relations:

w = u + vi, for real u and v,

z = x + yi, for real x and y,

z� = x − yi, conjugation operation,

exp(z�) =
(

exp(z)
)�, mathematical notation,

cexp(conj(z)) = conj(cexp(z)), computer software notation,
exp(−z) = 1/ exp(z),

exp(w + z) = exp(w) exp(z),

exp(wz) =
(

exp(w)
)z

=
(

exp(z)
)w,

wz = exp
(
z log(w)

)
, definition of complex power.

For the complex exponential function, the Taylor series

cexp(z) = 1 + z + z2/2! + z3/3! + · · ·+ zk/k! + · · ·
converges rapidly, and provides a suitable method for handling small arguments inline. To facilitate getting the code
right, two Maple files, polyfma.map and cpolyfma.map in the maple subdirectory, provide functions for converting a
truncated series to C code that can be used directly for real and complex-as-real data types.

The exponential function can be decomposed into real and imaginary parts by expanding the exponential of the
imaginary part in trigonometric functions:

z = x + yi, for real x and y,

exp(z) = exp(x + yi)
= exp(x) exp(yi)
= exp(x)

(
cos(y) + sin(y)i

)
= Ec + Esi,

E = exp(x),
c = cos(y),
s = sin(y).

17.9. Complex exponential 489

–10
–5

0
5

10
x –10

–5
0

5
10

y

–5
0

5
10

 Re(f(z))

–10
–5

0
5

10
x –10

–5
0

5
10

y

–5
0

5
10

 Im(f(z))

Figure 17.5: Real (left) and imaginary (right) surfaces of cexp(z), the complex exponential function defined by
exp(z) = ez = exp(x + yi).

The real exponential occurs in both real and imaginary parts of the result, scaled by the real cosine and sine,
each of which lies in [−1,+1]. Thus, both components grow with increasing |z|, and the trigonometric functions
must be accurate over the full range of y. The mathcw library guarantees exact trigonometric argument reduction to
ensure that accuracy, but on those many platforms where native libraries are less careful about argument reduction,
the complex exponential soon returns nonsensical results. On such systems, moving to higher precision is unlikely
to improve the accuracy of argument reduction, so programmers need to be aware that cexp(z) may be useless for
even moderately sized imaginary parts.

The C99 Standard mandates the handling of the special cases summarized in Table 17.4 on the following page.
Our code for the complex exponential function is based on the complex-as-real representation. Testing shows

that direct programming of the formula involving real functions does not produce the required special values, so we
are forced to clutter the code with explicit handling of Infinity and NaN values to obey the Standard, and we also
include Taylor-series summation to handle small arguments accurately and quickly.

The final code looks like this:

/* NB: r = x*y + z, but z is real */
#define CXFMA(r,x,y,z) { CXMUL(r, x, y); CXREAL_(r) += z; }

void
CXEXP(fp_cx_t result, const fp_cx_t z)
{ /* complex exponential: result = exp(z) */

fp_t c, e, q, s, x, y;

x = CXREAL_(z);
y = CXIMAG_(z);

if (ISINF(x))
{

if (x >= ZERO)
{

if (ISNAN(y))
CXSET_(result, x, y);

else if (ISINF(y))
CXSET_(result, x, QNAN(""));

else if (y == ZERO)

490 Chapter 17. Elementary functions in complex arithmetic

Table 17.4: Special cases for the complex exponential function, cexp(z), according to the C99 Standard [C99, TC3
§G.6.3.1, page 478]. The value f is any finite value, and h is any nonzero finite value.

z exp(z) Remark
conj(z) conj(cexp(z)) conjugation symmetry relation
±0 ± 0i 1 ± 0i
f ± ∞i NaN + NaNi raise invalid exception
f ± NaNi NaN + NaNi optionally raise invalid exception
+∞ ± 0i +∞ ± 0i
−∞ ± f i +0 cos(f) + 0 sin(f)i
+∞ ± hi +∞ cos(h)± ∞ sin(h)i
−∞ ± ∞i ±0 ± 0i result signs unspecified
+∞ ± ∞i ±∞ ± NaNi raise invalid exception; result real sign unspecified
−∞ ± NaNi ±0 ± 0i result signs unspecified
+∞ ± NaNi ±∞ ± NaNi result real sign unspecified
NaN ± 0i NaN ± 0i
NaN ± hi NaN ± NaNi optionally raise invalid exception
NaN ± NaN NaN ± NaNi

CXSET_(result, x, y);
else

CXSET_(result, x, COPYSIGN(x,y));
}
else

CXSET_(result, ZERO, COPYSIGN(ZERO, y));
}
else if (ISINF(y))
{

q = QNAN(""); /* must raise invalid f.p. exception */
CXSET_(result, COPYSIGN(q, ONE), COPYSIGN(q, y));

}
else if (ISNAN(x))
{

if (y == ZERO)
CXSET_(result, x, y);

else
CXSET_(result, x, COPYSIGN(x, y));

}
else if (ISNAN(y))
{

q = QNAN(""); /* must raise invalid f.p. exception */
CXSET_(result, COPYSIGN(q, ONE), COPYSIGN(q, y));

}
else /* exp(a + b*i) = exp(a) * cos(b) + exp(a) * sin(b) * i */
{

fp_cx_t sum;
fp_t half_z1;
static fp_t ZCUT_1, ZCUT_2, ZCUT_4, ZCUT_8, ZCUT_16;
static int do_init = 1;

if (do_init)
{

fp_t u;

17.9. Complex exponential 491

u = FOURTH * FP_T_EPSILON / (fp_t)B;

/* ZCUT_n = (1/2) * ((n + 1)! * u)**(1/n) */

ZCUT_1 = u;
ZCUT_2 = HALF * SQRT(FP(6.0) * u);
ZCUT_4 = HALF * SQRT(SQRT(FP(120.0) * u));
ZCUT_8 = HALF * SQRT(SQRT(SQRT(FP(362880.0) * u)));
ZCUT_16 = HALF * SQRT(SQRT(SQRT(SQRT(FP(355687428096000.0) * u))));
do_init = 0;

}

half_z1 = CXHALF1NORM_(z);

if (half_z1 < ZCUT_1)
CXSET_(result, ONE + x, y);

else if (half_z1 < ZCUT_2)
{ /* 2-term Taylor series: exp(z) - 1 = z + z**2 / 2! */

CXSCALE_(sum, z, HALF);
CXMUL(sum, sum, z);
CXADD_(sum, z, sum);
CXADDR_(result, sum, ONE);

}
else if (half_z1 < ZCUT_4)
{ /* 4-term Taylor series */

CXSCALE_(sum, z, FP(1.0) / FP(24.0));
CXADDR_(sum, sum, FP(1.0) / FP(6.0));
CXFMA(sum, sum, z, FP(1.0) / FP(2.0));
CXMUL(sum, sum, z);
CXMUL(sum, sum, z);
CXADD_(sum, z, sum);
CXADDR_(result, sum, ONE);

}
else if (half_z1 < ZCUT_8)
{ /* 8-term Taylor series */

/* ... code omitted ... */
}
else if (half_z1 < ZCUT_16)
{ /* 16-term Taylor series */

/* ... code omitted ... */
}
else
{

SINCOS(y, &s, &c);
e = EXP(x);
CXSET_(result, e * c, e * s);

}
}

}

The CXFMA() macro looks like a fused multiply-add operation, but it is implemented with separate operations,
and adds the final real argument inline.

We cannot avoid computing the trigonometric functions when the real exponential underflow or overflows, be-
cause their signs are needed to determine the signs of the components of the final result: they may be ±0 or ±∞.

In older floating-point systems without Infinity or NaN, the result of the real exponential should be capped at
the largest representable number when the true result would overflow. Both components of the final result are then
large but inaccurate. To better support such systems, we could supply this simpler version of the code (excluding

492 Chapter 17. Elementary functions in complex arithmetic

the lengthy Taylor-series blocks):

void
CXEXP(fp_cx_t result, const fp_cx_t z) /* pre-IEEE-754 ONLY! */
{ /* complex exponential: result = exp(z) */

fp_t c, E, s;

SINCOS(CXIMAG_(z), &s, &c);
E = EXP(CXREAL_(z));

if (E == FP_T_MAX)
CXSET_(result, COPYSIGN(FP_T_MAX, c), COPYSIGN(FP_T_MAX, s));

else
CXSET_(result, E * c, E * s);

}

We have not done that in the mathcw library, because complex arithmetic is a new feature in C99, and unlikely to be
supported on old platforms, even those that now run only in simulators.

The function family CEXP(z) is the usual simple wrapper around a call to CXEXP(z), and thus, not shown here.
The measured errors in the IEEE 754 64-bit function cexp(z) are plotted in Figure 17.6 on the next page. The

bottom pair of graphs shows the behavior on a logarithmic argument scale, from which it is evident that Taylor-
series summation provides correctly rounded function values.

17.10 Complex exponential near zero

The C99 Standard does not specify a complex version of expm1(x) for computing the difference exp(x)− 1 accurately
when |x| is small. We remedy that unfortunate omission by providing our own implementation of the function family
CEXPM1(z).

Outside the Taylor-series region, we use the relation of that function to the hyperbolic tangent (see Section 10.2
on page 273):

cexpm1(z) = 2 tanh(z/2)/
(
1 − tanh(z/2)

)
.

The argument cutoff for the longest truncated series ensures that the hyperbolic tangent is never called for the
IEEE 32-bit and 64-bit formats.

The code for the complex exponential, minus one, is similar to that shown for CEXP() in the preceding section, so
we show only significant fragments here:

void
CXEXPM1(fp_cx_t result, const fp_cx_t z)
{ /* complex exponential minus one: result = cexp(x) - 1 */

fp_t x, y;

x = CXREAL_(z);
y = CXIMAG_(z);

if (ISINF(x) && ISNAN(y))
CXSET_(result, COPYSIGN(x, 1.0), y);

else if (ISNAN(x) && ISINF(y))
CXSET_(result, COPYSIGN(y, 1.0), x);

else
{

fp_cx_t sum;
fp_t half_z1;
static fp_t ZCUT_1, ZCUT_2, ZCUT_4, ZCUT_8, ZCUT_16;
static int do_init = 1;

17.10. Complex exponential near zero 493

Figure 17.6: Errors in the cexp() function.

/*
** Cutoff initialization and Taylor series block omitted
*/

else if (half_z1 < HALF)
{ /* exp(z) - 1 = 2 * tanh(z/2) / (1 - tanh(z/2)) */

fp_cx_t d, half_z, q, t;

CXSET_(half_z, HALF * x, HALF * y);
CXTANH(t, half_z);
CXSET_(d, ONE - CXREAL_(t), -CXIMAG_(t));
CXDIV(q, t, d);
CXADD_(result, q, q);

}
else if (QABS(x) < LN_2)
{ /* handle subtraction loss in real(exp(z) - 1) */

fp_t c, em1, s, u, v;

em1 = EXPM1(x);
SINCOS(y, &s, &c);
u = c - ONE;

 0

 1

 2

-4 -3 -2 -1 0 1 2 3 4

u
lp

s

x

Errors in |cexp(z)|

 0

 1

 2

-4 -3 -2 -1 0 1 2 3 4

u
lp

s

y

Errors in |cexp(z)|

 0

 1

 2

-20 -15 -10 -5 0 5

u
lp

s

log10(|x|)

Errors in |cexp(z)|

 0

 1

 2

-20 -15 -10 -5 0 5

u
lp

s

log10(|y|)

Errors in |cexp(z)|

494 Chapter 17. Elementary functions in complex arithmetic

Figure 17.7: Errors in the cexpm1() function.

u += c * em1;
v = s * em1;
v += s;
CXSET_(result, u, v);

}
else
{

fp_cx_t e;

CXEXP(e, z);
CXSUBR_(result, e, ONE);

}
}

}

The code for the complex-arithmetic function family CEXPM1(z) is a simple wrapper around that for CXEXPM1(z),
so we omit it.

The measured errors in the IEEE 754 64-bit function cexpm1(z) are shown in Figure 17.7. The plot pair with
arguments on a logarithmic scale shows the superiority of the Taylor-series summation over other routes to the
function. Comparison with Figure 17.6 on the preceding page shows that the errors are larger in our cexpm1(z)
function, but it nevertheless is the preferred way to compute exponentials of small arguments.

 0

 1

 2

-4 -3 -2 -1 0 1 2 3 4

u
lp

s

x

Errors in |cexpm1(z)|

 0

 1

 2

-4 -3 -2 -1 0 1 2 3 4

u
lp

s

y

Errors in |cexpm1(z)|

 0

 1

 2

-20 -15 -10 -5 0 5

u
lp

s

log10(|x|)

Errors in |cexpm1(z)|

 0

 1

 2

-20 -15 -10 -5 0 5

u
lp

s

log10(|y|)

Errors in |cexpm1(z)|

17.11. Complex logarithm 495

–10
–5

0
5

10
x

–10

–5

0

5

10

y

–2
2 Re(f(z))

–10
–5

0
5

10
x

–10

–5

0

5

10

y

–2
2 Im(f(z))

Figure 17.8: Real (left) and imaginary (right) surfaces of clog(z), the complex logarithm function defined by log z =
log(x + yi). There is a pole at the origin in the real surface where the function goes to −∞ from all directions as
z → 0, and there is a branch cut along the entire negative real axis in the surface of the imaginary component.

17.11 Complex logarithm

The complex logarithm is graphed in Figure 17.8. Like the complex root functions, it has a branch cut in the surface
of the imaginary part along the negative real axis. Unlike the root functions, the surface of its real part has a negative
pole at the origin.

The complex logarithm has an important conjugation symmetry relation:

z = x + yi, for real x and y,

z� = x − yi, conjugation operation,

log(z�) = (log(z))�, mathematical notation,
clog(conj(z)) = conj(clog(z)), computer software notation.

It satisfies the usual product-to-sum and quotient-to-difference relations expected of logarithms:

log(wz) = log(w) + log(z),
log(w/z) = log(w)− log(z),
log(1/z) = − log(z).

The C99 Standard specifies the special cases summarized in Table 17.5 on the following page.
The complex logarithm is particularly easy to compute once we convert its argument from Cartesian form to

polar form:

z = x + yi, for real x and y,

= r exp(θi), for real r and θ,

r = |z| = cabs(z) = hypot(x, y),
θ = carg(z) = atan2(y, x),

log(z) = log(r exp(θi)) = log(r) + θi.

As long as the complex argument function is properly implemented to guarantee the conjugation symmetry relation
carg(conj(z)) = −carg(z), then our complex logarithm function ensures that its own symmetry relation is always
obeyed.

Our code for the complex-as-real representation includes a minimal number of tests to handle the required special
cases for which the simple code does not work properly. It also includes exact downward scaling of large arguments
to avoid premature overflow in |z|. Scaling is unnecessary for arguments of small or tiny magnitude, so we normally
avoid it. Our code looks like this:

496 Chapter 17. Elementary functions in complex arithmetic

Table 17.5: Special cases for the complex logarithm function, clog(z), according to the C99 Standard [C99, TC3
§G.6.3.2, pages 478–479]. The value f is any finite value, and g is any positive-signed finite value.

z log(z) Remark
conj(z) conj(clog(z)) conjugation symmetry relation
−0 + 0i −∞ + πi raise divbyzero exception
+0 + 0i −∞ + 0i raise divbyzero exception
f ± ∞i +∞ ± 1

2 πi
f ± NaNi NaN + NaNi optionally raise invalid exception
−∞ ± gi +∞ ± πi
+∞ ± gi +∞ ± 0i
−∞ ± ∞i +∞ ± 3

4 πi
+∞ ± ∞i +∞ ± 1

4 πi
±∞ ± NaNi +∞ ± NaNi unusual
NaN ± f i NaN ± NaNi optionally raise invalid exception
NaN ± ∞i +∞ ± NaNi unusual
NaN ± NaNi NaN ± NaNi
+∞ ± f i +∞ ± 0i
+∞ ± NaNi +∞ + NaNi unusual
−∞ ± f i +0 ± ∞i
−∞ ± NaNi NaN ± ∞i unusual
NaN + f i NaN + NaNi
f + NaNi NaN + NaNi
NaN + NaNi NaN + NaNi

void
CXLOG(fp_cx_t result, const fp_cx_t z)
{ /* complex logarithm: result = log(z) */

fp_t r, t, x, y;
static const fp_t X_CUT = FP(0.5) * FP_T_MAX;

x = CXREAL_(z);
y = CXIMAG_(z);

if (ISINF(x) && ISNAN(y))
CXSET_(result, COPYSIGN(x, 1.0), y);

else if (ISNAN(x) && ISINF(y))
CXSET_(result, COPYSIGN(y, 1.0), x);

else if ((QABS(x) > X_CUT) || (QABS(y) > X_CUT))
{ /* possible overflow of |z| */

static const fp_t B_INV = FP(1.) / (fp_t)B;
fp_cx_t w;
volatile fp_t s;

/* log(w) = log(z/B), so log(z) = log(w) + log(B) */

CXSET_(w, x * B_INV, y * B_INV);
r = CXABS(w);
t = CXARG(w);
s = LOG(r);
s += LOG_B_HI;
STORE(&s);
s += LOG_B_LO;

17.12. Complex logarithm near one 497

Figure 17.9: Errors in the clog() function.

STORE(&s);
CXSET_(result, s, t);

}
else if ((HALF < x) && (x < TWO))
{

fp_cx_t w;

CXSUBR_(w, z, ONE);
CXLOG1P(result, w);

}
else
{

r = CXABS(z);
t = CXARG(z);
CXSET_(result, LOG(r), t);

}
}

The second last code block handles arguments whose real component lies near one by diverting computation to
a function described in the next section. It was added after testing of an earlier version of the code showed errors up
to 12 ulps in that region. The change pushed the maximum error below 1.61 ulps.

The code for the complex-arithmetic function family CLOG(z) is a simple wrapper around that for CXLOG(z), so
we omit it.

The measured errors in the IEEE 754 64-bit function clog(z) are displayed in Figure 17.9. Outside the plotted
range, errors are almost always below the target half-ulp line.

17.12 Complex logarithm near one

In Section 10.4 on page 290, we discussed the need for accurate computation of the real function log(1 + x). Al-
though the C99 Standard does not specify such a function for complex arguments, one is definitely needed. The
mathcw library provides the function family CLOG1P(z) for computing log(1 + z). Numerical experiments show that
a different treatment of that function is needed in the complex case. In particular, the relation between the logarithm
of an exact argument and that of a slightly perturbed, but exactly representable, argument does not provide sufficient
accuracy. The code in file cxl1px.h implements a computation of log(1 + z) with one of seven algorithms:

 0

 1

 2

-4 -3 -2 -1 0 1 2 3 4

u
lp

s

x

Errors in |clog(z)|

 0

 1

 2

-4 -3 -2 -1 0 1 2 3 4

u
lp

s

y

Errors in |clog(z)|

498 Chapter 17. Elementary functions in complex arithmetic

� For small arguments, sum the Taylor series

log(1 + z) = z − z2/2 + z3/3 − · · · − z2k/(2k) + z2k+1/(2k + 1)− · · ·
of orders one, two, four, eight, or sixteen.

� For magnitudes |z| < 1
2 , sum an alternate series [AS64, §4.1.27, page 68] [OLBC10, §4.6.6] given by

w = z/(2 + z),

log(1 + z) = 2(w + w3/3 + w5/5 + · · ·+ w2k−1/(2k − 1) + · · ·).
That series converges more rapidly than the normal Taylor series, and requires 8, 18, 21, 37, and 76 terms for
the five extended IEEE 754 binary formats for the worst case of z = − 1

2 and w = − 1
3 . It has the disadvantage

that the first term is no longer exact, but instead involves two rounding errors, and the outer factor of two
introduces another rounding error for nonbinary bases. Also, although the powers of w are all odd, their signs
may nevertheless differ because they are complex numbers: subtraction loss is possible, though less likely
because of the restriction on |z|.

� Otherwise, compute log(1 + z) directly.

The term counts in the series for the intermediate case are larger than we would like, but the normal Taylor series
needs about three times as many terms for the same accuracy, and direct computation of log(1+ z) suffers digit loss.
The reciprocals of integers in the series are computed at compile time to machine precision, so no run-time divisions
are required.

Here is what our code looks like:

void
CXLOG1P(fp_cx_t result, const fp_cx_t z)
{ /* complex logarithm near one: result = log(1 + z) */

fp_t r, t, x, y;

x = CXREAL_(z);
y = CXIMAG_(z);

if (ISINF(x) && ISNAN(y))
CXSET_(result, COPYSIGN(x, 1.0), y);

else if (ISNAN(x) && ISINF(y))
CXSET_(result, COPYSIGN(y, 1.0), x);

else
{

fp_cx_t sum;
fp_t half_z1;
static fp_t ZCUT_1, ZCUT_2, ZCUT_4, ZCUT_8, ZCUT_16;
static int do_init = 1;

if (do_init)
{

fp_t u;

u = FOURTH * FP_T_EPSILON / (fp_t)B;
ZCUT_1 = u;
ZCUT_2 = HALF * SQRT(THREE * u);
ZCUT_4 = HALF * SQRT(SQRT(FP(5.0) * u));
ZCUT_8 = HALF * SQRT(SQRT(SQRT(FP(9.0) * u)));
ZCUT_16 = HALF * SQRT(SQRT(SQRT(SQRT(FP(17.0) * u))));
do_init = 0;

}

17.12. Complex logarithm near one 499

/* cheap lower bound to |z| without overflow */
half_z1 = CXHALF1NORM_(z);

if (half_z1 < ZCUT_1) /* 1-term Taylor series */
CXCOPY_(result, z);

else if (half_z1 < ZCUT_2) /* use 2-term Taylor series */
{ /* Taylor series: log(1 + z) = z - z**2/2 + z**3/3 - ... */

CXMUL(sum, z, z);
CXSCALE_(sum, sum, -HALF);
CXADD_(result, z, sum);

}
else if (half_z1 < ZCUT_4) /* use 4-term Taylor series */
{

CXSCALE_(sum, z, FP(-1.0) / FP(4.0));
CXADDR_(sum, sum, FP(1.0) / FP(3.0));
CXFMA(sum, sum, z, FP(-1.0) / FP(2.0));
CXMUL(sum, sum, z);
CXMUL(sum, sum, z);
CXADD_(result, z, sum);

}
else if (half_z1 < ZCUT_8) /* use 8-term Taylor series */
{

CXSCALE_(sum, z, FP(-1.0) / FP(8.0));
CXADDR_(sum, sum, FP(1.0) / FP(7.0));
CXFMA(sum, sum, z, FP(-1.0) / FP(6.0));
CXFMA(sum, sum, z, FP(1.0) / FP(5.0));
CXFMA(sum, sum, z, FP(-1.0) / FP(4.0));
CXFMA(sum, sum, z, FP(1.0) / FP(3.0));
CXFMA(sum, sum, z, FP(-1.0) / FP(2.0));
CXMUL(sum, sum, z);
CXMUL(sum, sum, z);
CXADD_(result, sum, z);

}
else if (half_z1 < ZCUT_16) /* use 16-term Taylor series */
{

/* ... code omitted ... */
}
else if (half_z1 < FOURTH)
{

fp_cx_t d, two_w, w, ww, sum;
int k;

CXSET_(d, TWO + x, y); /* d = 2 + z */
CXDIV(w, z, d); /* w = z / (2 + z) */
CXMUL(ww, w, w);
CXADD_(two_w, w, w);

k = N_R_2KM1 - 2;
CXSET_(sum, r_2km1[k + 1], ZERO);

for (; k > 1; --k) /* r_2km1[k] = 1 / (2*k - 1) */
CXFMA(sum, sum, ww, r_2km1[k]); /* Horner form */

CXMUL(sum, sum, ww);
CXMUL(sum, two_w, sum);
CXADD_(result, two_w, sum);

}

500 Chapter 17. Elementary functions in complex arithmetic

else
{

fp_cx_t zp1;

CXSET_(zp1, ONE + x, y);
r = CXABS(zp1);
t = CXARG(zp1);
CXSET_(result, LOG(r), t);

}
}

}

The Taylor-series code accounts for more than half of the function body, but it executes quickly, and guarantees
high accuracy for small arguments. The cutoff value ZCUT_16 decreases from 0.370 in the IEEE 754 32-bit format, to
0.110 in the 64-bit format, and to 0.008 in the 128-bit format.

The only delicate point in the code is the summation of the series for intermediate arguments. The loop body
is kept short by omitting convergence tests, at the expense of often-unnecessary additional iterations. The loop
accumulates the value sum = 1/3 + w2/5 + w4/7 + · · · in nested Horner form, and the final result is obtained from
2w + 2w(w2 × sum) to reduce the rounding error that would be incurred if the loop ran one more iteration, adding
the final (lowest-order) term last.

With real arithmetic, our normal programming procedure accumulates the sum in order of decreasing term mag-
nitudes, starting with the second term, and exits the loop as soon as the sum is not changed by the addition of the
current term. There is code in cxl1px.h to do that for complex arithmetic, using the one-norm, | real(z)|+ | imag(z)|,
in the convergence test. Timing tests show no significant difference between the two methods, so only the shorter
Horner form is shown in the code display.

The code for the complex-arithmetic function family CLOG1P(z) is a simple wrapper around that for CXLOG1P(z),
so we omit it.

The measured errors in the IEEE 754 64-bit function clog1p(z) are plotted in Figure 17.10 on the next page.
The bottom pair of plots shows the behavior on a logarithmic argument scale, confirming the predicted accuracy of
Taylor-series summation. Outside the range shown in the graphs, the function is almost always correctly rounded,
with errors below the half-ulp line.

17.13 Complex power

The complex power function is defined in terms of the exponential and logarithm functions like this:

za = exp(a log(z)), definition of complex power.

We showed in Chapter 14 on page 411 that the problem of error magnification in the exponential function when the
argument is large is a serious impediment to straightforward application of the definition. The real power function,
pow(x,y), is by far the most difficult of the standard elementary functions to compute accurately. Moving to the
complex domain makes the problem even harder. Here, we take the simplest implementation approach: when higher
precision is available, we use it to hide most of the accuracy problems, and otherwise, we use working precision with
a declaration that our complex exponential function family is much in need of improvement.

The power function has two arguments, so there are potentially many more special cases of arguments than in the
lengthy lists that we tabulate in earlier sections for single-argument functions. The C99 Standard does not attempt to
enumerate them. Instead, it notes that the power function cpow(z,a) may be computed as cexp(a * clog(z)), but
permits implementations to provide more careful handling of special cases.

The code is straightforward, but must be regarded as preliminary:

void
CXPOW(fp_cx_t result, const fp_cx_t z, const fp_cx_t a)
{ /* complex power: result = z**a */

/* use hp_t and hp_cx_t internally to reduce accuracy loss */
hp_cx_t aa, aa_log_zz, hp_result, log_zz, zz;
fp_t u, v, x, y;

17.13. Complex power 501

 0

 1

 2

-4 -3 -2 -1 0 1 2 3 4

u
lp

s

x

Errors in |clog1p(z)|

 0

 1

 2

-4 -3 -2 -1 0 1 2 3 4

u
lp

s

y

Errors in |clog1p(z)|

 0

 1

 2

-20 -15 -10 -5 0 5

u
lp

s

log10(|x|)

Errors in |clog1p(z)|

 0

 1

 2

-20 -15 -10 -5 0 5

u
lp

s

log10(|y|)

Errors in |clog1p(z)|

Figure 17.10: Errors in the clog1p() function.

u = CXREAL_(a);
v = CXIMAG_(a);
x = CXREAL_(z);
y = CXIMAG_(z);
HP_CXSET_(zz, (hp_t)x, (hp_t)y);

if ((v == ZERO) && (y == ZERO)) /* real case */
HP_CXSET_(hp_result, (hp_t)POW(x, u), y + v);

else if ((v == ZERO) && (TRUNC(u) == u) && (QABS(u) <= (fp_t)INT_MAX)) /* integer power */
HP_CXIPOW(hp_result, zz, (int)u);

else /* general case: z**a = cexp(a * clog(z)) */
{

HP_CXSET_(aa, (hp_t)u, (hp_t)v);
HP_CXLOG(log_zz, zz);
HP_CXMUL(aa_log_zz, aa, log_zz);
HP_CXEXP(hp_result, aa_log_zz);

}

CXSET_(result, (fp_t)HP_CXREAL_(hp_result), (fp_t)HP_CXIMAG_(hp_result));
}

502 Chapter 17. Elementary functions in complex arithmetic

 0

 1

 2

-4 -3 -2 -1 0 1 2 3 4

u
lp

s

x

Errors in |cpow(z, 543.125)|

 0

 1

 2

-4 -3 -2 -1 0 1 2 3 4

u
lp

s

y

Errors in |cpow(z, 543.125)|

Figure 17.11: Errors in the cpow() function.

The only concessions that we make to efficiency are to divert the special case of integer powers of complex num-
bers to the CXIPOW() family, and the case of real z and a to the real POW() routine. We do not show the code here for
CXIPOW(), because it is just a simplified version of the real function family, IPOW(), that uses bitwise exponent reduc-
tion and squaring to compute integer powers with an almost minimal number of multiplications (see Section 14.3
on page 414).

The native complex power function, CPOW(z), is the usual simple wrapper around a call to CXPOW(z), and we omit
it.

The measured errors in the complex power function for a single large nonintegral exponent are shown in Fig-
ure 17.11. The internal use of higher precision usually produces correctly rounded results if the exponent is not too
large. The exponent chosen for the plots pushes the maximum errors up to about 1.14 ulps, but most results lie below
the desirable half-ulp line.

Despite that graphical observation, errors in the complex power function can sometimes be larger, because we
noted in the retrospective in Section 14.15 on page 440 that the worst cases for the real power function may re-
quire triple the working precision. The known issues with complex-arithmetic primitives suggest that guaranteeing
always-correct rounding for the CPOW() family may need six times working precision.

17.14 Complex trigonometric functions

The cosine, sine, and tangent for complex arguments are shown in Figure 17.12 through Figure 17.14 on the facing
page. They each depend on the real trigonometric and hyperbolic functions through these defining relations:

z = x + yi, for real x and y,

cos(z) = cos(x) cosh(y)− sin(x) sinh(y)i,
sin(z) = sin(x) cosh(y) + cos(x) sinh(y)i,
tan(z) = sin(z)/ cos(z)

=
sin(2x) + sinh(2y)i
cos(2x) + cosh(2y)

.

The C99 Standard does not tabulate special cases of those functions for Infinity, NaN, and signed zero arguments,
because they can be inferred from entries in Table 17.7 on page 513 through Table 17.9 on page 514 and these relations
between the trigonometric and hyperbolic functions of complex arguments:

cos(zi) = cosh(z), cos(z) = cosh(zi),
sin(zi) = sinh(z)i, sin(z) = − sinh(zi)i,

17.14. Complex trigonometric functions 503

–10
–5

0
5

10

x

–10
–5

0
5

10

y

0
5

 Re(f(z))

–10
–5

0
5

10

x

–10
–5

0
5

10

y

0
5

 Im(f(z))

Figure 17.12: Real (left) and imaginary (right) surfaces of ccos(z), the complex trigonometric cosine function. There
are neither branch cuts nor poles.

–10
–5

0
5

10

x

–10
–5

0
5

10

y

0
5

 Re(f(z))

–10
–5

0
5

10

x

–10
–5

0
5

10

y

0
5

 Im(f(z))

Figure 17.13: Real (left) and imaginary (right) surfaces of csin(z), the complex trigonometric sine function. There
are neither branch cuts nor poles.

–5

0

5

x

–5

0

5

y

–1
1 Re(f(z))

–5

0

5

x

–5

0

5

y

–1
1 Im(f(z))

Figure 17.14: Real (left) and imaginary (right) surfaces of ctan(z), the complex trigonometric tangent function. There
are no branch cuts, but there are poles to ±∞ along the real axis in both the imaginary and real components.

504 Chapter 17. Elementary functions in complex arithmetic

tan(zi) = tanh(z)i, tan(z) = − tanh(zi)i.

All three functions are subject to subtraction loss for certain combinations of x and y, and the tangent suffers
argument error in forming 2x in nonbinary bases. The tangent formula with the sum in the denominator should
not be used when cos(2x) < 0 and cosh(2y) < 2, for which |y| < 0.659. The easiest way to reduce the losses is to
perform the computations in the next higher precision, when that is feasible.

Our code for the three functions has a similar structure, so we show only that for the complex cosine using our
complex-as-real type:

void
CXCOS(fp_cx_t result, const fp_cx_t z)
{ /* complex cosine: result = cos(z) */

hp_t c, ch, s, sh, x, y;

x = (hp_t)CXREAL_(z);
y = (hp_t)CXIMAG_(z);
HP_SINCOS(x, &s, &c);
HP_SINHCOSH(y, &sh, &ch);
CXSET_(result, (fp_t)(c * ch), (fp_t)(-s * sh));

}

As we observed in Section 17.5 on page 479, it is helpful here to have the SINCOS() and SINHCOSH() families avail-
able for computing two function values while sharing parts of their code, and avoiding needless duplication of the
difficult job of accurate argument reduction.

Existing implementations of those complex-valued functions are likely to produce nonsensical answers for even
moderate z values because of inaccurate argument reduction and subtraction loss.

The function families CCOS(z), CSIN(z), and CTAN(z) are simple wrappers around calls to their complex-as-real
companions.

The measured errors in the IEEE 754 complex double versions of the trigonometric functions are shown in Fig-
ure 17.15 through Figure 17.17 on the facing page. The internal use of higher precision produces results that are
almost always correctly rounded.

17.15 Complex inverse trigonometric functions

The inverse trigonometric functions for complex arguments are graphed in Figure 17.18 through Figure 17.20 on
page 506. They are related to the complex logarithm and square root, and are defined by these relations:

acos(z) =
{− log(z +

√
1 − z2 × i)i,

+ log(z −√
1 − z2 × i)i,

asin(z) =
{− log(

√
1 − z2 + z × i)i,

+ log(
√

1 − z2 − z × i)i,

atan(z) = 1
2 log

(
i + z
i − z

)
i.

Where two formulas are given, the one that minimizes subtraction loss should be chosen, but notice that such losses
can happen in either, or both, of the real and imaginary parts of the arguments.

The inverse trigonometric functions satisfy these important symmetry relations:

acos(−z) = π − acos(z), asin(−z) = − asin(z), atan(−z) = − atan(z).

Two of them are related to their inverse hyperbolic companions with arguments multiplied by the imaginary
unit, like this:

asin(z) = − asinh(zi)i, atan(z) = − atanh(zi)i.

17.15. Complex inverse trigonometric functions 505

 0

 1

 2

-4 -3 -2 -1 0 1 2 3 4

u
lp

s

x

Errors in |ccos(z)|

 0

 1

 2

-4 -3 -2 -1 0 1 2 3 4

u
lp

s

y

Errors in |ccos(z)|

Figure 17.15: Errors in the ccos() function.

 0

 1

 2

-4 -3 -2 -1 0 1 2 3 4

u
lp

s

x

Errors in |csin(z)|

 0

 1

 2

-4 -3 -2 -1 0 1 2 3 4

u
lp

s

y

Errors in |csin(z)|

Figure 17.16: Errors in the csin() function.

 0

 1

 2

-4 -3 -2 -1 0 1 2 3 4

u
lp

s

x

Errors in |ctan(z)|

 0

 1

 2

-4 -3 -2 -1 0 1 2 3 4

u
lp

s

y

Errors in |ctan(z)|

Figure 17.17: Errors in the ctan() function.

506 Chapter 17. Elementary functions in complex arithmetic

–5

0

5

x

–5

0

5

y

0
2 Re(f(z))

–5

0

5

x

–5

0

5

y

–2
0

2
 Im(f(z))

Figure 17.18: Real (left) and imaginary (right) surfaces of cacos(z), the complex inverse trigonometric cosine func-
tion. There are cusps on the real axis on (−∞,−1) and (+1,+∞) on the real surface, and branch cuts on the same
intervals on the imaginary surface. Seen from an opposite viewpoint, the branch cuts resemble those shown in
Figure 17.19.

–5

0

5

x

–5

0

5

y

–2
0

2
 Re(f(z))

–5

0

5

x

–5

0

5

y

–2
0

2
 Im(f(z))

Figure 17.19: Real (left) and imaginary (right) surfaces of casin(z), the complex inverse trigonometric sine function.
There are cusps on the real axis on (−∞,−1) and (+1,+∞) on the real surface, and branch cuts on the same intervals
on the imaginary surface.

–5

0

5

x

–5

0

5

y

–2
0

2
 Re(f(z))

–5

0

5

x

–5

0

5

y

–2
0

2
 Im(f(z))

Figure 17.20: Real (left) and imaginary (right) surfaces of catan(z), the complex inverse trigonometric tangent func-
tion. There are branch cuts on the imaginary axis on (−∞,−1] and [+1,+∞) on the real surface, and poles at z = ±i
on the imaginary surface.

17.15. Complex inverse trigonometric functions 507

Table 17.6: Special cases for the complex inverse trigonometric cosine function, cacos(z), according to the C99
Standard [C99, TC3 §G.6.1.1, page 474]. The value f is any finite value, g is any positive-signed finite value, and h is
any nonzero finite value.

z acos(z) Remark
conj(z) conj(cacos(z)) conjugation symmetry relation
±0 + 0i 1

2 π − 0i
±0 + NaNi 1

2 π + NaNi
f + ∞i 1

2 π − ∞i
h + NaNi NaN + NaNi optionally raise invalid exception
−∞ + gi π − ∞i
+∞ + gi +0 − ∞i
−∞ + ∞i 3

4 π − ∞i
+∞ + ∞i 1

4 π − ∞i
±∞ + NaNi NaN ± ∞i result imaginary sign unspecified
NaN + f i NaN + NaNi optionally raise invalid exception
NaN + ∞i NaN − ∞i
NaN + NaNi NaN + NaNi

The C99 Standard tabulates the special cases for the inverse cosine shown in Table 17.6. Special cases for the
inverse sine and tangent are inferred from the symmetry relations to their inverse hyperbolic companions, and from
the entries in Table 17.11 on page 518 and Table 17.12 on page 518.

The inverse trigonometric functions do not reduce nicely into separate real and imaginary parts: we have to use
complex arithmetic to compute the arguments of the logarithms and square roots.

Where complex values are multiplied by the imaginary unit, i, in the defining formulas, that must be done by
component swap and sign change, not by calling a function for complex multiplication: compute zi = (x + yi)i =
−y + xi. The inline macro CXMULBYI_() in the header file cxcw.h hides the details of that operation.

The arguments of the square roots are subject to serious subtraction loss, but that can be reduced by computing
1 − z2 as (1 + z)(1 − z). Nevertheless, that still leaves the problem of accurate computation of the square root when
|z| is small, for which we have this Taylor series:

√
1 − z2 = 1 − z2/2 − z4/8 − z6/16 − 5z8/128 + · · · .

We also recall from Section 17.12 on page 497 that we should take care to rewrite expressions of the form log(1 + z)
as clog1p(z).

The conclusion from those remarks is clear: if we compute the inverse trigonometric functions of complex ar-
guments only in working precision, there are many opportunities for errors from subtraction loss and inadequate
argument precision. Higher internal precision, when available, provides a reasonable way to hide most of the loss
without doing extensive, and complicated, numerical analysis.

We show only the code for the inverse cosine of complex-as-real arguments here, because that for the inverse sine
and inverse tangent has a similar structure:

void
CXACOS(fp_cx_t result, const fp_cx_t z)
{ /* complex inverse cosine: result = acos(z) */

/* symmetry: acos(-z) = PI - acos(z) */

fp_t half_z1, x, y;
static fp_t ZCUT_1;
static int do_init = 1;

if (do_init)
{

508 Chapter 17. Elementary functions in complex arithmetic

ZCUT_1 = FOURTH * FP_T_EPSILON / (fp_t)B;
do_init = 0;

}

x = CXREAL_(z);
y = CXIMAG_(z);
half_z1 = CXHALF1NORM_(z);

if (ISINF(x))
{

if (ISINF(y))
{

if (x > ZERO)
CXSET_(result, PI_QUARTER, -y);

else
CXSET_(result, THREE_PI_QUARTER, -y);

}
else if (ISNAN(y))

CXSET_(result, COPYSIGN(y, ONE), x);
else if (SIGNBIT(x) == 0)

CXSET_(result, ZERO, -COPYSIGN(x, y));
else

CXSET_(result, PI, -COPYSIGN(x, y));
}
else if (ISNAN(x))
{

if (ISINF(y))
CXSET_(result, COPYSIGN(x, ONE), -y);

else if (ISNAN(y))
CXSET_(result, COPYSIGN(x, ONE), y);

else
{

(void)QNAN(""); /* raise invalid f.p. exception */
CXSET_(result, COPYSIGN(x, ONE), COPYSIGN(x, y));

}
}
else if (ISINF(y))

CXSET_(result, PI_HALF, -y);
else if (ISNAN(y))
{

if (x == ZERO)
CXSET_(result, PI_HALF, y);

else
{

(void)QNAN(""); /* optionally raise invalid exception */
CXSET_(result, COPYSIGN(y, ONE), y);

}
}
else if (y == ZERO)

CXSET_(result, ACOS(x), COPYSIGN(ZERO, -COPYSIGN(ONE, y)));
else if (half_z1 < ZCUT_1)

CXSET_(result, PI_HALF - x, -y);
else
{

hp_cx_t p, r, s, t, u, v, w, zz;
hp_t xx, yy;

17.16. Complex hyperbolic functions 509

xx = (hp_t)x;
yy = (hp_t)y;

if (HP_SIGNBIT(xx))
HP_CXSET_(zz, -xx, -yy); /* zz = -z */

else
HP_CXSET_(zz, xx, yy); /* zz = +z */

HP_CXSET_(r, HP(1.0) - HP_CXREAL_(zz), -HP_CXIMAG_(zz));
HP_CXSET_(s, HP(1.0) + HP_CXREAL_(zz), HP_CXIMAG_(zz));
HP_CXMUL(t, r, s);
HP_CXSQRT(r, t);
HP_CXSET_(u, -HP_CXIMAG_(r), HP_CXREAL_(r));

if (HP_SIGNBIT(HP_CXREAL_(zz)) == HP_SIGNBIT(HP_CXREAL_(u)))
{ /* use -i * log(zz + i * sqrt(1 - zz**2)) */

HP_CXADD_(v, zz, u);
HP_CXLOG(w, v); /* log(zz + i * sqrt(1 - zz**2)) */
HP_CXSET_(p, HP_CXIMAG_(w), -HP_CXREAL_(w));

}
else
{ /* use +i * log(zz - i * sqrt(1 - zz**2)) */

HP_CXSUB_(v, zz, u);
HP_CXLOG(w, v); /* log(zz - i * sqrt(1 - zz**2)) */
HP_CXSET_(p, -HP_CXIMAG_(w), HP_CXREAL_(w));

}

if (HP_SIGNBIT(xx)) /* acos(-z) = PI - acos(z) */
{

volatile hp_t q;

q = (hp_t)PI_HI - HP_CXREAL_(p);
HP_STORE(&q);
q += (hp_t)PI_LO;
CXSET_(result, (fp_t)q, (fp_t)(-HP_CXIMAG_(p)));

}
else

CXSET_(result, (fp_t)HP_CXREAL_(p), (fp_t)HP_CXIMAG_(p));
}

}

The code is not optimal. We use only the one-term form of the Taylor series. We base the choice of logarithm formula
only on the sign of the real part, rather than the larger of the real and imaginary parts. We do not use the CLOG1P()
family for arguments near one. However, we preserve the important symmetry relation for argument negation.

The function families CACOS(z), CASIN(z), and CATAN(z) for the native complex types are simple wrappers
around the functions for the complex-as-real types, and thus, are not shown here.

The measured errors in the IEEE 754 complex double versions of the inverse trigonometric functions are shown
in Figure 17.21 through Figure 17.23 on the following page. The internal use of higher precision ensures that results
are almost always correctly rounded.

17.16 Complex hyperbolic functions

Graphs of the hyperbolic functions of complex argument are shown in Figure 17.24 through Figure 17.26 on page 511.
They are defined in terms of trigonometric and hyperbolic functions of real arguments like this [Smi98]:

z = x + yi, for real x and y,

510 Chapter 17. Elementary functions in complex arithmetic

 0

 1

 2

-4 -3 -2 -1 0 1 2 3 4

u
lp

s

x

Errors in |cacos(z)|

 0

 1

 2

-4 -3 -2 -1 0 1 2 3 4

u
lp

s

y

Errors in |cacos(z)|

Figure 17.21: Errors in the cacos() function.

 0

 1

 2

-4 -3 -2 -1 0 1 2 3 4

u
lp

s

x

Errors in |casin(z)|

 0

 1

 2

-4 -3 -2 -1 0 1 2 3 4

u
lp

s

y

Errors in |casin(z)|

Figure 17.22: Errors in the casin() function.

 0

 1

 2

-4 -3 -2 -1 0 1 2 3 4

u
lp

s

x

Errors in |catan(z)|

 0

 1

 2

-4 -3 -2 -1 0 1 2 3 4

u
lp

s

y

Errors in |catan(z)|

Figure 17.23: Errors in the catan() function.

17.16. Complex hyperbolic functions 511

–10
–5

0
5

10
x –10

–5
0

5
10

y

–5
0

5
10

 Re(f(z))

–10
–5

0
5

10
x –10

–5
0

5
10

y

–5
0

5
10

 Im(f(z))

Figure 17.24: Real (left) and imaginary (right) surfaces of ccosh(z), the complex hyperbolic cosine function. There
are no branch cuts or poles, but there is sometimes exponential growth in both surfaces.

–10
–5

0
5

10
x –10

–5
0

5
10

y

–5
0

5
10

 Re(f(z))

–10
–5

0
5

10
x –10

–5
0

5
10

y

–5
0

5
10

 Im(f(z))

Figure 17.25: Real (left) and imaginary (right) surfaces of csinh(z), the complex hyperbolic sine function. There are
no branch cuts or poles, but there is sometimes exponential growth in both surfaces.

–5

0

5
x

–5

0

5

y

–2
0

2
 Re(f(z))

–5

0

5
x

–5

0

5

y

–2
0

2
 Im(f(z))

Figure 17.26: Real (left) and imaginary (right) surfaces of ctanh(z), the complex hyperbolic tangent function. There
are asymptotic poles to ±∞ on the imaginary axis for y an odd multiple of π/2 on the surface of the imaginary
component.

512 Chapter 17. Elementary functions in complex arithmetic

cosh(z) = cosh(x) cos(y) + sinh(x) sin(y)i,
sinh(z) = sinh(x) cos(y) + cosh(x) sin(y)i,
tanh(z) = sinh(z)/ cosh(z),

=
sinh(2x) + sin(2y)i
cosh(2x) + cos(2y)

.

The hyperbolic functions have these important symmetry relations under argument negation:

cosh(−z) = cosh(z), sinh(−z) = − sinh(z), tanh(−z) = − tanh(z).

As we noted in Section 17.14 on page 502, the hyperbolic and trigonometric functions of complex arguments are
related:

cosh(z) = cos(zi), cosh(zi) = cos(z),
sinh(z) = − sin(zi)i, sinh(zi) = sin(z)i,
tanh(z) = − tan(zi)i, tanh(zi) = tan(z)i.

The C99 Standard specifies the special cases that are summarized in Table 17.7 on the next page through Ta-
ble 17.9 on page 514.

The real and imaginary parts require only function calls and products, so subtraction loss is not a problem for the
hyperbolic cosine and sine. However, the doubled arguments in the definition of the hyperbolic tangent introduce
argument errors in nonbinary bases that we can hide by computing in higher intermediate precision. Also, the
denominator may lose leading digits when cos(2y) < 0 and cosh(2x) < 2, for which |x| < 0.659. In that case,
it is better to compute the hyperbolic tangent from the ratio sinh(z)/ cosh(z). Accurate results for arguments of
large magnitude can be expected only if argument reduction in the real hyperbolic and trigonometric functions is
exact, as it is in the mathcw library, but not in most native libraries. Here is the code for the hyperbolic tangent with
complex-as-real argument:

void
CXTANH(fp_cx_t result, const fp_cx_t z)
{ /* complex hyperbolic tangent: result = tanh(z) */

/* tanh(z) = sinh(z) / cosh(z) */
/* tanh(x+y*i) = (sinh(2*x)+ sin(2*y)*i)/(cosh(2*x) + cos(2*y)) */

#if FP_T_DIG == HP_T_DIG /* no higher precision available */
fp_t x, y;
fp_cx_t ch, sh;

x = CXREAL_(z);
y = CXIMAG_(z);

if (QABS(x) < FP(0.659)) /* cosh(2 * 0.658...) == 2 */
{

CXCOSH(ch, z);
CXSINH(sh, z);
CXDIV(result, sh, ch); /* tanh(z) = sinh(z) / cosh(z) */

}
else
{

fp_t c, ch, d, s, sh;

SINHCOSH(x + x, &sh, &ch);
SINCOS(y + y, &s, &c);
d = ch + c; /* no leading digit loss when c < 0 */
CXSET_(result, sh / d, s / d);

}

17.16. Complex hyperbolic functions 513

Table 17.7: Special cases for the complex hyperbolic cosine function, ccosh(z), according to the C99 Standard [C99,
TC3 §G.6.2.4, page 476]. The value h is any nonzero finite value.

z cosh(z) Remark
−z ccosh(z) function is even
conj(z) conj(ccosh(z)) conjugation symmetry relation
+0 ± 0i 1 ± 0i
−0 ± 0i 1 ∓ 0i
+0 + ∞i NaN ± 0i raise invalid exception; result imag. sign unspecified
+0 + NaNi NaN ± 0i result imaginary sign unspecified
h + ∞i NaN + NaNi raise invalid exception
h + NaNi NaN + NaNi optionally raise invalid exception
+∞ ± 0i ∞ ± 0i
+∞ ± hi ∞ cos(h)± ∞ sin(h)i
+∞ + ∞i ±∞ + NaNi raise invalid exception; result real sign unspecified
+∞ − ∞i ±∞ − NaNi raise invalid exception; result real sign unspecified
+∞ + NaNi +∞ + NaNi
NaN + 0i NaN ± 0i result imaginary sign unspecified
NaN − 0i NaN ∓ 0i result imaginary sign unspecified
NaN + hi NaN + NaNi optionally raise invalid exception
NaN + NaNi NaN + NaNi

Table 17.8: Special cases for the complex hyperbolic sine function, csinh(z), according to the C99 Standard [C99,
TC3 §G.6.2.5, pages 476–477]. The value g is any positive finite value, and h is any nonzero finite value.

z sinh(z) Remark
−z −csinh(z) function is odd
conj(z) conj(csinh(z)) conjugation symmetry relation
+0 ± 0i +0 ± 0i
−0 ± 0i −0 ± 0i
+0 + ∞i ±0 + NaNi raise invalid exception; result real sign unspecified
+0 + NaNi ±0 + NaNi result real sign unspecified
g + ∞i NaN + NaNi raise invalid exception
g + NaNi NaN + NaNi optionally raise invalid exception
+∞ ± 0i ∞ ± 0i
+∞ ± gi ∞ cos(g)± ∞ sin(g)i
+∞ + ∞i ±∞ + NaNi raise invalid exception; result real sign unspecified
+∞ − ∞i ±∞ − NaNi raise invalid exception; result real sign unspecified
+∞ + NaNi ±∞ + NaNi result real sign unspecified
NaN ± 0i NaN ± 0i
NaN + hi NaN + NaNi optionally raise invalid exception
NaN + NaNi NaN + NaNi

#else /* higher precision hides subtraction loss in denominator */
hp_t xx, yy;

xx = HP_CXREAL_(z);
yy = HP_CXIMAG_(z);

if (QABS(xx) < HP(0.659)) /* cosh(2 * 0.658...) == 2 */
{ /* tanh(z) = sinh(z) / cosh(z) */

514 Chapter 17. Elementary functions in complex arithmetic

Table 17.9: Special cases for the complex hyperbolic tangent function, ctanh(z), according to the C99 Standard [C99,
TC3 §G.6.2.6, page 477]. The value f is any finite value, g is any positive finite value, and h is any nonzero finite value.

z tanh(z) Remark
−z −ctanh(z) function is odd
conj(z) conj(ctanh(z)) conjugation symmetry relation
+0 ± 0i +0 ± 0i
−0 ± 0i −0 ± 0i
f + ∞i NaN + NaNi raise invalid exception
f + NaNi NaN + NaNi optionally raise invalid exception
+∞ + gi 1 + 0 sin(2y)i
+∞ + ∞i 1 ± 0i result imaginary sign unspecified
+∞ + NaNi 1 ± 0i result imaginary sign unspecified
NaN ± 0i NaN ± 0i
NaN + hi NaN + NaNi optionally raise invalid exception
NaN + NaNi NaN + NaNi

hp_cx_t ch, sh, zz;
hp_cx_t hp_result;

HP_CXSET_(zz, xx, yy);
HP_CXCOSH(ch, zz);
HP_CXSINH(sh, zz);
HP_CXDIV(hp_result, sh, ch);
CXSET_(result, (fp_t)CXREAL_(hp_result), (fp_t)CXIMAG_(hp_result));

}
else /* no subtraction loss in denominator */
{ /* tanh(z) = (sin(2x) + sin(2y)*i) / (cosh(2x) + cos(2y)) */

hp_t c, ch, d, s, sh;

HP_SINHCOSH(xx + xx, &sh, &ch);
HP_SINCOS(yy + yy, &s, &c);
d = ch + c; /* no leading digit loss when c < 0 */
CXSET_(result, (fp_t)(sh / d), (fp_t)(s / d));

}
#endif /* FP_T_DIG == HP_T_DIG */

}

We use the ratio of complex functions if subtraction loss is possible, and otherwise, we do the computation in real
arithmetic.

We omit the straightforward code for the hyperbolic cosine and sine, and that for the simpler wrappers that
provide the function families CCOSH(z), CSINH(z), and CTANH(z) for the native complex types.

The measured errors in the IEEE 754 complex double versions of the hyperbolic functions are shown in Fig-
ure 17.27 through Figure 17.29 on the next page. The errors in the hyperbolic cosine and sine rise to about 1.2 ulps
because those functions are computed in normal working precision. The use of higher internal precision for the
hyperbolic tangent produces results that are almost always correctly rounded.

17.17 Complex inverse hyperbolic functions

The inverse hyperbolic functions of complex arguments are plotted in Figure 17.30 through Figure 17.32 on page 516.
They are defined in terms of the logarithms and square roots of complex arguments like this [Kah87]:

17.17. Complex inverse hyperbolic functions 515

 0

 1

 2

-4 -3 -2 -1 0 1 2 3 4

u
lp

s

x

Errors in |ccosh(z)|

 0

 1

 2

-4 -3 -2 -1 0 1 2 3 4

u
lp

s

y

Errors in |ccosh(z)|

Figure 17.27: Errors in the ccosh() function.

 0

 1

 2

-4 -3 -2 -1 0 1 2 3 4

u
lp

s

x

Errors in |csinh(z)|

 0

 1

 2

-4 -3 -2 -1 0 1 2 3 4

u
lp

s

y

Errors in |csinh(z)|

Figure 17.28: Errors in the csinh() function.

 0

 1

 2

-4 -3 -2 -1 0 1 2 3 4

u
lp

s

x

Errors in |ctanh(z)|

 0

 1

 2

-4 -3 -2 -1 0 1 2 3 4

u
lp

s

y

Errors in |ctanh(z)|

Figure 17.29: Errors in the ctanh() function.

516 Chapter 17. Elementary functions in complex arithmetic

–5

0

5
x

–5

0

5

y

1
3

 Re(f(z))

–5

0

5
x –5

0

5

y

–2
0

2
 Im(f(z))

Figure 17.30: Real (left) and imaginary (right) surfaces of cacosh(z), the complex inverse hyperbolic cosine function.
There is a branch cut on the surface of the imaginary component for x in (−∞,+1).

–5

0

5
x

–5

0

5

y

–2
0

2
 Re(f(z))

–5

0

5
x

–5

0

5

y

–1
1

 Im(f(z))

Figure 17.31: Real (left) and imaginary (right) surfaces of casinh(z), the complex inverse hyperbolic sine function.
There are branch cuts on the surface of the real component on the negative imaginary axis for y in (−∞,−1) and
(+1,+∞).

–5

0

5
x

–5

0

5

y

–1
1 Re(f(z))

–5

0

5
x

–5

0

5

y

–1
1 Im(f(z))

Figure 17.32: Real (left) and imaginary (right) surfaces of catanh(z), the complex inverse hyperbolic tangent func-
tion. There are branch cuts on the surface of the imaginary component for x on (−∞,−1] and [+1,+∞).

17.17. Complex inverse hyperbolic functions 517

acosh(z) = 2 log(
√
(z − 1)/2 +

√
(z + 1)/2),

asinh(z) = log(z +
√

z2 + 1),

atanh(z) = 1
2 log((1 + z)/(1 − z)).

The inverse hyperbolic functions have these important symmetry relations:

acosh(−z) = πi − acosh(z), asinh(−z) = − asinh(z), atanh(−z) = − atanh(z).

Two of the functions are related to their inverse trigonometric companions with arguments multiplied by the
imaginary unit, like this:

asinh(z) = − asin(zi)i, atanh(z) = − atan(zi)i.

The C99 Standard requires the special cases for the inverse hyperbolic functions tabulated in Table 17.10 through
Table 17.12 on the next page.

The thorny computational issues for the complex logarithm and complex square root that we discuss in Sec-
tion 17.15 on page 507 suggest that we use the symmetry relations to compute two of the inverse hyperbolic functions
from the inverse trigonometric functions. Our code for the inverse hyperbolic sine looks like this:

void
CXASINH(fp_cx_t result, const fp_cx_t z)
{ /* complex inverse hyperbolic sine: asinh(z) = -asin(z i) i */

fp_cx_t zz;

CXMULBYI_(zz, z); /* zz = z * i */
CXASIN(result, zz);
CXSET_(result, CXIMAG_(result), -CXREAL_(result));

}

That for the inverse hyperbolic tangent is equally short.
For the remaining inverse hyperbolic function, we use a straightforward implementation of the definition:

void
CXACOSH(fp_cx_t result, const fp_cx_t z)
{ /* complex inverse hyperbolic cosine:

acosh(z) = 2 * log(sqrt((z - 1)/2) + sqrt((z + 1)/2)) */
fp_cx_t r, s, t, u, v, w;

CXSET_(r, HALF * CXREAL_(z) - HALF, HALF * CXIMAG_(z));
CXSET_(s, HALF * CXREAL_(z) + HALF, HALF * CXIMAG_(z));
CXSQRT(t, r); /* t = sqrt((z - 1)/2) */
CXSQRT(u, s); /* u = sqrt((z + 1)/2) */
CXADD(v, t, u); /* v = t + u */
CXLOG(w, v); /* w = log(v) */
CXADD(result, w, w); /* result = 2 * w */

}

We do not need to use higher internal precision in that function to reduce argument errors in the square root and
logarithm, because both functions are relatively insensitive to such errors. From Table 4.1 on page 62, the error
magnification of the square root is 1

2 , and that of the logarithm is 1/ log(z).
The wrapper functions CACOSH(z), CASINH(z), and CATANH(z) for the native complex types are simple, so we omit

them.
The measured errors in the IEEE 754 complex double versions of the inverse hyperbolic functions are shown in

Figure 17.33 through Figure 17.35 on page 519. The inverse hyperbolic cosine, cacosh(z), is computed in work-
ing precision, and shows errors up to about 2 ulps, and in our tests, about one in a thousand random arguments
produces errors between 2 and 10 ulps. The other two inverse hyperbolic functions use their inverse trigonomet-
ric companions, and because those functions use higher precision internally, the results are almost always correctly
rounded.

518 Chapter 17. Elementary functions in complex arithmetic

Table 17.10: Special cases for the complex inverse hyperbolic cosine function, cacosh(z), according to the C99 Stan-
dard [C99, TC3 §G.6.2.1, pages 474–475]. The value f is any finite value, g is any positive-signed finite value.

z acosh(z) Remark
conj(z) conj(cacosh(z)) conjugation symmetry relation
±0 + 0i +0 + 1

2 πi
±0 − 0i +0 − 1

2 πi
f + ∞i +∞ + 1

2 πi
f + NaNi NaN + NaNi optionally raise invalid exception
−∞ + gi +∞ + πi
+∞ + gi +∞ + 0i
−∞ + ∞i +∞ + 3

4 πi
+∞ + ∞i +∞ + 1

4 πi
±∞ + NaNi +∞ + NaNi
NaN + f i NaN + NaNi optionally raise invalid exception
NaN + ∞i +∞ + NaNi
NaN + NaNi NaN + NaNi

Table 17.11: Special cases for the complex inverse hyperbolic sine function, casinh(z), according to the C99 Standard
[C99, TC3 §G.6.2.2, page 475]. The value f is any finite value, g is any positive-signed finite value, and h is any nonzero
finite value.

z asinh(z) Remark
−z −casinh(z) function is odd
conj(z) conj(casinh(z)) conjugation symmetry relation
±0 + 0i ±0 + 0i
±0 − 0i ±0 − 0i
g + ∞i +∞ + 1

2 πi
f + NaNi NaN + NaNi optionally raise invalid exception
+∞ + gi +∞ + 0i
+∞ + ∞i +∞ + 1

4 πi
+∞ + NaNi +∞ + NaNi
NaN ± 0i NaN ± 0i
NaN + hi NaN + NaNi optionally raise invalid exception
NaN + ∞i ±∞ + NaNi result real sign unspecified
NaN + NaNi NaN + NaNi

Table 17.12: Special cases for the complex inverse hyperbolic tangent function, catanh(z), according to the C99
Standard [C99, TC3 §G.6.2.3, pages 475–476]. The value f is any finite value, g is any positive-signed finite value, and
h is any nonzero finite value.

z atanh(z) Remark
−z −catanh(z) function is odd
conj(z) conj(catanh(z)) conjugation symmetry relation
+0 ± 0i +0 ± 0i
+0 ± NaNi +0 ± NaNi
+1 ± 0i ∞ ± 0i raise divbyzero exception
g + ∞i +0 + 1

2 πi
h + NaNi NaN + NaNi optionally raise invalid exception
+∞ + gi +0 + 1

2 πi
+∞ + ∞i +0 + 1

2 πi
+∞ + NaNi +0 + NaNi
NaN + f i NaN + NaNi optionally raise invalid exception
NaN + ∞i ±0 + 1

2 πi result real sign unspecified
NaN + NaNi NaN + NaNi

17.17. Complex inverse hyperbolic functions 519

 0

 1

 2

-4 -3 -2 -1 0 1 2 3 4

u
lp

s

x

Errors in |cacosh(z)|

 0

 1

 2

-4 -3 -2 -1 0 1 2 3 4

u
lp

s

y

Errors in |cacosh(z)|

Figure 17.33: Errors in the cacosh() function.

 0

 1

 2

-4 -3 -2 -1 0 1 2 3 4

u
lp

s

x

Errors in |casinh(z)|

 0

 1

 2

-4 -3 -2 -1 0 1 2 3 4

u
lp

s

y

Errors in |casinh(z)|

Figure 17.34: Errors in the casinh() function.

 0

 1

 2

-4 -3 -2 -1 0 1 2 3 4

u
lp

s

x

Errors in |catanh(z)|

 0

 1

 2

-4 -3 -2 -1 0 1 2 3 4

u
lp

s

y

Errors in |catanh(z)|

Figure 17.35: Errors in the catanh() function.

520 Chapter 17. Elementary functions in complex arithmetic

17.18 Summary

We treat the elementary functions of real arguments in several earlier chapters of this book, but we squeeze all of
their companions for complex arguments into this single long chapter. There is clearly more to be said, and more to
do, to improve the quality of the complex elementary functions. In many cases, detailed numerical analysis remains
to be done, and new computational routes to some of the functions need to be found.

We commented in Section 17.1 on page 475 about the scarcity of research publications in the area of complex
arithmetic and numerical functions with complex arguments. The only textbook treatment of the complex elemen-
tary functions [Tho97] known to this author uses simple transcriptions of mathematical formulas into Fortran code
with no concern whatever for accuracy, which disappears all too easily in subtraction loss in the formulas themselves,
as well as in the complex arithmetic primitives on many systems.

In this chapter, we use the simplest algorithms when they are numerically satisfactory, but we also point out
regions where subtraction loss, and poor-quality argument reduction in the real functions, can produce nonsensical
results. To avoid the subtraction loss, or at least cover it up almost everywhere, we resort to summation of series
expansions, or computation in higher precision.

Nevertheless, the excursions to higher precision are ineffective on those deficient systems from several vendors
that fail to provide any numeric data type longer than the 64-bit format, even when the underlying hardware makes
an 80-bit or 128-bit format available.

When higher precision is not available for intermediate computations, our algorithms may not produce the ac-
curacy expected of a high-quality numerical function library. Although Fortran has supplied a complex data type
since that extension was first introduced in the early 1960s (CDC 3600 48-bit computers in 1962, and the IBM 7090
36-bit family in 1963), no widely available publication, to this author’s knowledge, has surveyed the quality of com-
plex arithmetic primitives and elementary functions in a broad range of programming languages and platforms.
The evidence of Chapter 15 and this chapter is that extreme caution is advised in using complex arithmetic in any
programming language — compiler code generation and library routines for complex arithmetic are likely to have
received much less use and testing than for real arithmetic, and simplistic algorithms are likely to completely destroy
accuracy in some regions of the complex plane, even if those regions happen to be important in your computations.

Besides those implementation issues of accuracy, there are also problems on platforms that lack signed zeros, or
have them, but through compiler and library carelessness, make their signs uncertain.

Many of the complex elementary functions have branch cuts, yet textbooks, mathematical tables, and research
literature may differ in their choices of where those branch cuts lie. Because branch cuts are a common feature
of many complex functions, it is important to make sure that the mathematical sources and the software agree on
branch-cut locations.

The decision in the C99 Standard to treat complex numbers as infinite as long as at least one of their components
is Infinity complicates software design and behavior. The many tables in this chapter that are needed to describe
the Standard-mandated behavior of the complex elementary functions for arguments that are signed zero, Infinity,
or NaN suggest that implementations in practice are likely to differ in at least some of those cases. The differing
behavior of complex division with zero denominators or infinite components that we discussed in Section 15.9 on
page 449 is also likely to cause grief when software using complex arithmetic is ported from one system to another.

Our assessment of the accuracy of our implementations of the complex elementary functions uses the error in
the absolute value of the function value. When separate computational routes with real arithmetic exist for each
of the components of the function result, both components should be computable with high accuracy. However,
when the function result is computed with complex arithmetic, it should be expected that the component of smaller
magnitude may have high relative error. That issue is unlikely to be considered by numerical programmers who are
new to complex arithmetic, yet it may be of significant concern for applications of the computed complex numbers.
It may also be a source of numerical discrepancies between runs of the same program with complex arithmetic on
different platforms, or with different compilers and libraries on the same system.

The experience of writing the software for the two chapters on complex arithmetic in this book suggests that
programmers who intend to write new software in complex arithmetic should use the highest precision available, even
if it seems excessive for their problem. There are simply too many places in complex arithmetic where significant
digits can silently vanish, even when similar computations in real arithmetic are known to be numerically stable and
accurate.

18 The Greek functions: gamma, psi, and zeta

GAMMA, n.: THE THIRD LETTER OF THE GREEK ALPHABET, γ, Γ,
REPRESENTED HISTORICALLY BY c, PHONETICALLY BY g,

IN THE ROMAN AND ENGLISH ALPHABET.

DIGAMMA, n.: A NAME FIRST FOUND IN THE GRAMMARIANS OF

THE FIRST CENTURY (SO CALLED BECAUSE ITS FORM, F, RESEMBLES

TWO GAMMAS, Γ, SET ONE ABOVE THE OTHER). A LETTER CORRESPONDING

IN DERIVATION AND ALPHABETIC PLACE TO THE LATIN AND MODERN

EUROPEAN F, ONCE BELONGING TO THE GREEK ALPHABET.

PSI (PSĒ OR SĪ), n.: A GREEK LETTER, ψ, Ψ. IT BELONGS TO THE

IONIC ALPHABET, AND STANDS FOR ps OR phs. THE CHARACTER

MAY BE A MODIFICATION OF φ, Φ [GREEK LETTER phi].

ZETA, n: THE SIXTH LETTER OF THE GREEK ALPHABET, ζ , Z,
CORRESPONDING TO THE ENGLISH Z.

— New Century Dictionary (1914).

Previous chapters of this book cover the elementary functions that are taught in secondary-school mathematics,
and included in many programming languages. The gamma, psi, and Riemann zeta functions that we treat in this
chapter are among the most important of the class known in mathematics and physics as special functions. As the
class name suggests, they are more difficult, and less-commonly encountered, than the elementary functions. The
gamma function, in particular, appears in many areas of mathematics, physics, and engineering. It arose in an area of
mathematics that is today called number theory: the study of the properties of integers beyond the simple operations
of schoolbook arithmetic.

The primary comprehensive summaries of mathematical relations for the gamma and psi functions are available
in [AS64, Chapter 6], [SO87, Chapters 43 and 44], and [OLBC10, Chapter 5]. Other useful resources include [Bry08,
§5.1 and §6.2], [Rai60, Chapter 2], [Luk69a, Chapter 2], [Luk69b, Chapter 14], [Olv74, Chapter 2], [WG89, Chapter 3],
[Tem96, Chapter 3], and [AAR99, Chapter 1].

Discussions of the computation of the gamma and psi functions are available in [HCL+68, Chapter 6], [Mos89,
Chapter 5], [Bak92, Chapter 6], [ZJ96, Chapter 3], [Tho97, Chapter 6], as well as in several research papers [Ami62,
Lan64, CH67, TS69, CST73, Amo83, Cod88b, Cod91, CS91, Cod93b, BB00].

The Riemann zeta function’s properties are summarized in [AS64, Chapter 23] and [OLBC10, Chapter 25], but
there is little published about its computation, apart from the description of its implementation in the Cephes li-
brary [Mos89, §7.10.2]. However, it figures in several popular descriptions of mathematical problems [Dev02, Der03,
Haw05, Lap08, O’S07, Roc06, Sab03, dS03]. The verified solution of one of them, the famous Riemann Hypothesis,
may win mathematical fame and fortune (a one million dollar prize) for some clever person [CJW06, Clay09].

18.1 Gamma and log-gamma functions

In 1729, Euler invented the gamma function, Γ(x), as an extension of the factorial function to the entire real axis. The
gamma function and the logarithm of its absolute value, log |Γ(x)|, are available in C99, and implemented in the
mathcw library, as the functions tgamma() and lgamma(). The functions are sketched in Figure 18.1 on the next page.

The function name tgamma() stands for true gamma, to distinguish it from the function gamma() which was con-
fusingly, and regrettably, used in some historical C implementations for log |Γ(x)|. Those implementations return
the sign of Γ(x) in a global integer variable named signgam. C99’s lgamma() does not provide that variable, but the
mathcw implementation does.

Global variables are unusable in the presence of threads unless locking mechanisms are used at each access to the
variables to restrict reading and writing to a single thread. Thus, in a threaded program, a test of signgam after a call

© Springer International Publishing AG 2017
N.H.F. Beebe, The Mathematical-Function Computation
Handbook, DOI 10.1007/978-3-319-64110-2_18

521

522 Chapter 18. The Greek functions: gamma, psi, and zeta

−5 −4 −3 −2 −1 0 1 2 3 4 5
−10

−5

0

5

10

x

Γ
(x

)

−5 −4 −3 −2 −1 0 1 2 3 4 5
−4

−2

0

2

4

6

8

10

x

lo
g(

|Γ
(x

)|
)

Figure 18.1: The gamma function and the logarithm of its absolute value. There are poles at zero and negative
integers, and for negative arguments, Γ(x) soon resembles a series of open rectangles alternating above and below
the axis.

to lgamma() could get a value set by a call to that function in another thread. Some vendor implementations solve
that problem by providing extensions to the C99 library:

float lgammaf_r (float x, int *psign);
double lgamma_r (double x, int *psign);
long double lgammal_r (long double x, int *psign);

Notice their irregular naming: the suffix _r, which stands for reentrant, follows any precision suffix on the name
lgamma. Those functions return log |Γ(x)| as a function value, and store the sign of Γ(x), +1 for positive and −1 for
negative, in a thread-private local variable whose address is supplied as the second argument. The mathcw library
provides those three functions, and their companions for other supported floating-point types.

Both tgamma() and lgamma() are challenging functions to compute accurately, because Γ(x) grows rapidly for
increasing positive x, and has poles at zero and the negative integers.

The gamma function increases so rapidly on the positive axis that the overflow limit is quickly reached, just before
x = 36 (IEEE 754 32-bit binary arithmetic), x = 72 (64-bit), x = 1756 (80-bit and 128-bit), and x = 20 368 (256-bit).
However, the log of the absolute value of the gamma function is representable over most of the floating-point range.

Mathematically, the gamma function is never zero, but between negative integers, it gets so close to zero that
floating-point underflow to subnormals or zero soon occurs. That happens for arguments below x = −42, −184,
−1766, −1770, and −20 382 for the extended IEEE 754 32-bit, 64-bit, 80-bit, 128-bit, and 256-bit binary formats,
respectively. The corresponding limits for the four decimal formats are x = −74, −216, −2143, and −310 966.

The behavior of Γ(x) near negative integers is worth investigating numerically. Table 18.1 on the facing page
shows how sensitive the function is to tiny argument changes near the poles, and how quickly it approaches the x
axis.

The gamma function has these special values and other relations:

Γ(1
4) ≈ 3.625 609 908 221 908 . . . ,

Γ(1
3) ≈ 2.678 938 534 707 747 . . . ,

Γ(1
2) =

√
π ≈ 1.772 453 850 905 516 . . . ,

Γ(2
3) ≈ 1.354 117 939 426 400 . . . ,

Γ(3
4) ≈ 1.225 416 702 465 177 . . . ,

Γ(1) = 1,

18.1. Gamma and log-gamma functions 523

Table 18.1: Behavior of Γ(x) near poles. The value δ = 10−70 is the negative machine epsilon in the extended 256-bit
decimal format, and the tabulated values are for Γ(x + nδ). A unit step in the 70-th digit of the argument usually
changes all digits of the function value, and the function values drop precipitously toward the x axis as x becomes
more negative. The data are from a 100-digit Maple computation.

x
n −1 −10 −20 −50 −100 −200 −1000
0 −∞ +∞ +∞ +∞ +∞ +∞ +∞
1 -1.000e+70 2.756e+63 4.110e+51 3.288e+05 1.072e-88 1.268e-305 2.485e-2498
2 -5.000e+69 1.378e+63 2.055e+51 1.644e+05 5.358e-89 6.340e-306 1.243e-2498
3 -3.333e+69 9.186e+62 1.370e+51 1.096e+05 3.572e-89 4.227e-306 8.284e-2499
4 -2.500e+69 6.889e+62 1.028e+51 8.220e+04 2.679e-89 3.170e-306 6.213e-2499
5 -2.000e+69 5.511e+62 8.221e+50 6.576e+04 2.143e-89 2.536e-306 4.970e-2499

Γ(1.461 632 144 968 . . .) = 0.885 603 194 410 . . . , only minimum for x > 0,

Γ(3
2) =

1
2

√
π ≈ 0.886 226 925 452 758 . . . ,

Γ(2) = 1,
Γ(5

2) =
3
4

√
π ≈ 1.329 340 388 179 137 . . . ,

Γ(n + 1
4) = (4n − 3)!!!! Γ(1

4)/4n, for integer n ≥ 0,

Γ(n + 1
3) = (3n − 2)!!! Γ(1

3)/3n,

Γ(n + 1
2) = (2n − 1)!! Γ(1

2)/2n,

Γ(n + 2
3) = (3n − 1)!!! Γ(2

3)/3n,

Γ(n + 3
4) = (4n − 1)!!!! Γ(3

4)/4n,
Γ(n + 1) = n!,
Γ(x + 1) = xΓ(x),

Γ(x + n) = Γ(x)
n−1

∏
k=0

(x + k), for integer n = 1, 2, 3, . . . ,

Γ(x)Γ(1 − x) = −xΓ(−x)Γ(x)
= π/ sin(πx),

Γ(−|x|) = −(π/ sin(π|x|))/Γ(|x|+ 1), reflection formula,

Γ(1 − x) = −xΓ(−x).

Here, the double-factorial notation, n!!, means the downward product of alternate integers, with obvious extensions
for the triple factorial and quadruple factorial:

n!! = n × (n − 2)× (n − 4)× · · · × (2 or 1)
= n(n − 2)!!,

1!! = 0!! = (−1)!! = 1,
n!!! = n × (n − 3)× (n − 6)× · · · × (3 or 2 or 1)

= n(n − 3)!!!,
2!!! = 1!!! = 0!!! = (−1)!!! = (−2)!!! = 1,

n!!!! = n × (n − 4)× (n − 8)× · · · × (4 or 3 or 2 or 1)
= n(n − 4)!!!!,

3!!!! = 2!!!! = 1!!!! = 0!!!! = (−1)!!!! = (−2)!!!! = (−3)!!!! = 1.

Although the special formulas for Γ(n + p/q) are unlikely to be exploited in the software implementation of the
gamma function, they can nevertheless be useful for testing such code.

524 Chapter 18. The Greek functions: gamma, psi, and zeta

There are Taylor-series expansions that are essential for accurate computation, and for understanding the behav-
ior of the function near its poles:

γ = 0.577 215 664 901 532 860 Euler–Mascheroni constant.

Γ(−n + x) = 1/(n! x) + · · · , for positive integer n,

Γ(−1 + x) = (1/x)
(− 1 + (γ − 1)x + (γ − 1 − (γ2/2 + π2/12))x2 + · · ·),

Γ(x) = (1/x)
(
1 − γx + (γ2/2 + π2/12)x2 − · · ·),

Γ(1 + x) = 1 − γx + (γ2/2 + π2/12)x2 − · · · ,
Γ(2 + x) = 1 + (1 − γ)x + (−γ + γ2/2 + π2/12)x2 + · · · ,

log(Γ(x)) = − log(x)− γx + (π2/12)x2 + · · · .

Because the Taylor-series coefficients grow rapidly in complexity, and contain transcendental constants instead of
simple rational numbers, they are not amenable to run-time computation. Instead, we precompute them numerically
to high precision in a symbolic-algebra system, and store them in a constant table as hexadecimal floating-point
values for use with nondecimal arithmetic and C99 compilers, and also as decimal values. To give a flavor, here is
the most important expansion, truncated to just three decimal digits:

Γ(1 + x) ≈ 1 − 0.577 x + 0.989 x2 − 0.907 x3 + 0.981 x4 − 0.982 x5+

0.993 x6 − 0.996 x7 + 0.998 x8 − 0.999 x9 + · · · .

The coefficient magnitudes do not change much, so in practice, we use the more rapidly convergent series for the
reciprocal of that function, and then invert the expansion, again showing only three decimal digits:

Γ(1 + x) = 1/(1 + γx + (π2/12 − γ2/2)x2 + · · ·)
≈ 1/(1 + 0.577 x − 0.655 x2 − 0.0420 x3 + 0.166 x4 − 0.0421 x5−

0.00962 x6 + 0.00721 x7 − 0.000116 x8 − 0.000215 x9 + · · ·).
We show in Section 18.1.1.3 on page 529 how to remove most of the error in the final division.

For integer multiples of arguments, there are relations that can also be helpful for software testing:

Γ(2x) = (22x/(2
√

π))Γ(x)Γ(x + 1
2),

Γ(3x) = (33x/(2π
√

3))Γ(x)Γ(x + 1
3)Γ(x + 2

3),

Γ(nx) =

√
2π

n
nnx

(2π)n/2

n

∏
k=0

Γ(x + k/n), n = 2, 3, 4,

However, the powers nnx and the products of n gamma functions of smaller arguments reduce the accuracy of the
right-hand sides, so they need to be computed in higher precision.

The first relation involving Γ(1 − x) shows how to generate values of Γ(x) for x in (−1, 0) from function values
for x in (0, 1). The recurrence Γ(x − 1) = Γ(x)/(x − 1) then provides a path to more negative arguments, at a cost of
one multiply or divide for each unit step towards more negative x values. In practice, we start the recurrence from
the interval (1, 2), where the gamma function varies least, and where we have an accurate rational polynomial fit that
provides a small correction to an exact value. For even more negative values, the second relation for Γ(x)Γ(1 − x)
provides a suitable path, although the argument reduction in sin(πx) requires careful handling to avoid accuracy
loss. We treat that problem in detail in Section 18.1.3 on page 531.

The gamma function has an asymptotic expansion for large positive arguments:1

Γ(x) � √
2π/x xx exp(−x)×

(
1 +

1
12x

+
1

288x2 −
139

51 840x3 − 571
2 488 320x4 +

163 879
209 018 880x5 + · · ·

)
.

1See sequences A001163, A001164, A046968 and A046969 at http://oeis.org/, or [SP95, sequence M4878], for more terms, and sequences
A005146 and A005147 for a continued-fraction expansion of Γ(x).

18.1. Gamma and log-gamma functions 525

That expansion is called Stirling’s series, and it dates from 1730. By combining the first term of that series with the
relation Γ(n + 1) = nΓ(n) = n!, one can easily obtain Stirling’s approximation for the factorial of large numbers:

n! �
√

2πn (n/e)n, for n → ∞.

The approximation is sometimes written in logarithmic form with largest terms first:

log(n!) � (n + 1
2) log(n)− n + 1

2 log(2π), for n → ∞.

The logarithm of the gamma function also has an asymptotic expansion:1

log(Γ(x)) � (x − 1
2) log(x)− x + log(2π)/2 +

∞

∑
k=1

B2k

2k(2k − 1)x2k−1

� (x − 1
2) log(x)− x + log(2π)/2 +

1
12x

− 1
360x3 +

1
1260x5 −

1
1680x7 +

1
1188x9 − 691

360 360x11 +
1

156x13 − 3617
122 400x15 +

43 867
244 188x17 − 174 611

125 400x19 +
77 683

5796x21 − 236 364 091
1 506 960x23 + · · · .

Here, the coefficients B2k are the Bernoulli numbers that we met in the series for the trigonometric and hyperbolic
tangents. We revisit them in Section 18.5 on page 568.

Coefficient growth from the increasing Bernoulli numbers first sets in at the term with x19 in the denominator.
Neither of the asymptotic expansions is particularly convenient for general precision-independent programming,
because the coefficients do not have simple forms that can be generated on-the-fly. Ideally, they should be tabulated
as rational numbers that are evaluated in floating-point arithmetic to machine precision at compilation time, but
already at k = 30 in the expansion for log |Γ(x)|, the numerator overflows in several floating-point systems, even
though the ratio is representable:

B60/(60 × 59) = −1 215 233 140 483 755 572 040 304 994 079 820 246 041 491/
201 025 024 200

≈ −6.045 × 1030.

In practice, therefore, the coefficients must be tabulated as floating-point numbers that may be subject to base-
conversion errors. In the mathcw library code, they are stored as hexadecimal and decimal values.

18.1.1 Outline of the algorithm for tgamma()

Implementing code for the gamma function that achieves the high accuracy of the elementary functions in the
mathcw library is a challenging problem. The first draft of the gamma-function code for that library was based on
historical work in Fortran [Cod91, Cod93b, BB00]. It was not satisfactory, because accuracy measurements showed
regions with errors above 10 ulps, and error growth with increasing argument magnitude. The solution proved to
be a radical restructuring of the code to compute the gamma function in several regions as the sum of an exact value
and a small correction. The new code also uses error compensation and fused multiply-add operations to compute
sums and products without error growth. We first outline the argument regions treated, and then describe some of
the techniques in more detail. However, the code in tgammx.h is much too long to show in its entirety here — over
800 lines, excluding its extensive comments and coefficient tables.

The C99 Standard has this to say about the handling of errors in the computation of tgamma(x) [C99, §7.12.8.3,
TC3]:

The tgamma() functions compute the gamma function of x. A domain error or range error may occur if x is a negative integer
or zero. A range error may occur if the magnitude of x is too large or too small.

We handle the computation of Γ(x) separately in each of several regions, which we describe from left to right on
the real axis, after treating the IEEE 754 special values:

526 Chapter 18. The Greek functions: gamma, psi, and zeta

x is a NaN : Set a domain error and set the result to that NaN.

x is ±∞ : Set a range error and set the result to that Infinity. The behavior of the gamma function on the negative
axis makes its sign indeterminate for arguments of large magnitude. Because those arguments are integer
values where the function has poles to ±∞, one could reasonably argue that Γ(−∞) should evaluate to a NaN.
However, it is likely to be more useful in practice to return an Infinity of the same sign as the argument.

−∞ ≤ x ≤ −XMAX : The value of XMAX is βt for base β and t-digit precision. The argument magnitude is so large
that it has no fractional part, so we are on one of the asymptotes for which Γ(x) = ±∞. The sign is not
determinable, but we follow the handling of infinite arguments, set a range error, and set the result to −∞,
or if the host arithmetic does not support infinities, the most negative finite floating-point value. The mathcw
library INFTY() function family hides the platform dependence.

x is a negative integer : Set a range error and set the result to −∞, or if that is unsupported, the most negative
floating-point value.

−XMAX < x ≤ XCUT_REFLECT : Use the reflection formula for Γ(−|x|) to move the computation onto the positive x
axis. Because the formula involves 1/Γ(|x| + 1), premature overflow in the denominator produces a result
that has erroneously underflowed to zero. We eliminate that problem by extending the overflow cutoff, and
computing an exactly scaled denominator. The final result is then carefully reconstructed to allow graceful
underflow into the subnormal region. We defer the accurate computation of the trigonometric term in the
reflection formula until Section 18.1.3 on page 531.

The cutoff XCUT_REFLECT is set to −216, a value below which Γ(x) underflows to zero in the IEEE 754 32-bit
and 64-bit binary and decimal formats. That means that the reflection formula is used for those data types only
when the result would be zero. The discussion of the error plots in Section 18.1.2 on page 531 justifies that
choice.

− 1
2 < x < −0 : In this region, downward recurrence produces errors that are larger than desired, so we use sepa-

rate Chebyshev polynomial fits like this:

Γ(x) =

⎧⎪⎨
⎪⎩
−2

√
π + (x + 1

2)P1(x), for x in [− 1
2 ,− 1

3],

1/x − 125/128 + P2(x), for x in [− 1
3 ,− 1

9],

1/x − γ + P3(x), for x in [− 1
9 , 0].

The polynomials contribute only a few percent of the total function value, and the division and sums are
computed with two-part transcendental constants and error recovery.

XCUT_REFLECT < x ≤ −Taylor-series cutoff : Use downward recurrence with error compensation in the product to
recover the function value from that of a reduced argument in [1, 2]. We discuss the product computation in
Section 18.1.1.2 on page 528.

−Taylor-series cutoff < x < 0 : Compute Γ(x) from the fast-converging reciprocal Taylor series of Γ(x + 1) with
compile-time constant coefficients, and one downward recurrence. We use series of orders 2, 4, 8, 16, and
32, depending on the argument size. Those series are longer than we normally employ, but the alternative
algorithms are even more demanding.

The cutoffs are computed in the usual way as n
√
(1

2 ε/β)/cn, where cn is the final series coefficient, using nested
SQRT() calls. However, because sign changes are possible, the cutoffs must be further restricted to prevent
subtraction loss. Maple finds such loss for |x| > 1

2 c3/c4 ≈ 0.126.

The code evaluates the Horner form in order of increasing term magnitudes in a way that allows compilers to
exploit hardware fused multiply-add operations:

sum = c0[n];

for (k = n - 1; k >= 1; --k)
sum = QFMA(sum, x, c0[k]);

18.1. Gamma and log-gamma functions 527

xsum = x * sum;
err = ERRMUL(xsum, x, sum);
t = xsum * xsum / (ONE + xsum) - err;
result = t - xsum;

The computed value is Γ(1 + x)− 1, which is why the loop ends at 1, instead of at 0. The final result is a small
correction, no larger than −0.115, to an exact value, and there is never leading-digit loss in that subtraction.
The macro QFMA(x,y,z) expands to FMA(x,y,z) when that operation is fast, and otherwise to x * y + z. The
ERRMUL() operation (described later in Section 18.1.1.2 on page 529) is essential for reducing the error in recip-
rocation. The final result requires a division by x, making it subject to overflow when x is tiny. Section 18.1.1.4
on page 530 describes how that problem is handled.

x = ±0 : Set a range error, and set the result to ±∞, matching the sign of the argument. When signed zero is not
supported, use +∞ if available, or else the largest positive floating-point number.

0 < x < Taylor-series cutoff : Use the same Taylor-series code as for tiny negative arguments.

Taylor-series cutoff ≤ x < 1 : If x is sufficiently close to 1, set the result to 1 + (Γ(1 + x) − 1), where the paren-
thesized expression is computed from a Taylor-series sum. Otherwise, use the recurrence relation Γ(x) =
Γ(1 + x)/x, and the polynomial approximation for the interval [1, 2], Γ(1 + x) ≈ 1 + xP(x)/Q(x), to recover
Γ(x) ≈ 1/x + P(x)/Q(x), and compute that expression as described later in Section 18.1.1.3 on page 529.

x = 1 : Set the result to 1. This special case avoids the computation in the next case, and generates an exact result
that in turn ensures accurate computation of Γ(n + 1) = n!, where n = 0, 1, 2, We saw in Section 5.7 on
page 112 that direct multiplication for computing factorials is exact in IEEE 754 64-bit binary arithmetic up to
22!, instead of the expected 18!, because of trailing zero bits.

1 < x < 2 : Compute Γ(x) ≈ Γ(z)+ (x− z)2P(x)/Q(x), where z is the location of the only minimum on the positive
axis. Fitting about the minimum makes monotonicity more likely.

A Chebyshev fit of Γ(x)− 121/128 provides a fallback at higher precisions where Maple’s minimax fits fail.

The code in this region computes Γ(x) − 1, rather than Γ(x), to provide additional effective precision that is
useful elsewhere.

x = 2 : Set the result to 1.

x is an integer in [3, NMAX+ 1] : Find Γ(x) by lookup in a table of factorials. This case is optional, but is advisable
because gamma-function software should provide fast, and correctly rounded, factorials. NMAX is the largest
integer value for which Γ(NMAX+ 1) = NMAX! is finite, although it may be reduced to economize on storage.

The factorial table can be a compile-time constant, or else can be generated at run time in an initialization block
that is executed on the first call to the function, and does the computation in the highest available precision.
Unless higher precision is used, table entries may not be correctly rounded, so we provide a constant table in
both hexadecimal and decimal formats.

A reasonably portable choice of NMAX is 33, because its factorial is representable in IEEE 754 32-bit arithmetic,
as well as in most historical single-precision designs. The mathcw code in tgamm.h supplies up to 301 finite
compile-time entries in the factorial table, but terminates table entries as soon as the overflow limit is reached,
using preprocessor conditionals with the FP_T_MAX_10_EXP constants derived from the standard header file
<float.h>. That provides coverage for n! values up to 10614, so that factorials in the float and double types,
and their counterparts in decimal arithmetic, are always correctly rounded.

2 ≤ x ≤ CUTOFF : The value of CUTOFF is the precision-dependent limit above which we can use the asymptotic
expansion of Γ(x). Let n = floor(x − 1). Then z = x − n lies in the interval [1, 2] where Γ(z) is set by direct
assignment, or can be found from the rational approximation. Then use upward recurrence from Γ(z) to Γ(z +
n) to obtain Γ(x) with just n extra multiplies. The product error compensation described in Section 18.1.1.2 on
the next page sharply reduces the error in that process.

528 Chapter 18. The Greek functions: gamma, psi, and zeta

CUTOFF < x ≤ XBIG : The value XBIG is the precision- and range-dependent limit at which Γ(x) overflows. The
asymptotic expansion for Γ(x) is unsatisfactory for reasons discussed in Section 18.1.1.1. Therefore, find
log(Γ(x)) from its asymptotic expansion, and then recover Γ(x) from exp(log(Γ(x))). We examine the ad-
visability of that traditional approach in Section 18.1.1.1 as well.

XBIG < x ≤ +∞ : Set the result to +∞ if available, or else the largest positive floating-point number.

In each region whose computation is required in another region, we compute a pair of exact high and approximate
low parts whose implicit sum represents the result to somewhat more than working precision. That is inferior
to using the next higher precision throughout, and complicates programming, but it reduces errors substantially,
including those in the gamma functions of the highest-supported precision.

18.1.1.1 Asymptotic expansions

Most existing implementations of the gamma function use the asymptotic expansion for log(Γ(x)), rather than that
for Γ(x). The former requires EXP() and LOG(), whereas the latter requires calls to EXP() and POW(). We saw in
Chapter 14 that the power function is hard to make accurate for large arguments, so additional error can be in-
troduced into Γ(x). However, there is another problem: xx can overflow even though the product xx exp(−x) is
representable. Error magnification in the power function and premature overflow make the asymptotic expansion
for Γ(x) unsuitable for floating-point computation.

There is yet another source of error that traditional algorithms overlook: error magnification in the exponential
function for large arguments. Numerical and graphical experiments with changes in the value of CUTOFF show that
it is better to avoid the asymptotic series altogether, and instead, pay the price of upward recurrence. Because the
gamma function reaches the overflow limit so quickly, a huge number of multiplies is never needed. Only the future
256-bit format, where the overflow limit is reached at x ≈ 20 368, is likely to require a fallback to the asymptotic
series.

The mathcw library code in tgammx.h accordingly sets the value of CUTOFF to XBIG, preventing execution of the
private internal function that sums the asymptotic expansion for log(Γ(x)). That improves the accuracy of the 64-bit
function by about two decimal digits, and that of the 128-bit function by about four digits. When 256-bit arithmetic
becomes available, numerical experiments can determine a suitable value for CUTOFF for that precision.

Instead of summing the asymptotic series, many previous implementations of the gamma function replace the
series by a polynomial approximation in the variable t = 1/x2, and use it for x > 8 (see further comments in
Section 18.1.5). That lowers the error in the products needed for the recurrence relations, but cannot achieve good
accuracy unless the code simulates higher internal precision for intermediate computations, as well as for the expo-
nential, logarithm, and sine functions, as the excellent Sun Microsystems SOLARIS version does. Our delayed use of
the asymptotic series ensures that it converges quickly, without the need for a separate polynomial approximation.

18.1.1.2 Recurrence-relation accuracy

When the recurrence relations are used, we require products of possibly many terms. Because the error in any partial
product is magnified by the next multiplication, error accumulation is a serious problem. The fused multiply-add
operation provides a way to reduce the product error to an almost-negligible size. Such products are needed in at
least three places in tgammx.h, so a private internal function encapsulates the computation:

static fp_t
Gamma_product(fp_t r, fp_t e, fp_t x, int n, fp_t *p_err,

fp_t *p_scale)
{ /* compute result = (r + e) * x * (x + 1) * ... * (x + n - 1)

accurately; the true unscaled value is (result + *p_err) / (*p_scale) */
fp_t err, result, scale, t, y;
int i;

err = e;
result = r;
scale = *p_scale;
y = x;

18.1. Gamma and log-gamma functions 529

for (i = 1; i <= n; ++i)
{

fp_t d, prod;

if (result > RESCALE_CUTOFF)
{ /* rescale to avoid premature overflow */

err *= FP_T_EPSILON;
result *= FP_T_EPSILON;
scale *= FP_T_EPSILON;

}

prod = result * y; /* approximate product */
d = ERRMUL(prod, result, y); /* error term */
err = err * y + d; /* optionally could be FMA(err,y,d) */
result = prod;
y += ONE;

}

t = result + err;
err = ERRSUM(t, result, err);
result = t;

if (p_err != (fp_t *)NULL)
*p_err = err;

if (p_scale != (fp_t *)NULL)
*p_scale = scale;

return (result);
}

The value of RESCALE_CUTOFF is set in the one-time initialization block to the exact product FP_T_MAX *
FP_T_EPSILON, which is sufficiently far from the overflow limit that multiplications are safe. The error in each partial
product in the loop is accumulated, and then added to the final result. The effect of that correction is to make the
error in the function result largely independent of the argument magnitude. Without it, the error is proportional to
the magnitude of the largest factor.

The errors of elementary floating-point operations are recovered with the help of four convenient macros sup-
plied by the private mathcw library header file prec.h, and used in more than a dozen places in tgammx.h:

/* a/b = quotient + ERRDIV(quotient,a,b) */
#define ERRDIV(quotient,a,b) (FMA(-(b), (quotient), (a)) / (b))

/* a*b = product + ERRMUL(product,a,b) */
#define ERRMUL(product,a,b) (FMA((a), (b), -(product)))

/* sqrt(a) = root + ERRSQRT(root,a) */
#define ERRSQRT(root,a) (FMA(-(root), (root), (a)) / (root + root))

/* a + b = sum + ERRSUM(sum,a,b), where |a| >= |b| (unchecked!) */
#define ERRSUM(sum,a,b) (((a) - (sum)) + (b))

They hide details whose inline exposure would make the code harder to program correctly, and read.
For more on the computation of accurate products, and their applications, see [Gra09].

18.1.1.3 Sums of rational numbers

In parts of the gamma-function code, we need to compute sums of the form a/b + c/d, where the first term has
exactly representable parts, and dominates the inexact correction of the second part. We can reduce the errors of

530 Chapter 18. The Greek functions: gamma, psi, and zeta

division by rewriting the expression as follows:

z = a/b + c/d, desired function value,

r = fl(a/b), rounded quotient,

a/b = r + δ, exact quotient,

δ = a/b − r
= (a − rb)/b
= fma(−r, b, a)/b, error correction for quotient,

z = r + (δ + c/d)
= r + (dδ + c)/d
= r + fma(d, δ, c)/d, accurate function value.

The first term in the final sum, r, can be taken as exact, and the second term provides a small correction, so the sum
is often correctly rounded.

18.1.1.4 Avoiding catastrophic overflow

On pre-IEEE-754 systems, floating-point overflow may be a fatal error that terminates the job. Gamma-function
computations are full of opportunities for overflow that IEEE 754 infinities handle gracefully. In tgammx.h, critical
divisions that are subject to overflow are relegated to a function that avoids the division if it would cause possibly
fatal overflow:

static fp_t
quotient(fp_t x, fp_t y)
{ /* return x / y without job-terminating overflow on non-IEEE-754 systems */

fp_t result;

#if defined(HAVE_IEEE_754)

result = x / y;

if (ISINF(result))
(void)SET_ERANGE(result); /* optional in C99 */

#else

if (is_fdiv_safe(x, y))
result = x / y;

else /* x / y overflows */
result = SET_ERANGE((SIGNBIT(x) == SIGNBIT(y)) ? INFTY() : -INFTY());

#endif

return (result);
}

The check for safe division is handled by this private function:

static int
is_fdiv_safe(fp_t x, fp_t y)
{ /* return 1 if x / y does not overflow, where, unchecked,

x and y are normal and finite, else return 0 */
int result;

if (y == ZERO)
result = 0;

18.1. Gamma and log-gamma functions 531

else if ((x == ZERO) && (y != ZERO))
result = 1;

else
{

fp_t xabs, yabs;

xabs = QABS(x);
yabs = QABS(y);

if (yabs >= xabs)
result = 1;

else if (yabs >= ONE)
result = 1;

else
result = (xabs <= (FP_T_MAX * yabs));

}

return (result);
}

18.1.2 Gamma function accuracy

Figure 18.2 graphs the errors over a small linear argument range near the region where rational polynomial fits are
used, and over a wide logarithmic argument range to show the behavior near some of the underflow and overflow
limits. Figure 18.3 on page 533 shows the measured errors in our implementation of the gamma function over a
linear argument range. The plots demonstrate that the functions are accurate to the overflow limit as x → ±0.

The larger errors in the bottom plots for the higher precisions are due to the use of the reflection formula below
XCUT_REFLECT = −216. That is why we avoid that computational route for the more commonly used single- and
double-precision gamma functions.

18.1.3 Computation of π/ sin(πx)

The reflection formula for Γ(−|x|) allows us to move the computation from the difficult region of negative arguments
to the better-behaved region of positive arguments, but it requires accurate evaluation of π/ sin(πx). From Table 4.1
on page 62, the error-magnification factor for sin(x) is x/ tan(x), so sin(πx) loses accuracy when |x| is large, and also
when tan(πx) ≈ 0, which happens when x is close to a whole number. Direct computation of sin(πx) as sin(PI *
x) is therefore likely to be inaccurate, and its subsequent use in the reflection formula can produce wildly incorrect
values of the gamma function of negative arguments.

In Section 11.7 on page 315, we discuss trigonometric functions of arguments in units of π, and show how to
compute those functions accurately. The code in tgammx.h contains three separate approaches to the problem:

� Borrow code from the file sinpix.h (see Section 11.7 on page 315 and Section 11.7.1 on page 316).

� Call the sinpi(x) function directly if it is available, as it is in the mathcw library.

� Recognize that, for the gamma function, we later need the inverse of sin(πx)/π, and that expression itself can
be evaluated by a Taylor-series expansion for small x, and otherwise by a polynomial fit for x on the interval
[0, 1

2]. The symmetry relation sin(π(1 − x)) = sin(πx) that is evident from the graph of the sine function, and
easily derived from its angle-sum formula, handles x values on the interval [1

2 , 1]. Larger values of x are not
required as arguments in the sine function, because we can use the reduction sin(π(n + r)) = (−1)n sin(πr).
The computation of sin(πx)/π includes an error estimate so that the inverse can be made more accurate.

18.1.4 Why lgamma(x) is hard to compute accurately

Because the error-magnification factor for the logarithm is 1/ log(x) (see Table 4.1 on page 62), the lgamma() family
is sensitive to argument errors when the logarithm is near zero. There are only two such instances on the positive

532 Chapter 18. The Greek functions: gamma, psi, and zeta

Figure 18.2: Errors in the TGAMMA() functions, measured against high-precision values from Maple. The top pair
show the errors for small arguments, and the bottom pair graph the errors over a logarithmic argument range.

axis, but there are two zeros between every pair of consecutive integers below −2 on the negative axis, as graphed
in Figure 18.1 on page 522, and shown numerically in Table 18.2 on page 534. We therefore expect larger errors
in lgamma(x) for x in the region of those zeros, as well as for arguments near negative integers, where we already
know the errors are large. Thus, an implementation of lgamma(x) that merely computes log(tgamma(x)) in working
precision is doomed in those regions, and will suffer premature overflow and underflow over much of the floating-
point range where log(|Γ(x)|) is of reasonable magnitude.

Previous work on the gamma function and its logarithm cited at the beginning of this chapter mostly concentrates
on the behavior of the functions for positive arguments, and many implementations are computationally poor on the
negative axis. For the ordinary gamma function, we saw that either downward recurrence or the reflection formula
provides a reasonable way to find Γ(x) for negative arguments. For the logarithm of the absolute value of the gamma
function, that is no longer the case, at least if we wish to achieve low relative, rather than absolute, error.

The problem on the negative axis is that, when Γ(x) ≈ ±1, the function is steep, so tiny changes in its argu-
ment have a large effect on the function value. Even when the gamma-function value is determined accurately, its
logarithm is roughly proportional to the difference of that value from one, because we know from the Taylor series
that log(1 + t) ≈ t − 1

2 t2 + 1
3 t3 − · · · . Higher internal precision, a few digits more than twice working precision, is

the only general solution to that problem. Because the zeros always occur singly, near any particular zero z, we can
compute log(|Γ(x)|) accurately from (x − z)P(x), where P(x) is a suitable polynomial approximation. We use that
technique to produce a low relative error for the first six zeros on the negative axis.

As x becomes more negative, the zeros of lgamma(x) get closer to the poles, and we see from Table 18.2 that

 0

 1

 2

-4 -2 0 2 4

u
lp

s

x

Errors in tgamma(x)

 0

 1

 2

-4 -2 0 2 4

u
lp

s

x

Errors in tgammad(x)

 0

 1

 2

-300 -200 -100 0

u
lp

s

log10(|x|)

Errors in tgamma(x)

 0

 1

 2

-300 -200 -100 0

u
lp

s

log10(|x|)

Errors in tgammad(x)

18.1. Gamma and log-gamma functions 533

Figure 18.3: Errors in the TGAMMA() functions, measured against high-precision values from Maple over the repre-
sentable range of the functions.

already near x = −10, the zeros hug the asymptotes closer than one single-precision machine epsilon, effectively
making the zeros computationally inaccessible. Consequently, the largest measured errors from either recurrence
or reflection are found for x in [−5,−2]. By contrast, near the two exact zeros on the positive axis, we can use
Taylor-series expansions and other techniques to evaluate lgamma(x) with negligible accuracy loss.

 0

 1

 2

-60 -40 -20 0 20 40 60

u
lp

s

x

Errors in tgammaf(x)

 0

 1

 2

-60 -40 -20 0 20 40 60

u
lp

s

x

Errors in tgammadf(x)

 0

 1

 2

-200 -100 0 100 200

u
lp

s

x

Errors in tgamma(x)

 0

 1

 2

-200 -100 0 100 200

u
lp

s

x

Errors in tgammad(x)

 0

 1

 2

-2000 -1000 0 1000 2000

u
lp

s

x

Errors in tgammal(x)

 0

 1

 2

-2000 -1000 0 1000 2000

u
lp

s

x

Errors in tgammadl(x)

534 Chapter 18. The Greek functions: gamma, psi, and zeta

Table 18.2: Truncated locations of the first 28 zeros of lgamma(x), counting down from the largest argument. Except
at the first two arguments, which are exact positive integer values, the remaining zeros all fall on the negative axis,
and rapidly approach the asymptotes at negative integers.

+2.000 000 000 000 000 −4.991 544 640 560 047 −8.000 024 800 270 681 −11.999 999 997 912 324
+1.000 000 000 000 000 −5.008 218 168 322 593 −8.999 997 244 250 977 −12.000 000 002 087 675
−2.457 024 738 220 800 −5.998 607 480 080 875 −9.000 002 755 714 822 −12.999 999 999 839 409
−2.747 682 646 727 412 −6.001 385 294 453 155 −9.999 999 724 426 629 −13.000 000 000 160 590
−3.143 580 888 349 980 −6.999 801 507 890 637 −10.000 000 275 573 013 −13.999 999 999 988 529
−3.955 294 284 858 597 −7.000 198 333 407 324 −10.999 999 974 947 890 −14.000 000 000 011 470
−4.039 361 839 740 536 −7.999 975 197 095 820 −11.000 000 025 052 106 −14.999 999 999 999 235

18.1.5 Outline of the algorithm for lgamma()

The computation of log |Γ(x)| in lgammx.h calls TGAMMA(x) directly when possible, and borrows several of the private
internal functions from tgammx.h. We require the sign of Γ(x) for the global variable signgam, or the second argument
of one of the lgamma_r() functions. That sign is easily determined: except for certain special cases noted in the
algorithm description, Γ(x) is negative if x < 0 and floor(x) is odd. Otherwise, it is positive. The floor() call is not
needed when x is known to lie in a particular unit interval.

The C99 Standard has this description of error handling in the computation of lgamma(x) [C99, §7.12.8.4, TC3]:

The lgamma() functions compute the natural logarithm of the absolute value of gamma of x. A range error occurs if x is too
large. A range error may occur if x is a negative integer or zero.

Unlike the Standard’s specification of the true gamma function, tgamma(x) (see Section 18.1.1 on page 525), there is
no provision for a domain error at the poles. For consistency, we set a range error at the poles in both lgamma(x) and
tgamma(x), and reserve the domain error for a NaN argument.

The code in lgammx.h is too long to display here, but it follows these steps:

x is a NaN : Set signgam to +1, set a domain error, and set the result to that NaN.

−∞ ≤ x ≤ −XMAX : The value of XMAX is βt for base β and t-digit precision, and x is consequently a negative whole
number corresponding to one of the asymptotes. Set signgam to −1 to follow the convention adopted for
tgamma(x), set a range error, and set the result to +∞.

x is a negative whole number : Set signgam to −1, set a range error, and set the result to +∞.

x < XCUT_REFLECT : Use the reflection formula with careful computation of the sine factor, as described in Sec-
tion 18.1.3 on page 531. Set the result to

log(|Γ(−|x|)|) = log(π)hi +
(

log(π)lo −
(

log(| sin(πx)|) + log(|Γ(|x|+ 1)|)))
where the logarithm of π is represented as a sum of exact high and approximate low parts, and the last loga-
rithm is evaluated by the private internal function that computes the asymptotic series if |x|+ 1 is above the
series cutoff, and otherwise, by a recursive call to LGAMMA_R().

The cutoff is adjustable, but we set it to −216, the same value used in tgamma(x), unless upward adjustment
is needed to prevent premature overflow. That modification is required for at least the float format because
of its limited exponent range on all systems. The initialization code computes XCUT_OVERFLOW as the largest
whole number whose factorial is below the overflow limit, and XCUT_REFLECT is set to the larger of −216 and
−XCUT_OVERFLOW.

In this region, the zeros of log |Γ(x)| are too close to the asymptotes to be representable, so accuracy loss near
the zeros is not a concern.

x is in [−XBIG,−10] : Compute LOG(TGAMMA(x)), but preferably in the next higher precision. Here, XBIG is the
argument above which the computed Γ(x) would overflow.

18.1. Gamma and log-gamma functions 535

x is near one of the six zeros in [−5,−2] : Evaluate a Chebyshev approximation, (x − z)∑n
k=0 Tk(t), where z =

zhi + zlo represents the location of the zero to twice working precision, and the high part is subtracted first.
The variable t lies on [−1,+1], and is computed accurately from a simple expression of the form ax + b, where
a and b are exactly representable small, and usually whole, numbers.

x is in [−10,− 1
2] : Use downward recurrence to find Γ(x) = Γ(x + n)/(x × (x + 1) × · · · × (x + n − 1)), where

n is chosen so that x + n is in [1, 2]. The numerator is evaluated in the form 1 + (Γ(x + n) − 1), with the
parenthesized expression computed to working precision from the rational polynomials used in tgammx.h, or
from Taylor-series summation near the end points. Compute the denominator product with error correction.
Then obtain log(|Γ(x)|) from log1p(Γ(x + n)− 1)− log(|product|).

x < −Taylor-series cutoff : Use the next higher precision, if possible, to compute the result as log(Γ(x)). That
effectively handles both the accuracy loss near the asymptotes, and the cumulative errors in the recurrence
and reflection formulas. Otherwise, we have to accept large relative errors near the zeros below those treated
by the Chebyshev approximations.

x = ±0 : Set signgam to the sign of x, set a range error, and set the result to +∞.

|x| < Taylor-series cutoff : Sum the Taylor series log |Γ(x)| ≈ − log(x)− γx + · · · , where series of orders 2, 4, 8,
16, and 32 are chosen according to the argument magnitude, and the coefficients are taken from a compile-time
constant table. Replace the leading coefficient by a sum of high and low parts for better accuracy.

As with the series for tgamma(x) (see Section 18.1.1 on page 526), after determining the cutoffs in the usual way,
they must be further restricted to prevent subtraction loss. Maple finds such loss for |x| > 1

2 c0/c1 ≈ 0.351.

Taylor-series cutoff ≤ x and x < 1
2 : Compute log1p(Γ(x) − 1), where the argument difference is computed di-

rectly from a rational polynomial approximation.

x is in (1
2 , 3

4) : Compute a minimax rational polynomial approximation, R(t), for t in [0, 1], such that

log(Γ(1
2 +

1
4 t)) = (1 − t) log(Γ(1

2)) + t log(Γ(3
4)) + tR(t).

That is a linear interpolation over the interval, plus a small correction that contributes less than 8% to the
function value. Represent the gamma-function constants as sums of exact high and approximate low parts.
Use fused multiply-add operations to compute the terms containing products with the high parts of the two
constants.

x is near +1 or +2 : Compute the result from a Taylor-series expansion for log(Γ(x)) about that endpoint, with
a pair representation of the low-order coefficient. That produces accurate results near the two zeros on the
positive axis.

x in [3
4 , 1] : Compute log1p(Γ(x)− 1), where the argument difference is computed directly from a rational polyno-
mial approximation.

x in [1, 4] : Compute one of several polynomial approximations:

log(Γ(z)) + (x − z)2R1(x − z), for x in [1.35, 1.65],

log(Γ(5
4)) + (x − 5

4)R2(x − 5
4), for x in [1, 3

2],

log(Γ(7
4)) + (x − 7

4)R3(x − 7
4), for x in [3

2 , 2],

(x − 2) log(Γ(5
2)) + (x − 5

2)R4(x − 5
2), for x in [2, 3],

(4 − x) log(Γ(3)) + (x − 3) log(Γ(4))+
(x − 3)R5(x − 3), for x in [3, 4].

In the first, z ≈ 1.461 is the position of the only minimum of the gamma function on the positive axis. Expan-
sion about that point encourages the fit to be monotonic on either side.

In each case, represent the transcendental constants as pair sums, and use error correction in the evaluations.
In the region gaps, use log1p(Γ(x)− 1) or log(Γ(x)), whichever is more accurate.

536 Chapter 18. The Greek functions: gamma, psi, and zeta

x < max(XBIG, CUTOFF) : Compute the result as LOG(TGAMMA(x)).

CUTOFF ≤ x < +∞ : If log(x) ≥ FP_T_MAX/x, set a range error and set the result to +∞.

Otherwise, sum the asymptotic expansion of log(Γ(x)), omitting those parts of the expansion that contribute
negligibly to the result. The sum of reciprocal powers is not needed at all when x >

√
1/ε.

When possible, compute the logarithm in the next higher precision, and then split that value into a sum of high
and low parts in working precision. It is then possible to achieve almost perfect rounding of LGAMMA(x) in the
asymptotic region.

Many implementations of lgamma(x) replace the asymptotic expansion by a polynomial fit in the variable 1/x2,
or use less-well-known, but faster-converging, sums due to Lanczos [Lan64]. The Lanczos sums are valid also
for the gamma function of complex arguments, a function that we do not treat in this book. One of his sums,
truncated to two terms, takes the form

Γ(z) = (z + 1)z− 1
2 exp(−(z + 1))

√
2π

(
0.999 779 +

1.084 635
z

)
.

It has a relative error below 2.4× 10−4 for all complex z with positive real part. For lgamma(x), in order to avoid
premature overflow, replace the right-hand side with the sum of the logarithms of each of the factors, and use
the LOG1P() family when the logarithm argument is near one.

Because our code needs to cater to many different floating-point precisions and both binary and decimal bases,
we find it simplest to use the asymptotic expansion directly. Unlike most asymptotic expansions, this one
can be used to reach full accuracy for all of the precisions that we support, as long as the cutoff is chosen
appropriately. We never need more than 30 terms, and usually, just a few terms suffice.

x = +∞ : Set a range error and set the result to +∞.

18.1.6 Log-gamma function accuracy

An early draft of the code for lgamma(x) used fewer polynomial approximations, but showed unacceptably high
errors. Those errors were gradually reduced by introducing more polynomial fits, and sometimes, several alternative
fitting functions had to be tried and their accuracy compared. The final code is, alas, horridly complicated by the
many different approximations needed to drive the errors down. The gamma function, and its logarithm, are good
examples of how higher precision in intermediate computations can eliminate many computational difficulties, and
allow use of much simpler code.

Figure 18.4 on the next page shows the measured errors in our implementations of the log-gamma function over
a small linear interval where the problems near the zeros on the negative axis are most visible, and over a logarithmic
interval. Figure 18.5 on page 538 shows the errors in the binary and decimal functions over a wider linear interval.

Without the special handling of the zeros in [−5,−2] with polynomial fits, and use of higher precision on the
negative axis, the error plots show huge spikes near the zeros where the errors grow arbitrarily large. The random
arguments used in the plots are not dense enough to sample close to the zeros. The lower accuracy of the reflection
formula is evident in Figure 18.5 where the initially low errors on the negative axis rise sharply when the reflection
cutoff is reached.

18.2 The psi() and psiln() functions

The function psi(x) computes the derivative of the logarithm of the gamma function:

ψ(x) = d(log Γ(x))/dx,
= (dΓ(x)/dx)/Γ(x),
= Γ′(x)/Γ(x).

From that, we see that the derivative of the gamma function, Γ′(x), is the product ψ(x)Γ(x). The gamma function
can be negative for negative arguments, but its logarithm is then not real-valued. Consequently, the second formula
is regarded as the main one in real arithmetic, and ψ(x) is then defined for both negative and positive arguments.

18.2. The psi() and psiln() functions 537

 0

 1

 2

-10 -5 0 5 10

u
lp

s

x

Errors in lgamma(x)

 0

 1

 2

-10 -5 0 5 10

u
lp

s

x

Errors in lgammad(x)

 0

 1

 2

-300 -200 -100 0

u
lp

s

log10(|x|)

Errors in lgamma(x)

 0

 1

 2

-300 -200 -100 0

u
lp

s

log10(|x|)

Errors in lgammad(x)

Figure 18.4: Errors in the LGAMMA() functions, measured against high-precision values from Maple. The top pair
show the errors for small arguments, and the bottom pair graph the errors over a logarithmic argument range.

The mathematical history of the psi function is cloudy, but seems to be traceable back to 1809 in writings of
Legendre.

In older books, the psi function is called the digamma function, after an obsolete letter in ancient Greek. Higher
derivatives of log(Γ(x)) produce the polygamma functions that we treat later in Section 18.3 on page 547. The name
polygamma is a mathematical invention; there is no such Greek letter. It may have been first used in 1919 as an
extension of digamma function and trigamma function [Pai19].

The Maple symbolic-algebra system provides the psi function as Psi(z). Mathematica supplies PolyGamma[z].
MATLAB has only the numerical function psi(x), and restricted to nonnegative arguments. Maxima has the nu-
merical (big-float) function bfpsi0(z,d), where d is the precision in decimal digits, as well as the symbolic function
psi(x). MuPAD, PARI/GP, and REDUCE have psi(z).

As the argument z suggests, those functions can be defined for complex arguments, but we do not provide that
extension in the mathcw library. Although some of those languages use capitalized function names, modern notation
uses lowercase ψ(z), rather than uppercase Ψ(z).

As x increases, ψ(x) approaches log(x) reasonably quickly, so a companion function, psiln(x), computes the
difference ψ(x)− log(x) accurately. Such a function is needed, because direct computation of the difference suffers
bit loss starting at x ≈ 2.13; ten bits are lost at x ≈ 109, and twenty are lost at x ≈ 48 600. The psi() and psiln()
functions are illustrated in Figure 18.6 on page 539.

Because of its approach to the logarithm on the positive axis, ψ(x) never gets very big as x increases: at the
argument overflow limits in the five extended IEEE 754 binary formats, ψ(x) is about 89, 710, 11 357, 11 357, and

538 Chapter 18. The Greek functions: gamma, psi, and zeta

Figure 18.5: Errors in the LGAMMA() functions, measured against high-precision values from Maple over a wide
argument range.

181 704, respectively.

18.2.1 Psi function poles and zeros

There are poles of ψ(x) at zero and at negative integral values of x. There is only a single zero on the positive axis,
but on the negative axis, there is one zero between each pair of integral values of x, and those zeros move closer to

 0

 1

 2

-10000 -5000 0 5000 10000

u
lp

s

x

Errors in lgammaf(x)

 0

 1

 2

-10000 -5000 0 5000 10000

u
lp

s

x

Errors in lgammadf(x)

 0

 1

 2

-10000 -5000 0 5000 10000

u
lp

s

x

Errors in lgamma(x)

 0

 1

 2

-10000 -5000 0 5000 10000

u
lp

s

x

Errors in lgammad(x)

 0

 1

 2

-10000 -5000 0 5000 10000

u
lp

s

x

Errors in lgammal(x)

 0

 1

 2

-10000 -5000 0 5000 10000

u
lp

s

x

Errors in lgammadl(x)

18.2. The psi() and psiln() functions 539

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

x

ψ
(x

)

0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

x

ψ
(x

)
−

 ln
(x

)

Figure 18.6: The psi() and psiln() functions, computed from a wrapper function that extends MATLAB’s deficient
psi(x) onto the negative axis. The psiln() function is undefined for x < 0, and our implementation returns a NaN
in that case for IEEE 754 arithmetic.

the left asymptote as x becomes more negative. Table 18.3 on the next page gives an idea of how they behave.
Counting left from the only zero on the positive axis, the zeros occur at these approximate argument values:

xk ≈ (1/π) atan(π/ log(k))− k, k = 0, 1, 2,

That simple formula predicts the zeros to an accuracy of at least two decimal places in the argument for k > 4.
In our software, we require accurate knowledge of only the first root, which we denote by

z = 1.461 632 144 968 362 341 262 659 542 325 721 328 468 196

Because the derivative of ψ(x) is everywhere positive and nonzero, the error-magnification formula xψ′(x)/ψ(x)
(see Section 4.1 on page 61) tells us that the relative error in psi(x) increases without bound near zeros of the
function.

18.2.2 Recurrence relations for psi functions

Recurrence relations provide one important way to compute the psi function from knowledge of its value on a single
unit interval, possibly represented there by a rational polynomial approximation, or a truncated series:

ψ(x + 1) = ψ(x) + 1/x,
ψ(x − 1) = ψ(x)− 1/(x − 1),

ψ(x + n) = ψ(x) +
n−1

∑
k=0

1
x + k

, for n = 1, 2, 3, . . . ,

= ψ(x) +
1
x
+

1
x + 1

+ · · ·+ 1
x + n − 1

, upward recurrence,

ψ(x − n) = ψ(x)−
n−1

∑
k=0

1
x − n + k

, for n = 1, 2, 3, . . . ,

= ψ(x)− 1
x − n

− 1
x − n + 1

− · · · − 1
x − 1

, downward recurrence.

The recurrence relations for the gamma function are products, but for the psi function, they are sums, and we there-
fore have to consider the possibility of significance loss when two similar numbers of opposite sign are added. On
the positive axis, we have ψ(x) > 0 only for x > z.

540 Chapter 18. The Greek functions: gamma, psi, and zeta

Table 18.3: Truncated locations of the first 32 zeros of psi(x), and some later ones, counting down from the largest
argument. All but the first lie on the negative axis. Compared to the zeros of lgamma(x), these zeros are slow to
approach the asymptotes at negative integers, and they consequently remain a serious impediment to achieving
high accuracy in psi(x) for negative arguments.

1.461 632 144 968 362 −7.687 788 325 031 626 −15.730 988 906 332 882 −23.752 362 937 385 182
−0.504 083 008 264 455 −8.695 764 163 816 401 −16.734 356 723 955 736 −24.754 370 257 822 971
−1.573 498 473 162 390 −9.702 672 540 001 864 −17.737 475 159 977 589 −25.756 275 080 771 035
−2.610 720 868 444 145 −10.708 740 838 254 145 −18.740 374 944 780 100 −26.758 086 286 661 366
−3.635 293 366 436 901 −11.714 133 061 228 954 −19.743 081 672 590 218 −27.759 811 695 826 706
−4.653 237 761 743 142 −12.718 971 025 749 207 −20.745 616 863 607 526 −28.761 458 227 264 866
−5.667 162 441 556 886 −13.723 347 457 363 827 −21.747 998 768 201 130 −29.763 032 029 127 463
−6.678 418 213 073 427 −14.727 334 416 018 529 −22.750 242 984 306 060 −30.764 538 586 718 172

−100.809 855 037 646 773 −1 000 000.928 827 867 117 256
.

−1000.864 158 855 781 428 −10 000 000.938 726 159 976 686
.

−10 000.895 366 998 627 445 −100 000 000.946 230 525 005 199
.

−100 000.915 205 593 725 096 −1 000 000 000.952 109 703 719 312

The upward recurrence has the form c = a+ b, where c > a, and it suffers bit loss if b/a lies in [−2,− 1
2]. Eliminate

b to find b/a = (c − a)/a, and bound the loss interval by solving two equations:

(c − a)/a = −2, (c − a)/a = − 1
2 ,

c = −a, 2c = a.

The first is a feasible solution, but the second is not because of the constraint c > a, and further numerical exper-
iments show that the first provides upper bounds. We obtain a few bit-loss intervals by numerical solution of the
first, and reformat the output into three columns:

% maple
> for n from 1 to 15 do
> printf("%2d [0, %.4f]\n",
> n, fsolve(Psi(x + n) = -Psi(x), x = 0 .. 2))
> end do:
1 [0, 1.0703] 6 [0, 0.5354] 11 [0, 0.4246]
2 [0, 0.8474] 7 [0, 0.5033] 12 [0, 0.4118]
3 [0, 0.7171] 8 [0, 0.4778] 13 [0, 0.4005]
4 [0, 0.6342] 9 [0, 0.4570] 14 [0, 0.3906]
5 [0, 0.5772] 10 [0, 0.4395] 15 [0, 0.3817]

Any convenient unit interval can be chosen for approximating ψ(x) on the positive axis, as long as it excludes the
interval [0, 1.071]. The interval [2, 3] is therefore a reasonable start for upward recurrence.

A similar analysis for downward recurrence produces these bit-loss intervals, after reformatting the output list:

> for n from 1 to 30 do
> printf("%2d [%7.4f, %7.4f]\n",
> n, fsolve(Psi(x - n) = -Psi(x), x = 0 .. 25),
> fsolve(2*Psi(x - n) = Psi(x), x = 0 .. 25))
> end do:
1 [2.0703, 3.0891] 11 [10.2860, 15.3422] 21 [12.1878, 12.4047]
2 [2.8474, 4.4763] 12 [12.4118, 16.4885] 22 [12.1847, 12.3950]
3 [3.7171, 5.7823] 13 [12.2743, 12.6282] 23 [6.1910, 12.3865]
4 [4.6342, 2.4617] 14 [12.2429, 12.5572] 24 [6.1892, 12.3788]
5 [5.5772, 8.2745] 15 [12.2261, 12.5147] 25 [11.1777, 12.3719]
6 [6.5354, 9.4844] 16 [12.2151, 12.4847] 26 [6.1860, 12.3656]

18.2. The psi() and psiln() functions 541

7 [6.3229, 10.6780] 17 [12.2071, 12.4619] 27 [11.1741, 12.3598]
8 [0.4921, 11.8585] 18 [12.2008, 12.4437] 28 [11.1724, 12.3545]
9 [3.2653, 13.0283] 19 [12.1957, 12.4285] 29 [10.1721, 12.3496]

10 [6.2471, 14.1891] 20 [12.1915, 12.4158] 30 [11.1695, 12.3450]

Some of those descend into negative arguments, x − n, but we delay that case until the next section. The cases n = 1
and n = 2 show that the psi function on the interval [1, 2] cannot be reliably determined from values on [2, 3], and
that we can safely recur downward to the interval [0, 1] from [1, 2], but not from [2, 3]. We return to that problem
later in Section 18.2.7 on page 543.

The numerical investigations of subtraction loss suggest that accurate computation of the psi function by recur-
rence relations must be based on separate treatment of the intervals [1, 2] and [2, 3]. The first brackets the root at
x = z ≈ 1.461, so further special handling is necessary near that root to ensure high accuracy.

18.2.3 Psi functions with negative arguments

As with the gamma function, there is a relation between psi functions of positive and negative arguments:

ψ(−x) = ψ(x + 1) + π/ tan(πx), reflection formula.

Here again, instead of the gamma function’s product formula, we have a sum, and numerical difficulties are readily
evident. There is exactly one root of ψ(x) between every pair of adjacent negative integers. Thus, if ψ(−x) is near
a root on the negative axis, its value is obtained from the sum of two right-hand side terms, at least one of which is
never small for x > 2, so there must have been catastrophic cancellation.

Even in the absence of subtraction loss, the trigonometric term requires careful handling to avoid serious accuracy
loss. We discuss it further in Section 18.2.9 on page 545.

The reflection formula therefore does not provide a satisfactory way to compute psi(x) on the negative axis for
arguments near a root. Most previous software implementations of the psi function ignore that serious problem,
and as a result, can be wildly inaccurate for negative arguments. Unlike the log-gamma function, the roots do not
hug the poles (compare Table 18.2 on page 534 and Table 18.3 on the facing page), so the root regions remain a
computational problem over the entire negative axis.

18.2.4 Psi functions with argument multiples

Like the gamma function, psi functions of argument multiples are related, but with sums instead of products:

ψ(2x) = log(2) + (ψ(x) + ψ(x + 1
2))/2,

ψ(nx) = log(n) +
1
n

n−1

∑
k=0

ψ(x + k/n) for n = 2, 3, 4, . . . ,

ψ(n) = −γ +
n−1

∑
k=1

1
k

,

γ = 0.577 215 664 901 532 860 . . . Euler–Mascheroni constant.

Those relations can be useful identities for software testing, but we do not exploit them for computing psi(x).
The Euler–Mascheroni constant, γ, turns up repeatedly in series expansions of the gamma, log-gamma, and psi

functions. We represent that constant in our software as a sum of an exact high part and an approximate low part,
γ = γhi + γlo, effectively defining it to twice working precision.

The psi function for integer arguments, ψ(n), turns up later in the chapter on Bessel functions (see Section 21.3
on page 703). The formula for ψ(n) involves a partial sum of the first n − 1 terms of the harmonic series. The psi
function provides one of the best ways to sum the harmonic series for large n.

The medieval French theologian/scientist Nicole Oresme observed about 1350 that the harmonic-series sum can
be grouped and bounded like this [Sti02, page 172] [Dun91, Chapter 8]:

s = 1 + (1
2) + (1

3 +
1
4) + (1

5 +
1
6 +

1
7 +

1
8) + · · ·

> 1 + (1
2) + (1

4 +
1
4) + (1

8 +
1
8 +

1
8 +

1
8) + · · ·

> 1 + (1
2) + (1

2) + (1
2) + · · · .

542 Chapter 18. The Greek functions: gamma, psi, and zeta

Because there is an infinite number of terms, the sum of halves must diverge, showing that the psi function grows
without bound as its argument increases. However, as we noted earlier, the limited floating-point range of arguments
sharply restricts the function growth. The divergence of the harmonic series is extremely slow: after a googol (10100)
terms, its sum still lies below 231.

18.2.5 Taylor-series expansions of psi functions

The psi function has series expansions that we can use to compute function values near some important small argu-
ments:

ψ(x) = −(1/x)(1 + γx − π2

6 x2 + ζ(3)x3 · · ·) Taylor series,

ψ(1 + x) = −γ + π2

6 x − ζ(3)x2 · · · ,

ψ(z + x) =
∞

∑
k=1

(1/k!)ψ(k)(z)xk

≈ 0.967 672 x − 0.442 763 x2 + 0.258 500 x3 − · · · ,

ψ(2 + x) = (1 − γ) + (π2

6 − 1)x + (1 − ζ(3))x2 + · · · ,

ψ(3 + x) = (3
2 − γ) + (π2

6 x − 5
4)x + (9

8 − ζ(3))x2 + · · · ,
ζ(3) ≈ 1.202 056 903 159 594 285 . . . Riemann zeta function value.

The expansion coefficients involve either powers of π, or zeta functions of integer arguments, or for the expansion
near z, polygamma functions at z. They can all be generated explicitly to any order by symbolic-algebra systems.
The coefficients are best handled by precomputing them to high precision, and then storing them in a compile-time
constant table. See Section 11.2 on page 303 for a definition of, and brief comment on, the Riemann zeta function,
ζ(z), and Section 18.7 on page 579 for details of its properties and computation.

Near the positive zero of the psi function, as long as the difference between the argument and the transcendental
value z is computed accurately, the function result can never be zero. Here is a sample calculation in 32-bit decimal
arithmetic:

% hocd32
hocd32> z = 1.461_632; psi(nextafter(z,0)); psi(z); psi(nextafter(z,2))
-1.107_954e-06
-1.402_819e-07
8.273_900e-07

18.2.6 Asymptotic expansion of the psi function

The psi function has an asymptotic expansion that handles large arguments:

ψ(x) � log x − 1/(2x)−
∞

∑
k=1

B2k/(2kx2k) asymptotic expansion,

� log x − 1/(2x)− 1
12x2 +

1
120x4 − 1

252x6 +
1

240x8 − 1
132x10

+
691

32 760x12 − 1
12x14 +

3617
8160x16 − 43 867

14 364x18 +
174 611
6600x20 − · · · .

The coefficients in the asymptotic expansion involve the Bernoulli numbers, B2k, that we encountered in series ex-
pansions of the trigonometric and hyperbolic tangents and the gamma function; they are discussed further in Sec-
tion 18.5 on page 568. Coefficient growth in the asymptotic expansion first sets in at the term with x18 in the denom-
inator. Convergence is rapid enough that if we sum the series to machine precision, we can achieve full accuracy in
IEEE 754 binary arithmetic for x larger than 3 (32-bit), 6 (64-bit), 8 (80-bit), 13 (128-bit), and 26 (256-bit). The corre-
sponding term counts are 7, 15, 14, 29, and 72. The psi function is one of the few in the mathcw library where an
asymptotic expansion is actually useful for computation.

18.2. The psi() and psiln() functions 543

As with the asymptotic series for gamma and log-gamma, that for the psi function can be represented by a
polynomial approximation in powers of 1/x2. Our software does not do so, because it needs to handle a wide
variety of bases and precisions, and it uses that series only when convergence is rapid.

At least one existing psi-function implementation uses the asymptotic expansion as the starting point, followed
by downward recurrence to obtain ψ(x). However, accuracy with that approach is unacceptably poor, especially
near the poles and zeros of the psi function.

18.2.7 Psi function on [0, 1]

We noted near the end of Section 18.2.2 on page 539 that downward recurrence to [0, 1] is stable from [1, 2], but not
from [2, 3].

Near the pole at x = 0, we should use the Taylor series to determine the function accurately where it changes
most rapidly, and the question is then whether we could use it over the interval [0, 1].

Unfortunately, numerical evaluation of the Taylor-series expansions of ψ(x) and ψ(1 + x) shows that the coeffi-
cients quickly approach values near ±1, which means that the series convergence depends entirely on decreasing
values of the powers xk. If x ≈ 1, there is no useful convergence, and there is also massive cancellation in the sums
because of the alternating signs. Even if x ≈ 1

2 , there is still cancellation, and about as many terms are needed as
there are bits of precision.

One solution would be to split the interval [0, 1] into multiple regions, each with its own expansion. That could
lead to acceptably fast convergence, but needs substantial table storage. Alternatively, one could use rational poly-
nomial or Chebyshev fits of xψ(x) or some other auxiliary function, but those fits are poor unless the function is
nearly linear.

Fortunately, in 1981 Peter McCullagh discovered a new series expansion [McC81] of the psi function, and that
series is eminently suitable for computation. It takes the form

ψ(1 + z) = −γ −
∞

∑
k=1

(−z)k(ck + ak/(z + k)
)
, valid for all finite complex z.

The two coefficient arrays are defined by

ak = k−k, ck =
∞

∑
n=k+1

n−(k+1).

and their values are all positive. Accurate evaluation of the coefficients requires high-precision arithmetic, so they
are best computed in a symbolic-algebra system, and then stored in psi-function software as compile-time constant
tables. The ck values, and all but the first two ak values, fall by at least ten for successive indexes k. Each term in the
sum requires a division, but we only use the series for one unit interval, and convergence is rapid when |z| ≤ 1.

As usual with such sums where the number of terms is not known in advance, we leave the first term to last, and
add the terms for k = 2, 3, 4, . . . until their floating-point sum no longer changes, at which point we terminate the
loop. In the first term, we have a1 = 1 and c1 ≈ 0.644 934, so we rearrange it as(

c1 + 1/(x + 1)
)
x =

(
c1 + (x + 1 − x)/(x + 1)

)
x

=
(
(c1 + 1)− x/(x + 1)

)
x

=
(
((c1)hi + 1) + ((c1)lo − x/(x + 1))

)
x,

We then add, in order, −γlo, the term with (c1)lo, the term with (c1)hi, and finally, −γhi, to obtain an accurate function
result.

18.2.8 Outline of the algorithm for psi()

The complete algorithm in the file psix.h for computing ψ(x) considers several argument regions, from left to right
on the real axis, after handling a NaN:

x is a NaN : Set a domain error, and set the result to that NaN.

544 Chapter 18. The Greek functions: gamma, psi, and zeta

−∞ ≤ x ≤ −XMAX : The argument magnitude is so large that it has no fractional part, so we are on one of the
asymptotes for which ψ(x) = ±∞. The sign is not determinable, so we could set the result to QNAN("").
However, we follow our practice in tgamma(x), and arbitrarily set the result to +∞, to distinguish it from the
−∞ that is approached as x → +0. We also set a range error. A suitable value of XMAX is βt for base β and
t-digit precision.

x is a negative whole number : Set the result to +∞ and set a range error.

−XMAX < x ≤ XCUT_REFLECT : Use the reflection formula and restart the computation, now for positive x. We con-
sider the trigonometric part in Section 18.2.9 on the facing page.

−XCUT_REFLECT < x ≤ −XSMALL : Use downward recurrence from the interval [1, 2]. XSMALL is set to
√

3(1
2 ε/β)/π,

a value such that π/ tan(πx) can be computed with correct rounding from the first two terms of its Taylor
series (see Section 2.6 on page 10).

−XSMALL < x ≤ −XCUT_0_1 : Use the reflection formula, but replace the term π/ tan(πx) by its two-term Taylor
series 1/x − 1

3 π2x, and use the McCullagh series implemented in the private function psi_mccullagh(x) for
computing ψ(1 + x) without evaluating 1 + x, because that would lose trailing digits.

−XCUT_0_1 < x < +XCUT_0_1 : Use the Taylor series about the origin (see Section 18.2.5 on page 542), with a check
that 1/x does not overflow. If it would overflow, avoid the division, set the result to −copysign(∞,x), and set
a range error.

XCUT_0_1 ≤ x < 3
4 : Use downward recurrence from [1, 2] to compute ψ(x) = ψ(x + 1)− 1/x. Use the McCullagh

series for ψ(1 + x).

3
4 ≤ x < 1 : Sum the McCullagh series for the exact argument 1 − x.

x = 1 : The result is −γ, correctly rounded.

1 < x < 2 : If x is near z, sum a Taylor-series expansion about z with orders 2, 4, 8, 16, or 32, depending on the size
of |x − z|, and represent the low-order coefficient as a two-part sum.

If x < 5
4 , use the McCullagh series for the exact argument x − 1.

If 3
2 < x, compute a minimax rational polynomial approximation, R1(t), for t in [0, 1], such that

ψ(3
2 +

1
2 t) = (1 − t)ψ(3

2) + tψ(2) + t(1 − t)R1(t).

That is linear interpolation with a positive polynomial correction that contributes less than 10% of the result,
and that is zero at both endpoints. Represent the two constants ψ(3

2) and ψ(2) as two-part sums, and sum the
terms with error recovery.

Otherwise, use a polynomial approximation ψ(x) ≈ (x − z)R2(x). Compute the factor (x − z) from (x −
zhi)− zlo, where zhi is exactly representable. That factor encourages correct behavior, including monotonicity,
for x ≈ z.

x = 2 : The result is 1 − γ, correctly rounded.

2 < x < 3 : Compute a minimax rational polynomial approximation, R3(t), for t in [0, 1], such that

ψ(2 + t) = (1 − t)ψ(2) + tψ(3) + t(1 − t)R3(t).

That is linear interpolation with a positive polynomial correction that contributes less than 5% of the result,
and that is zero at both endpoints. Represent the two constants ψ(2) and ψ(3) as two-part sums, and sum the
terms with error recovery.

x = 3 : The result is 3
2 − γ, correctly rounded.

18.2. The psi() and psiln() functions 545

3 < x < XCUT_ASYMPTOTIC : Let n = floor(x − 1). Then use upward recurrence to compute ψ(x) = ψ(x − n) +
∑n−1

k=0 (1/(x − n + k)), where x − n is in the region [2, 3] of the rational approximation. Use error recovery to
ensure an accurate sum of reciprocals.

The upper limit is small enough that only a few steps are needed: 6 in the smaller formats, about 15 in most
double formats, and up to 60 in the largest formats.

XCUT_ASYMPTOTIC ≤ x < XLARGE : Sum N_ASYMPTOTIC terms of the asymptotic series.

The constant XCUT_ASYMPTOTIC is the precision-dependent limit above which we can use the asymptotic expan-
sion. Typical values of that limit are given in Section 18.2.6 on page 542.

XLARGE ≤ x < +∞ : Set the result to log(x), the first term of the asymptotic series.

The limit XLARGE is chosen to be the precision-dependent argument at which the asymptotic expansion reduces
to its first term.

Otherwise, x = +∞ : Set the result to x, and set a range error.

Here are sample values of the decision constants for the IEEE 754 64-bit binary format, rounded to three digits:

N_ASYMPTOTIC = 6 number of terms in asymptotic series

XCUT_0_1 = 9.62e-17 cutoff for 2-term Taylor series about 0

XCUT_ASYMPTOTIC = 15.0 cutoff for switch to asymptotic series

XCUT_MIN_32 = 0.465 cutoff for 32-term Taylor series about z

XCUT_REFLECT = -10.0 use reflection formula below this value

XCUT_TAN_2 = 4.11e-09 π/ tan(πx) simplifies below this value

XLARGE = 2.71e+14 ψ(x) = log(x) above this value

XMAX = 9.01e+15 x is a whole number above this value

The troublesome areas in that algorithm are the cases of negative arguments, and arguments near the poles and
zeros of ψ(x). Figure 18.7 on the following page shows the measured errors in our implementations of the psi(x)
function.

18.2.9 Computing π/ tan(πx)

When we use argument reflection to move the computation of ψ(x) from negative x to positive x, we require the
term π/ tan(πx). The error-magnification factor for tan(x) in Table 4.1 on page 62 is proportional to x/ tan(x) when
tan(x) is small, and to x tan(x) when tan(x) is large. Because the range of tan(x) is (−∞, ∞) for any interval of
width π, even tiny errors in computing the argument πx can make a large difference in the function value. Direct
computation with tan(PI * x) is therefore inadvisable.

As we saw in Section 18.1.3 on page 531, there are three reasonable solutions:

� Borrow code from the file tanpix.h (see Section 11.7 on page 315 and Section 11.7.2 on page 318).

� Call tanpi(x) directly when it is available.

� Compute tan(πx)/π from a Taylor-series expansion when x is small, and otherwise from a polynomial fit for
x on the interval [0, 1

4]. Use these symmetry relations for the other needed intervals:

1/ tan(π(1
2 − x)) = tan(πx), for x on [1

4 , 1
2],

1/ tan(π(x − 1
2)) = − tan(πx), for x on [1

2 , 3
4],

tan(π(1 − x)) = − tan(πx), for x on [3
4 , 1],

tan(π(n + r)) = tan(πr), for x outside [0, 1].

In each case, the argument reduction is exact, and it is possible to compute an error correction to improve the
accuracy of the final inversion to recover π/ tan(πx).

546 Chapter 18. The Greek functions: gamma, psi, and zeta

Figure 18.7: Errors in the PSI() functions.

18.2.10 Outline of the algorithm for psiln()

The algorithm for computing psiln(x) = ψ(x) − log(x) is a simplification of that for ψ(x), with these argument
ranges, and the same limits defined by uppercase macro names:

x is a NaN : Set a domain error, and set the result to that NaN.

x < 0 : Set a domain error, and set the result to QNAN("").

x = 0 : Set a range error, and set the result to −∞.

0 < x < X1 : Choose X1 to be the point at which bit loss begins for ψ(x)− log(x). The value of X1 is the solution of
ψ(x)/ log(x) = 1

2 , for which Maple finds this accurate value:

Digits := 100:

X1 := fsolve(Psi(x)/log(x) = 1/2, x = 0 .. 10);

1.819 537 948 238 785 644 418 866 760 843 345 720 043 932 706 . . .

Compute PSILN(x) from PSI(x) - LOG(x).

X1 ≤ x < CUTOFF : The computation can use the recurrences for ψ(x ± n), but numerical experiments recommend

0

1

2

-80 -60 -40 -20 0 20 40 60 80

u
lp

s

x

Errors in psif()

0

1

2

-200 -100 0 100 200

u
lp

s

x

Errors in psidf()

0

1

2

-600 -400 -200 0 200 400 600

u
lp

s

x

Errors in psi()

0

1

2

-800 -600 -400 -200 0 200 400 600 800

u
lp

s

x

Errors in psid()

18.3. Polygamma functions 547

Figure 18.8: Errors in the PSILN() functions.

the downward direction. Choose n = ceil(CUTOFF− x), and compute the result from

psiln(x) = psiln(x + n)− log(x/(x + n))−
n

∑
k=1

(1/(x + n − k)).

Compute the logarithm term as log1p(−n/(x + n)) when x/(x + n) lies in [1 − 1/β, 1 + 1/β], because that
function is then more accurate.

CUTOFF ≤ x < XLARGE : Sum the asymptotic expansion, omitting the initial log(x) term.

XLARGE ≤ x ≤ +∞ : Set the result to zero.

Figure 18.8 show the measured errors in our implementation of the function psiln(x).

18.3 Polygamma functions

MATHEMATICAL FACT MAY BE COMPUTATIONAL FICTION.

— ANONYMOUS

0

1

2

 0 5 10 15 20 25

u
lp

s

x

Errors in psilnf()

0

1

2

 0 5 10 15 20 25

u
lp

s

x

Errors in psilndf()

0

1

2

 0 5 10 15 20 25

u
lp

s

x

Errors in psiln()

0

1

2

 0 5 10 15 20 25

u
lp

s

x

Errors in psilnd()

548 Chapter 18. The Greek functions: gamma, psi, and zeta

The polygamma functions are higher derivatives of the psi function, and are usually defined with this notation:

ψ(0)(z) = ψ(z), normal psi function,

ψ(n)(z) =
dnψ(z)

dzn =
dn+1Γ(z)

dzn+1

1
Γ(z)

, for n = 1, 2, 3,

The parenthesized superscript n is called the order of the function.
The polygamma functions can also be defined as integrals:

ψ(n)(z) = (−1)n+1
∫ ∞

0

tn exp(−zt)
1 − exp(−t)

dt, for n = 1, 2, 3, . . . and real(z) > 0.

We discuss the suitability of that formula for numerical computation later in Section 18.3.3 on page 558.
The Maple symbolic-algebra system provides those functions as Psi(z) and Psi(n,z), with Psi(0,z) = Psi(z).

Mathematica supplies them with the names PolyGamma[z] and PolyGamma[n,z]. MATLAB has only the numerical
function psi(x), and restricted to nonnegative arguments. Maxima has the numerical (big-float) functions bfpsi0
(z,d) and bfpsi(n,z,d), where d is the precision in decimal digits, as well as the symbolic functions psi(x) and
psi[n](x). MuPAD calls them psi(z) and psi(z,n). PARI/GP has psi(z), but no polygamma function. REDUCE
provides psi(z), psi(n,z), and polygamma(n,z), where the last two are equivalent.

As the argument z suggests, those functions can be defined for complex arguments, but we do not provide
that extension in the mathcw library. Although some of those languages use capitalized function names, modern
mathematical notation uses lowercase ψ(n)(z), rather than uppercase Ψ(n)(z).

Because ψ(x) approaches log(x) for large x, and the logarithm is a slowly increasing function, higher derivatives
are small, and the integral form shows that the integrand decreases exponentially. We therefore have this limiting
behavior:

lim
x→+∞

ψ(n)(x) → (−1)n+1 × 0, for n = 1, 2, 3,

Like the psi function, the polygamma functions have poles at arguments that are zero or negative integers:

ψ(n)(−m) = ±∞, for m = 0, 1, 2,

Elsewhere, the polygamma functions are single-valued, and defined over the entire complex plane.
Figure 18.9 on the next page shows the first four polygamma functions of real arguments. Functions of odd order

have similar appearance, but the minima on the negative axis increase with n. Functions of even order resemble each
other, and their steepness grows with n.

There is a reflection formula that allows us to find the values of polygamma functions of negative arguments
from function values at positive arguments:

ψ(n)(1 − z) = (−1)n
(

ψ(n)(z) + π
dn cot(πz)

dzn

)
.

The reflection rule can also be applied for z in [0, 1
2] to move the computation to [1

2 , 1], away from the pole at the
origin.

The higher-order derivatives of the cotangent are an unpleasant complication for a software implementation of
the reflection rule. On initial expansion by a symbolic-algebra system, the derivatives are horribly messy, but they
can be simplified with the introduction of two abbreviations for common subexpressions. Here are the first ten
derivatives to show how they behave:

c = cot(πz), convenient shorthand,

d = 1 + c2, another shorthand,

d cot(πz)
dz

= (d)(−π),

d2 cot(πz)
dz2 = (2cd)(−π)2,

18.3. Polygamma functions 549

-20

-15

-10

-5

 0

 5

 10

 15

 20

-10 -8 -6 -4 -2 0 2 4 6 8 10

ψ
(1)(x)

x

-60

-40

-20

 0

 20

 40

 60

-10 -8 -6 -4 -2 0 2 4 6 8 10

ψ
(2)(x)

x

-500

-250

 0

 250

 500

-10 -8 -6 -4 -2 0 2 4 6 8 10

ψ
(3)(x)

x

-600

-400

-200

 0

 200

 400

 600

-10 -8 -6 -4 -2 0 2 4 6 8 10

ψ
(4)(x)

x

Figure 18.9: Polygamma functions of order 1 through 4. Functions of even order have zeros between negative
integers, whereas functions of odd order have no real zeros. On the positive axis, all tend to zero for large n or large
x. There are poles at the origin and at negative integer arguments.

d3 cot(πz)
dz3 = (4c2d + 2d2)(−π)3,

d4 cot(πz)
dz4 = (8c3d + 16cd2)(−π)4,

d5 cot(πz)
dz5 = (16c4d + 88c2d2 + 16d3)(−π)5,

d6 cot(πz)
dz6 = (32c5d + 416c3d2 + 272cd3)(−π)6,

d7 cot(πz)
dz7 = (64c6d + 1824c4d2 + 2880c2d3 + 272d4)(−π)7,

550 Chapter 18. The Greek functions: gamma, psi, and zeta

d8 cot(πz)
dz8 = (128c7d + 7680c5d2 + 24576c3d3 + 7936cd4)(−π)8,

d9 cot(πz)
dz9 = (256c8d + 31 616c6d2 + 185 856c4d3 + 137 216c2d4 +

7936d5)(−π)9,

d10 cot(πz)
dz10 = (512c9d + 128 512c7d2 + 1 304 832c5d3 + 1 841 152c3d4 +

353 792cd5)(−π)10.

Evidently, the derivatives have the general form

dn cot(πz)
dzn = (−π)n

�n/2�
∑
k=1

akcn−2k+1dk,

We recognize that the leading coefficient is a1 = 2n−1, and that relation suffices to start the upward progression. The
other coefficients form sequences that are found in Sloane’s on-line encyclopedia,2 but do not appear to have simple
closed formulas.

Even-order derivatives are positive, and odd-order ones are negative. The terms within each parenthesized
sum have the same signs, so in the absence of overflow, the computation of the derivatives is perfectly stable. The
coefficients are exact integers, but already at n = 13, some are too big to represent as 32-bit signed integers, and
at n = 21, coefficients overflow the 64-bit signed integer format. Because integer overflow wraps positive values
to negative, it would be disastrous to use the overflowed coefficients. Instead, we represent them in the widest
available floating-point type, even though that may have lower precision than the largest integer type.

Differentiating the general formula for the n-th derivative of cot(πx) produces a new set of coefficients, bk, corre-
sponding to an increase of n by 1, and once generated, they replace the old ak values. We can therefore produce the
coefficients for a given n with code that looks like this:

hp_t a[(NMAX + 1) / 2], b[(NMAX + 1) / 2];
int k, kmax, m, n;

n = /* to be supplied */;
a[1] = HP(1.);

for (m = 1; m < n; ++m)
{

kmax = (m + 1) / 2;

for (k = 1; k <= kmax; ++k)
b[k] = (hp_t)(2 * k) * a[k];

kmax++;
b[kmax] = HP(0.);

for (k = 2; k <= kmax; ++k)
b[k] += (hp_t)((m + 1) - 2 * k + 2) * a[k-1];

for (k = 1; k <= kmax; ++k)
a[k] = b[k];

}

The coefficients must be stored in arrays, so we are forced to set a limit, NMAX, on the largest n that we can support
in the region of negative arguments, because the mathcw library design guidelines forbid use of dynamic memory
allocation. Numerical tests show that, starting from random values of x, the derivatives soon grow large. A small
Maple function reports where the overflow limits are not yet reached, and some experimentation produces this
session log:

2See http://oeis.org/.

18.3. Polygamma functions 551

> Digits := 40:

> test := proc(nmax, ktest, dmax)
> local d, x, z:
> x := evalf(rand() / 10**12):
> d := evalf(subs(z = x, diff(cot(Pi*z), z$nmax))):
> if (evalb(abs(d) < dmax)) then
> printf("x = %10.7f\t%5d\t%5d\t% 15.7e\n", x, ktest, nmax, d)
> end if
> end proc:

> # 32-bit IEEE 754 binary overflow limit
> for k from 1 to 100 do test(28, k, 3.402823e38) end:
x = 0.4906575 38 28 5.9577625e+37
...
x = 0.5067042 85 28 -4.1659363e+37

> for k from 1 to 1000 do test(29, k, 3.402823e38) end:
[no output]

> # 64-bit IEEE 754 binary overflow limit
> for k from 1 to 100 do test(150, k, 1.797693e+308) end:
x = 0.4971346 150 1.0173715e+308
x = 0.4993021 150 2.2047452e+307
x = 0.4996253 150 1.1775761e+307

> for k from 1 to 1000 do test(160, k, 1.797693e+308) end:
[no output]

> # 80-bit and 128-bit IEEE 754 binary overflow limit
> for k from 1 to 100 do test(1600, k, 1.189731e+4932) end:
x = 0.4972015 36 1600 1.1922704e+4919
x = 0.5041801 93 1600 -1.0259594e+4921
...

> for k from 1 to 100 do test(1700, k, 1.189731e+4932) end:
[no output]

Evidently, values of NMAX = 30, 160, and 1700 are likely to suffice for the three main IEEE 754 binary formats. Some-
what larger values are needed for the wider range of the decimal formats, and NMAX = 2000 is enough for the 128-bit
size. However, because some of the coefficients are inexact for n > 20, we conclude that accuracy of the derivatives
must deteriorate beyond that limit. Computed values of the polygamma functions on the negative axis for large n
are therefore unreliable, and numerical tests suggest that n = 40 is a more realistic maximum practical order in that
region.

For positive integer arguments, the polygamma functions are intimately related to the Riemann zeta numbers,
ζ(n), that we treat later in Section 18.7 on page 579:

ψ(n)(1) = (−1)n+1n! ζ(n + 1), for n = 1, 2, 3, . . . ,

ψ(n)(m) = (−1)nn!
(
−ζ(n + 1) + 1 +

1
2n+1 +

1
3n+1 + · · ·+ 1

(m − 1)n+1

)
.

We describe later a function family, ZETNUM(n), that computes the zeta numbers, ζ(n). For n > 1, their values are
roughly 1.645, 1.202, 1.082, 1.037, . . . , and they tend smoothly to 1 from above. There is clearly subtraction loss in the
first two terms of the expansion for ψ(n)(m). A second function family, ZETNM1(n), computes the difference ζ(n)− 1
accurately, but the sum of the first two terms remains negative. Numerical tests show that there is almost always
severe subtraction loss when m > 1, making use of the relation impractical in fixed-precision arithmetic.

552 Chapter 18. The Greek functions: gamma, psi, and zeta

Half-integral arguments of polygamma functions also have special forms:

ψ(n)(1
2) = (−1)n+1n! (2n+1 − 1)ζ(n + 1), for n = 1, 2, 3, . . . ,

ψ(1)(m + 1
2) =

1
2 π2 − 4

m

∑
k=1

(2k − 1)−2, for m = 1, 2, 3,

Numerical tests show that the subtraction in the second relation loses one decimal digit for small m, and about three
digits for m = 100.

For fixed order, the polygamma functions satisfy these recurrence relations:

ψ(n)(z + 1) = ψ(n)(z) + (−1)nn! z−n−1,

ψ(n)(z + m) = ψ(n)(z) + (−1)nn!
m−1

∑
k=0

(z + k)−(n+1), for m = 1, 2, 3, . . . ,

ψ(n)(z) = ψ(n)(z − m) + (−1)nn!
m

∑
k=1

(z − k)−(n+1), for m = 1, 2, 3,

For fixed n and positive x, the polygamma functions have no zeros, and have the sign (−1)n+1, so they are negative
for even n, and positive for odd n. The right-hand side always has a subtraction that may cause catastrophic loss of
leading digits if the recurrence is used in the upward direction. However, in the downward direction, the recurrence
is stable. An early published algorithm [TS69] for that function family consequently used downward recurrence
from the asymptotic region described later.

A numerical experiment in Maple easily finds the intervals in which the recurrence formula suffers subtraction
loss (output has been reformatted into three columns):

> for n in {
> seq(i, i = 1 .. 9, 1),
> seq(i, i = 10 .. 90, 10),
> seq(i, i = 100 .. 900, 100)
> }
> do
> printf("%3d [0, %8.3f]\n", n, fsolve(Psi(n,x) / ((-1)**n * n! * x**(-n - 1)) = -2, x = 0 .. 2*n))
> end do:
1 [0, 1.390] 10 [0, 14.370] 100 [0, 144.212]
2 [0, 2.830] 20 [0, 28.797] 200 [0, 288.482]
3 [0, 4.272] 30 [0, 43.224] 300 [0, 432.751]
4 [0, 5.714] 40 [0, 57.651] 400 [0, 577.021]
5 [0, 7.157] 50 [0, 72.078] 500 [0, 721.290]
6 [0, 8.599] 60 [0, 86.504] 600 [0, 865.560]
7 [0, 10.042] 70 [0, 100.931] 700 [0, 1009.829]
8 [0, 11.485] 80 [0, 115.358] 800 [0, 1154.099]
9 [0, 12.927] 90 [0, 129.785] 900 [0, 1298.368]

We conclude that subtraction loss is likely if x < 1.45n. Software may need to tabulate the problem intervals so that
alternate algorithms, or higher precision, can be used in the loss regions. To illustrate the severity of the problem,
consider this example with a nine-digit loss:

ψ(10)(9.5 − 8) = −42 108.858 768 975 491 796 771 . . . ,

10!
8

∑
k=1

(9.5 − k)−(10+1) = +42 108.858 670 481 478 569 400 . . . ,

ψ(10)(9.5) = − 0.000 098 494 013 227 370

The psi and polygamma functions satisfy argument-multiplication formulas that can be useful for software test-

18.3. Polygamma functions 553

ing:

ψ(mz) = log(m) + m−1
m−1

∑
k=0

ψ(z +
k
m
), for m = 1, 2, 3, . . . ,

ψ(n)(mz) = m−n−1
m−1

∑
k=0

ψ(n)(z +
k
m
), for m, n = 1, 2, 3,

The second formula is numerically stable on the positive axis, but the first may be subject to subtraction loss for
z < 1.461 . . . , below the only location where ψ(x) < 0 for x > 0. Once again, a numerical experiment identifies the
problem argument ranges, and output has been reformatted into three columns:

> for x from 0.05 to 1.50 by 0.05 do
> m_min := infinity:
> m_max := -m_min:
> for m from 1 to 50 do
> s := log(m):
> t := sum(Psi(x + k/m), k = 0 .. m - 1):
> r := evalf(s / t):
> if (evalb((-2 <= r) and (r <= -1/2))) then
> m_min := min(m_min, m):
> m_max := max(m_max, m):
> end if
> end do:
> if (evalf(m_min <= m_max)) then
> printf("%4.2f %2d %2d\n", x, m_min, m_max)
> end if
> end do:
0.65 3 7 0.80 2 26 0.95 2 50
0.70 3 11 0.85 2 42 1.00 2 2
0.75 2 17 0.90 2 50 1.05 2 2

There are series expansions that can be computationally useful in those regions where the sums converge quickly,
and where subtraction loss is not a problem:

ψ(n)(1 + z) = (−1)n+1
∞

∑
k=0

(−1)k(n + k)! ζ(n + k + 1)zk

k!
, for |z| < 1,

ψ(n)(z) = (−1)n+1n!
∞

∑
k=0

(z + k)−n−1, if z �= 0,−1,−2,

The first sum converges quickly for tiny |z|, but the second is only practical when n � |z|.
The alternating signs in the first sum can cause subtraction loss. Numerical experiments in Maple suggest that

the sum should be used only when |z| < 1/(16(n + 1)).
The second sum shows polygamma-function behavior near the origin:

lim
z→0

ψ(n)(z) → (−1)n+1n! z−n−1.

We can use that one-term formula computationally whenever |zn+1| < 1
2 ε/β. Because the power decreases as n

grows, we apply that formula for all n whenever |z| <
√

1
2 ε/β. More generally, for arbitrary n > 0, and t base-β

digits of precision, we can use the formula whenever (n + 1)× (logb(|z|) + 1) < −(t + 1).
The analysis of the preceding paragraph is based on our usual practice of setting a loop termination condition

with the assumption of rapidly decreasing terms. However, in this case that assumption is incorrect, and we can
improve the computed result by adding a small correction. To find that correction, we examine the omitted terms of
the sum like this:

554 Chapter 18. The Greek functions: gamma, psi, and zeta

% maple
> f := proc(n, x)
> local k:
> return sum((x + k)**(-n - 1), k = 1 .. infinity)
> end proc:

> for n from 1 to 12 do
> t1 := convert(series(f(n,x), x = 0, 2), polynom):
> c0 := op(1,t1):
> c1 := evalf(coeff(t1,x)):
> printf("n = %3d c0 = %19a err = % 10.6f * x\n", n, c0, c1)
> end do:
n = 1 c0 = 1/6*Pi^2 err = -2.404114 * x
n = 2 c0 = Zeta(3) err = -3.246970 * x
n = 3 c0 = 1/90*Pi^4 err = -4.147711 * x
n = 4 c0 = Zeta(5) err = -5.086715 * x
n = 5 c0 = 1/945*Pi^6 err = -6.050096 * x
n = 6 c0 = Zeta(7) err = -7.028541 * x
n = 7 c0 = 1/9450*Pi^8 err = -8.016067 * x
n = 8 c0 = Zeta(9) err = -9.008951 * x
n = 9 c0 = 1/93555*Pi^10 err = -10.004942 * x
n = 10 c0 = Zeta(11) err = -11.002707 * x
n = 11 c0 = 691/638512875*Pi^12 err = -12.001473 * x
n = 12 c0 = Zeta(13) err = -13.000796 * x

Evidently, the coefficient of x in the truncated correction c(n)0 + c(n)1 x soon approaches −(n + 1), so with a short table
of coefficients for small n, we can easily compute a tiny negative adjustment to the first term, which is just ζ(n + 1).
That value is computed rapidly by the mathcw library function ZETNUM(n+1) (see Section 18.7 on page 579). Thus,
for tiny x, we compute

ψ(n)(x) = (−1)n+1n!
(

x−(n+1) + (ζ(n + 1) + c(n)1 x)
)

.

The correction from the inner parenthesized sum is small, but its inclusion makes correctly rounded results more
likely near the pole at the origin.

Finally, there is an asymptotic expansion that can be used for sufficiently large arguments:

ψ(n)(z) � (−1)n+1z−n

(
(n − 1)! + 1

2 n! z−1 +
∞

∑
k=1

B2k
(2k + n − 1)!

(2k)!
z−2k

)
.

Each of the three terms in the outer parenthesized sum can be the dominant one, depending on the values of n and
x. The factorials and powers are subject to floating-point overflow and underflow, so for computational purposes,
we rewrite the expansion like this:

ψ(n)(z) � (−1)n+1z−nn!

(
1
n
+

1
2z

+
1
n!

∞

∑
k=1

B2k
(2k + n − 1)!

(2k)!
z−2k

)
.

In that form, the terms in the parenthesized sum are small, and the underflow and overflow problems reside entirely
in the outer multiplier z−nn!. We discuss later in Section 18.3.2 on page 557 how that factor is handled.

The terms in the asymptotic expansion require the rapidly growing Bernoulli numbers, B2k (see Section 18.5 on
page 568). As always with asymptotic series, the sum can be accumulated only while the term magnitudes decrease.
With the help of the limiting value for the ratio B2k/(2k)! that we derive later, we can estimate the terms like this:

tk = B2k
(2k + n − 1)!

(2k)!
z−2k ≈ (−1)k+12(2k + n − 1)!

(2πz)2k .

The critical term ratio is then∣∣∣∣ tk+1

tk

∣∣∣∣ ≈ (2k + n + 1)(2k + n)
(2πz)2 ≈

(
k

πz

)2

, provided k � n.

18.3. Polygamma functions 555

Table 18.4: Accuracy of the asymptotic series for polygamma functions, ψ(n)(x). The numbers tabulated are the
counts of correct decimal digits for various orders (columns) and arguments (rows) when term growth begins.

n
x 1 2 3 4 5 6 7 8 9 10 20 30 40 50

10 25 23 22 21 19 18 17 16 16 15 8 4 2 1
20 52 50 48 47 45 44 43 41 40 39 30 23 17 13
30 80 77 75 74 72 70 69 67 66 65 54 45 37 31
40 107 104 102 100 99 97 95 94 92 91 78 68 60 52
50 134 131 129 127 125 124 122 120 119 117 104 93 83 75

We therefore expect that we can sum terms until k ≈ 3|z|.
A numerical experiment for various orders and real arguments produces the data shown in Table 18.4 that predict

the maximum accuracy attainable with the asymptotic series. We conclude that, for the 16-digit formats typical of the
double data type, we can handle n ≤ 8 for x = 10, and n ≤ 40 for x = 20. For larger x values, the asymptotic series
is sufficiently accurate, and converges quickly, but premature overflow in the terms because of the limited exponent
range of hardware floating-point arithmetic remains a nuisance.

The authors of the previously cited paper [TS69] suggest that the asymptotic series be used whenever x >
max(1

2 (n + d), n), where d is the precision in decimal digits. A rough fit to our tabulated data shows that the co-
efficient 1

2 in that relation should be replaced by 0.921 when n = 0, by 0.846 when n = 1, . . . , and by 0.384 when
n = 19. That last coefficient can be reused for larger n values.

18.3.1 Applications of polygamma functions

One of the important uses of psi and polygamma functions is summation of finite and infinite series of reciprocal
linear functions. For constants b and c and integer n > 1, we have these relations:

K−1

∑
k=0

1
kb + c

=
ψ((Kb + c)/b)− ψ(c/b)

b
,

K−1

∑
k=0

(−1)k

kb + c
=

G((b + c)/b)− (−1)KG((Kb + c)/b)
2b

,

G(x) = ψ(1
2 (x + 1))− ψ(1

2 x), Bateman G function,

G(1 + x) =
2
x
− G(x), upward recurrence,

G(1 − x) =
2π

sin(πx)
− G(x), reflection rule,

G(x) =
∞

∑
k=0

2
(2k + x)(2k + x + 1)

,

∞

∑
k=0

1
(kb + c)n =

ψ(n−1)(c/b)
(−b)n(n − 1)!

,

∞

∑
k=0

(−1)k

(kb + c)n =
ψ(n−1)(c/(2b))− ψ(n−1)((b + c)/(2b))

(−2b)n(n − 1)!
.

The Bateman G function cannot be reliably computed from the difference of two psi functions, because they have
nearly identical values for large x. On the positive axis, G(x) is a slowly decaying positive function, with G(0) = +∞
and G(∞) = 0. On the negative axis, G(x) has poles at negative integers, and otherwise, is negative in unit intervals
with odd left endpoints, and positive in intervals with even left endpoints. We do not implement the Bateman
function in the mathcw library, but if the reader wishes to do so, a good starting point could be a modification of the
code for ψ(x) in psix.h.

556 Chapter 18. The Greek functions: gamma, psi, and zeta

Brychkov’s book of tables [Bry08, §5.1 and §6.2] contains a substantial collection of formulas involving sums and
integrals of the psi function, and a few for the polygamma functions.

18.3.2 Computing the polygamma functions

Spanier and Oldham [SO87, Chapter 44] discuss the psi and polygamma functions, and sketch simple iterative
schemes for their computation. Those algorithms have been implemented in the file pgamma.hoc, and comments there
document numerical experiments that show that the code is capable of reasonable accuracy for small arguments and
orders. However, the algorithms are unsuitable for a general library implementation that must handle the entire
floating-point range.

Baker [Bak92, pages 109–114] and Thompson [Tho97, §6.2] provide low-accuracy code for the psi function, and
the polygamma functions of orders n = 1 and n = 2. Moshier [Mos89, §7.3] has a more careful and accurate
treatment, but only for the psi function. Zhang and Jin [ZJ96, Chapter 3] cover only the psi function, and accuracy is
low.

The complex, and lengthy, presentation of the properties of the polygamma functions in Section 18.3 on page 547
shows that they are mathematically difficult functions. We augmented that description with numerical investiga-
tions of the practicality of software implementations of mathematical relations for the polygamma functions, and
found repeatedly that the standard recurrences and series are subject to severe digit loss from subtractions, and
that premature overflow or underflow is likely in terms that involve factorials, or powers, or, on the negative axis,
cotangents whose values are periodic with values in [−∞,+∞].

Symbolic-algebra systems often hide the problem of accuracy loss in numerical computation by redoing the
work in successively higher internal precision until an answer has been obtained that is stable to at least the user’s
requested precision. Those systems reduce the problem of premature overflow by having extremely wide exponent
ranges. For example, Maple handles numbers with more than 25 million decimal digits, and represents exponents
of 10 as 32-bit signed integers, allowing numbers as large as 102 147 483 646. Mathematica uses binary floating-point
arithmetic, with a largest value near 10323 228 458. The ranges of other algebra systems differ, but are still much larger
than those of hardware floating-point arithmetic.

In conventional programming languages, we do not have the luxury of adjustable precision or extreme exponent
ranges, and we also want to make computations fast. The only reasonable choice if we are to achieve acceptable
accuracy for library versions of the polygamma functions is to use a longer floating-point type whenever there is
danger of overflow or subtraction loss. The IEEE 754 design with representations of overflowed values as signed
infinities allows nonstop computing, but in older floating-point designs where overflow is often fatal, and in some,
where exponent ranges may be fixed for all precisions, it is difficult to program polygamma function computations
to avoid job-terminating overflow.

Our algorithm for the polygamma functions is based on that in Thompson’s book [Tho97, §6.2], where only ψ(x),
ψ(1)(x), and ψ(2)(x) for nonnegative x are treated in about four pages of Fortran code with a design goal of ten-
decimal-digit accuracy. However, our code permits computation of the polygamma functions for arbitrary n, subject
to the overflow limits of the chosen floating-point type when x < 0. For positive arguments, x, our code produces
results that are accurate to working precision when a higher intermediate precision is available.

Because we have no widely applicable range reduction formulas for the polygamma functions, and because we
have two parameters n and x, we cannot reduce the computation to a small interval where a single polynomial
approximation suffices, as we do for many of the elementary functions. Instead, we are often forced to sum general
series until terms become small enough to be ignored, or in the case of the asymptotic series, until terms grow.

We name our function family PGAMMA(n,x), and the lengthy code in the file pgammx.h follows these steps in order:

x is a NaN : Set a domain error, and set the result to that NaN.

n < 0 : Set a domain error, and set the result to a quiet NaN.

n = 0 : Set the result to PSI(x), so that henceforth, we have n > 0.

x is −∞ : Set a range error, and set the result to +∞, even though the sign is indeterminate, and the function range
is [−∞,+∞]. A NaN could also be a suitable return value for this case, but there is no ISO Standard to guide
us.

x is +∞ : Set the result to −0 if n is even, and +0 if n is odd.

18.3. Polygamma functions 557

|x| < 1
2 and (n + 1)(logb(x) + 1) < −(t + 1) : Use the leading term of the sum with terms (x − k)−n−1, plus the

zeta-number correction described on page 554.

x < 0 : Use the reflection formula to move the computation to the positive axis. Do the computation in the next
higher precision because of the steep behavior of the polygamma functions of negative arguments. Use the
COTANPI() family for accurate computation of the trigonometric term. Apply the cotangent argument-sum
formula to replace cot(π(1 − x)) by cot(−πx) = − cot(πx), guaranteeing an exact argument. Handle the
derivatives of the cotangent for n in [1, 25] with inline code generated by a symbolic-algebra system, and for
arbitrary order n, with a symbolic-derivative routine based on the code shown in Section 18.3 on page 550.

x in [0, 1
2) : Use the reflection formula to move the computation to the interval [1

2 , 1] (described two regions later).

x in (1 − XCUT_1, 1 + XCUT_1) : Starting from the second term of the series expansion of ψ(n)(1 + x), sum terms to
convergence, then add the first term. Call the ZETNUM() function for values of the factors ζ(n + k + 1) in the
coefficients. The factorials in the coefficients can be eliminated by using a straightforward recurrence for the
terms. The rounding errors from repeated multiplications in the recurrence are tolerable because the term
magnitudes decrease. The value of XCUT_1 is 1/(16(n + 1)).

x in [1
2 , 3

2) : Because we have no usable series expansion in this region for small n, use one of fifteen separate Cheby-
shev expansions for n in [1, 15]. For the 256-bit formats, fits are needed for n in [1, 30]. For larger orders, sum
the series containing terms (x + k)−n−1. In both cases, compute the result in the next higher precision, and
return an error estimate along with the function value in working precision.

The large number of polynomial fits is regrettably necessary in order to avoid excessive term counts in the
series summation. The UNIX size command applied to the compiled polygamma object files reports storage
sizes of 32 KB to 148 KB, values that are exceeded in the mathcw library only by the power functions. Those
sizes may be excessive for historical architectures, but are unlikely to be of concern on modern systems.

x in [3
2 , 5

2) : Thompson’s algorithm in this region uses upward recurrence from the interval [1
2 , 3

2). However, as n
increases, subtraction loss soon destroys accuracy. Consequently, we use the same algorithm as on the interval
[1

2 , 3
2), but with new polynomial fits.

x in [5
2 , ∞) : Use the m-step downward recurrence formula from the region where the asymptotic series is usable,
doing all calculations in the next higher precision. If term growth is encountered, recompute the polygamma
function ψ(n)(x +m) from its series with terms (x +m− k)−n−1. Compute the argument x +m and the function
in the next higher precision to eliminate argument error.

In the asymptotic expansion, we promised earlier to discuss the computation of the outer factor x−nn!. We use the
asymptotic expansion only when x > 1, so x−n can only underflow. With the float data type on many systems, n!
overflows already for n > 34, and with the double type in IEEE 754 arithmetic, n! is representable only for n < 171.
Mathematically, we can write the factor like this:

x−nn! = exp(log(x−nn!)),
= exp(−n log(x) + log(n!)),
= exp(−n log(x) + log(Γ(n + 1))),
≈ EXP(-n * LOG(x) + LGAMMA(n + 1)).

The last line relates the factor to standard library functions. The logarithms solve the premature-overflow problem.
If the expression underflows, it does so with a large negative argument of the exponential. If it overflows, then the
argument must be large and positive, and the exponential function is programmed to handle that case sensibly.

Unfortunately, that apparently simple solution is unsatisfactory, because of the problem of error magnification in
the exponential function: its error is proportional to the magnitude of its argument (see Section 4.1 on page 61).

The first version of the code in pgammx.h computed x−n from IPOW(x,-n) and n! from FACT(n). If the power
underflowed to a subnormal or zero, or the factorial overflowed, the code switched to the exponential form. Testing
showed large errors when either n or x is large, and that problem was traced to the inherent error magnification of
the exponential function.

558 Chapter 18. The Greek functions: gamma, psi, and zeta

The solution is to exploit the fact that floating-point arithmetic represents numbers in exponential form, just as we
did in our implementations of the exponential, logarithm, and power functions that are described in earlier chapters
of this book. That is, we rewrite the expressions like this:

n! = βlogβ(n!)

= βj+g, for integer j, and fractional g in [− 1
2 , 1

2],

x = f × βk, for integer k, and fractional f in [1/β, 1),

k = LOGB(x)+ 1, exact computation of k,

f = SCALBN(x, -k), exact computation of f ,

x−n = f −n × β−kn,

x−nn! = f −n × βg × βj−kn,
= SCALBN(IPOW(f,-n) * EXPBASE(g), j - k * n).

Here, EXPBASE() means EXP2(), EXP8(), EXP10(), or EXP16(), depending on the floating-point base. The argument of
that function is small, so error magnification is eliminated, and the function value lies in the small interval [1/

√
β,√

β]. Because of the restrictions on f and n, we have IPOW(f,-n) > 1. Premature overflow in that power, or its
product with the exponential, is still possible, but much less likely than the underflow of x−n. Integer overflow
is also possible in the expression j − kn, but we can handle that with our safe-integer-arithmetic test functions,
is_add_safe() and is_mul_safe().

We could find logβ(n!) from log(n!) log(β), and compute that value from log(Γ(n + 1)) log(β) =

LGAMMA(n + 1) * LOG_BETA, where the last factor is a compile-time constant. However, the log-gamma function
is expensive, and the required range of n is often modest, so we added a new function family, LOGBFACT(n,&j), to
the mathcw library. The code in lgbfax.h uses table lookup to find the required value, and returns a value g in
[− 1

2 , 1
2] such that logβ n! = j + g, where the integer j is returned via the second pointer argument. However, if j

is too large to represent as an integer, the entire function result is contained in g, which is then unrestricted. To
reduce table size, the code only stores high-precision values of log(n!) at steps of a size chosen so that we can find
log(n!) = log(n(n− 1) · · · (m+ 1)m!) = log(n(n− 1) · · · (m+ 1)) + log(m!), where the product in the first logarithm
is exact, and the second logarithm is found in the reduced table. For example, storage of the logarithms of 0!, 5!, 10!,
. . . allows the code to find intermediate values with at most three multiplications and a logarithm. With the IEEE
754 binary 53-bit significand, the products are exact for up to 13-bit factors, so we can handle n < 16 384 that way.
In practice, we limit the maximum tabulated value to n such that (1

2 n)! is just below the overflow limit. The code in
lgbfax.h handles larger n values by calling the log-gamma function.

The extra precision provided by the representation logβ(n!) = j+ g allows errors in similar expressions involving
n! to be reduced or eliminated, justifying the addition of LOGBFACT(n,&j) to the library.

Because most of our algorithm works in the next higher precision, tests of the float and double functions in
binary and decimal arithmetic show relative errors below 1

2 ulp, even for orders up to 5000. For negative arguments,
the steepness of the polygamma functions soon reduces accuracy, and the results are not trustworthy for n > 40.
Much higher precision appears to be needed to solve that problem. When a higher precision data type is not avail-
able, accuracy suffers, as shown in Figure 18.10 on the facing page.

18.3.3 Retrospective on the polygamma functions

Our algorithm for accurate computation of the polygamma functions is complicated, and the code in pgammx.h is
intricate and long. It is therefore reasonable in retrospect to ask whether simpler approaches are possible. Cer-
tainly none of the software in the previously cited works [TS69, SO87, Mos89, Bak92, Tho97], except possibly that of
Moshier for the psi function, provides the accuracy required for the mathcw library.

At the start of our description of the polygamma functions, we gave an integral representation, and integrals can
often be evaluated to reasonable accuracy by numerical quadrature. There are several methods that follow early
work of Gauss, differing in range [a, b], weight functions w(x), nodes xk, and weights wk:

∫ b

a
f (x)w(x) dx ≈

N

∑
k=1

wk f (xk).

18.3. Polygamma functions 559

Figure 18.10: Errors in the 80-bit binary pgammal(n,x) and 128-bit decimal pgammadl(n,x) functions for n = 1, 10,
and 25, where no higher intermediate precision is yet available. The errors are computed relative to high-precision
values from Maple. Notice that the vertical ranges differ, and that errors for our implementation of the polygamma
functions of order n are generally below n ulps.

0

1

2

-60 -40 -20 0 20 40 60

u
lp

s

x

Errors in pgammal(1,x)

0

1

2

-60 -40 -20 0 20 40 60

u
lp

s

x

Errors in pgammadl(1,x)

0

2

4

6

8

10

-60 -40 -20 0 20 40 60

u
lp

s

x

Errors in pgammal(10,x)

0

2

4

6

8

10

-60 -40 -20 0 20 40 60

u
lp

s

x

Errors in pgammadl(10,x)

0

5

10

15

20

25

-60 -40 -20 0 20 40 60

u
lp

s

x

Errors in pgammal(25,x)

0

5

10

15

20

25

-60 -40 -20 0 20 40 60

u
lp

s

x

Errors in pgammadl(25,x)

560 Chapter 18. The Greek functions: gamma, psi, and zeta

Those methods have the property that the weights are all positive, and sum to one. The error in the quadrature
is proportional to a scaled high-order derivative, f (2N)(x)/(2N)!, for some x in the interval of integration. The
quadrature is therefore exact when f (x) is a polynomial of degree 2N − 1 or less.

For the polygamma functions, the most suitable method is N-point Gauss–Laguerre quadrature, characterized by
an infinite range, and a decaying exponential weight function:

∫ ∞

0
f (x) exp(−x) dx ≈

N

∑
k=1

wk f (xk).

If we replace t by t/z in our original integral, we can find the function needed for the Gauss–Laguerre form:

ψ(n)(z) = (−1)n+1
∫ ∞

0

(t/z)n exp(−t)
z(1 − exp(−t/z))

dt,

f (z) =
(t/z)n

z(1 − exp(−t/z))
≈ −IPOW(t / z, n)

z * EXPM1(-t / z)
.

Some early research papers and later books [SZ49, AS64, SS66, DR84, Zwi92, OLBC10] tabulate the nodes xk and
weights wk for members of the Gauss quadrature family, but the orders and accuracy are too low for our needs.

Fortunately, modern symbolic-algebra systems make it possible to compute the nodes and weights for any order
and precision. The Maple file glquad.map provides functions for automatic generation of Gauss–Laguerre quadrature
functions in C and hoc. Some of those functions are incorporated in a test program, glquad.c, that compares the
accuracy of the quadrature approach with that provided by our pgammal(n,x) function.

Tests with glquad.c for a range of orders and arguments show that 100-point quadrature is reasonably effective
for n < 100 and x > 1.5, with errors below 25 ulps in the 128-bit IEEE 754 format. However, for smaller x values,
accuracy deteriorates rapidly, and only a few leading digits are correct. The problem is that, although the integrand
is positive, for small x, its maximum occurs well past the last node point, which, for an order-N Gauss–Laguerre
quadrature, lies below 4N. The nodes therefore fail to sample the integrand where it is large. Although the Gauss–
Laguerre weights are easily obtained from the nodes, no explicit formula for the nodes is known. For large N, their
accurate determination requires high precision, and long computing times, in a symbolic-algebra system.

We conclude that numerical quadrature could be a component of general software for computing polygamma
functions, but it fails to provide a complete solution. The small-argument region is the difficult one where conver-
gence of standard mathematical formulas is poor, but downward recurrence solves that problem.

18.4 Incomplete gamma functions

The gamma function can be represented as an integral of the form

Γ(a) =
∫ ∞

0
ta−1 exp(−t) dt, a > 0.

That integral can be split into lower and upper parts, called the ordinary and complementary incomplete gamma
functions, defined as follows for x ≥ 0:

γ(a, x) =
∫ x

0
ta−1 exp(−t) dt, ordinary,

Γ(a, x) =
∫ ∞

x
ta−1 exp(−t) dt, complementary,

γ(a, x) + Γ(a, x) = Γ(a), by definition.

It is helpful to remember that the lowercase incomplete gamma refers to the lower region, and the uppercase incomplete
gamma handles the upper region.

Those two are among the most important of the special functions, and they are more difficult to compute than the
single-argument elementary functions. Our notation is common in mathematical treatments of those functions, and
the complete and incomplete functions with the uppercase Greek letter are distinguished by their argument counts.

18.4. Incomplete gamma functions 561

Those functions are not part of the Standard C or POSIX libraries, but we cover them in this book, and include them
in the mathcw library, for reasons to be revealed shortly.

The Maple symbolic-algebra system provides the complementary function as GAMMA(a,x), and Mathematica calls
that function Gamma[a,x]. Maxima calls it gamma_incomplete(a,x), MuPAD names it igamma(a,x), and PARI/GP
calls it incgam(a,x). Those algebra systems expect the ordinary incomplete gamma function to be obtained by sym-
bolic subtraction from the complete gamma function. That omission is unfortunate, because numerical evaluation of
γ(a, x) then requires a precision high enough to hide the subtraction loss.

From the definitions of the incomplete gamma functions, we have these limiting cases:

γ(a, 0) = 0, Γ(a, 0) = Γ(a),
γ(a, ∞) = Γ(a), Γ(a, ∞) = 0.

Although the incomplete gamma functions are defined only for x ≥ 0, they can be extended so that their first
argument, a, can range over (−∞,+∞). The complicated behavior of the ordinary gamma function at negative
arguments, with poles at zero and negative integer arguments, carries over to γ(a, x), which for all x ≥ 0, has poles
when a is a negative integer. For x > 0, the complementary function, Γ(a, x), is free of poles.

Like the complete gamma function, the incomplete gamma functions readily exhibit floating-point underflow
and overflow when computed numerically. For that reason, it is conventional to work instead with scaled functions
that have better numerical behavior, and have definitions that depend on the sign of the argument a:

g(a, x) =

{
γ(a, x)/Γ(a), when 0 < a,

1 − Γ(a, x)/Γ(a), when a ≤ 0,

G(a, x) =

{
Γ(a, x)/Γ(a), when 0 < a,

x−a exp(x)Γ(a, x)/Γ(a), when a ≤ 0.

We assume henceforth that x ≥ 0 without explicitly stating that restriction. Both functions are nonnegative, and
satisfy the relation

g(a, x) + G(a, x) = 1, when 0 < a.

Under the stated condition, both functions lie in [0, 1].
The incomplete gamma functions are indeterminate when both arguments are zero, and it is conventional to use

these limiting values of the scaled functions:

g(a, 0) = 0, G(a, 0) = 1, when 0 < a,

g(a, 0) = 1, G(a, 0) = ∞, when a = 0,

g(a, 0) = ∞, G(a, 0) = 1/|a|, when a < 0.

The scaled functions satisfy these recurrence relations:

G(a + 1, x) = G(a, x) + xa exp(−x)/Γ(a + 1),
g(a + 1, x) = g(a, x)− xa exp(−x)/Γ(a + 1).

The first of those relations is computationally stable only in the upward direction, and the second only in the down-
ward direction.

The incomplete gamma functions arise in various areas of chemistry, engineering, mathematics, physics, prob-
ability, and statistics. For our purposes, they are of particular interest because of their relations to other important
functions:

chisq(ν, x) = γ(ν/2, x/2)/Γ(ν/2), ν = 1, 2, 3, . . . ,

= g(ν/2, x/2),
erf(x) = g(1

2 , x2),

erfc(x) = G(1
2 , x2),

exp(−x) = Γ(1, x), x ≥ 0,

562 Chapter 18. The Greek functions: gamma, psi, and zeta

= G(1, x),
E1(x) = Γ(0, x),
Eν(x) = xν−1Γ(1 − ν, x),

g(n + 1, x) = 1 − exp(−x)
n

∑
k=0

xk/k!, n = 0, 1, 2,

The chi-square (Greek letter chi, χ) probability distribution function, and its inverse function, is useful for the analysis
of models of experimental data. Its arguments are the number of degrees of freedom, ν (Greek letter nu), and the
chi-square measure, x; see Section 7.15.1 on page 197 for details. In the statistics literature, two common notations
for the chi-square probability functions are related to our functions like this:

P(χ2|ν) = chisq(ν, χ2), Q(χ2|ν) = 1 − P(χ2|ν), ν = 1, 2, 3, . . . ,

= g(ν/2, χ2/2), = G(ν/2, χ2/2),
= gami(ν/2, χ2/2), = gamic(ν/2, χ2/2).

Here, χ2 is the chi-square measure and we introduce the functions gami() and gamic() shortly. The Handbook of
Mathematical Functions summarizes their properties and gives extensive tables of their values; see [AS64, Chapter 26]
and [OLBC10, Chapter 8].

The relation of the incomplete gamma functions to the two error functions provides a useful check for computer
code, although our algorithms for the error functions described in Section 19.1.2 on page 595 are faster, and achieve
better accuracy, than is likely to be possible for the more difficult incomplete gamma functions.

Although we do not discuss it further in this book, the exponential integral Eν(x) is important for some computa-
tional areas, such as transport problems and molecular scattering theory. When ν is a negative integer, the functions
Eν(x) are related to certain integrals that appear in the quantum mechanics of molecules.

The algorithm that we use for the incomplete gamma functions is that of Gautschi [Gau79a, Gau79b], although
our code is developed independently of his. Subsequent articles on those functions in the journal of publication, and
in statistical journals, do not offer the accuracy that we require for the mathcw library.

The presence of two arguments in the incomplete gamma functions makes a significant difference in how they are
computed. Rational polynomial fits in a single variable are no longer applicable, so we have to evaluate the functions
from series summation, continued fractions, and recurrence relations, some needing hundreds of terms, and the
computations often require other library functions. Thus, we do not expect to achieve either the high accuracy, or
the speed, that we reach for the elementary functions.

For a > 0, we can compute the smaller of g(a, x) and G(a, x), and obtain the larger by a single subtraction.
However, which of them is smaller depends on the arguments. Thus, our code computes them together, and wrapper
functions then make them available separately. Our function interface looks like this:

void gamib (double result[/* 2 */], double a, double x);
double gami (double a, double x);
double gamic (double a, double x);

Companions for other floating-point types take the usual suffixes. The first of them, gamib(), returns g(a, x) in
result[0] and G(a, x) in result[1].

Gautschi’s treatment of those functions is thorough, and requires a 15-page article. Here, we only sketch the steps,
leaving out the many details that are necessary in the computer program. The need for several separate computa-
tional recipes is a major impediment to implementing the code, and Gautschi’s monolithic Fortran implementation
is difficult to follow. Our code splits the job into 13 separate functions, of which gamib() is the only public one. All
of the logic control is handled by a dozen if statements in gamib(), and all of the computation is relegated to the
12 private functions, each of which does a single task.

Which of the g(a, x) and G(a, x) functions to compute first is controlled by the values of two critical cutoffs, both
positive:

ac =

{
log(1

2)/ log(x), when 0 < x < 1
4 ,

x + 1
4 , when x ≥ 1

4 ,

xc =
3
2 .

With those cutoffs in hand, here are the steps of Gautschi’s algorithm for the incomplete gamma functions:

18.4. Incomplete gamma functions 563

� If either argument is a NaN, the results are set to that NaN, and errno is set to EDOM.

� If x < 0, the results are quiet NaNs, and errno is set to EDOM.

� The special cases listed earlier for zero and infinite arguments are handled quickly by direct assignment.
Henceforth, we have finite a, and x > 0.

� If x ≤ xc and a < − 1
2 , compute G(a, x) by upward recurrence, and compute g(a, x) from its second definition in

terms of G(a, x) and Γ(a). The number of terms in the recurrence is essentially −a�, so to prevent unbounded
execution time, our code sets a loop limit of 2135, based on the observation that Γ(−2135.5) ≈ 5.28 × 10−6185

is below the smallest subnormals in 128-bit binary and decimal arithmetic. For a < −2135, the code returns a
quiet NaN, even though G(−2135.5, 1) ≈ 0.000 468.

If a better algorithm can be found for handling negative a of large magnitude, that protective infelicity should
be eliminated. In practice, it is unlikely to be met in most applications of the incomplete gamma functions.

Gautschi’s code does not make such a check, so it can be made to run arbitrarily long by passing it a negative
a of large magnitude.

� If x ≤ xc and a is in [− 1
2 , ac], compute G(a, x) by the Taylor series for Γ(a, x), noting the dependence of the

definition of G(a, x) on the sign of a. Set g(a, x) = 1 − G(a, x) when 0 < a, and otherwise compute it from its
second definition.

� If x ≤ xc and ac < a, compute g(a, x) by a power series, and set G(a, x) = 1 − g(a, x).

� If xc < x and a ≤ ac, compute G(a, x) from a continued fraction. If 0 < a, set g(a, x) = 1 − G(a, x). Otherwise,
compute g(a, x) from its second definition.

� Otherwise, we have xc < x and ac < a. Compute g(a, x) by a power series, and set G(a, x) = 1 − g(a, x).

Most of those steps require at least one invocation of the exponential, logarithm, and complete gamma functions.
That means that, despite the identity Γ(a, 0) = Γ(a), a software implementation of the incomplete gamma function
is unlikely to provide an independent route to the complete gamma function. The power series for γ(a, x) is subject
to serious subtraction loss, and requires careful rearrangement of terms to reduce that loss. The continued fraction is
evaluated in the forward direction, using a transformation to a sum that reduces the term-growth problem that we
discuss in Section 2.7 on page 12, and still permits early loop exit when the next term added no longer affects the
sum.

Our outline of the algorithm is clearly too limited to allow programming of the computational parts, but it does
show how the computation may require either g(a, x), or G(a, x), or both, making it practical to produce both of
them in one function. For some argument combinations, one of the functions is almost free.

Graphical displays of the errors in results from our initial code, as well as from that of several other implementa-
tions of those functions, revealed a serious problem: accuracy deteriorates for arguments of comparable magnitudes
larger than about 30. Tracing the algorithm’s execution revealed the culprit: the computation of the scale factor
xa exp(−x)/Γ(a). Although the exponential term is nicely restricted to [0, 1], it is subject to underflow for large |x|.
The other two terms can both overflow and underflow, depending on the values of a and x. Even though the scale
factor may be representable in floating-point arithmetic if computed in exact arithmetic, underflows and overflows
often prevent its computation as written.

Gautschi’s code, and most others, handles that problem by rewriting the scale factor as exp(a log(x) − x −
lgamma(|a|)), and then accounting for the sign of Γ(a) when a < 0.

When the computed scale factor is close to one, the argument of the exponential must be nearly zero, and thus,
must have suffered massive subtraction loss, and has seriously lowered accuracy. For small arguments z, from the
Taylor series, we know that exp(z) ≈ 1 + z, so the error in z is masked by the addition. Nevertheless, the measured
errors reach more than 600 ulps for a in [−100, 100] and x in [0, 100].

One reasonable solution is to compute the scale factor in the next higher precision, if it is available. However,
it seems better to retain the original form as long as its factors, and their products and quotients, neither overflow
nor underflow. The range of arguments that must be supported makes the computation difficult, but the payoff is
substantial, reducing the worst-case errors to about 5 ulps when a > 0.

The programming is simplified if we introduce floating-point companions, is_fdiv_safe(x,y) and
is_fmul_safe(x,y), to the functions for safe arithmetic with integers described in Section 4.10.1 on page 74. They

564 Chapter 18. The Greek functions: gamma, psi, and zeta

are private functions, each of about 20 lines of code, that check whether their arguments can be divided or multiplied
without overflow, and without causing overflow themselves. They assume that their arguments are finite, and that
underflows are harmless.

The scale factor can then be computed with this function:

static fp_t
pow_exp_gam (fp_t a, fp_t x)
{ /* compute x**a * exp(-x) / tgamma(a) avoiding premature underflow and overflow */

fp_t e; /* EXP(-x) */
fp_t g; /* TGAMMA(a) */
fp_t p; /* POW(x,a) */
fp_t r; /* FABS(result) */
fp_t result;
int use_exp_log, use_lgamma;
static int do_init = 1;
static fp_t EXP_ARG_UFL = FP(0.0);
static fp_t TGAMMA_ARG_OFL = FP(0.0);

if (do_init)
{

#if defined(HAVE_FP_T_DECIMAL_LONG_LONG_DOUBLE)
TGAMMA_ARG_OFL = FP(310942.551258823560);

#elif defined(HAVE_FP_T_DECIMAL_LONG_DOUBLE)
TGAMMA_ARG_OFL = FP(22124.54995666246323632807135355445);

#elif defined(HAVE_FP_T_DECIMAL_DOUBLE)
TGAMMA_ARG_OFL = FP(205.37966293287085);

#elif defined(HAVE_FP_T_DECIMAL_SINGLE)
TGAMMA_ARG_OFL = FP(69.32968);

#elif defined(HAVE_FP_T_OCTUPLE) && defined(HAVE_IEEE_754)
TGAMMA_ARG_OFL = FP(71422.483408627342);

#elif defined(HAVE_FP_T_QUADRUPLE) && defined(HAVE_IEEE_754)
TGAMMA_ARG_OFL = FP(1755.548342904462917);

#elif defined(HAVE_FP_T_DOUBLE) && defined(HAVE_IEEE_754)
TGAMMA_ARG_OFL = FP(171.6243765);

#elif defined(HAVE_FP_T_SINGLE) && defined(HAVE_IEEE_754)
TGAMMA_ARG_OFL = FP(35.040);

#else
fp_t t; /* TGAMMA(z) */
fp_t z;

z = FP(12.0);
t = FP(39916800.0); /* exactly representable TGAMMA(z) */

for (;;) /* advance by TGAMMA(z + 1) = z * TGAMMA(z) */
{

if (t >= (FP_T_MAX / z)) /* z * t would overflow */
break;

t *= z; /* TGAMMA(z + 1) is finite */
z++; /* exact */

}

TGAMMA_ARG_OFL = z;

#endif /* defined(HAVE_FP_T_DECIMAL_LONG_LONG_DOUBLE) */

EXP_ARG_UFL = LOG(FP_T_MIN);

18.4. Incomplete gamma functions 565

do_init = 0;
}

use_exp_log = 1;
use_lgamma = 1;
g = ZERO;

do /* one-trip loop for breaks */
{

if (x < EXP_ARG_UFL) /* EXP(-x) likely underflows */
break;

if (a > TGAMMA_ARG_OFL) /* TGAMMA(a) likely overflows */
break;

e = EXP(-x);

if (e <= FP_T_MIN) /* exp(-x) unexpectedly underflows */
break;

p = POW(x, a);

if (p <= FP_T_MIN) /* x**a underflows */
break;

else if (FP_T_MAX <= p) /* x**a overflows */
break;

g = TGAMMA(a);

if (g <= FP_T_MIN) /* TGAMMA(a) underflows */
break;

else if (FP_T_MAX <= g) /* TGAMMA(a) probably overflows */
break;

use_lgamma = 0; /* TGAMMA(a) is finite and nonzero */

/* Compute result = (p * e / g) without overflow */

if (is_fmul_safe(p, e))
{

result = p * e;

if (is_fdiv_safe(result, g))
result /= g;

else
break;

}
else if (is_fdiv_safe(p, g))
{

result = p / g;
result *= e; /* possible (harmless) underflow */

}
else if (is_fdiv_safe(e, g))
{

result = e / g;

566 Chapter 18. The Greek functions: gamma, psi, and zeta

if (is_fmul_safe(result, p))
result *= p;

else
break;

}
else

break;

r = (result < ZERO) ? -result : result;

if (r <= FP_T_MIN) /* probable underflow */
break;

else if (r >= FP_T_MAX) /* probable overflow */
break;

use_exp_log = 0;

} while (0); /* end one-trip loop */

if (use_exp_log)
{

hp_t d;
int sign_tgamma;

sign_tgamma = use_lgamma ? 1 : ((g < ZERO) ? -1 : 1);
d = (hp_t)x + (use_lgamma ? HP_LGAMMA_R((hp_t)a, &sign_tgamma)

: HP_LOG((hp_t)(g < ZERO ? -g : g)));
result = (fp_t)HP_EXP((hp_t)a * HP_LOG((hp_t)x) - d);

if (sign_tgamma < 0)
result = -result;

}

return (result);
}

A simpler version of that function, pow_exp(), computes the factor xa exp(−x) that is needed for the computation of
G(a, x).

In the one-time initialization block, the argument at which the exponential underflows is easy to determine from
the logarithm, assuming that both functions are accurate, as ours are. The smallest nonnegative argument for which
the complete gamma function overflows is set by assignment for the common cases, and otherwise, is quickly esti-
mated to the nearest smaller whole number by upward recurrence from a known value that is representable in all
floating-point architectures, without needing to call the gamma function.

We assume that the exponential and power functions return the largest floating-point number, or Infinity, in the
event that their results are too large to represent. When |Γ(a)| is representable and already computed, we take its
logarithm; otherwise, we require the extension of the log-gamma function that also returns the needed sign.

The safety checks prevent overflows that would be fatal on many older architectures, but we assume that under-
flows are silently flushed either to zero, or else to the smallest representable magnitude of the appropriate sign. The
presence of a dozen break statements shows the considerable logical complexity of the computation.

Further testing showed that a significant source of error is subtraction loss in the computation of Γ(a, x) for a in
[− 1

2 , ac] and x in [0, xc]. The easiest way to reduce that loss is to do that portion of the computation in the next higher
precision, which is what our final version of the code does.

Because there are two arguments, the error plots require three-dimensional views, and are shown in Figure 18.11
for binary and decimal single-precision functions, and in Figure 18.12 for the corresponding double-precision func-
tions. For positive arguments less than about 30, most of the errors remain well below 2 ulps.

The test programs gamierf*.c compare computed values of g(1
2 , x2) and G(1

2 , x2) with results from the highest-
available precision of the error functions for logarithmically distributed x values chosen from several consecutive

18.4. Incomplete gamma functions 567

Figure 18.11: Errors in the gamibf() and gamibdf() functions. For large |a| and large x, errors in the binary functions
can reach about 15 ulps over the argument range shown here. The worst errors in the decimal functions are about
4 ulps.

subintervals of [0, ∞), and purified so that x2 is exact. For single- and double-precision versions of the incomplete
gamma functions in both binary and decimal arithmetic, the largest errors are usually below 2.5 ulps, except for
gamibd(), where errors reach 3.5 ulps.

Similar checks of the relation G(1, x) = exp(−x) with the test programs gamiexp*.c find no errors above 2.3 ulps.
The test programs ixsq*.c use the inverse of the chi-square function, which ultimately depends on the incom-

plete gamma functions, to reproduce several pages of tables in well-known mathematical handbooks and texts. The
data in the published tables are given only to five or six digits, so reproducing those tables is only a rough test.

Other tests output triples of a, x, and g(a, x) or G(a, x) as Maple expressions that, when evaluated, report the
error in ulps compared to high-precision values.

Treatments of the incomplete gamma function in other books (see [Bak92, Chapter 6], [GDT+05, Chapter 7],
[Mos89, Chapter 5], [PTVF07, Chapter 6], [Tho97, Chapter 6], and [ZJ96, Chapter 3]) usually have shorter code than
ours, but they do not handle the case of a ≤ 0, and the last also excludes x = 0. Except for Moshier’s code, they
support only the double type. None of them offers the more accurate computation of the scale factors that our
pow_exp() and pow_exp_gam() functions provide.

Just before this book went to press, new work [GRAST16] was published that addresses some of the difficulties
of computing the incomplete gamma function for negative arguments.

 0
 20

 40
 60

 80
-100

-50
 0

 50
 100

-4

-2

 0

 2

 4

ulps

Errors in g(a,x) from gamibf()

x
a

ulps

 0
 20

 40
 60

 80
-100

-50
 0

 50
 100

-4

-2

 0

 2

 4

ulps

Errors in G(a,x) from gamibf()

x
a

ulps

 0
 20

 40
 60

 80
-100

-50
 0

 50
 100

-4

-2

 0

 2

 4

ulps

Errors in g(a,x) from gamibdf()

x
a

ulps

 0
 20

 40
 60

 80
-100

-50
 0

 50
 100

-4

-2

 0

 2

 4

ulps

Errors in G(a,x) from gamibdf()

x
a

ulps

568 Chapter 18. The Greek functions: gamma, psi, and zeta

Figure 18.12: Errors in the gamib() and gamibd() functions. For large |a| and large x, errors in the binary functions
can reach about 15 ulps over the argument range shown here. The worst errors in the decimal functions are almost
6 ulps.

18.5 A Swiss diversion: Bernoulli and Euler

In this, and earlier, chapters, we encountered the famous Bernoulli numbers3 in Taylor expansions of various functions,
and listed the first two dozen in Table 11.1 on page 304 to show their rapid growth.

The Bernoulli numbers were discovered, sometime after 1677, by Jacob (also called Jacques or James) Bernoulli,
one of at least eight famous mathematicians and scientists in six generations of a family from Basel, Switzerland.4

It was learned much later that, about the same time, the numbers were also discovered independently in Japan
by Takakazu Seki Kowa. The work of both was published after their deaths, so the discovery dates are uncertain.
Bernoulli’s work was more widely known, so history gave him the credit.

The Bernoulli numbers arise often enough in the elementary and special functions that it is advisable in a math-
ematical software library to provide easy access to them, especially because they are not easily generated in conven-
tional programming languages with arithmetic of fixed, and limited, precision.

3See entries A000367 and A002445 in Neal Sloane’s On-Line Encyclopedia of Integer Sequences at http://oeis.org/, or in the printed book [SP95,
sequences M4039 and M4189].

4See, for example, various online encyclopedia entries, including the Dictionnaire historique de la Suisse (http://www.hls-dhs-dss.ch/textes/
f/F23988.php).

The world’s first significant computer program may have been that written in 1842 by Lady Augusta Ada Lovelace for the computation of
Bernoulli numbers [HH80, KT99]. See also http://www.fourmilab.ch/babbage/sketch.html.

 0
 20

 40
 60

 80
-100

-50
 0

 50
 100

-4

-2

 0

 2

 4

ulps

Errors in g(a,x) from gamib()

x
a

ulps

 0
 20

 40
 60

 80
-100

-50
 0

 50
 100

-4

-2

 0

 2

 4

ulps

Errors in G(a,x) from gamib()

x
a

ulps

 0
 20

 40
 60

 80
-100

-50
 0

 50
 100

-4

-2

 0

 2

 4

ulps

Errors in g(a,x) from gamibd()

x
a

ulps

 0
 20

 40
 60

 80
-100

-50
 0

 50
 100

-4

-2

 0

 2

 4

ulps

Errors in G(a,x) from gamibd()

x
a

ulps

18.5. A Swiss diversion: Bernoulli and Euler 569

Mathematically, the Bernoulli numbers, Bn, are defined as the coefficients in this expansion:5

x
exp(x)− 1

=
∞

∑
n=0

Bn
xn

n!
.

Here is what the series expansion looks like in a Maple session, with a verification of the relation of the expansion
coefficients to the Bernoulli numbers (and output reformatted into three columns):

> taylor(x/(exp(x) - 1), x = 0, 12);
2 4 6 8

1 - 1/2 x + 1/12 x - 1/720 x + 1/30240 x - 1/1209600 x +

10 11
1/47900160 x + O(x)

> for n from 0 to 10 do printf("%2d %a\n", n, bernoulli(n)/n!) end do:
0 1 4 -1/720 8 -1/1209600
1 -1/2 5 0 9 0
2 1/12 6 1/30240 10 1/47900160
3 0 7 0

Notice that the Bn/n! values appear to form a decreasing sequence. Bounds given later show that to be true for all
Bernoulli numbers. Because that ratio is common in series expansions that contain Bernoulli numbers, it is helpful
to remember that fact in order to be able to estimate relative term magnitudes.

Mathematica makes those numbers available as BernoulliB[n], Maxima as bern(n), MuPAD as bernoulli(n),
PARI/GP as bernfrac(n), and REDUCE as Bernoulli(n).

In the expansion, notice that there is only one nonzero odd-order Bernoulli number, B1 = − 1
2 ; all others are zero.

Expansions that involve Bernoulli numbers often require only the even ones, with coefficients B2n.
The Bernoulli numbers turn up in the series expansions of several other functions, including these:

cot(z) =
∞

∑
n=0

(−1)n22nB2n

(2n)!
z2n−1, for |z| < π,

coth(z) =
1
z
+

∞

∑
n=1

(−1)n−1 22nB2n

(2n)!
z2n−1, for |z| < π,

csc(z) =
1
z
+

∞

∑
n=1

(−1)n−12(22n−1 − 1)B2n

(2n)!
zn, for |z| < π,

csch(z) =
1
z
+

∞

∑
n=1

2(22n−1 − 1)B2n

(2n)!
z2n−1, for |z| < π,

tan(z) =
∞

∑
n=1

(−1)n−1 B2n(−4)n(1 − 4n)

(2n)!
z2n−1, for |z| < 1

2 π,

tanh(z) =
∞

∑
n=1

(−1)n−1 4n(4n − 1)B2n

(2n)!
z2n−1, for |z| < 1

2 π,

log(cos(z)) =
∞

∑
n=1

(−1)n22n−1(22n − 1)B2n

n(2n)!
z2n, for |z| < 1

2 π,

log(sin(z)) =
∞

∑
n=1

(−1)n22n−1B2n

n(2n)!
z2n, for |z| < π,

log(tan(z)) =
∞

∑
n=1

(−1)n−122n(22n−1 − 1)B2n

n(2n)!
z2n, for |z| < 1

2 π,

log(Γ(x)) � (x − 1
2) log(x)− x + log(2π)/2 +

∞

∑
n=1

B2n

2n(2n − 1)x2n−1 ,

5See the Bernoulli Number article in Eric Weisstein’s outstanding online resource, MathWorld, at http://mathworld.wolfram.com/, or in the
print edition [Wei09].

570 Chapter 18. The Greek functions: gamma, psi, and zeta

ψ(z) � log(z)− 1/(2z)−
∞

∑
n=1

B2n

2nz2n , for | arg(z)| < π,

ψ(n)(z) � (−1)n+1z−nn!

(
1
n
+

1
2z

+
1
n!

∞

∑
k=1

B2k
(2k + n − 1)!

(2k)!
z−2k

)
.

Another important example where Bernoulli numbers appear is the Euler–Maclaurin summation formula that re-
lates an integral of a function over an interval [a, b] to a sum of function values at successive integers with a correction:

∫ b

a
f (t) dt =

b

∑
k=a

f (k)− 1
2 [f (a) + f (b)] trapezoid rule,

−
∞

∑
k=1

B2k[f (2k−1)(b)− f (2k−1)(a)]
(2k)!

, correction.

The quantity following the equals sign on the first line is the famous trapezoid rule for numerical quadrature. The sum
on the second line contains the rapidly decreasing coefficients B2k/(2k)!, so as long as the higher-order derivatives
remain small, that sum provides a small correction. Alternatively, it may sometimes be easy to do the integral, and
hard to do the first sum, in which case, that sum is the unknown to be solved for.

The Bernoulli numbers can be calculated directly from this double sum:

Bn =
n

∑
k=0

1
k + 1

(
k

∑
m=0

(−1)m
(

k
m

)
mn

)
.

They can be estimated with this strict inequality:

2(2n)!
(2π)2n < (−1)n+1B2n <

2(2n)!
(2π)2n

1
1 − 21−2n , for n = 1, 2, 3,

A numerical computation in Maple shows how tight that inequality is by reporting the relative error of the bounds
with respect to the Bernoulli number:

> for n in {seq(i, i = 1..9), seq(i, i = 10..90, 10)} do
> u := (2 * (2*n)!) / ((2 * Pi)**(2*n)):
> v := (-1)**(n + 1) * bernoulli(2*n):
> w := u / (1 - 2**(1 - 2*n)):
> printf("%3d %10.3g %13.3g\n", n, (u - v) / v, (w - v) / v)
> end do:

1 -0.392 0.216 10 -9.54e-07 9.53e-07
2 -0.0761 0.0559 20 -9.09e-13 9.09e-13
3 -0.017 0.0147 30 -8.67e-19 8.67e-19
4 -0.00406 0.00378 40 -8.27e-25 8.27e-25
5 -0.000994 0.000961 50 -7.89e-31 7.89e-31
6 -0.000246 0.000242 60 -7.52e-37 7.52e-37
7 -6.12e-05 6.08e-05 70 -7.17e-43 7.17e-43
8 -1.53e-05 1.52e-05 80 -6.84e-49 6.84e-49
9 -3.82e-06 3.81e-06 90 -6.53e-55 6.53e-55

The output has been reformatted into two columns. The bounds are clearly excellent estimates, because they deliver
about six correct digits already at n = 10.

From those tight bounds, we can now answer the question raised earlier about the behavior of the commonly
occurring quotient of a Bernoulli number and a factorial:

B2n

(2n)!
≈ (−1)n+1 2

(2π)2n , Bernoulli/factorial quotient estimate.

Here is a numerical demonstration of that estimate in hoc, including a report of the relative error:

18.5. A Swiss diversion: Bernoulli and Euler 571

hoc64> u_last = 1
hoc64> for (n = 1; n < 18; ++n) \
hoc64> {
hoc64> u = bernum(2*n) / factorial(2*n);
hoc64> v = (-1)**(n + 1) * 2 / (2*PI)**(2*n)
hoc64> printf("%2d % 6.2f % 17.9..3e % 17.9..3e % 10.3e\n", 2*n, u_last / u, u, v, (u - v) / u)
hoc64> u_last = u
hoc64> }
2 12.00 8.333_333_333e-02 5.066_059_182e-02 3.921e-01
4 -60.00 -1.388_888_889e-03 -1.283_247_782e-03 7.606e-02
6 -42.00 3.306_878_307e-05 3.250_504_604e-05 1.705e-02
8 -40.00 -8.267_195_767e-07 -8.233_624_348e-07 4.061e-03

10 -39.60 2.087_675_699e-08 2.085_601_411e-08 9.936e-04
12 -39.51 -5.284_190_139e-10 -5.282_890_090e-10 2.460e-04
14 -39.49 1.338_253_653e-11 1.338_171_693e-11 6.124e-05
16 -39.48 -3.389_680_296e-13 -3.389_628_495e-13 1.528e-05
18 -39.48 8.586_062_056e-15 8.586_029_281e-15 3.817e-06
20 -39.48 -2.174_868_699e-16 -2.174_866_624e-16 9.540e-07
22 -39.48 5.509_002_828e-18 5.509_001_515e-18 2.385e-07
24 -39.48 -1.395_446_469e-19 -1.395_446_385e-19 5.961e-08
26 -39.48 3.534_707_040e-21 3.534_706_987e-21 1.490e-08
28 -39.48 -8.953_517_427e-23 -8.953_517_394e-23 3.725e-09
30 -39.48 2.267_952_452e-24 2.267_952_450e-24 9.313e-10
32 -39.48 -5.744_790_669e-26 -5.744_790_668e-26 2.328e-10
34 -39.48 1.455_172_476e-27 1.455_172_476e-27 5.821e-11

We see that the Bernoulli-number estimate provides at least 10 decimal digits above B34, and that the magnitude of
the quotient B2n/(2n)! falls by (2π)2 ≈ 40 for each unit increase in n.

The quotient of successive Bernoulli numbers is sometimes of interest, and we can use our estimates to make this
prediction:

B2n

B2n−2
≈ −2n(2n − 1)

(2π)2 .

A numerical experiment similar to the earlier ones shows that our estimate is correct to three figures already for
B10/B8, and to six figures for B20/B18.

The Bernoulli numbers have this asymptotic relation:

lim
n→∞

B2n � 4
√

πn
(n

πe

)2n
.

It predicts only two correct decimal digits at n = 10, three at n = 100, and four at n = 1000.
For large n, there is an easier way to compute B2n by summing a fast-converging series that we discuss later in

Section 18.7 on page 582.
Bernoulli numbers have a complicated recurrence relation that requires all previous Bk values:

Bn =
1

2(1 − 2n)

n−1

∑
k=0

(
n
k

)
2kBk.

That relation can also be written like this:

B0 = 1, B1 = − 1
2 ,

n−1

∑
k=0

(
n
k

)
Bk = 0, for n = 2, 3, 4,

Because the Bernoulli numbers grow, and alternate in sign, there can sometimes be serious leading digit cancellation
in the evaluation of those sums. The Bernoulli numbers therefore cannot be generated accurately from that formula
without access to high-precision rational integer arithmetic, but their quick approach to the floating-point overflow
limit in most hardware arithmetic designs means that it is feasible to precompute them in a symbolic-algebra system,

572 Chapter 18. The Greek functions: gamma, psi, and zeta

Table 18.5: Euler numbers of even order. Those of odd order are all zero. All Euler numbers are integers, and their
signs are determined by the relations E4n > 0 and E4n+2 < 0. Growth is rapid, leaving no room here for our usual
digit grouping. The last number shown, E54, has 61 digits. E100 has 139 digits, E200 has 336 digits, and E500 has 1037
digits.

2n E2n 2n E2n

0 1 28 1252259641403629865468285
2 −1 30 −441543893249023104553682821
4 5 32 177519391579539289436664789665
6 −61 34 −80723299235887898062168247453281
8 1385 36 41222060339517702122347079671259045

10 −50521 38 −23489580527043108252017828576198947741
12 2702765 40 14851150718114980017877156781405826684425
14 −199360981 42 −10364622733519612119397957304745185976310201
16 19391512145 44 7947579422597592703608040510088070619519273805
18 −2404879675441 46 −6667537516685544977435028474773748197524107684661
20 370371188237525 48 6096278645568542158691685742876843153976539044435185
22 −69348874393137901 50 −6053285248188621896314383785111649088103498225146815121
24 15514534163557086905 52 6506162486684608847715870634080822983483644236765385576565
26 −4087072509293123892361 54 −7546659939008739098061432565889736744212240024711699858645581

and then record their values as floating-point numbers in a compile-time constant table of modest size. For IEEE 754
binary arithmetic, the table requires only 33 entries in the 32-bit format, 130 in the 64-bit format, and 1157 in the
80-bit and 128-bit formats. The wider exponent range of the IEEE 754 decimal formats requires a few more: 58, 153,
and 1389, respectively.

With a bit of extra software logic, there is no need to store the odd-indexed zero numbers, so in the mathcw
library, we hide the table access in a function family, BERNUM(n). The functions return a NaN for negative indexes, a
table entry for representable values, and otherwise, +∞. As usual, the numbers are stored in both hexadecimal and
decimal formats to make correctly rounded values more likely.

The files bernumf.c and bernum.c in the subdirectory exp support our claim of numerical instability. They im-
plement Bernoulli number evaluation with a compile-time choice of the recurrence relation or the direct sum in the
float and double data types:

� Tests of the recurrence show errors up to several hundred ulps already at B10, and complete loss of all significant
digits at B22 and B50 in the two formats.

� Tests show that the direct sum is much better. Nevertheless, losses up to a thousand ulps are reported just
before subtraction of Infinity produces NaN values.

There is a related set of numbers bearing the name of another Swiss mathematician from Basel, Leonhard Euler,
who is viewed by many as the greatest mathematician of all time.

The Euler numbers,6 En, were first published by Euler in 1755. They are defined by the expansion of the hyperbolic
secant function:

sech(z) =
1

cosh(z)
=

2
exp(z) + exp(−z)

=
∞

∑
n=0

En
zn

n!
, for |z| < 1

2 π.

The Euler numbers can also be defined by the expansion of the trigonometric secant function:

sec(z) =
1

cos(z)
=

∞

∑
n=0

(−1)nE2n
z2n

(2n)!
, for |z| < 1

2 π.

The first 28 nonzero Euler numbers are shown in Table 18.5.
As with the Bernoulli numbers, we can illustrate the series with Maple, and verify the coefficient relations to the

Euler numbers (with output reformatted into three columns):
6See entry A000364 at http://oeis.org/ or [SP95, sequence M1492], and the MathWorld entry at http://mathworld.wolfram.com/

EulerNumber.html or in the print edition [Wei09].

18.5. A Swiss diversion: Bernoulli and Euler 573

> taylor(sech(x), x = 0, 12);
2 4 61 6 277 8 50521 10 12

1 - 1/2 x + 5/24 x - --- x + ---- x - ------- x + O(x)
720 8064 3628800

> for n from 0 to 10 do printf("%2d %a\n", n, euler(n)/n!) end do:
0 1 4 5/24 8 277/8064
1 0 5 0 9 0
2 -1/2 6 -61/720 10 -50521/3628800
3 0 7 0

Mathematica supplies Euler numbers with EulerE[n], and Maxima and REDUCE with euler(n).
The mathcw library provides the Euler numbers with the function family EULNUM(x), and the code in the file

eulnx.h is much like that in bernx.h, with checks for an out-of-range index, producing either a NaN or +∞, or else
returning the result of a fast table lookup.

Like the Bernoulli numbers, the Euler numbers have a complicated recurrence relation that requires all earlier
numbers, and exact integer arithmetic, to evaluate reliably:

E2n = −
[

1 +
(

2n
2

)
E2 +

(
2n
4

)
E4 + · · ·+

(
2n

2n − 2

)
E2n−2

]
.

The recurrence relation can be written more compactly like this:

n

∑
k=0

(
2n
2k

)
E2k = 0, E2n+1 = 0, for n = 0, 1, 2,

The files eulnumf.c and eulnum.c in the subdirectory exp implement computation of the Euler numbers by the
recurrence relation. Their tests demonstrate losses up to seven ulps before subtraction of Infinity produces NaN
values. That is much better than the companion tests of the Bernoulli numbers, and the reason for the improvement is
explained shortly when we look more at the growth of the Euler numbers. The conclusion is that run-time generation
is marginally acceptable for Euler numbers, but hopeless for Bernoulli numbers, at least without access to higher-
precision arithmetic, or the better algorithm given shortly in Section 18.5.1.

Although we have no computational use for them in this section, there are complicated relations between the
Bernoulli and Euler numbers:

E2n = 1 −
n

∑
k=1

(
2n

2k − 1

)
22k(22k − 1)

2k
B2k.

Bn =
n−1

∑
k=0

n
4n − 2n Ek, for n = 2, 4, 6, . . . ,

En =
n

∑
k=1

2k − 4k

k
Bk, for n = 2, 4, 6, . . . ,

π � 2(22n − 42n)
B2n

E2n
, for large n.

The last relation shows that the Euler numbers have larger magnitudes than those of the Bernoulli numbers of the
same index. Numerical experiments show that the asymptotic relation holds for n > 1, and the two sides agree to
eight decimal digits already at n = 8.

The relations can be written compactly another way:

En−1 =
(4B − 1)n − (4B − 3)n

2n
,

E2n =
42n+1

2n + 1
(B − 1

4)
2n+1.

The symbol B here is interpreted to mean that each power Bk in the expansion is replaced by Bernoulli number Bk.

574 Chapter 18. The Greek functions: gamma, psi, and zeta

Finally, if we combine the estimate of B2n with the relationship between the Bernoulli and Euler numbers, and
discard smaller terms, we predict that the common quotient of an Euler number and a factorial can be estimated by
this relation:

E2n

(2n)!
≈ (−1)n2

(
2
π

)2n+1

, Euler/factorial quotient estimate.

Here is a test of how good our estimate is, and how fast the quotients drop:

hoc64> u_last = 1
hoc64> for (n = 1; n < 18; ++n) \
hoc64> {
hoc64> u = eulnum(2*n) / factorial(2*n);
hoc64> v = (-1)**n * 2 * (2 / PI) ** (2*n + 1)
hoc64> printf("%2d % 6.2f % 17.9..3e % 17.9..3e % 10.3e\n", 2*n, u_last / u, u, v, (u - v) / u)
hoc64> u_last = u
hoc64> }
2 -2.00 -5.000_000_000e-01 -5.160_245_509e-01 -3.205e-02
4 -2.40 2.083_333_333e-01 2.091_368_732e-01 -3.857e-03
6 -2.46 -8.472_222_222e-02 -8.475_998_213e-02 -4.457e-04
8 -2.47 3.435_019_841e-02 3.435_192_686e-02 -5.032e-05

10 -2.47 -1.392_223_325e-02 -1.392_231_156e-02 -5.625e-06
12 -2.47 5.642_496_810e-03 5.642_500_345e-03 -6.264e-07
14 -2.47 -2.286_819_095e-03 -2.286_819_254e-03 -6.966e-08
16 -2.47 9.268_129_274e-04 9.268_129_346e-04 -7.742e-09
18 -2.47 -3.756_231_339e-04 -3.756_231_342e-04 -8.603e-10
20 -2.47 1.522_343_222e-04 1.522_343_222e-04 -9.560e-11
22 -2.47 -6.169_824_688e-05 -6.169_824_688e-05 -1.062e-11
24 -2.47 2.500_535_761e-05 2.500_535_761e-05 -1.182e-12
26 -2.47 -1.013_428_972e-05 -1.013_428_972e-05 -1.329e-13
28 -2.47 4.107_272_920e-06 4.107_272_920e-06 -1.609e-14
30 -2.47 -1.664_615_015e-06 -1.664_615_015e-06 -3.689e-15
32 -2.47 6.746_430_546e-07 6.746_430_546e-07 -2.197e-15
34 -2.47 -2.734_225_313e-07 -2.734_225_313e-07 -1.936e-15

The estimate is correct to five decimal digits for E10/10!, and successive quotients fall off by about a factor of 2.5,
much slower than the Bernoulli–factorial quotients.

An estimate of the quotient of successive Euler numbers is now readily obtained:

E2n

E2n−2
≈ −2n(2n − 1)

(
2
π

)2

= −16
(

2n(2n − 1)
(2π)2

)
.

The quotient on the right has the same form as that in the Bernoulli-number quotient estimate, but there is an
additional factor of 16. That factor gives additional growth to the Euler-number quotient, and explains the better
numerical stability of the calculation of Euler numbers by their recurrence relation.

Armed with the mathematical relations and numerical experiments of this section, when we meet a sum contain-
ing Bernoulli or Euler numbers, we can now roughly estimate its coefficients, and thus predict how rapidly the sum
converges, without needing to use those big numbers directly.

18.5.1 Bernoulli numbers revisited

An alternative approach to computation of the Bernoulli numbers exploits their relation to the coefficients of the
expansion of the tangent function [KB67], [OLBC10, §24.15], [BZ11, pp. 156–157]:

tan(z) =
∞

∑
n=0

Tn zn/n!, Taylor-series expansion for |z| < 1
2 π,

T2n = 0, even-order coefficients are zero,

B2n = (−1)n−1 2n T2n−1/(42n − 22n), for n = 1, 2, 3,

18.6. An Italian excursion: Fibonacci numbers 575

Table 18.6: Tangent numbers of odd order, T2n+1. Those of even order are all zero. All tangent numbers are positive
integers, and grow rapidly, so we suppress digit grouping. The last number shown, T51, has 57 digits. T101 has 141
digits, T201 has 338 digits, and T501 has 1039 digits. Growth is similar to that of the Euler numbers, and soon exceeds
the range of hardware floating-point arithmetic.

2n + 1 T2n+1 2n + 1 T2n+1

1 1 27 70251601603943959887872
3 2 29 23119184187809597841473536
5 16 31 8713962757125169296170811392
7 272 33 3729407703720529571097509625856
9 7936 35 1798651693450888780071750349094912

11 353792 37 970982810785059112379399707952152576
13 22368256 39 583203324917310043943191641625494290432
15 1903757312 41 387635983772083031828014624002175135645696
17 209865342976 43 283727921907431909304183316295787837183229952
19 29088885112832 45 227681379129930886488600284336316164603920777216
21 4951498053124096 47 199500252157859031027160499643195658166340757225472
23 1015423886506852352 49 190169564657928428175235445073924928592047775873499136
25 246921480190207983616 51 196535694915671808914892880726989984967498805398829268992

The odd-order tangent numbers, T2n+1, grow rapidly, as shown in Table 18.6.
The essential point is that the tangent numbers can be generated from a stable recurrence where all terms are

positive:

T2j−1 = (j − 1)!, initialization for j = 1, 2, . . . , n,

T2j−1 =
n

∑
j=k

(
(j − k + 2)T2j−1 + (j − k)T2j−3

)
, for k = 2, 3, . . . , n and j = k, . . . , n.

Recovery of a Bernoulli number B2n from T2n−1 is then a simple scaling. Test programs bernum2*.c show that the
average error in Bernoulli numbers computed from tangent numbers is below 1.7 ulps, with worst-case errors below
6.9 ulps. Because the relation involves a division of two large numbers, premature overflow is a problem, but it can
be minimized with exact scaling (by the smallest normal number) of the computed tangent numbers. That scaling
roughly doubles the largest subscript for which Bernoulli numbers can be computed from tangent numbers. A
second set of test programs, bernum3*.c implements that scaling.

18.6 An Italian excursion: Fibonacci numbers

In 1202, Leonardo Pisano (Leonardo of Pisa), also called Leonardo Fibonacci (from Filius Bonaccii, son of Bonaccio),
published an important mathematics book, Liber Abaci (Book of Calculation) that introduced the Hindu numerals 0,
1, 2, 3, 4, 5, 6, 7, 8, and 9 to Europe, and the Latinized Arabic word, zephirum, which became zefiro in Italian, and in
the Venetian dialect, zero, the name by which we know it in English, and several other European languages, today.

Fibonacci’s book also brought to Europe the notion of an algorithm, a name that arises from that of the Ninth
Century Persian scholar Muhammed al-Khwarizmi, and the subject of algebra, a name that comes from the title of
al-Khwarizmi’s book, Hisab Al-Jabr wal Mugabalah (Book of Calculations, Restoration and Reduction). Fibonacci’s
book was written in Latin, and long remained unavailable in English, until the 800th anniversary publication of the
late Laurence Sigler’s Fibonacci’s Liber Abaci: A Translation into Modern English of Leonardo Pisano’s Book of Calculation
[Sig02].

Liber Abaci is a large collection of arithmetic problems, expressed in words, rather than the symbols common in
modern notation. One of them poses, and solves, this problem:

How many pairs of rabbits can be produced in a year from a single pair if each pair produces a new pair every month, each new
pair reproduces starting at the age of one month, and rabbits never die?

576 Chapter 18. The Greek functions: gamma, psi, and zeta

Figure 18.13: Pascal’s Triangle and Fibonacci numbers. Each number in the centered triangular array is either one (at
the edges), or the sum of the two adjacent numbers in the previous row. The numbers in each row are the coefficients
of the binomial expansion of that row order. For example, (a + b)4 = a4 + 4a3b + 6a2b2 + 4ab3 + b4.
To reveal the hidden Fibonacci numbers, realign the normal centered triangular array to a right-triangular display,
and then sum the upward diagonals to obtain the sequence 1, 1, 2, 3, 5, 8, 13, 21, 34, . . . , as indicated by the bold brack-
eted numbers.

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1
1 7 21 35 35 21 7 1

1 8 28 56 70 56 27 7 1

−→

[1]
1 [1] [2]
1 1 [3] [5]
1 2 1 [8] [13]
1 3 3 1 [21] [34]
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1
1 7 21 35 35 21 7 1
1 8 28 56 70 56 28 8 1

The solution is a sequence with terms 1, 1, 2, 3, 5, 8, 13, 21, 34, . . . , and it can be written compactly as this simple
recurrence:

F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2, for n = 2, 3, 4,

The total number of rabbit pairs after the births at the start of month n is Fn+1, so the answer to Fibonacci’s problem
is the count a year later, at the start of month thirteen: F14 = 377.

That famous sequence is known as the Fibonacci sequence,7 and despite its simple origin in an unrealistic problem
(because rabbits eventually die), in the intervening centuries, it has been encountered in an astonishing variety
of fields of study, from growth patterns of galaxies, marine shells, and plants, to random-number generation, to
computer-network optimization. As shown in Figure 18.13, the Fibonacci numbers are also the diagonal sums of the
numbers in Pascal’s Triangle, which displays the coefficients of terms in the expansion of (a + b)n in rows indexed by
n.

So much has been learned about the Fibonacci recurrence, and new material continues to be discovered, that a
mathematical journal, The Fibonacci Quarterly,8 founded in 1963, is entirely devoted to the study of Fibonacci numbers
and sequences. A search of the MathSciNet and zbMATH databases turns up more than 2000 and 5300 research articles
with Fibonacci in their titles. Web searches find more than a million Web pages with mention of Fibonacci numbers.

The Fibonacci recurrence can be run backward as well, so that the indexes k = −1,−2, . . . ,−10 produce the se-
quence 1,−1, 2,−3, 5,−8, 13,−21, 34,−55. Apart from signs, those are the same numbers as in the forward direction,
so we have an important symmetry relation for negative indexes:

F−k = (−1)k+1Fk.

The Fibonacci numbers appear as the coefficients in this series expansion [SP95, page 10]:

1
1 − x − x2 =

∞

∑
k=0

Fkxk.

There are numerous relations among the Fibonacci numbers, including these:

Fn+2 = 1 +
n

∑
k=1

Fk, FnFn+1 =
n

∑
k=1

F2
k ,

7See the MathWorld article at http://mathworld.wolfram.com/FibonacciNumber.html or in the print edition [Wei09].
8See the journal Web site at http://www.fq.math.ca/ and its bibliography at http://www.math.utah.edu/pub/tex/bib/index-table-f.html#

fibquart.

18.6. An Italian excursion: Fibonacci numbers 577

Table 18.7: The first 100 Fibonacci numbers. Each member of the sequence is the sum of the two preceding members.

n Fn n Fn n Fn n Fn

0 0 25 75 025 50 12 586 269 025 75 2 111 485 077 978 050
1 1 26 121 393 51 20 365 011 074 76 3 416 454 622 906 707
2 1 27 196 418 52 32 951 280 099 77 5 527 939 700 884 757
3 2 28 317 811 53 53 316 291 173 78 8 944 394 323 791 464
4 3 29 514 229 54 86 267 571 272 79 14 472 334 024 676 221
5 5 30 832 040 55 139 583 862 445 80 23 416 728 348 467 685
6 8 31 1 346 269 56 225 851 433 717 81 37 889 062 373 143 906
7 13 32 2 178 309 57 365 435 296 162 82 61 305 790 721 611 591
8 21 33 3 524 578 58 591 286 729 879 83 99 194 853 094 755 497
9 34 34 5 702 887 59 956 722 026 041 84 160 500 643 816 367 088

10 55 35 9 227 465 60 1 548 008 755 920 85 259 695 496 911 122 585
11 89 36 14 930 352 61 2 504 730 781 961 86 420 196 140 727 489 673
12 144 37 24 157 817 62 4 052 739 537 881 87 679 891 637 638 612 258
13 233 38 39 088 169 63 6 557 470 319 842 88 1 100 087 778 366 101 931
14 377 39 63 245 986 64 10 610 209 857 723 89 1 779 979 416 004 714 189
15 610 40 102 334 155 65 17 167 680 177 565 90 2 880 067 194 370 816 120
16 987 41 165 580 141 66 27 777 890 035 288 91 4 660 046 610 375 530 309
17 1 597 42 267 914 296 67 44 945 570 212 853 92 7 540 113 804 746 346 429
18 2 584 43 433 494 437 68 72 723 460 248 141 93 12 200 160 415 121 876 738
19 4 181 44 701 408 733 69 117 669 030 460 994 94 19 740 274 219 868 223 167
20 6 765 45 1 134 903 170 70 190 392 490 709 135 95 31 940 434 634 990 099 905
21 10 946 46 1 836 311 903 71 308 061 521 170 129 96 51 680 708 854 858 323 072
22 17 711 47 2 971 215 073 72 498 454 011 879 264 97 83 621 143 489 848 422 977
23 28 657 48 4 807 526 976 73 806 515 533 049 393 98 135 301 852 344 706 746 049
24 46 368 49 7 778 742 049 74 1 304 969 544 928 657 99 218 922 995 834 555 169 026

F2n = F2
n+1 − F2

n−1, F3n = F3
n+1 + F3

n + F3
n−1,

F2n =
n

∑
k=0

(
n
k

)
Fk, F3n =

n

∑
k=0

(
n
k

)
2kFk,

F2n+1 = 1 +
n

∑
k=1

F2k, (−1)n = Fn−1Fn+1 − F2
n ,

F2
n+1 = 4FnFn−1 + F2

n−2, Fn+m = Fn−1Fm + FnFm+1.

The last of those relations can be used recursively to reduce a large index to smaller ones for which Fk values are
known. We show two other ways to find Fibonacci numbers of large index later in this section.

Like the Bernoulli and Euler numbers, the Fibonacci numbers grow quickly, although not as rapidly as B2n and
E2n. The first hundred of them are shown in Table 18.7.

Fibonacci number growth is exponential, with the curious result, discovered by the Scottish mathematician
Robert Simson in 1753, that

lim
n→∞

Fn = φFn−1.

Here, the value φ is a famous mathematical constant known since antiquity, the golden ratio:

φ = 1
2 (
√

5 + 1)
≈ 1.618 033 988 749 894 848 204 586 834 365 638 117 720 309 179 805

The golden ratio is the last of the big five mathematical constants — e, i, π, γ, and φ — and its story is told in two
recent books [HF98, Liv02].

There is a formula that relates successive Fibonacci numbers, and is valid for all of them:

Fn+1 = φFn +
1
2�, for n = 0, 1, 2,

578 Chapter 18. The Greek functions: gamma, psi, and zeta

If the Fibonacci sequence is calculated in signed integer arithmetic, then the overflow limit is reached at F46 with
32-bit integers. After F78, 53-bit integers overflow. After F92 (fewer than 8 years in Fibonacci’s rabbit problem), 64-bit
integers fail. After F184, 128-bit integers are insufficient.

Floating-point arithmetic of fixed precision lacks sufficient digits to handle large Fibonacci numbers exactly, but
it does handle the growth somewhat better. Nevertheless, the overflow limit of the 128-bit IEEE 754 binary format
is reached after 23 597 terms, for which the Fibonacci number requires 4932 decimal digits, of which only the first
36 are representable in that format.

The simple recurrence relation of the Fibonacci numbers means that there is no need to have a large compile-time
constant table. Instead, we can compute them as needed, and then store them in a private internal table for fast
access on later calls. If we restrict table entries to exactly representable integer values, then the table size is modest.

The mathcw function family FIBNUM(n) is implemented in file fibnx.h. The computation is simple, and this
author has a Web site9 that does the job, with specified additional requirements, in about 50 programming languages
as an amusing introductory programming problem.

Once we pass the exact whole-number overflow limit, we have to deal with rounding errors. The computation is
numerically stable because all terms are positive, but there is no need to keep adding number pairs, because we can
estimate large Fibonacci numbers to near machine accuracy from the relation

Fn ≈ φn−lastFlast,

by scaling the last-stored exact value at the cost of one exponentiation. Because φ is an irrational value, it cannot
be represented exactly. The error-magnification factor of the power function is its exponent argument (see Table 4.1
on page 62), so we compute the power in the next higher precision to reduce error growth. That is likely to be
acceptable, because many applications of Fibonacci numbers require only a few members of the sequence, and they
can be obtained by exact table lookup.

There is another way to compute Fibonacci numbers of large index directly:

Fn = round
(

φn
√

5

)
, for n = 0, 1, 2,

That relation is exact if the right-hand side can be computed with enough fractional digits to make the rounding
decision certain.

A variant of that explicit relation looks like this:

Fn =
1√
5

⎛
⎝(

1 +
√

5
2

)n+1

−
(

1 −√
5

2

)n+1
⎞
⎠ for n = 0, 1, 2,

We can make a simple test of the recurrence relation in floating-point arithmetic past the exactly representable
number limit:

hoc64> load("libmcw")

hoc64> for (k = 2; k < 200; ++k) \
hoc64> if ((fibnum(k-2) + fibnum(k-1)) != fibnum(k)) \
hoc64> printf("%d ", k);
82 83 85 89 95 98 101 105 108 109 111 117 118 120 121 124 135 141 144
151 156 158 161 171 175 176 187 199

With the IEEE 754 64-bit double type, only Fibonacci numbers up to F78 are exactly representable in the 53-bit signif-
icand. Four elements later, the recurrence relation fails because of rounding errors.

To further investigate the size of the rounding errors, we check the computed Fibonacci numbers against values
produced in the next higher-precision format, rounded to working precision, and reformatted into three columns:

hoc64> load("libmcw-hp")

9See Fun with Fibonacci at http://www.math.utah.edu/~beebe/software/java/fibonacci/. That site includes the complete Latin text of the
original Fibonacci rabbit problem, with an English translation, and more information about Sigler’s book.

18.7. A German gem: the Riemann zeta function 579

hoc64> for (k = 2; k <= 1000; ++k) \
hoc64> {
hoc64> u = ulps(hp_fibnum(k), fibnum(k))
hoc64> if (u > 1) printf("%4d %.3f ulps\n", k, u)
hoc64> }
...
101 1.030 ulps 500 3.084 ulps 998 6.188 ulps
102 1.273 ulps 501 2.542 ulps 999 6.119 ulps
103 1.574 ulps 502 3.142 ulps 1000 3.782 ulps
... ...

Evidently, the rounding errors are initially small, but grow to a few ulps at F1000 ≈ 4.346 × 10208.

18.7 A German gem: the Riemann zeta function

With only a few dozen letters available in the Latin and Greek alphabets, mathematicians often reuse the same
letter for different purposes. The zeta function discussed in this section is that of the Nineteenth Century German
mathematician Bernhard Riemann [Der03, Lau08, Sab03], so his name is attached to it to distinguish it from other
people’s zeta functions. For brevity, in the rest of this section, we usually omit the qualifier.

The zeta function has a simple definition:

ζ(z) =
∞

∑
k=1

k−z, provided real(z) > 1.

The special case z = 1 reduces to the divergent sum of the harmonic series, but elsewhere on the complex plane, the
function is finite, provided that the reflection rule given shortly is used for real arguments x < 1.

Euler began his studies of infinite sums of reciprocal integer powers, ζ(n), about 1730 [Ayo74]. In 1737, he
extended the function to real arguments, but it was Riemann’s generalization to complex arguments in 1859 that
revealed the mathematical treasures hidden in the zeta function. Today, we consider the zeta function to be defined
in the entire complex plane, minus the point z = 1. In most of this section, we restrict ourselves to arguments on the
real axis, and henceforth use real x instead of complex z. Before we do so, however, we make this observation:

Riemann conjectured that the nontrivial zeros (those off the real axis) of the complex zeta function are all of the form z = 1
2 + yi,

that is, they lie on the line x = 1
2 in the complex plane [Der03, Lap08, Lau08, O’S07, Pat88, Roc06, Sab03].

The Riemann Hypothesis is the eighth of a famous set of 23 problems [Gra00] announced in 1900 by the influential German
mathematician David Hilbert.10 A century later, it heads the list of famous unsolved problems in The Clay Mathematics
Institute Millennium Prize challenge [CJW06, Clay09], despite more than 150 years of study by many of the world’s leading
mathematicians.

The famous English mathematician G. H. Hardy proved in 1914 that there are an infinite number of zeros on that line,
others later proved that there are an infinite number of zeros with x in (0, 1), and more recently, it has been proved that at least
two-fifths of the zeros lie on that line. However, none of those results compels all of the zeros to have x = 1

2 .
By 2004, numerical studies have computed more than 1013 zeros without finding deviations from Riemann’s hypothesis.11

Many mathematicians believe the hypothesis is a theorem (that is, must be a fact, rather than a conjecture), and a lot of recent
mathematical research assumes the truth of the Riemann Hypothesis to make further progress in other areas.

Real arguments of the zeta function on (−∞, 1) are mapped to the positive axis with either of these formulas
found by Euler in 1747:

ζ(z) = 2zπz−1 sin(1
2 πz)Γ(1 − z)ζ(1 − z), reflection rule,

ζ(1 − z) = 2(2π)−z cos(1
2 πz)Γ(z)ζ(z), reflection rule.

The computation for negative arguments is expensive because of the need for at least four transcendental function
evaluations. In addition, the argument reduction in the trigonometric functions needs careful handling to avoid
serious accuracy loss, as we saw in Section 18.1.3 on page 531.

10See also http://en.wikipedia.org/wiki/Hilbert’s_problems.
11See Eric Weisstein’s discussion and table of historical records at http://mathworld.wolfram.com/RiemannZetaFunctionZeros.html or in the

print edition [Wei09], and the online article at http://en.wikipedia.org/wiki/Riemann_hypothesis. Web searches easily find graphical anima-
tions of the behavior of the zeta function along the critical line; see, for example, http://web.viu.ca/pughg/RiemannZeta/RiemannZetaLong.html.

580 Chapter 18. The Greek functions: gamma, psi, and zeta

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

x

ζ(x)

−40 −30 −20 −10 0 10 20 30 40
−40

−30

−20

−10

0

10

20

30

40

x

ζ(x)

−33 −32 −31 −30 −29 −28 −27 −26 −25
−8

−6

−4

−2

0

2

4

6

8
x 10

8

x

ζ(x)

−40 −30 −20 −10 0 10 20 30 40
−15

−10

−5

0

5

10

15

x

ζ(x)

log
10

(|ζ(x)|)

Figure 18.14: The real Riemann zeta function on four different scales. There is a single pole at x = 1, indicated by a
vertical dotted line. The extremes on the negative axis in the upper-right graph are not poles, but rather, increasingly
sharp oscillations around negative even integers. The bottom-left plot shows detail in that region, emphasizing the
rapid growth as the argument becomes more negative. Notice the extended vertical range in the bottom graphs,
where the horizontal dotted axis line has been added to make the rise and fall more visible. To compress the peaks
on the negative axis, the lower-right plot shows a logarithm of the absolute value of the zeta function.

The Riemann zeta function is graphed in Figure 18.14. It is instructive to investigate its behavior on the negative
axis by examining function values near even integers with a spacing equal to the machine epsilon of the IEEE 754
32-bit decimal format:

% maple
> Digits := 75:
> epsilon := 1.0e-6:
> for x from -20 to -50 by -2 do
> printf(" %3d %+28.6f %d %+28.6f\n", x, Zeta(x - epsilon), Zeta(x), Zeta(x + epsilon))
> end do:

-20 -0.000132 0 +0.000132

18.7. A German gem: the Riemann zeta function 581

-22 +0.001548 0 -0.001548
-24 -0.021645 0 +0.021645
-26 +0.356380 0 -0.356379
-28 -6.824568 0 +6.824547
-30 +150.395456 0 -150.394981
-32 -3779.085152 0 +3779.072731
-34 +107403.843683 0 -107403.477841
-36 -3427919.832550 0 +3427907.769952
-38 +122083301.056668 0 -122082858.429988
-40 -4824153825.043452 0 +4824135845.935097
-42 +210423664149.341611 0 -210422859638.052708
-44 -10084537705316.655384 0 +10084498221743.078686
-46 +528769774333454.877181 0 -528767657572332.113664
-48 -30216628059523083.809344 0 +30216504552061415.757252
-50 +1875220594685297466.063292 0 -1875212778359822930.953882

The function is steep near negative even integers, but there are no poles on the negative axis.
There are important special cases of the zeta function:

ζ(0) = − 1
2 , lim

δ→0
ζ(1 − δ) = −∞, lim

δ→0
ζ(1 + δ) = +∞.

The Taylor-series expansions near 0 and 1 require some auxiliary constants, γk, defined like this:

γk = lim
m→∞

(m

∑
k=1

log(k)n

k
− log(m)n+1

n + 1
)
.

The series expansions then look symbolically and numerically like this:

ζ(x) = − 1
2 +

(− 1
2 log(2π)

)
x

+
(− 1

4 log(2π)2 − 1
48 π2 + 1

4 γ2 + 1
2 γ1

)
x2 + · · · ,

≈ − 1
2 − 0.918 939 x − 1.003 178 x2 − 1.000 785 x3 −

0.999 879 x4 − 1.000 002 x5 + · · · ,

ζ(1 + t) =
1
t
(1 + γt − γ1t2 + 1

2 γ2t3 − 1
6 γ3t4 + 1

24 γ4t5 − · · ·),

≈ 1
t
(1 + 0.577 216 t + 0.072 815 8 t2 − 0.004 845 18 t3 −
0.000 342 306 t4 + 0.000 096 890 5 t5 − · · ·).

Because of their computational complexity, the γk constants, and the general expansion coefficients, are best com-
puted in high-precision arithmetic with a symbolic-algebra system, and then tabulated in other software as compile-
time constants.

The behavior near the pole at x = 1 is driven mainly by the 1/t factor, so we expect to be able to compute the
zeta function accurately near that pole.

For x in [0, 1), the reflection formulas move points near the pole at x = 1 to the nicer region near x = 0 where
the convergent series expansion for ζ(x) can be applied. For small negative x, the reflection formulas move the
computation onto the region near 1 + |x| where we can use the ζ(1 + t) expansion with t = |x|. For more negative x
values, the original Riemann sum can be used to find the value of ζ(1 + |x|) in the reflection rule.

At positive nonzero even integer arguments, zeta-function values are powers of π scaled by the Bernoulli num-
bers discussed in Section 18.5 on page 568:

ζ(2) = π2/6, ζ(4) = π2/90, ζ(6) = π6/945,

ζ(8) = π8/9 450, ζ(10) = π10/93 555, ζ(2n) = (−1)n−1 (2π)2n

2(2n)!
B2n.

582 Chapter 18. The Greek functions: gamma, psi, and zeta

The general relation for even integer arguments, ζ(2n) (for n = 1, 2, 3, . . .), was discovered by Euler in 1740. For large
n, direct summation of the zeta-function definition provides a fast way to find the Bernoulli numbers B2n.

At positive odd integer arguments, the zeta-function values do not have simple closed forms.
Despite the rapidly growing numerator and denominator in ζ(2n), their increase must be similar, because the

original definition of the zeta function tells us that its limiting behavior for large x must look like this:

lim
x→∞

ζ(x) → 1 + 2−x → 1.

For that reason, it is useful to have a separate function that computes the difference ζ(x)− 1 directly, as two of the
libraries mentioned in Section 18.7.1 on the next page do, so that ζ(x) can be determined to machine accuracy by
adding the tiny value ζ(x)− 1 to 1.

On the negative axis, there are simple values classed by even and odd indexes, with just one out-of-class value at
the origin. Here are the first dozen:

ζ(0) = −1/2, ζ(−1) = −1/12,
ζ(−2) = 0, ζ(−3) = 1/120,
ζ(−4) = 0, ζ(−5) = −1/252,
ζ(−6) = 0, ζ(−7) = 1/240,
ζ(−8) = 0, ζ(−9) = −1/132,

ζ(−10) = 0, ζ(−11) = 691/32 760.

The general form of the zeta function at negative integers is either zero, or a simple scaling of a Bernoulli number:

ζ(−2n) = 0, ζ(−2n + 1) = −B2n

2n
.

Although that looks simpler than the corresponding relation for B2n on the positive axis, it is computationally worse
for finding B2n because of the greater difficulty of computing the zeta function of negative arguments.

Those results, and the known alternating signs of the Bernoulli numbers, explain the oscillatory behavior seen
in the rightmost graphs in Figure 18.14 on page 580. On the negative axis, the function values soon approach the
overflow limits, but there are no poles there. In IEEE 754 32-bit binary arithmetic, ζ(x) overflows for x ≈ −66.053. In
the 64-bit format, overflow happens for x ≈ −260.17, and in the 80-bit and 128-bit formats, for x ≈ −1754.55. That
last limit represents premature overflow, and would be somewhat more negative if the computation could be done
with a wider exponent range.

In some applications, zeta functions appear only with integer arguments, and it is worthwhile to consider treating
them separately, because we can handle them more quickly, and more accurately, than the zeta function of general
real arguments.

Here is an example of the use of the zeta function for speeding the convergence of an infinite sum [AW05,
page 385], [AWH13, page 17]. Consider the computation of the slowly converging sum:

s =
∞

∑
n=1

1
1 + n2

≈ 0.5000 + 0.2000 + 0.1000 + 0.0588 + 0.0385 + 0.0270 +
0.0200 + 0.0154 + 0.0122 + 0.0099 + 0.0082 + 0.0069 + · · · .

Expand one term of the sum as a series in powers of 1/n2:

1
1 + n2 =

1
n2

(
1

1 + n−2

)

=
1
n2 (1 − n−2 + n−4 − n−6 + n−8 − · · ·)

= n−2 − n−4 + n−6 − n−8 + n−10 − · · ·
= n−2 − n−4 + n−6 − n−8 + n−10 − 1

n12 + n10 .

18.7. A German gem: the Riemann zeta function 583

Substituting that expansion into the original sum produces zeta functions of integer arguments, and a much-faster-
converging sum:

s = ζ(2)− ζ(4) + ζ(6)− ζ(8) + ζ(10)−
∞

∑
n=1

1
n12 + n10

≈ (ζ(2)− ζ(4) + ζ(6)− ζ(8) + ζ(10))−
(0.500 000 000 + 0.000 195 312 + 0.000 001 694 + 0.000 000 056 + · · ·)

≈ (1.576 871 117)− (0.500 000 000 + 0.000 195 312 + 0.000 001 694 + · · ·)
≈ 1.076 674 047 .

With that new expansion, only six terms of the infinite sum are needed to produce ten correct digits, an accuracy that
is confirmed by results from Maple’s sum() function:

> for Digits from 10 to 40 by 10 do
> printf("%3d %.24f\n", Digits, sum(1 / (1 + n**2), n = 1 .. infinity))
> end do:
10 1.076674048000000000000000
20 1.076674047468581174200000
30 1.076674047468581174134051
40 1.076674047468581174134051

By contrast, adding a million terms of the original sum produces only five correct digits.

18.7.1 Computing the Riemann zeta function

The Riemann zeta function is absent from the mathematical libraries of ISO Standard programming languages. How-
ever, Maple supplies it as Zeta(z), and Mathematica as Zeta[z]. MATLAB, Maxima, MuPAD, and PARI/GP agree
on calling it zeta(z). Despite the capitalized function name in two of those languages, the mathematical symbol for
the function is always the lowercase Greek letter: ζ(z).

Only a few mathematical libraries include the zeta function:

� The Cephes library [Mos89, §7.10.2] provides zetac(x) for ζ(x)− 1, and zeta(x,a) for computing the Hurwitz
zeta function, ∑∞

k=1(k + a)−x, a generalization of the Riemann zeta function.

� The GNU Scientific Library [GDT+05] has four zeta functions:

gsl_sf_zeta_int(n) returns ζ(n),
gsl_sf_zeta(x) returns ζ(x),
gsl_sf_zetam1_int(n) returns ζ(n)− 1,
gsl_sf_zetam1(x) returns ζ(x)− 1.

� Thompson includes a short Fortran implementation in his book [Tho97], but only for ζ(x) with x > 1. He
claims about 10-digit accuracy.

� Baker’s implementation in C [Bak92, page 519] handles arbitrary real arguments.

Surprisingly, no implementation of the Riemann zeta function can be found in the ACM Collected Algorithms, or
the journals ACM Transactions on Mathematical Software (TOMS) and Applied Statistics, or Netlib, or the commercial
IMSL and NAG libraries; they are otherwise rich sources of high-quality mathematical software.

The code in the mathcw library files zetax.h and zetm1x.h is inspired by Moshier’s computational algorithm.
However, we include Taylor-series evaluation, and use completely different polynomial fits.

x is a NaN : Set a domain error, and set the result to that NaN.

x is −∞ : Set a range error, and set the result to +∞, even though the sign is indeterminate, and the function range
is [−∞,+∞]. A NaN could also be a suitable return value for this case, but there is no ISO Standard to guide
us.

584 Chapter 18. The Greek functions: gamma, psi, and zeta

x is a whole number : Use the fast special-case code in ZETNUM(n). Its algorithm is described shortly.

−∞ ≤ x ≤ −XMAX : The argument magnitude is so large that it has no fractional part, and is even (because all
practical floating-point bases are even). Set the result to 0, because ζ(−2n) = 0. A suitable value for XMAX in
base β and t-digit precision is βt.

−XMAX < x < −Taylor-series cutoff : Apply the reflection formula to remap the computation to the positive axis.
However, because of the large error magnification of the functions in the reflection formula, do the trigonomet-
ric argument reduction carefully (preferably with the COSPI() and SINPI() families), and use the next higher
precision, when available.

|x| < Taylor-series cutoff : Sum the Taylor series for ζ(x) to produce a small correction to the value ζ(0) = − 1
2 . We

use series of orders 2, 4, 8, 16, and 32 to improve accuracy in part of the troublesome interval (0, 1).

Taylor-series cutoff ≤ x < 1 : Recover the function value from (1 − x)(ζ(x)− 1) ≈ R1(x), where R1(x) is a mini-
max rational polynomial fit. Use error recovery to reduce the error in forming 1/(1− x), and form the function
result like this:

ζ(x) =

⎧⎪⎨
⎪⎩

1 +
(

1 +
x

1 − x

)
R1(x), for 0 < x < 1

2 ,

1 +
1

1 − x
R1(x), for 1

2 ≤ x < 1.

The first case preserves accuracy as x → +0, and the second has an exact denominator.

0 < |x − 1| < Taylor-series cutoff : Sum the Taylor series for ζ(1 + t), where t = x − 1. We use series up to order
32.

x = 1 : Set a range error, and return +∞.

1 < x < 10 : Sum Taylor series near x = 2, 3, and 4 for improved accuracy. Otherwise, use ζ(x) ≈ 1 + 2−x(x/(x −
1))R2(1/x), where R2(1/x) is a rational minimax polynomial fit. Notice that the variable in that polynomial
is a reciprocal; that choice makes the polynomial almost linear in this region. Compute 2−x with EXP2(-x) in
preference to POW(TWO,-x).

10 ≤ x < 26 :

The function value is ζ(x) ≈ 1 + (2−x + 2−x exp(R3(x))), where the fitting function R3(x) =
log ((ζ(x)− 1)2x − 1) is nearly linear in this region. The polynomial term contributes less than 0.00002 of
the final function value in this region.

Moshier has a minimax fit in this case for a somewhat different function, but Maple is unable to compute
minimax fits of R3(x) beyond the lowest required precisions, so our code falls back to a Chebyshev expansion
for R3(x) at higher precisions.

The choice of endpoints ensures exact conversion of x to the Chebyshev variable on [−1,+1].

26 ≤ x < 90 : Use a fit R4(x) of the same form as the previous region. The polynomial term contributes less than
4 × 10−13 of the function value in this region. Using two separate fits on [10, 90] reduces the length of the
Chebyshev expansions.

For decimal arithmetic, we use a similar fit, but for the interval [10, 110], to get an accurate conversion of x to
the Chebyshev variable.

90 ≤ x < XHIGH : Sum the zeta-function definition directly, exiting the loop when convergence has been reached.
Only a few terms are needed, and we can avoid computing some of the higher powers by factoring them into
products of saved lower powers. For example, 4−x = 2−x × 2−x, and 6−x = 2−x × 3−x.

The cutoff XHIGH is determined by finding the smallest x value for which a two-term sum guarantees correct
rounding: we then have 2−x = 1

2 ε/β, or XHIGH = − log2(
1
2 ε/β). The required cutoffs range from 24.25 in the

32-bit formats up to about 238 in the 256-bit formats. In the binary formats, the cutoff is just t + 1 for t-bit
precision.

18.7. A German gem: the Riemann zeta function 585

Figure 18.15: Errors in the ZETA() functions.

XHIGH < x ≤ +∞ : The function value is 1 to machine precision. Adding a tiny value to that number ensures the
setting of the IEEE 754 inexact flag.

Moshier was careful to express his fitting functions in terms of ζ(x) − 1. so minimal changes are needed to
convert the algorithm to that needed for the variant function zetam1(x). In particular, the changes increase the
XHIGH cutoffs. For that reason, and to avoid an additional rounding error, it is not advisable to implement ZETA(x)
simply as ZETAM1(x)+ ONE.

The measured errors in our implementation of ζ(x) are graphed in Figure 18.15, and those for ζ(x)− 1 are shown
in Figure 18.16 on the following page. Outside the argument range shown in those plots, the function results are
almost always correctly rounded, although that is only true for negative arguments when a higher-precision data
type is available.

For applications that require zeta-function values only for integer arguments, we supply two more function
families, ZETNUM(n) and ZETNM1(n), that return ζ(n) and ζ(n) − 1, respectively. They handle the computation as
follows:

n < 0 : Return zero if n is even, and −B2−2�n/2�/(2− 2�n/2�) if n is odd. The required Bernoulli number is obtained
from BERNUM(), and its code uses fast table lookup.

For ZETNM1(n), use a separate small table of values of ζ(n)− 1 to avoid subtraction loss for n in [−17,−1].

The one minor flaw is that for n large enough that the Bernoulli number is just above the overflow limit, the
exact quotient might still be representable, but our algorithm returns an Infinity. To avoid that, we use the next

0

1

2

-6 -4 -2 0 2 4 6

u
lp

s

x

Errors in zetaf()

0

1

2

-6 -4 -2 0 2 4 6

u
lp

s

x

Errors in zetadf()

0

1

2

-6 -4 -2 0 2 4 6

u
lp

s

x

Errors in zeta()

0

1

2

-6 -4 -2 0 2 4 6

u
lp

s

x

Errors in zetad()

586 Chapter 18. The Greek functions: gamma, psi, and zeta

Figure 18.16: Errors in the ZETAM1() functions.

higher precision, so that at least for float, and often for double, function types, we eliminate the premature
overflow, except in deficient older floating-point designs with the same exponent range for all precisions.

n = 1 : Set a range error and return +∞.

n = 0 or n > 1 : For n up to a few hundred (depending on the floating-point range), return a correctly rounded
value from a compile-time private constant table. Otherwise, n is large enough that the Riemann sum can be
truncated to two terms, 1 + 2−n. Compute the power as EXP2(-n), because that is faster than the POW() family,
and may be more accurate as well; in particular, it is exact in binary arithmetic.

Our implementations of code for the zeta function makes the common case of small positive integer arguments
both fast and correctly rounded. That is important for code that needs zeta functions in time-critical inner loops.
When arguments are whole numbers, our code also guarantees identical results from the ZETA() and ZETNUM(), and
the ZETAM1() and ZETNM1(), families. Application programmers are advised to consider revising computations to
exploit the higher effective accuracy provided by the ZETAM1() and ZETNM1() routines.

0

1

2

-6 -4 -2 0 2 4 6

u
lp

s

x

Errors in zetam1f()

0

1

2

-6 -4 -2 0 2 4 6

u
lp

s

x

Errors in zetam1df()

0

1

2

-6 -4 -2 0 2 4 6

u
lp

s

x

Errors in zetam1()

0

1

2

-6 -4 -2 0 2 4 6

u
lp

s

x

Errors in zetam1d()

18.7. A German gem: the Riemann zeta function 587

18.7.2 Greek relatives of the Riemann zeta function

There are three relatives of the zeta function that introduce alternating signs, or include only odd integers [AS64,
Chapter 23]:

β(x) =
∞

∑
k=1

(−1)k−1(2k − 1)−x =
∞

∑
k=0

(−1)k(2k + 1)−x, beta function,

η(x) =
∞

∑
k=1

(−1)k−1k−x = (1 − 21−x)ζ(x), eta function,

λ(x) =
∞

∑
k=1

(2k − 1)−x = (1 − 2−x)ζ(x), lambda function.

Because of their simple relation to the zeta function, there is no strong reason to implement special code for the eta
and lambda functions: the required scale factor is easily computed to machine precision with the EXP2M1() family.

The beta function is often prefixed by the names Catalan or Dirichlet, Nineteenth Century Belgian and German
mathematicians who contributed to the study of that function. It is defined for negative arguments through this
relation, valid for all complex z:

β(1 − z) =
(

2
π

)z

sin(1
2 πz)Γ(z)β(z).

The beta function for real arguments is graphed in Figure 18.17 on the next page.
For negative integer arguments, and odd positive integer arguments, the beta function can be readily obtained

from the Euler numbers returned by our EULNUM() family through the relations

β(−2n) = 1
2 E2n, β(−2n − 1) = 0, β(2n + 1) =

(1
2 π)2n+1

2(2n)!
|E2n|.

No simple closed form is known for the beta function of positive even integer arguments.
Here are some special values of those functions:

η(1) = log(2), η(2) =
π2

12
, η(4) =

7π4

720
,

λ(1) = ∞, λ(2) =
π2

8
, λ(4) =

π2

96
,

β(0) = 1
2 ,

β(1) =
π

4
, β(2) ≈ 0.915 965 594 177 219 015 054 603 . . . , β(3) =

π2

32
.

The constant β(2) is known as Catalan’s constant. Maple and Mathematica provide it as the built-in value Catalan
and can evaluate it numerically to arbitrary precision. It is related to the Riemann zeta function like this:12

β(2) = 1 −
∞

∑
k=1

k ζ(2k + 1)
16k .

The sum converges reasonably quickly, and generates about as many decimal digits as terms summed: 64 terms
produce 75 correct digits.

Most of the symbolic-algebra systems available to this author are unable to produce a Taylor series for the beta
function, but Maple succeeds:

β(x) =

(
∞

∑
k=1

(−1)k−1

)
+

(
∞

∑
k=1

(−1)k−1 log(2k − 1)

)
x +

12See the MathWorld article at http://mathworld.wolfram.com/CatalansConstant.html or in the print edition [Wei09].

588 Chapter 18. The Greek functions: gamma, psi, and zeta

−5 −4 −3 −2 −1 0 1 2 3 4 5
−4

−3

−2

−1

0

1

2

3

4

x

β(x)

−40 −30 −20 −10 0 10 20 30 40
−40

−30

−20

−10

0

10

20

30

40

x

β(x)

−33 −32 −31 −30 −29 −28 −27 −26 −25
−4

−3

−2

−1

0

1

2

3

4
x 10

29

x

β(x)

−40 −30 −20 −10 0 10 20 30 40
−40

−30

−20

−10

0

10

20

30

40

x

β(x)

log
10

(|β(x)|)

Figure 18.17: The real Catalan/Dirichlet beta function on four different scales. The dotted horizontal and vertical
lines mark the axes and the limiting value for large positive arguments.
On the positive axis, the function is well-behaved and free of poles and zeros. On the negative axis, the initial good
behavior seen in the upper-left graph soon becomes wild oscillations evident in the upper-right plot.
Function growth is so rapid on the negative axis that an attempt to see the oscillations on a linear scale fails, as in
the lower-left graph. However, the growth becomes manageable when we take a logarithm of the absolute value, as
shown in the lower-right plot.

(
∞

∑
k=1

1
2 (−1)k−1(log(2k − 1))2

)
x2 +

(
∞

∑
k=1

− 1
6 (−1)k−1(log(2k − 1))3

)
x3 + · · · .

That is daunting, and also puzzling, because it appears that each of the infinite sums is either uncertain, or likely to
diverge. In mathematics, infinite sums often hold surprises, and Maple is fortunately able to numerically evaluate

18.7. A German gem: the Riemann zeta function 589

the expansion taken to terms of higher order:

β(x) = 1
2 + 0.391 594 392 706 837 x − 0.116 416 441 749 488 x2 +

0.004 513 226 707 904 77 x3 + 0.008 472 226 111 133 55 x4 −
0.003 363 554 823 024 05 x5 + 0.000 655 340 450 069 919 x6 −
0.000 049 935 341 465 263 3 x7 − 0.000 011 067 375 016 246 8 x8 +

0.000 004 831 936 836 840 8 x9 +O(x10)

It is therefore feasible to tabulate numerical expansion coefficients in problem regions, such as near the function zeros
at odd negative integer arguments.

Baker [Bak92, page 526] provides a brief implementation of the beta function for positive arguments, but tests
show that his algorithm is only practical for x > 4.92, because for smaller arguments, the internal summation does
not converge to working precision.

The author of this book has been unable to find other published algorithms specifically for the beta function, but
there is a useful class of techniques for summing alternating series, such as those for the beta and eta functions, that
provides an effective solution through convergence acceleration.13 Two of the earliest-known approaches are due to
Euler (17??) and Kummer (1837) [AS64, §3.6.27, §3.6.26] [OLBC10, §3.9], but better methods have since been dis-
covered. There are book-length treatments of the subject [BR91, BGM96, Sid03], and shorter descriptions [HCL+68,
§2.8] [PTVF07, §5.3]. One of the simplest recent methods for finding the sum of an alternating series with decreasing
terms [CVZ00] requires no array storage, and is implemented in this hoc function:

func altsum(x, n) \
{ # return sum(k = 0:infinity) (-1)**k * A(x,k) using first n terms

e = (3 + sqrt(8))**n
d = (e + 1/e) / 2
b = -1
c = -d
sum = 0

for (k = 0; k <= n; ++k) \
{

c = b - c
sum += c * A(x, k)
b = (k + n) * (k - n) * b / ((k + 1/2) * (k + 1))

}

return (sum / d)
}

For the beta and eta functions, and the zeta function through its relation to the latter, the algorithm is surprisingly
effective. Here are some results for brute-force and accelerated computation of the beta function:

β(x, n) =
n

∑
k=0

(−1)k(2k + 1)−x, n-term approximation to β(x),

β(1, 1000) ≈ 0.785 6,
β(1, 1 000 000) ≈ 0.785 398 4,

β(1, 1 000 000 0000) ≈ 0.785 398 163 1,
β(1) ≈ 0.785 398 163 397 448 309 615 660 845 819 875 721 049 . . . ,

altsum(1, 10) ≈ 0.785 398 163 4,
altsum(1, 20) ≈ 0.785 398 163 397 448 309 9,
altsum(1, 30) ≈ 0.785 398 163 397 448 309 615 660 848,

13See http://mathworld.wolfram.com/ConvergenceImprovement.html and
http://en.wikipedia.org/wiki/Series_acceleration.

590 Chapter 18. The Greek functions: gamma, psi, and zeta

altsum(1, 40) ≈ 0.785 398 163 397 448 309 615 660 845 819 877.

The numerical values are truncated after the first incorrect digit. The results for β(1, n) are from a high-precision
symbolic-algebra computation, and those for our hoc function use 34-digit decimal arithmetic. The last computed
value is within 2.14 ulps of the exact β(1).

As usual with sequences of decreasing terms, it is advisable to delay summing the leading term until last, to
minimize accumulation of rounding errors. The changes to altsum() are simple, but we omit them here.

In altsum(), the fact that d requires a square root and a power, determines the starting value of c, and appears
as a divisor in the final result, means that the final accuracy is limited by the quality of the power function. That is
another reason why it is advisable to sum one or more of the leading terms separately.

To apply a function like altsum() in practical code, we could compute the sums at run time with increasing values
of n, terminating when the results are sufficiently converged. However, it is better to make experiments to determine
the minimal values of n that produce converged results for fixed computational precision, and the required ranges
of x. A short table of (x, n) pairs then allows a suitable single value of n to be found quickly for a given argument x.

The mathcw library provides four function families for support of the beta function:

double beta (double x); /* beta(x) */
double betam1 (double x); /* beta(x) - 1 */
double betnum (int n); /* beta(n) */
double betnm1 (int n); /* beta(n) - 1 */

They have the usual companions for other floating-point types. For increasing positive x, β(x) approaches 1 from
below, so the functions betam1(x) and betnm1(n) provide an accurate value of the difference from that limiting
value.

The functions of integer arguments use fast table lookup for n in [0, 100] to retrieve correctly rounded values of
the beta function. Below that interval, they use the EULNUM() family for the required Euler numbers. Above that
interval, they sum the rapidly decreasing series of terms (−1)k(2k + 1)−n to find the function value.

Our algorithms for the BETA() and BETAM1() families are patterned after those used for the zeta function and
described in Section 18.7.1 on page 583. However, the code is simplified by avoiding Taylor-series expansions near
zeros on the negative axis, and instead using excursions to the next higher precision, so that our beta-function results
are almost always correctly rounded, and the usual error plots are therefore omitted. When a higher precision is not
available, measurements show errors up to 2.5 ulps for x in [0, 5], and up to 1 ulp in [5, 15].

The Catalan/Dirichlet beta function is absent from most symbolic-algebra systems, but some of those systems
can evaluate infinite sums numerically. From code in the files beta*.map, Maple produced the private table of values
of β(n)− 1 in betnm.h that BETNM1(n) accesses. Here is a suitable function definition for Maple:

betam1 := proc(x)
local k:
return Re(evalf(sum((-1)**(k - 1)*(2*k - 1)^(-x), k = 2 .. infinity)))

end proc:

A Mathematica implementation looks like this:

betam1 = Function[x, Sum[(-1)^(k - 1)*(2*k - 1)^(-x), {k,2,Infinity}]]

Despite the infinite sums, the algebra systems are able to evaluate β(x)− 1 numerically reasonably quickly, although
the Maple version is slow for large arguments.

18.8 Further reading

There is a huge mathematical literature on zeta functions. We cited several books [CJW06, Clay09, Der03, Gra00,
Lau08, Sab03], and one historical survey article [Ayo74] to guide the reader to some of the more interesting features of
zeta functions, without exposing the deep mathematics that underlies the zeta function, and that has been developed
since the work of Euler and Riemann.

We also remarked on the connection of the zeta function to prime numbers, a subject that has occupied mathe-
maticians for millennia. See Ribenboim’s books [Rib91, Rib96, Rib04] for recent surveys of that topic.

18.9. Summary 591

Prime numbers are no longer just of interest in pure mathematics. They lie at the heart of some of the most effec-
tive algorithms in modern cryptography, and are thus intimately related to the security of modern communications
systems. Much of the introductory material on prime numbers can be understood by anyone with only high-school
mathematics, without the need for calculus or computers. There are many interesting books on the subject, and this
author has several personal favorites [FS03, FF01, Sch96, Sch96, Sch00, Sch03, Sin99]. Some of them are likely to
available in local community libraries, making them readily accessible to readers without access to a large academic
library. Many other books and research articles are recorded in several extensive online bibliographies; look for the
string crypto in the archive index at http://www.math.utah.edu/pub/tex/bib/index-table.html.

Eric Weisstein’s MathWorld Web site is a rich source of well-written, and reliable, short articles on almost any
area of modern mathematics. Importantly, it contains many links to other online resources, as well as to published
literature. Access to the MathSciNet and zbMATH databases may be available through a nearby academic library;
those databases provide an excellent way to track topics in mathematics back to the original research articles.

The extraordinary contributions of Leonhard Euler to mathematics are documented in several books and articles,
some of which were published to mark the 300-year anniversary of Euler’s birth [BMY07, BDS07, BS07, Dun91,
Dun99, Dun07, Fel07, Fin97, Gau08, HHPM07, Nah06, San07a, San07b]. Euler and the Bernoulli family are also
covered in two other books [Dun91, Ten09], and there is even a book devoted to the history of the Euler–Mascheroni
constant [Hav03]. Republications of Euler’s original works, Leonhardi Euleri opera omnia, continue to be produced,
and fill more than fifty volumes in Latin [Eul92].14

18.9 Summary

The gamma and log-gamma functions are among the most important of all of the special functions in mathematics.
Their logarithmic derivatives, the psi function and the higher polygamma functions, are less commonly encountered.
Nevertheless, they all deserve accurate treatment, because they often occur in critical kernels of other computations.
The Fortran 2008 Standard [FTN10] introduces functions with the names gamma(x) and log_gamma(x), but some
vendors have supplied them for decades, possibly under different names. The C library does not supply a factorial
function, yet that function is commonly needed in combinatorics, probability, and statistics. Our gamma function
therefore handles the case Γ(n + 1) = n! by fast table lookup, ensuring correctly rounded factorials over the entire
range where they are representable in single- and double-precision formats.

Like the gamma function, the incomplete gamma functions turn up in a surprising number of areas, and one of
their most common applications is for the computation of probability functions, such as the chi-square measure. For
that reason alone, the incomplete gamma functions, and the chi-square function and its inverse, deserve to be part
of standard mathematical libraries in all major programming languages.

The psi function is rare, but it is important to remember that it is a useful tool for evaluating the partial sums of
the harmonic series that show up in many applications, especially in number theory and the analysis of computer
algorithms. We meet the psi function again in this book in the chapter on Bessel functions (see Section 21.3 on
page 703).

The related polygamma functions are needed for evaluation of certain reciprocal sums, and cannot be computed
accurately with simple code. Our implementations of those functions handle arbitrary order and argument range,
and on many systems, the single and double precision versions are accurate to working precision.

Factorials, binomial coefficients, and the special numbers associated with the beta and zeta functions, and the
names of Bernoulli, Euler, and Fibonacci, are commonly needed in series expansions, so it makes sense to provide
accurate implementations of them in mathematical software libraries. The mathcw library supplies the FACT() and
DFACT() families for single and double factorials, the LOGBFACT() family for base-β logarithms of factorials, and the
BINOM() family for binomial coefficients. The latter are programmed to avoid premature overflow, and all of the
functions that supply those special numbers use fast table lookup to handle most common cases. Outside the range
of tabulated values, they take care to reduce unnecessary rounding error in order to achieve high accuracy. The
factorial functions also remember the last computed value so that it can be returned quickly if they are called again
with the same argument. The remembered value can also sometimes serve as an accurate starting value for further
computation on subsequent calls.

The zeta-function family is rarely provided in mathematical software libraries, but deserves to be. Our implemen-
tation achieves satisfactory accuracy for positive real arguments, but can do so for negative arguments only when

14See also the online Euler Archive at http://www.math.dartmouth.edu/~euler/.

592 Chapter 18. The Greek functions: gamma, psi, and zeta

higher precision is available. The zeta-function definition for negative arguments requires the reflection rule (see Sec-
tion 18.7 on page 579), and that in turn requires exponentials, powers, trigonometric functions, and zeta functions
of positive arguments. The rapidly changing, and steep, function values in the negative-argument region strongly
suggest that higher precision for all of those auxiliary functions is the only practical way of reliably computing the
zeta functions there.

Beta, eta, lambda, and zeta functions of integer arguments have special properties that allow them to be derived
from Euler and Bernoulli numbers, exponentials, or fast table lookup. Because some applications that need zeta
functions require them only for integer arguments, it is worthwhile to handle them in separate library functions that
compute them more quickly, and almost-always correctly rounded as well.

The approach to limiting values of the beta and zeta functions recommends the provision of auxiliary functions
that compute accurate differences from those limits: the mathcw library accordingly supplies the BETAM1(), BETNM1(),
ZETAM1(), and ZETNM1() families.

The techniques shown in Section 18.7 on page 582 and Section 18.7.2 on page 589 for dramatic acceleration of
the convergence of sums are worthy of further study, because sums are ubiquitous in applied mathematics.

19 Error and probability functions

ERF, n.: IN CAPE COLONY, SOME PARTS OF THE STATE OF NEW YORK,
AND OTHER REGIONS ORIGINALLY SETTLED BY THE DUTCH, A SMALL

INHERITED HOUSE-AND-GARDEN LOT IN A VILLAGE OR SETTLEMENT.

PHI, n.: THE GREEK LETTER φ, ϕ, Φ, CORRESPONDING TO

THE ENGLISH ph (f).

— New Century Dictionary (1914).

Like the gamma and psi functions, the functions treated in this chapter are among the most important of the
special functions.

The mathematical properties of the functions in this chapter are summarized in [AS64, OLBC10, Chapter 7] and
[SO87, Chapter 40]. Computational algorithms for them are given in [HCL+68, Chapter 6], [Mos89, Chapter 5],
[Bak92, Chapter 7], [Tho97, Chapter 10], and [ZJ96, Chapter 16], as well as in some research articles [Cod69, Cod88a,
Cod90, CS91, Cod93b].

19.1 Error functions

The error function, erf(x), is defined as the area under the scaled normal curve between the origin and x:

erf(x) =
2√
π

∫ x

0
exp(−t2) dx.

The normalizing factor 2/
√

π ensures that erf(∞) = 1.
The complementary error function, erfc(x), is the area under the scaled normal curve between x and infinity:

erfc(x) =
2√
π

∫ ∞

x
exp(−t2) dx.

The two functions, and the scaled normal curve, are shown in Figure 19.1 on the next page.
The normal and complementary error functions, and their close relatives described in Section 19.4 on page 610,

figure prominently in applications in probability and statistics, and after the original Fortran elementary functions,
are probably the most important functions in mathematical and statistical software. It is therefore regrettable that
they were left out of common programming languages for fifty years, until their inclusion in C99. The Fortran 2008
Standard [FTN10] introduces them to that language with the same names, and also provides erfc_scaled(x) for the
value of exp(x2)× erfc(x).

19.1.1 Properties of the error functions

The normal and complementary error functions satisfy the relations

erf(x) + erfc(x) = 1, for x in (−∞,+∞),

erf(−x) = − erf(x),
erfc(−x) = 2 − erfc(x),

© Springer International Publishing AG 2017
N.H.F. Beebe, The Mathematical-Function Computation
Handbook, DOI 10.1007/978-3-319-64110-2_19

593

594 Chapter 19. Error and probability functions

Figure 19.1: Error functions and normal curve.

and have these special values:

erf(−∞) = −1, erfc(−∞) = 2,
erf(0) = 0, erfc(0) = 1,

erf(±0.476 936 . . .) = ± 1
2 , erfc(0.476 936 . . .) = 1

2 ,
erf(+∞) = 1, erfc(+∞) = 0.

For small arguments, the error functions have these Taylor series expansions:

erf(x) = (2/
√

π)
(
x − x3/3 + x5/10 − x7/42 + x9/216 − x11/1320 + · · ·)

= (2/
√

π)
∞

∑
k=0

(−1)k

(2k + 1)k!
x2k+1,

erf(x) = (2/
√

π) exp(−x2)(x + 2x3/3 + 4x5/15 + · · ·)

= exp(−x2)
∞

∑
k=0

x2k+1/Γ(k + 3/2).

Although the gamma function occurs formally in the expansion of erf(x), in practice, it is not required to sum the
series, because the coefficients can be obtained from the starting value Γ(3/2) =

√
π/2 and the recurrence relation

Γ(z + 1) = zΓ(z). The outer factor 2/
√

π is, of course, applied last.

The error functions have simple continued-fraction expansions for x > 0:

erf(x) = (2/
√

π) exp(−x2)

(
x

1 −
2x2

3 +
4x2

5 −
6x2

7 +
8x2

9 −
10x2

11 +
12x2

13 − · · ·
)

,

erfc(x) = (1/
√

π) exp(−x2)

(
1

x +

1/2
x +

2/2
x +

3/2
x +

4/2
x +

5/2
x +

6/2
x +

· · ·
)

.

Numerical tests of those expansions with their implementations in the files erf-cf.hoc and erfc-cf.hoc show rea-
sonable convergence for erf(x) when 0 < x < 1, and for erfc(x) when x > 4.

−4 −3 −2 −1 0 1 2 3 4
−2

−1

0

1

2

3

x

f(
x)

(2/sqrt(pi))*exp(−x**2)
erf(x)
erfc(x)

19.1. Error functions 595

For large arguments, the complementary error function has an asymptotic expansion:

erfc(x) � (1/(x
√

π)) exp(−x2)

(
1 − 1

2x2 +
3

4x4 − 15
8x6 +

105
16x8

− 945
32x10 +

10 395
64x12 − 135 135

128x14 +
2 027 025

256x16 − 34 459 425
512x18 + · · ·

)

� (1/(x
√

π)) exp(−x2)
∞

∑
k=0

(−1)k(2k)!
4k k! x2k .

Figure 2.1 on page 20 gives a flavor of the applicability of the asymptotic expansion for practical computation.
Because the exponential exp(−t2) in the integrand falls off so rapidly, erf(x) approaches its limit value quickly:

in 32-bit IEEE 754 arithmetic, fl(erf(4)) = 1 to machine precision. In 64-bit IEEE 754 arithmetic, fl(erf(6)) = 1 to
machine precision, and in 128-bit IEEE 754 arithmetic, fl(erf(9)) = 1 to machine precision.

That rapid approach to the limit has these ramifications:

� By subtraction from one, it is possible to compute one error function from the other only in a sharply limited
range. The two are equal at x ≈ 0.476 936, and there is significance loss in forming erfc(x) = 1 − erf(x) in
binary arithmetic for x in the approximate interval [0.48, ∞).

� It is always safe to compute the smaller of the error functions, and then obtain the larger by subtraction.

� The complementary error function underflows to zero at x ≈ 11, 28, and 107 for the three C-language precisions
in IEEE 754 arithmetic.

The first derivatives of the error functions are given by:

erf ′(x) = +
√

4/π exp(−x2),

erfc ′(x) = −√
4/π exp(−x2)

= − erf ′(x).

We can use them to compute the error-magnification factors discussed in Section 4.1 on page 61 and tabulated
in Table 4.1 on page 62, and graph them with MATLAB’s implementations of the error functions, as shown in
Figure 19.2 on the following page.

The second derivatives have a particularly simple form that we exploit later in iterative schemes for the compu-
tation of function inverses:

erf ′′(x) = −2x erf ′(x),
erfc ′′(x) = −2x erfc ′(x).

Mathematically, the error function can be computed from the regularized incomplete gamma function:

erf(x) =

{
+P(1

2 , x2), for x ≥ 0,

−P(1
2 , x2), for x < 0.

That approach is used in Thompson’s book [Tho97], but that is rarely suitable, because accurate and portable imple-
mentations of the incomplete gamma function are hard to find, the right-hand side suffers from premature overflow
and underflow in forming x2, and the relation gives no way to determine the complementary error function accu-
rately.

19.1.2 Computing the error functions

The Sun Microsystems fdlibm package (discussed later in Chapter 25.3 on page 824) provides an algorithm for the
two error functions that can be generalized to handle arithmetics and precisions other than IEEE 754 64-bit arith-
metic. The fdlibm recipe provides the basis for the mathcw library code, and also illustrates some interesting pro-
gramming practices that are worth documenting here. After dealing with the special cases of NaN, zero, and infinite

596 Chapter 19. Error and probability functions

−20 −10 0 10 20
0

0.2

0.4

0.6

0.8

1

x

m
ag

(e
rf

(x
))

−20 −10 0 10 20
−1500

−1000

−500

0

x

m
ag

(e
rf

c(
x)

)

Figure 19.2: Error-magnification factors for the error functions as implemented in MATLAB. Notice the different
vertical scales. Although erf(x) is largely insensitive to argument errors, erfc(x) has large sensitivity when x is large,
or equivalently, the function value is small.

arguments, the algorithm handles the computation in five regions, each with different rational polynomial approx-
imations Rr(x) = Pr(x)/Qr(x). In the mathcw code that implements that computation, most multiply-add oppor-
tunities are wrapped in FMA() macros, and expressions of the form 1 + x are computed as (1

2 + 1
2 x) + (1

2 + 1
2 x) to

avoid bit loss under wobbling precision. For the ordinary error function, our code also adds a sixth region for small
arguments, where we sum the Taylor series.

[R0] |x| small:
Sum a six-term Taylor series. The sum is scaled by the transcendental constant 2/

√
π, a value that introduces

additional rounding error, and has leading zero bits in hexadecimal arithmetic. Those leading zeros are elimi-
nated if we instead use 1/

√
π. For improved accuracy, we represent that constant as a sum of exact high and

approximate low parts, and then double the scaled sum.

For |x| near the underflow limit, the intermediate expressions can become subnormal or underflow to zero,
so we move away from the underflow region by scaling the computation by the exactly representable inverse
cube of the machine epsilon, 1/ε3, and then rescale the result by ε3.

[R1] |x| in [small, 27/32):

erf(x) ≈ x + xR1(x2),

erfc(x) ≈
{

1 − erf(x), for x in [−27/32,+1/4),
1
2 +

(
(1

2 − x)− xR1(x2)
)
, for x in [+1/4, 27/32).

The error function must not be computed as erf(x) = x(1 +R1(x2)), because that loses three leading bits on
base-16 systems.

In this region, the magnitude of the term xR1(x2) is never more than 0.13|x|, so there is no possibility of
subtraction loss in binary arithmetic, and the result is determined from a small correction to an exact value.

[R2] |x| in [27/32, 5/4):

s = |x| − 1,
erf(x) ≈ sign(x)(C2 +R2(s)),

erfc(x) ≈
{
(1 − C2)−R2(s), for x > 0,
1 + (C2 +R2(s)), for x < 0.

19.1. Error functions 597

The constant C2 is chosen to lie roughly halfway between erf(27/32) and erf(5/4), so that the rational polyno-
mial is a minimal correction to that constant.

The fdlibm choice is the halfway point, truncated to single precision, but that value is then tied to IEEE 754
arithmetic.

A more portable choice used in the mathcw library is the nearby value C2 = 27/32, which is exactly rep-
resentable in both binary and decimal on all current and historical floating-point architectures. That choice
makes the rational polynomials usable on all systems.

The range of the rational polynomials is then roughly [−0.076,+0.079], a small correction to C2 that effectively
gains one decimal digit of precision.

[R3] |x| in [5/4, 1/0.35):

z = 1/x2,

erfc(x) ≈ (1/x) exp(−x2 − 9/16 +R3(z)),
erf(x) = 1 − erfc(x).

In this region, erfc(x) is less than 0.078, so erf(x) is determined by a small correction to an exact constant.
However, our approximation for erfc(x) requires a function evaluation and a division, introducing at least
two rounding errors into the result. The exponential decrease of the complementary error function makes it
difficult to represent as the sum of an exact term and a small correction.

The range of −x2 − 9/16 is [−0.000 175,−0.119] in this region, and R3(z) changes sign. Thus, there is the
possibility of subtraction loss in forming the argument of the exponential. However, there is another problem:
x2 requires twice the number of bits available, so its truncation introduces an argument error that is magnified
by x2 in the function value (see Table 4.1 on page 62). The solution is to represent x2 as the sum of an exact
value and a small correction, then factor the two parts into two calls to the exponential:

s = (float)x,

x2 = s2 − (s2 − x2)

= s2 − (s − x)(s + x),

exp(−x2 − 9/16 +R3(z)) = exp(−s2 − 9/16)×
exp((s − x)(s + x) +R3(z)).

Numerical experiments show that the relative error in the two ways to compute the exponential grows with x,
and for x ≈ 25.568, can be more than 500 ulps in the IEEE 754 80-bit format, corresponding to a loss of about 9
bits.

In current and most historical floating-point systems, except for the Harris /6 and /7 (see Table H.1 on
page 948), there are at least twice as many significand bits in a double as in a float, so coercing x to a float
produces a value whose square is exactly representable in double or higher precision.

In the first exponential, the argument is exactly representable in bases that are a power of two. In the second
exponential, the term with the factor s− x is of the order of the single-precision machine epsilon, so it is a small
correction to the rational polynomial.

For single-precision computation, however, that does not work, because s = x exactly. What we want is a value
for s with half as many bits as x.

Because x is inside the range (1, 3), it requires two bits for the integer part. If there are t bits in the significand,
then if we add and subtract 2 × 2�t/2� = 2�(t+2)/2�, we can produce s with the desired number of bits.

For example, for IEEE 754 32-bit arithmetic, t = 24, so the addend is 213 = 8192. We can compute s = x + 8192
followed by s = s − 8192 to get s representable in 12 or fewer bits, provided that higher intermediate precision
is avoided.

598 Chapter 19. Error and probability functions

[R4] |x| in [1/0.35, X4):

z = 1/x2,

erfc(x) =

⎧⎨
⎩

(1/x) exp(−x2 − 9/16 +R4(z)), for x > 0,
2 − (1/x) exp(−x2 − 9/16 +R4(z)), for x in (−6, 0),
2 − TINY, for x in (−∞,−6],

erf(x) =
{

sign(x)(1 − erfc(x)), for x in [1/0.35, C4),
sign(x)(1 − TINY), for x in [C4, X4).

The exponentials are each computed as the product of two exponentials, as in region R3, and the bit-trimming
addend must be matched to the value of |x|.
The value of C4 is chosen such that fl(erf(C4)) = 1 to machine precision. As we noted earlier, that happens for
values between 4 and 9, depending on the precision. To be independent of precision, we choose C4 = 9 on all
systems. It will only require adjustment when new arithmetics extend the precision range beyond that of the
IEEE 754 128-bit format.

The value TINY must be small enough that fl(1 − TINY) = 1 to machine precision in default rounding, and
also that fl(TINY× TINY) underflows to zero. A suitable choice is the smallest normalized floating-point num-
ber, which is standardly available in the C language as the constants FLT_MIN, DBL_MIN, and LDBL_MIN in the
standard header file <float.h>.

The code computes 1 − TINY and 2 − TINY rather than just returning the values 1 or 2, so that the IEEE 754
inexact exception flag is set, and nondefault rounding modes are properly accommodated. The variable TINY
is declared with the volatile modifier, and a call to STORE(&TINY) is executed at function entry, to prevent
compile-time evaluation of expressions involving TINY.

The upper limit X4 could be chosen flexibly so that fl(erf(X4)) = 1 for each machine precision. However,
that would mean not only separate limits for each host precision, but also separate polynomials. The fdlibm
choice is X4 = 28, which is suitable for IEEE 754 64-bit arithmetic. For the mathcw library, we choose a value
X4 = 107 near the limit for which erfc(x) underflows in IEEE 754 128-bit arithmetic. Smaller values of X4 are
undesirable, because they would result in premature underflow of erfc(x).

[R5] |x| in [X4, ∞):

erf(x) = sign(x)(1 − TINY),

erfc(x) =
{
TINY2, for x > 0,
2 − TINY, for x < 0.

As in region 4, computing fl(2 − TINY) with default rounding results in 2 with the inexact exception flag set.
Computing fl(TINY× TINY) results in 0 with the IEEE 754 inexact and underflow flags set. Other rounding modes
are also handled properly.

Whenever the computation of a function is split into multiple regions, there is always the risk that important
properties, such as symmetry and monotonicity, are lost at the region boundaries. Tests of our algorithms for erf(x)
and erfc(x) examined the function values at argument intervals of one ulp for 128 ulps on either side of each region
boundary, and found no loss of monotonicity.

The errors in our implementations of the error functions are shown in Figure 19.3 on the facing page and Fig-
ure 19.4 on page 600. They show that the ordinary error function is almost always correctly rounded. The approxi-
mations used for the complementary error functions in regions 3 and 4 suffer from two or more rounding errors, and
it appears difficult to reduce those errors without higher intermediate precision.

19.2 Scaled complementary error function

The ERFCS(x) family provides erfcs(x) = exp(x2) × erfc(x), the scaled complementary error function needed by
Fortran 2008. The algorithm in the file erfcsx.h is similar to that in erfcx.h, with these changes:

19.2. Scaled complementary error function 599

0

1

2

-10 -5 0 5 10

u
lp

s

x

Errors in erff()

0

1

2

-10 -5 0 5 10

u
lp

s

x

Errors in erfdf()

0

1

2

-10 -5 0 5 10

u
lp

s

x

Errors in erf()

0

1

2

-10 -5 0 5 10

u
lp

s

x

Errors in erfd()

Figure 19.3: Errors in the ordinary error functions.

� For positive arguments, the complications of accurate computation of the factor exp(x2) in regions R3 and R4
are eliminated.

� The cutoff X4 is reduced to 10, shortening region R4.

� Region R5 is reduced to [X4, X5) with X5 = β�t/2�, and its algorithm is replaced by a Lentz-style continued
fraction. Numerical experiments show that at most 75 terms are needed to recover 70 decimal digits in the
function value, and usually, many fewer suffice.

� A new region R6 for x in [X5, ∞) is handled by a two-term continued fraction, ε(
√

1/π/(εx + 1
2 ε/x)). The

exact scaling by the machine epsilon moves the parenthesized expression away from the IEEE 754 subnormal
region, preventing accuracy loss, and premature underflow when subnormals are not supported.

� In regions R5 and R6, the factor
√

1/π is represented by a two-part split, and the final product is computed
with a fused multiply-add operation.

� For improved accuracy in regions R5 and R6, the continued fraction is computed as 1/(x + y) = u + v, with
u = fl(1/(x + y)), so that the product with the split

√
1/π is effectively computed in higher precision. That

technique reduces the relative errors by 1 to 2 ulps.

The scaled complementary error function is representable for negative arguments only until 2 exp(x2) overflows,
but it is computable for all positive floating-point arguments. The computation is fast for large arguments, and rarely

600 Chapter 19. Error and probability functions

Figure 19.4: Errors in the complementary error functions.

suffers more than one or two rounding errors. Figure 19.5 on the facing page shows the errors in the 64-bit binary
and decimal functions.

19.3 Inverse error functions

The inverse error functions are defined by

ierf(erf(x)) = x, ierfc(erfc(x)) = x.

A literature search found only a few references to their computation [Has55, Phi60, Car63, Str68, Fet74, BEJ76, Sch78,
Wic88, Pop00, VS04], plus an interesting recent one on the general problem of the computation of inverses of func-
tions [Dom03]. There is also an algorithm given in Moshier’s book [Mos89, §5.14.4].

The inverse error functions are not often found in mathematical libraries or in symbolic-algebra systems, despite
their applications in probability and statistics. We look at their use in those subjects in Section 19.4 on page 610.

The inverse error functions are mentioned only briefly in the Handbook of Mathematical Functions [AS64,
Eqn. 26.2.22, 26.2.23, and 26.2.49] and not, as expected, in the chapter on error functions, but instead in the far-
away chapter on probability functions. They appear there primarily as low-accuracy rational approximations to
solutions of equations involving opaquely named functions P(x) and Q(x). They also receive brief treatment in the
later edition [OLBC10, §7.17].

0

1

2

-15 -10 -5 0 5 10 15

u
lp

s

x

Errors in erfcf()

0

1

2

-15 -10 -5 0 5 10 15

u
lp

s

x

Errors in erfcdf()

0

1

2

-30 -20 -10 0 10 20 30

u
lp

s

x

Errors in erfc()

0

1

2

-30 -20 -10 0 10 20 30

u
lp

s

x

Errors in erfcd()

19.3. Inverse error functions 601

Figure 19.5: Errors in the scaled complementary error functions.

The S-Plus and R statistics programming languages have neither of the inverse error functions, although they
have related functions that we treat in Section 19.4 on page 616. MATLAB supplies both of the inverse error func-
tions, with the names erfinv() and erfcinv(). Mathematica also has both, but with the names InverseErf[] and
InverseErfc[].

19.3.1 Properties of the inverse error functions

Mathematica can compute the series expansion of the inverse error function, but not the complementary one:

% math
In[1]:= Series[InverseErf[x], {x, 0, 7}]

3/2 3 5/2 5 7/2 7
Sqrt[Pi] x Pi x 7 Pi x 127 Pi x 8

Out[1]= ---------- + -------- + ---------- + ------------ + O[x]
2 24 960 80640

In[2]:= Series[InverseErfc[x], {x, 1, 2}]

Out[2]= InverseErf[Infinity, -x]

However, recall from Section 2.10 on page 20 that Mathematica knows how to invert series, so we can find the
expansion of the complementary inverse error function another way:

In[3]:= InverseSeries[Series[Erfc[x], {x, 0, 10}]]

3/2 3 5/2 5
-(Sqrt[Pi] (-1 + x)) Pi (-1 + x) 7 Pi (-1 + x)

Out[3]= -------------------- - --------------- - ----------------- -
2 24 960

7/2 7 9/2 9
127 Pi (-1 + x) 4369 Pi (-1 + x) 11
------------------- - -------------------- + O[-1 + x]

80640 11612160

The functions as implemented in MATLAB are graphed in Figure 19.6 on the following page, from which we can

0

1

2

-100 0 100 200 300 400 500 600 700

u
lp

s

x

Errors in erfcs()

0

1

2

-100 0 100 200 300 400 500 600 700

u
lp

s

x

Errors in erfcsd()

602 Chapter 19. Error and probability functions

−1 0 1 2
−3

−2

−1

0

1

2

3

x
f(

x)

ierf(x)
ierfc(x)

Figure 19.6: Inverse error functions. Both functions go to ±∞ at the endpoints of their intervals, but even in 128-
bit IEEE 754 binary arithmetic, ierf(x) only reaches about ±8.65 at arguments just one machine epsilon away from
those endpoints. Its companion, ierfc(x), is about 106.54 at the minimum normal number, and about 106.90 at the
minimum subnormal number.

identify some more useful relations:

ierf(x) = − ierf(−x), for x in (−1,+1),

ierfc(1 + x) = − ierfc(1 − x), for x in (−1,+1),

ierfc(x) = − ierfc(2 − x), for x in (0,+2],

ierf(x) = − ierfc(1 + x), for x in (−1,+1),

ierfc(x) = ierf(1 − x), for x in (0,+2).

Although those identities might suggest that only one of the functions need be computed, that is not the case.
When x is small, fl(1 ± x) loses trailing bits, and for even smaller x, all bits of x are lost. It is then better to compute
ierfc(1 + x) from − ierf(x), and ierf(1 − x) from ierfc(x).

Maple has neither of the inverse error functions, and it is not even immediately obvious how to define them
computationally. Fortunately, a Web search found several exchanges on the Maple mailing list from the summer of
2000 that included an unexpected, and simple, way to define them symbolically:

% maple
...
Maple arrow (map) one-line function definitions:
> ierf := x -> solve(erf(y) = x, y):
> ierfc := x -> solve(erfc(y) = x, y):
Alternate Maple syntax:
> ierf2 := proc(x) local y: return solve(erf(y) = x, y) end proc:
> ierfc2 := proc(x) local y: return solve(erfc(y) = x, y) end proc:

Despite the definition of the inverse error functions as the computationally difficult solutions of nonlinear equa-
tions, Maple is able to report their Taylor series expansions:

> taylor(ierf(x), x = 0, 7);
1/2 3/2 5/2

Pi Pi 3 7 Pi 5 7
----- x + ----- x + ------- x + O(x)

2 24 960

> taylor(ierfc(x), x = 1, 7);

19.3. Inverse error functions 603

1/2 3/2 5/2
Pi Pi 3 7 Pi 5 7

- ----- (x - 1) - ----- (x - 1) - ------- (x - 1) + O((x - 1))
2 24 960

Notice that the ierfc(x) is expanded about x = 1, not x = 0, where it has a pole.
Maple can also find derivatives of the error functions and their inverses:

> diff(erf(x), x);
2

2 exp(-x)

1/2
Pi

> diff(erfc(x), x);
2

2 exp(-x)
- ----------

1/2
Pi

> diff(ierf(x), x);
1/2

Pi
1/2 ---------------------------

2
exp(-RootOf(-erf(_Z) + x))

> diff(ierfc(x), x);
1/2

Pi
-1/2 ----------------------------

2
exp(-RootOf(-erfc(_Z) + x))

The RootOf() function in the output needs some explanation. When Maple produces RootOf(f(_Z)), it stands for a
root _Z of the equation f (_Z) = 0. Here, we have − erfc(_Z) + x = 0, which has the solution _Z = ierfc(x). Thus,
the derivatives of the inverse error functions are

ierf ′(x) = +
√

π/4 exp
(
(ierf(x))2),

ierfc ′(x) = −√
π/4 exp

(
(ierfc(x))2).

With the derivatives, we can compute the error-magnification factors discussed in Section 4.1 on page 61 and
tabulated in Table 4.1 on page 62, and graph them with MATLAB’s implementations of the inverse error functions,
as shown in Figure 19.7 on the next page. As Figure 19.6 on the facing page suggests, ierf(x) is sensitive to argument
errors near the poles.

For ierfc(x), the factor x in the error magnification eliminates the argument-error sensitivity near the left pole at
x = 0, but there is large sensitivity near x = 1 and x = 2.

19.3.2 Historical algorithms for the inverse error functions

Strecok’s work [Str68] on the inverse error functions predated most symbolic-algebra systems. To obtain the series
expansions of the inverse error functions, he first derived an integro-differential equation relating the inverse error
function to its derivative:

−1/ ierf ′(x) = 2
∫ x

0
ierf(t) dt − 2/

√
π.

604 Chapter 19. Error and probability functions

−1 −0.5 0 0.5 1
0

5

10

15

20

x

m
ag

(ie
rf

(x
))

0 0.5 1 1.5 2
−20

−15

−10

−5

0

5

10

15

20

x

m
ag

(ie
rf

c(
x)

)

Figure 19.7: Error-magnification factors for the inverse error functions as implemented in MATLAB.

He then expanded ierf(x) in an infinite series with unknown coefficients, substituted the series into the integro-
differential equation, and solved for the coefficients. In his article, he tabulated the coefficients of the first 200 terms
to 25 decimal digits, along with coefficients for a 38-term Chebyshev polynomial economization of comparable ac-
curacy.

Now, thanks to Maple, we can easily reproduce the numbers in his Table 2 with just two statements:

> Digits := 25:
> evalf(convert(convert(series(ierf(x), x = 0, 400), polynom),
> horner));
(0.8862269254527580136490835 + (0.2320136665346544935535339 + (

0.1275561753055979582539996 + (0.08655212924154753372964164 + (

0.06495961774538541338201449 + (0.05173128198461637411263173 + (
...
0.001023171163866410634078506 + (0.001017612474788160882928580

+ (0.001012112075399955109701667 + 0.001006669063824750191511020

2 2 2
x) x) x)

...

The final coefficients differ from Strecok’s in the last digit. To resolve that discrepancy, a second run with Digits set
to 35 showed that the last three or four digits in Maple’s output are untrustworthy,1 and that Strecok’s coefficients
can be off by one in the last digit. However, we do not use that expansion, except to demonstrate agreement with
prior work.

Later, Popov [Pop00] used three different rational polynomial approximations of degree 〈5/2〉, plus an improved
logarithmic form for x ≈ 1, as starting values for iterations based on higher-order Newton–Raphson-like schemes,
obtaining eight correct decimal digits after just one iteration.

MATLAB computes the inverse error functions from rational polynomials that depend on the argument range,
producing initial estimates that are correct to about nine decimal digits. It then applies one iteration of Halley’s

1Maple’s multiple-precision arithmetic system was replaced at version 9 with a faster implementation, but alas, accuracy of the last few digits
suffered. In version 8 and earlier, the internal precision was slightly higher than the Digits value, so that output values were normally correct to
the last displayed digit.

19.3. Inverse error functions 605

method (see Section 2.4 on page 9) to produce results that are accurate to IEEE 754 double precision.

19.3.3 Computing the inverse error functions

We could prepare an analogue of the algorithm developed for the error function in Section 19.1 on page 593, adapting
it for computation of the inverse error function, with separate polynomial approximations in each of several regions.
However, we first investigate an alternative approach: use Newton–Raphson iteration to find ierf(x) from erf(x) and
erf ′(x), and similarly for ierfc(x), just as we did for the square root in Section 8.1 on page 215. That is, we seek a
solution y of

f (y) = erf(y)− x = 0, for constant x.

The solution y is, by definition of the inverse, ierf(x). Of course, the almost-vertical behavior near the poles (see
Figure 19.6 on page 602) means that the inverse function cannot be computed accurately there from a numerical
solution of that equation without higher-precision values of the error function.

The Newton–Raphson formula says that starting from a suitable approximate value, y0, the iteration

yn+1 = yn − f (yn)/ f ′(yn)

= yn − (erf(yn)− x)/ erf ′(yn)

produces the desired solution y, and it does so with quadratic convergence. It is also self correcting: errors do not
accumulate from one iteration to the next.

To use the Newton–Raphson iteration, we need good starting estimates of the inverse error functions, so that we
can converge rapidly to a solution. One possibility is to use a polynomial approximation to ierf(x), but we can see
from Figure 19.6 on page 602 that the poles prevent use of a single polynomial over the needed range of x. Maple
easily finds an 8-bit 〈1/1〉 approximation to ierf(x) for x in [0, 0.6], and a 7-bit 〈1/2〉 approximation to 1/ ierf(x) for x
in [0.6, 0.99], but the region [0.99, 1] is not easy to represent by a low-order rational polynomial. Another possibility
is to use linear interpolation in a table of precomputed function values.

Fortunately, we can avoid the complication of multiple polynomial fits and table lookup, because Strecok found
a simple and useful approximation to ierf(x):

ierf(x) ≈
√
− log

(
(1 − x)(1 + x)

)
, for x in [0, 1).

Strecok then used that approximation to define a correcting polynomial approximation, R(x), such that

ierf(x) ≈ R(x)
√
− log

(
(1 − x)(1 + x)

)
.

provides a highly accurate procedure for computing ierf(x). He used three different polynomials, R(x), of degree
as high as 37, depending on the argument region, with coefficients given to 25 decimal digits. That gave a maximum
error in ierf(erf(x))/x − 1 of about 10−22, and in (1 − erf(ierf(1 − x)))/x − 1, a maximum error of about 10−19.
However, for the mathcw library, we want to extend the accuracy of all functions to about 75 decimal figures, so
approximations of much higher degree could be required, even though using rational polynomials would reduce
the maximum degree needed.

Plots of the inverse error function and its approximation suggest that introduction of a simple scale factor would
improve the fit, as shown in Figure 19.8 on the following page. The scale factor 0.9 in the figure was chosen from a
few numerical experiments.

An optimal fit would minimize the absolute area between the function and its approximation, or alternatively,
the square of the difference between the two. That should be straightforward in Maple, taking care to avoid infinities
at the poles:

> app_ierf := x -> sqrt(-log((1 - x)*(1 + x))):
> h := proc(s)

local x;
return evalf(Int((evalf(ierf(x)) - s * evalf(app_ierf(x)))^2, x = 0.01 .. 0.99))

end proc:
> minimize(h(s), s = 0.8 .. 1, location = true);

606 Chapter 19. Error and probability functions

−2 −1 0 1 2
−2

−1

0

1

2

x

f(
x)

ierf(x)
sqrt(−ln((1−x)(1+x)))
0.9*sqrt(−ln((1−x)(1+x)))

Figure 19.8: Inverse error function and two approximations to it. The curves on the negative axis are close if we
negate the approximating functions in that region.

Unfortunately, that failed because Maple returned a symbolic value for the integral involving the RootOf() function
that we described earlier.

The next attempt used Simpson’s rule quadrature for numerical integration:

> with(student,simpson):
> h := proc(s)

local x;
return evalf(simpson((ierf(x) - s * app_ierf(x))^2, x = 0.01 .. 0.99))

end proc:
> minimize(h(s), s = 0.8 .. 1.0, location = true);

0.0001215565363, {[{s = 0.9064778675}, 0.0001215565363]}

That gives a better idea of what the scale factor, s, should be. Further plots showed that the deviation between the two
functions increases sharply as x → +1, suggesting that there is no point in working hard to minimize a difference
that is unavoidably large anyway. We therefore settle on fitting a smaller interval, and improve the quadrature
accuracy by requesting many more rectangle subdivisions than the default of four:

> Digits := 20:
> h := proc(s)

local x;
return evalf(simpson((ierf(x) - s * app_ierf(x))^2, x = 0 .. 0.9, 1024))

end proc:
> minimize(h(s), s = 0.8 .. 1.0, location = true);

-5
0.66872028701973500778 10 ,

-5
{[{s = 0.89470647317266353771}, 0.66872028701973500778 10]}

Based on the Maple optimization, we select s = 0.8947 to get an approximation to ierf(x) that is within about 0.2%
of the expected result for x in the range [0, 0.9]. The relative error in that approximation is graphed in Figure 19.9.

More recently, Van Eetvelt and Shepherd [VS04] developed four-digit approximations to erf(x) and ierf(x). Al-
though their results are not of sufficient accuracy to be of interest here, those authors observed that the graphs of
erf(x) and atanh(x) are similar, so a scaled approximation of the form erf(x) ≈ s atanh(x) could be a useful starting
point. In Maple, we find

19.3. Inverse error functions 607

−1 −0.5 0 0.5 1
−0.01

−0.005

0

0.005

0.01

x

ie
rf

(x
)

−
 a

pp
ro

x(
ie

rf
(x

))

Figure 19.9: Relative error in approximation of inverse error function by 0.8947
√− log((1 − x) ∗ (1 + x)) sign(x).

> h2 := proc(s)
local x;
return evalf(simpson((erf(x) - s * tanh(x))^2, x = 0 .. 3, 1024))

end proc:
> minimize(h2(s2), s2 = 0.9 .. 1.2, location = true);

0.002943920301, {[{s2 = 1.047318936}, 0.002943920301]}

The inverse functions of each should also be similar, and we find a scaled approximation from Maple:

> h3 := proc(s)
local x;
return evalf(simpson((ierf(x) - s * arctanh(x))^2, x = 0 .. 0.999, 1024))

end proc:
> minimize(h3(s3), s3 = 0.5 .. 1.5, location = true);

0.003332120317, {[{s3 = 0.7810559327}, 0.003332120317]}

The computed minima in those results are not as small as we found for the scaled logarithmic approximation, so we
do not pursue them further.

In Strecok’s initial estimate of ierf(x), we observe that the argument of the approximating function loses trailing
digits from the factors (1 ± x) as x → 0. That is easily remedied by expanding the argument: log

(
(1 − x)(1 + x)

)
=

log(1 − x2) = log1p(−x2). The latter function retains full accuracy.
We recall from Figure 19.1 on page 594 that erf(x) flattens out quickly for |x| > 2, so we must ask whether

its derivative, which appears in the denominator in the Newton–Raphson iteration, can be computationally zero.
As the caption in Figure 19.6 on page 602 notes, the argument range where the inverse error function is finite is
sharply limited: we do not require |y| > 8.65 even in 128-bit IEEE 754 arithmetic. The smallest possible value of the
derivative of the inverse error function is therefore about

√
4/π exp(−8.652) ≈ 3.2 × 10−33, which is larger than the

underflow limit of current and historical floating-point systems. Thus, we need not check for a zero denominator in
the iterations for ierf(x), provided that the special arguments x = ±0,±1,±∞, and NaN are handled separately.

For the inverse complementary error function, ierfc(x), arguments can be much smaller as the pole at x = 0 is
approached. Although in IEEE 754 arithmetic, exp(−(ierfc(smallest normal number))2) is still a normal number,
with subnormal arguments, the result of the exponential can be subnormal. On older floating-point architectures, or
even modern ones with a deficient exponential function, the exponential could underflow to zero. Thus, for ierfc(x),
a check for a zero divisor is required, even if it only rarely succeeds.

The numerator of the Newton–Raphson formula, x − erf(yn), loses leading bits as we approach convergence.
However, that is expected, because successive iterates yn should not change much. There are, however, two concerns

608 Chapter 19. Error and probability functions

when we decide how to terminate the iterations. First, it is possible that the yn values may sometimes oscillate by a
few ulps, instead of converging to a single value. Second, when yn is large, the denominator is tiny, so the correction
term (x − erf(yn))/ erf ′(yn) could be quite large.

We resolve those issues by terminating the iteration if the absolute value of the difference of two successive
iterates fails to decrease, and using a starting approximation that ensures that a small denominator is accompanied
by a small numerator, so that the correction to yn is of modest size.

Numerical experiments reveal another problem, however: when x → 0, the computed solution is less accurate
than is desirable, and it also fails to obey the reflection rule, ierf(x) = − ierf(−x). That problem is solved by avoiding
the Newton–Raphson iterations for small |x|, and using the Taylor series instead, with a cutoff chosen so that the
last term summed is less than ε/4, for correct rounding. From Maple output with a few more terms than shown on
page 602, we can simplify the results by removing common factors, producing this Taylor series:

ierf(x) = x
√

π
(
1/2 + (π/24)x2 + (7π2/960)x4 + (127π3/80 640)x6 +

(4369π4/11 612 160)x8 +O(x10)
)
.

As with other functions in the mathcw library, we accommodate hexadecimal floating-point arithmetic by normaliz-
ing the series so that its first term has no leading zero bits. That choice is harmless, and without additional cost, for
other number bases.

Notice that all terms in the series are positive, and the terms fall off rapidly as the square of x. Thus, apart from
requiring fractional coefficients, the series can be summed accurately.

However, the leading scale factor of
√

π loses three bits in hexadecimal normalization, so on such a system, it
should be computed as 2

√
π/4 to avoid unnecessary bit loss, and the value

√
π/4 should be split into the sum of an

exact high and approximate low part.
A final point to consider is symmetry: the inverse error function is antisymmetric about x = 0, and the inverse

complementary error function is antisymmetric about x = 1. For ierf(x), it is a simple matter to compute the value
only for |x|, and then invert the sign if x is negative. However, the relation ierfc(x) = − ierfc(2 − x) requires more
care to satisfy. That is because x is exactly representable, but 2 − x need not be exact, and the equality holds only
when both are exact.

Numerical experiments shows that for random arguments logarithmically distributed in the range [ε, 1], only
about 4.3% in IEEE 754 32-bit format, 1.9% in the 64-bit and 80-bit formats, and 0.9% in the 128-bit format, provide
exact representation of both x and 2 − x. On the 36-bit DEC PDP-10, about 4.0% of single-precision numbers have
that property. The overhead of guaranteeing the expected symmetry is relatively small, and worth doing because
preservation of mathematical properties is important.

MATLAB’s implementation of ierfc(x) does not take account of the symmetry relations, and we can see a dramatic
effect on accuracy by comparison with high-precision results from Maple. We need to be careful to choose exactly
representable arguments, so expressions involving multiples of the machine epsilon are a good choice. MATLAB
uses IEEE 754 double-precision arithmetic, so we know that its machine epsilon is 2−52. Here are experiments in
Maple, using numerical values copied from a MATLAB session to compute the error in ulps:

> eps := 2**(-52):

> ulp := proc (approx,exact)
> return round(evalf(abs((approx - exact) / exact) / eps))
> end proc:

> ulp(5.80501868319345, ierfc(eps));
3

> ulp(-5.80501867863269, ierfc(2 - eps));
3538292

> ulp(1.967819077581127e-16, ierfc(1-eps));
5081431

> ulp(-1.967819077581127e-16, ierfc(1+eps));
5081431

19.3. Inverse error functions 609

> ulp(6.182080735938092e-11, ierfc(1 - 314159*eps));
5081430

> ulp(-6.182080735938092e-11, ierfc(1 + 314159*eps));
5081430

> ulp(4.61116923088750, ierfc(314159*eps));
1

compute ierfc(2 - x) as -ierfc(x)
> ulp(-4.61116922790890, -ierfc(314159*eps));

2909116

Maple had trouble with the last one, incorrectly returning a complex value for ierfc(2 − 314 159ε). Increasing the
number of digits to 500 did not repair the difficulty, so we used the mathematically equivalent − ierfc(314 159ε).

By contrast, our implementation has no such accuracy problems, and the same tests all report rounded errors of
zero ulps.

Here is a summary of our algorithms for computing the inverses of the normal and complementary error func-
tions, omitting the essential initial checks for special arguments:

� If |x| is small, use a five-term Taylor series for both functions, and for slightly larger |x|, sum a nine-term series
for ierfc(x).

� For ierf(x), if x is in (−1,− 1
2), compute the result from − ierfc(1 + x). If x is in (1

2 , 1), find the result as
ierfc(1 − x). In both cases, the argument expression is exact. The switch to the complementary function for
|x| → 1 improves accuracy, compared to the algorithms of the remaining steps.

� For x in [− 1
2 ,+ 1

2], use a rational polynomial fit suggested by the form of the Taylor series:

ierf(x) ≈ 2x
√

π/4
(1

2 + x2R(x2)
)

In this interval, the term x2R(x2) is never larger than about 0.0382, effectively adding about one decimal digit
of precision.

For 1 − x in [− 1
2 ,+ 1

2] (that is, x in [1
2 , 3

2]), compute ierfc(x) as ierf(1 − x) using the same polynomial fit.

� For x in (0, 1
2) or (3

2 , 2), use a scaled version of Strecok’s logarithmic formula to compute a starting value of
y ≈ ierf(|x|) or y ≈ ierfc(|x|):

y = FP(0.8947) * SQRT(-LOG1P(-x*x));

� Iterate the Newton–Raphson procedure to improve the estimate of the inverse so as to find a root of f (y) =
erf(y)− |x| = 0 or f (y) = erfc(y)− x = 0. The core computation for ierf(x) is

ynew = y - (ERF(y) - xabs)/ERF1(y);

For ierfc(x), a check for a zero denominator is advisable:

d = ERFC1(y);

if (d == ZERO)
break;

ynew = y - (ERFC(y) - x) / d;

Terminate the loop if ynew is the same as y, or the magnitude of their difference increases compared to the
previous iteration, or a limit on the iteration count (we use 8) is reached.

610 Chapter 19. Error and probability functions

� Alternatively, make use of the simple form of the second derivatives (see Section 19.1.1 on page 595) to rewrite
the cubicly convergent Halley formula (see Section 2.4 on page 9) for ierf(x) like this:

f = ERF(y) - xabs;
ynew = y - f / (ERF1(y) + xabs * f);

For ierfc(x), the essential computation looks like this:

f = ERFC(y) - x;
d = ERFC1(y) + x * f;

if (d == ZERO)
break;

ynew = y - f / d;

The additional cost of two floating-point operations is negligible, and convergence is improved.

� For ierf(x), if x is negative, invert the sign of the computed y. Then return the final value of y.

Our choice of the region in which the polynomial fit is used was made after finding larger-than-desired errors in
an initial implementation that relied on the iterative schemes. The particular interval chosen eliminates the iterations
for ierf(x), but not for ierfc(x). The measured errors in our implementations of the inverse error functions are shown
in Figure 19.10 and Figure 19.11 on the next page.

19.4 Normal distribution functions and inverses

Statisticians often work with the cumulative distribution function, Φ(x), of the standard normal distribution, where Φ
is the uppercase Greek letter phi. The normal curve and its cumulative distribution function are so important in
the field of statistics that textbooks may devote a chapter or more to them and their applications; see, for example,
Devore’s popular book [Dev08b, Chapter 4], which also features a table of numerical values of Φ(x) on the inside
covers, similar to our Table 19.1 on page 612 and Table 19.2 on page 613.

Φ(x) is defined as the area that lies to the left of x under the curve of the standard normal distribution:

Φ(x) = (1/
√

2π)
∫ x

−∞
exp(−t2/2) dt

= (1/
√

π)
∫ x/

√
2

−∞
exp(−s2) ds

= 1
2 (2/

√
π)

∫ ∞

−x/
√

2
exp(−s2) ds

= 1
2 erfc(−x/

√
2).

That is sometimes called the lower-tail area. From the equation, we solve for x, and then use it to find the inverse of
Φ(x):

x = −
√

2 ierfc(2Φ(x))
= Φ−1(Φ(x)), by definition of the inverse,

Φ−1(p) = −
√

2 ierfc(2p), by substituting p = Φ(x).

Using p for the argument of the inverse function emphasizes that p is often a probability value in [0, 1]. The inverse
function is sometimes called the normal quantile function or the probit function.

0

1

2

-1 0 1

u
lp

s

x

Errors in ierff()

0

1

2

-1 0 1

u
lp

s

x

Errors in ierfdf()

0

1

2

-1 0 1

u
lp

s

x

Errors in ierf()

0

1

2

-1 0 1

u
lp

s

x

Errors in ierfd()

0

1

2

 0 1 2

u
lp

s

x

Errors in ierfcf()

0

1

2

 0 1 2

u
lp

s

x

Errors in ierfcdf()

0

1

2

 0 1 2

u
lp

s

x

Errors in ierfc()

0

1

2

 0 1 2

u
lp

s

x

Errors in ierfcd()

19.4. Normal distribution functions and inverses 611

Figure 19.10: Errors in inverse error functions.

Figure 19.11: Errors in complementary inverse error functions.

612 Chapter 19. Error and probability functions

Table 19.1: Cumulative distribution function of the standard normal distribution for x ≤ 0. To find Φ(−2.25), for
example, locate the row corresponding to the first fractional digit, and the column corresponding to the second
fractional digit: the value at that row and column is 0.0122. Linear interpolation between values in adjacent columns
provides a reasonable approximation to Φ(x) for intermediate x values. The inverse function can be estimated as
well: the argument of Φ−1(0.3) ≈ 0.5244 lies between the shaded boxes in the thirtieth row.

Φ(x) and Φc(−x)
x 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

−3.4 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0002
−3.3 0.0005 0.0005 0.0005 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0003
−3.2 0.0007 0.0007 0.0006 0.0006 0.0006 0.0006 0.0006 0.0005 0.0005 0.0005
−3.1 0.0010 0.0009 0.0009 0.0009 0.0008 0.0008 0.0008 0.0008 0.0007 0.0007
−3.0 0.0013 0.0013 0.0013 0.0012 0.0012 0.0011 0.0011 0.0011 0.0010 0.0010
−2.9 0.0019 0.0018 0.0018 0.0017 0.0016 0.0016 0.0015 0.0015 0.0014 0.0014
−2.8 0.0026 0.0025 0.0024 0.0023 0.0023 0.0022 0.0021 0.0021 0.0020 0.0019
−2.7 0.0035 0.0034 0.0033 0.0032 0.0031 0.0030 0.0029 0.0028 0.0027 0.0026
−2.6 0.0047 0.0045 0.0044 0.0043 0.0041 0.0040 0.0039 0.0038 0.0037 0.0036
−2.5 0.0062 0.0060 0.0059 0.0057 0.0055 0.0054 0.0052 0.0051 0.0049 0.0048
−2.4 0.0082 0.0080 0.0078 0.0075 0.0073 0.0071 0.0069 0.0068 0.0066 0.0064
−2.3 0.0107 0.0104 0.0102 0.0099 0.0096 0.0094 0.0091 0.0089 0.0087 0.0084
−2.2 0.0139 0.0136 0.0132 0.0129 0.0125 0.0122 0.0119 0.0116 0.0113 0.0110
−2.1 0.0179 0.0174 0.0170 0.0166 0.0162 0.0158 0.0154 0.0150 0.0146 0.0143
−2.0 0.0228 0.0222 0.0217 0.0212 0.0207 0.0202 0.0197 0.0192 0.0188 0.0183
−1.9 0.0287 0.0281 0.0274 0.0268 0.0262 0.0256 0.0250 0.0244 0.0239 0.0233
−1.8 0.0359 0.0351 0.0344 0.0336 0.0329 0.0322 0.0314 0.0307 0.0301 0.0294
−1.7 0.0446 0.0436 0.0427 0.0418 0.0409 0.0401 0.0392 0.0384 0.0375 0.0367
−1.6 0.0548 0.0537 0.0526 0.0516 0.0505 0.0495 0.0485 0.0475 0.0465 0.0455
−1.5 0.0668 0.0655 0.0643 0.0630 0.0618 0.0606 0.0594 0.0582 0.0571 0.0559
−1.4 0.0808 0.0793 0.0778 0.0764 0.0749 0.0735 0.0721 0.0708 0.0694 0.0681
−1.3 0.0968 0.0951 0.0934 0.0918 0.0901 0.0885 0.0869 0.0853 0.0838 0.0823
−1.2 0.1151 0.1131 0.1112 0.1093 0.1075 0.1056 0.1038 0.1020 0.1003 0.0985
−1.1 0.1357 0.1335 0.1314 0.1292 0.1271 0.1251 0.1230 0.1210 0.1190 0.1170
−1.0 0.1587 0.1562 0.1539 0.1515 0.1492 0.1469 0.1446 0.1423 0.1401 0.1379
−0.9 0.1841 0.1814 0.1788 0.1762 0.1736 0.1711 0.1685 0.1660 0.1635 0.1611
−0.8 0.2119 0.2090 0.2061 0.2033 0.2005 0.1977 0.1949 0.1922 0.1894 0.1867
−0.7 0.2420 0.2389 0.2358 0.2327 0.2296 0.2266 0.2236 0.2206 0.2177 0.2148
−0.6 0.2743 0.2709 0.2676 0.2643 0.2611 0.2578 0.2546 0.2514 0.2483 0.2451
−0.5 0.3085 0.3050 0.3015 0.2981 0.2946 0.2912 0.2877 0.2843 0.2810 0.2776
−0.4 0.3446 0.3409 0.3372 0.3336 0.3300 0.3264 0.3228 0.3192 0.3156 0.3121
−0.3 0.3821 0.3783 0.3745 0.3707 0.3669 0.3632 0.3594 0.3557 0.3520 0.3483
−0.2 0.4207 0.4168 0.4129 0.4090 0.4052 0.4013 0.3974 0.3936 0.3897 0.3859
−0.1 0.4602 0.4562 0.4522 0.4483 0.4443 0.4404 0.4364 0.4325 0.4286 0.4247
−0.0 0.5000 0.4960 0.4920 0.4880 0.4840 0.4801 0.4761 0.4721 0.4681 0.4641

19.4. Normal distribution functions and inverses 613

Table 19.2: Cumulative distribution function of the standard normal distribution for x ≥ 0. Locate a value of the
complementary function, Φc(−0.43) ≈ 0.6664, at the table entry for Φ(0.43).

Φ(x) and Φc(−x)
x 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879
0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224
0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389
1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621
1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015
1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177
1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319
1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441
1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545
1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633
1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706
1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767
2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817
2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857
2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890
2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916
2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936
2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952
2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964
2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974
2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981
2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986
3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990
3.1 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993
3.2 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995
3.3 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997
3.4 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998

614 Chapter 19. Error and probability functions

−3 −2 −1 0 1 2 3

0

0.5

1

1.5

x

f(
x)

(1/sqrt(2*pi))*exp(−x**2/2)
phi(x)
phic(x)

0 0.25 0.5 0.75 1

−3

−2

−1

0

1

2

3

p

fin
v(

p)

iphi(p)
iphic(p)

Figure 19.12: The cumulative distribution functions of the standard normal distribution, their inverses, and the
famous bell-shaped curve of the standard normal distribution, as drawn by MATLAB.

The complementary cumulative distribution function, Φc(x), of the standard normal distribution is the area that lies
to the right of x under the normal distribution curve:

Φc(x) = (1/
√

2π)
∫ ∞

x
exp(−t2/2) dt

= (1/
√

π)
∫ ∞

x/
√

2
exp(−s2) ds

= 1
2 erfc(x/

√
2).

That can be denoted the upper-tail area.
The inverse of Φc(x) has a simple relation to the inverse complementary error function:

Φ−1
c (Φc(x)) = x, by definition of the inverse,

=
√

2 ierfc(2Φc(x)),

Φ−1
c (p) =

√
2 ierfc(2p), by substituting p = Φc(x).

The mathcw library provides those functions as phi(x), phic(x), iphi(p), and iphic(p) for arguments of type
double, with companions for other data types identified by the usual suffixes. As with the gamma function, Γ(x) =
tgamma(x), their names are spelled in lowercase to conform to the conventions of the Standard C library. Figure 19.12
shows graphs of Φ(x), Φc(x), and the standard normal curve.

The ordinary and inverse cumulative distribution functions of the standard normal distribution satisfy these
important relations:

Φ(x) + Φc(x) = 1,
Φ(x) + Φ(−x) = 1,

Φc(x) + Φc(−x) = 1,
Φ(x) = Φc(−x),

Φ−1(p) + Φ−1
c (p) = 0,

Φ−1(p) = −Φ−1
c (p)

= Φ−1
c (1 − p)

= −Φ−1(1 − p),

19.4. Normal distribution functions and inverses 615

Φ−1(1
2 − d) = −Φ−1(1

2 + d),

Φ−1
c (1

2 − d) = −Φ−1
c (1

2 + d),

Φ−1
c (1

2 − d) = Φ−1(1
2 + d).

The ranges of the cumulative distribution functions are [0, 1] for arguments in (−∞,+∞). Arguments of the inverses
of the cumulative distribution functions are restricted to [0, 1], and the function ranges are (−∞,+∞). The symme-
tries that are evident in Figure 19.12 are helpful: if we can compute accurate values of Φ(x) for x in (−∞, 0] and
Φ−1(p) for p in [0, 1

2], then we can accurately determine the remaining values by sign inversion, or by subtraction
from one.

The functions and their inverses have these Taylor series:

Φ(x) = 1
2 +

1√
2π

(x − 1
6

x3 +
1

40
x5 − 1

336
x7 +

1
3456

x9 − · · ·),

Φc(x) = 1
2 −

1√
2π

(x − 1
6

x3 +
1

40
x5 − 1

336
x7 +

1
3456

x9 − · · ·),

Φ−1(1
2 + d) = +

√
2π(d +

1
3

πd3 +
7

30
π2d5 +

127
630

π3d7 +
4369

22 680
π4d9 + · · ·),

Φ−1
c (1

2 + d) = −
√

2π(d +
1
3

πd3 +
7

30
π2d5 +

127
630

π3d7 +
4369

22 680
π4d9 + · · ·).

For large positive arguments, the cumulative distribution functions have these asymptotic series, easily generated
with the help of Maple’s asympt() function:

Φ(x) � 1 −
√

exp(−x2)

2π
(

1
x
− 1

x3 +
3
x5 − 15

x7 +
105
x9 − 945

x11 +
10 395

x13 − · · ·),

Φc(x) �
√

exp(−x2)

2π
(

1
x
− 1

x3 +
3
x5 − 15

x7 +
105
x9 − 945

x11 +
10 395

x13 − · · ·).

Factoring the exponential out of the square root shows that Φc(x) decays like exp(−x2/2). In IEEE 754 32-bit arith-
metic, that factor underflows to subnormals for x ≈ 13.2, and the series must be summed up to the term containing
x−9. The corresponding limits for the 64-bit format are x ≈ 37.6 and x−15, and for the 80-bit and 128-bit formats,
x ≈ 150.7 and x−21. Thus, even though the asymptotic series diverges (see Section 2.9 on page 19), we can sum it to
machine precision for most floating-point systems.

Statisticians use the notation zp for the function Φ−1
c (p). It is the 100(1 − p)-th percentile of the standard normal

distribution. For example, z0.05 = Φ−1
c (0.05) ≈ 1.645 is the value of x at the 95-th percentile: 95% of the area under

the curve of the standard normal distribution lies to the left of x ≈ 1.645, and 5% to the right.
If a random variable x has a normal distribution with mean μ and standard deviation σ, then the translated and

scaled variable r = (x − μ)/σ has a standard normal distribution. That simple relation allows all normal distributions
to be transformed to the standard one. The probability that x lies in the interval [a, b] is then given by

P(a ≤ x ≤ b) = Φ((b − μ)/σ)− Φ((a − μ)/σ).

Similarly, for the standard normal distribution, the probability that r lies in the interval [c, d] is

P(c ≤ r ≤ d) = Φ(d)− Φ(c).

From that, it follows that the probability that a normally distributed random value x exceeds the mean by at least n
standard deviations is given by

P((μ + nσ) ≤ x ≤ ∞) = Φ(∞)− Φ
(
((μ + nσ)− μ)/σ

)
= 1 − Φ

(
((μ + nσ)− μ)/σ

)
= Φc

(
((μ + nσ)− μ)/σ

)
= Φc(n).

616 Chapter 19. Error and probability functions

Table 19.3: Probability in the normal distribution of exceeding the mean by n standard deviations.

n 0 1 2 3 4 5 6
Φc(n) 0.5 0.159 0.0228 0.00135 3.17 × 10−05 2.87 × 10−07 9.87 × 10−10

That probability is independent of the mean and standard deviation, and drops off rapidly, as Table 19.3 illustrates. The
data in that table lead to the handy rules of thumb that only about one in a thousand normally distributed random
values lies more than three standard deviations above the mean, and fewer than one in a million lie more than five
standard deviations above.2

The S-Plus and R statistics programming languages supply Φ(x) as the function pnorm(x). Their quantile func-
tion, qnorm(p), computes Φ−1(p). In the R language, Φc(x) can be obtained from pnorm(x, lower.tail = FALSE),
but there seems to be no standard function in S-Plus for that value.

Because of their simple relationship to the error function family, the cumulative distribution functions of the
standard normal distribution can be computed directly from them, although there are pitfalls in doing so. Argument
accuracy is slightly reduced in two of the four functions by the need to scale by 1/

√
2, an irrational number, and

thus, not exactly representable.
The identity Φ(x) = 1

2 erfc(−x/
√

2) and the graphs of the error magnification in Figure 19.2 on page 596 show
that Φ(x) is sensitive to even that small scaling error for negative x of large magnitude, and Φc(x) has similar
sensitivity when x is large and positive.

The graphs of the error magnification in Figure 19.7 on page 604 show that both Φ−1(p) and Φ−1
c (p) are sensitive

to argument errors for p near 1
2 and 1.

Tests of prototype implementations of the cumulative distribution functions and their inverses using their simple
relations to the error-function family showed errors up to a few thousand ulps in regions of extreme argument
sensitivity. However, such large errors are unacceptable in the mathcw library, so the current implementation does
the computation in the next higher precision, and then coerces the final result to working precision, as illustrated by
the code for computing Φ(x):

fp_t
PHI(fp_t x)
{

fp_t result;

if (ISNAN(x))
result = SET_EDOM(QNAN(""));

else if (ISINF(x))
result = (x < ZERO) ? ZERO : ONE;

else if (x < -ASYMPTOTIC_SERIES_CUTOFF)
result = PHIC(-x);

else
{

hp_t y;

y = -HP_FMA(SQRT_HALF_HI, (hp_t)x, SQRT_HALF_LO * (hp_t)x);
result = (fp_t)((hp_t)HALF * HP_ERFC(y));

}

return (result);
}

The function diverts to PHIC(x) when the asymptotic series can be effectively summed, avoiding code duplication,
and ensuring accurate treatment of the small tail region.

2The phrase six sigma with 1.5σ drift has been used in advertising in the computer industry to indicate a product-quality goal of about three
defects per million units manufactured (Φc(6 − 1.5) ≈ 3.40 × 10−6). Unfortunately, the advertisements often drop the 1.5σ bias, suggesting an
unattainable defect rate of about one in a thousand million.

19.5. Summary 617

The inverse function, Φ−1(p), requires more argument checking, and separate handling of the case of a hexa-
decimal base to reduce the impact of wobbling precision, because 1/

√
2 ≈ 0.707 has no leading zero bits, whereas√

2 ≈ 1.414 has three leading zero bits:

fp_t
IPHI(fp_t p)
{

fp_t result;

if (ISNAN(p))
result = SET_EDOM(QNAN(""));

else if (p < ZERO)
result = SET_EDOM(QNAN(""));

else if (p == ZERO)
result = -INFTY();

else if (p == ONE)
result = INFTY();

else if (p > ONE)
result = SET_EDOM(QNAN(""));

else
{

hp_t t;

t = -HP_IERFC((hp_t)p + (hp_t)p);

#if B == 16
t = HP_FMA(SQRT_HALF_HI, t, SQRT_HALF_LO * t);
result = (fp_t)(t + t);

#else
result = (fp_t)HP_FMA(SQRT_TWO_HI, t, SQRT_TWO_LO * t);

#endif

}

return (result);
}

The code for the complementary functions, phic(x) and iphic(p), is similar to those, apart from an additional block
in the former for summing the asymptotic series, so we omit it here.

Tests of the current implementations of the cumulative distribution function family for the standard normal
distribution show that the results in single and double precision are, as expected, correctly rounded, so we omit
the usual figure with plots of measured errors. However, the large errors remain in the functions for the highest
available precision. To eliminate that problem, a more complex algorithm modeled on that for erf() and erfc() is
needed, but we leave that for future work.

19.5 Summary

The ordinary and complementary error functions, their companions for the normal distribution, and their inverses,
have broad applications, and deserve to be part of the mathematical libraries of most programming languages. Our
implementations provide reasonable first drafts of those functions, but more work needs to be done to remove the
need for higher precision in the code for Φ(x), Φc(x), Φ−1(p), and Φ−1

c (p), and to improve the accuracy of the inverse
functions when their values are near the underflow limit.

Moshier’s algorithm for Φ−1(p) [Mos89, §5.14.4] is promising, but Maple is unable to produce fits to his approx-
imating function, because it erroneously returns complex values for Φ−1(p) when p is tiny. A proper solution may
have to await fast and accurate implementations of the inverse error functions in Maple.

618 Chapter 19. Error and probability functions

Although there are several publications in the statistics literature about the computation of the cumulative distri-
bution functions and their inverses [Pól49, Bak61, Cyv64, Mac65, HJ67a, HJ67b, Ber68, Mac68, Ada69, OE74, BS77,
Pag77, Ham78, Sch79a, Bai81, Sho82, Lin89, Lin90], they are of little help here, because they are of low accuracy, and
because they completely ignore the small tail regions. However, one paper deserving of more study is that of George
Marsaglia and co-workers [MZM94]; it claims single-precision accuracy, so perhaps its methods can be extended to
higher precision.

20 Elliptic integral functions

ELLIPTIC INTEGRAL, N.: AN INTEGRAL EXPRESSING

THE LENGTH OF THE ARC OF AN ELLIPSE.

— New Century Dictionary (1914).

The functions named in the title of this chapter have attracted the interest of several famous mathematicians,
among them Abel, Euler, Gauss, Hermite, Jacobi, Kronecker, Lagrange, Legendre, Ramanujan, Riemann, and Weier-
strass. Their properties are well-chronicled in several books, including [AS64, Chapter 17], [Law89], [OLBC10, Chap-
ter 19], [Wal96], [Wei99], [GRJZ07, §8.1], and [JD08, Chapter 12], with extensive tables of properties and integrals of
related functions in [BF71].

None of the elliptic integrals in this chapter has a simple closed form. For the mathcw library, in the first part of
this chapter we implement only the easier single-argument complete functions, which can be computed by a method
discovered by Gauss [AAR99, page 132] that involves the arithmetic-geometric mean, the subject of the first section of
this chapter. We then show how iterative algorithms can calculate the more difficult multiple-argument incomplete
elliptic integral functions. We finish the chapter with a discussion of the properties and computation of several other
important functions in the large elliptic-integral family.

20.1 The arithmetic-geometric mean

The arithmetic mean of two numbers a and b is just their average, 1
2 (a + b). Their geometric mean is the square root

of their product,
√

ab, and to avoid complex numbers, we assume that a and b have the same sign. The two means
usually differ, but they can be made to converge to a common value with an iteration of the following form, where
we introduce a third value, c:

a0 = a, b0 = b, c0 = c,

aj =
1
2 (aj−1 + bj−1), bj =

√
aj−1bj−1, cj =

1
2 (aj−1 − bj−1), for j = 1, 2, 3,

The iteration terminates at some step j = n when fl(cn) = 0 to machine precision, and the value an is then called the
arithmetic-geometric mean (AGM).

If a > b > 0, then we have from their definitions that aj < aj−1 and bj > bj−1, so the aj shrink and the bj grow.
Thus, the geometric mean is never bigger than the arithmetic mean, and the AGM lies between those two means.
Computationally, that means that as long as a and b are representable, all members of the AGM sequence are as
well, and lie in the range [b, a]. However, the product ajbj in the square root is subject to premature overflow and
underflow, so the geometric mean needs to be computed as

√
aj
√

bj unless we know in advance that ajbj is always
representable. Similarly, the sum that forms aj can overflow when half that sum is still representable. Rewriting it as
1
2 aj−1 +

1
2 bj−1 solves the overflow problem, but introduces a possible premature underflow.

Unlike Newton–Raphson iterations, AGM iterations are not self-correcting: errors accumulate in each step. For-
tunately, only a few iterations are needed in practice.

It can be proved that, in exact arithmetic, the cj always decrease by at least a factor of two, adding one bit to the
converging values of aj and bj. It is easy to exhibit a case where that happens: choose a > 0 and b = 0. The bj terms
from the geometric mean are then always zero, and aj and cj are halved on each step, eventually underflowing to
zero in any finite-precision floating-point system.

In practice, however, we usually have a ≈ b, and when a > b > 0, the convergence is quadratic, doubling the
number of converged digits in aj at each step. It is useful to prove that convergence claim, because there is a bonus
in doing so. We start by factoring the difference of squares, and then solving for cj+1:

a2
j − b2

j = (aj + bj)(aj − bj) = (2aj+1)(2cj+1), cj+1 = (a2
j − b2

j)/(4aj+1).

© Springer International Publishing AG 2017
N.H.F. Beebe, The Mathematical-Function Computation
Handbook, DOI 10.1007/978-3-319-64110-2_20

619

620 Chapter 20. Elliptic integral functions

Next, we expand a2
j and c2

j according to their definitions in the AGM, take their difference, and solve for c2
j :

a2
j =

1
4 (aj−1 + bj−1)

2, c2
j =

1
4 (aj−1 − bj−1)

2,

= 1
4 (a2

j−1 + 2aj−1bj−1 + b2
j−1), = 1

4 (a2
j−1 − 2aj−1bj−1 + b2

j−1),

= 1
4 (a2

j−1 + 2b2
j + b2

j−1), = 1
4 (a2

j−1 − 2b2
j + b2

j−1),

a2
j − c2

j = b2
j , c2

j = a2
j − b2

j .

From the two formulas for the c coefficients, we can conclude that

c1 =
1
2 (a0 − b0), cj+1 =

1
4 c2

j /aj+1, for j = 1, 2, 3,

For numerical work, to avoid premature underflow and overflow, evaluate the right-hand side as (1
2 cj)((

1
2 cj)/aj+1),

and obey the parentheses.
That important result demonstrates that the difference aj − bj is squared in the next iteration, producing quadratic

convergence. The bonus is that it allows computation of cj+1 without having to subtract two almost-equal numbers,
at the extra cost of one division, and provided that we obey the restriction on the argument ordering. Of course, if a
and b are close to begin with, it is likely that their floating-point exponents are the same, in which case the subtraction
aj − bj is exact. However, when that is not the case, and we need the sequence of cj values, it may be more accurate
to compute them by multiplication and division than by subtraction.

Some applications of the arithmetic-geometric mean need only a and b and the final an, whereas others require a,
b, c, and some or all of the intermediate values aj, bj, and cj. In the mathcw library, we therefore provide both scalar
and vector functions, with these generic prototypes:

fp_t AGM(fp_t a, fp_t b);

fp_t VAGM(fp_t a, fp_t b, fp_t c, int nabc,
fp_t aj[/*nabc*/], fp_t bj[/*nabc*/], fp_t cj[/*nabc*/],
int * pneed);

The functions in both families return the final arithmetic-geometric mean, an. Maple provides the scalar function
as GaussAGM(a,b), Mathematica supplies it as ArithmeticGeometricMean[a,b], PARI/GP offers agm(a,b), and RE-
DUCE has AGM_function(a,b,c).

The vector version records the sequence members in the argument arrays, as long as there is sufficient space to
do so. On return, need is the number of elements that needed to be set: if it is larger than the vector size nabc, the
arrays are too small, and the remaining sequence values after entry [nabc - 1] have not been recorded. However,
the function result still provides the converged final value an. The code in VAGM() avoids storage into the location of
need if it is a NULL pointer.

Although the AGM iteration looks trivial, there are computational difficulties due to the nature of finite precision
and range of floating-point arithmetic that must be dealt with in a general and robust library routine:

� NaN arguments, arguments of (∞, 0) or (0, ∞), and arguments of opposite sign, must produce NaN results.

� Infinite arguments must produce a result of Infinity.

� It can happen that, near convergence, the aj and bj oscillate and differ by one or a few ulps, never managing to
reach the equality that produces cj = 0 and terminates the iteration.

� For starting values a and b near the floating-point limits, the sum aj−1 + bj−1 can overflow, or halving it can
underflow.

� For about half the floating-point range, the product aj−1bj−1 underflows or overflows.

Three obvious properties of the arithmetic-geometric mean provide a solution to those problems:

agm(a, b) = agm(b, a), agm(a, 0) = 0, agm(sa, sb) = s agm(a, b).

20.1. The arithmetic-geometric mean 621

The first two allow us to avoid the slow one-bit-at-a-time iteration if either argument is zero. The third permits
scaling to prevent premature overflow or underflow. By choosing s = βm, where β is the base and m is an integer,
the scaling of the arguments and the final an are exact operations.

The vector function has more detail, but no important additional computational features, so we show only the
scalar function here. The code looks like this:

fp_t
AGM(fp_t a, fp_t b) /* arithmetic-geometric mean of a and b */
{

fp_t result;

if (ISNAN(a))
result = SET_EDOM(a);

else if (ISNAN(b))
result = SET_EDOM(b);

else if (ISINF(a))
result = (b == ZERO) ? SET_EDOM(QNAN("")) : SET_ERANGE(a);

else if (ISINF(b))
result = (a == ZERO) ? SET_EDOM(QNAN("")) : SET_ERANGE(b);

else if (a == ZERO)
result = a; /* ensure exact result, and avoid a slow loop */

else if (b == ZERO)
result = b; /* ensure exact result, and avoid a slow loop */

else if (a == b)
result = a;

else if (SIGNBIT(a) != SIGNBIT(b))
result = SET_EDOM(QNAN(""));

else
{

int n, negative_a;

negative_a = (a < ZERO);

if (negative_a)
{

a = -a;
b = -b;

}

for (n = 0; n < MAXAGM; ++n)
{

fp_t a_n, b_n;

a_n = (MAX(a, b) > ONE) ? (HALF * a + HALF * b) : HALF * (a + b);
b_n = SQRT(a) * SQRT(b); /* two square roots avoid premature overflow/underflow */
a = a_n;
b = b_n;

if (FABS(a - b) < (FP_T_EPSILON * a))
break; /* early exit: convergence is quadratic */

}

result = negative_a ? -a : a;
}

return (result);
}

622 Chapter 20. Elliptic integral functions

Table 20.1: Computing π from the quadratically convergent algorithm for the arithmetic-geometric mean. Figures
after the first incorrect digit have been omitted. The last row has been truncated to fit the page, but matches π to the
last displayed digit.
A ninth-order (nonic) algorithm reaches more than 1.4 million digits in six iterations, and could produce more than
1000 million digits in ten iterations.

j pj(→ π)
1 3.18
2 3.1416
3 3.14159 26538
4 3.14159 26535 89793 23846 6
5 3.14159 26535 89793 23846 26433 83279 50288 41971 699
6 3.14159 26535 89793 23846 26433 83279 50288 41971 69399 37510 58209 74944 59230 78164

The usual checks on entry handle the special cases of NaN and Infinity, and the checks for zero arguments avoid
a slow loop, and ensure correct handling of signed zeros. We handle the problem of oscillation at convergence
by two safety measures: limiting the number of iterations to MAXAGM, and leaving the loop early if an and bn are
within a relative machine epsilon of each other. The bound could be loosened to a few ulps if further computational
experience on some historical platforms shows it to be necessary.

The geometric mean must be computed with two square roots, rather than one, to avoid premature overflow
and underflow. It is not sufficient to just do an initial scaling of the arguments, because even with that scaling,
intermediate sequence members can be out of range. To see how that happens, consider the case with a near the
maximum normal number, and b in (0, 1). The arithmetic mean reduces a by a factor of two in each of the first
few iterations, whereas the geometric mean grows rapidly. Because aj is still close to the overflow limit, ajbj soon
overflows, even though

√
ajbj is representable.

The loop limit of MAXAGM is chosen based on numerical experiments that show that even with arguments of wildly
differing exponents in 128-bit arithmetic, fewer than 12 iterations invariably suffice, so the larger limit of 20 should
handle future 256-bit arithmetic.

For random arguments in (0, 1), 64-bit IEEE 754 arithmetic rarely needs more than five iterations, as demonstrated
by this test in hoc with a version of the AGM instrumented with a global iteration count:

hoc64> load ("agm")
hoc64> for (k = 0; k < 70; ++k) {agm(rand(), rand()); print K_agm, ""}
5 6 6 4 4 4 4 4 5 4 4 5 6 5 5 4 5 5 4 5 4 4 5 4 6 5 4 4 4 5 7 5 4 4 4
5 4 5 4 4 5 5 5 7 4 5 4 5 4 4 4 5 5 5 3 4 4 5 6 4 5 5 5 3 4 6 5 4 5 4

The test can easily be extended to search for higher iteration counts:

hoc64> for (k = 0; k < 1_000_000; ++k) \
hoc64> { agm(rand(), rand()); if (K_agm > 7) print K_agm, "" }
8 ...

There are 190 counts of 8 in the million tests, and just one count of 9 in a variant with 108 tests. In the 32-bit format,
no counts exceed 7 in that number of tests, and in the 80-bit and 128-bit formats, none is above 9.

Apart from its application to the computation of the functions in this chapter, here are some examples of the AGM
for practical work:

� With a0 = 1, b0 = 2, and s0 = 1
2 , form aj and bj as in the AGM, but set cj = a2

j − b2
j and sj = sj−1 − 2jcj. Then

pj = 2a2
j /sj converges to π quadratically. The working precision should be higher than the target precision. To

avoid loss of accuracy, compute cj as (aj + bj)(aj − bj). The subtraction in the second term is then exact, because
the terms have the same exponent. Table 20.1 shows the output of a short Maple program that implements the
iteration.

Variants of that algorithm provide cubic, quartic, quintic, . . . convergence, and have been used to compute π
to more than 1011 digits. For details and motivation, see [BBBP97] and [BB04, Chapter 3].

20.1. The arithmetic-geometric mean 623

The relation of π to the AGM is sufficiently rich that there is an entire book devoted to it [BB87b]. A more recent
book also covers both subjects [AH01], and there are several general books about the mathematical fascination
of π [Bar92, Bec93, Bar96, Bla97, BBB00, EL04b, Nah06].
Gauss apparently did not connect the AGM to the computation of π, and the earliest record of the AGM
iteration in his manuscripts is from 1809 [AH01, page 101], a decade after he independently discovered it in
1799. Lagrange found it first, and before 1785, but Gauss got the credit. More than 150 years elapsed before
the first application, in 1975 [Bre76b, Sal76], of the AGM to the π problem, a period in which several people
spent years of their lives computing π from slower-converging series; see the tables in [BBBP97, pages 9–10]
and [AH01, pages 205–207]. A thousand correct digits were only reached in 1949, a million in 1973, 1.6 × 107

in 1983 [BB83], 109 in 1989, 1012 in 2002, and 2.7 × 1012 in 2010. With the quartic algorithm, fewer than 100
full-precision operations of multiply, divide, and square root suffice to produce 45 million digits of π [BB87b,
page 341].

� The inverse tangent can be computed from the AGM-like steps

r =
√

1 + x2, a0 = 1/r, b0 = 1,

aj =
1
2 (aj−1 + bj−1), bj =

√
ajbj−1, for j = 1, 2, 3, . . . , n,

atan(x) = x/(ran).

Notice that the computation of bj differs slightly from that of the standard AGM algorithm: it uses the new aj
instead of the old aj−1. To avoid overflow, when x is sufficiently large, replace the first step by r = x. Compute
the square root as the product of two roots.
Unfortunately, convergence of that algorithm is not quadratic: each iteration supplies just two more bits in the
result. It is tedious to show that by hand, but a short Maple program makes it easier:

> NMAX := 6:

> a := array(0 .. NMAX):
> b := array(0 .. NMAX):
> c := array(0 .. NMAX):

> assume(B > 0, A >= B):

> a[0] := A:
> b[0] := B:
> c[0] := (a[0] - b[0])/2:

> for j from 1 to NMAX do
> a[j] := simplify((a[j-1] + b[j-1]) / 2):
> b[j] := simplify(sqrt(a[j] * b[j-1])):
> c[j] := simplify((a[j-1] - b[j-1]) / 2):
> end do:

> for j from 1 to NMAX - 1 do
> printf("c[%d] / c[%d] = %a\n", j + 1, j, simplify(limit(c[j + 1] / c[j], A = B)))
> end do:

c[2] / c[1] = 1/4
c[3] / c[2] = 1/4
c[4] / c[3] = 1/4
c[5] / c[4] = 1/4
c[6] / c[5] = 1/4

� To compute the inverse trigonometric and hyperbolic cosines, run the iteration found by Gauss in 1800 [Car71,
page 498]:

aj =
1
2 (aj−1 + bj−1), for j = 1, 2, 3, . . . , n,

624 Chapter 20. Elliptic integral functions

bj =
√

ajbj−1,

acos(a0/b0) =
√

b2
0 − a2

0/an, for 0 ≤ a0 < b0,

acosh(a0/b0) =
√

a2
0 − b2

0/an, for 0 < b0 < a0.

The convergence is the same as that for the inverse-tangent algorithm, gaining only two bits per step.

� With t-bit precision, and m chosen such that s = 2mx > 2t/2, then the steps

log(2) =
1
2 π

m agm(1, 4/2m)
log(x) =

1
2 π

agm(1, 4/s)
− m log(2)

provide a fast route to a high-precision value of the logarithm of x. That value can then be used with Newton–
Raphson iteration to find a high-precision value of exp(x) [BB04, page 228].

Because of the subtraction in forming log(x), there is the possibility of loss of significant digits, but graphs of
the relative error in numerical experiments with that algorithm show a more serious problem: errors of a few
thousand ulps for arguments x ≈ 1. In that region, the computation should therefore switch to an algorithm
for computing log1p(x − 1), as discussed in Section 10.4 on page 290.

20.2 Elliptic integral functions of the first kind

The incomplete elliptic integral function of the first kind is defined by these relations in three different notations [AS64,
Chapter 17] [OLBC10, §19.1]:

F(φ\α) =
∫ φ

0
[1 − (sin(α))2(sin(θ))2]−

1
2 dθ,

F(φ|m) =
∫ sin(φ)

0
[(1 − t2)(1 − mt2)]−

1
2 dt

F(φ, k) =
∫ sin(φ)

0
[(1 − t2)(1 − (kt)2)]−

1
2 dt

k = sin(α), so k is in [−1, 1],

m = k2, and m is in [0, 1].

Because only even powers of the integration variable, t, appear in the integrand, it is unchanged under sign inversion
of t. Thus, we have an important symmetry relation:

F(−φ|m) = −F(φ|m).

When φ = 1
2 π, and thus, sin(φ) = 1, the bivariate function reduces to a simpler one called the complete elliptic

integral function of the first kind:

K(α) = F(1
2 π\α)

=
∫ π/2

0
[1 − (sin(α) sin(θ))2]−

1
2 dθ,

K(k) = F(1
2 π, k)

=
∫ 1

0
[1 − (kt)2]−

1
2 dt,

K(m) = F(1
2 π|m)

=
∫ π/2

0
[1 − m(sin(θ))2]−

1
2 dθ

=
∫ 1

0
[(1 − t2)(1 − mt2)]−

1
2 dt,

20.2. Elliptic integral functions of the first kind 625

0

1

2

3

4

5

0.0 0.5 1.0

m

K(m)K’(m)

0

1

2

3

4

5

-1.0 -0.5 0.0 0.5 1.0

k

ellk(k)

ellkc(k)

Figure 20.1: Complete elliptic integral functions of the first kind. K(m) has a pole at m = 1, and K′(m) a pole at
m = 0. The mathcw library function ellk(k) has poles at k = ±1, and ellkc(k) a pole at k = 0. The finite limits are

K(0) = K′(1) = ellk(0) = ellkc(±1) = 1
2 π. The function pairs are equal at m = 1

2 and k = ±
√

1
2 .

ellk(k) = K(k), mathcw library notation,

EllipticK(k) = K(k), Maple notation,

EllipticK[m] = K(m), Mathematica notation,

elliptic_kc(m) = K(m), Maxima notation,

EllipticK(m) = K(m), REDUCE notation.

In the literature on elliptic integral functions, k is called the modulus, and m is called the parameter. The presence
of three argument conventions, α, k, and m, due to historical development, is a nuisance, particularly when some of
the symbolic-algebra systems use the same function name but different arguments, so be sure to check the argument
conventions carefully before using software implementation of elliptic functions.

For numerical work, to handle accurately the case of m ≈ 1, it proves useful to have an additional function, called
the complementary complete elliptic integral function of the first kind. It is defined by

K′(k) = K(
√

1 − k2),
K′(m) = K(1 − m),

ellkc(k) = K′(k), mathcw library notation,

EllipticCK(k) = K′(k), Maple notation,

EllipticK[1 − m] = K′(m), Mathematica notation.

Here, the prime on K′(m) reflects historical notation, and does not mean the first derivative of K(m). The notation
m′ = 1 − m is common in publications that treat elliptic integral functions, although we henceforth avoid it.

Our naming convention follows that for the ordinary and complementary error functions, and their inverses: the
base name ellk, then the letter c in the complementary case, followed by any of the precision suffixes used in the C
library. In Maple, the letter C for the complementary function precedes the letter K in the name EllipticCK.

Mathematica does not provide a separate function for the complementary case. That does not matter for applica-
tions in symbolic algebra, but it does for numerical evaluation.

The complete elliptic integral functions of the first kind are graphed in Figure 20.1. The presence of poles alerts
us to the problem of error magnification that we discussed in Section 4.1 on page 61, so we show plots of the
magnification in the left half of Figure 20.3 on page 629. From the plots, we can see that the values of K(m) and
ellk(k) are particularly sensitive to their arguments for m = k2 ≈ 1, but that problem can be eliminated by switching
to the complementary functions.

626 Chapter 20. Elliptic integral functions

The behavior near the poles is described by these relations:

lim
m→1

K(m) = 1
2 ln(16/(1 − m)), lim

m→0
K′(m) = 1

2 ln(16/m).

The logarithm term slows the approach to infinity: when m is the smallest normal number in 64-bit IEEE 754
arithmetic, K′(m) ≈ 710.

High-precision numerical experiments in Maple allow us to determine the cutoffs where we can switch to the
limit formulas, guaranteeing correct behavior near the poles. The final version of that code reports the errors in ulps
for each of the extended IEEE 754 precisions:

> Digits := 140:
> LK := proc(m) return ln(16/(1 - m)) / 2 end proc:
> re := proc(k) return (LK(k^2) - ellk(k))/ellk(k) end proc:

> for t in {7, 16, 34, 70} do
> eps := 10**(-t+1): x := 1 - eps:
> printf("%2d %.3g ", t, re(x)/ eps)
> end do:
7 -0.437 16 -0.473 34 -0.487 70 -0.494

> for t in {24, 53, 64, 113, 237} do
> eps := 2**(-t+1): x := 1 - eps:
> printf("%3d %.3g ", t, re(x)/ eps)
> end do:
24 -0.445 53 -0.474 64 -0.478 113 -0.487 237 -0.591

> LKC := proc(m) return ln(16/m) / 2 end proc:
> rec := proc(k) return (LKC(k^2) - ellkc(k))/ellkc(k) end proc:

> for t in {7, 16, 34, 70} do
> eps := 10**(-t+1): x := sqrt(eps):
> printf("%2d %.3g ", t, rec(x)/ eps)
> end do:
7 -0.220 16 -0.237 34 -0.244 70 -0.247

> for t in {24, 53, 64, 113, 237} do
> eps := 2**(-t+1): x := sqrt(eps):
> printf("%3d %.3g ", t, rec(x)/ eps)
> end do:
24 -0.223 53 -0.237 64 -0.239 113 -0.244 237 -0.247

The cutoffs all produce relative errors below a half ulp, and the negative signs on the errors tell us that the limiting
form approaches the true value from below. We can therefore use these formulas near the endpoints:

ellk(k) = log(16/(1 − k2))/2, when (1 − |k|) ≤ ε,

ellkc(k) = log(16/(k2))/2, when |k| ≤ √
ε,

= log(4/|k|)
= log(4)− log(|k|), overflow-free computational form.

The first is not useful, because there are only two representable values in binary arithmetic, and ten in decimal
arithmetic, to which it applies. However, the second is eminently practical.

The complete elliptic integral functions of the first kind have these Taylor series, providing a fast way to compute
the functions near their smallest values:

K(m) = 1
2 π(1 + (1/4)m + (9/64)m2 + (25/256)m3 +

(1225/16 384)m4 + (3969/65 536)m5 + · · ·),
K′(m) = 1

2 π(1 + (1/4)(1 − m) + (9/64)(1 − m)2 + (25/256)(1 − m)3 +

(1225/16 384)(1 − m)4 + (3969/65 536)(1 − m)5 + · · ·).

20.3. Elliptic integral functions of the second kind 627

Notice that the complementary function is expanded in powers of (1 − m).
The coefficients in the expansions have a surprisingly intimate relation to the binary number system. The general

term in the expansion of K(m) is

2−2w(n)(2n
n)

2

denom(W(n))
mn,

where w(n) is the number of 1-bits in the binary representation of n (see [Slo07, A038534]), and denom(W(n)) is the
denominator, after removing common integer factors, of this product:

W(n) =
n

∏
j=1

(2j)2 − 1
(2j)2 .

One example of the use of K(m) is computation of the period of an oscillating pendulum (see [Law89, Chapter 5],
[Tem96, page 316], [Ueb97, page 12], [AW05, §5.8], [AWH13, §18.8.1], or for more depth, [AE06, Chapter 1]). If
the pendulum has frequency ω (lowercase Greek letter omega), and initial angular displacement φ, then with k =
sin(φ/2), the period is T = 4K(k)/ω.

The function K(m) also appears in the problem of finding the electrostatic potential above a conducting disk,
the potential from a current loop, and the magnetization of a rod perpendicular to a plane: see [Law89, Chapter 5],
[Jac75, pages 131, 178, and 208], and [OLBC10, §19.33]. F(φ|m) arises in the determination of the stress on a vertical
column under load. The two elliptic functions are also required in several areas of astronomy and astrophysics
[Fuk09a, §1.2], [Fuk09b, §1].

20.3 Elliptic integral functions of the second kind

The incomplete elliptic integral functions of the second kind have definitions similar to those of the first kind, but with
the square root, instead of inverse square root, in the integrand:

E(φ\α) =
∫ φ

0
[1 − (sin(α))2(sin(θ))2]1/2 dθ,

E(φ|m) =
∫ sin(φ)

0
(1 − t2)−1/2(1 − mt2)1/2 dt,

E(φ, k) =
∫ sin(φ)

0
(1 − t2)−1/2(1 − (kt)2)1/2 dt,

k = sin(α), modulus in [−1,+1],

m = k2, parameter in [0, 1].

Setting φ = 1
2 π produces the complete elliptic integral function of the second kind, defined by:

E(α) = E(1
2 π\α)

=
∫ π/2

0
[1 − (sin(α) sin(θ))2]1/2 dθ,

E(k) = E(1
2 π, k)

=
∫ π/2

0
[1 − (k sin(θ))2]1/2 dθ

=
∫ 1

0
(1 − t2)−1/2(1 − (kt)2)1/2 dt,

E(m) = E(1
2 π|m)

=
∫ π/2

0
[1 − m(sin(θ))2]1/2 dθ

=
∫ 1

0
(1 − t2)−1/2(1 − mt2)1/2 dt

628 Chapter 20. Elliptic integral functions

0

1

2

0.0 0.5 1.0

m

E(m) E’(m)

0

1

2

-1.0 -0.5 0.0 0.5 1.0

k

elle(k)

ellec(k)

Figure 20.2: Complete elliptic integral functions of the second kind. The functions lie in [1, 1
2 π] for arguments m

in [0, 1] and k in [−1, 1]. The limits are E(0) = E′(1) = 1
2 π, E(1) = E′(0) = 1, elle(±1) = ellec(0) = 1, and

elle(0) = ellec(±1) = 1
2 π. The function pairs are equal at m = 1

2 and k = ±
√

1
2 .

=
∫ 1

0
(1 − t2)−1/2(1 − (kt)2)1/2 dt,

elle(k) = E(k), mathcw library notation,

EllipticE(k) = E(k), Maple notation,

EllipticE[m] = E(m), Mathematica notation,

elliptic_ec(m) = E(m), Maxima notation,

EllipticE(m) = E(m), REDUCE notation.

Just as with the function of the first kind, we have an important reflection symmetry relation:

E(−φ|m) = −E(φ|m).

The complementary complete elliptic integral function of the second kind is given by:

E′(k) = E(
√

1 − k2),
E′(m) = E(1 − m),

ellec(k) = E′(k), mathcw library notation,

EllipticCE(k) = E′(k), Maple notation,

EllipticE[1 − m] = E′(m), Mathematica notation.

The functions are shown in Figure 20.2, and their error magnifications are graphed in the right half of Figure 20.3
on the next page. As with the functions of the first kind, the complementary functions of the second kind are less
sensitive to argument errors.

Mathematica does not offer a separate function for the complementary case, but we can easily provide definitions
for the first and second kinds with code like this:

EllipticCK := Function[m, EllipticK[1 - m]]
EllipticCE := Function[m, EllipticE[1 - m]]

The first derivatives of the complete elliptic integral functions require those functions of both the first and second
kind:

dK(m)

dm
=

E(m)− (1 − m)K(m)

2m(1 − m)
,

d ellk(k)
dk

=
elle(k)

k(1 − k2)
− ellk(k)

k
,

20.3. Elliptic integral functions of the second kind 629

-5

-4

-3

-2

-1

 0

 1

 2

 3

 4

 5

-1.0 -0.5 0.0 0.5 1.0

k

errmag(ellk(k))

errmag(ellkc(k))

-5

-4

-3

-2

-1

 0

 1

 2

 3

 4

 5

-1.0 -0.5 0.0 0.5 1.0

k

errmag(elle(k))

errmag(ellec(k))

Figure 20.3: Error magnification in the complete elliptic integral functions of the first (left graph) and second (right
graph) kinds. The curves for the ordinary functions approach ±∞ for k ≈ ±1, whereas those for the complementary
functions remain within [− 1

2 ,+ 1
2].

dK′(m)

dm
=

mK′(m)− E′(m)

2m(1 − m)
,

d ellkc(k)
dk

=
k ellkc(k)
(1 − k2)

− ellec(k)
k(1 − k2)

,

dE(m)

dm
=

E(m)− K(m)

2m
,

d elle(k)
dk

=
elle(k)− ellk(k)

k
,

dE′(m)

dm
=

K′(m)− E′(m)

2(1 − m)
,

d ellec(k)
dk

=
k

(1 − k2)
(ellkc(k)− ellec(k)).

The complete elliptic integral functions of the second kind have these Taylor series for m ≈ 0:

E(m) = (1
2 π)(1 − (1/4)m − (3/64)m2 − (5/256)m3 − (175/16 384)m4 −

(441/65 536)m5 + · · ·),
E′(m) = (1

2 π)(1 − (1/4)(1 − m)− (3/64)(1 − m)2 − (5/256)(1 − m)3 −
(175/16 384)(1 − m)4 − (441/65 536)(1 − m)5 + · · ·).

The general term in the series for E(m) is similar to that for K(m), but fractionally smaller (see [Slo07, A038535]):

(−1)2n

1 − 2n
2−2w(n)(2n

n)
2

denom(W(n))
mn.

At the other endpoint, the two functions have these series:

E(m) = 1 + (ln(2)− 1
4 ln(1 − m)− 1

4)(1 − m) +(
(3/8) ln(2)− (3/32) ln(1 − m)− 13/64

)
(1 − m)2 +(

(15/64) ln(2)− (15/256) ln(1 − m)− 9/64
)
(1 − m)3 + · · · ,

E′(m) = 1 + (ln(2)− 1
4 ln(m)− 1

4)m +(
(3/8) ln(2)− (3/32) ln(m)− 13/64

)
m2 +(

(15/64) ln(2)− (15/256) ln(m)− 9/64
)
m3 + · · · .

Notice that only a single logarithm is required to evaluate all of the coefficients, and that, for the terms shown, the
rational numbers are exactly representable in binary, decimal, and hexadecimal arithmetic, provided the decimal
system offers at least seven digits, as it does for extended IEEE 754 arithmetic.

For an ellipse aligned with the coordinate axes, with semimajor axis of length a along x, and semiminor axis of
length b along y, measure an angle θ counterclockwise from the x axis. The arc length s from θ = 0 to θ = φ is

630 Chapter 20. Elliptic integral functions

s = a
∫ φ

0

√
1 − k2(sin(θ))2 dθ

= aE(φ\ asin k),

k =
√

1 − (b/a)2.

a

b
s

φ

Here, the value k is called the eccentricity1 of the ellipse, and is often instead denoted by e (then not the base of the
natural logarithm).

Setting φ = 1
2 π shows that the quarter arc in the first quadrant has length s = aE(k), so the perimeter of an ellipse

is 4aE(k). For a circle of unit radius, we have a = b = 1, for which k = 0, so we can conclude that E(0) = 1
2 π.

The function E(m) also appears in the electrostatic problems cited earlier on page 627 for K(m).
If we temporarily omit the argument (m) to simplify the display, the four complete elliptic integral functions

satisfy the famous Legendre relation:

KE′ + K′E − KK′ = 1
2 π, for m in (0, 1).

Decorated with arguments, and with the complementary functions eliminated, the relation looks like this:

K(m)E(1 − m) + K(1 − m)E(m)− K(m)K(1 − m) = 1
2 π, for m in (0, 1).

For a proof, see [AAR99, page 137].
Here is a hoc session in 128-bit decimal arithmetic to check how closely the Legendre relation is satisfied for its

implementations of those functions, with reports of the error in ulps for a few random arguments:

hocd128> load("ell")
hocd128> func K(m) return ellk (sqrt(m))
hocd128> func KC(m) return ellkc(sqrt(m))
hocd128> func E(m) return elle (sqrt(m))
hocd128> func EC(m) return ellec(sqrt(m))
hocd128> func LR(m) return K(m)*EC(m) + KC(m)*E(m) - K(m)*KC(m)
hocd128> for (k = 0; k < 14; ++k) printf("%.2f ",ulp(LR(rand()),PI/2))
1.27 0.00 1.27 1.91 2.55 1.27 1.27 1.27 0.64 1.27 1.27 1.27 1.91 2.55

At that precision, the computed value PI/2 differs from 1
2 π by one unit in the 34th digit, so our four functions seem

to perform quite well.

20.4 Elliptic integral functions of the third kind

The incomplete elliptic integral function of the third kind is named with an uppercase Greek letter pi and has three
arguments [BF71, pages 223–239]. It is defined by an integral in three different notations that are distinguished by
punctuation and argument-naming conventions:

Π(n; φ\α) =
∫ φ

0
(1 − n(sin(θ))2)−1(1 − (sin(α) sin(θ))2)−1/2 dθ,

Π(n, φ, k) =
∫ φ

0
(1 − n(sin(θ))2)−1(1 − (k sin(θ))2)−1/2 dθ

=
∫ sin φ

0
(1 − nt2)−1((1 − t2)(1 − (kt)2))−1/2 dt,

Π(n, φ|m) =
∫ φ

0
(1 − n(sin(θ))2)−1(1 − m(sin(θ))2)−1/2 dθ,

k = sin(α), modulus in [−1,+1],

1Planetary orbits in our solar system are elliptical, with eccentricities k of 0.21 (Mercury), 0.01 (Venus), 0.02 (Earth), 0.09 (Mars), 0.05 (Jupiter),
0.06 (Saturn), 0.05 (Uranus), 0.01 (Neptune), and 0.25 (Pluto). However, orbits of other planetary bodies differ, with eccentricities of 0.97 (Halley’s
Comet), 0.83 (Icarus asteroid), and 0.9999 (Comet Kohoutek). The latter has a/b ≈ 70.

20.5. Computing K(m) and K′(m) 631

m = k2, parameter in [0, 1],

n ≥ 0.

Be warned that some publications, and some symbolic-algebra systems, interchange the first two arguments, and
sometimes, an argument φ is replaced by sin(φ).

When φ = 1
2 π, we have the two-argument complete elliptic integral function of the third kind, again with three

different argument conventions:

Π(n\α) = Π(n, k) = Π(n|m) = Π(n; 1
2 π\α) = Π(n, 1

2 π, k) = Π(n, 1
2 π|m).

The function of the third kind has these special cases:

Π(0, φ, k) = F(φ, k), elliptic integral function of first kind,

Π(0, φ, 0) = φ,

Π(n, φ, 0) =

⎧⎪⎨
⎪⎩
(1 − n)−1/2 atan((1 − n)1/2 tan φ), for n < 1,

tan(φ), for n = 1,

(n − 1)−1/2 atanh((n − 1)1/2 tan φ), for n > 1,

Π(n, φ, 1) = (1 − n)−1×(
log(tan(φ) + sec(φ))− 1

2

√
n log

(
1 +

√
n sin(φ)

1 −√
n sin(φ)

))
,

provided n �= 1,

Π(n, 1
2 π, 1) = +∞, for all n ≥ 0.

For small φ, and n of limited size, the elliptic integral function of the third kind has this Taylor-series expansion:

Π(n, φ, k) = φ + 1
3! (2n + k2)φ3+

1
5! (−8n − 4k2 + 12k2n + 24n2 + 9k4)φ5+
1
7! (16k2 − 180k4 + 225k6 + 32n − 240k2n+

270k4n − 480n2 + 360k2n2 + 720n3)φ7 + · · · .

Series exist for the case of small n and small k, but they are too complicated to be of computational use.
Maple provides the incomplete elliptic integral function of the third kind as EllipticPi(sin(φ), n, k); note the

unusual argument conventions and order. Mathematica has EllipticPi[n, φ, m], where m = k2. Maxima supplies
elliptic_pi(n, φ, m). The mathcw library has the function family ELLPI(n,phi,k), but we delay a discussion of
its computational algorithm until Section 20.10 on page 650.

Because the function of the third kind is less-commonly encountered, we do not provide a separate function
family in the mathcw library for the complete function: just use φ = 1

2 π in a call to the ELLPI() family.

20.5 Computing K(m) and K′(m)

The discovery of the relation of the arithmetic-geometric mean to the elliptic integral functions is an early example
of success in the emerging area of experimental mathematics [BBG03, BB04, BBC+07, BD09], whereby results of a high-
precision numerical computation suggest mathematical formulas that are later derived rigorously.

In 1799, Gauss computed

agm(1,
√

2) = 1.198 140 234 735 592 207 439 922 492 280 323 878 . . .

to 11 figures, and found that it agreed with the reciprocal of the value of an integral tabulated by Stirling:

2
π

∫ 1

0

dt√
1 − t2

.

632 Chapter 20. Elliptic integral functions

Gauss conjectured, and later proved, that the two numbers are indeed identical, and predicted that his observation
would open a new field of analysis. Today, that field is elliptic integrals and modular functions. For more on that
story, with pictures of Gauss’s original manuscripts, see [AH01, Chapter 7] and [BB04, page 12].

The arithmetic-geometric mean leads to the complete elliptic integral function of the first kind like this [AS64,
page 598], [MH72], [OLBC10, §19.8]:

k = sin(α), a0 = 1,

m = k2 = (sin(α))2, b0 = cos(α) =
√

1 − (sin(α))2,

K(m) =
1
2 π

agm(a0, b0)
=

1
2 π

agm(1,
√

1 − k2)
.

By definition of the AGM, at convergence we have an = bn, so we can do one more step to find

agm(an, bn) = agm(an+1, bn+1) = agm((an + bn)/2,
√

anbn).

That result allows us to conclude that

agm(1 + k, 1 − k) = agm(1
2 (1 + k + 1 − k),

√
(1 + k)(1 − k))

= agm(1,
√

1 − k2).

Thus, we can eliminate the trigonometric functions and square roots to arrive at optimal formulas for computation
of the complete elliptic integral function of the first kind:

ellk(k) = K(k)

=
1
2 π

agm(1 + k, 1 − k)
, use for binary and decimal arithmetic,

=
1
4 π

agm(1
2 +

1
2 k, 1

2 − 1
2 k)

, use for hexadecimal arithmetic.

Apply the symmetry relation ellk(−k) = ellk(k) to reduce the argument range to [0, 1]. In binary arithmetic, the
subtraction 1 − k is exact for k in [1

2 , 1], and, at least in the IEEE 754 system, correctly rounded otherwise.
A separate formula for ellk(k) is needed for hexadecimal arithmetic, because the values 1

4 π and 1
2 +

1
2 k then have

no leading zero significand bits, reducing the effect of wobbling precision.
Here is the mathcw library code for the complete elliptic integral function of the first kind:

fp_t
ELLK(fp_t k)
{ /* complete elliptic integral of the FIRST kind */

fp_t result;
static fp_t cut_taylor = FP(0.);
static fp_t last_k = FP(-2.); /* out-of-range k */
static fp_t last_result = FP(0.);
static int do_init = 1;

if (do_init)
{

cut_taylor = SQRT(FP_T_EPSILON + FP_T_EPSILON);
do_init = 0;

}

if (ISNAN(k))
result = SET_EDOM(k);

else if ((k < -ONE) || (ONE < k))
result = SET_EDOM(QNAN(""));

20.5. Computing K(m) and K′(m) 633

else if ((k == ONE) || (k == -ONE))
result = SET_ERANGE(INFTY());

else if (k == last_k) /* use history for common K(k) calls */
result = last_result;

else if (k == ZERO)
result = PI_HALF;

else
{

if (k < ZERO) /* use symmetry to ensure positive argument */
k = -k;

if (k < cut_taylor)
{ /* two-term Taylor series for correct rounding */

#if defined(HAVE_WOBBLING_PRECISION)
result = PI * (HALF + EIGHTH * k * k);

#else
result = PI_HALF * (ONE + FOURTH * k * k);

#endif /* defined(HAVE_WOBBLING_PRECISION) */

}
else /* use AGM algorithm */
{

#if defined(HAVE_WOBBLING_PRECISION)

{
fp_t half_k;

half_k = HALF * k;
result = PI_QUARTER / AGM(HALF + half_k, HALF - half_k);

}
#else

result = PI_HALF / AGM(ONE + k, ONE - k);
#endif /* defined(HAVE_WOBBLING_PRECISION) */

}
}

last_k = k;
last_result = result;

return (result);
}

The function maintains a history of its most-recent argument and result, and checks whether it can return that value
without further computation. Although that optimization is possible in almost any function in the mathcw library, we
rarely use it. However, in the mathematics of elliptic functions, the expression K(k) is so common that programmers
are likely to call ELLK(k) repeatedly with the same argument.

Figure 20.4 on the next page shows the measured errors for that function family.
To find a route to the complementary function, we start with

ellkc(k) = K′(k) = K(
√

1 − k2) = ellk(
√

1 − k2)

=
1
2 π

agm(1 +
√

1 − k2, 1 −√
1 − k2)

.

That is unsuitable for numeric computation when k is small, because the second argument of agm() suffers catas-

634 Chapter 20. Elliptic integral functions

Figure 20.4: Errors in the complete elliptic integral functions of the first kind. Notice that the vertical scale is larger
than in other chapters of this book.

trophic accuracy loss. To solve that problem, rewrite the arguments as follows:

a = 1 +
√

1 − k2, first argument of agm(),

= 1 +
√
(1 − k)(1 + k), computation is always stable,

b = 1 −
√

1 − k2, second argument of agm(),

=
1 +

√
1 − k2

1 +
√

1 − k2
(1 −

√
1 − k2)

=
1 − (1 − k2)

1 +
√

1 − k2

= k2/a, stable computational form.

Now we can determine b stably without subtraction loss, but because k is restricted to [−1, 1], k2 is subject to prema-
ture underflow. We remove that problem by using the scaling relation for the AGM with s = 1/k:

ellkc(k) =
1
2 π

agm(a, b)
=

1
2 π

k agm(a/k, b/k)
=

1
2 π

k agm(a/k, k/a)
=

1
2 π

k agm(1/c, c)
,

c = k/a.

0

1

2

3

4

-1 0 1

u
lp

s

x

Errors in ellkf()

0

1

2

3

4

-1 0 1

u
lp

s

x

Errors in ellkdf()

0

1

2

3

4

-1 0 1

u
lp

s

x

Errors in ellk()

0

1

2

3

4

-1 0 1

u
lp

s

x

Errors in ellkd()

20.5. Computing K(m) and K′(m) 635

For hexadecimal arithmetic, we work with arguments a′ and b′ of half size, so that a′ lies in [1
2 , 1], avoiding leading

zero bits:

a = 2a′, b = 2b′,

a′ = 1
2 +

1
2

√
1 − k2, b′ = 1

2 k2/a = 1
4 k2/a′,

d′ = b′/k = k/(4a′),

ellkc(k) =
1
4 π

agm(a′, b′)
=

1
4 π

k agm(a′/k, b′/k)
=

1
4 π

k agm(1
4 (1/d′), d′)

.

Our final computational formulas for ellkc(k) are stable even for tiny k, as long as c and d′ do not underflow, and
their reciprocals do not overflow.

When k is tiny, we have fl(a) = 2 and fl(a′) = 1, so c underflows when k is smaller than twice the smallest
representable number, and d′ underflows when k is below four times the smallest number. Thus, intermediate
underflow is not an issue until k is within four ulps of the underflow limit.

The design of the extended IEEE 754 arithmetic system ensures that the reciprocal of the smallest normal number
is representable, so when c and d′ are normal, their reciprocals cannot overflow. However, once they enter the
subnormal region, overflow is possible. In all binary formats of the IEEE 754 system, FP_T_MIN / (1 / FP_T_MAX)
is almost 4, and in all of the decimal formats, it is close to 100. In both cases, the expression is almost β2, and the
reciprocal of the largest finite number is subnormal.

We therefore conclude that, for IEEE 754 arithmetic, ellkc(k) can be computed stably for k above FP_T_MIN/4, but
for k values below that, overflow soon occurs in one of the AGM arguments, which in turn produces a return value
of Infinity, making the denominator k agm(1/c, c) evaluate to Infinity as well, producing fl(ellkc(k)) = 0 for tiny k.
That result is completely wrong, because ellkc(k) is infinite at k = 0. The problem is that ellkc(k) should grow like
log(1/k), so k agm(1/c, c) should approach zero. The solution, then, is to check for a return value from agm(1/c, c)
that is above, say, half the overflow limit, and in that case, return a value of Infinity without further computation.

The issues of premature overflow in the arguments disappear if we use the logarithmic limiting form of ellkc(k)
given on page 626, because we then never invoke the AGM algorithm when k is tiny. Otherwise, we should return
Infinity, without calculating the AGM, if |k| < min(FP_T_MIN, 1/FP_T_MAX).

Our code for the scalar version of the complementary complete elliptic integral function of the first kind looks
like this:

fp_t
ELLKC(fp_t k)
{ /* complementary complete elliptic integral of the FIRST kind */

volatile fp_t result;
static fp_t cut_limit = FP(0.);
static fp_t cut_taylor = FP(0.);
static fp_t last_k = FP(-2.); /* out-of-range k */
static fp_t last_result = FP(0.);
static int do_init = 1;

if (do_init)
{

cut_limit = SQRT(FP_T_EPSILON);
cut_taylor = SQRT_TWO * cut_limit;
do_init = 0;

}

if (ISNAN(k))
result = SET_EDOM(k);

else if ((k < -ONE) || (ONE < k))
result = SET_EDOM(QNAN(""));

else if (k == last_k) /* use history for common K’(k) calls */
result = last_result;

else if ((k == ONE) || (k == -ONE))

636 Chapter 20. Elliptic integral functions

result = PI_HALF;
else if (k == ZERO)

result = SET_ERANGE(INFTY());
else
{

fp_t a, b, onemxx, t;

if (k < ZERO) /* use symmetry to ensure positive argument */
k = -k;

if (k <= cut_limit)
{

result = LN_4_LO - LOG(k);
STORE(&result);
result += LN_4_HI;

}
else if ((onemxx = (ONE + k)*(ONE - k), onemxx <= cut_taylor))
{

#if defined(HAVE_WOBBLING_PRECISION)
result = PI * (HALF + EIGHTH * onemxx);

#else
result = PI_HALF * (ONE + FOURTH * onemxx);

#endif /* defined(HAVE_WOBBLING_PRECISION) */

}
else
{

#if defined(HAVE_WOBBLING_PRECISION)
a = HALF + HALF * SQRT(onemxx);
b = FOURTH * k / a;
t = AGM(FOURTH / b, b);
result = (t > HALF * FP_T_MAX) ? INFTY() :

PI_QUARTER / (k * t);
#else

a = ONE + SQRT(onemxx);
b = k / a;
t = AGM(ONE / b, b);
result = (t > HALF * FP_T_MAX) ? INFTY() :

PI_HALF / (k * t);
#endif /* defined(HAVE_WOBBLING_PRECISION) */

}
}

last_k = k;
last_result = result;

return (result);
}

Figure 20.5 on the facing page shows the measured errors for the complementary function family.

20.6. Computing E(m) and E′(m) 637

Figure 20.5: Errors in the complementary complete elliptic integral functions of the first kind.

20.6 Computing E(m) and E′(m)

The terms in the Taylor series for E(m) and E′(m) given on page 629 fall in magnitude, despite the presence of the
logarithms of m and 1 − m, because limm→+0 m ln(m) = 0. Their relative magnitudes are not obvious because of the
logarithms, but a short investigation in Maple reports relative errors in ulps for the extended IEEE 754 binary and
decimal formats:

> Digits := 140:
> T1 := proc(m) return 1 end proc:
> T2 := proc(m) return evalf((ln(2) - (1/4)*ln(m) - 1/4)*m) end proc:
> T3 := proc(m) return evalf(((3/8)*ln(2) - (3/32)*ln(m) - 13/64) *
> m**2) end proc:
> R21 := proc(m) return evalf(T2(m) / T1(m)) end proc:
> R32 := proc(m) return evalf(T3(m) / T2(m)) end proc:
> for t in {24, 53, 64, 113, 237} do
> eps := 2**(-t+1): m := eps:
> printf("%3d %6.3f %6.3f\n", t, R21(m) / eps, R32(m) / eps)
> end do:
24 4.429 0.350
53 9.454 0.363
64 11.360 0.365

0

1

2

3

4

-1 0 1

u
lp

s

x

Errors in ellkcf()

0

1

2

3

4

-1 0 1

u
lp

s

x

Errors in ellkcdf()

0

1

2

3

4

-1 0 1

u
lp

s

x

Errors in ellkc()

0

1

2

3

4

-1 0 1

u
lp

s

x

Errors in ellkcd()

638 Chapter 20. Elliptic integral functions

113 19.851 0.369
237 41.339 0.372

> for t in {7, 16, 35, 70} do
> eps := 10**(-t+1): m := eps:
> printf("%3d %6.3f %6.3f\n", t, R21(m) / eps, R32(m) / eps)
> end do:

7 3.897 0.347
16 9.078 0.363
35 20.015 0.370
70 40.163 0.372

Thus, a three-term sum should produce correctly rounded results for m < ε, or equivalently, k <
√

ε.
A slight modification of the loops shows that smaller cutoffs of ε/27 and ε/102 reduce the second term to less

than 0.42ε, allowing a two-term sum. However, that is a severe reduction of the range where the truncated Taylor
series applies.

A further small change to the loops shows that four terms suffice with a cutoff of m < 1
4

√
ε, where the first three

terms produce an error below 0.48ε, and the fourth term is needed for correct rounding.
Outside the Taylor-series region, we compute the complete elliptic integral of the second kind from the relation

[AS64, page 599]

K(m)− E(m)

K(m)
= 1

2 (c
2
0 + 2c2

1 + 4c2
2 + · · ·+ 2jc2

j + · · ·) = σ(m),

where the coefficients in the summation are

c0 = sin(α) = k, cj =
1
2 (aj−1 − bj−1), for j = 1, 2, 3,

We then have the final result
E(m) = K(m)− K(m)σ(m).

Both E(m) and K(m) are positive, but E(m) remains small, whereas K(m) has a pole at m = 1. Thus, near that pole,
E(m) is determined by the difference of two large numbers. In binary arithmetic, the subtraction causes significance
loss for σ(m) > 1

2 . Maple readily finds the m and k values for which that happens:

> Digits := 40:
> K := proc(m) return EllipticK(sqrt(m)) end proc:
> E := proc(m) return EllipticE(sqrt(m)) end proc:
> fsolve((K(m) - E(m))/K(m) = 1/2, m = 0 .. 1);
> sqrt(%);

The output shows these results:

m = 0.826 114 765 984 970 336 177 373 238 600 756 406 034 . . . ,
k = 0.908 908 557 548 541 478 236 118 908 744 793 504 901

Thus, there is significance loss in computing elle(k) for |k| in the approximate range [0.9, 1], and the loss increases as
k → 1. A partial solution is a relation that allows shifting the argument, at the expense of one extra elliptic function
evaluation:

z =
√

1 − m, E(m) = (1 + z)E
(
((1 − z)/(1 + z))2

)
− zK(m).

That remaps m in the range [0.82, 1] nonuniformly onto [0.16, 1], reducing, but not entirely eliminating, the region of
significance loss.

We require the vector version of the AGM to get the cj coefficients, but our replacement of agm(1,
√

1 − k2) with
agm(1 + k, 1 − k) produces different cj values. However, a numerical investigation shows that cj+1 from the second
iteration matches the original coefficient cj, and a symbolic computation in Maple confirms that.

The code for the complete elliptic integral function of the second kind is then a direct application of our formulas,
with extra care to sum the σ(m) series in reverse order, and shift the coefficient subscripts upward:

20.6. Computing E(m) and E′(m) 639

fp_t
ELLE(fp_t k)
{ /* complete elliptic integral of the SECOND kind */

fp_t result;
static fp_t cut_remap = FP(0.);
static fp_t cut_taylor = FP(0.);
static fp_t last_k = FP(1.);
static fp_t last_result = FP(1.); /* E(1) = 1 */
static int do_init = 1;

if (do_init)
{

cut_remap = FP(0.908);
cut_taylor = HALF * SQRT(SQRT(FP_T_EPSILON));
do_init = 0;

}

if (ISNAN(k))
result = SET_EDOM(k);

else if ((k < -ONE) || (ONE < k))
result = SET_EDOM(QNAN(""));

else if (k == last_k) /* use history for common E(k) calls */
result = last_result;

else if ((k == ONE) || (k == -ONE))
result = ONE;

else if (k == ZERO)
result = PI_HALF;

else
{

fp_t a[MAXAGM], b[MAXAGM], c[MAXAGM], K_of_m, sigma, two_to_j;
int j, need;

#if defined(HAVE_WOBBLING_PRECISION)
fp_t half_k;

#endif /* defined(HAVE_WOBBLING_PRECISION) */

if (k < ZERO) /* use symmetry to ensure positive argument */
k = -k;

if ((ONE - k) < cut_taylor)
{ /* sum four-term Taylor series in Horner form */

fp_t ln_z, sum, z;

z = (ONE + k) * (ONE - k); /* z == 1 - k**2 == 1 - m */
ln_z = LOG1P(-k * k);
sum = (FP(60.) * LN_2 - FP(15.) * ln_z - FP(36.)) * FP(0.001953125);
sum = sum * z + (FP(24.) * LN_2 - FP(6.) * ln_z - FP(13.)) * FP(0.0078125);
sum = sum * z + (LN_2 - FOURTH * ln_z - FOURTH) * HALF;
sum = sum * z + HALF;
result = sum + sum;

}
else if (k > cut_remap)
{

fp_t y, z;

z = SQRT((ONE - k) * (ONE + k));
y = (ONE - z) / (ONE + z);

640 Chapter 20. Elliptic integral functions

result = (ONE + z) * ELLE(y) - z * ELLK(k);
}
else
{

c[0] = ZERO;
c[1] = ZERO;
c[2] = ZERO; /* need in case need < 3 on return */

#if defined(HAVE_WOBBLING_PRECISION)
half_k = HALF * k;
K_of_m = PI_QUARTER / VAGM(HALF + half_k, HALF - half_k,

half_k, (int)elementsof(a),
a, b, c, &need);

#else
K_of_m = PI_HALF / VAGM(ONE + k, ONE - k, k,

(int)elementsof(a),
a, b, c, &need);

#endif /* defined(HAVE_WOBBLING_PRECISION) */

sigma = ZERO;
two_to_j = TWO;

for (j = 2; j < (need - 1); ++j)
{

two_to_j += two_to_j;
sigma += two_to_j * c[j + 1] * c[j + 1];

}

sigma += TWO * c[1 + 1] * c[1 + 1];
sigma += c[0 + 1] * c[0 + 1];

#if defined(HAVE_WOBBLING_PRECISION)
sigma += sigma;

#else
sigma *= HALF;

#endif /* defined(HAVE_WOBBLING_PRECISION) */

result = K_of_m - sigma * K_of_m;
}

}

last_k = k;
last_result = result;

return (result);
}

We rewrote the Taylor series sum in a form that is optimal for hexadecimal arithmetic so as not to require base-
dependent code. However, in the hexadecimal case, the iteration has half-size initial values. The output coefficients
cj are then also halved, and the σ(m) sum is consequently a quarter of the correct value. Thus, instead of multiplying
the sum by a half, we have to double it.

Figure 20.6 on the next page shows the measured errors for the ELLE() function family. Although the peak errors
are above our library goal of two ulps, most are well below that value.

The computation of E′(m) differs from that of E(m) only in the starting values of the AGM iteration: b0 and c0 are
swapped. That means that we can use the original agm(1, k) with c0 =

√
1 − k2, so the coefficient index shift is not

needed. There may be accuracy loss in forming c0, but its value is not used, except for assignment, inside the vector
AGM routine, and we only require c2

0 for the σ(m) sum. That square can be computed accurately from (1+ k)(1− k).

20.6. Computing E(m) and E′(m) 641

Figure 20.6: Errors in the complete elliptic integral functions of the second kind.

As with E(m), there is significance loss in forming K′(m)− σ′(m)K′(m), but now as m → 0, and a partial solution
is supplied by another argument-shift relation:

z = 2
√

k/(1 + k), E′(m) = (1 + k)E′(z2)− kK′(m).

Here is the code for the complementary complete elliptic integral of the second kind, incorporating the Taylor
series, argument shift, and the AGM algorithm:

fp_t
ELLEC(fp_t k)
{ /* complementary complete elliptic integral of the SECOND kind */

fp_t result;
static fp_t cut_remap = FP(0.);
static fp_t cut_taylor = FP(0.);
static fp_t last_k = FP(-2.); /* out-of-range k */
static fp_t last_result = FP(0.);
static int do_init = 1;

if (do_init)
{

cut_remap = FP(0.25);

0

1

2

3

4

-1 0 1

u
lp

s

x

Errors in ellef()

0

1

2

3

4

-1 0 1

u
lp

s

x

Errors in elledf()

0

1

2

3

4

-1 0 1

u
lp

s

x

Errors in elle()

0

1

2

3

4

-1 0 1

u
lp

s

x

Errors in elled()

642 Chapter 20. Elliptic integral functions

cut_taylor = HALF * SQRT(SQRT(FP_T_EPSILON));
do_init = 0;

}

if (ISNAN(k))
result = SET_EDOM(k);

else if ((k < -ONE) || (ONE < k))
result = SET_EDOM(QNAN(""));

else if (k == last_k) /* use history for common E(k) calls */
result = last_result;

else if ((k == ONE) || (k == -ONE))
result = PI_HALF;

else if (k == ZERO)
result = ONE;

else
{

fp_t a[MAXAGM], b[MAXAGM], c[MAXAGM], KC_of_m, sigma, two_to_j;
int j, need;

#if defined(HAVE_WOBBLING_PRECISION)
fp_t half_k;

#endif /* defined(HAVE_WOBBLING_PRECISION) */

if (k < ZERO) /* use symmetry to ensure positive argument */
k = -k;

if (k < cut_taylor)
{ /* sum four-term Taylor series in Horner form */

fp_t ln_m, m, sum;

m = k * k;
ln_m = TWO * LOG(k);
sum = (FP(60.) * LN_2 - FP(15.) * ln_m - FP(36.))

* FP(0.001953125);
sum = sum * m + (FP(24.) * LN_2 - FP(6.) * ln_m - FP(13.))

* FP(0.0078125);
sum = sum * m + (LN_2 - FOURTH * ln_m - FOURTH) * HALF;
sum = sum * m + HALF;
result = sum + sum;

}
else if (k < cut_remap)
{

fp_t z, onepx;

onepx = ONE + k;
z = TWO * SQRT(k) / onepx;
result = onepx * ELLEC(z) - k * ELLKC(k);

}
else
{

#if defined(HAVE_WOBBLING_PRECISION)
half_k = HALF * k;
KC_of_m = PI_QUARTER / VAGM(HALF, half_k, ZERO,

(int)elementsof(a),
a, b, c, &need);

#else
KC_of_m = PI_HALF / VAGM(ONE, k, ZERO, (int)elementsof(a),

20.7. Historical algorithms for elliptic integrals 643

a, b, c, &need);
#endif /* defined(HAVE_WOBBLING_PRECISION) */

sigma = ZERO;
two_to_j = TWO;

for (j = 2; j < need; ++j)
{

two_to_j += two_to_j;
sigma += two_to_j * c[j] * c[j];

}

sigma += TWO * c[1] * c[1];

#if defined(HAVE_WOBBLING_PRECISION)
/* replace c[0]**2 by accurate (1/2 - (k/2)**2) =

(1/2 - k/2) * (1/2 + k/2) */
sigma += (HALF - half_k) * (HALF + half_k);
sigma += sigma;

#else
/* replace c[0]**2 by accurate (1 - k**2) =

(1 - k) * (1 + k) */
sigma += (ONE - k) * (ONE + k);
sigma *= HALF;

#endif /* defined(HAVE_WOBBLING_PRECISION) */

result = KC_of_m - sigma * KC_of_m;
}

}

last_k = k;
last_result = result;

return (result);
}

In the call to VAGM(), we supply c0 as zero. There is no need to compute its true value, because we evaluate c2
0

accurately later. As in the code for ELLE(), we provide special handling for hexadecimal arithmetic.
Figure 20.7 on the following page shows the measured errors in the ELLEC() function family. The peak errors are

above the mathcw library goal of two ulps, and worse than those for the ELLK(), ELLKC(), and ELLE() families.

20.7 Historical algorithms for elliptic integrals

There are many published articles and book sections with algorithms for computing the elliptic integral functions.
Here is a sampler:

� In a book published before high-level programming languages were invented [Has55, pages 170–175], Hastings
uses low-order polynomial approximations of degrees two to four of the form

K(m) ≈ PK(η) +QK(η) log(η), E(m) ≈ PE(η) +QE(η) log(η),
m = k2, η = 1 − k2, for η in (0, 1],

(η is the lowercase Greek letter eta) to obtain four to eight decimal digits of accuracy. Given the argument range
of the logarithm, it is now preferable to replace log(η) by the more accurate log1p(−m), a function that did
not enter mathematical libraries until more than three decades later. For better accuracy near m ≈ 1, switch to
the complementary function form, using an accurate argument η directly, rather than computing it from 1− m.
The Handbook of Mathematical Functions uses the Hastings polynomials [AS64, pages 591–592].

644 Chapter 20. Elliptic integral functions

Figure 20.7: Errors in the complementary complete elliptic integral functions of the second kind.

� Some of Cody’s earliest works deal with the complete elliptic integral functions, extending Hastings’ formula
to polynomial degrees of two to ten, obtaining nearly 18 decimal digits of accuracy [FC64, Cod65a, Cod65b].

Given that two polynomials and a logarithm must be evaluated, and the polynomials depend on the host
precision, it would appear that Cody’s approach has no significant advantages over the simple AGM algorithm,
which needs only elementary operations and square roots.

� The later book by Hart and others [HCL+68, page 154] gives essentially the same polynomials as those of Cody,
but with a few more decimal places.

� For small arguments, Moshier’s Cephes library [Mos89, pages 387–395] uses a two-term Taylor series, and
otherwise, uses the Hastings-style formula with polynomials of degree 10, but their coefficients differ from
those of Cody. Cephes also includes code for the incomplete elliptic integral functions of the first and second
kinds.

� Two other books [Tho97, ZJ96] that we have mentioned elsewhere use the AGM algorithm, but without con-
sideration of the extra issues that our code handles.

� Gil, Segura, and Temme [GST07, pages 344–347] have a brief discussion of elliptic integrals.

� Carlson has published many articles, and a book, on special functions, with a particular emphasis on elliptic
integrals [Car77, Chapter 9]. We examine his techniques in the next section.

0

1

2

3

4

-1 0 1

u
lp

s

x

Errors in ellecf()

0

1

2

3

4

-1 0 1

u
lp

s

x

Errors in ellecdf()

0

1

2

3

4

-1 0 1

u
lp

s

x

Errors in ellec()

0

1

2

3

4

-1 0 1

u
lp

s

x

Errors in ellecd()

20.8. Auxiliary functions for elliptic integrals 645

� Fukushima recently published partial code [Fuk10] for a fast algorithm for computing the incomplete elliptic
integral function of the first kind, F(φ|m), as a Fortran function elf(φ, φc, mc), with φc =

1
2 π − φ, mc = 1 − m,

and m = k2. He also supplies short implementations of two of the inverse Jacobian elliptic functions that we
discuss later in Section 20.16 on page 664. This author completed the missing code and supplied an interface
to the mathcw library routine ellk(k) to provide the K(k) values needed by Fukushima’s algorithm. Limited
testing shows agreement to within one or two ulps between the two approaches, and that Fukushima’s code
can be several times faster than ours. However, it is specialized to just a single elliptic function, whereas
ours are built on Carlson’s general framework for handling the elliptic functions of all three kinds. One of
Fukushima’s inverse Jacobian elliptic functions fails when φc is tiny, and the other when its arguments are both
near one, but that can be handled with additional code that checks for extreme values.

Earlier papers by Fukushima discuss fast computation of the complete elliptic integral functions and the
Jacobian elliptic functions, and compare his methods with previous work, but do not supply source code
[FI94, Fuk09a, Fuk09b].

20.8 Auxiliary functions for elliptic integrals

The function defined by

R(a; b1, b2, . . . , bn; z1, z2, . . . , zn) =
Γ(a + c)
Γ(a)Γ(c)

∫ ∞

0
tc−1(t + z1)

−b1(t + z2)
−b2 · · · (t + zn)

−bn dt,

c = (b1 + b2 + · · · + bn)− a.

is called a hypergeometric R-function. It is an elliptic integral when exactly four of the parameters a, c, b1, b2, . . . , bn are
half integers, and all of the remaining parameters are integers. The arguments z1, z2, . . . , zn are arbitrary complex
numbers, but when they have real values, they are required to be nonnegative, because otherwise, the integral
diverges or is undefined. When any of the bk parameters are equal, the function is symmetric in the corresponding
zk arguments. The elliptic integral is called complete when both a and c are half-odd integers, or when one of the zk
arguments is zero.

Legendre showed that exactly four elliptic integrals are linearly independent, and all others can be reduced by
argument transformations to linear combinations of the basic four, with polynomial coefficients. There is unlimited
freedom in the choice of those four functions, and in the early work on elliptic integrals, there was not yet enough
knowledge about them to make an optimal choice. Legendre’s selection of those four as D(φ, k), E(φ, k), F(φ, k), and
Π(n, φ, k) is now, in hindsight, regrettable, because they make analysis unnecessarily complicated.

In several decades of work, Carlson and his students have shown that a better choice of the four basic elliptic
integrals is one that maximizes argument symmetry. In his book [Car77, Chapter 9], Carlson recommends this basic
set:

(xyz)−1/2 = R(+ 3
2 ; 1

2 , 1
2 , 1

2 ; x, y, z),

RF(x, y, z) = R(+ 1
2 ; 1

2 , 1
2 , 1

2 ; x, y, z), elliptic integral of first kind,

= 2
3 RH(x, y, z, 0),

RG(x, y, z) = R(− 1
2 ; 1

2 , 1
2 , 1

2 ; x, y, z), elliptic integral of second kind

RH(x, y, z, ρ) = R(+ 1
2 ; 1

2 , 1
2 , 1

2 , 1; x, y, z, ρ), elliptic integral of third kind.

In the last function, ρ is the lowercase Greek letter rho. It is chosen from a different alphabet because it does not
participate in any symmetry relations. The bk values are all equal in Carlson’s selection, so the functions are symmet-
ric in the arguments x, y, and z. In addition, the parameter choice reduces the ratio of gamma functions to simple
rational numbers, possibly involving an additional factor of π.

Carlson’s book [Car77, page 97] introduces a second notation for the R-functions, moving the leading argument
of the original form to a negated subscript:

R−a(b1, b2, . . . , bn; z1, z2, . . . , zn) = R(a; b1, b2, . . . , bn; z1, z2, . . . , zn).

646 Chapter 20. Elliptic integral functions

In that alternate form, add the subscript to the parameters b1 through bn, then subtract 1 to find the power of t in
the integrand. The out-of-place sign-flipped function argument is confusing, so in this book, we keep the original
notation.

Zill and Carlson [ZC70] propose a symmetric function defined by

RJ(x, y, z, ρ) = R(+ 3
2 ; 1

2 , 1
2 , 1

2 , 1; x, y, z, ρ)

that can sometimes be a useful alternative to RH(x, y, z, ρ). They also define a few other functions for mathematical
convenience:

RC(x, y) = R(+ 1
2 ; 1

2 , 1
2 ; x, y),

= RF(x, y, y), not symmetric in x and y,

RD(x, y, z) = R(+ 3
2 ; 1

2 , 1
2 , 3

2 ; x, y, z),
= RJ(x, y, z, z), symmetric only in x and y,

RE(x, y) = R(− 1
2 ; 1

2 , 1
2 ; x, y)

= 4
π RG(x, y, 0),

RK(x, y) = R(+ 1
2 ; 1

2 , 1
2 ; x, y)

= 2
π RF(x, y, 0)

=
2

π
√

y
K

(√∣∣∣∣y − x
y

∣∣∣∣
)

= 1
2 RL(x, y, 0)

= 4
3π RH(x, y, 0, 0),

RL(x, y, ρ) = R(+ 1
2 ; 1

2 , 1
2 , 1; x, y, ρ)

= 8
3π RH(x, y, 0, ρ),

RM(x, y, ρ) = R(+ 3
2 ; 1

2 , 1
2 , 1; x, y, ρ)

= RL(x, y, xy/ρ)/ρ

= 4π
3 RJ(x, y, 0, ρ).

The last four of those functions are symmetric in x and y.
If we expand the general R-functions in those definitions, we can write most of the auxiliary functions in integral

form, and relate them to others, like this [Car70, ZC70, Car77, Car79, CN81, Car95]:

RC(x, y) = 1
2

∫ ∞

0
(t + x)−1/2(t + y)−1 dt,

RD(x, y, z) = 3
2

∫ ∞

0
(t + x)−1/2(t + y)−1/2(t + z)−3/2 dt,

RF(x, y, z) = 1
2

∫ ∞

0
(t + x)−1/2(t + y)−1/2(t + z)−1/2 dt

=
1√

z − x
F

(
sin(acos(

√
x/z)),

√
z − y
z − x

)
,

RH(x, y, z, ρ) = 3
4

∫ ∞

0
t(t + x)−1/2(t + y)−1/2(t + z)−1/2(t + ρ)−1 dt

= 3
2 RF(x, y, z)− 1

2 ρRJ(x, y, z, ρ),

RJ(x, y, z, ρ) = 3
2

∫ ∞

0
(t + x)−1/2(t + y)−1/2(t + z)−1/2(t + ρ)−1 dt

=
1

(x − y)(x − z)

(
3xRF(x, y, z)− 6RG(x, y, z) + 3

√
yz
x

)
,

RK(x, y) = 1
π

∫ ∞

0
t−1/2(t + x)−1/2(t + y)−1/2 dt,

20.8. Auxiliary functions for elliptic integrals 647

RL(x, y, ρ) = 2
π

∫ ∞

0
t+1/2(t + x)−1/2(t + y)−1/2(t + ρ)−1 dt,

RM(x, y, ρ) = 2
π

∫ ∞

0
t−1/2(t + x)−1/2(t + y)−1/2(t + ρ)−1 dt.

The integrals from the R-function definitions of RE(x, y) and RG(x, y, z) diverge, so those two functions must be
computed from this alternate integral, which does converge:

RG(x, y, z) = 1
4

∫ ∞

0
t(t + x)−1/2(t + y)−1/2(t + z)−1/2

[
x

t + x
+

y
t + y

+
z

t + z

]
dt.

The function RG(x, y, z) can be written in terms of two other auxiliary functions like this:

RG(x, y, z) = 1
2

(
zRF(x, y, z)− 1

3 (x − z)(y − z)RD(x, y, z) +
√

xy
z

)
.

When z = 0, use symmetry to exchange arguments of RG(x, y, z) in order to avoid a zero denominator in the final
square root.

The function RG(x, y, z) can also be represented by a double integral that is simplified by the introduction of three
intermediate variables:

� = sin(θ) cos(φ), m = sin(θ) sin(φ), n = cos(θ),

RG(x, y, z) = 2
π

∫ π/2

0

∫ π/2

0

√
�2x + m2y + n2z sin(θ) dθ dφ.

The function RE(x, y) also has two alternate forms:

RE(x, y) = 2
π

∫ π/2

0

√
x(sin(θ))2 + y(cos(θ))2 dθ,

=
2
√

y
π

E

(√∣∣∣∣y − x
y

∣∣∣∣
)

.

The auxiliary functions satisfy normalization rules that are computationally useful for checking their software
implementations, and play a key role in the computation of four of them:

RC(x, x) = x−1/2, RH(x, x, x, x) = x−1/2,

RD(x, x, x) = x−3/2, RJ(x, x, x, x) = x−3/2,

RE(x, x) = x+1/2, RK(x, x) = x−1/2,

RF(x, x, x) = x−1/2, RL(x, x, x) = x−1/2,

RG(x, x, x) = x+1/2, RM(x, x, x) = x−3/2.

More generally, the R-function satisfies this normalization rule:

R(a; b1, b2, . . . , bn; z, z, . . . , z) = z−a.

Argument-scaling relations allow software to avoid premature underflow and overflow:

RC(sx, sy) = s−1/2RC(x, y), RH(sx, sy, sz, sρ) = s−1/2RH(x, y, z, ρ),

RD(sx, sy, sz) = s−3/2RD(x, y, z), RJ(sx, sy, sz, sρ) = s−3/2RJ(x, y, z, ρ),

RE(sx, sy) = s+1/2RE(x, y), RK(sx, sy) = s−1/2RK(x, y),

RF(sx, sy, sz) = s−1/2RF(x, y, z), RL(sx, sy, sρ) = s−1/2RL(x, y, ρ),

RG(sx, sy, sz) = s+1/2RG(x, y, z), RM(sx, sy, sρ) = s−3/2RM(x, y, ρ).

648 Chapter 20. Elliptic integral functions

The general R-function scaling relation follows from its normalization rule:

R(a; b1, b2, . . . , bn; sz, sz, . . . , sz) = s−aR(a; b1, b2, . . . , bn; z, z, . . . , z).

Argument addition rules, where xy = ab, provide further checks for software, and their symmetries are empha-
sized by vertical alignment of the sums on the left-hand sides:

RC(a, x + a) +
RC(b, x + b) = RC(0, x),

RD(a, x + a, y + a) +

RD(b, x + b, y + b) = RD(0, x, y)− 3
y
√

x + y + a + b
,

RF(x + a, y + a, a) +
RF(x + b, y + b, b) = RF(x, y, 0),

RJ(x + a, y + a, a, ρ + a) +
RJ(x + b, y + b, b, ρ + b) = RJ(x, y, 0, ρ)− 3RC(a, b).

Another rule relates functions of permuted arguments:

RD(x, y, z) + RD(y, z, x) + RD(z, x, y) =
3√
xyz

.

In the special case of equal arguments, x = y = z, that reduces to the normalization relation RD(x, x, x) = x−3/2.
Upper and lower bounds on function values [CN81, page 398] are relevant for floating-point calculation:

M = max(x, y, z), m = min(x, y, z), M−1/2 ≤ RF(x, y, z) ≤ 2m−1/2,

M1 = max(M, ρ), m1 = min(m, ρ), M−3/2
1 ≤ RJ(x, y, z, ρ) ≤ 5m−3/2

1 .

If we recall the relations between function pairs, then the first of them shows that RC(x, y) and RF(x, y, z) are defined
over the entire floating-point range. The second shows that RD(x, y, z) and RJ(x, y, z, ρ) are subject to overflow for
large arguments, and underflow for small arguments.

All of the relations that we have shown so far also apply when the arguments are complex, but there are additional
considerations, and issues of numerical stability [Car95]. In this book, we consider only real versions of the ten
elliptic auxiliary functions.

20.9 Computing the elliptic auxiliary functions

In the previous section, we displayed lots of mathematical relations, but did not show how they can be turned into
an effective computational algorithm for the elliptic auxiliary functions. To do so, we need just one more relation,
known as the duplication rule:

λ =
√

xy +
√

yz +
√

xz, sum of geometric means,

RF(x, y, z) = 2RF(x + λ, y + λ, z + λ), then apply scaling rule,

= RF(
1
4 (x + λ), 1

4 (y + λ), 1
4 (z + λ)), duplication rule.

Carlson’s key insight is the understanding of the implications of that rule. On the right-hand side, we can consider
the three arguments to be updated values of the left-hand side arguments, and iterate the relation:

x ← 1
4 (x + λ), y ← 1

4 (y + λ), z ← 1
4 (z + λ).

The iteration makes the arguments tend to a common value. If they were exactly equal, we could then apply the
normalization rule to find the function value with just one more square root.

Carlson shows that the relative difference between any argument x and the mean of all three arguments, μ =
1
3 (x + y + z), falls like 4−n = 2−2n after n steps. Convergence is therefore linear, gaining just two bits per iteration.

20.9. Computing the elliptic auxiliary functions 649

To speed it up, he proposes using only a few iterations, until the arguments have similar magnitudes, and then
switching to a Taylor-series expansion of the integral.

We leave the messy details of the derivation of the Taylor expansion to his article [Car79, §5], and simply state
his critical result: apart from an outer scale factor, a fifth-order expansion has a leading term of 1, and a smallest
term whose magnitude is about 2−12n. Thus, after ten iterations, that term is smaller than the machine epsilon of the
128-bit IEEE 754 formats (34 decimal digits), so only a few iterations are needed in practice. Each iteration requires
just six multiplies, three adds, and three square roots. When the latter are done in hardware, each costs about as
much one divide, or three to ten multiplies. Like the AGM algorithm discussed in Section 20.1 on page 619, the
duplication-rule algorithm is not self correcting: errors accumulate, so it is important to keep the iteration counts
small.

The duplication-rule code is relatively fast and compact. It requires only small exactly representable constants,
needs neither higher intermediate precision nor polynomial approximations, and uses only the low-level operations
of add, multiply, and square root. It is thus ideal for a library that supports many different floating-point architectures
and precisions.

Carlson shows that similar algorithms can be derived for the other three auxiliary functions. We implement
them in the mathcw library as the function families ELLRC(), ELLRD(), ELLRF(), and ELLRJ(), following Carlson’s
most recent work that recommends the set RC(x, y), RD(x, y, z), RF(x, y, z), and RJ(x, y, z, ρ) as the basic four elliptic
functions. Because of their prior use, we also implement the remaining auxiliary functions with the families ELLRE(),
ELLRG(), ELLRH(), ELLRK(), ELLRL(), and ELLRM().

The products under the square roots in the formula for λ are subject to premature overflow or underflow, but we
eliminate that problem by using the argument-scaling relations. To give a flavor of how little code is actually needed,
here is the main block of the function for computing the simplest of them, RC(x, y), taken from the file ellrcx.h:

fp_t arg_max, mu, s;
int n, n_scale;
static const int NMAX = 35;

arg_max = MAX(x, y);
n_scale = (int)LOGB(arg_max) + 1;

if (IS_ODD(n_scale)) /* ensure that n_scale is even */
n_scale++;

x = SCALBN(x, -n_scale); /* now x is in [1/B**2, 1), or is 0 */
y = SCALBN(y, -n_scale); /* now y is in [1/B**2, 1) */

for (n = 0; n < NMAX; ++n)
{

fp_t lambda;

mu = (x + y + y) / THREE;
s = y - mu; /* s/mu is relative error for loop exit test */

if (QABS(s) < (mu * TOL)) /* early exit at convergence */
break;

lambda = SQRT(x * y);
lambda += lambda + y;
x = (x + lambda) * FOURTH;
y = (y + lambda) * FOURTH;

}

s = (y - x) / (THREE * mu);

if (QABS(s) < HALF) /* Taylor series block */
{

fp_t r, s_2, s_3, s_4, s_5, s_6, sum, t;

650 Chapter 20. Elliptic integral functions

s_2 = s * s;
s_3 = s_2 * s;
s_4 = s_2 * s_2;
s_5 = s_2 * s_3;
s_6 = s_3 * s_3;
r = (FP(159.) / FP(208.)) * s_6;
sum = r;
sum += (FP(9.) / FP(22.)) * s_5;
sum += (FP(3.) / FP(8.)) * s_4;
sum += (FP(1.) / FP(7.)) * s_3;
sum += (FP(3.) / FP(10.)) * s_2;
t = RSQRT(mu);

result = SCALBN(t + t * sum, -n_scale / 2);
}
else /* should NEVER happen */

result = QNAN("");

The corresponding code for the other three functions is somewhat longer, but even for the most difficult function,
RJ(x, y, z, ρ), the code needs fewer than 75 lines. The remaining auxiliary functions are simply wrappers around calls
to others of the set of ten, with initial checks for arguments that are NaN, Infinity, or negative.

Although we predicted the maximum number of iterations needed, the early convergence behavior depends on
the relative sizes of the arguments, so the iteration count is data dependent. The published Fortran code [CN81]
therefore computes the largest relative difference between the arguments and their mean, and compares that against
a user-provided tolerance to permit an early exit from the loop.

Our implementation improves on the Fortran code by setting the tolerance in a one-time initialization block
according to the floating-point precision, and using a multiply instead of a divide in the loop-exit test. Our code
also includes exact argument scaling so that neither premature underflow nor premature overflow is possible. That
reduces the number of square roots, because there is then no need to split square roots of products into products of
square roots. The argument scaling also eliminates an underflow problem in the Taylor series that Carlson and Notis
report in [CN81].

Testing against symbolic implementations of all of the elliptic integral auxiliary functions in Maple shows that
additional care is needed in handling cases of zero arguments, because Carlson’s writing is sometimes unclear about
whether such arguments are allowed. For example, RG(0, 0, z) reduces to 1

2

√
z, whereas direct application of the

formula involving RD(x, y, z) and RF(x, y, z) produces ∞ − ∞, and that evaluates to a NaN in IEEE 754 arithmetic.

20.10 Historical elliptic functions

Here is a summary of the main relations of Legendre’s elliptic integrals to Carlson’s auxiliary functions, simplified
by the introduction of intermediate variables c, d, e, and s:

k = sin(α), so k is in [−1,+1],

c = cos(φ), s = sin(φ), c and s are in [−1,+1],

d = 1 − (ks)2, e = 1 − k2, m = k2, d, e, and m are in [0, 1],

F(φ\α) = F(φ|m) = F(φ, k), alternate notations,

= sRF(c2, d, 1),
E(φ\α) = E(φ|m) = E(φ, k), alternate notations,

= sRF(c2, d, 1)− 1
3 k2s3RD(c2, d, 1),

Π(n; φ\α) = Π(n, φ|m) = Π(n, φ, k), alternate notations,

=
∫ φ

0 (1 + n(sin(t))2)−1(1 − (k sin(t))2)−1/2 dt

= sRF(c2, d, 1) + 1
3 ns3RJ(c2, d, 1, 1 − ns2),

20.10. Historical elliptic functions 651

D(φ\α) = D(φ|m) = D(φ, k), alternate notations,

=
∫ φ

0 (sin(t))2(1 − (k sin(t))2)−1/2 dt

= 1
3 s3RD(c2, d, 1),

K(k) = RF(0, e, 1),
E(k) = RF(0, e, 1)− 1

3 k2RD(0, e, 1).

Notice that the arguments of the auxiliary functions are mostly the same.
The relation shown for Π(n, φ, k) is taken from [ZC70, equation 2.5]; there are two sign errors in the same relation

given in the later paper [Car79, equation 4.3].
For numerical stability, differences of squares in the arguments should be rewritten in product form: d = (1 −

ks)(1 + ks) and e = (1 − k)(1 + k). For added accuracy, the product factors in d should be computed with fused
multiply-add operations.

The mathcw library functions for computing the incomplete Legendre elliptic integrals use the auxiliary functions
internally:

elldi(φ, k) = D(φ, k), ellfi(φ, k) = F(φ, k),
ellei(φ, k) = E(φ, k), ellpi(n, φ, k) = Π(n, φ, k).

If we take account of the differing argument convention conventions, we can easily reproduce tables in the Handbook
of Mathematical Functions. For example, part of the table of values of the incomplete elliptic integral of the first kind,
F(φ\α) [AS64, Table 17.5, pages 613–615] looks like the output of this short hoc program:

hocd64> for (a = 0; a <= 90; a += 2) \
hocd64> {
hocd64> printf("%2d ", a)
hocd64> for (p = 0; p <= 20; p += 5) \
hocd64> printf("%13.8..5f", ellfi((p/180)*PI, sindeg(a)))
hocd64> printf("\n")
hocd64> if ((a % 10) == 8) \
hocd64> printf("\n")
hocd64> }
0 0.00000_000 0.08726_646 0.17453_293 0.26179_939 0.34906_585
2 0.00000_000 0.08726_660 0.17453_400 0.26180_298 0.34907_428
4 0.00000_000 0.08726_700 0.17453_721 0.26181_374 0.34909_952
6 0.00000_000 0.08726_767 0.17454_255 0.26183_163 0.34914_148
8 0.00000_000 0.08726_860 0.17454_999 0.26185_656 0.34919_998

10 0.00000_000 0.08726_980 0.17455_949 0.26188_842 0.34927_479
12 0.00000_000 0.08727_124 0.17457_102 0.26192_707 0.34936_558
14 0.00000_000 0.08727_294 0.17458_451 0.26197_234 0.34947_200
16 0.00000_000 0.08727_487 0.17459_991 0.26202_402 0.34959_358
18 0.00000_000 0.08727_703 0.17461_714 0.26208_189 0.34972_983
...
80 0.00000_000 0.08737_408 0.17539_854 0.26474_766 0.35614_560
82 0.00000_000 0.08737_528 0.17540_830 0.26478_147 0.35622_880
84 0.00000_000 0.08737_622 0.17541_594 0.26480_795 0.35629_402
86 0.00000_000 0.08737_689 0.17542_142 0.26482_697 0.35634_086
88 0.00000_000 0.08737_730 0.17542_473 0.26483_842 0.35636_908

90 0.00000_000 0.08737_744 0.17542_583 0.26484_225 0.35637_850

A second run with the function ellfi() replaced by ellei() reproduces part of a following table for the elliptic
integral of the second kind [AS64, Table 17.6, page 616–618].

A slightly more complex program reproduces a table of values of the incomplete elliptic integral of the third kind
[AS64, Table 17.9, pages 625–626]:

652 Chapter 20. Elliptic integral functions

hocd64> for (n = 0; n <= 1; n += 0.1) \
hocd64> {
hocd64> for (a = 0; a <= 90; a += 15) \
hocd64> {
hocd64> printf("%3.1f %2d", n, a)
hocd64> for (p = 0; p <= 90; p += 15) \
hocd64> printf("%9.5f", ellpi(n, (p/180)*PI, sindeg(a)))
hocd64> printf("\n")
hocd64> }
hocd64> printf("\n")
hocd64> }
0.0 0 0.00000 0.26180 0.52360 0.78540 1.04720 1.30900 1.57080
0.0 15 0.00000 0.26200 0.52513 0.79025 1.05774 1.32733 1.59814
0.0 30 0.00000 0.26254 0.52943 0.80437 1.08955 1.38457 1.68575
0.0 45 0.00000 0.26330 0.53562 0.82602 1.14243 1.48788 1.85407
0.0 60 0.00000 0.26406 0.54223 0.85122 1.21260 1.64918 2.15652
0.0 75 0.00000 0.26463 0.54736 0.87270 1.28371 1.87145 2.76806
0.0 90 0.00000 0.26484 0.54931 0.88137 1.31696 2.02759 77.95518

0.1 0 0.00000 0.26239 0.52820 0.80013 1.07949 1.36560 1.65576
0.1 15 0.00000 0.26259 0.52975 0.80514 1.09058 1.38520 1.68536
0.1 30 0.00000 0.26314 0.53412 0.81972 1.12405 1.44650 1.78030
0.1 45 0.00000 0.26390 0.54041 0.84210 1.17980 1.55739 1.96326
0.1 60 0.00000 0.26467 0.54712 0.86817 1.25393 1.73121 2.29355
0.1 75 0.00000 0.26524 0.55234 0.89040 1.32926 1.97204 2.96601
0.1 90 0.00000 0.26545 0.55431 0.89939 1.36454 2.14201 86.50181

...

0.9 0 0.00000 0.26731 0.57106 0.96853 1.58460 2.74440 4.96729
0.9 15 0.00000 0.26752 0.57284 0.97547 1.60516 2.79990 5.09958
0.9 30 0.00000 0.26808 0.57785 0.99569 1.66788 2.97710 5.53551
0.9 45 0.00000 0.26887 0.58508 1.02695 1.77453 3.31211 6.42557
0.9 60 0.00000 0.26966 0.59281 1.06372 1.92081 3.87661 8.20087
0.9 75 0.00000 0.27025 0.59882 1.09535 2.07488 4.74433 12.46409
0.9 90 0.00000 0.27047 0.60110 1.10821 2.14900 5.42126 762.30046

1.0 0 0.00000 0.26795 0.57735 1.00000 1.73205 3.73205 inf
1.0 15 0.00000 0.26816 0.57916 1.00731 1.75565 3.81655 inf
1.0 30 0.00000 0.26872 0.58428 1.02866 1.82781 4.08864 inf
1.0 45 0.00000 0.26951 0.59165 1.06170 1.95114 4.61280 inf
1.0 60 0.00000 0.27031 0.59953 1.10060 2.12160 5.52554 inf
1.0 75 0.00000 0.27090 0.60566 1.13414 2.30276 7.00372 inf
1.0 90 0.00000 0.27112 0.60799 1.14779 2.39053 8.22356 inf

Although Π(n; 1
2 π\ 1

2 π) = ∞, the table entries in the last column usually do not show an infinite result, because the
computation necessarily uses a truncated value of 1

2 π, and growth to the poles is slow.

20.11 Elliptic functions in software

The differing argument conventions for elliptic integrals in symbolic-algebra systems and mathematical texts are a
nuisance. We therefore record these function relations for Legendre’s incomplete elliptic integrals of the first (F),
second (E), and third (Π) kinds to help reduce the confusion:

NBS Handbook of Mathematical Functions :

F(φ\α) =
∫ φ

0
(1 − (sin(α) sin(θ))2)+1/2 dθ, eq. 17.2.7,

20.12. Applications of elliptic auxiliary functions 653

E(φ\α) =
∫ φ

0
(1 − (sin(α) sin(θ))2)−1/2 dθ, eq. 17.2.8,

Π(n; φ\α) =
∫ φ

0
(1 + n(sin(θ))2)−1 ×
(1 − (sin(α) sin(θ))2)−1/2 dθ, eq. 17.2.14 and 17.7.1,

hoc and mathcw library :

func NBSEllF (phi_, alpha) return (ellfi(phi_, sin(alpha)))
func NBSEllE (phi_, alpha) return (ellei(phi_, sin(alpha)))
func NBSEllPi(n, phi_, alpha) return (ellpi(n, phi_, sin(alpha)))

Maple :

NBSEllF := (phi, alpha) -> EllipticF (sin(phi), sin(alpha)):
NBSEllE := (phi, alpha) -> EllipticE (sin(phi), sin(alpha)):
NBSEllPi := (n, phi, alpha) -> EllipticPi(sin(phi), n, sin(alpha)):
NBSEllPi := (n, phi, alpha) ->

Alternate form as explicit integral
int((1 - n * (sin(theta))**2)**(-1) *

(1 - (sin(alpha) * sin(theta))**2)**(-1/2),
theta = 0 .. phi):

Mathematica :

NBSEllF [phi_, alpha_] = EllipticF [phi, (Sin[alpha])^2]
NBSEllE [phi_, alpha_] = EllipticE [phi, (Sin[alpha])^2]
NBSEllPi[n_, phi_, alpha_] = EllipticPi[n, phi, (Sin[alpha])^2]

20.12 Applications of elliptic auxiliary functions

Here are some problems whose solutions involve elliptic auxiliary functions [Car77, page 271] [OLBC10, §19.30–
19.35]:

� An ellipse aligned with the coordinate axes is a closed curve defined by the equation (x/a)2 + (y/b)2 = 1. The
arc length of an ellipse of semiaxes a, b along x, y measured from the horizontal axis through an angle φ (see
the sketch on page 630) is given by

s(φ) = a
∫ φ

0

√
1 − k2(sin(θ))2 dθ = aE(φ\ asin(k)) = ellei(φ, k),

k =
√

1 − (b/a)2.

The perimeter of the ellipse is

P = 4
∫ π/2

0

√
(a sin(θ))2 + (b cos(θ))2 dθ

= 2πRE(a2, b2)

= 2π ellre(a2, b2).

When a = b = r, we have RE(r2, r2) = r from the normalization rule, so we recover the schoolbook formula
for the circumference of a circle, C = 2πr.

The area of the ellipse is just A = πab, and when a = b = r, that reduces to the familiar A = πr2 for a circle.

654 Chapter 20. Elliptic integral functions

� An ellipsoid is a volume enclosed by a surface defined by the formula (x/a)2 + (y/b)2 + (z/c)2 = 1. The
surface area of an ellipsoid with semiaxes a, b, c aligned with the coordinate axes x, y, z is defined with the help
of three intermediate variables �, m, n like this:

� = sin(θ) cos(φ), m = sin(θ) sin(φ), n = cos(θ),

A = 8
∫ π/2

0

∫ π/2

0

√
(bc�)2 + (acm)2 + (abn)2 sin(θ) dθ dφ

= 4πabcRG(a−2, b−2, c−2)

= 4πabc ellrg(a−2, b−2, c−2).

When a = b = c = r, we have RG(r−2, r−2, r−2) = 1/r from the normalization rule, and A = 4πr2, the
schoolbook formula for the area of a sphere of radius r.

Calculating the volume of an ellipsoid does not require elliptic functions: it is just V = 4
3 πabc. When the

semiaxes are equal, that reduces to V = 4
3 πr3, the standard formula for the volume of a sphere.

� A pendulum oscillating through a small angle φ with frequency ω does so with a period given by

T = 2π
ω RK((cos(φ/2))2, 1),

= 2π
ω ellrk((cos(φ/2))2, 1).

Although we do not reproduce them here, Carlson’s book gives formulas for the charge and capacitance of a
charged conducting ellipsoid, and for the period of an anharmonic oscillator. Lawden’s book also treats those prob-
lems, and covers various geometrical problems, vibrations of a spring, and planetary orbits [Law89, Chapters 4
and 5].

20.13 Elementary functions from elliptic auxiliary functions

The auxiliary function RC(x, y) can also be used to produce several elementary functions, assuming positive x within
the normal argument domains:

acos(x) =
√

1 − x2 RC(x2, 1), acosh(x) =
√

x2 − 1 RC(x2, 1),

acot(x) = RC(x2, x2 + 1), acoth(x) = RC(x2, x2 − 1),

asin(x) = xRC(1 − x2, 1), asinh(x) = xRC(1 + x2, 1),

atan(x) = xRC(1, 1 + x2), atanh(x) = xRC(1, 1 − x2),

log(x) = (x − 1)RC(
1
4 (1 + x)2, x), log1p(x) = xRC(

1
4 (2 + x)2, 1 + x).

As we noted earlier, arguments that are differences of squares must be computed in product form to avoid accuracy
loss.

The functions can also be written with rational arguments, and that generality is sometimes useful, because it
avoids introducing additional error when the arguments are rational expressions:

acos(x/y) =
√

y2 − x2 RC(x2, y2), for 0 ≤ x ≤ y,

acosh(x/y) =
√

x2 − y2 RC(x2, y2), for y ≤ x,

acot(x/y) = yRC(x2, x2 + y2), for all finite x, y,

acoth(x/y) = yRC(x2, x2 − y2), for −y < x < +y,

asin(x/y) = xRC(y2 − x2, y2), for −y ≤ x ≤ +y,

asinh(x/y) = xRC(1 + x2, y2), for all finite x, y,

atan(x/y) = xRC(y2, y2 + x2), for all finite x, y,

atanh(x/y) = xRC(y2, y2 − x2), for −y < x < +y,

20.14. Computing elementary functions via RC(x, y) 655

log(x/y) = (x − y)RC(
1
4 (x + y)2, xy), for 0 < x and 0 < y,

log1p(x/y) = xRC(
1
4 (x + 2y)2, xy + y2), for −y < x.

In applications where storage space is at a premium, such as in embedded devices, and calculators, code for the
RC(x, y) function could be reused for at least those ten elementary functions. Size restrictions prevent overflow in
the products in arguments of some of the inverse functions. The remaining squares halve the usable floating-point
range, but that difficulty can be removed by argument reduction, or by using an internal floating-point format with
an extended exponent range, as some architectures supply.

20.14 Computing elementary functions via RC(x, y)

To allow testing of the accuracy of software implementations of the relations of the elementary functions to the
auxiliary function RC(x, y), the file ellfun.c, and its companions for other precisions, implements the ten, and
extends the argument ranges to their normal values. The code looks like this:

#define RC(x, y) ellrc((x), (y))

double
acos(double x)
{

double y, z;

y = (ONE - x) * (ONE + x);
z = SQRT(y) * RC(x * x, ONE);

return ((x < 0) ? ((PI_HI - z) + PI_LO) : z);
}

double
acosh(double x)
{

double y;

y = (x - ONE) * (x + ONE);

return (SQRT(y) * RC(x * x, ONE));
}

double
acot(double x)
{

return ((QABS(x) > XLARGE)
? (ONE / x)
: (COPYSIGN(RC(x * x, x * x + ONE), x)));

}

double
acoth(double x)
{

return ((QABS(x) > XLARGE)
? (ONE / x)
: (COPYSIGN(RC(x * x, (x + ONE) * (x - ONE)), x)));

}

double
asin(double x)

656 Chapter 20. Elliptic integral functions

{
return (x * RC((ONE - x) * (ONE + x), ONE));

}

double
asinh(double x)
{

return (x * RC(ONE + x * x, ONE));
}

double
atan(double x)
{

return (x * RC(ONE, ONE + x * x));
}

double
atanh(double x)
{

return (x * RC(ONE, (ONE - x) * (ONE + x)));
}

double
log1p(double x)
{

double result;

if (x > XBIG)
result = SQRT(x) * RC(FOURTH * x, ONE);

else
result = x * RC(FOURTH * (TWO + x) * (TWO + x), ONE + x);

return (result);
}

double
log(double x)
{ /* log(x) = log(f * beta**n) = log(f) + n * log(beta) */

int n;
double f, result, w, y, z;

if (QABS(x - ONE) < HALF)
result = log1p(x - ONE);

else
{

f = FREXP(x, &n);
y = ONE + f;
z = RC(FOURTH * y * y, f);
w = FMA(f, z, -z);
result = w + (double)n * LOG_BETA;

}

return (result);
}

Five of the functions are straightforward transcriptions of the mathematical relations. The other five require a bit
more care.

The inverse cosine function relation is extended to negative arguments with the identity acos(−x) = π − acos(x),

20.15. Jacobian elliptic functions 657

and the constant π is represented as a two-part sum.
The inverse trigonometric and hyperbolic cotangents need a sign transfer for negative arguments. They avoid

premature overflow in squares by switching to the limiting form 1/x as soon as the argument magnitude exceeds
XLARGE, a compile-time constant with the value (1

2 ε/β)−1/2.
The log1p(x) computation prevents premature overflow for arguments that are large enough that fl(2 + x) =

fl(x), because we can then use the argument-scaling relation to reduce the result to

xRC(
1
4 x2, x) = xx−1/2RC(

1
4 x, 1) =

√
xRC(

1
4 x, 1).

The log(x) computation requires more code, because testing shows that direct use of the auxiliary function for
arguments x ≈ 1 causes severe accuracy loss. Consequently, the revised code switches to log1p(x - 1) in that
region. Otherwise, it avoids premature overflow by reducing the argument to the product of a fraction and a power
of the base, and then reconstructing the result as log(f) + n log(β).

Tests of all of those functions, and their float companions, against higher-precision functions in the mathcw
library show that most errors are well below 1.5 ulps, with peak errors of 2.3 ulps. Although the errors are larger
than those of our library functions, considering the simplicity of the entire code, they are remarkably small.

20.15 Jacobian elliptic functions

THE USE OF MODERN CALCULATING MACHINES HAS GREATLY EXTENDED

THE SCOPE OF DIRECT NUMERICAL CALCULATION OF ELLIPTIC INTEGRALS . . .

— LOUIS V. KING (1921).

The Handbook of Mathematical Functions [AS64, Chapter 16] [OLBC10, Chapter 22] and An Atlas of Functions [SO87,
Chapter 63] each devote a chapter to a large family of two-argument functions called the Jacobian elliptic functions.
There are also treatments of their computation and properties in other books [Mos89, page 396], [Bak92, Chapter 16],
[ZJ96, Chapter 18], [Tho97, Chapter 17], [PTVF07, §6.12]. The functions have two significant properties:

� The amplitude function, am(u, k), recovers the angle φ in u = F(φ, k), and is thus an inverse function for Legen-
dre’s incomplete elliptic function of the first kind.

� The functions are a generalization of the trigonometric and hyperbolic functions, reducing to those functions
when k = 0 and k = 1:

sn(u, 0) = sin(u), sn(u, 1) = tanh(u),
cn(u, 0) = cos(u), cn(u, 1) = sech(u) = 1/ cosh(u),
sc(u, 0) = tan(u), sc(u, 1) = sinh(u).

The names of the Jacobian elliptic functions are acronyms, so they are usually pronounced as their letter se-
quences.

Books and journal articles on Jacobian elliptic functions frequently omit the second argument, because it is often
constant in a particular mathematical formula. Nevertheless, when you see sn u in print, it is important to remember
that it really means sn(u, k). Similar, the abbreviations E = E(k), K = K(k), and θi(u) = θi(u, q) are commonly used.
We avoid that confusing shorthand in the rest of this chapter.

Let us call u the value of the elliptic function of the first kind:

u = F(φ\α) = F(φ|m) = F(φ, k), alternate notations,

=
∫ φ

0

(
1 − (k sin(θ))2)−1/2 dθ,

k = sin(α), elliptic modulus,

m = k2, elliptic parameter.

658 Chapter 20. Elliptic integral functions

-1.0

-0.5

0.0

0.5

1.0

-4 -3 -2 -1 0 1 2 3 4

[c
d

s]
n

(u
,k

)

u / K(k)

Jacobian elliptic functions (k = 0.25)

cn(u,k)

dn(u,k)

sn(u,k)

-1.0

-0.5

0.0

0.5

1.0

-4 -3 -2 -1 0 1 2 3 4

[c
d

s]
n

(u
,k

)

u / K(k)

Jacobian elliptic functions (k = 0.75)

cn(u,k)

dn(u,k)

sn(u,k)

-1.0

-0.5

0.0

0.5

1.0

-4 -3 -2 -1 0 1 2 3 4

[c
d

s]
n

(u
,k

)

u / K(k)

Jacobian elliptic functions (k = 0.99)

cn(u,k)

dn(u,k)

sn(u,k)

-1.0

-0.5

0.0

0.5

1.0

-4 -3 -2 -1 0 1 2 3 4

[c
d

s]
n

(u
,k

)

u / K(k)

Jacobian elliptic functions (k = 0.999999)

cn(u,k)

dn(u,k)

sn(u,k)

Figure 20.8: Jacobian elliptic functions. The cn(u, k) and sn(u, k) functions have period 4K(k), and the dn(u, k)
function has period 2K(k). Here, K(k) is the complete elliptic integral of the first kind.
In the plots we have K(0.25) ≈ 1.596, K(0.75) ≈ 1.911, K(0.99) ≈ 3.357, and K(0.999999) ≈ 7.947, and the horizontal
axis is scaled to multiples of K(k).
For small k, dn(u, k) ≈ 1, but as k increases, dn(u, k) ≈ cn(u, k) in half of the region.

Clearly, u depends on both φ and k, and only two of those three variables can be chosen independently. As in
the complete elliptic integrals, we prefer k over the alternate parameterization with α or m to avoid introducing
additional argument error from a sine function or a square root. There are then four basic Jacobian elliptic functions:

am(u, k) = φ, dn(u, k) =
(
1 − (k sin(φ))2)+1/2

,
cn(u, k) = cos(φ), sn(u, k) = sin(φ).

In older texts, dn(u, k) is often called Δ(u, k), where Δ is the uppercase Greek letter delta. However, the modern name
has advantages, as we see shortly.

Once am(u, k) is known, the other three functions are in principle easily calculated, although finding dn(u, k)
requires extra care to avoid accuracy loss. Those three functions are plotted in Figure 20.8 for various k values. The
functions cn(u, k) and sn(u, k) always lie in [−1,+1], but dn(u, k) is restricted to [

√
1 − k2, 1]. It is always positive,

and it can only reach zero when k = 1.
Nine other Jacobian elliptic functions are easily generated from three of the basic four, with names based on the

functions in the ratios:

cd(u, k) = cn(u, k)/ dn(u, k), ds(u, k) = dn(u, k)/ sn(u, k), nc(u, k) = 1/ cn(u, k),

cs(u, k) = cn(u, k)/ sn(u, k), sc(u, k) = sn(u, k)/ cn(u, k), nd(u, k) = 1/ dn(u, k),

20.15. Jacobian elliptic functions 659

dc(u, k) = dn(u, k)/ cn(u, k), sd(u, k) = sn(u, k)/ dn(u, k), ns(u, k) = 1/ sn(u, k).

We provide all of them in the mathcw library, but with a common prefix, ELJ, to indicate their family membership:
ELJAM(u,k), ELJCD(u,k), . . . , ELJSN(u,k). The function family ELJAM(u,k) reduces computed values outside the
range [−π,+π] with the exact argument reduction provided by the R2P() family so that the computed amplitude is
guaranteed to lie in [−π,+π].

Some books use tn(u, k) for sc(u, k) because of the resemblance to the trigonometric-function relation, tan(z) =
sin(z)/ cos(z).

As Figure 20.8 on the facing page shows, the basic three functions are periodic, smooth, well behaved, and nicely
bounded, but the other nine have poles at the zeros of cn(u, k), dn(u, k), and sn(u, k).

Maple supplies the Jacobian elliptic functions with names JacobiAM(z,k), JacobiCD(z,k) . . . , JacobiSN(z,k).
Mathematica provides JacobiAmplitude[u,m], JacobiCD[u,m], . . . , JacobiSN[u,m], where m = k2. REDUCE uses
the same names and arguments as Mathematica. Maxima has jacobi_am(u,m), jacobi_cd(u,m), . . . , jacobi_sn
(u,m). In all of the algebra systems, the arguments may be complex numbers. MATLAB provides only a single
function for real arguments, ellipj(u,m); it returns a three-element vector with sn, cn, and dn values. If the elliptic
package is installed, the R statistics programming language provides all of the Jacobian elliptic functions under their
conventional mathematical names, but with k replaced by m = k2: cn(u, m), dn(u, m), and so on. However, the
package does not supply the amplitude function.

We show how to compute the Jacobian elliptic functions in Section 20.15.2 on page 661, but it is worth noting
here that the relations for cn(u, k) and dn(u, k) conceal a problem that is evident in Figure 20.9 on the following
page. As |k| → 1, there are arguments |u| > 4 for which the amplitude is flat, with values near ± 1

2 π. Because
sn(u, k) = sin(am(u, k)), the sine is then close to ±1, and dn(u, k) requires square roots of differences of almost-
equal quantities, resulting in catastrophic subtraction loss. Similarly, cn(u, k) depends on the value of the cosine
near a root, and argument sensitivity is highest there. Regrettably, most published algorithms for computation of the
Jacobian elliptic functions ignore that problem.

20.15.1 Properties of Jacobian elliptic functions

The Jacobian elliptic functions are so well-studied that their known relations fill a large handbook [BF71]. In this
section, we therefore present only a few of the most important of them.

The functions satisfy these equations:

(dn(u, k))2 + (k sn(u, k))2 = 1, (cn(u, k))2 + (sn(u, k))2 = 1,

(dn(u, k))2 − (k cn(u, k))2 = 1 − k2,

(cn(u, k))2 + (1 − k2)(sn(u, k))2 = (dn(u, k))2.

Those relations are useful for software testing, because they are not used in our algorithms for computing the func-
tions.

The Jacobian elliptic functions obey these argument-symmetry relations:

am(−u, k) = − am(u, k), am(u,−k) = am(u, k),
cn(−u, k) = + cn(u, k), cn(u,−k) = cn(u, k),
dn(−u, k) = +dn(u, k), dn(u,−k) = dn(u, k),
sn(−u, k) = − sn(u, k), sn(u,−k) = sn(u, k).

There are also argument addition and halving relations:

am(a ± b, k) = (atan(sc(a, k)dn(b, k))± atan(sc(b, k)dn(a, k))) mod π,

cn(a ± b, k) =
cn(a, k) cn(b, k)∓ sn(a, k) sn(b, k)dn(a, k)dn(b, k)

1 − (k sn(a, k) sn(b, k))2 ,

dn(a ± b, k) =
dn(a, k)dn(b, k)∓ k2 sn(a, k) sn(b, k) cn(a, k) cn(b, k)

1 − (k sn(a, k) sn(b, k))2 ,

sn(a ± b, k) =
sn(a, k) cn(b, k)dn(b, k)± sn(b, k) cn(a, k)dn(a, k)

1 − (k sn(a, k) sn(b, k))2 ,

660 Chapter 20. Elliptic integral functions

-1.0

-0.5

0.0

0.5

1.0

-10 -5 0 5 10

am
(u

,k
)

/ π

u / K(k)

Jacobian amplitude (k = 0.99)

-1.0

-0.5

0.0

0.5

1.0

-10 -5 0 5 10

am
(u

,k
)

/ π

u / K(k)

Jacobian amplitude (k = 0.9999)

-1.0

-0.5

0.0

0.5

1.0

-10 -5 0 5 10

am
(u

,k
)

/ π

u / K(k)

Jacobian amplitude (k = 0.999999)

-1.0

-0.5

0.0

0.5

1.0

-10 -5 0 5 10

am
(u

,k
)

/ π

u / K(k)

Jacobian amplitude (k = 0.99999999)

Figure 20.9: Jacobian elliptic function amplitudes for |k| → 1. The flat regions where am(u, k) ≈ ± 1
2 π are computa-

tionally troublesome.

cn(1
2 u, k) =

√
cn(u, k) + dn(u, k)

1 + dn(u, k)
,

dn(1
2 u, k) =

√
cn(u, k) + dn(u, k)

1 + cn(u, k)
,

sn(1
2 u, k) =

√
1 − cn(u, k)
1 + dn(u, k)

.

Those relations are useful for checking the consistency of software implementations of the Jacobian elliptic func-
tions, although the presence of subtractions requires either higher precision, or avoiding tests where there would be
subtraction loss.

For small u, symbolic-algebra systems readily find these Taylor-series expansions:

am(u, k) = u −
(

k2

3!

)
u3 +

(
4 k2 + k4

5!

)
u5 −

(
16 k2 + 44 k4 + k6

7!

)
u7 + · · · ,

cn(u, k) = 1 −
(

1
2!

)
u2 +

(
1 + 4 k2

4!

)
u4 −

(
1 + 44 k2 + 16 k4

6!

)
u6 + · · · ,

dn(u, k) = 1 −
(

k2

2!

)
u2 +

(
4 k2 + k4

4!

)
u4 −

(
16 k2 + 44 k4 + k6

6!

)
u6 + · · · ,

20.15. Jacobian elliptic functions 661

sn(u, k) = u −
(

1 + k2

3!

)
u3 +

(
1 + 14 k2 + k4

5!

)
u5 −

(
1 + 135 k2 + 135 k4 + k6

7!

)
u7 + · · · .

For small k and small u, we have these Taylor-series expansions:

am(u, k) = u +

(
sin(u) cos(u)− u

4

)
k2 +O(k4),

cn(u, k) = cos(u) +
(

u sin(u)− (sin(u))2 cos(u)
4

)
k2 +O(k4),

dn(u, k) = 1 −
(
(sin(u))2

2

)
k2 +O(k4),

sn(u, k) = sin(u) +
(
(cos(u))2 sin(u)− u cos(u)

4

)
k2 +O(k4).

For |k| ≈ 1 and small u, these Taylor-series expansions hold:

am(u, k) =
(− 1

2 π + 2 atan(exp(u))
)
+

(
sinh(u)− u sech(u)

2

)
(1 − |k|) +O((1 − |k|)2),

cn(u, k) = sech(u) +
(

u sech(u) tanh(u)− sinh(u) tanh(u)
2

)
(1 − |k|) +O((1 − |k|)2),

dn(u, k) = sech(u) +
(

u sech(u) tanh(u) + sinh(u) tanh(u)
2

)
(1 − |k|) +O((1 − |k|)2),

sn(u, k) = tanh(u) +
(

tanh(u)− u(sech(u))2

2

)
(1 − |k|) +O((1 − |k|)2).

Higher-order coefficients in the series with powers of k or 1 − k have many trigonometric or hyperbolic functions
with arguments that are multiples of powers of u. The coefficients are expensive to compute, and their dependence
on u means that they cannot be precomputed and stored as compile-time constants. Nevertheless, the series are
essential for accurate function evaluation in the narrow regions where they apply.

Although the Jacobian elliptic functions are periodic, the periods are 2K(k) or 4K(k). We cannot do the exact ar-
gument reduction that we described in Chapter 9 on page 243, because we would then need to evaluate the complete
elliptic function of the first kind accurately to thousands of digits.

The restrictions on k can be relaxed by introducing reciprocal modulus transformations when |k| > 1:

cn(u, k) = dn(ku, 1/k), dn(u, k) = cn(ku, 1/k), sn(u, k) = sn(ku, 1/k)/k,

nc(u, k) = nd(ku, 1/k), nd(u, k) = nc(ku, 1/k), ns(u, k) = k ns(ku, 1/k),

cd(u, k) = dc(ku, 1/k), cs(u, k) = k ds(ku, 1/k),

dc(u, k) = cd(ku, 1/k), ds(u, k) = k cs(ku, 1/k),

sc(u, k) = sd(ku, 1/k)/k, sd(u, k) = sc(ku, 1/k)/k.

The right-hand side expressions are then in the standard ranges where the elliptical integrals are real when the
arguments are real.

We can use one of those relations to find a reciprocal modulus transformation for am(u, k), the amplitude func-
tion, like this:

am(u, k) = asin(sn(u, k)) = asin(sn(ku, 1/k)/k).

20.15.2 Computing Jacobian elliptic functions

If k lies outside the range [−1,+1], apply the reciprocal modulus transformations given at the end of the preceding
section.

Outside the Taylor-series regions, efficient computation of the basic four functions is best done with the vector
AGM algorithm (see Section 20.1 on page 619, [AS64, §16.4], and [OLBC10, §22.20]), with starting values

a0 = 1, b0 =
√

1 − k2, c0 = k, provided k �= 0.

662 Chapter 20. Elliptic integral functions

Factor the quantity under the square root into a product for accurate computation. After the AGM converges, iterate
downward to generate an array of angles, φj:

φn = 2nanu,
sin(2φj−1 − φj) = (cj/aj) sin(φj), for j = n, n − 1, . . . , 1,

φj−1 =
1
2 (φj + asin((cj/aj) sin(φj)).

The amplitude is then am(u, k) = φ = φ0, from which cn(u, k) and sn(u, k) are found from their definitions. The
remaining function may be found either from dn(u, k) = cos(φ0)/ cos(φ1 − φ0), or from the square root given earlier.
The cosine form is subject to leading digit loss from the subtraction in the denominator, so it should be avoided.

The VAGM() family in the mathcw library produces the arrays of aj, bj, and cj, and because we need the φj values
in multiple functions, we provide a support function to compute those values along with the AGM coefficients. Its
code in the file eljagx.h looks like this:

fp_t
ELJAG(fp_t u, fp_t k, int nabc, fp_t aj[/* nabc */], fp_t bj[/* nabc */], fp_t cj[/* nabc */],

fp_t phij[/* nabc */], int *pneed)
{ /* Jacobian elliptic integral vector AGM iteration */

fp_t result;
int need;

need = 0;

if (ISNAN(u))
result = u;

else if (ISNAN(k))
result = k;

else if ((k <= -ONE) || (ONE <= k))
result = SET_EDOM(QNAN("")); /* avoid |k| = 1 (AGM b = 0) */

else
{ /* NBS Handbook of Mathematical Functions, section 16.4 */

fp_t a, b, c;
int j, n;

a = ONE;
b = SQRT((ONE - k) * (ONE + k));
c = k;
(void)VAGM(a, b, c, nabc, aj, bj, cj, &need);
n = MIN(nabc - 1, need - 1);
phij[n] = EXP2((fp_t)n) * aj[n] * u;

for (j = n; j > 0; --j)
{

fp_t r;

r = (cj[j] / aj[j]) * SIN(phij[j]);
r = MAX(-ONE, MIN(r, ONE));
phij[j - 1] = HALF * (phij[j] + ASIN(r));

}

result = phij[0];
}

if (pneed != (int *)NULL)
*pneed = need;

return (result);
}

20.15. Jacobian elliptic functions 663

The code ensures that the argument of the inverse sine function lies in [−1,+1] to prevent generation of a NaN. For
caller convenience, the angle φ0 is returned as a function value, as well as in the zeroth element of the array phij[].

The application of the vector AGM algorithm to the computation of the Jacobian elliptic integral functions dates
back to work with the AGM by Lagrange (1784), Legendre, Gauss, and Jacobi. The modern form was discovered by
Canadian physicist Louis V. King at McGill University in 1913, but first published in an article in 1921 [Kin21], and a
small monograph in 1924 (reprinted in 2007) [Kin24, Kin07].

Although six of the Jacobian elliptic integral functions are defined as ratios of two others, it is more efficient to
compute the φj values once, and then use them to determine both the numerator and denominator. For example,
here is the code from file eljscx.h for computing sc(u, k):

fp_t
ELJSC(fp_t u, fp_t k)
{ /* Jacobian elliptic integral function sc(u,k) = sn(u,k) / cn(u,k) */

fp_t result;
static fp_t last_k = FP(0.);
static fp_t last_result = FP(0.);
static fp_t last_u = FP(0.);

if (ISNAN(u))
result = u;

else if (ISNAN(k))
result = k;

else if ((u == last_u) && (k == last_k))
result = last_result;

else if ((k < -ONE) || (ONE < k))
result = ELJSN(u, k) / ELJCN(u, k);

else if (k == ZERO)
result = TAN(u);

else if (QABS(k) == ONE)
result = SINH(u);

else if ((QABS(u) < FP(0.025)) || (QABS(k) < FP(0.0002)) || ((ONE - QABS(k)) < FP(0.0002)))
result = ELJSN(u, k) / ELJCN(u, k);

else
{ /* NBS Handbook of Mathematical Functions, sections 16.3 and 16.4 */

fp_t aj[NMAX], bj[NMAX], cj[NMAX], phij[NMAX];
int need;

(void)ELJAG(u, k, NMAX, aj, bj, cj, phij, &need);

if (need > NMAX)
result = SET_EDOM(QNAN(""));

else
result = TAN(phij[0]);

}

last_k = k;
last_result = result;
last_u = u;

return (result);
}

If |k| > 1, we apply the reciprocal modulus transformation. If k = 0 or k = 1, we use special-case reductions to
standard elementary functions. If u is small, or k is near 0 or 1, the special-case handling of cn(u, k) and sn(u, k)
applies, so we simply compute the ratio of the two. Otherwise, we use ELJAG() to find the array of φj values, from
which the result is found from sin(φ0)/ cos(φ0) = tan(φ0).

In Section 20.15 on page 659, we briefly discussed the troublesome case of |k| → 1, where the algorithms for
cn(u, k) and dn(u, k) lose accuracy. There do not appear to be any standard mathematical formulas for computing

664 Chapter 20. Elliptic integral functions

those two functions in a way that avoids that loss.
To solve the problem, we need a higher-precision value of the amplitude. We can then obtain its cosine and sine

with sufficient additional precision to hide the loss for most values of u. Decompose the amplitude into a sum of
exact high and accurate low parts, recall that cos(1

2 π) = 0 and sin(1
2 π) = 1, and use the trigonometric angle-sum

rules to reduce the sine and cosine of the amplitude like this:

φ = HP_ELJAM(u, k), work in next higher precision,

= 1
2 π + δ, where δ is small,

sin(φ) = sin(1
2 π) cos(δ) + cos(1

2 π) sin(δ)
= cos(δ),

c = 1 − sin(φ)
= 1 − cos(δ)

= −
∞

∑
n=1

(−1)nδ2n/(2n)!, fast Taylor-series expansion,

cos(φ) = cos(1
2 π) cos(δ)− sin(1

2 π) sin(δ)
= − sin(δ).

From the reduced formulas, we easily obtain accurate computational formulas for the two functions:

cn(u, k) = − sin(δ),

dn(u, k) =
√

1 − (k sn(u, k))2 =
√

1 − (k sin(φ))2 =
√

1 − (k(1 − c))2 =
√
((1 − k) + kc)(1 + (k − kc)).

The code in eljcnx.h and eljdnx.h uses those alternative algorithms only when |k| > 0.99 and |u| > 4, so the extra
precision is often not required: indeed, we show in Section 20.17 on page 668 that such large k values are unlikely
to be encountered in practice. When the higher precision is not at least twice that of working precision, such as the
common case of an excursion from the IEEE 754 64-bit format to the 80-bit format, the errors in the function values
are reduced somewhat, but may still be huge, with more than two-thirds of the low-order bits incorrect. If that is of
concern in a particular application, then the only practical solution may be to reimplement the amplitude function
in multiple-precision arithmetic in order to obtain a correctly rounded value of δ.

Applications that require cn(u, k), dn(u, k), and sn(u, k) sometimes need only small values of u, and our functions
then provide results that have errors of at most a few ulps. However, u is mathematically unrestricted, and we can see
that the starting value φn = 2nanu in the AGM algorithm may need a precision much higher than is available if its sine
is to be determined accurately. Thus, our code unavoidably loses accuracy for large u, and in nonbinary bases, also
for large n. We observed earlier that argument reduction to bring u into a region where the computation is accurate is
not practical in programming languages with conventional floating-point data types, because the reduction requires
values of K(k) correct to at least as many digits as the exponent range of the floating-point format.

Error plots for the Jacobian elliptic functions are surfaces in the (u, k) plane, but their roughness makes them
hard to see. The plots shown in Figure 20.10 and Figure 20.11 on page 666 take a simpler approach: for a fixed u, the
errors from random values of k taken from a logarithmic distribution in [FP_T_MIN, 1], with random sign, are plotted
along a vertical line. Similarly, for a fixed k, errors are shown for randomly chosen u values, but u is restricted to the
range [−π,+π].

20.16 Inverses of Jacobian elliptic functions

The Jacobian elliptic functions are single-valued and periodic, so with suitable restrictions on arguments and a fixed
modulus k, we can define unique inverses for each of them. Like the trigonometric and hyperbolic functions, we
prefix each function name with the letter a to indicate the inverse function. With a little algebra, or resort to a
handbook [BF71, pages 29–32], we can find these formulas for the original 13 Jacobian elliptic functions and their
inverses:

kc =
√

1 − k2, complementary modulus,

20.16. Inverses of Jacobian elliptic functions 665

0

1

2

-1 -0.5 0 0.5 1

u
lp

s

k

Errors in eljam(u,k)

0

1

2

-1 -0.5 0 0.5 1

u
lp

s

k

Errors in eljcn(u,k)

0

1

2

-1 -0.5 0 0.5 1

u
lp

s

k

Errors in eljdn(u,k)

0

1

2

-1 -0.5 0 0.5 1

u
lp

s

k

Errors in eljsn(u,k)

Figure 20.10: Errors in Jacobian elliptic functions along k.

v = am(u, k), u = aam(v, k) = F(v, k), v in [0,+π/2];

v = cd(u, k), u = acd(v, k) = F(asin(
√
(1 − v2)/(1 − (kv)2)), k),

v in [0,+1];

v = cn(u, k), u = acn(v, k) = F(acos(v), k), v in [0,+1];

v = cs(u, k), u = acs(v, k) = F(asin(1/
√

1 + v2), k), v in [0,+∞);

v = dc(u, k), u = adc(v, k) = F(asin(
√
(v2 − 1)/(v2 − k2)), k), v in [+1, ∞);

v = dn(u, k), u = adn(v, k) = F(asin(
√

1 − v2/k), k), v in [kc,+1];

v = ds(u, k), u = ads(v, k) = F(asin(1/
√

k2 + v2), k), v in [kc,+∞);

v = nc(u, k), u = anc(v, k) = F(acos(1/v), k), v in [+1,+∞);

= F(asin(
√

1 − (1/v)2), k),

v = nd(u, k), u = and(v, k) = F(asin(
√

v2 − 1/(kv)), k), v in [+1, 1/kc);

v = ns(u, k), u = ans(v, k) = F(asin(1/v), k), v in [+1,+∞);

666 Chapter 20. Elliptic integral functions

0

1

2

-3 -2 -1 0 1 2 3

u
lp

s

u

Errors in eljam(u,k)

0

1

2

-3 -2 -1 0 1 2 3

u
lp

s

u

Errors in eljcn(u,k)

0

1

2

-3 -2 -1 0 1 2 3

u
lp

s

u

Errors in eljdn(u,k)

0

1

2

-3 -2 -1 0 1 2 3

u
lp

s

u

Errors in eljsn(u,k)

Figure 20.11: Errors in Jacobian elliptic functions along u.

v = sc(u, k), u = asc(v, k) = F(asin(1/
√

1 + (1/v)2), k), v in (0,+∞);

v = sd(u, k), u = asd(v, k) = F(asin(v/
√

1 + (kv)2), k), v in [0, 1/kc];

v = sn(u, k), u = asn(v, k) = F(asin(v), k), v in [0,+1].

Each of the inverse functions corresponds to a particular elliptic integral (see [BF71, pages 29–32], [AS64, equations
17.4.41–17.4.52], or [OLBC10, §22.15]), but here we show only the integrals for the inverses of the basic four Jacobian
elliptic functions, and their relations to Legendre’s elliptic integral of the first kind:

aam(φ, k) =
∫ φ

0

1√
1 − (k sin(θ))2

dθ, for φ in [0,+π/2],

= F(φ, k),

acn(v, k) =
∫ 1

v

1√
(1 − t2)(k2

c + k2t2)
dt, for v in [0,+1],

= F(asin(
√

1 − v2), k),
= F(acos(v), k),

adn(v, k) =
∫ 1

v

1√
(1 − t2)(t2 − k2

c)
dt, for v in [0,+1],

20.16. Inverses of Jacobian elliptic functions 667

= F(asin(
√
(1 − v2)/k2), k),

asn(v, k) =
∫ v

0

1√
(1 − t2)(1 − k2t2)

dt, for v in [0,+1],

= F(asin(v), k).

The 13 formulas for inverse functions in the Handbook of Elliptic Integrals are all expressions of the form F(asin(·), k),
although we sometimes use equivalent forms with acos(·) when that reduces the error in the computed arguments.
When the argument is small, it is preferable to use the form with the inverse sine, because that can be computed
more accurately than the one with the inverse cosine.

Care is required in computing the arguments of acos() and asin(). Differences of squares must be factored into
products for improved accuracy, and premature overflow inside square roots must be avoided by suitable rewriting.
For example, when v > 1, replace v/

√
1 + v2 by 1/

√
(1/v)2 + 1. In addition, reciprocals of square roots should be

evaluated with the RSQRT() family to eliminate the error in division.
Maple has InverseJacobiAM(v,k) through InverseJacobiSN(v,k). Except for the inverse amplitude function,

Mathematica uses the same names, but the second argument is m = k2. For the inverse amplitude, use EllipticF
[v,k]. Maxima has inverse_jacobi_cd(v,m) through inverse_jacobi_sn(v,m), where again m = k2. The mathcw
library functions are eljaam(v,k) through eljasn(v,k).

The integrands in the inverse functions always involve even powers of t, so the integrands are symmetric about
the origin. However, only two of the inverse functions have integration limits that start at zero; thus, they are the
only two that exhibit symmetry about the origin:

aam(−v, k) = − aam(v, k), asn(−v, k) = − asn(v, k).

If we extend v beyond its stated limits, then frequently, the argument of the square root becomes negative, making
the integral values complex, rather than real. The algebra systems permit arbitrary complex values of v and k, but
our code requires real arguments, and enforces limits on them; out-of-range arguments produce NaN results.

The help system in Maple provides limited information about the handling of extended arguments, but does
show these connections:

acd(z, k) = K(k)− aam(asin(z), k), anc(z, k) = aam(acos(1/z), k),

acn(z, k) = aam(acos(z), k), and(z, k) = aam(acos(1/z), 1/k)/k,

acs(z, k) = − aam(asinh(1/z)i, kc)i, ans(z, k) = aam(asin(1/z), k),

adc(z, k) = K(k)− aam(asin(1/z), k), asc(z, k) = − aam(asinh(z)i, kc)i,

adn(z, k) = aam(acos(z), 1/k)/k, asd(z, k) = K(k) + aam(acos(kcz), k),

ads(z, k) = K(k) + aam(acos(kc/z), k), asn(z, k) = aam(asin(z), k).

We can easily remove the range restriction for the inverse amplitude function, aam(φ, k) = F(φ, k), if we recall
that K(k) = F(1

2 π, k). We can then split the integral into two parts, the first with an upper limit that is a multiple of
1
2 π, and the second an integral from that limit up to φ:

φ = n(1
2 π) + r, for n = 0, 1, 2, . . . and r in [0, 1

2 π),

aam(φ, k) =

{
nK(k) + F(r, k), for n even,

(n + 1)K(k)− F(1
2 π − r, k), for n odd.

If n is odd, we advance to the next multiple of 1
2 π, giving the term (n + 1)K(k), and then subtract the integral of

the advance, F(1
2 π − r, k). Otherwise, we have nK(k) from the first integral, plus the remaining integral that, by

symmetry, is equal to F(r, k). Thanks to the RPH() family in the mathcw library (see Section 9.2 on page 250), we
have exact argument reduction in binary arithmetic, but we can use it only when n is exactly representable as an
int data type, as well as an fp_t type. For the trigonometric functions, we only require the remainder r and the
low-order bits of n, but here, we need both r and n to be exact.

668 Chapter 20. Elliptic integral functions

 0

 0.5

 1

 0 0.2 0.4 0.6 0.8 1

k(
q

)

q

modulus k(q)

 0

 0.5

 1

-1 -0.5 0 0.5 1

q
(k

)
an

d
 q

c(
k)

k

Ordinary and complementary nomes

Figure 20.12: Elliptic modulus, ordinary nomes (solid), and complementary nome (dashed). The peaks are steep, but
are not poles, because they stop at 1.

20.17 The modulus and the nome

In the next section, we introduce functions defined by power series in a variable q that is called the nome, a name
derived from binomial. The magnitude of q lies in [0, 1], and the nome is defined by the relation

q = exp(−πK′(k)/K(k)), for k in [−1,+1],

≈ EXP(-PI * ELLKC(k) / ELLK(k)).

Thus, q is determined entirely by the elliptic function modulus k, which lies in [−1,+1]. When k is real, q is also real,
and the converse holds as well.

There is also a complementary nome defined with an inverted ratio of the two complete elliptic functions:

qc = exp(−πK(k)/K′(k)), for k in [−1,+1].

Unlike the ordinary and complementary complete elliptic functions, the two nomes are not mirror images. Instead,
they have these relations that allow one of them to be obtained from the other with minimal loss of accuracy:

log(1/q) log(1/qc) = π2, for q and qc in (0, 1],

log(q) log(qc) = π2,
q = exp(π2/ log(qc)), q − 1 = expm1(π2/ log(qc)),

qc = exp(π2/ log(q)), qc − 1 = expm1(π2/ log(q)).

When either nome is near 1, the equations containing expm1() allow accurate determination of the difference from
1, effectively representing the nomes in higher precision.

The modulus and the nomes are common in the mathematics of elliptic functions. The limiting relations

k(0) = 0, k(1) = 1,
q(0) = 0, q(±1) = 1, q(−k) = q(k),

qc(0) = 1, qc(±1) = 0, qc(−k) = qc(k),

allow us handle the cases k = ±1, q = 1, and qc = 0, even when those endpoints are excluded by the mathematics.
The values of the modulus and nomes in real arithmetic are graphed in Figure 20.12. Because there is a one-to-one

relationship between k and q, an inverse function exists that converts q to k. We show how to compute that inverse
later in this section, and in the next section.

For improved accuracy and computational speed with small arguments, we need these Taylor-series expansions:

k(q) = 4
√

q(1 − 4 q + 14 q2 − 40 q3 + 101 q4 − 236 q5 + 518 q6 − 1080 q7 + 2162 q8 + · · ·),

20.17. The modulus and the nome 669

q(k) = 2−20(65536 k2 + 32768 k4 + 21504 k6 + 15872 k8 + 12514 k10 + 10293 k12 + · · ·),
qc(1 − d) = 2−19(65536 d + 32768 d2 + 20480 d3 + 14336 d4 + 10784 d5 + 8528 d6 + 6994 d7 + 5895 d8 + · · ·).

For tiny k, we have q(k) ≈ k2/16, so q underflows for k < 4
√
FP_T_MIN, eliminating roughly half of all possible k

values. In the other direction, if q > 0, then k(q) > 0 as well.
Maple supplies EllipticNome(k) and EllipticModulus(q) for the nome function and its inverse. Mathematica

has EllipticNomeQ[m] and InverseEllipticNomeQ[q], where the latter returns m = k2. The mathcw library imple-
ments them as the families ELQ(k) and ELK(q).

In order to handle the nome endpoints accurately, the library also provides ELKM1(q) for k(q) − 1, ELQ1P(km1)
for q(1 + km1), ELQC(k) for qc(k), and ELQC1P(km1) for qc(1 + km1). Like our complete elliptic integral functions, the
functions remember their last argument and result for fast handling of repeated calls with the same argument.

The programming of ELQ(k) is simple, but developing a suitable algorithm for the inverse, ELK(q), is more dif-
ficult. In the next section, we show a general formula for that inverse, but here we develop an alternative to deal
with a problem that is evident in the graphs in Figure 20.12: when the nome q > 1

2 , the modulus k ≈ 1. Thus, it is
desirable to find a way to compute the difference k − 1 directly and accurately, because k = 1 + (k − 1) can then be
computed accurately to machine precision.

It is instructive to look at numeric values of the nome for k ≈ 1 by choosing k values one little machine epsilon
below 1 in extended IEEE 754 binary and decimal arithmetic:

% maple
> Digits := 80:

> for t in [24, 53, 64, 113, 237] do
> q := EllipticNome(1 - 2**(-t)):
> printf("%3d %8.6f %9.3e\n", t, q, 1 - q)
> end do:
24 0.590159 4.098e-01
53 0.775486 2.245e-01
64 0.808544 1.915e-01

113 0.884486 1.155e-01
237 0.942397 5.760e-02

> for t in [7, 16, 34, 70] do
> q := EllipticNome(1 - 10**(-t)):
> printf("%3d %8.6f %9.3e\n", t, q, 1 - q)
> end do:

7 0.581375 4.186e-01
16 0.776016 2.240e-01
34 0.884435 1.156e-01
70 0.941338 5.866e-02

Thus, in the commonly used 64-bit formats, we are almost certain to have q < 0.777.
We also examine the dependence of the modulus k on the nome q:

> Digits := 1000:

> for q from 0 to 0.7 by 0.1 do
> printf("%.1f %.9f\n", q, EllipticModulus(q))
> end do:
0.0 0.000000000 0.4 0.999832060
0.1 0.895769668 0.5 0.999994761
0.2 0.982777795 0.6 0.999999967
0.3 0.997799764 0.7 1.000000000

> for t in [24, 53, 64, 113, 237] do
> printf("%3d %12.6e %12.6e\n", t, EllipticModulus(2**(-t)), 1 - EllipticModulus(0.99))
> end do:

670 Chapter 20. Elliptic integral functions

24 9.765623e-04 2.620380e-426
53 4.214685e-08 2.620380e-426
64 9.313226e-10 2.620380e-426

113 3.925231e-17 2.620380e-426
237 8.511488e-36 2.620380e-426

> for t in [7, 16, 34, 70] do
> printf("%3d %12.6e %12.6e\n", t, EllipticModulus(10**(-t)), 1 - EllipticModulus(0.99))
> end do:

7 1.264911e-03 2.620380e-426
16 4.000000e-08 2.620380e-426
34 4.000000e-17 2.620380e-426
70 4.000000e-35 2.620380e-426

We see that q < 0.5 for k < 0.999 995, and getting a q value as large as 0.99 requires that k be represented with a
precision greater than 425 decimal digits.

We can also investigate the behavior near the underflow limit of the 128-bit IEEE 754 decimal format, which has
the widest exponent range of current floating-point systems:

> Digits := 10000:

> for q from 0.9990 to 0.9995 by 0.0001 do
> printf("%.4f %12.6e\n", q, EllipticModulus(q) - 1)
> end do:
0.9990 -5.393551e-4284
0.9991 -2.982956e-4760
0.9992 -1.422724e-5355
0.9993 -5.492125e-6121
0.9994 -1.543755e-7141
0.9995 -2.611957e-8570

The smallest subnormal is reached already just before q = 0.999 307.
A Taylor-series expansion of EllipticModulus(1 - d) in Maple produces a complicated result containing the

functions of the next section. However, a similar expansion in Mathematica produces a result with interesting, and
recognizable, structure:

% math
In[1]:= Series[InverseEllipticNomeQ[1 - d] - 1, {d, 0, 3}]

2 2 2 3
Pi /(-d - d /2 - d /3) (2 Pi)/(-d - d /2 - d /3)

Out[2]= -16 E + 128 E

2 2 3
(3 Pi)/(-d - d /2 - d /3)

-704 E

Further experiments with increasing expansion order show that the polynomials in the denominator are simply sums
of dk/k, which is just the power series of log(1 − d) = log(q). The general result is therefore

a = exp(π2/ log(q)) = exp(π2/ log1p(−d)),

m(q)− 1 =
∞

∑
n=1

cnan, elliptic parameter,

cn = −16,+128,−704,+3072,−11488,+38400,−117632,+335872,
− 904784,+2320128,−5702208,+13504512,−30952544, . . .

(k(q))2 = m(q), relation between elliptic modulus and parameter,

(k(q))2 − 1 = m(q)− 1,

20.17. The modulus and the nome 671

k(q)− 1 = (m(q)− 1)/(k(q) + 1)

= (m(q)− 1)/(
√

1 + (m(q)− 1) + 1).

A check with Sloane’s On-Line Encyclopedia of Integer Sequences2 finds the coefficients in sequence A115977, where
they are identified as those of the expansion of the modulus in powers of the nome.

Because q < 1, we have log(q) < 0 and 0 ≤ a < 1. With q = 0.99, we have d = 0.01 and a ≈ 3.275 × 10−427, so
the series converges extraordinarily quickly for small d. Even for q = d = 1

2 , we have a ≈ 6.549 × 10−7, and a sum of
the thirteen terms corresponding to the listed values of cn converges to 75 decimal digits, more than enough for the
extended 256-bit floating-point formats supported by the mathcw library.

Here is our code for computing k(q)− 1:

fp_t
ELKM1(fp_t q)
{ /* elliptic modulus k, less 1, from nome q in [0,1] */

fp_t result;
static fp_t last_q = FP(0.0);
static fp_t last_result = FP(-1.0); /* elkm1(0) = -1 */

if (ISNAN(q))
result = q;

else if ((q < ZERO) || (ONE < q))
result = SET_EDOM(QNAN(""));

else if (q == last_q)
result = last_result;

else if (q == ZERO)
result = -ONE;

else if (q == ONE)
result = ZERO;

else if (q < NOME_K_HALF) /* k(q) - 1 has no leading digit loss */
result = (fp_t)(HP_ELK((hp_t)q) - HP(1.));

else
{

hp_t a, err_inv_log_q, inv_log_q, log_q, sum;
int k, n;

log_q = HP_LOG((hp_t)q);
inv_log_q = HP(1.) / log_q;
err_inv_log_q = HP_ERRDIV(inv_log_q, HP(1.), log_q);
a = HP_EXP(HP_FMA(PI_SQUARED_HI, inv_log_q,

PI_SQUARED_LO * inv_log_q +
PI_SQUARED_HI * err_inv_log_q));

n = 99;

if (q < FP(0.25))
{

if (FP_T_DIG > 34) n = 88;
else if (FP_T_DIG > 16) n = 48;
else if (FP_T_DIG > 7) n = 26;
else n = 14;

}
else if (q < FP(0.5))
{

if (FP_T_DIG > 34) n = 28;
else if (FP_T_DIG > 16) n = 15;

2See http://oeis.org/.

672 Chapter 20. Elliptic integral functions

else if (FP_T_DIG > 7) n = 8;
else n = 5;

}
else if (q < FP(0.75))
{

if (FP_T_DIG > 34) n = 14;
else if (FP_T_DIG > 16) n = 8;
else if (FP_T_DIG > 7) n = 4;
else n = 3;

}
else
{

if (FP_T_DIG > 34) n = 6;
else if (FP_T_DIG > 16) n = 4;
else if (FP_T_DIG > 7) n = 3;
else n = 2;

}

sum = c[n + 1];

for (k = n; k >= 1; --k)
sum = QFMA(sum, a, c[k]);

sum *= a;

result = (fp_t)(sum / (HP_SQRT(HP(1.) + sum) + HP(1.)));
last_q = q;
last_result = result;

}

return (result);
}

The series converges poorly for k < 1
2 (or, q < 0.018), so in that region, we switch to the function family ELK(q)

described in the next section. However, there is subtraction loss in forming k(q) − 1 for q in [0.018, 1], so we hide
that by using the next higher precision of that function. When the series is usable, and q → 1, the argument of the
exponential is large and negative, introducing the problem of error magnification (see Section 4.1 on page 61). We
need about five extra decimal digits to hide that error, so here too, we work in the next higher precision. The number
of terms needed in the series depends on both q and the floating-point precision, so we save time by setting the loop
limit according to those values.

When a higher-precision format is not available, we lose about five or six decimal digits as q → 1, as these
examples in the 128-bit decimal format show against values computed in 7000-digit precision with the EllipticMod-
ulus(q) function in Maple:

hocd128> elkm1(0.4999); -5.260509197344328434613414148710826487e-06
-5.260_509_197_344_328_434_613_414_148_710_825e-06
-5.260_509_197_344_328_434_613_414_148_710_826e-06

hocd128> elkm1(0.9993); -5.49212467149492514596866245817158356e-6121
-5.492_124_671_494_925_145_968_662_458_152_305e-6121
-5.492_124_671_494_925_145_968_662_458_171_584e-6121

Losses are similar in the 80-bit format, and are about three decimal digits in the 64-bit format.
Several of the functions discussed in the remaining sections of this chapter require both k and q in their com-

putation, but only one of those values is provided. Because k approaches 1 so quickly as q grows, we soon have
fl(k) = 1 to machine precision, even though the exact difference k − 1 is nonzero. For that reason, the mathcw library
includes a family of complete elliptic integral functions of the first kind with the nome as the argument, ELLKN(q).
When the computed k in that family is less than 1

2 , the result is just ELLK(k). Otherwise, the result is computed from

20.18. Jacobian theta functions 673

ELLKC(SQRT(-km1 * (TWO + km1))), where km1 = ELKM1(q). The general programming rule is that if q is given, then
the smaller of k and k − 1 should first be determined accurately, and the other then derived from it.

20.18 Jacobian theta functions

Four functions known as Jacobian theta functions are related to the Jacobian elliptic functions, and are conven-
tionally defined as sums of infinite series of powers of the nome q, where convergence requires that q < 1 [AS64,
equations 16.27.1–16.27.4] [OLBC10, §20.2]:

θ1(z, q) = 2q+1/4
∞

∑
n=0

(−1)nqn(n+1) sin((2n + 1)z)

= 2
∞

∑
n=0

(−1)nq((n+1/2)2) sin((2n + 1)z)

= θ2(u − 1
2 π, q),

θ2(z, q) = 2q+1/4
∞

∑
n=0

qn(n+1) cos((2n + 1)z)

= 2
∞

∑
n=0

q((n+1/2)2) cos((2n + 1)z)

= θ1(z + 1
2 π, q),

θ3(z, q) = 1 + 2
∞

∑
n=1

q(n
2) cos(2nz)

= θ4(z − 1
2 π, q),

θ4(z, q) = 1 + 2
∞

∑
n=1

(−1)nq(n
2) cos(2nz)

= θ3(z + 1
2 π, q).

Notice that the lower limits of the first two differ from those of the last two. The terms in the sums are similar, so
it may be worthwhile for software to compute θ1(z, q) and θ2(z, q) together, and θ3(z, q) and θ4(z, q) together. The
functions are plotted in Figure 20.13 on the next page for real arguments u and four different real values of q.

The subscript on θ is called the kind: thus, θ4(z, q) is the theta function of the fourth kind. Some books label that
function with a zero subscript: θ0(z, q) = θ4(z, q).

The Jacobian theta functions turn up in several areas of pure and applied mathematics. They are solutions of an
equation for heat conduction and another for wave motion, they appear in Laplace transforms, and they are related to
another family of elliptic functions described in Section 20.22 on page 682.

The Jacobian theta functions have these periodicity and symmetry relations:

θ1(z + π, q) = −θ1(z, q), θ1(−z, q) = −θ1(z, q),
θ2(z + π, q) = −θ2(z, q), θ2(−z, q) = +θ2(z, q),
θ3(z + π, q) = +θ3(z, q), θ3(−z, q) = +θ3(z, q),
θ4(z + π, q) = +θ4(z, q), θ4(−z, q) = +θ4(z, q).

Theta functions of two special arguments are related to the complete elliptic integral of the first kind:

θ1(
1
2 π, q) = θ2(0, q) =

√
2kK(k)

π
,

θ3(0, q) = θ4(
1
2 π, q) =

√
2K(k)

π
,

k′ =
√

1 − k2, complementary elliptic modulus,

674 Chapter 20. Elliptic integral functions

-4

-3

-2

-1

0

1

2

3

4

-4 -3 -2 -1 0 1 2 3 4

θ
i(u

, q
)

u / π

Jacobian theta functions (q = 0.05)

θ1θ2

θ3 θ4

-4

-3

-2

-1

0

1

2

3

4

-4 -3 -2 -1 0 1 2 3 4

θ
i(u

, q
)

u / π

Jacobian theta functions (q = 0.25)

θ1θ2

θ3 θ4

-4

-3

-2

-1

0

1

2

3

4

-4 -3 -2 -1 0 1 2 3 4

θ
i(u

, q
)

u / π

Jacobian theta functions (q = 0.50)

θ1θ2

θ3 θ4

-4

-3

-2

-1

0

1

2

3

4

-4 -3 -2 -1 0 1 2 3 4

θ
i(u

, q
)

u / π

Jacobian theta functions (q = 0.75)

θ1θ2

θ3 θ4

Figure 20.13: Jacobian theta functions. The horizontal axes are scaled to units of π to emphasize the periods of
the theta functions. Notice that θ1(u, q) and θ2(u, q) have both positive and negative values, while the other two
functions are never negative.

θ3(
1
2 π, q) = θ4(0, q) =

√
2k′K(k)

π
.

Maple provides the Jacobian theta functions as JacobiTheta1(z,q), . . . , JacobiTheta4(z,q). Mathematica sup-
plies a single function EllipticTheta[n,z,q], where n = 1, 2, 3, or 4. REDUCE also has a single function, but with
different arguments: EllipticTheta(n, u, m). The mathcw library implements the theta functions as ELJT1(u, q)
through ELJT4(u, q), and also provides ELJTA(result, u, q) for computing an array of values of all four theta
functions.

The argument z in the symbolic-algebra languages is an arbitrary complex number defined over the entire com-
plex plane. The nome argument q is also a complex number.

In Section 20.17 on page 668, we defined the nome with an exponential function depending on k. Two of the
theta functions provide an inverse relation that recovers k from q:

k =
(θ2(0, q))2

(θ3(0, q))2 , provided q < 1.

The ELK() family implements that simple formula, with ELJT2() and ELJT3() doing the real work.
Many mathematical formulas involving theta functions require both the modulus k and the nome q. Because of

the interdependence of k and q, software argument lists require just one of them, but finding the other is a compara-
tively expensive operation.

20.19. Logarithmic derivatives of the Jacobian theta functions 675

The theta functions are related to the Jacobian elliptic functions like this:

k′ =
√

1 − k2, complementary elliptic modulus,

q = exp(−πK′(k)/K(k)), elliptic nome,

v =
πu

2K(k)
, scaled argument,

cn(u, k) =

√
k′√
k

θ2(v, q)
θ4(v, q)

,

dn(u, k) =
√

k′
θ3(v, q)
θ4(v, q)

,

sn(u, k) =
1√
k

θ1(v, q)
θ4(v, q)

.

The four theta-function infinite series with sums of sines and cosines are called Fourier series, and they are con-
vergent provided q < 1. The rapidly increasing powers of q ensure quick convergence of the sums, unless q ≈ 1.
Numerical tests of those functions in symbolic-algebra systems, and our straightforward implementations in C and
hoc, show that up to 10,000 terms may be required in the 128-bit formats when q = 1 − 10−6. For values of q even
closer to 1, the symbolic-algebra systems may return undefined values.

Unfortunately, there do not appear to be any simple argument-reduction relations that can move the case of q ≈ 1
to smaller q values, where the four series converge more quickly. Computer software therefore is advised to put a
reasonable limit on the number of terms that are summed, and to exit the loop as soon as the sum has converged in
floating-point arithmetic.

In practical applications, the problem values of q rarely appear. Recall from the relation of k to the eccentricity
of an ellipse (see Section 20.3 on page 630) that the case k = 1 corresponds to an infinitely thin ellipse, so we are
likely to need only |k| < 1. We showed in Section 20.17 on page 668 that q < 1

2 corresponds to k < 0.999 995, so
convergence of the four theta series is rapid. With the limit q < 0.777 in the 64-bit formats, at most a dozen terms are
needed, and even in the 256-bit formats, 52 terms suffice.

The representation of cn(u, k) and dn(u, k) as ratios of theta functions does not provide a solution to the accuracy-
loss problem that we discussed in Section 20.15 on page 659 and Section 20.15.2 on page 664: if |k| → 1, then q → 1
as well, and the theta-series convergence is too slow to be practical.

When z = 1
2 π, we have (−1)n sin((2n + 1)z) = +1, so the sum in the definition of θ1(z, q) grows rapidly if q ≈ 1.

When z = π, we have cos((2n + 1)z) = −1, and the sum for θ2(z, q) also grows rapidly when q ≈ 1. Similarly, for
q ≈ 1, θ3(z, q) grows when z = π, and θ4(z, q) increases when z = π/2.

20.19 Logarithmic derivatives of the Jacobian theta functions

Logarithmic derivatives of the theta functions [AS64, §16.29] [OLBC10, §20.5] are sometimes needed. They are de-
fined by these infinite sums:

θ′1(u, q)
θ1(u, q)

= + cot(u) + 4
∞

∑
n=1

q2n

1 − q2n sin(2nu), for nome q in [0, 1),

θ′2(u, q)
θ2(u, q)

= − tan(u) + 4
∞

∑
n=1

(−1)n q2n

1 − q2n sin(2nu),

θ′3(u, q)
θ3(u, q)

= 4
∞

∑
n=1

(−1)n qn

1 − q2n sin(2nu),

θ′4(u, q)
θ4(u, q)

= 4
∞

∑
n=1

qn

1 − q2n sin(2nu).

Here, the lower limits on the sums are identical, but notice that the numerator powers differ.
Multiply the left-hand sides by their denominators to produce formulas for the derivatives of the theta functions

with respect to u.

676 Chapter 20. Elliptic integral functions

The terms in the logarithmic-derivative sums are similar, apart from their signs, so software implementations can
compute the four sums more efficiently simultaneously than separately. Also, when either q = 0 or u = 0, the sums
are zero. Software should check for that case, and take care to preserve the correct sign of zero in the results.

When q is real, the denominator 1 − q2n is subject to severe accuracy loss if q2n > 1
2 , or equivalently, q > 0.707.

The polynomial Q2n(q) = 1 − q2n clearly has at least two real roots, q = ±1, so it can always be written in the form
Q2n(q) = (1 − q)(1 + q)P2n−2(q). The factor 1 − q is then exact for q ≥ 1

2 , and the product is accurate. We can
therefore compute the denominators stably and accurately with this recurrence:

Q2(q) = 1 − q2, for q in [0, 1),

= (1 − q)(1 + q), computational form,

Q2n+2(q) = q2Q2n(q) +Q2(q), sum of positive terms.

The mathcw library function families ELJTD1(u,q) through ELJTD4(u,q) implement separate computation of the
logarithmic derivatives of the four Jacobian theta functions.

The family ELJTDA(result,u,q) computes all four logarithmic derivatives simultaneously, returning them in the
four-element result[] array. Here is its code from the file eljdax.h:

void
ELJTDA(fp_t result[/* 4 */], fp_t u, fp_t q)
{ /* logarithmic derivative of Jacobian theta function of orders

1 to 4 for arbitrary u, and q in [0,1): see NBS Handbook of
Mathematical Functions, equations 16.29.1 to 16.29.4 */

static const int NMAX = 10000; /* enough for worst case (q ~= 1) in 34D arithmetic */
static fp_t last_q = FP_T_MAX;
static fp_t last_result[4] = { FP_T_MAX, FP_T_MAX, FP_T_MAX, FP_T_MAX };
static fp_t last_u = FP_T_MAX;

if (ISNAN(u))
result[0] = result[1] = result[2] = result[3] = u;

else if (ISNAN(q))
result[0] = result[1] = result[2] = result[3] = q;

else if ((q < ZERO) || (ONE <= q))
result[0] = result[1] = result[2] = result[3] = SET_EDOM(QNAN(""));

else if ((u == last_u) && (q == last_q))
{

result[0] = last_result[0];
result[1] = last_result[1];
result[2] = last_result[2];
result[3] = last_result[3];

}
else if (q == ZERO)
{

result[0] = COTAN(u);
result[1] = -TAN(u);
result[2] = result[3] = ZERO;

}
else if (u == ZERO)
{

result[0] = COPYSIGN(INFTY(), u);
result[1] = COPYSIGN(ZERO, -COPYSIGN(ONE, u));
result[2] = result[3] = ZERO;

}
else
{

fp_t Q_2, Q_2n, q_sq, q_to_n, sum1, sum2, sum3, sum4;
int n, nc;

20.19. Logarithmic derivatives of the Jacobian theta functions 677

nc = 0;
q_sq = q * q;
q_to_n = ONE;
Q_2 = (ONE - q) * (ONE + q); /* Q_2(q) = 1 - q**2 */
Q_2n = Q_2; /* Q_2n(q) = 1 - q**(2*n) */
sum1 = sum2 = sum3 = sum4 = ZERO;

for (n = 1; n <= NMAX; ++n)
{

fp_t f, new_sum1, new_sum2, new_sum3, new_sum4, term;

q_to_n *= q;

if (q_to_n == ZERO)
break; /* all remaining powers are zero */

f = (q_to_n / Q_2n) * SIN((fp_t)(n + n) * (fp_t)u);
term = q_to_n * f;
new_sum1 = sum1 + term;
new_sum2 = sum2 + (IS_EVEN(n) ? term : -term);
term = f;
new_sum3 = sum3 + (IS_EVEN(n) ? term : -term);
new_sum4 = sum4 + term;

if (new_sum3 == sum3)
{

if (++nc > 1)
break;

}
else

nc = 0;

sum1 = new_sum1;
sum2 = new_sum2;
sum3 = new_sum3;
sum4 = new_sum4;
Q_2n = FMA(q_sq, Q_2n, Q_2);

}

result[0] = QFMA(FOUR, sum1, COTAN(u));
result[1] = QFMA(FOUR, sum2, -TAN(u));
result[2] = FOUR * sum3;
result[3] = FOUR * sum4;

last_q = q;
last_result[0] = result[0];
last_result[1] = result[1];
last_result[2] = result[2];
last_result[3] = result[3];
last_u = u;

}
}

The code in ELJTDA() is reasonably straightforward, except for one important point. Because we compute four
sums simultaneously, the loop exit condition must be based on the sum with the slowest convergence, that for the
logarithmic derivative of the third kind. However, it is possible that a term is abnormally small because of the sine
factor, so we count in nc the number of times that the term is negligible, and exit the loop only when that happens in
two successive terms.

678 Chapter 20. Elliptic integral functions

20.20 Neville theta functions

The functions of this section were introduced by the English mathematician E. H. Neville in his 1944 book Jacobian
Elliptic Functions [Nev44, Nev51]. The Neville functions are related to the Jacobian theta functions like this [AS64,
§16.36] [OLBC10, §22.2]:

u = F(φ\α) = F(φ|m) = F(φ, k), v =
πu

2K(k)
,

q = exp(−πK′(k)/K(k)),

θc(u, q) =
θ2(v, q)
θ2(0, q)

, θn(u, q) =
θ4(v, q)
θ4(0, q)

,

θd(u, q) =
θ3(v, q)
θ3(0, q)

, θs(u, q) =
2K(k)

π

θ1(v, q)
θ′1(0, q)

,

θ′1(0, q) = θ2(0, q)θ3(0, q)θ4(0, q).

The last relation expresses the first derivative of θ1(u, q) with respect to u as a product of three other theta functions,
all evaluated at u = 0. That derivative supplies the denominator in θs(u, q).

The subscripts are chosen from the letters c, d, n, and s, because that convention allows all twelve Jacobian elliptic
functions to be recovered from the four Neville theta functions with this simple relation:

ab(u, k) =
θa(u, q)
θb(u, q)

, for nome q, and a, b any distinct pair of c, d, n, s.

Some software implementations of the Jacobian elliptic functions use that relation to generate them from the Neville
theta functions.

Like the Jacobian theta functions, the Neville theta functions have periods 2K(k) or 4K(k). However, unlike the Ja-
cobian theta functions, two of them grow quickly with increasing q. The Neville functions are shown in Figure 20.14
on the facing page.

Neville’s functions can also be defined as sums of infinite series [AS64, §16.38]:

v =
πu

2K(k)
, q = exp(−πK′(k)/K(k)), m = k2, m1 = 1 − m,

θc(u, q) =

√
2π

√
q√

mK(k)

∞

∑
n=0

qn(n+1) cos((2n + 1)v),

θd(u, q) =
√

π

2K(k)

(
1 + 2

∞

∑
n=1

q(n
2) cos(2nv)

)
,

θn(u, q) =
√

π

2
√

m1K(k)

(
1 + 2

∞

∑
n=1

(−1)nq(n
2) cos(2nv)

)
,

θs(u, q) =

√
2π

√
q√

mm1K(k)

∞

∑
n=0

(−1)nqn(n+1) sin((2n + 1)v).

The sums have the same convergence behavior as those of the Jacobian theta functions. If code size not an issue, it is
better to use the sums instead of the definitions as ratios of Jacobian theta functions.

Mathematica supplies the Neville theta functions as NevilleThetaC[z,m] through NevilleThetaS[z,m], where
m = k2, but the functions appear to be absent from other algebra systems. We provide them in the mathcw library
with the prefix ELN as the function families ELNTC(u,q), ELNTD(u,q), ELNTN(u,q), and ELNTS(u,q), and we compute
them either from their definitions as ratios of Jacobian theta functions, or directly from their sums. A compile-time
preprocessor symbol selects between the two choices, with the default of direct sums.

20.21. Jacobian Eta, Theta, and Zeta functions 679

-4

-3

-2

-1

0

1

2

3

4

-8 -6 -4 -2 0 2 4 6 8

θ
i(u

,q
)

u / K(k)

Neville theta functions (q = 0.05)

θc

θd

θn

θs

-4

-3

-2

-1

0

1

2

3

4

-8 -6 -4 -2 0 2 4 6 8

θ
i(u

,q
)

u / K(k)

Neville theta functions (q = 0.25)

θc

θd

θn

θs

-20

-15

-10

-5

0

5

10

15

20

-8 -6 -4 -2 0 2 4 6 8

θ
i(u

,q
)

u / K(k)

Neville theta functions (q = 0.50)

θc

θd

θn

θs -3000

-2000

-1000

0

1000

2000

3000

-8 -6 -4 -2 0 2 4 6 8

θ
i(u

,q
)

u / K(k)

Neville theta functions (q = 0.75)

θc θd

θn

θs

Figure 20.14: Neville theta functions. The horizontal axis is scaled to multiples of K(k) to emphasize the periodicity.
For large q, θs(u, q) and θn(u, q) dominate, and the oscillations in θc(u, q) and θd(u, q) are not visible at q = 0.75.

20.21 Jacobian Eta, Theta, and Zeta functions

The members of the elliptic-function family that we describe in this section are credited to Jacobi, and named with
uppercase Greek letters, two of which have the same letter shapes as Latin letters:

v =
πu

2K(k)
, scaled argument,

q = exp(−πK′(k)/K(k)), elliptic nome,

H(u, k) = θ1(v, q), Jacobian Eta function,

Θ(u, k) = θ4(v, q), Jacobian Theta function,

Z(u, k) =
∂ log(Θ(u, k))

∂u
, Jacobian Zeta function,

=
Θ′(u, k)
Θ(u, k)

,

=
π

2K(k)
θ′4(v, q)
θ4(v, q)

,

=
v
u

θ′4(v, q)
θ4(v, q)

.

680 Chapter 20. Elliptic integral functions

-1

-0.5

 0

 0.5

 1

-8 -6 -4 -2 0 2 4 6 8

j(
u

,k
)

u / K(k)

Eta, Theta and Zeta functions (k = 0.05)

H(u,k)

Θ(u,k)

Z(u,k)

-1

-0.5

 0

 0.5

 1

-8 -6 -4 -2 0 2 4 6 8

j(
u

,k
)

u / K(k)

Eta, Theta and Zeta functions (k = 0.25)

H(u,k)

Θ(u,k)

Z(u,k)

-1

-0.5

 0

 0.5

 1

-8 -6 -4 -2 0 2 4 6 8

j(
u

,k
)

u / K(k)

Eta, Theta and Zeta functions (k = 0.50)

H(u,k)

Θ(u,k)

Z(u,k)

-1

-0.5

 0

 0.5

 1

-8 -6 -4 -2 0 2 4 6 8

j(
u

,k
)

u / K(k)

Eta, Theta and Zeta functions (k = 0.75)

H(u,k)

Θ(u,k)

Z(u,k)

Figure 20.15: Jacobian Eta, Theta, and Zeta functions. The horizontal axis is scaled to multiples of K(k) to emphasize
the locations of extrema and zeros at u = nK(k).

Here, ∂ is the symbol for a partial derivative, and is variously pronounced as curly dee, del, dye, or partial. The
functions are periodic, single valued, and without singularities except at u = ∞. The first two are easy to compute
from the Jacobian theta functions. The Zeta function needs a derivative of a theta function, and we can find it from
the formulas for logarithmic derivatives given in Section 20.19 on page 675.

Here are some special values of these functions:

k′ =
√

1 − k2,

Θ(0, k) = Θ(K(k), k) =

√
2k′K(k)

π
,

H(0, k) = 0, H(K(k), k) =

√
2kK(k)

π
,

H(u, 0) = 0 × sign(u), Θ(u, 0) = 1,
H(u, 1) = 0 × sign(u), Θ(u, 1) = 0,
Z(0, k) = Z(π/2, k) = 0 Z(u, 1) = sn(u, 1) = tanh(u).

The functions are plotted in Figure 20.15, and have these symmetry and periodicity properties:

Θ(−u, k) = +Θ(u, k), Θ(u + 2K(k), k) = +Θ(u, k),
H(−u, k) = −H(u, k), H(u + 2K(k), k) = −H(u, k),
Z(−u, k) = −Z(u, k), Z(u + 2K(k), k) = +Z(u, k),

20.21. Jacobian Eta, Theta, and Zeta functions 681

H(2nK(k), k) = 0, Z(nK(k), k) = 0, for n = 0, 1, 2,

The Theta and Zeta functions can also be computed from the arithmetic-geometric mean (AGM) algorithm result
arrays returned by our ELJAG() function [AS64, §16.35]:

m = k2, m1 = 1 − m,

a0 = 1 b0 =
√

m1 c0 =
√

m,

log(Θ(u, k)) = 1
2 log

(
2
√

m1K(k)
π

)
+ 1

2 log
(

cos(φ1 − φ0)

cos(φ0)

)
+

1
4 log(sec(2φ0 − φ1)) +

1
8 log(sec(2φ1 − φ2)) + · · · +

2−(n+1) log(sec(2φn−1 − φn)),
Z(u, k) = c1 sin(φ1) + c2 sin(φ2) + · · · + cn sin(φn).

Although those relations are straightforward to evaluate, they are subject to subtraction loss in many places, and the
errors are magnified near poles of the secant function (recall that sec(φ) = 1/ cos(φ)). It is therefore preferable to
compute Θ(u, k) and Z(u, k) from their definitions in terms of Jacobian theta functions.

The mathcw library function families ELJH(u,q), ELJT(u,q), and ELJZ(u,q) compute the Jacobian Eta, Theta, and
Zeta functions from their relations to the θi(u, q) functions.

The Jacobian Zeta function is related to the Legendre elliptic functions of the first and second kind like this:

u = F(φ, k), for given φ and k,

Z(u, k) = E(φ, k)− uE(k)/K(k).

When the Zeta function is small, it may be the result of cancellation of the terms on the right-hand side, so the formula
does not provide a stable algorithm for determining the Zeta function. Nevertheless, it provides an independent test
of software implementations of five different elliptic functions, provided that the terms are suitably rearranged to
avoid subtraction loss.

A large test program, chkell.c, evaluates several of the mathematical relations between all of the elliptic func-
tions discussed in this chapter. Here is a fragment of its output on an AMD64 system for the double data type:

% dgcc -DMAXTEST=100000000 -I.. chkell.c ../libmcw.a && ./a.out

Test of ELJZ() versus ELLFI() & ELLEI() with 100000000 random arguments

Average error = 0.003 ulps
Maximum error = 4.057 ulps
phi = 0.10803920670680306 [0x1.ba8751b7dd324p-4]
k = -0.97475380456865568 [-0x1.f312ee408c436p-1]
E = 1.0603326785713263 [0x1.0f71f661580b9p+0]
K = 2.9097357998829532 [0x1.747239023fb42p+1]
u = F(phi,k) = 0.10823944089966656 [0x1.bb5947acd2812p-4]
ELJZ(u,k) = 0.06839625803509389 [0x1.1826acb6df412p-4]
ELLEI(u,k) = 0.10803876155813456 [0x1.ba86da397b00bp-4]
u * E / K = 0.03944338049551541 [0x1.431ec3a8b397dp-5]
EI - u * E / K = 0.06859538106261914 [0x1.18f778652134cp-4]
test(ELJZ(u,k)) = 0.10783963853060929 [0x1.b9b60e8b390d0p-4]
test(ELLEI()) = 0.10783963853060939 [0x1.b9b60e8b390d7p-4]
exact results = 99536754 / 100000000 = 99.54%
stddev(err) = 0.049 ulps

The test program uses fused multiply-add operations to construct the value of E(φ, k)− uE(k)/K(k) and recover the
error of division. Considering the amount of independent code, and the number of numerical operations required,
it is gratifying that all but a half percent of the tests show exact agreement. The worst-case error is only about twice
the two-ulps design target of the mathcw library, and the small standard deviation of the error suggests that such
large errors are likely to be rare.

682 Chapter 20. Elliptic integral functions

20.22 Weierstrass elliptic functions

The Nineteenth Century German mathematician Karl Weierstrass spent much of his long career working on elliptic
functions, and is one of those rare mathematicians with a special symbol attached to his name. The letter ℘ is a
stylized script p that identifies the Weierstrass elliptic function, although in older books, typographical limitations
sometimes force it to be written in calligraphic (P , P) or fraktur (P, p) styles.

The Handbook of Mathematical Functions devotes an entire chapter to the Weierstrass functions [AS64, Chapter 18]
[OLBC10, Chapter 23], whereas the Handbook of Elliptic Integrals relegates them to a section of an appendix [BF71,
pages 308–315]. There are also brief treatments in [Car77, §8.2] and [GRJZ07, §8.16]. More detail can be found in
[Law89, Chapters 6 and 7], which describes the properties of the Weierstrass functions, and treats their applications
to the motion of spinning bodies — ballistic projectiles, gyroscopes, spherical pendulums, and tops. Most of the
other books that we have cited in this chapter, and those on the computation of elementary and special functions,
make no mention at all of the Weierstrass functions, except for a short discussion, with C code, in [Bak92].

The Weierstrass ℘-function is normally introduced by defining its inverse as a particular elliptic integral that is
easily expressed with one of Carlson’s R-functions (see Section 20.8 on page 645):

℘−1(u, e1, e2, e3) =
∫ ∞

u
(4(t − e1)(t − e2)(t − e3))

−1/2 dt

= 1
2

∫ ∞

u
((t − e1)(t − e2)(t − e3))

−1/2 dt

= RF(u − e1, u − e2, u − e3), Carlson form,

≈ ellrf(u − e1, u − e2, u − e3), mathcw library form.

The parameters en are usually distinct real numbers, although symbolic-algebra systems permit them to be complex.
The integrand is symmetric in the en, so we can always arrange the last three parameters in descending order. Weier-
strass chose them under the constraint that their sum is zero, so there are really only two independent parameters
that are usually written as g2 and g3, with these relations to the en values:

e1 > e2 > e3, distinct and in descending order,

g1 = e1 + e2 + e3 = 0, zero-sum constraint,

g2 = −4(e1e2 + e1e3 + e2e3), sum of distinct pairs,

= 2(e2
1 + e2

2 + e2
3), sum of squares,

=
√

8(e4
1 + e4

2 + e4
3), sum of fourth powers,

g3 = 4e1e2e3, distinct product,

= 4
3 (e

3
1 + e3

2 + e3
3), sum of cubes.

The constraint on the en simplifies the cubic polynomial in the reciprocal square root in ℘−1(u, e1, e2, e3) by eliminating
the quadratic term:

4(t − e1)(t − e2)(t − e3) = 4t3 − 4(e1 + e2 + e3)t2+

4(e1e2 + e1e3 + e2e3)t − 4e1e2e3

= 4t3 − g2t − g3.

The en are clearly the roots of the cubic polynomial, and given only the gn, recovering the en means that we have to
solve the cubic for those roots. Explicit formulas are known for the roots of a cubic equation, but they are complicated
expressions. Here is what the roots look like for the Weierstrass cubic:

a = 27g3 + 3
√
−3g3

2 + 81g2
3, first intermediate variable,

b = 3
√

a, second intermediate variable,

c = g2/b, third intermediate variable,

e1 =
1
6 (b + 3c), first root,

20.22. Weierstrass elliptic functions 683

e2 = − 1
12

(
b + 3c +

√
3(b − 3c)i

)
, second root,

e3 = − 1
12

(
b + 3c −

√
3(b − 3c)i

)
, third root.

Roots e2 and e3 are complex conjugates, and even when the three roots are real, the variables a, b, and c are in general
complex.

Although the symbolic-algebra system routines mentioned later use arguments g2 and g3, our computational
formulas require the roots en. It therefore appears most sensible for code that works only in real arithmetic to use
arguments e1 and e2. If we instead start with g2 and g3, then the code requires extra compute time and complex
arithmetic to solve the cubic equation, and we introduce unnecessary errors in e1 and e2. For programming conve-
nience, we therefore provide two families, ELWE(&e1, &e2, g2, g3) and ELWG(&g2, &g3, e1, e2) for converting
between the differing argument conventions, and hiding the complex arithmetic. The functions remember their last
arguments and results for quick handling of the common case of repeated calls with unchanged arguments.

Because of its direct relation to the Carlson RF() function, the inverse Weierstrass elliptic function has this scaling
relation:

℘−1(su, se1, se2) = s−1/2℘−1(u, e1, e2), for nonzero scale factor s.

With the introduction of some additional variables, the Weierstrass elliptic integral can be converted to standard
Legendre form [BF71, page 308]:

k =

√
e2 − e3

e1 − e3
, elliptic modulus,

= sin(α), elliptic angle,

r =
√

e1 − e3, new variable r,

t = e1 + (r cot(θ))2, new variable θ,

= e3 + (r/s)2, new variable s,

℘−1(u, e1, e2, e3) = ℘−1(u, g2, g3), alternate form,

=
1
r

∫ φ

0
(1 − (k sin(θ))2)−1/2 dθ, Legendre form,

=
1
r

∫ y

0
((1 − s2)(1 − (ks)2))−1/2 ds, Jacobi form,

=
1
r

F(φ\α), first kind,

φ = am(ru, k), integration limit,

y = sn(ru, k), integration limit.

However, Carlson’s RF() function is clearly a much simpler representation of the inverse Weierstrass elliptic function.
Because the Jacobian elliptic function amplitude is the inverse of the Legendre incomplete elliptic function of the

first kind (see Section 20.15 on page 657), the Weierstrass elliptic function is related to the Jacobian elliptic functions
like this ([AS64, §18.9] and [BF71, page 309]):

℘(z, e1, e2, e3) = e1 + (r cs(rz, k))2 = e2 + (r ds(rz, k))2 = e3 + (r ns(rz, k))2.

We switched arguments here from real u to complex z to emphasize that the Weierstrass elliptic function is defined
over the entire complex plane, except at its poles.

The last relation may provide an optimal way to evaluate the Weierstrass elliptic function, because the needed
Jacobian function is likely to be more accurate than the other two when k ≈ ±1. However, because e3 < 0, the
formula may be subject to subtraction loss. If it is, then the first relation is a better choice.

The Weierstrass elliptic function satisfies these symmetry and scaling relations:

℘(−z, e1, e2) = ℘(z, e1, e2), ℘(sz, s−2e1, s−2e2) = s−2℘(z, e1, e2),

℘(−z, g2, g3) = ℘(z, g2, g3), ℘(sz, sg2, sg3) = s−2℘(z, s5g2, s7g3).

684 Chapter 20. Elliptic integral functions

0

20

40

60

80

100

-4 -3 -2 -1 0 1 2 3 4

el
w

p
(u

, 2
, 1

)

u

Weierstrass elliptic function

0

20

40

60

80

100

-4 -3 -2 -1 0 1 2 3 4

el
w

p
(u

, 1
0,

 1
)

u

Weierstrass elliptic function

-30

-20

-10

0

10

20

30

-4 -3 -2 -1 0 1 2 3 4

el
w

d
p

(u
, 2

, 1
)

u

Derivative of Weierstrass elliptic function

0.0

0.2

0.4

0.6

0.8

1.0

 0 10 20 30 40 50

el
w

ip
(u

, 2
, 1

)

u

Inverse of Weierstrass elliptic function

Figure 20.16: The Weierstrass elliptic function, its first derivative, and its inverse. The sharp peaks in ℘(u, e1, e2)
correspond to poles of the function. For the indicated roots, the inverse function is not defined for u < 2, but is finite
at u = 2.

Derivatives of the Weierstrass elliptic function have relatively simple forms:

p = ℘(z, g2, g3), convenient shorthand,

℘′(z, g2, g3) = p′ = ±
√

4p3 − g2 p − g3, first derivative,

℘′′(z, g2, g3) = p′′ = 6p2 − 1
2 g2, second derivative,

℘′′′(z, g2, g3) = 12pp′, third derivative,

℘(4)(z, g2, g3) = 12((p′)2 + pp′′), fourth derivative.

The sign of the first derivative is uncertain, because it is mathematically defined as the square of the relation shown
here. Our code sets the sign by estimating the derivative numerically, but that may not be reliable for some argument
regions. A mathematically correct sign requires another function, the Weierstrass sigma function, that we describe
and implement later.

Figure 20.16 shows the periodicity of the Weierstrass elliptic function for two different choices of roots en. It also
shows the derivative and inverse for one set of roots.

The Handbook of Mathematical Functions uses an alternate parameterization of the Weierstrass function, with two
arguments, ω1 and ω2, that are the periods of the function:

k =

√
e2 − e3

e1 − e3
, elliptic modulus,

20.22. Weierstrass elliptic functions 685

ω1 = K(k)/
√

e1 − e3, period of real part,

ω2 = iK′(k)/
√

e1 − e3, period of imaginary part,

℘(z|ω1, ω2) = ℘(z, g2, g3) = ℘(z, e1, e2), alternate notations,

W = 2mω1 + 2nω2, for integers m and n,

g2 = 60
+∞

∑
m,n=−∞

W−4, exclude term with m = n = 0,

g3 = 140
+∞

∑
m,n=−∞

W−6, exclude term with m = n = 0.

Those relations are all that we need to convert between any pair of (ω1, ω2), (g2, g3), and (e1, e2). However, for
computation, it is clearly much simpler to work with the en and one of three Jacobian elliptic functions. The sums of
inverse powers of W converge poorly if |W| < 1, which happens if the roots en are widely separated. We therefore
do not provide any library support for converting from (ω1, ω2) to the other argument pairs, but we do supply
ELWO(&omega1, &omega2, e1, e2) for deriving the periods from the roots. To avoid complex arithmetic in the code,
the returned value omega2 must be multiplied by the imaginary unit, i, to obtain the mathematical value ω2. In
practical applications, it is almost certain that either the en or the gn are known from the problem specification, and
the ωk are then derived values that are of interest only because they determine the periods of the real and imaginary
parts of the Weierstrass functions.

Maple provides the Weierstrass elliptic function as WeierstrassP(z, g2, g3), but does not offer the inverse of
that function. It also supplies WeierstrassPPrime(z, g2, g3) for computing the first derivative. Mathematica has
WeierstrassP[z, {g2, g3}], InverseWeierstrassP[z, {g2, g3}], and WeierstrassPPrime[z, {g2, g3}], where
the gn arguments must be grouped in a braced list.

PARI/GP has substantial support for algebra with elliptic curves, but not particularly for elliptic functions. How-
ever, it is possible to coax out a value of the Weierstrass elliptic function with a call to ellwp(ellinit([0, 0, 0,
-g2/4, -g3/4]), z).

None of the other symbolic-algebra systems mentioned in this book appears to support the Weierstrass elliptic
functions.

In the mathcw library, we provide the families ELWP(u, e1, e2) and ELWIP(u, e1, e2) for the Weierstrass ellip-
tic function and its inverse, and ELWDP(u, e1, e2) for the first derivative. Their code is a straightforward imple-
mentation of the relations given in this section of those functions to the Jacobian, Carlson, and Weierstrass elliptic
functions.

If e1 ≈ e2, then the derived modulus k ≈ 1, and accurate determination of K(k) requires a reliable value of k − 1.
Consequently, the mathcw library provides another conversion family, ELWK(&k, &km1, e1, e2) to compute both k
and k − 1. It works by rewriting the expression inside the square root like this:

k =
√
(e2 − e3)/(e1 − e3)

=
√
(e1 − e3 − e1 + e2)/(e1 − e3)

=
√

1 − (e1 − e2)/(e1 − e3)

=
√

1 + x,
x = −(e1 − e2)/(e1 − e3),

k − 1 =
√

1 + x − 1
= d.

To find d, ELWK() defines a function f (d) = (1 + x)− (1 + d)2, and then uses fast Newton–Raphson iterations (see
Section 2.2 on page 8) to improve the initial estimate of d. By ensuring an accurate starting point, the quadratic
convergence of the Newton–Raphson algorithm means that at most two iterations are needed. The critical code
fragment in file elwkx.h looks like this:

r = (e2 - e3) / (e1 - e3);

686 Chapter 20. Elliptic integral functions

if (r <= FP(0.25)) /* then k <= 1/2 */
{

k = SQRT(r);
km1 = ONE - k;

}
else /* 1/2 < k */
{

fp_t d, x;
volatile fp_t onepx;

x = -(e1 - e2) / (e1 - e3);

onepx = ONE + x;
STORE(&onepx);

if (onepx == ONE) /* then x is tiny */
d = (FP(0.5) + (FP(-0.125) + FP(0.0625) * x) * x) * x;

else
d = SQRT(onepx) - ONE;

d = (d * d + x) / (TWO + d + d); /* 1st Newton-Raphson iteration */
d = (d * d + x) / (TWO + d + d); /* 2nd Newton-Raphson iteration */
km1 = d;
k = ONE + km1;

}

When x is tiny, d is obtained from a third-order Taylor series in compact Horner form. Otherwise, a call to SQRT()
finds an almost-correct value of d.

Weierstrass also introduced functions related to integrals of ℘(u, g2, g3):

ζw(u, g2, g3) = 1/u −
∫ u

0
(℘(z, g2, g3)− 1/z2) dz, zeta function,

ζ ′w(u, g2, g3) = −℘(u, g2, g3), derivative of zeta function,

σw(u, g2, g3) = u exp(
∫ u

0
(℘(z, g2, g3)− 1/z2) dz), sigma function,

σ′
w(u, g2, g3)/σw(u, g2, g3) = ζw(u, g2, g3). logarithmic derivative of sigma function.

We add the w subscript to distinguish them from other, and better-known, functions named by the Greek letters zeta
and sigma, although publications about those functions omit that subscript.

The Weierstrass sigma and zeta functions satisfy these symmetry and scaling relations:
σw(−z, e1, e2) = −σw(−z, e1, e2), ζw(−z, e1, e2) = −ζw(−z, e1, e2),

σw(−z, g2, g3) = −σw(−z, g2, g3), ζw(−z, g2, g3) = −ζw(−z, g2, g3),

σw(su, s−2e1, s−2e2) = sσw(u, e1, e2), ζw(su, s−2e1, s−2e2) = (1/s)ζw(u, e1, e2),

σw(su, s−4g2, s−6g3) = sσw(u, g2, g3), ζw(su, s−4g2, s−6g3) = (1/s)ζw(u, g2, g3).

The sigma and zeta functions are graphed in Figure 20.17 on the facing page. They are not elliptic functions, be-
cause they are not periodic. Instead, they are called quasi-periodic, because they obey these relations [BF71, pages 150
and 155]:

k =

√
e2 − e3

e1 − e3
, elliptic modulus,

q = nome(k), elliptic nome,

η1 = − π2

12ω2
1

θ′′′1 (0, q)
θ′1(0, q)

, intermediate constant,

σw(u + 2ω1, e1, e2) = − exp(2η1(u + ω1))σw(u, e1, e2), sigma translation,

20.22. Weierstrass elliptic functions 687

-30

-20

-10

0

10

20

30

-5 -4 -3 -2 -1 0 1 2 3 4 5

el
w

s(
u

, 2
, 1

)

u

Weierstrass sigma function

-30

-20

-10

0

10

20

30

-5 -4 -3 -2 -1 0 1 2 3 4 5

el
w

s(
u

, 1
0,

 1
)

u

Weierstrass sigma function

-30

-20

-10

0

10

20

30

-5 -4 -3 -2 -1 0 1 2 3 4 5

el
w

z(
u

, 2
, 1

)

u

Weierstrass zeta function

-30

-20

-10

0

10

20

30

-5 -4 -3 -2 -1 0 1 2 3 4 5

el
w

z(
u

, 1
0,

 1
)

u

Weierstrass zeta function

Figure 20.17: The Weierstrass sigma and zeta functions for (e1, e2) = (2, 1) and (10, 1).
The sigma function grows rapidly outside the range of u shown here, overflowing in IEEE 754 64-bit arithmetic
before |u| = 49 (left) and |u| = 19 (right).
On the real axis, the zeta function has poles at even multiples of ω1 ≈ 1.009 (left) and 0.419 (right).

ζw(u + 2ω1, e1, e2) = ζw(u, e1, e2) + 2η1, zeta translation.

The exponential function in the relation for the sigma function explains the growth seen in Figure 20.17. The additive
constant 2η1 accounts for the upward movement of the zeta-function curves as u increases.

The Weierstrass sigma and zeta functions can be computed from their relations to the Jacobian Eta function and
its derivatives [GRJZ07, §8.193]:

k =

√
e2 − e3

e1 − e3
, elliptic modulus,

λ = e1 − e3, difference of extremal roots,

ω1 = K(k)/
√

λ, period of real part,

η1 = ζ(ω1) =
−ω1λ

3
H′′′(0, k)
H′(0, k)

, intermediate variable,

σw(u, e1, e2) =
1√
λ

exp
(

η1u2

2ω1

)
H(u

√
λ, k)

H′(0, k)
, Weierstrass sigma function,

ζw(u, e1, e2) =
η1u
ω1

+
√

λ
H′(u

√
λ, k)

H(u
√

λ, k)
, Weierstrass zeta function.

688 Chapter 20. Elliptic integral functions

0

1

2

3

4

5

-10 -5 0 5 10

u
lp

s

u

Errors in elws(u, 2, 1)

0

1

2

3

4

5

-10 -5 0 5 10

u
lp

s

u

Errors in elwz(u, 2, 1)

Figure 20.18: Errors in Weierstrass sigma and zeta functions for the IEEE 754 64-bit format, with en values chosen
randomly from a logarithmic distribution in the interval [FP_T_MIN, 100]. Although most errors are small for the
illustrated range of u, peak errors reach 1550 ulps for the sigma function, and 3750 ulps for the zeta function.
Plots for other data types are qualitatively similar, and thus, not shown.

We consequently extend the mathcw library with the function family ELJH4(result, u, k) that computes a four-
element vector with the values H(u, k), H′(u, k), H′′(u, k), and H′′′(u, k). Recall from Section 20.21 on page 679
that H(u, k) is a Jacobian theta function with a scaled argument, and that function in turn is the sum of an infinite
Fourier series. The coefficients in that series depend on the elliptic nome, q(k), but are independent of u, so the
derivative affects only the trigonometric factor, sin((2n − 1)v) = sin(au). The first, second, and third derivatives of
that factor are a cos(au), −a2 sin(au), and −a3 cos(au). We can therefore compute the n-th term of all four series with
one call to our SINCOS() family, and when u = 0, we can avoid that call entirely, because we know that sin(0) = 0
and cos(0) = 1. The coefficients require powers of the nome, but are identical for all four series. Thus, we can
compute the four results with just a bit more work than is needed in ELJH(u,k) for finding H(u, k) alone. In addition,
because an argument u = 0 occurs in three places in our formulas, we include separate code for that case, setting
H(0, k) = H′′(0, k) = 0 without unnecessary computation.

Like others in our elliptic-function family, our code for ELJH4(result, u, k) remembers the arguments and
result array so that a subsequent call with unchanged arguments can return the saved results quickly, without further
computation.

Maple supplies the Weierstrass sigma and zeta functions as WeierstrassSigma(z, g2, g3) and Weier-
strassZeta(z, g2, g3). Mathematica provides WeierstrassSigma[z, {g2, g3}] and WeierstrassZeta[z, {g2,
g3}]. We provide them in the mathcw library in real arithmetic as the families ELWS(u, e1, e2) and ELWZ(u, e1,
e2), and both use ELWK() to compute accurate values of k and k − 1. The measured errors in our implementation are
shown in Figure 20.18.

The rapid growth in the sigma function, and the presence of poles in the zeta function, as shown in Figure 20.17
on the previous page, tell us that we cannot expect high accuracy in the growth regions without access to high-
precision arithmetic. Consequently, our implementations of those two functions cannot meet the accuracy goal of
the mathcw library. We do not use the hp_t type in the code for the sigma and zeta function, but we do make use of
their Taylor-series expansions to handle accurately the case of small arguments. We therefore recommend that users
of those functions call only the functions of the highest precision available.

The Weierstrass sigma function provides an answer to the question of the correct sign of the first derivative of the
Weierstrass elliptic function [Law89, page 158]:

℘′(u, e1, e2) = −σw(2u, e1, e2)/σ4
w(u, e1, e2).

The sigma function is real for real arguments, so the denominator on the right-hand side is necessarily positive. The
sign of the derivative is therefore the opposite of that of the sigma function in the numerator. When an implemen-
tation of the sigma function is available, that relation also provides an independent check of our software in the

20.23. Weierstrass functions by duplication 689

ELWDP() family.

20.23 Weierstrass functions by duplication

The Weierstrass functions satisfy argument-doubling relations ([AS64, §18.4], [OLBC10, §23.10]):

℘(2z, e1, e2) = −2℘(z, e1, e2) +
1
4

(
℘′′(z, e1, e2)

℘′(z, e1, e2)

)2

,

σw(2z, e1, e2) = −℘′(z, e1, e2)(σw(z, e1, e2))
4,

ζw(2z, e1, e2) = 2ζw(z, e1, e2) +
ζ ′′′w (z, e1, e2)

2ζ ′′w(z, e1, e2)
.

The derivatives needed in those equations have simple forms that require only the Weierstrass ℘ function:

p = ℘(z, g2, g3), ζ ′w(z, e1, e2) = −p,

p′ = ±
√

4p3 − g2 p − g3, ζ ′′w(z, e1, e2) = −p′,

p′′ = 6p2 − 1
2 g2, ζ ′′′w (z, e1, e2) = −p′′.

Recall the advice at the end of the previous section on how to determine the correct sign of p′.
Coquereaux, Grossmann, and Lautrup [CGL90] published an algorithm for computing ℘(z, e1, e2) that combines

the duplication relations with rapidly convergent small-argument series expansions that are easily generated with a
symbolic-algebra system:

℘(z, g2, g3) = z−2 +
g2

20
z2 +

g3

28
z4 +

g2
2

1200
z6 +

3g2g3

6160
z8 + · · · ,

σw(z, g2, g3) = z − g2

240
z5 − g3

840
z7 − g2

2

161 280
z9 − g2g3

2 217 600
z11 + · · · ,

ζw(z, g2, g3) = z−1 − g2

60
z3 − g3

140
z5 − g2

2

8400
z7 − g2g3

18 480
z9 − · · · .

If z is small, then for a suitably chosen positive integer n, we divide z by 2n (an exact operation in binary arith-
metic) to get a tiny value for which the series can be summed to machine precision. We then repeatedly apply the
duplication formula n times to recover the original z, and the corresponding function value.

For the Weierstrass ℘ function, a hoc implementation that uses a three-term series is short:

func crlwp(z, e1, e2) \
{ # compute Weierstrass P(z, e1, e2) by duplication rule

global __CRLWP_N, __TWO_TO_CRLWP_N

e3 = -(e1 + e2)
g2 = 2 * (e1**2 + e2**2 + e3**2)
g3 = 4 * e1 * e2 * e3
z0 = z / __TWO_TO_CRLWP_N
z0sq = z0 * z0
pk = 1 / z0sq + ((g2 / 20) + (g3 / 28) * z0sq) * z0sq

for (k = 1; k <= __CRLWP_N; ++k) \
{

pksq = pk * pk
t = (6 * pksq - g2 / 2)**2
v = 4 * ((4 * pksq - g2) * pk - g3)
pk = -2 * pk + t / v

}

return (pk)
}

690 Chapter 20. Elliptic integral functions

There are, of course, practical considerations that prevent our simple prototype from being a complete solution for
computing ℘(z, e1, e2):

� Arguments of ±0, Infinity and NaN are not handled properly.

� What value do we choose for n (the global variable __CRLWP_N)? Execution time is proportional to n, so we pre-
fer it to be small. However, a large value of n makes the series variable z0 small, allowing the series expansion
to be truncated to fewer terms.

� If n is too large, then for small z, we may find that z/2n underflows to subnormals or zero in floating-point
arithmetic. That makes the initial pk large but inaccurate, or infinite, and the loop produces a NaN result from
division of infinities.

� If z is sufficiently small, then only the leading term of the series matters, and we can immediately return z−2.
The code must therefore be extended to make such a check, and in a C implementation, also set errno to
ERANGE.

� For a fixed n, numerical experiments for a reasonable range of arguments z, e1, and e2 can compare the com-
puted function values with those from a higher-precision implementation by another method, such as the
mathcw library function family ELWP(u, e1, e2), and determine the average and extreme errors. Repeating
the experiments for different n values allows us to pick an optimal n for each floating-point format. Such ex-
periments recommend values n = 4, 7, 9, and 15 for a three-term series in the 32-bit, 64-bit, 80-bit, and 128-bit
IEEE 754 formats for z in (0, 1] and e1 and e2 in (0, 10]. Using a five-term series reduces the term count from 15
to 11 in the last case.

� If the floating-point base is β > 2, then the initial argument reduction and repeated doublings are no longer
exact operations, so we introduce argument error.

� How does the error in the initial series, and in a nonbinary base, in the reduced and doubled arguments,
propagate?

The cited article shows mathematically that, for the Weierstrass ℘ function, error growth is not a serious problem,
and our numerical experiments support that, with average errors in the 64-bit IEEE 754 format below 0.85 ulps,
although maximum errors reach 1300 ulps for e1 ≈ 10.

20.24 Complete elliptic functions, revisited

Fukushima observes that some of the elliptic functions required in astrophysics applications appear in rate-determin-
ing computational steps, so fast implementations are desirable [FI94, Fuk09a, Fuk09b, Fuk10, Fuk11, Fuk12, Fuk13a,
Fuk13b]. In his recent treatment [Fuk09a] of the complete elliptic functions, K(k) and E(k), Fukushima uses separate
polynomial fits centered on intervals of width 0.1 for k in [0, 0.8], and for k in [0.8, 0.85] and [0.85, 0.9]. For the more
difficult region with k in [0.9, 1], where the functions exhibit logarithmic behavior, K(k) → ∞ and E(k) → 1, he uses
a relation that we could not introduce at the start of this chapter because it requires the complementary nome, q′:

K(k) = − log(q′)K′(k)/π,

E(k) = K(k) + (1
2 π − E′(k)K(k))/K′(k).

The relation for E(k) is just a rewriting of the Legendre relation. Because there is severe subtraction loss in that relation
as k → 1, Fukushima goes to considerable trouble to find an auxiliary function that reduces that error. For k > 0.9,
we have q′ < 0.014, so Fukushima uses a rapidly convergent series expansion to compute q′. Because k ≈ 1 is rare in
practice, the extra work to determine K(k) and E(k) for k in [0.9, 1] is unlikely to matter much.

We therefore investigated a similar approach, using fits to rational polynomials with k in intervals of width 1
8 ,

except for the last interval, which is shortened to [7
8 , 31

32]. The fits are arranged so that the polynomial provides a
small correction to an exactly representable value chosen near the average function value on the interval, and the
polynomial variable is usually relative to the interval midpoint:

x = k − kmid, K(k) = Kmid +R(x), E(k) = Emid + S(x).

20.25. Summary 691

The polynomial contribution is less than 8% of the function value in all of the intervals, except for the last, where
it does not exceed 13%, so there is never subtraction loss. The interval boundaries are exactly representable in both
binary and decimal floating-point arithmetic, and the interval can be selected quickly via the branch table compiled
from a switch statement.

For the final interval [31
32 , 1], instead of using the complementary functions and nome, and yet another compli-

cated auxiliary function, we instead use the simple relations to two of Carlson’s functions that we presented in
Section 20.10 on page 650:

e = 1 − k2, K(k) = RF(0, e, 1), E(k) = RF(0, e, 1)− 1
3 k2RD(0, e, 1).

The new code provides optional, longer, but faster and more accurate, alternatives to the inner blocks that invoke the
arithmetic-geometric functions in the code for ELLK() and ELLE() shown in Section 20.5 on page 632 and Section 20.6
on page 638. Testing of the new code shows that the errors lie below 0.5 ulps, except in the small final interval, k in
[31

32 , 1], that is rarely needed in applications. In that region, errors up to 1.2 ulps in ELLK(), and up to 7 ulps in ELLE(),
can be removed entirely by computing in the next higher precision, when available.

20.25 Summary

The utility of the arithmetic-geometric mean for computation is not widely appreciated, and few books on numerical
analysis even mention it. Despite its grade-school simplicity, we found that considerable care is needed to produce
a robust library routine that is free of underflow and overflow, and correctly handles the special values of IEEE 754
arithmetic.

Although we do not use the AGM-like algorithms for the logarithm, exponential, inverse tangent, inverse co-
sine, and inverse hyperbolic cosine in our library code for those functions, the simplicity of those algorithms makes
them useful for generating independent values for function testing. The catch is that, because the AGM is not self
correcting, the test values must be computed in higher-than-working precision. The algorithms are also useful for
implementing those functions in arbitrary-precision arithmetic, because they avoid precision- and range-dependent
polynomial approximations.

We saw that the ordinary AGM is quadratically convergent as long as we handle zero arguments separately.
However, the convergence of the AGM-like algorithms for the trigonometric and hyperbolic functions needs to be
analyzed mathematically and tested numerically. Generating just one or two bits per iteration is unlikely to be the
fastest way to compute a function in software.

Application of the AGM to the computation of the complete elliptic integrals of the first and second kinds appears
straightforward at first, but we found that careful analysis is needed to mitigate the problem of severe subtraction
loss, and premature overflow and underflow. We also discovered that even more care is required near the poles of
K(m) and K′(m) to avoid returning a zero value, instead of Infinity, near those poles.

Computing the difficult incomplete elliptic integral functions was a daunting task before Carlson showed that
choosing symmetric functions has great advantages, and that a few iterations of the duplication rule, followed by
summing a short Taylor-series expansion, is a practical way to compute the basic four functions. Application of the
scaling rules eliminates the problem of premature overflow and underflow, and shortens the inner loops. Carlson’s
algorithms are not as fast as the AGM algorithm for the easier complete elliptic integral functions, but are quick
enough to be practical. They also eliminate the need for different approximations in different argument regions,
work for any number of arguments, and carry the additional bonus that the RC(x, y) auxiliary function provides an
easy route to ten elementary functions, and does so with errors below 2.3 ulps in IEEE 754 arithmetic.

The Jacobian elliptic functions are computed with two-term Taylor-series expansions, and the vector AGM. The
Jacobian theta functions are handled by summing infinite series to machine precision. The related Neville theta
functions, and the Jacobian Eta, Theta, and Zeta functions are then easily obtained from the basic four Jacobian theta
functions.

Although the Jacobian and Neville functions are periodic, exact argument reduction requires high-precision val-
ues of the complete elliptic function of the first kind, K(k). That is impractical in programming languages that do
not supply arbitrary-precision arithmetic, so our implementations in C necessarily suffer accuracy loss for large ar-
guments u and v. There is also accuracy loss in cn(u, k) and dn(u, k), and functions that depend on them, when
k is close to 1, and inadequate, or no, higher-precision arithmetic is available to compute the Jacobian amplitude,
φ = am(u, k), with sufficient extra digits to recover its difference from ± 1

2 π to machine accuracy.

692 Chapter 20. Elliptic integral functions

Computation of three of the Weierstrass elliptic functions is straightforward because of their relations to functions
developed earlier in the chapter. The major complication is the need for complex arithmetic to find the roots from
the parameters g2 and g3, but our complex-as-real fp_cx_t data type and its support functions provide a portable
solution that can be hidden inside the ELWE() family. The Weierstrass sigma and zeta functions depend on the
complete elliptic function of the first kind, K(k), and on the Jacobian Eta function and its low-order derivatives.
Those values are calculated by the ELJH4() family.

To supplement the citations to various books and papers on the AGM iteration given in the first part of this
chapter, the Web site http://www.math.utah.edu/pub/tex/bib/index-table-a.html#agm provides an extensive,
and growing, bibliography on that subject.

21 Bessel functions

EACH CYCLE OF A RECURSIVE PROCESS NOT ONLY GENERATES ITS OWN

ROUNDING ERRORS, BUT ALSO INHERITS THE ROUNDING ERRORS

COMMITTED IN ALL PREVIOUS CYCLES. IF CONDITIONS ARE UNFAVORABLE,
THE RESULTING PROPAGATION OF ERRORS MAY WELL BE DISASTROUS.

— WALTER GAUTSCHI

Computational Aspects of Three-Term Recurrence Relations (1967).

A large family of functions known as Bessel1 functions is treated in four chapters of the Handbook of Mathematical
Functions [AS64, Chapters 9–12], with more coverage than any other named functions in that famous compendium.
Although those functions were first discovered by Daniel Bernoulli (1700–1782), who in 1732 worked with the order-
zero function that is now known as J0(x), it was Friedrich Wilhelm Bessel who generalized them about 1824 and
brought them to mathematical prominence, and they bear his name, instead of that of Bernoulli. Leonhard Euler
(1707–1783) discussed their generalizations to arbitrary integer orders, Jn(x), in 1764. The definitive textbook treat-
ment in English, first published in 1922, is A Treatise on the Theory of Bessel Functions [Wat95], a revised reprint of the
1944 second edition.

The Bessel functions arise in several areas of astronomy, engineering, mathematics, and physics as solutions
of certain equations containing unknown functions and their derivatives. Such equations are known as differential
equations, a topic that is outside the scope of this book. The Bessel functions appear as analytic solutions of those
equations, particularly in problems with cylindrical and spherical geometries, and older literature commonly refers
to them as cylinder and sphere functions. Many textbooks on mathematical physics describe applications of Bessel
functions to topics such as diffraction of light, electromagnetic potentials, planetary motion, radiation from moving
charges, scattering of electromagnetic waves, and solutions of the Helmholtz equation, the Laplace equation and the
Poisson equation [AW05, AWH13, Jac75, MH80, MF53, PP05].

Computation of Bessel functions is treated in several books on special functions, including [GDT+05, Chapter 7],
[GST07, Chapters 7 and 12], [HCL+68, Section 6.8], [Luk69a], [Luk77, Chapters 17–19], [Mos89, Chapter 6], [Olv74,
Chapters 2 and 7], [Tho97, Chapters 14–15], and [ZJ96, Chapters 5–11]. Software algorithms for the Bessel function
family are also described in numerous research articles [ADW77a, ADW77b, Amo86, BS92, Cai11, Cam80, CMF77,
Cod80, Cod83, CS89, CS91, Cod93b, Gau64, GST02, GST04, HF09, Har09b, Hil77, Hil81, Jab94, JL12, Kod07, Kod08,
Kra14, Sko75, VC06, Wie99]. The journals Mathematics of Computation and SIAM Journal on Mathematical Analysis con-
tain dozens of articles on the computation of Bessel functions, and their derivatives, integrals, products, sums, and
zeros, although without software.2 A search of the journals Computer Physics Communications and Journal of Compu-
tational Physics finds almost 50 articles on the computation of Bessel functions, and many more on their applications.
The MathSciNet database has entries for about 3000 articles with Bessel in their titles, and the zbMATH database lists
more than 8000 such articles.

Some of the Bessel functions that we treat in this chapter are special cases of more general functions, the Coulomb
wave functions (see [AS64, Chapter 14] and [OLBC10, Chapter 33]), and some publications in the cited physics journals
take that approach. However, it seems unlikely to this author that a three-parameter function that is even more
difficult computationally can provide a satisfactory route to the two-parameter Bessel functions for the argument
ranges and accuracy required for the mathcw library.

Bessel functions are normally defined in terms of real orders, ν (sometimes restricted to nonnegative values),
and complex arguments, z, although complex orders are possible [Kod07]. However, this book deals mostly with
the computation of functions of real arguments. Among all the functions treated in this book, the Bessel functions

1Friedrich Wilhelm Bessel (1784–1846) was a German astronomer and mathematician. Bessel achieved fame in astronomy, cataloging the
positions of more than 50,000 stars, and was the first to use parallax to calculate the distance of stars from the Earth. He was appointed director
of the Königsberg Observatory at the age of 26 by the King of Prussia. A large crater on the Moon, and Asteroid 1552 Bessel, are named after him.

2Extensive bibliographies of the contents of those journals are available at links from http://www.math.utah.edu/pub/tex/bib/
index-table.html.

© Springer International Publishing AG 2017
N.H.F. Beebe, The Mathematical-Function Computation
Handbook, DOI 10.1007/978-3-319-64110-2_21

693

694 Chapter 21. Bessel functions

are the most difficult to determine accurately, and their accurate computation for complex arguments is much harder
than for real arguments. In this chapter, we adopt the convention that mathematical formulas are usually given for
real ν and complex z, but when we discuss computation, we consider only integer orders n and real arguments x.
Nevertheless, keep in mind that many applications of Bessel functions, particularly in physics problems, require real
orders and complex arguments, and sometimes, the orders are large, and the magnitudes of the real and imaginary
parts differ dramatically. Our implementations of several of the Bessel functions do not address those needs. Indeed,
a completely satisfactory software treatment of those functions in freely available and highly portable software re-
mains elusive. The GNU Scientific Library [GDT+05] handles the case of real orders, but at the time of writing this, is
restricted to real arguments.

21.1 Cylindrical Bessel functions

There are about two dozen members of the Bessel function family, as shown in Table 21.1 on the next page. None of
them is mentioned in the ISO C Standards, but implementations of the C library on various flavors of UNIX since the
mid-1970s have included functions for computing J0(x), J1(x), and Jn(x), as well as Y0(x), Y1(x), and Yn(x), but only
for integer orders and real arguments. The Fortran 2008 Standard [FTN10] introduces them to that language with
names like bessel_j0(x). The POSIX Standards require those six functions, but confusingly, their software names
are spelled in lowercase, despite the fact that they compute the cylindrical, rather than the spherical, Bessel functions.
Their prototypes look like this:

double j0 (double x); double y0 (double x);
double j1 (double x); double y1 (double x);
double jn (int n, double x); double yn (int n, double x);

There are companions for other floating-point types with the usual type suffixes. Particularly in the physics literature,
the function of the second kind is commonly referred to as the Neumann function, Nν(z), but it is identical to Yν(z).
For real arguments, the functions of the first and second kinds have real values, but the functions of the third kind
have complex values.

For the mathcw library, and this book, we implement the six Bessel functions required by POSIX, in each sup-
ported floating-point precision. We also supply the modified cylindrical Bessel companions, and the spherical func-
tions that correspond to each of the supported cylindrical functions. To augment those scalar functions, we provide
a family that returns in an array argument the values of sequences of Bessel functions with a single argument x and
orders k = 0, 1, 2, . . . , n. Such sequences are needed in series expansions with terms involving Bessel functions. The
sequence values may be computable more economically than by separate invocations of the functions for specific
orders and arguments.

The mathematical functions and software routines for the ordinary Bessel functions are related as follows:

J0(x) ≡ j0(x) = jn(0,x), J1(x) ≡ j1(x) = jn(1,x),
Y0(x) ≡ y0(x) = yn(0,x), Y1(x) ≡ y1(x) = yn(1,x).

For mathematical reasons that are discussed later when we develop computer algorithms, implementations of order-
n Bessel functions are almost certain to invoke the functions of a single argument directly for n = 0 and n = 1, rather
than providing independent computational routes to those two particular functions.

Symbolic-algebra systems include many of the Bessel functions listed in Table 21.1 on the facing page. The
functions of interest in the first part of this chapter, Jν(z) and Yν(z), are called

� BesselJ(nu,z) and BesselY(nu,z) in Maple and REDUCE,

� BesselJ[nu,z] and BesselY[nu,z] in Mathematica,

� bessel_j(nu,z) and bessel_y(nu,z) in Maxima,

� besselJ(nu,z) and besselY(nu,z) in Axiom and MuPAD, and

� besselj(nu,z) and besseln(nu,z) in PARI/GP.

Those systems permit nu to be real, and z to be complex, rather than restricting them to integer and real values,
respectively.

21.2. Behavior of Jn(x) and Yn(x) 695

Table 21.1: The Bessel function family. The subscripts are called the order of the function, and except as noted, may
be positive or negative. The order ν is any real number, the order n is any integer, and the order k is any nonnegative
integer. The argument z is any complex number, and for the Kelvin functions, the argument x is any nonnegative
real number.
Some authors call the functions of the first kind the regular functions, and those of the second kind, irregular functions.

Function Description
Jν(z) ordinary Bessel function of the first kind

Yν(z) ordinary Bessel function of the second kind, sometimes called the Neumann function or Weber’s function
Hν(z) ordinary Bessel function of the third kind, also known as the Hankel function
Iν(z) modified (or hyperbolic) Bessel function of the first kind

Kν(z) modified (or hyperbolic) Bessel function of the second kind, also called the Basset function and the Macdonald function
Nν(z) Neumann function, identical to Yν(z)
Zν(z) arbitrary ordinary Bessel function of first, second, or third kinds,
jn(z) spherical Bessel function of the first kind, equal to

√
π/(2z)Jn+1/2(z)

yn(z) spherical Bessel function of the second kind, equal to
√

π/(2z)Yn+1/2(z)
hn(z) spherical Bessel function of the third kind
in(z) modified spherical Bessel function of the first kind, equal to

√
π/(2z)In+1/2(z)

kn(z) modified spherical Bessel function of the second kind, equal to
√

π/(2z)Kn+1/2(z)
nn(z) spherical Neumann function, identical to yn(z)
Sn(z) Riccati–Bessel function of the first kind, equal to zjn(z)
Cn(z) Riccati–Bessel function of the second kind, equal to −zyn(z)
ζn(z) Riccati–Bessel function of the third kind, equal to zhn(z)

berk(x) Kelvin (or Thomson) function of the first kind
beik(x) Kelvin (or Thomson) function of the first kind
kerk(x) Kelvin (or Thomson) function of the second kind
keik(x) Kelvin (or Thomson) function of the second kind

Ai(z) Airy function, equal to (
√

z/3)
(

I−1/3(ξ)− I+1/3(ξ)
)
, where ξ is the Greek letter xi, and also equal to (1/π)

√
z/3K+1/3(ξ), where

ξ = (2/3)z3/2

Bi(z) Airy function, equal to
√

z/3
(

I−1/3(ξ) + I+1/3(ξ)
)

Hν(z) ordinary Struve function
Lν(z) modified Struve function
Jν(z) Anger’s function
Eν(z) Weber’s function

21.2 Behavior of Jn(x) and Yn(x)

A few of the ordinary Bessel functions of the first and second kinds are graphed in Figure 21.1 on the next page.
From the plots, and selected numerical evaluations, we can make some important observations that are relevant to
their computation:

� The functions of the first kind, Jn(x), look like damped cosine (n = 0) and sine (n > 0) waves, but their zeros
are not equally spaced. Instead, the zeros appear to get closer together as x increases, and differ for each value
of n. That means that argument reductions like those that we found for the trigonometric functions are not
applicable.

� Values of Jn(x) lie in [−1,+1], so intermediate overflow is unlikely to be a problem in their computation.

� The x position of the first positive maximum of Jn(x) and Yn(x), and their first positive nonzero root, increase
as n gets larger.

� For n > 0, Jn(10−p) ≈ O(10−np), so J1(x) is representable for tiny x, although the higher-order functions
underflow to zero.

� The functions of the second kind, Yn(x), have single poles at x = 0 for all n, and their zeros appear to get closer
together as x increases.

� The approach to the single pole in Yn(x) slows as n increases.

696 Chapter 21. Bessel functions

-1.0

-0.5

 0.0

 0.5

 1.0

 0 5 10 15 20

J n
(x

)

x

J0(x)

J1(x)
J2(x)

J5(x)
J10(x)

-1.0

-0.5

 0.0

 0.5

 1.0

 0 5 10 15 20
Y

n
(x

)
x

Y0(x)
Y1(x)

Y2(x)

Y5(x) Y10(x)

Figure 21.1: Ordinary Bessel functions of the first and second kinds, Jn(x) and Yn(x). The solid lines, and highest
positive maxima, correspond to n = 0.
The functions of the first kind can be extended to the negative axis through the relation Jn(−x) = (−1)n Jn(x), so
even orders are symmetric about the origin, and odd orders are antisymmetric.
The functions of the second kind have real values only for x ≥ 0; they have complex values when x is negative. For
integer orders, they all go to −∞ as x approaches zero.

� Values of Yn(x) lie in (−∞, 0.53], so overflow must be anticipated and handled for x ≈ 0. Numerical evaluation
with x set to the smallest representable floating-point number shows that Y0(x) is of modest size, but overflow
occurs in Yn(x) for all n > 0.

� Although both Jn(x) and Yn(x) decay as x increases, the attrition is not rapid. For example, we have J0(106) ≈
0.000 331, Y0(106) ≈ −0.000 726, J0(10600) ≈ 0.449 × 10−300, and Y0(10600) ≈ 0.659 × 10−300. Thus, in floating-
point arithmetic, the maxima of those functions cannot underflow for any representable x. Some deficient soft-
ware implementations of those functions, such as those in the GNU/LINUX run-time libraries, suffer prema-
ture underflow over most of the range of x, or produce spurious NaN results. Here is an example from that
operating system on an AMD64 platform when hoc is linked with the native math library:

hoc64> for (x = 1.0e7; x <= 1.0e18; x *= 10) \
hoc64> printf("%.2g % g\n", x, J0(x))
1e+07 -8.68373e-05
1e+08 3.20603e-05
1e+09 -qnan(0x31)
1e+10 -qnan(0x33)
1e+11 -qnan(0x35)
1e+12 -qnan(0x37)
1e+13 -qnan(0x39)
1e+14 -qnan(0x3b)
1e+15 -qnan(0x3d)
1e+16 -qnan(0x3f)
1e+17 0
1e+18 0

21.3. Properties of Jn(z) and Yn(z) 697

Native library improvements on that system removed some of those irregularities as this book was nearing
completion. However, tests on more than a dozen flavors of UNIX found that only MAC OS X, OSF/1, and
SOLARIS IA-32 (but not SPARC) produced expected results over most of the entire floating-point range, and
even those lost all significant digits for large arguments. The conclusion is that implementations of the Bessel
functions in UNIX libraries may be neither reliable nor robust.

� The oscillatory nature of the Bessel functions suggests that recurrence formulas are likely to suffer subtraction
loss for certain ranges of x.

� When x is large, there is insufficient precision in a floating-point representation to resolve the waves of the
functions, because consecutive floating-point numbers eventually bracket multiple wave cycles. The best that
we can hope for then is to get the correct order of magnitude of the waves.

In the next few sections, we investigate those graphical observations further, and make them more precise.

21.3 Properties of Jn(z) and Yn(z)

The ordinary Bessel functions of the first and second kinds have these limiting values, where ν is any real number, z
is a complex number, and e = exp(1):

Jν(z) ≈ (z/2)ν/Γ(ν + 1), z → 0, ν �= −1,−2,−3, . . . ,

Y0(z) ≈ (2/π) log(z), z → 0,

Yν(z) ≈ −(1/π)Γ(ν)(2/z)ν z → 0, ν > 0,

Jν(x) →
√

2/(πx) cos(x − νπ/2 − π/4), x → +∞, x � ν, ν ≥ 0,

Yν(x) →
√

2/(πx) sin(x − νπ/2 − π/4), x → +∞, x � ν, ν ≥ 0,

Jν(x) → (1/
√

2πν)(ex/(2ν))ν, ν → +∞, ν � x,

Yν(x) → −(1/
√

2πν)(ex/(2ν))−ν, ν → +∞, ν � x,

J0(0) = 1, Y0(0) = −∞,
Jn(0) = 0, Yn(0) = −∞, n > 0,

Jn(∞) = 0, Yn(∞) = 0.

The large-argument limits of Jν(x) and Yν(x) answer the question about the spacing of the roots: they are ulti-
mately separated by π, rather than squeezing ever closer together, as might be suggested by the function graphs for
small x. Table 21.2 on the following page shows a few of the roots, easily found in Maple with calls to BesselJZe-
ros(nu,k) and BesselYZeros(nu,k). For k � ν, higher roots of Jν(rν,k) = 0 and Yν(sν,k) = 0 can be estimated to
about three correct figures by the formulas

rν,k ≈ (k + ν/2 − 1/4)π, sν,k ≈ (k + ν/2 − 3/4)π.

In particular, that relation shows that the roots of the Bessel functions of orders ν − 1, ν, ν + 1, . . . are well separated,
a fact that has significance later in their evaluation by recurrence relations.

The functions have these symmetry relations:

Jn(−x) = (−1)n Jn(x), J−n(x) = (−1)n Jn(x), Y−n(x) = (−1)nYn(x).

They allow the computation for real arguments to be done for n ≥ 0 and x ≥ 0, followed by a negation of the
computed result when n is negative and odd.

For |x| � |ν|, the two Bessel functions have asymptotic expansions as linear combinations of cosines and sines,
like this:

θ = x − (ν/2 + 1/4)π,

Jν(x) �
√

2/(πx) (P(ν, x) cos(θ)− Q(ν, x) sin(θ)),

Yν(x) �
√

2/(πx) (Q(ν, x) cos(θ) + P(ν, x) sin(θ)).

698 Chapter 21. Bessel functions

Table 21.2: Approximate roots of ordinary Bessel functions, Jν(rν,k) = 0 and Yν(sν,k) = 0.

k
1 2 3 4 5 6 7 8 . . .

r0,k 2.405 5.520 8.654 11.792 14.931 18.071 21.212 24.352 . . .
r1/2,k 3.142 6.283 9.425 12.566 15.708 18.850 21.991 25.133 . . .
r1,k 3.832 7.016 10.173 13.324 16.471 19.616 22.760 25.904 . . .
r3/2,k 4.493 7.725 10.904 14.066 17.221 20.371 23.519 26.666 . . .
r2,k 5.136 8.417 11.620 14.796 17.960 21.117 24.270 27.421 . . .
r10,k 14.476 18.433 22.047 25.509 28.887 32.212 35.500 38.762 . . .
r100,k 108.836 115.739 121.575 126.871 131.824 136.536 141.066 145.453 . . .

s0,k 0.894 3.958 7.086 10.222 13.361 16.501 19.641 22.782 . . .
s1/2,k 1.571 4.712 7.854 10.996 14.137 17.279 20.420 23.562 . . .
s1,k 2.197 5.430 8.596 11.749 14.897 18.043 21.188 24.332 . . .
s3/2,k 2.798 6.121 9.318 12.486 15.644 18.796 21.946 25.093 . . .
s2,k 3.384 6.794 10.023 13.210 16.379 19.539 22.694 25.846 . . .
s10,k 12.129 16.522 20.266 23.792 27.207 30.555 33.860 37.134 . . .
s100,k 104.380 112.486 118.745 124.275 129.382 134.206 138.821 143.275 . . .

The right-hand sides of Jν(x) and Yν(x) are product-sum expressions of the form ab + cd that may be subject to
subtraction loss. Our PPROSUM() function family (see Section 13.24 on page 386) can evaluate them accurately.

P(ν, x) and Q(ν, x) are auxiliary functions defined by

μ = 4ν2,

P(ν, x) � 1 − (μ − 12)(μ − 32)

2! (8x)2 +
(μ − 12)(μ − 32)(μ − 52)(μ − 72)

4! (8x)4 − · · · ,

Q(ν, x) � μ − 12

8x
− (μ − 12)(μ − 32)(μ − 52)

3! (8x)3 +

(μ − 12)(μ − 32)(μ − 52)(μ − 72)(μ − 92)

5! (8x)5 − · · · .

Those series look complicated, but their terms can easily be generated by recurrence relations:

P(ν, x) � p0 + p1 + p2 + · · · ,
p0 = 1,

pk = − (μ − (4k − 3)2)(μ − (4k − 1)2)

2k(2k − 1)
× 1

(8x)2 × pk−1, k = 1, 2, 3, . . . ,

Q(ν, x) � q0 + q1 + q2 + · · · ,

q0 =
μ − 1

8x
,

qk = − (μ − (4k − 1)2)(μ − (4k + 1)2)

2k(2k + 1)
× 1

(8x)2 × qk−1, k = 1, 2, 3,

As we describe in Section 2.9 on page 19, asymptotic expansions are not convergent, but they can be summed as
long as term magnitudes decrease. The error in the computed function is then roughly the size of the omitted next
term in the sum, and that size then determines the available accuracy. For large order ν, the factor in the formulas
for the terms pk and qk is roughly ν4/(16k2x2), so as long as ν2 < x, convergence to arbitrary machine precision is
rapid, with each term contributing at least four additional bits to the precision of the sum.

Several published algorithms for Jν(x) and Yν(x) exploit the forms of the asymptotic expansions for P(ν, x) and
Q(ν, x) by using instead polynomial approximations in the variable t = 1/x2. To compute such approximations,
we first need closed forms for P(ν, x) and Q(ν, x). We can find P(ν, x) by multiplying the two equations involving
the Bessel functions by cos(θ) and sin(θ), respectively, adding the equations, and simplifying. The other function is

21.3. Properties of Jn(z) and Yn(z) 699

Table 21.3: Trigonometric formulas needed for the asymptotic formulas for the ordinary Bessel functions Jn(x) and
Yn(x), with θ = x − (n/2 + 1/4)π, and n ≥ 0. See the text for accurate computation of the sums and differences in
these formulas.

n mod 4 cos(θ) sin(θ)

0 +
√

1
2 (cos(x) + sin(x)) −

√
1
2 (cos(x)− sin(x))

1 −
√

1
2 (cos(x)− sin(x)) −

√
1
2 (cos(x) + sin(x))

2 −
√

1
2 (cos(x) + sin(x)) +

√
1
2 (cos(x)− sin(x))

3 +
√

1
2 (cos(x)− sin(x)) +

√
1
2 (cos(x) + sin(x))

found by swapping the trigonometric multipliers, and subtracting. We then have these results:

P(ν, x) =
√

πx/2 (Jν(x) cos(θ) + Yν(x) sin(θ)),

Q(ν, x) =
√

πx/2 (Yν(x) cos(θ)− Jν(x) sin(θ)).

Once the replacements for the asymptotic series have been evaluated, along with the two trigonometric func-
tions, both Bessel functions can be produced with little additional cost, and some software packages do just that.
Subtraction loss in the cosines and sines of shifted arguments can be prevented by using the double-angle formula
for the cosine, and then solving for the problematic sums and differences:

cos(2θ) = (cos(θ))2 − (sin(θ))2

= (cos(θ)− sin(θ))× (cos(θ) + sin(θ)),
cos(θ)− sin(θ) = cos(2θ)/(cos(θ) + sin(θ)),
cos(θ) + sin(θ) = cos(2θ)/(cos(θ)− sin(θ)).

When ν = 0, we require these functions:

cos(θ) = cos(x − (1/4)π)

=
√

1
2 (cos(x) + sin(x))

=
√

1
2

cos(2x)
cos(x)− sin(x)

,

sin(θ) = sin(x − (1/4)π)

= −
√

1
2 (cos(x)− sin(x))

= −
√

1
2

cos(2x)
cos(x) + sin(x)

.

For each of them, we use whichever of the second or third formulas that does not involve a subtraction.
When ν = 1, we get a reduction to the two cases just treated:

cos(θ) = cos(x − (3/4)π)

= sin(x − (1/4)π),
sin(θ) = sin(x − (3/4)π)

= − cos(x − (1/4)π).

For the general case of nonnegative integer orders, there are just four possibilities, summarized in Table 21.3.
Although our formulas for trigonometric sums and differences may require cos(2x), we do not normally compute

it by invoking the cosine function directly, for these reasons:

� The argument 2x overflows when x is near the overflow limit.

700 Chapter 21. Bessel functions

� The cosine computation is comparatively expensive when x is large.

� The argument 2x may be inexact for floating-point bases other than two, and if x is large, the computed cos(2x)
would then be wildly incorrect.

Instead, we use well-known trigonometric relations to compute it accurately from quantities that we already have:

cos(2x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2(cos(x))2 − 1, if | cos(x)| ≤ 1/2,
1 − 2(sin(x))2, if | sin(x)| ≤ 1/2,
(1 − tan(x)2)/(1 + tan(x)2), if tan(x)2 is outside (1

2 , 3
2),

−2 fma(sin(x), sin(x),− 1
2), if | sin(x)| ≤ | cos(x)|,

2 fma(cos(x), cos(x),− 1
2), otherwise.

The first two cases each cover about a third of the period of the cosine. The third case computes tan(x) =
sin(x)/ cos(x) instead of invoking the tangent function, and covers about a sixth of the period. Accuracy loss hap-
pens in the remaining sixth of the period, but it can be reduced by use of the fused multiply-add function call.
However, if 2x is finite and exact, as it is when β = 2, and sometimes is when β �= 2, then we call the cosine func-
tion in preference to the fused multiply-add function. There is a tradeoff between the last two alternatives, and in
practice, we also call the cosine function when 2x is not exact, but x is less than some cutoff, set at 200 in our code.

When the host arithmetic has wobbling precision, more care is needed in the application of the tangent formula.
We use it only when tan(x)2 < 1/2, and compute it as 1

2 (1 − tan(x)2)/(1
2 +

1
2 tan(x)2), to avoid leading zero bits in

the numerator and denominator. The value of tan(x) lies in [
√

1
3 ,
√

1
2] ≈ [0.577, 0.707], so neither it, nor the sine and

cosine from which it is computed, has leading zero bits. Were we to use the tangent formula when tan(x)2 > 3/2,
numerical experiments show that leading zero bits occur about 10% of the time.

The code for the computation of cos(2x) is needed in a half-dozen Bessel-function files, so it is defined as a private
function in the header file cosdbl.h.

The functions of the second kind have complex values for negative arguments, and the POSIX specification per-
mits implementations to return either −∞, or the negative of the largest normal number if Infinity is not supported,
or else a NaN. The global value errno is then set to EDOM.

The derivatives of the Bessel functions are:

dJn(x)/dx = nJn(x)/x − Jn+1(x),
dYn(x)/dx = nYn(x)/x − Yn+1(x).

From the derivatives, we find these error-magnification factors (see Section 4.1 on page 61):

errmag(Jn(x)) = xJ′n(x)/Jn(x)
= n − xJn+1(x)/Jn(x),

errmag(Yn(x)) = n − xYn+1(x)/Yn(x).

The error magnifications are therefore large near the zeros of the Bessel functions, and also when n or x is large.
Three-term recurrence relations relate functions of consecutive orders with fixed argument z:

Jν+1(z) = (2ν/z)Jν(z)− Jν−1(z),
Yν+1(z) = (2ν/z)Yν(z)− Yν−1(z).

When z � ν, the first term on the right is negligible, and we have Jν+1(z) ≈ −Jν−1(z). A sequence of those functions
for ν = 0, 1, 2, . . . then looks like J0(x), J1(x), −J0(x), −J1(x), J0(x), J1(x), The same observation applies to
Yν+1(z) and sequences of the functions of the second kind.

Unfortunately, the recurrence relations are frequently unstable because of subtraction loss, especially for |x| < ν,
as illustrated in the graphs of the ratios of the terms on the right shown in Figure 21.2 on the next page. Whenever
those ratios are in [1

2 , 2], the terms have the same sign, and similar magnitudes, and the subtraction loses one or more
leading bits in binary arithmetic. That happens near the zeros of the functions on the left-hand side. Whether the
accuracy loss affects values of higher-order functions depends on the relative magnitudes of the terms on the right
in the next iteration. In addition, when the first terms on the right dominate, errors in the computed Jν(z) and Yν(z)

21.3. Properties of Jn(z) and Yn(z) 701

-3

-2

-1

 0

 1

 2

 3

 0 5 10 15 20

(2
n

/x
)

J 1
(x

)
/ J

0(
x)

x

-3

-2

-1

 0

 1

 2

 3

 0 5 10 15 20
(2

n
/x

)
J 2

(x
)

/ J
1(

x)
x

-3

-2

-1

 0

 1

 2

 3

 0 5 10 15 20

(2
n

/x
)

Y
1(

x)
 /

Y
0(

x)

x

-3

-2

-1

 0

 1

 2

 3

 0 5 10 15 20

(2
n

/x
)

Y
2(

x)
 /

Y
1(

x)

x

Figure 21.2: Ratios of ordinary Bessel functions of the first and second kinds, (2n/x)Jn(x)/Jn−1(x) and
(2n/x)Yn(x)/Yn−1(x), for n = 1 and n = 2. As n increases, the graphs are qualitatively similar, but shifted to
the right.
The recurrence formulas suffer subtraction loss in the region between the horizontal dotted lines.

are magnified by 2ν/z, which is large for ν � |z|. Under those conditions, just a few iterations of the recurrence
relations can easily produce results with no significant digits whatever. We show numerical examples of that problem
in Section 21.4 on page 705.

There is a continued fraction (see Section 2.7 on page 12) for the ratio of two successive orders of the ordinary

702 Chapter 21. Bessel functions

Bessel function of the first kind:

Jν(z)
Jν−1(z)

= 0 +
1

2ν/z −
1

2(ν + 1)/z −
1

2(ν + 2)/z −
1

2(ν + 3)/z − · · ·

= 0 +
(1/2)z/ν

1 −
(1/4)z2/ν(ν + 1)

1 −
(1/4)z2/((ν + 1)(ν + 2))

1 −
(1/4)z2/((ν + 2)(ν + 3))

1 −
(1/4)z2/((ν + 3)(ν + 4))

1 − · · · .

We show later in Section 21.6 on page 710 how that continued fraction can be used to find Jν(z).
The ordinary Bessel functions of the first and second kinds have these relations:

sin(νπ)Yν(z) = cos(νπ)Jν(z)− J−ν(z),

−2 sin(νπ) = (πz)
(

Jν+1(z)J−ν(z) + Jν(z)J−(ν+1)(z)
)
,

2 = (πz)
(

Jν+1(z)Yν(z)− Jν(z)Yν+1(z)
)
.

At least for small ν, those equations can be useful for testing software implementations of the functions, as long as ν
and z are chosen so that there is no subtraction loss on the right-hand sides.

The Bessel functions can also be expressed as integrals, although the oscillatory nature of the integrand for large
n and/or large z makes it difficult to evaluate them accurately by numerical quadrature:

J0(z) = (1/π)
∫ π

0
cos(z sin(t)) dt,

= (1/π)
∫ π

0
cos(z cos(t)) dt,

Jn(z) = (1/π)
∫ π

0
cos(z sin(t)− nt) dt,

Y0(z) = (4/π2)
∫ π/2

0
cos(z cos(t))

(
γ + log(2z(sin(t))2)

)
dt.

Here, γ ≈ 0.577 · · · is the Euler–Mascheroni constant.
For x in [0, π/2], the integrand for J0(x) is smooth and positive, so numerical quadrature could be attractive,

and accurate. For example, a 28-point Gauss–Chebyshev quadrature recovers J0(π/4) to within 2 ulps of the correct
value in 64-bit IEEE 754 arithmetic, a 32-point Gauss–Legendre quadrature is correct to 30 decimal digits, and a
24-point Simpson’s rule quadrature produces 34 correct decimal digits. That too could be useful for software checks.

The summation formula

Jν(z) = (z/2)ν
∞

∑
k=0

(−(z2/4))k

k! Γ(ν + k + 1)

converges rapidly for |z| < 1, and the terms fall off sufficiently fast that there is no loss of leading digits in the
subtractions of successive terms. Even with larger values of |z|, convergence is still reasonable, as shown in Table 21.4
on the next page. However, for |z| > 2 and small n, the first few terms grow, and are larger than Jn(z), so there is
necessarily loss of leading digits during the summation. Higher intermediate precision, when it is available, can
sometimes hide that loss.

When ν is an integer, the gamma function in the denominator reduces to a factorial, and we then have simpler
summations suitable for the Bessel functions of the first kind required by POSIX:

J0(z) = 1 − (z2/4)/(1!)2 + (z2/4)2/(2!)2 − (z2/4)3/(3!)2 + · · · ,

J1(z) = (z/2)(1 − (z2/4)/(1! 2!) + (z2/4)2/(2! 3!)− (z2/4)3/(3! 4!) + · · ·),

Jn(z) = (z/2)n
∞

∑
k=0

(−(z2/4))k

k! (k + n)!
.

It is convenient to introduce two intermediate variables to simplify the sum for Jn(z):

v = z/2, w = v2, Jn(z) = vn
∞

∑
k=0

(−w)k

k! (k + n)!
.

21.3. Properties of Jn(z) and Yn(z) 703

Table 21.4: Series term counts needed to reach a given accuracy for Jn(x). The digit counts correspond to those of
extended IEEE 754 decimal floating-point arithmetic, and are close to those of extended IEEE 754 binary arithmetic.

x = 0.1 Decimal digits
n 7 16 34 70
0 3 5 9 17
1 2 5 9 16
5 2 4 8 16

10 2 4 8 15
100 2 4 7 13

1000 2 3 6 11

x = 1 Decimal digits
n 7 16 34 70
0 5 9 15 27
1 5 9 15 26
5 4 8 14 25

10 4 7 13 24
100 3 5 11 20

1000 2 4 8 16

x = 5 Decimal digits
n 7 16 34 70
0 11 17 27 43
1 10 16 26 42
5 9 15 24 40

10 7 13 23 38
100 4 9 16 30

1000 3 6 12 22

For example, for n = 0 or n = 1, and x in [0, 2], the number of terms required in the four extended IEEE 754 decimal
formats is 8, 14, 25, and 45. For fixed n and a chosen interval of x, the sum could also be replaced by a Chebyshev
polynomial economization.

We can factor the sum so that the terms tk can be computed with a simple recurrence relation:

Jn(z) =
zn

2nn!
(t0 + t1 + t2 + · · ·) = vn

n!
(t0 + t1 + t2 + · · ·),

t0 = 1, tk =
−w

k(k + n)
tk−1, for k = 1, 2, 3,

In the scale factor vn/n!, the numerator can overflow or underflow, and the denominator can overflow, even though
the scale factor may be representable if it were computed in exact arithmetic. In those cases, it must be computed
with a logarithm and an exponential.

For integer orders only, there is a corresponding, but complicated, sum for Yn(z):

Yn(z) = − 1
π

[
v−n

n−1

∑
k=0

(n − k − 1)!
k!

wk − 2 log(v)Jn(z)

+vn
∞

∑
k=0

(
ψ(k + 1) + ψ(k + n + 1)

) (−w)k

k! (k + n)!

]
.

That sum looks unsuitable for fast computation because of the presence of the psi functions (see Section 18.2 on
page 536). Fortunately, their arguments are integers, for which they have simple forms in terms of the partial sums,
hk, of the harmonic series of reciprocal integers, and γ, the Euler–Mascheroni constant:

h0 = 0, hk = 1 + 1/2 + 1/3 + · · ·+ 1/k, k > 0,

ψ(1) = −γ, ψ(k) = −γ +
k−1

∑
m=1

1
m

= hk−1 − γ, k > 1.

Substitute those values into the formula for Yn(z) to get

Yn(z) = − 1
π

[
v−n

n−1

∑
k=0

(n − k − 1)!
k!

wk − 2 log(v)Jn(z)

+vn
∞

∑
k=0

(hk + hk+n − 2γ)
(−w)k

k! (k + n)!

]
.

A computationally satisfactory formula for the ordinary Bessel function of the second kind results from substitution

704 Chapter 21. Bessel functions

of the expansion of Jn(z) in that result:

Yn(z) = − 1
π

[
v−n

n−1

∑
k=0

(n − k − 1)!
k!

wk − 2(log(v) + γ)Jn(z)

+vn
∞

∑
k=0

(hk + hk+n)
(−w)k

k! (k + n)!

]
.

From the general case, we can now easily find these formulas for the functions of orders zero and one:

Y0(z) = − 2
π

[
−(log(v) + γ)J0(z) +

∞

∑
k=1

hk
(−w)k

(k!)2

]
,

Y1(z) = − 1
π

[
1
v
− 2(log(v) + γ)J1(z) + v

∞

∑
k=0

(hk + hk+1)
(−w)k

k! (k + 1)!

]
.

The series for Y0(z) requires about the same number of terms as that for J0(z). Convergence of the series for Y1(z) is
faster than that for Y0(z), because corresponding terms are smaller by a factor of 1/(k + 1).

The presence of the harmonic partial sums, hk, suggests three possible computational approaches:

� Use small precomputed tables of hk and k! to compute the series sums for small z.

� Precompute the complete coefficients of wk. Numerical experiments for x in [0, 2] show that 8, 12, 20, and 32
terms suffice for computing the infinite sum in Y1(z) in the four extended IEEE 754 decimal precisions.

� Replace the infinite sums by Chebyshev economizations; they need 6, 10, 16, and 27 terms for x in [0, 2] for
those four decimal precisions.

With another intermediate variable, and expansions of J0(z) and J1(z), we can further simplify the formulas for
Y0(z) and Y1(z) to obtain fast formulas suitable for tiny arguments:

s = log(v) + γ,

Y0(z) = − 2
π
(−s − (−s + 1)w − (1/8)(2s − 3)w2 − (1/216)(−6s + 11)w3 −
· · ·),

Y1(z) = − 1
πv

(1 + (−2s + 1)w + (s − 5/4)w2 + (1/18)(−3s + 5)w3 + · · ·).
In the term log(v) + γ, notice that when z < 2, the logarithm is negative, so there is a subtraction from γ that

can lose leading bits. There is complete loss near z = 2 exp(−γ) ≈ 1.123. The solution is to rewrite the problem
expression like this:

log(v) + γ = log(v) + log(exp(γ))
= log(v exp(γ))
= log(v × 1.781 072 417 990 197 985 236 504 103 107 179 · · ·)
= log(z × 0.890 536 208 995 098 992 618 252 051 553 589 · · ·).

The last form is preferred, because in hexadecimal arithmetic, it preserves maximal accuracy in the constant.
Unfortunately, the series for Y0(z) has two other computational problems:

� When the argument of the logarithm is near one, which happens for z ≈ 1.123, the logarithm is small, and
loses accuracy. One solution is to replace it with the logarithm-plus-one function, log1p(), and compute the
argument accurately with the help of a fused multiply-add operation:

v exp(γ) = 1 + d,
d = v exp(γ)− 1
= fma(v, exp(γ),−1),

log(v exp(γ)) = log1p(d).

21.4. Experiments with recurrences for J0(x) 705

We can improve the accuracy of the argument d by splitting the exponential constant into exact high and
approximate low parts:

exp(γ) = chi + clo,
d = fma(v, chi,−1) + vclo

= fma(v, clo, fma(v, chi,−1)).

� The summation contains terms of alternating signs, and numerical experiments show that the ratio of the sums
of positive and negative terms exceeds 1

2 when 2.406 ≤ x, implying loss of leading digits. For x = 5, two
decimal digits are lost, for x = 10, four are lost, and for x = 20, eight are lost.

Higher precision, when available, can hide the summation loss if x is not too big, but a better approach is to
replace the sum, or the entire expansion of Y0(x), with a polynomial fit. Several published algorithms for that
function do just that, and to limit the polynomial degrees, the range of x where the sum is used is split into several
regions, each with its own polynomial fit.

21.4 Experiments with recurrences for J0(x)

The epigraph that begins this chapter comes from an often-cited paper on three-term recurrence relations [Gau67],
and its author shows a numeric example of upward recurrence from accurate starting values of J0(1) and J1(1). Here
is that experiment done in 32-bit decimal arithmetic in hoc, using initial values correctly rounded to seven digits
from a high-precision computation in Maple, and augmented with comments showing correct results:

hocd32> x = 1
hocd32> J_km1 = 0.7651977
hocd32> J_k = 0.4400506
hocd32> printf("%2d %.6e\n", 0, J_km1)
hocd32> for (k = 1; k <= 20; ++k) \
hocd32> {
hocd32> J_kp1 = (2 * k / x) * J_k - J_km1
hocd32> printf("%2d %.6e\n", k, J_k)
hocd32> J_km1 = J_k
hocd32> J_k = J_kp1
hocd32> }
0 7.651977e-01 # expect 0 7.651977e-01
1 4.400506e-01 # expect 1 4.400506e-01
2 1.149035e-01 # expect 2 1.149035e-01
3 1.956340e-02 # expect 3 1.956335e-02
4 2.476900e-03 # expect 4 2.476639e-03
5 2.518000e-04 # expect 5 2.497577e-04
6 4.110000e-05 # expect 6 2.093834e-05
7 2.414000e-04 # expect 7 1.502326e-06
8 3.338500e-03 # expect 8 9.422344e-08
9 5.317460e-02 # expect 9 5.249250e-09

...
15 7.259898e+06 # expect 15 2.297532e-17
16 2.175373e+08 # expect 16 7.186397e-19
17 6.953934e+09 # expect 17 2.115376e-20
18 2.362163e+11 # expect 18 5.880345e-22
19 8.496833e+12 # expect 19 1.548478e-23
20 3.226435e+14 # expect 20 3.873503e-25

Almost half the digits are incorrect at k = 4, all are incorrect at k = 6, and instead of decreasing towards zero, the
values computed with seven-digit arithmetic begin to grow at k = 7.

Increasing precision helps only marginally. In 64-bit decimal arithmetic, with 16 digits of precision, half the digits
are wrong at k = 6, all are wrong at k = 9, and values increase at k = 11.

706 Chapter 21. Bessel functions

In 128-bit decimal arithmetic, with 34 digits of precision, half the digits are in error at k = 11, all are erroneous at
k = 16, and the increase begins at k = 17.

Similar experiments with x = 1/10 show that the generated values are completely wrong at k = 4, and with
x = 1/1000, at k = 2. Clearly, forward recurrence for Jn(x) is extremely unstable when x � n.

We now repeat the experiment in seven-digit arithmetic using backward recurrence:

hocd32> x = 1
hocd32> J_kp1 = 9.227622e-27 # J(21,x)
hocd32> J_k = 3.873503e-25 # J(20,x)
hocd32> printf("%2d %.6e\n", 20, J_k); \
hocd32> for (k = 20; k > 0; --k) \
hocd32> {
hocd32> J_km1 = (2*k/x)*J_k - J_kp1
hocd32> printf("%2d %.6e\n", k - 1, J_km1)
hocd32> J_kp1 = J_k
hocd32> J_k = J_km1
hocd32> }
20 3.873503e-25 # expect 20 3.873503e-25
19 1.548478e-23 # expect 19 1.548478e-23
18 5.880342e-22 # expect 18 5.880345e-22
17 2.115375e-20 # expect 17 2.115376e-20
16 7.186395e-19 # expect 16 7.186397e-19
15 2.297531e-17 # expect 15 2.297532e-17
...
9 5.249246e-09 # expect 9 5.249250e-09
8 9.422337e-08 # expect 8 9.422344e-08
7 1.502325e-06 # expect 7 1.502326e-06
6 2.093833e-05 # expect 6 2.093834e-05
5 2.497577e-04 # expect 5 2.497577e-04
4 2.476639e-03 # expect 4 2.476639e-03
3 1.956335e-02 # expect 3 1.956335e-02
2 1.149035e-01 # expect 2 1.149035e-01
1 4.400506e-01 # expect 1 4.400506e-01
0 7.651977e-01 # expect 0 7.651977e-01

Although there are differences in final digits in two-thirds of the results, the largest relative error is just 0.83 ulps, at
k = 11. The final six results are correctly rounded representations of the exact values. Evidently, backward recurrence
is stable for that computation.

For |x| � n, the stability problem in the upward recurrence largely disappears. Even for x = 20 in our seven-
digit-arithmetic example, the computed values, not shown here, have a maximum absolute error of 4× 10−7. Because
the starting values for upward recurrence are simpler than for downward recurrence, we exploit that fact later in code
for sequences of Bessel functions of a fixed argument and increasing orders.

Interval arithmetic provides another way to illustrate the instability of upward recurrence for Jn(x) when x � n,
and the return of stability when x � n. Here is the output of an interval version of the recurrence implemented
in the 32-bit binary version of hoc, where the arguments of the test function are the maximum order and the inter-
val bounds for x. The starting values of J0(x) and J1(x) are determined from higher-precision computation, then
converted to interval form with a half-ulp halfwidth. Each line shows the order n, the lower and upper bounds on
the function value, the interval midpoint and its halfwidth, and the expected value determined by computing it in
higher precision, and then casting it to working precision:

hoc32> load("ijn") # code for interval version of UPWARD recurrence for Jn(n,x)
hoc32> test_Jn_up(20, 1, 1)
0 [7.651_976e-01, 7.651_978e-01] = 7.651_977e-01 +/- 5.960_464e-08 # expect 7.651_977e-01
1 [4.400_505e-01, 4.400_506e-01] = 4.400_506e-01 +/- 2.980_232e-08 # expect 4.400_506e-01
2 [1.149_033e-01, 1.149_036e-01] = 1.149_035e-01 +/- 1.192_093e-07 # expect 1.149_035e-01
3 [1.956_272e-02, 1.956_373e-02] = 1.956_323e-02 +/- 5.066_395e-07 # expect 1.956_335e-02
4 [2.472_758e-03, 2.479_076e-03] = 2.475_917e-03 +/- 3.159_046e-06 # expect 2.476_639e-03
5 [2.183_318e-04, 2.698_898e-04] = 2.441_108e-04 +/- 2.577_901e-05 # expect 2.497_577e-04

21.5. Computing J0(x) and J1(x) 707

6 [-2.957_582e-04, 2.261_400e-04] = -3.480_911e-05 +/- 2.609_491e-04 # expect 2.093_834e-05
...
15 [-1.202_778e+08, 8.013_022e+07] = -2.007_379e+07 +/- 1.002_040e+08 # expect 2.297_532e-17
16 [-3.611_190e+09, 2.408_198e+09] = -6.014_958e+08 +/- 3.009_694e+09 # expect 7.186_397e-19
17 [-1.156_382e+11, 7.718_263e+10] = -1.922_779e+10 +/- 9.641_042e+10 # expect 2.115_376e-20
18 [-3.934_108e+12, 2.627_821e+12] = -6.531_434e+11 +/- 3.280_964e+12 # expect 5.880_344e-22
19 [-1.417_051e+14, 9.471_720e+13] = -2.349_394e+13 +/- 1.182_111e+14 # expect 1.548_478e-23
20 [-5.387_421e+15, 3.603_188e+15] = -8.921_166e+14 +/- 4.495_304e+15 # expect 3.873_503e-25

Notice that already at n = 6, the interval includes zero, and the interval halfwidth is larger than its midpoint.
The rapidly growing interval width gives one little confidence in the function values estimated from the interval
midpoints.

We then repeat the experiment with x = 20, and see that, although the interval widths grow, they remain small
compared to the midpoints, and the midpoints are close to the expected values:

hoc32> test_Jn_up(20, 20, 20)
0 [1.670_246e-01, 1.670_247e-01] = 1.670_247e-01 +/- 1.490_116e-08 # expect 1.670_247e-01
1 [6.683_312e-02, 6.683_313e-02] = 6.683_312e-02 +/- 7.450_581e-09 # expect 6.683_312e-02
2 [-1.603_414e-01, -1.603_413e-01] = -1.603_414e-01 +/- 2.235_174e-08 # expect -1.603_414e-01
3 [-9.890_141e-02, -9.890_138e-02] = -9.890_139e-02 +/- 1.490_116e-08 # expect -9.890_139e-02
4 [1.306_709e-01, 1.306_710e-01] = 1.306_709e-01 +/- 3.725_290e-08 # expect 1.306_709e-01
5 [1.511_697e-01, 1.511_698e-01] = 1.511_697e-01 +/- 3.725_290e-08 # expect 1.511_698e-01
6 [-5.508_611e-02, -5.508_599e-02] = -5.508_605e-02 +/- 5.960_464e-08 # expect -5.508_605e-02

...
15 [-8.174_032e-04, -8.067_638e-04] = -8.120_835e-04 +/- 5.319_715e-06 # expect -8.120_690e-04
16 [1.451_691e-01, 1.451_905e-01] = 1.451_798e-01 +/- 1.072_884e-05 # expect 1.451_798e-01
17 [2.330_773e-01, 2.331_223e-01] = 2.330_998e-01 +/- 2.249_330e-05 # expect 2.330_998e-01
18 [2.510_408e-01, 2.511_387e-01] = 2.510_898e-01 +/- 4.899_502e-05 # expect 2.510_898e-01
19 [2.187_510e-01, 2.189_724e-01] = 2.188_617e-01 +/- 1.106_933e-04 # expect 2.188_619e-01
20 [1.644_882e-01, 1.650_068e-01] = 1.647_475e-01 +/- 2.593_249e-04 # expect 1.647_478e-01

21.5 Computing J0(x) and J1(x)

For tiny x, summing the first few terms of the Taylor series of Jn(x) provides a correctly rounded result. The mathcw
library code uses four-term series for the Bessel functions J0(x) and J1(x).

For x in [tiny, 2], the series can be summed to machine precision, or J0(x) and J1(x) can be represented by poly-
nomial approximations. The mathcw library code for those two functions implements both methods, and for each
function, uses a single Chebyshev polynomial table (see Section 3.9 on page 43) that is truncated at compile time to
the accuracy needed for the current working precision, avoiding the need for separate minimax polynomials for each
precision. For those functions, and the intervals treated in this section, minimax fits are only slightly more accurate
than Chebyshev fits of the same total degree.

The polynomial for J0(x) is chosen to fit the remainder of the Taylor series after the first two terms, and because
of the symmetry relation, we assume that x is nonnegative:

t = x2, t in [0, 4], x in [0, 2],

u = t/2 − 1, Chebyshev variable u in [−1,+1],

f (t) = (J0(
√

t)− (1 − t/4))/t2,

=
N

∑
k=0

ckTk(u), Chebyshev polynomial fit

J0(x) = 1 − t/4 + t2 f (t)
= 1 − x2/4 + t2 f (t)
= fma(−x/2, x/2, 1) + t2 f (t)
= (1 − x/2)(1 + x/2) + t2 f (t), use when β �= 16,

708 Chapter 21. Bessel functions

= 2((1 − x/2)(1/2 + x/4)) + t2 f (t), use when β = 16.

When t ≈ 4, the leading sum 1 − t/4 suffers serious loss of leading digits, unless it is computed with a fused
multiply-add operation. However, rewriting it in factored form moves the subtraction loss to the term 1 − x/2, and
for β = 2, that is computed almost exactly, with only a single rounding error. Using higher precision for intermediate
computations, but not for the Chebyshev sum, reduces the worst-case errors by about one ulp.

Two preprocessor symbols, USE_CHEBYSHEV and USE_SERIES, select the algorithm used in j0x.h when x is in
[tiny, 2]. Error plots show that both methods are equally accurate for small x, but errors are smaller for the Chebyshev
fit and higher intermediate precision, so that is the default if neither symbol is defined.

For J1(x) with x in [0, 2], t and u are as before, and we develop a polynomial fit for nonnegative x like this:

g(t) = (2J1(
√

t)/
√

t − (1 − t/8))/t2

=
N

∑
k=0

dkTk(u), Chebyshev polynomial fit,

J1(x) = (x/2)(1 − t/8 + t2g(t)).

Here, t/8 ≤ 1/2, so there is no subtraction loss in the first two terms, and the terms can be summed safely from right
to left. The major sources of error are the two rounding errors from the final subtraction and the final product with
x/2.

There are single roots J0(2.404 · · ·) = 0 and J1(3.831 · · ·) = 0 in the interval [2, 4]. Straightforward polynomial
approximations on that interval are possible, but near the roots, they must sum to a small number, and as a result,
have a large relative error. The Cephes library [Mos89, Chapter 6] removes that error by instead using a polynomial
approximation in which the roots in the interval are factored out. For our case, we call the respective roots r and s,
and we have:

J0(x) = (x2 − r2)p(x), p(x) =
N

∑
k=0

pkTk(u), Chebyshev polynomial fit,

J1(x) = x(x2 − s2)q(x), q(x) =
N

∑
k=0

qkTk(u), Chebyshev polynomial fit.

The critical computational issues are that we must avoid massive subtraction loss in the factors with the roots, and
we must account for the fact that the exact roots are not machine numbers. That is best done by representing each
root as a sum of exact high and approximate low parts, and then computing the factor like this:

x2 − r2 = (x − r)(x + r),
= ((x − rhi)− rlo)((x + rhi) + rlo).

When x is near a root, the difference x − rhi is computed exactly, because both terms have the same floating-point
exponent. Subtraction of rlo then provides an important correction to the difference, with only a single rounding
error. The second factor is computationally stable because it requires only additions.

We need a different split of each root for each machine precision, and a Maple function in the file split-base.map
generates the needed C code, with embedded preprocessor conditional statements to select an appropriate set for
the current precision. For example, one such pair with its compile-time selector in j0.h looks like this for the IEEE
754 and VAX 32-bit formats:

#elif (T >= 24) && (B != 16)

static const fp_t J0_R1_HI = FP(10086569.0) / FP(4194304.0);
static const fp_t J0_R1_LO = FP(1.08705905e-07);

The one drawback to our factored representation is that the final function value is no longer computed as the sum of
an exact value and a small correction. Instead, it has cumulative rounding errors from each of the factors and their
products. We therefore expect larger errors on the interval [2, 4] than on [0, 2], but we can nevertheless guarantee a
small relative error, instead of a small absolute error.

21.5. Computing J0(x) and J1(x) 709

Figure 21.3: Relative (top) and absolute (bottom) errors in j0(x) for two argument ranges. The largest relative errors
occur near the zeros of the function that lie in [4, ∞), and can grow arbitrarily large. However, the absolute errors
remain small.

For the interval [4, ∞), we use Chebyshev polynomial fits to the functions P(0, x), P(1, x), Q(0, x), and Q(1, x) (see
Section 21.3 on page 699), and then recover the Bessel functions from the formulas involving those functions and the
cosine and sine. There are now cumulative errors from the polynomial evaluations, the trigonometric functions, and
their final product sums. We therefore expect higher errors than on the interval [0, 4], and sadly, we can only provide
small absolute error near the roots after the first one.

For large x, P(ν, x) is O(1), and dominates Q(ν, x), which is O(1/x). Nevertheless, because the trigonometric
multipliers can be small, and of either sign, the two products may be of comparable size, and their sum subject to
subtraction loss. Also, for large x, the accuracy of the computed Bessel functions depends critically on that of the
trigonometric argument reduction, and it is precisely here that most historical implementations of Jn(x) and Yn(x)
may deliver results where every digit is in error, even if the magnitudes are correct. Thanks to the exact argument
reduction used in the mathcw library, that is not a problem for us, and as long as x is exactly representable, and
not near a Bessel function root, our j0(x) and j1(x) functions produce results that agree to within a few ulps of
high-precision values computed by symbolic-algebra systems, even when x is the largest number representable in
the floating-point system.

Figure 21.3 and Figure 21.4 on the following page show the relative and absolute errors for our implementations
in data type double of the J0(x) and J1(x) functions. Error plots for other binary and decimal precisions are similar,
and thus, not shown. The observed errors quantify the rough estimates that we made based on the numerical steps
of the computations.

0

1

2

 0 1 2 3 4 5

u
lp

s

x

Relative errors in j0()

0

1

2

 0 25 50 75 100

u
lp

s

x

Relative errors in j0()

0

1

2

 0 1 2 3 4 5

u
lp

s

x

Absolute errors in j0()

0

1

2

 0 25 50 75 100

u
lp

s

x

Absolute errors in j0()

710 Chapter 21. Bessel functions

Figure 21.4: Relative (top) and absolute (bottom) errors in j1(x) for two argument ranges. The largest relative errors
occur near the zeros of the function that lie in [4, ∞), and can grow arbitrarily large. However, the absolute errors
remain small.

21.6 Computing Jn(x)

We now turn to the problem of computing Jn(x) for n > 1. As we observed earlier, when x is small, the series formula
converges rapidly, and is the best way to compute the function for arbitrary n.

For larger x values, although upward recurrence for computing Jn(x) is unsuitable, downward recurrence has
been found to be stable, but the problem is that we do not have a good way to compute the two starting Bessel func-
tions directly when both n and x are large. The continued fraction presented earlier on page 702 leads to an algorithm
for finding those two functions, but the procedure is not immediately obvious, and requires some explanation.

In the notation of Section 2.7 on page 12, the elements of the continued fraction for Jν(z)/Jν−1(z) are given by

a1 = +1, ak = −1, k > 1,

b0 = 0, bk = 2(ν + k − 1)/z, k > 0.

The numerically preferred backward evaluation of the continued fraction is complicated because we have two pa-
rameters that affect the starting value of the iteration. However, either of the Lentz or Steed algorithms allows
evaluation in the forward direction with early loop exit as soon as the value of the continued fraction has converged.
That gives us the ratio Jν(z)/Jν−1(z), but we still do not know Jν(z) itself. To find that value, rewrite the recurrence

0

1

2

 0 1 2 3 4 5

u
lp

s

x

Relative errors in j1()

0

1

2

 0 25 50 75 100

u
lp

s

x

Relative errors in j1()

0

1

2

 0 1 2 3 4 5

u
lp

s

x

Absolute errors in j1()

0

1

2

 0 25 50 75 100

u
lp

s

x

Absolute errors in j1()

21.6. Computing Jn(x) 711

relation in the downward direction for decreasing integer orders, and divide each equation by Jn(z):

Jn−2(z)/Jn(z) = (2(n − 1)/z)Jn−1(z)/Jn(z)− 1,
Jn−3(z)/Jn(z) = (2(n − 2)/z)Jn−2(z)/Jn(z)− Jn−1(z)/Jn(z),
Jn−4(z)/Jn(z) = (2(n − 3)/z)Jn−3(z)/Jn(z)− Jn−2(z)/Jn(z),

.
J2(z)/Jn(z) = (6/z)J3(z)/Jn(z)− J4(z)/Jn(z),
J1(z)/Jn(z) = (4/z)J2(z)/Jn(z)− J3(z)/Jn(z),
J0(z)/Jn(z) = (2/z)J1(z)/Jn(z)− J2(z)/Jn(z).

The right-hand side of the first equation contains known values, so we can easily compute its left-hand side. The
right-hand side of the second equation requires two ratios that we now have, so we can find its left-hand side. We
need to remember at most two consecutive ratios to repeat the process, and we finally obtain a value for J0(z)/Jn(z).
Calling that result fn(z), we now compute J0(z) independently by the methods of Section 21.5 on page 707, and then
recover the desired function value Jn(z) as J0(z)/ fn(z).

There is an important refinement to be made in that last step. If we are near a zero of J0(z), then the function value
is likely to have a high relative error that propagates into the computed Jn(z). It is then better to use the second-
last ratio, and compute Jn(z) from J1(z)/(J1(z)/Jn(z)). We use that alternative when the magnitude of the ratio
J1(z)/Jn(z) exceeds that of J0(z)/Jn(z). The root separation of the estimates in Section 21.3 on page 697 guarantees
that successive ratios cannot both be tiny.

Although that procedure may look complicated, the code that implements it is short. Here is a hoc function that
computes Jn(x), with checks for special cases of n and x omitted:

func Jncf(n,x) \
{ # return J(n,x) via the continued-fraction algorithm

rinv = cf(n,x) # J(n,x) / J(n-1,x)
rk = 1 / rinv # J(k,x) / J(n,x), for k == n - 1
rkp1 = 1
s = 1

for (k = n - 1; k > 0; --k) \
{

rkm1 = (2 * k / x) * rk - rkp1
rkp1 = rk
rk = rkm1

if (isinf(rkm1)) \
{

rk *= MINNORMAL
rkp1 *= MINNORMAL
s *= MINNORMAL
rkm1 = (2 * k / x) * rk - rkp1

}
}

if (abs(rkp1) > abs(rk)) \
return (s * J1(x) / rkp1) \

else \
return (s * J0(x) / rk)

}

The check for infinity in the downward loop is essential, because when n/x is large, the successive ratios grow
quickly toward the overflow limit. The computation cannot be allowed to proceed normally, because the next one or
two iterations require subtraction of infinities, producing NaN results. To prevent that, the code instead performs an
exact downward scaling that is undone in the return statement. Our choice of scale factor forces s, and thus, the final
result, to underflow if scaling is required more than once. For older floating-point designs where overflow is fatal,

712 Chapter 21. Bessel functions

Table 21.5: Iteration counts for evaluating the continued fraction of Jn(x)/Jn−1(x) in the IEEE 754 128-bit format
(approximately 34 decimal digits) using the forward Lentz algorithm. Counts for the Steed algorithm are almost
identical.

n
x 2 10 100 1000 10 000 100 000 1 000 000
1 16 15 10 7 5 7 4

10 37 30 14 9 7 5 5
100 156 148 58 15 9 7 5

1 000 1120 1112 1021 119 16 9 9
10 000 10 259 10 251 10 165 9255 251 15 9

100 000 >25 000 >25 000 >25 000 >25 000 >25 000 533 15
1 000 000 >25 000 >25 000 >25 000 >25 000 >25 000 >25 000 1122

a safe-arithmetic function like the is_fmul_safe() procedure that we introduced in our treatment of the incomplete
gamma function (see Section 18.4 on page 560) can check whether the expression assigned to rkm1 would overflow
without causing overflow, and exit the loop with rk set to the largest floating-point number.

The private function cf(n,x) evaluates the continued fraction, and an instrumented version of its code stores the
iteration count in a global variable that allows recovery of the data shown in Table 21.5. Evidently, the continued
fraction converges quickly when x/n is small, but it is impractical for x > 1000 if x > n.

Our simple prototype for computing Jn(x) can be improved in at least these ways, most of which are implemented
in the C code in the file jnx.h:

� For small x, use the general Taylor series (see Section 21.3 on page 702). It is particularly effective for large n
and tiny x.

� If s is zero, or if 1/rk or 1/rkp1 underflows, the calculation of J0(x) or J1(x) is unnecessary.

� Instead of allowing the ratios to grow toward the overflow limit, it is better to rescale earlier. A suitable cutoff
is roughly the square root of the largest representable number. With that choice, overflow elsewhere in the
loop is prevented, and there is no need to have separate code for older systems where overflow is fatal.

� If possible, use higher working precision in the continued fraction and downward recurrences, to improve
accuracy near zeros of Jn(x).

� For large |x|, and also whenever the continued fraction is found not to converge, switch to the asymptotic
expansion given in Section 21.3 on page 697. Terminate the summations for P(n, x) and Q(n, x) as soon as
either the partial sums have converged to machine precision, or else the terms are found to increase. Then take
particular care with the trigonometric argument reductions to avoid needless loss of accuracy.

� In the region where the asymptotic series is used, the quality of the underlying cosine and sine function im-
plementations, coupled with exact argument reduction, are of prime importance for the accuracy of Jn(x), as
well as for some of the spherical Bessel functions that we treat later in this chapter. The trigonometric code in
many existing libraries performs poorly for large arguments, and may cause complete loss of significance in
the Bessel functions.

The algorithm does not require storage of all of the right-hand side ratios, Jk(z)/Jn(z), but if we preserve them,
we can quickly recover a vector of values J0(z), J1(z), . . . , Jn−1(z) simply by multiplying each of the saved ratios by
Jn(z).

Alternatively, if we determine Jn−1(z) and Jn(z) with that algorithm, we can use downward recurrence to find
earlier members of the sequence. That algorithm requires O(4n) floating-point operations, in addition to the work
required for the continued fraction, so if n is large, computation of Jn(x) for large x is expensive.

Figure 21.5 on the next page shows the measured errors in our implementation of Jn(x) for a modest value of n.

21.7. Computing Y0(x) and Y1(x) 713

Figure 21.5: Errors in the binary (top) and decimal (bottom) jn(n,x) family for n = 25.

21.7 Computing Y0(x) and Y1(x)

As with our implementations of the ordinary Bessel functions of the first kind, for x in (4, ∞), we compute the
functions of the second kind, Y0(x) and Y1(x), from the trigonometric formulas with the factors P(ν, x) and Q(ν, x)
defined on Section 21.3 on page 698.

The major difficulties for arguments in [0, 4] are the approach to −∞ as x → 0, and the presence of two zeros
of Y0(x), and one of Y1(x). Unless the zeros are specifically accounted for, polynomial fits or series sums for the
functions have large relative errors near those zeros. Consequently, we prefer to use several different approximations
in that region. In the following, we assume that the special arguments of NaN, Infinity, and zero are already handled.

For Y0(x), we use these regions and Chebyshev polynomial approximations, fr(u), with u on [−1,+1]:

x in (0, tiny] : Sum the four-term Taylor series in order of increasing term magnitudes, with the cutoff chosen so
that the magnitude of the last term is below 1

2 ε/β, but may affect the rounding of the final result.

x in [3/4, 1] : Factor out the root in this region, with Y0(x) = (x2 − s2
0,1) f2(8x − 7). The difference of squares must be

factored and computed accurately from a two-part split of the root, as described in Section 21.5 on page 707.

x in (tiny, 2] : Sum the series for Y0(x) starting with the second term, exiting the loop as soon as the last-computed
term no longer affects the sum. Then add the first term. If x is in [− exp(−γ),−3 exp(−γ)] (roughly [0.56,
1.69]), the argument of the logarithm lies in [1

2 , 3
2], and is subject to accuracy loss, so add the term log1p(d)×

J0(x), where d is computed accurately with a fused multiply-add operation and a two-part split of the constant
exp(γ). Otherwise, add log(fma(v, chi, vclo))× J0(x). Y0(x) is then that sum times 2/π.

0

1

2

3

4

5

6

7

8

9

10

-100 -50 0 50 100

u
lp

s

x

Errors in jnf()

0

1

2

3

4

5

6

7

8

9

10

-800 -600 -400 -200 0 200 400 600 800

u
lp

s

x

Errors in jn()

0

1

2

3

4

5

6

7

8

9

10

-200 -100 0 100 200

u
lp

s

x

Errors in jndf()

0

1

2

3

4

5

6

7

8

9

10

-800 -600 -400 -200 0 200 400 600 800

u
lp

s

x

Errors in jnd()

714 Chapter 21. Bessel functions

Figure 21.6: Relative (top) and absolute (bottom) errors in y0(x) for two argument ranges. The largest relative errors
occur near the zeros of the function that lie in [4, ∞), and can grow arbitrarily large. However, the absolute errors
remain small.

x in (2, 3] : The function is positive and decreasing on this interval, so to get an approximation that is the sum of a
positive exact value and a positive correction, use Y0(x) = Y0(3) + x2 f4((2x2 − 13)/5). The constant Y0(3) is
represented as a two-part split, with the low part added first.

x in (3, 4] : Factor out the root in this region from the approximation, and compute Y0(x) = x2(x2 − s2
0,2) f5(2x − 7),

with the usual careful handling of the difference of squares.

x in (4, ∞) : Use the P–Q fit.

The final approximation form in each region is the result of experiments with several alternatives suggested by
prior work. The goal is to find auxiliary functions that are almost linear on the region, in order to minimize the
length of the Chebyshev expansions. Most published work on computing Bessel functions ignores the issue of the
function zeros, and thus, can only achieve small absolute, rather than relative, error. For our approximations, the
worst case for 16-digit accuracy is region (2, 3], where Chebyshev terms up to T25(u) are needed.

Cody and Waite generally recommend making the implementation of each elementary or special function inde-
pendent of related ones. However, for small arguments, eliminating the dependence of Y0(x) on J0(x) leads to exces-
sively long polynomial expansions. Further searches for alternate approximation forms are needed to see whether
that blemish can be removed without losing accuracy.

Figure 21.6 shows the measured errors in our implementation of Y0(x). Because the function magnitude grows
as its argument approaches zero, the absolute errors must also increase in that region.

0

1

2

 0 1 2 3 4 5

u
lp

s

x

Relative errors in y0()

0

1

2

 0 25 50 75 100

u
lp

s

x

Relative errors in y0()

0

1

2

 0 1 2 3 4 5

u
lp

s

x

Absolute errors in y0()

0

1

2

 0 25 50 75 100

u
lp

s

x

Absolute errors in y0()

21.8. Computing Yn(x) 715

Figure 21.7: Relative (top) and absolute (bottom) errors in y1(x) for two argument ranges. The largest relative errors
occur near the zeros of the function that lie in [4, ∞), and can grow arbitrarily large. However, the absolute errors
remain small.

For Y1(x), we use these regions and different Chebyshev polynomial fits, fr(u):

x in (0, tiny] : Sum the four-term Taylor series, similar to our approach for tiny arguments in Y0(x).

x in (tiny, 2] : Use Y1(x) = (2/π)(log(x)× J1(x)− 1/x) + x f2(x2/2 − 1).

x in (2, 4] : Use Y1(x) = (x2 − s2
1,1) f3(x − 3).

x in (4, ∞) : Use the P–Q fit.

Here too, we have been unable to remove the dependence of Y1(x) on J1(x) for small arguments without unaccept-
ably long polynomial fits.

Figure 21.7 shows the measured errors in our implementation of Y1(x).

21.8 Computing Yn(x)

The Bessel function Yn(x) is complex-valued for negative x, so the code should return a quiet NaN for that case.
If NaN is not available in the host floating-point system, then a suitable replacement might be the negative of the
largest representable number.

0

1

2

 0 1 2 3 4 5

u
lp

s

x

Relative errors in y1()

0

1

2

 0 25 50 75 100

u
lp

s

x

Relative errors in y1()

0

1

2

 0 1 2 3 4 5

u
lp

s

x

Absolute errors in y1()

0

1

2

 0 25 50 75 100

u
lp

s

x

Absolute errors in y1()

716 Chapter 21. Bessel functions

For negative n, use the symmetry relation Y−n(x) = (−1)nYn(x) so that only nonnegative n values need to be
considered further.

For n = 0 and n = 1, use the routines for Y0(x) and Y1(x).
For small arguments, Yn(x) is best computed by summing the general Taylor series (see Section 21.3 on page 703).
Overflow is possible for tiny x, but the complexity of the series is such that it is not practical to precompute

cutoffs for general n below which the code could return −∞, or if infinities are not available, the negative of the
largest representable number. Numerical experiments show that for a tiny fixed x and increasing n, the magnitude
of Yn(x) is larger than x−n, so if overflow is a fatal error, then it could be necessary to return an indication of a likely
overflow when x < exp(− log(largest representable number)/n), even though that is an expensive test to make.

The recurrence relation for Yn(x) is stable in the upward direction, so once Y0(x) and Y1(x) have been computed
by the methods of the preceding section, Y|n|(x) is produced in a loop of short code in |n| − 2 iterations. The final
result is then negated if n is negative and odd, to account for the symmetry relation.

The explicit formula for Yn(x) contains an n-term sum, a product of a logarithm and Jn(x), and sum of an infinite
number of terms. When x < 2, the first sum is larger than the product and the second sum, and the terms in both
sums fall off quickly. Upward recurrence requires Y0(x) and Y1(x), but they are easier to compute than Jn(x). It is
therefore unclear which algorithm should be chosen. Timing tests show that the series algorithm is about two to
four times faster than upward recurrence on some platforms, whereas on others, it is about twice as slow. On the
common IA-32 architecture, the two algorithms have nearly equal performance.

Although the code for the asymptotic series of Jn(x) can be adapted to compute Yn(x) with only a one-line change,
it is not essential, because upward recurrence from Y0(x) and Y1(x) works for arguments of any size. However, we
provide code for the asymptotic series for Yn(x), because there is a tradeoff in efficiency between a long recurrence,
and a short sum that also requires a complicated argument reduction inside the trigonometric functions. Timing tests
on two common platforms for Y25(x) and Y1000(x) with random arguments in the region where the asymptotic code
is used shows that code to be two to ten times faster than the code that uses downward recurrence. The asymptotic
series is therefore the default algorithm for large arguments.

We do not have a satisfactory algorithm to handle the case of n � x � 1 for either Jn(x) or Yn(x), because the
continued fraction then converges too slowly to be practical, three-term recurrences take too many steps, and the
asymptotic series cannot produce sufficient accuracy. Fortunately, for most applications where Bessel functions are
needed, such extreme arguments are rare.

Figure 21.8 on the next page shows the measured errors in our implementation of Yn(x) for modest n.

21.9 Improving Bessel code near zeros

After this chapter, and its software, were completed, John Harrison described a significant improvement in the
computation of the Bessel functions J0(x), J1(x), Y0(x), and Y1(x) that he implemented in the math library for the Intel
compiler family [Har09b]. His code uses separate polynomial fits around the zeros and extrema of those functions
for arguments x in [0, 45]. Above that region, the functions are represented with single trigonometric functions as

Jn(x) ≈ P(1/x) cos(x − (1
2 n + 1

4)π −Q(1/x)),

Yn(x) ≈ P(1/x) sin(x − (1
2 n + 1

4)π −Q(1/x)),

where P(1/x) and Q(1/x) are polynomials in inverse powers of x. His algorithm improves the relative accuracy of
the Bessel functions near their zeros, and ensures monotonocity near their extrema.

Harrison also carried out an exhaustive search to find arguments x < 290(≈ 1027) that are the worst cases for
determining correct rounding. For the IEEE 754 64-bit binary format, he found that at most six additional bits in the
Bessel-function values are required for correct rounding decisions. In particular, accurate computations in the 80-bit
format provide more than the required additional bits to guarantee correct rounding in the 64-bit format.

Because the mathcw library supports more floating-point formats, and decimal arithmetic, using Harrison’s ap-
proach would require a large number of polynomial tables. It therefore is reasonable to ask whether there is a simpler
way to improve relative accuracy near the zeros of the Bessel functions. We start by generating the Taylor series of
J0(x) near a point x = z + d, such that J0(z) = 0:

% maple
> alias(J = BesselJ):

21.9. Improving Bessel code near zeros 717

Figure 21.8: Errors in the binary (top) and decimal (bottom) yn(n,x) family for n = 25.

> taylor(J(0, z + d), d = 0, 5);
2

J(0, z) - J(1, z) d + (1/4 J(2, z) - 1/4 J(0, z)) d +
3

(-1/24 J(3, z) + 1/8 J(1, z)) d +
4 5

(1/192 J(4, z) - 1/48 J(2, z) + 1/64 J(0, z)) d + O(d)

The expansion coefficients require values of higher-order Bessel functions at z, so let us apply the three-term recur-
rence relation, and then display the numerator and denominator:

> t := convert(%, polynom):
> u := subs(J(4,z) = (6/z)*J(3,z) - J(2,z),

J(3,z) = (4/z)*J(2,z) - J(1,z),
J(2,z) = (2/z)*J(1,z) - J(0,z),
J(0,z) = 0, t):

> numer(u);
3 2 2 2 3 3 3 2

-J(1, z) d (12 z - 6 d z + 4 d z - 2 d z - 3 d + d z)
> denom(u);

3
12 z

Notice that the Taylor series reduces to a rational polynomial scaled by the constant J1(z). Next, introduce two

0

1

2

3

4

5

6

7

8

9

10

 0 50 100

u
lp

s

x

Errors in ynf()

0

1

2

3

4

5

6

7

8

9

10

 0 200 400 600 800

u
lp

s

x

Errors in yn()

0

1

2

3

4

5

6

7

8

9

10

 0 50 100 150 200

u
lp

s

x

Errors in yndf()

0

1

2

3

4

5

6

7

8

9

10

 0 200 400 600 800

u
lp

s

x

Errors in ynd()

718 Chapter 21. Bessel functions

intermediate variables and simplify:

> simplify(subs(v^2 = w, subs(z = 1/v, u)));
2 2 3 3

1/12 d J(1, 1/v) (-12 + 6 v d - 4 d w + 2 d + 3 d v w - d v)

We now have a simple polynomial in powers of d, scaled by J1(z).
A more complex Maple program in the file J0taylor.map finds the general form of the polynomial coefficients to

any desired order. In Horner form, they involve only whole numbers, and look like this:

c[0] = 0;
c[1] = -1;
c[2] = (v) / 2;
c[3] = (1 - 2 * w) / 6;
c[4] = ((-1 + 3 * w) * v) / 12;
c[5] = (-1 + (7 - 24 * w) * w) / 120;
c[6] = ((1 + (-11 + 40 * w) * w) * v) / 240;
c[7] = (1 + (-15 + (192 - 720 * w) * w) * w) / 5040;
c[8] = ((-1 + (24 + (-330 + 1260 * w) * w) * w) * v) / 10080;
c[9] = (-1 + (26 + (-729 + (10440 - 40320 * w) * w) * w) * w) / 362880;
...

The important point here is that the coefficients for the expansions near all of the zeros of J0(x) are represented with
symbolic expressions that can be evaluated at run time for any particular zero, z.

Because v and w are reciprocals, their higher powers decrease and prevent overflow in the coefficients ck. In
addition, the values of the numerators of the leading coefficients are often in [1

2 , 1], reducing accuracy loss when the
host arithmetic has wobbling precision.

Subtraction loss in the Taylor series is most severe in the sum c2d2 + c3d3, so we can use the series only when
|d| < 1

2 c2/c3 � 3/(2z). For the zeros of J0(x) that we treat, the upper limit on |d| is roughly 0.27.
If we tabulate just the zeros zk and the corresponding values J1(zk), then for any particular zero, z, we can compute

numerical values of the coefficients and obtain the Bessel function from its Taylor series as

J0(z + d) = J1(z)(c0 + c1d + c2d2 + c3d3 + · · ·),
where that sum is best evaluated in Horner form.

Given a value x, the Bessel-function zero estimates allow us to find z quickly without having to look at more than
three of the tabulated roots. To further enhance accuracy, we store the zk and J1(zk) values as two-part sums of high
and low parts, where the high part is exactly representable, correctly rounded, and accurate to working precision.

Similar investigations show that the Taylor series of J1(x) requires a scale factor of J0(z), the series for Y1(x) needs
Y0(z), and that for Y1(x) needs Y0(z). The coefficients ck are identical for J0(x) and Y0(x), and another set of ck values
handles both J1(x) and Y1(x).

By computing coefficients up to c17, we can use the series for J0(x) for |d| < 0.805 in the IEEE 754 64-bit formats,
and |d| < 0.060 in the 128-bit formats, subject to the additional limit required to avoid subtraction loss. Otherwise,
we fall back to the algorithms described in earlier sections of this chapter.

As long as x lies within the table, we can achieve high accuracy near the zeros. The table requirements are modest:
100 entries handle x < 311, and 320 entries suffice for x < 1000.

Revised versions of the files j0x.h, j1x.h, y0x.h, and y1x.h incorporate optional code that implements the gen-
eral Taylor-series expansions, and their corresponding header files contain the required data tables of zeros and
Bessel-function values at those zeros. The new code is selected by default, but can be disabled with a compile-time
preprocessor macro definition. The error reduction in J0(x) is evident in Figure 21.9 on the facing page. Plots for
other precisions, and the three other Bessel functions, show similar improvements, so they are omitted.

21.10 Properties of In(z) and Kn(z)

The modified Bessel functions of the first kind, In(z), and the second kind, Kn(z), have quite different behavior from
the ordinary Bessel functions, Jn(z) and Yn(z). Instead of taking the form of decaying waves, the modified functions

21.10. Properties of In(z) and Kn(z) 719

0

1

2

3

4

5

 0 10 20 30 40 50

u
lp

s

x

Relative errors in original j0()

0

1

2

3

4

5

 0 10 20 30 40 50

u
lp

s

x

Relative errors in improved j0()

Figure 21.9: Errors in the J0(x) Bessel function before and after adding code for Taylor-series expansions around the
roots indicated by the vertical dotted lines.

resemble rising and falling exponentials, as shown in Figure 21.10 on the next page. That property makes them
computationally easier than the ordinary Bessel functions, because there are no roots where high relative accuracy is
difficult to achieve.

The scaled companion functions defined by

Isν(z) = exp(−z)Iν(z), Ksν(z) = exp(+z)Kν(z)

are finite and representable for arguments over much of the floating-point range, whereas the unscaled ones soon
overflow or underflow.

Because the modified Bessel functions are not specified by POSIX or any ISO programming-language standards,
we get to choose names for their unscaled and scaled software implementations in the mathcw library. Only one
function in Standard C89, and four functions in C99, begin with the letter b, so we choose that letter to prefix our
function names, and identify them as members of the Bessel family:

double bi0 (double x); double bk0 (double x);
double bi1 (double x); double bk1 (double x);
double bin (int n, double x); double bkn (int n, double x);

double bis0 (double x); double bks0 (double x);
double bis1 (double x); double bks1 (double x);
double bisn (int n, double x); double bksn (int n, double x);

They have the usual suffixed companions for other floating-point types.
The modified functions satisfy these symmetry relations:

In(−z) = (−1)n In(z), for integer n,

I−n(z) = In(z), for integer n,

K−ν(z) = Kν(z), for real ν.

Like Yν(z), the Kν(z) functions are complex-valued for negative z. For such arguments, our software implementa-
tions therefore call QNAN("") to produce a quiet NaN as the return value, and set errno to EDOM.

Their limiting forms for small arguments, z → 0, are

Iν(z) → (z/2)ν/Γ(ν + 1), if ν �= −1,−2,−3, . . . ,

I0(0) = 1,
In(0) = 0, for n = ±1,±2,±3, . . . ,

720 Chapter 21. Bessel functions

 0

 10

 20

 30

 40

 50

 0 5 10 15

I n
(x

)

x

I0(x) I1(x)

I2(x)

I5(x) I10(x)

 0

 10

 20

 30

 40

 50

 0 5 10 15

K
n
(x

)

x

K0(x)

K1(x)

K2(x)

K5(x)

K10(x)

0.00

0.05

0.10

0.15

0.20

0.25

 0 20 40 60 80 100

Is
n
(x

)

x

Is0(x)

Is1(x)

Is2(x)

Is5(x)

Is10(x)

 0

 1

 2

 3

 4

 0 20 40 60 80 100

K
s n

(x
)

x

Ks0(x)

Ks1(x)

Ks2(x)

Ks5(x)

Ks10(x)

Figure 21.10: Modified Bessel functions, In(x) and Kn(x), and scaled modified Bessel functions, e−x In(x) and exKn(x).

K0(z) → − log(z),
Kν(z) → 1

2 Γ(ν)/(z/2)ν, if ν > 0.

For large arguments, z → ∞, the functions behave like this:

Iν(z) → exp(z)√
2πz

→ +∞,

In(−z) → (−1)n exp(z)√
2πz

→ (−1)n∞, for integer n,

Kν(z) → exp(−z)
√

π

2z
→ 0.

The functions satisfy these three-term recurrence relations:

Iν+1(z) = −(2ν/z)Iν(z) + Iν−1(z),
Kν+1(z) = +(2ν/z)Kν(z) + Kν−1(z).

They are stable in the downward direction for Iν(z), and in the upward direction for Kν(z). With those direction
choices, there is never subtraction loss, because for real arguments and integer orders, the recurrences require only
addition of positive terms.

Similar to what we observed on page 700 for Jν(x) and Yν(x), when |x| � ν, a sequence of Iν(x) values for
ν = 0, 1, 2, . . . looks like I0(x), I1(x), I0(x), I1(x), I0(x), I1(x), . . . , and similarly for sequences of Kν(x).

21.10. Properties of In(z) and Kn(z) 721

Ratios of modified functions of the first kind satisfy a continued fraction similar to that for Jν(z)/Jν−1(z) (see
Section 21.3 on page 702), except that minus signs become plus signs:

Iν(z)
Iν−1(z)

= 0 +
1

2ν/z +
1

2(ν + 1)/z +
1

2(ν + 2)/z +
1

2(ν + 3)/z +
· · ·

= 0 +
(1/2)z/ν

1 +
(1/4)z2/ν(ν + 1)

1 +
(1/4)z2/((ν + 1)(ν + 2))

1 +
(1/4)z2/((ν + 2)(ν + 3))

1 +
(1/4)z2/((ν + 3)(ν + 4))

1 +
· · · .

The same computational technique that we described for the ordinary Bessel functions of integer orders allows us to
compute ratios down to In(z)/I0(z), and then recover In(z) by multiplying that ratio by a separately computed I0(z).
That solves the problem of the unstable upward recurrence for In(z). Furthermore, because the ratios are invariant
under uniform scaling, the continued fraction is also valid for ratios of scaled functions, Isν(z)/ Isν−1(z).

The derivatives of the modified Bessel functions

dIn(x)/dx = +In+1(x) + nIn(x)/x,
dKn(x)/dx = −Kn+1(x) + nKn(x)/x,

lead to these error-magnification factors (see Section 4.1 on page 61):

errmag(In(x)) = xI ′n(x)/In(x)
= n + xIn+1(x)/In(x),

errmag(Kn(x)) = n − xKn+1(x)/Kn(x).

The ratios of the Bessel functions are modest, so the general behavior of those factors is n ± rx, where r is the ratio.
Thus, errors in the computed functions are expected to grow almost linearly with x, and are large when either n or x
is large.

The error-magnification factors of the scaled functions look like this:

errmag(Isn(x)) = n − x + xIn+1(x)/In(x),
errmag(Ksn(x)) = n + x + xKn+1(x)/Kn(x).

Plots of those functions for fixed n and increasing x show that the first has decreasing magnitude, whereas the second
grows. However, for arguments of modest size, the scaled functions should be accurately computable.

These relations between the two functions

Iν(z)Kν+1(z) + Iν+1(z)Kν(z) = 1/z,
Isν(z)Ksν+1(z) + Isν+1(z)Ksν(z) = 1/z,

where the terms on the left are positive for positive orders and positive real arguments, are useful for checking
software implementations.

Checks can also be made with relations to integrals that can be evaluated accurately with numerical quadrature,
as long as their integrands are not too oscillatory:

I0(z) = (1/π)
∫ π

0
cosh(z cos t) dt,

In(z) = (1/π)
∫ π

0
exp(z cos t) cos(nt) dt,

K0(z) = −(1/π)
∫ π

0
exp(±z cos t)

(
γ + log(2z(sin(t))2)

)
dt,

=
∫ ∞

0
exp(−z cosh(t)) dt, �(z) > 0,

Kν(z) =
∫ ∞

0
exp(−z cosh(t)) cosh(νt) dt, �(z) > 0.

722 Chapter 21. Bessel functions

There does not appear to be a similar integral for Kn(z) on [0, π].
The functions inside the infinite integrals fall off extremely rapidly. For n = 0, x = 1, and t = 10, the integrand is

O(10−4782), so quadrature over a small finite range can be used. For example, a 40-point Simpson’s rule quadrature
for t on [0, 5] produces 34 correct decimal digits for K0(1).

The modified Bessel function of the first kind has a series that looks like that for Jν(z) (see Section 21.3 on
page 702), but without sign changes:

Iν(z) = (z/2)ν
∞

∑
k=0

(z2/4)k

k! Γ(ν + k + 1)
.

We can again simplify the formula with the help of two intermediate variables, and also exhibit special cases for
positive integer orders, and for ν = 0 and ν = 1:

v = z/2,
w = v2,

Iν(z) = vν
∞

∑
k=0

wk

k! Γ(ν + k + 1),

In(z) = vn
∞

∑
k=0

wk

k! (k + n)!,
for integer n = 0, 1, 2, 3, . . . ,

I0(z) =
∞

∑
k=0

wk

(k!)2,

I1(z) = v
∞

∑
k=0

wk

k! (k + 1)!.

The modified Bessel function of the second kind has a series for integer orders that looks like that for Yn(z) (see
Section 21.3 on page 703):

Kn(z) = 1
2 v−n

n−1

∑
k=0

(n − k − 1)!
k!

(−w)k − (−1)n log(v)In(z)

+ (−1)n 1
2 vn

∞

∑
k=0

(
ψ(k + 1) + ψ(k + n + 1)

) wk

k! (k + n)!
.

As with the ordinary Bessel functions, we can replace the psi functions of integer arguments by differences of the
partial sums of the harmonic series, hk (see Section 21.3 on page 703), and the Euler–Mascheroni constant, γ:

Kn(z) = 1
2 v−n

n−1

∑
k=0

(n − k − 1)!
k!

(−w)k − (−1)n log(v)In(z)

+ (−1)n 1
2 vn

∞

∑
k=0

(hk + hk+n − 2γ)
wk

k! (k + n)!
.

We can then recognize part of the infinite sum to be In(z), giving a further simplification:

Kn(z) = 1
2 v−n

n−1

∑
k=0

(n − k − 1)!
k!

(−w)k − (−1)n(log(v) + γ)In(z)

+ (−1)n 1
2 vn

∞

∑
k=0

(hk + hk+n)
wk

k! (k + n)!
.

The special cases for the first two orders are:

K0(z) = −(log(v) + γ)I0(z) +
∞

∑
k=0

hk
wk

(k!)2 ,

K1(z) =
1

2v
+ (log(v) + γ)I1(z)− v

2

∞

∑
k=0

(hk + hk+1)
wk

k! (k + 1)!
.

21.10. Properties of In(z) and Kn(z) 723

The terms in the infinite sums are all positive, providing better numerical stability than we have for the sums in Yn(z),
where the terms have alternating signs. Unfortunately, there is subtraction loss when the infinite sums are added
to the remaining terms. The formula for K0(z) is only stable when z < 0.825, and that for K1(z), when z < 1.191,
provided that the logarithmic factor is handled properly.

The series for the modified Bessel functions of the first kind have these leading terms, suitable for use with small
arguments:

I0(z) = 1 + w + w2/4 + w3/36 + w4/576 + w5/14 400 + · · · ,

I1(z) = v(1 + w/2 + w2/12 + w3/144 + w4/2880 + w5/86 400 + · · ·).
All terms are positive, and convergence is rapid for small arguments. With the six terms shown, values of z = 1,
z = 1/10, and z = 1/1000 produce results correct to 7, 17, and 37 decimal digits, respectively.

On systems with hexadecimal floating-point arithmetic, the series coefficients should be halved, and the final
result doubled, so as to reduce accuracy loss from wobbling precision.

To simplify the series for the modified Bessel functions of the second kind, we again introduce the intermediate
variable

s = log(v) + γ.

To avoid loss of leading digits, s must be computed carefully as described in Section 21.3 on page 704. We then have
these formulas for fast computation for small arguments, without the need for values of other Bessel functions:

K0(z) = −s + (1 − s)w + (1/8)(−2s + 3)w2 + (1/216)(−6s + 11)w3 +

(1/6912)(−12s + 25)w4 + (1/864 000)(−60s + 137)w5 + · · · ,

K1(z) =
1

2v
(1 + (2s − 1)w + (1/4)(4s − 5)w2 + (1/18)(3s − 5)w3 +

(1/1728)(24s − 47)w4 + (1/86 400)(60s − 131)w5 + · · ·).
The terms in those series diminish rapidly for z < 2. For z = 1, the six terms shown produce results correct to nearly
six decimal digits. For z = 1/10, they give function values good to 16 decimal digits. For z = 1/1000, the results are
accurate to 36 digits.

There are asymptotic expansions of the modified Bessel functions for large arguments:

μ = 4ν2,

Iν(z) � exp(z)√
2πz

(
1 − μ − 12

8z
+

(μ − 12)(μ − 32)

2! (8z)2

− (μ − 12)(μ − 32)(μ − 52)

3! (8z)3 + · · ·
)

,

Kν(z) �
√

π

2z
exp(−z)

(
1 +

μ − 12

8z
+

(μ − 12)(μ − 32)

2! (8z)2

+
(μ − 12)(μ − 32)(μ − 52)

3! (8z)3 + · · ·
)

.

Asymptotic expansions usually limit the attainable accuracy (see Section 2.9 on page 19), but provided that |z| > ν2,
the sums can be computed to machine precision.

Although the asymptotic formulas look complex, the parenthesized sums are straightforward to compute, using
the term recurrences

t0 = 1, tk = (−1)p μ − (2k − 1)2

8kz
tk−1, k = 1, 2, 3, . . . ,

where p = 1 for Iν(z), and p = 0 for Kν(z). For fixed ν and large z, convergence is rapid. As usual, accuracy
is improved by omitting the first one or two terms, summing the remaining terms until the result has converged
to machine precision, and finally, adding the omitted terms. For a hexadecimal base, the series for Kν(z) has the
undesirable form r× (1+ δ): compute it as 2× (r× (1

2 +
1
2 δ)) to avoid unnecessary loss of leading bits from wobbling

precision.

724 Chapter 21. Bessel functions

We use the asymptotic formulas directly for large arguments with ν = 0 and ν = 1. For smaller z values, we
use their forms as a guide, and for the parenthesized sums, compute polynomial expansions in the variable t = 1/z.
That way, the exponential behavior is handled entirely by the exponential functions, and the parenthesized sums are
O(1), far from the overflow and underflow limits.

21.11 Computing I0(x) and I1(x)

After much experimentation based on published algorithms for computing the modified Bessel functions of the first
kind, and examination of their error plots, this author concluded that many of those recipes are inadequate, and
more care is needed to achieve the accuracy expected of functions in the mathcw library.

The lack of an argument-reduction formula for the Bessel functions means that we need to handle arguments over
the entire floating-point range, and that requires more intervals, each with separate polynomial approximations.

Although Maple is able to compute Chebyshev fits to formulas involving the Bessel functions over a reason-
able range of arguments, high-precision minimax fits in some argument regions are infeasible. For example, Maple
reports failure like this:

% maple
> with(numapprox):
> alias (BI = BesselI):
> BIS := proc(n, x) return exp(-x) * BI(n, x) end proc:
> Digits := 800:
> minimax((BIS(1,x) - 13/128), x = 10 .. 25, [11, 11], 1, ’maxerror’):

Error, (in numapprox:-remez) error curve fails to oscillate
sufficiently; try different degrees

That error can often be made to disappear by increasing the value of Digits, but its value here of 800 is the result
of several earlier unsuccessful experiments with lower precisions, and the computation time at the point of failure is
excessive.

The two scaled functions decay smoothly, and slowly, for x > 2. That suggests using fits on intervals [a, b] to
functions such that

Isn(x) = d +

⎧⎪⎪⎨
⎪⎪⎩

f1(x),
f2(x)/x,
f3(x)/x2,
f4(

√
x)/x.

Here, the constant d is chosen to be roughly the function average on the interval, 1
2 (Isn(a) + Isn(b)), and the interval

[a, b] is selected to make the fitting function a small correction to d. That way, we can get results that are often correctly
rounded, remedying a deficiency of most published algorithms for those functions. Because the functions decay, the
correction is positive for x ≈ a, and negative for x ≈ b. We adjust d to a nearby value that is exactly representable in
both binary and decimal float formats, such as d = 25/128 = 0.195 312 50̇, and so that the magnitude of a negative
correction is smaller than d/2, preventing loss of leading bits in the subtraction.

In practice, there is little difference in the lengths of the Chebyshev expansions for f1(x), f2(x), f3(x), and f4(
√

x),
so we pick the simplest form, f (x) = f1(x) = Isn(x)− d. A short private function then makes it easy to compute the
scaled Bessel function on any of the required intervals:

static fp_t
evch (fp_t x, fp_t a, fp_t b, fp_t d, const int nc, const fp_t c[])
{ /* compute Is(n,x) = d + f(x), where f(x) is a Chebyshev fit */

fp_t sum, u;

u = (x + x - (b + a)) / (b - a);
sum = ECHEB(u, nc, c);
return (d + sum);

}

That function is used in a series of range tests, one of which looks like this:

21.11. Computing I0(x) and I1(x) 725

else if (x < FP(10.0))
result = evch(x, FP(1.0), FP(10.0), FP(25.0) / FP(128.0), NC1_10, C1_10);

/* I0(x) = 25/128 + f(x), for x in [1,10] */

The symmetry relations allow us to compute only for positive arguments. For Is1(x), if the input argument is
negative, we must reverse the sign of the result computed with |x| before returning.

After the usual checks for special arguments, the final algorithm adopted for the scaled functions bis0(x) and
bis1(x) looks like this:

x in (0, small] : Use a six-term loop-free Taylor series. That is a larger term count than we usually handle for small
arguments, but doing so allows a larger cutoff, and faster computation.

x in (small, 1] : Evaluate a Chebyshev fit to the series in powers of w (see Section 21.10 on page 722).

x in (1, 10] : Use Isn(x) = d + f (x), where d is chosen as described earlier, and f (x) is a Chebyshev fit.

x in (10, 25] : Similar to previous interval, with different constant and fitting function.

x in (25, 100] : Ditto.

x in (100, 1000] : Ditto.

x in (1000, 108] : Use Isn(x) =
√

x p(1/x), where p(1/x) is a Chebyshev fit.

x in (108, ∞) : Sum the parenthesized asymptotic series to machine precision, where at most nine terms suffice for
70 decimal digits of accuracy. The final result is the product of that sum and RSQRT((x + x) * PI), unless
the base is 16, in which case, we must avoid leading zero bits in the stored constant π, so we compute the

multiplier as
√

1/π × (
√

1
2 × RSQRT(x)), where the two leading square-root constants are precomputed.

The modified Bessel functions of the first kind, bi0(x) and bi1(x), without scaling, are computed like this:

x in (0, tiny] : Use a fast three-term Taylor series.

x in (tiny, 5] : Sum the series in powers of w (see Section 21.10 on page 722). At most 43 terms are needed for
70 decimal digits of accuracy.

x in (5, ∞) : The relations to the unscaled functions are

bi0(x) = exp(x)× bis0(x), bi1(x) = exp(x)× bis1(x).

Compute the exponential function and the scaled Bessel function, but if the exponential function overflows,
compute their product indirectly from a logarithm and another exponential. For example, the code for I0(x)
looks like this:

s = EXP(x);
t = BIS0(x);
result = (s < FP_T_MAX) ? (s * t) : EXP(x + LOG(t));

For large x, Is0(x) is smaller than one, so there is a small region near the overflow limit of exp(x) where exact
computation of s × t might produce a finite representable result, but s overflows. In such a case, we switch to
the indirect form to avoid that premature overflow.

A sensibly implemented exponential function returns the largest floating-point number to indicate overflow
when Infinity is not available in the floating-point design, so we compare s with that largest value, instead of
calling the usual ISINF() wrapper.

When x ≤ 5, no elementary or special functions are required, so the computational speed is largely determined by
the number of series terms summed. That argument-dependent count is reasonably close to the values in Table 21.4
on page 703, and is less than 20 for data type double on most systems.

Figure 21.11 on the following page through Figure 21.15 on page 730 show the measured errors in our imple-
mentations of the modified Bessel functions of the first kind.

726 Chapter 21. Bessel functions

Figure 21.11: Errors in the binary (top) and decimal (bottom) bi0(x) family.

21.12 Computing K0(x) and K1(x)

For technical reasons of exponent-size limitations, and how the chebyshev() function accesses the user-provided
function to be fit to a Chebyshev expansion, Maple is unable to compute fits to the Bessel functions K0(x) and
K1(x) for expansions in 1/x when x > 108. Although it seems reasonable to ask for a fit to the function f (t) =

exp(−1/t)K0(1/t)
√

t, which is smooth and nearly linear for tiny t, Maple reports failure:

% maple
> with(numapprox):
> Digits := 30:
> chebyshev(exp(1/t) * BesselK(0, 1/t) * sqrt(t),

t = 0 .. 1/100,
1.0e-16);

Error, (in numapprox:-chebyshev) function does not evaluate to numeric

Attempts to incorporate a conditional test in the argument function to check for tiny t, and switch to the asymptotic
formula, fail with the same error report.

After dealing with the usual special arguments, the final algorithm adopted for the scaled functions bks0(x) and
bks1(x) follows these steps:

x in (0, a] : Here a = 3
4 for Ks0(x) and a = 1 for Ks1(x). Evaluate the infinite sums involving harmonic-number

coefficients using a Chebyshev expansion in the variable t = x2, which produces fewer terms than an expan-

0

1

2

-100 -50 0 50 100

u
lp

s

x

Errors in bi0f()

0

1

2

-600 -400 -200 0 200 400 600

u
lp

s

x

Errors in bi0()

0

1

2

-200 -100 0 100 200

u
lp

s

x

Errors in bi0df()

0

1

2

-800 -600 -400 -200 0 200 400 600 800

u
lp

s

x

Errors in bi0d()

21.12. Computing K0(x) and K1(x) 727

Figure 21.12: Errors in the binary (top) and decimal (bottom) bi1(x) family.

sion in the variable x. Add the remaining terms, computing the factor log(v) + γ carefully as described in
Section 21.3 on page 704. Multiply the final sum by exp(x).

x in (a, 5] : For Ks0(x), use a Chebyshev fit to (K 0(t2)− 3
4)× t2 for t =

√
x in [27

32 , 5
4]. The result is the value of that

expansion divided by x, plus 3
4 .

The fit interval is slightly larger than (a, 5] to get a simple form with exact coefficients of the mapping to the
Chebyshev variable interval [−1,+1].

For Ks1(x), use a Chebyshev fit to (K 1(x)− 9
8)× x. The result is the value of that expansion divided by x, plus

9
8 .

x in (5, 10] : Evaluate a Chebyshev fit to Ks0(x)− 5
32 or Ks1(x)− 1

2 on that interval.

x in (10, 25] : Similar to previous interval, with different shift constants and fitting function.

x in (25, 100] : Ditto.

x in (100, 1000] : Ditto.

x in (1000, 108] : Evaluate a Chebyshev fit with the variable t = 1/x.

x in (108, ∞) : Sum all but the first two terms of the asymptotic expansion to machine precision, then add those two
terms.

0

1

2

-100 -50 0 50 100

u
lp

s

x

Errors in bi1f()

0

1

2

-600 -400 -200 0 200 400 600

u
lp

s

x

Errors in bi1()

0

1

2

-200 -100 0 100 200

u
lp

s

x

Errors in bi1df()

0

1

2

-800 -600 -400 -200 0 200 400 600 800

u
lp

s

x

Errors in bi1d()

728 Chapter 21. Bessel functions

Figure 21.13: Errors in the binary (top) and decimal (bottom) bin(n,x) family for n = 25.

Although we dislike the dependence in the first region on the exponential function, and in the first two regions on
the logarithm and on I0(x) or I1(x), no obvious simple functions accurately handle the approach to the singularity
at x = 0.

We compute the unscaled functions bk0(x) and bk1(x) in two regions:

x in (0, a] : Same as for the scaled functions, but omit the final multiplication by exp(x).

x in (a, ∞] : In this region, the danger is from underflow instead of overflow. Because the scaled functions are
smaller than one for large x, if exp(−x) underflows, the modified Bessel function of the second kind does as
well, and the computation of the scaled function can then be avoided entirely.

Here too, when x ≤ a, there is direct and hidden dependence on the logarithm, and on I0(x) or I1(x). In both regions,
there is also dependence on the scaled functions.

Figure 21.17 on page 732 through Figure 21.22 on page 737 show the measured errors in our implementations of
the modified Bessel functions of the second kind. An extended vertical scale is used for the tests with n > 1.

21.13 Computing In(x) and Kn(x)

For the modified Bessel function of the first kind for general integer order, In(x), and its scaled companion, Isn(x),
after the usual handling of special arguments, and accounting for any sign change mandated by symmetry relations,
we use two computational procedures in binx.h and bisnx.h:

0

1

2

3

4

5

6

7

8

9

10

-100 -50 0 50 100

u
lp

s

x

Errors in binf()

0

1

2

3

4

5

6

7

8

9

10

-600 -400 -200 0 200 400 600

u
lp

s

x

Errors in bin()

0

1

2

3

4

5

6

7

8

9

10

-200 -100 0 100 200

u
lp

s

x

Errors in bindf()

0

1

2

3

4

5

6

7

8

9

10

-800 -600 -400 -200 0 200 400 600 800

u
lp

s

x

Errors in bind()

21.13. Computing In(x) and Kn(x) 729

Figure 21.14: Errors in the binary (top) and decimal (bottom) bis0(x) family.

x in [0, 5] : Sum the series for In(x) (see Section 21.10 on page 722) to machine precision, adding the first two terms
last to improve accuracy for small arguments. For the scaled function, multiply the result by exp(−x).

x in (5, ∞) : Evaluate the continued fraction for the ratios In(x)/In−1(x) or Isn(x)/ Isn−1(x) (see Section 21.10 on
page 721) using the forward Lentz algorithm. Then use the downward recurrence for the ratios, as in Sec-
tion 21.6 on page 711, to find the ratio In(x)/I0(x) or Isn(x)/ Is0(x). The final result is the product of that ratio
and the separately computed I0(x) from bi0(x), or Is0(x) from bis0(x).

In both cases, computation time is proportional to the order n, so large orders are costly to compute.
Vector versions of the Bessel functions that we describe later in Section 21.18 on page 755 compute all orders

from 0 to n for fixed x using only the continued fraction algorithm, preserving the ratios in the argument vector for
the final scaling by the zeroth-order function.

For the modified Bessel function of the first kind for general integer order, we consider the scaled function Ksn(x)
as the computational kernel. Because upward recurrence is stable, we can use starting values of bks0(x) and bks1(x)
to obtain the final result needed in bksn(n,x).

For the unscaled function, bkn(x), there are argument regions where the factor exp(−x) underflows, and Ksn(x)
overflows, yet their product in exact arithmetic is finite and representable. For example, if n = 200 and x = 110,
then in single-precision IEEE 754 arithmetic, exp(−x) ≈ 10−48 underflows, and Ks200(110) ≈ 1066 overflows, but the
exact product is O(1018), so Kn(x) is representable. Similarly, both Is200(110) ≈ 10−68 and exp(+x) ≈ 1048 are out of
range, yet I200(110) ≈ 10−20 is representable.

We cannot handle the extremes satisfactorily without intermediate scale factors, or having a separate function to

0

1

2

-100 -50 0 50 100

u
lp

s

x

Errors in bi0f()

0

1

2

-600 -400 -200 0 200 400 600

u
lp

s

x

Errors in bi0()

0

1

2

-200 -100 0 100 200

u
lp

s

x

Errors in bi0df()

0

1

2

-800 -600 -400 -200 0 200 400 600 800

u
lp

s

x

Errors in bi0d()

730 Chapter 21. Bessel functions

Figure 21.15: Errors in the binary (top) and decimal (bottom) bis1(x) family.

compute the logarithms of the scaled functions. The best that we can do is detect and report the problem through
the global variable errno, with code like this in bknx.h:

s = EXP(-x);
t = BKSN(n, x);

if (t >= FP_T_MAX) /* overflow in scaled function */
result = (s == ZERO) ? SET_ERANGE(QNAN("")) : SET_ERANGE(INFTY());

else
result = s * t;

The Bessel functions are good examples of the need for wider exponent ranges in floating-point designs. User code
that requires Bessel functions for large orders or arguments may find it necessary to invoke versions of the functions
in the highest available precision, if that format provides more exponent bits that might eliminate out-of-range
intermediate results.

0

1

2

-100 -50 0 50 100

u
lp

s

x

Errors in bi1f()

0

1

2

-600 -400 -200 0 200 400 600

u
lp

s

x

Errors in bi1()

0

1

2

-200 -100 0 100 200

u
lp

s

x

Errors in bi1df()

0

1

2

-800 -600 -400 -200 0 200 400 600 800

u
lp

s

x

Errors in bi1d()

21.14. Properties of spherical Bessel functions 731

Figure 21.16: Errors in the binary (top) and decimal (bottom) bisn(n,x) family for n = 25.

21.14 Properties of spherical Bessel functions

The spherical Bessel functions are conventionally denoted by lowercase letters, and are related to the ordinary and
modified Bessel functions of half-integral order, like this:

jn(z) =
√

π/(2z)J
n+ 1

2
(z), ordinary spherical Bessel function (first kind),

yn(z) =
√

π/(2z)Y
n+ 1

2
(z), ordinary spherical Bessel function (second kind),

in(z) =
√

π/(2z)I
n+ 1

2
(z), modified spherical Bessel function (first kind),

kn(z) =
√

π/(2z)K
n+ 1

2
(z), modified spherical Bessel function (second kind).

Some books, including the Handbook of Mathematical Functions [AS64, §10.2], call kn(z) a function of the third kind,
even though they refer to its cylindrical companion Kn(z) as a function of the second kind. That is another instance
of the lack of standardization of Bessel-function terminology.

Unlike the cylindrical Bessel functions, the spherical Bessel functions have closed forms in terms of trigonometric,
hyperbolic, and exponential functions, and Table 21.6 on page 738 shows a few of them. However, the common factor√

π/(2z) used in most textbook presentations of those functions needs to be rewritten as
√

1
2 π/

√
z to agree with the

closed forms. The two factors are identical for both real and complex z, except for negative real z, where they differ in

0

1

2

3

4

5

6

7

8

9

10

-100 -50 0 50 100

u
lp

s

x

Errors in bisnf()

0

1

2

3

4

5

6

7

8

9

10

-600 -400 -200 0 200 400 600

u
lp

s

x

Errors in bisn()

0

1

2

3

4

5

6

7

8

9

10

-200 -100 0 100 200

u
lp

s

x

Errors in bisndf()

0

1

2

3

4

5

6

7

8

9

10

-800 -600 -400 -200 0 200 400 600 800

u
lp

s

x

Errors in bisnd()

732 Chapter 21. Bessel functions

Figure 21.17: Errors in the binary (top) and decimal (bottom) bk0(x) family.

sign. The negative real axis here is the branch cut of the complex square-root function (see Section 17.3 on page 476).
Users of software for computation of spherical Bessel functions with negative arguments should be careful to check
the implementation’s sign conventions.

The spherical Bessel functions have these symmetry relations:

in(−z) = (−1)nin(z), jn(−z) = (−1)n jn(z), yn(−z) = (−1)n+1yn(z).

The values kn(±z) do not have a simple relation, although from the tabulated closed forms, we can see that for small
|z|, where the exponential term is nearly one and the function values are large, we have kn(−z) ≈ (−1)n+1kn(z).

The modified spherical Bessel functions in(z) grow exponentially, and the kn(z) functions fall exponentially, so
scaled companions are commonly used. For large arguments, the scaled functions isn(z) and ksn(z) are proportional
to z−(n+1), and is −n(z) to z−n, so they are representable in floating-point arithmetic over much of the argument range
when n is small. For large n and z, they soon underflow to zero.

Although the square root in their definitions in terms of the cylindrical functions might suggest a restriction
to z ≥ 0, the spherical Bessel functions have real, rather than complex, values for both positive and negative real
arguments. Figure 21.23 on page 739 shows plots of the low-order spherical functions.

The error-magnification formulas for the spherical Bessel functions of integer order look like this:

errmag(in(x)) = − 1
2 +

1
2 x(in−1(x) + in+1(x))/in(x),

errmag(jn(x)) = − 1
2 +

1
2 x(jn−1(x)− jn+1(x))/jn(x),

errmag(kn(x)) = − 1
2 − 1

2 x(kn−1(x) + kn+1(x))/kn(x),

0

1

2

 0 50 100

u
lp

s

x

Errors in bk0f()

0

1

2

 0 200 400 600

u
lp

s

x

Errors in bk0()

0

1

2

 0 100 200

u
lp

s

x

Errors in bk0df()

0

1

2

 0 200 400 600 800

u
lp

s

x

Errors in bk0d()

21.14. Properties of spherical Bessel functions 733

Figure 21.18: Errors in the binary (top) and decimal (bottom) bk1(x) family.

errmag(yn(x)) = − 1
2 +

1
2 x(yn−1(x)− yn+1(x))/yn(x).

Plots of those formulas for various n and modest ranges of x show that errors grow roughly linearly in x for in(x)
and kn(x). For the other two, the error factor lies in [−n, n], and away from the zeros of the function, but, of course,
grows without bound near those zeros.

The first spherical Bessel function, j0(z) = sin(z)/z, is identical to the sinc function, sinc(z), which has impor-
tant applications in approximation theory [LB92, Ste93, KSS95]. Considering its simple form, further mathematical
development of the theory of the sinc function is surprisingly complex, but its rewards are rich, leading to rapidly
convergent approximations that can produce results of arbitrarily high precision. However, we do not consider the
sinc-function approach further in this book.

Because the recurrence relations for the ordinary and modified Bessel functions are valid for arbitrary order ν,
the spherical Bessel functions of integer order have similar relations:

jn+1(z) = ((2n + 1)/z)jn(z)− jn−1(z),
yn+1(z) = ((2n + 1)/z)yn(z)− yn−1(z),
in+1(z) = (−(2n + 1)/z)in(z) + in−1(z),
kn+1(z) = ((2n + 1)/z)kn(z) + kn−1(z).

Those relations are numerically stable in the upward direction for yn+1(z) and kn+1(z), and in the downward direc-
tion for the other two.

0

1

2

 0 50 100

u
lp

s

x

Errors in bk1f()

0

1

2

 0 200 400 600

u
lp

s

x

Errors in bk1()

0

1

2

 0 100 200

u
lp

s

x

Errors in bk1df()

0

1

2

 0 200 400 600 800

u
lp

s

x

Errors in bk1d()

734 Chapter 21. Bessel functions

Figure 21.19: Errors in the binary (top) and decimal (bottom) bkn(n,x) family for n = 25.

As long as the implementations of the trigonometric functions employ exact argument reduction, as those in the
mathcw library do, j0(z) and y0(z) can be computed accurately from the formulas of Table 21.6 on page 738 for
any representable value z. However, the higher-order functions jn(z) and yn(z) suffer serious subtraction loss when
n > 0. For real arguments, the kn(x) functions are well-behaved for all n and x ≥ 0 because all terms are positive,
and the in(x) functions have a dominant term for large x, so they too are computationally reasonable. We investigate
the stability of the computation of kn(x) for negative arguments later when we develop computer algorithms for
those functions in Section 21.17.7 on page 754.

Three of the spherical Bessel functions of negative order are simply related to those of positive order:

j−n(z) = (−1)nyn−1(z), y−n(z) = (−1)n+1 jn−1(z), k−n(z) = kn−1(z).

The function i−n(z) does not have a simple relation to in−1(z), because the hyperbolic cosine and sine are exchanged
in the closed forms shown in Table 21.6 on page 738. However, is z is large, cosh(z) ≈ sinh(z), so we can conclude
that when z � 1, i−n(z) ≈ in−1(z). For example, i−4(10) and i3(10) agree to eight decimal digits.

The case of n < 0 for in(z) is most easily handled by the stable downward recurrence starting from i1(z) and
i0(z).

The spherical Bessel functions have the limiting behaviors summarized in Table 21.7 on page 740. The argument
of the sine function in the large-argument limit for jn(z) cannot be determined accurately when n is large unless high
precision is available, but the angle sum formula allows it to be replaced by sin(z) cos(nπ/2) − cos(z) sin(nπ/2),
and because n is an integer, that collapses to one of ± sin(z) or ± cos(z). Similar considerations allow accurate
reduction of the cosine in the large-argument limit for yn(z).

0

1

2

3

4

5

6

7

8

9

10

 0 50 100

u
lp

s

x

Errors in bknf()

0

1

2

3

4

5

6

7

8

9

10

 0 200 400 600

u
lp

s

x

Errors in bkn()

0

1

2

3

4

5

6

7

8

9

10

 0 100 200

u
lp

s

x

Errors in bkndf()

0

1

2

3

4

5

6

7

8

9

10

 0 200 400 600 800

u
lp

s

x

Errors in bknd()

21.15. Computing jn(x) and yn(x) 735

Figure 21.20: Errors in the binary (top) and decimal (bottom) bks0(x) family.

21.15 Computing jn(x) and yn(x)

Because the spherical Bessel functions of the first and second kinds have simple relations to their cylindrical com-
panions, the same computational techniques can be used for both types. However, the closed forms j0(x) = sin(x)/x
and y0(x) = − cos(x)/x, together with our exact argument reduction inside the trigonometric functions, suggest the
use of those formulas, except for small arguments, where truncated Taylor series provide a faster route. The needed
series are trivially obtained from those of the trigonometric functions, so that we have

j0(x) ≈ 1 − x2/6 + x4/120 − x6/5040 + x8/362 880 − · · · ,

y0(x) ≈ − 1
x
(1 − x2/2 + x4/24 − x6/720 + x8/40 320 − · · ·).

The closed forms j1(x) = (−x cos(x) + sin(x))/x2 and y1(x) = −(cos(x) + x sin(x))/x2 look simple, but suffer
massive subtraction loss near the zeros of those functions. For small arguments, series expansions solve the accuracy-
loss problem:

j1(x) ≈ x
3
(1 − x2/10 + x4/280 − x6/15 120 + x8/1 330 560 − · · ·),

y1(x) ≈ − 1
x2 (1 + x2/2 − x4/8 + x6/144 − x8/5760 + · · ·).

In binary floating-point arithmetic, it is advisable to compute the series for j1(x) as x/4 + (x/12 − x3/30 + · · ·), so
that the first term is exact, and the second term is a small correction. For other bases, the error from the division by

0

1

2

 0 50 100

u
lp

s

x

Errors in bks0f()

0

1

2

 0 200 400 600

u
lp

s

x

Errors in bks0()

0

1

2

 0 100 200

u
lp

s

x

Errors in bks0df()

0

1

2

 0 200 400 600 800

u
lp

s

x

Errors in bks0d()

736 Chapter 21. Bessel functions

Figure 21.21: Errors in the binary (top) and decimal (bottom) bks1(x) family.

three can be reduced if higher precision is used.
By techniques discussed later in Section 21.17.5 on page 750, we can find the general form of the Taylor series for

arbitrary integer n ≥ 0:

jn(x) =
xn

(2n + 1)!!
(1 − 1

2(2n + 3)
x2 +

1
8(2n + 3)(2n + 5)

x4 −
1

48(2n + 3)(2n + 5)(2n + 7)
x6 +

1
384(2n + 3)(2n + 5)(2n + 7)(2n + 9)

x8 − · · ·),

yn(x) = − (2n − 1)!!
xn+1 (1 +

1
2(2n − 1)

x2 +
1

8(2n − 1)(2n − 3)
x4 +

1
48(2n − 1)(2n − 3)(2n − 5)

x6 +

1
384(2n − 1)(2n − 3)(2n − 5)(2n − 7)

x8 + · · ·).

The series for jn(x) is free of leading bit loss only for x <
√

2n + 3, so the minimal cutoff for using the series with
n ≥ 2 in a computer program is xTS =

√
7. Although it might not be immediately evident, the terms in the series for

0

1

2

 0 50 100

u
lp

s

x

Errors in bks1f()

0

1

2

 0 200 400 600

u
lp

s

x

Errors in bks1()

0

1

2

 0 100 200

u
lp

s

x

Errors in bks1df()

0

1

2

 0 200 400 600 800

u
lp

s

x

Errors in bks1d()

21.15. Computing jn(x) and yn(x) 737

Figure 21.22: Errors in the binary (top) and decimal (bottom) bksn(n,x) family for n = 25.

yn(x) can also alternate in sign. For n = 2, the term containing x6 is negative, and subtraction loss is prevented by
using the series only for x <

√
3.

The series expansions of jn(x) and yn(x) lead to simple recurrence formulas for successive terms:

t0 = 1, tk = −
(

1
2k

)(
1

2n + 2k + 1

)
x2 tk−1, for k = 1, 2, 3,,

u0 = 1, uk =

(
1
2k

)(
1

2n + 1 − 2k

)
x2 uk−1, for k = 1, 2, 3, . . . ,

jn(x) =
xn

(2n + 1)!!
(t0 + t1 + t2 + · · ·),

yn(x) = − (2n − 1)!!
xn+1 (u0 + u1 + u2 + · · ·).

Certainly for |x| < 1, and also for n � x2, the terms fall off so rapidly that there is no subtraction loss when they
alternate in sign. Provided that the terms are accumulated in order of increasing magnitudes, the major source of
inaccuracy in all but j0(x) is from the outer multiplication and division. We can further reduce rounding error by
factoring out x2 in the sums after the first term so that, for example, we compute

y1(x) ≈ −
(

1
x2 + (1/2 − x2/8 + x4/144 − x6/5760 + · · ·)

)
.

The widest interval where the closed form for j1(x) loses leading bits is [0, 1.166], and that for y1(x) is [2.458,

0

1

2

3

4

5

6

7

8

9

10

 0 50 100

u
lp

s

x

Errors in bksnf()

0

1

2

3

4

5

6

7

8

9

10

 0 200 400 600

u
lp

s

x

Errors in bksn()

0

1

2

3

4

5

6

7

8

9

10

 0 100 200

u
lp

s

x

Errors in bksndf()

0

1

2

3

4

5

6

7

8

9

10

 0 200 400 600 800

u
lp

s

x

Errors in bksnd()

738 Chapter 21. Bessel functions

Table 21.6: Explicit forms of low-order spherical Bessel functions, with their order-symmetry relations in bold.

j0(z) = sin(z)/z

j1(z) = (−z cos(z) + sin(z))/z2

j2(z) = (−3z cos(z)− (z2 − 3) sin(z))/z3

j3(z) = ((z3 − 15z) cos(z)− (6z2 − 15) sin(z))/z4

y0(z) = − cos(z)/z

y1(z) = (− cos(z)− z sin(z))/z2

y2(z) = ((z2 − 3) cos(z)− 3z sin(z))/z3

y3(z) = ((6z2 − 15) cos(z) + (z3 − 15z) sin(z))/z4

i0(z) = sinh(z)/z

i1(z) = (z cosh(z)− sinh(z))/z2

i2(z) = (−3z cosh(z) + (z2 + 3) sinh(z))/z3

i3(z) = ((z3 + 15z) cosh(z)− (6z2 + 15) sinh(z))/z4

k0(z) = (π/(2z)) exp(−z)

k1(z) = (π/(2z2))(z + 1) exp(−z)

k2(z) = (π/(2z3))(z2 + 3z + 3) exp(−z)

k3(z) = (π/(2z4))(z3 + 6z2 + 15z + 15) exp(−z)

j−1(z) = cos(z)/z

j−2(z) = (− cos(z)− z sin(z))/z2

j−3(z) = −((z2 − 3) cos(z)− 3z sin(z))/z3

j−4(z) = ((6z2 − 15) cos(z) + (z3 − 15z) sin(z))/z4

j−n(z) = (−1)nyn−1(z)

y−1(z) = sin(z)/z

y−2(z) = −(−z cos(z) + sin(z))/z2

y−3(z) = (−3z cos(z)− (z2 − 3) sin(z))/z3

y−4(z) = −((z3 − 15z) cos(z)− (6z2 − 15) sin(z))/z4

y−n(z) = (−1)n+1 jn−1(z)

i−1(z) = cosh(z)/z

i−2(z) = (− cosh(z) + z sinh(z))/z2

i−3(z) = ((z2 + 3) cosh(z)− 3z sinh(z))/z3

i−4(z) = ((−6z2 − 15) cosh(z) + (z3 + 15z) sinh(z))/z4

k−1(z) = (π/(2z)) exp(−z)

k−2(z) = (π/(2z2))(z + 1) exp(−z)

k−3(z) = (π/(2z3))(z2 + 3z + 3) exp(−z)

k−4(z) = (π/(2z4))(z3 + 6z2 + 15z + 15) exp(−z)

k−n(z) = kn−1(z)

2.975]. We could use polynomial approximations in those regions, but that provides only a partial solution to a
problem that occurs uncountably often for larger x values. The code in sbj1x.h uses a rational polynomial fit in the
first loss region.

For larger arguments, however, the approach in most existing implementations of j1(x) and y1(x) is to suffer
the subtraction loss from straightforward application of the closed formulas, which means accepting small absolute
error, rather than small relative error. That does not meet the accuracy goals of the mathcw library, and because no
obvious rearrangement of the closed forms for arguments |x| > 1 prevents the subtraction loss analytically, the only
recourse is then to use higher precision, when available. In practice, that means that the float functions can achieve
high accuracy, and on some systems, the double functions as well. However, the relative accuracy for longer data
types can be expected to be poor near the function zeros.

Because two trigonometric functions are usually needed for each of j1(x) and y1(x), some libraries compute both
spherical Bessel functions simultaneously. Ours does not, but we use the SINCOS() function family to get the sine and
the cosine with a single argument reduction, and little more than the cost of just one of the trigonometric functions.

For sufficiently large x, the terms containing the factor x in j1(x) and y1(x) dominate, and we can avoid one of
the trigonometric functions, computing j1(x) ≈ − cos(x)/x, and y1(x) ≈ − sin(x)/x. A suitable cutoff for j1(x) is
found by setting sin(x) ≈ 1 and cos(x) ≈ ε (the machine epsilon), for which we have j1(x) ≈ (−xε + 1)/x2, and 1 is
negligible in that sum if 1/(xε) < 1

2 ε/β. We solve that to find the cutoff xc = 2β/ε2 = 2β2t−1, where t is the number
of base-β digits in the significand. The same cutoff works for y1(x) too.

An alternate approach is to evaluate the continued fraction for the ratio j1(x)/j0(x) (see Section 21.6 on page 710),
and then determine j1(x) from the product of that ratio with an accurate value of j0(x). Numerical experiments with
that technique show that the errors are higher than with direct use of the trigonometric closed forms, even when
those forms cannot be computed in higher precision.

For orders n ≥ 2, jn(x) is computed using the same algorithm as for Jn(x): series summation for small arguments,
and downward recurrence with the continued fraction to find the ratio jn(x)/j0(x), from which jn(x) can be easily
found.

Unfortunately, the continued fraction for the Bessel function ratios converges poorly for large arguments: the

21.15. Computing jn(x) and yn(x) 739

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

-10 -8 -6 -4 -2 0 2 4 6 8 10

j n
(x

)

x

j0(x)

j1(x)
j2(x)

j3(x)

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

-10 -8 -6 -4 -2 0 2 4 6 8 10

y n
(x

)

x

y0(x)
y1(x)

y2(x)
y3(x)

y0(x)

y1(x)

y2(x)

y3(x)

 -5

 -4

 -3

 -2

 -1

 0

 1

 2

 3

 4

 5

-5 -4 -3 -2 -1 0 1 2 3 4 5

i n
(x

)

x

i0(x) i1(x)

i2(x)
i3(x)

i1(x)

i2(x)

i3(x)

-10

 -8

 -6

 -4

 -2

 0

 2

 4

 6

 8

 10

-5 -4 -3 -2 -1 0 1 2 3 4 5

k n
(x

)

x

k0(x)
k1(x)
k2(x)

k3(x)

k0(x)

k1(x)

k2(x)
k3(x)

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

-5 -4 -3 -2 -1 0 1 2 3 4 5

is
n
(x

)

x

is0(x)

is1(x)
is2(x)

is3(x)

is0(x)

is1(x)

is2(x)

is3(x)

 -5

 -4

 -3

 -2

 -1

 0

 1

 2

 3

 4

 5

-5 -4 -3 -2 -1 0 1 2 3 4 5

ks
n
(x

)

x

ks0(x)
ks1(x)

ks2(x)
ks3(x)

ks0(x)

ks1(x)

ks2(x)

ks3(x)

Figure 21.23: Spherical Bessel functions, jn(x) and yn(x), modified spherical Bessel functions, in(x) and kn(x), and
scaled modified spherical Bessel functions, e−|x|in(x) and exkn(x).

number of iterations required is roughly x� (see Section 6.7 on page 136). It is then better to switch to the formulas
suggested by the asymptotic relations involving the functions P(ν, x) and Q(ν, x) that we introduced in Section 21.3
on page 698.

For n ≥ 2, yn(x) can be computed stably by upward recurrence, or when (n + 1
2)

2 < |x|, by the asymptotic
expansion. However, if x lies near a zero of y1(x), namely, the values for which x sin(x) = cos(x), or x = cot(x), then
as we noted, y1(x) may be inaccurate. Its error may then contaminate all higher yn(x) values computed with the
upward recurrence. The only simple solution to that problem is to use higher-precision arithmetic for the recurrence,

740 Chapter 21. Bessel functions

Table 21.7: Limiting values of spherical Bessel functions.

j0(0) = 1,

jn(0) = 0, n > 0,

jn(z) → (1/z) sin(z − nπ/2), |z| → ∞,

jn(z) → zn/(2n + 1)!!, |z| → 0,

yn(0) = −∞, for all integer n ≥ 0,

yn(z) → −(2n − 1)!!/zn+1, |z| → 0,

yn(z) → −(1/z) cos(z − nπ/2), |z| → ∞,

i0(0) = 1,

in(0) = 0, for all integer n > 0,

in(z) → zn/(2n + 1)!!, |z| → 0,

i−n(z) → (−1)n+1(2n − 3)!!/zn, |z| → 0,

in(z) → exp(z)/(2z), |z| → ∞,

kn(0) = +∞,

kn(z) → (1
2 π)(2n − 1)!!/zn+1, |z| → 0,

kn(z) → (1
2 π/z) exp(−z), |z| → ∞.

but that is not possible at the highest-available precision.
Figure 21.24 through Figure 21.29 on page 746 show the measured errors in our implementations of the ordinary

spherical Bessel functions.

21.16 Improving j1(x) and y1(x)

In Section 21.9 on page 716, we showed how to use a symbolic-algebra system to find the general form of the
Taylor-series expansions near the zeros of low-order ordinary cylindrical Bessel functions. We can do the same for
the spherical Bessel functions, but we can omit the order-zero functions because their closed forms can be evaluated
accurately near all of their zeros, as long as exact trigonometric argument reduction is available, as it is in the mathcw
library.

The Maple files sbj1taylor.map and sby1taylor.map generate the expansions around a particular zero, z:

j1(z + d) = a0 + a1d + a2d2 + a3d3 + a4d4 + · · · ,

y1(z + d) = b0 + b1d + b2d2 + b3d3 + b4d4 + · · · .

Four intermediate variables

v = 1/z, w = v2, c = cos(z), s = sin(z),

simplify the coefficients, the first few of which look like this:

a0 = 0,
a1 = (((1 − 2w)s + 2cv)v)/1,
a2 = (−((3 − 6w)vs + (−1 + 6w)c)v)/2,
a3 = (((−1 + (12 − 24w)w)s + (−4 + 24w)vc)v)/6,
a4 = (−((−5 + (60 − 120w)w)vs + (1 + (−20 + 120w)w)c)v)/24,
b0 = 0,

21.16. Improving j1(x) and y1(x) 741

Figure 21.24: Errors in the binary (top) and decimal (bottom) sbj0(x) family.

b1 = ((2sv + (−1 + 2w)c)v)/1,
b2 = (−((−1 + 6w)s + (−3 + 6w)vc)v)/2,
b3 = (((−4 + 24w)vs + (1 + (−12 + 24w)w)c)v)/6,
b4 = (−((1 + (−20 + 120w)w)s + (5 + (−60 + 120w)w)vc)v)/24.

Our improved code for sbj1(x) and sby1(x) computes the coefficients up to k = 17, and then evaluates the polyno-
mials in Horner form using the QFMA() wrapper.

Sign alternations in the Taylor-series expansions may lead to loss of leading digits when the series are summed,
and digit loss is also possible in the computation of the individual coefficients ak and bk. The maximum size of |d|
for which the expansions can be used without digit loss depends on z, and is best determined by high-precision
numerical experiment. The two Maple programs do just that, and their output shows that loss is almost always most
severe in the sums a2d2 + a3d3 and b2d2 + b3d3. Tables of the first 318 zeros handle x < 1000, for which a cutoff of
|d| < 0.003 suffices for both functions. In practice, a somewhat larger cutoff, such as |d| < 0.05, could probably be
used, because the terms for k = 1 dominate the sums.

As in the improved code for the cylindrical functions, we tabulate the zeros as pair sums of exact high and
accurate low parts so that d can be determined to machine precision from (x − zhi)− zlo. We could also tabulate the
values of the sine and cosine at the zeros, but instead conserve storage at the expense of somewhat longer compute
times when |d| is small enough for the series to be used. In addition, we suppress the use of the Taylor expansions
entirely when the number of digits in the hp_t data type is at least twice that in the fp_t data type, because our
normal algorithm then has sufficient precision to provide low relative error near the zeros.

0

1

2

-50 -25 0 25 50

u
lp

s

x

Errors in sbj0f()

0

1

2

-600 -400 -200 0 200 400 600

u
lp

s

x

Errors in sbj0()

0

1

2

-200 -100 0 100 200

u
lp

s

x

Errors in sbj0df()

0

1

2

-800 -600 -400 -200 0 200 400 600 800

u
lp

s

x

Errors in sbj0d()

742 Chapter 21. Bessel functions

Figure 21.25: Errors in the binary (top) and decimal (bottom) sbj1(x) family.

The error plots in Figure 21.25 for sbj1(x), and in Figure 21.28 on page 745 for sby1(x), exhibit low relative error
because of our use of higher intermediate precision, so we do not show plots from the improvements of this section.
Instead, we do a short numerical experiment at the adjacent zeros bracketing the table end, using high-precision
values from a symbolic-algebra system for comparison:

% hocd128 -lmcw
hocd128> x318 = 1_000.596_260_764_587_333_582_227_925_178_11

hocd128> x319 = 1_003.737_856_546_205_566_637_222_858_984_913

hocd128> sbj1(x318); 0.670873169872646828693521368291249352922e-34
6.708_731_698_726_468_286_935_213_682_912_493e-35
6.708_731_698_726_468_286_935_213_682_912_494e-35

hocd128> sbj1(x319); -0.371136263838085458455232524434396532682e-33
-3.711_362_459_535_284_444_620_381_903_540_337e-34
-3.711_362_638_380_854_584_552_325_244_343_965e-34

hocd128> x319a = 1_003.737_856_546_206

hocd128> sbj1(x319a); -0.431748747189598548200146130945033677271e-15
-4.317_487_471_895_985_482_001_461_299_690_095e-16

0

1

2

-50 -25 0 25 50

u
lp

s

x

Errors in sbj1f()

0

1

2

-600 -400 -200 0 200 400 600

u
lp

s

x

Errors in sbj1()

0

1

2

-200 -100 0 100 200

u
lp

s

x

Errors in sbj1df()

0

1

2

-800 -600 -400 -200 0 200 400 600 800

u
lp

s

x

Errors in sbj1d()

21.17. Modified spherical Bessel functions 743

Figure 21.26: Errors in the binary (top) and decimal (bottom) sbjn(n,x) family for n = 25.

-4.317_487_471_895_985_482_001_461_309_450_337e-16

In the region covered by the tabulated zeros, we find relative errors of about one ulp or less, but closest to the first
zero outside that region, all but seven of the computed digits are wrong. The last experiment shows the improvement
when we have a 16-digit approximation to the zero.

21.17 Modified spherical Bessel functions

The unscaled and scaled modified spherical Bessel functions of the first and second kinds are provided by functions
with these prototypes:

double sbi0 (double); double sbk0 (double);
double sbi1 (double); double sbk1 (double);
double sbin (int, double); double sbkn (int, double);
double sbis0 (double); double sbks0 (double);
double sbis1 (double); double sbks1 (double);
double sbisn (int, double); double sbksn (int, double);

They have companions with the usual type suffixes for other precisions and bases.
As the function names suggest, the cases n = 0 and n = 1 receive special treatment. Code for arbitrary n can then

use those functions internally.

0

1

2

-50 -25 0 25 50

u
lp

s

x

Errors in sbjnf()

0

1

2

-600 -400 -200 0 200 400 600

u
lp

s

x

Errors in sbjn()

0

1

2

-200 -100 0 100 200

u
lp

s

x

Errors in sbjndf()

0

1

2

-800 -600 -400 -200 0 200 400 600 800

u
lp

s

x

Errors in sbjnd()

744 Chapter 21. Bessel functions

Figure 21.27: Errors in the binary (top) and decimal (bottom) sby0(x) family.

21.17.1 Computing i0(x)

To compute the modified function of the first kind of order zero, sbi0(x), a one-time initialization block first de-
termines two cutoffs for Taylor series expansions, and the arguments above which sinh(x) and i0(x) overflow. The
symmetry relation i0(−x) = i0(x) allows us to work only with nonnegative x.

For small arguments, the Taylor-series expansion and its term recurrence looks like this:

i0(x) = 1 + (1/6)x2 + (1/120)x4 + (1/5040)x6 + (1/362 880)x8 +

(1/39 916 800)x10 + · · · ,
= t0 + t1 + t2 + · · · ,

t0 = 1, tk =

(
1

2k(2k + 1)

)
x2tk−1, for k = 1, 2, 3,

That series enjoys rapid convergence, and all terms are positive, so there is never subtraction loss. The series is usable
for x values larger than one. If x = 4, then 24 terms recover 34 decimal digits, and 39 terms produce 70 decimal digits.

The Taylor-series cutoffs are straightforward expressions that determine the value of x for which the k-th series

term is smaller than half the rounding error: ckxk
TS < 1

2 ε/β. Thus, we have xTS < k
√

1
2 ε/(βck), and we can choose k

so that the k-th root needs only square roots or cube roots.
Unlike the implementations of functions described in most other chapters of this book, for the spherical Bessel

functions, we use Taylor series over a wider range. For i0(x), in the four extended IEEE 754 decimal formats, the

0

1

2

-50 -25 0 25 50

u
lp

s

x

Errors in sby0f()

0

1

2

-600 -400 -200 0 200 400 600

u
lp

s

x

Errors in sby0()

0

1

2

-200 -100 0 100 200

u
lp

s

x

Errors in sby0df()

0

1

2

-800 -600 -400 -200 0 200 400 600 800

u
lp

s

x

Errors in sby0d()

21.17. Modified spherical Bessel functions 745

Figure 21.28: Errors in the binary (top) and decimal (bottom) sby1(x) family.

cutoffs for a nine-term series are about 2.84, 0.777, 0.0582, and 0.000 328. For i1(x), the cutoffs are larger, and impor-
tantly, for the lowest precision, cover the range where subtraction loss in the closed form of the function is a problem.
Having both a short and a long series allows tiny arguments to be handled at lower cost.

For large x, sinh(x) ≈ exp(x)/2, so overflow happens for x > log(2) + log(FP_T_MAX), where the argument of
the last logarithm is the largest representable value. However, experiments on various systems show that implemen-
tations of the hyperbolic sine in some vendor libraries suffer from premature overflow, so we reduce the cutoff by
1/16.

For large x, i0(x) = sinh(x)/x ≈ exp(x)/(2x), but that does not give a simple way to determine x when the
left-hand side is set to FP_T_MAX. We can find x by using Newton–Raphson iteration to solve for a root of f (x) =
log(i0(x)) − log(FP_T_MAX) ≈ x − log(2x) − log(FP_T_MAX). Starting with x set to log(FP_T_MAX), convergence is
rapid, and five iterations produce a solution correct to more than 80 digits.

With the initialization complete, we first handle the special cases of NaN, zero, and |x| above the second overflow
cutoff. For small x, we sum three-term or nine-term Taylor series expansions in nested Horner form in order of
increasing term magnitudes. For x below the first overflow cutoff, we use the hyperbolic sine formula. For x between
the two overflow cutoffs, we can replace sinh(x) by exp(x)/2, but we need to proceed carefully to avoid premature
overflow from the exponential. Preprocessor conditionals select base-specific code for β = 2, 8, 10, and 16. For
example, for decimal arithmetic, we compute exp(x)/(2x) = exp(x/10)10/(2x) like this:

volatile fp_t t;
fp_t u, u2, u4;

0

1

2

-50 -25 0 25 50

u
lp

s

x

Errors in sby1f()

0

1

2

-600 -400 -200 0 200 400 600

u
lp

s

x

Errors in sby1()

0

1

2

-200 -100 0 100 200

u
lp

s

x

Errors in sby1df()

0

1

2

-800 -600 -400 -200 0 200 400 600 800

u
lp

s

x

Errors in sby1d()

746 Chapter 21. Bessel functions

Figure 21.29: Errors in the binary (top) and decimal (bottom) sbyn(n,x) family for n = 25.

u = EXP(x * FP(0.1)); /* exact argument scaling */
u2 = u * u;
u4 = u2 * u2;
t = HALF * u2 / x;
STORE(&t);
result = t * u4 * u4;

Because of the error magnification of the exponential, it is imperative to scale its argument exactly. The volatile
keyword and the STORE() macro force intermediate expression evaluation to prevent an optimizing compiler from
delaying the division by x until the products have been computed, and overflowed. Avoidance of premature over-
flow therefore costs at least seven rounding errors in a decimal base (or four when β = 2), but that happens only near
the overflow limit.

Figure 21.30 on the facing page shows the measured accuracy in two of the functions for computing i0(x). Plots
for their companions are similar, and thus, not shown.

21.17.2 Computing is0(x)

The scaled modified spherical Bessel function of order zero is defined by

is0(x) = exp(−|x|)i0(x)
= exp(−|x|) sinh(x)/x

0

1

2

-50 -25 0 25 50

u
lp

s

x

Errors in sbynf()

0

1

2

-600 -400 -200 0 200 400 600

u
lp

s

x

Errors in sbyn()

0

1

2

-200 -100 0 100 200

u
lp

s

x

Errors in sbyndf()

0

1

2

-800 -600 -400 -200 0 200 400 600 800

u
lp

s

x

Errors in sbynd()

21.17. Modified spherical Bessel functions 747

Figure 21.30: Errors in the binary (left) and decimal (right) sbi0(x) family.

= (1 − exp(−2|x|))/(2|x|).

For |x| in [0,− 1
2 log(1

2)] ≈ [0, 0.347], there is subtraction loss in the numerator. We could handle that by using a
polynomial approximation in that region, but we have already done so elsewhere in the library, because we can
rewrite the function as is0(|x|) = − expm1(−2|x|)/(2|x|).

For small arguments, the Taylor series is useful:

is0(x) = 1 − x + (2/3)x2 − (1/3)x3 + (2/15)x4 − (2/45)x5 + (4/315)x6 −
(1/315)x7 + (2/2835)x8 − (2/14 175)x9 + · · · .

There is no loss of leading bits if we use it only for |x| < 1/2.
The series terms can be computed with this recurrence:

t0 = 1, tk = −
(

2
k + 1

)
xtk−1, for k = 1, 2, 3, . . . ,

is0(x) = t0 + t1 + t2 + · · · .

For sufficiently large |x|, the exponential function is negligible, and the function reduces to 1/(2|x|). That happens
for |x| in [− 1

2 log(1
2 ε/β), ∞). In IEEE 754 arithmetic, the lower limit is about 8.664 in the 32-bit format, and 39.510 in

the 128-bit format. Thus, over most of the floating-point range, we do not even need to call an exponential function.
The code in sbis0x.h has a one-time initialization block that computes two Taylor-series cutoffs, the subtraction-

loss cutoff, and the upper cutoff where the exponential function can be omitted. It then handles the case of NaN and
zero arguments. Otherwise, it records whether x is negative, and forces it positive, and then splits the computation
into five regions: a four-term Taylor series, a nine-term Taylor series, the subtraction loss region, the nonneglible
exponential region, and the final region for large x where the result is just 1/(2x). The final result is then negated if
x was negative on entry to the function.

There are subtle dependencies on the base in the handling of the denominator 2x. In the loss region, for β �= 2,
compute the result as − 1

2 expm1(−(x + x))/x to avoid introducing an unnecessary rounding error in the denomina-
tor. In the exponential region, the result is 1

2 ((1 − exp(−(x + x)))/x) when β �= 2. In the overflow region, the result
is 1

2 x.
Figure 21.31 on the next page shows the measured accuracy in two of the functions for computing is0(x).

21.17.3 Computing i1(x)

The code for the spherical Bessel function i1(x) = (cosh(x) − sinh(x)/x)/x begins with a one-time initialization
block that computes two Taylor series cutoffs, and two overflow cutoffs where the hyperbolic functions overflow,

0

1

2

-600 -400 -200 0 200 400 600

u
lp

s

x

Errors in sbi0()

0

1

2

-800 -600 -400 -200 0 200 400 600 800

u
lp

s

x

Errors in sbi0d()

748 Chapter 21. Bessel functions

Figure 21.31: Errors in the binary (left) and decimal (right) sbis0(x) family.

and where i1(x) itself overflows. As in the code for i0(x), Newton–Raphson iteration is needed to find the second
cutoff.

The code is easy for arguments that are NaN, zero, or have magnitudes beyond the second overflow cutoff.
Otherwise, if x is negative, the symmetry relation i1(−x) = −i1(x) allows x to be forced positive, as long as we
remember to negate the final result. For small x, we sum three-term or nine-term Taylor series in Horner form.

For x between the second Taylor series cutoff and the first overflow limit, we could evaluate the hyperbolic
functions that define i1(x). However, there is subtraction loss in the numerator for x in [0, 1.915], and all digits can
be lost when x is small. There does not appear to be a simple alternative expression for i1(x) that avoids the loss, and
requires only functions that we already have. We therefore have two choices: sum the general Taylor series until it
converges, or use a polynomial approximation.

The Taylor-series expansion and its term recurrence looks like this:

i1(x) = (1/3)x + (1/30)x3 + (1/840)x5 + (1/45 360)x7 + · · ·
=

∞

∑
k=1

2k
(2k + 1)!

x2k−1,

= (x/3)(t1 + t2 + t3 ++ · · ·)
t1 = 1, tk+1 =

(
1

2k(2k + 3)

)
x2tk, k = 1, 2, 3,

All terms have the same sign, so no subtraction loss is possible. It is best to start with k = 2 and sum the series until
it has converged, and then add the first term. Convergence is slowest for the largest x, and numerical experiments
show that we need at most 7, 12, 13, 19, and 32 terms for the five binary extended IEEE 754 formats. Accumulation
of each term costs two adds, two multiplies, and one divide. However, if we store a precomputed table of values of
1/(2k(2k + 3)), the sum costs only one add and two multiplies per term.

In most cases, only the last two rounding errors affect the computed function value. In binary arithmetic, one of
those errors can be removed by rewriting x/3 as x/4 + x/12, and then moving the term x/12 into the sum of the
remaining terms. That sum is then added to the exact value x/4.

For the polynomial-fit alternative, we can compute the Bessel function as

i1(x) ≈ x/3 + x3R(x2)

≈ x/4 + (x/12 + x3R(x2)),

R(x) = (i1(
√

x)−√
x/3)/

√
x3, fit to rational polynomial.

For x on [0, 1], the term ratio x3R(x2)/(x/3) lies on [0, 0.103], so the polynomial adds at least one decimal digit of
precision. For x on [1, 1.915], that ratio reaches 0.418.

0

1

2

-600 -400 -200 0 200 400 600

u
lp

s

x

Errors in sbis0()

0

1

2

-800 -600 -400 -200 0 200 400 600 800

u
lp

s

x

Errors in sbis0d()

21.17. Modified spherical Bessel functions 749

Figure 21.32: Errors in the binary (left) and decimal (right) sbi1(x) family.

Numerical experiments in Maple show that rational polynomial fits of orders 〈2/1〉, 〈4/3〉, 〈4/4〉, 〈7/6〉, and
〈12/12〉 are needed for the five binary extended IEEE 754 formats. Those fits require less than a quarter of the
operation counts of Taylor-series sums for the same accuracy. Consequently, rational polynomials are the default
evaluation method in sbi1(x), although the others can be selected at compile time by defining preprocessor sym-
bols.

Above the interval [0, 1.915], we can safely use the hyperbolic functions, until we reach the region between the
two overflow cutoffs, where we have i1(x) ≈ exp(x)(1 − 1/x)/(2x) = (exp(x)/(2x2))(x − 1). Having a single
function that computes both sinh(x) and cosh(x) simultaneously is clearly useful here, and our library supplies
sinhcosh(x,psh,pch) for that purpose. As we did for i0(x), to avoid premature overflow in the exponential, expand
it as exp(x/β)β, and include the factor 1/(2x) early in the product of the factors. For example, for a hexadecimal
base, the code looks like this:

volatile fp_t t;
fp_t u, u2, u4, v;

u = EXP(x * FP(0.0625)); /* exact argument scaling */
u2 = u * u;
u4 = u2 * u2;
t = HALF * u4 / (x * x);
STORE(&t);
v = t * u4 * u4 * u4;
result = v * (x - ONE);

Avoidance of premature overflow costs ten rounding errors (or six when β = 2), but only near the overflow limit.
Figure 21.32 shows the measured accuracy in two of the functions for computing i1(x).

21.17.4 Computing is1(x)

The scaled modified spherical Bessel function of order one has the symmetry relation is1(−x) = − is1(x), so we
henceforth assume that x is nonnegative, and we set a flag to negate the final result if the argument is negative. The
function is then defined by

is1(x) = exp(−x)i1(x), for x ≥ 0,

= exp(−x)(cosh(x)− sinh(x)/x)/x
= exp(−x)((exp(x) + exp(−x))− (exp(x)− exp(−x))/x)/(2x)
= (1 + exp(−2x)− (1 − exp(−2x))/x)/(2x)

0

1

2

-600 -400 -200 0 200 400 600

u
lp

s

x

Errors in sbi1()

0

1

2

-800 -600 -400 -200 0 200 400 600 800

u
lp

s

x

Errors in sbi1d()

750 Chapter 21. Bessel functions

Figure 21.33: Errors in the binary (left) and decimal (right) sbis1(x) family.

= ((1 − 1/x) + (1 + 1/x) exp(−2x))/(2x).

As we observed in Section 21.17.3 on page 747, there is subtraction loss in the hyperbolic form of the numerator for
x in [0, 1.915], and that region is best handled by summing a Taylor series, or with a polynomial approximation.

The Taylor series for is1(x), and its term recurrence relation, look like this:

is1(x) = (x/3)(1 − x + (3/5)x2 − (4/15)x3 + (2/21)x4 − (1/35)x5 +

(1/135)x6 − (8/4725)x7 + (2/5775)x8 − (2/31 185)x9 + · · ·),
= (x/3)(t0 + t1 + t2 + · · ·),
= (x/4)(t0 + t1 + t2 + · · ·) + (x/12)(t0 + t1 + t2 + · · ·), when β = 2,

t0 = 1, tk = −
(

2(k + 1)
k(k + 3)

)
xtk−1, k = 1, 2, 3,

Unfortunately, that series converges slowly, so its use is limited to |x| � 1. In the 32-bit IEEE 754 formats, the nine-
term series can be used only for |x| < 0.31. Higher precisions reduce that cutoff. Just as we did for i1(x) in a binary
base, replacing the inexact x/3 factor by x/4 + x/12 reduces the outer rounding error.

In the exponential form, the second term is almost negligible for x above the value for which exp(−2x) is smaller
than the rounding error 1

2 ε/β. That cutoff is then − 1
2 log(1

2 ε/β). However, that is a slight underestimate, and a better
choice that works in all IEEE 754 formats is larger by 1/8. We could, of course, use Newton–Raphson iteration to
find the precise cutoff value, but a simple increment by 1/8 is easier, and of little significance for later computation.

The code in sbis1x.h first handles NaN and zero arguments. Otherwise, it enforces the symmetry relation by
forcing x to be positive with a negation flag set for later use, and then splits the computation into five regions: three-
term or nine-term Taylor series for small x, a polynomial approximation in the loss region, the exponential form
below the upper cutoff, and above that cutoff, simply (1

2 − (1
2)/x)/x. In the last region, to reduce rounding error,

multiplication by the reciprocal of x should be avoided.
Figure 21.33 shows the measured accuracy in two of the functions for computing is1(x).

21.17.5 Computing in(x)

To find the unscaled modified spherical Bessel functions of arbitrary order, sbin(n,x), we often need to use the
recurrence relation when n > 1. As we observed in Section 21.13 on page 728, stable computation of the in(x) Bessel
functions requires using the continued-fraction form to find the ratio in(x)/in−1(x), and then downward recurrence
to find in(x)/i0(x), from which the function value can be found by multiplying the ratio by the result returned by
sbi0(x).

For small arguments, it is desirable for speed and accuracy to sum a series, but Maple is unable to find one for
arbitrary n. However, Mathematica is successful:

0

1

2

-600 -400 -200 0 200 400 600

u
lp

s

x

Errors in sbis1()

0

1

2

-800 -600 -400 -200 0 200 400 600 800

u
lp

s

x

Errors in sbis1d()

21.17. Modified spherical Bessel functions 751

% math
In[1]:= sbin = Function[{n, x}, BesselI[n + 1/2,x] * Sqrt[Pi/(2*x)]];

In[2]:= Simplify[Series[sbin[n,x], {x, 0, 6}]]

-1 - n -2 - n 2
n 2 Sqrt[Pi] 2 Sqrt[Pi] x

Out[2]= x (---------------- + ---------------------- +
3 3

Gamma[- + n] (3 + 2 n) Gamma[- + n]
2 2

-4 - n 4
2 Sqrt[Pi] x

> ------------------------------- +
2 3

(15 + 16 n + 4 n) Gamma[- + n]
2

-5 - n 6
2 Sqrt[Pi] x 7

> --- + O[x])
2 3 3

3 (105 + 142 n + 60 n + 8 n) Gamma[- + n]
2

That expansion looks horrid, but we recognize some common factors on the right-hand side, and try again with
those factors moved to the left-hand side:

In[3]:= Simplify[Series[sbin[n,x] * 2^(n+1) * Gamma[n + 3/2] /
Sqrt[Pi], {x, 0, 6}]]

2 4
n x x

Out[3]= x (1 + ------- + ------------------- +
6 + 4 n 2

120 + 128 n + 32 n

6
x 7

> ------------------------------- + O[x])
2 3

48 (105 + 142 n + 60 n + 8 n)

The series coefficients are reciprocals of polynomials in n with integer coefficients. For n > x2, the leading term is
the largest, and the left-hand side grows like xn.

The factor in the left-hand side looks ominous, until we remember that half-integral values of the gamma function
have simple values that are integer multiples of

√
π. We recall some results from Section 18.1 on page 522 to find

the form of the factor:

Γ(1
2) =

√
π,

Γ(n + 1
2) = (2n − 1)!! Γ(1

2)/2n, if n ≥ 0,

= (2n − 1)!!
√

π/2n,
Γ(n + 3

2) = (2(n + 1)− 1)!!
√

π/2n+1

= (2n + 1)!!
√

π/2n+1,
(2n + 1)!! = 2n+1Γ(n + 3

2)/
√

π, left-hand side factor.

752 Chapter 21. Bessel functions

With a larger limit in the series expansion in Mathematica, and application of its polynomial-factorization function,
Factor[], we therefore find the first few terms of the Taylor series as

in(x) =
xn

(2n + 1)!!
(1 +

1
2(3 + 2n)

x2 +
1

8(3 + 2n)(5 + 2n)
x4 +

1
48(3 + 2n)(5 + 2n)(7 + 2n)

x6 +

1
384(3 + 2n)(5 + 2n)(7 + 2n)(9 + 2n)

x8 +

1
3840(3 + 2n)(5 + 2n)(7 + 2n)(9 + 2n)(11 + 2n)

x10 +

1
46 080(3 + 2n)(5 + 2n)(7 + 2n)(9 + 2n)(11 + 2n)(13 + 2n)

x12 +

· · ·).
Notice the additional structure that coefficient factorization exposes, and that all terms are positive. Taking ratios of
adjacent coefficients shows that the terms of the Taylor series have a delightfully simple recurrence:

t0 = 1, tk =

(
1

2k(2k + 2n + 1)

)
x2tk−1, for k = 1, 2, 3, . . . ,

in(x) =
xn

(2n + 1)!!
(t0 + t1 + t2 + t3 + · · ·).

The general Taylor-series term and its coefficient can be written explicitly like this:

tk = ckx2k, for k = 0, 1, 2, . . . ,

c0 = 1,

ck = 1/
k

∏
j=1

(2j(2n + 1 + 2j)), for k = 1, 2, 3, . . . ,

= 1/
(
2k k!

k

∏
j=1

(2n + 1 + 2j)
)

= 1/
(
22k k!

k

∏
j=1

(n + 1
2 + j)

)
= 1/

(
22k k! (n + 3

2)k
)
, see text for this notation.

In the last equation, the notation (a)k stands for the product a × (a + 1) × (a + 2) × · · · × (a + k − 1) = Γ(a +
k)/Γ(a). It is called the rising factorial function, or sometimes, the Pochhammer symbol. Maple provides it as the
function pochhammer(a,k), and Mathematica as the function Pochhammer[a,k].

Normally, we apply the Taylor series only for small x, so that only a few terms are needed to reach a given ac-
curacy. However, here we can see that the series also needs only a few terms if n > x2, because the denominator of
the k-th term is larger than 22kk!, effectively providing more than 2k additional bits to the sum. That is an important
observation, because our other computational route to in(x) involves a recurrence whose execution time is propor-
tional to n, plus the separate computation of i0(x). To illustrate how well the series converges, Table 21.8 on the
next page shows the accuracy obtainable with modest numbers of terms for various choices of n and x. The limited
exponent range of most floating-point systems means that we usually cannot compute in(x) for n values as large as
those shown in that table before the function overflows.

With care, we can use the Taylor series for larger values of x than permitted by the condition n > x2. If we are
prepared to sum up to k terms, and if x2 > n, then the first few terms grow, but eventually they get smaller because
of the rapid growth of the denominator. If term k is smaller than the rounding error compared to the first term, then
the sum has surely converged to machine precision, so we have the requirements that

tk = ckx2k < ε/(2β), x2 < k
√

ε/(2βck), x2/n < k
√

22kk!ε/(2β).

21.17. Modified spherical Bessel functions 753

Table 21.8: Convergence of the Taylor series of in(x), showing the relative error in a sum of N terms.

n relerr n relerr n relerr
x = 1

N = 10 N = 20 N = 30
10 2.82e-25 10 3.02e-57 10 7.47e-93

100 1.47e-33 100 4.76e-72 100 4.14e-113
1000 2.48e-43 1000 3.00e-91 1000 2.03e-141

10 000 2.61e-53 10 000 3.66e-111 10 000 3.12e-171
x = 10

N = 10 N = 20 N = 30
10 2.82e-05 10 3.02e-17 10 7.47e-33

100 1.47e-13 100 4.76e-32 100 4.14e-53
1000 2.48e-23 1000 3.00e-51 1000 2.03e-81

10 000 2.61e-33 10 000 3.66e-71 10 000 3.12e-111
x = 100

N = 10 N = 20 N = 30
1000 0.00248 1000 3.00e-11 1000 2.03e-21

10 000 2.61e-13 10 000 3.66e-31 10 000 3.12e-51
100 000 2.63e-23 100 000 3.73e-51 100 000 3.25e-81

1 000 000 2.63e-33 1 000 000 3.74e-71 1 000 000 3.27e-111

The last inequality follows from the replacement in ck of (n + 3
2)k by the smaller value nk. For a large fixed k, compu-

tation of the right-hand requires rewriting it in terms of logarithms and an exponential to avoid premature overflow.
However, it gives us a scale factor, s, that needs to be computed only once for the chosen limit on k, and that can then
be used to determine how large n can be compared to x2 to use the series.

When x2 > n, some term after the first is the largest, and because each term suffers four rounding errors, those
errors can have a large affect on the computed sum. One solution would be to accumulate the sum in higher preci-
sion. Alternatively, we can just reduce the scale factor to force a switch to an alternative algorithm for smaller values
of x, and that is what we do in the code in sbinx.h.

After a one-time initialization block to compute a Taylor-series cutoff and the limit on x2/n, the code in sbinx.h
for computing in(x) has several blocks. First, there are checks for x is a NaN, Infinity, or zero, then checks for n = 0 or
n = 1. Otherwise, we record a negation flag that tells us whether x is negative and n is even, and then we force x to be
positive. The computation is then split into four regions, the first where n < 0 and the downward recurrence is stable,
the second where the four-term Taylor series can be summed, the third where the general Taylor series is effective
because x2/n < s, and the last where the Lentz algorithm evaluates the continued-fraction ratio in(x)/in−1(x), then
downward recurrence is used to find in(x)/i0(x), and the magnitude of the final result is obtained by multiplying
that ratio by sbi0(x). If the negation flag is set, the last result must be negated.

Figure 21.34 on the following page shows the measured accuracy in two of the functions for computing i25(x).
The extended vertical range is needed to show how numerical errors increase in the recurrence.

21.17.6 Computing isn(x)

The scaled modified spherical Bessel functions of arbitrary order, implemented in the function sbisn(n,x), are de-
fined as isn(x) = exp(−|x|)in(x), and satisfy the argument symmetry relation isn(−x) = (−1)n isn(x). The expo-
nential scaling damps the growth of in(x), making isn(x) representable over more of the floating-point range. For
example, i10(1000) ≈ 10431, but is10(1000) ≈ 10−4.

As happens with the other spherical Bessel functions of order n, Maple is unable to find a Taylor series expansion
of the scaled functions for arbitrary n, but Mathematica can do so, and we can display its results like this:

isn(x) =
xn

(2n + 1)!!
(1 − x +

2 + n
3 + 2n

x2 − 1
3

3 + n
3 + 2n

x3 +

754 Chapter 21. Bessel functions

Figure 21.34: Errors in the binary (left) and decimal (right) sbin(n,x) family for n = 25.

1
6

(3 + n)(4 + n)
(3 + 2n)(5 + 2n)

x4 − 1
30

(4 + n)(5 + n)
(3 + 2n)(5 + 2n)

x5 +

1
90

(4 + n)(5 + n)(6 + n)
(3 + 2n)(5 + 2n)(7 + 2n)

x6 −
1

630
(5 + n)(6 + n)(7 + n)

(3 + 2n)(5 + 2n)(7 + 2n)
x7 +

· · ·)
=

xn

(2n + 1)!!
(t0 + t1 + t2 + · · ·).

Successive terms can be produced with this recurrence:

t0 = 1, tk = −2
k

(
k + n

k + 1 + 2n

)
xtk−1, k = 1, 2, 3,

Convergence is slower than that of the series for in(x), and because the signs alternate, subtraction loss is a problem
unless |x| < 1

2 . Nevertheless, for x = 1
2 and n = 1, only 10, 17, 20, 31, and 53 terms are required for the five binary

extended IEEE 754 formats, and convergence is faster for smaller |x| or larger n.
The computational approach in sbisnx.h is similar to that in sbinx.h: a one-time initialization block to compute

a Taylor series cutoff, special handling when x is NaN, zero, or Infinity, or n = 0 or n = 1, downward recurrence if
n < 0, a four-term Taylor series for small x, a general Taylor series for |x| < 1

2 , and otherwise, the Lentz algorithm
for the continued fraction, downward recurrence, and then normalization by sbis0(x).

Figure 21.35 on the next page shows the measured accuracy in two of the functions for computing is25(x).

21.17.7 Computing kn(x) and ksn(x)

Because the modified spherical Bessel function of the second kind for order n, kn(x), is the product of
(π/(2xn+1)) exp(−x) and a polynomial of order n in x with positive integer coefficients, its upward recurrence
relation is certainly stable for positive arguments. There is subtraction loss for negative arguments, but the error is
always small compared to the dominant constant term in the polynomial factor, so in practice, the computation is
also stable for negative arguments.

The two lowest-order unscaled functions have these Taylor-series expansions:

k0(x) = (π/(2x))(1 − x + (1/2)x2 − (1/6)x3 + (1/24)x4 −
(1/120)x5 + (1/720)x6 − (1/5040)x7 + · · ·),

0

2

4

6

8

10

-600 -400 -200 0 200 400 600

u
lp

s

x

Errors in sbin()

0

2

4

6

8

10

-800 -600 -400 -200 0 200 400 600 800

u
lp

s

x

Errors in sbind()

21.18. Software for Bessel-function sequences 755

Figure 21.35: Errors in the binary (left) and decimal (right) sbisn(n,x) family for n = 25.

k1(x) = (π/(2x2))(1 − (1/2)x + (1/3)x2 − (1/8)x3 + (1/30)x4 −
(1/144)x5 + (1/840)x6 − (1/5760)x7 + · · ·).

Leading bit loss in their sums is avoided if we choose the cutoffs xTS = 1
2 for k0(x) and xTS = 3

4 for k1(x).
The series for the scaled functions are just the polynomials given in Table 21.6 on page 738.
For large x, the value of kn(x) approaches (π/(2x)) exp(−x), so the only significant concern in its computation is

the optimization of avoiding a call to the exponential when x is large enough that kn(x) underflows to zero. Because
that value of x is independent of n, it is a cutoff that we can compute in a one-time initialization block. The scaled
companion, ksn(x) = exp(x)kn(x), needs no exponential, and thus, no cutoff test.

Code for the cases n = 0 and n = 1 is implemented in the files sbk0x.h, sbks0x.h, sbk1x.h, and sbks1x.h. The
functions contain a one-time initialization block to compute overflow and underflow cutoffs. They then check for the
special cases of x is negative, a NaN, or small enough to cause overflow. The unscaled functions also check whether
x is above the underflow cutoff. Otherwise, the functions are simply computed from their definitions, but taking
care to represent π/2 as 2(π/4) in any base with wobbling precision.

The files sbknx.h and sbksnx.h contain the code for arbitrary n, and differ only in their references to the unscaled
or scaled functions of orders 0 and 1. Once n and x have been determined to be other than one of the special cases,
upward recurrence starting from function values for n = 0 and n = 1 finds the result in at most n steps. The loop test
at the start of iteration k includes the expected test k < n, and a second test that the function value is still nonzero, so
that early loop exit is possible once the underflow region has been reached.

Figure 21.36 on the next page through Figure 21.41 on page 757 show the measured accuracy in two of the
functions for computing the modified spherical Bessel functions of the second kind.

21.18 Software for Bessel-function sequences

Some applications of Bessel functions require their values for a fixed argument x, and a consecutive sequence of
integer orders. The existence of three-term recurrence relations suggests that, at least for some argument ranges, it
should be possible to generate members of a Bessel function sequence for little more than the cost of computing two
adjacent elements. Many of the software implementations published in the physics literature cited in the introduction
to this chapter produce such sequences, but the POSIX specification of the Bessel functions provides only for single
function values of Jn(x) and Yn(x).

For the mathcw library, we implement several families of functions that return a vector of n + 1 Bessel function
values for a fixed argument x, starting from order zero:

void vbi (int n, double result[], double x); /* I(0..n,x) */
void vbis (int n, double result[], double x); /* I(0..n,x)*exp(-|x|) */

0

2

4

6

8

10

-600 -400 -200 0 200 400 600

u
lp

s

x

Errors in sbisn()

0

2

4

6

8

10

-800 -600 -400 -200 0 200 400 600 800

u
lp

s

x

Errors in sbisnd()

0

1

2

 0 200 400 600

u
lp

s

x

Errors in sbk0()

0

1

2

 0 200 400 600 800

u
lp

s

x

Errors in sbk0d()

0

1

2

 0 200 400 600

u
lp

s

x

Errors in sbk1()

0

1

2

 0 200 400 600 800

u
lp

s

x

Errors in sbk1d()

0

2

4

6

8

10

 0 200 400 600

u
lp

s

x

Errors in sbkn()

0

2

4

6

8

10

 0 200 400 600 800

u
lp

s

x

Errors in sbknd()

756 Chapter 21. Bessel functions

Figure 21.36: Errors in the binary (left) and decimal (right) sbk0(x) family.

Figure 21.37: Errors in the binary (left) and decimal (right) sbk1(x) family.

Figure 21.38: Errors in the binary (left) and decimal (right) sbkn(n,x) family for n = 25.

0

1

2

 0 200 400 600

u
lp

s

x

Errors in sbks0()

0

1

2

 0 200 400 600 800

u
lp

s

x

Errors in sbks0d()

0

1

2

 0 200 400 600

u
lp

s

x

Errors in sbks1()

0

1

2

 0 200 400 600 800

u
lp

s

x

Errors in sbks1d()

0

2

4

6

8

10

 0 200 400 600

u
lp

s

x

Errors in sbksn()

0

2

4

6

8

10

 0 200 400 600 800

u
lp

s

x

Errors in sbksnd()

21.18. Software for Bessel-function sequences 757

Figure 21.39: Errors in the binary (left) and decimal (right) sbks0(x) family.

Figure 21.40: Errors in the binary (left) and decimal (right) sbks1(x) family.

Figure 21.41: Errors in the binary (left) and decimal (right) sbksn(n,x) family for n = 25.

758 Chapter 21. Bessel functions

void vbj (int n, double result[], double x); /* J(0..n,x) */
void vbk (int n, double result[], double x); /* K(0..n,x) */
void vbks (int n, double result[], double x); /* K(0..n,x) * exp(x) */
void vby (int n, double result[], double x); /* Y(0..n,x) */

void vsbi (int n, double result[], double x); /* i(0..n,x) */
void vsbis(int n, double result[], double x); /* i(0..n,x)*exp(-|x|) */
void vsbj (int n, double result[], double x); /* j(0..n,x) */
void vsbk (int n, double result[], double x); /* k(0..n,x) */
void vsbks(int n, double result[], double x); /* k(0..n,x) * exp(x) */
void vsby (int n, double result[], double x); /* y(0..n,x) */

Each of those functions has companions with the usual precision suffices. For example, after a call to the deci-
mal_double function vsbyd(n,result,x), the array result[] contains the ordinary spherical Bessel function values
y0(x), y1(x), . . . , yn(x).

The vector functions follow a common design:

� Check for the condition n < 0, indicating an empty output array, in which case, set errno to ERANGE, and return
without referencing the array. There is no provision for arrays of negative orders, even though such orders are
well defined for all of the functions.

� Check for the special cases of x is a NaN, Infinity, and zero and handle them quickly, taking care to preserve
symmetry properties for negative arguments, and handle signed zeros properly. Within a single case, the
elements of the returned arrays have identical magnitudes, but may differ in sign.

� For functions that have complex values on the negative axis, if x < 0, set the array elements to the quiet NaN
returned by QNAN(""), and set the global variable errno to EDOM.

� Handle the special cases of n = 0 and n = 1 by calling the corresponding scalar Bessel functions. We can then
later assume that n > 1, and avoid bounds checks on storage into the output array.

� For small arguments, when the general Taylor series is known and has simple term recurrences, use it to
compute all array entries. That is easily done by an outer loop over orders m = 0, 1, 2, . . . , n, and an inner loop
that sums series terms after the first to machine precision, after which the first term, and any outer scale factor,
are incorporated. The last step may require special handling for systems that have wobbling precision.

If there is an outer scale factor, such as xm/(2n + 1)!!, update it. If that factor overflows or underflows, the
remaining array elements can be quickly supplied, and the outer loop exited early.

To illustrate that description, here is the code block for the Taylor region for In(x) in the file vbix.h:

else if (QABS(x) < FIVE) /* x in (0,5): use Taylor series */
{

fp_t f_m, scale, v, w;
int m;

v = x * HALF;
w = v * v;
scale = ONE; /* k = 0: scale = v**m / m! */

for (m = 0, f_m = ZERO; m <= n; ++m, ++f_m)
{

fp_t f_k, sum, t_k, u;
int k;
static const int MAX_TERMS = 43; /* enough for 70D */

sum = ZERO;
t_k = ONE;

for (k = 1, f_k = ONE; k <= MAX_TERMS; ++k, ++f_k)

21.18. Software for Bessel-function sequences 759

{ /* form sum = t_1 + t_2 + ... */
fp_t new_sum;

t_k *= w / (f_k * (f_k + f_m));
new_sum = sum + t_k;

if (new_sum == sum)
break; /* converged: early loop exit */

sum = new_sum;
}

#if defined(HAVE_WOBBLING_PRECISION)
u = HALF * scale;
u = u + u * sum; /* u = (1/2)*scale*(t_0 + ...) */
result[m] = u + u; /* scale * (t_0 + t_1 + ...) */

#else
u = scale * sum; /* scale * (t_1 + t_2 + ...) */
result[m] = scale + u; /* scale * (t_0 + t_1 + ...) */

#endif /* defined(HAVE_WOBBLING_PRECISION) */

scale *= v / (f_m + ONE);

if (scale == ZERO) /* remaining elements underflow */
{

if (n > m)
VSET(n - m, &result[m + 1], ZERO);

break; /* early loop exit on underflow */
}

}
}

Our algorithm leads to fast code, but for large n values, the use of repeated multiplication for the computation
of an outer scale factor that involves a power and a factorial is less accurate than we could produce by calling
our IPOW() function and using a stored table of correctly rounded factorials.

Separate handling of small arguments with Taylor series is essential for those Bessel functions, such as Jn(x),
that decay with increasing n and require downward recurrence. Otherwise, we could start the recurrence with
zero values for Jn(x) and Jn−1(x), and all lower elements would then also be set to zero, producing unnecessary
premature underflow in the algorithm.

� If upward recurrence is always stable, or x is sufficiently large compared to n that upward recurrence is safe,
call the scalar functions for n = 0 and n = 1 and save their values in the output array, and then quickly fill the
remainder of the array using the recurrence relation. The code block for In(x) in the file vbix.h looks like this:

else if (HALF * QABS(x) > (fp_t)n)
{ /* n > 1: use stable UPWARD recurrence */

fp_t f_k, two_over_x;

two_over_x = TWO / x;
result[0] = BI0(x);
result[1] = BI1(x);

if (ISINF(result[0]) || ISINF(result[1]))
{

fp_t inf_val;

760 Chapter 21. Bessel functions

inf_val = INFTY();

for (k = 2; k <= n; ++k)
result[k] = ((x < ZERO) && IS_ODD(k)) ? -inf_val

: inf_val;
}
else
{

for (k = 1, f_k = ONE; k < n; ++k, ++f_k)
result[k + 1] = QFMA(-f_k * two_over_x, result[k],

result[k - 1]);
}

}

If x is large, then the reciprocal could underflow to subnormal or zero in IEEE 754 arithmetic. We could prevent
that by replacing (2k)/x by (2ks)/(xs), with the scale factor s set to a suitable power of the base, such as ε2.
However, In(x) grows quickly to the overflow limit, so we are unlikely to use x values large enough to require
scaling, but infinite function values need special handling to avoid generating NaNs in later subtractions.
The major source of accuracy loss in the recurrence is from subtractions near Bessel-function roots, and fused
multiply-add operations can reduce that loss.

� Otherwise, use downward recurrence. Generate the first two array values by calls to the scalar functions of
orders zero and one. Even though they could be also found from the recurrence, the scalar functions are likely
to be more accurate, and because the initial terms are larger for some of the Bessel functions, that may be
beneficial in the later use of the results. Call the general scalar functions for orders n and n − 1 to get the last
two array elements, and finally, use the downward recurrence relation to compute the intervening elements.

Care is needed to prevent unnecessary generation of Infinity, and subsequent NaN values from subtractions of
Infinity, or multiplications of Infinity by zero. To see how that is done, here is the code block for In(x) in the
file vbix.h:

else /* n > 1: use stable DOWNWARD recurrence */
{

fp_t two_k, one_over_x;

one_over_x = ONE / x;

if (ISINF(one_over_x)) /* prevent NaNs from Infinity * 0 */
one_over_x = COPYSIGN(FP_T_MAX, x);

result[0] = BI0(x);
result[1] = BI1(x);
result[n] = BIN(n, x);

if (n > 2)
result[n - 1] = BIN(n - 1, x);

for (k = n - 1, two_k = (fp_t)(k + k); k > 2;
--k, two_k -= TWO)

{
volatile fp_t b_k_over_x;

b_k_over_x = one_over_x * result[k];
STORE(&b_k_over_x);
result[k - 1] = QFMA(two_k, b_k_over_x, result[k + 1]);

}
}

21.19. Retrospective on Bessel functions 761

For speed, division by x is replaced by multiplication by its reciprocal, introducing another rounding error.

If 1/x overflows, as it can when x is near the underflow limit on important historical architectures such as the
DEC PDP-10, PDP-11, and VAX, and the IBM System/360, and in IEEE 754 arithmetic if x is subnormal, replace
it by the largest representable number of the correct sign to prevent later subtractions of Infinity that produce
NaN values. Overflow cannot happen if we have already handled small arguments with Taylor series.

We avoid calling BIN(n - 1, x) if we already have its value.

Because the calls BIN(n, x) and BIN(n - 1, x) each generate sequences of Bessel function ratios that could
be used to recover the complete function sequence, the work is repeated three times, and an improved imple-
mentation of the vector functions would copy that code from the scalar functions, or make it available from
them via a separate private function.

We terminate the downward loop once result[2] has been generated.

In the loop, we use the volatile qualifier and the STORE() macro to prevent compilers from reordering the
computation (2k)((1/x)Ik(x)) to (1/x)((2k)Ik(x)), possibly producing premature overflow because Ik(x) can
be large.

If either, or both, of In−1(x) and In(x) overflow to Infinity, then that overflow propagates down to I2(x), even
though some of those elements could be finite. A more careful implementation would check for infinite ele-
ments generated by the downward recurrence, and then recompute them individually. In practice, applica-
tions that need that Bessel function for arguments large enough to cause overflow are better rewritten to use
the scaled functions BISN(n,x) or VBIS(n,result,x).

� Although the recurrences involve expressions like 2k/x, throughout the code, we are careful to avoid, or mini-
mize, integer-to-floating-point conversions. Although machines with hardware binary arithmetic can do such
conversions quickly, conversions for decimal arithmetic are slower, especially if the arithmetic is done in soft-
ware.

Comparison of results from the vector Bessel functions with those from the scalar Bessel functions shows two
main problems: accuracy loss near Bessel-function zeros, and accuracy loss for large n from the use of repeated mul-
tiplication for powers and factorials. When those issues matter, it is better to stick with the slower scalar functions,
possibly from the next higher precision, or else to call a vector function of higher precision, and then cast the results
back to working precision.

21.19 Retrospective on Bessel functions

The large number of books and research articles on the computation of Bessel functions that we reported at the
beginning of this chapter reflects the interest in, and importance of, those functions, as well as the difficulty in
computing them accurately.

Many of the recurrence relations and summation formulas presented in this chapter are subject to loss of leading
digits in subtractions, particularly for the ordinary Bessel functions, Jν(z) and Yν(z), and their spherical counterparts,
jν(z) and yν(z), when the argument is near one of their uncountably many roots.

Fortunately, for the Bessel functions that we treat, when upward recurrence is unstable, downward recurrence
is stable, and vice versa. The continued fraction for the ratio of Bessel functions is an essential starting point for
downward recurrence, but we saw in Table 21.5 on page 712 that convergence of the continued fraction may be
unacceptably slow for large values of the argument z.

The modified functions Iν(z) and Kν(z) have no finite nonzero roots, but they quickly reach the overflow and
underflow limits of conventional floating-point number representations. Subtraction loss often lurks elsewhere, as
we saw when the finite and infinite sums for Kν(z) are added, and when the term log(v) + γ is computed for Yν(z)
and Kν(z).

The exponentially scaled functions, Isν(z) and Ksν(z), delay the onset of overflow and underflow, but do not
prevent it entirely. In addition, the unscaled modified Bessel functions have argument ranges where the function
values are representable, yet either, or both, of the exponential factor or the scaled function are out of range, making
the unscaled function uncomputable without access to arithmetic of wider range, or messy intermediate scaling, or
independent implementations of logarithms of the scaled modified Bessel functions.

762 Chapter 21. Bessel functions

The presence of two parameters, the order ν and the argument z, often requires separate consideration of the
cases |ν| � z and |ν| � z, and the computation time may be proportional to either ν or z.

The spherical Bessel functions of integer order have closed forms that require only trigonometric or hyperbolic
functions, and as long as the underlying trigonometric functions provide exact argument reduction, as ours do, can
be computed accurately for some argument intervals over the entire floating-point range. Unfortunately, for n > 0,
subtraction loss is a common problem, and no obvious rewriting, as we did in Section 21.3 on page 699 for the sines
and cosines of shifted arguments, seems to provide a simple and stable computational route that guarantees low
relative error, instead of low absolute error, for arguments near the function zeros. Higher working precision is then
essential.

With complex arguments, and real or complex orders, all of those difficulties are compounded, and we have
therefore excluded those cases from the mathcw library and this book.

22 Testing the library

PROGRAM TESTING CAN BE A VERY EFFECTIVE WAY

TO SHOW THE PRESENCE OF BUGS, BUT IT IS HOPELESSLY

INADEQUATE FOR SHOWING THEIR ABSENCE.

— EDSGER W. DIJKSTRA

1972 ACM TURING AWARD LECTURE.

The Cody/Waite book, Software Manual for the Elementary Functions [CW80], made two extremely important contri-
butions to the quality of elementary-function libraries, which were frankly dismal on many computing systems until
the mid to late 1980s.

First, the book’s authors showed how to design accurate algorithms for each elementary function that take ac-
count of the properties of binary fixed-point, binary floating-point, and decimal floating-point arithmetic systems,
being careful to point out the trouble spots where subtractions, especially in the argument-reduction phase, cause
catastrophic bit loss, and where the nasty effects of wobbling precision can be reduced by rescaling. Of course, every
computer vendor already had libraries for all of the elementary functions in Fortran and often other languages of the
time (Algol, COBOL, Jovial, Pascal, PL/1, . . .), but Cody and Waite showed how to improve those libraries.

Second, and perhaps more importantly, Cody and Waite showed how to design portable test software that can
assess the quality of any elementary function library without knowing anything at all about how the functions are
implemented, and without requiring large tables of accurate numbers to compare against. Their book contains no
explicit Fortran code for implementing their algorithms, but it does contain complete Fortran code for testing existing
implementations, later released in machine-readable form as ELEFUNT: The Elementary Function Test Package.

With the help of a student assistant, this author translated the entire ELEFUNT package from Fortran to C in
1987, and later adapted it for use with C++ as well. That work predated automated Fortran-to-C translators, such as
David Gay’s f2c, begun at AT&T Bell Laboratories in 1989.

Later, in 2002, this author translated ELEFUNT to Java, providing a clean formatted-I/O class library that Java
sorely lacks. All of those versions of ELEFUNT are freely available on the Web,1 and they have been used to test
scores of elementary-function libraries in Fortran, C, C++, and Java. For example, this author used ELEFUNT to
uncover severe deficiencies of the DEC TOPS-20 PDP-10 Fortran library in 1981, and after he filed problem reports
with the vendor, the next release of the compiler shipped with a superb elementary-function library.

For our implementation of the Cody/Waite algorithms, the test software is taken almost verbatim from the 1987
C translation, but updated to include checks on the setting of the C errno global variable, and additional tests in the
spirit of Cody and Waite for some of the new functions added to the mathcw library.

By default, when the library is built with the standard recipe

% ./configure && make all check install

the precision of the host arithmetic is used to select appropriate polynomial approximations, maintaining both speed
and accuracy. In that application, bigger is not necessarily better: a higher-degree polynomial offers higher precision,
but takes more computation, and because the hardware precision is fixed, the additional unnecessary computation
merely contributes to increasing the rounding errors, eventually making the results worse, and always making them
slower.

You can test the three versions of a single function with targets check-asin, check-atan, check-exp, and so on.
In those targets, acos() is tested with asin(), atan2() with atan(), cos() with sin(), cosh() with sinh(), cotan()
with tan(), and log10() with log(). Thus, there are fewer test programs than elementary functions.

It is possible to test all of the embedded polynomial data like this:

% make check-all

1See http://www.math.utah.edu/pub/elefunt.

© Springer International Publishing AG 2017
N.H.F. Beebe, The Mathematical-Function Computation
Handbook, DOI 10.1007/978-3-319-64110-2_22

763

764 Chapter 22. Testing the library

That runs separate checks for each of the elementary functions through targets check-all-asin, check-all-atan,
check-all-exp, . . . , and each of those loops over all polynomial precisions embedded in, and dynamically extracted
from, the source code, deletes object files for the function to be tested, recompiles them with the current polynomial
precision, rebuilds the library, and then steps into each of the three subdirectories to rebuild and rerun the tests with
the just-updated library.

The original ELEFUNT tests used 2000 random arguments in each test interval, a number that was reasonable
for machines of the 1970s, and that remains the default. However, in the C version of the ELEFUNT tests, you can
override that number at run time with a new value in the environment variable MAXTEST. Similarly, you can provide
an alternate initial random-number generator seed in the environment variable INITIALSEED to change the sequence
of random numbers used for test arguments:

% env INITIALSEED=987654321 MAXTEST=1000000 make check

Increasing MAXTEST of course makes the tests run proportionally longer, but usually also slightly increases the worst-
case error reports, because the more arguments that are tested, the more likely it is that bigger errors are found.

The ELEFUNT tests have voluminous output: about 1500 lines for one run of all of the tests in the original
ELEFUNT package, and 6750 lines in the extended tests in the mathcw package. It is therefore impractical to assess
the output results quickly without further filtering. The default filter extracts just the bit-loss reports, which are the
key measure of library accuracy, reducing the output for tests of one precision of the entire mathcw package to about
a hundred lines. Thus, a typical report for several tests of an elementary function of one floating-point data type
looks like this:

ELEFUNT test matan
THE ESTIMATED LOSS OF BASE 2 SIGNIFICANT DIGITS IS 0.66
THE ESTIMATED LOSS OF BASE 2 SIGNIFICANT DIGITS IS 0.00
THE ESTIMATED LOSS OF BASE 2 SIGNIFICANT DIGITS IS 1.00
THE ESTIMATED LOSS OF BASE 2 SIGNIFICANT DIGITS IS 0.00
THE ESTIMATED LOSS OF BASE 2 SIGNIFICANT DIGITS IS 1.92
THE ESTIMATED LOSS OF BASE 2 SIGNIFICANT DIGITS IS 0.19
THE ESTIMATED LOSS OF BASE 2 SIGNIFICANT DIGITS IS 1.34
THE ESTIMATED LOSS OF BASE 2 SIGNIFICANT DIGITS IS 0.00

Those reports are repeated for the float, double, and long double versions of each elementary function. In
practice, the reports are shortened even further by excluding those below the cutoff MAXLOSS, set to a default of 2
in the Makefile. The previous example would then be reduced to just the test header, but running make MAXLOSS=0
check would produce the example shown.

The ELEFUNT reports contain important information about the handling of special arguments, function symme-
try properties, and behavior near the underflow and overflow limits, so it is worth examining them in more detail.
To capture the complete ELEFUNT test output in a file, simply override the filter setting:

% make CHECK_FILTER=cat check-all > big-output-file

When the selected polynomial precision is below the hardware precision, the tests warn about that immediately
before the test output:

=== WARNING: P = 24 is below 64-bit working precision: expect loss of 40 bit(s)

ELEFUNT test matan
THE ESTIMATED LOSS OF BASE 2 SIGNIFICANT DIGITS IS 35.23
THE ESTIMATED LOSS OF BASE 2 SIGNIFICANT DIGITS IS 34.21
THE ESTIMATED LOSS OF BASE 2 SIGNIFICANT DIGITS IS 35.81
THE ESTIMATED LOSS OF BASE 2 SIGNIFICANT DIGITS IS 35.15
THE ESTIMATED LOSS OF BASE 2 SIGNIFICANT DIGITS IS 35.66
THE ESTIMATED LOSS OF BASE 2 SIGNIFICANT DIGITS IS 34.75
THE ESTIMATED LOSS OF BASE 2 SIGNIFICANT DIGITS IS 34.21
THE ESTIMATED LOSS OF BASE 2 SIGNIFICANT DIGITS IS 33.02

22.1. Testing tgamma() and lgamma() 765

Here, all of the bit-loss reports were below the expected 40-bit loss, so the Cody/Waite rational polynomials for
atan() are actually about four bits more precise than their book indicates. That may have been intentional, but as
we noted earlier, their book does not discuss the computation or derivation of the polynomials.

On a fast workstation (2 GHz AMD64 processor), the make check-all run takes about twenty minutes, and a
make check run takes about three minutes.

Of course, after running make check-all, the last version compiled for each function is the one with the highest-
degree polynomials. That version of the library is needlessly slower than it should be, so if you have not installed
the package yet, clean up, rebuild, revalidate, and install it with:

% make clean all check install

You can also use the mathcw test procedures to check the quality of your native C math library, just by changing
the library variable:

% make LIBS=’-lm -lmcw’ check

The mathcw library option -lmcw must usually be specified after the native library -lm to provide a source of functions
that are not supplied by the host, such as the additional routines described in Section 3.16 and listed in Table 3.4 on
page 58.

Convenience targets in the Makefiles let you specify testing of just the C89 functions in your native math library
like this:

% make LIBS=’-lm’ check-c89

or like this:

% make check-native-c89

The targets check-c99 and check-native-c99 provide similar testing of the C99 repertoire in mathcw and in the
native math library. Targets check-w and check-q test the two extra precisions available on Hewlett–Packard HP-
UX on IA-64, and target check-hp combines those tests with the normal check tests.

The ELEFUNT tests have all been adapted for decimal floating-point arithmetic as well, with code in separate
subdirectories for each supported decimal format. The command

% make check-decimal

runs those decimal versions of the tests.

22.1 Testing tgamma() and lgamma()

The test-* subdirectories in the mathcw library distribution contain the ELEFUNT code suites, augmented with new
code written in a similar style for testing several additional functions provided by our library that were not covered
in the Cody/Waite book. In this section, we describe some of the issues that affect the testing of the gamma and
log-gamma functions.

There are dramatic changes in the gamma function values near the poles at large negative arguments, as sug-
gested by Figure 18.1 on page 522, and shown by this numerical experiment in IEEE 754 128-bit arithmetic, where
the first four arguments are spaced one machine epsilon apart:

hoc128> gamma(-100)
+Inf

hoc128> gamma(-100 + macheps(-100))
1.071_510_288_125_466_923_183_546_759_519_241e-126

hoc128> gamma(-100 + 2*macheps(-100))
5.357_551_440_627_334_615_917_733_797_596_452e-127

hoc128> gamma(-100 + 3*macheps(-100))

766 Chapter 22. Testing the library

3.571_700_960_418_223_077_278_489_198_397_799e-127

hoc128> gamma(-99.5)
3.370_459_273_906_717_035_419_140_191_178_166e-157

hocd128> gamma(-99.5 + macheps(-99.5))
3.370_459_273_906_717_035_419_140_191_178_321e-157

hocd128> gamma(-99.5 + 2*macheps(-99.5))
3.370_459_273_906_717_035_419_140_191_178_475e-157

hocd128> gamma(-99.5 + 3*macheps(-99.5))
3.370_459_273_906_717_035_419_140_191_178_631e-157

Without special algorithms near poles, or arithmetic of much higher precision, we cannot expect high accuracy in
pole regions. However, away from the poles on the negative axis, only a few low-order digits of the gamma-function
values change as we move in steps of one machine epsilon.

Because of the varying behavior of the gamma and log-gamma functions, the test methods implemented in
ttgamm.c and tlgamm.c require several different regions and algorithms. Ideally, they should compute values of
Γ(x) and log |Γ(x)| by methods that differ from those in the implementations of tgamma() and lgamma().

For Γ(x), ttgamm.c uses the Taylor series for a small interval around x = 1, and the recurrence relation Γ(x) =
(x − 1)Γ(x − 1) for several intervals on the positive and negative axes, where Γ(x − 1) is computed as tgamma(x-1).
That is reasonably straightforward, but requires care to purify the random test values so that both x and x − 1 are
exactly representable.

Because of the rapidly changing function values near the poles, the test intervals exclude a region of size ±1/32
around negative integers. If that precaution is not taken, then the reported bit losses are large, but that cannot be
avoided unless the pole regions are excluded.

When possible, the Taylor series is evaluated in the next higher precision, because the terms alternate in sign,
and their sum is thus subject to leading bit loss. The Taylor-series coefficients do not have any simple rational form,
so they are simply supplied as high-precision 36-digit values in arrays. To ensure that they are exact to machine
precision, the coefficients are computed at run time from exactly representable parts and small corrections, giving an
effective precision of about 43 decimal digits that is sufficient for all current hardware floating-point architectures.
Split coefficients are provided for both decimal and binary bases, because the exact parts are given as rational num-
bers that cannot be exact in both bases. They assume that at least 20 bits or 6 decimal digits are available in single
precision, a property that holds for all current and historical floating-point architectures.

Because of the rapid growth of Γ(x), the Taylor-series test can cover only a relatively small interval, but the
reported average bit loss should be below one bit for careful implementations of tgamma().

The test of log |Γ(x)| in tlgamm.c also uses a Taylor series on a small interval, and the recurrence relations on
several different intervals on the positive and negative axis.

The Taylor series of log |Γ(x)| around x = 1 converges slowly, so instead, we use the series around x = 5/2.
There are no simple rational representations of the coefficients, so as in ttgamm.c, they are split into exact values and
small corrections, giving an effective precision of about 43 decimal digits.

Application of the recurrence relations for log |Γ(x)| is more difficult than it is for Γ(x), and requires that the
implementation of log(x) be highly accurate. For Γ(x), the recurrence involves only a single multiply, introducing
at worst a half-bit or one-bit error in the test value, depending on the rounding characteristics of the host arithmetic.
For log |Γ(x)|, the recurrence relations suffer serious subtractive bit loss in certain regions, as shown in Figure 22.1
on the next page. The more detailed view in Figure 22.2 shows the loss regions discussed earlier in Section 4.19 on
page 89.

In particular, the recurrence relations cannot be used for the approximate intervals [−3.99,−2.24], [0.46, 1.83], and
anywhere close to negative integer values. As with ttgamm.c, pole regions are excluded from testing anyway, but
that still leaves the important region [−4,+2] where some other technique is called for.

The obvious approach of using log(abs(tgamma(x))) for evaluation of log |Γ(x)| in the region [−4,+2] would
presumably provide an accurate value of lgamma() that is not subject to subtraction loss. However, that is probably
what any reasonable implementation of lgamma() does anyway for at least part of this region, so the test could
erroneously report zero bit loss, even if there are serious errors in tgamma().

22.1. Testing tgamma() and lgamma() 767

−8 −6 −4 −2 0 2 4 6 8
−8

−6

−4

−2

0

2

4

6

8

10

x

lo
g(

|g
am

m
a(

x+
1)

|)
 −

 lo
g(

|x
|)

−8 −6 −4 −2 0 2 4 6 8
−8

−6

−4

−2

0

2

4

6

8

10

x

lo
g(

|g
am

m
a(

x−
1)

|)
 +

 lo
g(

|x
−

1|
)

Figure 22.1: Recurrence relations for log |Γ(x)|. Whenever the difference or sum is near zero, there is catastrophic bit
loss.

−8 −6 −4 −2 0 2 4 6 8

−2

0

2

4

x

f(
x)

Figure 22.2: Significance loss in recurrence relations for log |Γ(x)| as the value of (log |Γ(x − 1)| + log |x −
1|)/ max(log |Γ(x − 1)|, log |x − 1|). Whenever the plotted value falls into the range [−1/2,+1/2] marked by the
dashed lines, one or more leading bits are lost in the addition of values of opposite sign.

An alternative approach that tlgamm.c uses instead in the region [−4,+2] is rational-polynomial approximations
of a better-behaved function, 1/Γ(x), that is plotted in Figure 22.3 on the next page. Because the logarithm of the
reciprocal requires just a sign change, there is no additional error introduced by a division to recover Γ(x). A rational
minimax polynomial of degree 〈16/16〉 approximates 1/Γ(x)− 1 on the interval [−3.9999,−3.0001] with worst-case
accuracy of 129 bits, sufficient even for the 113-bit precision of IEEE 754 128-bit arithmetic, and the log1p() func-
tion recovers an accurate value of log |Γ(x)|. For the interval [−2.9999,−2.0001], a 〈16/16〉-degree approximation
for 1/Γ(x) + 1 (notice the sign change) provides worst-case accuracy of 128 bits, and for the interval [0.46, 1.83], a
〈14/14〉-degree approximation for 1/Γ(x)− 1 provides at least 118 bits. The function lgamma() is one of just two in
the entire mathcw test suite for which it has been necessary to resort to use of rational polynomial approximations.
The drawback is that they need to be generated for the highest precision to be tested, and for portability, that preci-
sion must be high enough to encompass all current floating-point architectures. The test program issues a warning
if the precision is not adequate.

768 Chapter 22. Testing the library

−4 −3 −2 −1 0 1 2 3 4
−5

−4

−3

−2

−1

0

1

2

3

4

5

x

1/
Γ

(x
)

Figure 22.3: Reciprocal of the gamma function, 1/Γ(x).

22.2 Testing psi() and psiln()

For testing purposes on the positive axis, we can use either of the first two recurrence relations shown in Sec-
tion 18.2.2 on page 539 with suitably purified test arguments. On the negative axis, we can use the reflection formula.
As with Γ(x) and log Γ(x), the Taylor-series coefficients do not have a simple form, so they are stored as exact values
and corrections, and then summed at run time to ensure that they are correct to the last bit.

The test programs tpsi.c and tpsiln.c are quite straightforward, and test a dozen or so regions along the x axis.

22.3 Testing erf() and erfc()

The ordinary and complementary error functions, erf() and erfc(), are graphed in Figure 19.1 on page 594, and
are computed in the mathcw library as described earlier in Section 19.1 on page 593. Testing them in isolation is
difficult, because there is no simple addition rule relating function values at one point to those at another point. The
functions are defined on the entire real axis, so a Taylor-series evaluation is of limited utility for testing more than a
small interval. In addition, it is particularly important to assess the accuracy of the functions in the regions where
they are close to the underflow limit, because it is precisely here that some historical recipes for the computation of
the error functions are poor.

The procedure recommended by Hart et al. [HCL+68] for brute-force evaluation of the error functions is to use
one of two continued fractions (see their description in Section 2.7 on page 12), depending on the value of x. Al-
though continued fractions can be manipulated to reduce the number of divides to just one, thereby speeding the
computation, the test programs do not do so in the interests of keeping the continued-fraction code clear and sim-
ple. Also, the coefficients in the reduced-division formulation can suffer from premature overflow or underflow,
requiring special scaling. The continued fractions for erf(x) and erfc(x) have particularly simple, small, and exactly
representable coefficients, so direct evaluation avoids the problems of the alternate algorithm.

The terf.c and terfc.c files use multiple test regions, but the regions and test algorithms differ substantially, so
separate test files are appropriate, and facilitate testing those related functions independently of each other.

Near the origin, the tests compute the functions from the first six terms of the Taylor series, which fortunately
has relatively simple rational coefficients that can be factored to a common denominator so that all numerators are
exactly representable. Even better, the series involves only odd terms, and the coefficients fall by nearly a factor of
ten with each term, so there is little problem with subtraction loss in summing the series.

For |x| < 1, the test file terf.c sums the continued fraction, using a term count that depends only on the required
precision.

22.4. Testing cylindrical Bessel functions 769

The remaining intervals have |x| ≥ 1, and they investigate the arguments up to where fl(erf(x)) = 1 to machine
precision. In each test region, terf.c temporarily uses erf(x) = 1 − erfc(x) as the accurate function value, because
the subtraction is stable for x in the interval [0.477, ∞). However, a separate check that does not depend on an
accurate erfc() function is desirable, so more work is still needed to remove that dependence.

Testing the complementary error function is more difficult. In terfc.c, a five-term Taylor series with exactly
representable coefficients handles the case of small x. For x ≥ 3, a continued fraction of modest length provides an
accurate estimate of erfc(x); the required term count is determined by a quadratic fit to the results of a numerical
experiment. The difficult region for that function is the interval [0, 3]. In part of that interval, the continued fraction
for erf(x) converges quickly, but the subsequent subtraction erfc(x) = 1 − erf(x) loses many leading bits. In the
remainder of the interval, the continued fraction for erfc(x) converges slowly, requiring as many as 3500 terms for
small x. A compromise between the two is called for, and higher precision is used when available to reduce the
effect of leading bit loss. That problem could be avoided by reverting to a rational polynomial approximation, but
we prefer to avoid that approach.

The asymptotic expansion for erfc(x) is only usable for 128-bit arithmetic when x > 10, where simpler and more
accurate tests can be used instead, so that series is not useful for testing purposes.

As additional checks, terfc.c uses the reflection formula, erfc(x) = 2 − erfc(−x), for negative arguments and
for small positive arguments in the region where the Taylor series applies, and it also checks the region (−∞,−9],
where fl(erfc(x)) = 2 in all floating-point systems with 113 or fewer bits of precision.

22.4 Testing cylindrical Bessel functions

A few years after the ELEFUNT code was published, Cody and Stolz [CS89, CS91] prepared similar test programs
for the cylindrical Bessel functions J0(x), J1(x), Y0(x), Y1(x), I0(x), I1(x), K0(x), and K1(x), and made them freely
available in the Netlib repository.2

This author translated them from Fortran to C, and added them to the test-* subdirectories of the mathcw library
distribution. We leave the testing details to the original articles, but note here that the Cody/Stolz code continues
the practice of assessing accuracy by numerical evaluation of mathematical identities where function arguments are
carefully reduced to eliminate argument error.

22.5 Testing exponent/significand manipulation

The frexp(x, &n) function has long been used in the C language for exact decomposition of a finite nonzero floating-
point number into product of a significand in [1/β, 1) and a power of the base, βn.

The companion function ldexp(s,n) returns the exact product s × βn, providing the reconstruction operation
that allows exact scaling by powers of the base.

Neither of those operations requires any numerical approximations, but their correct behavior is essential for
higher-level code that uses them. Their testing is therefore mandatory.

The file tfrexp.c, and its companions for other floating-point types, follows the ELEFUNT coding style, and
samples the entire floating-point range, including IEEE 754 subnormals when they are supported. When the floating-
point symbolic constants from the system header file <float.h> suggest IEEE 754 arithmetic, the tests also include
run-time generation of a NaN and signed Infinity.

Similarly, the file tldexp.c and its companions supply test code for checking the correct behavior of the ldexp()
function family.

22.6 Testing inline assembly code

About 35 source code files in the mathcw library distribution contain inline assembly code to allow access to native
hardware instructions for fast and accurate elementary-function evaluation. Although that code is expected to be
reliable, it is always possible that compiler optimization rearranges instructions, making them invalid. The test

2See http://www.netlib.org/specfun/.

770 Chapter 22. Testing the library

program in chkasm.c therefore does some limited tests in data types float, double, and long double that should
suffice to uncover such errors.

The root functions are easily verified, but the others are handled by measuring the relative error of computed
values against stored constant tables of about 25 triples of values of (x, fhi(x), flo(x)) in long double format for a
limited range of exactly representable arguments. The two-part representation of the function value supplies up to
20 bits of additional effective precision, counteracting rounding errors from decimal-to-binary conversions. A Maple
program in the file chkasm.map generates the header file chkasm.h with the data tables. A typical test looks like this:

% cc -DMAXULPS=50.0 -I.. chkasm.c ../libmcw.a && ./a.out
chkasm: test of functions with possible inline-assembly code

MAXTEST = 2000
MAXULPS = 50.00

OK sqrtf
OK sqrt
OK sqrtl

OK rsqrtf
OK rsqrt
OK rsqrtl

... output omitted ...

OK sinhcoshf
OK sinhcosh
OK sinhcoshl

SUCCESS: All 114 functions pass their tests

22.7 Testing with Maple

Software testing with the ELEFUNT package depends mostly on measuring how closely certain mathematical rela-
tions are satisfied, without using arithmetic of higher precision. Even with careful argument purification, numerical
computation of those identities is usually subject to a few rounding errors.

The testing approach illustrated throughout this book with graphs of errors in units in the last place compares
results computed in working precision and in the next higher precision. In most functions whose computation is
described in this book, the algorithms are independent of precision, except for the particular polynomial approxi-
mations used. That means that an algorithmic error would likely not be detected by the error plots: the computation
might be accurate, even though it does not correspond to the desired function. Also, the functions at the highest
available precision cannot be tested that way.

It is therefore desirable to carry out separate tests against completely independent implementations of the func-
tions. On modern computers, any of several symbolic-algebra systems provide most of the software necessary to do
that, because they generally permit computations to be carried out with any reasonable user-specified precision, and
they have a large repertoire of mathematical functions.

The main problem is that it must be possible to guarantee exact transfer of test arguments and function values
from the library under test to the symbolic-algebra system, where the two may be on different computers. The
only reliable way of doing that is to represent floating-point numbers in exact rational integer form. In addition,
implementation of new computational algorithms in symbolic algebra should not normally be required, so as to
avoid the prove-the-proof problem.

For example, the function log1p(x) is generally absent from most programming languages, including all of the
algebra systems available to this author. Its mathematical definition as log(1 + x) is usable numerically only if the
argument can be computed exactly, or if x is sufficiently small that the Taylor-series expansion can be reduced to just
one or two terms. In Maple, that can be done with a function that is easy to understand, does not require excessive
computational precision, and is short enough to be unlikely to harbor bugs:

22.7. Testing with Maple 771

log1p := proc(x)
local w:
w := 1 + x:
return ‘if‘(evalb(w = 1), x, log(w) * x / (w - 1))

end proc:

Here, we use a one-term series if x is tiny, and otherwise, we compute a formula derived in Section 10.4 on page 290.
The genmap-* subdirectories in the mathcw distribution normally each contain just two files: a Makefile, and a

template file, msbis0.c. Declarations and output format items in the template file are customized for a particular
floating-point data type, but the templates in each subdirectory are similar. In particular, the code in the template
file contains argument test ranges that cover all of the elementary and special functions in the library, as well as a
large collection of special arguments that are known to cause trouble for one or more functions, such as fractional
multiples of π. The nearest representable neighbors of the special arguments are also used in the tests.

The template file includes three header files that are shared among all of the test subdirectories. Those files
provide a table of special arguments, and prototype declarations for test functions that map library functions with
multiple arguments to wrapper functions with a single argument. The wrappers permit a single template file to be
used for all functions.

The Makefile contains lists of function names that are used by the stream-editor utility, sed, to generate new test
programs from the template file, and, by default, all of the functions would be tested with a single command. More
commonly, results are needed only for a function subset, so here is how two particular functions of type float can
be tested:

% cd genmap-s
% make FUNS=’expm1 log1p’ MAXTEST=10000 MAXULPS=0.5 all check

Making C test programs
-r--r--r-- 1 user group 12649 Apr 28 08:36 check-expm1f.c
-r--r--r-- 1 user group 12649 Apr 28 08:36 check-log1pf.c
Making Maple test programs
-r--r--r-- 1 user group 13104324 Apr 28 08:36 check-expm1f.map
-r--r--r-- 1 user group 11469880 Apr 28 08:36 check-log1pf.map
Running Maple test programs
-rw-rw-r-- 1 user group 2531061 Apr 28 08:39 check-expm1f.dat.maple
-rw-rw-r-- 1 user group 9501 Apr 28 08:39 check-expm1f.log
expm1
FAIL: expm1f: 61 of 148670 tests have errors above 0.5 ulps
Maximum error = -0.563412 ulps for x = 0.696086287 at line 109559
-rw-rw-r-- 1 user group 3098628 Apr 28 08:41 check-log1pf.dat.maple
-rw-rw-r-- 1 user group 1721 Apr 28 08:41 check-log1pf.log
log1p
PASS: log1pf: all 131002 tests have relative errors below 0.5 ulps

The FUNS list gives the function names in their unsuffixed form used for data type double, so that the function lists
do not need to be changed in each subdirectory. The MAXTEST and MAXULPS settings override defaults that are set in
the Makefile. The target all builds the test programs, and the target check runs the tests. The separation of building
and testing is essential, because Maple is not available on most of the systems where library testing is needed.

The functions to be tested are by default found in the library file libmcw.a in the parent directory. However, it
is possible to test functions in other libraries by supplying additional command-line assignments. For example, we
could test a function in the vendor-supplied math library like this:

% make FUNS=expm1 LIBS="-lm -lmcw" SUFFIX=-lm

The specified suffix is applied to the created filenames to distinguish them from the default ones. The mathcw library
option, -lmcw, is needed to supply additional functions that are absent from the native library, but required for the
tests.

In the sample test, the make command first generated two C programs from the template file, and then compiled,
linked, and ran them to produce two Maple programs. It then ran those programs from the ../maple subdirectory
to produce the *.log summary files, and the *.dat.maple data files that are suitable for error plotting.

Here is a small fragment of one of the Maple programs:

772 Chapter 22. Testing the library

interface(quiet = true):
printf("Test of log1pf(x)\n\n"):
C_NAME := "log1pf":
...
Digits := 40;
...
read("htod.map"):
read("dtoh.map"):
read("mathcw.map"):
...
x := htod("-0x1.ffb882p-1"): check(htod("-0x1.e0e3f8p+2"), log1p(x)):
x := htod("-0x1.fe3e62p-1"): check(htod("-0x1.6b34eep+2"), log1p(x)):
...

Most of the program consists of lines with argument assignments and a call to a function that receives the values
computed in C and in Maple. Here, the C99 hexadecimal format ensures exact representation of values in both
languages, and the htod() function handles the exact conversion from hexadecimal to decimal. The htod() function
and its companion dtoh() for the reverse conversion are available in files in the maple subdirectory. The mathcw.map
file provides the critical interface between functions known by their names in C, and corresponding functions in
Maple.

For tests of functions in decimal arithmetic, decimal values are used instead of hexadecimal, because Maple’s
internal representation of multiple-precision numbers is decimal, rather than binary.

The Maple program is carefully formatted so that it can track input line numbers. In the event that a computed
error is larger than the specified value of MAXULPS, a warning message identifies the offending line with its values
of x and f (x). The largest error found above the tolerance is recorded and the last output line then reports the
corresponding argument and its line number, as shown earlier for the test of expm1(x).

Part of one of the output log files looks something like this:

Test of log1pf(x)

ULP = 2 ** (-(24 - 1))
MINSUBNORMAL = 2 ** (-149)
Digits := 40
MAXULPS := 0.5
PLOTFILE := "check-log1pf.dat.maple"

Tests with 10000 random arguments on [-3.40282e+38, -1e+07]
SKIP: log1pf

Tests with 10000 random arguments on [-1e+07, -100000]
SKIP: log1pf

... output omitted ...

Tests with 10000 random arguments on [-1, -0.001]
PASS: log1pf

Tests with 10000 random arguments on [-0.001, -1.19209e-07]
PASS: log1pf

... output omitted ...

Tests with 10000 random arguments on [1e+07, 3.40282e+38]
PASS: log1pf

Tests with special arguments
PASS: log1pf: 11003 of 11003

22.8. Testing floating-point arithmetic 773

PASS: log1pf: all 131002 tests have relative errors below 0.5 ulps

Test ranges for x < −1 were automatically skipped because the test function returns a NaN in those regions. That
practice is essential to avoid having to tailor the test ranges to each function. The last output line shows that no test
arguments resulted in an error above the specified tolerance.

For the exponential function less one, there are several test failures, and the worst case is readily extracted from
the Maple file using the reported line number:

% sed -n 109559p check-expm1f.map
x := htod("0x1.64656cp-1"): check(htod("0x1.0181ccp+0"), expm1(x)):

A separate computation in Maple finds a more accurate function value that can then be correctly rounded to the
24-bit significand:

exact: 0x1.0181_cd22_2a39_a385_4b7c_...p+0
rounded: 0x1.0181_cep+0
computed: 0x1.0181_ccp+0

Once the Maple testing facility was operational, confidence in the general correctness and accuracy of the library
improved significantly, and it became much easier to test functions for which no ELEFUNT-like test programs exist
yet. Those programs average more than 400 lines each, and they require expert analysis to find suitable mathematical
identities that can be computed accurately, and expert, and portable, programming to implement the tests. By
contrast, the symbolic-algebra alternative requires just one, or at most a few, lines to be written by a human, with the
machine doing all of the rest of the work automatically.

Eventually, similar tests should be developed using other symbolic-algebra systems, particularly those that are
available under open-source licenses, such as Axiom and Maxima.

Using high-precision arithmetic in symbolic-algebra languages for testing can be expensive for some functions.
For Maple’s implementation of the beta function, testing betam1(x) with high-precision values of β(x) − 1 is im-
practical. That problem could probably be solved by writing a separate implementation of the direct computation of
β(x)− 1 in Maple, but we have yet to do so.

22.8 Testing floating-point arithmetic

Modern computer hardware is generally reliable, and users expect computers to operate correctly for long periods
until interrupted for software or hardware upgrades, or by extended loss of the electrical supply. Nevertheless, chip
failures due to manufacturing defects, heat, or aging are occasionally seen, so it is desirable for users to be able to
validate correct operation of at least arithmetic operations.

In the early 1980s, William Kahan wrote a floating-point arithmetic test program called paranoia, and that program
has since been translated into other languages and made more portable [Kar85]. This author maintains a copy on the
Web3 and other versions are readily found by Web search engines. Here is a typical run of the program:

% make paranoia
% ./paranoia-sp
Lest this program stop prematurely, i.e. before displaying

‘END OF TEST’,

try to persuade the computer NOT to terminate execution when an
error like Over/Underflow or Division by Zero occurs, but rather
to persevere with a surrogate value after, perhaps, displaying some
warning. If persuasion avails naught, don’t despair but run this
program anyway to see how many milestones it passes, and then
amend it to make further progress.

... lengthy output omitted ...

3See http://www.math.utah.edu/~beebe/software/ieee/.

774 Chapter 22. Testing the library

No failures, defects nor flaws have been discovered.
Rounding appears to conform to the proposed IEEE standard P754.
The arithmetic diagnosed appears to be Excellent!
END OF TEST.

% ./paranoia-dp
... more lengthy output omitted ...
The arithmetic diagnosed appears to be Excellent!
END OF TEST.

22.9 The Berkeley Elementary Functions Test Suite

In the late 1980s, Kahan’s student Zhi-Shun Alex Liu developed the Berkeley Elementary Functions Test Suite [Liu87,
Liu88] as part of his thesis project.4 The BeEF tests are designed to follow paranoia and ELEFUNT tests, and make
more extensive tests of elementary functions in both DEC VAX and IEEE 754 arithmetic.

The BeEF and paranoia tests are now incorporated in another Berkeley test package, UCBTEST5 [Stu95]. The
package has regrettably not been brought to the software portability level that it deserves, and carries license restric-
tions that forbid redistribution, but on the few architectures on which it can be built, a typical unpacking, build, and
test run looks like this:

% cd /tmp
% tar xfz ucbtest.tgz
% cd ucb/ucbtest
% make SRC=/tmp/ucb
... lengthy output omitted ...
Totals clib_DP.output :

Total 60 tests: pass 60, flags err 0, value err 0, acosd
Total 352 tests: pass 352, flags err 0, value err 0, addd
Total 77 tests: pass 77, flags err 0, value err 0, asind
Total 104 tests: pass 101, flags err 0, value err 3, atan2d
...
Total 321 tests: pass 321, flags err 0, value err 0, subd
Total 54 tests: pass 54, flags err 0, value err 0, tand
Total 72 tests: pass 72, flags err 0, value err 0, tanhd
...
csin_DP.output :

ucbtest START in /tmp/ucb/ucbtest/beef.c at line 448 for double
6250 tests on 16 regions with 53 significant bits

NME = Negative Maximum Error observed in ULPs
PME = Positive Maximum Error observed in ULPs
NMC = Non-monotonicity count
{SYM}= Non-symmetry count if nonzero

[From , to) N.M.E. P.M.E. NMC {SYM}

SIN(X) 1 [0.0000000, 0.8750000) -0.629 0.617 0
SIN(X) 2 [0.8750000, 2.2500000) -0.598 0.634 0
SIN(X) 3 [2.2500000, 4.0000000) -0.618 0.605 0
SIN(X) 4 [4.0000000, 5.4375000) -0.623 0.600 0
SIN(X) 5 [5.4375000, 7.0000000) -0.628 0.629 0

4Available at http://www.ucbtest.org/.
5Available at http://www.netlib.org/fp/ucbtest.tgz.

22.10. The AT&T floating-point test package 775

SIN(X) ALL [0.0000000, 7.0000000) -0.629 0.634 0

ucbtest UCBPASS in SIN(X) at line 442 for generic
...

22.10 The AT&T floating-point test package

AT&T Bell Labs scientist Norman Schryer developed one of the earliest portable software test packages for checking
the behavior of floating-point arithmetic [Sch81]. The fptest package was once available under license from his
employer, but sadly, may no longer be; fortunately, this author is a licensee.

The fptest package is written in portable Fortran, and the cited report contains summaries of its findings for
more than 30 mainframe architectures available about 1980. Those results are an outstanding collection of the kinds
of problems with floating-point arithmetic that programmers routinely faced before IEEE 754 arithmetic became
widely available. Among the gems recorded in the report are ones like these, with vendor identities omitted:

Early versions of this machine had serious errors. For example, in double precision, fl(1 − 2−55) ≥ 1.
It is . . . possible for two numbers that differ in bit 48 to appear equal.
As a result of the week-long bug chase that ended at the backplane, the computing center installed

a tastefully designed use of FPTST to be run at 3am every day . . . Since its installation it has found
that FPA’s have partially fallen out of the backplane on three occasions and sent that information to the
system gurus.

In single precision, comparison of 0 with 0 was incorrect. That is, things like x .lt. y were .true.
when x = y = 0.

The compiler used . . . was so buggy that not much of the test could be run, but we got some infor-
mation. The first fact we got was that 1 is not the multiplicative identity, that is, fl(1 × x) �= x for some x.
. . . There are numbers x < 0 and y < 0 such that fl(x × y) < 0!

A build and test run of the fptest package looks something like this on a modern system:

% f77 *.f && ./a.out
Long Real Floating-point Test With

B = 2, T = 53
Emin = -1021, Emax = 1024

BEX = -1021 -53 0 53 1024
BEY = -1021 -53 0 53 1024
BIX = 1 27 53
BIY = 1 27 53

nBEX = 3 3 3 3 3
nBEY = 3 3 3 3 3
nBIX = 3 3 3
nBIY = 3 3 3

nEX, nEY = 21 21
nIX, nIY = 11 11

This test will produce and test results which underflow.
If overflow or divide check errors occur,
then the basic machine constants have been incorrectly set.

Floating-point test completed successfully.

776 Chapter 22. Testing the library

22.11 The Antwerp test suite

The Research Group CANT (Computer Arithmetic and Numerical Techniques) at the University of Antwerp has
made many useful contributions to the testing and use of floating-point arithmetic. Their IEEE 754 Compliance
Checker test suite [VCV01a, VCV01b], and related tools for multiple-precision arithmetic, and for continued fractions
for special functions [CPV+08, BC09], are available on the Web.6

The test suite is written mostly in C++, and is driven by data files that can be adapted for many different floating-
point architectures. Here is a sample unpacking, build, and test run that checks for correct single-precision addition
operations:

% cd /tmp
% tar xfz IeeeCC754.tgz
% cd IeeeCC754
% ./configure -platform AMD && make
... output omitted ...
% ./IeeeCC754 -s BasicOp/testsets/add
Taking input from BasicOp/testsets/add.
..
... more lines of dots omitted ...
..
Counting 611 lines.

Successful runs produce only dots and test counts.

22.12 Summary

The epigraph that begins this chapter expresses the difficulty of software testing: the job is never done. Software
validation often requires writing other software, and that new software is itself likely to have bugs. In some cases,
the test software is longer than that which it checks, and itself needs to be tested.

Branches of computer science and mathematics deal with proving the correctness of programs and theorems, but
the proofs, which themselves are programs or theorems, are often longer than the original: the difficulties may then
grow without bound.

Theories in mathematics are based on axioms, which are simple statements whose truth is (believed to be) self
evident. In software, we are expected to believe that computer hardware and compilers are correct. Although
hardware is likely to be reliable, because it cost a lot to develop, test, and produce, compilers are complex programs
that are certain to have bugs. Both problems can be dealt with by testing with other hardware, and other compilers.

That last remark contains an important lesson for programmers. For nontrivial projects, avoid use of programming
languages that have only single implementations or that are available only on a single platform. The useful life of software
can often be much longer than that of the hardware on which it was initially developed, so designing software from
the beginning to be portable is often the wisest approach. For major programming languages, there are usually
additional tools, such as debuggers, prettyprinters, run-time profilers, security scanners, static and dynamic code-
flow analyzers, and syntax checkers. They are often essential for large software projects.

Even when software is carefully written and widely used, obscure bugs can surface years later, as we found in
the computation of the relative error in the ELEFUNT test suite, and discussed in Section 4.25.4 on page 99, and in
the binary-search algorithm flaw described in Appendix I.5 on page 976.

The ELEFUNT tests report average and worst-case errors found by testing with arguments chosen from loga-
rithmic distributions over intervals of interest. The tests also investigate special cases with exactly known results.
However, the ELEFUNT tests give little information about how the errors are distributed. For that reason, through-
out this book, we include graphs of measured errors for the elementary functions in the mathcw library. In some
cases, the graphs of early implementations exposed argument regions with higher-than-desired errors, and led to
algorithm modifications to reduce those errors. Comparison of the error graphs for different functions helped to
identify functions whose algorithms needed improvement.

6Available at http://cant.ua.ac.be/.

23 Pair-precision elementary functions

DOUBLE, DOUBLE, TOIL AND TROUBLE.

— SHAKESPEARE’S MacBeth (1606).

DOUBLE YOUR PLEASURE, DOUBLE YOUR FUN.

— ADVERTISING SLOGAN (1956).

We discussed some of the limitations of pair-precision arithmetic in Chapter 13 on page 353. Although our pair-
precision routines for the basic operations of add, subtract, multiply, divide, square root, and cube root are on average
correctly rounded in IEEE 754 arithmetic with the default round-to-nearest mode, we cannot guarantee correct round-
ing in general. Indeed, as the tables in Section 13.20 on page 379 show, worst-case errors of almost four ulps can be
discovered by extensive testing with random arguments. In the non-default rounding modes of IEEE 754, errors of
almost 10 ulps are found. We should therefore expect errors at least that large on those historical architectures that
have truncating arithmetic.

The inability to guarantee always-correct rounding in pair-precision arithmetic means that accurate conversion
of constants stored as decimal strings is difficult. Polynomial approximations are then hard to use, unless we go to
the trouble of expressing their coefficients in exact rational form, which depends on both the host precision, and the
polynomial precision.

In this chapter, we therefore take a simpler approach to the computation of elementary functions, sacrificing
speed by summing Taylor series on small intervals, and computing those sums until the ratio of the last term to the
sum falls below half the pair-precision machine epsilon. We then use experimental testing to assess the accuracy
of the functions over their argument range, and when necessary, make algorithmic adjustments to attempt to limit
the worst-case errors to a few ulps. That is not satisfactory for general computation, but it is often sufficient for
applications where pair-precision arithmetic is needed to get a few more digits beyond what is available in ordinary
floating-point arithmetic.

Our choice of algorithms for some of the elementary functions in this chapter is guided by the prior published
experience of Hida, Li, and Bailey for quad-precision arithmetic [HLB00]. In several cases, however, we improve
their algorithms to enhance accuracy.

23.1 Pair-precision integer power

For evaluations of series, we sometimes need to compute integer powers of floating-point numbers. We saw in
Chapter 14 on page 411 that the general power function is one of the most difficult to compute accurately. However,
if we only need exponents that are small integers, then repeated multiplication is likely to be the best approach.

In Section 14.3 on page 414, we showed that we do not need to compute the n-th power by n − 1 separate
multiplications. Instead, we can use bitwise decomposition of the power and repeated squaring. For example, if
n = 25, we have n = 24 + 23 + 20 = 16 + 8 + 1, and therefore, x25 = x16x8x. The only powers of x that we need are x,
x2, x4, x8, and x16, which takes only four multiplications, and then we use two more to obtain x25. We also showed
in Section 14.3 that it is sometimes possible to reduce the multiplication count even further, but in this section, we
ignore that improvement to keep the code manageable.

The only additional complication that we need to handle is negative powers, which we do by first computing
the positive power, then inverting the result. That is preferable to inverting first, because the error from the division
then propagates into every factor of the product, and magnifies in each iteration. If underflow or overflow happens
in that final inversion, then, with high probability, it would have happened in the last iteration anyway, had we
inverted first.

Here is how the integer-power algorithm works in hoc code:

© Springer International Publishing AG 2017
N.H.F. Beebe, The Mathematical-Function Computation
Handbook, DOI 10.1007/978-3-319-64110-2_23

777

778 Chapter 23. Pair-precision elementary functions

func ipow(x, n) \
{ # return x**n, for integer n

v = 1
k = fabs(int(n))

while (k > 0) \
{

if (k & 1) v *= x

k >>= 1

if (k > 0) x *= x
}

if (n < 0) v = 1/v

return (v)
}

The check for a positive k value before the final squaring in the loop adds to the cost, because it is executed on
every iteration, and saves at most one multiplication for the entire loop. However, it prevents premature setting of
the overflow or underflow exception flags in IEEE 754 arithmetic.

Zero arguments are handled by defining 00 ≡ 1, which is what our function produces. There is no consensus
among numerical programmers for what should be done for that special case. Our choice is simple to explain, and
requires no extra code.

Negative arguments need no special treatment, because the power operation for integer exponents involves only
multiplications, not logarithms.

No checks for Infinity or NaN arguments are needed, because any such arguments simply propagate to the
returned function value, as expected. However, our handling of zero powers means that we also define ∞0 ≡ 1, and
NaN0 ≡ 1. That decision could be controversial, but we prefer the simplicity of our design choice that x0 ≡ 1 for all
possible floating-point values of x.

If underflow or overflow happens, the function result is subnormal, zero, or Infinity, as expected.
When working with pair-precision arithmetic in a language that does not allow operator overloading, it is best

to first create a working implementation in ordinary arithmetic, and then transcribe the code, replacing operator
expressions with pair-precision function calls. Our C translation of the hoc version looks like this:

void
PIPOW(fp_pair_t result, const fp_pair_t x, int n)
{

/* return x**n in result */

fp_pair_t t, v;
static const fp_pair_t one = { FP(1.), FP(0.) };
int k;

PCOPY(v, one);
PCOPY(t, x);

k = (n < 0) ? -n : n;

while (k > 0) /* ceil(log2(|n|)) iterations */
{

if (k & 1)
PMUL(v, v, t);

k >>= 1;

23.2. Pair-precision machine epsilon 779

if (k > 0)
PMUL(t, t, t);

}

if (n < 0)
PDIV(v, one, v);

PCOPY(result, v);
}

Apart from the addition of type declarations, and the use of function calls for arithmetic operations, the only
significant change that we have to make is the introduction of the temporary variable t in the loop to take the place
of x, because x is now a constant that we cannot modify.

The worst-case expected error in the computed integer power is roughly bounded by the maximum number of
multiplications, 2�log2 n� − 1, times the average error in PMUL(). For negative powers, add to that the average error
in PDIV(). Our applications in the mathcw library require only small values of |n|, for which PIPOW() is acceptably
accurate.

23.2 Pair-precision machine epsilon

In Section 13.1 on page 354, we observed that the normal algorithm for finding the machine epsilon cannot be used
with pair-precision arithmetic because the exponents of the high and low parts are not related by a constant offset,
so the calculation produces a low part that is too small.

We therefore provide a function to compute the generalized machine epsilon in pair-precision arithmetic, using
construction, rather than iteration, to arrive at the desired result. With t-digit arithmetic, the normal machine epsilon
is β1−t, and the pair-precision machine epsilon is β1−2t. The generalized machine epsilon, which is the smallest
positive number whose sum with x differs from x, can then be obtained for positive x from the computation fl(x ×
(1 + ε))− fl(x), where the subtraction serves to trim unwanted trailing digits. The code looks like this:

void
PEPS(fp_pair_t result, const fp_pair_t x)
{

fp_pair_t tmp;
static fp_pair_t one_minus_eps, one_plus_eps;
static fp_t minfloat;
static int do_init = 1;

if (do_init)
{

fp_pair_t eps;
volatile fp_t t;

PSET(eps, (fp_t)B, ZERO);
PIPOW(eps, eps, (1 - 2 * T));
PSET(one_minus_eps, ONE, -eps[0] / (fp_t)B);
PSET(one_plus_eps, ONE, eps[0]);
minfloat = FP_T_MIN;
t = minfloat;

while (t > ZERO)
{

minfloat = t;
t = minfloat / (fp_t)B;
STORE(&t);

}

780 Chapter 23. Pair-precision elementary functions

do_init = 0;
}

if (ISINF(x[0]))
{

fp_t q;

q = SET_EDOM(QNAN(""));
PSET(result, q, q);

}
else if (ISNAN(x[0]))

PSET(result, x[0], x[0]);
else if (x[0] == ZERO)

PSET(result, minfloat, ZERO);
else if (x[0] > ZERO)
{

PMUL(tmp, x, one_plus_eps);
PSUB(result, tmp, x);

}
else /* x[0] < ZERO */
{

PMUL(tmp, x, one_minus_eps);
PSUB(result, tmp, x);

}
}

On the first call only, the initialization block computes some needed constants. The smallest positive normal floating-
point value is available as a compile-time constant in C, but there is no separate constant for systems that support
gradual underflow to subnormal values, so we have to compute minfloat via exact division by the base, with the
usual subterfuges to disable higher intermediate precision.

The cases of Infinity and NaN arguments require special handling: both produce NaN results. A zero argument
produces the smallest representable floating-point number. Nonzero normal arguments require a single multiplica-
tion and subtraction, but to ensure a positive result, for a negative argument, we compute fl(x × (1 − ε/β))− fl(x).
The factor (1 − ε/β) is the representable number nearest to one that is less than one.

23.3 Pair-precision exponential

The convergence of the Taylor series of the exponential function, exp(x) = ∑∞
n=0 xn/n!, can be improved by making

x small. One way to do that is to split x into a sum of parts, one of which we handle with a power operation, and the
other with a short sum. If we pick suitable integers k and m, then, for base β, we can do the split like this:

x = m ln(β) + kr,
exp(x) = exp(m ln(β)) exp(kr)

=
(

exp(ln(β))
)m(exp(r)

)k

= βm(exp(r)
)k.

Multiplication by βm is an exact scaling, and the SCALBN() function family does the job. We pick m such that m ln(β)
is closest to x, because that guarantees that |kr| ≤ 1

2 , reducing the number of terms needed from the Taylor series. It
then allows us to predict that number, because the largest value of the n-th term is 1/(2nn!), and in round-to-nearest
mode, we can stop as soon as a term falls below half the pair-precision machine epsilon.

The best choice of k is a power of the base, because that means that r can be most accurately determined by exact
scaling of x − m ln(β). If, in addition, the base is 2, then the k-th power takes a minimal number of multiplications,
log2(k), as we showed in our analysis of the integer power function in Section 14.3 on page 414 and Section 23.1 on
page 777.

23.3. Pair-precision exponential 781

Increasing k reduces r, speeding the convergence of the Taylor series, but the fewer terms that we sum, the higher
the power of exp(r) that we need. There is clearly a tradeoff to be measured by timing experiments, or worked
out manually with operation counts. However, there is a nasty problem lurking: accuracy loss. When r is small,
exp(r) = 1+ δ, where δ ≈ r is also small. Then

(
exp(r)

)k
= (1+ δ)k = 1+ kδ + k(k − 1)δ2/2+ · · · . Because of finite

precision in the storage of the value 1+ δ, δ is determined comparatively inaccurately, and its error is magnified by k
in forming the power. The original algorithm [HLB00] had k = 512, but that introduces about nine bits of error into
the power. Numerical experiments over the argument range for which the exponential is representable show that
a choice of k = 1 produces the lowest average error for binary arithmetic; larger values of k are always worse. We
make some further comments on the choice of k at the end of this section on page 785.

The value of r can be either negative or positive, because we choose m to minimize r. The series contains both
odd and even terms, so there can be subtraction loss if r is negative. However, because exp(−|r|) = 1/ exp(|r|), we
could sum the series for the positive case, and then take the reciprocal if r is negative. We examine that choice on
page 785.

As with many of the elementary functions, the argument reduction step is critical. Mathematically, we have two
simple operations:

m = round(x/ ln(β)),
r = (x − m ln(β))/k.

The computation of m is easy, and even if, in nearly halfway cases, the value of x/ ln(β) is rounded in the wrong
direction, then r changes sign, but has a similar magnitude. The difficult part is the second operation, for which
accurate computation requires a double-length product m ln(β). If we have a correct fused multiply-add library
function, then the computation can be done accurately using that function:

r = fma(−m, ln(β), x)/k.

Unfortunately, that facility is not widely available. Cody and Waite observed that m is in practice small, because the
limited floating-point exponent range means that the exponential function soon reaches the underflow and overflow
regions. For example, with the 32-bit IEEE 754 format, the argument range for which the function is finite and
nonzero is about (−103.28,+88.73), and even for the 128-bit format, the argument range is about (−11433,+11357).
They correspond to m ranges of [−149,+128] and [−16494,+16384], respectively, and hold for pair-precision formats
as well, because they have the same exponent ranges. Those values of m can be represented in 8 to 16 bits. If we split
ln(β) into a high part with a few bits, and a low part with the remaining bits, then the product of m and the high part
is exactly representable. The computation can then be done like this, as long as there is a guard digit in the adder:

r =
(
(x − m ln(β)hi)− m ln(β)lo

)
/k.

The first two terms, their difference, and the division by k are exact, so the only error comes from the product
m ln(β)lo and its subtraction.

When there is no guard digit, the argument must be split into integer and fractional parts, x = xint + xfract, and
the computation rearranged like this:

r =
((
(xint − m ln(β)hi) + xfract

)− m ln(β)lo
)
/k.

The split of x is an exact operation. The first two terms are nearly equal, and when their exponents are identical, the
subtraction is exact. The final two terms are smaller, and produce the only rounding errors in the expression. For
binary pair-precision arithmetic, the difference between the two formulas for r is dramatic, with errors as large as
50 ulps in exp() from the simpler argument reduction formula.

For base 2, Cody and Waite recommend a split with ln(β)hi = 355/512, which takes just nine bits. For IEEE
754 arithmetic, we could even use a few more bits, with ln(β)hi = 22 713/32 768, which needs 14 bits. Numerical
experiments in ordinary arithmetic show little difference between the two splits in the accuracy of the exponential
function. For pair-precision arithmetic, we split the constant ln(β) into three successive chunks. The first chunk
forms the high part of ln(β)hi, with a zero low part, and the remaining two chunks make up ln(β)lo. For example, in
single-precision decimal arithmetic, we have ln(10) = 2.302 585 092 994 045 684 017 . . . , and the initializer looks like
this:

782 Chapter 23. Pair-precision elementary functions

static const fp_pair_t ln_base_hi = { FP(2.302585), FP(0.) };
static const fp_pair_t ln_base_lo = { FP(9.299400e-08), FP(4.568402e-14) };

The underflow limit for the exponential function is reached when the argument is the logarithm of the smallest
positive nonzero representable number. The overflow limit is at the logarithm of the largest representable num-
ber. Checking those two cutoffs first eliminates unnecessary computation for most of the possible floating-point
arguments.

When x is sufficiently small, the Taylor series can be truncated to its first term, apart from issues of rounding
and the inexact exception flag. For round to nearest operation, for positive x, that happens when x lies below half the
machine epsilon, and for negative x, when |x| is below 1

2 ε/β. For other rounding modes, that economization to a
single term is wrong, but we can correct it by returning 1 + x instead of 1. That action also sets the inexact flag.

With those details taken care of, we can now show a simple implementation of the algorithm in hoc:

__LOG_B := +0x1.62e42fefa39ef35793c7673007e5ed5e81e69p-1
__INV_LOG_B := +0x1.71547652b82fe1777d0ffda0d23a7d11d6aefp+0
__LOG_B_HI := +0x1.63p-1
__LOG_B_LO := -0x1.bd0105c610ca86c3898cff81a12a17e1979b3p-13
__LN_MAXNORMAL := log(MAXNORMAL)
__LN_MINSUBNORMAL := log(MINSUBNORMAL)

func pexp(x) \
{ # Return exp(x)

if (isnan(x)) \
return (x) \

else if (x < __LN_MINSUBNORMAL) \
return (0) \

else if (x > __LN_MAXNORMAL) \
return (INF) \

else if (fabs(x) < (0.25 * __MACHEPS__)) \
return (1 + x) \

else \
{

k = BASE
m = round(x * __INV_LOG_B)
r = ((x - m * __LOG_B_HI) - m * __LOG_B_LO) / k
rabs = fabs(r)
tn = rabs
exp_r = tn

for (n = 2; n <= 24; ++n) \
{

tn *= rabs / n
new_exp_r = exp_r + tn

if (exp_r == new_exp_r) break

exp_r = new_exp_r
}

exp_r += 1

if (r < 0) exp_r = 1 / exp_r

return (scalbn(ipow(exp_r, k), m))
}

}

23.3. Pair-precision exponential 783

That code is valid only for base-2 systems, because of the values that we assign to the four constants involving
the logarithm of the base, but that could easily be repaired. It is important that those constants be accurate to the last
bit, so we cannot portably rely on the value of log(BASE) and related run-time expressions.

Although we limit the sum to 24 terms (enough for the precision of the 128-bit IEEE 754 binary format when r
reaches its maximum value of 1

2 log(2)), in practice, many fewer are needed, and the break statement ensures that
the loop terminates as soon as full accuracy has been reached.

We improve accuracy at little cost by suppressing addition of the leading term of the series until after the loop.
The translation to pair-precision code in C is reasonably obvious:

void
PEXP(fp_pair_t result, const fp_pair_t x)
{

fp_t tmp, xval;
static const fp_pair_t one = { FP(1.), FP(0.) };
static fp_t cuthi, cutlo, cutseries, k_inv;
static int do_init = 1;
static int k;
static volatile fp_t tiny = FP_T_MIN;

if (do_init)
{

cuthi = HALF * FP_PAIR_T_EPSILON;
cutlo = -cuthi / (fp_t)B;
cutseries = HALF * cutlo;

#if defined(KEXP)
k = KEXP;

#else
k = 1;

#endif

k_inv = ONE / (fp_t)k; /* exact */
do_init = 0;

}

xval = PEVAL(x);

if (ISNAN(xval))
{

tmp = SET_EDOM(QNAN(""));
PSET(result, tmp, tmp);

}
else if (xval < LN_MINSUBNORMAL)
{

STORE(&tiny);
tmp = tiny * tiny; /* intentional underflow! */
PSET(result, tmp, ZERO);

}
else if (xval > LN_MAXNORMAL)
{

tmp = SET_ERANGE(INFTY());
PSET(result, tmp, tmp);

}
else if ((cutlo < xval) && (xval < cuthi))

PADD(result, one, x);
else
{

fp_pair_t exp_r, r, s, sum, t, tn, tnu, u;

784 Chapter 23. Pair-precision elementary functions

int m, n;
static const fp_pair_t half = { FP(0.5), FP(0.) };
static const fp_pair_t six = { FP(6.), FP(0.) };

#if B != 2
int is_r_neg;

#endif

m = (FABS(xval) < (HALF * LN_B)) ? 0 :
(int)LROUND(xval * INV_LN_B);

if (m == 0)
PCOPY(r, x);

else
{

fp_pair_t mm, x_int, x_fract;

PSET(x_int, TRUNC(x[0]), ZERO);
PSUB(x_fract, x, x_int);
PSET(mm, (fp_t)m, ZERO);
PMUL(s, mm, ln_base_hi);
PMUL(t, mm, ln_base_lo);
PSUB(r, x_int, s);
PADD(r, r, x_fract);
PSUB(r, r, t);

}

if (k > 1)
{

r[0] *= k_inv;
r[1] *= k_inv;

}

#if B != 2
is_r_neg = (r[0] < ZERO);

if (is_r_neg)
PABS(r, r);

#endif

PDIV(tn, r, six);
PADD(sum, half, tn);

for (n = 4; n <= 100; ++n)
{

PSET(u, (fp_t)n, ZERO);
PDIV(tnu, tn, u);
PMUL(tn, r, tnu);

#if B == 2
if ((-cutseries < tn[0]) && (tn[0] < cutseries))

break;
#else

if (tn[0] < cutseries)
break;

#endif

23.3. Pair-precision exponential 785

PADD(sum, sum, tn);
}

PMUL(sum, sum, r);
PMUL(sum, sum, r);
PADD(sum, r, sum);
PADD(exp_r, one, sum);

#if B != 2
if (is_r_neg)

PDIV(exp_r, one, exp_r);
#endif

if (k > 1)
PIPOW(result, exp_r, k);

else
PCOPY(result, exp_r);

if (m != 0)
{

result[0] = SCALBN(result[0], m);
result[1] = SCALBN(result[1], m);

}
}

}

The cutoff values should be compile-time constants, but C89 and C99 permit the machine-epsilon macros in
<float.h> to expand to run-time values, rather than numerical constants, and some C implementations work that
way. We therefore have to compute the values during the first call to the routine, even though on many systems, the
compiler could compute them at translation time.

The special cases are handled by testing just the high-order component. We follow the C99 Standard in setting
errno for NaN and large positive arguments. For large-magnitude negative arguments, computation of the square of
the smallest normal number sets the underflow exception flag, and produces a zero result in three of the four IEEE 754
binary rounding modes. In the fourth mode, round-to-plus-infinity, the result is the smallest representable number.

Small arguments in the range (cutlo, cuthi) result in evaluation of 1+ x, which then properly reflects the current
rounding mode: the result can be 1 − ε/β, 1, or 1 + ε, depending on the mode, and on the sign of x.

When the special tests all fail, control enters the final else block, where we sum the Taylor series for exp(r), the
exponential of the reduced argument, r. The sum delays addition of the first two terms until last, so that the result is
usually correct to within rounding error. In addition, the leading term in the loop summation is 1

2 , so there is no bit
loss from wobbling precision in a hexadecimal base.

In the hoc prototype, we summed the series for exp(|r|), and then computed its reciprocal when r is negative.
Graphs of the error in numerical experiments with the pair-precision code show that it is better to avoid introducing
the additional error from that division. Because we know that r lies in [− 1

2 log(β),+ 1
2 log(β)], by examination of the

ratios of successive terms of the series, it is easy to show that there is no subtraction loss possible for base β = 2.
Loss of a single digit is possible for larger bases, but only from the first two terms. The safe solution is therefore to
sum the series for exp(r) for binary arithmetic, and that for exp(|r|) for other bases. The loop limit must be adjusted
upward to 100, large enough for the worst case of 256-bit hexadecimal arithmetic.

For about half the floating-point range, we have m = 0, so we check for that case in two places to avoid doing
unnecessary work.

As we noted in Section 13.1 on page 354, using comparisons in sums of pair-precision values is unwise. To avoid
that problem, and lower the cost of the loop-termination test, we do it in ordinary precision, using only the high part
in the test.

Figure 23.1 on the next page shows plots of the measured errors in the pair-precision exponential functions for the
round to nearest case, where all but about 2% of the results are correctly rounded. Plots for data from other rounding
modes are qualitatively similar, so we omit them.

Figure 23.2 compares the accuracy of the 64-bit decimal function pexpd() with k = 1 and k = 10 in the argument

0

1

2

-100 -50 0 50 100

u
lp

s

x

Errors in pexpf()

0

1

2

-200 -100 0 100 200

u
lp

s

x

Errors in pexpdf()

0

1

2

-600 -400 -200 0 200 400 600

u
lp

s

x

Errors in pexp()

0

1

2

-600 -400 -200 0 200 400 600

u
lp

s

x

Errors in pexpd()

0

2

4

6

8

10

-600 -400 -200 0 200 400 600

u
lp

s

x

Errors in pexpd()

0

2

4

6

8

10

-600 -400 -200 0 200 400 600

u
lp

s

x

Errors in pexpd()

786 Chapter 23. Pair-precision elementary functions

Figure 23.1: Errors in pair-precision exponential functions. The horizontal dotted line at 0.5 ulps marks the boundary
below which results are correctly rounded.

Figure 23.2: Errors in the decimal pair-precision PEXPD() function. The left-hand plot is for the default k = 1 in the
argument reduction in pexpd(), whereas the right-hand plot is an experiment with k = 10, where k is defined at the
start of Section 23.3 on page 780.
Plots for the single-precision decimal function, pexpdf(), are similar, and thus, not shown.

23.4. Pair-precision logarithm 787

reduction. The penalty for a faster-converging sum is an unacceptable ten-fold increase in the error.

23.4 Pair-precision logarithm

We saw in Section 2.6 on page 10 that the Taylor series for log(x) around x = 1 has terms of the form (−1)k+1(x −
1)k/k. Unlike the exponential function, there are no factorials in the denominators of the logarithm series to make the
terms fall off quickly. Brute-force summation of the series is therefore not a suitable way to compute the logarithm,
unless x is close to 1.

Because the logarithm and exponential are inverse functions, we can use Newton–Raphson iteration to solve for
a root of f (y) = exp(y)− x for fixed x. The solution, y = log(x), is the logarithm that we seek. The iteration is

yn+1 = yn − f (yn)/ f ′(yn)

= yn − (exp(yn)− x)/(exp(yn))

= yn + x exp(−yn)− 1.

The logarithm of the high part is a suitable starting value, and because convergence is quadratic, just one or two
iterations suffice. Accuracy should be only a bit worse than that of the exponential, because there are only three
additional floating-point operations.

Near convergence, x exp(−yn)− 1 ≈ 0, so we again have a case where there is massive subtraction loss that can
be computed accurately if we have a fused multiply-add operation. Unfortunately, we lack pair-precision code to
compute it.

The error magnification of the exponential function, which grows with the argument magnitude, is another con-
cern. However, that only matters when |yn| is large, and that value dominates the much smaller x exp(−yn)− 1 term
in the sum for yn+1. Nevertheless, it is an issue that we can investigate with numerical experiments.

The simplicity of the iteration suggests that the logarithm code should be short. However, we need tests for NaN,
negative, and zero arguments so that we can handle them according to the C99 specification.

Testing of an initial version of the logarithm code exposed a problem with the Newton–Raphson iteration: large
accuracy loss for x ≈ 1, where the logarithm is small. That suggests switching to the Taylor series, but its terms
alternate in sign, and converge slowly.

The solution to that problem is another series that can be found in standard mathematical tables, or with a
symbolic-algebra system:

x = (1 + δ)/(1 − δ),
δ = (x − 1)/(x + 1),

log(x) = log
(
(1 + δ)/(1 − δ)

)
= 2δ

(
1 + δ2/3 + δ4/5 + · · ·+ δ2m/(2m + 1) + · · ·).

For x in [1
2 , 3

2], the new variable δ varies smoothly over the interval [− 1
3 ,+ 1

5]. When x ≈ 1, δ is small, and the
parenthesized series now has only positive terms, and converges more quickly than the Taylor series in x because it
contains only even powers.

Here is hoc code to compute the logarithm from the new series, assuming only positive nonzero arguments:

func plog(x) \
{

if (fabs(x - 1) > 0.25) \
{

y = log(0.9999 * x) # starting estimate
y += x * exp(-y) - 1
y += x * exp(-y) - 1
y += x * exp(-y) - 1

} \
else \
{

d = (x - 1) / (x + 1)

788 Chapter 23. Pair-precision elementary functions

dd = d * d
d_to_k = dd
sum = d_to_k / 3

for (k = 4; k <= 40; k += 2) \
{

d_to_k *= dd
term = d_to_k / (k + 1)

if ((sum + term) == sum) break

sum += term
}

y = 2 * d * (1 + sum)
}

return (y)
}

As we did for PEXP(), we omit the leading term of the sum until after the loop, thereby gaining some extra precision,
and ensuring that the sum is almost always correctly rounded.

In hexadecimal arithmetic, the phenomenon of wobbling precision requires that the final assignment to y be
rewritten

y = 4 * d * (0.5 + 0.5 * sum)

to avoid unnecessary loss of up to three bits in the significand.
The term limit is set at k = 40, based on the worst case in 128-bit arithmetic of x = 3

4 where δ = − 1
7 , so 21 terms

are summed. For the 80-bit, 64-bit, and 32-bit binary formats, we need 12, 10, and 5 terms, respectively.
Graphical results from numerical experiments with an initial pair-precision version of the hoc prototype reveal

another problem: the error grows to about 10 ulps as x approaches the δ series region from either side, although the
error remains below about 3 ulps away from that region. The slow convergence of the series prevents its use much
outside the interval [3

4 , 5
4].

One possibility is to expand the logarithm about, say, 0.5 and 1.5, but that has the problem that the coefficients
are no longer easily representable in pair-precision arithmetic.

A workable alternative is to use the identity log(x) = log(x/s) + log(s) for some suitable scale factor s to shift
the computation into the series region. For x > 5

4 , pick s = 2, and for x < 3
4 , choose s = 1

2 . The log(s) terms
then have identical magnitude, so only one pair-precision constant is needed. Furthermore, the scaling is exact in
the common case of binary floating-point arithmetic, so the shift introduces only a single additional rounding error
from the addition of log(s). For decimal and hexadecimal arithmetic, we may incur two rounding errors, from the
addition and the multiplication.

The constant log(2) can be computed in a one-time initialization block by summing a series of suitable exactly
representable stored rational numbers. For decimal arithmetic, the numerators are exact seven-digit sequences from
the decimal constant, and the denominators are successive powers of 107. Otherwise, we use denominators that are
powers of 224, based on the data in Table H.1 on page 948 that show that all current, and most historical, architectures
provide at least 24 significand bits. In addition, the value 224 is an exact power of the base for β = 2, 4, 8, 16, and 256.
Only one denominator needs to be stored, and at most 21 numerators allow us to represent the constant exactly up to
147 digits, enough for pair-precision versions of the code in 70D octuple-precision arithmetic. Similar reconstructions
are needed in other pair-precision functions, so we provide the PCON() function family to do the job:

void
PCON(fp_pair_t result, int n, const fp_t table[/* n */],

const fp_t scale)
{ /* result = sum(k=0:(n-1)) table[k] * scale**k */

fp_pair_t t;
fp_t scale_to_k;

23.4. Pair-precision logarithm 789

int k;

PSET(result, ZERO, ZERO);
scale_to_k = scale * scale;

for (k = 2; (k < n) && (scale_to_k != ZERO); ++k)
{

fp_pair_t t1, t2, t3;

PSET(t1, scale_to_k, ZERO);
PSET(t2, table[k], ZERO);
PMUL(t3, t1, t2);
PADD(result, result, t3);
scale_to_k *= scale; /* exact */

}

PSET(t, table[1] * scale, ZERO);
PADD(result, result, t);
PSET(t, table[0], ZERO);
PADD(result, result, t);

}

The loop terminates early if scale_to_k underflows to zero. The initial table entry is zero for some of the constants
that we need, so the first two terms are added last to enhance accuracy.

Further graphical analysis of numerical experiments from pair-precision code that implements the δ series, two
shift regions, and the Newton–Raphson iteration show that further improvement is possible by extending the δ-
series region downward, and widening the shift regions. For the latter, that means multiple recursive calls to the
pair-precision logarithm function, each of which incurs one or two rounding errors until the final call sums the
δ series. The shift-region cutoffs are chosen so that the errors do not change noticeably at the boundaries with
the Newton–Raphson iteration regions. The cutoff values are all exactly representable in the available precision of
current and historical floating-point systems, and are selected so as to prevent an argument from being moved from
one shift region into the other, because that would produce infinite recursion.

The graphical and numerical experiments show that the δ-series code produces errors of up to 3 ulps in binary
arithmetic, and up to 2 ulps in decimal arithmetic, notably worse than we found for the exponential function. Switch-
ing to the normal Taylor series for the logarithm about x = 1 pushes the errors in both binary and decimal arithmetic
down below 0.8 ulps, and most results are below 0.5 ulps, and thus, correctly rounded. The penalty for the enhanced
accuracy is increased computation time.

Here is the final C translation of the hoc program for the pair-precision logarithm. It uses the result of PCMP() as
a convenient case statement selector, and replaces the δ series by the normal Taylor series:

void
PLOG(fp_pair_t result, const fp_pair_t x)
{

fp_t r, xval;
int k;

#if B != 2
static const fp_pair_t half = { FP(0.5), FP(0.) };
static const fp_pair_t two = { FP(2.), FP(0.) };

#endif

static const fp_pair_t one = { FP(1.), FP(0.) };
static const fp_pair_t zero = { FP(0.), FP(0.) };
static fp_pair_t Log_2 = { FP(0.), FP(0.) };;
static int do_init = 1;
fp_pair_t sum, t1, t2, term;

790 Chapter 23. Pair-precision elementary functions

if (do_init)
{

PCON(Log_2, (int)elementsof(log_2_table), log_2_table,
log_2_scale);

do_init = 0;
}

switch (PCMP(x, zero))
{
default: /* should not happen */ /* FALLTHROUGH */
case -2: /* x is a NaN */ /* FALLTHROUGH */
case -1: /* x < 0 */

r = SET_EDOM(QNAN(""));
PSET(result, r, r);
break;

case 0: /* x == 0 */

#if defined(HAVE_IEEE_754)
r = -INFTY();

#else
r = SET_ERANGE(-INFTY());

#endif

PSET(result, r, r);
break;

case 1: /* x > 0 */
xval = PEVAL(x);

if ((FP(0.5) < xval) && (xval < FP(1.5)))
{

fp_pair_t xm1_to_k, xm1, xm1sq;

PSUB(xm1, x, one);
PMUL(xm1_to_k, xm1, xm1);
PCOPY(xm1sq, xm1_to_k);
PCOPY(sum, zero);

for (k = 3; k <= 460; ++k)
{ /* sum log(x) Taylor series about x = 1 */

fp_t lo_abs;

PMUL(xm1_to_k, xm1_to_k, xm1);
PSET(t1, (fp_t)k, ZERO);
PDIV(term, xm1_to_k, t1);
lo_abs = FABS(sum[1]);

if (lo_abs == (lo_abs + term[0]))
break;

if (IS_ODD(k))
PADD(sum, sum, term);

else
PSUB(sum, sum, term);

}
#if B == 2

23.4. Pair-precision logarithm 791

term[0] = HALF * xm1sq[0];
term[1] = HALF * xm1sq[1];

#else
PMUL(term, half, xm1sq);

#endif

PSUB(sum, sum, term);
PADD(result, sum, xm1);

}
else if ((FP(1.25) < xval) && (xval <= FP(128.)))
{ /* compute log(x) = log(x / 2) + log(2) */

#if B == 2
PSET(t1, x[0] * HALF, x[1] * HALF); /* exact */

#else
PMUL(t1, x, half);

#endif

PLOG(t2, t1);
PADD(result, t2, Log_2);

}
else if ((FP(0.0078125) <= xval) && (xval < FP(0.625)))
{ /* compute log(x) = log(x * 2) - log(2) */

#if B == 2
PSET(t1, x[0] * TWO, x[1] * TWO); /* exact */

#else
PMUL(t1, x, two);

#endif

PLOG(t2, t1);
PSUB(result, t2, Log_2);

}
else
{

fp_pair_t y;

PSET(y, LOG(xval), ZERO);

for (k = 0; k < 2; ++k)
{ /* Newton--Raphson iteration */

fp_pair_t t, yneg;

PNEG(yneg, y);
PEXP(t, yneg);
PMUL(t, x, t);
PSUB(t, t, one);
PADD(y, y, t);

}

PCOPY(result, y);
}
break;

}
}

For NaN or negative arguments, C99 requires a domain error, and for IEEE 754 arithmetic, the raising of the
invalid exception flag. The QNAN() function sets the flag, and the SET_EDOM() wrapper sets the errno global value.

792 Chapter 23. Pair-precision elementary functions

Figure 23.3: Errors in pair-precision logarithm functions near the series region. Results between the vertical dotted
lines are from the Taylor series.

For an argument of ±0, in IEEE 754 arithmetic, C99 mandates the raising of the divbyzero exception flag, and a
return value of −∞. The INFTY() function in the mathcw library ensures that both conditions are met. For other
floating-point architectures, C99 allows a range error to be set. On such systems, our INFTY() function returns the
largest representable floating-point number, and we set the errno global value so that the caller can detect the range
error.

We use the Taylor series for arguments in (1
2 , 3

2), region shifts for arguments in [1
128 , 5

8) and (5
4 , 128], and otherwise,

the Newton–Raphson iteration. The loop limit is increased to k = 460 (the value needed for the 256-bit formats)
because of the widened series range, but we make an early exit from the loop when the high component of the term
is small enough that it does not contribute to the absolute value of the low component of the sum.

As in the exponential function, the loop sums terms after the second to machine precision, and the larger first
two terms are added last. Most of the rounding error comes from that final operation.

More often, the code uses two steps of the self-correcting Newton–Raphson iteration. The final error in that case
consists of the small errors from the add, subtract, and multiply, and the larger error from the exponential. The error
in the logarithm is then expected to be at most a few ulps.

Figure 23.3 shows the errors in the logarithm functions around the series region, and Figure 23.4 shows the errors
over the entire argument range. They demonstrate that the pair-precision logarithm functions are correctly rounded,
except near x = 1, where errors up to 1 ulp are possible. Test with other rounding modes produce similar plots.

0

1

2

0 1 2

u
lp

s

x

Errors in plogf()

0

1

2

0 1 2

u
lp

s

x

Errors in plogdf()

0

1

2

0 1 2

u
lp

s

x

Errors in plog()

0

1

2

0 1 2

u
lp

s

x

Errors in plogd()

23.5. Pair-precision logarithm near one 793

Figure 23.4: Errors in pair-precision logarithm functions.

23.5 Pair-precision logarithm near one

When a computation requires log(1 + x) for small x, direct use of the logarithm function loses accuracy from the
addition 1 + x. In Section 10.4 on page 290, we introduce a new function, log1p(x), that provides a simple solution
to that problem. Unfortunately, the trick used there to recover log(1 + x) from log(fl(1 + x)) is unsatisfactory in
pair-precision arithmetic: an initial implementation of PLOG1P() with that algorithm exhibited errors of up to 3 ulps.
Instead, we use a two-term Taylor series for tiny arguments, the normal Taylor series when |x| < 1

2 , and otherwise,
call PLOG() to evaluate log(1 + x). The series convergence is poor unless |x| is small, so we sacrifice speed for
accuracy.

We omit the code for PLOG1P(), but Figure 23.5 on the following page shows the measured errors near the series
region.

23.6 Pair-precision exponential near zero

In Section 10.2 on page 273, we describe the computation of expm1(), which evaluates exp(x)− 1 accurately for small
arguments, where direct computation of the right-hand side would otherwise lose accuracy from the subtraction of
two nearly equal values.

For small-magnitude arguments, the expm1(x) function reduces to just the first term of its Taylor series. For
larger argument magnitudes, we use a rational polynomial approximation. Otherwise, when there is no possibility

0

1

2

-30 -20 -10 0 10 20 30

u
lp

s

log10(x)

Errors in plogf()

0

1

2

-100 -50 0 50 100

u
lp

s

log10(x)

Errors in plogdf()

0

1

2

-300 -200 -100 0 100 200 300

u
lp

s

log10(x)

Errors in plog()

0

1

2

-300 -200 -100 0 100 200 300

u
lp

s

log10(x)

Errors in plogd()

794 Chapter 23. Pair-precision elementary functions

Figure 23.5: Errors in pair-precision logarithm-plus-one functions near the series region. Results between the vertical
dotted lines are from the Taylor series.

of subtraction loss, we can compute it directly from exp(x)− 1.
A rational polynomial approximation is unsuitable for pair-precision arithmetic because of the difficulty of rep-

resenting the polynomial coefficients correctly. One possible solution is to use Newton–Raphson iteration. Given x,
to find y = exp(x)− 1, rearrange and take logarithms to get log(1 + y) = x, and then set f (y) = log(1 + y)− x =
log1p(y)− x. The first derivative of that function is f ′(y) = 1/(1 + y), so the iteration looks like this:

yn+1 = yn − f (yn)/ f ′(yn) = yn − (log1p(yn)− x)(1 + yn)

A reasonable starting point for the iteration is y0 = expm1(peval(x)), and we need the pair-precision function
plog1p() from Section 23.5 on the preceding page. The code for the pair-precision computation of pexpm1() with
that algorithm is simple enough that we do not show it here. Plots of the error show that it remains well below 1 ulp
over most of the argument range, but in the interval [− 1

2 ,+ 1
2], it rises to about 5 ulps, much higher than we would

like.
A better solution proves to be modification of the code for PEXP(): reduce the argument via x = m ln(β) + r,

use the Taylor series to compute exp(r) − 1, and then recover the final result via exact scaling by βm. The code in
PEXPM1() is similar to that for PEXP(), so we omit it here.

Figure 23.6 on the next page shows the measured errors in the PEXPM1() functions, demonstrating that the results
are usually correctly rounded, except in the interval [−2,+2], where errors can reach 1.3 ulps. Outside the interval
shown in the plots, the errors remain mostly below 0.5 ulps, and never get above 0.8 ulps.

0

1

2

-1 0 1 2 3 4 5

u
lp

s

x

Errors in plog1pf()

0

1

2

-1 0 1 2 3 4 5

u
lp

s

x

Errors in plog1pdf()

0

1

2

-1 0 1 2 3 4 5

u
lp

s

x

Errors in plog1p()

0

1

2

-1 0 1 2 3 4 5

u
lp

s

x

Errors in plog1pd()

23.7. Pair-precision base-n exponentials 795

Figure 23.6: Errors in pair-precision PEXPM1() functions.

23.7 Pair-precision base-n exponentials

The function families pexp2(), pexp8(), pexp10(), and pexp16() provide pair-precision base-2, 8, 10, and 16 expo-
nentials, respectively. Let kx = exp(y) for some fixed k, then take logarithms of both sides to find y = x log(k). We
therefore have these definitions:

pexp2(x) = pexp(x log(2)), pexp10(x) = pexp(x log(10)),
pexp8(x) = pexp(x log(8)), pexp16(x) = pexp(x log(16)).

Unfortunately, straightforward application of those relations is unsatisfactory because of the problem of error mag-
nification (see Section 4.1 on page 61). The inexact scaling of x by the logarithm term introduces an error in the ex-
ponential functions that grows with |x|, so errors of hundreds or thousands of ulps are likely for the higher-precision
functions near their underflow and overflow limits.

The solution that we adopt is to split x into a sum of integer and fractional parts: x = n + f . That is an exact
operation provided by the modf() family that we can apply to the high part. We then have

pexp2(x) = 2n pexp(f log(2)), pexp10(x) = 10n pexp(f log(10)),
pexp8(x) = 8n pexp(f log(8)), pexp16(x) = 16n pexp(f log(16)),

where the error magnification is largely eliminated because of the reduced argument size, provided that we can
compute integer powers of 2, 8, 10, and 16 accurately. The ldexp() family provides exact computation of those

0

1

2

-5 -4 -3 -2 -1 0 1 2 3 4 5

u
lp

s

x

Errors in pexpm1f()

0

1

2

-5 -4 -3 -2 -1 0 1 2 3 4 5

u
lp

s

x

Errors in pexpm1df()

0

1

2

-5 -4 -3 -2 -1 0 1 2 3 4 5

u
lp

s

x

Errors in pexpm1()

0

1

2

-5 -4 -3 -2 -1 0 1 2 3 4 5

u
lp

s

x

Errors in pexpm1d()

796 Chapter 23. Pair-precision elementary functions

Figure 23.7: Errors in pair-precision PEXP2() functions. The error growth in pexp2df() is due to the use of the inexact
pipowdf() function for computing 2n in decimal arithmetic.

powers when the base is k. Otherwise, we can sometimes decompose them into an exact scaling and a small accurate
power. For example, when β = 16, we have 8n = 84m+r = 163m × 8r, where r lies in [−3,+3]. If that reduction is not
possible, we fall back to computing the power with the pipow() family.

The logarithms of the constants in pair precision must be accurate to the last digit. We use the same technique
as in plog(), representing the values as series of exact rational numbers that are summed to working precision by
pcon() in an initialization code block that is executed only on the first entry.

Figure 23.7 through Figure 23.10 on page 799 show the measured errors in our implementations of the exponen-
tial functions.

23.8 Pair-precision trigonometric functions

The cos, sin, and tan functions satisfy these periodicity and symmetry relations, where n is an integer:

cos(x) = cos(x + 2nπ) tan(x) = tan(x + nπ),
cos(x) = − cos(x + (2n + 1)π), cos(x) = cos(−x),
sin(x) = sin(x + 2nπ), sin(x) = − sin(−x),
sin(x) = − sin(x + (2n + 1)π), tan(x) = − tan(−x).

The function ranges are [−1,+1] for cos and sin, and (−∞,+∞) for tan.

0

1

2

-100 -50 0 50 100

u
lp

s

x

Errors in pexp2f()

0

1

2

-300 -200 -100 0 100 200 300

u
lp

s

x

Errors in pexp2df()

0

1

2

-600 -400 -200 0 200 400 600

u
lp

s

x

Errors in pexp2()

0

1

2

-600 -400 -200 0 200 400 600

u
lp

s

x

Errors in pexp2d()

23.8. Pair-precision trigonometric functions 797

Figure 23.8: Errors in pair-precision PEXP8() functions.

We guarantee symmetry by computing the functions only for positive arguments, and then inverting the sign of
the result for sin and tan of negative arguments.

The hardest problem in their computation is argument reduction via x = nπ + r. If x is large, then n is too, and
the small residual r in [− 1

2 π,+ 1
2 π] is the result of the subtraction of two large numbers. In IEEE 754 64-bit decimal

arithmetic, n can require almost 400 digits, and in 128-bit decimal arithmetic, more than 6000 digits. We require π to
similar accuracy. The exact argument-reduction algorithm that we describe in Chapter 9 on page 243 is complicated,
and would be difficult to extend for pair-precision arithmetic.

Applications of trigonometric functions can usually be manipulated mathematically to avoid the need for argu-
ments outside small ranges like [0, π], [0, 2π], or [− 1

2 π,+ 1
2 π]. Most implementations of trigonometric functions,

including the recipes of Cody and Waite, therefore do not attempt accurate argument reduction beyond a few mul-
tiples of π.

Polynomial approximations are impractical for pair-precision arithmetic, so we need to resort to series summa-
tion. The Taylor series for cos(r), sin(r), and tan(r) converge reasonably rapidly because of the factorials in the
denominators: when r = 1

2 π, a sum of 50 terms recovers about 140 decimal digits.

Although the series terms for cos(r) and sin(r) alternate in sign, the ratios of the magnitudes of successive terms
remain below 1

2 for |r| ≤ 1
2 π, so there is never subtraction loss in the argument region where we use the series.

Only the series for sin(r) is suitable for computation: it begins r − r3/3! + r5/5! + · · · . Successive terms tk can be

0

1

2

-50 -25 0 25 50

u
lp

s

x

Errors in pexp8f()

0

1

2

-100 -50 0 50 100

u
lp

s

x

Errors in pexp8df()

0

1

2

-400 -300 -200 -100 0 100 200 300 400

u
lp

s

x

Errors in pexp8()

0

1

2

-400 -300 -200 -100 0 100 200 300 400

u
lp

s

x

Errors in pexp8d()

798 Chapter 23. Pair-precision elementary functions

Figure 23.9: Errors in pair-precision PEXP10() functions. The error growth in pexp10f() is due to the use of the
inexact pipowf() function for computing 10n in binary arithmetic, and the errors rise to about 8 ulps. Notice that the
range of the vertical axis is larger than in other figures in this chapter.

computed quickly from a recurrence relation:

t0 = 0, t2k = 0, t1 = r, t2k+1 =
r2

(2k + 1)(2k)
t2k−1, for k = 1, 2, 3,

We omit the first two terms while accumulating the sum to machine precision after factoring out r5, then multiply
that sum by r5 and add it to the leading terms, producing a result with small relative error.

The series for cos(r) starts with 1 − r2/2! + r4/4! + · · · . Although that is reasonable when |r| � 1, the range of
the function, [−1,+1], makes it clear that massive subtraction loss must occur to reach a result of 0. Instead, we use
the relation cos(r) = sin(r + 1

2 π), taking care to apply it only for r ≥ 0 to avoid subtraction loss.
Cody and Waite recommend using a higher-precision value of 1

2 π ≈ c1 + c2, where c1 is chosen so that nc1 is
exact for n values of interest, and c2 is a correction accurate to full precision. In the mathcw library, we set a target of
accurate reduction for |n| < 100. The computation then proceeds as follows:

n = round(|x|/π + 1
2),

xn = n − 1
2 ,

x1 = floor(|x|),
x2 = |x| − x1,

0

1

2

3

-30 -20 -10 0 10 20 30

u
lp

s

x

Errors in pexp10f()

0

1

2

3

-100 -50 0 50 100

u
lp

s

x

Errors in pexp10df()

0

1

2

3

-400 -300 -200 -100 0 100 200 300 400

u
lp

s

x

Errors in pexp10()

0

1

2

3

-400 -300 -200 -100 0 100 200 300 400

u
lp

s

x

Errors in pexp10d()

23.8. Pair-precision trigonometric functions 799

Figure 23.10: Errors in pair-precision PEXP16() functions.

r =
(
(x1 − xnc1) + x2

)− xnc2.

Notice that the explicit computation of x + 1
2 π is avoided by folding the term 1

2 π into the computation of xn, because
1
2 π is not exactly representable, but n − 1

2 is exact if n is not too large.
The pair-precision computation of PCOS() from PSIN() is then a straightforward transcription of those steps:

PABS(xabs, x);
n = (int)ROUND(PEVAL(xabs) * ONE_OVER_PI + HALF);
PSET(xn, (fp_t)n - HALF, ZERO);
PSET(x1, FLOOR(PEVAL(xabs)), ZERO);
PSUB(x2, xabs, x1);
PMUL(t, xn, C1);
PSUB(r, x1, t);
PADD(r, r, x2);
PMUL(t, xn, C2);
PSUB(r, r, t);

if (ISODD(n))
PNEG(r, r);

PSIN(result, r);

0

1

2

-30 -20 -10 0 10 20 30

u
lp

s

x

Errors in pexp16f()

0

1

2

-80 -60 -40 -20 0 20 40 60 80

u
lp

s

x

Errors in pexp16df()

0

1

2

-300 -200 -100 0 100 200 300

u
lp

s

x

Errors in pexp16()

0

1

2

-300 -200 -100 0 100 200 300

u
lp

s

x

Errors in pexp16d()

800 Chapter 23. Pair-precision elementary functions

Figure 23.11: Errors in pair-precision PCOS() functions.

The Taylor series for tan(r) does not have simple coefficients that can easily be generated from earlier ones.
Instead, they depend on the Bernoulli numbers that we met in earlier chapters (see Section 18.5 on page 568):

tan(x) = x + (1/3)x3 + (2/15)x5 + (17/315)x7 + · · ·+
(B2n(−4)n(1 − 4n)/(2n)!)x2n−1 + · · · .

For pair-precision arithmetic, we therefore use that series only when the argument is small enough that the first two
terms suffice. Otherwise, we fall back to the definition tan(x) = sin(x)/ cos(x), making the pair-precision tangent
about twice as costly as the corresponding cosine or sine.

Figure 23.11 through Figure 23.13 on page 802 show the measured errors in our pair-precision implementations
of the trigonometric functions. The errors are almost entirely due to inaccuracies in the initial argument reduction,
and are largest for arguments that lie near integer multiples of 1

2 π, reaching several tens of ulps in testing with
random arguments, and much larger with specially selected ones.

0

1

2

-100 -50 0 50 100

u
lp

s

x

Errors in pcosf()

0

1

2

-100 -50 0 50 100

u
lp

s

x

Errors in pcosdf()

0

1

2

-100 -50 0 50 100

u
lp

s

x

Errors in pcos()

0

1

2

-100 -50 0 50 100

u
lp

s

x

Errors in pcosd()

23.9. Pair-precision inverse trigonometric functions 801

Figure 23.12: Errors in pair-precision PSIN() functions.

23.9 Pair-precision inverse trigonometric functions

The Taylor series for the inverse trigonometric functions are:

acos(x) = 1
2 π − (

x + (1/6)x3 + (3/40)x5 + (5/112)x7 + · · ·+(
(2n)!/(4n(n!)2(2n + 1))

)
x2n+1 + · · ·),

asin(x) = x + (1/6)x3 + (3/40)x5 + (5/112)x7 + · · ·+(
(2n)!/(4n(n!)2(2n + 1))

)
x2n+1 + · · · ,

atan(x) = x − (1/3)x3 + (1/5)x5 − (1/7)x7 + (1/9)x9 − · · · .

The argument range of acos(x) is [−1,+1], and the corresponding function range is [π, 0]. The argument range of
asin(x) is [−1,+1], and the function range is [− 1

2 π,+ 1
2 π]. The argument range of atan(x) is (−∞,+∞), and the

function range is [− 1
2 π,+ 1

2 π].
The series for atan(x) was found by Gregory1about 1667 from complicated geometric arguments, about four

decades before Taylor in 1715 used the calculus of Newton and Leibniz to show how to derive such series system-
atically. In 1755, Euler found another series that converges more rapidly for |x| ≈ 1, about the same as the normal

1The Scottish scientist James Gregory (1638–1675) also described the first practical reflecting telescope, and invented the diffraction grating for
splitting sunlight into its colors, a year after Isaac Newton did the same with a prism.

0

1

2

-100 -50 0 50 100

u
lp

s

x

Errors in psinf()

0

1

2

-100 -50 0 50 100

u
lp

s

x

Errors in psindf()

0

1

2

-100 -50 0 50 100

u
lp

s

x

Errors in psin()

0

1

2

-100 -50 0 50 100

u
lp

s

x

Errors in psind()

802 Chapter 23. Pair-precision elementary functions

Figure 23.13: Errors in pair-precision PTAN() functions.

Taylor series for |x| ≈ 0, and has only positive terms:

z = x2/(1 + x2),

atan(x) = (z/x)(1 + (2!!/3!!)z + (4!!/5!!)z2 + (6!!/7!!)z3 + · · ·)

= (z/x)
∞

∑
n=0

n

∏
k=1

2kz/(2k + 1),

Lambert2 (1770) and Lagrange3 (1776) independently discovered a simple, and visually pleasing, continued-
fraction formula for the arc tangent:

atan(x) =
x

1 +
x2

3 +
4x2

5 +
9x2

7 +
16x2

9 +
25x2

11 +
36x2

13 +
49x2

15 +
64x2

17 +
· · · .

The general term in the denominators of the continued fraction is

dk = (2k − 1) + k2x2/dk+1,
2The Swiss–German scientist Johann Heinrich Lambert (1728–1777) was the first to introduce hyperbolic functions into trigonometry and the

first to prove that π is irrational (1761). He also developed the first practical hygrometer and photometer, devices for measuring water vapor and
light. The widely used Lambert cylindrical equal-area map projection is named after him.

3The French mathematician and astronomer Joseph-Louis Lagrange (1736–1813) made many important contributions, including fundamental
work on analytical mechanics and wave propagation. He developed the calculus of variations, the theory of differential equations, the mean value
theorem, and worked on the three-body problem for the calculation of the orbits of the Earth, Moon, and Sun, and Jupiter and its satellites. His tomb
is in the Panthéon in Paris, France.

0

1

2

-100 -50 0 50 100

u
lp

s

x

Errors in ptanf()

0

1

2

-100 -50 0 50 100

u
lp

s

x

Errors in ptandf()

0

1

2

-100 -50 0 50 100

u
lp

s

x

Errors in ptan()

0

1

2

-100 -50 0 50 100

u
lp

s

x

Errors in ptand()

23.9. Pair-precision inverse trigonometric functions 803

and the fraction can be evaluated in backward order, starting from a fixed term k, by setting 1/dk+1 = 0. All terms
are positive, so there is no possibility of subtraction loss. Numerical experiments, done once and for all, determine
the number of terms required to reach the desired precision for a given maximum value of |x|. They show that for
|x| < 1

2 , the continued fraction requires about half as many terms as the Taylor series. The hoc code to evaluate the
continued fraction is short:

xx = x * x
d_k = Infinity

for (k = KMAX; k > 0; --k) \
d_k = (k + k - 1) + (k * k * xx / d_k)

result = x / d_k

Forward evaluation with early loop exit is also possible (see Section 2.7 on page 12), but we do not show code for it
here.

The Taylor-series recurrence formula for terms tk in the series for asin(x) is

t0 = 0, t2k = 0, t1 = x, t2k+1 =
(2k − 1)2

2k(2k + 1)
x2t2k−1, for k = 1, 2, 3,

The symmetry relations are

acos(−x) = 1
2 π + asin(x),

asin(−x) = − asin(x),
atan(−x) = − atan(x).

These relations are essential for argument reduction:

acos(x) =

⎧⎪⎪⎨
⎪⎪⎩

2 asin
(√ 1

2 (1 − x)
)
, use for x > 1

2 ,

π − 2 asin
(√ 1

2 (1 + x)
)
, use for x < − 1

2 ,
1
2 π − asin(x), use for |x| ≤ 1

2 ,

asin(x) = 1
2 π − 2 asin

(√ 1
2 (1 − x)

)
, use for |x| > 1

2 , but see text,

atan(x) =

{
1
2 π − atan(1/x), use for |x| > 1,
1
6 π − atan(f), use for |x| > 2 −√

3.

The intermediate variable in the last equation is defined by

f =
(
(
√

3)x − 1
)
/(x +

√
3), use for β �= 16,

=
(
(((

√
3 − 1)x − 1

2)− 1
2) + x

)
/(x +

√
3), use for β = 16.

The factors (1± x) lose leading digits in the regions where they are used, but they are nevertheless computed exactly,
because x is exact, and because neither shifting nor rounding is required to perform the operations.

For a NaN argument, or an argument that lies outside the valid range, the code in all three functions returns the
NaN argument, or else a quiet NaN, and sets errno to EDOM.

For asin(x), the code handles a zero argument separately so as to preserve the sign of the argument in the result,
and processes tiny arguments quickly by a two-term Taylor series that provides the required rounding, and sets the
inexact flag. We use the symmetry relation to handle negative arguments, argument reduction to handle arguments
in (1

2 , 1], and otherwise, we sum the Taylor series for arguments in (0, 1
2].

Graphs of the errors in an initial implementation of PASIN() exposed a problem with that algorithm, which
is based on traditional recipes. The graphs had spikes in the errors reaching up to about 2.2 ulps for x ≈ ± 1

2 ,
whereas elsewhere, the errors remained mostly below 0.75 ulps. The problem is subtraction loss in forming 1

2 π −
2 asin

(√ 1
2 (1 − x)

)
. Leading bits are lost for x values where the second term exceeds 1

4 π. That relation is readily

804 Chapter 23. Pair-precision elementary functions

solved to find that bit loss occurs for x in [1
2 ,
√

1
2] ≈ [0.5, 0.7]. Increasing the cutoff from 1

2 to
√

1
2 roughly doubles the

number of terms needed in the Taylor series in the worst case, but notably improves the error plots by completely
eliminating the two spikes. We therefore adopt that improvement, sacrificing speed for accuracy.

The magnification factors in Table 4.1 on page 62 for acos(x) and asin(x) have denominators
√

1 − x2, and thus,
those functions are increasingly sensitive to argument errors as |x| approaches 1. As with other functions having
large error-magnification factors, the only solution when such arguments are commonly needed is to invoke higher-
precision versions of the functions.

For acos(x), the computation diverts to asin
(√ 1

2 (1 ± x)
)

when |x| > 1
2 . Otherwise, the result is 1

2 π − asin(x).
The argument ranges in each case prevent inexact loss of leading digits in the subtractions. The only extra con-
sideration is that the constants π and 1

2 π have leading zero bits in hexadecimal arithmetic, so when β = 16, the
computation is done in steps with 1

4 π, which has no leading zero bits.
The atan(x) computation is the most difficult, and the code in PATAN() closely follows that for ATAN(). Negative

arguments are handled as positive ones, with a sign change in the final result. As with asin(x), zero and tiny
arguments are handled by separate code for preservation of the sign of zero, rounding, setting of the inexact flag, and
speed.

The reciprocal argument relation for atan(x) allows large arguments to be reduced to smaller ones in [0, 1]. The
intermediate variable f allows further reduction to the approximate range [0, 0.268] where the Taylor series is finally
summed. Unfortunately, the series converges slowly: 28 terms are needed for 34 decimal digits, and 120 terms
produce 140 digits. The multistep computation of f avoids precision loss from leading zero bits in hexadecimal
arithmetic. Cody and Waite’s careful arrangement of the algorithm steps avoids direct computation of 1

2 π − 1
6 π by

reducing it analytically to 1
3 π.

In all three functions, header files contain values of the constants π, 1
2 π, 1

3 π,
√

3 − 1, and so on, each expressed
as an exact pair-precision high part that must be normalized by PSUM2() before use, and a pair-precision low part
defined as a table that must be summed by a call to PCON(). Those steps are handled in an initialization block that
is executed only on the first call to each function. When one of those constants is needed in a sum, the low part is
added before the exact high part, sometimes helping to increase the effective precision of subtractions.

Figure 23.14 on the next page through Figure 23.16 on page 806 show the measured errors in our implementations
of the inverse trigonometric functions in pair-precision arithmetic. Compared to the routines for binary arithmetic,
the decimal routines exhibit smaller errors because of their more accurate low-level pair-precision primitives.

23.10 Pair-precision hyperbolic functions

We treated the hyperbolic companions of the standard trigonometric functions in detail in Section 12.1 on page 341,
observing there that the two functions cosh(x) and sinh(x) need careful argument shifting to avoid premature over-
flow. The shift code for the pair-precision version is a straightforward transcription of the code for ordinary pre-
cision, except that the shift constants 1

2 v − 1 and 1/v2 must be reconstructed by the PCON() family from a tabular
representation.

For the hyperbolic cosine, we use a pair-precision transcription of the algorithm described earlier in Section 12.1
on page 341, because there is no possibility of subtraction loss, and the major computational problem is to avoid
premature overflow.

Figure 23.17 on page 807 shows the measured errors in the pair-precision hyperbolic cosine functions.
The functions sinh(x) and tanh(x) cannot be computed from their definitions in the region where exp(x) −

exp(−x) suffers bit loss from the subtraction. However, their Taylor series expansions both begin with x, showing
that the loss is primarily from the leading term of the series for exp(x) = 1 + x + x2/2! + · · · . That suggests that
it may be useful to modify their definitions to work with expm1(x) = exp(x) − 1, a function for which we have
accurate implementations for both ordinary and pair-precision arithmetic. We find

sinh(x) = 1
2 (exp(x)− exp(−x))

= 1
2

(
(exp(x)− 1)− (exp(−x)− 1)

)
= 1

2 (expm1(x)− expm1(−x)).

23.10. Pair-precision hyperbolic functions 805

Figure 23.14: Errors in pair-precision PACOS() functions.

For x in [0, ∞), the range of expm1(−x) is [0,−1], so the subtraction is really addition of positive terms, and there
can be no bit loss. We can eliminate one of the functions on the right by introducing a temporary variable as follows:

E = exp(x)− 1
= expm1(x),

sinh(x) = 1
2

(
(E + 1)− 1/(E + 1)

)
= 1

2

(
((E + 1)2 − 1)/(E + 1)

)
= 1

2 (E + E/(E + 1)).

Because E is nonnegative for x ≥ 0, that allows us to compute sinh(x) directly from expm1(x) for x in the region
[0, 1] where we used a rational polynomial approximation in ordinary arithmetic. The drawback is that we cannot
easily prevent bit loss from wobbling precision in hexadecimal arithmetic.

Figure 23.18 on page 807 shows the measured errors in the pair-precision hyperbolic sine functions.
The hyperbolic tangent quickly reaches its limits of ±1, which we can handle as in the code in tanhx.h. For

smaller arguments where that code uses a polynomial approximation, we instead build on the pair-precision algo-
rithm for sinh(x), and write

tanh(x) = sinh(x)/ cosh(x)

= (E + E/(E + 1))/
(
(E + 1) + 1/(E + 1)

)

0

1

2

-1 0 1

u
lp

s

x

Errors in pacosf()

0

1

2

-1 0 1

u
lp

s

x

Errors in pacosdf()

0

1

2

-1 0 1

u
lp

s

x

Errors in pacos()

0

1

2

-1 0 1

u
lp

s

x

Errors in pacosd()

0

1

2

-1 0 1

u
lp

s

x

Errors in pasinf()

0

1

2

-1 0 1

u
lp

s

x

Errors in pasindf()

0

1

2

-1 0 1

u
lp

s

x

Errors in pasin()

0

1

2

-1 0 1
u

lp
s

x

Errors in pasind()

0

1

2

-4 -2 0 2 4

u
lp

s

x

Errors in patanf()

0

1

2

-4 -2 0 2 4

u
lp

s

x

Errors in patandf()

0

1

2

-4 -2 0 2 4

u
lp

s

x

Errors in patan()

0

1

2

-4 -2 0 2 4

u
lp

s

x

Errors in patand()

806 Chapter 23. Pair-precision elementary functions

Figure 23.15: Errors in pair-precision PASIN() functions.

Figure 23.16: Errors in pair-precision PATAN() functions. Outside the interval shown in the plots, the errors remain
below 1

2 ulps, indicating correct rounding.

0

1

2

-100 -50 0 50 100

u
lp

s

x

Errors in pcoshf()

0

1

2

-300 -200 -100 0 100 200 300

u
lp

s

x

Errors in pcoshdf()

0

1

2

-750 -500 -250 0 250 500 750

u
lp

s

x

Errors in pcosh()

0

1

2

-750 -500 -250 0 250 500 750
u

lp
s

x

Errors in pcoshd()

0

1

2

-100 -50 0 50 100

u
lp

s

x

Errors in psinhf()

0

1

2

-300 -200 -100 0 100 200 300

u
lp

s

x

Errors in psinhdf()

0

1

2

-750 -500 -250 0 250 500 750

u
lp

s

x

Errors in psinh()

0

1

2

-750 -500 -250 0 250 500 750

u
lp

s

x

Errors in psinhd()

23.10. Pair-precision hyperbolic functions 807

Figure 23.17: Errors in pair-precision PCOSH() functions.

Figure 23.18: Errors in pair-precision PSINH() functions.

808 Chapter 23. Pair-precision elementary functions

To counteract the effect of wobbling precision in hexadecimal arithmetic for expressions of the form 1+ · · · , introduce
two intermediate variables, F and G, defined by

F = 1
2 (E + 1) = 1

2 E + 1
2 , G = 1

2 /(E + 1) = 1
4 /(1

2 E + 1
2) =

1
4 /F.

We then have

tanh(x) = E(1
2 + G)/(F + G),

where all of the terms are positive when x ≥ 0.
There is still room for improvement, however. Add and subtract the denominator from the numerator, and

simplify to find

tanh(x) = E(1 + (1
2 − F)/(F + G))

= 2E(1
2 − E/(4(F + G))).

Although we have now introduced a subtraction, there is no bit loss, because the range of the term subtracted is
approximately [0, 0.16] for x in the interval [0, | 1

2 ln(1
3)|] where that formula applies. We now have a small correction

to an exact value, 1
2 , instead of a ratio of two inexact values, so the cumulative error is primarily from E alone.

Numerical experiments show that our simple change reduces the worst-case error by as much as 0.7 ulps.
Figure 23.19 on the next page shows the measured errors in the pair-precision hyperbolic tangent functions.

23.11 Pair-precision inverse hyperbolic functions

The inverse hyperbolic functions discussed in Section 12.4 on page 348 have simple definitions in terms of log(),
log1p(), and sqrt() that are suitable for direct computation. The pair-precision implementations of those functions
are straightforward transcriptions of the code for acosh(), asinh(), and atanh(), so we do not display the code
here. Figure 23.20 on the next page through Figure 23.22 on page 810 show the measured errors in our pair-precision
versions of the inverse hyperbolic functions. The argument range for acosh() is [1, ∞) and for asinh() is (−∞,+∞)
but the graphs show only a small interval near the origin. Outside that region, the errors remain below 0.7 ulps and
1.2 ulps, respectively.

23.12 Summary

In this chapter, we have given a flavor of how some of the elementary functions can be computed in pair-precision
arithmetic. The essential difference from the algorithms used for ordinary arithmetic is that we do not have the
luxury of compact rational polynomial approximations, primarily because of the difficulty of representing their
coefficients portably, accurately, and without run-time overhead of decoding long decimal or hexadecimal string
representations. Instead, we are usually forced to sum truncated Taylor series, which can require several hundred
terms for the highest precision supported by the mathcw library, about 140 decimal digits,

Newton–Raphson iteration can sometimes replace polynomial approximation, as we found for the pexpm1() and
plog() function families. However, the iteration requires an accurate inverse of the function that we seek to compute,
so at least one of them must be found by a different algorithm.

0

1

2

-20 -10 0 10 20

u
lp

s

x

Errors in ptanhf()

0

1

2

-20 -10 0 10 20

u
lp

s

x

Errors in ptanhdf()

0

1

2

-20 -10 0 10 20

u
lp

s

x

Errors in ptanh()

0

1

2

-20 -10 0 10 20
u

lp
s

x

Errors in ptanhd()

0

1

2

 0 25 50 75 100

u
lp

s

x

Errors in pacoshf()

0

1

2

 0 25 50 75 100

u
lp

s

x

Errors in pacoshdf()

0

1

2

 0 25 50 75 100

u
lp

s

x

Errors in pacosh()

0

1

2

 0 25 50 75 100

u
lp

s

x

Errors in pacoshd()

23.12. Summary 809

Figure 23.19: Errors in pair-precision PTANH() functions.

Figure 23.20: Errors in pair-precision PACOSH() functions.

0

1

2

-100 -50 0 50 100

u
lp

s

x

Errors in pasinhf()

0

1

2

-100 -50 0 50 100

u
lp

s

x

Errors in pasinhdf()

0

1

2

-100 -50 0 50 100

u
lp

s

x

Errors in pasinh()

0

1

2

-100 -50 0 50 100
u

lp
s

x

Errors in pasinhd()

0

1

2

-1 0 1

u
lp

s

x

Errors in patanhf()

0

1

2

-1 0 1

u
lp

s

x

Errors in patanhdf()

0

1

2

-1 0 1

u
lp

s

x

Errors in patanh()

0

1

2

-1 0 1

u
lp

s

x

Errors in patanhd()

810 Chapter 23. Pair-precision elementary functions

Figure 23.21: Errors in pair-precision PASINH() functions.

Figure 23.22: Errors in pair-precision PATANH() functions.

24 Accuracy of the Cody/Waite algorithms

. . . SOME DEGREE OF ACCURACY MUST BE SACRIFICED TO CONCISENESS.

— SAMUEL JOHNSON, LEXICOGRAPHER (1760).

To assess the accuracy of the elementary functions provided by the mathcw library, it is best to let the ELEFUNT
numbers speak for themselves. Table 24.1 on the next page through Table 24.23 on page 822 show typical results
obtained at this author’s site and the Hewlett–Packard Test Drive Laboratory. The tables are prepared with the help
of a small awk program that filters and reformats the output of make check to avoid errors from manual transcription.

Results should be quite similar with any compiler on any system with IEEE 754 arithmetic, although those from
older architectures with poor floating-point rounding behavior may be a bit or two worse. Any larger errors should
be investigated, because they may be due to incorrect code generation, or to invalid optimizations.

For comparison with other libraries, see the results for:

� the GNU/LINUX native math library (-lm) on IA-64 in Table 24.16 on page 819;

� the native Sun Microsystems library (-lm) in Table 24.17 on page 820;

� IBM APMathLib (-lultim) in Table 24.19 on page 820;

� Sun Microsystems’ fdlibm (-lfdm) (see Chapter 25.3 on page 824) in Table 24.20 on page 821;

� Sun Microsystems’ libmcr (-lmcr) (see Chapter 25.3 on page 824) in Table 24.21 on page 821; and

� Moshier’s Cephes function library (-lmf) (see Chapter 25.2 on page 823): Table 24.22 and Table 24.23 on
page 822.

Because APMathLib and libmcr both claim to return correctly rounded results, you might expect that the ELE-
FUNT test reports would show worst-case errors of zero. However, that does not happen because of the way ELE-
FUNT measures errors. It does so by exploiting identities where the quantities involved, apart from the function
values, are all exactly representable.

For example, to test sin(x), ELEFUNT uses the identity

sin(x) = 3 sin(x/3)− 4(sin(x/3))3.

It then selects 2000 random values logarithmically distributed in the interval to be tested and purified so that both x
and x/3 are exact, and compares the two sides of the identity, accumulating average and worst-case errors.

Even if the two function values are correctly rounded, the right-hand side requires four multiplies and one add,
and it is likely that those five operations introduce additional rounding errors. Indeed, in the worst case with default
IEEE 754 round-to-nearest behavior, each operation would have an error of 0.5 bits, and the cumulative error could be
five times larger, or 2.5 bits.

Of course, error accumulation is rarely that bad, but without using higher-precision computation in the test
package, tests of the identities incur some rounding error that could amount to a bit or so. To assess the size of the
rounding errors in the identities, in the ELEFUNT test of the single-precision sin(x) on Sun Microsystems SOLARIS
10 SPARC, a simple change of the data type from float to double for the three variables involved in the error
computation reduced the average reported errors by 0.47 bits.

© Springer International Publishing AG 2017
N.H.F. Beebe, The Mathematical-Function Computation
Handbook, DOI 10.1007/978-3-319-64110-2_24

811

812 Chapter 24. Accuracy of the Cody/Waite algorithms

Table 24.1: ELEFUNT bit-loss report for mathcw compiled with native cc on Hewlett–Packard/Compaq/DEC Alpha
OSF/1 5.1.
The asin tests cover acos, the atan tests cover atan2, the sin tests cover cos, and the tan tests cover cot.
Even though the worst-case errors are a few bits, the average errors are all zero, which is excellent. Similar behavior
is seen on almost every platform on which the mathcw library has been tested.
Losses in boldface text exceed 2 bits.

float
name rms worst
asinf 0.00 1.63
atanf 0.00 2.44
cbrtf 0.00 1.00
expf 0.00 1.60
expm1f 0.00 2.35
logf 0.00 2.40
log1pf 0.00 3.56
powf 0.00 1.26
rsqrtf 0.00 1.17
sinf 0.00 1.83
sinhf 0.00 2.00
sqrtf 0.00 1.00
tanf 0.00 2.54
tanhf 0.00 1.43

double
name rms worst
asin 0.00 1.00
atan 0.00 2.49
cbrt 0.00 1.00
exp 0.00 1.55
expm1 0.00 2.41
log 0.00 2.45
log1p 0.00 3.39
pow 0.00 3.92
rsqrt 0.00 1.42
sin 0.00 1.93
sinh 0.00 1.93
sqrt 0.00 1.00
tan 0.00 2.53
tanh 0.00 1.58

long double
name rms worst
asinl 0.00 1.00
atanl 0.00 1.93
cbrtl 0.00 1.00
expl 0.00 2.55
expm1l 0.00 2.38
logl 0.00 2.34
log1pl 0.00 3.58
powl 0.00 8.06
rsqrtl 0.00 1.70
sinl 0.00 1.75
sinhl 0.00 2.35
sqrtl 0.00 1.00
tanl 0.00 2.50
tanhl 0.00 1.97

Table 24.2: ELEFUNT bit-loss report for mathcw compiled with native cc on Hewlett–Packard/Compaq/DEC Alpha
OSF/1 5.1.
Here, the default test count of 2000 was increased by setting the environment variable MAXTEST to 3 000 000, beyond
the period of 2 796 202 of the Hansson–Pike–Hill random-number generator used in ELEFUNT.
Compare these results with those in Table 24.1 for the default test count.

float
name rms worst
asinf 0.00 1.90
atanf 0.00 2.52
cbrtf 0.00 1.00
expf 0.00 2.08
expm1f 0.00 3.05
logf 0.00 2.71
log1pf 0.00 3.73
powf 0.00 2.18
rsqrtf 0.00 1.17
sinf 0.00 2.00
sinhf 0.00 2.50
sqrtf 0.00 1.00
tanf 0.00 2.85
tanhf 0.00 2.33

double
name rms worst
asin 0.00 1.00
atan 0.00 2.52
cbrt 0.00 1.00
exp 0.00 2.08
expm1 0.00 2.86
log 0.00 2.58
log1p 0.00 3.97
pow 0.00 4.54
rsqrt 0.00 1.57
sin 0.00 7.17
sinh 0.00 2.21
sqrt 0.00 1.00
tan 0.00 2.90
tanh 0.00 2.34

long double
name rms worst
asinl 0.00 1.00
atanl 0.00 2.52
cbrtl 0.00 1.00
expl 0.00 2.81
expm1l 0.00 2.75
logl 0.00 2.75
log1pl 0.00 3.92
powl 0.00 8.48
rsqrtl 0.00 1.83
sinl 0.00 9.74
sinhl 0.00 2.70
sqrtl 0.00 1.00
tanl 0.00 2.90
tanhl 0.00 2.28

813

Table 24.3: ELEFUNT bit-loss report for mathcw compiled with GNU gcc on GNU/LINUX on AMD64.

float
name rms worst
asinf 0.00 1.63
atanf 0.00 1.92
cbrtf 0.00 1.00
expf 0.00 1.60
expm1f 0.00 2.35
logf 0.00 2.40
log1pf 0.00 3.56
powf 0.00 1.26
rsqrtf 0.00 1.17
sinf 0.00 1.83
sinhf 0.00 2.00
sqrtf 0.00 1.00
tanf 0.00 2.54
tanhf 0.00 1.43

double
name rms worst
asin 0.00 1.00
atan 0.00 2.49
cbrt 0.00 1.00
exp 0.00 1.55
expm1 0.00 2.41
log 0.00 2.45
log1p 0.00 3.39
pow 0.00 3.92
rsqrt 0.00 1.42
sin 0.00 1.93
sinh 0.00 1.93
sqrt 0.00 1.00
tan 0.00 2.53
tanh 0.00 1.58

long double
name rms worst
asinl 0.00 1.00
atanl 0.00 1.92
cbrtl 0.00 1.00
expl 0.00 2.43
expm1l 0.00 2.44
logl 0.00 2.50
log1pl 0.00 3.39
powl 0.00 8.06
rsqrtl 0.00 1.50
sinl 0.00 1.98
sinhl 0.00 2.53
sqrtl 0.00 1.00
tanl 0.00 2.53
tanhl 0.00 1.75

Table 24.4: ELEFUNT bit-loss report for mathcw compiled with GNU gcc on GNU/LINUX on AMD64.
Here, the default test count of 2000 was increased by setting the environment variable MAXTEST to 3 000 000, beyond
the period of 2 796 202 of the Hansson–Pike–Hill random-number generator used in ELEFUNT.
The large worst-case error in sin() happens for a random argument close to a multiple of π/2: x =
23.5619444748828748 = 15π/2− 0.00000042704057449. Even with careful argument reduction, some loss of accuracy
is unavoidable for such arguments.

float
name rms worst
asinf 0.00 1.90
atanf 0.00 2.52
cbrtf 0.00 1.00
expf 0.00 2.08
expm1f 0.00 3.05
logf 0.00 2.71
log1pf 0.00 3.73
powf 0.00 2.18
rsqrtf 0.00 1.17
sinf 0.00 2.00
sinhf 0.00 2.50
sqrtf 0.00 1.00
tanf 0.00 2.85
tanhf 0.00 2.33

double
name rms worst
asin 0.00 1.00
atan 0.00 2.52
cbrt 0.00 1.00
exp 0.00 2.08
expm1 0.00 2.86
log 0.00 2.58
log1p 0.00 3.97
pow 0.00 4.54
rsqrt 0.00 1.57
sin 0.00 7.17
sinh 0.00 2.21
sqrt 0.00 1.00
tan 0.00 2.90
tanh 0.00 2.34

long double
name rms worst
asinl 0.00 1.00
atanl 0.00 2.52
cbrtl 0.00 1.00
expl 0.00 2.67
expm1l 0.00 2.88
logl 0.00 2.73
log1pl 0.00 4.02
powl 0.00 8.79
rsqrtl 0.00 1.50
sinl 0.00 2.01
sinhl 0.00 2.80
sqrtl 0.00 1.00
tanl 0.00 2.90
tanhl 0.00 2.00

Chapter 24. Accuracy of the Cody/Waite algorithms

814 Chapter 24. Accuracy of the Cody/Waite algorithms

Table 24.5: ELEFUNT bit-loss report for mathcw compiled with GNU gcc on GNU/LINUX on IA-32. Losses in
boldface text exceed 2 bits.

float
name rms worst
asinf 0.00 1.64
atanf 0.00 1.15
cbrtf 0.00 1.00
expf 0.00 1.00
expm1f 0.00 2.04
logf 0.00 2.33
log1pf 0.00 3.56
powf 0.00 1.23
rsqrtf 0.00 1.01
sinf 0.00 1.41
sinhf 0.00 1.63
sqrtf 0.00 1.00
tanf 0.00 2.20
tanhf 0.00 0.99

double
name rms worst
asin 0.00 1.00
atan 0.00 1.86
cbrt 0.00 1.00
exp 0.00 1.00
expm1 0.00 1.94
log 0.00 2.45
log1p 0.00 3.39
pow 0.00 3.74
rsqrt 0.00 1.10
sin 0.00 1.26
sinh 0.00 1.49
sqrt 0.00 1.00
tan 0.00 2.16
tanh 0.00 1.00

long double
name rms worst
asinl 0.00 1.00
atanl 0.00 1.92
cbrtl 0.00 1.00
expl 0.00 2.43
expm1l 0.00 2.44
logl 0.00 2.50
log1pl 0.00 3.39
powl 0.00 8.06
rsqrtl 0.00 1.50
sinl 0.00 1.98
sinhl 0.00 2.53
sqrtl 0.00 1.00
tanl 0.00 2.53
tanhl 0.00 1.75

Table 24.6: ELEFUNT bit-loss report for mathcw compiled with Intel icc on GNU/LINUX on IA-64 (Itanium-2),
without use of multiply-add wrappers.
Compare these results with those for multiply-add wrappers in Table 24.7 on the next page.

float
name rms worst
asinf 0.00 1.63
atanf 0.00 2.44
cbrtf 0.00 1.00
expf 0.00 1.60
expm1f 0.00 2.35
logf 0.00 2.40
log1pf 0.00 3.56
powf 0.00 1.26
rsqrtf 0.00 1.17
sinf 0.00 1.83
sinhf 0.00 2.00
sqrtf 0.00 1.00
tanf 0.00 2.54
tanhf 0.00 1.43

double
name rms worst
asin 0.00 1.00
atan 0.00 2.49
cbrt 0.00 1.00
exp 0.00 1.55
expm1 0.00 2.41
log 0.00 2.45
log1p 0.00 3.39
pow 0.00 3.92
rsqrt 0.00 1.42
sin 0.00 1.93
sinh 0.00 1.93
sqrt 0.00 1.00
tan 0.00 2.53
tanh 0.00 1.58

long double
name rms worst
asinl 0.00 1.00
atanl 0.00 1.92
cbrtl 0.00 1.00
expl 0.00 2.43
expm1l 0.00 2.44
logl 0.00 2.50
log1pl 0.00 3.39
powl 0.00 8.06
rsqrtl 0.00 1.50
sinl 0.00 1.98
sinhl 0.00 2.53
sqrtl 0.00 1.00
tanl 0.00 2.53
tanhl 0.00 1.75

815

Table 24.7: ELEFUNT bit-loss report for mathcw compiled with Intel icc on GNU/LINUX on IA-64 (Itanium-2), with
multiply-add wrappers enabled.
Results with worst-case errors of zero bits are flagged with a check mark (
).
Compared to the results without multiply-add wrappers in Table 24.6 on the facing page, in no case are the results
worse, and the pow() function is dramatically improved for float and double, although curiously, not for long
double.
Contrast these results with the always-better ones for HP-UX on IA-64 in Table 24.8.

float
name rms worst
asinf 0.00 1.64
atanf 0.00 1.92
cbrtf 0.00 1.00
expf 0.00 1.00
expm1f 0.00 2.17
logf 0.00 2.12
log1pf 0.00 3.15
powf 0.00 0.95
rsqrtf 0.00 1.17
sinf 0.00 1.08
sinhf 0.00 1.84
sqrtf 0.00 0.00

tanf 0.00 2.54
tanhf 0.00 1.43

double
name rms worst
asin 0.00 1.00
atan 0.00 1.91
cbrt 0.00 1.00
exp 0.00 1.00
expm1 0.00 2.14
log 0.00 2.10
log1p 0.00 3.39
pow 0.00 0.85
rsqrt 0.00 1.42
sin 0.00 1.17
sinh 0.00 1.60
sqrt 0.00 0.00

tan 0.00 2.53
tanh 0.00 1.58

long double
name rms worst
asinl 0.00 1.00
atanl 0.00 1.92
cbrtl 0.00 1.00
expl 0.00 1.62
expm1l 0.00 2.19
logl 0.00 2.50
log1pl 0.00 3.39
powl 0.00 8.06
rsqrtl 0.00 1.50
sinl 0.00 1.54
sinhl 0.00 1.45
sqrtl 0.00 1.00
tanl 0.00 2.49
tanhl 0.00 1.65

Table 24.8: ELEFUNT bit-loss report for mathcw compiled with native cc on Hewlett–Packard HP-UX 11.23 on IA-64
(Itanium-2).

float
name rms worst
asinf 0.00 1.00
atanf 0.00 1.00
cbrtf 0.00 0.00

expf 0.00 1.00
expm1f 0.00 1.13
logf 0.00 2.12
log1pf 0.00 3.56
powf 0.00 0.98
rsqrtf 0.00 0.00

sinf 0.00 1.42
sinhf 0.00 1.62
sqrtf 0.00 0.00

tanf 0.00 1.97
tanhf 0.00 1.43

double
name rms worst
asin 0.00 1.00
atan 0.00 1.00
cbrt 0.00 0.00

exp 0.00 1.00
expm1 0.00 1.07
log 0.00 2.10
log1p 0.00 3.39
pow 0.00 0.85
rsqrt 0.00 0.00

sin 0.00 1.40
sinh 0.00 1.60
sqrt 0.00 0.00

tan 0.00 1.95
tanh 0.00 1.62

long double
name rms worst
asinl 0.00 1.00
atanl 0.00 1.00
cbrtl 0.00 0.00

expl 0.00 1.00
expm1l 0.00 1.08
logl 0.00 2.02
log1pl 0.00 3.58
powl 0.00 0.00

rsqrtl 0.00 0.00

sinl 0.00 1.28
sinhl 0.00 1.50
sqrtl 0.00 0.00

tanl 0.00 1.97
tanhl 0.00 1.86

Chapter 24. Accuracy of the Cody/Waite algorithms

816 Chapter 24. Accuracy of the Cody/Waite algorithms

Table 24.9: ELEFUNT bit-loss report for mathcw compiled with native cc on Hewlett–Packard HP-UX 11.23 on
PA-RISC.
That system has no long double math library routines at all, although the compiler and I/O library support that
data type. Consequently, it was necessary to use a renamed copy of mathcw.h as a stand-in for the system header file
<math.h> in order to compile the long double test suite with correct math library prototypes.

float
name rms worst
asinf 0.00 1.63
atanf 0.00 2.44
cbrtf 0.00 1.00
expf 0.00 1.60
expm1f 0.00 2.35
logf 0.00 2.40
log1pf 0.00 3.56
powf 0.00 1.26
rsqrtf 0.00 1.17
sinf 0.00 1.83
sinhf 0.00 2.00
sqrtf 0.00 1.00
tanf 0.00 2.54
tanhf 0.00 1.43

double
name rms worst
asin 0.00 1.00
atan 0.00 2.49
cbrt 0.00 1.00
exp 0.00 1.55
expm1 0.00 2.41
log 0.00 2.45
log1p 0.00 3.39
pow 0.00 3.92
rsqrt 0.00 1.42
sin 0.00 1.93
sinh 0.00 1.93
sqrt 0.00 1.00
tan 0.00 2.53
tanh 0.00 1.58

long double
name rms worst
asinl 0.00 1.00
atanl 0.00 1.93
cbrtl 0.00 0.00

expl 0.00 2.55
expm1l 0.00 2.38
logl 0.00 2.34
log1pl 0.00 3.58
powl 0.00 8.06
rsqrtl 0.00 1.70
sinl 0.00 1.75
sinhl 0.00 2.35
sqrtl 0.00 1.00
tanl 0.00 2.50
tanhl 0.00 1.97

Table 24.10: ELEFUNT bit-loss report for mathcw compiled with native c89 on IBM AIX 4.2 on POWER.

float
name rms worst
asinf 0.00 1.64
atanf 0.00 1.15
cbrtf 0.00 1.00
expf 0.00 1.00
expm1f 0.00 2.04
logf 0.00 2.33
log1pf 0.00 3.18
powf 0.00 1.23
rsqrtf 0.00 0.77
sinf 0.00 1.41
sinhf 0.00 1.63
sqrtf 0.00 1.00
tanf 0.00 2.20
tanhf 0.00 0.99

double
name rms worst
asin 0.00 1.00
atan 0.00 1.91
cbrt 0.00 1.00
exp 0.00 1.64
expm1 0.00 2.14
log 0.00 2.45
log1p 0.00 3.39
pow 0.00 3.74
rsqrt 0.00 1.42
sin 0.00 1.58
sinh 0.00 1.93
sqrt 0.00 1.00
tan 0.00 2.53
tanh 0.00 1.58

817

Table 24.11: ELEFUNT bit-loss report for mathcw compiled with GNU gcc on GNU/LINUX on MIPS R4400SC.
Compare these results with those for the Silicon Graphics IRIX MIPS R10000 in Table 24.12.
There is no support for long double on this system.

float
name rms worst
asinf 0.00 1.63
atanf 0.00 1.92
cbrtf 0.00 1.00
expf 0.00 1.60
expm1f 0.00 2.35
logf 0.00 2.40
log1pf 0.00 3.56
powf 0.00 1.26
rsqrtf 0.00 1.17
sinf 0.00 1.83
sinhf 0.00 2.00
sqrtf 0.00 1.00
tanf 0.00 2.54
tanhf 0.00 1.43

double
name rms worst
asin 0.00 1.00
atan 0.00 2.49
cbrt 0.00 1.00
exp 0.00 1.55
expm1 0.00 2.41
log 0.00 2.45
log1p 0.00 3.39
pow 0.00 3.92
rsqrt 0.00 1.49
sin 0.00 1.68
sinh 0.00 1.93
sqrt 0.00 1.00
tan 0.00 2.29
tanh 0.00 1.58

Table 24.12: ELEFUNT bit-loss report for mathcw compiled with native cc on Silicon Graphics IRIX 6.5 on MIPS
R10000.
Like IBM AIX on RS/6000, this system implements long double as a pair of double values, so although precision
increases from 53 to 106 significand bits, the exponent range is unchanged. On both systems, the exponents of each
member of the pair are not clamped to a constant offset, so it is possible to represent a number with unknown garbage
in the middle of its significand.
By default, subnormals are not supported on IRIX, and can only be enabled with a little-known run-time system call,
rather than a compile-time option. They are not present in the ELEFUNT tests in the mathcw validation suite.
Nonzero average errors are shaded, and are rarely seen on other systems.

float
name rms worst
asinf 0.00 1.98
atanf 0.00 1.92
cbrtf 0.00 1.00
expf 0.00 1.60
expm1f 0.00 2.35
logf 0.00 2.40
log1pf 0.00 3.56
powf 0.00 1.26
rsqrtf 0.00 1.17
sinf 0.00 1.83
sinhf 0.00 2.00
sqrtf 0.00 0.00

tanf 0.00 2.54
tanhf 0.00 1.43

double
name rms worst
asin 0.00 1.98
atan 0.00 2.44
cbrt 0.00 1.00
exp 0.00 1.55
expm1 0.00 2.41
log 0.00 2.45
log1p 0.00 3.39
pow 0.00 3.92
rsqrt 0.00 1.55
sin 0.00 1.68
sinh 0.00 1.93
sqrt 0.00 0.00

tan 0.00 2.29
tanh 0.00 1.95

long double
name rms worst
asinl 0.00 2.94
atanl 0.00 2.93
cbrtl 0.00 0.00

expl 0.00 2.00
expm1l 0.00 3.59
logl 0.00 2.41
log1pl 1.07 4.98
powl 0.00 5.36
rsqrtl 0.00 2.35
sinl 0.47 2.58
sinhl 0.00 2.42
sqrtl 0.00 2.44
tanl 0.00 3.53
tanhl 0.50 3.59

Chapter 24. Accuracy of the Cody/Waite algorithms

818 Chapter 24. Accuracy of the Cody/Waite algorithms

Table 24.13: ELEFUNT bit-loss report for mathcw compiled with gcc on Apple MAC OS X on PowerPC. This system
provides neither float nor long double routines in the native math library, nor long double support in the compiler
and library.

float
name rms worst
asinf 0.00 1.63
atanf 0.00 2.44
cbrtf 0.00 1.00
expf 0.00 1.60
expm1f 0.00 2.35
logf 0.00 2.40
log1pf 0.00 3.56
powf 0.00 1.26
rsqrtf 0.00 1.17
sinf 0.00 1.83
sinhf 0.00 2.00
sqrtf 0.00 1.00
tanf 0.00 2.54
tanhf 0.00 1.43

double
name rms worst
asin 0.00 1.00
atan 0.00 2.49
cbrt 0.00 1.00
exp 0.00 1.55
expm1 0.00 2.41
log 0.00 2.45
log1p 0.00 3.39
pow 0.00 3.92
rsqrt 0.00 1.49
sin 0.00 1.93
sinh 0.00 1.93
sqrt 0.00 1.00
tan 0.00 2.53
tanh 0.00 1.58

Table 24.14: ELEFUNT bit-loss report for mathcw compiled with native c99 on Sun Microsystems SOLARIS 10 on
SPARC.
The nonzero average error for sinhf(), marked by shading, is one of the rare cases where that small infelicity has
been seen.
Compare these results with those for SOLARIS 10 on IA-32 in Table 24.15 on the next page.

float
name rms worst
asinf 0.00 0.91
atanf 0.00 0.96
cbrtf 0.00 0.76
expf 0.00 0.80
expm1f 0.00 1.47
logf 0.00 1.91
log1pf 0.00 2.83
powf 0.00 0.87
rsqrtf 0.00 0.39
sinf 0.00 0.90
sinhf 0.02 1.58
sqrtf 0.00 0.91
tanf 0.00 1.87
tanhf 0.00 0.80

double
name rms worst
asin 0.00 0.97
atan 0.00 1.02
cbrt 0.00 0.90
exp 0.00 0.83
expm1 0.00 1.39
log 0.00 2.09
log1p 0.00 2.09
pow 0.00 1.36
rsqrt 0.00 0.86
sin 0.00 1.24
sinh 0.00 0.99
sqrt 0.00 0.83
tan 0.00 1.88
tanh 0.00 1.00

long double
name rms worst
asinl 0.00 0.86
atanl 0.00 1.40
cbrtl 0.00 0.00

expl 0.00 0.97
expm1l 0.00 1.16
logl 0.00 1.33
log1pl 0.00 2.36
powl 0.00 6.07
rsqrtl 0.00 1.48
sinl 0.00 1.03
sinhl 0.00 1.43
sqrtl 0.00 0.81
tanl 0.00 1.62
tanhl 0.00 0.98

819

Table 24.15: ELEFUNT bit-loss report for mathcw compiled with native c99 on Sun Microsystems SOLARIS 10 on
IA-32.
In almost every case, the longer registers on IA-32 produce higher accuracy than the SOLARIS SPARC results in
Table 24.14 on the preceding page.

float
name rms worst
asinf 0.00 1.64
atanf 0.00 1.15
cbrtf 0.00 1.00
expf 0.00 1.00
expm1f 0.00 2.04
logf 0.00 2.40
log1pf 0.00 3.18
powf 0.00 1.23
rsqrtf 0.00 0.78
sinf 0.00 1.41
sinhf 0.00 1.63
sqrtf 0.00 1.00
tanf 0.00 2.20
tanhf 0.00 0.99

double
name rms worst
asin 0.00 1.00
atan 0.00 1.86
cbrt 0.00 0.00

exp 0.00 1.00
expm1 0.00 1.94
log 0.00 2.45
log1p 0.00 3.36
pow 0.00 3.74
rsqrt 0.00 1.10
sin 0.00 1.38
sinh 0.00 1.49
sqrt 0.00 1.00
tan 0.00 2.04
tanh 0.00 1.00

long double
name rms worst
asinl 0.00 1.00
atanl 0.00 1.92
cbrtl 0.00 1.00
expl 0.00 2.43
expm1l 0.00 2.44
logl 0.00 2.50
log1pl 0.00 3.39
powl 0.00 8.06
rsqrtl 0.00 1.50
sinl 0.00 1.98
sinhl 0.00 2.53
sqrtl 0.00 1.00
tanl 0.00 2.53
tanhl 0.00 1.75

Table 24.16: ELEFUNT bit-loss report for the native GNU math library on GNU/LINUX (Red Hat Advanced Server
2.1AS) on IA-64.

float
name rms worst
asinf 0.00 1.00
atanf 0.00 1.31
cbrtf 0.00 0.00

expf 0.00 1.00
expm1f 0.00 1.13
logf 0.00 2.12
log1pf 0.00 3.15
powf 0.00 0.98
sinf 0.00 1.42
sinhf 0.00 1.62
sqrtf 0.00 0.00

tanf 0.00 1.97
tanhf 0.00 2.13

double
name rms worst
asin 0.00 1.00
atan 0.00 1.00
cbrt 0.00 0.00

exp 0.00 1.00
expm1 0.00 1.07
log 0.00 2.10
log1p 0.00 3.39
pow 0.00 0.85
sin 0.00 1.40
sinh 0.00 1.60
sqrt 0.00 0.00

tan 0.00 1.95
tanh 0.00 2.13

long double
name rms worst
asinl 0.00 1.00
atanl 0.00 1.00
cbrtl 0.00 0.00

expl 0.00 1.00
expm1l 0.00 1.08
logl 0.00 2.07
log1pl 0.00 3.16
powl 0.00 0.00

sinl 0.00 1.45
sinhl 0.00 1.44
sqrtl 0.00 0.00

tanl 0.00 2.03
tanhl 0.00 2.08

Chapter 24. Accuracy of the Cody/Waite algorithms

820 Chapter 24. Accuracy of the Cody/Waite algorithms

Table 24.17: ELEFUNT bit-loss report for the native Sun Microsystems math library for SOLARIS 10 on SPARC. Sun
Microsystems has superb floating-point support, and the library quality is excellent.
Compare these results with those in Table 24.18 for the native SOLARIS IA-32 library.

float
name rms worst
asinf 0.00 0.99
atanf 0.00 0.79
cbrtf 0.00 0.00

expf 0.00 0.69
expm1f 0.00 0.96
logf 0.00 0.66
log1pf 0.00 2.83
powf 0.00 0.05
rsqrtf 0.00 0.39
sinf 0.00 0.76
sinhf 0.00 0.95
sqrtf 0.00 0.00

tanf 0.00 1.96
tanhf 0.00 0.80

double
name rms worst
asin 0.00 0.97
atan 0.00 0.94
cbrt 0.00 0.00

exp 0.00 0.83
expm1 0.00 0.93
log 0.00 2.09
log1p 0.00 2.09
pow 0.00 0.20
rsqrt 0.00 0.86
sin 0.00 0.82
sinh 0.00 0.98
sqrt 0.00 0.00

tan 0.00 1.28
tanh 0.15 1.03

long double
name rms worst
asinl 0.00 0.86
atanl 0.00 0.78
cbrtl 0.00 0.00

expl 0.00 0.93
expm1l 0.00 0.92
logl 0.00 1.33
log1pl 0.00 1.90
powl 0.00 0.00

rsqrtl 0.00 1.17
sinl 0.00 0.60
sinhl 0.00 0.90
sqrtl 0.00 0.00

tanl 0.00 1.29
tanhl 0.00 0.98

Table 24.18: ELEFUNT bit-loss report for the native Sun Microsystems math library for SOLARIS 10 on IA-32.
Results are similar to those in Table 24.17 for SPARC, but the log() function, and long double powl(), tanl(), and
tanhl() functions, need improvement.

float
name rms worst
asinf 0.00 1.00
atanf 0.00 1.00
cbrtf 0.00 0.00

expf 0.00 1.00
expm1f 0.00 1.00
logf 0.00 2.12
log1pf 0.00 3.14
powf 0.00 0.98
rsqrtf 0.00 0.78
sinf 0.00 0.63
sinhf 0.00 1.43
sqrtf 0.00 0.00

tanf 0.00 1.78
tanhf 0.00 0.99

double
name rms worst
asin 0.00 1.00
atan 0.00 1.00
cbrt 0.00 0.00

exp 0.00 1.00
expm1 0.00 1.00
log 0.00 2.10
log1p 0.00 3.17
pow 0.00 0.99
rsqrt 0.00 1.10
sin 0.00 0.69
sinh 0.00 1.49
sqrt 0.00 0.00

tan 0.00 1.61
tanh 0.00 1.56

long double
name rms worst
asinl 0.00 1.98
atanl 0.00 1.00
cbrtl 0.00 0.00

expl 0.00 1.00
expm1l 0.00 1.72
logl 0.00 2.41
log1pl 0.00 3.60
powl 0.00 12.93
rsqrtl 0.00 1.50
sinl 0.00 1.41
sinhl 0.00 1.67
sqrtl 0.00 0.00

tanl 0.00 2.03
tanhl 0.00 2.40

Table 24.19: ELEFUNT bit-loss report for IBM APMathLib compiled with native cc on Sun Microsystems SOLARIS
10 on SPARC. See the text in Section 24 on page 811 for why these results are not all zero. The library provides only
double versions of the elementary functions.

double
name rms worst
asin 0.00 1.00
atan 0.00 1.00
exp 0.00 1.00
log 0.00 2.45
pow 0.00 5.96
sin 0.00 1.40
sinh 0.00 1.83
sqrt 0.00 0.00

tan 0.00 1.95
tanh 0.00 2.06

821

Table 24.20: ELEFUNT bit-loss report for Sun Microsystems fdlibm compiled with native cc on Sun Microsystems
SOLARIS 8 on SPARC and run on SOLARIS 10. The library provides only double versions of the elementary functions.

double
name rms worst
asin 0.00 1.00
atan 0.00 1.00
exp 0.00 1.00
log 0.00 2.45
pow 0.00 5.97
sin 0.00 1.45
sinh 0.00 1.83
sqrt 0.00 0.00

tan 0.00 1.95
tanh 0.00 2.06

Table 24.21: ELEFUNT bit-loss report for Sun Microsystems libmcr compiled with native cc on Sun Microsystems
SOLARIS 10 on SPARC. See the text in Section 24 on page 811 for why these results are not all zero. Version 0.9 of
libmcr contains only double versions of the elementary functions.

double
name rms worst
asin 0.00 1.00
atan 0.00 1.00
exp 0.00 1.00
log 0.00 2.45
pow 0.00 5.96
sin 0.00 1.40
sinh 0.00 1.60
sqrt 0.00 1.00
tan 0.00 1.95
tanh 0.00 1.58

Table 24.22: ELEFUNT bit-loss report for Moshier’s Cephes library compiled with GNU gcc on Sun Microsystems
SOLARIS 8 on SPARC, and tested on SOLARIS 10. The Cephes library does not support 128-bit long double, so those
functions are not tested.

float
name rms worst
asinf 0.00 0.99
atanf 0.00 0.96
cbrtf 0.00 0.00

expf 0.00 0.69
expm1f 0.00 1.47
logf 0.00 0.91
log1pf 0.00 2.51
powf 0.00 0.88
sinf 0.00 0.90
sinhf 0.00 0.95
sqrtf 0.00 0.00

tanf 0.00 1.06
tanhf 0.00 0.80

double
name rms worst
asin 0.00 0.97
atan 0.00 0.94
cbrt 0.00 0.00

exp 0.00 1.63
expm1 0.00 0.91
log 0.00 1.67
log1p 0.00 1.78
pow 0.00 2.57
sin 0.00 1.24
sinh 0.00 0.99
sqrt 0.00 0.37
tan 0.00 1.35
tanh 0.15 1.31

Chapter 24. Accuracy of the Cody/Waite algorithms

822 Chapter 24. Accuracy of the Cody/Waite algorithms

Table 24.23: ELEFUNT bit-loss report for Moshier’s Cephes library compiled with native c99 on Sun Microsystems
SOLARIS 10 on IA-32.

float
name rms worst
asinf 0.00 1.00
atanf 0.00 1.93
cbrtf 0.00 0.00

expf 0.00 1.00
expm1f n/a n/a
logf 0.00 2.25
log1pf n/a n/a
powf 0.00 1.60
sinf 0.00 1.41
sinhf 0.00 1.43
sqrtf 0.00 0.25
tanf 0.00 1.78
tanhf 0.00 0.99

double
name rms worst
asin 0.00 1.00
atan 0.00 1.00
cbrt 0.00 0.00

exp 0.00 1.66
expm1 0.00 1.99
log 0.00 2.24
log1p 0.00 3.17
pow 0.00 3.84
sin 0.00 1.39
sinh 0.00 1.90
sqrt 0.00 0.00

tan 0.00 1.58
tanh 0.00 1.00

long double
name rms worst
asinl 0.00 1.00
atanl 0.00 1.96
cbrtl 0.00 0.00

expl 0.00 1.70
expm1l 0.00 1.74
logl 0.00 2.17
log1pl 0.00 3.39
powl 0.00 6.64
sinl 0.00 1.98
sinhl 0.00 1.46
sqrtl 0.00 0.50
tanl 0.10 1.99
tanhl 0.00 1.75

25 Improving upon the Cody/Waite algorithms

IN THIS ABSENCE OF NINE YEARS I FIND A GREAT IMPROVEMENT IN THE CITY

. . . SOME SAY IT HAS IMPROVED BECAUSE I HAVE BEEN AWAY.

— MARK TWAIN (1900).

The Cody/Waite recipes in their book Software Manual for the Elementary Functions [CW80] are an excellent source
of portable methods for computation of elementary functions. It is possible to do better, but sometimes only at the
expense of portability, and often only by doing at least parts of the computation in higher precision, which may mean
software arithmetic and a significant performance penalty.

This author maintains a frequently updated bibliography1 on the computation of elementary functions, and se-
lected special functions. Together with the floating-point arithmetic bibliography cited later in this chapter, it pro-
vides a valuable resource for locating published work in that area, and one that is likely to be more up-to-date than
a completed book like this one.

In the remainder of this chapter, we survey some important sources of software for elementary and special func-
tions.

25.1 The Bell Labs libraries

The AT&T Bell Laboratories PORT library [Cow84, Chapter 13] is written in Portable Fortran. It supplies about 1500
functions covering several areas of numerical analysis. The special-functions section includes hyperbolic and inverse
hyperbolic functions, inverse trigonometric functions, the gamma function, and the Bessel functions Jn(x) and In(x).
Both single- and double-precision versions are supplied, and a few of the functions also have versions for complex
arithmetic.

The PORT library was developed in the mid 1970s, and derives its portability by limiting the code to a portable
subset of Fortran [Ryd74], and by obtaining machine-dependent constants from a family of low-level architecture-
dependent primitives [FHS78a]. Constants for many different floating-point designs, including IEEE 754 arithmetic,
are recorded in program comments in those primitives.

Bell Labs researcher Wayne Fullerton developed a separate library of special functions in Portable Fortran, called
FNLIB. It contains about 180 functions in single- and double-precision, supplying gamma and log-gamma functions,
Airy functions, Bessel functions for integer and fractional order (Jν(x), Yν(x), Iν(x), and Kν(x)), hyperbolic and
trigonometric functions and their inverses, cube root, and several others. Many functions in FNLIB are also available
in versions for complex arithmetic.

Both libraries are available online,2 including a vector version of FNLIB with additional special functions [BS92,
BS93].3 Fullerton’s extensive bibliography of special-function research is included, with credits, in ours.

As with most older libraries that were developed before IEEE 754 arithmetic, some of the code in the PORT and
FNLIB libraries needs adjustment to behave sensibly for arguments of NaN, Infinity, and signed zero.

25.2 The Cephes library

Moshier [Mos89] provides book-length careful treatment of the elementary functions, with internal code for multiple-
precision computation. His library, called Cephes, is available commercially, and free without support. Its long
double support is restricted to the 80-bit format of IA-32, IA-64, and the now-obsolete Motorola 68000 processor
family. Its distribution packaging needs considerable polishing to make it easily installable on more systems, and

1See http://www.math.utah.edu/pub/tex/bib/index-table-e.html#elefunt.
2See http://www.netlib.org/port and http://www.netlib.org/fn.
3See http://www.netlib.org/vfnlib.

© Springer International Publishing AG 2017
N.H.F. Beebe, The Mathematical-Function Computation
Handbook, DOI 10.1007/978-3-319-64110-2_25

823

824 Chapter 25. Improving upon the Cody/Waite algorithms

avoid the need for manually setting preprocessor symbol definitions in mconf.h to identify the host arithmetic and
byte order in storage. Version 2.9 (April 2001) contains more than 52 200 lines of C code.

25.3 The Sun libraries

The Sun Microsystems Freely Distributable Math Library, fdlibm,4 is designed specifically for machines with IEEE
754 64-bit arithmetic. It contains pervasive knowledge of that arithmetic system in the form of integer hexadecimal
constants that represent a view of particular floating-point numbers, frequently uses bit masking and shifting on
integer overlays of the high and low parts of floating-point numbers, and contains extensive tests of standards
conformance. Version 5.3.2 contains 23 865 lines of C code.

The fdlibm library contains only double versions of the elementary functions. In most cases, float versions could
be supplied as wrappers that use the double routines, if accuracy is more important than speed. The fdlibm coding
practices make it difficult to tweak the algorithms or to extend coverage to other precisions or other floating-point
formats.

The extensive fdlibm test suite includes checks for monotonicity, something that few others do. When polynomial
approximations are used, monotonic results are probably quite hard to achieve unless correct rounding can also be
guaranteed.

In early 2005, Sun Microsystems released a preliminary version of an open-source library, libmcr, for correctly
rounded elementary functions in IEEE 754 arithmetic.5 Version 0.9 contains 11 400 lines of C code, provides only
double versions of atan(), cos(), exp(), log(), pow(), sin(), and tan(), and validates on only a few platforms
beyond the vendor’s own supported AMD64, IA-32 and SPARC products.

25.4 Mathematical functions on EPIC

In the mid-1990s, Hewlett–Packard and Intel began a joint development project to produce a new architecture class
that they named EPIC (Explicitly Parallel Instruction Computer). Intel’s product family for that architecture is named
IA-64, with current implementations called Itanium-1 and Itanium-2. EPIC is similar to RISC in some respects, but
differs in many others. Here are some of its notable features:

� The IA-32 computational format is extended from 80 bits to 82 bits. The extra two bits go in the exponent field,
and serve to reduce the incidence of underflow and overflow in intermediate computations.

� Large register sets reduce expensive memory traffic. There are 128 82-bit floating-point registers and 128 64-bit
integer registers.

� Fused multiply-add instructions are used for many purposes, including software-pipelined divide and square
root.

� Instructions are packaged for simultaneous execution in bundles of three, preferably with independent inputs
and outputs. Hardware locks force stalls when the input of one instruction depends on the output of another
instruction in the same bundle.

� Predicate bits allow nullification of instruction results based on the data-dependent outcome of earlier instruc-
tions. One important use of that feature is to prevent conditional branches in loops from flushing the instruc-
tion pipeline.

For a time, EPIC systems achieved the highest performance of any current processor, and as compilers for that
challenging architecture improve, those systems will do even better. However, it is not straightforward to get high
performance, mostly because doing so requires keeping the instruction bundles full of useful work, and getting
needed data fetched from memory early enough to avoid CPU stalls. In an excellent book about the EPIC archi-
tecture, Markstein [Mar00] shows how C code, with occasional excursions to single lines of assembly code via C-
compiler asm() directives, can be used to write provably correctly rounded divide and square root, and produce
high-performance implementations of all of the elementary functions.

4See http://www.netlib.org/fdlibm/.
5Search for libmcr at http://www.sun.com/.

25.5. The GNU libraries 825

Markstein’s code makes extensive use of the fused multiply-add operation for both speed and accuracy. IBM
introduced that operation in 1990 on the POWER architecture, but sadly, it was not until the 2008 revision of the
IEEE 754 Standard [IEEE08, ISO11] that it was formally standardized. Most models of the most widely used desktop
architectures, IA-32 and AMD64/EM64T, lack hardware support for fused multiply-add instructions at the time of
writing this.

25.5 The GNU libraries

Richard Stallman began the now well-known GNU Project in 1983 as a reaction against restrictive commercial licens-
ing of software. The goal was to develop a freely distributable operating system, and software suite, that could be
used on many different architectures, and allow programmers to freely build on each other’s work. The GNU C
compiler, gcc, was first released in 1987, and has since been renamed the GNU compiler collection, because it supports
numerous programming languages with separate front ends for each language, a common middle portion for code
generation and optimization, and separate back ends for further code generation and optimization on dozens of
processor architectures.

The accompanying library, glibc, supplies the interface to the host operating system, as well as a family of math-
ematical functions specified by various programming languages. It provides the native run-time library on HURD
and most GNU/LINUX systems, but may not be needed on other platforms where such support already exists from
other sources. The gcc and glibc software packages have an extensive group of software developers, many of them
volunteers, and the wide use of those packages means that they are generally highly reliable.

A few GNU/LINUX distributions, such as ALPINE and DRAGORA, replace glibc by musl,6 a new implementation
of the Standard C library that strives for memory compactness, and conformance to both POSIX and the 2011 ISO
C Standard. Its math library functions are borrowed from fdlibm, and from FREEBSD and OPENBSD. For the IA-
32 family and its 64-bit extensions, musl uses assembly-language code to exploit the native 8087-style hardware for
elementary functions. The musl library is unusual in the UNIX world of storing the mathematical functions in the
basic C library, -lc, instead of holding them in a separate mathematical library, -lm. The latter exists, but is just a
dummy file.

The GNU multiple-precision library, GMP [GSR+04], can be installed easily on most modern platforms, and it
provides highly optimized code for some architectures. It requires either 32-bit or 64-bit architectures, and is not
usable with older CPU designs.

The GNU Scientific Library, GSL [GDT+05], is a huge library with broad coverage of elementary and special func-
tions, curve fitting, linear algebra, numerical integration, random numbers, root finding, sorting, statistics, and more.
At the time of writing this, it contains more than 4500 functions, and consists of more than 415 000 lines of code.

25.6 The French libraries

The large research group LIP,7 at l’École Nationale Supérieure in Lyon, France, has made extensive progress both
on the problem of implementing correctly rounded functions, and on machine-assisted correctness proofs of algo-
rithms and arithmetic. Their many publications and reports are covered in an online bibliography of floating-point
arithmetic8 maintained by this author.

Zimmermann, Revol, and Pélissier [ZRP05] released the mpcheck package in 20059 for testing binary floating-
point mathematical libraries for correct rounding, output range, monotonicity, and symmetry. Version 1.1.0 supports
only the IEEE 754 64-bit format, but work is in progress to extend it to the 32-, 80-, and 128-bit formats.

A collaborative effort by French research groups has produced another library, MPFR, the Multiple Precision
Floating-Point Reliable Library [MPFR04]. MPFR extends the GMP library to provide multiple-precision floating-point
computations with correct rounding.

Yet another library from French and Danish groups, MPC,10 supplies complex arithmetic with correct rounding
[ETZ09], and builds on the MPFR and GMP libraries. The three libraries are used in recent versions of the GNU

6See https://www.musl-libc.org/.
7See http://www.ens-lyon.fr/LIP/.
8Available at http://www.math.utah.edu/pub/tex/bib/index-table-f.html#fparith.
9Available at http://www.loria.fr/~zimmerma/mpcheck/.

10See http://www.multiprecision.org/index.php?prog=mpc.

826 Chapter 25. Improving upon the Cody/Waite algorithms

gcc family to improve the compile-time conversion of floating-point numbers from decimal to binary. At the time
of writing this, the MPC library provides dozens of low-level primitives for arithmetic, and another two dozen rou-
tines for elementary functions and complex operations, including acos(), acosh(), arg(), asin(), asinh(), atan(),
atanh(), conj(), cos(), cosh(), exp(), imag(), log(), norm(), pow(), proj(), real(), sin(), sinh(), sqr(), sqrt(),
strtoc(), tan(), tanh(), and urandom(), each name prefixed with mpc_.

The MPFR library provides a subset of those functions for real arithmetic, plus additional trigonometric and hy-
perbolic functions, cube root, reciprocal square root, error functions, gamma and log-gamma functions, the ordinary
Bessel functions for Jn(x) and Yn(x), and the Riemann zeta function. The repertoire is large enough that a wrapper
library could provide all of the elementary functions required by most standard programming languages.

In another important project, a French team has built the MPFI library11 for multiple-precision interval arithmetic.

25.7 The NIST effort

The DLMF Project (Digital Library of Mathematical Functions)12 [Loz03] at the US National Institute of Standards and
Technology has the ambitious goal of providing accurate implementations of all of the functions defined in the fa-
mous Handbook of Mathematical Functions [AS64], as well as providing a complete rewrite of that book, in printed
form, and as a free electronic digital library [OLBC10]. That new edition includes pointers to software implementa-
tions of many of the functions, but there is no single software library for them with a uniform design.

25.8 Commercial mathematical libraries

The commercial Numerical Algorithms Group NAG library [Cow84, Chapter 14] [Phi86] has been available for more
than four decades.13 The Visual Numerics IMSL Numerical Library14 is another long-lived commercial library [Cow84,
Chapter 10]. Both libraries have a reputation for high quality and reliability, and library variants may be available
for Fortran, C, C++, C#, and Java. However, in most cases, source code and algorithmic details may not be supplied,
the libraries are supported only on the most popular platforms, and are only usable during their license period.
They are of no use to other software that needs to run on less-common platforms, or is written in an unsupported
language, or is made available under other kinds of licenses, or requires floating-point support beyond the single-
and double-precision arithmetic supplied by those libraries. There is also the real danger of software that uses them
being marooned when the vendor drops library support for a platform that is still in use at customer sites.

25.9 Mathematical libraries for decimal arithmetic

With the exception of the Cody/Waite book, and the mathcw library described in this book, there is little to be found
in existing libraries for decimal floating-point arithmetic. Although we have shown in this book that, in most cases,
similar, or identical, algorithms can be used for both binary and decimal arithmetic, the coding practices of most
existing libraries make it unlikely that they can be quickly extended to support decimal arithmetic. For example,
Intel compiler developers chose to provide decimal-function wrappers that call the 80-bit binary routines [Har09a],
converting from decimal to binary on entry, and from binary to decimal on exit. That can only be a temporary
solution because it does not cover either the higher precision of the 128-bit decimal format, or its wider exponent
range.

25.10 Mathematical library research publications

The journal ACM Transactions on Mathematical Software,15 informally known as TOMS, continues publication of ACM
algorithms after they moved from the society’s lead journal Communications of the ACM in 1974. TOMS contains

11See https://gforge.inria.fr/projects/mpfi/.
12See http://dlmf.nist.gov/.
13See http://www.nag.com/.
14See http://www.imsl.com/.
15For a complete hypertext-linked bibliography, see http://www.math.utah.edu/pub/tex/bib/index-table-t.html#toms.

25.11. Books on computing mathematical functions 827

numerous articles on, and often with source code for, the computation of elementary and special functions. Notable
among those articles are several by Ping Tak Peter Tang on table-driven algorithms that use many different poly-
nomial approximations in small intervals to reduce the operation count, and increase speed and accuracy. TOMS
also contains articles on the computation of the elementary functions in complex arithmetic, in interval arithmetic
(a computational technique where all values are represented by pairs of numbers providing exact lower and upper
bounds), and in multiple-precision arithmetic.

A small number of researchers have worked on the difficult problem of providing correctly rounded elementary
functions. Here are some of the highlights of that work published in several TOMS articles:

� The first work on correctly rounded elementary functions may be that of Hull and Abrham for the square-root
function in 1985 [HA85] and the exponential in 1986 [HA86].

� It was followed in 1991 by work by Gal and Bachelis [GB91] at the IBM Israel Scientific Center on an entire
elementary-function library that produces correctly rounded results for almost all arguments. Later that year
at the same laboratory, Ziv extended his colleagues’ work to always correctly rounded results [Ziv91].

� Also in 1991, Smith produced almost-always correctly rounded elementary functions for multiple-precision
arithmetic [Smi91].

� In 1998, Smith extended his own work to multiple-precision complex arithmetic [Smi98].

� In 2001, Verdonk, Cuty and Verschaeren published software for compliance testing of IEEE 754 (binary) and
854 (decimal) arithmetic [IEEE85a, ANS87, VCV01a, VCV01b].

� That same year, the IBM Israel researchers made their Accurate Portable Mathematical Library, APMathLib, freely
available on the Web [ZOHR01]. It supplies just the double versions of acos(), asin(), atan(), atan2(), cos(),
cot(), exp(), exp2(), log(), log2(), pow(), remainder(), sin(), sqrt(), and tan(), and contains 10 730 lines
of code. Unfortunately, the current release builds only on a few platforms, but that can probably be radically
improved by packaging changes.

25.11 Books on computing mathematical functions

The earliest important books about computation of mathematical functions are Approximations for Digital Computers
[Has55] and Computer Approximations [HCL+68]. The first predated high-level programming languages and stan-
dardized mathematical libraries, and because of the tiny memory sizes of early computers, emphasized compactness
over accuracy. The second was written by a team of expert numerical analysts, and it sketched algorithms, but did
not implement them in any programming language.

The lead author of the books The Standard C Library [Pla92] and The C++ Standard Template Library [PSLM00] was
intimately involved with development of the UNIX operating system, commercial compilers, and the ISO C and C++
language standardization efforts. The books show a lot of software, and the code is available is under license. The
floating-point functions are written exclusively for the IEEE 754 64-bit format, and the entire mathematical library
portion is squeezed into about 50 pages, including excerpts from the 1990 ISO Standard for C [C90].

The C Mathematical Function Handbook [Bak92] is an early attempt to implement much of the function repertoire of
the NBS Handbook of Mathematical Functions. The code is licensed with the book, but fails to address many important
aspects of floating-point computation, accuracy, and software portability.

There are two books on the computation of elementary and special functions that may be helpful for supplemental
reading [ZJ96, Tho97], but not for a source of computer code. Their computational accuracy is poor, and they do not
address features of IEEE 754 arithmetic that must be considered in reliable numerical software on modern systems.

More limited books include Numerical Methods for Special Functions [GST07] and the Handbook of Continued Frac-
tions for Special Functions [CPV+08]. Both books concentrate on the mathematics, and algorithms are sketched only
briefly, without software implementations. There is, however, an extensive Maple package of routines for evaluation
of special functions using continued fractions [BC09].

There are several other books on elementary and special functions that we record here for further reading, from
oldest to newest [Rai60, Bel68, Luk69a, Luk69b, Olv74, Car77, Luk77, WG89, Tem96, Mul97, And98, AAR99, Mar00,
Bel04, MvA06, Mul06, CKT07, Bry08, MH08, HBF09, BW10, Mul16].

828 Chapter 25. Improving upon the Cody/Waite algorithms

25.12 Summary

In this chapter, we surveyed some of the important prior work on computing mathematical functions, especially
where the software for doing so is freely or commercially available.

Perhaps the most encouraging aspect of recent research publications in that area is the development of algorithms
in IEEE 754 arithmetic that are provably correctly rounded. At present, such proofs must generally be accompanied
by an exhaustive search for the worst cases for correct rounding. Some of the research teams have pushed that
work even further, developing formal proofs of algorithm correctness that can be automatically checked by theorem-
proving systems. That is not straightforward, and some of the proofs reported are much longer than the algorithms
themselves, and require great care on the part of experts in computer-based theorem proving. Proofs of correctness
are intellectually satisfying, but are in practice insufficient, because they must assume the correctness of a lot of other
software and hardware over which the user has little or no control. Software testing with real compilers on real (or
virtual!) computers therefore remains indispensable.

26 Floating-point output

INPUT AND OUTPUT FOR THIS MACHINE ARE EXPRESSED IN STANDARD

TELETYPE CODE, WITH A CODED SYMBOL FOR THE OPERATION REQUIRED.

— DOUGLAS R. HARTREE

Calculating Instruments & Machines (1950).

Conversions of numerical values to string representations, and the reverse, are surprisingly complex and difficult.
Older programming languages provide limited support, such as Fortran’s FORMAT statement specifier Iw for integer
conversions, and Ew.d, Fw.d, and Gw.d for floating-point conversions. Pascal provides a subset of those capabilities
with modifiers on output variables, such as writeln(x:10:5), to produce an output string of the form ␣␣␣3.14159.

The C language also follows the Fortran model, offering format specifiers %w.dd and %w.di for signed integers,
%w.du, %w.do, and %w.dx for unsigned decimal, octal, and hexadecimal integers, and %w.df, %w.de, and %w.dg for
floating-point values.

In Fortran and Pascal, the format specifiers are part of the language definition, and thus, the compiler can match
variables in the I/O statement with format specifiers, and generate code to call an appropriate library routine for the
conversion: different routines are needed for each data type.

In C, input and output are not part of the language, but instead, are handled by the run-time library. That
means that the programmer needs to supply format specifiers of the correct type, and the library conversion routines
recognize additional format modifier letters, such as L for long double, and h for short int. Although there are
modifier letters to support float in input formats, there are none for output formats, so float data must be cast
to double for output; C compilers do that automatically for functions with variable numbers of arguments, such as
printf(). Although that might seem innocuous, we shall see that the unwanted type conversion can be a problem.

The standard Fortran format specifiers provide no mechanisms for filling floating-point output fields with zeros
instead of blanks, or for left-justifying or centering the string in the output field. If a nonzero field width is insuffi-
cient to hold the output string, the language requires that the user be punished by destroying the output field and
overwriting it with asterisks. Fortran 90 allows the field width to be zero, in which case the system picks a width
that is large enough. Later languages generally view the field width as a minimum width, and expand it if needed.

Format specifiers in C support additional flag characters that request left-justification, leading-zero filling, sup-
pression of a decimal point when no fractional digits follow, and so on.

Numerical programs often need to be able to specify input numbers precisely. Most computers used for numerical
work have a nondecimal floating-point base, and the accuracy of conversion from decimal strings is almost never
specified by programming-language standards, so decimal representations are unreliable. If you want the constant
2−1022 (the smallest IEEE 754 64-bit normal value) in your program, then you really do not want to have to express
it as 2.2250738585072013830902· · · e-308, nor can you write it in exact rational form without using a number of 308
digits, nor can you rely on a library power routine, pow(2.0,-1022.0), or the Fortran operator form, 2.0d0**(-1022),
to compute it precisely on all systems. It is even worse to express it in native floating-point form, possibly as integer
values in decimal or hexadecimal in a union with floating-point values, because that depends on the platform and
its byte order.

The C99 Standard introduced a convenient notation for hexadecimal floating-point constants, by extending the
long-standing hexadecimal integer constant syntax with a power of two: 0x1p-1022 is 1× 2−1022. The C99 I/O library
recognizes a new format item, %w.da, for such conversions.

Neither the C language nor the C library provides alternatives for number bases that are not a power of two or
ten. Ada has a convenient source-code notation for such cases: a base from 2 to 16 written as a decimal integer,
followed by a sharp-delimited string of digits, optionally followed by the letter E and an exponent of the base, again
written as a decimal integer. Thus, our constant can be written in Ada source code as 2#1#E-1022, or as 4#1#E-511,
or as 16#4.0#E-256. Unfortunately, there is limited I/O support in Ada for such values: although they can be input,
there is no way to specify a base for floating-point output.

© Springer International Publishing AG 2017
N.H.F. Beebe, The Mathematical-Function Computation
Handbook, DOI 10.1007/978-3-319-64110-2_26

829

830 Chapter 26. Floating-point output

The sharp character is already assigned another meaning in the C language, but the related hoc language provides
a notation similar to that in Ada by replacing the sharp delimiter with the otherwise-unused at-sign, and allowing
any base from 2 to 36. Our constant can then be written approximately in hoc as 36@3.4lmua2oeuvp@e-198, or
exactly as either 0x1p-1022 or 2@1@e-1022. Based numbers like those examples can be output to files and strings
using format-specifier extensions in the hoc printf and sprintf statements.

Few programming languages provide for digit grouping, despite the fact that grouping has been used in typeset
numerical tables for centuries. Groups of three, four, or five digits are much easier for humans to read than a long
string of digits. The Ada language supports digit grouping in program source code by permitting any pair of digits to
be separated by a single underscore, but it has no provision for input and output of such values. The Eiffel language
[ECM05] also allows digit-separating underscores, including repeated ones. The D language does as well [Ale10].

This author is convinced that digit grouping is of sufficient importance that it needs to be universally available,
both in source programs, and for input and output. Remarkably little additional code is needed to support it, which
makes it even more regrettable that it was not provided at the dawn of the computing age, and incorporated in every
subsequent programming language.

Until the 1978 ANSI Standard, Fortran did not separate the job of format conversion from input and output, and
many older languages had similar limitations. In the mathcw library, format conversion is provided by a family of
functions whose result is either a string or a number, without any reference to the I/O system. It is then possible to
implement the higher-level printf() and scanf() functions in terms of those conversion routines.

26.1 Output character string design issues

In software that produces character-string output, there are at least four possible design choices:

� The caller provides two additional arguments: a pointer to a character string array that is ‘big enough’ to hold
the output, and the size of that array.

That is flexible, but burdensome on the programmer, because it affects every call to the conversion routine.
Undetected buffer overflow conditions are an all-too-frequent cause of software failure, and having the caller
provide working storage is poor practice in the design of reliable software.

� Dynamically allocate as much space as is required on each call, ensuring that there are no artificial limits on
the size of the returned string.

The problem with that approach is that it burdens the caller with the job of freeing the dynamic memory (recall
that Standard C does not reclaim no-longer-used dynamic memory). Failure to do so results in memory leaks
that can be hard to find and repair, and that can cause unexpected termination of long-running jobs. It also
requires some sort of failure indication, such as a NULL-pointer return, in the event that sufficient memory is not
available, and the caller is obligated to check for that indicator after every call, in the absence of an exception-
handling facility like the throw and catch/try functions or statements in C++, C#, Java, and Lisp.

Dynamic memory allocation adds substantial run-time overhead that can sometimes cost much more than the
conversion operation itself.

� Allocate memory dynamically inside the conversion routine on the first call, but reuse it on subsequent calls,
and reallocate it whenever it needs to grow. That is a reasonable choice, but there is still a single memory leak
over which the caller has no control.

� Allocate memory in static storage that is reused on each call, and made ‘big enough’ for almost all practical
purposes. That is the approach that we take here, and the C99 Standard suggests that choice by mandating
that format conversions shall be able to handle a field width of at least 4095 characters.

With the last two choices, the caller must take care to avoid overwriting the internal buffer, such as by using it
more than once in a single statement, for example, as the arguments to a member of the printf() function family, or
by using it in a multithreaded program without a synchronization wrapper to guarantee exclusive access.

With the last choice, we can guarantee successful operation, with no possibility of an out-of-memory error at run
time, so that is what we do.

26.2. Exact output conversion 831

26.2 Exact output conversion

Before we discuss the routines that handle floating-point output conversion in the mathcw library, it is worthwhile to
investigate the arithmetic steps needed to convert a number from one base to another. Such conversions are needed
for both input and output on computers when the external human-readable data are in decimal, and their forms
inside the computer are in a base that is most commonly β = 2 or β = 16. Internally, we have at most t digits in base
β, with an exponent range [emin, emax]. Externally, we have base B with an exponent range [EMIN, EMAX]. Even
though the number of internal digits is fixed, the number of external digits may be unbounded. For example, in base
3, the value 1/3 = 0.13 exactly, but in base 10, 1/3 ≈ 0.333 333 333 · · · .

When B is an integral multiple of β, all base-B expansions of base-β numbers are finite. In particular, all binary
floating-point numbers have finite decimal expansions, although the reverse is not true. The expansions can be long:
for the IEEE 754 64-bit binary format, the smallest and largest numbers are 2−1074 and 21024 × (1 − 2−52), with exact
decimal representations of 751 and 309 digits, respectively, ignoring power-of-ten exponents. For the 128-bit binary
format, the corresponding decimal values require 4931 and 11 530 digits.

To understand the claim of the last paragraph, notice that if B = kβ, with k = 2, 3, 4, . . . , then any number x that
is exactly representable in base β can be written in that base as x = m/βp, where m is an integer. Substituting β by
B/k shows that x = (mkp)/Bp. Because the parenthesized numerator is also an integer, x is exactly representable in
both bases β and B.

The output base-conversion problem can be viewed as finding the base-B digits, Dj, that satisfy

(dndn−1 · · · d2d1d0.d−1d−2 · · · dn+1−t)β = (DN DN−1 · · · D2D1D0.D−1D−2 · · ·)B

for a given number x. If we want to find a particular digit Dk for k ≥ 0, we can easily do so as follows:

� Multiply x by B−k to move the fractional point to just after the desired digit:

x × B−k = (DN DN−1 · · · Dk.Dk−1Dk−2 · · · D1D0D−1D−2 · · ·)B.

� Take the floor of that value to discard fractional digits:

x × B−k� = (DN DN−1 · · · Dk+1Dk)B.

� Divide that result by B, take the floor again, and multiply by B to convert the rightmost digit to a zero:

⌊
(x × B−k�/B)

⌋× B = (DN DN−1 · · · Dk+10)B.

� Subtract the two numbers to recover the desired digit:

(DN DN−1 . . . Dk+1Dk)B − (DN DN−1 . . . Dk+10)B = (Dk)B.

We can write those steps more compactly as

C = x × B−k�,
Dk = C − B × C/B�.

A little thought shows that the algorithm also works for the fractional digits, where k < 0. That nice result allows us
to find the digits in any convenient order, and assuming that the powers of B are available in a precomputed table,
each digit costs two multiplies, one add, and two floor operations.

Two obvious questions must be answered to complete the digit-conversion algorithm:

� What is the value of N that determines the index of the leading output digit?

� How many digits do we need to compute?

832 Chapter 26. Floating-point output

The first is easy to answer: N = logB(x)�. We may not require a precise value of the logarithm, unless it happens
to be close to an integer value, so it may be possible to replace it by, for example, a fast low-order polynomial
approximation.

The second is harder, because it might be “user specified” (perhaps as the width or precision value of a C or
Fortran format specifier), or it could be determined by the requirement “just enough digits to recover the original
x on input”, or it might be “as many digits as are needed to represent x exactly.” If fewer than the exact number of
output digits are produced, we also need to specify the rounding algorithm. We address those points later in this
chapter.

Unfortunately, the apparent simplicity of the output digit-generation algorithm is illusory, because it requires
exact arithmetic in the worst case when an exact output representation is required. Even when fewer digits are
needed, the final subtraction that produces Dk necessarily loses N − k leading digits, so we must have C and B ×
C/B� accurate to at least N − k + 1 digits.

We saw earlier that hundreds or thousands of decimal digits could be required to represent x × Bk, and thus also
C and C/B, when B = 10. For a future 256-bit binary format, more than a million decimal digits might be needed
for exact representation.

There is a special case worth pointing out, however. When B is an integral power of β, say B = βm, such as for
octal or hexadecimal output of internal binary values, then x × B−k, and all of the other intermediate values, are exact
operations. The output digits Dk can then be produced exactly with ordinary floating-point arithmetic, only �t/m�
output digits can be nonzero, and N = logβ(x)/m� = (exponent(x) + logβ(significand(x)))/m� can be computed
cheaply.

26.3 Hexadecimal floating-point output

Although it is a new feature in the C99 language, hexadecimal floating-point output is a good place to start our
discussion of format conversions, because it is conceptually the easiest, and with care, it can be done exactly on
systems where the floating-point base is 2, 4, 8, or 16. On such systems, we could write a function that takes a single
floating-point value, and returns an exact hexadecimal floating-point string of sufficient length to represent all of the
significand bits. However, that function would soon prove limiting, because we are likely to need to control at least
the width and precision, just as we do with decimal output.

26.3.1 Hexadecimal floating-point output requirements

To understand the design requirements, we quote from the specification of hexadecimal floating-point output in the
C99 Standard, as modified by two subsequent technical corrigenda. Because the specification is mixed with that for
decimal output and other format items, text pertaining to them has been elided:

Each conversion specification is introduced by the character %. After the %, the following appear in sequence:

� Zero or more flags (in any order) that modify the meaning of the conversion specification.

� An optional minimum field width. If the converted value has fewer characters than the field width, it is padded with
spaces (by default) on the left (or right, if the left adjustment flag, described later, has been given) to the field width. The
field width takes the form of an asterisk * (described later) or a nonnegative decimal integer. [Footnote: Note that 0 is
taken as a flag, not as the beginning of a field width.]

� An optional precision that gives the . . . number of digits to appear after the decimal-point [sic] character for a, A, . . .
conversions, The precision takes the form of a period (.) followed either by an asterisk * (described later) or by an
optional decimal integer; if only the period is specified, the precision is taken as zero.

� An optional length modifier that specifies the size of the argument.

� A conversion specifier character that specifies the type of conversion to be applied.

The arguments specifying field width, or precision, or both, shall appear (in that order) before the argument (if any) to be
converted. A negative field width argument is taken as a - flag followed by a positive field width. A negative precision argument
is taken as if the precision were omitted.

The flag characters and their meanings are:

- The result of the conversion is left-justified within the field. (It is right-justified if the flag is not specified.)

26.3. Hexadecimal floating-point output 833

+ The result of a signed conversion always begins with a plus or minus sign. (It begins with a sign only when a negative
value is converted if the flag is not specified.)

space If the first character of a signed conversion is not a sign, or if a signed conversion results in no characters, a space is
prefixed to the result. If the space and + flags both appear, the space flag is ignored.

The result is converted to an “alternative form”. . . . For a, A, . . . conversions, the result of converting a floating-point
number always contains a decimal-point [sic] character, even if no digits follow it. (Normally, a decimal-point [sic]
character appears in the result of these conversions only if a digit follows it.)

0 For . . . a, A . . . conversions, leading zeros (following any indication of sign or base) are used to pad to the field width
rather than performing space padding, except when converting an infinity or NaN. If the 0 and - flags both appear, the 0
flag is ignored.

The conversion specifiers and their meanings are:

a, A A double argument representing a floating-point number is converted in the style [-]0xh.hhhhp±d, where there is one
hexadecimal digit (which is nonzero if the argument is a normalized floating-point number and is otherwise unspecified)
before the decimal-point [sic] character [Footnote: Binary implementations can choose the hexadecimal digit to the left
of the decimal-point [sic] character so that subsequent digits align to nibble (4-bit) boundaries.] and the number of
hexadecimal digits after it is equal to the precision; if the precision is missing and FLT_RADIX is a power of 2, then the
precision is sufficient for an exact representation of the value; if the precision is missing and FLT_RADIX is not a power of
2, then the precision is sufficient to distinguish [Footnote: The precision p is sufficient to distinguish values of the source
type if 16p−1 > bn where b is FLT_RADIX and n is the number of base-b digits in the significand of the source type. A
smaller p might suffice depending on the implementation’s scheme for determining the digit to the left of the decimal-point
[sic] character.] values of type double, except that trailing zeros may be omitted; if the precision is zero and the # flag
is not specified, no decimal-point [sic] character appears. The letters abcdef are used for a conversion and the letters
ABCDEF for A conversion. The A conversion specifier produces a number with X and P instead of x and p. The exponent
always contains at least one digit, and only as many more digits as necessary to represent the decimal exponent of 2. If
the value is zero, the exponent is zero.
A double argument representing an infinity or NaN is converted in the style of an f or F conversion specifier.

If a conversion specification is invalid, the behavior is undefined. If any argument is not the correct type for the correspond-
ing conversion specification, the behavior is undefined.

In no case does a nonexistent or small field width cause truncation of a field; if the result of a conversion is wider than the
field width, the field is expanded to contain the conversion result.

That is already a rather complex specification, but the Standard goes on to mandate rounding behavior:

For a and A conversions, if FLT_RADIX is a power of 2, the value is correctly rounded to a hexadecimal floating number with
the given precision.

For a and A conversions, if FLT_RADIX is not a power of 2 and the result is not exactly representable in the given precision,
the result should be one of the two adjacent numbers in hexadecimal floating style with the given precision, with the extra
stipulation that the error should have a correct sign for the current rounding direction.

26.3.2 Remarks on hexadecimal floating-point output

One significant use of hexadecimal floating-point output is to reveal the exact bit sequence in a result, and it is
important that it be possible to compare output from different compilers and different platforms. Thus, although the
Standard permits the leading hexadecimal digit to be any value, it is unwise to use a digit other than one, unless the
result is zero. Otherwise, output comparison is impractical. Compare these hexadecimal and decimal representations
of π in IEEE 754 32-bit arithmetic:

0x1.921fb6p+1 0x3.243f6cp+0 0x6.487ed8p-1 0xc.90fdb0p-2
0.314159274e+1 3.14159274 31.4159274e-1 314.159274e-2

Unless you expand the hexadecimal digits to bits, you cannot easily determine that the numbers in the first row have
identical values.

Regrettably, the GNU/LINUX run-time library does not guarantee a unit leading digit. Our implementation
does.

834 Chapter 26. Floating-point output

The Standard leaves the representation of subnormal numbers unspecified. At the time of writing this, there
are comparatively few C99 implementations to test. GNU/LINUX and HP-UX systems print leading zeros,
whereas SOLARIS systems start with a leading unit digit. Thus, the smallest IEEE 64-bit subnormal prints as
0x0.0000000000001p-1022 on the former, and on the latter, as 0x1.0000000000000p-1074.

Although it can sometimes be helpful to distinguish subnormal values from normal ones, float data cannot
enjoy that distinction. The lack of suitable type specifiers in C output formats means that float must be cast, or
automatically promoted, to double, and all float subnormals are normal values in wider precisions. A better ap-
proach would be to mandate a leading unit digit as the default on all platforms, and then provide an additional flag
character to request properly aligned leading zeros in subnormal values. Our implementation provides both styles.

The presence of several format flag characters, and the requirement that the + flag overrides the space flag, and
that the - flag cancels the 0 flag, adds complexity to the software.

26.3.3 Hexadecimal floating-point output-conversion code

The code for the conversion to hexadecimal floating-point is lengthy, and we have split it into three internal helper
functions, and a large one that does the rest of the work. However, it would overwhelm the reader if it were displayed
as a single block of code, as we normally do in this book, so instead we present smaller chunks of code in sequential
order, surrounding each code block with explanatory prose.

We want to support octal and binary floating-point output in companion conversion routines, so we take care to
parametrize the base dependence to minimize the differences in their code. The usual header file, and definitions of
four base-dependent constants, begin the code in the file cvtohx.h:

#if !defined(CVTOHX_H)
#define CVTOHX_H

#include "cvtoh.h"

static const char BASE_LETTER = ’x’;
static const char * digit_chars = "0123456789abcdef";
static const int DIGIT_BITS = 4;
static const int OUTPUT_BASE = 16;

A simple array-indexing operation, digit_chars[d], converts a digit value d in [0, 15] to its representation as a
hexadecimal character. We also need a fast reverse conversion:

#define DIGIT_VALUE(c) ((((int)’0’ <= c) && (c <= (int)’9’)) ? \
(c - (int)’0’) : \
((c - (int)’a’) + 10))

The code assumes that digits occupy adjacent slots of the character table, and that the first six alphabetic letters do
so as well. That is true in all important current and historical character sets. An alternate definition avoids that
assumption, but is somewhat slower:

#define DIGIT_VALUE(c) (int)(strchr(digit_chars, c) - &digit_chars[0])

Our later use of the conversion operations ensures in-range indexes and arguments, so range checks are not needed
here.

The critical task in output conversion is to deliver digits one at a time. For hexadecimal, octal, and binary con-
version, we can exploit the fact that in bases that are powers of two, the exponent can be treated independently of
the significand. The task is more complex in a decimal base, so we supply some file-global variables, and an internal
initialization function to prepare for digit delivery:

static fp_t f_bits; /* fraction bits: 0 or in [1/B,1) */
static int k_bits; /* number of bits delivered so far */
static int n_zeros; /* number of leading zero bits to deliver */

#if B == 10
static fp_t f_hi;

26.3. Hexadecimal floating-point output 835

static fp_t f_lo;
static const fp_t F_SCALE = FP(1.) / FP_T_EPSILON;
#endif

static void
init_bits(fp_t x, int * pn_exp, int show_subnormals)
{

/*
** Decompose NONNEGATIVE x [unchecked!] into
**
** x = 0.0 * B**0 // when x == 0
** x = f_bits * 2**n_exp // when x != 0
**
** where f_bits is in [1/B, 1).
**
** If B is of the form 2**k (B = 2, 4, 8, 16, ...), then the
** decomposition is EXACT.
**
** Otherwise, when B is not of the form 2**k (notably, B == 10),
** the decomposition is NOT exact, but we attempt to do it
** accurately as
**
** x = f * 10**n
** = (f * 5**n) * 2**n
** = g * 2**n
** = (g / 2**m) * 2**(n + m)
** = f_bits * 2**n_exp
**
** by working in the next higher precision.
**
** If show_subnormals is nonzero (true), then x is KNOWN [but not
** checked!] to be subnormal, and subnormals are to be indicated
** by one or more leading zero bits in the output of CVTOH().
**
** Successive fraction bits can be retrieved by next_bit().
**
** If B > 2, then it is possible for up to log2(B) - 1 leading
** bits returned by next_bit() to be zero.
*/

int n_exp;

k_bits = 0;
n_exp = 0; /* keep optimizers happy */

if (x == ZERO)
{

f_bits = ZERO;

#if B == 10
f_hi = ZERO;
f_lo = ZERO;

#endif

}
else
{

836 Chapter 26. Floating-point output

#if B == 2

f_bits = FREXP(x, &n_exp); /* f_bits in [1/2,1) */

#elif B == 8

f_bits = FREXPO(x, &n_exp); /* f_bits in [1/8,1) */
n_exp *= 3; /* convert to power of two */

#elif B == 10

hp_t f, g, h;
int n, m;

f = HP_FREXP((hp_t)x, &n); /* x = f * 10**n */
g = f * HP_IPOW(HP(5.), n); /* g = f * 5**n */
m = (int)CEIL((fp_t)HP_LOG2(g));/* smallest m for g < 2**m */
h = g / HP_IPOW(HP(2.), m); /* h = g / 2**m */

if (h >= ONE)
{

h *= HP(0.5);
m++;

}

f_bits = (fp_t)h;

if (f_bits >= ONE)
{

f_bits = HALF;
m++;

}

n_exp = n + m;

assert((TENTH <= f_bits) && (f_bits < ONE));

f_hi = FLOOR(f_bits * F_SCALE) / F_SCALE;
f_lo = f_bits - f_hi;

assert(f_bits == (f_hi + f_lo));

#elif B == 16

f_bits = FREXPH(x, &n_exp); /* f_bits in [1/16,1) */
n_exp *= 4; /* convert to power of two */

#else
#error "cvtoh() family not yet implemented for bases other than 2, 8, 10, or 16"
#endif

}

if (show_subnormals)
n_zeros = EMIN + 1 - n_exp;

else

26.3. Hexadecimal floating-point output 837

n_zeros = 0;

if (pn_exp != (int *)NULL)
*pn_exp = n_exp;

}

Checks for Infinity and NaN arguments in that function are not required, because we treat those special values
separately.

For bases β = 2, 8, and 16, the FREXP() family members handle the exact decomposition into an exponent of the
base, and a significand that is either zero, or lies in [1/β, 1).

The decimal case is harder, and requires a base-two logarithm, and integer powers, to accomplish the reduction
to a significand and a power of two. The required operations are not exact, so we work in the next higher precision
to reduce the effect of rounding errors. A more thorough treatment would resort to multiple-precision arithmetic to
guarantee correct rounding. Once an accurate value of the significand f_bits is available, we split it into the sum of
a high part with t − 1 digits, and a one-digit low part. The assertions in the decimal block are sanity checks, and we
use a few more assert calls later.

The show_subnormals flag allows us to handle subnormals with and without leading zeros, and n_zeros records
the number of leading zero bits.

All subsequent digit-extraction arithmetic works on the significand stored in the file-global variable f_bits, and
the limited range of that value eliminates the possibility of either underflow or overflow.

Digit extraction proceeds from left to right in order of descending digit values so that we can output digits as
they are produced. That job is handled by two functions, one that returns the next bit, and another that returns the
next digit. Here is the first of them:

static int
next_bit(void)
{

/*
** Return the next bit from a cache of leading zero bits (in the
** event that init_bits() had a nonzero show_subnormals argument),
** and then from f_bits, taking bits from left to right. If B > 2,
** there may be up to log2(B) - 1 leading zero bits, in addition to
** any cached zero bits.
*/

int bit;

if (n_zeros > 0) /* take next bit from cache */
{

bit = 0;
n_zeros--;

}
else
{

#if B == 2

f_bits += f_bits; /* exact */
bit = (f_bits >= ONE);

if (bit)
f_bits--; /* exact */

#elif B == 8

static fp_t g_bits = FP(0.);

838 Chapter 26. Floating-point output

if ((k_bits % 3) == 0)
{

f_bits *= FP(8.); /* exact */
g_bits = ((fp_t)(int)f_bits);/* 3-bit value in [1,8) */
f_bits -= g_bits; /* f_bits in [1/8,1) */
g_bits *= FP(0.125); /* 3-bit value in [1/8,1) */

}

g_bits += g_bits; /* exact */
bit = (g_bits >= ONE);

if (bit)
g_bits--; /* exact */

#elif B == 10

fp_t err, sum;

f_hi += f_hi; /* exact */
f_lo += f_lo; /* possibly inexact */

sum = f_hi + f_lo;
err = ERRSUM(sum, f_hi, f_lo);

bit = (sum >= ONE);

if (bit)
{

f_hi = sum - ONE; /* exact */
f_lo = err; /* possibly inexact */

}

#elif B == 16

static fp_t g_bits = FP(0.);

if ((k_bits % 4) == 0)
{

f_bits *= FP(16.); /* exact */
g_bits = ((fp_t)(int)f_bits);/* 4-bit value in [1,16) */
f_bits -= g_bits; /* f_bits in [1/16,1) */
g_bits *= FP(0.0625); /* 4-bit value in [1/16,1) */

}

g_bits += g_bits; /* exact */
bit = (g_bits >= ONE);

if (bit)
g_bits--; /* exact */

#else
#error "cvtoh() family not yet implemented for bases other than 2, 8, 10, or 16"
#endif

}

k_bits++;

26.3. Hexadecimal floating-point output 839

assert((0 <= bit) && (bit <= 1));
assert(f_bits >= ZERO);

return (bit);
}

For a subnormal, there may be leading zero bits in the cache; if so, we produce a zero bit, and reduce the count
n_zeros. Otherwise, we have to get the next bit by arithmetic operations.

Bit extraction is easiest in a binary base: double the reduced significand to get its leading bit, and then reduce it
by one if we got a 1-bit. All operations are exact.

For octal and hexadecimal bases, more care is required because doubling is no longer an exact operation. Instead,
we count the bits delivered, and every third or fourth call, do an exact scaling by the base. We then reduce the integer
value in g_bits to a fraction by exact scaling by the reciprocal of the base, and use that variable, instead of f_bits,
to deliver bits. Because g_bits has at most four nonzero bits, its subsequent doubling is an exact operation.

In a decimal base, we operate as we did with a binary base, except that f_bits is represented as a sum of f_hi
and f_lo so that doubling of the high part is always exact. Doubling of the low part is exact until it has t digits
with a leading digit in [5, 9]. Because the low part began with only a single digit, we have t − 1 additional digits to
hide the effects of rounding, so as long as we do not request an excessive number of output bits, we expect accurate
conversion to a bit sequence. In Section 26.6 on page 851, we discuss the number of bits needed to represent a
decimal value sufficiently accurately to allow exact recovery of that value from its bit string.

Once a bit has been extracted, we count it in k_bits, and issue two final assertions to ensure that sanity still
reigns.

With bit extraction operational, we can now easily collect a hexadecimal digit:

static int
next_digit(void)
{ /* return next digit in base OUTPUT_BASE */

int digit;

digit = next_bit();
digit += digit + next_bit();
digit += digit + next_bit();
digit += digit + next_bit();

assert((0 <= digit) && (digit < OUTPUT_BASE));

return (digit);
}

The arithmetic is simple and exact in all bases. The final assertion guarantees an in-range digit for later calls to
DIGIT_VALUE(). Although the function delivers a hexadecimal digit, we name it generically to minimize code differ-
ences from the octal and binary companions.

We are now ready for the public function. Its name, CVTOH(), stands for several precision-dependent versions
of the code: cvtohf(), cvtoh(), cvtohl(), and so on. The name CVTOH() is an acronym for ConVerT for Output in
Hexadecimal. The code begins like this:

const char *
CVTOH(fp_t x, int min_width, int p_digits, int e_digits, int g_digits, int flags)
{ /* convert native floating-point to output in hexadecimal */

The first argument, x, is the floating-point value to be converted. The remaining arguments are all integers.
The argument min_width determines the minimum output width. In many applications, its value is zero, ensur-

ing that no whitespace surrounds the returned value. Otherwise, padding spaces or zeros are supplied, according to
options supplied in the final argument. A negative value for min_width is converted internally to a zero value.

The argument p_digits is the output precision: the number of digits following the base point. There is always
one digit before that point. A zero value for p_digits means that there is only one significant digit in the output. A
negative value is given a special meaning: its magnitude is ignored, and it is converted internally to the number of

840 Chapter 26. Floating-point output

Table 26.1: Symbolic flags for formatted output. The alternate names relate them to format flags for the C printf()
function family.

Recommended name Alternate name Description
CVTO_NONE none placeholder for no-flags-set
CVTO_FILL_WITH_ZERO CVTO_FLAG_ZERO fill with zeros
CVTO_JUSTIFY_CENTER CVTO_FLAG_EQUALS center justify
CVTO_JUSTIFY_LEFT CVTO_FLAG_MINUS left justify
CVTO_JUSTIFY_RIGHT none right justify
CVTO_SHOW_EXACT_ZERO none exact zero is single digit
CVTO_SHOW_MIXEDCASE none Infinity and NaN in mixed case
CVTO_SHOW_PLUS CVTO_FLAG_PLUS always show sign
CVTO_SHOW_PLUS_AS_SPACE CVTO_FLAG_SPACE use space for plus
CVTO_SHOW_POINT CVTO_FLAG_SHARP always show point
CVTO_SHOW_SUBNORMAL none subnormals have leading zeros
CVTO_SHOW_UPPERCASE none all letters are uppercase
CVTO_TRIM_TRAILING_ZEROS none drop trailing fractional zeros

digits, excluding the leading digit, needed for exact round-trip conversion [Gol67, Mat68a, Mat68b]. We discuss that
issue later in Section 26.6 on page 851. Most applications of the CVTOH() family should supply a negative value for
p_digits.

The argument e_digits defines the minimum output exponent width. If needed, our code supplies leading zeros
to meet that width. A negative or zero value ensures an exponent of minimal width. The exponent of a zero value for
x is always reported as zero, even though other values are possible in some historical formats, and in IEEE 754-2008
decimal floating-point arithmetic.

The argument g_digits argument specifies the number of digits in a group in the significand and exponent. Un-
derscores separate groups, counting away from the base point of the significand, and from the right of the exponent.
A zero or negative value for g_digits suppresses digit grouping.

The final argument, flags, is the bitwise OR of symbolic flags summarized in Table 26.1. The flag names are
defined in the header file cvtocw.h, which also provides prototypes for all of the output functions. For languages
that lack the bitwise-OR operation, the argument can be constructed as the integer sum of flag values, as long as no
flag is repeated. The names are intentionally verbose and descriptive, but their use is expected to be rare. To make
their relationship to the printf() format flags clearer, some have synonyms shown in the table.

The CVTO_SHOW_SUBNORMAL flag is an extension that requests that subnormals be shown with leading zero digits,
and a fixed exponent corresponding to that of the smallest normal number. Otherwise, all nonzero values begin with
a leading digit of one. There is no corresponding standard format flag.

The flags are accessed with two private macros defined in cvtoh.h:

#define CLEAR(name) flags &= ~(name)
#define IS_SET(name) (flags & (name))

The CLEAR() and IS_SET() macros are wrappers to clear a flag bit, and test whether a flag bit is set. For simplicity,
they hide the name of the flags argument.

In summary, the call cvtoh(x,0,-1,0,0,0) produces exactly what the %a format does, and the call cvtoh(x,0,-
1,0,0,CVTO_SHOW_UPPERCASE) matches the output from the %A format. A call cvtoh(x,0,-1,4,0,0), with x having
the closest value to π, produces output like 0x1.921f_b544_42d1_8p+1.

The next code chunk declares local variables, and internal buffer space for the returned string:

char *retbuf;
char *s;
char sign;
fp_t f_in;
int lenbuf, n_exp, n_exp_in, pass, positive, show_subnormals;
static char bigbuf[MAXBIGBUF];
static char buf[MAXBUF];

26.3. Hexadecimal floating-point output 841

There are two working buffers for the output string. The buffers are declared with the static attribute so that they
have fixed memory locations, and are preserved across calls. The first, buf, has a size that is easily predictable from
the number of bits in the floating-point storage format. The second is required only if the specified field width is
larger than that needed for the converted number; its much larger size is determined by the C99 specification. The
variable retbuf holds a pointer to one of those buffers for the function return value.

In order to preserve correct output justification, when a plus sign is to be shown as a space, we instead temporarily
employ an otherwise-unused character for the job. That character is later replaced by a space after the output string
has been justified.

static const char PLUS_AS_SPACE = ’?’;

The first task in the code is to limit the value of e_digits to a sensible range:

if (e_digits < 0)
e_digits = 0; /* default: minimal-width exponent */

else if (e_digits > MAXEXPWIDTH)
e_digits = MAXEXPWIDTH;

The next job is to record the sign of the argument, x, to be converted. Because the value of that argument can be a
NaN or a negative zero, we cannot just compare it with zero to determine the sign. Instead, the SIGNBIT() function
is the essential tool for safely extracting the sign. There are four possibilities, two of them affected by the flags that
must be tested in the order mandated by the C99 Standard:

positive = 1;

if (SIGNBIT(x))
{

sign = ’-’;
x = COPYSIGN(x, ONE);
positive = 0;

}
else if (IS_SET(CVTO_SHOW_PLUS))

sign = ’+’;
else if (IS_SET(CVTO_SHOW_PLUS_AS_SPACE))

sign = PLUS_AS_SPACE;
else

sign = ’\0’;

In order to properly handle rounding in the output string, we need a two-pass algorithm. On the first pass, we
compute an extra digit that is not output, but is used to determine the rounding for the second pass. The second pass
is skipped if no rounding adjustment is needed.

The most common use of the conversion routine is to duplicate the action of the %a format: it represents all bits
exactly, and therefore requires no rounding, and just a single pass.

for (pass = 1; pass <= 2; ++pass)
{

s = &buf[0];

if (sign != ’\0’)
*s++ = sign;

The variable s points to the next available position in the output string. The notation *s++ is a common idiom in
the C-language family for storing a character, and then advancing the pointer to the next available output position.
However, we have to guarantee that the pointer does not advance outside the buffer into which it points. We can do
that either by precomputing the maximal buffer size, or by adding bounds checks on the pointer. We proceed with
caution, and do both in the code that follows.

The next task is to handle the special cases of Infinity and NaN:

842 Chapter 26. Floating-point output

if (ISINF(x))
{

(void)strlcpy(s, CVTOI(x, IS_SET(CVTO_SHOW_UPPERCASE) ? CVTO_SHOW_UPPERCASE : CVTO_NONE),
sizeof(buf) - 1);

CLEAR(CVTO_FILL_WITH_ZERO);
retbuf = &buf[0];
break;

}
else if (ISNAN(x))
{

(void)strlcpy(s, CVTON(x, IS_SET(CVTO_SHOW_UPPERCASE) ? CVTO_SHOW_UPPERCASE : CVTO_NONE),
sizeof(buf) - 1);

CLEAR(CVTO_FILL_WITH_ZERO);
retbuf = &buf[0];
break;

}

The standard strcpy() function is deprecated because it cannot prevent buffer overruns. We instead use the safe
OPENBSD-style variant, strlcpy(). The details of how Infinity and NaN are converted are hidden in two other
output-conversion family members, CVTOI() and CVTON(), described in Section 26.9 on page 866 and Section 26.10
on page 866. We clear the zero-fill flag, because it does not apply to Infinity and NaN values. The s pointer does not
need to be adjusted, because the job is complete after the string copy, and the break statements skip the unneeded
second pass.

This author would prefer to return the mixed-case values "Infinity" and "NaN" for those string results, but the
C99 Standard does not permit that. In its description of the f and F format items, it says:

A double argument representing an infinity is converted in one of the styles [-]inf or [-]infinity — which style is
implementation-defined. A double argument representing a NaN is converted in one of the styles [-]nan or [-]nan(n-char-
sequence) — which style, and the meaning of any n-char-sequence, is implementation-defined. The F conversion specifier
produces INF, INFINITY, or NAN instead of inf, infinity, or nan, respectively. [Footnote: When applied to infinite and NaN
values, the -, +, and space flag characters have their usual meaning; the # and 0 flag characters have no effect.]

Nevertheless, our code provides a flag option to get mixed-case values; see Table 26.1 on page 840.
The specification does not distinguish between quiet and signaling NaNs, except possibly via the n-char-sequence,

but that feature cannot be used in code that is intended to be portable
The real work of the conversion to a hexadecimal floating-point string happens in the long else block that comes

next. It begins with a few variable declarations:

else /* finite x */
{

fp_t r;
int n_digits, n_drop, n_out;
unsigned int digit;

Special handling of subnormals is only needed when the value to be converted is known to be a subnormal:

show_subnormals = (B == 2) && IS_SET(CVTO_SHOW_SUBNORMAL) && ISSUBNORMAL(x);

We further restrict that handling to binary arithmetic, even though subnormals are available in decimal arithmetic.
That is an arbitrary design decision, and could be changed in a future version of the code.

Next, we decompose the value into a significand and an exponent of two, and save those results for reconstructing
the value to be converted in the second pass:

init_bits(x, &n_exp, show_subnormals);
f_in = f_bits;
n_exp_in = n_exp;

A few more initializations are needed before we can begin digit collection:

26.3. Hexadecimal floating-point output 843

digit = 0;
n_drop = 0;
n_out = 0;
r = HALF;
*s++ = ’0’;
*s++ = BASE_LETTER;

The variable r records a half unit in the last place, and is updated each time a digit is output. We need it later to
handle rounding.

We are now ready to output the first digit, and there are three cases to handle.
For a zero value, we output the first digit. If exact zeros are requested, we output an optional base point, and a

rounding digit that is later removed, and then exit the two-pass loop:

if (x == ZERO)
{

*s++ = digit_chars[next_digit()];

if (IS_SET(CVTO_SHOW_EXACT_ZERO))
{

if (IS_SET(CVTO_SHOW_POINT))
*s++ = ’.’;

s++ = ’0’; / rounding digit */
break;

}
}

The CVTO_SHOW_EXACT_ZERO flag provides a useful service that some Fortran implementations offer. In large tables of
numbers with decimal formatting, it can be helpful for exact zeros to be represented as 0.0, rather than as a string of
fractional zero digits. The corresponding form here is thus 0x0p+0, or 0x0.p+0 if a base point is required.

For a subnormal value, we output the first bit, rather than the first hexadecimal digit:

else if (show_subnormals)
{

*s++ = digit_chars[next_bit()];
r *= HALF;

}

Otherwise, the value is nonzero, so we discard leading zero bits and output the first nonzero bit:

else
{

while (next_bit() == 0) /* 1 to 4 times */
{

r *= HALF;
n_exp--;
n_drop++;

}

*s++ = ’1’;
}

Next, we output any required base point, and compute the number of remaining output digits required:

if (IS_SET(CVTO_SHOW_POINT) || (p_digits != 0))
*s++ = ’.’;

n_digits = (TBITS - k_bits + n_drop + DIGIT_BITS - 1) /
DIGIT_BITS;

844 Chapter 26. Floating-point output

if ((0 <= p_digits) && (p_digits < (n_digits + MAXEXTRAPREC)))
n_digits = p_digits;

n_digits++; /* need rounding digit */
assert(n_digits > 0);

Here, TBITS is a value set in the header file cvtoh.h to the number of bits in the significand. For a decimal base, it is
determined by a formula [Gol67] that we discuss later in Section 26.6 on page 851.

If a nonnegative p_digits value is specified, and is smaller than the number of digits needed for exact repre-
sentation, we reduce the digit count. We accept precisions larger than are significant, but only up to MAXEXTRAPREC
additional digits; that value is included in the definition of MAXBUF.

Output of the remaining digits, and any requested digit separators, is now straightforward:

while (n_digits-- > 0)
{

r /= (fp_t)OUTPUT_BASE;
digit = (unsigned int)next_digit();
*s++ = digit_chars[digit];
n_out++;

if ((g_digits > 0) && (n_digits > 0) && ((n_out % g_digits) == 0))
*s++ = ’_’;

}

Digit grouping takes only three extra lines of code: we count the number of digits output with n_out, and if grouping
is requested, output an underscore when the count is a multiple of the group size and at least one more digit remains
to be output in the next iteration. As we said earlier, digit grouping should be universally available in all program-
ming languages: its implementation is nearly trivial, and its cost is negligible compared to the rest of the conversion
code.

A candidate digit string with one more than the required number of fractional digits has just been produced, and
we now have the difficult task of rounding in preparation for the second pass. We begin by handling the common,
and easiest case, where all bits have been used:

if (pass == 1) /* check for rounding */
{

fp_t adjust;
int mode;

if ((digit == 0) && (f_bits == ZERO))
break; /* loop exit: no rounding needed */

Otherwise, we determine the rounding direction dynamically (and independently of whether IEEE 754 arithmetic is
in effect), and take one of four actions:

mode = _cvtdir();

if (mode == CVT_FE_UPWARD)
adjust = positive ? (r + r) : ZERO;

else if (mode == CVT_FE_DOWNWARD)
adjust = positive ? ZERO : (r + r);

else if (mode == CVT_FE_TOWARDZERO)
break; /* loop exit */

else /* mode == CVT_FE_TONEAREST */
{

int prev_digit;

if (digit == 0)
break; /* loop exit: no rounding needed */

26.3. Hexadecimal floating-point output 845

prev_digit = (int)(((s[-2] == ’.’) || (s[-2] == ’_’)) ? s[-3] : s[-2]);
prev_digit = DIGIT_VALUE(prev_digit);

assert((0 <= prev_digit) && (prev_digit < OUTPUT_BASE));

if ((digit == (unsigned int)(OUTPUT_BASE / 2)) &&
(f_bits == ZERO) &&
((prev_digit & 1) == 0))

break; /* loop exit: no rounding needed */

adjust = r;
}

How the rounding mode is determined is described later in Section 26.3.5 on page 848.
We consider only four rounding modes here, but we must note that complete implementation of the IEEE 754-

2008 specification for decimal arithmetic has one more mode that rounds ties away from zero. It is omitted here
because at the time of writing this, compiler support for decimal rounding is lacking.

Rounding upward requires adding one ulp, r + r, if the number is positive. Otherwise, we can simply truncate
the digit string.

Rounding downward is the mirror image of rounding upward, but applies only to negative numbers. Because
the sign is handled separately, the adjustment is positive, rather than negative.

Rounding to zero (truncation) is easiest: we drop the extra digit, and skip the second pass.
The round-to-nearest case is the most difficult, which is why most floating-point designs before IEEE 754 do not

supply it. There are three subsidiary cases to consider:

� If the extra hexadecimal digit is less than 8, then the remainder is less than half, truncation of the collected
digits produces the desired result, and we can skip the second pass.

� If the extra digit is 8, and the reduced significand is zero, then we have a halfway case, where we have to
determine whether the previous digit is even or odd. If it is even, then by the round-to-nearest-with-ties-to-even
rule, no further adjustments are needed, and we can skip the second pass.

The extra digit is stored at s[-1], and we find the value of the digit before it in s[-2], unless that has a point
or underscore, in which case we find it in s[-3].

� We have a halfway case with an odd last digit or a nonzero reduced significand, or we have an extra digit that
is larger than 8. In either case, we need to round upward with an adjustment by r.

It is worth noting that there is another nasty multithreading problem hidden in our rounding code. The tests for
the rounding direction and application of the rounding adjustment assume that the rounding direction is constant for
the duration of the rounding code. That might not be the case in a multithreaded application where threads modify
the rounding direction. If the rounding mode is changed during our rounding-decision checks, correct rounding of
the output string cannot be guaranteed.

As with many other members of the C run-time library, we simply have to document that the functions in the
CVTOH() family are not thread safe. They can be safely used in the presence of threads only if they are treated as
resources that require exclusive access that is synchronized by suitable thread primitives.

If a rounding pass is needed, we construct a new x, and try again:

/* Reconstruct rounding-adjusted x for second pass.
Because r is updated by 1/OUTPUT_BASE for each
output digit, we need (OUTPUT_BASE/2)*r to get the
bit that forces the rounding. */

f_bits = f_in + (fp_t)(OUTPUT_BASE / 2) * adjust;

#if B == 2
x = LDEXP(f_bits, n_exp_in);

#else

846 Chapter 26. Floating-point output

x = (fp_t)((hp_t)f_bits * HP_IPOW(HP(2.), n_exp_in));
#endif

} /* end if (pass == 1) */
} /* end if (finite x) */

} /* end for (pass ...) loop */

In binary arithmetic, the needed scaling is exact, and handled by the LDEXP() family. Otherwise, we need to scale by
a possibly inexact power of two, using higher precision when available. Most historical systems round by truncation,
so the two-pass loop is exited on the first pass, and that inexactness is not encountered.

On exit from the two-pass loop, we have the final digit string, and all that remains is to obey any request to trim
trailing zeros, supply the exponent, and then handle any required justification. We start with the zero-trimming and
exponent processing:

if (!ISNAN(x) && !ISINF(x))
{

s--; /* discard rounding digit */

if (s[-1] == ’_’)
s--; /* discard digit separator */

if (IS_SET(CVTO_TRIM_TRAILING_ZEROS))
{

while ((s[-1] == ’0’) || (s[-1] == ’_’))
s--;

if ((s[-1] == ’.’) && !IS_SET(CVTO_SHOW_POINT))
s--;

}

*s++ = ’p’;

if (show_subnormals)
n_exp = EMIN;

else if (x != ZERO)
n_exp--; /* because point FOLLOWS first nonzero bit */

(void)strlcpy(s, _cvtits(s, sizeof(buf) - (size_t)(s - &buf[0]), n_exp, 1, 1 + e_digits, g_digits),
sizeof(buf) - (size_t)(s - &buf[0]));

}

An internal library function, _cvits(), handles the exponent conversion without relying on any external routines.
The safe string-copy function, strlcpy(), once again protects against buffer overrun.

The final block of code handles justification, and returns to the caller. The common case is a zero min_width
argument, which requires no filling, so we check for that first, and avoid an unnecessary string copy.

lenbuf = (int)strlen(buf);

assert ((size_t)lenbuf < elementsof(buf));
assert (sizeof(buf) <= sizeof(bigbuf));

if (lenbuf >= min_width)
retbuf = &buf[0]; /* usual case: no fill needed */

The zero-fill case requires more code, because we first have to locate the insertion point after the hexadecimal prefix,
which we do by copying to the end of the prefix, then using two standard library routines to complete the job. Also,
we must limit the amount of fill to stay inside the internal buffer.

else if (IS_SET(CVTO_FILL_WITH_ZERO))

26.3. Hexadecimal floating-point output 847

{
char *t;
int n_fill;

n_fill = min_width - lenbuf;

if ((lenbuf + n_fill) >= (int)(elementsof(bigbuf) - 1))
n_fill = (int)(elementsof(bigbuf) - 1) - lenbuf;

s = &buf[0];
t = &bigbuf[0];

do
{

*t++ = *s++;
}
while (s[-1] != BASE_LETTER);

(void)memset(t, (int)’0’, (size_t)n_fill);
t += n_fill;
(void)strncpy(t, s, sizeof(bigbuf) - (size_t)(t - &bigbuf[0]));
bigbuf[elementsof(bigbuf) - 1] = ’\0’;
retbuf = &bigbuf[0];

}

By an arbitrary design decision, zero-fill digits are not subject to digit grouping. We use the safe version of the string-
copy library function, strncpy(), and because it does not supply a trailing NUL string terminator if the target string
is not big enough, we make sure to store a terminator in the last slot of bigbuf, and then set retbuf.

Otherwise, the result string must be justified (to the left, right, or center) with padding spaces. That operation
is needed in several output functions, so we implement it in a separate internal library function, _cvtjus(), whose
code is straightforward, and thus not shown here.

else
retbuf = (char *)_cvtjus(bigbuf, sizeof(bigbuf), buf, min_width, flags, 0);

With justification complete, we can now replace any plus sign that should be a space:

if (IS_SET(CVTO_SHOW_PLUS_AS_SPACE))
{

s = strchr(retbuf, PLUS_AS_SPACE);

if (s != (char *)NULL)
*s = ’ ’;

}

The final bit of code in CVTOH() handles any requested uppercasing (described in Section 26.3.4 on the following
page), and then returns a pointer to the converted string:

if (IS_SET(CVTO_SHOW_UPPERCASE))
retbuf = _cvtupper(retbuf);

return ((const char*)retbuf);
}
#endif /* !defined(CVTOHX_H) */

That completes our description of CVTOH(), a single function of about 210 nonempty lines, with another 140 lines
in three private functions, that provides a capability that has been absent from almost all computers and program-
ming languages since their invention. It is the simplest of the output-conversion routines in the mathcw library, but
there is clearly a lot more to the job than most programmers would have expected before looking at the code.

848 Chapter 26. Floating-point output

26.3.4 Conversion to uppercase

Although the C library provides macros and functions for converting single characters between uppercase and low-
ercase, it has no standard functions for doing that operation on a string, so we provide a private helper routine to do
the uppercasing work that we needed at the end of CVTOH():

char *
_cvtupper(char *s)
{

char *s_in;

for (s_in = s; *s; ++s)
*s = TOUPPER(*s);

return (s_in);
}

For our simple needs, the uppercase conversion can be done in place, overwriting the input with the output.
The TOUPPER() macro is a wrapper around the standard toupper() function. TOUPPER() first checks whether

its argument is a lowercase letter, because some older C implementations of toupper() do not work correctly for
arguments that are not lowercase letters.

For the special case of hexadecimal formatting, we have one-to-one mappings, because the only characters that
change case are abcdefpx. That avoids the complication of lettercase conversion in some languages:

� The mapping changes the number of characters, as for the German lowercase letter sharp-s, ß, which becomes
SS in uppercase.

� The mapping is context dependent, such as the uppercase Greek sigma, Σ, which maps to ς at the end of a
word, and otherwise to σ.

� The mapping is locale dependent, as in Turkish, which has both dotted and undotted forms of the Latin letter
I: ı ↔ I and i ↔ İ.

26.3.5 Determining rounding direction

For both input and output conversions, we need to know how the hardware rounds on addition. Although older
architectures generally supply only a single rounding mode, in systems that fully conform to IEEE 754 arithmetic,
at run time, four different binary rounding modes are available, and one additional mode is defined for decimal
arithmetic. IBM processors that implement decimal floating-point arithmetic include the five IEEE 754 decimal
modes, plus three others.

One way to determine the rounding direction is to invoke the C99 environment inquiry function, fegetround().
However, the mathcw library code is designed to work on a range of architectures, including historical ones that
predate IEEE 754 arithmetic.

We therefore need to determine the rounding direction by run-time experiments, which we can do by adding and
subtracting a quantity smaller than the machine epsilon, and then comparing the sum or difference with the original
number. That original number should be chosen away from the exponent boundaries of the floating-point system,
where the machine epsilons for addition and subtraction differ. We choose the halfway value, 1.5.

In IEEE 754 arithmetic, any value not larger than half the machine epsilon would suffice for the test; we could
even use the smallest representable normal number. However, most historical machines have peculiar rounding
behavior. If the added value is too small, it may not affect the rounding at all, and if it is too big, it may produce
unexpected rounding. The PDP-10 is an example of the latter; its architecture manual says [DEC76, page 2-36]:

Rounding is away from zero: if the part of the normalized answer being dropped (the low order part of the fraction) is greater
than or equal in magnitude to one half the LSB1 of the part being retained, the magnitude of the latter part is increased by one
LSB.

1LSB means Least Significant Bit.

26.3. Hexadecimal floating-point output 849

To illustrate that, we make a simple experiment in the 36-bit version of hoc on TOPS-20. The machine epsilon
is defined to be β−t+1 for a t-digit significand, and on the PDP-10, we have β = 2 and t = 27 (see Table H.1 on
page 948):

hoc36> eps = 2**(-26)

hoc36> println hexfp(1.5+eps), hexfp(1.5+eps/2), hexfp(1.5+eps/4)
+0x1.8000004p+0 +0x1.8000004p+0 +0x1.8p+0

hoc36> println hexfp(1.5-eps), hexfp(1.5-eps/2), hexfp(1.5-eps/4)
+0x1.7fffffcp+0 +0x1.8p+0 +0x1.8p+0

The surprise in the output is the result for 1.5 + eps/2; that should be 1.5 in a round to nearest mode, but on the
PDP-10, the sum rounds up. Adding eps/4 produces the expected result. Because of the aberrant rounding on the
PDP-10, the normal loop that we have used elsewhere in this book to compute the machine epsilon produces a result
that is half the predicted value.

Consequently, we use a value δ = ε/4, and compute 1.5 + δ, −1.5 − δ, and 1.5 − δ. The computation is encap-
sulated in a private helper function that returns a small integer value represented by one of four symbolic names
defined in the header file cvtdir.h:

int
_cvtdir(void)
{ /* Return the current rounding direction */

fp_t delta;
int result;
volatile fp_t sum1, sum2, sum3;

delta = FP_T_EPSILON * FOURTH;

sum1 = FP(1.5);
STORE(&sum1);
sum1 += delta;
STORE(&sum1);

sum2 = -FP(1.5);
STORE(&sum2);
sum2 -= delta;
STORE(&sum2);

sum3 = FP(1.5);
STORE(&sum3);
sum3 -= delta;
STORE(&sum3);

if (sum1 > FP(1.5))
result = CVT_FE_UPWARD;

else if (sum2 < -FP(1.5))
result = CVT_FE_DOWNWARD;

else if (sum3 < FP(1.5))
result = CVT_FE_TOWARDZERO;

else
result = CVT_FE_TONEAREST;

return (result);
}

The presence of long registers on some architectures complicates the test expressions for determining the round-
ing direction. We again need the volatile qualifier in variable declarations, and the STORE() macro, to force run-time

850 Chapter 26. Floating-point output

evaluation of the expressions, rather than compile-time evaluation that is immune to changes in the rounding direc-
tion.

Comparisons of the three sums with ±1.5 allow us to identify which of the four IEEE 754 rounding directions is
in effect, and should cause no harm (and behave sensibly) on older architectures.

For decimal arithmetic, the output-conversion code should be extended to identify, and handle, four additional
decimal rounding modes: IEEE 754-2008 round-ties-away-from-zero, and the IBM extensions round-ties-toward-zero,
round-away-from-zero, and round-to-prepare-for-shorter-precision.

26.4 Octal floating-point output

The C language has always supported octal integer constants, a legacy of the origins of UNIX on the 18-bit DEC
PDP-7 and the influence of the 36-bit and 60-bit computers of the 1960s. An octal digit encodes three bits, so word
sizes that are multiples of three are well suited to octal notation.

The use of octal notation was so common in the computing industry that it was carried forward from earlier PDP
models with 12-bit and 18-bit word sizes to the 16-bit DEC PDP-11, the machine on which the C language was first
developed, even though hexadecimal would have been more appropriate, because it is suited to word sizes that are
multiples of four bits. The source-code listing of Sixth Edition UNIX is riddled with octal integer constants [Lio96].

However, until the C99 Standard introduced the hexadecimal floating-point notation, such numbers have almost
always been written in decimal in computer programs and their input and output files, even though most computers
represent them in binary.

Floating-point conversion to octal is similar to that for hexadecimal, and the code in file cvtoox.h differs from
that in cvtohx.h by only a few lines:

static const char * digit_chars = "01234567";
static const char BASE_LETTER = ’o’;
static const int DIGIT_BITS = 3;
static const int OUTPUT_BASE = 8;

#define DIGIT_VALUE(c) ((int)c - (int)’0’)

In addition, the next_digit() function collects only three bits. The body of CVTOO() is identical to that of CVTOH(),
apart from the difference in function names.

Because there is no prior art for octal floating-point, we choose a prefix of 0o, by analogy with the hexadecimal
prefix 0x. An uppercase form of octal constants is clearly undesirable, because the prefix characters might not be
distinguishable.

The printf() family format letters already use o for octal integers, so we propose q and Q for octal floating-point.
hoc supports decimal, octal, and hexadecimal floating-point numbers like this:

hoc32> println PI, octfp(PI), hexfp(PI)
3.14159274 +0o1.44417666p+1 +0x1.921fb6p+1

hoc32> printf("%g %q %a\n", E, E, E)
2.71828 0o1.2677025p+1 0x1.5bf0a8p+1

hoc32> printf("%....10@ %....8@ %....16@\n", GAMMA, GAMMA, GAMMA)
10@5.77215672@e-1 8@4.47421500@e-1 16@9.3c4680@e-1

Note the difference: exponents of based literals are powers of the explicit base, whereas those for the octal and hexa-
decimal forms are powers of two:

hoc32> for (k = 1; k < 13; ++k) printf("%q\t%....8@\n", 10**k, 10**k)
0o1.2p+3 8@1.20000000@e+1
0o1.44p+6 8@1.44000000@e+2
0o1.75p+9 8@1.75000000@e+3
0o1.161p+13 8@2.34200000@e+4
0o1.4152p+16 8@3.03240000@e+5
0o1.72044p+19 8@3.64110000@e+6

26.5. Binary floating-point output 851

0o1.142264p+23 8@4.61132000@e+7
0o1.372741p+26 8@5.75360400@e+8
0o1.6715312p+29 8@7.34654500@e+9
0o1.12402762p+33 8@1.12402762@e+11
0o1.35103556p+36 8@1.35103556@e+12
0o1.64324512p+39 8@1.64324512@e+13

26.5 Binary floating-point output

Just as code for octal floating-point conversion is an easy modification of that for hexadecimal floating-point, binary
is too, and we adopt a prefix of 0b, and propose the printf() family format letters b and B.

hoc supports binary floating-point numbers like this:

hoc32> println PI, binfp(PI), hexfp(PI)
3.14159274 0b1.10010010000111111011011p+1 +0x1.921fb6p+1

hoc32> printf("%g %b %a\n", E, E, E)
2.71828 0b1.010110111111000010101p+1 0x1.5bf0a8p+1

hoc32> printf("%....10@ %....2@ %....16@\n", GAMMA, GAMMA, GAMMA)
10@5.77215672@e-1 2@1.00100111100010001101000@e-1 16@9.3c4680@e-1

Long strings of bits are hard to read, but digit-group separators fix that problem:

hoc32> printf("%...4b\n", PI)
0b1.1001_0010_0001_1111_1011_011p+1

hoc32> __GROUP__ = 4

hoc32> binfp(E)
0b1.0101_1011_1111_0000_1010_1p+1

26.6 Decimal floating-point output

The complexity in decimal conversion arises from the handling of multiple output formats (%e, %f, %g, and their
uppercase companions), and from additional code for scaling of the input value, determination of the maximum
decimal precision, optimization of the computation of powers of ten, trimming of trailing zeros, digit grouping, and
justification in a specified field width.

For decimal arithmetic, we can guarantee always-correctly rounded output, but we cannot do so for nondecimal
bases without access to arithmetic of much higher precision, as we discuss in Section 27.4 on page 895. Instead, we
do internal scaling and digit extraction in the highest supported precision. Alas, on some platforms, and with some
compilers, that is only the C type double.

To illustrate the numerical difficulties, consider Table 26.2, which shows just four numbers taken from a much
larger tabulation in work by Hough and Paxson [HP91] that describes how to find difficult cases for base conversion.

Fortunately, such problematic numbers are uncommon, and it may be more relevant to require only that enough
decimal digits be produced that input conversion can recover the original number exactly. Goldberg [Gol67] and
Matula [Mat68a, Mat68b] solved that problem long ago. Until their work, most programmers believed that all that
is necessary to find the decimal precision needed for a b-bit integer is to express its maximum value, 2b − 1, as a
decimal number, and count digits. Mathematically, the count is just �log10(2

b − 1)� ≈ �b log10(2)�.
Matula proved that the expression is sometimes off by one: the correct output-conversion formula is �b log10(2) +

1�. For conversion from n base-β digits, where β �= 10, the general formula for the number of decimal digits is
�n log10(β) + 1�.

Goldberg derived the correct formula for input conversion from d-digit decimal to general base β �= 10:
�d logβ(10) + 1� base-β digits are needed.

852 Chapter 26. Floating-point output

Table 26.2: Hard cases for binary to decimal conversion. Each binary value, shown here in product form, can be
exactly represented with a 53-bit significand, corresponding to approximately 16 decimal digits, yet as many as 42
decimal digits need to be generated to determine correct rounding.

Exact binary value Approximate decimal value

8 51103 00202 75656 × 2−342 9.49999 99999 99999 99986 79752 83150 92877 15063 14238 . . . × 10−088

8 09145 05872 92794 × 2−473 3.31771 01181 60031 08151 84999 99999 99999 99998 17539 . . . × 10−127

6 56725 88820 77402 × 2+952 2.50000 00000 00000 00040 44126 91966 14109 55316 71615 . . . × 10+302

8 54949 74112 94502 × 2−448 1.17625 78307 28540 37998 95000 00000 00000 00000 26745 . . . × 10−119

More precisely, for conversion of p digits in base α to q digits in base β, this relation must hold:

αp < βq−1.

Taking base-2 logarithms, that is equivalent to

p log2(α) < (q − 1) log2(β).

Solving for q, we find the general Goldberg/Matula condition for exact round-trip base conversion:

q > 1 + (p log2(α)/ log2(β)).

The inequality suggests evaluation with the ceiling function, but because the logarithms can take integral values,
some care is needed in translating the relation into code. One way is to compute the right-hand side, then adjust the
result if it is a whole number:

rhs = 1.0 + (double)p * log2(alpha) / log2(beta);
q = (int)((rhs == ceil(rhs)) ? ceil(rhs + 1.0) : ceil(rhs));

Another way is to increase the right-hand side by a tiny amount, and then apply the ceiling function:

q = (int)ceil((1.0 + DBL_EPSILON) * (1.0 + (double)p * log2(alpha) / log2(beta)));

Of course, the input and output bases are usually known, so the ratio of logarithms can then be replaced by a
precomputed numerical value.

The simpler formulas given earlier for conversion to and from decimal do not require the adjustment if we restrict
β to the range [2, 99].

Typical values from the Goldberg/Matula formulas for current and important historical systems (see Table H.1
on page 948) are summarized in Table 26.3 on the facing page. That table shows that 17 decimal digits suffice to
recover the 53-bit values in Table 26.2. For the first of them, the input value 9.5e-88 correctly recovers the exact
value +0x1.e3cb_c990_7fdc_8p-290.

Another important observation from the table is that we cannot convert exactly between the IEEE decimal and
binary formats within the same storage size. For example, for the 32-bit decimal storage format, 7 decimal digits
require 25 bits, one more than provided by the 32-bit binary format. The first and fourth pairs of table rows show
that the reverse is also true: a 32-bit binary format cannot be exactly represented by a 32-bit decimal format, and
similarly for the higher precisions.

We therefore take the view that, in the absence of the multiple-precision arithmetic software needed to produce
decimal strings that are always correctly rounded, we should limit the output precision to the Matula predictions,
and if the requested precision is larger, we then supply trailing zeros. There are several reasons for that decision:

� Novices often fail to understand the precision limitations of computer arithmetic, and may falsely assume that
a computed number printed to a large number of decimal places must be correct to the last digit. For them,
trailing zeros are more likely to teach them about the limitations.

� It should always be possible to output computed results, and then use those values as input to recover the
original internal values exactly. Provided that the output decimal precision follows the Matula rule, exact
round-trip conversion is possible.

26.6. Decimal floating-point output 853

Table 26.3: Base-conversion precisions according to the Goldberg/Matula formulas for common floating-point for-
mats. The extended IEEE 754 precisions are shaded.

Binary in 24 27 53 56 59 62 64 106 113 237
Decimal out 9 10 17 18 19 20 21 33 36 73

Octal in 13 26
Decimal out 13 25

Hexadecimal in 6 14 28
Decimal out 9 18 35

Decimal in 7 16 34 70
Binary out 25 55 114 234

Decimal in 7 16 34 70
Octal out 9 19 39 79

Decimal in 7 16 34 70
Hexadecimal out 7 15 30 60

� The conversion code is more efficient when superfluous output digits can be handled quickly. That is partic-
ularly important for software implementations of decimal floating-point arithmetic, where large output preci-
sions could otherwise be costly.

� The existence of the Goldberg/Matula formulas means that we can offer their predictions as easy-to-use de-
faults for the precision argument in our code. A negative precision, which is otherwise meaningless, is simply
replaced by the default.

It is regrettable that the ISO C Standards continue to follow a historical mistake in the printf() function
family in the C library of supplying a default precision of six when the precision is omitted in output format
conversions. Goldberg’s formula tells us that six decimal digits correctly determine only 21 bits, a value that is
smaller than the single-precision significand size of all current and historical floating-point formats.

Future code should use the Goldberg/Matula predictions, and we do so in Section 26.8 on page 865 for output
conversion in a general base, and in our extended conversion specifiers for the C printf() function family.

26.6.1 The decimal-conversion program interface

The outline of the mathcw library code for decimal conversion looks like this:

const char *
CVTOD(fp_t d, int min_width, int p_digits, int e_digits, int g_digits, int flags)
{

/* code body shown later */
}

As usual, the uppercase macro name expands to any of ten variants for binary and decimal floating-point arithmetic:
the same code applies to all of them.

The function converts the input number d to a decimal representation in an internal static character-string
buffer, and returns a pointer to that string. Subsequent calls to the function overwrite the buffer, so in a threaded
application, either a suitable locking mechanism must be used to ensure exclusive access, or more typically, only a
single thread should be given the task of doing I/O.

The min_width argument supplies the minimum field width. Shorter output strings are padded to that length
with spaces or leading zeros, according to flags described shortly. A negative or zero field width means that no
padding is required.

The p_digits argument specifies the precision. For %g-style conversion, it means the total number of significand
digits. For %e- and %f-style conversion, it means the number of fractional digits. As we noted earlier, our code
supplies trailing zeros beyond the Matula precision.

If the precision is negative, the code uses the Matula formula to reset the internal value of p_digits.

854 Chapter 26. Floating-point output

Table 26.4: Additional symbolic flags for decimal formatted output, as defined in the cvtocw.h header file. These
supplement the flags in Table 26.1.

Name Description
CVTO_E_STYLE %e-style conversion
CVTO_F_STYLE %f-style conversion
CVTO_G_STYLE %g-style conversion

If the precision is zero, for %e- and %f-style conversion, the code produces neither a decimal point (unless re-
quested by a flag), nor any fractional digits. For %g-style conversion, it resets the internal precision value to one.

To get the default behavior of the C printf() function family for a zero precision, set p_digits to six, but realize
that it is a poor choice.

The e_digits argument specifies the minimum number of digits in the exponent field. For Standard C behavior,
set it to two, but recognize that modern systems require at least three digits for type double, four for type long
double, and a future 256-bit decimal format needs seven.

A positive nonzero g_digits argument requests insertion of underscores between groups of that many digits,
counting away from the decimal point in the significand, and from the right in the exponent. Values of three to five
follow common practice in mathematical tables. Negative or zero values suppress digit grouping.

The final flags argument is the logical OR (or arithmetic sum, provided that replications are avoided) of the
output conversion flags given earlier in Table 26.1 on page 840 for other conversion functions, and additional ones
specific to decimal conversion, shown in Table 26.4.

The most significant settings in flags are CVTO_E_STYLE, CVTO_F_STYLE, and CVTO_G_STYLE. If more than one of
them are set, the code obeys the first one found, in alphabetical order. If none of them is set, CVTO_G_STYLE is the
default.

The code in CVTOD() begins with the usual local variable declarations:

static char jusbuf[MAXBUF]; /* return value is ptr to jusbuf[] */
static const char PLUS_AS_SPACE = ’?’;
char buf[sizeof(jusbuf)];
char digitbuf[sizeof(jusbuf)];
char *retbuf;
xp_t scale, x, y, z;
int f_digits, flag_e, flag_exact_zero, flag_f, flag_g, flag_plus,

flag_sharp, flag_space, flag_trim_zeros, flag_uppercase,
flag_zero, k, max_f_digits, max_precision, n_digits,
n_exponent, n_zero_digits, need, q;

The unusual feature here is a new data type, xp_t. It stands for extreme precision: the highest available floating-point
precision. Inexactness in binary-to-decimal conversion is a difficult problem, but computation in higher precision
can help to make most of the errors negligible.

Next we have sanity checks and initializations:

/* Verify and enforce C99 and internal limits on
format-conversion sizes */

assert(sizeof(buf) > 4095);
assert(sizeof(digitbuf) > 4095);
assert(sizeof(buf) > (size_t)(1 + FP_T_MAX_10_EXP + 2*T + 1 + 1));

/* Make local copies of flags for shorter code */

flag_exact_zero = IS_SET(CVTO_SHOW_EXACT_ZERO);
flag_plus = IS_SET(CVTO_FLAG_PLUS);
flag_sharp = IS_SET(CVTO_FLAG_SHARP);
flag_trim_zeros = IS_SET(CVTO_TRIM_TRAILING_ZEROS);

26.6. Decimal floating-point output 855

flag_space = IS_SET(CVTO_FLAG_SPACE);
flag_uppercase = IS_SET(CVTO_SHOW_UPPERCASE);
flag_zero = IS_SET(CVTO_FLAG_ZERO);

/* Because the formatting style is selected by flag bits, we guard
against conflicting requests by prioritizing them in
alphabetical order (e before f before g), and fall back
to g if none is set */

flag_e = IS_SET(CVTO_E_STYLE);
flag_f = flag_e ? 0 : IS_SET(CVTO_F_STYLE);
flag_g = (flag_e || flag_f) ? 0 : IS_SET(CVTO_G_STYLE);

if (!(flag_e || flag_f || flag_g))
flag_g = 1;

/* Handle defaults for digits */

max_precision = cvt_precision();
f_digits = p_digits;

if (f_digits < 0) /* default: minimum for exact round-trip conv. */
f_digits = flag_e ? (max_precision - 1) : max_precision;

/* warning: f_digits is reset below for %g conv. */

if (e_digits < 0)
e_digits = 0; /* default: minimal-width exponent */

else if (e_digits > MAXEXPWIDTH)
e_digits = MAXEXPWIDTH;

if (min_width < 0) /* default: minimal-width result */
min_width = 0;

z = (xp_t)ZERO; /* prevent warnings about use before set */

if (d < ZERO)
x = -(xp_t)d;

else
x = (xp_t)d;

The private function cvt_precision() implements the Matula formula, but we delay its presentation until Sec-
tion 26.6.10 on page 864.

26.6.2 Fast powers of ten

The CVTOD() code requires integer powers of ten in several places, and because the power operation is relatively
expensive, and possibly less accurate (in some implementations) than we would like, we need a fast way to compute
them. The easiest way is by table lookup, because generally only small integer powers are needed. Because we work
internally in the highest available precision, which is always at least of type double, the code includes three compile-
time tables of powers of ten, only one of which is selected on a given system, according to values of the standard
macros DBL_MIN_10_EXP and DBL_MAX_10_EXP in <float.h>. The tables handle the power ranges [−308,+308] for
IEEE 754 double, [−75,+75] for IBM System/360 hexadecimal, and [−38,+38] for the DEC PDP-10 and VAX. The
range for IEEE 754 arithmetic intentionally excludes subnormal numbers, because their effective precision is less than
that of normal numbers.

The private function power_of_10() (see Section 26.6.11 on page 864) provides access to the table, and resorts
to calling the general power function only for arguments outside the tabulated range. In most cases, the function

856 Chapter 26. Floating-point output

finds the needed powers quickly, and they are exact to machine precision, as long as the compiler’s input-conversion
facilities are not defective.

An approach that we have not implemented is to economize on table storage by using several small tables of
powers of ten, the first with powers 1, 2, . . . , 9, the second with powers 10, 20, . . . , 90, and so on, and then recursively
construct a large power by repeated multiplication. For example, to compute the power 104932 near the IEEE 754 128-
bit overflow limit, decompose the exponent as 4932 = 4000 + 900 + 30 + 2, find the four powers in the small tables,
and form the product of the powers to construct the needed power. In nondecimal arithmetic, that involves seven
rounding errors, four from the stored constants, and three from the multiplications. In the future 256-bit format
with seven-digit exponents, there could be thirteen rounding errors. To reduce the cumulative rounding error, we
would have to store the powers as sums of exact high and approximate low parts, and use pair-precision arithmetic
to generate the products. The mathcw library pow() function produces better accuracy, and guarantees exact powers
of the base, so for decimal arithmetic, all powers are exact.

Another possibility is to store just a small table of exactly representable powers, and a few correctly rounded
higher ones that are closest to their exact mathematical values, then find requested powers at run time by either exact
table lookup, or from a small number of multiplications. Because all of the possible powers are known, for a given
architecture, it is possible to identify computed results that differ from correctly rounded values, and correct them.
That correction can be done by supplying a compile-time constant compact array of flags that identify the erroneous
values, and tell whether they must be rounded up or down. In IEEE 754 arithmetic, numerical experiments on several
CPU architectures show that the computed values are never wrong by more than one ulp, so a two-bit flag suffices
to identify whether the computed result should be rounded up, rounded down, or kept unchanged. That idea may
have first been suggested by Jerome Coonen in his doctoral thesis at the University of California, Berkeley [Coo84,
Chapter 7]. That thesis supplies the mathematical and computational rationale behind the IEEE 754 Standard.

Test programs constructed by this author, and inspired by Coonen’s descriptions, show that 17 stored positive
powers can replace the 39 normally needed for the 32-bit format. For the 64-bit format, just 52 stored powers and ex-
ponents, augmented by a 14-word integer array containing packed two-bit flags, allow recovery of correctly rounded
values of the 309 possible positive powers. The storage economization to about 20% of a full table is unlikely to be
significant on modern systems, but it can be important for older architectures with limited memory, or when the
exponent range is large, as it is for the 128-bit and 256-bit formats.

A variant of the test using long double powers in both 80-bit and 128-bit IEEE 754 formats shows that the table
space can be reduced to just 5% of the full table, by storing 28 exact powers, and then every 45th power, along with
a compact array of two-bit rounding-adjustment flags.

A final experiment examined all possible pairs and triples of partitions of the positive integer powers, selecting
the minimal sets that could be used to reconstruct all powers without error. The storage requirements are about 54%
of the full table for pairs, and 40% for triples, which is inferior to Coonen’s approach.

26.6.3 Preliminary scaling

The code first converts the input argument d to a positive value x of type xp_t, the highest available precision, which
we use for computations inside CVTOD(). The conversion is exact because it either widens the value by adding trailing
zero digits, or else preserves the original digits when the input precision is equivalent to xp_t.

The key to correct digit extraction is conversion of the input argument to a whole number from which we can
accurately extract decimal digits from right to left. Let x = f × 10n with f in [1, 10). Then for %e-style conversion,
y = f × 10q has 1 + q decimal digits before the point, and is the floating-point number nearest the whole number
that we seek. For %f-style conversion, we need n + 1 + q digits in the whole number.

We determine the initial exponent with this code:

if (ISNAN(x))
n_exponent = 0;

else if (ISINF(x))
n_exponent = 0;

else if (x == ZERO)
n_exponent = 0;

else
{

26.6. Decimal floating-point output 857

#if B == 10
(void)XP_EXP(x, &n_exponent);
n_exponent--; /* adjust for f in [1,10) */

#else
n_exponent = (int)XP_FLOOR(XP_LOG10(x));

#endif

}

In decimal arithmetic, the exponent extraction is an exact operation provided by XP_FREXP(), a macro wrapper
that calls the frexp() family member that corresponds to type xp_t. Its return value corresponds to a fraction f
in [1/10, 1), so we decrement the exponent to move f into the needed range. We discard the fractional value, as
indicated by the (void) cast, because we later scale the original input value.

In nondecimal arithmetic, the floor of the base-10 logarithm recovers the exponent, and the macro wrappers
XP_FLOOR() and XP_LOG10() call the corresponding function family members of type xp_t. In borderline cases, it is
possible that the computed exponent is off by one; we take care of that later when we complete the reduction of the
input value to a whole number.

26.6.4 Support for %g-style conversion

The %g format conversion in the printf() function family provides a general numeric conversion that is intended to
be human friendly by avoiding exponential notation for numbers that are neither too big nor too small. However,
it is rarely suitable for producing neatly aligned tables of numbers. Roughly, the intent is that the %f style is used
when there are no more than three leading zero fractional digits for magnitudes smaller than one and for larger
magnitudes, no more than p_digits digits before the point, not counting filler zeros. Trailing fractional zeros, and
any trailing decimal point, are removed unless CVTO_SHOW_POINT (or its alternate name CVTO_FLAG_SHARP) is set in
flags.

Here is the precise specification from Technical Corrigendum 2 of the C99 Standard (section 7.19.6.1, p. 278),
which clarifies the opaque description in the original text:

g, G A double argument representing a floating-point number is converted in style f or e (or in style F or E in the case of
a G conversion specifier), depending on the value converted and the precision. Let P equal the precision if nonzero, 6 if the
precision is omitted, or 1 if the precision is zero. Then, if a conversion with style E would have an exponent of X:

� if P > X ≥ −4, the conversion is with style f (or F) and precision P − (X + 1).
� otherwise, the conversion is with style e (or E) and precision P − 1.

Finally, unless the # flag is used, any trailing zeros are removed from the fractional portion of the result and the decimal-
point character is removed if there is no fractional portion remaining.
A double argument representing an infinity or NaN is converted in the style of an f or F conversion specifier.

The translation of those requirements into code is straightforward, but as we documented earlier, the inappropri-
ate value six for p_digits must be supplied explicitly if needed:

if (flag_g)
{

if (p_digits < 0)
p_digits = max_precision;

else if (p_digits == 0)
p_digits = 1;

if ((p_digits > n_exponent) && (n_exponent >= -4))
{

flag_f = 1;
f_digits = p_digits - (n_exponent + 1);

}
else
{

858 Chapter 26. Floating-point output

flag_e = 1;
f_digits = p_digits - 1;

}

flag_g = 0;
flag_trim_zeros = flag_sharp ? 0 : 1;

}

From now on, we only need to handle %e- and %f-style conversion.
Some final adjustments are needed in case the caller passed an excessively large value of f_digits:

max_f_digits = flag_e ? (max_precision - 1) : max_precision;
max_f_digits = MIN(max_f_digits, f_digits);
n_zero_digits = MAX(f_digits - max_f_digits, 0);

Henceforth, the number of computed fractional digits is max_f_digits, and the remaining n_zero_digits digits are
just trailing zeros that we can assign without computation.

26.6.5 Buffer sizes

A short computation determines the buffer sizes required in the worst case:

if (flag_e)
need = 1 + (1 + 1 + f_digits) + 1 + 1 + (e_digits > 6 ? e_digits : 6) + 1;

else
need = 1 + (FP_T_MAX_10_EXP + f_digits) + 1 + 1;

if (g_digits > 0)
need *= 2; /* assume worst case with g_digits == 1 */

if (need > (int)elementsof(buf))
n_zero_digits -= need - (int)elementsof(buf);

if (min_width >= (int)elementsof(buf))
min_width = (int)elementsof(buf) - 1;

26.6.6 Special cases

NaN, Infinity, and exact zeros are easy to deal with:

if (ISNAN(d))
return (_cvtjus(jusbuf, elementsof(jusbuf), CVTON(d, flags), min_width, flags, 0));

else if (ISINF(d))
return (_cvtjus(jusbuf, elementsof(jusbuf), CVTOI(d,flags), min_width, flags, 0));

else if (flag_exact_zero && (d == ZERO))
{

(void)strlcpy(buf, (COPYSIGN(ONE, d) == -ONE) ? "-" : "+", sizeof(buf));
(void)strlcat(buf, "0", sizeof(buf));
(void)strlcat(buf, (flag_uppercase ? "E" : "e"), sizeof(buf));
(void)strlcat(buf, _cvtits(jusbuf, sizeof(jusbuf), 0, 1, 1 + e_digits, 0), sizeof(buf));
return (_cvtjus(jusbuf, elementsof(jusbuf), buf, min_width, flags, 0));

}

The safe string functions, strlcat() and strlcpy(), protect against buffer overrun.

26.6. Decimal floating-point output 859

26.6.7 Scaling and rounding adjustment

The preliminary scaling determined the power of ten of the input number, so we can combine that with the requested
precision to determine the final scaling. The code finds the required power of ten like this:

q = flag_e ? (max_f_digits - n_exponent) : max_f_digits;

The problem now is that if the input number is near the underflow limit, then 10q can overflow, even though x × 10q

is finite. Fortunately, <float.h> defines macros whose values are the maximum representable powers of ten for
each precision. We can therefore compare q with a suitable one of those values, and do the scaling in two steps if
necessary. The code looks like this:

if (q > FP_T_MAX_10_EXP)
{

int r, s;

r = q / 2;
s = q - r;
scale = power_of_10((s < r) ? s : r);
y = x * scale;
y *= scale;

if (r != s)
y *= XP_TEN;

}
else
{

scale = power_of_10(q);
y = x * scale;

}

Notice that the stepwise scaling is done only when needed to prevent overflow, because it introduces as many as
three additional rounding errors in a nondecimal base. The power_of_10() function is presented in Section 26.6.11
on page 864.

For %e conversion, we need to ensure that we have exactly the right number of digits, and rounding errors in the
determination of the exponent, and the subsequent power and scaling, can produce a final result that is slightly off.
We therefore require a check and possible adjustment:

if (flag_e)
{

z = power_of_10(max_f_digits);

if (y >= (z * XP_TEN))
{

do
{

#if B == 10
y *= XP_TENTH;

#else
y /= XP_TEN;

#endif
n_exponent++;

}
while (y >= (z * XP_TEN));

/* If numeric error causes y to fall below z, reset
it to z: d must then be an exact power of 10. */

if (y < z)
y = z;

860 Chapter 26. Floating-point output

}
}

In a nondecimal base, we divide by an exact constant, rather than multiplying by an inexact one, to avoid introducing
extra rounding errors.

The whole number nearest the scaled value is now easily determined from a new rounding function introduced
in C99, and described in Section 6.4 on page 132:

y = XP_RINT(y);

We have not quite completed the job, however. Consider output of the value 9.9999 with a %.3e format. The
scaling by 10q produces the number 9999.9, and Rint() converts that to 10000, which would then be converted to
10.000e+00 instead of the expected 1.000e+01. Another scaling check is therefore required:

if (flag_e)
{

xp_t ymin, yred;

ymin = power_of_10(max_f_digits);

#if B == 10
yred = y * XP_TENTH; /* exact scaling */

#else
yred = y / XP_TEN; /* inexact scaling */

#endif

if (ymin <= yred) /* y rounded out of range [ymin, ymax) */
{

y = yred; /* y now safely back in [ymin, ymax) */
n_exponent++;

}
}

Once again, in a nondecimal base, we use division instead of multiplication to avoid introducing an extra rounding
error.

26.6.8 Digit generation

At this point, y contains the correctly rounded whole number from which we extract digits from right to left. The ex-
traction must be an exact operation. In the decimal case, we could do it with simple arithmetic and type conversions
between decimal and integer types. However, in the nondecimal case, the only way to guarantee exactness is to use
the comparatively expensive fmod() function family. Integer operations would be exact, but in the C language, we
lack an integer type of sufficient width to handle all possible floating-point significand sizes.

An implementation consideration forces use of fmod() also in the decimal case, because type conversions between
decimal floating-point and either binary floating-point or integer types in the GNU C library use sprintf(). We use
CVTOD() in our own printf() family implementation, so we need to prevent circular use of those functions.

Because we work from right to left, we start at the end of the character-string buffer, and begin by storing a string
terminator, and any required filler zeros:

k = (int)elementsof(digitbuf);
digitbuf[--k] = ’\0’;

while (n_zero_digits-- > 0) /* zero fill beyond max_f_digits */
digitbuf[--k] = ’0’;

We are now ready for the digit-extraction loop, which is the most expensive part of CVTOD(), because of the
XP_FMOD() calls:

26.6. Decimal floating-point output 861

n_digits = 0;

while (k > 2) /* collect digits from right to left, */
{ /* leaving space for sign and point */

static const char *digits = "0123456789";
int digit;

digit = (int)XP_FMOD(y, XP_TEN);
assert((0 <= digit) && (digit < 10));
digitbuf[--k] = digits[digit];

#if B == 10
y *= XP_TENTH; /* exact scaling */

#else
y /= XP_TEN; /* inexact scaling */

#endif

n_digits++;

if (n_digits == max_f_digits)
digitbuf[--k] = ’.’;

else if ((n_digits > max_f_digits) && (y < ONE))
break;

}

We count the computed digits, but not the filler zeros, and when we have converted all of the required fractional
digits, we store a decimal point. Otherwise, we generate at least one more digit, and exit the loop when y contains
no more digits. That procedure handles both %e- and %f-style conversion.

The assertion that the computed digit is a decimal digit is important; on at least two different platforms, it exposed
errors in compiler code generation for the fmod() function.

In the decimal case, multiplication by 1/10 is the fastest way to reduce y, and the operation is exact.
In the nondecimal case, the factor 1/10 is inexact, and its use would introduce an unwanted additional rounding

error, so we instead use a division by the exact constant 10. That operation introduces a rounding error, but because
we started with a whole number, the error affects only the fractional digits, and is unlikely to produce an incorrect
low-order integer digit, especially because we are working in higher precision.

26.6.9 Completing decimal output conversion

The hard part of the work, digit conversion, is now complete, and all that remains is some cleanup. First, we supply
any required sign:

if (SIGNBIT(d))
digitbuf[--k] = ’-’;

else if (flag_plus)
digitbuf[--k] = ’+’;

else if (flag_space)
digitbuf[--k] = ’ ’;

We handle zero trimming next:

if (flag_trim_zeros && (strchr(&digitbuf[k], ’.’) != (char *)NULL))
{

int j;

for (j = (int)elementsof(digitbuf) - 2; digitbuf[j] == ’0’;j--)
digitbuf[j] = ’\0’;

if (digitbuf[j] == ’.’)

862 Chapter 26. Floating-point output

digitbuf[j] = ’\0’;
}

We then copy the digit string into the output buffer, supply any required final decimal point, and attach the exponent
field:

(void)strlcpy(buf, &digitbuf[k], sizeof(buf));

if (flag_sharp && (strchr(buf, ’.’) == (char *)NULL))
(void)strlcat(buf, ".", sizeof(buf));

if (flag_e)
{

(void)strlcat(buf, flag_uppercase ? "E" : "e", sizeof(buf));
(void)strlcat(buf, _cvtits(jusbuf, sizeof(jusbuf), n_exponent, 1, 1 + e_digits, g_digits),

sizeof(buf));
}

If zero filling is required, we do it in digitbuf[], and then copy the result back to buf[]:

if (flag_zero && !IS_SET(CVTO_FLAG_MINUS))
{

int fill_count;

fill_count = min_width - (int)strlen(buf);

if (fill_count > 0)
{

const char *p;
int need_zero_fill;

need_zero_fill = 1;
p = &buf[0];

for (k = 0; *p; ++k)
{

if (need_zero_fill && (isdigit(*p) || (*p == ’.’)))
{

while (fill_count-- > 0)
digitbuf[k++] = ’0’;

need_zero_fill = 0;
}
digitbuf[k] = *p++;

}

digitbuf[k] = ’\0’;
(void)strlcpy(buf, digitbuf, sizeof(buf));

}
}

We next supply any requested digit grouping:

if (g_digits > 0)
{

char *p;
size_t start;
char tmpbuf[sizeof(buf)];
char save;

26.6. Decimal floating-point output 863

for (p = &buf[0]; !isdigit(*p); ++p)
/* NO-OP */ ;

/* handle prefix of number (spaces and optional sign) */

start = (size_t)(p - &buf[0]); /* buf[start] holds 1st digit */
(void)strlcpy(tmpbuf, buf, start + 1);

/* handle number */

for (; (*p == ’.’) || isdigit(*p); ++p)
/* NO-OP */; /* find character AFTER number */

save = *p;
p = ’\0’; / temporarily terminate number string */
(void)strlcat(tmpbuf, _cvtgpn(jusbuf, sizeof(jusbuf), &buf[start], g_digits), sizeof(tmpbuf));
*p = save;

if (flag_e)
{

char e[3];

/* handle "e+" */

e[0] = p[0];
e[1] = p[1];
e[2] = ’\0’;
(void)strlcat(tmpbuf, e, sizeof(tmpbuf));

/* handle exponent digits */

(void)strlcat(tmpbuf, _cvtgpn(jusbuf, elementsof(jusbuf), p + 2, g_digits), sizeof(tmpbuf));
}

(void)strlcpy(buf, tmpbuf, sizeof(buf));
}

The final task is to supply any requested justification, replace any plus-as-space substitute with a space, and
return to the caller:

retbuf = (char *)_cvtjus(jusbuf, sizeof(jusbuf), buf, min_width, flags, 0);

if (IS_SET(CVTO_SHOW_PLUS_AS_SPACE))
{

char * s;

s = strchr(retbuf, PLUS_AS_SPACE);

if (s != (char *)NULL)
*s = ’ ’;

}

return (retbuf);
} /* end of CVTOD() */

864 Chapter 26. Floating-point output

26.6.10 Computing the minimum desirable precision

The Matula formula given on page 851 predicts the minimum number of decimal digits needed to guarantee correct
round-trip conversion between nondecimal and decimal bases. Although it is not difficult to implement in general,
we can economize by supplying numerical values of the logarithm ratios for common bases, with a fallback to the
general formula that in practice is never used in the code.

A private function in the file cvtodx.h hides the base dependence:

static int
cvt_precision(void)
{

int t;

#define _logb(b,x) ((log)(x) / (log)(b))

/* Return the minimal number of digits in base 10 needed to
represent a T-digit base-B number. The Matula/Goldberg result
is ceil(1 + T/log[B](base)), but the leading "1" term is not
needed when B is a power of b, or vice versa. We handle common
cases explicitly to avoid a costly base-B logarithm. */

#if B == 2

t = (int)ceil(1.0 + (double)T * 0.3010299956639812);

#elif B == 8

t = (int)ceil(1.0 + (double)T * 0.90308998699194343);

#elif B == 10

t = (int)T;

#elif B == 16

t = (int)ceil(1.0 + (double)T * 1.2041199826559246);

#else

t = (int)ceil(1.0 + (double)T / _logb((double)B, 10.0));

#endif /* B == 2 */

return (t);
}

26.6.11 Coding fast powers of ten

In Section 26.6.2 on page 855, we described the need for fast powers of ten, but temporarily omitted the implemen-
tation so as not to interrupt the presentation of the code for CVTOD(). Here is how we handle the job with a private
function in the file cvtodx.h:

static xp_t
power_of_10(int n)
{ /* interface to high-precision XP_EXP10(n) with fast table lookup

for 10**n */
xp_t result;

26.7. Accuracy of output conversion 865

int k;

k = n + p10_bias;

if ((0 <= k) && (k < (int)elementsof(p10)))
result = p10[k];

else
{

#if B == 10
result = XP_LDEXP(XP(1.), n);

#else
result = XP_EXP10((xp_t)n);

#endif

}

return (result);
}

In a binary base, the p10[] array is initialized with correctly rounded hexadecimal floating-point values when
compiler support is available. Otherwise, the initializers are wrapped constants like XP(1e23). Trailing zeros are
suppressed in order to avoid changing the quantization of decimal floating-point values.

That completes our presentation of the important mathcw library function family, CVTOD(), for converting na-
tive floating-point values to human-readable decimal representations. The total amount of code required is about
275 nonblank lines, somewhat less than that required for conversion to binary, octal, and hexadecimal strings. The
significant difference is that, when the native floating-point arithmetic is not decimal, the digit conversion process is
subject to rounding error, and thus, is inexact. We examine that problem further in the next section.

26.7 Accuracy of output conversion

The code in CVTOD() is complex, and the conversion flags introduce many small variations in behavior. Also, for
large-magnitude exponents outside the tabulated range, scaling accuracy depends critically on the quality of the
pow() function family. Thus, extensive testing is imperative.

For the float data type on 32-bit systems, an exhaustive test with every possible significand value shows that
cvtodf() and its companion for input, cvtidf() described in Section 27.4 on page 895, provide exact round-trip
conversion.

Such a test is infeasible in higher precisions, but testing with hundreds of millions of logarithmically distributed
random arguments on several different architectures shows exact conversions in the functions for the binary data
types float and double when a higher-precision type is available. For the data type long double, the largest error
does not exceed 3.6 ulps, and the average error is below 0.4 ulps.

For binary, octal, and hexadecimal conversions with the 32-bit and 64-bit decimal types, about 1% of the results
show round-trip conversion errors larger than 0.5 ulps, but none above 1.8 ulps. For the 128-bit decimal_long_double
data type, where no higher intermediate precision is currently available, about 1% of the tests with random argu-
ments have errors above 1.0 ulps, but never bigger than 2.3 ulps.

26.8 Output conversion to a general base

At the beginning of this chapter, we describe based numbers, which represent floating-point values in any base from
2 to 36, using decimal digits and English letters as extended digits. For example, the decimal value 1 234 567 can
be written in base 25 as 25@3.407h@e+4. The constant begins with the base in decimal, its digits are delimited by @
characters, and the power of the base is written in decimal following the letter e. The sample can be decoded like
this: (3+ 4/25+ 0/252 + 7/253 + 17/254)× 254 = 3× 254 + 4× 253 + 7× 25+ 17 = 1 171 875+ 62 500+ 175+ 17 =
1 234 567.

866 Chapter 26. Floating-point output

The function that provides the general output conversion has this outline:

const char *
CVTOG(fp_t d, int min_width, int p_digits, int e_digits, int g_digits, int base, int flags)
{

/* code body omitted */
}

As usual, the name CVTOG() represents ten variants for binary and decimal floating-point arithmetic.
The function prototype differs from that of CVTOD() by the addition of the base argument. If base is out of the

range [2, 36], the code resets it internally to 10, because a decimal base is most familiar to humans. The two functions
handle all of the other arguments identically.

The code in CVTOD() and CVTOG() has much in common, so we do not show any more of it here. CVTOG() requires
the general Matula formula to determine the maximum precision needed for correct round-trip conversion, including
the omission of the extra term when the input base is a power of the output base, or vice versa. Powers of the base
are generated by exact scaling when the base matches an integral power of the native base, or by table lookup for
common powers of ten for a decimal base, and otherwise, by calling the pow() function family directly, but in the
highest available precision.

26.9 Output conversion of Infinity

A short function provides conversion of Infinity to a string representation:

const char *
CVTOI(fp_t x, int flags)
{

/* code body omitted */
}

The uppercase macro name represents any of ten variants for binary and decimal floating-point arithmetic.
In the flags argument, only sign and lettercase flags are obeyed, because CVTOI() is intended primarily for

internal use by other conversion functions that handle justification separately.
If the argument is not an Infinity, CVTOI() returns a NULL pointer. Otherwise, it returns a pointer to a constant

string ("Inf", "inf", or "INF"), possibly signed or with a leading space, depending on the settings in the flags
argument.

26.10 Output conversion of NaN

The last low-level conversion function that we describe in this chapter handles conversions of NaNs, showing their
type and their payloads:

const char *
CVTON(fp_t x, int flags)
{

/* code body omitted */
}

The uppercase macro name expands to any of ten variants for binary and decimal floating-point arithmetic.
In the flags argument, only sign and lettercase flags are obeyed, because CVTON() is intended primarily for

internal use by other conversion functions that handle justification separately.
If the argument is not a NaN, CVTON() returns a NULL pointer. Otherwise, it returns a pointer to a string stored

in an internal static buffer that is overwritten on the next call to CVTON(), so the usual caveats about multithreaded
applications apply.

For example, on one system, the call cvtonf(snanf("0xfeedface"), 0) returns the string "snan(0x2dface)". The
32-bit format has room for only a 22-bit payload, so the 32-bit payload passed to snanf() is truncated, producing the

26.11. Number-to-string conversion 867

storage value 0xffadface on return. cvtonf() then determines that its argument is a signaling NaN, and returns the
value shown.

CVTON() drops leading zero digits from the payload and discards the parenthesized payload altogether if it is
zero, so on many systems, cvton(0.0/0.0, 0) produces the string "qnan". Some architectures, such as MIPS and
SPARC, produce default NaNs with all significand bits set to one; for them, the sample call produces the string
"qnan(0x7ffffffffffff)".

When the host architecture supports only one kind of NaN, the returned value begins with "nan". Examples
of such systems include the Intel IA-32 architecture, the Java Virtual Machine, and the Microsoft .NET Framework
Common Language Infrastructure (CLI) virtual machine.

NaN payloads cannot be expected to be the same across architectures, or to be preserved in the output of a
numeric CPU instruction with a NaN operand. However, on most platforms, payloads remain intact when NaNs
are simply copied from one location to another, and programmers may therefore find it useful to produce distinctive
payloads in explicitly generated NaNs so that they can later be identified in output conversions.

We omit further description of the internals of the cvton() function family. The code requires messy and tedious
bit manipulation for ten variants of arithmetic, two endian addressing conventions, and for 80-bit long double,
suffers additional complications from systems that store them in 10-, 12-, or 16-byte fields. The code also has to
handle systems that use paired double for long double, and platforms for which <float.h> incorrectly declares
80-bit long double constants, but the compiler maps that type to 64-bit double.

26.11 Number-to-string conversion

It is often useful to have simple functions for converting numbers to strings, where the format and precision are
chosen automatically to allow exact round-trip conversion. The Standard C library does not have such a function,
but the mathcw library does. Its ntos() function family provides this user interface:

const char *
NTOS(fp_t x)
{

static char result[MAXOUT];

/* ... code omitted ... */
}

The returned value is a pointer to the internal buffer result[], and as such, that storage area is overwritten on
the next call to the function. Thus, the function must not be used more than once in the argument list of a call to
another function, and threaded applications need to limit the use of that function to a single thread, or else protect
calls to it with an exclusive lock.

For binary arithmetic, the ntos() functions are simply wrappers around a call to snprintf() with a %+.*g-style
format, where the precision is chosen according to Matula’s formula (see page 851). For decimal arithmetic, the code
instead calls the appropriate conversion function in the IBM decNumber library.

One critical feature of the decimal conversion provided by the ntos() family is that it preserves the quantization,
a vital aspect of decimal arithmetic that we discuss in Section D.3 on page 931. That information is lost when the
C-style library conversion routines, such as the printf() and strtod() families, are used.

26.12 The printf() family

The last set of functions that we describe in this chapter are the most complex for the user, and also for the pro-
grammer. The general notion is straightforward: a format string describes the output stream with a little language
in which ordinary characters are output verbatim, and special sequences, called conversion specifiers, control the con-
version and output of the next argument.

The output stream is written to a user-provided character-string buffer, or to a file, depending on which member
of the printf() function family is called. There are eight family members, with these prototypes:

#include <stdio.h>

868 Chapter 26. Floating-point output

int fprintf (FILE * restrict stream, const char * restrict format, ...);

int printf (const char * restrict format, ...);

int snprintf (char * restrict s, size_t n, const char * restrict format, ...);

int sprintf (char * restrict s, const char * restrict format, ...);

#include <stdarg.h>
#include <stdio.h>

int vfprintf (FILE * restrict stream, const char * restrict format, va_list arg);

int vprintf (const char * restrict format, va_list arg);

int vsnprintf (char * restrict s, size_t n, const char * restrict format, va_list arg);

int vsprintf (char * restrict s, const char * restrict format, va_list arg);

The four functions beginning with v were added in C89.
The restrict qualifier, introduced in C99, is an optimization hint to the compiler. It does not change the behavior

of the function, but it does mean that it is the programmer’s responsibility to ensure that the restrict-qualified
arguments cannot overlap in memory with any other arguments.

The first two functions in each block of four write their output to a file. printf() and vprintf() are convenience
functions that are equivalent to calling fprintf() and vfprintf(), respectively, with stdout as the initial argument.
The remaining functions in each block send their output to a string.

All of the functions return the number of characters produced, even if some of them cannot be transmitted to
a destination string because it is too small. For output to a string, the return value does not count the NUL string-
terminator character. That character is always written, unless the output buffer size is zero. On error, the functions
return EOF, a standard macro defined in <stdio.h> that expands to an unspecified negative value of type int.

Before C89, the return values from the printf() family varied between implementations, and consequently, most
programmers ignore the return value, and careful ones indicate that fact by prefixing the calls with a (void) cast.
Nevertheless, the return value can be useful. An initial call to snprintf() with a small string buffer can dynamically
determine how much storage is really needed. The program can then allocate a suitable memory block and retry the
call with the new storage.

For file output, an EOF return is a useful indication that something has gone wrong: the cause is often a full or
inaccessible filesystem, or a write-protected file or directory. Programmers who are in the habit of ignoring printf()
return values should at least call ferror() after a series of output statements to check that all is still well.

A return of EOF is also required for an erroneous conversion specifier. Because most implementations process the
format string in a single pass, in such a case, earlier parts of the format may have already produced output, but the
remainder of the format string is not processed, and in particular, is not examined for further errors, and produces
no further output. In the mathcw implementation, erroneous specifiers elicit a report on stderr.

26.12.1 Dangers of printf()

The historical sprintf() function, and its newer companion vsprintf(), are deprecated, because they fail to provide
an argument that defines the size of the output string. Buffer overruns from calls to those functions have been, and
continue to be, a serious source of both program failure, and security breaches.

Modern code should scrupulously avoid those deprecated functions in favor of snprintf() and vsnprintf().
All modern systems have both of those functions, but up until the late 1990s, some vendors did not provide them,
and they are likely to be absent from older systems that now run only in simulators.

Writing beyond the end of the output string is not the only insecurity of those functions. There are several other
problems with all of the printf() family that programmers need to be aware of:

26.12. The printf() family 869

� If the format argument is not a compile-time constant, but instead can be specified at run time by the user, or
otherwise modified in memory through another security breach, then it can be used to subvert the software.

That problem is likely to increase, in part because software internationalization requires replacement of all
program strings that could be visible in output with calls to library functions that look them up in translation
libraries, and return a locale-specific alternative. For example, internationalization allows the famous greeting,
"Hello, world", from the original book on C to be output as "Bonjour, le monde" and "Hej, verden" in
French and Danish locales.2

Another example of that kind of insecurity arises when the programmer replaces a simple printf("%s", t)
with the more compact printf(t): if t contains conversion specifiers, their interpretation by printf() has
unpredictable consequences. The safe way is to use the original call, or else fputs(t, stdout).

� When there are fewer arguments after the format string than conversion specifiers, the printf() code attempts
to retrieve nonexistent arguments: program failure is likely. The design of the C calling conventions makes it
impossible in any portable way for printf() to detect missing arguments.

� Extra arguments beyond the last one consumed by a conversion specifier are ignored. That is generally harm-
less, but may nevertheless be puzzling when expected output does not appear. Fortran programmers are
used to format strings being reused cyclicly when there are extra arguments, but that does not happen with
printf().

Programmers are advised that there is so much processing behind input and output functions that there is no
reason to write giant format strings and long lists of arguments; they just make format debugging harder. A
series of function calls, each with just a few conversion specifiers, is likely to be as fast, and the code is easier
to write, and to read.

� If conversion-specifier widths or precisions are provided at run time by additional arguments, it is impossible
to predict by source-code analysis or at compile time how much output can be produced.

� If the %n conversion specifier, which writes the current output character count into a memory location defined
by a pointer argument, is used, then an attacker may be able to exploit that feature to write arbitrary text at
arbitrary memory locations, completely subverting security. Once again, the design of the C language makes
it impossible for printf() to validate an argument pointer before storing data into the memory location that it
references.

� All printf() implementations need internal storage to develop temporary copies of format conversions, but
they may not be universally reliable in preventing their code from writing beyond the bounds of that storage.
C89 requires that any single conversion specifier be able to produce at least 509 characters, and C99 raises
that limit to 4095 characters. Ours supports 10239 characters. Older implementations are unlikely to even
document such limits.

String conversions with the %s specifier might be handled by simply copying characters from an argument to
the output, without needing an intermediate storage buffer, but modifiers in the specifier that set justification,
precision, or minimum width may force use of an internal buffer. A program that successfully outputs long
strings with printf() on one system may therefore fail on another where the implementation technique differs,
or internal buffers are smaller. Long strings might be handled more efficiently and more safely with fputs()
or strncpy().

� Ignored return values can mask or delay recognition of an error in a conversion specifier, or a filesystem prob-
lem, until much later, when the error can be much harder to locate and diagnose. Often, that means that the
program reports successful completion, when in fact it failed to perform as expected.

� In C, the scanf() input conversion specifiers and the printf() output specifiers look similar, but behave dif-
ferently. That usually surprises Fortran programmers, who are used to identical behavior for input and output
format items.

2See ftp://ftp.gnu.org/gnu/hello/ for a sample implementation of string internationalization.

870 Chapter 26. Floating-point output

� The width modifier in specifiers sets the minimum output width, but the output field expands if needed to
contain a long result. No mechanism exists in printf() to specify a maximum field width that works for all
defined specifiers.

Tools like cppcheck, its4, lint, rats, and splint, and some compilers with additional options, can analyze
source code and report potential vulnerabilities, including writable format strings, and mismatches in argument
counts and data types in the printf() family.

In older languages, like Fortran and Pascal, I/O is part of the language, rather than relegated to the run-time
library as it is in C, so compilers interpret I/O statements, and can prevent mismatches in argument counts and
types. Output to strings was not part of the original definitions of those languages, so the buffer-overrun security
hole was absent as well.

The designers of some later languages, such as Ada and Java, chose to eliminate convenient formatted I/O en-
tirely; they force the programmer to call object-to-string conversion functions, largely eliminate pointers, and make
safe strings a part of the language. Nevertheless, the demand for better control over output formatting led to the
introduction of a printf()-like string-formatting facility in Java 1.5, more than a decade after the language was first
introduced.

Many scripting languages developed in the UNIX world include a printf() function or statement, although
some exclude snprintf(), the %n conversion specifier, and run-time setting of widths and precision, in an attempt to
improve security and reliability. See Seacord’s comprehensive treatment [Sea05] of security problems in C and C++
for that example, and many others.

The view of many seasoned programmers is that the convenience and the power of the printf() family are too
important to give up, particularly because most uses of those functions are completely safe. Highways, oceans, and
skies, and computer and telephone networks, carry lots of safe and legal traffic, but they also have accidents, failures,
and illegal activities. The best approach with all of those technologies is to be informed of the dangers, and proceed
with caution.

26.12.2 Variable argument lists

The printf() family, and the scanf() family input companions, and their wide-character variants, are the only
functions with variable argument lists in the Standard C run-time library. The feature is useful for user code, often
for specialized functions that are wrappers that ultimately call I/O functions. The four new functions beginning
with v were added in C99 to facilitate the writing of user functions that act that way.

For example, in a large program, it may be desirable to make error reporting uniform, without needing to include
<stdio.h> everywhere, and without committing the output destination to a file or a string: it might instead need to
go to a network connection, or to a window system. Here is how such a wrapper can be written:

#include <stdarg.h>
#include <stdio.h>

void
error(int severity_code, const char * format, ...)
{

va_list args;

va_start(args, format);
(void)fprintf (stderr, "Error code %d: ", severity_code);
(void)vfprintf(stderr, format, args);
(void)fprintf (stderr, "\n");
va_end(args);

exit(EXIT_FAILURE);
}

A typical call might then look like this:

error(ENOSPC, "device full in output to %.255s", filename);

26.12. The printf() family 871

Before C89, variable arguments were handled by a slightly different syntax, and a different header file,
<varargs.h>. Modern code should use the new style defined in <stdarg.h> exclusively, and some recent compilers
have dropped support for the old style entirely, so we do not describe it further here.

26.12.3 Implementing the printf() family

The key observation about the printf() functions is that they behave identically, apart from what happens to their
output: it may go to a file or to a string. If it goes to a string, the specification of the snprintf() and vsnprintf()
functions requires that it not be an error to produce more characters than the string buffer can hold, but execution
must continue with storage suppressed when it would be beyond the end of the buffer.

In the mathcw library, we handle all eight family members identically, by introducing a special destination data
structure called a sink, and defined like this:

typedef struct sink_s
{

FILE *stream;
char *s;
size_t n;
size_t next;

} sink_t;

Exactly one of the two pointers is NULL, and for a string, the two remaining structure members record the maximum
string size, and the index of the next available slot in the string.

The four functions beginning with v then have simple code bodies:

int
(vfprintf)(FILE * restrict stream, const char * restrict format, va_list arg)
{

sink_t sink;

return (vprt(new_sink_file(&sink, stream), format, arg));
}

int
(vprintf)(const char * restrict format, va_list arg)
{

sink_t sink;

return (vprt(new_sink_file(&sink, stdout), format, arg));
}

int
(vsnprintf)(char * restrict s, size_t n, const char * restrict format, va_list arg)
{

sink_t sink;

return (vprt(new_sink_string(&sink, s, n), format, arg));
}

int
(vsprintf)(char * restrict s, const char * restrict format, va_list arg)
{

sink_t sink;

return (vprt(new_sink_string(&sink, s, SIZE_T_MAX), format, arg));
}

872 Chapter 26. Floating-point output

The parenthesized function names prevent preprocessor function-like macro expansion. The private functions
new_sink_file() and new_sink_string() handle the initialization of a sink object, which is then not examined
further until a character is ready for output. vsprintf() deals with the lack of an output size by declaring the out-
put string to have the largest possible value that can be represented in a value of type size_t, even though that is
certainly wrong.

The remaining four functions are only slightly more complicated, and they all call their counterparts that start
with v:

int
(fprintf)(FILE * restrict stream, const char * restrict format, ...)
{

int count_or_eof;
va_list ap;

va_start(ap, format);
count_or_eof = (vfprintf)(stream, format, ap);
va_end(ap);

return (count_or_eof);
}

int
(printf)(const char * restrict format, ...)
{

int count_or_eof;
va_list ap;

va_start(ap, format);
count_or_eof = (vprintf)(format, ap);
va_end(ap);

return (count_or_eof);
}

int
(snprintf)(char * restrict s, size_t n, const char * restrict format, ...)
{

int count_or_eof;
va_list ap;

va_start(ap, format);
count_or_eof = (vsnprintf)(s, n, format, ap);
va_end(ap);

return (count_or_eof);
}

int
(sprintf)(char * restrict s, const char * restrict format, ...)
{

int count_or_eof;
va_list ap;

va_start(ap, format);
count_or_eof = (vsprintf)(s, format, ap);
va_end(ap);

return (count_or_eof);

26.12. The printf() family 873

Table 26.5: Output conversion specifiers (part 1). Each may be enhanced with additional modifiers following the
percent.
Using brackets to indicate optional values, the general syntax of a conversion specifier is

%[flags][width][.precision[.exponentsize[.groupsize[.base]]]]letter.
The exponentsize, groupsize, and base modifiers, and the %@ conversion specifier, are important extensions in the
mathcw library and the hoc language; they do not exist in other languages in the C family.
Specifiers in the second part of the table are extensions to C89 and C99.

Item Description
%% Literal percent character. For C99, the optional values must be omitted for that specifier, but that is not required by the mathcw

library implementation.
%A Hexadecimal floating-point value with uppercase digits (e.g., -0Xd.ddd...P+d). The exponent has a minimum number of digits, and

is zero for a zero value. [C99]
%a Hexadecimal floating-point value with lowercase digits (e.g., -0xd.ddd...p+d). The exponent has a minimum number of digits, and

is zero for a zero value. [C99]
%c unsigned char, or with the l (ell) modifier, unsigned wchar_t.
%d Decimal integer.
%E Floating-point value (e.g., -d.ddd...E+dd). The exponent has at least two digits unless an exponent width is specified. Infinity and

NaN are as for %F.
%e Floating-point value (e.g., -d.ddd...e+dd). The exponent has at least two digits unless an exponent width is specified. Infinity and

NaN are as for %f.
%B Base-2 floating-point value with uppercase prefix and exponent letter (e.g., -0Bd.ddd...P+d). The exponent has a minimum number

of digits, and is zero for a zero value. [mathcw library and hoc]
%b Base-2 floating-point value with lowercase prefix and exponent letter (e.g., -0bd.ddd...p+d). The exponent has a minimum number

of digits, and is zero for a zero value. [mathcw library and hoc]

}

The private function vprt() handles the real work of controlling the formatted-output processing. With its roughly
two dozen private subsidiary functions, it contains about 1800 lines of code whose complexity is largely related to
managing control flow, with a score of switch statements and about 230 case statements. Its private functions handle
integer and string conversions, but it leaves all of the floating-point conversions to about two dozen mathcw library
functions whose names are prefixed with cvto, and whose code amounts to more than 3000 lines.

The code sizes that we quote demonstrate that input and output are complex operations that often can be hid-
den behind a single statement in user code. I/O facilities need to be powerful, standardized, and applicable to all
supported data types.

Some historical languages, such as Algol and Bliss, sidestepped the complexity by simply omitting I/O, thereby
dooming those languages to suffer from idiosyncratic and nonstandard additions of vendor-specific I/O facilities,
and loss of portability. Ultimately, they fell out of use, and became dead languages.

For all of their flaws, the formatted I/O facilities of Fortran and C have survived for several decades. In C, the
fact that they are part of the run-time library, rather than the language itself, makes it possible to extend them for
new capabilities, such as decimal floating-point arithmetic, without invalidating a single line of existing software,
and without requiring modification of compilers.

26.12.4 Output conversion specifiers

For programmers new to C, the printf() conversion specifiers represent a considerable obstacle in the learning pro-
cess, but because they appear in numerous scripting languages, and even in the UNIX shells [RB05a], it is worthwhile
to learn how to use them effectively. Their concise specification occupies about ten pages of the ISO C Standards,
and they are usually reasonably summarized in online documentation, such as the UNIX manual pages, so in this
section, we concentrate on a description of their extensions in the mathcw library versions of the printf() family to
support decimal floating-point arithmetic, and other new features.

A conversion specifier begins with a percent character, followed by zero or more flag characters which may
occur in any order and for which repetitions are permitted, but carry no additional meaning. Flag characters in turn

874 Chapter 26. Floating-point output

Table 26.6: Output conversion specifiers (part 2). Each may be enhanced with additional modifiers following the
percent. Specifiers in the second part of the table are extensions to C89 and C99.

Item Description
%F Floating-point value (e.g., -ddd.ddd...). Infinity and NaN are coded as described in the text. If a decimal point is present, at least

one digit precedes it. [C99]
%f Floating-point value (e.g., -ddd.ddd...). Infinity and NaN are coded as described in the text. If a decimal point is present, at least

one digit precedes it.
%G %E or %f format with trailing zeros removed. See Section 26.6.4 on page 857 for details of how the choice is made. Infinity and NaN

are as for %F.
%g %e or %f format with trailing zeros removed. Infinity and NaN are as for %f.
%i Decimal integer. For output conversions, it is identical to %d.
%n Argument is an int * pointer to a location where the current output character count is written.
%o Unsigned octal integer value.
%p void * pointer (implementation-dependent format, but suitable for input with scanf()). May not be usable for pointers to functions

on some systems. [C89].
%s signed char * or unsigned char *, or with the l (ell) modifier, wchar_t *.
%u Unsigned decimal integer value.
%X Unsigned hexadecimal integer. Letters A-F represent 10 to 15.
%x Unsigned hexadecimal integer. Letters a-f represent 10 to 15.
%Q Octal floating-point value with uppercase prefix and exponent letter (e.g., -0Bd.ddd...P+d). The exponent has a minimum number

of digits, and is zero for a zero value. [mathcw library and hoc]
%q Octal floating-point value with lowercase prefix and exponent letter (e.g., -0bd.ddd...p+d). The exponent has a minimum number

of digits, and is zero for a zero value. [mathcw library and hoc]
%Y Unsigned binary integer. [mathcw library and hoc]
%y Unsigned binary integer. [mathcw library and hoc]
%@ Based-number floating-point value (e.g., -base@d.ddd...@e+d).

[mathcw library and hoc]

are followed by an optional sequence of nonnegative integers, or asterisks, separated by dots, then by an optional
data-type modifier, and finally end with a character that selects the desired conversion.

Except for percent conversion, each specifier consumes the next unused argument in the function call. In the
absence of errors, format and argument processing continues until the parsing meets the final NUL terminator in the
format string. For output to a string, the function then writes a terminating NUL, and returns the output character
count, excluding that NUL, to the caller. For the functions that produce an output string, the return value is exactly
what strlen() would return for that string.

Table 26.5 on the preceding page through Table 26.13 on page 877 summarize the conversion specifiers. In
each table, bracketed notes in the caption or descriptions identify features introduced after the original definition of
printf() in the early 1970s.

The new format features first introduced and tested in hoc, and then incorporated in the mathcw library, are:

� %B and %b for binary floating-point output,

� %Q and %q for octal floating-point output,

� %Y and %y for binary integer output,

� %@ for based-number output,

� = flag for centering,

� / flag for trimming trailing zeros,

� ^ flag for uppercasing based-number output,

� exponent-width, grouping and base modifiers,

� type modifiers h, hL, lL, and LL for binary floating-point data,

� type modifiers H, DD, DL, and DLL for decimal floating-point data.

26.12. The printf() family 875

Table 26.7: Flag-character format modifiers for conversion specifiers. There may be zero or more flags in any order
following the percent sign that starts the specifier, and flags may be repeated without changing their meaning. Flags
in the second part of the table are extensions to C89 and C99.

Item Description
- Value is left-justified in field width. If the flag is not specified, the default is right-justified. A minus preceding a field width is

interpreted as the flag followed by a positive width.
+ Signed conversion always begins with plus or minus sign. Otherwise, only negative values are signed. Negative floating-point

values include negative zero, and negative values that round to zero.
space Use space instead of + for positive values. Ignore the flag if the + flag is present.
Alternate conversion.

For all floating-point conversions, force the result to contain a base point, even if no digits follow it.
For %G and %g, preserve trailing zeros.
For %o, guarantee a leading zero digit.
For %X and %x, prefix a nonzero result with 0X or 0x, respectively.
For %Y and %y, prefix results with 0B or 0b, respectively.

0 For all numeric conversions, use leading zeros, instead of spaces, to pad to the field width, except when converting Infinity or NaN.
Ignore the flag if the - flag is present.
For all integer conversions, ignore the flag if the precision is specified.

= Value is centered in field width. [mathcw library and hoc]
/ Strip trailing fractional zero digits. [mathcw library and hoc]
\ Show subnormals with leading zeros. [mathcw library]
^ Convert output to uppercase. [mathcw library and hoc]

The exponent-width modifier follows the precision, as it does in Fortran 77, and remedies a long-standing omis-
sion in C that makes it difficult to use printf() to properly align tables of numbers written with %E or %e conversion.
Standard C’s default of a two-digit exponent reflects floating-point designs of machines of the 1960s, and is another
example where a historical mistake in the design of the original printf() was incorporated into two international
standards.

The grouping modifier solves a problem that exists in almost all programming languages: long strings of digits
are hard to read and check. For centuries, professional typesetters of numerical tables have inserted thin spaces
every three, four, or five digits, making the tabulations much more usable, because humans can usually remember
such short groups with little effort. Ada allows underscores for digit grouping in program source code, but provides
no support for them in input and output. hoc supports them in both code and data. Once it is more widely available,
digit grouping is likely to become commonplace in program code, input, and output, and the group size therefore
follows the exponent width.

The base modifier is needed for only one conversion specifier, %@, and its rareness mandates that it be the last
modifier.

As we noted earlier on page 853, the choice of a default of six for an omitted precision in %E, %e, %F, %f, %G, and %g
conversions is a historical mistake that is unsuited for all current and historical floating-point architectures.

For standards conformance, our printf() also uses that default for those six conversions, but for the new %A, %a,
%B, %b, %Q, %q, and %@ conversions, Matula’s formula (see page 851) determines the default. That choice ensures that
sufficient digits are generated either to represent the internal number exactly, or when the internal and external bases
differ, to allow exact round-trip conversion.

For mnemonic purposes, it would have been most convenient for the decimal floating-point type modifiers to
match the corresponding suffixes on constants. Alas, the introduction of the %F conversion in C99 to allow pro-
duction of uppercase names for Infinity and NaN prevents that: a decimal_float value would have an ambiguous
conversion specifier of %DFe that could be interpreted as a %e-style conversion, or an erroneous %F-style conversion.
The proposals for decimal arithmetic in C [Kla05, C06b, C06c, C06d] use modifiers H, D, and DD for the 32-bit, 64-
bit, and 128-bit formats. However, we find the last two of those choices confusing, and undesirable when a 256-bit
format is added.

Until C89, the language did not even support a single-precision data type, a situation that arose because its
primary use during its early years was for programming operating systems and text utilities, where floating-point
arithmetic is only of occasional use. C89 added the float type, but failed to include corresponding mathematical
library functions. That deficiency was not remedied until C99.

876 Chapter 26. Floating-point output

Table 26.8: Precision format modifiers for conversion specifiers. The precision modifier is optional; default values
are supplied as indicated. A negative precision is treated as a missing precision modifier.

Item Description
.number Minimum number of digits for all integer conversions.

Number of digits after the base point for %A, %a, %B, %b, %E, %e, %F, %f, %Q, %q, and %@ conversions.
Maximum number of significant digits for %G and %g conversions.
Maximum number of bytes for %s conversions.
If a numeric value can be represented in fewer characters than the precision, it is padded with leading zeros to the precision.
A base point appears in numeric values only if it is followed by a digit, unless the # flag is present.
Floating-point values are rounded to the number of digits implied by the precision.
If number is omitted, it is taken as 0.
If the precision modifier is missing in %A, %a, %B, %b, %Q, %q, or %@, the precision used is sufficient for an exact representation of the
value.
If the precision modifier is missing in %E, %e, %F, %f, %G, or %g, it is taken as 6.
If the precision modifier is missing in integer conversions, it is taken as 1.
If the precision modifier is missing in %s, it is taken as the length of the corresponding string argument.
For %E, %e, %F, and %f, if the precision is zero, no decimal point appears unless the # flag is present.
For %G and %g, a precision of zero is taken as 1.
For %G and %g, trailing zeros in the fractional part are dropped unless the # flag is present.
Warning: For all integer conversions, converting a zero value with zero precision results in an empty string.

.* Precision supplied by corresponding integer argument.

Table 26.9: Minimum field-width format modifiers for conversion specifiers. The modifier is optional; if it is omitted,
then the result has the minimum width needed to hold the value.

Item Description
number Field width in characters. The converted value is padded on the left with spaces, on the right if the - flag is present, and centered

with the = flag. If the value is too big, the field is automatically expanded to hold it, and no padding is provided.
* Field width supplied by corresponding integer argument

Table 26.10: Exponent-width format modifiers for conversion specifiers. [mathcw library and hoc]

Item Description
.number Minimum number of digits in an exponent.

If omitted, negative, or zero, the default is 1 for %A, %a, %B, %b, %Q, %q, and %@, and 2 for %E and %e. If needed, leading zeros pad
exponents to the width.

.* Exponent width supplied by corresponding integer argument.

Table 26.11: Digit-grouping format modifiers for conversion specifiers. Digit groups are separated by a single un-
derscore character. The integer and fractional parts, and the exponent, but not the base, are candidates for grouping.
[mathcw library and hoc]

Item Description
.number Number of digits in a group, counting away from the base point.

Omitted and negative values are taken as 0 (no digit grouping).
.* Group count supplied by corresponding integer argument.

Table 26.12: Number-base format modifiers for conversion specifiers. Ignored for all but %@ conversion. [mathcw
library and hoc]

Item Description
.number Number base for %@ conversion. If omitted, or outside the interval [2, 36], assume base 10.
.* Number base supplied by corresponding integer argument.

26.12. The printf() family 877

Table 26.13: Data-length format modifiers for output conversion specifiers. Modifiers are required if the correspond-
ing argument has a type other than the default for the conversion specifier.

Item Description
integer conversion

hh char argument [C99]
h short int argument
j intmax_t or uintmax_t argument [C99]
l long int, wint_t, or wchar_t argument
ll long long int argument [C99]
t ptrdiff_t argument [C99]
z size_t argument [C99]

binary floating-point conversion
h float argument [mathcw library]
L long double argument
LL long_long_double argument [mathcw library]
hL extended (__float80) argument [mathcw library and HP-UX]
lL quad (__float128) argument [mathcw library and HP-UX]

decimal floating-point conversion
H decimal_float argument [mathcw library]
DD decimal_double argument [mathcw library]
DL decimal_long_double argument [mathcw library]
DLL decimal_long_long_double argument [mathcw library]

Table 26.14: Binary and octal floating-point output, with decimal, hexadecimal, and based-number output for com-
parison. The test value is x = 1.5625 × 8−3. Notice that exponents in the binary, octal, and hexadecimal formats
represent powers of two, but exponents in based numbers specify powers of the base.

Function call Output
printf("%b\n", x) +0b1.1001p-9
printf("%q\n", x) +0o1.44p-9
printf("%e\n", x) 3.051758e-03
printf("%.12.6.3e\n", x) 3.051_757_812_500e-000_003
printf("%/a\n", x) 0x1.9p-9
printf("%/....2@\n", x) 2@1.1001@e-9
printf("%/....8@\n", x) 8@1.44@e-3
printf("%/....10@\n", x) 10@3.0517578125@e-3
printf("%/..2.3.10@\n", x) 10@3.051_757_812_5@e-03
printf("%/....16@\n", x) 16@c.8@e-3

Neither C89 nor C99 provides for output of float values with the printf() family, although they do allow input
of such values with the scanf() functions. When the float data type was introduced by some compilers prior
to its standardization in C89, function prototypes were still absent from the language, and compiler writers chose
to simplify argument passing by converting float arguments to double. Similar widening promotions had long
been done for char and short int arguments, both of which are passed as int values. In the absence of a function
prototype, that practice remains the standard behavior in the C language. Since C89, function prototypes eliminate
the need for such widening, except in the case of functions with variable argument lists. Unfortunately, that widening
causes two problems for IEEE 754 arithmetic:

� It is no longer possible to distinguish subnormal values from normal ones, even though it would be useful to
have a flag for numerical format conversions that requests that subnormals be shown in exponential form with
leading zeros.

� Widening is a numerical operation that destroys the payloads of NaNs on some architectures, and on most,
converts a signaling NaN to a quiet NaN. In both cases, important information is lost.

Tests on all of the platforms available to this author at the time of writing this show that a narrowing cast

878 Chapter 26. Floating-point output

always converts a signaling NaN to a quiet NaN, and except on the PowerPC CPU, a widening cast causes the
same conversion.

In the first implementation of decimal floating-point arithmetic in C, that unwanted widening does not happen with
decimal_float.

If future ISO C Standards eliminate the widening of float arguments, they will make float a first-class data type,
instead of a poor afterthought. In the mathcw library, the new h and H data type modifiers identify arguments of type
float and decimal_float, and for the latter type only, avoid loss of information when those arguments undergo
output conversion.

Four of the new conversion specifiers provide for output of floating-point numbers in binary and octal form.
Table 26.14 shows some examples of those specifiers, and comparisons with other formats.

For the %a conversion specifier introduced in C99, the Standard requires that there be a single nonzero hexadec-
imal digit before the point, as long as the number is normalized. The formatting of subnormals is not specified by
the Standard. It is regrettable that it did not require that digit to be one, because an important use of that specifier
is to reveal exact bit patterns for comparison of output across platforms, and different vendors have made different
choices that make such comparisons impractical. For example, few people can tell at a glance that 0xc.90fdap-2
and 0x1.921fb4p+1 are identical representations of π in the IEEE 754 32-bit format. The mathcw implementation of
printf() prevents that problem because the cvtob(), cvtoh(), and cvtoo() function families that handle %b, %a, and
%q conversions guarantee a unit leading digit for all precisions and all bases.

The Standard requires that the # flag provide a 0X prefix in %X conversion, and 0x for %x conversion, except when
the value is zero. That too is a historical mistake that causes alignment problems in tables. As a workaround, supply
the prefix manually, such as in the format "0x%.08x\n". Our printf() follows the Standard in that case, but for the
new binary integer %Y and %y conversions, it preserves the 0B and 0b prefixes on zero values.

26.13 Summary

In this chapter, we described how to perform accurate output conversion, and we identified the critical areas of digit
production where accuracy can be lost. In the next chapter, we discuss the accuracy issue further, and give references
to important historical work on the problem.

We separated the job of number-to-string conversion from the conventional output routines by providing a family
of conversion functions that give the user more control of output formatting.

We discussed the dangers of the printf() family, and argued that its capabilities outweigh the risks. Neverthe-
less, programmers need to be careful in their use of functions for output formatting.

We generalized the Standard C printf() function by supporting additional format flags and specifiers, allowing
further control over field justification, trimming of trailing zeros, digit grouping, exponent width, and output as
binary, octal, and based numbers. When the extensions are not exploited, our printf() function follows the 1990
and 1999 ISO C Standards exactly, so the increased power is transparent to all existing C and C++ code.

The coding effort for implementing the printf() family is substantial: its algorithm file, vprtx.h, is by far the
largest of all of the more than 500 such files in the mathcw library, and it requires our separate output-conversion
functions. Its companion for input that we describe in the next chapter is the second largest in the library.

27 Floating-point input

WHILE WORKING ON THE BEEF TESTS FOR

TRANSCENDENTAL FUNCTIONS, IT WAS DISCOVERED THAT

THE TURBO C 1.0 COMPILER DID NOT CONVERT 11.0 EXACTLY

INTO A FLOATING POINT NUMBER EQUAL TO 11!

— GUY L. STEELE JR. AND JON L. WHITE

Retrospective: How to Print Floating-Point Numbers Accurately (2003).

The introduction to the last chapter briefly described format specifiers in C, Fortran, and Pascal. When used with
the input facilities of those languages, they allow decimal data to be read easily, but binary, hexadecimal, and octal
formats are unlikely to be widely supported.

C99 extends the strtod() library function to recognize hexadecimal as well as decimal strings, and also Infinity
and NaN strings. C99 also adds the companion strtof() and strtold() functions for conversion of such strings to
float and long double values. The naming of the strtod() family is regrettably irregular, but it is too late to repair
that mistake.

In this chapter, we describe the mathcw library support for floating-point input. The library supplies conversion
utilities for all supported precisions and floating-point types, and for input in bases 2, 4, 8, 16, and 32, guarantees
correct rounding to the internal binary storage format. Decimal input is always correctly rounded for decimal data
types.

In several respects, the output problem is easier than the input problem. Output formatting is done by software,
and is generally reliable. It deals with a small, and fixed, number of bits in the value to be converted. Input formatting
is often done by humans, and software that converts input strings to internal formats must be carefully written to
be robust against input errors, and must be able to handle strings of arbitrary and unpredictable length. Some of the
Standard C library routines that convert input strings assume that they are well formed and of modest length, and
provide no error indication when they are not.

All of the input routines described in this chapter can return a pointer to the next character to be processed,
and that character should be checked after each conversion to make sure that it is one that can follow a correctly
formatted input string.

The header file cvticw.h contains prototypes for the input functions, and if the decimal floating-point functions
are needed, that header file must be included after mathcw.h.

27.1 Binary floating-point input

We start our description of the input-conversion functions in the mathcw library with the one for a binary floating-
point string, because that is one of the simplest floating-point formats to handle, and the code that we present for it
is not difficult to adapt for octal and hexadecimal strings.

Besides digit collection for the integer, fractional, and exponent parts, we have to deal with several extra compli-
cations:

� input errors;

� rounding to storage format;

� overflow in the digit sequences;

� overflow and underflow in the final value; and

� Infinity and NaN values.

© Springer International Publishing AG 2017
N.H.F. Beebe, The Mathematical-Function Computation
Handbook, DOI 10.1007/978-3-319-64110-2_27

879

880 Chapter 27. Floating-point input

We model the input-conversion software interface on the standard library routine strtod(s, &endptr). If the
input string in the first argument is properly formatted, that function returns the floating-point result of the conver-
sion, and if the second argument is not NULL, stores in that object a pointer to the character following the last character
processed in the conversion. Otherwise, the function returns zero, and if the second argument is not NULL, stores the
first argument in that object. Conversion is therefore successful if *endptr differs from s on return, and in addition,
**endptr is a character that can legally follow a number.

In order to program the conversion, we have to specify what valid binary floating-point input looks like:

� optional leading whitespace (as identified by isspace());

� optional plus or minus sign;

� inf or infinity (letter case is not significant), or

� nan, qnan, or snan (letter case is not significant), optionally followed by a parenthesized sequence of zero or
more characters, or

� the binary prefix 0b or 0B followed by a string of digits 0 or 1 containing at most a single binary point, with
digits perhaps separated by an underscore, optionally followed by p or P and a possibly signed decimal integer
representing a power of two, optionally followed by a type suffix.

That informal description can be tightened by writing it as a sequence of complicated egrep-style regular expres-
sions, which are string-matching patterns where square brackets enclose character sets, parentheses delimit subex-
pressions, and backslash-letter combinations are the usual C-language escape sequences that represent unprintable
characters. The metacharacter * means zero-or-more of the regular expression that precedes it, and ? means zero-or-
one. An initial caret inside a square-bracketed set complements the set, and a hyphen between two characters in a
set denotes a character range.

The patterns that we need to recognize are these:

� [\f\n\r\t\v]*[-+]?[Ii][Nn][Ff][Ii][Nn][Ii][Tt][Yy]

� [\f\n\r\t\v]*[-+]?[Ii][Nn][Ff]

� [\f\n\r\t\v]*[-+]?[QqSs]?[Nn][Aa][Nn]([(][^)]*[)])?

� [\f\n\r\t\v]*[-+]?0[Bb]([01](_?[01])*)*([.]([01]_?)*[01])?
[Pp][-+]?([0-9]_?)*[0-9]([FfLl]|LL|ll)?

� [\f\n\r\t\v]*[-+]?0[Bb]([01](_?[01])*)*([.]([01]_?)*[01])?
(([Uu](LL|ll|L|l)?)|((LL|ll|L|l)[Uu]?))

In the last two items, the long expressions have been split across lines, and their length tells us that code that inter-
prets them is likely to be complex.

In each case, the longest valid match is chosen. For example, the input string inflate consists of the valid string
inf, followed by the string late which is ignored. Similarly, 0b1011LUMP is treated as the valid string 0b1011LU
followed by MP.

Several of the subexpressions are needed in the conversion code for other bases, so it makes sense to break the
job into several separately compiled functions. We start with the user-visible routine for binary floating-point input
conversion, and because of its size, we present it in parts, delaying the helper functions until later:

fp_t
CVTIB(const char *s, char **endptr)
{

const char *s_in;
fp_t result;
int nonzero_digits;
int sign;

27.1. Binary floating-point input 881

As usual, the function-wrapper macro stands for one of several precision-dependent functions, cvtibf(),
cvtib(), cvtibl(), and so on. The name CVTIB() is an acronym for ConVerT from Input in Binary. The first argument
points to the string to be converted, and the second argument, if non-NULL, points to an object that, on return, holds
a pointer to the character following the last one successfully processed.

The first task is to clear a counter, and record the start of the input string, because we require its value if the
conversion fails.

nonzero_digits = 0;
s_in = s;

The next job is to skip over any leading space:

while (isspace(*s))
++s;

Helper functions are named with a leading underscore, indicating that they are for internal use only, and are not
intended to be called directly from user code. The first of the helper functions handles recognition of the optional
sign:

sign = _cvtsgn(s, (char**)&s);

If a sign is present, s is advanced by one character on return from _cvtsgn().
The main part of the code is a large block that we implement as a one-trip loop with do {...} while (0), purely

for the convenience of being able to terminate the processing early with a break statement when a conversion suc-
ceeds:

do /* one-trip loop */
{

const char *s_val;

s_val = s;

We save the starting value of s so that we can detect successful conversions later in the block.
We handle the special cases of Infinity and NaN immediately with two helper functions:

result = CVTINF(s, (char**)&s);

if (s != s_val)
break;

result = CVTNAN(s, (char**)&s);

if (s != s_val)
{

(void)SET_EDOM(result);
break;

}

If either input conversion succeeds, s has advanced, and we leave the block.
We are now ready to convert a binary floating-point string. That is the largest part of the code, but before we

present the first code chunk, we need to discuss how the binary point and rounding are handled.
The digit string could be treated as integer and fractional parts, with separate digit-collection loops for each. As

we encounter each new digit, we double the accumulator variable, and add the value of the new digit. A sufficiently
long input string for the integer part could cause premature overflow, so we have to guard against that by rescaling
the accumulator when its value becomes too big. However, we can simplify the code and avoid the need for rescaling,
if we use a single loop, keep track of the position of the binary point, and pretend that the binary point follows the
first digit. That way, the accumulating sum never exceeds 2.0.

The rounding action needed is determined by the last bit that fits in the storage format, and the bits that follow
it in the input digit string. Floating-point hardware for IEEE 754 arithmetic keeps track of four special bits (see
Section 4.6 on page 66, and [Omo94, Chapter 6], [Par00, Section 18.3], [Kor02, Section 4.6], [EL04a, Section 8.4.3], or
[MBdD+10, Section 8.2 and Chapter 10]):

882 Chapter 27. Floating-point input

L: the last bit in the storage format;

G: the guard bit, which follows the L-bit;

R: the rounding bit, which follows the G-bit; and

S: the sticky bit, which represents all of the bits following the R-bit, but records only their logical OR.

We show later how those four bits determine the rounding action.
The code in the big block for digit accumulation begins like this:

if (_cvtcmp("0b", s) == 0)
{

const char *s_power;
fp_t scale;
int G_bit, L_bit, R_bit, S_bit;
int dot_seen, exp_overflow, n_after_dot;
int n_before_dot, n_bit, n_total, one_bit_seen;
int power_of_2;

We first initialize all of the block-local variables:

G_bit = 0;
L_bit = 0;
R_bit = 0;
S_bit = 0;
dot_seen = 0;
exp_overflow = 0;
n_after_dot = 0;
n_before_dot = 0;
n_bit = 0;
n_total = 0;
one_bit_seen = 0;
power_of_2 = 0;
result = ZERO;
scale = TWO;

Next, we advance past the binary prefix that we just matched:

s += 2;

The digit-collection loop begins next:

while (ISBDIGIT(*s) || (*s == ’.’))
{

int bit;

if (*s == ’.’)
{

if (dot_seen)
break;

dot_seen = 1;
++s;
continue;

}

If we have a binary point, we record that fact, advance the string pointer, and continue with the next loop iteration.
However, meeting a second binary point mandates a loop exit.

Otherwise, we have a binary digit. We convert it to a number, advance the string pointer, and count the digit,
because we need to know later whether we found any digits at all:

27.1. Binary floating-point input 883

bit = DIGIT_VALUE(*s);
++s;
++n_total;

Some complex logic is now required to handle the tricky cases of long strings of 0 bits preceding or following a
1 bit.

A straightforward digit accumulation here could easily produce premature overflow or underflow. For example,
0b0.000...001p+1000006, where the ellipsis indicates a million consecutive 0 digits, is a legal input string, and easily
representable, but if we do not skip the leading 0 digits, it cannot easily be evaluated without underflow, unless we
periodically rescale the result. Similarly, the input 0b1000...000p-1000006, where the ellipsis has the same meaning
as before, is representable, but overflows if we continue digit accumulation without rescaling.

The solution to the overflow and underflow problems is to delay the accumulation until we have seen the first 1
bit, and to terminate digit accumulation, apart from updating of the four special bits, once we have seen T digits. We
also need to know the relative position of the binary point. Two logical values and two counters allow us to record
that information, and the code to set them looks like this:

if (bit == 1)
one_bit_seen = 1;

if (one_bit_seen)
{

++n_bit;

if (!dot_seen)
++n_before_dot;

}
else
{

if (dot_seen)
++n_after_dot;

}

Notice that we only increment n_bit and n_before_dot after we have seen a 1 bit, and we count bits after the binary
point only if we have not yet encountered a 1 bit.

Because we need to recognize the four special bits, we have to compare the digit count with the precision to
choose how to handle each digit:

if (n_bit == 0)
/* NO-OP */ ;

else if (n_bit <= T)
{

scale *= HALF;

if (bit == 1)
result += scale;

if (n_bit == T)
L_bit = bit;

}

As long as we have seen at least one nonzero digit, and no more than T digits, we halve the scale factor, accumulate
a scaled digit, and possibly record the L-bit. Because we accumulate at most T digits that way, there is no possibility
of premature overflow from a long digit string. Because the scale factor is initialized to 2.0, the first digit accumulated
has a value 1.0, which puts the implicit binary point immediately after the first 1 bit.

Once we have seen more than T digits, we can set the remaining three special bits:

else if (n_bit == (T + 1))
G_bit = bit;

884 Chapter 27. Floating-point input

else if (n_bit == (T + 2))
R_bit = bit;

else
S_bit |= bit;

Next, we skip over any digit separator, completing the digit-collection loop:

if ((s[0] == ’_’) && ISBDIGIT(s[1]))
++s;

}

If we accumulated no digits, then the input string is invalid, and we can leave the one-trip loop:

if (n_total == 0)
{

s = s_in;
break;

}

Otherwise, the conversion is successful so far, and we process the optional exponent:

s_power = s;
power_of_2 = _cvtpow(s, (int)’p’, &exp_overflow, (char **)&s);

The helper function returns the exponent as the function value, and also sets a flag to record whether the exponent
itself overflows, because we need that information later. If no exponent is present, the function returns a zero value.

Finally, we process an optional suffix, either a floating-point suffix if we had an exponent or saw a binary point,
or else an integer suffix:

if ((s != s_power) || dot_seen)
(void)_cvtfsf(s, (char**)&s);

else
(void)_cvtisf(s, (char**)&s);

The suffix helper functions return a type code, but we do not require it here, so we discard it with a (void) cast.
If we successfully processed characters after the optional sign, then the last two steps of the conversion handle

the rounding and the scaling to account for the position of an explicit binary point and a specified exponent:

if (s != s_val)
{

int expon, n_scale;

result = CVTRND(result, scale, sign, L_bit, G_bit, R_bit, S_bit);

if (n_before_dot > 0)
n_scale = n_before_dot - 1;

else
n_scale = -(n_after_dot + 1);

if (!exp_overflow && is_add_safe(power_of_2, n_scale))
expon = power_of_2 + n_scale;

else
expon = (power_of_2 < 0) ? INT_MIN : INT_MAX;

result = LDEXP(result, expon);
}

nonzero_digits = one_bit_seen;
}

27.1. Binary floating-point input 885

We cannot safely compute the final exponent by simply adding power_of_2 and n_scale until we have checked for
overflow in both the power and the sum. If either of them overflows, we set the exponent to the largest representable
integer of the correct sign. The LDEXP() function is exact, and its result underflows or overflows only if the input
number is not representable after it has been scaled.

If we did not have a valid binary prefix, then the input string is invalid, so we reset s to its original value, and
finish off the one-trip loop:

else /* unrecognized input */
s = s_in;

}
while (0); /* end one-trip loop */

The conversion is complete, so we set the object pointed to by the second argument:

if (endptr != (char**)NULL)
*endptr = (char *)s;

We set the sign with the COPYSIGN() function to prevent a signaling NaN from being converted to a quiet NaN,
and to protect negative zeros from compiler mishandling:

if (s == s_in)
result = ZERO;

else
{

result = COPYSIGN(result, (fp_t)sign);

We would prefer to return a NaN if the string does not contain a number, because not-a-number is the most appro-
priate value in an IEEE 754 environment. However, C99 mandates that strtod() return a zero, so we follow that
requirement. Finally, we set errno to ERANGE if underflow or overflow occurred, and return:

if ((nonzero_digits > 0) && (result == ZERO))
(void)SET_ERANGE(result); /* record underflow */

else if (ISINF(result))
(void)SET_ERANGE(result); /* record overflow */

}

return (result);
}

We assume that underflows flush to zero, rather than wrapping to a large value. For IEEE 754 arithmetic, over-
flow is detected by checking whether the final result after scaling is Infinity. On some older architectures, overflow
detection is more difficult, and we leave that problem unsolved for now.

Apart from helper functions, CVTIB() requires about 140 lines of code. The only machine constants in the code are
T (the floating-point precision in bits for a binary base), and INT_MAX and INT_MIN (the integers of largest magnitude).
We present the helper functions in the following subsections.

27.1.1 Sign input conversion

Recognition of an optional sign is a straightforward task with obvious code:

int
_cvtsgn(const char *s, char **endptr)
{ /* convert optional sign */

int sign;

if (*s == ’+’)
{

++s;
sign = 1;

886 Chapter 27. Floating-point input

}
else if (*s == ’-’)
{

++s;
sign = -1;

}
else

sign = 1;

if (endptr != (char**)NULL)
*endptr = (char *)s;

return (sign);
}

27.1.2 Prefix string matching

The Standard C library does not have a function for case-insensitive string comparisons. We need such a function
to simplify recognition of Infinity and NaN input strings as prefixes of longer strings, and the code is not difficult,
because we can ignore the lettercase problems described earlier on page 848:

int
_cvtcmp(const char *prefix, const char *s)
{ /* compare prefix with s, ignoring case */

int c1, c2, result;

result = 0;

while ((*prefix != ’\0’) && (*s != ’\0’))
{

c1 = TOLOWER(*prefix);
c2 = TOLOWER(*s);

if (c1 < c2)
{

result = -1;
break;

}
else if (c1 > c2)
{

result = 1;
break;

}
++prefix;
++s;

}

if ((result == 0) && (*prefix != ’\0’) && (*s == ’\0’))
result = 1;

return (result);
}

Like the TOUPPER() macro introduced on page 848, TOLOWER() is a wrapper to ensure correct behavior with older C
implementations.

The return values of _cvtcmp() are like those for the standard library routine strcmp(). In particular, a zero
return value indicates a match, and that is all that we require later. Return values of −1 and +1 indicate less-than
and greater-than ordering, respectively.

27.1. Binary floating-point input 887

27.1.3 Infinity input conversion

Infinity is represented by two different input strings, and the longest-match rule for input conversion requires that
we check for the longer one first:

fp_t
CVTINF(const char *s, char **endptr)
{

fp_t result;

if (_cvtcmp("infinity", s) == 0) { result = INFTY(); s += 8; }
else if (_cvtcmp("inf", s) == 0) { result = INFTY(); s += 3; }
else result = ZERO;

if (endptr != (char**)NULL)
*endptr = (char *)s;

return (result);
}

The INFTY() function computes Infinity dynamically on IEEE 754 systems, and that in turn sets the overflow
exception flag as a side effect. On non-IEEE-754 systems, the function returns the largest representable floating-point
number.

27.1.4 NaN input conversion

The Standard C library function strtod() recognizes only one kind of NaN, but because many systems have both
quiet and signaling NaNs, that limitation in strtod() is a design flaw that we avoid repeating.

We recognize qnan, snan, and nan in any letter case, optionally followed by a parenthesized string whose contents
we collect and hand off to a NaN-generator function for further processing.

fp_t
CVTNAN(const char *s, char **endptr)
{

const char *s_in;
fp_t result;
char *p;
char tag[sizeof("0xfff")];

s_in = s;

if (_cvtcmp("qnan", s) == 0)
{

(void)strlcpy(tag, (s[4] == ’(’) ? s + 5 : "", sizeof(tag));
p = strchr(tag, ’)’);

if (p == (char *)NULL)
tag[0] = ’\0’;

else
*p = ’\0’;

result = QNAN(tag);
s += 4;

}
else if (_cvtcmp("snan", s) == 0)
{

(void)strlcpy(tag, (s[4] == ’(’) ? s + 5 : "", sizeof(tag));
p = strchr(tag, ’)’);

888 Chapter 27. Floating-point input

if (p == (char *)NULL)
tag[0] = ’\0’;

else
*p = ’\0’;

result = SNAN(tag);
s += 4;

}
else if (_cvtcmp("nan", s) == 0)
{

(void)strlcpy(tag, (s[3] == ’(’) ? s + 4 : "", sizeof(tag));
p = strchr(tag, ’)’);

if (p == (char *)NULL)
tag[0] = ’\0’;

else
*p = ’\0’;

result = NAN_(tag);
s += 3;

}
else

result = ZERO;

if (s > s_in)
{

if (*s == ’(’) /* skip (n-char-sequence) */
{

const char *s_open;
int level;

level = 1;
s_open = s;
++s;

while (*s)
{

if (*s == ’(’)
level++;

else if (*s == ’)’)
level--;

if (level == 0)
break;

++s;
}

s = (level == 0) ? s + 1 : s_open;
}

}

if (endptr != (char**)NULL)
*endptr = (char *)s;

return (result);

27.1. Binary floating-point input 889

}

If the string following the NaN has balanced parentheses, our code uses the contents as a NaN payload, and sets
*endptr to the address of the character following the close parenthesis. Otherwise, the code uses an empty payload,
and sets *endptr to the address of the open parenthesis.

The 1999 ISO C Standard does not specify that the parenthesized string must contain balanced parentheses, even
though that would seem to be a reasonable expectation. Thus, "NaN(((((()" could be considered a valid string that
contains a parenthesized 5-char-sequence. Our code accepts the NaN, and rejects the rest.

We ignore an n-char-sequence that does not have a closing right parenthesis. Thus, "SNaN(abc" is recognized as
a valid signaling NaN followed by the string "(abc".

27.1.5 Power input conversion

Recognition of a floating-point exponent is only a little harder than collecting a decimal integer string. However,
we must avoid the C library routines that convert decimal strings to integers, because they do not detect integer
overflow. Undetected exponent overflow is unacceptable, because it produces nonsensical conversions.

We anticipate using that function for several kinds of floating-point numbers, so we provide the exponent letter
as an argument, rather than hard coding it in the function:

int
_cvtpow(const char *s, int letter, int *oflptr, char **endptr)
{

const char *s_in;
int overflow, power;

s_in = s;

overflow = 0;
power = 0;

if (TOLOWER(*s) == TOLOWER(letter))
{

int n_dec, sign;

++s;
n_dec = 0;
power = 0;

sign = _cvtsgn(s, (char**)&s);

while (isdigit(*s))
{

int last_power;

n_dec++;
last_power = power;
power = 10 * power - (int)DIGIT_VALUE(*s);

if (power > last_power)
overflow = 1;

++s;

if ((s[0] == ’_’) && isdigit(s[1]))
++s;

}

890 Chapter 27. Floating-point input

if (overflow)
power = INT_MIN;

if (sign > 0)
{

power = -power;

if (power < 0)
{

overflow = 1;
power = INT_MAX;

}
}

if (n_dec == 0) /* incomplete input */
s = s_in;

}

if (endptr != (char**)NULL)
*endptr = (char *)s;

if (oflptr != (int*)NULL)
*oflptr = overflow;

return (power);
}

There are some subtle points in the code that must be noted:

� Because two’s-complement arithmetic has one more negative number than positive numbers, the most nega-
tive integer cannot be accumulated as a positive value. We therefore accumulate the negative of the decimal
digit string. Most textbooks that show code for conversion of decimal strings get that wrong.

� Integer overflow is possible in two places. Inside the loop, overflow is detected when the updated accumulator
wraps to a nonnegative value, and thus, exceeds its previous value. It is not sufficient to check for a positive
accumulator, because that mishandles the case of a zero exponent. The second place that overflow is possible
is outside the loop, where the sign is applied.

� The C language (and most others) guarantees that integer overflow is ignored, so we can safely continue digit
accumulation after detecting overflow.

� Because the floating-point exponent field uses many fewer bits than an integer can hold, we can safely replace
an overflowed value by the closest representable integer. It will precipitate a floating-point underflow or
overflow when the exponent is later applied by a call to LDEXP().

27.1.6 Floating-point suffix conversion

The type of floating-point numbers in C is indicated by a suffix letter: F or f for float, none for double, and L or l
for long double. Curiously, the Standard C library input and output functions neither recognize nor produce such
suffixes.

We anticipate possible future extensions to C by recognizing input suffixes, including LL and ll for a long long
double type. As required by the C language, the suffixes must be in a uniform lettercase, even though that restriction
serves no purpose, and complicates parsing.

Our function return values are small integer values encoded as symbolic names defined as macros in the header
file cvtsfx.h. The code is then straightforward:

int
_cvtfsf(const char *s, char **endptr)

27.1. Binary floating-point input 891

{ /* optional binary floating-point suffix: ([FfLl]|LL|ll)? */
/* optional decimal floating-point suffix: (DF|DD|DL|DLL)? */
int result;

if (TOLOWER(s[0]) == (int)’f’)
{

++s;
result = CVT_SUFFIX_F;

}
else if ((s[0] == ’L’) && (s[1] == ’L’))
{

s += 2;
result = CVT_SUFFIX_LL;

}
else if ((s[0] == ’l’) && (s[1] == ’l’))
{

s += 2;
result = CVT_SUFFIX_LL;

}
else if (TOLOWER(s[0]) == (int)’l’)
{

++s;
result = CVT_SUFFIX_L;

}
else if (TOLOWER(s[0]) == (int)’d’)
{

if ((s[0] == ’d’) && (s[1] == ’f’))
{

s += 2;
result = CVT_SUFFIX_DF;

}
else if ((s[0] == ’D’) && (s[1] == ’F’))
{

s += 2;
result = CVT_SUFFIX_DF;

}
else if ((s[0] == ’d’) && (s[1] == ’d’))
{

s += 2;
result = CVT_SUFFIX_DD;

}
else if ((s[0] == ’D’) && (s[1] == ’D’))
{

s += 2;
result = CVT_SUFFIX_DD;

}
else if ((s[0] == ’d’) && (s[1] == ’d’))
{

s += 2;
result = CVT_SUFFIX_DD;

}
else if ((s[0] == ’D’) && (s[1] == ’L’) && (s[2] == ’L’))
{

s += 3;
result = CVT_SUFFIX_DLL;

}
else if ((s[0] == ’d’) && (s[1] == ’l’) && (s[2] == ’l’))

892 Chapter 27. Floating-point input

{
s += 3;
result = CVT_SUFFIX_DLL;

}
else if ((s[0] == ’D’) && (s[1] == ’L’))
{

s += 2;
result = CVT_SUFFIX_DL;

}
else if ((s[0] == ’d’) && (s[1] == ’l’))
{

s += 2;
result = CVT_SUFFIX_DL;

}
else

result = CVT_SUFFIX_NONE;
}
else

result = CVT_SUFFIX_NONE;

if (endptr != (char**)NULL)
*endptr = (char *)s;

return (result);
}

27.1.7 Integer suffix conversion

Integer constants in C have type suffixes U or u for unsigned int, L or l for long int, and LL or ll for long long
int. The standard library input and output functions do not support those suffixes, but our code does.

An unsigned suffix can precede or follow the length suffix, and the length suffix must be in a uniform lettercase.
Both of those features complicate the code. The lettercase restriction increases the number of possible suffixes from
7 to 22, and means that matching with a series of nested conditionals is complex and error-prone, so we adopt a
table-driven approach instead.

As with the recognition of floating-point suffixes, our function return values are small integer values with sym-
bolic names defined as macros in the header file cvtsfx.h. The code looks like this:

int
_cvtisf(const char *s, char **endptr)
{ /* integer suffix: ([Uu](LL|ll|L|l)?)? or ((LL|ll|L|l)[Uu]?)? */

int k, result;
typedef struct
{

const char *name;
size_t size;
int code;

} match_table_t;
static match_table_t t[] =
{

{ "LLU", 3, CVT_SUFFIX_ULL }, { "LLu", 3, CVT_SUFFIX_ULL }, { "ULL", 3, CVT_SUFFIX_ULL },
{ "Ull", 3, CVT_SUFFIX_ULL }, { "llU", 3, CVT_SUFFIX_ULL }, { "llu", 3, CVT_SUFFIX_ULL },
{ "uLL", 3, CVT_SUFFIX_ULL }, { "ull", 3, CVT_SUFFIX_ULL },

{ "LL", 2, CVT_SUFFIX_LL }, { "ll", 2, CVT_SUFFIX_LL },

{ "LU", 2, CVT_SUFFIX_UL }, { "Lu", 2, CVT_SUFFIX_UL }, { "UL", 2, CVT_SUFFIX_UL },
{ "Ul", 2, CVT_SUFFIX_UL }, { "lU", 2, CVT_SUFFIX_UL }, { "lu", 2, CVT_SUFFIX_UL },

27.1. Binary floating-point input 893

{ "uL", 2, CVT_SUFFIX_UL }, { "ul", 2, CVT_SUFFIX_UL },

{ "L", 1, CVT_SUFFIX_L }, { "l", 1, CVT_SUFFIX_L },

{ "U", 1, CVT_SUFFIX_U }, { "u", 1, CVT_SUFFIX_U },
};

result = CVT_SUFFIX_NONE;

if ((TOLOWER(*s) == ’l’) || (TOLOWER(*s) == ’u’))
{

for (k = 0; k < (int)elementsof(t); ++k)
{

if (strncmp(t[k].name, s, t[k].size) == 0)
{

s += t[k].size;
break;

}
}

}

if (endptr != (char**)NULL)
*endptr = (char *)s;

return (result);
}

Notice that the table entries must be ordered so that we check for the longest suffixes first.
In the usual case that a suffix is absent, a straightforward table-driven version would have to compare the string

against all 22 suffixes, and would be considerably slower than a version with conditionals, which requires only four
tests on the first character of the string to find out that no suffix matches. However, the code with the suffix table is
much easier to understand, and the outer if statement avoids the search entirely in most cases.

27.1.8 Input rounding adjustment

The last helper function adjusts an accumulated value by adding a small adjustment equal to a half or whole unit in
the last place. It uses the rounding direction computed dynamically by another helper function, _cvtdir(), that we
described in Section 26.3.5 on page 848.

We assume that the value to be adjusted, x, is nonnegative, with a sign supplied in a separate argument. The four
special bits that we described in Section 27.1 on page 881 make up the final arguments:

fp_t
CVTRND(fp_t x, fp_t adjust, int sign, int L_bit, int G_bit, int R_bit, int S_bit)
{

switch (_cvtdir())
{
case CVT_FE_DOWNWARD:

if ((G_bit + R_bit + S_bit) > 0)
{

if (sign < 0)
x += adjust + adjust;

}
break;

default: /* FALLTHROUGH */
case CVT_FE_TONEAREST:

if (G_bit == 1)

894 Chapter 27. Floating-point input

{
if ((R_bit + S_bit) == 0)
{

if (L_bit == 1)
x += adjust;

}
else

x += adjust;
}
break;

case CVT_FE_TOWARDZERO:
break;

case CVT_FE_UPWARD:
if ((G_bit + R_bit + S_bit) > 0)
{

if (sign > 0)
x += adjust + adjust;

}
break;

}

return (x);
}

Rounding toward zero is the easiest case, because it corresponds to truncation of superfluous bits.
Rounding to −∞ is like rounding to zero if x is nonnegative, but otherwise, requires adding a whole unit in the

last place to the positive x.
Rounding to +∞ is similar, but requires an adjustment only when x is positive.
The case of rounding to nearest, with ties broken by rounding to even, is the most complex. It is the only one

that requires knowledge of the last storable bit. When the following special bits are 100, adjustment by a half ulp is
required only if the L-bit is 1. Otherwise, the adjustment is a half ulp only if the G-bit is 1.

Although _cvtdir() does not return any values but the four cases listed, it is always a good idea to guard against
future code changes, and supply a default case in switch statements. We handle that case by falling through into
the round-to-nearest code.

27.2 Octal floating-point input

With the binary floating-point input problem solved by CVTIB(), a companion for octal input has this outline:

fp_t
CVTIO(const char *s, char **endptr)
{

/* ... code omitted ... */
}

As usual, the macro represents several precision-dependent names: cvtiof(), cvtio(), cvtiol(), and so on.
The key to its implementation is the realization that correct rounding requires precise knowledge of bit bound-

aries, and computation of the L, G, R, and S bits described in Section 27.1 on page 881. The easiest way to do that is
to replace the inner loop over bits with a pair of loops, the first processing octal digits, and the second extracting bits
from each digit.

We do not show the complete code, but the general idea is evident from this fragment:

while (ISODIGIT(*s) || (*s == ’.’))
{

int digit, k;

27.3. Hexadecimal floating-point input 895

if (*s == ’.’)
{

if (dot_seen)
break;

dot_seen = 1;
++s;
continue;

}

digit = DIGIT_VALUE(*s);
++s;

for (k = 2; k >= 0; --k)
{

int bit;

bit = (digit >> k) & 1;
/* ... code omitted ... */

}

/* skip over optional digit separators */
if ((s[0] == ’_’) && ISODIGIT(s[1]))

++s;
}

A test program exercises many special cases of octal floating-point input, and then tests round-trip conversion
with CVTOO() and CVTIO() for large numbers of random arguments. No differences have been found in thousands of
millions of such tests, so we can be reasonably confident that both input and output conversions for octal floating-
point data work correctly.

27.3 Hexadecimal floating-point input

With the octal floating-point input code as a model, a companion for hexadecimal input is straightforward, and has
this outline:

fp_t
CVTIH(const char *s, char **endptr)
{

/* ... code omitted ... */
}

The macro CVTIH() represents several precision-dependent names: cvtihf(), cvtih(), cvtihl(), and so on.
CVTIH() differs from the octal routine, CVTIO(), in just five lines of code: the prefix is now 0x instead of 0o, the

digit test uses ISXDIGIT() instead of ISODIGIT(), the DIGIT_VALUE() macro is redefined, and the bit-extraction loop
index starts with k = 3 instead of k = 2.

27.4 Decimal floating-point input

In this chapter, and the preceding one on floating-point output (see Chapter 26 on page 829), we showed how binary,
octal, and hexadecimal floating-point strings can be handled exactly, and with correct rounding, without requiring
access to higher-precision arithmetic.

The decimal input and output problems when the host arithmetic is not itself decimal are much harder. Although
solutions were worked out in the 1970s and 1980s, they were unpublished until 1990 [Cli90, Knu90, Gri90, SW90],
and those results were later improved upon [Gay90, BD96, ABC+99, Loi10]. Two recent retrospectives [Cli04, SW04]

896 Chapter 27. Floating-point input

review those developments, and are worth reading; they preface the original papers [Cli90, SW90] with additional
historical commentary. The original algorithms were written in dialects of Lisp that provide multiple-precision
arithmetic. Gay provides a package in C for both input and output, but his code is specific to IEEE 754 systems, and
not usable at all on older architectures.

Conversion of human-readable text strings to numbers in internal binary formats has gone through several stages
in the development of the C language:1

� In the early years of C, conversion of strings to integers and floating-point numbers was available only through
the functions atoi() and atof(), producing results of type int and double, respectively. Those functions were
written in assembly code in UNIX V3 in 1973, but C versions appeared in UNIX V6 in 1975, and in 1979, UNIX
V7 added atol() for long int results.

� UNIX V7 added the formatted-input conversion function sscanf(). It handled integer strings with inline code,
but called atof() for floating-point strings.

� UNIX SYSTEM V, released in 1983, included two new functions strtod(), for conversion to data type double,
and strtol(), for conversion to long int.

� C89 incorporated the two new SYSTEM V functions in the ANSI and ISO Standards, and added strtoul() for
unsigned long int results.

� C99 adds strtof() and strtold() for conversion to float and long double floating-point types, and str-
toimax(), strtoll(), strtoull(), and strtoumax() for conversion to intmax_t, long long int, unsigned
long long int, and uintmax_t integer types.

� C99 requires that strtof(), strtod() and strtold() recognize hexadecimal floating-point values, Infinity, and
NaN, and mandates correct rounding according to the current rounding direction.

The early conversion code was workable, but not reliable. For integer conversions, the original atoi() accumu-
lates a positive sum, then negates the result if a negative sign prefixes the digit string. The code does not check for
overflow, and in two’s-complement arithmetic, for which there is no corresponding positive number, it is impossible
to correctly input the most negative integer.

The converter from string to floating point, atof(), tries a bit harder. As long as the sum is less than a constant big
(the largest exactly representable whole number), atof() continues digit accumulation. The last digit collected in the
loop can therefore produce an inexact result. atof() then skips subsequent digits, but increments the exponent for
each such digit until it finds a nondigit. If the next character is a decimal point, atof() continues digit accumulation
if the sum is below big, and decrements the exponent for each digit. Otherwise, it skips remaining digits. If the
following character is an exponent letter, it collects the explicit exponent value itself, without checking for overflow,
or even that at least one digit is present. The sum of the two exponents determines the scale factor 10n, which atof()
expresses as 2n × 5n, then computes 5n by successive squaring and bitwise reduction of n, and applies the final factor
of 2n exactly by calling ldexp(). That implicitly assumes a base-2 floating-point system. On the Interdata 8/32,
which has IBM-style hexadecimal floating-point arithmetic, a revised version of the atof() code computes 10n with
n − 1 multiplications, introducing serious accuracy loss from rounding and from wobbling precision.

Neither atof() nor atoi() nor sscanf() provides the caller with any indication of how much of the string was
parsed successfully, so they silently return 123 for the string "123abc", and 0 for the string "hello".

Ideally, a string-to-number conversion function should have these properties:

� Erroneously formatted strings must be reported to the caller.

� Overflow in either the number or the exponent must be detected and reported to the caller.

� Overflow must produce the largest representable magnitude of the appropriate sign. For floating-point arith-
metic systems that support an Infinity, that value must be used in place of the signed finite number of largest
magnitude.

� In the absence of overflow, integer conversion, even of the most negative representable number, must be exact.

1See the Web site of The Unix Heritage Society at http://minnie.tuhs.org/ for source code and charts of development history.

27.4. Decimal floating-point input 897

� In the absence of overflow and underflow, the result of a floating-point conversion must be correctly rounded
to the nearest representable machine number, possibly according to the current rounding mode, when more
than one mode is available.

� Aberrant input, such as a long string of digits with a large-magnitude exponent (1.000...e-10000 or
0.000...001e+10000) must be converted correctly if the mathematical number lies in the range of representable
machine numbers.

As we observed earlier, those problems can all be handled, but always-correct conversion is only possible if the
result is first computed exactly, then converted to working precision with a single rounding. That in turn requires
access to multiple-precision arithmetic. Without that luxury, digit accumulation and the computation of the exponent
power are both subject to rounding errors, and must be handled carefully to avoid introducing additional errors.

The Standard C conversion functions with the str prefix have an indirect pointer as a second argument, so that
the caller can examine the substring that follows any successfully parsed characters. In most cases, that substring
should begin with a NUL, whitespace, or a punctuation character that could legally follow numbers in the context
in which they are used. The functions report overflow by setting the global value errno to ERANGE, and return the
largest-magnitude representable value of the appropriate type and sign. For floating-point underflow, they may
return either zero or the smallest representable number, and they may or may not set errno to ERANGE. If conversion
is not possible, they return a zero value.

We have noted elsewhere that global variables, such as errno, may be unreliable in the presence of threads, but
that problem cannot be solved without introducing additional arguments in the conversion routines.

As in the conversion functions for binary, hexadecimal, and octal floating-point strings, we adopt the same call-
ing sequence as the strtod() function family. The function outline looks like this, with the usual macro wrapper
standing for one of several precision-dependent functions:

fp_t
CVTID(const char *nptr, char **endptr)
{

/* ... code omitted ... */
}

After skipping any leading whitespace and recognizing an optional sign, a one-character lookahead allows us to
identify candidates for Infinity and NaN conversion which we handle by calls to one of the conversion functions
described earlier in this chapter.

Otherwise, we have a possible decimal number string. For decimal floating-point arithmetic, we copy it into an
internal buffer, eliminating any digit-separating underscores, and collecting only as much of it that is a valid number
string. If the collection was successful, we call _cvtfsf() (see Section 27.1.6 on page 890) to scan over any floating-
point suffix string, and set endptr, if it is not NULL. We then call functions in the decNumber library [Cow07] that do
the conversion exactly.

The need for an internal buffer introduces an undesirable limit on the size of a decimal number string. That
limit could be removed by allocating the string dynamically, but the mathcw library design specifications do not
permit that. The limit that we choose is guaranteed to be at least 4095 characters, a minimum limit mandated by
C99 for formatted output fields. The buffer is a local variable, so it resides on the stack, and is in use only during the
execution of CVTID().

For binary arithmetic, we do the digit accumulation in the highest available precision, even if that means software
arithmetic on some systems.

We provide for exact digit accumulation by using an accumulator array defined by this data type:

typedef struct
{

xp_t a[MAX_ACC]; /* accumulator cells */
int n[MAX_ACC]; /* numbers of digits */

} acc_t;

A precomputed limit that is ten times smaller than the maximum representable whole number serves as a cutoff for
moving to the next cell. Each cell holds the value of as many digits as can fit exactly, effectively compressing the digit
string, and the accompanying count is the number of digits up to, and including, that cell.

898 Chapter 27. Floating-point input

On completion of digit collection, we have a representation of the input string as a sum of products of exactly
representable whole numbers and associated integral powers of ten, except that digits beyond what can fit in the
penultimate cell are ignored. However, the powers of ten are as yet unevaluated.

The value of MAX_ACC is set in the cvtid.h header file. In exact arithmetic, it needs to be large enough for the
accumulator to contain a number as wide as a fixed-point number spanning the entire exponent range (see Table 4.2
on page 65, Table D.1 on page 929, and Table D.2 on page 929). In the 80-bit IEEE 754 binary format, that is 9884
digits, which requires MAX_ACC to be 521. The 128-bit format needs 9899 digits, and MAX_ACC set to 291. For the future
256-bit binary format, MAX_ACC must be at least 35 105, and in the corresponding decimal format, 44 939. However, in
inexact arithmetic, a value of 5 usually suffices, because other errors exceed the rounding correction from the extra
accumulator cells.

We evaluate the exponent digit string with _cvtpow() (see Section 27.1.5 on page 889) so that exponent overflow
can be detected.

The final result is then obtained by summing the accumulator products in order of increasing magnitude, where
the explicit exponent is added to the cell exponents so that only a single power of ten is required for each cell. The
is_safe_add() function provides an essential check for integer overflow in the exponent arithmetic.

Alas, it is here in that final sum that we fail to meet the goal of exact rounding, unless we can handle it with an
exact multiple-precision arithmetic package. Until a suitable portable package is identified, we use a fused multiply-
add to minimize errors.

Accuracy is catastrophically lost if any product falls into the subnormal region, or worse, underflows to zero. To
prevent that, we check the combined exponent of our multiword accumulator, and if it drops below a cutoff that
we set to about twice the number of decimal digits in the significand above the power of ten of the smallest normal
number, we offset the combined exponent by a suitable constant. After the accumulation, one further scaling by ten
to the negative of that offset recovers the final value.

Here is what the final reconstruction code looks like:

if (exp_overflow)
number = (exponent < 0) ? XZERO : INFTY();

else
{

int e_bias;
int offset;

e_bias = total_digits - fractional_digits;

if (is_add_safe(e_bias, exponent))
e_bias += exponent;

else
e_bias = (exponent < 0) ? INT_MIN : INT_MAX;

offset = (e_bias < e_small) ? e_offset : 0;
number = XZERO;

for (k = n_acc; k >= 0; --k)
{

if (is_add_safe(e_bias, offset - acc.n[k]))
number = XP_FMA(acc.a[k], power_of_10(offset + e_bias - acc.n[k]), number);

else
number += (e_bias < 0) ? XZERO : INFTY();

}

if (offset != 0)
number *= power_of_10(-offset);

}

Only a few lines of the reconstruction code need to be replaced with calls to a multiple-precision package to reduce
the round-trip conversion errors to zero for binary arithmetic.

27.5. Based-number input 899

In the code shown, the two largest sources of error are in the product at k = 0 with a power of ten that may not be
exactly representable, and in the final scaling for numbers near the subnormal region, where both the multiplication
and the power may introduce additional rounding errors.

The power_of_10() function is a private one that uses fast table lookup for most common powers, and otherwise
calls the exact function XP_LDEXP() in a decimal base, or the approximate function XP_EXP10() in a nondecimal base.
In the mathcw library, tests show that the latter is almost always correctly rounded, and that is superior to the bitwise
reduction and squaring used in the original atof() for computing 5n. Of course, in those days, most machines that
C ran on had much smaller exponent ranges, so that approach was acceptably accurate because roughly the first ten
multiplications needed for 5n were exact.

In summary, conversion in decimal arithmetic is always exact, or correctly rounded. For binary arithmetic, ex-
haustive testing of every possible IEEE 754 32-bit floating-point value, and with millions of 64-bit floating-point
values selected from logarithmic distributions over the entire floating-point range, finds no round-trip conversion
errors. However, in the highest available precision, the test program reports maximum errors of under four ulps,
and average errors below 0.4 ulps. Simpler code that accumulates the result in a single number produces maximum
errors about one ulp larger.

27.5 Based-number input

It is occasionally desirable to be able to input numbers written in any of several number bases. As we observed in
the introduction to Chapter 26, the Ada language allows program source code to contain based literals of the form
base#digits[.digits]#[exponent], where base is a decimal value from 2 to 16, and brackets indicate optional fields.
Later Ada standards allow the # character to be replaced by a colon, although that practice is rare. The digits are
in the indicated number base, with letters A through F representing digit values 10 through 15. The exponent is the
letter E, followed by an optionally signed decimal integer that specifies the power of the base by which the fixed-
point number specified between the # delimiters is to be multiplied. Lettercase is ignored in the digits and exponent,
and the digit values must be in the range [0, base− 1]. For example, 5#2.01#e+3, 8#3.77#e2, 10#255#, and 16#ff# all
represent the decimal value 255.

However, the sharp character, #, identifies preprocessor directives and operators in the C language family, and is
also commonly used as a comment-start symbol in input files for UNIX utilities, so it would be unwise to employ
it for yet another purpose. Instead, for the mathcw library, we use the at character, @. For historical reasons,2 that
character is not considered part of the C character set, even though it has been present in computer character sets
for decades, and now sees wide use in electronic-mail addresses. We generalize the Ada practice by allowing any
base in [2, 36], using the 26 letters of the English alphabet to provide the needed digits. Thus, 36@aBc.XyZ@E3 is the
decimal value 623 741 435.

The mathcw library conversion function for general based numbers has this outline:

fp_t
CVTIG(const char *s, char **endptr)
{

/* ... code omitted ... */
}

Its code is lengthy, so we do not exhibit it here. There are similarities to other input conversion functions, but there are
also complications because we want to handle exactly representable inputs exactly. That means separate handling of
bases that are powers of two when the native base is a (possibly different) power of two, and of base-10 input when
decimal floating-point arithmetic is in use. For other number bases, the conversions may require scaling by a power
of that base, where the power may not be represented exactly in the native base, introducing additional rounding
errors. The code uses the highest available precision to reduce those errors.

2On early UNIX systems, some input terminals had limited character sets, and it was necessary to usurp printing symbols for the line-cancel
and erase characters: @ and # were sacrificed.

900 Chapter 27. Floating-point input

27.6 General floating-point input

The functions described in the preceding sections provide the tools for writing a general floating-point input function
that automatically recognizes based-number, binary, octal, decimal, and hexadecimal floating-point strings, as well
as Infinity, and generic, quiet, and signaling NaNs.

All that is required is a small amount of lookahead to determine which specific conversion routine is needed, and
the code should be reasonably obvious:

fp_t
CVTIA(const char *s, char **endptr)
{ /* convert any numeric input string to a number */

char *g_endptr;
const char *s_in;
const char *s_val;
fp_t result, value;
int sign;

s_in = s;

while (isspace(*s)) /* skip optional leading space */
++s;

sign = _cvtsgn(s, (char**)&s);
s_val = s;

if (isalpha(*s) && (value = CVTINF(s, &g_endptr), g_endptr != s_val))
result = COPYSIGN(value, (fp_t)sign);

else if (isalpha(*s) && (value = CVTNAN(s, &g_endptr), g_endptr != s_val))
result = SET_EDOM(COPYSIGN(value, (fp_t)sign));

else if (_cvtcmp("0x", s) == 0)
result = CVTIH(s_in, &g_endptr);

else if (_cvtcmp("0o", s) == 0)
result = CVTIO(s_in, &g_endptr);

else if (_cvtcmp("0b", s) == 0)
result = CVTIB(s_in, &g_endptr);

else /* expect based or decimal number */
{

s = s_val;

while (isdigit(*s))
++s;

if ((*s == ’@’) && (s > s_val))
{ /* probable based number */

result = CVTIG(s_in, &g_endptr);

if (g_endptr == s_in) /* expect decimal number */
result = CVTID(s_in, &g_endptr);

}
else

result = CVTID(s_in, &g_endptr);
}

if (endptr != (char **)NULL)
*endptr = g_endptr;

return (result);
}

27.7. The scanf() family 901

If the input string contains neither an Infinity nor a NaN, then we try hexadecimal, octal, binary, based-number,
and decimal strings. An at-sign after a digit suggests a based number, but if that conversion fails, we try a decimal
conversion, so "10@ibm.com" is converted to 10 with an unprocessed suffix of "@ibm.com".

The design of the code means that anywhere the strtod() family is used in existing software, the functions can
be transparently replaced with the corresponding members of the cvtia() family, and that is easily done without
code changes by using a compile-time macro definition. The older C library function atof(s) can be replaced by
cvtia(s, NULL). Those simple changes make it trivial to retrofit into older C programs support for input strings in
based-number, binary, octal, and hexadecimal formats, in addition to decimal number strings, and allow recognition
of Infinity, NaNs with payloads, and digit-separating underscores.

27.7 The scanf() family

The input-conversion functions described earlier in this chapter give us the tools needed to complete the job of
supporting formatted input to programs in the C language family. The Standard C library functions in the scanf()
family are the input companions to the printf() family that we described in Section 26.12 on page 867.

The input functions have these prototypes:

#include <stdio.h>

int fscanf(FILE * restrict stream, const char * restrict format, ...);

int scanf(const char * restrict format, ...);

int sscanf(const char * restrict s, const char * restrict format, ...);

#include <stdarg.h>

int vfscanf(FILE * restrict stream, const char * restrict format, va_list arg);

int vscanf(const char * restrict format, va_list arg);

int vsscanf(const char * restrict s, const char * restrict format, va_list arg);

Those six functions are accompanied by six more that take string arguments of type wchar_t, but we do not treat
those additional functions further in this book, because they are not widely supported, and rarely found in existing
software.

As with the printf() family, there are two groups of functions. The first group is the more commonly used, and
a call to the convenience function scanf() is equivalent to a call to fscanf() with an initial argument of stdin. The
second group gives access to the formatted-input facilities from user functions with variable numbers of arguments.

All six functions return the number of arguments to which values have successfully been assigned, or EOF if an
input failure occurs before any conversion. Input failures may reflect an absence of data from end-of-file or end-of-
string conditions, or an error return from a file-input function. By contrast, a match failure never produces an EOF
return value.

Because the return value indicates the degree of success, it is commonly used in software to control input pro-
cessing. Here is a typical example:

char s[10 + 1];
float x;
int n;

/* ... code omitted ... */

while (scanf("%d %g %10c", &n, &x, &s) == 3)
process(n,x,s);

Here, three items — an integer, a floating-point number, and a ten-character string — are read from stdin and
processed. The loop terminates when three items can no longer be converted.

902 Chapter 27. Floating-point input

To scanf(), an input file is a continuous stream of data. If the input items are required on separate lines, the
sample loop body must consume input until a newline is found. That could be done with a loop

do c = getchar(); while ((c !=’\n’) && (c != EOF));

but is more compactly handled with a scanset conversion:

(void)scanf("%*[^\n]");

Scansets are described later in Section 27.7.3 on page 905.

27.7.1 Implementing the scanf() family

The functions listed in the previous section provide for input from either a file or a string, and we implement all of
them with a common core. By analogy with the sink_t data structure that we used in Section 26.12.3 on page 871,
we introduce a source_t data structure:

typedef struct source_s
{

FILE *stream;
const char *s;
int count;
int next_empty_pushback;
int width;
size_t next_s;
unsigned char pushback[MAXPUSHBACK];

} source_t;

That structure is more complex than we needed for the output problem, because we now have three sources of data:
the argument file, the argument string, and an internal buffer of characters that were read, examined, and then
pushed back into the input source. When that buffer is not empty, it takes precedence over file or string input.

The need for input pushback is common in parsers, because they often have to examine a few characters of
pending input before deciding which of several processing alternatives applies. The easiest way to handle that
lookahead is to read characters until a decision can be made, then push them back into the input stream, most recently
read data first. Although Standard C provides the ungetc() function to do that for file input, it only guarantees a
single character of pushback. For Infinity and NaN inputs, we require many more than one: our buffer size is
set to 4096, conforming to the minimum limit required by C99 for the number of characters produced by a single
formatted-output specifier.

The lookahead required for Infinity and NaN poses a potential problem of loss of data. For example, if the input
stream contains index instead of inf or infinity, then at least three characters must be read before match failure
is certain, and the three must then be pushed back into the input stream. As long as input processing continues
inside a single call to scanf(), that is not a problem. However, just prior to return, scanf() must transfer its private
pushback buffer to that of ungetc(), and if that function provides only a single-character buffer, data loss is certain.
With NaN payloads, the potential for data loss is even greater. The only way to eliminate the problem is to rewrite
the system-dependent implementation of input handling inside <stdio.h> on all platforms to which the mathcw
library is ported, and that is impractical. Although the C library contains functions ftell() and fseek() to control
input/output positioning, those functions fail on data streams that are not seekable, such as interactive files, shell
pipes, and network connections. Thus, they cannot provide a solution to the lost-data problem. That appears to be a
situation where the ramifications of a new feature in C99 were not fully considered, or at least, it was not imagined
that separate implementations of high-level I/O might be provided by other libraries.

The count member of the source_t data structure records the number of input characters read from the data
sources, because that value is needed for the %n format specifier. A specifier width sets the width member so that a
maximum input field length can be enforced. The next_s member indexes the string member, s.

The three main input functions are wrappers that call functions from the second group:

int
(fscanf)(FILE * restrict stream, const char * restrict format, ...)
{

27.7. The scanf() family 903

int item_count_or_eof;
va_list ap;

va_start(ap, format);
item_count_or_eof = vfscanf(stream, format, ap);
va_end(ap);

return (item_count_or_eof);
}

int
(scanf)(const char * restrict format, ...)
{

int item_count_or_eof;
va_list ap;

va_start(ap, format);
item_count_or_eof = vfscanf(stdin, format, ap);
va_end(ap);

return (item_count_or_eof);
}

int
(sscanf)(const char * restrict s, const char * restrict format, ...)
{

int item_count_or_eof;
va_list ap;

va_start(ap, format);
item_count_or_eof = vsscanf(s, format, ap);
va_end(ap);

return (item_count_or_eof);
}

User-defined functions analogous to the sample function that we showed in Section 26.12.2 on page 870 can be
written in much the same way as those functions.

The functions in the second group have even simpler definitions:

int
(vfscanf)(FILE * restrict stream, const char * restrict format, va_list arg)
{

source_t source;

return (vscan(new_source_file(&source, stream), format, arg));
}

int
(vscanf)(const char * restrict format, va_list arg)
{

source_t source;

return(vscan(new_source_file(&source, stdout), format, arg));
}

int
(vsscanf)(const char * restrict s,

904 Chapter 27. Floating-point input

const char * restrict format, va_list arg)
{

source_t source;

return (vscan(new_source_string(&source, s), format, arg));
}

The private functions new_source_file() and new_source_string() initialize the source_t structure, and the pri-
vate function vscan() manages the real work of controlling format scanning and input conversion. It is assisted by
a score of smaller functions with about two dozen switch statements and about 100 case statements, collectively
amounting to about 1200 lines of code.

The code in vscan() is straightforward, but full of tedious details that we omit here. As with vprt(), its task
is to work its way through the format string, finding format specifiers and converting them to a more convenient
internal form, and matching them with the next unprocessed argument. However, because vscan() provides input,
all of its arguments after the format are pointers, and thus, all of the dangers with printf() that we described in
Section 26.12.1 on page 868 apply here, but even more so, because every input conversion is a candidate for either
buffer overrun, or writing data to arbitrary memory locations.

27.7.2 Whitespace and ordinary characters

A format string for input may contain whitespace characters (as defined by the Standard C function isspace()),
ordinary printing characters, and format specifiers beginning with a percent character.

Whitespace characters in the format string are skipped, and except for %c, %n, and %[...] conversions, any
whitespace characters occurring next in the input stream are read and ignored. It is not an error if the input has no
whitespace characters, so that effectively means that whitespace in format strings is purely for improved readability.

Because carriage returns and newlines are also whitespace by the definition of the isspace() function, line breaks
in the input stream have no significance, apart from separating input items. That is quite different from Fortran,
where READ statements start with a new input record. It also differs from printf(), where a space or a newline in a
format string is transmitted verbatim to the output stream.

When the scan of the format string meets an ordinary printing character, any input whitespace is skipped, and
then the next input character is matched with the format character. If they differ, vscan() terminates further process-
ing, and returns the number of items assigned so far.

Here is a small test program that can be used to see how whitespace and ordinary characters are handled:

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

int
main(void)
{

int code;
int n;

(void)printf("Input data (a b c 123): ");

while ((code = scanf(" a b c %d", &n), code) == 1)
{

(void)printf("n = %d\n", n);
(void)printf("Input data: ");

}

(void)printf("Last return code from scanf() = %d\n", code);

return (EXIT_SUCCESS);
}

27.7. The scanf() family 905

On a UNIX system, we can compile and run the program like this:

% cc test.c && ./a.out
Input data (a b c 123): abc12345
n = 12345
Input data: a b c 456
n = 456
Input data: a
b
c
789
n = 789
Input data: A B C 123
Last return code from scanf() = 0

After the first prompt, the input abc12345 matches the format, despite the absence of input whitespace. The loop
body reports the value 12345 for n, and prompts for more input.

After the second prompt, the input a␣␣␣b␣␣␣c␣␣␣456, where ␣ indicates a space, also matches the format, even
though this time, the input has additional whitespace. The loop body reports the value 456 and prompts again.

After the third prompt, the input is supplied on four successive lines, but still matches the format and produces
the expected report.

However, at the last prompt, the input A B C 123 fails to match the format, because A is not the same character as
a. Thus, scanf() returns zero, and the loop terminates. A subsequent getchar() call would return the character A.

27.7.3 Input conversion specifiers

The format specifiers recognized by the scanf() family are summarized in Table 27.1 on the next page, and their
data type modifiers in Table 27.2 on page 907. Although there are strong similarities with the printf() specifiers
(see Table 26.5 on page 873 and Table 26.6 on page 874), there are significant differences as well.

Except for their data types, the integer conversions work as defined for strtol() and strtoul(), with their base
argument set appropriately. The %i conversion corresponds to a base argument of zero in strtol(), where the input
form of the number determines the base.

The floating-point conversion specifiers are equivalent, apart from their data types. In Standard C, they work like
strtod(), recognizing decimal and hexadecimal floating-point values, as well as Infinity and NaN representations.
In the mathcw library, floating-point conversions are generalized to work like cvtia(), so they also support based-
number, binary, and octal floating-point values.

The scanset specifier, %[...], requires some explanation. It normally takes the form of a bracketed list of charac-
ters, called the scanlist, and input matching continues until a character is found that is not in the scanlist. At least
one input character must match, or else there is a match failure and an immediate function return. Thus, %[aeiou]
matches a sequence of one or more lowercase English vowels. However, if the first character after the left bracket is
a caret (^), the scanset contains all characters that are not in the scanlist. The specifier %[^aeiou] therefore matches
an input sequence that does not contain a lowercase vowel. If the specifier begins with %[] or %[^], the right bracket
is part of the scanlist, rather than acting as a list delimiter. The specifier %[][x] matches an input sequence of any
number of brackets or x characters.

Standard C leaves the interpretation of a hyphen in the scanlist up to the implementation. Historically, some
treated a scanlist of a-z as a range specification, equivalent to the set of lowercase English letters in the ASCII
character set, whereas others considered it to be a three-character list. In other character sets, such as EBCDIC used
in some IBM mainframe operating systems, letters do not form a single contiguous block, so the range a-z also
contains nonletters. Scanset ranges in scanf() family format conversions have never been portable, and are not
supported by the mathcw library.

The scanf() %n conversion specifier causes the current number of input characters to be stored in the integer
pointed to by the next argument, just as the same specifier in printf() reports the current output-character count,
However, %n conversion is peculiar in that it results in an argument assignment, but does not increment the assign-
ment count that the function ultimately returns. Standard C says that a field width or an assignment suppression in
a %n conversion are implementation defined; in the mathcw library, a field width is silently ignored, and assignment
is suppressed. Thus, %*10n serves merely as useless filler in a format string.

906 Chapter 27. Floating-point input

Table 27.1: Input conversion specifiers for the scanf() family.
Using brackets to indicate optional values, the general syntax of a conversion specifier is
%[*][width][datatype]letter.
An asterisk suppresses assignment to an argument. Any width given must be greater than zero, and specifies the
maximum field width in characters (or wide characters). The data type modifiers are defined in Table 27.2.
Specifiers in the second part of the table are extensions to C89 and C99.

Item Description
%% Literal percent character. No argument is assigned.
%[...] Match a scanset; see text for a description. The argument must be as for %s conver-

sion.
%A, %a Optionally signed floating-point number, Infinity, or NaN, in the format accepted by

strtod() (for mathcw library, cvtia()). Argument is pointer to floating point.
%c Sequence of characters of exactly the number specified by the field width (default: 1).

Argument is pointer to array of type char or wchar_t large enough for the sequence.
No NUL is appended.

%d Optionally signed decimal integer. Argument is pointer to signed integer.
%E, %e Same as %a.
%F, %f Same as %a.
%G, %g Same as %a.
%i Optionally signed integer in decimal or hexadecimal form. Argument is pointer to

signed integer.
%n Current input character count is assigned to argument, (pointer to signed integer).

Does not contribute to count returned by the function.
%o Optionally signed octal integer. Argument is pointer to unsigned integer.
%p Pointer value in the format produced by printf() with %p conversion. Argument is

pointer to void.
%s Sequence of nonwhitespace characters. Argument is pointer to array of type char, or

with the l (ell) modifier, wchar_t, large enough for the sequence, and a trailing NUL.
%X, %x Optionally signed hexadecimal integer. Argument is pointer to unsigned integer.
%u Optionally signed decimal integer. Argument is pointer to unsigned integer.
%@ Same as %a [hoc and mathcw library].
%B, %b Same as %a [hoc and mathcw library].
%Q, %q Same as %a [hoc and mathcw library].
%Y, %y Optionally signed binary integer [hoc and mathcw library]. Argument is pointer to

unsigned integer.

The %n specifier might seem to be rarely needed, but it serves an important, albeit unexpected, purpose. Consider
the simple format "x", which matches an ordinary character x. If one is found, the scanf() return value is zero,
because there are no assignments. If no x is found, there is a match failure, and the return value is again zero. The
two cases can easily be distinguished by using a %n specifier, as in this code fragment:

int n;

n = -1;
(void)scanf("x%n", &n);
(void)printf("%s\n", (n < 0) ? "missing x" : "found x");

Thus, judiciously placed %n specifiers can provide extra information about conversion success for ordinary characters
that may not be obtainable from just the returned assignment count.

An asterisk serves a quite different purpose in conversion specifiers for the printf() and scanf() families. In
printf(), it requests retrieval of an integer value from the next argument, whereas for scanf(), it specifies assign-
ment suppression. Input matching and data conversion proceed normally, but the final assignment and incrementing
of the return count are both prevented. For example, to read the third integer on each line of an input file, use some-
thing like this:

while (scanf("%*i %*i %i %*[^\n]", &n) == 1)
process(n);

27.7. The scanf() family 907

Table 27.2: Data type format modifiers for input conversion specifiers. Modifiers are required if the corresponding
argument has a type other than the default for the conversion specifier.

Item Description
integer conversion

hh signed char * or signed char * argument [C99]
h short int * or unsigned short int * argument
j intmax_t * or uintmax_t * argument [C99]
l long int * or unsigned long int *, wint_t *, or wchar_t * argument
ll long long int * or unsigned long long int * argument [C99]
t ptrdiff_t * argument [C99]
z size_t * argument [C99]

binary floating-point conversion
l double * argument [mathcw library]
L long double * argument
LL long_long_double * argument [mathcw library]

decimal floating-point conversion
H decimal_float * argument [mathcw library]
DD decimal_double * argument [mathcw library]
DL decimal_long_double * argument [mathcw library]
DLL decimal_long_long_double * argument [mathcw library]

A field width following the percent or asterisk limits the scan to at most that many characters, and that maximum
does not include any leading whitespace that was skipped. The primary use of field widths is for string conversions
with %c and %s, and to prevent buffer overrun, those specifiers should always have field widths.

Unfortunately, scanf() format specifiers provide no mechanism for dynamic field widths, so that means that
formats contain magic constants related to an array dimension elsewhere in the code, which is a recipe for a disaster
if the dimension is later reduced. Careful programmers create such formats dynamically in strings declared nearby:

char s[100];
float x;
int n;
/* ... code omitted ... */
{

char fmt[sizeof("%i %g %99999999999999999999s %*[^\\n]")];

(void)snprintf(fmt, sizeof(fmt), "%%i %%g %%%zus %%*[^\\n]", sizeof(s));

if (scanf(fmt, &n, &x, s) == 3)
process(n, x, s);

}

The size of the fmt array is specified by a template, rather than yet another magic integer constant. The template
shows what the format would look like in the worst case, and automatically includes space for the string-terminating
NUL character. Although a field width as big as the 20-digit one shown would be impractical on most systems, that
number of digits is possible from the conversion of a 64-bit unsigned integer, which is likely to be the largest size
encountered for the size_t value produced by the sizeof operator on current systems.

The troublesome extra programming that is needed here for safety clearly indicates poor software design in the
scanf() family.

The data type modifiers shown in Table 27.2 are frequently needed in scanf() format specifiers, because they
control the size of the assigned arguments. For example, a snippet of the result-assignment code for signed integer
conversion in vscan() looks like this:

switch (fmt.datatype)
{
case FMT_DATATYPE_CHAR:

908 Chapter 27. Floating-point input

*va_arg(ap, char *) = (char)CLAMP(CHAR_MIN, number, CHAR_MAX);
break;

case FMT_DATATYPE_SHORT:
*va_arg(ap, short int *) = (short int)CLAMP(SHRT_MIN, number, SHRT_MAX);
break;

case FMT_DATATYPE_PTRDIFF_T:
*va_arg(ap, ptrdiff_t *) = (ptrdiff_t)CLAMP(PTRDIFF_MIN, number, PTRDIFF_MAX);
break;

case FMT_DATATYPE_SIZE_T:
*va_arg(ap, size_t *) = (size_t)CLAMP((size_t)0, number, SIZE_MAX);
break;

/* ... code omitted ... */
}

In each assignment, an argument pointer is coerced to a pointer to the data type matching that given in the format
specifier, dereferenced, and assigned to. An erroneous type modifier may result in overwritten data in the caller, and
it is impossible for vscan() to detect that error. Similarly, a missing argument results in writing to an unpredictable
memory location, with serious implications for correctness, reliability, and security. That error too is impossible for
vscan() to guard against in any portable fashion. Utilities like lint and splint, and some C compilers, perhaps
with additional options, can detect both kinds of errors in source code.

The variable number holds the result of the conversion, and has the longest supported integer type. The macro
CLAMP(low, number, high) ensures that the stored result lies in [low, high]. The design of the scanf() family pro-
vides no way to warn its caller of an intermediate overflow, not even through the usual global variable errno, so it
seems most sensible to return an extreme value, rather than an arbitrary result whose decimal representation gives
no hint that it arises from bit truncation of the input number.

The C Standards specify that the behavior of integer type-narrowing is undefined when the value to be converted
lies outside the range of the target type. Common compiler practice, and CPU instruction-set design, extract as many
of the low-order bits of the longer type as are needed to fill the shorter type. However, variations in the size of long
int, and whether char is signed or unsigned, lead to differences across platforms, and between compilers. As we
discussed in Section 4.10 on page 72, integer overflow requires careful handling by software, and is usually best
treated by preventing it altogether, as we do in vscan() with the CLAMP() macro. Few other implementations of the
scanf() family provide such protection against overflow in input conversions.

The conversion from a longer to a shorter integer type is a convenient implementation choice that simplifies the
code in vscan(). However, separate conversions are needed for each floating-point data type to avoid the problems
of double rounding, loss of NaN payloads, and the distinction between quiet and signaling NaNs.

The scanf() %p specifier is guaranteed to read a pointer value output by the printf() family with %p, and pro-
vided that the input and output are in the same process, the pointers refer to the same memory location. Pointers
exchanged that way between different processes are unlikely to be meaningful. On modern systems, pointers are
normally expressed in hexadecimal with a 0x suffix. On older architectures, such as the PDP-10 and PDP-11, octal
pointers are conventional.

There are glaring differences between the printf() and scanf() families in type modifiers for floating-point
conversions. In printf(), a %g conversion consumes a double argument, and instead of adding a new type specifier
for float arguments, C89 and C99 instead require the compiler to promote a float argument to double in functions
with variable numbers of arguments, when the argument is represented in the function prototype by the ellipsis. By
contrast, in scanf(), %g conversion assigns to a float value, and %lg to a double value. Arguments of type long
double are handled with %Lg conversion in both printf() and scanf().

In printf(), a %10c conversion outputs a single unsigned char value that is pushed on the argument list as a
fullword integer, and output right justified in a field width of 10 characters. By contrast, the same conversion in
scanf() reads the next 10 characters from the input stream into a character array, without supplying a terminating NUL.

Similarly, in printf(), a %10s conversion outputs a string, possibly containing whitespace, right-justified in a
10-character field, expanding the field automatically if the string is long. In scanf(), that same conversion skips
whitespace, then reads up to 10 nonwhitespace characters, and stores them in a character array with a terminating

27.7. The scanf() family 909

NUL. That array must therefore contain at least 11 elements. Any whitespace encountered during the string collection
terminates the scan.

The differences between input and output processing with %c and %s specifiers mean that %c is likely to be com-
monly needed for input, although remaining rare in output, and also that additional code is almost always needed
to add a string terminator. Even worse, if the input stream does not contain the number of characters specified in the
field width, some characters of the argument array will not be assigned to, so it is not sufficient to store a NUL at the
end of the array. In practice, then, programs should first initialize input character arrays with NUL characters, with
code like this:

char name[50 + 1];

(void)memset(name, 0, sizeof(name));

if (scanf("%50c", name) == 1)
process(name);

The character array name is then guaranteed to be properly terminated, and can safely be used as a C string.

27.7.4 Retrospective on the scanf() family

Examination of almost any significant body of C code shows that the printf() family is widely used, whereas the
scanf() family is rarely seen. Part of that is certainly due to the application areas where C is commonly used, notably,
for text processing. Input handling may then be based on simple getchar() calls, or entire lines might be read with
fgets(), and then split into input fields, possibly with the assistance of the standard tokenizer functions, strcspn(),
strpbrk(), strsep(), strspn(), and strtok(). Numeric fields can then be converted to internal form with functions
in the strtod() and strtol() families.

In window-system applications, the software design usually ensures that each input string contains only a single
value of known type. In database and network programming, input data is already likely to be in internal form, or
requires only the conversion of a text string to a single value.

Scientific and engineering computing applications are likely to be ones in which software must deal with large
input files containing a mixture of integers, floating-point values, and character strings. Use of the scanf() family
may then be a reasonable way to solve the input problem. However, as we noted in earlier sections, great care is
needed to avoid confusion between conversion specifiers that are similar to ones for printf(), but behave differently.
Because all arguments after the format are pointers, even more care is needed to avoid overwriting memory due
to erroneous data-type modifiers, incorrect or omitted maximum field widths for string conversions, and missing
arguments.

In addition, the program must vigorously defend against input errors that are caused by missing or incorrectly
formatted data. It is imperative to check that the function return values match the expected number of conversions,
and to include a reasonable error-reporting and recovery mechanism, so that most of the input can be checked on a
single run, instead of just terminating at the first conversion error.

Interactive programs may find it helpful to prompt the user for input, and retry with a fresh prompt when
conversion fails.

The fixed field widths of 80-character punched cards should now be just a historical curiosity, and any input that
is prepared by humans should be insensitive to data widths, horizontal spacing, and perhaps even to line breaks.

It is also helpful to users if input data files can contain comments. For example, if a sharp sign marks an optional
comment that continues to end of line, then after collecting data values from a line, the comment can easily be
consumed with simple formats in two calls like these:

(void)scanf("#"); /* gobble start of comment, if any */
(void)scanf("%*[^\n]"); /* eat rest of input line */

Most UNIX utilities that support configuration files permit such comments, and the practice deserves to be more
widely employed in user programs as well.

Some UNIX configuration files, and the Fortran NAMELIST facility, allow variable assignments in the input stream.
A simplified version of a scanner for such data can be implemented with a loop like this:

910 Chapter 27. Floating-point input

char name[100 + 1];
long double value;

initialize();

while (scanf("%100s = %Lg", name, &value) == 2)
install(name, value);

That has several advantages for humans:

� If the program initializes all of the input variables with suitable defaults, most uses of the program require
only the specification of a few nondefault values.

� Values are associated with variable names, rather than with positions in the input stream.

� Assignments can be done in any convenient order, rather than the sequence demanded by the program.

� Modifications to input values need not destroy previous values, because a new assignment added to the end
of the input block overrides earlier ones.

� Input data can be self documenting, especially if comments are permitted in the input stream.

� Suitable whitespace in the form of indentation and line breaks can make the input data easier for a human to
prepare and read.

27.8 Summary

Input conversion is astonishingly complex, and robust code for that task is intricate, lengthy, and difficult to write
correctly. The input facilities provided by the functions described in this chapter are powerful, and provide capabil-
ities well beyond those of most existing program languages and libraries.

Our design carefully arranges for many of the routines to have the same programming interface as the venerable
strtod() routine in the C library, allowing existing code to be trivially recompiled to use cvtid(), or even better,
cvtia(), instead.

The mathcw library implementation of the scanf() family handles all of the formatted-input requirements of
the C Standards, albeit without the little-used companions for wide characters, as well as allowing more number
formats, and digit-grouping underscores for improved readability of long digit strings.

Implementations of the C string-to-integer conversion functions strtol(), strtoll(), strtoul(), and str-
toull() in the mathcw library extend their standard features with support for binary and octal prefixes, based
numbers, and digit grouping.

All of our integer input-conversion code correctly handles the most negative number in two’s-complement arith-
metic, something that most other code fails to do.

Our analysis of the specification in the C Standards of scanf() reveals its poor design, and its confusing lack of
format compatibility with the widely used printf() family. The scanf() routines are unable to detect programming
errors of inadequate sizes of string buffers, argument types that fail to match format items, and argument counts that
differ from format-item counts. Buffer overruns and pointer misuse continue to be a major source of security holes
and other failures of commercial and open-source software, including that inside operating systems, device drivers,
and code that is embedded in electronic consumer products. Nevertheless, when used with care, scanf() can be
used to simplify input processing for the programmer, and more importantly, can make input-file preparation easier
for humans.

Input programs should be designed for user, rather than programmer, convenience. Our discussion of the Fortran
NAMELIST facility showed that with little programming effort, input files can contain assignments of values to variable
names in any order that proves convenient for the user, and can have blank lines and comments sprinkled through
the input stream.

A Ada interface

AUGUSTA ADA (1815–1852),
COUNTESS OF LOVELACE AND DAUGHTER OF LORD BYRON,

ASSISTANT AND BIOGRAPHER TO CHARLES BABBAGE,
AND THE WORLD’S FIRST COMPUTER PROGRAMMER.

The Ada programming language [Ada95] defines a standard interface to routines written in other languages, and
the GNU Ada translator, gnat, supports that interface.

The standard Ada floating-point data types Float, Long_Float, and Long_Long_Float correspond directly to
the C data types float, double, and long double. The Ada integer data types Integer, Long_Integer, and
Long_Long_Integer are defined to be 32-bit, 32-bit, and 64-bit signed values, respectively, by the gnat compiler.

At the time of writing this, this author has access only to one Ada compiler family, gnat, running on IA-32, IA-64,
and AMD64 systems, so interplatform portability of the Ada interface to the mathcw library cannot yet be extensively
checked. Nevertheless, any changes needed for other platforms are expected to be relatively small, and related to
the mapping of integer types.

Ada is a complex and strongly typed language, with a large collection of packages, several of which must be
imported into Ada programs in order to use library functions. It is traditional in Ada to separate the specification
of a package from its implementation, and with the gnat compiler, the two parts are stored in separate files with
extensions .ads (Ada specification) and .adb (Ada body). For example, commercial software vendors can supply the
specification source files and implementation object library files to customers, without revealing the implementation
source code. Ada specification files therefore are similar in purpose to C header files.

The interface to the mathcw library is defined as an Ada package specification in the file mathcw.ads. Because the
implementation is in the C language, there is no need for a separate body file.

A.1 Building the Ada interface

Before looking at the source code of the Ada interface, it is useful to see how it is built and used in a small test
program.

Initially, we have just three hand-coded files in the ada subdirectory:

% cd ada
% ls
Makefile mathcw.ads test.adb

The Makefile contains the rules for the build process, the second file contains the Ada specification, and the last file
contains the test program.

Ada is unusual in that it is a requirement of the language that the compiler manage source-file dependencies, so
that it is impossible to compile and link a program with interface inconsistencies. The GNU gnatmake tool satisfies
that mandate, managing compilation of files in the correct order, and then linking them into an executable program.
That tool requires a lengthy list of options that are recorded in the Makefile. They include options that supply the
installed location of the mathcw library, which can be either a static library, or a shared library.

The make utility manages the build, which looks like this on a GNU/LINUX system:

% make test

gnatmake -gnaty test.adb -L/usr/local/lib -aO/usr/local/lib -largs -lm -Xlinker -R/usr/local/lib -lmcw

gcc -c -gnaty test.adb

© Springer International Publishing AG 2017
N.H.F. Beebe, The Mathematical-Function Computation
Handbook, DOI 10.1007/978-3-319-64110-2

911

912 Appendix A. Ada interface

gcc -c -gnaty mathcw.ads

gnatbind -aO./ -aO/usr/local/lib -I- -x test.ali

gnatlink -L/usr/local/lib -lm -Xlinker -R/usr/local/lib -lmcw test.ali

Only the gnatmake command is specified in the Makefile. That program examines the source-code file, test.adb,
and determines that both that file and the mathcw.ads file must be compiled by gcc, which it then automatically
invokes. Next, it runs gnatbind to perform various required consistency checks. Finally, it runs gnatlink to link the
object files and libraries recorded in the test.ali file (output by gcc) into the target executable program, test.

After the make steps, the ls utility displays a list of all of the files in the directory:

% ls
Makefile mathcw.ali test test.ali
mathcw.ads mathcw.o test.adb test.o

Sites that use Ada extensively are likely to have a standard set of directories in which to store interface files,
such as mathcw.ads, and in such a case, that file would be installed in one of those directories. However, there are
no widely used conventions for the names of directories for locally installed Ada packages, so the Makefile cannot
provide a system-independent install target. For simplicity, here we just store the interface and the test program in
the same directory.

The final step is to run the test program:

% ./test

Test of Ada interface to MathCW library

x MathCW.erff () MathCW.erfcf ()
-4.00E+00 -1.00000E+00 2.00000E+00
-3.75E+00 -1.00000E+00 2.00000E+00
...
3.75E+00 1.00000E+00 1.13727E-07
4.00E+00 1.00000E+00 1.54173E-08

x MathCW.erf () MathCW.erfc ()
-4.00E+00 -9.99999984582742E-01 1.99999998458274E+00
-3.75E+00 -9.99999886272743E-01 1.99999988627274E+00
...
3.75E+00 9.99999886272743E-01 1.13727256569797E-07
4.00E+00 9.99999984582742E-01 1.54172579002800E-08

x MathCW.erfl () MathCW.erfcl ()
-4.00E+00 -9.99999984582742100E-01 1.99999998458274210E+00
-3.75E+00 -9.99999886272743430E-01 1.99999988627274343E+00
...
3.75E+00 9.99999886272743430E-01 1.13727256569796653E-07
4.00E+00 9.99999984582742100E-01 1.54172579002800189E-08

Here, we trimmed trailing zeros from the reported x values to make the output fit the page.

A.2 Programming the Ada interface

The public part of the interface specification in mathcw.ads begins like this, introducing four mathematical constants
that are also present in the standard Ada numerics package:

with Interfaces.C;

package MathCW is

A.2. Programming the Ada interface 913

PI : constant := 3.14159_26535_89793_23846_26433_83279_50288_41971;

PI_2 : constant := PI / 2.0;

Sqrt_Two : constant := 1.41421_35623_73095_04880_16887_24209_69807_85696;

Log_Two : constant := 0.69314_71805_59945_30941_72321_21458_17656_80755;

The constants are specified with sufficient precision for 128-bit floating-point arithmetic, and illustrate the useful
Ada practice of separating digit groups with underscores to improve readability. That feature is sadly lacking from
almost all other programming languages, and is trivial to implement in a compiler. The constants have no declared
type; instead, they are converted as needed with a type wrapper, such as Float (PI).

The constants are followed by a large block of function declarations that define the names, argument types, and
return values of all of the functions in the mathcw library that can be accessed from Ada programs:

-- ================ Standard MathCW names ================

function Acosf (X : Float) return Float;
function Acoshf (X : Float) return Float;
function Adxf (X : Float; N : Integer) return Float;
...
function Urcw3f return Float;
function Urcw4f return Float;
function Urcwf return Float;
...
function Acos (X : Long_Float) return Long_Float;
function Acosh (X : Long_Float) return Long_Float;
function Adx (X : Long_Float; N : Integer) return Long_Float;
...
function Urcw3 return Long_Float;
function Urcw4 return Long_Float;
function Urcw return Long_Float;

function Acosl (X : Long_Long_Float) return Long_Long_Float;
function Acoshl (X : Long_Long_Float) return Long_Long_Float;
function Adxl (X : Long_Long_Float; N : Integer) return Long_Long_Float;
...
function Urcw3l return Long_Long_Float;
function Urcw4l return Long_Long_Float;
function Urcwl return Long_Long_Float;

Notice that Ada functions without arguments lack the empty parentheses that are required in C.
Next, the interface defines synonyms with the traditional names used in the Ada numerics library:

-- ======= Standard Ada names with C-like suffixes =======

function Arccosf (X : Float) return Float;
function Arcsinf (X : Float) return Float;
function Arctanf (X : Float) return Float;
...

Unfortunately, the match between Ada and C is imperfect in several areas:

� The source code of Ada programs is case insensitive. The Ada convention for spelling is that keywords are
lowercase, function names are capitalized, and variables are uppercase. The gnatmake option -gnaty that we
use requests fastidious style checking so that deviations from those conventions can be identified and corrected.
One possibly surprising rule is that a function name must be separated from its parenthesized argument list
by at least one space, contrary to centuries-old mathematical practice.

914 Appendix A. Ada interface

� Ada has a power operator, **, but C does not.

� Ada treats the ceiling, floor, and round operations as type properties, rather than as functions, although their
use is quite similar. For example, the Ada code Float’Ceiling (X) corresponds to the C code ceilf(x).

Similarly, Float’Rounding (X) corresponds to roundf(x): both round halfway cases away from zero, indepen-
dent of the current rounding direction.

Ada’s Float’Unbiased_Rounding (X) rounds halfway cases to the nearest even integer, like C’s rintf(x) when
the rounding direction is set to the IEEE 754 default.

� The Ada absolute-value operation uses a function-like operator, Abs (x).

� Ada provides generic names for the elementary functions. For example, as long as the appropriate library
packages are included, the call Sqrt (x) selects a version of the square-root function that is appropriate for the
type of the argument expression.

� Functions that return additional values by storing values into locations given by pointer arguments, such as
C’s frexpf(x,&n), have no direct analogue in Ada. However, they are easily handled with arguments declared
with the in out keyword pair, indicating that the arguments are assigned values in the function, and those new
values are visible to the caller on return from the function.

� Ada provides no access to the IEEE 754 exception flags, precision control, or rounding modes. Indeed, there is
no mention of IEEE 754, and only three brief references to the IEC 60559:1989 Floating-Point Standard, in the
Ada 95 Reference Manual, along with one remark about a possible future Ada binding to that standard.

It is unclear whether it is possible to offer a generic interface to the mathcw library, so the current interface in
mathcw.ads does not attempt to do so.

The private part of the interface specification in mathcw.ads comes next:

private
pragma Import (C, Acosf, "acosf");
pragma Import (C, Acoshf, "acoshf");
...
pragma Import (C, Urcw4f, "urcw4f");
pragma Import (C, Urcwf, "urcwf");

pragma Import (C, Acos, "acos");
pragma Import (C, Acosh, "acosh");
...
pragma Import (C, Urcw4, "urcw4");
pragma Import (C, Urcw, "urcw");

pragma Import (C, Acoshl, "acoshl");
pragma Import (C, Acosl, "acosl");
...
pragma Import (C, Urcw4l, "urcw4l");
pragma Import (C, Urcwl, "urcwl");

pragma Import (C, Arccosf, "acosf");
pragma Import (C, Arcsinf, "asinf");
...

The pragma statements tell the Ada compiler what language the external routines are written in, and give their names
in Ada and in the other language.

The remainder of the interface specification in mathcw.ads provides hints to the compiler about inlining, and tells
which functions are known to be pure, that is, produce the same result on successive calls with the same argument:

pragma Inline (Acosf);
pragma Inline (Acoshf);

A.3. Using the Ada interface 915

...
pragma Pure_Function (Acosf);
pragma Pure_Function (Acoshf);
...

end MathCW;

Because they produce different results on each call, the random-number generator routines are excluded from the
declarations of pure functions.

A.3 Using the Ada interface

The test program, test.adb, used on page 912 demonstrates the use of the library interface, mathcw, for Ada. As
usual in Ada programs, it begins with a list of required packages:

with Ada.Text_IO;
use Ada.Text_IO;

with Ada.Float_Text_IO;
use Ada.Float_Text_IO;

with Ada.Long_Float_Text_IO;
use Ada.Long_Float_Text_IO;

with Ada.Long_Long_Float_Text_IO;
use Ada.Long_Long_Float_Text_IO;

with MathCW;
use MathCW;

The with statement imports the package, and the use statement tells the compiler that the long qualifying package
names can be omitted from invocations of the package routines.

Four standard Ada packages are needed for output statements in the test program, and the gnat system knows
how to find them all. By gnat convention, the mathcw package is known to be found in a file with a lowercase name
matching the package name, followed by an extension for an Ada specification file: mathcw.ads.

Next comes the body of the test program, although here we omit code from the two sections that handle the
double- and extended-precision tests, because they are similar to the single-precision code:

procedure Test is
X : Float;
Y : Long_Float;
Z : Long_Long_Float;

begin
New_Line;
Put ("Test of Ada interface to MathCW library");
New_Line;
New_Line;

Put ("x");
Put (ASCII.HT);
Put (ASCII.HT);
Put ("MathCW.erff ()");
Put (ASCII.HT);
Put ("MathCW.erfcf ()");
New_Line;

X := -4.0;

916 Appendix A. Ada interface

while X <= 4.0 loop

Put (X);
Put (ASCII.HT);
Put (Erff (X));
Put (ASCII.HT);
Put (erfcf (X));
New_Line;

X := X + 0.25;
end loop;

-- ... code omitted ...
end Test;

The verbose output code is typical of Ada, which overloads a single function, Put(), for text output. Consequently,
a separate implementation of that function is needed for each data type. That in turn accounts for the sequence of
with statements at the beginning of the file.

A second test program, perf.adb, in the mathcw package carries out performance comparisons between the Ada
and C versions of some the library functions. It too can be built and run under control of the UNIX make utility:

% make check-perf
...
Performance test of Ada interface to MathCW library

Average wall-clock time for 2000000 calls to Ada.Abs() = 9 nsec
Average wall-clock time for 2000000 calls to MathCW.Fabs() = 21 nsec
Performance: (MathCW.Fabs() time) / (Ada.Abs() time) = 2.49372E+00
...
Average wall-clock time for 2000000 calls to Ada.Tanh() = 151 nsec
Average wall-clock time for 2000000 calls to MathCW.Tanh() = 186 nsec
Performance: (MathCW.Tanh() time) / (Ada.Tanh() time) = 1.22695E+00

Cumulative performance summary

Average wall-clock time for 2000000 calls to Ada.ANY() = 148 nsec
Average wall-clock time for 2000000 calls to MathCW.ANY() = 112 nsec
Performance: (MathCW.ANY() time) / (Ada.ANY() time) = 7.59194E-01

The relative performance is, of course, expected to vary significantly across platforms, particularly because the func-
tions have quite different implementations in the two languages, but it is evident that there is no significant overhead
from the interlanguage communication. The full benchmark report shows that the mathcw functions are usually
faster than the Ada library ones, and the summary shows a 25% average improvement over the Ada library on that
system.

B C# interface

THE C# NAME WAS MUSICALLY INSPIRED. IT IS A C-STYLE

LANGUAGE THAT IS A STEP ABOVE C/C++,
WHERE SHARP (#) MEANS A SEMI-TONE ABOVE THE NOTE.

— JAMES KOVACS (2007).

The C# programming language1 [C#03b, HWG04, ECM06a, HWG06, C#06a, JPS07, HTWG08, HTWG11] is de-
signed to run on top of a standardized virtual machine called the Common Language Infrastructure (CLI) [CLI03, CLI05,
CLI06, ECM06b, MR04]. Microsoft’s implementation of that virtual machine is part of their .NET Framework, and
several other languages also share the Common Language Runtime (CLR) library environment built on top of the CLI
virtual machine [AHG+04].

That design has several important benefits:

� Interlanguage communication is greatly facilitated. Programmers can use the language that works best for a
given task, without losing access to software written in every other language that runs in the CLR.

� The CLR provides a uniform run-time library and operating system interface for all languages, eliminating the
duplication that has historically plagued all programming languages.

� The virtual machine layer between most software and the underlying hardware makes migration to other, and
future, hardware platforms trivial once the CLI has been ported. Long experience in the computing industry
shows that software usually outlives the hardware on which it was developed, so hardware independence is
often an important software design goal.

� Because a substantial part of any modern operating system is largely independent of the details of the under-
lying hardware, the virtual machine layer can be moved from its current position between user software and
the operating system, to between the operating system and the hardware. That can make almost the entire
operating system independent of hardware. Only device drivers need to have knowledge of hardware details,
and once devices are themselves standardized and virtualized, that last shred of hardware dependence can
also be eliminated.

Just as the Java Virtual Machine helped to make a uniform Java programming environment widely available on
most popular operating systems and hardware platforms, it seems likely that many programming languages will be
available on the CLI. An interface to the mathcw library from the CLR then makes the library immediately available
in every language that can be compiled for the CLI virtual machine.

The DotGNU Project2 and the Mono Project3 are free-software reimplementations of the CLR and the CLI virtual
machine. The C# interface described in this appendix was developed on installations of the Mono system on multiple
operating systems and CPU architectures, including Microsoft WINDOWS on IA-32 systems. The C# interface was
also tested in installations of the DotGNU system on several platforms.

B.1 C# on the CLI virtual machine

The Common Language Infrastructure (CLI) virtual machine offers support for 32-bit and 64-bit two’s-complement
integers, and 32-bit and 64-bit floating-point values. CLI implementations can offer either 32-bit or 64-bit byte ad-
dressing, and all binary values are stored in little-endian format.

1There is an extensive bibliography of publications about C# at http://www.math.utah.edu/pub/tex/bib/index-table-c.html#csharp.
2See http://www.gnu.org/projects/dotgnu/.
3See http://www.mono-project.com/.

© Springer International Publishing AG 2017
N.H.F. Beebe, The Mathematical-Function Computation
Handbook, DOI 10.1007/978-3-319-64110-2

917

918 Appendix B. C# interface

The CLI provides integer arithmetic instructions that silently wrap around on overflow, and a companion set that
trap on overflow. Integer arithmetic in the C# language follows most other languages in defaulting to undetected
overflow, but provision is made for checking for, and recovering from, integer overflow. Here is a code fragment that
illustrates how an overflow can be caught and handled:

try
{

checked { i = j + k; };
}
catch (System.OverflowException)
{

Console.WriteLine("OverflowException: last i = " + i);
i = 0x7fffffff;

}

Unfortunately, the floating-point architecture defined in the CLI specification [ECM06b, pages I-67ff] is a subset
of the requirements of IEEE 754. Here are the principal features of the CLI floating-point design:

� NaN and Infinity are fully supported, and computation is always nonstop, unless use is made of the CLI
instruction ckfinite, which generates an exception if the result is NaN or Infinity. However, C# provides no
way to execute that instruction after every floating-point operation. The try/checked/catch approach works
for integer arithmetic, but not for floating-point arithmetic.

� Whether subnormals are supported or not is unspecified. Current implementations do provide them. In the
language of the CLI specification: This standard does not specify the behavior of arithmetic operations on denormalized
[subnormal] floating-point numbers, nor does it specify when or whether such representations should be created.

� There are no provisions for trapping floating-point exceptions, just as most current hardware architectures
cannot trap exceptions either.

� There is only one rounding mode, the IEEE 754 default of round to nearest, with ties rounded to the closest even
value.

� Conversion from floating-point to integer values truncates toward zero, but the Common Language Runtime
(CLR) library environment provides additional rounding directions.

� There are no sticky flags that record floating-point exceptions.

� The CLI is permitted to carry out intermediate floating-point computations in a precision and range that is
greater than that of the operands.

� The bit patterns in NaNs, and the result of converting between float and double NaNs, are defined to be
platform dependent.

� There is only one type of NaN, not the separate quiet and signaling NaNs required by the IEEE 754 Standard.

Those choices were undoubtedly made to allow the CLI to be implemented efficiently on a wide range of current
CPU architectures. Regrettably, they also force the many into perpetual suffering for the sins of the few, because the
CLI will long outlive all current hardware. For floating-point software, it would have been much better to rectify
the design flaws of past systems with an arithmetic system in the CLI that is strictly conformant with IEEE 754, and
equipped with full support for the 128-bit floating-point format as well.

B.2 Building the C# interface

Before we look at the details of the C# interface code, it is helpful to see how the interface to the mathcw library is
built.

Initially, we have just a few files in the csharp directory:

B.2. Building the C# interface 919

% cd csharp

% ls
Makefile mathcw.cs test01.cs test03.cs test05.cs test07.cs
README okay test02.cs test04.cs test06.cs test08.cs

The Makefile contains the rules for the build process, and the mathcw.cs file contains the interface definitions. The
test*.cs source files are simple tests of some of the library routines.

The Mono C# compilers are unusual in that they do not generate object files, but instead, compile and link directly
to executable programs, called assemblies in C# documentation. By contrast, the DotGNU compiler, cscc, generates
normal object files.

The make utility directs the build, here using one of two compilers from the Mono Project (the other, older, com-
piler is called mcs):

% make
gmcs test01.cs
gmcs test02.cs
gmcs test03.cs
gmcs test04.cs
gmcs test05.cs
gmcs test06.cs mathcw.cs
gmcs test07.cs mathcw.cs
gmcs test08.cs mathcw.cs

The first five tests have internal definitions of a small interface to the mathcw library, so their compilation does not
require the mathcw.cs file.

Notice that none of the compilation steps specifies the name or location of the mathcw library. The interface code
specifies its name, but the compiler and linker do not access the library at all. Library search rules allow the library
to be located at run time, and the needed routines are then dynamically loaded from the library on the first reference
to each of them.

After the build, we have these files:

% ls
Makefile test01.cs test03.cs test05.cs test07.cs
README test01.exe test03.exe test05.exe test07.exe
mathcw.cs test02.cs test04.cs test06.cs test08.cs
okay test02.exe test04.exe test06.exe test08.exe

The executable programs have the file extension .exe, even on Unix systems. They cannot be run in isolation, but
instead, as with Java programs, must be run on the virtual machine.

A simple validation test runs each program, comparing its output with correct output stored in the okay subdi-
rectory:

% make check

There should be no differences reported, just the test names:

============== test01.exe
...
============== test08.exe

The command that runs each test looks something like this:

env LD_LIBRARY_PATH=.. mono test01.exe

The CLI virtual machine is the mono program on that system.
The library path that is temporarily set for the duration of the command informs the run-time loader that the

shared object library is found in the parent directory, instead of in the normal system library directories.

920 Appendix B. C# interface

B.3 Programming the C# interface

The C# interface to the mathcw library is stored in the file mathcw.cs, and that file must be compiled with any
code that needs it, as illustrated by the test program compilations on page 919. There no conventions yet of where
such shared code could be stored so as to be available to every C# programmer on the system, so we assume that
programmers will simply keep private copies.

The interface defines function prototypes with instructions of where to find them, and how to call them. To do
so, it needs language features that are defined in two standard namespaces, so the file begins with using statements
for them:

using System;
using System.Runtime.InteropServices;

As in the C++ and Java interfaces, the function prototypes are defined in a class whose name qualifies the function
names when they are used. The functions themselves are loaded dynamically from a shared library when they are
first referenced at run time, so that class begins with a definition of the name of the library:

public sealed class MathCW
{

private const String LIBNAME = "libmcw";

The sealed modifier prevents other classes from being derived from that class; a similar restriction is used in the Java
interface. Only the base name of the library is given here for the value of LIBNAME. At run time, a suitable system-
dependent suffix is added to it: .dll on Microsoft WINDOWS, .so on most UNIX systems, or .dylib on MAC OS X
systems.

At the time of writing this, the Mono Project on MAC OS X incorrectly uses .so as the suffix, so the shared library
is installed under two names on that platform, libmcw.dylib and libmcw.so.

On UNIX and MAC OS X systems, it is conventional for shared libraries to carry version numbers, with a symbolic
link from the latest version to a library filename without a number. That is important, because changes to a shared
library could invalidate executables that were already linked to a previous version of the library. The inability to deal
with that on current Microsoft WINDOWS systems is widely referred to as the DLL hell, where installation of a new
software package breaks already-installed and completely unrelated packages by replacing a shared library with a
new one with the same name, but incompatible contents.

With other programming languages on those systems, the linker can record in the executable program the specific
library versions required. In the Mono Project, the linker does not read the shared libraries, because they are not
needed until run time. However, it is possible to bind a particular library version number to a program with a small
manually created configuration file. For example, to indicate that myprog.exe requires version 1.2.3 of the mathcw
library, the companion file myprog.exe.config would contain these three lines:

<configuration>
<dllmap dll="libmcw" target="libmcw.so.1.2.3" />

</configuration>

In practice, that should rarely be necessary, because the mathcw library is based on an ISO standard, and is expected
to be stable. Existing function prototypes are guaranteed to be constant, but new functions might be added in future
versions of the library. Such additions do not invalidate any existing programs linked against the shared library.

The mathcw.cs file continues with the definitions of two mathematical constants that are also defined in the
standard C# Math class:

public const double E = 2.718281828459045235360287;
public const double PI = 3.141592653589793238462643;

Next comes a long list of function prototypes for the single-precision functions:

[DllImport(LIBNAME)] public static extern float acosf (float x);
[DllImport(LIBNAME)] public static extern float acoshf(float x);
...
[DllImport(LIBNAME)] public static extern float frexpf (float x, ref int n);
...

B.3. Programming the C# interface 921

[DllImport(LIBNAME, CharSet=CharSet.Ansi)] public static extern float nanf (string s);
...
[DllImport(LIBNAME)] public static extern float urcw3f();
[DllImport(LIBNAME)] public static extern float urcw4f();

In each prototype, the square brackets contain a C# attribute list, a feature rarely seen in other programming lan-
guages. The DllImport() function is defined in the System.Runtime.InteropServices namespace. In the common
case, it has only a single argument that provides the library name. However, the mathcw library contains a few
functions with arguments that are pointers to numeric values or strings, and for them, the attribute list is more
complicated.

Unlike Java, the C# language has pointers, but with restrictions. The C-style int *n declarations and &n argu-
ments are supported, but only when the construct is qualified with the unsafe modifier. When that feature is used,
the Mono Project compilers require an additional option, -unsafe. The intent is to make clear to the programmer
and the user that danger lurks.

However, there is another way to deal with pointer arguments that does not require the unsafe modifier, and
that is to identify a call-by-reference argument with either the ref modifier or the out modifier, which must be used
in the prototype, as well as in every call to the function. The two modifiers are quite similar, except that ref requires
initialization before use. The standard C# Math class uses out modifiers, so we do as well to guarantee identical
calling sequences for the functions common to both classes.

In reality, a called routine written in another language could still wreak havoc on its caller by overwriting memory
before and after the passed location, but a native C# program cannot.

C# and Java both use the Unicode character set in UTF-16 format, but C on modern systems expects 8-bit char-
acters in normal strings. The C prototype nanf(const char *s) thus needs some additional processing to translate
the C# Unicode string, and that is what the CharSet modifier does.

The double-precision function prototypes make up the next big block in mathcw.cs:

[DllImport(LIBNAME)] public static extern double acos(double x);
[DllImport(LIBNAME)] public static extern double acosh(double x);
...
[DllImport(LIBNAME)] public static extern double urcw3();
[DllImport(LIBNAME)] public static extern double urcw4();

Because the CLI virtual machine contains only 32-bit float and 64-bit double floating-point types, C# offers only
those types, so there is no way to access the long double section of the mathcw library, or the float nexttowardf()
and double nexttoward() functions, which have a long double argument.

As in the Java interface, we want the C# MathCW class to be a superset of the standard Math class. All of the
function names in the C# Math class are capitalized, so we provide native wrapper functions that just call their
lowercase companions:

public static float Acosf (float x) { return acosf (x); }
public static float Acoshf (float x) { return acoshf (x); }
...
public static float Urcw3f () { return urcw3f (); }
public static float Urcw4f () { return urcw4f (); }

public static double Acos (double x) { return acos (x); }
public static double Acosh (double x) { return acosh (x); }
...
public static double Urcw3 () { return urcw3 (); }
public static double Urcw4 () { return urcw4 (); }

The standard Math class in C# is an eclectic mixture of numerical functions for different data types. For floating-
point arguments, in most cases, only the double version is provided, because the language allows overloaded func-
tion names; the compiler picks the right version based on the argument types.

The final block of code in the mathcw.cs file therefore provides replacements for each of the remaining functions
in the Math class, so that simply by changing the class name Math to MathCW everywhere it is used in a C# program,
the mathcw library can be used in place of the standard library:

922 Appendix B. C# interface

public static decimal Abs (decimal value) { return Math.Abs (value); }
public static double Abs (double a) { return fabs (a); }
public static float Abs (float a) { return fabsf (a); }
public static int Abs (int value) { return Math.Abs (value); }
...
public static double Sign (int value) { return Math.Sign (value);}
public static double Sign (long value) { return Math.Sign (value);}
public static double Sign (sbyte value) { return Math.Sign (value);}
public static double Sign (short value) { return Math.Sign (value);}

}

B.4 Using the C# interface

The C# interface to the mathcw library is easy to use because nothing special needs to be done, other than to compile
the mathcw.cs file with the user program, and prefix the function names with the class name. Here is a shorter
version of one of the test programs that illustrates how the frexpf() function can be used:

using System;

class short_test08
{

static void Main()
{

for (int k = 0; k <= 24; ++k)
{

float x, fx;
int n;

x = (float)(1 << k);
fx = MathCW.frexpf(x, out n);

if ((fx != 0.5F) || (n != (k + 1)))
Console.Write("ERROR: ");

Console.WriteLine("MathCW frexpf(" + x + ", -> " + n + ") = " + fx);
}

}
}

Notice that the call to frexpf() requires the out modifier on the second argument, because the exponent of the first
argument is stored there on return.

C C++ interface

AFTER TWO YEARS OF C++ PROGRAMMING, IT STILL SURPRISES ME.

— YUKIHIRO MATSUMOTO

DESIGNER OF THE RUBY LANGUAGE (2003).

With the exception of a small number of disagreements that most programmers need not encounter, the C++
language is effectively a strongly typed superset of the C language.

Thus, as long as a C program has prototypes for all functions, and does not use as variables any of the new
reserved words in C++, it should be compilable with both C and C++ compilers. All of the C code in the mathcw
library has that property.

Similarly, a C++ program should have access to all of the facilities of the C language, including the many software
libraries available for C. In particular, as long as the mathcw.h header file is included in a C++ program, the entire
mathcw library is available, exactly like it is for C programs.

Nevertheless, the extra features of the C++ language offer the possibility of doing more. The ability of C++ to
overload functions, so that the same function name can be used for the same operation without regard to the data
type, can be exploited by a suitable interface that we present in Section C.2 on the next page.

As with other strongly typed languages, such as Ada, C#, and Java, function overloading depends on there being
a distinguishing signature (the number and types of the function arguments). Most of the functions in the mathcw
library can be provided under the same names as used for the double versions, because the functions have arguments
that differ by numeric data type.

C.1 Building the C++ interface

Before we examine the source code for the C++ interface to the mathcw library, we first show how to build and install
the interface.

Initially, we have just a few files in the cpp interface subdirectory:

% cd cpp
% ls
Makefile exp mathcw.hh okay test01.cc test02.cc test03.cc

The Makefile contains the rules for the build process, which is simple, because nothing actually needs to be built.
Instead, all that is required is for the C++ interface header file, mathcw.hh, to be visible to the compiler when other
code that uses the interface is processed.

We can do a simple validation test with the usual recipe:

% make check

CC -g -DHAVE_LONG_DOUBLE -DHAVE_LONG_LONG -I. -I.. -c test01.cc

CC -g -DHAVE_LONG_DOUBLE -DHAVE_LONG_LONG -I. -I.. -o test01 test01.o -L.. -lmcw

...

There should be no output but the test names:

========== test01
========== test02
========== test03

© Springer International Publishing AG 2017
N.H.F. Beebe, The Mathematical-Function Computation
Handbook, DOI 10.1007/978-3-319-64110-2

923

924 Appendix C. C++ interface

That test compiles and links the three programs, then runs them, comparing their output with output files in the
okay subdirectory that are known to be correct.

Installation is equally simple:

% make install

/bin/rm -f /usr/local/include/mathcw.hh

cp -p mathcw.hh /usr/local/include/

chmod 664 /usr/local/include/mathcw.hh

Installed files...

-rw-rw-r-- 1 mcw 20891 Mar 31 13:47 /usr/local/include/mathcw.hh

C.2 Programming the C++ interface

The C++ interface to the mathcw library is stored in a single file, mathcw.hh. The first part of the interface simply re-
trieves the function prototypes and other definitions from the C file, mathcw.h, but it does so inside a C++ namespace,
so that the function names can later be qualified with the namespace name to disambiguate them from identically
named C++ wrapper functions:

namespace C
{
#include <mathcw.h>

// Remove macro definitions that conflict with our functions:

#undef isfinite
#undef isgreater
...
#undef isunordered
#undef signbit
}

The namespace wrapper provides one other useful service: it makes the names in the C header file inaccessible
unless qualified with the namespace name, or under the scope of a using statement for the namespace.

The #undef directives are needed on some systems to prevent unwanted macro substitutions later in the interface.
The main part of the interface file comes next. It is just a long list of public wrappers inside a class definition, so

we need only show a few of them:

class MathCW
{

public:
inline float (acos)(float x)
{

return (C::acosf(x));
}
// ... code omitted ...
inline double (acos)(double x)
{

return (C::acos(x));
}
// ... code omitted ...
inline long double (acos)(long double x)
{

C.3. Using the C++ interface 925

return (C::acosl(x));
}
// ... code omitted ...

};

The wrappers define the overloaded C++ functions. The C:: prefix in their return statement expressions is the
namespace qualifier; it ensures that the C versions of the functions are called.

A few functions cannot be provided under generic names because they lack distinguishing signatures. They
include the NaN-generator function families nanf(), qnanf(), and snanf(). They also include most of the routines
in the random-number generator family: urcwf(), urcw1f(), urcw2f(), urcw3f(), urcw4f(), and so on. All of those
functions are available under their own names.

Even though there are references to all of the functions in the mathcw library in the MathCW class, only those that
are actually called are present in the executable program. In addition, most modern C++ compilers optimize the
wrappers away entirely, eliminating all of the class overhead.

C.3 Using the C++ interface

The MathCW class provides a new data type to C++ programs that serves mainly as a prefix on the library function
names. Here is a short C-like program, available in the test01.cc file, that shows how the class is used:

#include <stdio.h>
#include <stdlib.h>
#include <mathcw.hh>

int
main(void)
{

float x;
double y;
MathCW mcw;

x = 1.0F;
(void)printf("mcw.erf(%g) = %.6g\n", (double)x, (double)mcw.erf(x));
y = 2.0;
(void)printf("mcw.erf(%g) = %.14g\n", y, mcw.erf(y));

#if defined(HAVE_LONG_DOUBLE)
long double z;

z = 3.0L;
(void)printf("mcw.erf(%Lg) = %.16Lg\n", z, mcw.erf(z));

#endif

return (EXIT_SUCCESS);
}

We use the simpler C-style output statements here to keep the test program small.
Compilation and running of the test program is handled by the Makefile, but we can also do it manually:

% CC -DHAVE_LONG_DOUBLE -I.. -I. test01.cc && ./a.out
mcw.erf(1) = 0.842701
mcw.erf(2) = 0.99532226501895
mcw.erf(3) = 0.9999779095030014

The companion test files, test02.cc and test03.cc, use the much more verbose native C++ output statements.
The second of these two files exploits template expansion to provide another level of abstraction. However, their
code is not of particular interest here, so we omit it.

D Decimal arithmetic

THE EARLIEST DEFINITE DATE ASSIGNED FOR THE USE IN ARABIA

OF THE DECIMAL SYSTEM OF NUMERATION IS 773 [CE].
IN THAT YEAR SOME INDIAN ASTRONOMICAL TABLES WERE BROUGHT

TO BAGDAD, AND IT IS ALMOST CERTAIN THAT, IN THESE,
INDIAN NUMERALS (INCLUDING A ZERO) WERE EMPLOYED.

— WALTER WILLIAM ROUSE BALL

A Short Account of the History of Mathematics (1888).

The nature of electronic computers gives the binary number system special significance, because two states, cor-
responding to the binary digits 0 and 1, can be represented by card holes, CD and DVD spots, electrical circuits,
magnetization, and so on. Although a few computers built in the 1950s and 1960s used native decimal arithmetic
(see Table H.1 on page 948, and Cowlishaw’s historical survey [Cow03]), it still has to be represented at a lower
level in hardware in terms of bits. That in turn means additional overhead in converting stored decimal numbers
into binary numbers for computation, and the reverse conversion as numbers are moved from CPU to storage. The
execution-time penalty and competitive market forces therefore combine to discourage decimal arithmetic, except in
devices, such as hand-held calculators, where speed does not matter.

Speed is less important for computations where relatively few numerical operations are carried out on input data,
as in business data processing. Programming languages, such as Ada, COBOL, PL/1, and C# (see Section 4.27 on
page 101), that are designed to support business applications offer fixed-decimal arithmetic. Although that is ade-
quate for most monetary computations, it is untenable for scientific computation because of the need for frequent
rescaling of fixed-point numbers to avoid digit loss. Indeed, the programmatic difficulty of handling the scaling
problem led to the introduction of floating-point arithmetic in computers in the mid-1950s, and for almost all com-
puters today, that means binary arithmetic based on the IEEE 754 Standard.

D.1 Why we need decimal floating-point arithmetic

Binary arithmetic is unfamiliar to most humans, and for some tasks, can always get the wrong answer. A popular
example of that problem is sales-tax computation, such as 5% of an amount 0.70 in some arbitrary currency unit.
The exact answer for the total is 1.05 × 0.70 = 0.7350, and that value rounded to the nearest even is 0.74. In binary
arithmetic, however, the simple factor 1.05 cannot be represented exactly: its value has an infinite fraction repre-
sented in hexadecimal form as 0x1.0ccccc...p0. The required product, +0x1.7851eb851eb85...p-1, produces the
decimal number 0.7349999 . . . , no matter how large the numeric precision. Under both round-to-nearest and round-to-
zero (chopping) rules, the final result is 0.73, which is off by one in the last digit. Although that seems like a trivial
amount, it produces substantial errors in the accounts of a business with large numbers of small transactions, such
as a grocery store or telephone company. Also, it violates rounding rules for business and tax computations in some
countries, which may require one additional rule beyond the four provided in IEEE 754 binary arithmetic: round-
half-up (0.735 → 0.74). Our sales-tax example is still computed incorrectly in binary arithmetic with the round-half-up
rule. For symmetry, decimal arithmetic may also provide the rule round-half-down (0.735 → 0.73).

By about 2000, the dramatic computer performance and storage improvements over several decades made it
desirable to reexamine decimal floating-point arithmetic. IBM led the way by implementing decimal floating-point
arithmetic in firmware in 2006 in the z9 mainframe CPU [IBM06, DDZ+07]. It followed that with hardware imple-
mentations in the PowerPC version 6 CPU in 2007 [TSSK07], and in the z10 CPU in 2008 [Web08, SKC09]. However,
unlike historical machines, that arithmetic is in addition to conventional IEEE 754 binary floating-point arithmetic,
and for the z9 and z10, also hexadecimal floating-point arithmetic. For a good survey of hardware-design considera-
tions for decimal arithmetic, see [WET+10]. The latest work as this book went to press reports dramatic advances on

© Springer International Publishing AG 2017
N.H.F. Beebe, The Mathematical-Function Computation
Handbook, DOI 10.1007/978-3-319-64110-2

927

928 Appendix D. Decimal arithmetic

the IBM z13 mainframe in the speed of decimal floating-point arithmetic, and the sharing of much low-level circuitry
for both binary and decimal operations [LCM16].

In 2005, ISO committees for the standardization of the C and C++ languages received proposals for the addition
of decimal floating-point arithmetic [Kla05, C06b, C06c, C06d, C09]. In 2006, GNU developers of compilers for
those languages added preliminary support on one CPU platform for the new data types. Those compilers allowed
extended development and testing of the mathcw library code for decimal arithmetic, a task that previously had been
possible only by using decimal types remapped to binary types.

D.2 Decimal floating-point arithmetic design issues

IBM based its decimal hardware designs partly on its long experience with the Rexx and NetRexx scripting lan-
guages [Cow85, Cow90, Cow97], which provide arbitrary-precision decimal arithmetic (up to 109 digits) with an
exponent range of [−999 999 999,+999 999 999]. That range is so large that overflow and underflow are unlikely in
most practical computations, and indeed, those languages treat those two conditions as errors.

IBM’s other design guides were the IEEE 854 Standard [ANS87] for radix-independent floating-point arithmetic,
and the existence in several programming languages of a large software base written for IEEE 754 binary floating-
point arithmetic.

In particular, IBM felt it desirable for decimal formats to have approximately the same range and precision as
binary formats with the same storage requirements. Also, there was considerable existing practice on some architec-
tures and in commercially important programming languages:

� IBM mainframes have had hardware support for packed-format decimal fixed-point arithmetic with up to 31
digits since 1964 [FIS64, POP64] (see [IBM70, Chapter 5] for programming examples).

� Existing software libraries on some other platforms support 31-digit decimal arithmetic.

� Some models of the DEC PDP-10 from about 1976 had hardware support for 21-digit decimal fixed-point
arithmetic, and the VAX, and models of the older PDP-11 when equipped with the commercial instruction set,
had similar support for 31-digit data.

� The Intel IA-32 architecture has had hardware support for 18-digit decimal fixed-point arithmetic since the
8087 floating-point coprocessor was introduced in 1980. The AMD64, EM64T, and IA-64 architectures include
the IA-32 decimal instructions.

� The Ada language provides decimal fixed-point arithmetic with at least 18 digits [Ada95], and also includes a
Packed_Decimal type that corresponds to COBOL’s packed-decimal type.

� Older ISO COBOL Standards require 18-digit decimal fixed-point arithmetic.

� The 2002 ISO COBOL Standard [COB02] mandates 32-digit decimal floating-point arithmetic and a power-of-
ten exponent with at least three digits.

� The PL/1 language supports decimal arithmetic with at least 15 fixed-point digits, and 33 floating-point digits.

� Most databases support storage of decimal fixed-point data with at least 18 digits, and some allow up to 35
digits.

Those considerations led to improvements in the old BCD (binary-coded decimal) format, which stores one decimal
digit in a four-bit nybble, and the later Chen–Ho encoding [CH75], which is more compact. IBM calls their new
encoding Densely Packed Decimal (DPD) [Cow02], and its features are summarized in Table D.1 on the facing page
and Figure D.1 on page 930. The significand size and exponent range in that encoding is large enough to handle
almost everything in our list of existing practice. The IBM decNumber package [Cow07] provides an open-source
reference implementation of Rexx-style decimal arithmetic with an additional software layer for converting to and
from DPD arithmetic, and between native binary and DPD formats.

Other encodings of decimal arithmetic are certainly possible. Researchers at Intel developed the Binary Integer
Decimal (BID) format [CAH+07], summarized in Table D.2 on the facing page and Figure D.2 on page 930. The BID
encoding represents the decimal coefficient as a binary integer, and computations are done in binary, allowing re-use

D.2. Decimal floating-point arithmetic design issues 929

Table D.1: Extended IEEE-754-like decimal floating-point characteristics and limits in the IBM Densely Packed Dec-
imal (DPD) encoding.

single double quadruple octuple
Format length 32 64 128 256
Stored coefficient digits 7 16 34 70
Precision (p) 7 16 34 70
Biased-exponent bits 8 10 14 22
EC bits 6 8 12 20
Minimum exponent −95 −383 −6143 −1 572 863
Maximum exponent 96 384 6144 1 572 864
Exponent bias 101 398 6176 1 572 932
Machine epsilon (10−p+1) 10−6 10−15 10−33 10−69

Largest normal (1 − 10−7)1097 (1 − 10−16)10385 (1 − 10−34)106145 (1 − 10−70)101 572 865

Smallest normal 10−95 10−383 10−6143 10−1 572 863

Smallest subnormal 10−101 10−398 10−6176 10−1 572 932

Table D.2: Extended IEEE-754-like decimal floating-point characteristics and limits in the Intel Binary Integer Dec-
imal (BID) encoding. Values are largely identical to those for DPD encoding, but shading indicates where there are
differences.

single double quadruple octuple
Format length 32 64 128 256
Stored coefficient bits 23 or 21 53 or 51 113 or 111 233 or 231
Coefficient digits 7 16 34 70
Precision (p) 7 16 34 70
Biased-exponent bits 8 10 14 22
Minimum exponent −95 −383 −6143 −1 572 863
Maximum exponent 96 384 6144 1 572 864
Exponent bias 101 398 6176 1 572 932
Machine epsilon (10−p+1) 10−6 10−15 10−33 10−69

Largest normal (1 − 10−7)1097 (1 − 10−16)10385 (1 − 10−34)106145 (1 − 10−70)101 572 865

Smallest normal 10−95 10−383 10−6143 10−1 572 863

Smallest subnormal 10−101 10−398 10−6176 10−1 572 932

of circuitry in existing arithmetic units. Binary arithmetic makes correct decimal rounding difficult, but hardware
engineers later found satisfactory solutions that avoid the need to convert from binary to decimal, round, and convert
back [Inte06, TSGN07, TGNSC11].

BID encoding supports a larger range of coefficient values than a pure decimal representation. For example,
in the first layout in Figure D.2 on the following page, with the 32-bit format there are 23 bits for the coefficient,
representing integers up to 223 − 1 = 8 388 607. Larger numbers require the second layout, as long as the exponent
field does not start with two 1 bits. The largest integer is then 0x9fffff = 10 485 759, beyond the pure decimal
limit of 9 999 999. Thus, BID can exactly represent about 4.86% more numbers than DPD can. Software that exploits
that feature of BID is not portable to systems with DPD, and despite the identical exponent range, rounding rules,
and machine epsilon in the two encodings, the wider coefficient range of BID effectively means a small improve-
ment in precision that can visibly affect final results. It remains to be seen whether BID implementations constrain
representations to the exact range of DPD, thereby preventing those differences.

The computing industry will likely require a few years of experience with both encodings, and their implementa-
tions in hardware, before architects can decide whether one of them has significant advantages over the other. Some
view a single standard encoding of decimal data as highly desirable, because the existence of multiple encodings

930 Appendix D. Decimal arithmetic

s cf ec cc

bit 0 1 6 9 31 single
0 1 6 12 63 double
0 1 6 16 127 quadruple
0 1 6 22 255 octuple

Figure D.1: Extended IEEE-754-like decimal floating-point data layout in the IBM Densely Packed Decimal (DPD)
format.
s is the sign bit (0 for +, 1 for −).
cf is the combination field containing two high-order bits of the unsigned biased exponent and the leading decimal
digit of the coefficient. Infinity has a cf of 11110, and NaN has a cf of 11111.
ec is the exponent continuation field with the remaining unsigned biased exponent bits. Quiet NaN has a high-order
ec bit of 0, and signaling NaN has a high-order ec bit of 1. IBM zSeries documentation labels that field bxcf for biased
exponent continuation field.
cc is the coefficient continuation field with the remaining exponent digits in DPD encoding with three decimal digits
in ten bits. The coefficient is an integer, with the decimal point at the right, which means there are redundant
representations of numbers, and also that trailing zeros can be preserved, and may be significant to the user.

s exp coefficient (10N + 3 bits)

bit 0 1 9 31 single
0 1 11 63 double
0 1 15 127 quadruple
0 1 23 255 octuple

s 11 exp low-order coefficient (10N + 1 bits)

bit 0 1 3 11 31 single
0 1 3 13 63 double
0 1 3 17 127 quadruple
0 1 3 25 255 octuple

Figure D.2: Extended IEEE-754-like decimal floating-point data layout in the Intel Binary Integer Decimal (BID)
format.
s is the sign bit (0 for +, 1 for −).
exp is the unsigned biased power-of-ten exponent field, with the smallest value reserved for zero and subnormal
numbers. Its valid range is [0, 3 × 2w−2 − 1] when the exponent field is w bits wide.
Infinity normally has a zero coefficient (but nonzero is permitted too), with exp of 11 110 Quiet NaN has exp
of 11 111 0 Signaling NaN has exp of 11 111 1 Default NaNs have zero coefficients, but nonzero values are
allowed.
The remaining bits hold the coefficient when it fits in 10N + 3 bits (first layout). If it requires 10N + 4 bits (second lay-
out), three high-order bits are supplied implicitly as 100 and followed by the remaining stored low-order coefficient
bits, and the exponent field must then not start 11
The coefficient is an integer, with the decimal point at the right, which means there are redundant representations of
numbers, and also that trailing zeros can be preserved, and may be significant to the user.

complicates exchange of native decimal floating-point data, but so do endian addressing differences. However, a
textual representation of decimal data with the correct number of digits provides an exact exchange mechanism, and
compactness can be regained by a general text-compression utility.

The GNU compilers initially provided support for decimal floating-point arithmetic in only the DPD format, but
later added a build-time option to choose BID encoding. However, at the time of writing this, the compilers convert
data in the BID format to DPD for use with the decNumber library.

D.3. How decimal and binary arithmetic differ 931

Although current compiler support provides access only to 32-bit, 64-bit and 128-bit decimal formats, it is a design
goal of the mathcw library to support future 256-bit binary and decimal formats. The cited tables therefore include
a final column for such arithmetic, just as we show for binary arithmetic in Figure 4.1 on page 63 and Table 4.2 on
page 65.

The proposed exponent ranges are determined by packing constraints of the DPD format, where ten bits encode
three decimal digits, and an additional high-order decimal digit is encoded in the combination field. That implies
that each format encodes 3n + 1 decimal digits. Together with the desirable feature that storage doubling from an
m-decimal-digit format should provide at least 2m + 2 decimal digits, those constraints produce a 256-bit format
holding 70 decimal digits. The remaining bits determine the exponent range, and then comparison of the binary and
decimal ranges for the three smaller sizes produces a clear choice for the exponent range in the 256-bit binary format.

D.3 How decimal and binary arithmetic differ

IEEE 754 binary floating-point arithmetic provides a hidden significand bit for normalized numbers in all but the
80-bit format, plus representations of Infinity, quiet and signaling NaN, and subnormal numbers. Nonzero normal
numbers are represented as the product of a significand in [1, 2) and an integer power of two. Thus, the binary point
lies to the left of the first stored fraction bit.

With decimal arithmetic, no hidden digit is possible for normal numbers, because there are nine possibilities
instead of just one.

Decimal floating-point arithmetic supports Infinity and two kinds of NaNs, but their encoding uses explicit bit
patterns in the DPD cc and ec fields, or the BID exp field, that permit them to be recognized solely by examination
of those fields. By contrast, the IEEE 754 binary encoding requires examination of all significand bits to distinguish
between Infinity and NaN. Fast identification of Infinity and NaN is important because they almost always require
special handling, and as significand length increases, the binary format suffers a performance hit from that task.

In the binary format, all vendors use the high-order fractional bit to identify quiet and signaling NaNs, although
they do not agree on whether a 1 bit means quiet or signaling. Most choose the quiet interpretation, so that storage
contents of all-bits-one is a negative quiet NaN, making it simple to initialize unset memory cells to be able to trap
use before definition. Some vendor C compilers provide an option, usually called -trapuv, to request use of NaNs
for initial values. We discuss bulk initialization in more detail in Section D.4 on page 935.

Those differences are largely transparent to numerical programs and programmers. However, the next one is not.
Decimal arithmetic places the decimal point at the right of the significand, so that decimal numbers are represented
as the product of an integer coefficient and a power of ten. That choice was made for an important reason: it allows
floating-point arithmetic to emulate fixed-point arithmetic for financial computations. Addition and subtraction of floating-
point numbers with the same exponent are exact as long as overflow does not occur.

Handling fixed-point arithmetic that way requires that computed results must not be renormalized, except by
explicit request. The exponent must remain constant and it must be possible to check that the property holds at the
end of a computation. The decNumberSameQuantum() function in the decNumber library tests whether two values
have the same exponent, and the companion function decNumberQuantize() forces one value to have the same dec-
imal exponent as another. Similar capabilities are present in the proposed decimal extensions to C, and the mathcw
library supplies them with these prototypes:

#include <mathcw.h>

decimal_float quantizedf (decimal_float x, decimal_float y);
decimal_double quantized (decimal_double x, decimal_double y);
decimal_long_double quantizedl (decimal_long_double x, decimal_long_double y);
decimal_long_long_double quantizedll (decimal_long_long_double x, decimal_long_long_double y);

int samequantumdf (decimal_float x, decimal_float y);
int samequantumd (decimal_double x, decimal_double y);
int samequantumdl (decimal_long_double x, decimal_long_double y);
int samequantumdll (decimal_long_long_double x, decimal_long_long_double y);

For completeness, those functions have companions for binary arithmetic with the usual suffixes f, none, l, and ll,
although they are unlikely to be of much utility.

932 Appendix D. Decimal arithmetic

Table D.3: Behavior of the quantize() function. The third through fifth examples show that quantization can cause
rounding, here with the default round-to-nearest rule. The last decimal and binary examples show what happens
when precision is lost.

Function call Result
decimal

quantized(+1.DD, +1.00DD) +1.00DD
quantized(+100.DD, +1.00DD) +100.00DD
quantized(+0.125DD, +1.00DD) +0.12DD
quantized(+0.135DD, +1.00DD) +0.14DD
quantized(+0.145DD, +1.00DD) +0.14DD
quantized(+NaN(0x1234), +1.00DD) +NaN(0x1234)
quantized(+100.DD, +NaN(0x1234)) +NaN(0x1234)
quantized(+NaN(0x1234), +NaN(0x5678)) +NaN(0x1234)
quantized(+∞, −∞) +∞
quantized(−∞, +∞) −∞
quantized(+100.00DD, −∞) +NaN
quantized(−∞, +100.00DD) +NaN
quantized(+1234567890123456.DD, +1.DD) +1234567890123456.DD
quantized(+1234567890123456.DD, +1.0DD) +NaN

binary
quantize(+1., +0.02) +1.
quantize(+100., +0.02) +100.
quantize(+0.125, +0.02) +0.12
quantize(+0.135, +0.02) +0.14000000000000001
quantize(+0.145, +0.02) +0.14000000000000001
quantize(NaN(0x1234), +0.02) NaN(0x1234)
quantize(+100., NaN(0x1234)) NaN(0x1234)
quantize(NaN(0x1234), NaN(0x5678)) NaN(0x1234)
quantize(+∞, −∞) +∞
quantize(−∞, +∞) −∞
quantize(+100.00, −∞) NaN
quantize(−∞, +0.02) NaN
quantize(+1234567890123456., +1.) +1234567890123456.
quantize(+1234567890123456., +0.2) NaN

For example, quantized(x,y) sets x to have the same decimal exponent as y, and if both arguments are Infinity,
the result is the first argument. Otherwise, if either argument is a NaN, the result is that argument, and if just one
argument is Infinity, the result is a quiet NaN. If the operation would require more digits than are available, the result
is a quiet NaN. If rounding is required, it obeys the current rounding mode.

The purpose of the second argument is just to communicate a power of ten, so its particular coefficient digits are
not significant. For decimal use, trailing zero digits are commonly used, so that 1.00 means quantize to two decimal
digits. In financial computations, such operations are needed frequently, such as for rounding an amount to the
nearest cent in several currency systems.

For the binary companions of quantized(), the normalized floating-point format requires that the second ar-
gument be a fractional value chosen away from an exact power of ten, to avoid off-by-one errors in the inexact
determination of the power of ten. Table D.3 shows examples of how that function works.

Quantization also provides conversion to integers: quantized(x, 1.DD) is the whole number (in floating-point
format) nearest to x, assuming the default rounding mode.

The function samequantumd(x,y) returns 1 if the arguments have the same decimal exponent, and 0 otherwise. If
the arguments are both Infinity, or both NaN, the return value is also 1. Table D.4 on the next page illustrates the
workings of that function.

One additional function is required for emulating fixed-point arithmetic: normalization of decimal values by
removal of trailing zero digits. The decNumber library function decNumberNormalize() therefore has these counter-
parts in the mathcw library, even though they are absent from the proposals for standardization of decimal arithmetic
in C and C++:

#include <mathcw.h>

D.3. How decimal and binary arithmetic differ 933

Table D.4: Behavior of the samequantum() function. Notice the difference in the second of the binary and decimal
examples: numbers of quite different magnitude can have the same scale in decimal, but in binary, because of nor-
malization, they need to be within a factor of ten to have the same exponent. The third examples reflect the different
normalization of binary and decimal values.

Function call Result
decimal

samequantumd(+1.00DD, +9.99DD) 1
samequantumd(+1.00DD, +9999.99DD) 1
samequantumd(+1.DD, +1.00DD) 0
samequantumd(+100.DD, +1.00DD) 0
samequantumd(+NaN(0x1234), +1.00DD) 0
samequantumd(+100.DD, +NaN(0x1234)) 0
samequantumd(+NaN(0x1234), +NaN(0x5678)) 1
samequantumd(+∞, −∞) 1
samequantumd(−∞, +∞) 1
samequantumd(+100.00DD, −∞) 0
samequantumd(−∞, +100.00DD) 0

binary
samequantum(+1.00, +1.9375) 1
samequantum(+1.00, +9999.75) 0
samequantum(+1., +1.00) 1
samequantum(+100., +1.00) 0
samequantum(NaN, +1.00) 0
samequantum(+100., NaN) 0
samequantum(NaN, NaN) 1
samequantum(+∞, −∞) 1
samequantum(−∞, +∞) 1
samequantum(+100.00, −∞) 0
samequantum(−∞, +100.00) 0

decimal_float normalizedf (decimal_float x);
decimal_double normalized (decimal_double x);
decimal_long_double normalizedl (decimal_long_double x);
decimal_long_long_double normalizedll (decimal_long_long_double x);

Like the earlier functions, companions for binary arithmetic have the usual suffixes f, none, l, and ll, but they
simply return their arguments, because binary floating-point numbers are always normalized in modern floating-
point architectures. Table D.5 on the following page shows some samples of the use of the decimal functions.

Another consequence of storing decimal floating-point values with the decimal point at the right is that there
are multiple representations of any number that does not use all significand digits. Thus, 1.DF, 1.0DF, 1.00DF, . . . ,
1.000000DF are numerically equal for comparison, yet have different storage representations equivalent to 1 × 100,
10 × 10−1, 100 × 10−2, . . . , 1000000 × 10−6.

Addition and subtraction of decimal values changes scale when exponents differ, and multiplication changes
scale if trailing fractional zeros are present. Thus, the result of 1.DF * 1.234DF is 1.234DF, preserving the origi-
nal value. However, 1.000DF * 1.234DF = 1.234000DF, an equal value of different scale with the representation
1234000 × 10−6. Programmers who expect to use decimal floating-point arithmetic to emulate fixed-point arithmetic
therefore need to be careful to avoid altering scale. When the mathcw library was first tested with decimal arith-
metic, several constants with trailing zeros had to be rewritten or trimmed, like these examples: 100.DF → 1.e2DF
and 10.0 → 1.e1DF. Because many learn in school to write at least one digit on either side of a decimal point, and
some programming languages require that practice (although the C-language family members do not), it is easy to
make subtle scale-altering mistakes with decimal floating-point constants.

Multiplication and division in general change the scale, and consequently, fixed-point computations require scale
readjustment after such operations. In the sales-tax computation cited earlier, we could write code like this:

decimal_long_double amount, rate, total;

934 Appendix D. Decimal arithmetic

Table D.5: Behavior of the decimal normalize() function.

Function call Result
normalized(+0.00100DD) +0.001DD
normalized(+1.00DD) +1.DD
normalized(+100.DD) +1E+2DD
normalized(+100.00DD) +1E+2DD
normalized(+NaN(0x1234)) +NaN(0x1234)
normalized(-NaN(0x1234)) -NaN(0x1234)
normalized(+∞) +∞
normalized(−∞) −∞

amount = 0.70DL;
rate = 1.05DL;
total = quantizedl(amount * rate, 1.00DL);

Without the call to quantizedl(), the total would have been 0.7350 instead of 0.74.
A zero value encoded in decimal with either DPD or BID does not have all bits zero in storage, as is the case with

binary floating-point formats. For example, in DPD encoding, 0.DF is represented as 0x22500000, whereas the all-
bits-zero representation 0x00000000 corresponds to the value 0.e-101DF. The two values are equal when compared
with decimal floating-point instructions, but not when compared as bit patterns. Programmers who examine bits via
union types or with debugger commands, and compiler writers, need to be particularly aware of that point.

The change of base from 2 to 10 has other effects on programmers who are accustomed to working with binary
floating-point arithmetic:

� The larger base means larger spacing of consecutive decimal numbers (look at the machine-epsilon rows in
Table 4.2 on page 65, and Table D.1 and Table D.2 on page 929), so computational precision is slightly reduced.

� The larger base lowers the frequency of alignment shifts for addition and subtraction, and when there are no
shifts or digit overflow, rounding is not required and computations are exact. That feature improves perfor-
mance of software implementations of decimal arithmetic, particularly when data have a common scale, as in
financial computations.

� Multiplication by constants is only exact if they are powers of ten, or if the product is small enough to be
representable without rounding. In particular, doubling by adding or by multiplying by two may no longer
be an exact operation. For example, 2.DF * 9.999999DF is 19.999 998, a value that has more digits than can be
represented in the 32-bit format, so the result has to be rounded, in that case, to 20.00000DF.

� Input of decimal values is an exact operation as long as the number of digits is not so large that rounding is
required. Output of decimal values is also exact as long as the format allows sufficient output digits for the
internal precision.

� Output with numeric format specifications in the printf() function family loses information about quantiza-
tion. Preserve it by using the ntos() family (see Section 26.11 on page 867) to produce a string. For example,
the program fragment

decimal_float x;

x = 123.000DF;
(void)printf("%%He: x = %He\n", x);
(void)printf("%%Hf: x = %Hf\n", x);
(void)printf("%%Hg: x = %Hg\n", x);
(void)printf("ntosdf(x) = %s\n", ntosdf(x));

produces this output:

D.4. Initialization of decimal floating-point storage 935

%He: x = 1.230000e+02
%Hf: x = 123.000000
%Hg: x = 123
ntosdf(x) = +123.000

D.4 Initialization of decimal floating-point storage

Important special values in the DPD encoding of decimal floating-point arithmetic can be recognized by examining
just the high-order byte, and Infinity is not required to have a zero significand, as it is in IEEE 754 binary arithmetic.
Those two features facilitate compile-time and fast run-time storage initialization, as demonstrated by this short test
program:

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <mathcw.h>

void
show(int byte)
{

decimal_float f;
decimal_double d;
decimal_long_double q;
decimal_long_long_double o;

(void)memset((void*)&f, byte, sizeof(f));
(void)memset((void*)&d, byte, sizeof(d));
(void)memset((void*)&q, byte, sizeof(q));
(void)memset((void*)&o, byte, sizeof(o));
(void)printf("0x%02x: %+Hg %+DDg %+DLg %+DLLg\n", byte, f, d, q, o);

}

int
main(void)
{

int k;

for (k = 0; k < 256; ++k)
show(k);

return (EXIT_SUCCESS);
}

When compiled and run, its output looks like this, where we have elided repeated bytes in NaN payloads to fit the
page, and dropped uninteresting lines:

0x00: +0 +0 +0 +0
...
0x78: +inf +inf +inf +inf
0x7c: +qnan(0x3c7c7c) +qnan(0xc7c...) +qnan(0x7c7c...) +qnan(0x7c7c...)
0x7d: +qnan(0x3d7d7d) +qnan(0xd7d...) +qnan(0x7d7d...) +qnan(0x7d7d...)
0x7e: +snan(0x3e7e7e) +snan(0xe7e...) +snan(0x7e7e...) +snan(0x7e7e...)
0x7f: +snan(0x3f7f7f) +snan(0xf7f...) +snan(0x7f7f...) +snan(0x7f7f...)
...
0xf8: -inf -inf -inf -inf
0xfc: -qnan(0x3cfcfc) -qnan(0xcfc...) -qnan(0x7cfc...) -qnan(0x7cf...)

936 Appendix D. Decimal arithmetic

0xfd: -qnan(0x3dfdfd) -qnan(0xdfd...) -qnan(0x7dfd...) -qnan(0x7df...)
0xfe: -snan(0x3efefe) -snan(0xefe...) -snan(0x7efe...) -snan(0x7ef...)
0xff: -snan(0x3fffff) -snan(0xfff...) -snan(0x7fff...) -snan(0x7ff...)

A straightforward modification of the test program for IEEE 754 binary arithmetic shows that only initializer
bytes 0x00 and 0xff are uniformly useful for all precisions: they produce +0 and −QNaN (or −SNaN) values,
respectively.

D.5 The <decfloat.h> header file

The proposed extensions to ISO Standard C and C++ for decimal arithmetic introduce a new header file,
<decfloat.h>, as a companion to the traditional <float.h>. Those header files provide symbolic names for char-
acteristics of the arithmetic. Each macro name proposed for <decfloat.h> contains the storage size in bits, an un-
desirable practice that is inflexible and short-sighted. Nevertheless, the implementation of that header file in the
mathcw library includes definitions of the proposed names, with recommended alternatives that follow the naming
conventions in <float.h> and hide storage size, as summarized in Table D.6 on the facing page.

The DEC_EVAL_METHOD macro in the table requires some explanation. Its purpose is to allow implementors to pro-
vide fewer than three decimal types, with the unsupported ones masquerading as other decimal types. Its value is a
compile-time constant chosen by the implementor, and suitable for use in preprocessing directives. DEC_EVAL_METHOD
takes one of these values:

−1 Indeterminable.

0 Evaluate all operations and constants just to the range and precision of the type.

1 Evaluate operations and constants of type decimal_float and decimal_double to the range and precision of
the decimal_double type, and decimal_long_double operations and constants to the range and precision of
the decimal_long_double type.

2 Evaluate all operations and constants to the range and precision of the decimal_long_double type.

All other negative values correspond to implementation-defined behavior. In the mathcw library, DEC_EVAL_METHOD
is normally −1.

D.6 Rounding in decimal arithmetic

In Section 4.6 on page 66 we show how rounding works, and in Section 5.6 on page 110 and Section 5.8 on page 115,
we describe how a programmer can use library calls to control rounding. IEEE 754 binary arithmetic provides four
rounding directions: to −∞, to zero (chopping or truncation), to +∞, and the default, to nearest (or to nearest even
number in the event of a tie).

Because of historical practice, and legal requirements on commerce and taxation, financial computations in deci-
mal arithmetic require the additional rounding mode round-half-up, and possibly also its companion round-half-down.
They set the rounding direction for halfway cases: if the computed result is exactly halfway between two adjacent
representable values, round the magnitude up (away from zero) or down (toward zero). The decNumber library
provides yet another choice, round-up (away from zero), giving a total of seven rounding modes. The IBM z9 and
z10 offer an eighth choice, called round-to-prepare-for-shorter-precision, but it has no relevance for the current level
of decimal arithmetic in C. Version 6 of the IBM PowerPC, introduced on 21 May 2007, supplies the same decimal
rounding modes as the z9.

Unfortunately, at the time of writing this, the GNU compilers always invoke decNumber functions with the de-
fault rounding mode, so it has not yet been possible to test the mathcw library rounding-control features for decimal
arithmetic.

D.7. Exact scaling in decimal arithmetic 937

Table D.6: The <decfloat.h> header file. The values match those of both DFP and BID encodings. If the 256-bit
format is not supported, its macros have the same values as in the 128-bit format.

Proposed Recommended Value
evaluation method

DEC_EVAL_METHOD DEC_EVAL_METHOD -1, 0, 1, 2
number of digits in significand

DEC32_MANT_DIG DEC_FLT_MANT_DIG 7
DEC64_MANT_DIG DEC_DBL_MANT_DIG 16
DEC128_MANT_DIG DEC_LDBL_MANT_DIG 34
DEC256_MANT_DIG DEC_LLDBL_MANT_DIG 70

minimum exponent of 10
DEC32_MIN_EXP DEC_FLT_MIN_EXP -95
DEC64_MIN_EXP DEC_DBL_MIN_EXP -383
DEC128_MIN_EXP DEC_LDBL_MIN_EXP -6143
DEC256_MIN_EXP DEC_LLDBL_MIN_EXP -1572863

maximum exponent of 10
DEC32_MAX_EXP DEC_FLT_MAX_EXP 96
DEC64_MAX_EXP DEC_DBL_MAX_EXP 384
DEC128_MAX_EXP DEC_LDBL_MAX_EXP 6144
DEC256_MAX_EXP DEC_LLDBL_MAX_EXP 1572864

maximum representable finite decimal floating-point number
[there are 6, 15, 33, and 69 9’s after the decimal point]

DEC32_MAX DEC_FLT_MAX 9.999999E+96DF
DEC64_MAX DEC_DBL_MAX 9.999999...E+384DD
DEC128_MAX DEC_LDBL_MAX 9.999999...E+6144DL
DEC256_MAX DEC_LLDBL_MAX 9.999999...E+1572864DLL

machine epsilon
DEC32_EPSILON DEC_FLT_EPSILON 1E-6DF
DEC64_EPSILON DEC_DBL_EPSILON 1E-15DD
DEC128_EPSILON DEC_LDBL_EPSILON 1E-33DL
DEC256_EPSILON DEC_LLDBL_EPSILON 1E-69DLL

minimum normalized positive decimal floating-point number
DEC32_MIN DEC_FLT_MIN 1E-95DF
DEC64_MIN DEC_DBL_MIN 1E-383DD
DEC128_MIN DEC_LDBL_MIN 1E-6143DL
DEC256_MIN DEC_LLDBL_MIN 1E-1572863DLL

minimum subnormal positive decimal floating-point number
[there are 5, 14, 32, and 68 0’s after the decimal point]

DEC32_DEN DEC_FLT_DEN 0.000001E-95DF
DEC64_DEN DEC_DBL_DEN 0.000000...1E-383DD
DEC128_DEN DEC_LDBL_DEN 0.000000...1E-6143DL
DEC256_DEN DEC_LLDBL_DEN 0.000000...1E-1572863DLL

D.7 Exact scaling in decimal arithmetic

The mathcw library provides exact scaling of decimal values with obvious extensions of the venerable ldexp() fam-
ily: if x has type decimal_double, then ldexpd(x, 3) returns a value with the same coefficient, and the exponent-of-
ten increased by three.

The decimal members of the companion frexp() family decompose a number into a fraction in [0, 1), and a power
of ten. The decimal members of the C99 logb() and scalbn() families extract a power-of-ten exponent that can be
used to find a significand in [1, 10). A short test program illustrates those functions:

% cat dscale.c
#include <stdio.h>
#include <stdlib.h>
#include <mathcw.h>

int

938 Appendix D. Decimal arithmetic

main(void)
{

decimal_double x, y;
int n;

x = 1234.56789e+1D;
y = frexpd(x, &n);
(void)printf("x = %s\n", ntosd(x));
(void)printf("ldexpd(x, 3) = %s\n", ntosd(ldexpd(x, 3)));
(void)printf("frexpd(x, &n) = %s\n", ntosd(y));
(void)printf("n = %d\n", n);
(void)printf("logbd(x) = %s\n", ntosd(logbd(x)));
(void)printf("scalbnd(x, -logbd(x)) = %s\n", ntosd(scalbnd(x, -logbd(x))));

return (EXIT_SUCCESS);
}

% dgcc dscale.c -lmcw && ./a.out
x = +12345.67890000000
ldexpd(x, 3) = +12345678.90000000
frexpd(x, &n) = +0.1234567890000000
n = 5
logbd(x) = +4
scalbnd(x, -logbd(x)) = +1.234567890000000

E Errata in the Cody/Waite book

THE WORLD’S A BOOK . . .
’TIS FALSLY PRINTED, THOUGH DIVINELY PENN’D,

AND ALL TH’ ERRATA WILL APPEAR AT TH’ END.

— FRANCIS QUARLES (1632).

The Cody/Waite book [CW80] is an early example of computer-based typesetting, and because it contains hundreds
of polynomial coefficients, and hand-drawn flowcharts to specify computer algorithms, one might expect that ty-
pographical errors have crept in. The exercise of implementing the mathcw library demonstrates that, compared to
many more-recent books in the computing field, their book has remarkably few errors, and more than thirty years
later, remains an outstanding landmark in the history and literature of numerical computation.

The choice of flowcharts and prose for algorithm descriptions is understandable, but is, in this author’s view,
regrettable. Programming is hard, and numerical programming is harder still, because it must deal with many
small details, and variations in base, precision, rounding, and particulars of hardware instruction sets and numeric
data formats, that are rarely evident until code is actually written, ported to many systems, and thoroughly tested.
Flowcharts and pseudocode are not executable computer code, and can easily contain syntax errors, and algorithmic
errors and omissions, that few humans can spot. Also, it is too easy with pseudocode to hide a complicated and
subtle computer algorithm behind a vague statement of what is to be done; this book’s Chapter 9 on argument
reduction was written in response to just that sort of problem, and its code and writing took more than a month to
get right, despite repeated careful reading of the original research articles.

It is true that showing working computer-program code, as we do throughout this book, necessarily obscures
algorithms with programming-language syntax and irregularities, and hardware details, but that is an unavoidable
fact of life if computers are to work, and do so reliably, for humans. Six years after the work on this book, and its
code, began, this author remains convinced that the choice of implementation language and software principles and
practices that are laid out in the introductory chapter are the correct ones for this particular task.

All of the polynomial coefficients for both binary and decimal floating-point arithmetic were retyped from the
book into mathcw header files. No errors attributed to those coefficients were found in numerical testing, although in
a small number of cases, testing showed that polynomial degrees needed to be increased by one or two to reach the
accuracy demanded of the mathcw library. The lack of machine-readable text for their book’s data and algorithms,
and a clear statement of what auxiliary functions the polynomials approximate, made the job much harder than it
should have been, and convinced this author of the need for publication of this book, and all of its source code, so
that others can build on it in the future.

Extension of the Cody/Waite algorithms to new platforms and extended floating-point types demands local con-
trol over polynomial fits, and those authors are silent on the origins of their polynomials. We remedied that serious
deficiency by showing in this book how to make such fits with two popular, albeit commercial, symbolic-algebra sys-
tems, in both rational minimax form, and as Chebyshev approximations. We also showed how to convert the latter
to rational form, allowing reuse of algorithm code. For every function treated in this book where a polynomial fit is
required for part of the computation, our header files contain data that apply to all historical and current systems, as
well as future ones with up to 70 decimal digits of precision. All of our symbolic-algebra code is part of the mathcw
distribution, making it easy to adapt it for other functions not covered by the library, and to other machine precisions
and number bases.

In the test program for sqrt() on page 32 of the Cody/Waite book, in the second line from the bottom of the
page, the assignment X1 = X should be X1 = Y: it saves the test argument, and in that program, that is Y, not X as it
is in the other test programs.

In the description of the computation of one of the polynomial approximations needed for pow(x,y) on page 100,
the book incorrectly says evaluate R = z * v * P(v). It should say instead evaluate R = z * P(v).

In the flowcharts, there is an error on page 127 in the description of the computation of cos(x) and sin(x). In
the first rectangular box for cos(x), the chart specifies an assignment y = |x| + π/2. That assignment must be

© Springer International Publishing AG 2017
N.H.F. Beebe, The Mathematical-Function Computation
Handbook, DOI 10.1007/978-3-319-64110-2

939

940 Appendix E. Errata in the Cody/Waite book

omitted, because that adjustment is handled later in the second-last rectangular box, which has the assignment
XN = XN− 0.5. For cos(x) only, the computation of N in the middle box should be INTRND(Y/π + 1/2), instead of
the stated INTRND(Y/π). That confusion arises because in the relation cos(x) = sin(|x|+ π/2), direct addition of the
constant π/2 introduces unnecessary additional error because that constant is not exactly representable. Instead, it
is preferable to incorporate it as the exact addend 1/2 in the computation of N.

In the flowchart on page 62, and the description on page 63, the cutoff value SMALLX below which exp(x) is zero
is defined to be the smallest machine number greater than ln(XMIN). Although that was a good choice prior to IEEE
754 arithmetic, it has the effect of producing premature underflow to zero in the exponential function, as well as in
several others that use it, instead of gradual underflow into the subnormal region. That is not strictly an error in the
book, because subnormals were not yet invented when it was written, but it is an issue that modern code needs to
deal with.

The most complex Cody/Waite algorithm, that for the power function that we treat in Chapter 14 of this book,
exhibits the largest number of problems:

� The inline binary search needs one more step; otherwise, it chooses the wrong endpoint, and that results in
errors of a few ulps in the critical powers (±1)n and βn, which should always be exact.

� Separate treatment of integer powers is desirable, for speed, and for accuracy.

� Computation of nw is not accurate enough.

� If g = A1[k] at the start of the search through that table, the computed index lies outside the table, and may
cause a run-time addressing error, or a completely incorrect returned function value.

� The value u2 is not accurate enough; it needs at least twice working precision.

� The value w is not accurate enough; it needs at least three times working precision.

� The REDUCE() operation needs more work; we improved it for our code.

� Cody and Waite always choose q = 1, but we show that larger q values improve accuracy.

� The power function for decimal arithmetic seems not to have been implemented on a real computer; had it
been, several of the noted errors would have been caught.

For future work on the power function, it is likely to be better to work instead on production of higher-precision
values of the exponential and logarithm, as the fdlibm library, and Markstein’s book [Mar00], do to remove the nasty
effects of error magnification. In all of the ELEFUNT test programs, the relative error computation contains rarely
seen bugs, as described in detail in Section 4.25.4 on page 99.

The ELEFUNT test programs are not consistent in the naming of the variables that record approximate and accu-
rate function values: they are sometimes Z and ZZ, and other times, reversed. The legacy of keypunches and short
variable names in Fortran is evident here. It would have been better to name them more mnemonically as FAPPRX
and FACCUR.

All of the test programs compute the absolute value of the current relative error in a variable W, and track the
maximum relative error in a variable R6 initialized to zero, and the argument value for that error in a variable X1.
Those two variables are updated when a guard condition IF (W .GT. R6) is satisfied. Although that usually works,
it fails if the tested function is always correct. The guard is then never satisfied, and X1 is never initialized. The cure
is simple: initialize R6 to a negative value. The guard condition is then guaranteed to be satisfied at least once, and
X1 is always properly initialized.

Finally, there is a matter of coding style that deserves mention, because it makes the test code harder to read. The
test programs set the initial test region [a, b] outside the region loop, and then reset the test region just before the end
of the loop, which might lie 150 lines away. That requires referencing the loop index with a value one larger than
the current one, using a series of if statements. All of the new test programs developed for the mathcw library take
a different approach: they set the test regions in a C switch statement at the beginning of the interval loop. That
makes it easy to identify the current test region, because the regions are then clearly marked with case labels.

Were ELEFUNT rewritten from scratch today, the test programs would be much more modular, with more shared
code, many small private functions and procedures, and sensibly named variables. However, to keep the new tests
similar to the old ones, the temptation to do that rewrite has so far been resisted. However, translations from the
original Fortran 77 to C and Java have been prepared, and the ELEFUNT suite has been compatibly extended to test
more functions.

F Fortran interface

FORTRAN IS NOT A FLOWER, BUT A WEED.
IT IS HARDY, OCCASIONALLY BLOOMS,

AND GROWS IN EVERY COMPUTER.

— ALAN J. PERLIS (1987)
FIRST ACM TURING AWARD WINNER (1966).

Fortran is the oldest high-level programming language still in use, and was the first programming language to be
standardized by ANSI and ISO. Despite its age, it has no standard mechanism for communicating with routines
written in other languages. The Fortran 2003 Standard [FTN04b] and Fortran 2008 Standard [FTN10] introduce such
a facility, but it is unlikely to be widely implemented until ten to fifteen years after their publication. Donev [Don06]
discusses some of the issues in using Fortran with C.

The first compiler that supported Fortran 77 was the f77 compiler developed on UNIX systems at AT&T Bell
Laboratories. Its calling conventions were carefully defined to be easily interfaced to C, because that was the most
common language at the development site. Most subsequent UNIX Fortran compilers have followed the conventions
of the original f77 compiler, so the interface that we describe here works on most UNIX systems. Nevertheless, we are
careful to provide mechanisms to facilitate adapting the interface to other conventions, and other operating systems.

Here is a summary of the default calling conventions in the original f77 compiler:

� The Fortran language requires that it be possible for the called routine to modify any of the arguments in the
caller. In practice, that means that all arguments are passed by address. Thus, arguments passed from Fortran to
C are always pointers. By contrast, in C, scalar arguments are normally passed by value, and more complicated
arguments, such as arrays, are passed by address.

Although some Fortran compilers support special function-like wrappers, %REF() and %VAL(), to allow the
programmer to choose whether an argument is passed by address or by value, they are inconvenient, error
prone, and nonportable. It is much better to design the Fortran interface so that language extensions are not
required to use it.

� External names in Fortran code are converted to lowercase, because the language is case insensitive, and are
suffixed with an underscore to avoid colliding with names compiled from C programs, which are preserved as
written.

� The Fortran floating-point data types REAL (synonym: REAL*4), DOUBLE PRECISION (synonym: REAL*8), and
REAL*16 correspond exactly to the C data types float, double, and long double, respectively.

� The Fortran data type INTEGER corresponds to C’s int type. Length-qualified integer types are rare in Fortran
programs, but when used, INTEGER*1 (synonym: BYTE) maps to signed char, INTEGER*2 maps to short int,
INTEGER*4 to int, and INTEGER*8 to long long int.

� The Fortran LOGICAL data type corresponds to the C integer type int. The corresponding Fortran constant
.FALSE. is zero in C, and the constant .TRUE. is nonzero (usually ±1) in C.

� Old-style Fortran 66 Hollerith strings (e.g., 12Hhello, world) are passed by the address of the first character,
but are not NUL-terminated. The string length is not passed, unless the user supplies an explicit argument to
do so, as is common practice with Hollerith strings.

� Fortran 77 CHARACTER strings are passed by the address of the first character, but are not NUL-terminated,
because all characters are allowed in a Fortran string. The length is passed by value as an additional argument
at the end of the declared argument list. Such arguments are called hidden arguments.

© Springer International Publishing AG 2017
N.H.F. Beebe, The Mathematical-Function Computation
Handbook, DOI 10.1007/978-3-319-64110-2

941

942 Appendix F. Fortran interface

If there are multiple CHARACTER arguments, their lengths are passed at the end of the normal argument list in
their order of occurrence. Thus, the Fortran call f(’ab’,’cda’) can be received in C with a function declared
as f_(char *s, char *t, int len_s, int len_t).

That convention means that Hollerith and quoted strings can be received the same way, easing the transition
from Fortran 66 to Fortran 77.

� Arrays are passed by address of the first element in both Fortran and C, but Fortran array indices start at one,
as long as the array dimension is not a colon-separated range, whereas C indices always start at zero.

� The Fortran language requires contiguous storage of multidimensional arrays, with the first subscript increas-
ing most rapidly. Multidimensional arrays in C are also stored contiguously, but the last subscript increases
most rapidly. If data copying is to be avoided, subscript lists must be reversed. Thus, the Fortran array refer-
ence x(i,j,m,n) becomes the expression x[n-1][m-1][j-1][i-1] in C.

The subscript reordering and adjustment-by-one are highly error prone, but subscripting errors can be largely
avoided if the array references in C are hidden in a suitable macro. That way, the C code can use X(i,j,m,n),
just like the Fortran code.

� Fortran supports passing array dimensions at run time, but C does not until the 1999 ISO Standard.

Fortran dimensions may appear anywhere in the argument list, whereas C99 requires them to appear before
the array argument declaration in which they are used, following its principle of declaration-before-use.

That restriction may make it impossible to maintain identical argument order for routines supplied in both
languages, because the common practice in many long-lived Fortran libraries is for array arguments to be
immediately followed by their dimension arguments.

� Programmers must be aware of the different array storage orders in the two languages. In Fortran, the first
subscript increases most rapidly. By contrast, in the C family, the last one does. Storage-access order can have
a huge effect on cache use and job times, so great care is called for in mixed-language array processing.

Although Fortran 66 and Fortran 77 limit names of variables and routines to six characters, few Fortran compilers
produced since the 1970s enforce that length limit. That limit was chosen because it allowed a variable name to be
packed into a single machine word in the cramped memories of the early IBM mainframes on which Fortran was
developed in the mid-1950s; they had six-bit characters and 36-bit words. Fortran 66 and Fortran 77 retained the
six-character limit, but Fortran 90 finally raised it to 31 characters.

In the mathcw library, only a few functions have array arguments: just the fmul() and qert() families, several
of the pair-precision routines, the complex primitives prefixed cx, the vector functions prefixed v, and some of
the special mathematical functions. Only a small number of routines take string arguments. Thus, some of the
complexity of the interlanguage communication can be avoided in our interface.

There are, however, two troublesome areas — CHARACTER arguments and external names:

� A few Fortran compilers pass CHARACTER data by address of a descriptor, which is a compiler-dependent data
structure that might include at least the length, and the address of the first character.

Other compilers may pass such data by the address of the first character, and then supply a length argument
immediately following the CHARACTER argument.

Compilers for some other languages store the string length in the first one or two bytes of the string, but this
author has never encountered that practice in a Fortran compiler.

� Some Fortran compilers convert external names to uppercase, and others omit the trailing underscore, although
they may offer a compile-time option to restore the underscore.

If Fortran external names cannot be distinguished from C names, then the only alternative is to rename all of
the library functions. That is most easily done by adding a unique prefix to the Fortran-visible names.

We can easily cater to the naming problems by wrapping function names in the C interface in a macro with
lowercase and uppercase arguments. However, alternate CHARACTER argument conventions require a revision of our
code for those few functions that have string arguments.

Our default implementation follows the original f77 conventions, providing support for a wide range of compil-
ers on UNIX systems.

F.1. Building the Fortran interface 943

F.1 Building the Fortran interface

Before we look at the source code for the Fortran interface to the mathcw library, we first show how to build the
interface.

Each library function has an interface wrapper function, and because few UNIX linkers discard unreferenced
code from object files inside libraries, each wrapper function has its own file. Otherwise, if all of the wrappers were
in a single file, then each use of the library would require loading all of the functions into the executable program,
wasting time and filesystem space.

A directory listing of the Fortran interface subdirectory is lengthy, so we show only part of it:

% cd fort
% ls
Makefile erfl.c ierfc.c l101pf.c nanf.c sign.c
acos.c exp.c ierfcf.c l101pl.c nanl.c signf.c
...
erfcl.c hypotl.c isunl.c modfl.c setxpf.c urcwl.c
erff.c ierf.c l101p.c nan.c setxpl.c

The Makefile manages the build process, which requires compilation of all of the C files, and then creation of a static
load library from the object files:

% make

cc -g -DHAVE_LONG_DOUBLE -DHAVE_LONG_LONG -I.. -c acosf.c

cc -g -DHAVE_LONG_DOUBLE -DHAVE_LONG_LONG -I.. -c acoshf.c

...

cc -g -DHAVE_LONG_DOUBLE -DHAVE_LONG_LONG -I.. urcw4l.c

cc -g -DHAVE_LONG_DOUBLE -DHAVE_LONG_LONG -I.. ftocs.c

ar r libfmcw.a acosf.o acoshf.o ...

ranlib libfmcw.a || true

The peculiar construction with the shell OR operator, ||, in the last command is needed because some UNIX systems
do not have the ranlib utility for generating a library index. The first part then fails, but the subsequent true
command ensures overall success.

A companion shared load library is easily built as well (here, on SOLARIS):

% make shrlib

cc -G -o libfmcw.so acosf.o ... -L.. -L. -lmcw

A simple validation test compiles and links some Fortran files with the new library, then runs them and compares
their output with saved output files that are known to be correct:

% make check

f77 -g -c -o test01.o test01.f

f77 -g -o test01 test01.o -L.. -L. -lfmcw -lmcw

...

There should be no output except the test names.
test03 requires support for REAL*16 in Fortran.

944 Appendix F. Fortran interface

========== test01
========== test02
========== test03

When shared libraries are used, most UNIX systems require additional options to get the linker to record in the
executable program the location of the shared library. Otherwise, even though linking succeeds, the program cannot
be run because of missing libraries. GNU compilers generally need an option like -Wl,-rpath,/usr/local/lib,
whereas others may require -R/usr/local/lib.

Finally, we install the new libraries in a standard location for use by others:

% make install
...
Installed files...
-rw-rw-r-- 1 mcw 893794 Mar 31 06:40 /usr/local/lib/libfmcw.a
lrwxrwxrwx 1 mcw 16 Mar 31 06:41 /usr/local/lib/libfmcw.so -> libfmcw.so.0.0.0
-rwxrwxr-x 1 mcw 396328 Mar 31 06:40 /usr/local/lib/libfmcw.so.0.0.0

F.2 Programming the Fortran interface

The Fortran argument-passing conventions described on page 941 suggest a simple interface design that we record
in a small header file, fmcw.h, for use in all of the interface code:

#if !defined(FMCW_H)
#define FMCW_H

#include <mathcw.h>

#define CONS(a,b) a##b
#define FTN(lcname,ucname) CONS(lcname,_)

extern const char * F_to_C_string(const char *, int);

#endif /* !defined(FMCW_H) */

The FTN() macro handles the mapping of function names in the C code to the form produced by the Fortran compiler.
Here, we choose the lowercase form with an underscore suffix.

The interface functions that take only numeric arguments are then similar, and a single example, frexpf.c, serves
for all of them:

#include "fmcw.h"

float
FTN(frexpf,FREXPF)(float *x, int *n)
{

return (frexpf(*x, n));
}

Because the C library functions in the frexp() family expect the second argument to be a pointer to a location
for storing the power-of-two exponent, the variable n is not dereferenced with an asterisk in the return statement
expression.

The few functions that require string arguments are only slightly more complex, and just one example, nanf.c,
suffices:

#include "fmcw.h"

float
FTN(nanf,NANF)(const char *tag, int len)

F.3. Using the Fortran interface 945

{
return (nanf(F_to_C_string(tag, len)));

}

The len argument corresponds to the hidden argument that the Fortran compiler passed by value.
Because there is no terminating NUL in a Fortran string, we must copy the passed CHARACTER string into a tem-

porary location. That job is handled by the F_to_C_string() function.
In a general Fortran-to-C interface, we would have to allocate and free memory for the string copies, just as

happens with the Java interface described in Section J.3 on page 982. However, for the mathcw library, we never
need more than one string at a time, and the strings are always short, so as long as a single thread has control, we
can safely use a small static buffer, avoiding the considerable overhead of dynamic memory management.

Here is the code in ftocs.c that does the job:

#include <string.h>
#include "fmcw.h"

#define MAXBUF 64
#define MAX(a,b) (((a) > (b)) ? (a) : (b))
#define MIN(a,b) (((a) < (b)) ? (a) : (b))

const char *
F_to_C_string(const char *s, int len)
{ /* Convert Fortran string to C string, and return it in a

static buffer that is overwritten on the next call. */

static char buf[MAXBUF];

buf[0] = ’\0’;
(void)strncpy(buf, s, MAX(0,MIN(MAXBUF - 1, len)));
buf[MAXBUF-1] = ’\0’;

return ((const char*)&buf[0]);
}

The Standard C library function, strncpy(), is safe: it never copies more characters than the limit set by its third
argument. However, it does not supply a trailing NUL if the destination string is smaller than the source string. We
therefore create an empty string in the static buffer, then copy the argument string, and finally, ensure that the last
character in the buffer is a NUL.

Fortran 77 does not allow zero-length character strings, so len should never be zero in that environment. How-
ever, language extensions are common in some compilers, and Fortran 90 permits zero-length strings, so it is best to
program defensively. If len is zero, strncpy() does not copy anything at all, so the prior assignment to buf[0] is
essential.

The third argument to strncpy() is an unsigned integer, so the MAX() macro wrapper ensures that a negative
argument is treated as zero, instead of a large unsigned value that would result in overwritten memory, and a nasty
program failure.

F.3 Using the Fortran interface

Because Fortran has no standard mechanism for file inclusion, and no notion of function and subroutine prototypes,
we have to explicitly declare the mathcw library functions before using them. Here is one of the simple test programs:

program test01
real ierff, ierfcf
real x
integer k

write (6,’(A5, 2A15)’) ’x’, ’ierff(x)’, ’ierfcf(x)’

946 Appendix F. Fortran interface

do 10 k = 1,9
x = float(k) / 10.0
write (6,’(F5.2, 2F15.6)’) x, ierff(x), ierfcf(x)

10 continue

end

Although the Makefile contains instructions for building the test program, all that we need to do is invoke a suitable
Fortran compiler, with additional options to identify the location and names of the mathcw libraries. In this SOLARIS
example, the -ftrap option is needed with the Fortran 90 and Fortran 95 compilers to get IEEE 754 nonstop operation:

% f95 -ftrap=%none test01.f -L/usr/local/lib -lfmcw -lmcw

% ./a.out
x ierff(x) ierfcf(x)

0.10 0.088856 1.163087
0.20 0.179143 0.906194
0.30 0.272463 0.732869
...

Systems managers can often specify local library locations in compiler configuration files, so that most users then
need not know where the libraries are installed. Alternatively, the user can provide a colon-separated list of library
directories in the LD_LIBRARY_PATH environment variable. However, here we simply supply an explicit library path
with the -L option.

The Fortran interface library, -lfmcw, must be specified before the mathcw library, -lmcw, because on most UNIX
systems, libraries named on the command line are searched only once.

H Historical floating-point architectures

THERE ARE LESSONS TO BE LEARNED BY LISTENING TO OTHERS.

— CHINESE FORTUNE-COOKIE ADVICE (2007).

THE PROLIFERATION OF MACHINES WITH LOUSY FLOATING-POINT HARDWARE

. . . HAS DONE MUCH HARM TO THE PROFESSION.

— EDSGER W. DIJKSTRA

Structured Programming (1972).

COMPUTATION WITH ANY NUMBERS BUT SMALL INTEGERS IS A

TRACKLESS SWAMP IN WHICH ONLY THE FOOLISH TRAVEL WITHOUT FEAR.

— MAINSAIL AND FLOATING POINT FAQ
Is Floating Point Really This Complicated? (1999).

Virtually all modern computer systems adhere to the IEEE 754 binary floating-point design, at least in format, if
not always in details. New software can generally safely assume that system, but one of the goals of the mathcw
library is that it should also be usable on important historical systems, some of which still run in simulators. Both
the 36-bit DEC PDP-10 and the 32-bit DEC VAX are available that way, as are dozens of microprocessors, and even
the venerable IBM System/360 mainframe. Simulated PDP-10 and VAX systems have been used as test platforms
for the mathcw library, and even though they are implemented in software, thanks to advances in processor speeds,
they run faster today than the original hardware ever did.

Table H.1 on the following page summarizes the floating-point characteristics of IEEE 754 and several historical
computer systems. The variation in word size and floating-point formats is perhaps surprising, considering the
uniformity of formats in machines built after 1980.

On most early systems, single- and double-precision formats have the same exponent range, and on some, the
wider format has a phantom exponent field in the second word. By the 1960s, most vendors adopted a floating-point
format that encoded a one-bit sign, then a biased exponent, followed by the significand magnitude. However, some
systems use other formats. For example, the Harris and Pr1me systems store the exponent after the fraction, the
General Electric 600 series stores the sign between the exponent and the fraction, and the Illiac IV stores two 32-bit
values in a 64-bit word with their signs, exponents, and fractions interleaved in the order s1, e1, s2, e2, f1, f2.

When single and double formats share the same layout in the first word, a nasty and hard-to-find software bug
arises when a call passes a double that is received as a single, or vice versa. If the first case, execution is correct.
In the second case, whatever follows the single in memory is treated as the second word of the double. Those bits
are likely to be arbitrary and unpredictable, but because they amount to a small perturbation on the fraction, their
effect is simply to lower the precision of the double argument. In a large program, the error might be unnoticed,
apart from the final results being puzzlingly less precise than expected. When the two formats have different layouts
in the first word, the results are likely to be so nonsensical that the bug is recognized, tracked down, and repaired.
Function-declaration prototypes force automatic type conversion, preventing detection of that kind of programming
error. In any event, prototypes are absent from most early programming languages.

In the following sections, we describe the floating-point architectures of a few systems that have strongly in-
fluenced modern computers, operating systems, and programming languages. Each is introduced with a brief note
about its significance in the history of computing. Because the machines overlap in time, they are presented in alpha-
betical order. A useful online historical archive of manuals on computer architectures and programming languages1

provides more information about them. The Digital Computer User’s Handbook [KK67] provides a view of the early
computer market up to 1967. There is also an outstanding book, Computer Architecture: Concepts and Evolution [BB97],
by two leading computer architects who describe machine designs up to about 1980.

1See http://www.bitsavers.org/.

© Springer International Publishing AG 2017
N.H.F. Beebe, The Mathematical-Function Computation
Handbook, DOI 10.1007/978-3-319-64110-2

947

948 Appendix H. Historical floating-point architectures

Table H.1: Arithmetic of current and historical computer systems. The digit counts exclude the sign.

Vendor and model or family Integer Floating-point
base digits base digits digits digits

single double quadruple
Apollo Domain 2 31 2 23 52 —
Berkeley BCC-500 2 23 2 36 84 —
Burroughs B1700 2 33 2 24 60 —
Burroughs B5700 2 39 8 13 26 —
Burroughs B6700, B7700 2 39 8 13 26 —
CDC 1604 2 47 2 36 — —
CDC 1700 2 15 2 23 39 —
CDC 3400, 3600 2 47 2 36 84 —
CDC 6000, 7000 2 48, 59 2 48 96 —
Cray 1, 1S, 2, X-MP, Y-MP 2 63 2 48 96 —
DEC PDP-6 2 35 2 27 — —
DEC PDP-10 KA 2 35 2 27 54 —
DEC PDP-10 KI, KL, KS, KLH10 2 35 2 27 62 —
DEC PDP-10 G-floating 2 35 2 27 59 —
DEC PDP-11 2 15, 31 2 24 56 —
DEC PDP-12 2 11, 23 2 24 60 —
DEC VAX with D-floating 2 31 2 24 56 113
DEC VAX with G-floating 2 31 2 24 53 113
Data General Eclipse S/200 2 15 16 6 14 —
English Electric KDF 9 2 39 2 39 78 —
General Electric 600 2 35, 71 2 27 63 —
Gould 9080 2 31 16 6 14 —
Harris /6 and /7 2 23 2 23 38 —
Hewlett–Packard 1000, 3000 2 16 2 23 55 —
Honeywell 600, 6000 2 35, 71 2 27 63 —
IBM 360 family 2 31 16 6 14 28
IBM 650 10 10 10 8 — —
IBM 704, 709 2 35 2 27 — —
IBM 1130 2 15 2 23 — —
IBM 1130 (extended REAL) 2 15 2 31 — —
IBM 7040, 7044, 7090, 7094 2 35 2 27 54 —
IBM 7030 Stretch 2 63 2 48 — —
IEEE 754 with 80-bit format 2 31 2 24 53 64
IEEE 754 with doubled double 2 31 2 24 53 106
IEEE 754 with 128-bit format 2 31 2 24 53 113
Illinois Illiac I 2 39 — — — —
Illinois Illiac II 2 51 4 45 — —
Illinois Illiac III 2 31 16 6 14 —
Illinois Illiac IV 2 47 2 24 48 —
Interdata 8/32 2 31 16 6 14 —
Lawrence Livermore S-1 Mark IIA 2 35 2 13 27 57
Manchester University Atlas 2 47 8 13 — —
Pr1me 200 2 15 2 24 47 —
Rice Institute R1 2 47 256 6 — —
SEL Systems 85, 86 2 31 16 6 14 —
Superset PGM 2 47 2 39 — —
Univac 1100 2 35 2 27 60 —
Xerox Sigma 5, 7, 9 2 31 16 6 14 —
Zuse Z4 2 31 2 23 — —

For a thorough treatment of the design, analysis, and programming of historical floating-point arithmetic sys-
tems, consult the often-cited book Floating Point Computation [Ste74]. Until IEEE 754 arithmetic became widespread,
and well-documented in textbooks, that book was the standard treatise on computer arithmetic, with coverage of
number systems, overflow and underflow, error analysis, double-precision calculation, rounding, base conversion,
choice of number base, floating-point hardware, and complex arithmetic.

H.1. CDC family 949

H.1 CDC family
THE DOUBLE-PRECISION FLOATING-POINT PACKAGE USED BY

1700 FORTRAN IS DESCRIBED IN THIS APPENDIX. FOR EFFICIENCY

THE PACKAGE IS NOT RUN-ANYWHERE.

— CDC 1700 Fortran Version 3A/B Reference Manual (1974).

THE ONE MAJOR FLAW OF THE CDC 6000 COMPUTER

IS THE ABSENCE OF AUTOMATIC TRAPS UPON OVERFLOW CONDITIONS IN

INTEGER ARITHMETIC. SUCH CONDITIONS ARE SIMPLY IGNORED, AND THERE

IS NO WAY TO DETECT THEM. . . . THIS VERY SERIOUS DEFICIENCY MAKES

COMPUTATIONS USING INTEGERS RATHER HAZARDOUS.

— NIKLAUS WIRTH

The Design of a Pascal Compiler (1971).

When IBM dominated the North American computer industry, a group of competitors during the 1960s became
known as the BUNCH — Burroughs, Univac, NCR, CDC, and Honeywell. Control Data Corporation, or CDC, as
it is usually known, produced a line of 60-bit computers that successfully gained a share of the scientific-computing
market, outperforming IBM’s 7030 Stretch.

Before the 60-bit systems, CDC sold the 48-bit 1604 (1961) and 3000 (1963) family and the 16-bit 1700 (1965). The
3000 series is notable for having support in Fortran for declaring numeric variables of a user-specified type, and
then having the compiler generate calls to user-provided functions for the four basic numerical operations. That
simplifies programming with extended-precision data types. Cody’s first published paper [Cod64] describes a fast
implementation of the square-root function for the CDC 3600.

In the 60-bit product line, the CDC 6200, 6400, 6500, 6600, and 6700 mainframes were followed by a much larger
system, the CDC 7600, that gained fame in national laboratories as the world’s fastest computer. One of the chief
architects of those systems, Seymour Cray, left CDC in 1972 and founded a company, Cray Research Inc., that in
1976 shipped the first commercially successful vector supercomputer, the Cray 1. We discuss the words vector and
supercomputer later in Appendix H.2 on page 952.

Niklaus Wirth developed the Pascal programming language on a CDC 6400 system [Wir71a, Wir71b, Amm77].
The pioneering PLATO system for computer-assisted instruction was also developed on CDC machines [Kro10]. The
60-bit machines continued to evolve in the 1980s as the Cyber series, and another vector supercomputer company,
ETA, was a spinoff from the CDC work.

The lead architect of the 6600 writes this about the choice of the 60-bit word size [Tho80, page 347]:

The selection of 60-bit word length came after a lengthy investigation into the possibility of 64 bits.
Without going into it in depth, our octal background got the upper hand.

The CDC 60-bit systems [Con67, Con71] have a floating-point format with a 1-bit sign, an 11-bit biased unsigned
exponent-of-2, and a 48-bit integer coefficient. No hidden bit is possible with that representation. The coefficient
corresponds to about 14 decimal digits, and that higher precision, compared to that available on 32-bit, 36-bit, and 48-
bit systems, made the CDC systems attractive for numerical computing. Although CDC Fortran compilers provide
a DOUBLE PRECISION data type, it is implemented entirely in software, and rarely used. It represents numbers as two
60-bit REAL values, with the exponent of the second reduced by 48, so the second coefficient is a bitwise extension of
the first coefficient. The exponent size is not increased, so the number range is effectively that of the 60-bit form, but
the precision is increased to 96 bits, or about 28 decimal digits.

Integer arithmetic, and exponent arithmetic, are done in one’s-complement representation (see Appendix I.2.2 on
page 972). Although integer addition and subtraction work with 60-bit values, integer multiplication and division
are provided by floating-point hardware, and thus require format conversion. Results of those two operations are
limited to the 48-bit coefficient size. Similar economizations are found in several models of the 64-bit Cray vector
supercomputers [Cray75, Cray82]. A 1971 CDC Fortran compiler manual reports:

Because the binary-to-decimal conversion routines use multiplication and division, the range of integer
values output is limited to those which can be expressed with 48 bits.

On neither of those CDC or Cray families is integer overflow on multiplication detected. A 1972 CDC Fortran
compiler manual has this ominous remark:

950 Appendix H. Historical floating-point architectures

The maximum value of the operands and the result of integer multiplication or division must be less
than 247 − 1. High-order bits will be lost if the value is larger, but no diagnostic is provided.

There are multiple representations of any number with a coefficient needing fewer than 48 bits, and the results of
the four basic operations are not necessarily normalized. For multiplication and division, results are normalized only
if both operands are as well. A separate normalize instruction shifts a nonzero coefficient left to produce a high-order
bit of 1, and reduces the exponent by the shift count. That instruction is essential, because to obtain correct results,
operands for division must first be normalized.

Perhaps because of the multiple representations, there is no floating-point comparison instruction. Instead, the
numbers must be subtracted, the result normalized, and finally unpacked by a single hardware instruction into an
exponent and fraction, and the sign and exponent tested to determine whether the difference is negative and non-
zero, zero, or positive and nonzero.

Octal notation is conventional on the CDC systems. The exponent bias is 20008 = 102410, so the value 1.0 can be
represented in unnormalized form with an exponent of 20008 and a coefficient of 1, or in normalized form by shifting
the coefficient left until its most significant bit is in the high-order position, and reducing the exponent accordingly.
A short hoc program illustrates these 48 equivalent encodings:

hoc80> k = 0
hoc80> printf("%2d %04o_%016...4o\n", k, 1024 - k, (1 %<< k))
hoc80> for (k = 1; k < 48; ++k) \
hoc80> printf("%2d %04o_%016...4o\n", k, 1023 - k, (1 << k))

0 2000_0000_0000_0000_0001
1 1776_0000_0000_0000_0002
2 1775_0000_0000_0000_0004
3 1774_0000_0000_0000_0010
4 1773_0000_0000_0000_0020
5 1772_0000_0000_0000_0040

...
42 1725_0100_0000_0000_0000
43 1724_0200_0000_0000_0000
44 1723_0400_0000_0000_0000
45 1722_1000_0000_0000_0000
46 1721_2000_0000_0000_0000
47 1720_4000_0000_0000_0000

The biased exponent of 17778 is skipped for a reason to be explained shortly.
The exponent encoding allows a fast way to subtract the bias: simply invert the high-order bit of the biased

exponent, an operation that is easy to implement in hardware. Selective bit inversion is done by an exclusive-OR
operation with a mask containing 1-bits wherever inversion is needed. To see that, consider two biased exponents,
20408 and 17208, corresponding to unbiased values of 408 and −578. Performing an exclusive-OR with the mask
20008 on the biased values produces 00408 and 37208. The first is clearly correct, and the second is as well, because
37208 = 37778 − 00578 is just the one’s-complement of the negative of 00578.

The CDC floating-point arithmetic system supports Infinity and Indefinite bit patterns, which are the inspiration
for IEEE 754 Infinity and NaN. Those features also provide the nonstop model of computation that IEEE 754 adopted.
Although Zuse’s pioneering machines developed in Germany in the late 1930s had both special values, the Zuse
computers were not well-known elsewhere, and it is unknown to this author whether the CDC architects reinvented
the special values independently, or simply borrowed Zuse’s idea.

The largest stored exponent, 37778, represents positive Infinity, and a stored sign and exponent of 40008 corre-
sponds to negative Infinity. Because a one’s-complement system has both positive and negative zeros, an exponent
field of 17778 corresponds to −0, and would be redundant with 20008, the encoding of +0. The CDC architects
therefore chose the exponent value 17778 to indicate Indefinite. In both cases, the coefficient bits are arbitrary, but
the hardware always generates a zero coefficient for those exceptional values. There are special branch instructions
that recognize the two special exponents, and arithmetic units check for them early, and return a predefined result
when they are encountered.

The CDC operating systems provide commands to initialize unused memory to Infinity or Indefinite, with each
coefficient set to the word’s own address. Machine status flags can be set to cause job termination for an Indefinite

H.1. CDC family 951

and/or Infinite operand, and the ensuing report of the special operand value holds a record of where it came from,
and gives a call traceback, identifying the routine and line number last executed, thereby detecting erroneous use
of an uninitialized variable. Few machines before or since have made it as easy to detect that all-too-common soft-
ware bug. Some modern compilers provide a -trapuv option to request such initialization, but that may still not
catch uninitialized-access errors in dynamically allocated memory. The real solution to the problem is in hardware:
memory systems should refuse to return a value from an unset location.

The representable number range is [2−1023, (247 − 1)× 21022], or approximately [1.11e-308, 1.26e+322], for un-
normalized values. However, compilers enforce normalization, reducing the range to [2−976, (247 − 1)× 21022], or
approximately [1.56e-294, 1.26e+322]. The choice of normalization, an integer coefficient, and the mid-way bias of
20008, makes the upper limit much larger than the reciprocal of the lower limit (by a factor of 294 ≈ 1.98 × 1028),
which is uncommon in floating-point designs. On most other systems, the two values are close. For example, in
the IEEE 754 binary and decimal formats, the reciprocal of the smallest number is smaller than the maximum repre-
sentable number by a factor of β2. On the DEC VAX, the reciprocal is about two times larger than the overflow limit,
on the Cray 1 and DEC PDP-10, almost four times larger, and on IBM System/360, nearly 256 times larger.

Although the floating-point system can represent a negative zero, the hardware never generates such a value.
It does recognize them, so that −∞/ − 0 → +∞ and ∞/ − 0 → −∞, but for finite operands, the sign is lost:
+1×−0 → +0. That inconsistency makes negative zeros unreliable records of their origin as underflows of negative
values.

Underflows on the CDC machines normally flush to zero silently. However, Fortran compilers set a trap so
that underflows are caught and reported, then set to zero. Although it is possible to trap use of an Infinity or
Indefinite operand, the normal practice is to continue execution. Infinity and Indefinite propagate through most
subsequent computations, so if they arise, they are likely to be noticed in the program output. However, the much
wider exponent range of the CDC number format compared to that of competing machines with smaller word sizes
makes underflow and overflow less frequent in most programs.

The default floating-point instructions on the CDC systems truncate their results, but there is a companion set
that produces rounded results. CDC compilers allow users to choose either set, although the default is truncated
results, perhaps because rounding arithmetic is slower.

Arithmetic operations do not use a guard digit, which leads to anomalies that we discuss in Section 4.6 on
page 66. For example, consider the subtraction of two adjacent numbers, simplified to a three-digit decimal system.
We find correctly that 1.01 − 1.00 = 0.01, but if we instead subtract the next lower pair, 1.00 − 0.999, we first have to
align the decimal points and work with at most three digits, giving 1.00 − 0.99 = 0.01. That differs from the exactly
representable correct answer 0.001 by a factor of 10, which is just β, the base. For a similar computation in binary
arithmetic, the computed answer is twice the correct value.

For more on the history of the CDC 60-bit computer family, see the book [Tho70] and article [Tho80] written by
the lead designer of the 6600.

In the early 1970s, work began on a new 64-bit architecture, the CDC 8600. The project was canceled in 1974, but
the design manual specifies a floating-point format consisting of a 1-bit sign, a 1-bit out-of-range flag, a 14-bit biased
exponent in one’s-complement form, and a 48-bit integer coefficient. That provides normalized numbers in the range
[2−8192+47, (248 − 1)× 28192]. In C99 notation, that is [0x1p-8145, 0xffff_ffff_ffffp+8192], or about [1.29e-2452,
3.07e+2480]. The precision is about 14 decimal digits. The out-of-range flag is set for overflow and undefined results,
merging the old Infinity and Indefinite values into a single bit. Integer arithmetic is a modified one’s-complement
form where the hardware replaces the all-bits-one pattern of −0 with all-bits-zero for +0, simplifying later tests for
zero.

With the 8600 abandoned, CDC moved on to a new 64-bit vector machine, the STAR-100. That system provides
both 32-bit and 64-bit floating-point arithmetic. The 32-bit format has an 8-bit biased exponent, followed by a 1-bit
sign, and a 23-bit integer coefficient. However, the exponent range is restricted, to allow exponents in [0x70, 0x7f]
to represent Indefinite, and [0x80, 0x8f] to represent zero. The 64-bit format uses the same layout, but increases the
exponent field to 16 bits and the coefficient to 47 bits (about 14 decimal digits). A leading hexadecimal digit of 7
or 8 in the exponent again identifies Indefinite and zero, respectively. The number range is less obvious because
of the exponent restrictions, but the Fortran manual claims the range of the 64-bit format to be about [5.19e-8618,
9.53e+8644]. For reasons discussed in the next section, that machine was a commercial failure, and CDC eventually
went out of business when its 60-bit product line ceased to attract new customers.

952 Appendix H. Historical floating-point architectures

H.2 Cray family

REVERSING THE MULTIPLIER AND MULTIPLICAND OPERANDS

COULD CAUSE SLIGHTLY DIFFERENT RESULTS, THAT IS, A × B
IS NOT NECESSARILY THE SAME AS B × A.

— Cray 1 Computer System Hardware Reference Manual (1977).

VALUES y AND z MAY EXIST FOR WHICH |y| ≤ z
BUT THE CRAY 1 CALCULATES |y × (1/z)| > 1.

— W. KAHAN

Why Do We Need a Floating-Point Arithmetic Standard? (1981).

The Cray vector supercomputer models 1, 1S, 2, X-MP, and Y-MP are 64-bit word-addressed systems [Rus78].
The adjective vector means that the machines have instructions capable of completing a load, or a store, or a

floating-point operation, on one or two one-dimensional arrays of numbers, with the result in another array. With
the technology of the time, the Cray vector instructions produce one result element per clock tick, a performance
rate approached by later RISC processors with superscalar pipelined operation, using multiple arithmetic units and
complex, and heavily overlapped, instruction execution.

The noun supercomputer refers to a computer that is engineered to provide the utmost floating-point performance
compared to its price competitors, even if that means taking shortcuts that compromise the design or function
[EM94]. The famous LINPACK benchmark report2 and the list of the TOP 500 supercomputer sites3 continue to
track progress in that area. The worldwide market for such machines is small, but the prices are so high that Cray
had vigorous competition from at least CDC, ETA, Fujitsu, Hitachi, IBM, and NEC.

There was even a market in the 1980s and 1990s for mid-range parallel and/or vector machines, sometimes
called departmental supercomputers, with machines from Alliant, Ardent, Convex, Cray, Cydrome, DEC, ELXSI, En-
core, Floating-Point Systems, Kendall Square Research, Multiflow, Pyramid, Sequent, Stardent, Stellar, Supertek,
Thinking Machines, and others. Although all but Cray failed or were bought by competitors, cheap parallel and vec-
tor processing lives on in a low-cost, but high volume, market: graphics display controllers for desktops and game
systems. Advances in microprocessor technology, and possibly a ‘killer application’, could yet put vector processing
into commodity processors on the desktop. Research projects at Stanford University and the University of California,
Berkeley have produced such designs, and one large and important application is the signal processing needed in
wireless telephones.

Some vector machines permit arbitrary vector lengths, as the CDC STAR-100 and ETA machines do with vectors
of up to 65,536 elements stored in memory. However, the Cray systems store at most 64 elements of data in any
of several fast vector registers inside the CPU. To accommodate shorter vectors, a separate count register indicates
how many elements are actually to be used. Longer vectors are handled by splitting them into 64-element chunks,
with a possible remaining smaller chunk, and then processing each chunk with a single vector instruction. The Cray
approach proved to be superior: a descendant of the original company survives four decades later, but ETA went out
of business because its performance on its customers’ software could not match that of its chief competitor. Lack of
adequate memory bandwidth to feed powerful CPUs continues to be a challenging problem faced by all computer
vendors, and the performance gap between memory and CPUs has widened dramatically since the introduction of
vector supercomputers [Bee94].

The listed Cray models provide two’s-complement arithmetic for 24-bit and 64-bit integers, with instructions for
integer addition and subtraction. The integer multiply instruction is available only for the 24-bit address format, so
64-bit multiplication, and integer division, must be done by conversion to and from floating-point. Like the older
CDC mainframes, that means that the effective integer width is reduced if multiplication or division are needed,
and integer-overflow detection is impractical. Also like the CDC systems, there is no guard digit for floating-point
subtraction.

The Cray 2 does subtraction slightly differently from the others, but not enough to repair the subtraction problem,
leading to anomalies that can cause a cautiously programmed Fortran statement like

IF (x .NE. y) z = 1.0 / (x - y)

2See http://www.netlib.org/benchmark/hpl/.
3See http://www.top500.org/.

H.3. DEC PDP-10 953

to fail with a zero-divide error on Cray systems. The guard can also fail on modern IEEE 754 systems when subnor-
mals are not supported.

The Cray floating-point format has a 1-bit sign, a 15-bit exponent-of-2 biased by 4_00008 = 400016 = 16 38410,
and a 48-bit fraction. There is no hidden bit. Although it is possible to construct unnormalized values, the hardware
requires normalized inputs. There is no separate normalization instruction: addition to +0 provides that operation,
and is primarily needed for the frequent conversion from integer to floating-point form.

Just as 16-bit PDP-11 users continued with the octal notation of their older 12-bit and 18-bit systems, instead of
switching to the more suitable hexadecimal form, Cray designers carried the use of octal over from their CDC past.

The exponent size suggests that the biased exponent range should be [0, 7_77778], but that is not the case: stored
exponents are restricted to the range [2_00008, 5_77778]. Values outside that interval are considered to have under-
flowed or overflowed. That decision was perhaps made to simplify the vector arithmetic units so that underflow
and overflow could be handled quickly. The allowed number range is thus [0x.8p-8192, 0x.ffff_ffff_ffffp+8191]
in C99 notation, or about [4.54e-2467, 5.45e+2465], and the precision is about 14 decimal digits.

Although −0 is representable, the hardware never generates such a value. Underflows are silently set to zero,
and represented by a word with all bits zero. Overflows produce a value with the computed coefficient, and the
exponent clamped to 6_00008. That provides Infinity, but there is no analogue of CDC’s Indefinite.

Early Cray 1 machines used a multiplication algorithm that dropped some of the lower digits in the schoolbook
method of summing digit-at-a-time products, with the result that multiplication could fail to commute, as the epi-
graph beginning this section notes. That misfeature was sufficiently upsetting to customers that it was later repaired
by an engineering change. For a description of the original multiply algorithm, see [Cray77, pages 3-24ff]. The
revised algorithm still drops trailing bits, but with more care [Cray82, pages 4-26ff].

There is no divide instruction: instead, a reciprocal-approximation instruction provides a starting estimate, ac-
curate to 30 bits, for one step of a Newton–Raphson iteration to produce a reciprocal. That introduces additional
rounding errors, making division less accurate than it should be, with errors in the last three bits. It also leads to
misbehavior near the underflow limit, because in the available exponent range, y may be representable although 1/y
overflows. For example, for y near the smallest representable number, the expression 0.06/y on those Cray systems
is about a quarter of the largest representable number, but instead, it erroneously overflows.

Similar problems can arise even on modern machines when optimizing compilers replace divisions inside a loop
with multiplications by a reciprocal computed outside the loop. In IEEE 754 binary and decimal arithmetic, the
reciprocal of a number near the overflow limit is subnormal, either losing significant digits, or abruptly underflowing
to zero when subnormals are absent.

It is worth noting that iterative improvement of a reciprocal approximation can be made to produce a correctly
rounded quotient. The Intel IA-64 also lacks a divide instruction, but a careful implementation that exploits fused
multiply-add and an extended exponent range allows the lengthy computation to be interleaved with other work,
and can be proved correct [Mar00, Chapter 8].

Double-precision arithmetic is not supported in hardware on Cray systems, but is provided in software. For
performance reasons, it is rarely used.

For more on the Cray floating-point design, see the essay How Cray’s Arithmetic Hurts Scientific Computation
[Kah90].

Models of the Cray computers from the late 1990s are based on either commodity (Alpha and SPARC) or custom
processors, and provide almost-conforming 32-bit and 64-bit IEEE 754 arithmetic: only subnormals are omitted. Un-
fortunately, for tiny numbers, that omission destroys the property that with gradual underflow, x − (x − y) correctly
evaluates to y within rounding error when x − y underflows, whereas with flush-to-zero underflow, the result is x.
On the newer Cray systems, floating-point compare instructions avoid having to do comparisons by tests on the sign
and magnitude of the operand difference.

H.3 DEC PDP-10

21 963 283 741 IS THE ONLY NUMBER SUCH THAT IF YOU REPRESENT IT ON THE PDP-10 AS BOTH AN INTEGER AND A

FLOATING-POINT NUMBER, THE BIT PATTERNS OF THE TWO REPRESENTATIONS [243_507_216_4358] ARE IDENTICAL.

— NEW HACKER’S DICTIONARY (1993).

CORRECT IMPLEMENTATION OF FLOATING POINT IS SUFFICIENTLY OBSCURE

THAT IT IS HARD TO DESIGN A HARDWARE FLOATING-POINT UNIT CORRECTLY.

954 Appendix H. Historical floating-point architectures

— THE TEAM THAT BUILT THREE PDP-10 CLONES AT XEROX PARC (1978).

The Digital Equipment Corporation (DEC) 36-bit PDP-10 is a descendant of the 36-bit PDP-6, which appeared in late
1964. The PDP-10, introduced in 1967, ran more than ten different operating systems, and was the vendor’s largest
computer until it was surpassed by the biggest VAX models in the mid 1980s. During its long life, a small clone
market arose, with compatible machines built by Foonly, Systems Concepts, Xerox, and XKL.

The Xerox effort did not lead to a commercial product, but the architects at Xerox PARC extended their home-
built PDP-10 systems with many new instructions for enhanced support of the Lisp language. That practice of
tweaking the instruction set while designing a language later led to the development of the Xerox Alto and Dolphin
computers, and the Cedar, Mesa, and Smalltalk languages. The Alto is credited with being the first personal work-
station, with the first graphical user interface (GUI), and the first pointing device, the mouse. All desktop systems
today share that legacy.

The PDP-10 is one of the earliest commercial systems to have integrated networking, and has outstanding time-
sharing services. Its registers overlap the first sixteen words of memory, but are implemented in faster logic, so small
instruction loops run several times faster if moved into the register area. The PDP-10 has a rich instruction set, and
its architecture is well-suited to the Lisp language, whose implementation makes heavy use of object pointers. A
significant feature of the PDP-10 is an indirect pointer: a word containing an address and a flag bit that, when set,
means that another pointer should be fetched from that address, and the process repeated until a direct pointer is
found. Thus, a single memory address in an instruction can transparently follow a long chain of linked pointers.

The richness and versatility of the PDP-10 led to its wide adoption in universities, particularly in computer-
science departments, and it became the machine of choice for most of the early Arpanet sites. That network ulti-
mately evolved into the world-wide Internet.

Several influential programming languages, typesetting systems, and utilities were first developed on the PDP-
10, including BIBTEX, Bliss, emacs, Interlisp, kermit, LATEX, MacLisp, Macsyma, MAINSAIL, Maple, METAFONT,
METAPOST, PCL, PSL, PUB, REDUCE, SAIL, Scribe, SPELL, and TEX. The CP/M operating system and Microsoft
BASIC were both produced with simulators for the Intel 8080 running on PDP-10 systems before the Intel micropro-
cessors were available, and Microsoft MS-DOS borrowed many features of CP/M. Microsoft built early versions
of its WINDOWS operating system on top of MS-DOS. Later, it reversed their logical order, so modern WINDOWS
systems still have the old operating system available via the command utility. The mathcw library described in this
book also runs on the PDP-10 in the KLH10 (2001) simulator. For further historical highlights of the PDP-10, see
[Bee04a], [Bee05], and [BMM78, Chapter 21].

The PDP-10 uses two’s-complement integer arithmetic (see Appendix I.2.3 on page 972), and the larger KL10
model also provides 72-bit integer add, subtract, multiply, and divide instructions, but the Fortran compiler has no
support for a double-word integer. The sign bit of the second word is made the same as that of the first word, so
the precision is 70 bits. There is also a fixed-point decimal instruction set for commercial applications, and powerful
string instructions that can handle any byte size from 1 bit to 36 bits.

Single-precision floating-point arithmetic has a 1-bit sign, an 8-bit power-of-2 exponent, and a 27-bit normalized
fraction. The exponent bias is 2008 = 12810, so the number range is [2−129, (1 − 2−27)× 2127]. In C99 notation, that is
[0x0.8p-128, 0x0.ffff_ffep+127], or approximately [1.47e-39, 1.70e+38]. The precision is about 8 decimal digits.
For positive numbers, the format matches that of the IBM 7090, which was a member of IBM’s largest family of 36-
bit machines before System/360 was announced. However, for negative numbers, the encoding on the PDP-10 was
changed to store the fraction in two’s-complement form, with a one’s-complement exponent. That allowed integer
comparison instructions to be used for single-precision floating-point numbers. To see how that works, here are some
experiments with hoc on the KLH10 (a software implementation of the PDP-10) to display the native encodings of
positive and negative floating-point numbers in octal:

hoc36> for (x = 1.0e-2; x <= 1.0e2; x *= 10) { \
hoc36> y = x * PI; \
hoc36> z = PI / x; \
hoc36> printf("%9.3f %s %9.3f %s\n", y, ftoo(y), -z, ftoo(-z)) }

0.031 174401267745 -314.159 566305656352
0.314 177501545736 -31.416 572011260566
3.142 202622077325 -3.142 575155700453

31.416 205766517212 -0.314 600276232042
314.159 211472121426 -0.031 603376510034

H.3. DEC PDP-10 955

hoc36> for (k = -3; k <= 2; ++k) { \
hoc36> x = PI + k * macheps(PI); \
hoc36> printf(" PI%+d*eps %s -PI%+d*eps %s\n",
hoc36> k, ftoo(x), -k, ftoo(-x)) }

PI-3*eps 202622077322 -PI+3*eps 575155700456
PI-2*eps 202622077323 -PI+2*eps 575155700455
PI-1*eps 202622077324 -PI+1*eps 575155700454
PI+0*eps 202622077325 -PI+0*eps 575155700453
PI+1*eps 202622077326 -PI-1*eps 575155700452
PI+2*eps 202622077327 -PI-2*eps 575155700451

hoc36> x = MINNORMAL
hoc36> printf("% 14.6e %s % 14.6e %s\n", x, ftoo(x), -x, ftoo(-x))

1.469368e-39 000400000000 -1.469368e-39 777400000000

hoc36> x = MAXNORMAL
hoc36> printf("% 14.6e %s % 14.6e %s\n", x, ftoo(x), -x, ftoo(-x))

1.701412e+38 377777777777 -1.701412e+38 400000000001

The octal values taken as integers clearly have the same order as the floating-point numbers. Had the exponent been
in two’s-complement form, negative numbers near the underflow limit would have stored exponents of 0008, 7778,
7768, . . . , instead of 7778, 7768, 7758, . . . , losing the integer ordering.

On the early KA10 processor (1967), double-precision arithmetic is provided in software, using a pair of single-
precision numbers, with the exponent of the second word set to 27 less than that of the first word. That gives a
precision of 54 bits, or about 16 decimal digits, with the same exponent range as the single-precision format. Short
sequences of three to seven instructions implement the four basic operations on software double-precision numbers
[DEC76, pages 2-79–2-80].

On the later KI10 (1972), KL10 (1975), and KS10 (1978) CPUs, hardware double precision uses two words, with
a 1-bit sign, 8-bit power-of-2 exponent, and 62-bit fraction; the sign bit in the second word is unused, and ignored.
The number range is therefore almost identical to that for single-precision arithmetic, but the precision is extended
to about 18 decimal digits. Comparisons of values in the hardware double-precision format require three successive
integer compare instructions.

In the late 1970s, the PDP-10 got a third double-precision format, called G-floating, in hardware. It widens the
exponent to 11 bits, reduces the fraction to 59 bits (about 17 decimal digits), and continues to ignore the sign bit of
the second word. The new range is [0x.8p-1024, 0x.ffff_ffff_ffff_ffep+1023], or about [2.78e-309, 8.98e+307].
Compiler options select between the two hardware double-precision formats, without the need to introduce new
data types into programming languages.

Floating-point instructions are available in both truncating and rounding variants, with the rounding ones being
the default for most programming languages. However, rounding is peculiar, as we describe and illustrate in Sec-
tion 26.3.5 on page 848. The design manual for the planned, but later canceled, KD10 (1983) notes that its rounding
instructions were to produce correct unbiased rounding, so at least the problem was recognized, and scheduled to
be fixed.

The results of addition, multiplication, and subtraction are produced in a double- or triple-length register (de-
pending on the model) and then normalized and, if requested, rounded. Division includes at least one extra bit for
rounding. Those actions provide a sufficient number of guard digits to prevent the anomalies of the Cray systems.

State flags record the occurrence of underflow, overflow, and zero-divide conditions, and for the first two, the
fraction is correct, but the exponent has wrapped. Setting those flags normally traps immediately to a software in-
terrupt handler that replaces overflows by the largest representable number, and underflows by zero. Unfortunately,
the two available C compilers do not supply a handler, so underflow and overflow in that language produce incor-
rect results with small exponents wrapped to large ones, and vice versa, as we illustrate in Section 4.9 on page 71
and Section 4.11 on page 77. Zero divides are suppressed, and in the absence of a handler fixup, the result is the
numerator. The Fortran handler sets the result of divide-by-zero to the correct sign and magnitude of the largest
representable number.

956 Appendix H. Historical floating-point architectures

H.4 DEC PDP-11 and VAX

I FINALLY GOT TO TRY SOME PARALLEL PROGRAMMING AS A GRADUATE STUDENT

IN 1975 AT THE UNIVERSITY OF UTAH. WE HAD AN ADD-ON TO OUR PDP-11
MADE BY A COMPANY CALLED FLOATING POINT SYSTEMS THAT DID PIPELINED

FLOATING ADD/MULTIPLIES. UNFORTUNATELY,
IT DIED BEFORE I COULD DEBUG MY PROGRAM.

— JIM BLINN (1997).

THE SCIENTISTS WERE UPSET BECAUSE THEY DID NOT YET HAVE A VAX TO GRIND.

— JOHN W. D. CONNOLLY (1978).

The 16-bit DEC PDP-11 [EM79, LE80], introduced in 1970, was one of the most commercially successful minicomput-
ers. Early systems provided software floating-point arithmetic in a three-word format, with a signed 15-bit exponent,
and a signed 31-bit fraction. Later models offered an optional floating-point processor that provided 32-bit and 64-bit
arithmetic in formats described later in this section.

Although early UNIX development had begun in 1969 on the 18-bit PDP-7, and was planned to be moved to the
36-bit PDP-10, budget limitations forced a fallback to the smaller PDP-11. The limited address space and instruction-
set architecture of that system had a large impact on the design of both UNIX, and the C programming language,
which was developed on the PDP-11 from 1969 to 1973. Ken Thompson, the chief architect of UNIX, had worked on
the complex MULTICS operating system project (see Appendix H.5 on page 958), and the name UNIX was chosen
partly as a pun, and partly to reflect the designers’ philosophy of small is beautiful [Gan95, Gan03, Ray04, Sal94].

The first 32-bit DEC VAX (for Virtual Address eXtension), announced in 1977, has a 32-bit floating-point format
called F-floating, with a 1-bit sign, 8-bit exponent with a bias of 128, and a 24-bit fraction. That total of 33 bits
is possible because of the trick of supplying an implicit leading bit of 1, called a hidden bit, when an arithmetic
operation is performed. The first VAX also has a 64-bit format, called D-floating, with the same allocation of sign
and exponent bits as the 32-bit size, and 56 fraction bits, again with a hidden bit.

In response to customer demand, DEC added the 64-bit G-floating format in 1979, with three bits moved from
significand to exponent, giving a format similar to IEEE 754 64-bit arithmetic, but without NaN, Infinity, or gradual
underflow. In most programming languages, the choice between the two double formats is made by a compile-time
option, rather than by a change in a data type.

Larger models of the 16-bit DEC PDP-11 systems have the F-floating and D-floating formats, and indeed, for
several years, VAX models included a PDP-11 compatibility mode that allowed them to run old code from those
smaller systems. During that time, the name VAX-11 was common in DEC literature.

When DEC designed the 64-bit Alpha RISC architecture in the early 1990s with floating-point arithmetic based
on the IEEE 754 Standard, it also included separate instructions for the VAX F-floating, D-floating, and G-floating
formats, to facilitate run-time translation and execution of VAX programs on Alpha processors. In Alpha documen-
tation, the two IEEE 754 formats are called S-floating and T-floating. Later releases of the OSF/1 operating system
for the Alpha also provide the 128-bit IEEE 754 extension, implemented in software. More recently, Gentoo GNU/
LINUX distributions for Alpha and SPARC CPUs added that 128-bit arithmetic.

When DEC added the G-floating feature, the VAX architecture also got a 128-bit format, H-floating, which is
usually implemented in software. The only other system offering 128-bit floating-point arithmetic at the time was
the IBM System/360 family, where it had been available for more than a decade (see Appendix H.6 on page 959).

VAX floating-point instructions never generate negative zeros. The VAX therefore treats the floating-point bit
pattern for a negative zero as a special value, called a reserved operand, that causes a run-time fault with all instruc-
tions that access it, even load and store instructions. Unless it is caught at run time and handled, that fault causes
immediate program termination. In practice, that makes reserved operands useless for anything but user-specified
compile-time initialization of floating-point storage areas. The PDP-11 has the same interpretation of −0, but calls it
an undefined variable. Unlike the CDC operating systems, there is no support from compilers or operating systems on
the PDP-11 or VAX for execution-time initialization with reserved operands.

Although as shown in Figure H.1 on the facing page, VAX floating-point values in CPU registers have the modern
format of sign, biased exponent, and significand, the VAX memory layout follows that of the PDP-11, which is little
endian [Coh81] in 16-bit words, as illustrated in Figure H.2 through Figure H.4 on page 958. That puts the sign and
exponent between two sequences of fraction bits in the byte string in memory [DEC77, DEC79, DEC82, DEC90].

H.4. DEC PDP-11 and VAX 957

s exp fraction (excluding hidden leading 1-bit)

bit 0 1 9 31 F-floating
0 1 9 63 D-floating
0 1 12 63 G-floating
0 1 16 127 H-floating

Figure H.1: VAX binary floating-point logical data layout. The sign bit is 1 for negative, and 0 for zero or positive.
The exponent-of-2 is a biased unsigned integer.
For nonzero stored exponents, there is a hidden (not-stored) leading fractional bit of 1 that is implicitly prefixed to
the stored fraction bits in any arithmetic operation. The binary point lies immediately to the left of the hidden bit.
Thus, the fraction is always normalized, and nonzero fractions are in the range [1

2 , 1). The floating-point value is
(−1)s × (fraction)× 2exp−bias.
When the stored exponent is zero, there is no hidden bit. Such a value with a sign bit of 0 represents a true zero.
With a sign bit of 1, and arbitrary stored fraction bits, it is a reserved operand (see text for details).

byte A + 1 s exp f0 byte A + 0
byte A + 3 f1 f2 byte A + 2

Figure H.2: VAX F-floating memory layout.
The memory address of the value is A, but data are stored in the order of 16-bit PDP-11 words, so the sign and
exponent reside in the middle of a 32-bit field.
The exponent width is 8 bits, and the fraction width is 24 bits, representing about 7 decimal digits.
A hidden high-order fractional 1-bit logically precedes the stored fraction, so the significand value is the sequence
0.1 f0 f1 f2.
The exponent bias is 128, so the number range in C99 hexadecimal floating-point notation is [0x0.8p-127,
0x0.ffff_ffp+127], or about [2.94e-39, 1.70e+38]. A stored exponent of zero represents a numerical zero, inde-
pendent of the value of the fraction.

Although that peculiar layout is transparent to most numerical software, library primitives that extract the sign,
exponent, or significand need to know about it.

Zeros are recognized solely by a biased exponent of 0. When a floating-point instruction produces a zero result,
the sign and fraction are always zero. Although bit manipulation and storage initialization can construct nonzero
fractions with zero exponents, those values are treated as zero by the hardware.

Like many systems, the VAX includes condition-code flag bits that record the occurrence of underflow, overflow,
zero divide, and a few others, and those status bits can be tested in conditional-branch instructions. The flags are
sticky in the sense that floating-point operations never clear them, but might set them. The VAX calling sequence
ensures that the condition codes are preserved across procedure calls, and that the call instruction sets them all to
zero at procedure entry. That makes it possible, and reliable, to test them long after they have been set, even when
there are intervening calls. It also allows any procedure to install a floating-point exception handler to deal with
operand or result faults at that call level, or deeper, without disabling handlers established by the caller or its call-
sequence ancestors. Exceptions are processed by the nearest registered handler in the call history, so most language
implementations install a suitable language-dependent default handler just prior to calling the user’s main program.

After 1986, the largest models of the VAX included vector instructions for 32-bit integers, and for D-, F-, and
G-floating formats, and the VMS operating system supplied the VAX Vector Instruction Emulation Facility (VVIEF)
for software support on models lacking the vector hardware. Vectors contain up to 64 elements, just as on the Cray
models discussed in Appendix H.2 on page 952.

958 Appendix H. Historical floating-point architectures

byte A + 1 s exp f0 byte A + 0
byte A + 3 f1 f2 byte A + 2
byte A + 5 f3 f4 byte A + 4
byte A + 7 f5 f6 byte A + 6

Figure H.3: VAX D- and G-floating memory layout.
For D-floating, the exponent width is 8 bits, and the fraction width is 56 bits (1 hidden+ 55 stored), giving a precision
of about 16 decimal digits.
For G-floating, the exponent width is 11 bits, and the fraction width is 53 bits (1 hidden+ 52 stored), with a precision
of about 15 decimal digits.
The exponent bias is 128 for D-floating, and 1024 for G-floating.
The D-floating number range is [0x0.8p-127, 0x0.ffff_ffff_ffff_ffp+127], barely larger than that for F-floating.
The G-floating range is [0x0.8p-1023, 0x0.ffff_ffff_ffff_f8p+1023], or about [5.56e-309, 8.98e+307].

byte A + 1 s exp byte A + 0
byte A + 3 f0 f1 byte A + 2
byte A + 5 f2 f3 byte A + 4
byte A + 7 f4 f5 byte A + 6
byte A + 9 f6 f7 byte A + 8

byte A + 11 f8 f9 byte A + 10
byte A + 13 f10 f11 byte A + 12
byte A + 15 f12 f13 byte A + 14

Figure H.4: VAX H-floating memory layout.
The exponent width is 15 bits and the fraction occupies 113 bits (1 hidden + 112 stored), providing a precision of
about 33 decimal digits.
The exponent bias is 16384.
The range is [0x0.8p-16383, 0x0.ffff_ffff_ffff_ffff_ffff_ffff_ffff_8p+16383], or about [8.40e-4933,
5.94e+4931].

H.5 General Electric 600 series

THE HONEYWELL 6080 COMPUTER ONCE HAD THE PROPERTY THAT

A SMALL NUMBER (APPROXIMATELY −10−39) WHEN DIVIDED BY ROUGHLY 2 GAVE A

LARGE RESULT (APPROXIMATELY 1038). . . . THE COMPUTING WORLD IS A JUNGLE

OF INDIVIDUALISTIC AND SOMETIMES TOO CLEVER ARITHMETIC UNITS.

– NORMAN L. SCHRYER

Determination of Correct Floating-Point Model Parameters
IN Sources and Development of Mathematical Software (1984).

An influential early timesharing operating system, MULTICS, was developed on the General Electric 600 series from
1964 to 1969. The vendor’s computer business was sold to Honeywell in 1970, and MULTICS systems operated until
2000. The 600 series is a 36-bit architecture, and provides two’s-complement integer arithmetic (see Appendix I.2.3
on page 972) with 18-bit, 36-bit, and 72-bit sizes, and 36-bit and 72-bit floating-point arithmetic.

The floating-point storage layout has an 8-bit unsigned exponent (in both lengths) biased by 128, followed by
a sign and a 27-bit or 63-bit fraction. Unlike the PDP-10, the exponent is stored in two’s-complement form, and in
double precision, the high-order bit of the second word is a data bit, rather than a sign bit.

Floating-point arithmetic is done in an extended accumulator pair containing an 8-bit exponent in register E, and
a sign and a 71-bit fraction in register AQ. The two registers can be accessed separately, or jointly as EAQ. Loads from
storage fill the extra bit positions in the accumulator with zeros. There are two 36-bit store instructions, one which
truncates, and the other which first rounds by adding 1 at fraction bit 28, then stores the truncated result, approxi-
mating a round-to-plus-infinity operation. The 72-bit store merely truncates the accumulator value. Multiplication and

H.6. IBM family 959

division of the accumulator by a value in storage truncate the product or quotient. The extra bits in the accumulator
fraction supply the important guard digits for subtraction.

If a sequence of operations reuses the accumulator value, the result is higher intermediate precision. Although
that is normally beneficial, we have seen several times in this book that it can lead to surprises, and even be harmful.
The General Electric and Honeywell systems are early examples of machines with arithmetic done in a precision
higher than that of stored values. That practice continues in Intel and Motorola microprocessors introduced in the
early 1980s, and remains widespread in desktop computers.

H.6 IBM family
ARITHMETIC IN THE OBJECT PROGRAM WILL GENERALLY BY PERFORMED WITH

SINGLE-PRECISION 704 FLOATING POINT NUMBERS. THESE NUMBERS PROVIDE

27 BINARY DIGITS (ABOUT 8 DECIMAL DIGITS) OF PRECISION, AND MAY HAVE

MAGNITUDES BETWEEN APPROXIMATELY 10−38 AND 1038, AND ZERO.
FIXED POINT ARITHMETIC, BUT FOR INTEGERS ONLY, IS ALSO PROVIDED.

— FORTRAN Automatic Coding System for the IBM 704 EDPM (OCTOBER 15, 1956).

IT WAS POSSIBLE TO FIND VALUES x AND y FOR IBM SYSTEM/360, SUCH THAT, FOR

SOME SMALL, POSITIVE ε, (x + ε)× (y + ε) < (x × y).
MULTIPLICATION HAD LOST ITS MONOTONICITY. SUCH A MULTIPLICATION IS

UNRELIABLE AND POTENTIALLY DANGEROUS.

— NIKLAUS WIRTH

Good Ideas, Through the Looking Glass
COMPUTER 39(1) 28–39 (2006).

During the 1950s and early 1960s, IBM’s main scientific computers were models in the 700 and 7000 series. All are
36-bit machines, with the 700 series offering only single-precision floating-point arithmetic, with a 1-bit sign, 8-bit
biased exponent-of-2, and 27-bit fraction. The 7000 series added support for double-precision arithmetic, where the
second word has the same layout as the first word, but with an exponent reduced by 27, providing a 54-bit fraction.

H.6.1 IBM 7030 Stretch

In late 1954, IBM researchers began work on Project Stretch, with the ambitious goal of building a scientific computer
to be at least 100 times faster than any existing computer on the market. IBM delivered the first model, called the
7030 Stretch, to Los Alamos Laboratory in April, 1961. Although only nine machines were built, and performance
did not quite reach the original goal, Project Stretch produced significant advances in hardware engineering that
IBM leveraged in its next machine series. The Stretch design is well-chronicled in a book [Buc62], and a half-century
retrospective [Ste11] from 2006 Turing Award winner Frances Allen, and has many innovations for its time. Here are
just a few of them:

� The magnetic-core memory system contains 64-bit words, but the address space is bit-addressable. Variable-
width fields of 1 to 64 bits can transparently cross word boundaries, albeit with a performance penalty.

� Hardware arithmetic supports binary and decimal fixed-point and integer, and binary floating-point, data.

� Some instructions specify an operand byte size, which may be any number in [1, 8].

� The floating-point format has a 12-bit signed exponent field, and a 52-bit fraction field containing a 4-bit sign-
and-flags field. The exponent field has a flag bit recording previous overflow or underflow, a 10-bit exponent,
giving an approximate range of [5.56e-308, 1.80e+308] (similar to that of the IEEE 754 64-bit binary format),
and a final sign bit. The 48 fraction bits represent roughly 14 decimal digits, and are followed by the fraction
sign bit, and three flag bits available for user-defined data tagging. The integer format also has that four-bit
field.

� The 128-bit double-length format has a 96-bit fraction, with 20 unused bits at the bottom of the second word
that are preserved in arithmetic, so they may contain user-defined data. The exponent range is unchanged
from the 64-bit format.

960 Appendix H. Historical floating-point architectures

� All arithmetic operations are done in a double-length accumulator, and there is no rounding until its value is
stored to memory. The user can choose the truncating store instruction, or the slower store rounded, which
adds one to the 49th fraction bit of the fraction magnitude before normalization and storage. That corresponds
to rounding to ±∞, a mode that does not exist in the IEEE 754 design.

� The store root instruction produces the square root of the accumulator value and stores it to memory. The
accumulator retains its original value.

� There are two kinds of zero: a true zero, with zero fraction, and an order-of-magnitude-zero (OMZ) that results
from underflow in subtraction, or from subtraction of identical nonzero values. In an OMZ, the fraction is zero,
but the exponent is nonzero. Most other architectures produce a true zero for the case of x − x.

� When the exponent flag bit is set, the value represents Infinity if the exponent sign is positive, and Infinitesimal
(ε) if the exponent sign is negative. Arithmetic with a normal number, x, and one of those exceptional values
behaves like this:

∞ ± x = ∞, x − ∞ = −∞,
x ± ε = x ε − x = −x,

∞ × x = ∞, ε × x = ε,
∞/x = ∞, ε/x = ε,
x/∞ = ε, x/ε = ∞.

Arithmetic with two exceptional values obeys these rules:

∞ + ∞ = ∞, ∞ − ∞ = ∞, ∞ × ∞ = ∞, ∞/∞ = ∞,
ε − ∞ = −∞, ε/∞ = ε, ∞ × ε = ∞, ∞/ε = ∞,
ε ± ε = ε, ∞ ± ε = ∞, ε × ε = ε, ε/ε = ∞.

Notice that under IEEE 754 rules, the second and fourth on the first line would produce a NaN.

Comparison rules are as expected:

+∞ > +x > +ε > −ε > −x > −∞,
+∞ = +∞, +ε = +ε,
−∞ = −∞, −ε = −ε.

� There is a run-time selectable noisy mode for floating-point arithmetic. When it is turned on, shifts in addition
and subtraction extend one of the operands with 1-bits, instead of with 0-bits. The intent is that a user can
run a program twice, once with each choice of the mode, and then compare the output to assess the impact
of significance loss in intermediate calculations. The noisy-mode technique can be compared with those of
significance arithmetic [AM59] and interval arithmetic [Gus98] for helping to judge the reliability of numeric
results.

� A multiply-and-add instruction computes a double-length product and sum from single-word operands. It
can be used to improve accuracy of dot products, matrix multiplication, and polynomial evaluation, but only
in the 64-bit format.

� Division by zero is suppressed, and an exception flag is set. Thus, if interrupts are turned off, x/0 evaluates as
x.

� Floating-point instructions provide for both normalized and unnormalized operation. The latter can be used
for both significance arithmetic, and with the multiply-and-add instruction and exception flags, for software
multiple-precision arithmetic.

H.6. IBM family 961

� The floating-point accumulator is also used for integer arithmetic. The Fortran manual describes integer data
encoded as unnormalized floating-point values with a fixed exponent of 38, a 38-bit value in the 48-bit fraction
field with the lower 10 bits ignored, followed by the four-bit sign-and-flags field. Thus, integers for arithmetic
have a sign-magnitude representation (see Appendix I.2.1 on page 971), with a largest value of 274 877 906 943.
However, integers used in logical operations can be any size from 1 to 64 bits, and may be either signed or
unsigned.

� Fortran LOGICAL data are stored as floating-point values with the low-order fraction digit (bit 59) set to 1 for
true, and 0 for false. The exponent, signs, and flags are then ignored.

The Stretch book has this remark on the consistency of arithmetic with exceptional values:

For example, ε − ε = ε implies that infinitesimals are equal, but ∞ − ∞ = ∞ implies that infinities
are different. This problem arises because no consistent logic applies when both operands are singular.

The two kinds of zero pose a problem too:

Since an OMZ represents a range of indeterminacy, multiplication or division by a legitimate number
simply increases or decreases the size of the range of indeterminacy appropriately. Division by an OMZ
is suppressed and, when it would occur, the zero divisor indicator is turned on. Addition of an OMZ to
either a legitimate operand or another OMZ produces either a legitimate result or an OMZ, depending
upon the relative magnitudes of the quantities involved. (However, comparison operations call equal all
OMZs whose exponents differ by less than 48.)

A zero-multiply flag is turned on whenever multiplication produces a zero fraction, allowing the programmer a choice
of whether to fixup the result to a true zero, or to an OMZ.

Arithmetic, and its storage formats, on the Stretch architecture are unusual, and complicated, compared to most
other designs produced since the early 1960s.

Here is a final historical note: in May 1971, researchers at Brigham Young University in Provo, Utah, acquired
one of the Stretch machines from government surplus, restored it, and ran it successfully as the last survivor until it
was retired in September, 1980.

H.6.2 IBM and Fortran

The first successful high-level programming language, Fortran, was developed from 1954 to 1956 on the IBM 704.
The language was intended to be relatively independent of the underlying hardware, but when a compiler was first
released in late 1956, the language contained several traces of the 704, including at least these:

� Variable names have at most six characters, because that many can fit in a 36-bit word with the 6-bit BCD
character set.

� Floating-point output uses two-digit exponents, because the supported number range is only about [10−39,
10+38]. As we note in Section 26.12.4 on page 873, that shortsighted decision about exponent width still affects
software a half-century later.

� Integers are limited to the range [−32768, 32767], because address arithmetic instructions are used for fixed-
point arithmetic.

� Statement labels are limited to the range [1, 32767], because their numeric, rather than string, values are used
by the implementation.

� Arrays are limited to three subscripts, because the smallest 704 machines have only 4096 words of memory,
and the maximum is 32,768 words.

� Built-in function names end in the letter F: ABSF(), INTF(), MODF(), and so on. Arrays are not permitted to have
names ending in F, because that special letter is how the compiler distinguishes between function calls and
array references without complex lookahead.

962 Appendix H. Historical floating-point architectures

� GO TO statements transfer control to labeled statements, just as branch, jump, and transfer instructions do in
hardware. Unfortunately, that soon produces impenetrable control flow, because any labeled statement can be
the target of a jump from somewhere else in the same routine. That mess led to Dijkstra’s famous letter, Go
To Statement Considered Harmful [Dij68, Mis10], that spawned a vigorous debate in the programming-language
community. Languages invented since that letter have better ways of managing control flow, and some even
eliminate the GO TO statement.

� The three-way branch IF (expr) n1, n2, n3 statement tests an expression for negative nonzero, zero, and
positive nonzero, transferring control to three corresponding statement labels. It is implemented with three
consecutive transfer instructions, TMI, TZE, and TPL (or TRA, for an unconditional jump).

� There are assigned and computed go-to statements for multiway branching:

ASSIGN label to v
GO TO v, (label1, label2, label3, ...)
k = expr
GO TO (label1, label2, label3, ...), k

They are implemented by an indexed branch into a table of absolute branches, providing a two-instruction
route to the desired code block.

� Statements match IBM 80-character punched cards, with a leading C for a comment, or else a 5-character label
field, a continuation column, a 66-character statement field, and an 8-character card identification field. It was
a good idea to use the latter for a card sequence number, so that a dropped deck could be put into the card
sorter and restored to its correct order.

� There are several machine-specific or compiler-specific statements:

FREQUENCY n (i, j, k, ...)
IF (SENSE LIGHT i) n1, n2

IF (SENSE SWITCH i) n1, n2

IF (ACCUMULATOR OVERFLOW) n1, n2

IF (DIVIDE CHECK) n1, n2

IF (QUOTIENT OVERFLOW) n1, n2

PAUSE n
PRINT
PUNCH
READ
READ DRUM
READ INPUT TAPE
READ TAPE
SENSE LIGHT 3
STOP n
WRITE DRUM
WRITE OUTPUT TAPE
WRITE TAPE

The FREQUENCY statement gives the compiler hints about how often statement label n is reached by branches.
READ means the most common input device, the card reader, so it has a short name. READ TAPE means text input
from tape, whereas READ INPUT TAPE means binary input.

� An EQUIVALENCE statement allows variables whose use does not overlap in time to share storage locations,
conserving scarce memory.

� Arrays are declared with a DIMENSION statement, because there are no data type declarations yet. The REAL
declaration came later, named to make it distinct from its a companion INTEGER declaration. Only after that
was DOUBLE PRECISION added. There was insufficient foresight to have named the floating-point types SINGLE
and DOUBLE. That mistake was later repeated in C with float and double.

H.6. IBM family 963

Fortran is not the only language influenced by the IBM 704. The (CAR list) and (CDR list) functions in Lisp
extract the first element of a list, and a list of the remaining elements. They are acronyms for Contents of Address
Register and Contents of Decrement Register, reflecting the fact that the 704 has instructions for processing fields of a
word divided into a 3-bit prefix, a 15-bit decrement, a 3-bit tag, and a 15-bit address. Lisp uses the prefix and tag for
data type identification.

H.6.3 IBM System/360

Until the early 1960s, computer models from most manufacturers were often unique designs, and at least a certain
amount of code rewriting was needed to move software to another model in the same vendor series. Changing
series or vendors required a complete rewrite. Each machine was strongly influenced by the technology of its time,
and early manuals are replete with the details of punched-card devices, magnetic and paper tapes, magnetic drums,
console switches and displays, the wiring of core memory and plug boards, and so on. Character encodings differed
between vendors, and sometimes even between models of the same family, discouraging exchange of data. Until
Fortran, COBOL, and Algol were designed and implemented, there was no possibility of exchange of software be-
tween unlike systems, because programs were written in symbolic assembly-language code, or worse, in numeric
machine code.

IBM changed that situation forever when it decided to undertake the design of a family of computer systems that
would guarantee upward compatibility, allowing customers to move up the IBM product line as their needs grew,
without having to make a large investment in rewriting software. The family would also be the main IBM product
line for years to come.

That family, announced in 1964, is the now-famous System/360, and it remains the longest surviving computer
architecture by far. Its model of 8-bit bytes, byte addressing, and a 32-bit word influenced many subsequent archi-
tectures, and its addressing model has grown over four decades from a 24-bit space to a 64-bit space.

Even though IBM has since added support in that architecture for IEEE 754 binary [SK99] and decimal [IBM06]
floating-point arithmetic, hexadecimal arithmetic, and all of the original CPU instructions, remain available. Its
famous Principles of Operation manuals [POP64, POP04], which define the architecture without regard to particular
implementations, are landmarks in the history of computing. Its original description [ABB64] is included in a 50th-
anniversary collection of influential papers from IBM journals [ABB00].4

The lead author of that description, Gene Amdahl, left IBM in 1970 to found a company that developed and
marketed the Amdahl 470 series of IBM-compatible mainframes. It became almost a fad in the computer industry
to do so, with competing systems from Fujitsu, Hitachi, Itel, Magnuson, Nanodata, NEC, RCA, Ryad, Siemens, and
Xerox. Wang produced systems similar to the System/360, but ran a different operating system.

The ultimate success of System/360 was not clear at the beginning, and the complexity of the project almost led
to failure. The design and management lessons learned are the subject of a classic book, The Mythical Man Month
[Bro82, Bro95], written by Fred Brooks, the second of the three authors of that first description. It should be read
along with Tony Hoare’s 1981 ACM Turing Award lecture, The Emperor’s Old Clothes [Hoa81], about a large software
project that was less fortunate.

The hexadecimal-base systems listed in Table H.1 on page 948 all use the formats first introduced in the System/
360. Data General, Denelcor, Gould, and Interdata adopted the System/360 hexadecimal floating-point architecture
for their minicomputers, to ease data and software exchange with their customers’ mainframes. Those systems all
use big-endian addressing [Coh81]: the address of a value is that of its high-order storage byte. They also use sign-
magnitude floating-point arithmetic and two’s-complement integer arithmetic (see Appendix I.2.1 on page 971 and
Appendix I.2.3 on page 972).

The Texas Instruments ASC (Advanced Scientific Computer) adopts the System/360 hexadecimal floating-point
format, but reserves the largest exponent for Infinity (nonzero fraction) and Indefinite (zero fraction), concepts bor-
rowed from the larger CDC systems. The ASC also has the concept of a dirty zero, a value with a zero fraction and
nonzero exponent. When such a value is used in an arithmetic operation, the result is an Indefinite.

The original design choice of hexadecimal floating-point arithmetic was based on a study [Swe65] that analyzed
the floating-point operands of a million addition instructions in the binary arithmetic of the 36-bit IBM 704 to find
out how often shifting, normalization, underflow, and overflow occurred. For bases larger than 2, there is no pos-
sibility of having a hidden bit to increase the precision, but a larger base reduces the frequency of both shifts and
normalization. Also, for a fixed number of exponent bits, it extends the representable range, making underflow and

4See http://www.research.ibm.com/journal/50th/.

964 Appendix H. Historical floating-point architectures

s exp fraction

bit 0 1 8 31 32-bit
0 1 8 63 64-bit

s exp high-order fraction

bit 0 1 8 63

u u low-order fraction

bit 64 65 72 127 128-bit

Figure H.5: System/360 hexadecimal floating-point data layout.
The sign bit is 1 for negative, and 0 for positive.
The stored unsigned exponent-of-16 has the same size (7 bits) in all formats. It is biased by 64, so the value is
(−1)s × (fraction)× 16exp−16.
The sign and exponent are contained entirely in the leading byte, and the fraction has 6, 14, or 28 hexadecimal digits.
The sign and exponent fields in the high-order byte of the second part, marked as u, for unspecified, are ignored.
The fraction in the second part is treated as an extension of the upper fraction.
The range of normalized nonzero values with h hexadecimal digits in the fraction is [1

16 × 16−64, (1 − 16−h)× 1663].
In C99 notation, that is [0x0.1p-256, 0x0.ff...ffp+252], or about [5.40e-79, 7.23e+75].
When the sign, exponent, and fraction are all zero, the value is called a true zero. Negative zeros (zero exponent and
fraction) are possible, and can be generated by hardware.

overflow less likely. By default, those conditions are caught at run time and repaired by software interrupt handlers
on System/360, so they are relatively costly. However, it is possible to clear a flag bit in the Program Status Word
(PSW) to cause underflows to flush silently to zero in hardware. Choosing β = 16 gave higher speed for larger
models of the System/360, and lower cost for small ones.

Unfortunately, for a base of the form β = 2K, the normalized significand has no leading zero bits when it lies in
[1/2, 1), but has K − 1 leading zero bits in the range [1/β, 1/2). That phenomenon, known as wobbling precision, is
one that we deal with many times in this book. For hexadecimal arithmetic, the worst case represents a loss of three
bits, or almost one decimal digit. The System/360 architects recognized that problem, and mentioned it as part of the
motivation for offering a 64-bit floating-point format, when, at the time, most competing machines provided only
36-bit or 48-bit arithmetic.

Figure H.5 shows the System/360 floating-point layout.
Although the original design published in 1964 specified only 32-bit and 64-bit floating-point arithmetic, IBM

added a 128-bit extension in 1967. All three formats share the same exponent range, which later numerical experience
and analysis showed to be an unwise choice: increased precision should always have increased exponent range
[Tur87, JP89].

Operands of any floating-point instruction may be normalized or unnormalized. Addition, subtraction, multipli-
cation, and division produce normalized results, but there are also separate instructions for unnormalized addition
and subtraction.

Addition and subtraction use a single additional hexadecimal guard digit, but on normalization, that extra digit
is truncated without further effect on the remaining digits. Multiplication and division truncate their results. Thus,
there is no provision for rounding other than the default round-toward-zero. Two decades later, the High Accuracy
Arithmetic option for System/370 added support for IEEE-754-like rounding mode control in hexadecimal arithmetic
[IBM84].

The 1964 edition of IBM’s Principles of Operation manual [POP64] specified one hexadecimal guard digit for 32-
bit arithmetic, but none for the 64-bit case. Regrettably, System/360 models produced from 1964 to 1967 lacked a
guard digit, leading to the kinds of anomalies discussed earlier for the CDC and Cray systems. Under pressure from
customers, a hexadecimal guard digit was added. The 1967 edition [POP67] noted that both 32-bit and 64-bit formats

H.7. Lawrence Livermore S-1 Mark IIA 965

may have one hexadecimal guard digit. More recent editions of the architecture manual [POP75, POP04] specify a
guard digit for 32-bit, 64-bit, and 128-bit subtraction and multiplication.

Here is an example of the misbehavior of arithmetic when there is no guard digit, from a small C program run
on the Interdata 8/32, with annotation appended to mark significant output:

cc guard.c && ./a.out
t = 16**(-5) = 9.5367432e-07 = 0x3C100000
x = 16**(-6) = 5.9604645e-08 = 0x3B100000
u = 1 + 16**(-5) = 1.0000010e+00 = 0x41100001
v = 1 + 16**(-6) * 2 = 1.0000000e+00 = 0x41100000
w = 1 + 16**(-6) = 1.0000000e+00 = 0x41100000
y = 1 - 16**(-6) = 1.0000000e+00 = 0x41100000 <--- WRONG
z = 1 - (1 - 16**(-6)) = 0.0000000e+00 = 0x00000000 <--- WRONG

Patching y to expected value (number just below 1.0)
y = 1 - 16**(-6) = 9.9999990e-01 = 0x40FFFFFF <--- OKAY!
z = 1 - (1 - 16**(-6)) = 9.5367432e-07 = 0x3C100000 <--- WRONG AGAIN!

The computation of 1 − 16−6 fails to produce the nearest representable number below 1.0, because of the missing
guard digit. That number is then constructed manually by assignment of an integer value to the storage location of
y, but the subtraction from y again fails to recover the expected value of 16−6, getting 16−5 instead, a result that is
wrong by a factor of β.

H.7 Lawrence Livermore S-1 Mark IIA

The last computer design that we consider in this appendix is the Lawrence Livermore National Laboratory S-1
Mark IIA, developed from about 1978 to 1984. The S-1 is a 36-bit vector machine, capable of emulating both the DEC
PDP-10 and the Univac 1100, in addition to having its own instruction set. The design goal was about ten times
the performance of the Cray 1, with an address space enlarged to 2GB. Although most commercial computers are
designed privately by a small team, the S-1 is the result of extensive public scrutiny and comment.

The floating-point architecture is unusual, with ideas and features inherited from its 36-bit DEC and Univac
ancestors, plus the large CDC and Cray systems, and also from IEEE 754 arithmetic, which was being designed
about the same time. Here is a summary of its extraordinarily rich arithmetic:

� 18-bit, 36-bit, and 72-bit integers;

� normalized base-2 floating-point numbers;

� one’s complement biased exponent;

� two’s complement significand with a hidden bit in each size;

� 18-bit halfword format with 1-bit sign, 5-bit excess-16 exponent, and 13-bit significand (intended for signal-
processing applications);

� 36-bit fullword format with 1-bit sign, 9-bit excess-256 exponent, and 27-bit significand;

� 72-bit doubleword format with 1-bit sign, 15-bit excess-16384 exponent, and 57-bit significand;

� Infinity (called OVF, for overflow);

� underflow produces the smallest nonzero magnitude, called UNF, instead of zero;

� negative zero is called NaN, and is an illegal operand in all floating-point instructions;

� rounding is controlled by a 5-bit field: of the 32 possible patterns, several are reserved or have no effect, but at
least seven modes are possible, including to −∞, toward zero, to +∞, away from zero, nearest, nearest with ties to
+∞, and PDP-10-style;

966 Appendix H. Historical floating-point architectures

� exceptions set sticky flags to record underflow, overflow, and NaN, and traps may be enabled or disabled for
any of them;

� hardware instructions for the four primary operations in complex arithmetic, plus complex conjugate and
complex magnitude, for both integer and floating-point operands;

� hardware instructions for square root, logarithm, exponential, sine, cosine, sine and cosine pair, arc tangent,
and 2-D and 3-D Euclidean distance;

� hardware instructions for dot product, convolution, recursive filter, in-place matrix transpose, matrix multiply,
normal and inverse Fast Fourier Transform (FFT), bit reversal, and quicksort partitioning.

The S-1 also has byte-field instructions for all sizes from 1 to 36 bits, and uses 9-bit characters. The PDP-10 has similar
instructions, but normally packs five 7-bit characters with a final unused bit in a word, or else four 8-bit characters
followed by four unused bits. The Univac 1100 series stores six 6-bit characters in a word, or with its quarterword
instructions, four 9-bit characters.

H.8 Unusual floating-point systems

We discussed the arithmetic of some of the most important historical computer architectures in the preceding sections
to give the reader an understanding of why they are significant, why their floating-point arithmetic designs all have
limitations, and why the industry was led to a collaborative effort in the late 1970s to define the IEEE 754 Standard for
Binary Floating-Point Arithmetic [IEEE85a], and later, its extension for radix-independent arithmetic [ANS87]. After
a decade-long effort, it was further revised in 2008 to incorporate both binary and decimal arithmetic, and a fused
multiply-add operation [IEEE08, ISO11].

Every computer, operating system, and computer user today enjoys, and suffers from, the legacy of those systems,
so we also described some of their contributions to the industry in the interests of preserving a bit of industrial history
that has radically changed human society.

Researchers have published many alternative floating-point proposals to try to overcome the problems of preci-
sion, range, significance, and exceptional conditions. The volume Computer Arithmetic II [Swa90b, Chapter 7] collects
a half dozen important papers on that subject, and more can be found in the bibliography of floating-point arith-
metic.5 Here are some of the ideas that have been proposed:

� representation with unusual number bases, such as i =
√−1 (imaginary), −2 (negabinary), and 3 (ternary);

� redundant number representations, such as {−1, 0,+1};

� exponential and logarithmic representation, making multiply and divide easy, addition and subtraction hard,
and greatly extending the number range to make underflow and overflow unlikely;

� interval arithmetic, which keeps strict lower and upper bounds on each operation, to provide error bars on
final results;

� significance arithmetic, which uses unnormalized arithmetic to keep a record of trustworthy digits [AM59] (the
Mathematica symbolic-algebra system does that with its variable-precision binary floating-point arithmetic
[Jac92]);

� rational number representation, with arbitrary denominators, instead of just powers of the floating-point base;

� representation with extended, but fixed, precision (the C language tried to do that by offering only a double
data type);

� representation with extended, and variable, precision (symbolic-algebra systems and a few scripting languages
do that);

� representation with a movable boundary between exponent and significand, sacrificing precision only when a
larger range is needed (sometimes called tapered arithmetic);

5See http://www.math.utah.edu/pub/tex/bib/index-table-f.html#fparith.

H.9. Historical retrospective 967

� residue number systems that represent values as sums of remainders with respect to division by prime num-
bers, eliminating carry from addition, making addition and multiplication easy, but division and comparison
hard.

However, apart from a strong research interest in residue number systems for applications to signal processing,
almost none of them has attracted sufficient commercial interest for vendors to make the large investments needed
to implement them in hardware, software, and programming languages, and teach users how to employ them ef-
fectively. Also, several of them, by introducing variable numbers of digits, bring back the problem of wobbling
precision, making numerical analysis and software design harder. The view of this author, based on decades of ex-
perience with many languages and many different computer systems, is that only two features in that list have any
serious chance of adoption: longer precision, and interval arithmetic.

Longer precision is relatively easy, because it needs only a handful of new arithmetic instructions, and suitable
library support. The mathcw library is designed from the start to support octuple-precision arithmetic, or about
70 decimal digits. We have shown repeatedly in this book that many computational problems can be solved much
more easily if even a few more digits are available internally. The father of IEEE 754 arithmetic, William Kahan, has
observed in his writings that it is unreasonable to expect that ordinary computer users will use clever numerical
analysis to arrive at reliable solutions of their numerical problems. High precision, and particularly, the ability to
easily rerun a computation in even higher precision, make many of the numerical difficulties disappear.

Support for interval arithmetic is one of the important reasons that IEEE 754 has extra rounding modes, although
it has taken a long time to get interval arithmetic available outside its small research community. In November 2005,
Sun Microsystems released free compilers that provide interval arithmetic for Fortran 90 and C++ on GNU/LINUX
and SOLARIS operating systems on AMD64, IA-32, and SPARC hardware. IBM tried to do that on its mainframes
with the ACRITH package [Lan87], but it is an optional, and extra cost, feature, and not well integrated into common
programming languages, making programmers reluctant to adopt it. Similar problems exist for the High Accuracy
Arithmetic option. Merely providing accurate arithmetic for parts of a computation may not be enough: the article
Anomalies in the IBM ACRITH Package [KL85] gives numerous examples where continued access to the high-precision
accumulator is needed, but ACRITH hides it inside black-box routines.

The subject of interval arithmetic is taught in only a few institutions, but it certainly deserves more attention. Re-
searchers in engineering, the hard sciences, and medicine are expected to attach error bars to their reported physical
data, to allow the reliability of that data to be assessed by others. That has practically never been the case with nu-
merical results from computers, but it should be. One prominent numerical analyst has even called for use of interval,
rather than point, arithmetic to be mandatory for certain government projects [Gus98]. Sadly, it may take govern-
ment force and journal editorial requirements, rather than self-interest, for computer manufacturers and computer
users to make interval arithmetic routine. Because rounding occurs only after an extended result has been generated,
it should be possible to create interval instructions in hardware that produce two results simultaneously, instead of
one, with little performance penalty over ordinary arithmetic. The IEEE 1788 subcommittee was formed in late 2008
to begin work on a proposed standard for interval arithmetic, but the task has proven to be difficult. They produced
an official document in 2015 [IEE15], but further standardization work, and research in interval arithmetic, remain
active.

H.9 Historical retrospective

The references cited in this appendix provide much additional material for readers who are interested in a better
understanding of computer history. From our survey of important historical systems, we conclude that the key
features to be desired of any computer-arithmetic system are at least these:

� The design must adhere to as many mathematical properties of arithmetic (of unlimited range and precision)
as possible, because it is then more easily analyzed, and importantly for humans, more predictable.

� Significantly more precision and range are required than most people think, and designers of floating-point
systems should not aim to support just the needs of the average user, or their currently biggest customer.

� Although many computer vendors and models have had short market lives, the IBM System/360 design
reached the half-century mark after this book was largely completed. Architects are therefore advised to design
for the long term, and to allow extensibility for future needs.

968 Appendix H. Historical floating-point architectures

� Programming languages need to make access to higher precision easy, and preferably, without source-code
changes. A few compilers provide an option, sometimes called -autodbl, that requests that floating-point
constants and functions be automatically promoted to the next higher precision.

� Guard digits and correct rounding matter. The default rounding mode should always be the most unbiased,
as is the case with round to nearest with ties to even in IEEE 754 arithmetic. However, other modes are required
as well, and they must be standardly and universally available in all programming languages and on all plat-
forms, run-time selectable, and efficient to switch among.

� The number base matters. For several reasons, use of decimal floating-point is likely to increase sharply, and
may ultimately drive out binary and hexadecimal arithmetic. For more on that subject, see Appendix D on
page 927.

� Boundary properties and undefined operations matter. Underflow and overflow need careful handling, and
their incidence can be decreased by extended range and precision. IEEE 754 NaNs and Infinity seem to be a
reasonable compromise in dealing with those boundaries, and also with mathematically undefined operations,
like 0/0 and ∞ − ∞.

The Rexx [Cow85, Cow90, REXX96] and NetRexx [Cow97, Cow00] scripting languages offer decimal arithmetic
with up to 109 decimal digits, and exponents-of-10 with as many as 9 digits. That range is so large that those
languages treat underflow and overflow as fatal errors. That is reasonable for most users, but some advanced
users, and the designers of mathematical libraries for those languages, need to be cautious near those limits.

� Fast implementations of the fused multiply-add operation and efficient and exact dot products and sums can
contribute significantly to the design of high-quality, reliable, and robust numerical software.

The marketing of scientific computers seems to be driven largely by instruction speed (megaflops, gigaflops,
teraflops, petaflops, and perhaps even exaflops), and processor counts. Regrettably, too many customers appear to
want to get a possibly incorrect answer fast, rather than to get a correct answer more slowly.

I Integer arithmetic

FOR MOST PROCESSORS, INTEGER ARITHMETIC IS FASTER THAN

FLOATING-POINT ARITHMETIC. THIS CAN BE REVERSED IN

SPECIAL CASES SUCH AS DIGITAL SIGNAL PROCESSORS.

— TUTORIAL AT osdata.com.

FLIGHT SIMULATORS ARE PARTICULARLY VULNERABLE TO

ARITHMETIC PROBLEMS. THE DYNAMIC RANGE OF THE

MANY VARIABLES MAKES INTEGER ARITHMETIC INAPPROPRIATE,
YET THE TIME COSTS OF FLOATING-POINT CALCULATIONS

MAKES THEM PROHIBITIVE.

— TUTORIAL AT erasmatazz.com.

The binary number system was extensively studied by Gottfried Leibniz who published the book Explication de
l’Arithmétique Binaire (Explanation of Binary Arithmetic) in 1703, although there is evidence of binary arithmetic
from India about 800 BCE. Leibniz may have been the first to use the binary digits 0 and 1.

At the hardware level, computers handle integers represented as strings of binary digits, called bits.1 The bit
string of architecture-dependent standard size is called the computer word. By the 1990s, almost all laptop, desktop,
and larger computers used processors with a word size of 32 bits or 64 bits. Historically, however, many other
word sizes have been used, as illustrated in Table I.1 on the next page. The wide variety of sizes is surprising in
comparison to modern systems.

Some architectures also support integer arithmetic on small submultiples or multiples of the word size, called
quarterwords, halfwords, doublewords or longwords, and quadwords.

Two particular string sizes have their own special names: a 4-bit nybble (sometimes spelled nibble), and an 8-bit
byte2 (called an octet in some countries). A few historical machines have variable byte sizes. On the DEC PDP-10, a
byte can be from 1 to 36 bits, and the most common byte size is 7, allowing five ASCII characters in a word.

The 60-bit CDC and 64-bit Cray systems are primarily floating-point machines. On the CDC systems, integer
multiplication and division are handled by converting to floating-point values, reducing the effective word size to
48 bits, even though 60-bit integer values can be added and subtracted. There are also 18-bit integers, but they are
normally used for memory addressing. The early Cray systems support both 24-bit and 64-bit integers; the Cray 2
extends the smaller size to 32 bits, reflecting its much larger address space.

Although older architectures address memory by words, the IBM System/360 family, introduced in 1964, ad-
dresses memory by 8-bit bytes, and most architectures designed since the late 1970s continue that practice. The IBM
7030 Stretch, planned to be the first supercomputer, is unusual in using bit addressing, and allowing integer word
sizes from 1 to 48 (see Section H.6.1 on page 959). The Burroughs B1700 also uses bit addressing, but its integers are
always 24 bits.

1The convenient contraction bit was invented by famed Bell Labs scientist John W. Tukey about 1946 or 1947, and first used in a published
paper in 1948 by his influential colleague, Claude E. Shannon [Sha48a, Sha48b]. It fortunately has replaced the alternatives bigit and binit.

In 1965, IBM research scientist James W. Cooley and Tukey discovered the Fast Fourier Transform (FFT) [CT65] which reduced an important
O(n2) computation to O(n log n), revolutionizing many areas of engineering and science. It was later found that Gauss had discovered the FFT
around 1805, but wrote about it only in an article in Latin published posthumously in 1866. The FFT was rediscovered by Runge in 1906, and
again by Danielson and Lanczos in the field of crystallography in 1942 papers [DL42a, DL42b] that went unnoticed because World War II had
most scientists busy elsewhere. Its computational significance only became evident when computers made large values of n possible, and Cooley
and Tukey justly deserve the credit. The FFT has been ranked as one of the top ten algorithms of the Twentieth Century [Roc00].

Tukey also introduced the word software to computing in a 1959 article [Tuk58].
Shannon is regarded as the father of information theory (see earlier citations), and also made important contributions to computer science,

cryptography, and mathematics [Sha45, GBC+02]. The BibNet Project archives include bibliographies of his works, and those of Tukey.
2The word byte is coined from bite, but respelled to avoid confusion with bit. The word may have first appeared in print in a 1959 article by IBM

researchers [BBB59]. It seems to be due to Werner Buchholz in an IBM memo of July 1956: see Timeline of the IBM Stretch/Harvest era (1956–1961),
http://archive.computerhistory.org/resources/text/IBM/Stretch/102636400.txt.

© Springer International Publishing AG 2017
N.H.F. Beebe, The Mathematical-Function Computation
Handbook, DOI 10.1007/978-3-319-64110-2

969

970 Appendix I. Integer arithmetic

Table I.1: Integer word sizes of some historical and current computers. The model listing is representative, but
not exhaustive. The ABC, operational in 1939, is credited with being the world’s first operational electronic digital
computer. The Z1, from 1936, predates the ABC, and had floating-point arithmetic, but is an electromechanical
device. The IBM 704 is the first production computer with floating-point arithmetic (1955). The BRLESC (1962) is
unusual in that it provides fixed-point binary arithmetic with 4 integer bits and 60 fractional bits; the remaining bits
are used for tags, sign, and parity. The Intel 4004 is the first commercially available microprocessor (1971).

Bits Model
1 IBM 7030 Stretch
4 Intel 4004
8 Intel 8008
9 Calcomp 900

12 CDC 160A and 6000 PPU, DEC PDP-5 and PDP-8, DSI 1000, Honeywell 1400, Univac 1
13 CDC 160G
16 Data General Nova and Eclipse, DEC PDP-11, IBM 1130 and NORC, Intel 8086, Norsk Data

NORD-1, Zuse Z2
18 Cambridge EDSAC, DEC PDP-1, PDP-4, PDP-9, and PDP-15, Univac 418, Zuse Z25
20 Elliott 502, Ferranti Mark 1, General Electric GE 235
21 Advanced Scientific ASI 2100, CITAC 210B
22 Raytheon 250, Zuse Z1 and Z3
24 Burroughs B1700, CDC 924 and 3200, Datasaab D21, DEC PDP-2, Ferranti–Packard FP-

6000, General Electric GE 435, Harris /6 and /7, Harvard University Mark I, Raytheon 520,
Scientific Data SDS 940, SEL Systems 840A, Zuse Z26

25 Digital Electronics DIGIAC 3800, Univac III
29 CDC G-15
30 Electrologica EL X1 through EL X8, Univac 490
31 Librascope LGP-30
32 CDC G-20 and LGP-21, DEC VAX, Gould 9080, Hewlett–Packard PA-RISC 1.0, IBM Sys-

tem/360, POWER, and PowerPC, Intel iAPX 432 and IA-32, Interdata 7/32 and 8/32, LMI
Lambda, MIPS (all Rn000 CPU models), Motorola 68000 and 88000, National Semiconduc-
tor 32016, Norsk Data NORD-5, SEL Systems System 85/86, Sun Microsystems SPARC,
Xerox Sigma

33 El-tronics ALWAC III-E, Matsushita MADIC IIA, Mitsubishi Melcom 1101F, STC ZEBRA
35 Lyons LEO I
36 DEC PDP-3, PDP-6, and PDP-10, General Electric GE 635, Honeywell 600 and 6000, IBM

704, 7040, and 7090, Matsushita MADIC III, Symbolics 3600, Univac 1100
38 Zuse Z22
39 Elliott 503 and 803
40 Autometrics RECOMP II, Hitachi HITAC 3030, Los Alamos Scientific Laboratories MA-

NIAC, Princeton University IAS, RAND JOHNNIAC, Regnecentralen DASK and GIER,
University of Illinois Illiac I and ORDVAC, Zuse Z23

42 English Electric LEO-Marconi Leo 3, OKI Electric OKITAC 5090H
44 AEI 1010, University of Pennsylvania EDVAC
48 Burroughs B5000, Bull Gamma 60, CDC 1604 and 3600, English Electric KDF9, IBM 7030

Stretch, Hitachi HIPAC 103, National Physical Laboratory Pilot ACE (Automated Comput-
ing Engine), Telefunken TR440, University of Manchester Atlas

50 ABC (Atanasoff-Berry Computer)
52 University of Illinois Illiac II
54 Rice Institute R1
56 Philco 2000/213, RCA 601
60 CDC 6000 and 7000
64 Cray 1, 2, X-MP, and Y-MP, DEC Alpha, ELXSI 6400, Hewlett–Packard PA-RISC 2.0, IBM

7030 Stretch, Intel Itanium-1 and Itanium-2
72 Ballistics Research Laboratory BRLESC

I.1. Memory addressing and integers 971

Table I.2: Sign-magnitude 4-bit integers.

Bits Value Bits Value
0000 0 1000 −0
0001 1 1001 −1
0010 2 1010 −2
0011 3 1011 −3
0100 4 1100 −4
0101 5 1101 −5
0110 6 1110 −6
0111 7 1111 −7

A p-bit computer word is capable of representing 2p different bit patterns. Thus, with p = 3, we have these
possibilities: 0002, 0012, 0102, 0112, 1002, 1012, 1102, and 1112. They represent the unsigned integral values 0 through
7; for example, 510 = 1012 = 1 × 22 + 0 × 21 + 1 × 20.

I.1 Memory addressing and integers
THERE IS ONLY ONE MISTAKE THAT CAN BE MADE IN COMPUTER DESIGN

THAT IS DIFFICULT TO RECOVER FROM — NOT HAVING ENOUGH ADDRESS

BITS FOR MEMORY ADDRESSING AND MEMORY MANAGEMENT. THE PDP-11
FOLLOWED THE UNBROKEN TRADITION OF NEARLY EVERY COMPUTER.

— C. G. BELL AND W. D. STRECKER (1976).

A PARTIAL LIST OF SUCCESSFUL MACHINES THAT EVENTUALLY STARVED

TO DEATH FOR LACK OF ADDRESS BITS INCLUDES THE PDP-8, PDP-10,
PDP-11, INTEL 8080, INTEL 8086, INTEL 80186, INTEL 80286,

AMI 6502, ZILOG Z80, CRAY-1, AND CRAY X-MP.

— DAVID A. PATTERSON AND JOHN L. HENNESSY (1990).

Memory addresses are almost always treated as unsigned integers, but they are sometimes limited to fewer bits
than the integer word size, for reasons of hardware economy. Arithmetic on addresses is often restricted to just
addition and subtraction. Some machines even have separate register sets for address arithmetic.

I.2 Representations of signed integers

For most applications, negative integers are also needed, and there are four important conventions for the represen-
tation of negative numbers in binary arithmetic. Those encodings are described in the following subsections, and in
each of them, positive numbers are represented identically, and the rightmost bit is the least significant.

I.2.1 Sign-magnitude representation

As the name suggests, sign-magnitude representation uses a sign bit together with a magnitude, that is, an unsigned
value. Typically, the leftmost bit, s, is the sign bit, 0 for positive, and 1 for negative, so the sign can be written (−1)s.
Table I.2 shows how that works in a 4-bit system.

There are two representations of zero: −0 and +0. The computer hardware must be designed to treat them as
equal, which complicates the implementation.

The number range of p-bit sign-magnitude arithmetic is −(2p−1 − 1) . . . −0+0 . . . (2p−1 − 1). The negative value
−k in sign-magnitude form has the same bit pattern as the unsigned value 2p−1 + k.

Sign-magnitude arithmetic has never been widely adopted for binary arithmetic, but it is used in the IBM 704
and 7090 mainframes introduced in 1955 and 1958, respectively, as well as in the IBM 7030 Stretch from 1961. It is
also used in most systems with decimal arithmetic.

972 Appendix I. Integer arithmetic

Table I.3: One’s-complement 4-bit integers.

Bits Value Bits Value
0000 0 1000 −7
0001 1 1001 −6
0010 2 1010 −5
0011 3 1011 −4
0100 4 1100 −3
0101 5 1101 −2
0110 6 1110 −1
0111 7 1111 −0

I.2.2 One’s-complement representation

In one’s-complement arithmetic, negative integers are represented by inverting (complementing) all bits of the corre-
sponding positive number. Table I.3 illustrates that system for 4-bit words.

As in the sign-magnitude representation, there are two zeros, +0 and −0, and the number range is also the same
in the two systems: −(2p−1 − 1) . . .−0 +0 . . . (2p−1 − 1).

The bit pattern for a one’s-complement negative number −k is the same as that for the unsigned value 2p − 1 − k.
Subtraction is easy in that system: simply add the one’s-complement of the second operand to the first operand,

as in this example in our 4-bit system:

2 − 6 = 2 + (−6)
= 00102 + 10012

= 10112

= −4.

One’s-complement arithmetic is uncommon today, but it is used on CDC and Univac mainframes built in the
1960s and 1970s. When UNIX, and C, were ported to the 36-bit Univac 1100 series about 1984, the researchers
remarked [BHK+84, page 1778]:

In actual practice, problems caused by one’s complement arithmetic are rare. Some of the nastiest ones
are in the C compiler itself!

As a historical note, the Pascaline, an early mechanical calculator developed by Blaise Pascal about 1645, could
only do addition, but by expressing the second operand in nine’s complement, subtraction is also possible, albeit labo-
rious, because the complement operation (subtracting from 999 999 with no need to borrow) must be done without
the aid of the machine:

987 654 − 123 456 = 987 654 + (999 999 − 123 456)− 999 999
= (987 654 + 876 543)− 999 999
= 1 864 197 − 999 999
= 1 864 197 − (1 000 000 − 1)
= (1 864 197 − 1 000 000) + 1
= 864 197 + 1
= 864 198.

Notice that the procedure can be shortened by dropping the leading (overflow) digit 1 in the third step, adding it
back at the low end, and omitting the complement of subtracting 999 999.

I.2.3 Two’s-complement representation

Most modern computer architectures use two’s-complement representation, because certain of its properties simplify
the hardware implementation of arithmetic. It is similar to one’s-complement, except that after inverting all of the

I.2. Representations of signed integers 973

Table I.4: Two’s-complement 4-bit integers.

Bits Value Bits Value
0000 0 1000 −8
0001 1 1001 −7
0010 2 1010 −6
0011 3 1011 −5
0100 4 1100 −4
0101 5 1101 −3
0110 6 1110 −2
0111 7 1111 −1

bits, you then must add one to the result. Overflow is only possible in the addition when the original value is zero,
and must be ignored.

Although it would appear from our description that negation requires an addition operation, that is not so.
Negation can be accomplished by a fast circuit that implements this simple rule:

Starting at the rightmost bit, copy bits up to and including the first 1-bit, then invert the remaining bits.

Table I.4 shows the two’s-complement integers in a 4-bit system.
From the bit patterns for negative numbers, the bit pattern for −k is the same as the unsigned result 2p − k.
As in the one’s-complement system, subtraction can be done by adding the (two’s-) complement of the second

operand:

2 − 6 = 2 + (−6)
= 00102 + 10102

= 11002

= −4.

The low-order bit is the parity of the number: the number is even if that bit is 0, and otherwise, it is odd. That
property is also enjoyed by sign-magnitude arithmetic, but not by one’s-complement arithmetic.

The important differences between two’s-complement arithmetic and the other two systems are that (a) there is
only one representation of zero, and (b) there is one more negative number than positive. That is, the number range
is −2p−1 . . .−1 0 +1 . . . (2p−1 − 1).

For high-level language programming, point (a) is unimportant, but point (b) matters. Taking the absolute value
of the most negative number in two’s-complement arithmetic generates an integer overflow condition, because the
result requires p + 1 bits.

To see what happens when we negate −8 (= 10002) in 4-bit two’s-complement arithmetic, invert its bits to get
01112, then add 1 to get 10002. That is the same as −8 again, instead of +8. That is a general result for any number
of bits in two’s-complement arithmetic: −(−2p−1) overflows to −2p−1.

The following simple Fortran program demonstrates that negation of the most negative number in 32-bit two’s-
complement arithmetic produces that number back again, rather than a positive number:

N = -2**30 - 2**30
PRINT *, (N + 1), -(N + 1)
PRINT *, N, -N
END

The number N is the most-negative integer in the two’s-complement system, so −(N + 1) should be the largest
positive integer. The program’s output on a Sun Microsystems workstation is

-2147483647 2147483647
-2147483648 -2147483648

and the nonsense in the last number is a consequence of the overflow.

974 Appendix I. Integer arithmetic

Table I.5: Excess-n 4-bit integers. Here, the bias is 24−1 − 1 = 7.

Bits Value Bits Value
0000 −7 1000 1
0001 −6 1001 2
0010 −5 1010 3
0011 −4 1011 4
0100 −3 1100 5
0101 −2 1101 6
0110 −1 1110 7
0111 0 1111 8

When digit strings are converted to integer values, the software should always accumulate a negative result, and
then invert the sign if the number should be positive. That way, the most-negative integer that is representable
in two’s-complement arithmetic can be input correctly. In addition, the code works properly for the signed zeros
and outer limits of one’s-complement and sign-magnitude systems. Of course, overflow in the string conversion is
still possible, and must be suitably handled, such as by setting a status flag and clamping the result to the nearest
representable number.

I.2.4 Excess-n representation

If a p-bit string represents an unsigned binary integer, then implicit subtraction of a constant bias allows positive
and negative numbers. That is called excess-n representation. Choosing the bias to be n = 2p−1 − 1 produces an
optimum split, as illustrated in Table I.5. With that choice of n, there is only a single zero, but there is one more
positive number than negative numbers. As with the two’s-complement system, that means that there is a value at
one end of the number range that produces itself when negated.

The excess-n representation is commonly used for the exponent field in floating-point encodings, but is rarely
seen elsewhere. The reason for using a biased exponent is that integer comparison instructions can then be used for
ordering of floating-point values, as long as the values are not IEEE 754 NaNs.

I.2.5 Ranges of integers

The largest integer that can be represented in most programming languages is limited by the host word size. On
many machines, 32-bit integers are often the longest available. The DEC VAX, some supercomputers, and RISC
architectures of the 1990s, support 64-bit integers, although computer programming languages may require use of
additional integer data types to access them.

Table I.6 on the facing page shows the largest signed and unsigned integer values for typical computer word
sizes. In sign-magnitude and one’s-complement systems, the corresponding most-negative values are the negatives
of the largest signed numbers. In two’s-complement systems, they are the negatives of one more than those numbers.
It is a good idea to commit to memory approximate values for p = 8, 16, and 32 (the shaded rows in the table), so
that when you program an application that needs large integers, you can quickly determine whether your computer
word size is large enough for the task.

As a small programming note, observe that you cannot compute the largest 32-bit signed integer in Fortran by
the expression 2**31 - 1, because the term 2**31 overflows. Instead, you need to write it as 2**30 + (2**30 - 1),
where the parentheses are essential to avoid overflow.

Signed integers in 32-bit words are inadequate for many purposes. They are insufficient to represent

� the number of people on Earth;

� the U.S. national debt;

� the annual revenues of many large corporations;

� the number of bytes in the disk systems of many computers;

I.3. Parity testing 975

Table I.6: Largest integers in various word sizes.

Word size Largest signed integer Largest unsigned integer
4 7 15
8 127 255

12 2 047 4 095
16 32 767 65 535
18 131 071 262 143
24 8 388 607 16 777 215
32 2 147 483 647 4 294 967 295
36 34 359 738 367 68 719 476 735
40 549 755 813 887 1 099 511 627 775
48 140 737 488 355 327 281 474 976 710 655
60 576 460 752 303 423 487 1 152 921 504 606 846 975
64 9 223 372 036 854 775 807 18 446 744 073 709 551 615

� the estimated age (in years) of the universe;

� the number of microseconds in a day, and the number of seconds in a century, both important for time keeping
on computers.

Integers of 64 bits, and 64-bit addressing, are expected to be adequate for a long time. For example, if you could
afford to buy 264 bytes of memory, and your computer could address it all, then if you started to write to that memory
at the substantial rate of 100 MB/sec (100 million bytes per second), it would take about 5850 years to fill it just once.
Equivalently, a computer incrementing an initially zero counter every nanosecond would take 585 years to reach the
largest representable 64-bit number.

I.3 Parity testing

In sign-magnitude and two’s-complement systems, an integer is even if the low-order bit is zero, and otherwise, is
odd. The C-language family programming idiom n & 1 is a common way to test that bit: the expression is 0 for even,
and 1 for odd.

However, in one’s-complement arithmetic, that test is only correct for nonnegative integers; the result must be
complemented for negative n.

For the bias chosen in Table I.5 on the preceding page for excess-n arithmetic, the expression is 1 for even, and 0
for odd.

I.4 Sign testing

Even though we do not have an explicit sign bit in one’s-complement and two’s-complement forms, we can always
determine the sign of an integer in those systems by examining the leftmost bit. That bit is 1 if the number is negative,
and 0 if the number is positive, just as it is for the sign-magnitude system. Low-level assembly-code programs, and
the hardware itself, make use of that fact, but in high-level languages, comparisons of entire p-bit words against zero
are normally used instead for sign tests.

Full-word comparisons may not be sufficient when there are two zeros, as in one’s-complement and sign-mag-
nitude arithmetic, because −0 and +0 compare equal: the sign bit must be examined to distinguish between them.
A similar situation exists in IEEE 754 floating-point arithmetic, where the copysign() and signbit() functions are
essential library primitives.

I.5 Arithmetic exceptions

Most computer systems generate an interrupt for a division by zero in integer arithmetic, and often, unless system-
dependent corrective action is taken, the program is terminated.

976 Appendix I. Integer arithmetic

However, programmers must be aware that integer overflow, that is, the generation of integer values that take
more bits to represent than the host word can hold, usually goes undetected, and the result may be complete nonsense.
Here is a small example in the Fortran language:

N = 65535
PRINT *, ’N = ’, N
PRINT *, ’N*N = ’, N*N

N = 65536
PRINT *, ’N = ’, N
PRINT *, ’N*N = ’, N*N

N = 65537
PRINT *, ’N = ’, N
PRINT *, ’N*N = ’, N*N

END

The value 65 53610 = 216 = 1 0000 0000 0000 00002, so its square, 232, requires 34 bits to represent (33 for the mag-
nitude, and 1 for the sign). Thus, computing N*N causes an overflow on systems with 32-bit integer arithmetic.
However, when that program is run on DECstation (MIPS), DEC 3000/400 (Alpha), IBM RS/6000 (POWER), IBM
3090, Silicon Graphics Indy (MIPS R4000), Silicon Graphics Indigo-2 Extreme (MIPS R4400), Stardent 1520 (MIPS),
Sun Microsystems 3 (Motorola 68020), Sun Microsystems 386 (Intel 80386), and Sun Microsystems 4 (SPARC) sys-
tems, the program runs without error and prints these peculiar results:

N = 65535
N*N = -131071
N = 65536
N*N = 0
N = 65537
N*N = 131073

What has happened here? Squaring N produces these exact 32- and 33-bit results:

65 535 × 65 535 = 4 294 836 225 = 0 1111 1111 1111 1110 0000 0000 0000 00012,

65 536 × 65 536 = 4 294 967 296 = 1 0000 0000 0000 0000 0000 0000 0000 00002,

65 537 × 65 537 = 4 295 098 369 = 1 0000 0000 0000 0010 0000 0000 0000 00012.

The arithmetic hardware then truncates the results to 32 bits, giving the values −131 071 (negative because of overflow
into the sign bit), 0, and 131 073 = 10 0000 0000 0000 00012.

Interestingly, all but one of those systems forced run-time program termination for the overflow condition in a
separate program for the computation of N/0, giving messages like those shown in Table I.7 on the facing page.
However, the Stardent 1520 produced a nonsensical value of −1 and did not terminate prematurely. Repeating that
test on all platforms currently available to this author shows that almost all processors terminate the computation,
except for the IBM PowerPC, for which N/0 evaluates to 0.

For programs that simply use integers as indexes into arrays of modest size, integer overflow is rarely of concern.
However, applications that involve random-number generation, and hash-function computation, can require the
formation of large products where overflow can happen.

A decade-old integer overflow
bug in the Java binarySearch() function was fixed3 in 2004 by replacing the index-averaging calculation

int middle = (low + high) >> 1;

by the unsigned shift

int middle = (low + high) >>> 1;

3See http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=5045582.

I.6. Notations for binary numbers 977

Table I.7: Behavior of integer division by zero.

System Message and action
DECstation Trace/BPT trap (core dumped)
DEC 3000/400 forrtl: error: floating point exception

IOT trap (core dumped)
Silicon Graphics Indy and Indigo-2 Trace/BPT trap (core dumped)
Sun Microsystems 3, 386i, 4 *** IOT Trap = signal 6 code 0
IBM RS/6000 Breakpoint (core dumped)
IBM 3090 AFB209I VFNTH : Program interrupt -

FIXED-POINT DIVIDE exception

The bug had gone unnoticed until memories got large enough to have an array size of 230, and the resulting overflow
to a negative value later resulted in an ArrayIndexOutOfBoundsException error, thanks to Java’s mandatory bounds
checks for array indexing. The same bug exists in most textbook presentations of the binary-search algorithm. The
bug can be prevented in another way that avoids intermediate overflow:

int middle = low + (high - low) >> 1;

The lesson of this section is that you cannot rely on programming-language implementations to catch integer overflow,
and sometimes, even zero divides. Your program may run to completion, but generate ridiculous results. Programs
that experience uncaught integer overflow and then produce nonsensical output have fouled up accounting software,
missile guidance systems, a U.S. Navy ship carrying nuclear weapons, electronic voting-system tallies, and even the
New York Stock Exchange.

I.6 Notations for binary numbers

The numerical examples in the preceding sections demonstrate that it is tedious to write large numbers in binary, so
bases that are larger powers of two are often used. That simplifies conversions from binary, because bit groups of
fixed size can be directly converted to digits in the larger base.

In base 8 (= 23), we have the octal number system, in which digits 0 . . . 7 represent the binary values 0002 . . . 1112.
Octal notation is uncommon on modern architectures, but was traditionally used on machines for which the word
size is a multiple of 3, such as 12, 18, 24, 36, 48, or 60 bits, and curiously, also on the 16-bit DEC PDP-11 systems and
the Cray 64-bit vector machines. In octal, 65 53510 = 177 7778 and 65 53710 = 200 0018.

In base 16 (= 24), we have the hexadecimal number system in which the digit values 0 . . . 9 a b c d e f, represent the
binary values 00002 . . . 11112. Hexadecimal notation is commonly used on modern systems with word sizes of 32 or
64, both multiples of 4. In hexadecimal, 65 53510 = ffff16 and 65 53710 = 1000116

The Burroughs B1700 system programming language, SDL, supported binary strings in bases 2, 4, 8, and 16: the
base-4 quartal value @(4)3210@ is 3 × 43 + 2 × 42 + 1 × 4 + 0 = 228 in decimal.

The Ada programming language has a convenient notation that extends easily to any number base: 65 535 =
10#65535# = 8#177777# = 16#ffff#.

Fortran 77 does not provide a standard way of representing numbers in octal or hexadecimal form in program
source code, or of using those forms for input and output. However, most compilers provide nonstandard extensions
for doing so; regrettably, vendors have not agreed on a common format. Few compilers have provided for binary
representations. The forms Zfe01, Z’fe01’, X’fe01’, and ’fe01’X have been used for hexadecimal constants, and
"7741, 7741B, O’7741’, and ’7741’O for octal constants. One vendor, the now-defunct ELXSI, also supported the
Ada-style notation. Use of such extensions makes code distinctly nonportable.

Fortran 90 provides the forms B’1001’ and B"1001" for binary, O’7741’ and O"7741" for octal, and Z’fe01’ and
Z"fe01" for hexadecimal.

Ada allows underscores to separate digits to make numbers more readable: 8#177777777# = 8#177_777_777#. On
the 36-bit DEC PDP-10, large octal integers are normally written in two 18-bit chunks separated by double commas,
123456, , 765432, but that scheme was never generalized.

In Fortran, blanks are not significant except in character strings, so they may be used to improve readability of
long numbers in program source code. The following pairs of assignments are equivalent:

978 Appendix I. Integer arithmetic

N = 2147483647
N = 2 147 483 647
PI = 3.1415926535897932385
PI = 3.141 592 653 589 793 238 5

Regrettably, few programming languages provide a simple way to read and write numbers with embedded
spaces or other separators, despite the fact that in mathematical tables, spacing between digit groups is conventional
to enhance readability. The mathcw library extensions to the input and output facilities of the C-language family
described in Chapter 26 on page 829 and Chapter 27 on page 879 support digit grouping with underscore separators.

I.7 Summary

The chief lessons of this appendix on integer arithmetic are these:

� Integer division by zero is not universally detected.

� Integer overflow is almost never detected. Indeed, the specifications or standards for some programming
languages require that it not be. The Java language specification [GJSB05] says that built-in integer operators
do not indicate overflow or underflow in any way. The same is true in C#, unless the expression is qualified by
the checked keyword. The C99 Standard simply declares that behavior is undefined in the event of integer
overflow.
At the Web site Fun with Fibonacci [Bee04b], this author solved an introductory programming problem in about
50 languages. Only one language, Algol 60 on the DEC PDP-10, caught integer overflow on addition.

� Programmers must ensure that integer values required in a computation do not exceed their representable
range, to avoid nonsensical results, or tragic failure.

� The common programming idiom of testing the low-order bit to determine whether an integer is even or odd
fails for negative values in one’s-complement arithmetic.

� In the widely used two’s-complement system, the most negative integer has no positive companion, so the
result of the integer absolute-value function can be negative.

� Compilers for most programming languages, and the C-language family, fail to handle the most negative two’s-
complement integer correctly in source code, and also often in program input. That error requires subterfuges
like these definitions taken from the C header file <stdint.h>:

#define INT16_MIN (-32767 - 1)
#define INT32_MIN (-2147483647 - 1)
#define INT64_MIN (-9223372036854775807LL - 1LL)

Programmers usually assume that integer arithmetic is trustworthy, but the limits of finite precision sometimes
violate that assumption. Section 4.10.1 on page 74 describes functions in the mathcw library for safe integer arith-
metic.

If you are interested in learning more about the low-level details of how integer arithmetic works at the electronic
circuit and algorithmic level, consult books on computer arithmetic, such as [Omo94, Par00, Kor02, EL04a, KM10,
MBdD+10, BZ11, DSC12, Kul13]. Collections of important original papers on computer arithmetic are available in
[Swa90a, Swa90b]. The book Hacker’s Delight [War03, War13] presents many clever tricks with integer arithmetic.

The Web site http://bitsavers.org holds a large collection of manuals and books for historical computer sys-
tems. For an outstanding account of such systems up to about 1980, see Computer Architecture: Concepts and Evolution
[BB97], written by two leading architects of the IBM System/360. For a detailed survey of computer systems up to
1967, see Digital Computer User’s Handbook [KK67, Chapter 1.4].

We have considered only binary arithmetic in this appendix, but because numbers can always be represented as
polynomials in the number base, as n = c0 + c1β + c2β2 + . . . , choices other than β = 2 are possible. Ternary (base-3)
systems, with digits 0, 1, and 2, balanced ternary systems with digits −1, 0, and +1, base-10 decimal systems, and
even systems with negative, imaginary, or complex bases, have all been proposed, and sometimes even implemented
in experimental prototype machines. However, except for decimal machines, none of those designs has ever been
commercially significant.

J Java interface

JAVA, n.: A BREED OF DOMESTIC HEN.

— New Century Dictionary (1914).

JAVA, n.: COFFEE FROM JAVA; ALSO (SLANG) ANY SORT OF COFFEE.
(1926) WE WENT BACK TO THE FIRE AND DISCUSSED BREAKFAST.

‘NOTHING BUT JAVA,’ SAID THE BUM THAT HAD THE COFFEE.

— Oxford English Dictionary.

JAVA: STOCK EXCHANGE SYMBOL OF SUN MICROSYSTEMS, INC. (2007).

The Java programming language [GJS96, GJSB00, GJSB05, GJS+13, GJS+14] is defined in terms of an underlying
virtual machine [LY97, LY99, SSB01, LYBB13, Set13, LYBB14]. Thus, once the virtual machine is available on a new
platform, all existing precompiled Java code can run on it immediately. The Java promotional slogan, Write once, run
everywhere!, reflects the wide interest that the language has received since it was first introduced in 1995, and more
than 2300 books have been written about Java, far exceeding the book counts for any other programming language.1

The virtual-machine layer has a drawback, however: it makes it impossible to communicate with other languages
running on the underlying hardware, unless the virtual machine is augmented with a mechanism for doing so.
Fortunately, the Java developers recognized the need to access code in other languages, and provided the standard
Java Native Interface (JNI) [GM98, Lia99] for that purpose.

The Java type-modifier keyword native on a function definition tells the compiler that code is supplied else-
where; consequently, the normal braced code body is replaced by a semicolon. Examples are presented on page 981.

Compilation of a source-code file with the Java compiler, javac, produces a file of object code, called a class file, for
the Java Virtual Machine. The javah utility extracts information from the class file, producing a header file containing
prototypes for the wrapper functions. Those functions must then be written in C or C++ to interface to the native
code.

The C interface code is compiled and linked into a shared object library that is loaded dynamically into the virtual
machine at run time when the class is instantiated.

J.1 Building the Java interface

Before looking at code samples, it is helpful to see how the Java interface to the C code in the mathcw library is built.
Initially, we have just three hand-coded files in the java subdirectory:

% cd java
% ls
Makefile MathCW.c MathCW.java

The Makefile contains the rules for the build process, and the other two files contain the C interface code and the
Java class definition. The mixed lettercase is conventional in Java class definitions, and the name MathCW intentionally
resembles that of the standard Math class, whose features it can entirely replace and augment.

Java requires a 64-bit long int data type, so the mathcw library must be built with a compiler that supports a
corresponding type in C. The required long long int type in C is standardly available in C99, and many recent
compilers support it as well. However, its use has to be enabled for pre-C99 compilers that can handle that type:
defining the symbol HAVE_LONG_LONG_INT does that job.

The make utility manages the build, which looks like this on a Sun Microsystems SOLARIS system:

1See http://www.math.utah.edu/pub/tex/bib/index-table-j.html#java for extensive bibliographies.

© Springer International Publishing AG 2017
N.H.F. Beebe, The Mathematical-Function Computation
Handbook, DOI 10.1007/978-3-319-64110-2

979

980 Appendix J. Java interface

% make

javac -classpath . MathCW.java

javah -jni MathCW

cc -g -DHAVE_LONG_LONG_INT -I.. -I/usr/java/include -I/usr/java/include/solaris -c -o MathCW.o MathCW.c

cc -G -g -DHAVE_LONG_LONG_INT -I.. -I/usr/java/include -I/usr/java/include/solaris -o libMathCW.so \
MathCW.o -L/usr/local/lib -lmcw

The first step creates MathCW.class, and the second step makes MathCW.h. The third step compiles the C interface,
producing the object file MathCW.o. The last compilation step creates the shared object library, libMathCW.so, for the
interface, as directed by the -G option.

The final directory listing shows the four new files:

% ls
Makefile MathCW.c MathCW.class MathCW.h MathCW.java
MathCW.o libMathCW.so

The interface library file and the class file should be installed in a system-wide directory for general use, but there
are as yet no widely used conventions for the names of such directories. For this demonstration, we assume that the
two files are copied into another directory where a small Java test program is available:

% ls
Makefile MathCW.class libMathCW.so test.java

As usual, the make utility directs the process:

% make check-test

javac -classpath . test.java

java -Djava.library.path=. test
MathCW erf(-2.0) = -0.9953222650189527
MathCW erf(-1.875) = -0.9919900576701199
MathCW erf(-1.75) = -0.9866716712191824
...
MathCW erfc(1.75) = 0.013328328780817555
MathCW erfc(1.875) = 0.008009942329880029
MathCW erfc(2.0) = 0.004677734981047265

Compilation of Java source files requires knowledge of where all referenced class files are stored. The -classpath
option provides a list of directories to search, in the event that a suitable list has not been defined by the CLASSPATH
environment variable. We set it to the current directory, represented in UNIX by the dot.

However, because use of the Java Native Interface is relatively uncommon, most Java implementations do not
recognize a companion environment variable for the library path, although all of them have a built-in default search
path that may be discoverable only by running a system-call trace on the java program. If the shared object library
is not, or cannot be, installed in one of those standard directories, then its location must be supplied at run time, as
we did here by defining the java.library.path variable to be the current directory.

For Java programs that are used often, it is a nuisance to have to run them by supplying them as arguments to
the virtual-machine program, java. The conventional solution in UNIX is to hide the complexity in a shell script,
and then invoke that script by name. The javald utility that is provided in some Java distributions makes it easy to
create such wrapper scripts.

J.2 Programming the Java MathCW class

The MathCW.java file contains the complete specification of the Java MathCW class. Because none of the functions is
implemented in Java, the class file is comparatively small. We present it in parts, with just enough detail to show its
general structure, and with large chunks of repetitive code omitted.

J.2. Programming the Java MathCW class 981

Like the standard Math class, the MathCW class does not permit subclassing or instantiation. The Java keyword
final in its declaration disallows subclasses, and the keyword private in the class constructor function MathCW()
prevents other classes from creating new instances of this class:

public final class MathCW
{

private MathCW() {}

Like the standard Math class, the MathCW class provides names for two important mathematical constants:

public static final double E = 2.71828182845904523536;
public static final double PI = 3.14159265358979323846;

In some languages with strict data typing, it is possible for different functions to have identical names, provided that
their signatures differ. The function names are then said to be overloaded. The signature of a function is just a list of the
number and types of its arguments. The compiler can then deduce which function version is needed by examining
how it is called. In practice, the function names are compiled into distinct names that include cryptic summaries of
the argument types. That name mangling is generally invisible to programmers, except inside debuggers, or when
tools, such as the Unix nm or strings utilities, are used to display names embedded inside object files.

Java allows overloading of function names, and standard classes therefore use the same function names when
signatures differ but the computation is similar. Because Java supports only two floating-point types, float and
double, we need two sets of function definitions that differ only in argument types:

public static native float acos (float x);
public static native float acosh (float x);
public static native float adx (float x, int n);
...
public static native float nanf (String tag);
...
public static native float tanh (float x);
public static native float tgamma (float x);
public static native float trunc (float x);

public static native double acos (double x);
public static native double acosh (double x);
public static native double adx (double x, int n);
...
public static native double nan (String tag);
...
public static native double tanh (double x);
public static native double tgamma (double x);
public static native double trunc (double x);

Overloading is not possible for the functions that take a single String argument, because their signatures are
identical. As a result, the class supplies nanf(), qnanf(), and snanf() with float return values, and nan(), qnan(),
and snan() with double return values. For similar reasons, many of the routines in the random-number generator
family, such as urcwf() and urcw(), are available under their own names.

Java does not support pointer types, so pointer arguments in C functions are replaced by one-element arrays. For
example, the C prototype

extern float frexpf (float x, int * pn);

corresponds to this Java prototype:

public static native float frexp (float x, int pn[/* 1 */]);

The function can then be used in a Java code fragment like this:

982 Appendix J. Java interface

float f, x;
int pn[] = new int[1];

x = 1234567.0F;
f = MathCW.frexp(x, pn);
System.out.println("MathCW.frexp(" + x + ", pn) = " + f + " * 2**(" + pn[0] + ")");

After years of stability of the Math class, Java 1.5 (2004) and 1.6 (2006) added several new functions:

cbrt() cosh() expm1() hypot() log10() log1p() scalb() sinh() tanh()

copySign() getExponent() nextAfter() nextUp() signum() ulp()

The functions in the first group have counterparts in the C99 and mathcw libraries. Those in the second group are
readily implemented in Java, sometimes with the help of other functions in the mathcw interface. All of the new
functions are fully supported in the MathCW class, making it a proper superset of the standard Math class.

The final part of the class definition is a static initializer that loads the shared library when the class is first
instantiated at run time:

static
{

System.loadLibrary("MathCW");
}

} // end of class MathCW

The System.loadLibrary() function maps the generic name of the library to a platform-dependent name, such as
libMathCW.so on most UNIX systems, libMathCW.dylib on Apple MAC OS X, or MathCW.dll on Microsoft WIN-
DOWS, finds it in the Java library path, and loads its code into the virtual machine for subsequent use when the
MathCW class functions are called.

Apart from the need to locate additional shared object libraries at run time, Java classes that define functions with
the native type-modifier keyword behave exactly like ordinary classes implemented entirely in Java. However, there
may be some sacrifice of security and stability, because code implemented outside the Java environment may not be
as thoroughly checked as Java requires. For example, an out-of-bounds array index in Java is caught and handled
gracefully. A similar bounds violation in dynamically loaded native code could corrupt or crash the entire Java
Virtual Machine. That is not a concern for the mathcw library, however, because it is carefully written, and well
tested with many different compilers on numerous operating systems and CPU architectures, and it makes little use
of bug-prone and dangerous features, such as pointers and run-time array indexing.

Timing measurements on several systems with the perf.java benchmark program show that the additional over-
head of the JNI wrappers is not significant, except for those functions with trivial implementations, such as fabs()
and fmax(), or functions like sqrt() that are replaced with inline hardware instructions at run time by some Java
just-in-time compilers. Indeed, on several systems, some of the native functions from the mathcw library are consid-
erably faster than those provided by the standard Java Math class. That strongly suggests that the substantial effort
that would be required to reimplement, test, and maintain a version of the mathcw library in pure Java code is not
warranted.

J.3 Programming the Java C interface

Although the Java primitive types of booleans, characters, integers, and floating-point numbers have exact counter-
parts in the C language, all of the more complex Java data types require special handling to access them from another
language. For the mathcw library, the only such types are one-dimensional arrays of characters or numbers.

In order to support that extra special handling, and allow bidirectional communication between Java and the
native language, the C interface functions each have two additional arguments. They appear first in the argument
lists, and have opaque data types JNIEnv * and jobject. For the mathcw package, we only use those arguments for
those few functions that have arguments of strings or numeric arrays.

The C interface in MathCW.c begins with some header-file inclusions, and a wrapper for C++ compilation that
ensures that the interface will be compiled with C-style linkage, rather than the default C++ style with mangled
function names encoding signatures:

J.3. Programming the Java C interface 983

#include <jni.h>
#include <mathcw.h>

#ifdef __cplusplus
extern "C" {
#endif

Next come the definitions of two private helper functions that simplify the handling of character-string arguments:

static void
freestr(JNIEnv *env, jstring str, const char *s)
{
#ifdef __cplusplus

(env)->ReleaseStringUTFChars(str, s);
#else

(*env)->ReleaseStringUTFChars(env, str, s);
#endif
}

static const char *
getstr(JNIEnv *env, jstring str)
{
#ifdef __cplusplus

return (env->GetStringUTFChars(str, NULL));
#else

return ((*env)->GetStringUTFChars(env, str, NULL));
#endif
}

These messy definitions handle the different C and C++ interface conventions of the JNI. Their purpose is simple:
getstr() converts a Java String in the Unicode character set to a C string in UTF-8 format stored in a dynamically
allocated memory block, and freestr() frees that memory when it is no longer needed. The venerable ASCII char-
acter set occupies the first 128 slots in Unicode, so for our purposes, no additional character-set code mapping needs
to be done. Were that needed, there is another JNI library routine, JNU_GetStringNativeChars(), that could be used
instead [Lia99, §10.10, p. 138].

The bulk of the MathCW.c file consists of straightforward wrapper functions that look like this:

JNIEXPORT jfloat JNICALL
Java_MathCW_acos__F(JNIEnv *env, jobject obj, jfloat x)
{

return (acosf(x));
}

JNIEXPORT jdouble JNICALL
Java_MathCW_acos__D(JNIEnv *env, jobject obj, jdouble x)
{

return (acos(x));
}

The interface types jfloat and jdouble are equivalent to the native C types float and double, so no additional
conversions or type casts are necessary. The complex function headers are taken directly from the MathCW.h header
file that is automatically generated as described in Section J.1 on page 979. The interface types JNIEXPORT, JNICALL,
jfloat, and so on, are defined in the system header file <jni.h>, provided in every Java installation.

Only the functions with character-string or vector arguments require more than a function body consisting of a
single return statement. Those with string arguments are all quite similar, so here is what just one of them looks
like:

JNIEXPORT jfloat JNICALL
Java_MathCW_nan__F(JNIEnv *env, jobject obj, jstring tag)

984 Appendix J. Java interface

{
float result;
const char * s;

s = getstr(env, tag);

if (s == (char *)NULL)
result = nanf("");

else
{

result = nanf(s);
freestr(env, tag, s);

}

return (result);
}

The critical point here is that getstr() can fail. When it does, it returns a NULL pointer and registers an OutOfMemory
exception to be thrown to the Java caller. However, the exception cannot be raised in the Java program until control
returns from the native routine. Therefore, on failure, we simply pass an empty string to nanf(). Otherwise, we pass
the user-provided string, and then call freestr() to free the memory for the temporary copy of the argument. In
either case, the code properly returns a NaN.

This interface function shows how vector arguments are handled:

JNIEXPORT void JNICALL
Java_MathCW_vercwf(JNIEnv * env, jobject obj, jint n, jfloatArray u)
{

float * v;

v = (*env)->GetFloatArrayElements(env, u, NULL);

if (v == (float *)NULL)
{

float q[1];
int k;

q[0] = qnanf("");

for (k = 0; k < n; ++k)
(*env)->SetFloatArrayRegion(env, u, k, 1, q);

}
else
{

vercwf(n, v);
(*env)->ReleaseFloatArrayElements(env, u, v, 0);

}
}

The Java library function GetFloatArrayElements() returns the address of the first element of the array, which might
require making a copy to prevent its being moved by memory-management functions running in a background
thread. The check for a NULL-pointer return handles the rare case where storage cannot be allocated, in which case,
the returned vector is set to quiet NaNs. The ReleaseFloatArrayElements() function transfers the contents of the C
array to the original Java array, if necessary, and frees any storage needed for a copy of the array.

The final code in MathCW.c provides the closing brace to match the one following the extern declaration at the
beginning of the file, and it is visible only to C++ compilers:

#ifdef __cplusplus
}
#endif

J.4. Using the Java interface 985

J.4 Using the Java interface

Java requires calls to functions defined in other classes to be prefixed with the class name and a dot. For example, the
square-root function provided by the standard Math class is invoked as Math.sqrt(x). All that is needed to convert
an existing program to use mathematical functions from the MathCW class is to change the class prefix.

Here is a short program that illustrates calls to the ordinary and complementary complete elliptic integral func-
tions, which are absent from the standard Math class:

class sample
{

public static void main (String[] args)
{

double x;

for (x = -1.0; x <= 1.0; x += 0.125)
{

System.out.println("MathCW elle (" + x + ") = " + MathCW.elle (x));
System.out.println("MathCW ellec(" + x + ") = " + MathCW.ellec(x));

}
}

}

Assuming that the MathCW class file and library are in the current directory, the sample program can be compiled and
run like this:

% javac sample.java

% java -Djava.library.path=. sample
MathCW elle (-1.0) = 1.0
MathCW ellec(-1.0) = 1.5707963267948966
MathCW elle (-0.875) = 1.2011106307369144
MathCW ellec(-0.875) = 1.4742582575626793
...
MathCW elle (0.875) = 1.2011106307369144
MathCW ellec(0.875) = 1.4742582575626793
MathCW elle (1.0) = 1.0
MathCW ellec(1.0) = 1.5707963267948966

L Letter notation

PERHAPS YOU HAVE LEARNED IT WITHOUT BOOK:
BUT, I PRAY, CAN YOU READ ANY THING YOU SEE?
AY, IF I KNOW THE LETTERS AND THE LANGUAGE.

— SHAKESPEARE’S Romeo and Juliet (1595).

The tables in this Appendix summarize common uses of Latin and Greek letters in this book.

Table L.1: Latin letters used in mathematics in this book.

Name Description
d, D decimal digit
x, y real variables
z complex variable

f (x) arbitrary function of x
g(x) arbitrary function of x
h(x) arbitrary function of x

Bn n-th Bernoulli number
En n-th Euler number
Fn n-th Fibonacci number
Tn n-th tangent number

G guard bit in floating-point arithmetic
L last stored bit in floating-point arithmetic
R rounding bit in floating-point arithmetic
S sticky bit in floating-point arithmetic

O(expr) order of expr

P(expr) probability that expr is true

P(x) polynomial approximation
Q(x) polynomial approximation
R(x) rational polynomial approximation (= P(x)/Q(x))

E(m) complete elliptic integral function of second kind
K(m) complete elliptic integral function of first kind

Tn(u) Chebyshev polynomial of degree n of the first kind

Iν(z) modified cylindrical Bessel function of order ν of first kind
Jν(z) cylindrical Bessel function of order ν of first kind
Kν(z) modified cylindrical Bessel function of order ν of second kind
Yν(z) cylindrical Bessel function of order ν of second kind

iν(z) modified spherical Bessel function of order ν of first kind
jν(z) spherical Bessel function of order ν of first kind
kν(z) modified spherical Bessel function of order ν of second kind
yν(z) spherical Bessel function of order ν of second kind

© Springer International Publishing AG 2017
N.H.F. Beebe, The Mathematical-Function Computation
Handbook, DOI 10.1007/978-3-319-64110-2

987

988 Appendix L. Letter notation

Table L.2: Greek letters in mathematics used in this book and related literature, in their order of appearance in the
Greek alphabet.

Symbol Description
α, A alpha; (lowercase) number base; (lowercase) variable name
β, B beta; (lowercase) floating-point base
γ gamma; Euler–Mascheroni constant (≈ 0.577 215); with two arguments, complementary incomplete gamma function
Γ capital gamma; with one argument, gamma function (generalized factorial function); with two arguments, ordinary incomplete

gamma function
δ delta; something small
Δ capital delta; difference operator; triangle operator
ε, E epsilon; (lowercase) something small; (lowercase) floating-point big machine epsilon = β1−t, for base β and t-digit significand
ε variant epsilon
ζ, Z zeta; (lowercase) Riemann zeta function; (lowercase) variable name; (uppercase) elliptic function
η, H eta; (lowercase) variable name; (uppercase) elliptic function
θ, Θ theta; (lowercase) angle of rotation; (lowercase) variable name; (uppercase) elliptic function
ϑ variant theta
ι, I iota
κ, K kappa
λ, Λ lambda
μ, M mu; (lowercase) arithmetic mean; (lowercase) variable name
ν, N nu; (lowercase) frequency of electromagnetic radiation; (lowercase) number of degrees of freedom; (lowercase) order of Bessel

function; (lowercase) variable name
ξ, Ξ xi; (lowercase) variable name
o, O omicron
π pi; one of the most important numbers in mathematics; ratio of circumference of circle to its diameter
� variant pi
Π, ∏ capital pi; product operator
ρ, P rho
� variant rho
σ sigma; nonterminal form in Greek words; standard deviation in statistics
ς variant sigma; terminal form in Greek words
Σ, ∑ capital sigma; summation operator
τ, T tau; (lowercase) variable name
υ, Y upsilon
φ, Φ phi; (lowercase) angle of rotation; (lowercase) golden ratio; (lowercase) variable name; (uppercase) cumulative distribution func-

tion
ϕ variant phi
χ, X chi; χ2 (chi-square) measure in statistics
ψ, Ψ psi; (lowercase) psi function
ω, Ω omega; (lowercase) angular frequency

P Pascal interface

BLAISE PASCAL (1623–1662): FRENCH MATHEMATICIAN,
SCIENTIST, AND PHILOSOPHER, AND AT THE AGE OF 19,

INVENTOR OF A CALCULATING MACHINE.

The Pascal programming language [JW91], first introduced on the CDC 6400 in 1970, attracted wide interest as a
clean and simple language for teaching computer programming.

Thanks to its small size, and the free availability of a relatively portable implementation of a compiler that pro-
duced P-code, a simple assembly language for a small virtual machine, by the mid 1980s, Pascal had been ported
to many computer systems, from 8-bit microcomputers to mainframes. The TEX typesetting system used for the
production of this book is written in a markup language from which Pascal code and TEX documentation can be
produced.

Several restrictions of the Pascal language, however, made it difficult to use for large programming projects, and
for programs that need access to the underlying operating system. Its deficiencies are well chronicled in two famous
papers [WSH77, Ker81], and when C compilers became widely available by the late 1980s, Pascal use fell sharply.

Nevertheless, some popular Pascal compilers introduced language extensions that alleviated many of the un-
pleasant restrictions, and that practical experience led to the revised 1990 ISO Extended Pascal Standard [PAS90].
The GNU Pascal compiler, gpc, largely conforms to that Standard, and offers language and library extensions for
interfacing to the operating system, making Pascal potentially as available to programmers on modern computing
systems as the C language is.

P.1 Building the Pascal interface

Before looking at the details of the interface between Pascal and the mathcw library, it is useful to see how the
interface is built.

Initially, we have just a few files in the pascal subdirectory:

% cd pascal
% ls
exp RCS test02.pas test06.pas test10.pas
Makefile README test03.pas test07.pas
mathcw.pas test00.pas test04.pas test08.pas
okay test01.pas test05.pas test09.pas

The Makefile contains the rules for the build process, and the mathcw.pas file contains the interface definition. The
other test*.pas source files are simple tests of some of the library routines.

The make utility manages the build, which looks like this on a Sun Microsystems SOLARIS system:

% make

gpc -c mathcw.pas

gpc -c test00.pas
gpc test00.o -o test00

gpc -o test01 test01.pas -L.. -lmcw

gpc -o test02 test02.pas -L.. -lmcw

© Springer International Publishing AG 2017
N.H.F. Beebe, The Mathematical-Function Computation
Handbook, DOI 10.1007/978-3-319-64110-2

989

990 Appendix P. Pascal interface

Table P.1: Numeric data types provided by the GNU Pascal compiler, gpc. The sizes shown are typical of modern
32-bit and 64-bit computers.

C type Pascal types size (bits)
signed char ByteInt 8
short int ShortInt 16
int Integer 32
long int MedInt 32 or 64
long long int LongInt 64
float ShortReal or Single 32
double Real or Double 64
long double LongReal or Extended 80 or 128
char * CString 32 or 64
const char * protected CString 32 or 64

gpc -o test03 test03.pas -L.. -lmcw

gpc -o test04 test04.pas -L.. -lmcw

gpc -c test05.pas
gpc -o test05 test05.o mathcw.o -L.. -lmcw

...

gpc -c test10.pas
gpc -o test10 test10.o mathcw.o -L.. -lmcw

The first step compiles the interface, and the remaining ones build the test programs. The first four test programs
contain internal directives that tell the compiler how to find the additional object files in the parent directory. The
remaining test programs get their object files directly from the mathcw object library.

A simple check verifies correct operation of all of the test programs, by running them and comparing their output
with correct output stored in the okay subdirectory:

% make check

There should be no output but the test names:

========== test00
========== test01
...
========== test10

P.2 Programming the Pascal MathCW module

The original Pascal language had only one integer type, Integer, and one floating-point type, Real, with imple-
mentation-dependent sizes. The extended language supported by GNU gpc offers the numeric types shown in
Table P.1. Pascal is a case-insensitive language, and the lettercase shown in the table is conventional in the GNU
Pascal compiler’s documentation. Other Pascal compilers may offer only some of those types, and may use different
names.

As in C, the Pascal type sizes are platform dependent, but GNU Pascal ensures that the type correspondence with
C is maintained. Thus, on a SPARC system, long int and MedInt are both 32-bit types, whereas on an Alpha, they
are both 64-bit types.

The CString type is a useful extension provided by the GNU compiler to facilitate communicating with the oper-
ating system and its many support libraries. Pascal strings are normally represented by a data structure containing

P.2. Programming the Pascal MathCW module 991

a length and an array of characters. The GNU compiler allocates an additional array element that is set to the NUL
character to simplify conversion of a fixed-length Pascal string to a NUL-terminated C string.

Like C, Pascal normally uses call-by-value argument-passing conventions, but it uses call-by-reference when the
argument is declared with the var keyword. That makes all of the arguments needed for the mathcw library easily
representable in Pascal.

Pascal is a strongly typed language designed for fast one-pass compilation. That means that all functions, pro-
cedures, and variables must be declared before use. The GNU compiler allows a function or procedure body to
be replaced by external name ’rtnname’, to tell the compiler that the definition is provided elsewhere in another
language in a routine named rtnname. A native Pascal implementation of the double-precision square-root function
might be written like this:

function Sqrt (x : Real) : Real;
begin

{ implementation code omitted }
end;

For an external implementation in C, we can instead write this:

function Sqrt (x : Real) : Real; external name ’sqrt’;

If only one or two functions from the mathcw library are required in a Pascal program, then it is not difficult to
supply explicit declarations such as those that we illustrated for Sqrt(). We then have a choice of how to tell the
compiler where to find the external routines: by linker directives embedded in comments in the source code, or by
supplying either object files or object libraries at link time. The first four test programs take the first approach. For
example, test00.pas begins like this:

program test00(input,output);

{$L ’../adxf.o’}
{$L ’../expf.o’}
{$L ’../fabsf.o’}
{$L ’../inftyf.o’}
{$L ’../isinff.o’}
{$L ’../isnanf.o’}
{$L ’../psif.o’}
{$L ’../psilnf.o’}
{$L ’../qnanf.o’}

var
i : Integer;
x : ShortReal;

function Psif (x : ShortReal) : ShortReal; external name ’psif’;
function Psilnf (x : ShortReal) : ShortReal; external name ’psilnf’;

If each referenced function were defined entirely in a single object file, then only two linker directives would be
needed. However, that is rarely the case, and as the code fragment shows, the directive approach requires introduc-
ing a hard-to-maintain list of object-file dependencies, exposing irrelevant details that should be hidden.

The test programs test01.pas, test02.pas, and test03.pas provide directives for just the object files that they
explicitly require, and the Makefile supplies the library name and location for linking.

A much better approach is to define a Pascal module containing all of the function prototypes, and then simply
reference that module whenever it is needed. The mathcw.pas file that defines the interface part of the module begins
like this:

module MathCW interface;

The module statement provides the name, MathCW, by which the module can be referenced in other source files.
Next comes the export statement that supplies a long list of names defined in the interface that are available to

users of the module. For convenience, the list is sorted alphabetically within each precision family:

992 Appendix P. Pascal interface

export MathCW = (
{ ShortReal family }
acosf, acoshf, adxf, asinf, asinhf, atanf, atan2f,
...

{ Real family }
acos, acosh, adx, asin, asinh, atan, atan2,
...

{ LongReal family }
acosl, acoshl, adxl, asinl, asinhl, atanl, atan2l,
...
);

The declarations of the single-precision functions are mostly straightforward:

function acosf(x : ShortReal) : ShortReal; external name ’acosf’;
function acoshf(x : ShortReal) : ShortReal; external name ’acoshf’;
...
function frexpf(x : ShortReal; var n : Integer) : ShortReal; external name ’frexpf’;
...
function nanf(protected s : CString) : ShortReal; external name ’nanf’;
...

The declarations for frexpf() and nanf() show how pointer arguments are handled. The protected keyword pre-
vents modification of the argument inside the called function when that function is written in Pascal. Here, it guar-
antees that a copy of the original argument is passed to the function. The effect is thus somewhat like that of the
C-language const qualifier.

The double-precision function declarations are similar, except for the special case of the power function, which
must be renamed to avoid a collision with the Pascal pow operator:

function acos(x : Real) : Real; external name ’acos’;
function acosh(x : Real) : Real; external name ’acosh’;
...
function powd(x : Real; y : Real) : Real; external name ’pow’;
...

The interface part of the module ends with the extended-precision function declarations:

function acosl(x : LongReal) : LongReal; external name ’acosl’;
function acoshl(x : LongReal) : LongReal; external name ’acoshl’;
...

end.

The remainder of the mathcw.pas file defines the implementation part of the module:

module MathCW implementation;

to begin do
begin

{ module initialization code here: none currently needed }
end;

to end do
begin

{ module termination code here: none currently needed }
end;

end.

P.3. Using the Pascal module interface 993

Any native Pascal code required for the module would be provided in the implementation part, along with the
initialization and termination code blocks. We do not require any real implementation code here, because the mathcw
library provides it elsewhere, so the implementation block could have been left empty, or even omitted. We prefer
to keep a small template in place, however, in case an implementation block is needed in future extensions of the
library or its interface from Pascal.

Compilation of the mathcw.pas file produces two output files:

% ls mathcw.*
mathcw.pas

% make mathcw.o
gpc -c mathcw.pas

% ls -lo mathcw.*
-rw-rw-r-- 1 mcw 107769 2006-04-19 09:23 mathcw.gpi
-rw-rw-r-- 1 mcw 872 2006-04-19 09:23 mathcw.o
-rw-rw-r-- 1 mcw 22105 2006-04-19 05:57 mathcw.pas

The large interface file, mathcw.gpi needs to be available to the compiler for use by other programs. Only the small
object file, mathcw.o, needs to be provided to the linker.

P.3 Using the Pascal module interface

There are no standard conventions about where GNU Pascal module files are stored for system-wide use, so, for
simplicity, we assume that the mathcw.pas module file is in the same directory as the code that requires it.

All that is needed to make the entire mathcw library available to a Pascal program is a single import statement
following the program statement. Here is a fragment of test05.pas that shows how:

program test05(input,output);

import MathCW;

var
i : Integer;
x : ShortReal;

begin
writeln(’Test of Pascal interface to MathCW library:’);
writeln(’’);

x := -2.0;

for i := 0 to 32 do
begin

writeln(’MathCW erff(’, x:6:3, ’) = ’, erff(x):10:6);
x := x + 0.125;

end;
...
end.

The only additional thing that needs to be done is to supply the interface object file and the library name and location
at link time, like this:

% gpc -o test05 test05.pas mathcw.o -L.. -lmcw

Given the severe limitations of historical Pascal implementations, it is clear that external function declarations
and modules provide a powerful extension mechanism for the language, and they make it easy to interface Pascal
code to the huge collection of libraries written in C on modern operating systems. What is lacking, compared to Ada,

994 Appendix P. Pascal interface

C++, C#, and Java, is the additional notion of a module or namespace qualifier on function names to disambiguate
name conflicts.

P.4 Pascal and numeric programming

The numeric function repertoire of early Pascal was a small subset of that of Fortran, but the 1990 revision improved
that situation, and also added a complex type with constructor functions cmplx(r, i) and polar(r,theta), compo-
nent extractor functions re(z) and im(z), and elementary functions with the same names as their real counterparts.
The 1990 extensions include based integers for any base from 2 to 36 (e.g., 16#cafefeed), but alas, no hexadecimal
representation of exact floating-point constants, and no predefined names for the various numeric limits and pa-
rameters that C supplies in the <float.h> and <limits.h> header files. The GNU gpc compiler adds interfaces to
assembly language, and to the GMP multiple-precision arithmetic library. The limited control of numeric output
formatting remains a weak spot in the Pascal language.

The test program in the file numtest.pas exercises many features of IEEE 754 64-bit arithmetic, and, at least with
the GNU gpc compiler, demonstrates that the IEEE nonstop model of computation is fully supported, and Infinity,
NaN, and signed zero are handled correctly. A store() function provides a workaround for the lack of a volatile
qualifier, and prevents higher-precision intermediate computation when that is injurious to the job. The needed
helper functions are easily expressed in Pascal:

function IsInf(x : Real) : Boolean;
begin IsInf := (abs(1.0 / x) = 0.0) and (abs(x) > 1.0) end;

function IsNaN(x : Real) : Boolean;
begin IsNaN := (x <> x) end;

function Store(x : Real) : Real;
begin Store := x end;

With a substantial external numeric function library interfaced to the language in a similar way to that described
earlier in this Appendix, Pascal programmers can enjoy a comfortable numeric programming environment akin to
that available in C and Fortran 77.

Bibliography

(1870) THE ANNALS OF BIBLIOGRAPHY AFFORD MANY EXAMPLES

OF THE DELIRIOUS EXTENT TO WHICH BOOK-FANCYING CAN GO.

— Oxford English Dictionary.

Entries are followed by a braced list of page numbers where the entry is cited. Personal names are indexed in the separate
author/editor index on page 1039. Some bibliography entries cite other entries, so the braced lists may include pages within the
bibliography.

Entries include CODEN (Chemical Abstracts Periodical Number), DOI (Digital Object Identifier), ISBN (International Standard Book
Number), ISSN (International Standard Serial Number), LCCN (US Library of Congress Call Number), and Web URL (Uniform Resource
Locator) data, where available.

Prefix http://doi.org/ to any DOI value to convert it to a valid Web address.
Should you find that a URL recorded here is no longer accessible, you may be able to locate a historical copy on the Internet

Archive WayBack Machine at http://www.archive.org/.

[AAR99] George E. Andrews, Richard Askey, and Ranjan Roy. Special Functions, volume 71 of Encyclopedia of Mathematics and its Applications.
Cambridge University Press, Cambridge, UK, 1999. ISBN 0-521-62321-9 (hardcover), 0-521-78988-5 (paperback); 978-0-521-62321-6
(hardcover), 978-0-521-78988-2 (paperback). xvi + 664 pp. LCCN QA351 .A74 1999. {521, 619, 630, 827}

[ABB64] Gene M. Amdahl, Gerrit A. Blaauw, and Frederick P. Brooks, Jr. Architecture of the IBM System/360. IBM Journal of Research and Devel-
opment, 8(2):87–102, April 1964. CODEN IBMJAE. ISSN 0018-8646 (print), 2151-8556 (electronic). URL http://www.research.ibm.com/
journal/50th/architectures/amdahl.html; http://www.research.ibm.com/journal/rd/082/ibmrd0802C.pdf. DOI 10.1147/
rd.82.0087. {963}

[ABB00] Gene M. Amdahl, Gerrit A. Blaauw, and Frederick P. Brooks, Jr. Architecture of the IBM System/360. IBM Journal of Research and
Development, 44(1/2):21–36, January/March 2000. CODEN IBMJAE. ISSN 0018-8646 (print), 2151-8556 (electronic). URL http://
www.research.ibm.com/journal/rd/441/amdahl.pdf. DOI 10.1147/rd.441.0021. Special issue: reprints on Evolution of information
technology 1957–1999. {963}

[ABC+99] Paul H. Abbott, David G. Brush, Clarence W. Clark III, Chris J. Crone, John R. Ehrman, Graham W. Ewart, Clark A. Goodrich, Michel
Hack, John S. Kapernick, Brian J. Minchau, William C. Shepard, Ronald M. Smith, Sr., Richard Tallman, Steven Walkowiak, Akio
Watanabe, and W. Romney White. Architecture and software support in IBM S/390 Parallel Enterprise Servers for IEEE floating-point
arithmetic. IBM Journal of Research and Development, 43(5/6):723–760, September/November 1999. CODEN IBMJAE. ISSN 0018-
8646 (print), 2151-8556 (electronic). URL http://www.research.ibm.com/journal/rd/435/abbott.html. DOI 10.1147/rd.435.0723.
Besides important history of the development of the S/360 floating-point architecture, this paper has a good description of IBM’s
algorithm for exact decimal-to-binary conversion, complementing earlier ones [Cli90, Knu90, SW90, BD96, SW04]. {895, 998, 1004,
1034}

[ABM+97] Jeanne C. Adams, Walter S. Brainerd, Jeanne T. Martin, Brian T. Smith, and Jerrold L. Wagener, editors. Fortran 95 Handbook: Complete
ISO/ANSI Reference. MIT Press, Cambridge, MA, USA, November 1997. ISBN 0-262-51096-0; 978-0-262-51096-7. xii + 711 pp. LCCN
QA76.73.F25 F6 1997. URL http://www.cbooks.com/sqlnut/SP/search/gtsumt?source=&isbn=0262510960. {106}

[Ada69] Arthur G. Adams. Remark on Algorithm 304 [S15]: Normal curve integral. Communications of the Association for Computing Machinery,
12(10):565–566, October 1969. CODEN CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic). DOI 10.1145/363235.363253. {618}

[Ada83] American National Standard Reference Manual for the Ada Programming Language: ANSI/MIL-STD-1815A. American National Standards
Institute, New York, NY, USA, 1983. {vii}

[Ada95] ISO/IEC 8652:1995: Information technology — Programming languages — Ada. International Organization for Standardization, Geneva,
Switzerland, 1995. 511 pp. URL http://www.adaic.org/standards/05rm/RM-Final.pdf. Available in English only. {vii, 911, 928}

[Ada12] ISO/IEC 8652:2012 Information technology — Programming languages — Ada. International Organization for Standardization, Geneva,
Switzerland, 2012. 832 (est.) pp. URL http://www.ada-auth.org/standards/ada12.html; http://www.iso.org/iso/home/store/
catalogue_ics/catalogue_detail_ics.htm?csnumber=61507. {vii}

[ADW77a] Donald E. Amos, S. L. Daniel, and M. K. Weston. Algorithm 511: CDC 6600 subroutines IBESS and JBESS for Bessel functions Iν(x)
and Jν(x), x ≥ 0, ν ≥ 0 [S18]. ACM Transactions on Mathematical Software, 3(1):93–95, March 1977. CODEN ACMSCU. ISSN 0098-3500
(print), 1557-7295 (electronic). DOI 10.1145/355719.355727. See erratum [Amo78]. {693, 996}

[ADW77b] Donald E. Amos, S. L. Daniel, and M. K. Weston. CDC 6600 subroutines IBESS and JBESS for Bessel functions Iν(x) and Jν(x),
x ≥ 0, ν ≥ 0. ACM Transactions on Mathematical Software, 3(1):76–92, March 1977. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-
7295 (electronic). DOI 10.1145/355719.355726. {693}

© Springer International Publishing AG 2017
N.H.F. Beebe, The Mathematical-Function Computation
Handbook, DOI 10.1007/978-3-319-64110-2

995

996 Bibliography

[AE06] J. V. Armitage and W. F. Eberlein. Elliptic Functions. London Mathematical Society student texts. Cambridge University Press, Cam-
bridge, UK, 2006. ISBN 0-521-78078-0 (hardcover), 0-521-78563-4 (paperback); 978-0-521-78078-0 (hardcover), 978-0-521-78563-1 (pa-
perback). xiii + 387 pp. LCCN QA343 .A95 2006. {627}

[AF09] Alan Agresti and Christine A. Franklin. Statistics: The Art and Science of Learning from Data. Pearson Prentice Hall, Upper Saddle
River, NJ 07458, USA, second edition, 2009. ISBN 0-13-513199-5 (student edition), 0-13-513240-1 (instructor edition); 978-0-13-513199-2
(student edition), 978-0-13-513240-1 (instructor edition). xxviii + 769 + 47 pp. LCCN QA276.12 .A35 2009. {196}

[AG96] Ken Arnold and James Gosling. The Java Programming Language. The Java Series. Addison-Wesley, Reading, MA, USA, May 1, 1996.
ISBN 0-201-63455-4; 978-0-201-63455-6. xviii + 333 pp. LCCN QA76.73.J38A76 1996. {vii}

[AG98] Ken Arnold and James Gosling. The Java Programming Language. Addison-Wesley, Reading, MA, USA, second edition, 1998. ISBN
0-201-31006-6; 978-0-201-31006-1. xix + 442 pp. LCCN QA76.73.J38A76 1998. {vii}

[AGH00] Ken Arnold, James Gosling, and David Holmes. The Java Programming Language. Addison-Wesley, Reading, MA, USA, third edition,
2000. ISBN 0-201-70433-1; 978-0-201-70433-4. xxiv + 595 pp. LCCN QA76.73.J38 A76 2000. {vii}

[AH01] Jörg Arndt and Christoph Haenel. Pi — Unleashed. Springer-Verlag, Berlin, Germany / Heidelberg, Germany / London, UK / etc.,
2001. ISBN 3-540-66572-2; 978-3-540-66572-4. xii + 270 pp. LCCN QA484.A7513 2001. DOI 10.1007/978-3-642-56735-3. Includes
CD-ROM. Translated by Catriona and David Lischka from the 1998 German original, Pi: Algorithmen, Computer, Arithmetik. {14, 623,
632}

[AHG+04] Brad Abrams, Anders Hejlsberg, Brian Grunkemeyer, Joel Marcey, Kit George, Krzysztof Cwalina, and Jeffrey Richter. .NET Framework
Standard Library Annotated Reference. Volume 1: Base Class Library and Extended Numerics Library. Microsoft .NET development series.
Addison-Wesley, Reading, MA, USA, 2004. ISBN 0-321-15489-4 (hardcover); 978-0-321-15489-7 (hardcover). xxvi + 528 pp. LCCN
QA76.76.M52 A27 2004. URL http://www.aw-bc.com/catalog/academic/product/0,1144,0321154894,00.html. Foreword by Joel
Marcey. {917}

[Ale10] Andrei Alexandrescu. The D programming language. Addison-Wesley, Reading, MA, USA, 2010. ISBN 0-321-65953-8 (hardcover),
0-321-63536-1 (paperback); 978-0-321-65953-8 (hardcover), 978-0-321-63536-5 (paperback). xxvii + 463 pp. LCCN QA76.73.D138 A44
2010; QA76.73.D138. {830}

[AM59] Robert L. Ashenhurst and Nicholas Metropolis. Unnormalized floating point arithmetic. Journal of the Association for Computing
Machinery, 6(3):415–428, July 1959. CODEN JACOAH. ISSN 0004-5411 (print), 1557-735x (electronic). DOI 10.1145/320986.320996.
{960, 966}

[Ami62] D. Amit. Algorithm 147 [S14]: PSIF. Communications of the Association for Computing Machinery, 5(12):605, December 1962. CODEN
CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic). DOI 10.1145/355580.369107. See certifications [Tha63, Par69]. {521, 1027,
1035}

[Amm77] Urs Ammann. On code generation in a PASCAL compiler. Software — Practice and Experience, 7(3):391–423, May/June 1977. CODEN
SPEXBL. ISSN 0038-0644 (print), 1097-024X (electronic). DOI 10.1002/spe.4380070311. {949}

[Amo78] Donald E. Amos. Erratum: “Algorithm 511: CDC 6600 subroutines IBESS and JBESS for Bessel functions Iν(x) and Jν(x), x ≥ 0, ν ≥ 0
[S18]”. ACM Transactions on Mathematical Software, 4(4):411, December 1978. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295
(electronic). DOI 10.1145/356502.356501. See [ADW77a]. {995}

[Amo83] Donald E. Amos. Algorithm 610: A portable FORTRAN subroutine for derivatives of the psi function. ACM Transactions on
Mathematical Software, 9(4):494–502, December 1983. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic). DOI
10.1145/356056.356065. {521}

[Amo86] Donald E. Amos. Algorithm 644: A portable package for Bessel functions of a complex argument and nonnegative order. ACM
Transactions on Mathematical Software, 12(3):265–273, September 1986. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (elec-
tronic). URL http://www.acm.org/pubs/citations/journals/toms/1986-12-3/p265-amos/. DOI 10.1145/7921.214331. See re-
marks [Amo90, Amo95, Kod07]. {693, 996, 1020}

[Amo90] Donald E. Amos. Remark on “Algorithm 644: A portable package for Bessel functions of a complex argument and nonnegative
order”. ACM Transactions on Mathematical Software, 16(4):404, December 1990. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295
(electronic). URL http://www.acm.org/pubs/citations/journals/toms/1990-16-4/p404-amos/. DOI 10.1145/98267.98299. See
[Amo86, Amo95, Kod07]. {996, 1020}

[Amo95] Donald E. Amos. A remark on Algorithm 644: A portable package for Bessel functions of a complex argument and nonnegative order.
ACM Transactions on Mathematical Software, 21(4):388–393, December 1995. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295
(electronic). DOI 10.1145/212066.212078. See [Amo86, Amo90, Kod07]. {996, 1020}

[And98] Larry C. Andrews. Special Functions of Mathematics for Engineers. Oxford University Press, Oxford, UK, second edition, 1998. ISBN 0-
19-856558-5 (Oxford hardcover), 0-8194-2616-4 (SPIE Press hardcover); 978-0-19-856558-1 (Oxford hardcover), 978-0-8194-2616-1 (SPIE
Press). xvii + 479 pp. LCCN QA351 .A75 1998. {827}

[AND15] P. Ahrens, H. D. Nguyen, and J. Demmel. Efficient reproducible floating point summation and BLAS. Report UCB/EECS-2015-229,
EECS Department, University of California, Berkeley, Berkeley, CA, USA, December 8, 2015. URL http://www.eecs.berkeley.edu/
Pubs/TechRpts/2015/EECS-2015-229.html. {385}

[AND16] P. Ahrens, H. D. Nguyen, and J. Demmel. Efficient reproducible floating point summation and BLAS. Report UCB/EECS-2016-
121, EECS Department, UC Berkeley, Berkeley, CA, USA, June 18, 2016. URL http://www.eecs.berkeley.edu/Pubs/TechRpts/2016/
EECS-2016-121.html. {385}

[Ano94] Anonymous. Corrigenda. ACM Transactions on Mathematical Software, 20(4):553, December 1994. CODEN ACMSCU. ISSN 0098-3500
(print), 1557-7295 (electronic). See [HFT94]. {1014}

Bibliography 997

[ANS87] ANSI/IEEE. ANSI/IEEE Std 854-1987: An American National Standard: IEEE Standard for Radix-Independent Floating-Point Arithmetic.
IEEE, New York, NY, USA, October 5, 1987. ISBN 0-7381-1167-8; 978-0-7381-1167-4. v + 14 pp. URL http://ieeexplore.ieee.org/
iel1/2502/1121/00027840.pdf. Revised 1994. INSPEC Accession Number: 3095617. {1, 104, 109, 827, 928, 966}

[ANSI78] American National Standard Programming Language FORTRAN: Approved April 3, 1978, American National Standards Institute, Inc.: ANSI
X3.9-1978. Revision of ANSI X3.9-1966. American National Standards Institute, New York, NY, USA, revised edition, 1978. 438 pp.
{vii, 341}

[ANSI97] ANSI/ISO/IEC 1539-1:1997: Information Technology — Programming Languages — Fortran — Part 1: Base language. American National
Standards Institute, New York, NY, USA, 1997. URL http://www.fortran.com/fortran/iso1539.html. {106}

[AS64] Milton Abramowitz and Irene A. Stegun, editors. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Ta-
bles, volume 55 of Applied mathematics series. U. S. Department of Commerce, Washington, DC, USA, 1964. xiv + 1046 pp. LCCN
QA47.A161 1972; QA 55 A16h 1972. Tenth printing, with corrections (December 1972). This book is also available online at
http://www.convertit.com/Go/ConvertIt/Reference/AMS55.ASP in bitmap image format. {6, 58, 59, 196, 269, 301, 303, 341, 498,
521, 560, 562, 587, 589, 593, 600, 619, 624, 632, 638, 643, 651, 657, 661, 666, 673, 675, 678, 681–683, 689, 693, 731, 826}

[AT17] Jared L. Aurentz and Lloyd N. Trefethen. Chopping a Chebyshev series. ACM Transactions on Mathematical Software, 43(4):33:1–33:21,
March 2017. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic). DOI 10.1145/2998442. {57}

[AW88] Lothar Afflerbach and Klaus Wenzel. Normal random numbers lying on spirals and clubs. Statistical Papers = Statistische Hefte, 29
(1):237–244, December 1988. CODEN STPAE4. ISSN 0932-5026 (print), 1613-9798 (electronic). URL http://www.springerlink.com/
content/q7885421202m6565/. DOI 10.1007/BF02924529. {193}

[AW05] George B. Arfken and Hans-Jürgen Weber. Mathematical Methods for Physicists. Elsevier, Amsterdam, The Netherlands, sixth edition,
2005. ISBN 0-12-059876-0, 0-12-088584-0 (paperback); 978-0-12-059876-2, 978-0-12-088584-8 (paperback). xii + 1182 pp. LCCN QA37.3
.A74 2005. {8, 196, 303, 582, 627, 693}

[AWH13] George B. Arfken, Hans-Jürgen Weber, and Frank E. Harris. Mathematical Methods for Physicists: a Comprehensive Guide. Elsevier
Academic Press, Amsterdam, The Netherlands, seventh edition, 2013. ISBN 0-12-384654-4 (hardcover), 1-4832-7782-8 (e-book); 978-0-
12-384654-9 (hardcover), 978-1-4832-7782-0 (e-book). xiii + 1205 pp. LCCN QA37.3 .A74 2013. URL http://www.sciencedirect.com/
science/book/9780123846549. {8, 196, 303, 582, 627, 693}

[Ayo74] Raymond Ayoub. Euler and the zeta function. American Mathematical Monthly, 81(10):1067–1086, December 1974. CODEN AMMYAE.
ISSN 0002-9890 (print), 1930-0972 (electronic). URL http://www.jstor.org/stable/2319041. DOI 10.2307/2319041. {579, 590}

[Bai81] B. J. R. Bailey. Alternatives to Hastings’ approximation to the inverse of the normal cumulative distribution function. Applied Statistics,
30(3):275–276, 1981. CODEN APSTAG. ISSN 0035-9254 (print), 1467-9876 (electronic). URL http://www.jstor.org/stable/2346351.
DOI 10.2307/2346351. {618}

[Bai95] David H. Bailey. A Fortran-90 based multiprecision system. ACM Transactions on Mathematical Software, 21(4):379–387, December
1995. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic). DOI 10.1145/212066.212075. See also extension to complex
arithmetic [Smi98]. {1032}

[Bak61] Frank B. Baker. A method for evaluating the area of the normal function. Communications of the Association for Computing Machinery, 4
(5):224–225, May 1961. CODEN CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic). DOI 10.1145/366532.366544. {618}

[Bak92] Louis Baker. C Mathematical Function Handbook. McGraw-Hill programming tools for scientists and engineers. McGraw-Hill, New
York, NY, USA, 1992. ISBN 0-07-911158-0; 978-0-07-911158-6. xviii + 757 pp. LCCN QA351.B17 1991; QA351 .B17 1992. {521, 556, 558,
567, 583, 589, 593, 657, 682, 827}

[Ban98] Jerry Banks, editor. Handbook of Simulation: Principles, Methodology, Advances, Applications, and Practice. Wiley, New York, NY,
USA, 1998. ISBN 0-471-13403-1 (hardcover); 978-0-471-13403-9 (hardcover). xii + 849 pp. LCCN T57.62 .H37 1998. DOI
10.1002/9780470172445. {1003, 1021}

[Bar92] John D. Barrow. Pi in the Sky: Counting, Thinking, and Being. Clarendon Press, Oxford, UK, 1992. ISBN 0-19-853956-8; 978-0-19-853956-8.
ix + 317 pp. LCCN QA36 .B37 1992. {14, 623}

[Bar96] John D. Barrow. Pi in the Sky: Counting, Thinking, and Being. Little, Brown and Company, Boston, Toronto, London, 1996. ISBN
0-316-08259-7; 978-0-316-08259-4. ix + 317 pp. LCCN QA36 .B37 1994. {14, 623}

[Bar06] Jason Socrates Bardi. The Calculus Wars: Newton, Leibniz, and the Greatest Mathematical Clash of all Time. Thunder’s Mouth Press, New
York, NY, USA, 2006. ISBN 1-56025-992-2, 1-56025-706-7; 978-1-56025-992-3, 978-1-56025-706-6. viii + 277 pp. LCCN QA303 .B2896
2006. {8}

[Bay90] Carter Bays. C364. Improving a random number generator: a comparison between two shuffling methods. Journal of Statistical
Computation and Simulation, 36(1):57–59, May 1990. CODEN JSCSAJ. ISSN 0094-9655 (print), 1026-7778 (electronic), 1563-5163. URL
http://www.tandfonline.com/doi/abs/10.1080/00949659008811264. DOI 10.1080/00949659008811264. See [LL73, BD76] for the
two nearly identical shuffling algorithms. This paper explains why the first does not lengthen the generator period, or much reduce
the lattice structure of linear congruential generators, but the second improves both dramatically. {179, 998, 1022}

[BB83] Jonathan M. Borwein and Peter B. Borwein. A very rapidly convergent product expansion for π [pi]. BIT, 23(4):538–540, December
1983. CODEN BITTEL, NBITAB. ISSN 0006-3835 (print), 1572-9125 (electronic). URL http://www.springerlink.com/openurl.asp?
genre=article&issn=0006-3835&volume=23&issue=4&spage=538. DOI 10.1007/BF01933626. {623}

[BB87a] Adam W. Bojanczyk and Richard P. Brent. A systolic algorithm for extended GCD computation. Computers and Mathematics with
Applications, 14(4):233–238, 1987. CODEN CMAPDK. ISSN 0898-1221 (print), 1873-7668 (electronic). DOI 10.1016/0898-1221(87)
90130-1. {186}

998 Bibliography

[BB87b] Jonathan M. Borwein and Peter B. Borwein. Pi and the AGM: a Study in Analytic Number Theory and Computational Complexity. Canadian
Mathematical Society series of monographs and advanced texts = Monographies et études de la Société mathématique du Canada.
Wiley, New York, NY, USA, 1987. ISBN 0-471-83138-7, 0-471-31515-X (paperback); 978-0-471-83138-9, 978-0-471-31515-5 (paperback).
xv + 414 pp. LCCN QA241 .B774 1987. {623}

[BB97] Gerrit A. Blaauw and Frederick P. Brooks, Jr. Computer Architecture: Concepts and Evolution. Addison-Wesley, Reading, MA, USA, 1997.
ISBN 0-201-10557-8; 978-0-201-10557-5. xlviii + 1213 pp. LCCN QA76.9.A73 B57 1997. {104, 947, 978}

[BB00] Nelson H. F. Beebe and James S. Ball. Algorithm xxx: Quadruple-precision Γ(x) and ψ(x) functions for real arguments. Technical
report, Departments of Mathematics and Physics, University of Utah, Salt Lake City, UT 84112, USA, 2000. {521, 525}

[BB04] Jonathan M. Borwein and David H. Bailey. Mathematics by Experiment: Plausible Reasoning in the 21st Century. A. K. Peters, Wellesley,
MA, USA, 2004. ISBN 1-56881-211-6; 978-1-56881-211-3. x + 288 pp. LCCN QA76.95 .B67 2003. Due to an unfortunate error, some of
the citations in the book point to the wrong item in the Bibliography. Here is how to find the correct citation number: [1]–[85]: Citation
number is correct; [86, page 100]: [86]; [86, page 2]: [87]; [87]–[156]: Add one to citation number; [157]: [159]; [158, page 139]: [158];
[158, page 97]: [160]; [159]–[196]: Add two to citation number. {268, 622, 624, 631, 632}

[BBB59] Frederick P. Brooks, Jr., Gerrit A. Blaauw, and Werner Buchholz. Processing data in bits and pieces. IRE Transactions on Electronic
Computers, EC-8(2):118–124, June 1959. CODEN IRELAO. ISSN 0367-9950. URL http://ieeexplore.ieee.org/stamp/stamp.jsp?
tp=&arnumber=5219512. DOI 10.1109/TEC.1959.5219512. This paper contains on page 121 the first published reference to the term
“byte”. An article of the same title appears in “Information Processing, Proceedings of the International Conference on Information
Processing, UNESCO, Paris, 15–20 June 1959”, pp. 375–381, 1959. From [Buc62, page 40]: “Byte denotes a group of bits used to encode
a character, or the number of bits transmitted in parallel to and from input-output units. A term other than character is used here
because a given character may be represented in different applications by more than one code, and different codes may use different
numbers of bits (i.e., different byte sizes). In input-output transmission the grouping of bits may be completely arbitrary and have no
relation to actual characters. (The term is coined from bite, but respelled to avoid accidental mutation to bit.)”. {969}

[BBB00] Lennart Berggren, Jonathan M. Borwein, and Peter B. Borwein, editors. Pi, a Sourcebook. Springer-Verlag, Berlin, Germany / Heidel-
berg, Germany / London, UK / etc., second edition, 2000. ISBN 0-387-98946-3 (hardcover); 978-0-387-98946-4 (hardcover). xix + 736
pp. LCCN QA484 .P5 2000. {14, 59, 623}

[BBBP97] David H. Bailey, Jonathan M. Borwein, Peter B. Borwein, and Simon Plouffe. The quest for pi. The Math-
ematical Intelligencer, 19(1):50–57, January 1997. CODEN MAINDC. ISSN 0343-6993 (print), 1866-7414 (electronic).
URL http://crd.lbl.gov/~dhbailey/dhbpapers/pi-quest.pdf; http://docserver.carma.newcastle.edu.au/164/; http://
link.springer.com/article/10.1007%2FBF03024340. DOI 10.1007/BF03024340. {622, 623}

[BBC+07] David H. Bailey, Jonathan M. Borwein, Neil J. Calkin, Roland Girgensohn, D. Russell Luke, and Victor Moll. Experimental Mathematics
in Action. A. K. Peters, Wellesley, MA, USA, 2007. ISBN 1-56881-271-X; 978-1-56881-271-7. xii + 322 pp. LCCN QA8.7 .E97 2007. {631}

[BBG03] Jonathan M. Borwein, David H. Bailey, and Roland Girgensohn. Experimentation in Mathematics: Computational Paths to Discovery. A.
K. Peters, Wellesley, MA, USA, 2003. ISBN 1-56881-136-5; 978-1-56881-136-9. x + 357 pp. LCCN QA12 .B67 2004. {631}

[BC09] Franky Backeljauw and Annie Cuyt. Algorithm 895: A continued fractions package for special functions. ACM Transactions on
Mathematical Software, 36(3):15:1–15:20, July 2009. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic). DOI 10.1145/
1527286.1527289. {776, 827}

[BCD+14] G. Ballard, E. Carson, J. Demmel, M. Hoemmen, N. Knight, and O. Schwartz. Communication lower bounds and optimal algorithms
for numerical linear algebra. Acta Numerica, 23:1–155, 2014. CODEN ANUMFU. ISSN 0962-4929 (print), 1474-0508 (electronic). DOI
10.1017/S0962492914000038. {385}

[BCDH09] Javier D. Bruguera, Marius Cornea, Debjit DasSarma, and John Harrison, editors. Proceedings of the 19th IEEE Symposium on Computer
Arithmetic, June 8–10, 2009, Portland, Oregon, USA. IEEE Computer Society Press, Silver Spring, MD, USA, 2009. ISBN 0-7695-3670-0;
978-0-7695-3670-5. ISSN 1063-6889. LCCN QA76.6. URL http://www.ac.usc.es/arith19/. {1014}

[BD76] Carter Bays and S. D. Durham. Improving a poor random number generator. ACM Transactions on Mathematical Software, 2(1):59–64,
March 1976. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic). DOI 10.1145/355666.355670. See also [LL73] for
a slightly different, but inferior, shuffling algorithm, and [Bay90] for a comparison, both mathematical, and graphical, of the two
algorithms. Reference [3] for IBM Report GC20-8011-0 is incorrectly given year 1969; the correct year is 1959. {178, 997, 1022}

[BD96] Robert G. Burger and R. Kent Dybvig. Printing floating-point numbers quickly and accurately. ACM SIGPLAN Notices, 31(5):108–116,
May 1996. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic). URL http://www.acm.org:80/pubs/
citations/proceedings/pldi/231379/p108-burger/. DOI 10.1145/231379.231397. This paper offers a significantly faster algorithm
than that of [SW90], together with a correctness proof and an implementation in Scheme. See also [Cli90, ABC+99, SW04, Cli04]. {895,
995, 1004, 1034}

[BD03a] Sylvie Boldo and Marc Daumas. Representable correcting terms for possibly underflowing floating point operations. In Bajard and
Schulte [BS03], pages 79–86. ISBN 0-7695-1894-X; 978-0-7695-1894-7. ISSN 1063-6889. LCCN QA76.6 .S919 2003. URL http://
www.dec.usc.es/arith16/papers/paper-156.pdf. DOI 10.1109/ARITH.2003.1207663. {366, 1002}

[BD03b] Sylvie Boldo and Marc Daumas. A simple test qualifying the accuracy of Horner’s rule for polynomials. Research Report 2003-01, École
Normale Supérieure de Lyon, 69364 Lyon Cedex 07, France, January 2003. 41 pp. URL ftp://ftp.inria.fr/INRIA/publication/
publi-pdf/RR/RR-4707.pdf. {89}

[BD04] Sylvie Boldo and Marc Daumas. A simple test qualifying the accuracy of Horner’s rule for polynomials. Numerical Algorithms, 37(1–4):
45–60, December 2004. CODEN NUALEG. ISSN 1017-1398 (print), 1572-9265 (electronic). URL http://link.springer.com/article/
10.1023/B%3ANUMA.0000049487.98618.61. DOI 10.1023/B:NUMA.0000049487.98618.61. SCAN2002 International Conference (Guest
Editors: Rene Alt and Jean-Luc Lamotte). {89}

Bibliography 999

[BD09] Jonathan M. Borwein and Keith J. Devlin. The Computer as Crucible: an Introduction to Experimental Mathematics. A. K. Peters, Wellesley,
MA, USA, 2009. ISBN 1-56881-343-0; 978-1-56881-343-1. xi + 158 pp. LCCN QA8.7 .B67 2009. {631}

[BDS07] Robert E. Bradley, Lawrence A. D’Antonio, and Charles Edward Sandifer, editors. Euler at 300: an Appreciation, volume 5 of The MAA
tercentenary Euler celebration; Spectrum series. Mathematical Association of America, Washington, DC, USA, 2007. ISBN 0-88385-565-8;
978-0-88385-565-2. xvi + 298 pp. LCCN QA29.E8 E95 2007. {591}

[BE92] Lee J. Bain and Max Engelhardt. Introduction to Probability and Mathematical Statistics. The Duxbury advanced series in statistics and
decision sciences. PWS-Kent Publishers, Boston, MA, USA, second edition, 1992. ISBN 0-534-92930-3, 0-534-98563-7 (international
student edition); 978-0-534-92930-5, 978-0-534-98563-9 (international student edition). xii + 644 pp. LCCN QA273 .B2546 1991. {196}

[Bec73] Petr Beckmann. Orthogonal Polynomials for Engineers and Physicists. Golem Press, Boulder, CO, USA, 1973. ISBN 0-911762-14-0; 978-0-
911762-14-3. 280 pp. LCCN QA404.5 .B35. {59}

[Bec93] Petr Beckmann. A History of π [pi]. Barnes and Noble, New York, NY, USA, 1993. ISBN 0-88029-418-3; 978-0-88029-418-8. 200 pp.
LCCN QA484 .B4 1971. Reprint of the third edition of 1971. {14, 59, 623}

[Bee94] Nelson H. F. Beebe. The impact of memory and architecture on computer performance. Technical report, Department of Mathematics,
University of Utah, Salt Lake City, UT, USA, February 23, 1994. viii + 62 pp. URL http://www.math.utah.edu/~beebe/memperf.pdf.
Supplemental class notes prepared for Mathematics 118 and 119. {952}

[Bee04a] Nelson H. F. Beebe. 25 years of TEX and METAFONT: Looking back and looking forward: TUG 2003 keynote address. TUGboat, 25(1):
7–30, 2004. ISSN 0896-3207. URL http://www.math.utah.edu/~beebe/talks/tug2003/; http://www.tug.org/TUGboat/tb25-1/
beebe-2003keynote.pdf. {954}

[Bee04b] Nelson H. F. Beebe. Java programming: Fun with Fibonacci. World-Wide Web document, March 2004. URL http://
www.math.utah.edu/~beebe/software/java/fibonacci/. This report summarizes the origin of the Fibonacci sequence, giving the
full Latin text from the original book written in 1202 (not previously available on the Web). Computation of the Fibonacci sequence,
and its term ratios, is implemented in about 50 different programming languages. The report comments on the relative difficulty of
the task in some of those languages, and on their suitability for numerical computation. It also provides a complete floating-point
formatted output package for Java. {15, 73, 978}

[Bee05] Nelson H. F. Beebe. Keynote address: The design of TEX and METAFONT: A retrospective. TUGboat, 26(1):33–51, 2005. ISSN 0896-
3207. URL http://www.tug.org/TUGboat/tb26-1/beebe.pdf. Proceedings of the Practical TeX 2005 conference, Chapel Hill, NC, June
14–17, 2005. {954}

[BEJ76] J. M. Blair, C. A. Edwards, and J. H. Johnson. Rational Chebyshev approximations for the inverse of the error function. Mathematics
of Computation, 30(136):827–830, October 1976. CODEN MCMPAF. ISSN 0025-5718 (print), 1088-6842 (electronic). URL http://
www.jstor.org/stable/2005402. DOI 10.2307/2005402. {600}

[Bel37] Eric Temple Bell. Men of mathematics: The Lives and Achievements of the Great Mathematicians from Zeno to Poincaré. Simon and Schuster,
New York, NY, USA, 1937. ISBN 0-671-62818-6; 978-0-671-62818-5. xxi + 592 pp. LCCN QA28 .B4. {59}

[Bel68] W. W. (William Wallace) Bell. Special Functions for Scientists and Engineers. Van Nostrand, London, UK, 1968. xiv + 247 pp. LCCN
QA351 .B4. {827}

[Bel04] W. W. (William Wallace) Bell. Special Functions for Scientists and Engineers. Dover books on mathematics. Dover, New York, NY, USA,
2004. ISBN 0-486-43521-0; 978-0-486-43521-3. xiv + 247 pp. LCCN QA351 .B4 2004. {827}

[Ber68] A. Bergson. Certification of and remark on Algorithm 304 [S15]: Normal curve integral. Communications of the Association for Computing
Machinery, 11(4):271, April 1968. CODEN CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic). DOI 10.1145/362991.363048. See
[HJ67a, HJ67b]. {618, 1015}

[BF71] Paul F. Byrd and Morris D. Friedman. Handbook of Elliptic Integrals for Engineers and Scientists, volume 67 of Die Grundlehren der
mathematischen Wissenschaften in Einzeldarstellungen. Springer-Verlag, Berlin, Germany / Heidelberg, Germany / London, UK / etc.,
second edition, 1971. ISBN 0-387-05318-2 (New York); 978-0-387-05318-9 (New York). xvi + 358 pp. LCCN QA343 .B95 1971. DOI
10.1007/978-3-642-65138-0. {58, 619, 630, 659, 664, 666, 682, 683, 686}

[BFN94] Paul Bratley, Bennett L. Fox, and Harald Niederreiter. Algorithm 738: Programs to generate Niederreiter’s low-discrepancy sequences.
ACM Transactions on Mathematical Software, 20(4):494–495, December 1994. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295
(electronic). URL http://www.acm.org/pubs/citations/journals/toms/1994-20-4/p494-bratley/. DOI 10.1145/198429.198436.
{203}

[BFSG74] A. R. Barnett, D. H. Feng, J. W. Steed, and L. J. B. Goldfarb. Coulomb wave functions for all real η [eta] and ρ [rho]. Computer Physics
Communications, 8(5):377–395, December 1974. CODEN CPHCBZ. ISSN 0010-4655 (print), 1879-2944 (electronic). DOI 10.1016/
0010-4655(74)90013-7. {17}

[BGA90] Walter S. Brainerd, Charles H. Goldberg, and Jeanne C. Adams. Programmer’s Guide to Fortran 90. McGraw-Hill, New York, NY, USA,
1990. ISBN 0-07-000248-7; 978-0-07-000248-7. vii + 410 pp. LCCN QA76.73.F25 B735 1990. {106}

[BGM96] George A. Baker, Jr. and Peter Graves-Morris. Padé Approximants, volume 59 of Encyclopedia of Mathematics and its Applications. Cam-
bridge University Press, Cambridge, UK, second edition, 1996. ISBN 0-521-45007-1 (hardcover); 978-0-521-45007-2 (hardcover). xiv +
746 pp. LCCN QC20.7.P3 B35 1996. {589}

[BGVHN99] Adhemar Bultheel, Pablo Gonzales-Vera, Erik Hendriksen, and Olav Njastad, editors. Orthogonal Rational Functions, volume 5 of
Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, Cambridge, UK, 1999. ISBN 0-521-
65006-2 (hardcover); 978-0-521-65006-9 (hardcover). xiv + 407 pp. LCCN QA404.5 .O75 1999. {59}

1000 Bibliography

[BH07] Nicolas Brisebarre and Guillaume Hanrot. Floating-point L2-approximations to functions. In Kornerup and Muller [KM07], pages
177–186. ISBN 0-7695-2854-6; 978-0-7695-2854-0. ISSN 1063-6889. LCCN QA76.9.C62. URL http://www.lirmm.fr/arith18/. DOI
10.1109/ARITH.2007.38. {42, 89}

[BHK+84] D. E. Bodenstab, Thomas F. Houghton, Keith A. Kelleman, George Ronkin, and Edward P. Schan. UNIX operating system porting
experiences. AT&T Bell Laboratories Technical Journal, 63(8 part 2):1769–1790, October 1984. CODEN ABLJER. ISSN 0748-612X (print),
2376-7162 (electronic). DOI 10.1002/j.1538-7305.1984.tb00064.x. {74, 972}

[BHY80] Richard P. Brent, Judith A. Hooper, and J. Michael Yohe. An AUGMENT interface for Brent’s multiple precision arithmetic package.
ACM Transactions on Mathematical Software, 6(2):146–149, June 1980. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic).
DOI 10.1145/355887.355889. See [Bre78b, Bre79, Smi98]. {1001, 1032}

[BK15] David Biancolin and Jack Koenig. Hardware accelerator for exact dot product. Report, ASPIRE Laboratory, University of California,
Berkeley, Berkeley, CA, USA, June 19, 2015. {385}

[BKMM07] J. Baik, T. Kriecherbauer, K. T.-R. McLaughlin, and P. D. Miller, editors. Discrete Orthogonal Polynomials: Asymptotics and Applications,
volume 164 of Annals of mathematics studies. Princeton University Press, Princeton, NJ, USA, 2007. ISBN 0-691-12733-6 (hardcover),
0-691-12734-4 (paperback); 978-0-691-12733-0 (hardcover), 978-0-691-12734-7 (paperback). vi + 170 pp. LCCN QA404.5 .D57 2007.
URL http://press.princeton.edu/titles/8450.html. {59}

[Bla64] G. Blanch. Numerical evaluation of continued fractions. SIAM Review, 6(4):383–421, October 1964. CODEN SIREAD. ISSN 0036-1445
(print), 1095-7200 (electronic). DOI 10.1137/1006092. {13}

[Bla97] David Blatner. The Joy of π [pi]. Walker and Co., New York, NY, USA, 1997. ISBN 0-8027-1332-7 (hardcover), 0-8027-7562-
4 (paperback); 978-0-8027-1332-2 (hardcover), 978-0-8027-7562-7 (paperback). xiii + 129 pp. LCCN QA484 .B55 1997. URL
http://www.walkerbooks.com/books/catalog.php?key=4. {14, 59, 623}

[Blu78] James L. Blue. A portable Fortran program to find the Euclidean norm of a vector. ACM Transactions on Mathematical Software, 4(1):
15–23, March 1978. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic). DOI 10.1145/355769.355771. {223}

[BM58] G. E. P. Box and Mervin E. Muller. A note on the generation of random normal deviates. Annals of Mathematical Statistics, 29(2):
610–611, June 1958. CODEN AASTAD. ISSN 0003-4851. URL http://projecteuclid.org/euclid.aoms/1177706645; http://
www.jstor.org/stable/2237361. DOI 10.1214/aoms/1177706645. {193}

[BM04] Sylvie Boldo and Guillaume Melquiond. When double rounding is odd. Research Report RR2004-48, École Normale Supérieure
de Lyon, 69364 Lyon Cedex 07, France, November 2004. 2 + 7 pp. URL http://www.ens-lyon.fr/LIP/Pub/Rapports/RR/RR2004/
RR2004-48.pdf. {403}

[BM05] Sylvie Boldo and Jean-Michel Muller. Some functions computable with a fused-mac. In Montuschi and Schwarz [MS05], pages 52–58.
ISBN 0-7695-2366-8; 978-0-7695-2366-8. LCCN QA76.9.C62 .S95 2005. URL http://arith17.polito.it/final/paper-106.pdf. DOI
10.1109/ARITH.2005.39. {397, 406}

[BM08] Sylvie Boldo and Guillaume Melquiond. Emulation of a FMA and correctly rounded sums: Proved algorithms using rounding to
odd. IEEE Transactions on Computers, 57(4):462–471, April 2008. CODEN ITCOB4. ISSN 0018-9340 (print), 1557-9956 (electronic). DOI
10.1109/TC.2007.70819. {403}

[BM11] Sylvie Boldo and Jean-Michel Muller. Exact and approximated error of the FMA. IEEE Transactions on Computers, 60(2):157–164,
February 2011. CODEN ITCOB4. ISSN 0018-9340 (print), 1557-9956 (electronic). DOI 10.1109/TC.2010.139. {397, 403, 406}

[BMM78] C. Gordon Bell, J. Craig Mudge, and John E. McNamara, editors. Computer Engineering: A DEC View of Hardware Systems Design.
Digital Press, Bedford, MA, USA, 1978. ISBN 0-932376-00-2; 978-0-932376-00-8. xxii + 585 pp. LCCN TK7885 .C64. URL http://
www.bitsavers.org/pdf/dec/Bell-ComputerEngineering.pdf. {954}

[BMY07] N. N. Bogolyubov, G. K. Mikhaı̆lov, and A. P. Yushkevich, editors. Euler and Modern Science, volume 4 of MAA tercentenary Euler
celebration: Spectrum series. Mathematical Association of America, Washington, DC, USA, English edition, 2007. ISBN 0-88385-564-X;
978-0-88385-564-5. xiv + 425 pp. LCCN Q143.E84 R3913 2007. Translated by Robert Burns from the 1988 Russian original, Razvitie ideı̆
Leonarda Eulera i sovremennaya nauka. {591}

[Bol09] Sylvie Boldo. Kahan’s algorithm for a correct discriminant computation at last formally proven. IEEE Transactions on Computers, 58(2):
220–225, February 2009. CODEN ITCOB4. ISSN 0018-9340 (print), 1557-9956 (electronic). DOI 10.1109/TC.2008.200. See [Kah04b]
for the original algorithm. {472, 1018}

[Boy89] Joan Boyar. Inferring sequences produced by pseudo-random number generators. Journal of the Association for Computing Machinery,
36(1):129–141, January 1989. CODEN JACOAH. ISSN 0004-5411 (print), 1557-735x (electronic). DOI 10.1145/58562.59305. {207}

[BPZ07] Richard P. Brent, Colin Percival, and Paul Zimmermann. Error bounds on complex floating-point multiplication. Mathemat-
ics of Computation, 76(259):1469–1481, July 2007. CODEN MCMPAF. ISSN 0025-5718 (print), 1088-6842 (electronic). URL
http://www.ams.org/mcom/2007-76-259/S0025-5718-07-01931-X/. DOI 10.1090/S0025-5718-07-01931-X. {458, 476}

[BR91] Claude Brezinski and Michela Redivo Zaglia. Extrapolation Methods: Theory and Practice, volume 2 of Studies in Computational Mathe-
matics. North-Holland, Amsterdam, The Netherlands, 1991. ISBN 0-444-88814-4; 978-0-444-88814-3. ix + 464 pp. LCCN QA281 .B74
1991. {589}

[Bre76a] Richard P. Brent. Analysis of the binary Euclidean algorithm. In J. F. Traub, editor, Algorithms and Complexity: Recent Results and New
Directions: [Proceedings of a Symposium on New Directions and Recent Results in Algorithms and Complexity held by the Computer Science
Department, Carnegie-Mellon University, April 7–9, 1976], pages 321–355. Academic Press, New York, NY, USA, 1976. ISBN 0-12-697540-
X; 978-0-12-697540-6. LCCN QA76.6 .S9195 1976. URL http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.122.7959.
The complexity of the binary Euclidean algorithm for the greatest common denominator is shown to be O(0.705 lg N) for large N =
max(|u|, |v|). See [Bre00] for an update, and a repair to an incorrect conjecture in this paper. See also [Bre99], where the worst case
complexity is shown to be O(lg N), and the number of right shifts at most 2 lg(N). {184, 1001}

Bibliography 1001

[Bre76b] Richard P. Brent. Fast multiple-precision evaluation of elementary functions. Journal of the Association for Computing Machinery, 23(2):
242–251, April 1976. CODEN JACOAH. ISSN 0004-5411 (print), 1557-735x (electronic). DOI 10.1145/321941.321944. {623}

[Bre78a] Richard P. Brent. A Fortran multiple-precision arithmetic package. ACM Transactions on Mathematical Software, 4(1):57–70, March 1978.
CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic). DOI 10.1145/355769.355775. {28}

[Bre78b] Richard P. Brent. Algorithm 524: MP, A Fortran multiple-precision arithmetic package [A1]. ACM Transactions on Mathematical Software,
4(1):71–81, March 1978. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic). DOI 10.1145/355769.355776. See also
[Bre79, BHY80, Smi98]. {28, 1000, 1001, 1032}

[Bre79] Richard P. Brent. Remark on “Algorithm 524: MP, A Fortran multiple-precision arithmetic package [A1]”. ACM Transactions on
Mathematical Software, 5(4):518–519, December 1979. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic). DOI 10.1145/
355853.355868. See [Bre78b, BHY80, Smi98]. {1000, 1001, 1032}

[Bre91] Claude Brezinski. History of Continued Fractions and Padé Approximants, volume 12 of Springer series in computational mathematics.
Springer-Verlag, Berlin, Germany / Heidelberg, Germany / London, UK / etc., 1991. ISBN 3-540-15286-5 (Berlin), 0-387-15286-5 (New
York); 978-3-540-15286-6 (Berlin), 978-0-387-15286-8 (New York). 551 pp. LCCN QA295 .B79 1990. DOI 10.1007/978-3-642-58169-4.
{19, 59}

[Bre99] Richard P. Brent. Further analysis of the binary Euclidean algorithm. Technical Report TR-7-99, Programming Research Group, Oxford
University, Oxford, UK, November 4, 1999. 18 pp. URL http://arxiv.org/pdf/1303.2772.pdf. See also earlier work [Bre76a]. {184,
1000}

[Bre00] Richard P. Brent. Twenty years’ analysis of the binary Euclidean algorithm. In Jim Davies, A. W. Roscoe, and Jim Woodcock, ed-
itors, Millennial perspectives in computer science: proceedings of the 1999 Oxford–Microsoft Symposium in honour of Professor Sir Antony
Hoare, pages 41–52. Palgrave, Basingstoke, UK, 2000. ISBN 0-333-92230-1; 978-0-333-92230-9. LCCN QA75.5 .O8 2000. URL
http://www.cs.ox.ac.uk/people/richard.brent/pd/rpb183pr.pdf. {184, 1000}

[Bre04] Richard P. Brent. Note on Marsaglia’s xorshift random number generators. Journal of Statistical Software, 11(5):1–5, 2004. CODEN
JSSOBK. ISSN 1548-7660. URL http://www.jstatsoft.org/counter.php?id=101&url=v11/i05/v11i05.pdf&ct=1. DOI 10.18637/
jss.v011.i05. See [Mar03b, PL05, Vig16]. This article shows the equivalence of xorshift generators and the well-understood linear
feedback shift register generators. {1024, 1028}

[Bro73] R. Broucke. ACM Algorithm 446: Ten subroutines for the manipulation of Chebyshev series [C1]. Communications of the Association
for Computing Machinery, 16(4):254–256, April 1973. CODEN CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic). DOI 10.1145/
362003.362037. See remark and certification [PM75]. {48, 1028}

[Bro82] Frederick P. Brooks, Jr. The Mythical Man-Month — Essays on Software Engineering. Addison-Wesley, Reading, MA, USA, 1982. ISBN
0-201-00650-2; 978-0-201-00650-6. xi + 195 pp. LCCN QA 76.6 B75 1982. {963}

[Bro95] Frederick P. Brooks, Jr. The Mythical Man-Month — Essays on Software Engineering. Addison-Wesley, Reading, MA, USA, anniversary
edition, 1995. ISBN 0-201-83595-9; 978-0-201-83595-3. xiii + 322 pp. LCCN QA76.758 .B75 1995. {963}

[Bry08] Yury Aleksandrovich Brychkov. Handbook of Special Functions: Derivatives, Integrals, Series and other Formulas. CRC Press, Boca Raton,
FL, USA, 2008. ISBN 1-58488-956-X; 978-1-58488-956-4. xix + 680 pp. LCCN QA351 .B79 2008. {58, 521, 556, 827}

[BS77] J. D. Beasley and S. G. Springer. Statistical algorithms: Algorithm AS 111: The percentage points of the normal distribu-
tion. Applied Statistics, 26(1):118–121, March 1977. CODEN APSTAG. ISSN 0035-9254 (print), 1467-9876 (electronic). URL
http://lib.stat.cmu.edu/apstat/111. DOI 10.2307/2346889. {618}

[BS80] Jon Louis Bentley and James B. Saxe. Generating sorted lists of random numbers. ACM Transactions on Mathematical Software, 6(3):
359–364, September 1980. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic). DOI 10.1145/355900.355907. {168}

[BS92] Ronald F. Boisvert and Bonita V. Saunders. Portable vectorized software for Bessel function evaluation. ACM Transactions on
Mathematical Software, 18(4):456–469, December 1992. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic). URL
http://www.acm.org/pubs/citations/journals/toms/1992-18-4/p456-boisvert/. DOI 10.1145/138351.138370. See correction
[BS93]. {693, 823, 1001}

[BS93] Ronald F. Boisvert and Bonita V. Saunders. Corrigendum: “Algorithm 713: Portable vectorized software for Bessel function eval-
uation”. ACM Transactions on Mathematical Software, 19(1):131, March 1993. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295
(electronic). See [BS92]. {823, 1001}

[BS03] Jean Claude Bajard and Michael J. Schulte, editors. 16th IEEE Symposium on Computer Arithmetic: ARITH-16 2003: proceedings: Santiago
de Compostela, Spain, June 15–18, 2003. IEEE Computer Society Press, Silver Spring, MD, USA, 2003. ISBN 0-7695-1894-X; 978-0-7695-
1894-7. ISSN 1063-6889. LCCN QA76.6 .S919 2003. URL http://www.dec.usc.es/arith16/. {998, 1005, 1032}

[BS07] Robert E. Bradley and Charles Edward Sandifer, editors. Leonhard Euler: Life, Work, and Legacy, volume 5 of Studies in the History and
Philosophy of Mathematics. Elsevier, Amsterdam, The Netherlands, 2007. ISBN 0-444-52728-1; 978-0-444-52728-8. viii + 534 pp. LCCN
QA29.E8 L465 2007. URL http://www.sciencedirect.com/science/book/9780444527288. {591}

[BS12] Michael Baudin and Robert L. Smith. A robust complex division in Scilab. CoRR, abs/1210.4539, 2012. URL http://arxiv.org/abs/
1210.4539. {463}

[BSI03a] The C Standard: Incorporating Technical Corrigendum 1. Wiley, New York, NY, USA, 2003. ISBN 0-470-84573-2; 978-0-470-84573-8. 538
pp. LCCN QA76.73.C15C185 2003. BS ISO/IEC 9899:1999. {4}

[BSI03b] The C++ Standard: Incorporating Technical Corrigendum 1: BS ISO. Wiley, New York, NY, USA, second edition, 2003. ISBN 0-470-84674-7;
978-0-470-84674-2. xxxiv + 782 pp. LCCN QA76.73.C153C16 2003. {vii}

1002 Bibliography

[Buc62] Werner Buchholz, editor. Planning a computer system: Project Stretch. McGraw-Hill, New York, NY, USA, 1962. xvii + 322 pp. LCCN
1876. URL http://ed-thelen.org/comp-hist/IBM-7030-Planning-McJones.pdf. This important book is the primary description of
the influential IBM 7030 Stretch computer, written by its architects. {959, 998}

[Bur07] David M. Burton. The History of Mathematics: An Introduction. McGraw-Hill, New York, NY, USA, sixth edition, 2007. ISBN 0-07-
305189-6; 978-0-07-305189-5. xii + 788 pp. LCCN QA21 .B96 2007. {59}

[BW10] Richard Beals and R. (Roderick) Wong. Special Functions: a Graduate Text, volume 126 of Cambridge studies in advanced mathematics.
Cambridge University Press, Cambridge, UK, 2010. ISBN 0-521-19797-X; 978-0-521-19797-7. ix + 456 pp. LCCN QA351 .B34 2010;
QA351 BEA 2010. {827}

[BWKM91] Gerd Bohlender, W. Walter, Peter Kornerup, and David W. Matula. Semantics for exact floating point operations. In Ko-
rnerup and Matula [KM91], pages 22–26. ISBN 0-8186-9151-4 (case), 0-8186-6151-8 (microfiche), 0-7803-0187-0 (library binding);
978-0-8186-9151-5 (case), 978-0-8186-6151-8 (microfiche), 978-0-7803-0187-0 (library binding). LCCN QA76.9.C62 S95 1991. DOI
10.1109/ARITH.1991.145529. See [BD03a] for some special cases that this paper may have overlooked. {366}

[BZ11] Richard P. Brent and Paul Zimmermann. Modern Computer Arithmetic, volume 18 of Cambridge monographs on applied and computational
mathematics. Cambridge University Press, Cambridge, UK, 2011. ISBN 0-521-19469-5 (hardcover); 978-0-521-19469-3 (hardcover). xvi
+ 221 pp. LCCN QA76.9.C62 BRE 2011. URL http://www.loria.fr/~zimmerma/mca/pub226.html. {104, 407, 574, 978}

[C90] ISO/IEC 9899:1990: Programming languages — C. International Organization for Standardization, Geneva, Switzerland, 1990. URL
http://www.iso.ch/cate/d17782.html. {vii, 1, 4, 827}

[C++98] ISO/IEC 14882:1998: Programming languages — C++. International Organization for Standardization, Geneva, Switzerland, Septem-
ber 1, 1998. 732 pp. URL http://www.iso.ch/cate/d25845.html. Available in electronic form for online purchase at
http://webstore.ansi.org/ and http://www.cssinfo.com/. {vii, 1, 57, 106}

[C99] ISO/IEC 9899:1999: Programming Languages — C. International Organization for Standardization, Geneva, Switzerland, De-
cember 16, 1999. 538 pp. URL http://anubis.dkuug.dk/JTC1/SC22/open/n2620/n2620.pdf; http://anubis.dkuug.dk/
JTC1/SC22/WG14/www/docs/n897.pdf; http://webstore.ansi.org/ansidocstore/product.asp?sku=ISO%2FIEC+9899%3A1999;
http://www.iso.ch/cate/d29237.html. Available in electronic form for online purchase at http://webstore.ansi.org/ and
http://www.cssinfo.com/. {vii, 1, 4, 106, 441, 449, 455, 456, 460, 482, 490, 496, 507, 513, 514, 518, 525, 534}

[C++03a] ISO/IEC 14882:2003: Programming languages — C++. International Organization for Standardization, Geneva, Switzerland, 2003. 757
pp. URL http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=38110. {vii, 1, 57, 106}

[C#03b] ISO/IEC 23270:2003: Information technology — C# Language Specification. International Organization for Standardization, Geneva,
Switzerland, 2003. xiii + 471 pp. URL http://standards.iso.org/ittf/PubliclyAvailableStandards/c036768_ISO_IEC_23270_
2003(E).zip. {80, 917}

[C#06a] ISO/IEC 23270:2006: Information technology — Programming languages — C#. Technical report. International Organization for Stan-
dardization, Geneva, Switzerland, 2006. URL http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?
csnumber=42926. {vii, 917}

[C06b] ISO/IEC JTC1 SC22 WG14 N1154: Extension for the programming language C to support decimal floating-point arithmetic. World-
Wide Web document, February 27, 2006. URL http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1154.pdf. {875, 928}

[C06c] ISO/IEC JTC1 SC22 WG14 N1161: Rationale for TR 24732: Extension to the programming language C: Decimal floating-point arith-
metic. World-Wide Web document, February 27, 2006. URL http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1161.pdf. {875,
928}

[C06d] ISO/IEC JTC1 SC22 WG14 N1176: Extension for the programming language C to support decimal floating-point arithmetic. World-
Wide Web document, May 24, 2006. URL http://open-std.org/jtc1/sc22/wg14/www/docs/n1176.pdf. {875, 928}

[C09] ISO/IEC TR 24732:2009 Information technology — Programming languages, their environments and system software interfaces — Extension for
the programming language C to support decimal floating-point arithmetic. Technical report. International Organization for Standardization,
Geneva, Switzerland, 2009. URL http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=38842.
{928}

[C++10] ISO/IEC 29124:2010: Information technology — Programming languages, their environments and system software interfaces — Extensions to
the C++ Library to support mathematical special functions. Technical report. International Organization for Standardization, Geneva,
Switzerland, 2010. URL http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=50511. {57}

[C++11a] ISO/IEC 14882:2011 Information technology — Programming languages — C++. International Organization for Standardization, Geneva,
Switzerland, third edition, September 1, 2011. URL http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?
csnumber=50372. {vii, 1}

[C11b] ISO/IEC 9899:2011 Information technology — Programming languages — C. International Organization for Standardization, Geneva,
Switzerland, December 8, 2011. 683 (est.) pp. URL http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?
csnumber=57853. {vii, 1}

[C++14] ISO/IEC 14882:2014 Information technology — Programming languages — C++. International Organization for Standardization, Geneva,
Switzerland, fourth edition, December 15, 2014. URL http://www.iso.org/iso/home/store/catalogue_ics/catalogue_detail_
ics.htm?csnumber=64029. {1}

[CAH+07] Marius Cornea, Cristina Anderson, John Harrison, Ping Tak Peter Tang, Eric Schneider, and Charles Tsen. A software implementation
of the IEEE 754R decimal floating-point arithmetic using the binary encoding format. In Kornerup and Muller [KM07], pages 29–37.
ISBN 0-7695-2854-6; 978-0-7695-2854-0. ISSN 1063-6889. LCCN QA76.9.C62. URL http://www.lirmm.fr/arith18/papers/CorneaM_
Decimal_ARITH18.pdf. DOI 10.1109/ARITH.2007.7. {928}

Bibliography 1003

[Cai11] Liang-Wu Cai. On the computation of spherical Bessel functions of complex arguments. Computer Physics Communications, 182(3):663–
668, March 2011. CODEN CPHCBZ. ISSN 0010-4655 (print), 1879-2944 (electronic). URL http://www.sciencedirect.com/science/
article/pii/S0010465510004650. DOI 10.1016/j.cpc.2010.11.019. {693}

[Caj91] Florian Cajori. A History of Mathematics. Chelsea Publishing Company, New York, NY, USA, fifth edition, 1991. ISBN 0-8284-2303-6;
978-0-8284-2303-8. xi + 524 pp. LCCN QA21 .C15 1991. {59}

[Cal95] Ronald Calinger, editor. Classics of Mathematics. Prentice-Hall, Upper Saddle River, NJ, USA, 1995. ISBN 0-02-318342-X; 978-0-02-
318342-3. xxi + 793 pp. LCCN QA21 .C55 1995. {7}

[Cam80] J. B. Campbell. On Temme’s algorithm for the modified Bessel function of the third kind. ACM Transactions on Mathematical Software,
6(4):581–586, December 1980. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic). DOI 10.1145/355921.355928. {693}

[Car63] L. Carlitz. The inverse of the error function. Pacific Journal of Mathematics, 13(2):459–470, 1963. CODEN PJMAAI. ISSN 0030-8730
(print), 1945-5844 (electronic). URL http://projecteuclid.org/euclid.pjm/1103035736. {600}

[Car70] Bille Chandler Carlson. Hidden symmetries of special functions. SIAM Review, 12(3):332–345, July 1970. CODEN SIREAD. ISSN
0036-1445 (print), 1095-7200 (electronic). URL http://www.jstor.org/stable/2028552. DOI 10.1137/1012078. {646}

[Car71] Bille Chandler Carlson. Algorithms involving arithmetic and geometric means. American Mathematical Monthly, 78(5):496–505, May
1971. CODEN AMMYAE. ISSN 0002-9890 (print), 1930-0972 (electronic). URL http://www.jstor.org/stable/2317754. DOI 10.2307/
2317754. {623}

[Car77] Bille Chandler Carlson. Special Functions of Applied Mathematics. Academic Press, New York, NY, USA, 1977. ISBN 0-12-160150-1;
978-0-12-160150-8. xv + 335 pp. LCCN QA351 .C32. {644–646, 653, 682, 827}

[Car79] Bille Chandler Carlson. Computing elliptic integrals by duplication. Numerische Mathematik, 33(1):1–16, March 1979. CODEN
NUMMA7. ISSN 0029-599X (print), 0945-3245 (electronic). DOI 10.1007/BF01396491. {646, 649, 651}

[Car95] Bille Chandler Carlson. Numerical computation of real or complex elliptic integrals. Numerical Algorithms, 10(1–2):13–26, July 1995.
CODEN NUALEG. ISSN 1017-1398 (print), 1572-9265 (electronic). DOI 10.1007/BF02198293. Special functions (Torino, 1993). {646,
648}

[Cat03] Don Catlin. The Lottery Book: The Truth behind the Numbers. Bonus Books, Chicago, IL, USA, 2003. ISBN 1-56625-193-1; 978-1-56625-
193-8. xvii + 181 pp. LCCN HG6126 .C38 2003. This book describes US lotteries, and how their odds and payouts are determined.
{297}

[CBB+99] Jean-Luc Chabert, E. Barbin, Jacques Borowczyk, Michel Guillemot, Anne Michel-Pajus, Ahmed Djebbar, and Jean-Claude Martzloff,
editors. Histoire d’Algorithmes. A History of Algorithms: from the Pebble to the Microchip. Springer-Verlag, Berlin, Germany / Heidelberg,
Germany / London, UK / etc., 1999. ISBN 3-540-63369-3 (softcover); 978-3-540-63369-3 (softcover). ix + 524 pp. LCCN QA58 .H5813
1998. DOI 10.1007/978-3-642-18192-4. Translated by Chris Weeks from the 1994 French original, Histoire d’algorithmes. Du caillou à
la puce. {59}

[CBGK13] Mathew A. Cleveland, Thomas A. Brunner, Nicholas A. Gentile, and Jeffrey A. Keasler. Obtaining identical results with dou-
ble precision global accuracy on different numbers of processors in parallel particle Monte Carlo simulations. Journal of Com-
putational Physics, 251:223–236, October 15, 2013. CODEN JCTPAH. ISSN 0021-9991 (print), 1090-2716 (electronic). URL
http://www.sciencedirect.com/science/article/pii/S0021999113004075. DOI 10.1016/j.jcp.2013.05.041. {385}

[CCG+84] William J. Cody, Jr., Jerome T. Coonen, David M. Gay, K. Hanson, David G. Hough, William M. Kahan, Richard Karpinski, John F.
Palmer, Frederic N. Ris, and David Stevenson. A proposed radix- and word-length-independent standard for floating-point arithmetic.
IEEE Micro, 4(4):86–100, August 1984. CODEN IEMIDZ. ISSN 0272-1732 (print), 1937-4143 (electronic). DOI 10.1109/MM.1984.291224.
{104, 152}

[CDGI15] Sylvain Collange, David Defour, Stef Graillat, and Roman Iakymchuk. Numerical reproducibility for the parallel reduction on multi-
and many-core architectures. Parallel Computing, 49:83–97, November 2015. CODEN PACOEJ. ISSN 0167-8191 (print), 1872-7336
(electronic). URL http://www.sciencedirect.com/science/article/pii/S0167819115001155. DOI 10.1016/j.parco.2015.09.001.
{385}

[CGL90] R. Coquereaux, A. Grossmann, and B. E. Lautrup. Iterative method for calculation of the Weierstrass elliptic function. IMA Journal
of Numerical Analysis, 10(1):119–128, January 1990. CODEN IJNADH. ISSN 0272-4979 (print), 1464-3642 (electronic). DOI 10.1093/
imanum/10.1.119. {689}

[CH67] William J. Cody, Jr. and K. E. Hillstrom. Chebyshev approximations for the natural logarithm of the gamma function. Math-
ematics of Computation, 21(98):198–203, April 1967. CODEN MCMPAF. ISSN 0025-5718 (print), 1088-6842 (electronic). URL
http://www.jstor.org/stable/2004160. DOI 10.2307/2004160. {521}

[CH75] Tien Chi Chen and Irving T. Ho. Storage-efficient representation of decimal data. Communications of the Association for Com-
puting Machinery, 18(1):49–52, January 1975. CODEN CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic). URL http://
www2.hursley.ibm.com/decimal/chen-ho.html. DOI 10.1145/360569.360660. Collection of articles honoring Alston S. Householder.
See comment [Smi75]. {928, 1032}

[Che98] Russell C. H. Cheng. Random variate generation. In Banks [Ban98], pages 138–172. ISBN 0-471-13403-1 (hardcover); 978-0-471-13403-9
(hardcover). LCCN T57.62 .H37 1998. DOI 10.1002/9780470172445.ch5. {196}

[Chi78] Theodore Seio Chihara. An Introduction to Orthogonal Polynomials, volume 13 of Mathematics and its applications. Gordon and Breach,
New York, NY, USA, 1978. ISBN 0-677-04150-0; 978-0-677-04150-6. xii + 249 pp. LCCN QA404.5 .C44. {59}

[CHT02] Marius Cornea, John Harrison, and Ping Tak Peter Tang. Scientific computing on Itanium-based systems. Intel Corporation, Santa Clara,
CA, USA, 2002. ISBN 0-9712887-7-1; 978-0-9712887-7-5. xvii + 406 pp. LCCN QA76.8.I83 C67 2002. URL http://www.intel.com/
intelpress/sum_scientific.htm. {299}

1004 Bibliography

[CJW06] James A. Carlson, Arthur Jaffe, and Andrew Wiles, editors. The Millennium Prize Problems. American Mathematical Society, Providence,
RI, USA, 2006. ISBN 0-8218-3679-X; 978-0-8218-3679-8. viii + 165 pp. LCCN QA43 .M493 2006. URL http://www.claymath.org/
publications/Millennium_Problems/. {60, 303, 521, 579, 590}

[CKCFR03] Martin Campbell-Kelly, Mary Croarken, Raymond Flood, and Eleanor Robson, editors. The History of Mathematical Tables: From Sumer
to Spreadsheets. Oxford University Press, Oxford, UK, 2003. ISBN 0-19-850841-7; 978-0-19-850841-0. viii + 361 pp. LCCN QA47 .H57
2003. {59}

[CKP+79] Jerome T. Coonen, William M. Kahan, John F. Palmer, Tom Pittman, and David Stevenson. A proposed standard for binary floating
point arithmetic: Draft 5.11. ACM SIGNUM Newsletter, 14(3S):4–12, October 1979. CODEN SNEWD6. ISSN 0163-5778 (print), 1558-
0237 (electronic). DOI 10.1145/1057520.1057521. {104}

[CKT07] Kalyan Chakraborty, Shigeru Kanemitsu, and Haruo Tsukada. Vistas of Special Functions II. World Scientific Publishing, Singapore,
2007. ISBN 981-270-774-3; 978-981-270-774-1. xii + 215 pp. LCCN QA351 .K35 2007. {827}

[Clay09] Clay Mathematics Institute. Web site., 2009. URL http://www.claymath.org/. This institute sponsors research in advanced mathe-
matics, and offers large monetary prizes for solutions of selected famous unsolved problems in mathematics. {303, 521, 579, 590}

[Cle03] Brian Clegg. A Brief History of Infinity: The Quest to Think the Unthinkable. Constable and Robinson, London, UK, 2003. ISBN 1-84119-
650-9; 978-1-84119-650-3. 255 pp. LCCN BD411. {59}

[Cli90] William D. Clinger. How to read floating point numbers accurately. ACM SIGPLAN Notices, 25(6):92–101, June 1990. CODEN
SINODQ. ISBN 0-89791-364-7; 978-0-89791-364-5. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic). URL http://
www.acm.org:80/pubs/citations/proceedings/pldi/93542/p92-clinger/. DOI 10.1145/93548.93557. See also output algorithms
in [Knu90, SW90, BD96, ABC+99, SW04] and retrospective [Cli04]. {895, 896, 995, 998, 1004, 1020, 1034}

[CLI03] ISO/IEC 23271:2003: Information technology — Common Language Infrastructure. International Organization for Standardiza-
tion, Geneva, Switzerland, 2003. xi + 99 (Part I), ix + 164 (Part II), vi + 125 (Part III), iii + 16 (Part IV), iv + 79 (Part
V) pp. URL http://standards.iso.org/ittf/PubliclyAvailableStandards/c036769_ISO_IEC_23271_2003(E).zip; http://
www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=36769. {917}

[Cli04] William D. Clinger. Retrospective: How to read floating point numbers accurately. ACM SIGPLAN Notices, 39(4):360–371, April
2004. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic). DOI 10.1145/989393.989430. Best of PLDI
1979–1999. Reprint of, and retrospective on, [Cli90]. {895, 998, 1004, 1020, 1034}

[CLI05] ISO/IEC TR 23272: Information technology — Common Language Infrastructure — Profiles and Libraries. International Organization for
Standardization, Geneva, Switzerland, 2005. 6 pp. URL http://standards.iso.org/ittf/PubliclyAvailableStandards/c036770_
ISO_IEC_TR_23272_2003(E).zip. {vii, 80, 917}

[CLI06] ISO/IEC 23271:2006: Information technology: Common Language Infrastructure (CLI) Partitions I to VI. International standard. International
Organization for Standardization, Geneva, Switzerland, second edition, 2006. {vii, 917}

[CLK99] Patrick Chan, Rosanna Lee, and Doug Kramer. The Java Class Libraries: java.io, java.lang, java.math, java.net, java.text,
java.util, volume 1. Addison-Wesley, Reading, MA, USA, second edition, 1999. ISBN 0-201-31002-3; 978-0-201-31002-3. xxvi +
2050 pp. LCCN QA76.73.J38 C47 1998. {vii}

[CMF77] William J. Cody, Jr., Rose M. Motley, and L. Wayne Fullerton. The computation of real fractional order Bessel functions of the second
kind. ACM Transactions on Mathematical Software, 3(3):232–239, September 1977. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295
(electronic). DOI 10.1145/355744.355747. {693}

[CN81] Bille Chandler Carlson and Elaine M. Notis. Algorithm 577: Algorithms for incomplete elliptic integrals [S21]. ACM Transactions
on Mathematical Software, 7(3):398–403, September 1981. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic). URL
http://www.netlib.org/toms/577. DOI 10.1145/355958.355970. {646, 648, 650}

[COB02] ISO/IEC 1989:2002: Information technology — Programming languages — COBOL. International Organization for Standardization,
Geneva, Switzerland, 2002. 859 pp. URL http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=28805.
{928}

[Cod64] William J. Cody, Jr. Double-precision square root for the CDC-3600. Communications of the Association for Computing Machinery, 7(12):
715–718, December 1964. CODEN CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic). DOI 10.1145/355588.365122. {949}

[Cod65a] William J. Cody, Jr. Chebyshev approximations for the complete elliptic integrals K and E. Mathematics of Computation, 19(89–92):105–
112, April 1965. CODEN MCMPAF. ISSN 0025-5718 (print), 1088-6842 (electronic). URL http://www.jstor.org/stable/2004103.
DOI 10.2307/2004103. See corrigenda [Cod66]. {644, 1004}

[Cod65b] William J. Cody, Jr. Chebyshev polynomial expansions of complete elliptic integrals. Mathematics of Computation, 19(89–92):249–259,
April 1965. CODEN MCMPAF. ISSN 0025-5718 (print), 1088-6842 (electronic). URL http://www.jstor.org/stable/2003350. DOI
10.2307/2003350. {644}

[Cod66] William J. Cody, Jr. Corrigenda: “Chebyshev approximations for the complete elliptic integrals K and E”. Mathematics of Computation,
20(93):207, January 1966. CODEN MCMPAF. ISSN 0025-5718 (print), 1088-6842 (electronic). URL http://www.jstor.org/stable/
2004329. DOI 10.2307/2004329. See [Cod65a]. {1004}

[Cod69] William J. Cody, Jr. Rational Chebyshev approximations for the error function. Mathematics of Computation, 23(107):631–637, July 1969.
CODEN MCMPAF. ISSN 0025-5718 (print), 1088-6842 (electronic). URL http://www.jstor.org/stable/2004390. DOI 10.2307/
2004390. {593}

[Cod80] William J. Cody, Jr. Preliminary report on software for modified Bessel functions of the first kind. Technical Memo AMD TM-357,
Argonne National Laboratory, Argonne, IL, USA, 1980. {693}

Bibliography 1005

[Cod81] William J. Cody, Jr. Analysis of proposals for the floating-point standard. Computer, 14(3):63–69, March 1981. CODEN CPTRB4. ISSN
0018-9162 (print), 1558-0814 (electronic). URL http://ieeexplore.ieee.org/document/1667286/. DOI 10.1109/C-M.1981.220379.
See [IEEE85a]. {63, 1016}

[Cod83] William J. Cody, Jr. Algorithm 597: Sequence of modified Bessel functions of the first kind. ACM Transactions on Mathematical Software,
9(2):242–245, June 1983. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic). DOI 10.1145/357456.357462. {693}

[Cod88a] William J. Cody, Jr. Performance evaluation of programs for the error and complementary error functions. Mathematics and Computer
Science Preprint MCS-P13-0988, Argonne National Laboratory, Argonne, IL, USA, September 1988. Published in [Cod90]. {593}

[Cod88b] William J. Cody, Jr. Performance evaluation of programs related to the real gamma function. Mathematics and Computer Science
Preprint MCS-P12-0988, Argonne National Laboratory, Argonne, IL, USA, September 1988. Published in [Cod91]. {521, 1005}

[Cod90] William J. Cody, Jr. Performance evaluation of programs for the error and complementary error functions. ACM Transactions on
Mathematical Software, 16(1):29–37, March 1990. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic). URL http://
www.acm.org/pubs/toc/Abstracts/0098-3500/77628.html. DOI 10.1145/77626.77628. {593, 1005}

[Cod91] William J. Cody, Jr. Performance evaluation of programs related to the real gamma function. ACM Transactions on Mathematical
Software, 17(1):46–54, March 1991. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic). URL http://www.acm.org/
pubs/toc/Abstracts/0098-3500/103153.html. DOI 10.1145/103147.103153. Preprint in [Cod88b]. {521, 525, 1005}

[Cod93a] William J. Cody, Jr. Algorithm 714: CELEFUNT: A portable test package for complex elementary functions. ACM Transactions on
Mathematical Software, 19(1):1–21, March 1993. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic). DOI 10.1145/
151271.151272. {476}

[Cod93b] William J. Cody, Jr. Algorithm 715: SPECFUN: A portable FORTRAN package of special function routines and test drivers. ACM
Transactions on Mathematical Software, 19(1):22–32, March 1993. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic).
URL http://www.acm.org/pubs/toc/Abstracts/0098-3500/151273.html. DOI 10.1145/151271.151273. {521, 525, 593, 693}

[Coh81] Danny Cohen. On Holy Wars and a plea for peace. Computer, 14(10):48–54, October 1981. CODEN CPTRB4. ISSN 0018-9162 (print),
1558-0814 (electronic). DOI 10.1109/C-M.1981.220208. This is an entertaining account of the Big-Endian and Little-Endian problems
of bit and byte ordering. {956, 963}

[Con67] Control Data Corporation, St. Paul, MN, USA. Control Data 6400/6500/6600 Computer Systems Reference Manual, 1967. vi + 153 pp. URL
http://www.bitsavers.org/pdf/cdc/6x00/60100000D_6600refMan_Feb67.pdf. {949}

[Con71] Control Data Corporation, St. Paul, MN, USA. Control Data 7600 Computer Systems Reference Manual, February 1971. v + 194 pp. URL
http://www.bitsavers.org/pdf/cdc/7600/60258200C_7600_RefMan_Feb71.pdf. {949}

[Coo80] Jerome T. Coonen. An implementation guide to a proposed standard for floating-point arithmetic. Computer, 13(1):68–79, January
1980. CODEN CPTRB4. ISSN 0018-9162 (print), 1558-0814 (electronic). DOI 10.1109/MC.1980.1653344. See [IEEE85a], and errata in
[Coo81a]. {63, 104, 1005, 1016}

[Coo81a] Jerome T. Coonen. Errata: An implementation guide to a proposed standard for floating point arithmetic. Computer, 14(3):62, March
1981. CODEN CPTRB4. ISSN 0018-9162 (print), 1558-0814 (electronic). DOI 10.1109/C-M.1981.220378. See [Coo80, IEEE85a]. {63,
1005, 1016}

[Coo81b] Jerome T. Coonen. Underflow and the denormalized numbers. Computer, 14(3):75–87, March 1981. CODEN CPTRB4. ISSN 0018-
9162 (print), 1558-0814 (electronic). URL http://ieeexplore.ieee.org/document/1667289/. DOI 10.1109/C-M.1981.220382. See
[IEEE85a]. {63, 79, 104, 1016}

[Coo84] Jerome T. Coonen. Contributions to a Proposed Standard for Binary Floating-Point Arithmetic. Thesis (Ph.D. in mathematics), Department
of Mathematics, University of California at Berkeley, Berkeley, CA, USA, December 18, 1984. 320 pp. {856}

[Cow84] Wayne R. Cowell, editor. Sources and Development of Mathematical Software. Prentice-Hall Series in Computational Mathematics, Cleve
Moler, Advisor. Prentice-Hall, Upper Saddle River, NJ, USA, 1984. ISBN 0-13-823501-5; 978-0-13-823501-7. xii + 404 pp. LCCN
QA76.95 .S68 1984. {823, 826}

[Cow85] Michael F. Cowlishaw. The REXX Language: a Practical Approach to Programming. Prentice-Hall, Upper Saddle River, NJ, USA, 1985.
ISBN 0-13-780735-X (paperback); 978-0-13-780735-2 (paperback). xi + 176 pp. LCCN QA76.73.R24 C69 1985. {viii, 928, 968}

[Cow90] Michael F. Cowlishaw. The REXX Language: a Practical Approach to Programming. Prentice-Hall, Upper Saddle River, NJ, USA, second
edition, 1990. ISBN 0-13-780651-5; 978-0-13-780651-5. xii + 203 pp. LCCN QA76.73.R24 C69 1990. URL http://vig.prenhall.com/
catalog/academic/product/0,1144,0137806515,00.html. {viii, 928, 968}

[Cow97] Michael F. Cowlishaw. The NetRexx Language. Prentice-Hall, Upper Saddle River, NJ, USA, 1997. ISBN 0-13-806332-X; 978-0-13-806332-
0. viii + 197 pp. LCCN QA76.73.N47 C68 1997. See also supplement [Cow00]. {viii, 928, 968, 1005}

[Cow00] Michael F. Cowlishaw. NetRexx Language Supplement. IBM UK Laboratories, Hursley Park, Winchester, England, August 23, 2000. iii
+ 45 pp. URL http://www-306.ibm.com/software/awdtools/netrexx/nrlsupp.pdf. Version 2.00. This document is a supplement to
[Cow97]. {968, 1005}

[Cow02] Michael F. Cowlishaw. Densely packed decimal encoding. IEE Proceedings. Computers and Digital Techniques, 149(3):102–104, 2002.
CODEN ICDTEA. ISSN 1350-2387 (print), 1359-7027 (electronic). DOI 10.1049/ip-cdt:20020407. {928}

[Cow03] Michael F. Cowlishaw. Decimal floating-point: algorism for computers. In Bajard and Schulte [BS03], pages 104–111. ISBN 0-7695-
1894-X; 978-0-7695-1894-7. ISSN 1063-6889. LCCN QA76.6 .S919 2003. URL http://www.dec.usc.es/arith16/papers/paper-107.pdf.
DOI 10.1109/ARITH.2003.1207666. {927}

[Cow05] Michael F. Cowlishaw. General decimal arithmetic specification. Report Version 1.50, IBM UK Laboratories, Hursley, UK, December
9, 2005. iii + 63 pp. URL http://www2.hursley.ibm.com/decimal/decarith.pdf. {109}

1006 Bibliography

[Cow07] Michael F. Cowlishaw. The decNumber C library. IBM Corporation, San Jose, CA, USA, April 18, 2007. URL http://
download.icu-project.org/ex/files/decNumber/decNumber-icu-340.zip. Version 3.40. {387, 433, 897, 928}

[CPV+08] Annie Cuyt, Vigdis B. Petersen, Brigitte Verdonk, Haakon Waadeland, and William B. Jones. Handbook of Continued Fractions for Special
Functions. Springer-Verlag, Berlin, Germany / Heidelberg, Germany / London, UK / etc., 2008. ISBN 1-4020-6948-0; 978-1-4020-6948-
2. xx + 440 pp. LCCN QA295 .H275 2008. DOI 10.1007/978-1-4020-6949-9. {19, 58, 776, 827}

[Cray75] Cray Research, Inc., Mendota Heights, MN, USA. The Cray 1 Computer Preliminary Reference Manual, June 1975. vi + 75 pp. URL
http://www.bitsavers.org/pdf/cray/CRAY-1_PrelimRefRevA_Jun75.pdf. {949}

[Cray77] Cray Research, Inc., Minneapolis, MN, USA. CRAY-1 Hardware Reference Manual, November 4, 1977. URL http://www.bitsavers.org/
pdf/cray/2240004C-1977-Cray1.pdf. Publication number 2240004, revision C. {953}

[Cray82] Cray Research, Inc., Mendota Heights, MN, USA. Cray X-MP Computer Systems Mainframe Reference Manual, November 1982. x + 206
pp. URL http://www.bitsavers.org/pdf/cray/HR-0032_X-MP_MainframeRef_Nov82.pdf. {949, 953}

[CS89] William J. Cody, Jr. and L. Stoltz. Performance evaluation of programs for certain Bessel functions. ACM Transactions on Mathematical
Software, 15(1):41–48, March 1989. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic). URL http://www.acm.org/pubs/
toc/Abstracts/0098-3500/62039.html. DOI 10.1145/62038.62039. Also published as Technical Report MCS-P14-0988, Argonne
National Laboratory, Argonne, IL, USA. {693, 769}

[CS91] William J. Cody, Jr. and L. Stoltz. The use of Taylor series to test accuracy of function programs. ACM Transactions on Mathematical
Software, 17(1):55–63, March 1991. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic). URL http://www.acm.org/
pubs/toc/Abstracts/0098-3500/103154.html. DOI 10.1145/103147.103154. {521, 593, 693, 769}

[CST73] William J. Cody, Jr., Anthony J. Strecok, and Henry C. Thacher, Jr. Chebyshev approximations for the psi function. Mathe-
matics of Computation, 27(21):123–127, January 1973. CODEN MCMPAF. ISSN 0025-5718 (print), 1088-6842 (electronic). URL
http://www.jstor.org/stable/2005253. DOI 10.2307/2005253. {521}

[CT65] James W. Cooley and John W. Tukey. An algorithm for the machine calculation of complex Fourier series. Mathematics of Computation,
19(90):297–301, April 1965. CODEN MCMPAF. ISSN 0025-5718 (print), 1088-6842 (electronic). URL http://www.jstor.org/stable/
2003354. DOI 10.2307/2003354. {969}

[CVZ00] Henri Cohen, Fernando Rodriguez Villegas, and Don Zagier. Convergence acceleration of alternating series. Experimental Mathematics,
9(1):3–12, 2000. ISSN 1058-6458 (print), 1944-950x (electronic). URL http://projecteuclid.org/euclid.em/1046889587; http://
www.math.u-bordeaux.fr/~cohen/sumalt2new.ps. DOI 10.1080/10586458.2000.10504632. {589}

[CW80] William J. Cody, Jr. and William Waite. Software Manual for the Elementary Functions. Prentice-Hall, Upper Saddle River, NJ, USA, 1980.
ISBN 0-13-822064-6; 978-0-13-822064-8. x + 269 pp. LCCN QA331 .C635 1980. {viii, 1, 270, 344, 411, 763, 823, 939}

[CW08] D. Cavagnino and A. E. Werbrouck. Efficient algorithms for integer division by constants using multiplication. The
Computer Journal, 51(4):470–480, July 2008. CODEN CMPJA6. ISSN 0010-4620 (print), 1460-2067 (electronic). URL
http://comjnl.oxfordjournals.org/cgi/content/abstract/51/4/470; http://comjnl.oxfordjournals.org/cgi/content/
full/51/4/470; http://comjnl.oxfordjournals.org/cgi/reprint/51/4/470. DOI 10.1093/comjnl/bxm082. {176}

[CW11] D. Cavagnino and A. E. Werbrouck. An analysis of associated dividends in the DBM algorithm for division by constants using
multiplication. The Computer Journal, 54(1):148–156, January 2011. CODEN CMPJA6. ISSN 0010-4620 (print), 1460-2067 (electronic).
URL http://comjnl.oxfordjournals.org/content/54/1/148.full.pdf+html. DOI 10.1093/comjnl/bxp117. [DBM = Division by
Multiplication]. {176}

[Cyv64] S. J. Cyvin. Algorithm 226: Normal distribution function. Communications of the Association for Computing Machinery, 7(5):295, May
1964. CODEN CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic). DOI 10.1145/364099.364315. See remarks [HJ67b]. {618,
1015}

[dDDL04] Florent de Dinechin, David Defour, and Christoph Lauter. Fast correct rounding of elementary functions in double precision using
double-extended arithmetic. Research Report RR2004-10, École Normale Supérieure de Lyon, 69364 Lyon Cedex 07, France, March
2004. 2 + 12 pp. URL http://www.ens-lyon.fr/LIP/Pub/Rapports/RR/RR2004/RR2004-10.pdf. {28}

[dDG04] Florent de Dinechin and Nicolas Gast. Towards the post-ultimate libm. Research Report RR2004-47, École Normale Supérieure de
Lyon, 69364 Lyon Cedex 07, France, November 2004. URL http://www.ens-lyon.fr/LIP/Pub/Rapports/RR/RR2004/RR2004-47.pdf.
{28}

[DDZ+07] A. Y. Duale, M. H. Decker, H.-G. Zipperer, M. Aharoni, and T. J. Bohizic. Decimal floating-point in z9: An implementation and testing
perspective. IBM Journal of Research and Development, 51(1/2):217–227, January /March 2007. CODEN IBMJAE. ISSN 0018-8646 (print),
2151-8556 (electronic). URL http://www.research.ibm.com/journal/rd/511/duale.html. DOI 10.1147/rd.511.0217. {927}

[DEC76] Digital Equipment Corporation, Maynard, MA, USA. DECsystem-10/20 Hardware Manual, fourth edition, November 1976. Publication
DEC-10-XSRMA-A-D. Also co-published with the FAIL Assembly Language Manual as Stanford Artificial Intelligence Laboratory
Operating Note 75 and LOTS Computer Facility Operating Note 2. {848, 955}

[DEC77] Digital Equipment Corporation, Maynard, MA, USA. Digital VAX 11/780 Architecture Handbook, 1977. x + 324 pp. URL http://
www.bitsavers.org/pdf/dec/vax/VAX_archHbkVol1_1977.pdf. {956}

[DEC79] Digital Equipment Corporation, Maynard, MA, USA. Digital VAX 11/780 Hardware Handbook, 1979. x + 324 pp. URL http://
www.bitsavers.org/pdf/dec/vax/VAX_archHbkVol1_1977.pdf. {956}

[DEC82] Digital Equipment Corporation, Maynard, MA, USA. VAX-11 Architecture Reference Manual, May 20, 1982. URL http://
www.bitsavers.org/pdf/dec/vax/archSpec/EL-00032-00-decStd32_Jan90.pdf. Revision 6.1. {956}

Bibliography 1007

[DEC90] Digital Equipment Corporation, Bedford, MA, USA. DEC STD 032 VAX Architecture Standard, January 15, 1990. vi + 486 pp. URL
http://www.bitsavers.org/pdf/dec/vax/archSpec/EL-00032-00-decStd32_Jan90.pdf. {956}

[Dek71] Theodorus J. Dekker. A floating-point technique for extending the available precision. Numerische Mathematik, 18(3):224–242, June
1971. CODEN NUMMA7. ISSN 0029-599X (print), 0945-3245 (electronic). URL http://www-gdz.sub.uni-goettingen.de/cgi-bin/
digbib.cgi?PPN362160546_0018. DOI 10.1007/BF01397083. {353, 361, 365, 379}

[Dem81] James Demmel. Effects of underflow on solving linear systems. In Proceedings: 5th Symposium on Computer Arithmetic, May 18–19, 1981,
University of Michigan, Ann Arbor, Michigan, pages 113–119. IEEE Computer Society Press, Silver Spring, MD, USA, 1981. LCCN QA
76.6 S985t 1981. URL http://www.acsel-lab.com/arithmetic/arith5/papers/ARITH5_Demmel.pdf. IEEE catalog number 81CH1630-
C. {79}

[Den05] Lih-Yuan Deng. Efficient and portable multiple recursive generators of large order. ACM Transactions on Modeling and Computer Sim-
ulation, 15(1):1–13, January 2005. CODEN ATMCEZ. ISSN 1049-3301 (print), 1558-1195 (electronic). DOI 10.1145/1044322.1044323.
{1023}

[Der03] John Derbyshire. Prime Obsession: Bernhard Riemann and the Greatest Unsolved Problem in Mathematics. Joseph Henry Press, Washington,
DC, USA, 2003. ISBN 0-309-08549-7; 978-0-309-08549-6. xv + 422 pp. LCCN QA246 .D47 2003. {59, 60, 303, 521, 579, 590}

[Dev86] Luc Devroye. Non-Uniform Random Variate Generation. Springer-Verlag, Berlin, Germany / Heidelberg, Germany / London, UK / etc.,
1986. ISBN 0-387-96305-7; 978-0-387-96305-1. xvi + 843 pp. LCCN QA274 .D48 1986. DOI 10.1007/978-1-4613-8643-8. {196}

[Dev02] Keith J. Devlin. The Millennium Problems: the Seven Greatest Unsolved Mathematical Puzzles of our Time. Basic Books, New York, NY,
USA, 2002. ISBN 0-465-01729-0; 978-0-465-01729-4. x + 237 pp. LCCN QA93 .D485 2002. {303, 521}

[Dev08a] Keith J. Devlin. The Unfinished Game: Pascal, Fermat, and the Seventeenth-Century Letter that Made the World Modern: a Tale of How
Mathematics is Really Done. Basic ideas. Basic Books, New York, NY, USA, 2008. ISBN 0-465-00910-7; 978-0-465-00910-7. x + 191 pp.
LCCN QA273 .D455 2008. {60}

[Dev08b] Jay L. Devore. Probability and Statistics for Engineering and the Sciences. Thomson/Brooks/Cole, Belmont, CA, USA, seventh edition,
2008. ISBN 0-495-38217-5; 978-0-495-38217-1. xvi + 720 pp. LCCN QA273 .D46 2008. {196, 610}

[Dev11] Keith J. Devlin. The man of numbers: Fibonacci’s arithmetic revolution. Walker and Company, New York, NY, USA, 2011. ISBN 0-8027-
7812-7 (hardcover); 978-0-8027-7812-3 (hardcover). viii + 183 + 8 pp. {15, 59}

[DGD04] Guy Waldo Dunnington, Jeremy Gray, and Fritz-Egbert Dohse. Carl Friedrich Gauss: titan of science. Mathematical Association of
America, Washington, DC, USA, 2004. ISBN 0-88385-547-X; 978-0-88385-547-8. xxix + 537 + 16 pp. LCCN QA29.G3 D8 2004. {59}

[DH97a] Iosif G. Dyadkin and Kenneth G. Hamilton. A family of enhanced Lehmer random number generators, with hyperplane suppression,
and direct support for certain physical applications. Computer Physics Communications, 107(1–3):258–280, December 22, 1997. CODEN
CPHCBZ. ISSN 0010-4655 (print), 1879-2944 (electronic). DOI 10.1016/S0010-4655(97)00101-X. {170, 189}

[DH97b] Iosif G. Dyadkin and Kenneth G. Hamilton. A study of 64-bit multipliers for Lehmer pseudorandom number generators. Computer
Physics Communications, 103(2–3):103–130, July 1997. CODEN CPHCBZ. ISSN 0010-4655 (print), 1879-2944 (electronic). URL http://
www.sciencedirect.com/science/article/pii/S0010465597000520. DOI 10.1016/S0010-4655(97)00052-0. {170}

[DH00] Iosif G. Dyadkin and Kenneth G. Hamilton. A study of 128-bit multipliers for congruential pseudorandom number gen-
erators. Computer Physics Communications, 125(1–3):239–258, March 2000. CODEN CPHCBZ. ISSN 0010-4655 (print),
1879-2944 (electronic). URL http://cpc.cs.qub.ac.uk/summaries/ADLK; http://www.elsevier.com/gej-ng//10/15/40/55/25/
42/abstract.html; http://www.sciencedirect.com/science/article/pii/S0010465599004671. DOI 10.1016/S0010-4655(99)
00467-1. {170}

[DH04] James Demmel and Yozo Hida. Fast and accurate floating point summation with application to computational geometry. Numer-
ical Algorithms, 37(1–4):101–112, December 2004. CODEN NUALEG. ISSN 1017-1398 (print), 1572-9265 (electronic). URL http:
//ipsapp009.kluweronline.com/IPS/content/ext/x/J/5058/I/58/A/6/abstract.htm. DOI 10.1023/B:NUMA.0000049458.99541.38.
{385}

[Dij68] Edsger W. Dijkstra. Letter to the Editor: Go to statement considered harmful. Communications of the Association for Computing Machinery,
11(3):147–148, March 1968. CODEN CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic). DOI 10.1145/362929.362947. This letter
in support of structured programming, and in favor of eliminating control-flow disruption caused by go to statements, inspired scores
of others, published mainly in SIGPLAN Notices up to the mid-1980s. The best-known is [Knu74]. {962, 1020}

[DKKM87] Cipher A. Deavours, David Kahn, Louis Kruh, and Greg Mellen, editors. Cryptology Yesterday, Today, and Tomorrow. The Artech House
communication and electronic defense library. Artech House Inc., Norwood, MA, USA, 1987. ISBN 0-89006-253-6; 978-0-89006-253-1.
xi + 519 pp. LCCN Z103.C76 1987. First volume of selected papers from issues of Cryptologia. {1029}

[DL42a] Gordon C. Danielson and Cornelius Lanczos. Some improvements in practical Fourier analysis and their application to X-ray scat-
tering from liquids. Journal of The Franklin Institute, 233(4):365–380, April 1942. CODEN JFINAB. ISSN 0016-0032 (print), 1879-2693
(electronic). DOI 10.1016/S0016-0032(42)90767-1. {969}

[DL42b] Gordon C. Danielson and Cornelius Lanczos. Some improvements in practical Fourier analysis and their application to X-ray scat-
tering from liquids. Journal of The Franklin Institute, 233(5):435–452, May 1942. CODEN JFINAB. ISSN 0016-0032 (print), 1879-2693
(electronic). DOI 10.1016/S0016-0032(42)90624-0. {969}

[DLS09] Lih-Yuan Deng, Huajiang Li, and Jyh-Jen Horng Shiau. Scalable parallel multiple recursive generators of large order. Parallel Comput-
ing, 35(1):29–37, January 2009. CODEN PACOEJ. ISSN 0167-8191 (print), 1872-7336 (electronic). URL http://www.sciencedirect.com/
science/article/pii/S0167819108001099. DOI 10.1016/j.parco.2008.09.012. {1023}

1008 Bibliography

[Dom03] Diego Dominici. Nested derivatives: a simple method for computing series expansions of inverse functions. International Jour-
nal of Mathematics and Mathematical Sciences, 58:3699–3715, 2003. ISSN 0161-1712 (print), 1687-0425 (electronic). URL http://
www.hindawi.com/journals/ijmms/2003/457271/abs/. DOI 10.1155/S0161171203303291. {600}

[Don06] Aleksander Donev. Interoperability with C in Fortran 2003. ACM Fortran Forum, 25(1):8–12, April 2006. ISSN 1061-7264 (print),
1931-1311 (electronic). DOI 10.1145/1124708.1124710. {941}

[DR84] Philip J. Davis and Philip Rabinowitz. Methods of Numerical Integration. Academic Press, New York, NY, USA, second edition, 1984.
ISBN 0-12-206360-0; 978-0-12-206360-2. xiv + 612 pp. LCCN QA299.3 .D28 1984. {560}

[dRHG+99] Theo de Raadt, Niklas Hallqvist, Artur Grabowski, Angelos D. Keromytis, and Niels Provos. Cryptography in OpenBSD: An
overview. In USENIX, editor, Usenix Annual Technical Conference. June 6–11, 1999. Monterey, California, USA, pages 93–101. USENIX,
Berkeley, CA, USA, 1999. ISBN 1-880446-33-2; 978-1-880446-33-1. LCCN A76.8.U65 U843 1999. URL http://www.openbsd.org/
papers/crypt-paper.ps. {207}

[dS03] Marcus du Sautoy. The Music of the Primes: Searching to Solve the Greatest Mystery in Mathematics. HarperCollins College Publishers,
New York, NY, USA, 2003. ISBN 0-06-621070-4; 978-0-06-621070-4. 335 pp. LCCN QA246 .D8 2003. {60, 303, 521}

[DSC12] Jean-Pierre Deschamps, Gustavo D. Sutter, and Enrique Cantó. Guide to FPGA implementation of arithmetic functions, volume 95 of
Lecture Notes in Electrical Engineering. Springer-Verlag, Berlin, Germany / Heidelberg, Germany / London, UK / etc., 2012. ISBN
94-007-2986-3 (hardcover), 94-007-2987-1 (e-book); 978-94-007-2986-5 (hardcover), 978-94-007-2987-2 (e-book). xv + 469 pp. LCCN
TK7895.G36. DOI 10.1007/978-94-007-2987-2. {978}

[DSL12a] Lih-Yuan Deng, Jyh-Jen H. Shiau, and Henry Horng-Shing Lu. Efficient computer search of large-order multiple recursive pseudo-
random number generators. Journal of Computational and Applied Mathematics, 236(13):3228–3237, July 2012. CODEN JCAMDI. ISSN
0377-0427 (print), 1879-1778 (electronic). DOI 10.1016/j.cam.2012.02.023. {176, 1023}

[DSL12b] Lih-Yuan Deng, Jyh-Jen Horng Shiau, and Henry Horng-Shing Lu. Large-order multiple recursive generators with modu-
lus 231 − 1. INFORMS Journal on Computing, 24(4):636–647, Fall 2012. ISSN 1091-9856 (print), 1526-5528 (electronic). URL
http://joc.journal.informs.org/content/24/4/636. DOI 10.1287/ijoc.1110.0477. {1023}

[Dub83] Augustin A. Dubrulle. Class of numerical methods for the computation of Pythagorean sums. IBM Journal of Research and Development,
27(6):582–589, November 1983. CODEN IBMJAE. ISSN 0018-8646 (print), 2151-8556 (electronic). DOI 10.1147/rd.276.0582. See
[MM83] and generalization [Jam89]. {228, 1017, 1024}

[Dun55] Guy Waldo Dunnington. Carl Friedrich Gauss, titan of science: a study of his life and work. Exposition-university book. Exposition Press,
New York, NY, USA, 1955. xi + 479 pp. LCCN QA29.G38 D85 1955. {59}

[Dun91] William Dunham. Journey through Genius: The Great Theorems of Mathematics. Penguin, New York, NY, USA, 1991. ISBN 0-14-014739-X;
978-0-14-014739-1. xiii + 300 pp. {541, 591}

[Dun92] Charles B. Dunham. Surveyor’s Forum: “What every computer scientist should know about floating-point arithmetic”. ACM Comput-
ing Surveys, 24(3):319, September 1992. CODEN CMSVAN. ISSN 0360-0300 (print), 1557-7341 (electronic). See [Gol91a, Gol91b, Wic92].
{1013, 1037}

[Dun99] William Dunham. Euler: The Master of Us All, volume 22 of The Dolciani mathematical expositions. Mathematical Association of America,
Washington, DC, USA, 1999. ISBN 0-88385-328-0; 978-0-88385-328-3. xxviii + 185 pp. LCCN QA29.E8 D86 1999. {59, 591}

[Dun07] William Dunham, editor. The Genius of Euler: Reflections on his Life and Work, volume 2 of Spectrum series; MAA tercentenary Euler
celebration. Mathematical Association of America, Washington, DC, USA, 2007. ISBN 0-88385-558-5; 978-0-88385-558-4. xvi + 309 pp.
LCCN QA29.E8 G46 2007. {591}

[DX03] Lih-Yuan Deng and Hongquan Xu. A system of high-dimensional, efficient, long-cycle and portable uniform random number gener-
ators. ACM Transactions on Modeling and Computer Simulation, 13(4):299–309, October 2003. CODEN ATMCEZ. ISSN 1049-3301 (print),
1558-1195 (electronic). DOI 10.1145/945511.945513. {1023}

[ECM05] ECMA. ECMA-367: Eiffel analysis, design and programming language. ECMA (European Association for Standardizing Information
and Communication Systems), Geneva, Switzerland, June 2005. URL http://www.ecma-international.org/publications/files/
ECMA-ST/ECMA-367.pdf; http://www.ecma-international.org/publications/standards/Ecma-367.htm. {830}

[ECM06a] ECMA. ECMA-334: C# Language Specification. ECMA (European Association for Standardizing Information and Communication
Systems), Geneva, Switzerland, fourth edition, June 2006. xix + 531 pp. URL http://www.ecma-international.org/publications/
files/ecma-st/ECMA-334.pdf; http://www.ecma-international.org/publications/standards/Ecma-334.htm. {vii, 917}

[ECM06b] ECMA. ECMA-335: Common Language Infrastructure (CLI). ECMA (European Association for Standardizing Information and Commu-
nication Systems), Geneva, Switzerland, fourth edition, June 2006. vii + 104 (Part I), viii + 191 (Part II), iv + 138 (Part III), ii + 20 (Part
IV), i + 4 (Part V), ii + 57 (Part VI) pp. URL http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-335.pdf;
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-335.zip; http://www.ecma-international.org/
publications/standards/Ecma-335.htm. {917, 918}

[EH92] Jürgen Eichenauer-Herrmann. Inversive congruential pseudorandom numbers: a tutorial. International Statistical Review = Revue
Internationale de Statistique, 60(2):167–176, August 1992. CODEN ISTRDP. ISSN 0306-7734 (print), 1751-5823 (electronic). URL http://
www.jstor.org/stable/1403647. DOI 10.2307/1403647. {180}

[EH95] Jürgen Eichenauer-Herrmann. Pseudorandom number generation by nonlinear methods. International Statistical Review = Revue
Internationale de Statistique, 63(2):247–255, August 1995. CODEN ISTRDP. ISSN 0306-7734 (print), 1751-5823 (electronic). URL http://
www.jstor.org/stable/1403620. DOI 10.2307/1403620. {177, 1026, 1035}

Bibliography 1009

[EHHW98] Jürgen Eichenauer-Herrmann, Eva Herrmann, and Stefan Wegenkittl. A survey of quadratic and inversive congruential pseudoran-
dom numbers. In Harald Niederreiter, Peter Hellekalek, Gerhard Larcher, and Peter Zinterhof, editors, Monte Carlo and Quasi-Monte
Carlo methods 1996: proceedings of a conference at the University of Salzburg, Austria, July 9–12, 1996, volume 127 of Lecture Notes in Statis-
tics, pages 66–97. Springer-Verlag, Berlin, Germany / Heidelberg, Germany / London, UK / etc., 1998. ISBN 0-387-98335-X (softcover);
978-0-387-98335-6 (softcover). LCCN Q183.9 .M67 1998. DOI 10.1007/978-1-4612-1690-2_4. {180}

[El 06] Refaat A. El Attar. Special Functions and Orthogonal Polynomials, volume 3 of Mathematical series. Lulu Press, Morrisville, NC, USA,
2006. ISBN 1-4116-6690-9 (paperback); 978-1-4116-6690-0 (paperback). vi + 302 pp. LCCN QA404.5 .E5 2006; QA351 .E5 2006. {59}

[EL86] Jürgen Eichenauer and Jürgen Lehn. A non-linear congruential pseudo random number generator. Statistical Papers = Statistische Hefte,
27(1):315–326, September 1986. CODEN STPAE4. ISSN 0932-5026 (print), 1613-9798 (electronic). DOI 10.1007/BF02932576. {180}

[EL04a] Miloš Dragutin Ercegovac and Tomás Lang. Digital Arithmetic. Morgan Kaufmann Publishers, Los Altos, CA 94022, USA, 2004. ISBN
1-55860-798-6; 978-1-55860-798-9. xxv + 709 pp. LCCN QA76.9.C62 E72 2004. {104, 407, 881, 978}

[EL04b] Pierre Eymard and Jean-Pierre Lafon. The Number π [pi]. American Mathematical Society, Providence, RI, USA, 2004. ISBN 0-8218-
3246-8; 978-0-8218-3246-2. x + 322 pp. LCCN QA484 .E9613 2004. URL http://www.ams.org/bookpages/tnp/. Translated by Stephen
S. Wilson from the 1999 French original, Autour du nombre π [pi]. {14, 59, 623}

[EM79] Richard H. Eckhouse, Jr. and L. Robert Morris. Minicomputer Systems: Organization, Programming, and Applications (PDP-11). Prentice-
Hall, Upper Saddle River, NJ, USA, 1979. ISBN 0-13-583914-9; 978-0-13-583914-0. xix + 491 pp. LCCN QA76.8.P2E26 1979. {956}

[EM94] Boelie Elzen and Donald MacKenzie. The social limits of speed: The development and use of supercomputers. IEEE Annals of
the History of Computing, 16(1):46–61, Spring 1994. CODEN IAHCEX. ISSN 1058-6180 (print), 1934-1547 (electronic). URL http://
dlib.computer.org/an/books/an1994/pdf/a1046.pdf; http://www.computer.org/annals/an1994/a1046abs.htm. DOI 10.1109/
85.251854. {952}

[Ent98] Karl Entacher. Bad subsequences of well-known linear congruential pseudorandom number generators. ACM Transactions on Modeling
and Computer Simulation, 8(1):61–70, January 1998. CODEN ATMCEZ. ISSN 1049-3301 (print), 1558-1195 (electronic). DOI 10.1145/
272991.273009. {172}

[ESC05] D. Eastlake, 3rd, J. Schiller, and S. Crocker. RFC 4086: Randomness recommendations for security, June 2005. URL ftp://
ftp.internic.net/rfc/rfc4086.txt. {214}

[ESU01] Karl Entacher, Thomas Schell, and Andreas Uhl. Optimization of random number generators: efficient search for high-quality LCGs.
Probabilistic Engineering Mechanics, 16(4):289–293, October 2001. CODEN PEMEEX. ISSN 0266-8920 (print), 1878-4275 (electronic).
URL http://www.sciencedirect.com/science/article/pii/S0266892001000212. DOI 10.1016/S0266-8920(01)00021-2. {170}

[ETZ09] Andreas Enge, Philippe Théveny, and Paul Zimmermann. mpc — A library for multiprecision complex arithmetic with exact rounding.
INRIA, France, 0.8.1 edition, December 2009. URL http://mpc.multiprecision.org/. {825}

[Eul92] Leonhard Euler. Leonhardi Euleri Opera Omnia: Series Prima: Opera Mathematica. Birkhäuser, Cambridge, MA, USA; Berlin, Germany;
Basel, Switzerland, 1992. ISBN 3-7643-1474-5; 978-3-7643-1474-3. 29 volumes in first series alone. {591}

[Eve83] Howard Eves. An Introduction to the History of Mathematics. Saunders College Publishing, Philadelphia, PA, USA, 1983. ISBN 0-03-
062064-3; 978-0-03-062064-5. xviii + 593 pp. LCCN QA21.E8. {59}

[FC64] M. A. Fisherkeller and William J. Cody, Jr. Tables of the complete elliptic integrals K, K′, E, and E′. Technical Memo ANL AMD
71, Argonne National Laboratory, Argonne, IL, USA, 1964. 14 pp. See review by John W. Wrench in Mathematics of Computation,
19(89–92), 342, 1965. {644}

[Fel07] Emil Alfred Fellmann. Leonhard Euler. Birkhäuser, Cambridge, MA, USA; Berlin, Germany; Basel, Switzerland, 2007. ISBN 3-7643-
7538-8; 978-3-7643-7538-6. xv + 179 pp. LCCN QA29.E8 F452 2007. Translated by E. Gautschi and W. Gautschi from the 1995 German
original of the same title. {591}

[Fer95] Warren E. Ferguson, Jr. Exact computation of a sum or difference with applications to argument reduction. In Knowles and McAllister
[KM95], pages 216–221. ISBN 0-8186-7089-4 (paperback), 0-8186-7089-4 (case), 0-8186-7149-1 (microfiche), 0-8186-7089-4 (softbound),
0-7803-2949-X (casebound); 978-0-8186-7089-3 (paperback), 978-0-8186-7089-3 (case), 978-0-8186-7149-4 (microfiche), 978-0-8186-7089-
3 (softbound), 978-0-7803-2949-2 (casebound). LCCN QA 76.9 C62 S95 1995. URL http://www.acsel-lab.com/arithmetic/arith12/
papers/ARITH12_Ferguson.pdf. DOI 10.1109/ARITH.1995.465355. {271}

[Fet74] Henry E. Fettis. A stable algorithm for computing the inverse error function in the ‘tail-end’ region. Mathematics of Computation, 28(126):
585–587, April 1974. CODEN MCMPAF. ISSN 0025-5718 (print), 1088-6842 (electronic). URL http://www.jstor.org/stable/2005933.
DOI 10.2307/2005933. {600}

[FF01] Sarah Flannery and David Flannery. In Code: A [Young Women’s] Mathematical Journey. Algonquin Books of Chapel Hill, Chapel Hill,
NC, USA, 2001. ISBN 1-56512-377-8; 978-1-56512-377-9. ix + 341 pp. LCCN QA29.F6 A3 2003. {208, 591}

[FHL+07] Laurent Fousse, Guillaume Hanrot, Vincent Lefèvre, Patrick Pélissier, and Paul Zimmermann. MPFR: A multiple-precision binary
floating-point library with correct rounding. ACM Transactions on Mathematical Software, 33(2):1–15, June 2007. CODEN ACMSCU.
ISSN 0098-3500 (print), 1557-7295 (electronic). DOI 10.1145/1236463.1236468. {401, 407}

[FHS78a] Phyllis A. Fox, A. D. Hall, and Norman L. Schryer. Algorithm 528: Framework for a portable library [Z]. ACM Transactions on
Mathematical Software, 4(2):177–188, June 1978. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic). DOI 10.1145/
355780.355789. See remarks [Fox79, GG99]. {823, 1010, 1012}

[FHS78b] Phyllis A. Fox, A. D. Hall, and Norman L. Schryer. The PORT mathematical subroutine library. ACM Transactions on Mathematical
Software, 4(2):104–126, June 1978. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic). DOI 10.1145/355780.355783.
{341, 352}

1010 Bibliography

[FI94] Toshio Fukushima and Hideharu Ishizaki. Numerical computation of incomplete elliptic integrals of a general form. Celestial Mechanics
and Dynamical Astronomy, 59(3):237–251, July 1994. CODEN CLMCAV. ISSN 0923-2958 (print), 1572-9478 (electronic). URL http://
www.springerlink.com/content/0923-2958/. DOI 10.1007/BF00692874. {645, 690}

[Fin97] B. F. Finkel. Biography: Leonhard Euler. American Mathematical Monthly, 4(12):297–302, December 1897. CODEN AMMYAE. ISSN
0002-9890 (print), 1930-0972 (electronic). URL http://www.jstor.org/stable/2968971. DOI 10.2307/2968971. {591}

[Fin03] Steven R. Finch. Mathematical Constants, volume 94 of Encyclopedia of Mathematics and its Applications. Cambridge Univer-
sity Press, Cambridge, UK, 2003. ISBN 0-521-81805-2; 978-0-521-81805-6. xix + 602 pp. LCCN QA41 .F54 2003. URL
http://numbers.computation.free.fr/Constants/constants.html. {59}

[FIS64] A. D. Falkoff, K. E. Iverson, and E. H. Sussenguth. A formal description of SYSTEM/360. IBM Systems Journal, 3(2):198–261, 1964.
CODEN IBMSA7. ISSN 0018-8670. URL http://www.research.ibm.com/journal/sj/032/falkoff.pdf. DOI 10.1147/sj.32.0198.
{928}

[FM82] George S. Fishman and Louis R. Moore III. A statistical evaluation of multiplicative congruential random number generators
with modulus 231 − 1. Journal of the American Statistical Association, 77(377):129–136, March 1982. CODEN JSTNAL. ISSN 0162-
1459 (print), 1537-274x (electronic). URL http://links.jstor.org/sici?sici=0162-1459%28198203%2977%3A377%3C129%3AASEOMC%
3E2.0.CO%3B2-Q. DOI 10.2307/2287778. {170}

[FM86a] George S. Fishman and Louis R. Moore III. An exhaustive analysis of multiplicative congruential random number generators with
modulus 231 − 1. SIAM Journal on Scientific and Statistical Computing, 7(1):24–45, January 1986. CODEN SIJCD4. ISSN 0196-5204. URL
http://link.aip.org/link/?SCE/7/24/1. DOI 10.1137/0907002. See erratum [FM86b]. {170, 1010}

[FM86b] George S. Fishman and Louis R. Moore III. Erratum: “An exhaustive analysis of multiplicative congruential random number gen-
erators with modulus 231 − 1”. SIAM Journal on Scientific and Statistical Computing, 7(3):1058, July 1986. CODEN SIJCD4. ISSN
0196-5204. URL http://epubs.siam.org/sisc/resource/1/sjoce3/v7/i3/p1058_s1; http://link.aip.org/link/?SCE/7/1058/
1. DOI 10.1137/0907072. See [FM86a]. {1010}

[FO01] Michael J. Flynn and Stuart F. Oberman. Advanced Computer Arithmetic Design. Wiley, New York, NY, USA, 2001. ISBN 0-471-41209-0;
978-0-471-41209-0. xv + 325 pp. LCCN TK7895.A65 F59 2001. {17}

[For69a] George E. Forsythe. Solving a quadratic equation on a computer. In George A. W. Boehm, editor, The Mathematical Sciences: a Collection
of Essays, pages 138–152. MIT Press, Cambridge, MA, USA, 1969. LCCN QA11 .M39. Edited by the National Research Council’s
Committee on Support of Research in the Mathematical Sciences (COSRIMS) with the collaboration of George A. W. Boehm. {472,
474}

[For69b] George E. Forsythe. What is a satisfactory quadratic equation solver? In Bruno Dejon and Peter Henrici, editors, Constructive aspects
of the fundamental theorem of algebra: Proceedings of a symposium conducted at the IBM Research Laboratory, Zürich-Rüschlikon, Switzerland,
June 5–7, 1967, pages 53–61. Wiley-Interscience, New York, NY, USA, 1969. ISBN 0-471-20300-9; 978-0-471-20300-1. LCCN QA212 .C65.
URL http://www.dtic.mil/dtic/tr/fulltext/u2/657639.pdf. {472}

[Fox79] Phyllis A. Fox. Remark on “Algorithm 528: Framework for a portable library [Z]”. ACM Transactions on Mathematical Software, 5(4):524,
December 1979. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic). DOI 10.1145/355853.355871. See [FHS78a, GG99].
{1009, 1012}

[FP68] L. Fox and I. B. Parker. Chebyshev Polynomials in Numerical Analysis. Oxford mathematical handbooks. Oxford University Press, Oxford,
UK, 1968. ix + 205 pp. LCCN QA297 .F65. {58}

[Fra99] Donald R. Franceschetti, editor. Biographical Encyclopedia of Mathematicians. Marshall Cavendish, New York, NY, USA, 1999. ISBN
0-7614-7069-7 (set), 0-7614-7070-0 (vol. 1), 0-7614-7071-9 (vol. 2); 978-0-7614-7069-4 (set), 978-0-7614-7070-0 (vol. 1), 978-0-7614-7071-7
(vol. 2). xiv + 585 + xix pp. LCCN QA28 .B544 1999. {59}

[Fri67] Paul Friedland. Algorithm 312: Absolute value and square root of a complex number. Communications of the Association for Computing
Machinery, 10(10):665, October 1967. CODEN CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic). DOI 10.1145/363717.363780.
{481}

[FS03] Niels Ferguson and Bruce Schneier. Practical Cryptography. Wiley, New York, NY, USA, 2003. ISBN 0-471-22894-X (hardcover), 0-471-
22357-3 (paperback); 978-0-471-22894-3 (hardcover), 978-0-471-22357-3 (paperback). xx + 410 pp. LCCN QA76.9.A25 F466 2003. URL
http://www.counterpane.com/book-practical.html. {168, 206, 214, 591}

[FSK10] Niels Ferguson, Bruce Schneier, and Tadayoshi Kohno. Cryptography Engineering: Design Principles and Practical Applications. Wiley,
New York, NY, USA, 2010. ISBN 0-470-47424-6 (paperback); 978-0-470-47424-2 (paperback). xxix + 353 pp. LCCN QA76.9.A25 F466
2010. {214}

[FTN91] International Standard: Information, Technology, Programming Languages, Fortran. International Organization for Standardization,
Geneva, Switzerland, second edition, 1991. xvii + 369 pp. URL http://www.iso.ch/cate/d26933.html; http://www.iso.ch/
cate/d26934.html; http://www.iso.ch/cate/d29926.html. {vii, 106}

[FTN97] ISO/IEC 1539-1:1997: Information technology — Programming languages — Fortran — Part 1: Base language. International Organization for
Standardization, Geneva, Switzerland, 1997. URL http://webstore.ansi.org/ansidocstore/product.asp?sku=ISO%2FIEC+1539%
2D1%3A1997. {vii}

[FTN04a] Draft International Standard ISO/IEC 1539-1:2004(E): Information technology — Programming languages — Fortran Part 1: Base Language.
International Organization for Standardization, Geneva, Switzerland, May 2004. xiv + 569 pp. URL ftp://ftp.nag.co.uk/sc22wg5/
N1601-N1650/N1601.pdf.gz. {341}

[FTN04b] ISO/IEC 1539-1:2004 Information technology — Programming languages — Fortran – Part 1: Base language. International Organization for
Standardization, Geneva, Switzerland, 2004. xiv + 569 pp. URL http://www.dkuug.dk/jtc1/sc22/open/n3661.pdf. {941}

Bibliography 1011

[FTN10] ISO/IEC 1539-1:2010 Information technology — Programming languages — Fortran — Part 1: Base language. International Organization for
Standardization, Geneva, Switzerland, June 2010. xviii + 603 pp. URL ftp://ftp.nag.co.uk/sc22wg5/N1801-N1850/N1830.pdf. {vii,
223, 591, 593, 694, 941}

[Fuk09a] Toshio Fukushima. Fast computation of complete elliptic integrals and Jacobian elliptic functions. Celestial Mechanics and Dy-
namical Astronomy, 105(4):305–328, December 2009. CODEN CLMCAV. ISSN 0923-2958 (print), 1572-9478 (electronic). URL
http://www.springerlink.com/content/0923-2958/. DOI 10.1007/s10569-009-9228-z. {627, 645, 690}

[Fuk09b] Toshio Fukushima. Fast computation of Jacobian elliptic functions and incomplete elliptic integrals for constant values of elliptic pa-
rameter and elliptic characteristic. Celestial Mechanics and Dynamical Astronomy, 105(1–3):245–260, 2009. CODEN CLMCAV. ISSN 0923-
2958 (print), 1572-9478 (electronic). URL http://www.springerlink.com/content/0923-2958/. DOI 10.1007/s10569-008-9177-y.
{627, 645, 690}

[Fuk10] Toshio Fukushima. Fast computation of incomplete elliptic integral of first kind by half argument transformation. Nu-
merische Mathematik, 116(4):687–719, October 2010. CODEN NUMMA7. ISSN 0029-599X (print), 0945-3245 (electronic).
URL http://www.springerlink.com/openurl.asp?genre=article&issn=0029-599X&volume=116&issue=4&spage=687. DOI 10.1007/
s00211-010-0321-8. {645, 690}

[Fuk11] Toshio Fukushima. Precise and fast computation of the general complete elliptic integral of the second kind. Math-
ematics of Computation, 80(275):1725–1743, July 2011. CODEN MCMPAF. ISSN 0025-5718 (print), 1088-6842 (elec-
tronic). URL http://www.ams.org/journals/mcom/2011-80-275/S0025-5718-2011-02455-5/; http://www.ams.org/journals/
mcom/2011-80-275/S0025-5718-2011-02455-5/S0025-5718-2011-02455-5.pdf. DOI 10.1090/S0025-5718-2011-02455-5. {690}

[Fuk12] Toshio Fukushima. Series expansions of symmetric elliptic integrals. Mathematics of Computation, 81(278):957–990, April
2012. CODEN MCMPAF. ISSN 0025-5718 (print), 1088-6842 (electronic). URL http://www.ams.org/journals/mcom/
2012-81-278/S0025-5718-2011-02531-7; http://www.ams.org/journals/mcom/2012-81-278/S0025-5718-2011-02531-7/
S0025-5718-2011-02531-7.pdf. DOI 10.1090/S0025-5718-2011-02531-7. {690}

[Fuk13a] Toshio Fukushima. Precise and fast computation of Jacobian elliptic functions by conditional duplication. Numerische Mathematik,
123(4):585–605, April 2013. CODEN NUMMA7. ISSN 0029-599X (print), 0945-3245 (electronic). URL http://link.springer.com/
article/10.1007/s00211-012-0498-0. DOI 10.1007/s00211-012-0498-0. {690}

[Fuk13b] Toshio Fukushima. Recursive computation of derivatives of elliptic functions and of incomplete elliptic integrals. Applied Mathematics
and Computation, 221:21–31, September 15, 2013. CODEN AMHCBQ. ISSN 0096-3003 (print), 1873-5649 (electronic). URL http://
www.sciencedirect.com/science/article/pii/S0096300313006152. DOI 10.1016/j.amc.2013.06.008. {690}

[Ful81a] L. Wayne Fullerton. FNLIB user’s manual. Technical report CSTR 95, Bell Telephone Laboratories, Murray Hill, NJ, USA, March 1981.
{341, 352}

[Ful81b] L. Wayne Fullerton. FNLIB user’s manual explanatory table of contents. Technical report CSTR 92, Bell Telephone Laboratories,
Murray Hill, NJ, USA, March 1981. {341, 352}

[FvGM90] W. H. J. Feijen, A. J. M. van Gasteren, David Gries, and J. Misra, editors. Beauty is our Business: a Birthday Salute to Edsger W. Dijkstra.
Springer-Verlag, Berlin, Germany / Heidelberg, Germany / London, UK / etc., 1990. ISBN 0-387-97299-4; 978-0-387-97299-2. xix +
453 pp. LCCN QA76 .B326 1990. DOI 10.1007/978-1-4612-4476-9. Contains important treatment of accurate binary-to-decimal
conversion [Gri90, Knu90]. {1013, 1020}

[Gam88] George Gamow. One, Two, Three, . . . , Infinity: Facts and Speculations of Science. Dover, New York, NY, USA, 1988. ISBN 0-486-25664-2
(paperback); 978-0-486-25664-1 (paperback). xii + 340 pp. LCCN Q162 .G23 1988. {59}

[Gan95] Mike Gancarz. The UNIX philosophy. Digital Press, Bedford, MA, USA, 1995. ISBN 1-55558-123-4; 978-1-55558-123-7. xix + 151 pp.
LCCN QA76.76.O63G365 1995. {956}

[Gan03] Mike Gancarz. Linux and the Unix Philosophy. Digital Press, Bedford, MA, USA, 2003. ISBN 1-55558-273-7; 978-1-55558-273-9. xxvii +
220 pp. LCCN QA76.76.O63G364 2003. {956}

[Gau64] Walter Gautschi. ACM Algorithm 236: Bessel functions of the first kind [S17]. Communications of the Association for Computing Machin-
ery, 7(8):479–480, August 1964. CODEN CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic). DOI 10.1145/355586.355587. See
remark [Sko75]. {693, 1032}

[Gau67] Walter Gautschi. Computational aspects of three-term recurrence relations. SIAM Review, 9(1):24–82, January 1967. CODEN SIREAD.
ISSN 0036-1445 (print), 1095-7200 (electronic). URL http://link.aip.org/link/?SIR/9/24/1. DOI 10.1137/1009002. {705}

[Gau79a] Walter Gautschi. Algorithm 542: Incomplete gamma functions [S14]. ACM Transactions on Mathematical Software, 5(4):482–489, Decem-
ber 1979. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic). DOI 10.1145/355853.355864. {562}

[Gau79b] Walter Gautschi. A computational procedure for incomplete gamma functions. ACM Transactions on Mathematical Software, 5(4):
466–481, December 1979. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic). DOI 10.1145/355853.355863. {562}

[Gau04] Walter Gautschi. Orthogonal Polynomials: Computation and Approximation. Oxford University Press, Oxford, UK, 2004. ISBN 0-19-
850672-4; 978-0-19-850672-0. viii + 301 pp. LCCN QA404.5 .G356 2004. {58, 59}

[Gau08] Walter Gautschi. Leonhard Euler: His life, the man, and his works. SIAM Review, 50(1):3–33, 2008. CODEN SIREAD. ISSN 0036-1445
(print), 1095-7200 (electronic). URL http://link.aip.org/link/?SIR/50/3/1. DOI 10.1137/070702710. {59, 591}

[Gay90] David M. Gay. Correctly rounded binary-decimal and decimal-binary conversions. Numerical Analysis Manuscript 90-10,
AT&T Bell Laboratories, November 30 1990. 16 pp. URL http://cm.bell-labs.com/cm/cs/doc/90/4-10.ps.gz; http:
//www.ampl.com/ampl/REFS/rounding.ps.gz; http://www.netlib.org/fp/dtoa.c; http://www.netlib.org/fp/g_fmt.c;
http://www.netlib.org/fp/gdtoa.tgz; http://www.netlib.org/fp/rnd_prod.s. {895}

1012 Bibliography

[GB91] Shmuel Gal and Boris Bachelis. An accurate elementary mathematical library for the IEEE floating point standard. ACM Transactions
on Mathematical Software, 17(1):26–45, March 1991. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic). URL http://
www.acm.org/pubs/citations/journals/toms/1991-17-1/p26-gal/. DOI 10.1145/103147.103151. {827}

[GBC+02] Solomon W. Golomb, Elwyn Berlekamp, Thomas M. Cover, Robert G. Gallager, James L. Massey, and Andrew J. Viterbi. Claude
Elwood Shannon (1916–2001). Notices of the American Mathematical Society, 49(1):8–16, January 2002. CODEN AMNOAN. ISSN 0002-
9920 (print), 1088-9477 (electronic). URL http://www.ams.org/notices/200201/fea-shannon.pdf. {969}

[GBGL08] Timothy Gowers, June Barrow-Green, and Imre Leader, editors. The Princeton Companion to Mathematics. Princeton University Press,
Princeton, NJ, USA, 2008. ISBN 0-691-11880-9; 978-0-691-11880-2. xx + 1034 pp. LCCN QA11.2 .P745 2008. {59, 60}

[GDT+05] Mark Galassi, Jim Davies, James Theiler, Brian Gough, Gerard Jungman, Michael Booth, and Fabrice Rossi. GNU Scientific Library:
Reference Manual. Network Theory Ltd., Bristol, UK, second revised edition, 2005. ISBN 0-9541617-3-4; 978-0-9541617-3-6. xvi + 601
pp. LCCN QA76.73.C15. URL http://www.network-theory.co.uk/gsl/manual/. {567, 583, 693, 694, 825}

[Gen03] James E. Gentle. Random Number Generation and Monte Carlo Methods. Springer-Verlag, Berlin, Germany / Heidelberg, Germany /
London, UK / etc., second edition, 2003. ISBN 0-387-00178-6; 978-0-387-00178-4. xv + 381 pp. LCCN QA298 .G46 2003. URL
http://www.science.gmu.edu/~jgentle/rngbk/. DOI 10.1007/b97336. {214}

[GG98] I. Grattan-Guinness. The Norton History of the Mathematical Sciences: the Rainbow of Mathematics. Norton history of science. W. W.
Norton & Co., New York, NY, USA, 1998. ISBN 0-393-04650-8; 978-0-393-04650-2. 817 pp. LCCN QA21 .G695 1998. {59}

[GG99] David M. Gay and Eric Grosse. Self-adapting Fortran 77 machine constants: Comment on Algorithm 528. ACM Transactions on
Mathematical Software, 25(1):123–126, March 1999. CODEN CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic). URL http://
cm.bell-labs.com/who/ehg/mach/d1mach.ps. DOI 10.1145/305658.305711. See [FHS78a, Fox79]. {1009, 1010}

[GH85] Paul Griffiths and Ian David Hill, editors. Applied Statistics Algorithms. Ellis Horwood series in mathematics and its applications. Ellis
Horwood, New York, NY, USA, 1985. ISBN 0-85312-772-7 (UK), 0-470-20184-3 (US); 978-0-85312-772-7 (UK), 978-0-470-20184-8 (US).
307 pp. LCCN QA276.4 .A57 1985. Published for the Royal Statistical Society. {1037}

[Gil51] S. Gill. A process for the step-by-step integration of differential equations in an automatic digital computing machine. Proceedings of
the Cambridge Philosophical Society. Mathematical and physical sciences, 47(1):96–108, January 1951. CODEN PCPSA4. ISSN 0008-1981.
DOI 10.1017/S0305004100026414. {353}

[GJS96] James Gosling, Bill Joy, and Guy L. Steele Jr. The Java Language Specification. The Java Series. Addison-Wesley, Reading, MA, USA, 1996.
ISBN 0-201-63451-1; 978-0-201-63451-8. xxv + 825 pp. LCCN QA76.73.J38G68 1996. URL http://www.aw.com/cp/javaseries.html;
http://www.aw.com/cseng/titles/0-201-63451-1/. {979}

[GJS+13] James Gosling, Bill Joy, Guy L. Steele Jr., Gilad Bracha, and Alex Buckley. The Java Language Specification. Addison-Wesley, Reading,
MA, USA, Java SE 7 edition, 2013. ISBN 0-13-326022-4 (paperback); 978-0-13-326022-9 (paperback). xxvii + 644 pp. LCCN QA76.73.J38
G68 2013. {vii, 979}

[GJS+14] James Gosling, Bill Joy, Guy L. Steele Jr., Gilad Bracha, and Alex Buckley. The Java Language Specification. Addison-Wesley, Addison-
Wesley, Java SE 8 edition, 2014. ISBN 0-13-390069-X (paperback); 978-0-13-390069-9 (paperback). xxii + 758 pp. LCCN QA76.73.J38
G68 2014. {vii, 979}

[GJSB00] James Gosling, Bill Joy, Guy L. Steele Jr., and Gilad Bracha. The Java language specification. Java series. Addison-Wesley, Reading,
MA, USA, second edition, 2000. ISBN 0-201-31008-2; 978-0-201-31008-5. xxv + 505 pp. LCCN QA76.73.J38 G68 2000. URL http://
java.sun.com/people/jag/. {vii, 979}

[GJSB05] James Gosling, Bill Joy, Guy L. Steele Jr., and Gilad Bracha. The Java Language Specification. The Java series. Addison-Wesley, Reading,
MA, USA, third edition, 2005. ISBN 0-321-24678-0 (paperback); 978-0-321-24678-3 (paperback). xxxii + 651 pp. {vii, 978, 979}

[GLL05] Stef Graillat, Philippe Langlois, and Nicolas Louvet. Compensated Horner scheme. Research Report RR2005-04, Équipe de
Recherche DALI, Laboratoire LP2A, Université de Perpignan, Via Domitia, Perpignan, France, July 24, 2005. ii + 25 pp. URL
http://gala.univ-perp.fr/~graillat/papers/rr2005-04.pdf. {89}

[GLL06] Stef Graillat, Philippe Langlois, and Nicolas Louvet. Improving the compensated Horner scheme with a fused multiply and add.
In Hisham M. Haddad, editor, Applied computing 2006: proceedings of the 2006 ACM Symposium on Applied Computing, Dijon, France,
April 23–27, 2006, pages 1323–1327. ACM Press, New York, NY 10036, USA, 2006. ISBN 1-59593-108-2; 978-1-59593-108-5. LCCN
QA76.76.A65 S95 2006. URL http://portal.acm.org/toc.cfm?id=1141277. DOI 10.1145/1141277.1141585. {89}

[GM74] M. W. Gentleman and S. B. Marovich. More on algorithms that reveal properties of floating point arithmetic units. Communications of
the Association for Computing Machinery, 17(5):276–277, May 1974. CODEN CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic).
DOI 10.1145/360980.361003. See [Mal72]. {1023}

[GM98] Robert Gordon and Alan McClellan. Essential JNI: Java Native Interface. Prentice-Hall, Upper Saddle River, NJ, USA, 1998. ISBN
0-13-679895-0; 978-0-13-679895-8. xxvii + 499 pp. LCCN QA76.73.J38 G665 1998. URL http://www.prenhall.com/ptrbooks/ptr_
0136798950.html. {979}

[GME99] Fred G. Gustavson, José E. Moreira, and Robert F. Enenkel. The fused multiply-add instruction leads to algorithms for extended-
precision floating point: applications to Java and high-performance computing. In Stephen A. MacKay and J. Howard Johnson,
editors, CASCON ’99: Proceedings of the 1999 Conference of the Centre for Advanced Studies on Collaborative Research. November 8–11, 1999,
Mississauga, Ontario, Canada, page [4]. IBM Corporation, San Jose, CA, USA, 1999. URL http://tinyurl.com/z9dzuxf. Dedicated to
Cleve Moler on his 60th birthday. {354}

[Gol67] I. Bennett Goldberg. 27 bits are not enough for 8-digit accuracy. Communications of the Association for Computing Machinery, 10(2):
105–106, February 1967. CODEN CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic). DOI 10.1145/363067.363112. {840, 844,
851}

Bibliography 1013

[Gol91a] David Goldberg. What every computer scientist should know about floating-point arithmetic. ACM Computing Surveys, 23(1):5–48,
March 1991. CODEN CMSVAN. ISSN 0360-0300 (print), 1557-7341 (electronic). URL http://www.acm.org/pubs/toc/Abstracts/
0360-0300/103163.html. DOI 10.1145/103162.103163. This widely cited article is an outstanding presentation of floating-point
arithmetic. See also correction [Gol91b] and remarks [Dun92, Wic92]. {1008, 1013, 1037}

[Gol91b] David Goldberg. Corrigendum: “What every computer scientist should know about floating-point arithmetic”. ACM Computing
Surveys, 23(3):413, September 1991. CODEN CMSVAN. ISSN 0360-0300 (print), 1557-7341 (electronic). See [Gol91a, Dun92, Wic92].
{103, 1008, 1013, 1037}

[Gol02] David Goldberg. Computer arithmetic. In Computer Architecture — A Quantitative Approach [PH02], chapter H, pages H–1–H–74.
ISBN 1-55860-596-7; 978-1-55860-596-1. LCCN QA76.9.A73 P377 2003. URL http://books.elsevier.com/companions/1558605967/
appendices/1558605967-appendix-h.pdf. The complete Appendix H is not in the printed book; it is available only at the book’s Web
site: http://www.mkp.com/CA3. {103}

[Goo69] I. J. Good. How random are random numbers? The American Statistician, 23(4):42–45, October 1969. CODEN ASTAAJ. ISSN 0003-1305
(print), 1537-2731 (electronic). URL http://www.jstor.org/stable/2681742. DOI 10.2307/2681742. {169}

[Gra00] Jeremy Gray. The Hilbert Challenge. Oxford University Press, Oxford, UK, 2000. ISBN 0-19-850651-1; 978-0-19-850651-5. xii + 315 pp.
LCCN QA29.H5 G739 2000. {579, 590}

[Gra09] Stef Graillat. Accurate floating-point product and exponentiation. IEEE Transactions on Computers, 58(7):994–1000, July 2009. CO-
DEN ITCOB4. ISSN 0018-9340 (print), 1557-9956 (electronic). URL http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=
4711041. DOI 10.1109/TC.2008.215. {529}

[GRAST16] Amparo Gil, Diego Ruiz-Antolín, Javier Segura, and Nico M. Temme. Algorithm 969: Computation of the incomplete gamma func-
tion for negative values of the argument. ACM Transactions on Mathematical Software, 43(3):26:1–26:9, November 2016. CODEN ACM-
SCU. ISSN 0098-3500 (print), 1557-7295 (electronic). URL http://dl.acm.org/citation.cfm?id=2972951. DOI 10.1145/2972951.
{567}

[Gri90] David Gries. Binary to decimal, one more time. In Feijen et al. [FvGM90], chapter 16, pages 141–148. ISBN 0-387-97299-4; 978-0-387-
97299-2. LCCN QA76 .B326 1990. DOI 10.1007/978-1-4612-4476-9_17. This paper presents an alternate proof of Knuth’s algorithm
[Knu90] for conversion between decimal and fixed-point binary numbers. {895, 1011, 1020}

[GRJZ07] I. S. Gradshteyn, I. M. Ryzhik, Alan Jeffrey, and Daniel Zwillinger. Table of Integrals, Series and Products. Academic Press, New York,
NY, USA, seventh edition, 2007. ISBN 0-12-373637-4 (hardcover); 978-0-12-373637-6 (hardcover). xlv + 1171 pp. LCCN QA55 .G6613
2007. {58, 619, 682, 687}

[GSR+04] Torbjörn Granlund, Gunnar Sjödin, Hans Riesel, Richard Stallman, Brian Beuning, Doug Lea, John Amanatides, Paul Zimmermann,
Ken Weber, Per Bothner, Joachim Hollman, Bennet Yee, Andreas Schwab, Robert Harley, David Seal, Robert Harley, Torsten Ekedahl,
Paul Zimmermann, Linus Nordberg, Kent Boortz, Kevin Ryde, Steve Root, Gerardo Ballabio, and Hans Thorsen. GNU MP: The GNU
Multiple Precision Arithmetic Library. Free Software Foundation, Boston, MA, USA, version 4.1.4 edition, September 21, 2004. iv +
127 pp. URL ftp://ftp.gnu.org/gnu/gmp/gmp-4.1.4.tar.gz; http://www.swox.se/gmp/. GNU MP development began in 1991.
Earler versions are 1.0 (8-Aug-1991), 2.0 (24-Apr-1996), 3.0 (17-Apr-2000), and 4.0 (1-Dec-2001). {401, 407, 825}

[GST02] Amparo Gil, Javier Segura, and Nico M. Temme. Evaluation of the modified Bessel function of the third kind of imaginary orders.
Journal of Computational Physics, 175(2):398–411, January 20, 2002. CODEN JCTPAH. ISSN 0021-9991 (print), 1090-2716 (electronic).
DOI 10.1006/jcph.2001.6894. {693}

[GST04] Amparo Gil, Javier Segura, and Nico M. Temme. Computing solutions of the modified Bessel differential equation for imaginary
orders and positive arguments. ACM Transactions on Mathematical Software, 30(2):145–158, June 2004. CODEN ACMSCU. ISSN 0098-
3500 (print), 1557-7295 (electronic). DOI 10.1145/992200.992203. {693}

[GST07] Amparo Gil, Javier Segura, and Nico M. Temme. Numerical Methods for Special Functions. SIAM (Society for Industrial and Applied
Mathematics), Philadelphia, PA, USA, 2007. ISBN 0-89871-634-9; 978-0-89871-634-4. xvi + 415 pp. LCCN QA351 .G455 2007. {13, 17,
18, 58, 644, 693, 827}

[Gus98] John Gustafson. Computational verifiability and feasibility of the ASCI program. IEEE Computational Science & Engineering, 5(1):36–
45, January/March 1998. CODEN ISCEE4. ISSN 1070-9924 (print), 1558-190x (electronic). DOI 10.1109/99.660304. Discusses recent
progress in interval arithmetic and its relevance to error estimation in very large computations of the type envisioned for the US ASCI
(Advanced Strategic Computing Initiative) project. {960, 967}

[Gut04] Peter Gutmann. Cryptographic Security Architecture: Design and Verification. Springer-Verlag, Berlin, Germany / Heidelberg, Germany /
London, UK / etc., 2004. ISBN 0-387-95387-6; 978-0-387-95387-8. xviii + 320 pp. LCCN QA76.9.A25 G88 2002. DOI 10.1007/b97264.
{214}

[HA85] T. E. Hull and A. Abrham. Properly rounded variable precision square root. ACM Transactions on Mathematical Software, 11(3):229–237,
September 1985. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic). URL http://www.acm.org/pubs/citations/
journals/toms/1985-11-3/p229-hull/. DOI 10.1145/214408.214413. {216, 827}

[HA86] T. E. Hull and A. Abrham. Variable precision exponential function. ACM Transactions on Mathematical Software, 12(2):79–91, June
1986. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic). URL http://www.acm.org/pubs/citations/journals/toms/
1986-12-2/p79-hull/. DOI 10.1145/6497.6498. {827}

[Hac84] Ian Hacking. Trial by number: Karl Pearson’s chi-square test measured the fit between theory and reality, ushering in a new sort of
decision making. Science 84, 5(9):69–70, November 1984. This issue is entitled Century of the Sciences: 20 Discoveries That Changed Our
Lives. {197}

1014 Bibliography

[Ham78] Hugo C. Hamaker. Miscellanea: Approximating the cumulative normal distribution and its inverse. Applied Statistics, 27(1):76–
77, 1978. CODEN APSTAG. ISSN 0035-9254 (print), 1467-9876 (electronic). URL http://www.jstor.org/stable/2346231. DOI
10.2307/2346231. {618}

[Har70] V. C. Harris. An algorithm for finding the greatest common divisor. Fibonacci Quarterly, 8(1):102–103, February 1970. CODEN FIBQAU.
ISSN 0015-0517. URL http://www.fq.math.ca/Scanned/8-1/harris1.pdf. {184}

[Har06] Laszlo Hars. Modular inverse algorithms without multiplications for cryptographic applications. EURASIP Journal on Embedded
Systems, 2006:1–13, 2006. ISSN 1687-3955 (print), 1687-3963 (electronic). URL http://downloads.hindawi.com/journals/es/2006/
032192.pdf. DOI 10.1155/ES/2006/32192. Article ID 32192. {184}

[Har09a] John Harrison. Decimal transcendentals via binary. In Bruguera et al. [BCDH09], pages 187–194. ISBN 0-7695-3670-0; 978-0-7695-
3670-5. ISSN 1063-6889. LCCN QA76.6. URL http://www.ac.usc.es/arith19/. DOI 10.1109/ARITH.2009.31. {826}

[Har09b] John Harrison. Fast and accurate Bessel function computation. In Bruguera et al. [BCDH09], pages 104–113. ISBN 0-7695-3670-0;
978-0-7695-3670-5. ISSN 1063-6889. LCCN QA76.6. URL http://www.ac.usc.es/arith19/. DOI 10.1109/ARITH.2009.32. {693, 716}

[Has55] Cecil Hastings, Jr. Approximations for Digital Computers. The Rand series. Princeton University Press, Princeton, NJ, USA, 1955. viii +
201 pp. LCCN QA76 .H37. Assisted by Jeanne T. Hayward and James P. Wong, Jr. {269, 600, 643, 827}

[Hav03] Julian Havil. Gamma: Exploring Euler’s Constant. Princeton University Press, Princeton, NJ, USA, 2003. ISBN 0-691-09983-9; 978-0-691-
09983-5. xxiii + 266 pp. LCCN QA41 .H23 2003. {59, 591}

[Haw05] Stephen Hawking. God Created the Integers: the Mathematical Breakthroughs that Changed History. Running Press Book Publishers,
Philadelphia, PA; London, UK, 2005. ISBN 0-7624-1922-9 (hardcover); 978-0-7624-1922-7 (hardcover). xiii + 1160 pp. URL http://
www.perseusbooksgroup.com/runningpress/book_detail.jsp?isbn=0762419229. {59, 299, 521}

[HBF09] Victor Henner, Tatyana Belozerova, and Kyle Forinash. Mathematical Methods in Physics: Partial Differential Equations, Fourier Series, and
Special Functions. A. K. Peters, Wellesley, MA, USA, 2009. ISBN 1-56881-335-X, 1-4398-6516-7 (e-book); 978-1-56881-335-6, 978-1-4398-
6516-3 (e-book). xviii + 841 pp. LCCN QC20 .H487 2009. URL http://www.crcnetbase.com/isbn/9781568813356;. {827}

[HCGE17] Miguel Herrero-Collantes and Juan Carlos Garcia-Escartin. Quantum random number generators. Reviews of Modern Physics, 89
(1):015004:1–015004:48, January 2017. CODEN RMPHAT. ISSN 0034-6861 (print), 1538-4527 (electronic), 1539-0756. URL http://
journals.aps.org/rmp/abstract/10.1103/RevModPhys.89.015004. DOI 10.1103/RevModPhys.89.015004. {178}

[HCL+68] John F. Hart, E. W. Cheney, Charles L. Lawson, Hans J. Maehly, Charles K. Mesztenyi, John R. Rice, Henry G. Thatcher, Jr., and
Christoph Witzgall. Computer Approximations. Robert E. Krieger Publishing Company, Huntington, NY, USA, 1968. ISBN 0-88275-642-
7; 978-0-88275-642-4. x + 343 pp. LCCN QA 297 C64 1978. Reprinted 1978 with corrections. {1, 270, 306, 521, 589, 593, 644, 693, 768,
827}

[Hea05] Anthony C. Hearn. REDUCE: The first forty years. In Andreas Dolzmann, Andreas Seidl, and Thomas Sturm, editors, Algorithmic
Algebra and Logic: Proceedings of the A3L 2005, April 3–6, Passau, Germany, Conference in Honor of the 60th Birthday of Volker Weispfenning,
pages 19–24. Herstellung und Verlag: Books on Demand GmhH, Norderstedt, Germany, 2005. ISBN 3-8334-2669-1; 978-3-8334-2669-8.
LCCN A155.7.E4 A39 2005. URL http://reduce-algebra.com/reduce40.pdf. {28}

[Hea09] Anthony C. Hearn. REDUCE is free software as of January 2009. ACM Communications in Computer Algebra, 43(1–2):15–16, March/June
2009. ISSN 1932-2232 (print), 1932-2240 (electronic). DOI 10.1145/1610296.1610299. {28}

[Hel06] Hal Hellman. Great Feuds in Mathematics: Ten of the Liveliest Disputes Ever. Wiley, New York, NY, USA, 2006. ISBN 0-471-64877-9 (cloth);
978-0-471-64877-2 (cloth). vi + 250 pp. LCCN QA21 .H45 2006. {59}

[Hen06] Doug Hensley. Continued Fractions. World Scientific Publishing, Singapore, 2006. ISBN 981-256-477-2; 978-981-256-477-1. xiii + 245 pp.
LCCN QA295 .H377 2006. {19}

[HF98] Roger Herz-Fischler. A Mathematical History of Golden Number. Dover, New York, NY, USA, 1998. ISBN 0-486-40007-7; 978-0-486-40007-
5. xxii + 195 pp. LCCN QA481.H47 1998. The golden number, or golden ratio, is φ = 1

2 (
√

5 + 1) ≈ 1.618. It is the last of the big five
mathematical constants: e, i, π, γ, and φ. {8, 14, 59, 577}

[HF09] Frank E. Harris and J. G. Fripiat. Methods for incomplete Bessel function evaluation. International Journal of Quantum Chemistry, 109
(8):1728–1740, February 4, 2009. CODEN IJQCB2. ISSN 0020-7608 (print), 1097-461X (electronic). DOI 10.1002/qua.21972. {693}

[HFT94] T. E. Hull, Thomas F. Fairgrieve, and Ping Tak Peter Tang. Implementing complex elementary functions using exception handling.
ACM Transactions on Mathematical Software, 20(2):215–244, June 1994. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic).
URL http://www.acm.org/pubs/citations/journals/toms/1994-20-2/p215-hull/. DOI 10.1145/178365.178404. See corrigenda
[Ano94]. {476, 996}

[HFT97] T. E. Hull, Thomas F. Fairgrieve, and Ping Tak Peter Tang. Implementing the complex arcsine and arccosine functions using exception
handling. ACM Transactions on Mathematical Software, 23(3):299–335, September 1997. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-
7295 (electronic). URL http://www.acm.org/pubs/citations/journals/toms/1997-23-3/p299-hull/. DOI 10.1145/275323.275324.
{476}

[HH80] Velma R. Huskey and Harry D. Huskey. Lady Lovelace and Charles Babbage. Annals of the History of Computing, 2(4):299–329, October/
December 1980. CODEN AHCOE5. ISSN 0164-1239. URL http://dlib.computer.org/an/books/an1980/pdf/a4299.pdf; http:
//www.computer.org/annals/an1980/a4299abs.htm. DOI 10.1109/MAHC.1980.10042. {568}

[HHPM07] Andreas K. Heyne, Alice K. Heyne, Elena S. Pini, and Tahu Matheson. Leonhard Euler: a Man to be Reckoned with. Birkhäuser,
Cambridge, MA, USA; Berlin, Germany; Basel, Switzerland, 2007. ISBN 3-7643-8332-1; 978-3-7643-8332-9. 45 pp. LCCN QA29.E8 H49
2007. {59, 591}

Bibliography 1015

[Hil77] Geoffrey W. Hill. Algorithm 518: Incomplete Bessel function I0. The von Mises distribution [S14]. ACM Transactions on
Mathematical Software, 3(3):279–284, September 1977. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic). DOI
10.1145/355744.355753. {693}

[Hil81] Geoffrey W. Hill. Evaluation and inversion of the ratios of modified Bessel functions, I1(x)/I0(x) and I1.5(x)/I0.5(x). ACM Transactions
on Mathematical Software, 7(2):199–208, June 1981. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic). DOI 10.1145/
355945.355949. {693}

[HJ67a] Ian David Hill and S. A. Joyce. Algorithm 304: Normal curve integral. Communications of the Association for Computing Machinery, 10
(6):374–375, June 1967. CODEN CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic). DOI 10.1145/363332.363411. See remarks
[HJ67b, Ber68]. {618, 999, 1015}

[HJ67b] Ian David Hill and S. A. Joyce. Remarks on Algorithm 123 [S15]: Real error function, ERF(x); Algorithm 180 [S15]: Error function —
large X; Algorithm 181 [S15]: Complementary error function — large X; Algorithm 209 [S15]: Gauss; Algorithm 226 [S15]: Normal
distribution function; Algorithm 272 [S15]: Procedure for the normal distribution functions; Algorithm 304 [S15]: Normal curve
integral. Communications of the Association for Computing Machinery, 10(6):377–378, June 1967. CODEN CACMA2. ISSN 0001-0782
(print), 1557-7317 (electronic). DOI 10.1145/363332.365433. See [Cyv64, Mac65, HJ67a]. {618, 999, 1006, 1015, 1023}

[HLB00] Yozo Hida, Xiaoye S. Li, and David H. Bailey. Quad-double arithmetic: Algorithms, implementation, and application. Technical
report 46996, Lawrence Berkeley National Laboratory, 1 Cycloton Rd, Berkeley, CA 94720, October 30, 2000. 28 pp. URL http://
www.cs.berkeley.edu/~yozo/papers/LBNL-46996.ps.gz. {366, 407, 777, 781}

[HLD04] Wolfgang Hörmann, Josef Leydold, and Gerhard Derflinger. Automatic Nonuniform Random Variate Generation. Statistics and comput-
ing, 1431-8784. Springer-Verlag, Berlin, Germany / Heidelberg, Germany / London, UK / etc., 2004. ISBN 3-540-40652-2; 978-3-540-
40652-5. x + 441 pp. LCCN QA273 .H777 2004. DOI 10.1007/978-3-662-05946-3. {196}

[HLSZ07] Guillaume Hanrot, Vincent Lefèvre, Damien Stehlé, and Paul Zimmermann. Worst cases of a periodic function for large arguments.
In Kornerup and Muller [KM07], pages 133–140. ISBN 0-7695-2854-6; 978-0-7695-2854-0. ISSN 1063-6889. LCCN QA76.9.C62. URL
http://www.lirmm.fr/arith18/. DOI 10.1109/ARITH.2007.37. {28}

[Hoa81] C. A. R. Hoare. The Emperor’s old clothes. Communications of the Association for Computing Machinery, 24(2):75–83, 1981. CODEN
CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic). DOI 10.1145/358549.358561. This is the 1980 ACM Turing Award Lecture,
delivered at ACM’80, Nashville, Tennessee, October 27, 1980. {963}

[Hou81] David G. Hough. Applications of the proposed IEEE-754 standard for floating point arithmetic. Computer, 14(3):70–74, March 1981.
CODEN CPTRB4. ISSN 0018-9162 (print), 1558-0814 (electronic). URL http://ieeexplore.ieee.org/document/1667288/. DOI
10.1109/C-M.1981.220381. See [IEEE85a]. {63, 1016}

[HP90] John L. Hennessy and David A. Patterson. Computer Architecture — A Quantitative Approach. Morgan Kaufmann Publishers, Los Altos,
CA 94022, USA, 1990. ISBN 1-55860-069-8; 978-1-55860-069-0. xxviii + 594 pp. LCCN QA76.9.A73 P377 1990. {103}

[HP91] David G. Hough and Vern Paxson. Testbase: base conversion test program. World-Wide Web document, July 20, 1991. URL http://
www.netlib.org/fp/testbase. See [PK91]. {851}

[HP94] John L. Hennessy and David A. Patterson. Computer Organization and Design — The Hardware/Software Interface. Morgan Kaufmann
Publishers, San Mateo, CA, USA, 1994. ISBN 1-55860-281-X; 978-1-55860-281-6. xxiv + 648 pp. LCCN QA76.9 .C643 P37 1994. {103}

[HP96] John L. Hennessy and David A. Patterson. Computer Architecture — A Quantitative Approach. Morgan Kaufmann Publishers, Los Altos,
CA 94022, USA, second edition, 1996. ISBN 1-55860-329-8; 978-1-55860-329-5. xxiii + 760 + A-77 + B-47 + C-26 + D-26 + E-13 + R-16 +
I-14 pp. LCCN QA76.9.A73P377 1995. {103}

[HP97] John L. Hennessy and David A. Patterson. Computer Organization: The Hardware/Software Interface. Morgan Kaufmann Publishers,
San Mateo, CA, USA, second edition, 1997. ISBN 1-55860-428-6 (hardcover), 1-55860-491-X (softcover); 978-1-55860-428-5 (hardcover),
978-1-55860-491-9 (softcover). 1000 pp. LCCN QA76.9.C643H46 1997. {103}

[HP03] John L. Hennessy and David A. Patterson. Computer Architecture — A Quantitative Approach. Morgan Kaufmann Publishers, Los Altos,
CA 94022, USA, third edition, 2003. ISBN 1-55860-596-7; 978-1-55860-596-1. xxi + 883 + A-87 + B-42 + C-1 + D-1 + E-1 + F-1 + G-1 + H-1
+ I-1 + R-22 + I-44 pp. LCCN QA76.9.A73 P377 2003. URL http://www.mkp.com/books_catalog/catalog.asp?ISBN=1-55860-596-7;
http://www.mkp.com/CA3. {103}

[HP04] John L. Hennessy and David A. Patterson. Computer Organization: The Hardware/Software Interface. Morgan Kaufmann Publishers, San
Mateo, CA, USA, third edition, 2004. ISBN 1-55860-604-1; 978-1-55860-604-3. xvii + 621 pp. LCCN QA76.9.C643 H46 2004. {103}

[HP12] John L. Hennessy and David A. Patterson. Computer Architecture: a Quantitative Approach. Morgan Kaufmann/Elsevier, Waltham, MA,
USA, fifth edition, 2012. ISBN 0-12-383872-X (paperback); 978-0-12-383872-8 (paperback). xxvii + 493 + 325 pp. LCCN QA76.9.A73
P377 2012. URL http://store.elsevier.com/product.jsp?isbn=9780123838728. With contributions by Krste Asanović, Jason D.
Kabos, Robert P. Colwell, Thomas M. Conte, José Duato, Diana Franklin, David Goldberg, Norman P. Jouppi, Sheng Li, Naveen
Muralimanohar, Gregory D. Peterson, Timothy M. Pinkston, Parthasarathy Ranganthan, David A. Wood, and Amr Zaky. {103}

[HPW90] Eldon R. Hansen, Merrell L. Patrick, and Richard L. C. Wang. Polynomial evaluation with scaling. ACM Transactions on Mathematical
Software, 16(1):86–93, March 1990. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic). URL http://www.acm.org/
pubs/citations/journals/toms/1990-16-1/p86-hansen/. DOI 10.1145/77626.77633. {89}

[HPWW94] Brad Lee Holian, Ora E. Percus, Tony T. Warnock, and Paula A. Whitlock. Pseudorandom number generator for massively parallel
molecular-dynamics simulations. Physical Review E (Statistical physics, plasmas, fluids, and related interdisciplinary topics), 50(2):1607–
1615, August 1994. CODEN PLEEE8. ISSN 1539-3755 (print), 1550-2376 (electronic). URL http://link.aps.org/doi/10.1103/
PhysRevE.50.1607. DOI 10.1103/PhysRevE.50.1607. {177}

1016 Bibliography

[HSH+09] J. Alex Halderman, Seth D. Schoen, Nadia Heninger, William Clarkson, William Paul, Joseph A. Calandrino, Ariel J. Feldman, Jacob
Appelbaum, and Edward W. Felten. Lest we remember: cold-boot attacks on encryption keys. Communications of the Association
for Computing Machinery, 52(5):91–98, May 2009. CODEN CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic). DOI 10.1145/
1506409.1506429. {208}

[HTWG08] Anders Hejlsberg, Mads Togersen, Scott Wiltamuth, and Peter Golde, editors. The C# Programming Language. Addison-Wesley,
Reading, MA, USA, third edition, 2008. ISBN 0-321-56299-2; 978-0-321-56299-9. xviii + 754 pp. LCCN QA76.73.C154 H45 2008. {917}

[HTWG11] Anders Hejlsberg, Mads Togersen, Scott Wiltamuth, and Peter Golde, editors. The C# Programming Language. Addison-Wesley,
Reading, MA, USA, fourth edition, 2011. ISBN 0-321-74176-5; 978-0-321-74176-9. xviii + 844 pp. LCCN QA76.73.C154. URL http:
//www.pearsonhighered.com/program/Hejlsberg-C-Programming-Language-Covering-C-4-0-The-4th-Edition/PGM269050.html.
{917}

[Hub11] Raymond Hubbard. The widespread misinterpretation of p-values as error probabilities. Journal of Applied Statistics, 38(11):2617–2626,
November 2011. ISSN 0266-4763 (print), 1360-0532 (electronic). DOI 10.1080/02664763.2011.567245. {196}

[HW03] Peter Hellekalek and Stefan Wegenkittl. Empirical evidence concerning AES. ACM Transactions on Modeling and Computer
Simulation, 13(4):322–333, October 2003. CODEN ATMCEZ. ISSN 1049-3301 (print), 1558-1195 (electronic). URL http://
random.mat.sbg.ac.at/ftp/pub/publications/peter/aes_sub.ps; http://random.mat.sbg.ac.at/~peter/slides_YACC04.pdf.
DOI 10.1145/945511.945515. {178}

[HWG04] Anders Hejlsberg, Scott Wiltamuth, and Peter Golde. The C# programming language. Addison-Wesley, Reading, MA, USA, 2004. ISBN
0-321-15491-6; 978-0-321-15491-0. xiv + 644 pp. LCCN QA76.76.C154 H45 2004. {vii, 80, 917}

[HWG06] Anders Hejlsberg, Scott Wiltamuth, and Peter Golde. The C# programming language. Addison-Wesley, Reading, MA, USA, second
edition, 2006. ISBN 0-321-33443-4 (hardback); 978-0-321-33443-5 (hardback). xiv + 704 pp. LCCN QA76.73.C154 H45 2006. {917}

[IA6406] Intel Corporation, Santa Clara, CA, USA. Intel Itanium Architecture Software Developer’s Manual, Volume 1: Application Architecture,
January 2006. 250 pp. URL http://download.intel.com/design/Itanium/manuals/24531705.pdf. Order number 245317-005. {241}

[IBM70] IBM Corporation, San Jose, CA, USA. A Programmer’s Introduction to IBM System/360 Assembler Language, August 1970. vii + 148 pp.
URL http://bitsavers.org/pdf/ibm/360/asm/SC20-1646-6_int360asm_Aug70.pdf. Form number SC20-1646-6. {928}

[IBM84] IBM Corporation, Poughkeepsie, NY, USA. High Accuracy Arithmetic, January 1984. iii + 22 pp. Publication number SA22-7093-0, File
number S370-01. {964}

[IBM06] IBM Corporation, San Jose, CA, USA. Preliminary Decimal-Floating-Point Architecture, November 2006. viii + 52 pp. URL http://
publibz.boulder.ibm.com/epubs/pdf/a2322320.pdf. Form number SA23-2232-00. {927, 963}

[IBM07] IBM Corporation, San Jose, CA, USA. Power Instruction Set Architecture: Preliminary Decimal Floating-Point Architecture, July 2007. 52
pp. URL http://www.power.org/resources/downloads/PowerDFP.pdf. {109}

[IEE13] IEEE, editor. Proceedings of the 21st IEEE Symposium on Computer Arithmetic, Austin, Texas, USA, 8–10 April 2013. IEEE Computer Society
Press, Silver Spring, MD, USA, 2013. ISBN 0-7695-4957-8; 978-0-7695-4957-6. ISSN 1063-6889. LCCN QA76.9.C62 S95 2013. {1017,
1019}

[IEE15] IEEE. 1788-2015 — IEEE Standard for Interval Arithmetic. IEEE, New York, NY, USA, June 30, 2015. ISBN 0-7381-9721-1 (PDF), 0-7381-
9720-3 (electronic); 978-0-7381-9721-0 (PDF), 978-0-7381-9720-3 (electronic). xiv + 79 pp. URL http://ieeexplore.ieee.org/servlet/
opac?punumber=7140719. DOI 10.1109/IEEESTD.2015.7140721. Approved 11 June 2015 by IEEE-SA Standards Board. {967}

[IEEE85a] ANSI/IEEE 754-1985, Standard for Binary Floating-Point Arithmetic. IEEE, New York, NY, USA, August 12, 1985. ISBN 1-55937-653-8;
978-1-55937-653-2. 20 pp. URL http://standards.ieee.org/reading/ieee/std/busarch/754-1985.pdf. Revised 1990. A preliminary
draft was published in the January 1980 issue of IEEE Computer, together with several companion articles [Cod81, Coo81b, Coo80,
Coo81a, Hou81, Ste81a, Ste81b]. The final version was republished in [IEEE87, IEEE85b]. See also [WF82]. Also standardized as IEC
60559 (1989-01) Binary floating-point arithmetic for microprocessor systems. {1, 63, 104, 827, 966, 1005, 1015, 1016, 1033, 1036}

[IEEE85b] IEEE Standard for Binary Floating-Point Arithmetic. ANSI/IEEE Std 754-1985. IEEE Computer Society Press, Silver Spring, MD, USA,
1985. 18 pp. See [IEEE85a]. {63, 1016}

[IEEE87] ANSI/IEEE Std 754-1985. an American National Standard: IEEE Standard for Binary Floating-Point Arithmetic. ACM SIGPLAN
Notices, 22(2):9–25, February 1987. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic). URL http://
portalparts.acm.org/30000/24686/fm/frontmatter.pdf. See [IEEE85a]. {63, 104, 1016}

[IEEE01] IEEE Std 1003.1-2001 Standard for Information Technology — Portable Operating System Interface (POSIX) System Interfaces, Issue 6. IEEE,
New York, NY, USA, 2001. ISBN 1-85912-247-7 (UK), 1-931624-07-0 (US), 0-7381-3094-4 (print), 0-7381-3010-9 (PDF), 0-7381-3129-
6 (CD-ROM); 978-1-85912-247-1 (UK), 978-1-931624-07-7 (US), 978-0-7381-3094-1 (print), 978-0-7381-3010-1 (PDF), 978-0-7381-3129-
0 (CD-ROM). xxx + 1690 pp. Revision of IEEE Std 1003.1-1996 and IEEE Std 1003.2-1992, Open Group Technical Standard Base
Specifications, Issue 6. {441}

[IEEE08] IEEE 754-2008, Standard for Floating-Point Arithmetic. IEEE, New York, NY, USA, August 29, 2008. ISBN 0-7381-5753-8 (paper), 0-
7381-5752-X (electronic); 978-0-7381-5753-5 (paper), 978-0-7381-5752-8 (electronic). 58 pp. URL http://en.wikipedia.org/wiki/
IEEE_754-2008; http://ieeexplore.ieee.org/servlet/opac?punumber=4610933. DOI 10.1109/IEEESTD.2008.4610935. {vii, 1,
104, 825, 966}

[Ifr00] Georges Ifrah. The Universal History of Numbers from Prehistory to the Invention of the Computer. Wiley, New York, NY, USA, 2000. ISBN
0-471-37568-3; 978-0-471-37568-5. xxii + 633 pp. LCCN QA141.I3713 2000. Translated by David Bellos, E. F. Harding, Sophie Wood,
and Ian Monk from the 1994 French original, Histoire universelle des chiffres. {59}

[Int85] Intel. The iAPX 286 Programmer’s Reference Manual. Intel Corporation, Santa Clara, CA, USA, 1985. {1028}

Bibliography 1017

[Inte06] Reference software implementation of the IEEE 754R decimal floating-point arithmetic. World-Wide Web document, 2006. URL
http://cache-www.intel.com/cd/00/00/29/43/294339_294339.pdf. {929}

[Ioa05] John P. A. Ioannidis. Why most published research findings are false. PLoS Medicine, 2(8):696–701, August 2005. CO-
DEN PMLEAC. ISSN 1549-1277 (print), 1549-1676 (electronic). URL http://www.plosmedicine.org/article/info:doi/10.1371/
journal.pmed.0020124. DOI 10.1371/journal.pmed.0020124. {196}

[ISO11] ISO. ISO/IEC/IEEE 60559:2011 Information technology — Microprocessor Systems — Floating-Point arithmetic. International Organization
for Standardization, Geneva, Switzerland, 2011. 58 pp. URL http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_
detail.htm?csnumber=57469. {vii, 1, 104, 825, 966}

[Jab94] Aleksander Jablonski. Numerical evaluation of spherical Bessel functions of the first kind. Journal of Computational Physics, 111(2):
256–259, April 1994. CODEN JCTPAH. ISSN 0021-9991 (print), 1090-2716 (electronic). DOI 10.1006/jcph.1994.1060. {693}

[Jac75] John David Jackson. Classical Electrodynamics. Wiley, New York, NY, USA, second edition, 1975. ISBN 0-471-43132-X; 978-0-471-43132-9.
xxii + 848 pp. LCCN QC631 .J3 1975. {627, 693}

[Jac92] David Jacobson. Engineer’s toolbox: Floating point in Mathematica. Mathematica Journal, 2(3):42–46, Summer 1992. ISSN 1047-
5974 (print), 1097-1610 (electronic). URL http://www.mathematica-journal.com/issue/v2i3/tutorials/toolbox/index.html. This
article describes the significance arithmetic used in Mathematica’s software arbitrary-precision floating-point arithmetic. {966}

[Jam89] M. J. Jamieson. Rapidly converging iterative formulae for finding square roots and their computational efficien-
cies. The Computer Journal, 32(1):93–94, February 1989. CODEN CMPJA6. ISSN 0010-4620 (print), 1460-2067 (elec-
tronic). URL http://www3.oup.co.uk/computer_journal/hdb/Volume_32/Issue_01/tiff/93.tif; http://www3.oup.co.uk/
computer_journal/hdb/Volume_32/Issue_01/tiff/94.tif. DOI 10.1093/comjnl/32.1.93. This work generalizes the Pythagorean
sums in [Dub83, MM83]. {228, 1008, 1024}

[Jam90] F. James. A review of pseudorandom number generators. Computer Physics Communications, 60(3):329–344, October 1990. CO-
DEN CPHCBZ. ISSN 0010-4655 (print), 1879-2944 (electronic). URL http://www.sciencedirect.com/science/article/pii/
001046559090032V. DOI 10.1016/0010-4655(90)90032-V. {177}

[JD08] Alan Jeffrey and Hui-Hui Dai. Handbook of Mathematical Formulas and Integrals. Elsevier Academic Press, Amsterdam, The Netherlands,
fourth edition, 2008. ISBN 0-12-374288-9; 978-0-12-374288-9. xlv + 541 pp. LCCN QA47 .J38 2008. {58, 619}

[Jea16] Claude-Pierre Jeannerod. A radix-independent error analysis of the Cornea–Harrison–Tang method. ACM Transactions on Mathematical
Software, 42(3):19:1–19:20, May 2016. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic). DOI 10.1145/2824252. {463}

[JEL68] E. Jahnke, Fritz Emde, and Friedrich Lösch. Tafeln höherer Funktionen. (German) [Tables of higher functions]. B. G. Teubner, Stuttgart,
Germany, seventh edition, 1968. xii + 322 pp. LCCN QA55 .J32 1966. {58}

[JK77] Norman Lloyd Johnson and Samuel Kotz. Urn Models and Their Application: An Approach to Modern Discrete Probability Theory. Wiley
series in probability and mathematical statistics. Wiley, New York, NY, USA, 1977. ISBN 0-471-44630-0; 978-0-471-44630-9. xiii + 402
pp. LCCN QA273 .J623. {196}

[JKB94] Norman Lloyd Johnson, Samuel Kotz, and N. Balakrishnan. Continuous Univariate Distributions. Wiley series in probability and
mathematical statistics. Wiley, New York, NY, USA, second edition, 1994. ISBN 0-471-58495-9 (vol. 1), 0-471-58494-0 (vol. 2); 978-0-
471-58495-7 (vol. 1), 978-0-471-58494-0 (vol. 2). 761 (vol 1., est.), 752 (vol. 2, est.) pp. LCCN QA273.6 .J6 1994. Two volumes. {196}

[JKB97] Norman Lloyd Johnson, Samuel Kotz, and N. Balakrishnan. Discrete Multivariate Distributions. Wiley series in probability and statistics.
Applied probability and statistics. Wiley, New York, NY, USA, 1997. ISBN 0-471-12844-9 (cloth); 978-0-471-12844-1 (cloth). xxii + 299
pp. LCCN QA273.6 .J617 1997. {196}

[JKK05] Norman Lloyd Johnson, Adrienne W. Kemp, and Samuel Kotz. Univariate Discrete Distributions. Wiley, New York, NY, USA, third
edition, 2005. ISBN 0-471-27246-9; 978-0-471-27246-5. xix + 646 pp. LCCN QA273.6 .J64 2005. {196}

[JKLM17] Claude-Pierre Jeannerod, Peter Kornerup, Nicolas Louvet, and Jean-Michel Muller. Error bounds on complex floating-point multi-
plication with an FMA. Mathematics of Computation, 86(304):881–898, 2017. CODEN MCMPAF. ISSN 0025-5718 (print), 1088-6842
(electronic). DOI 10.1090/mcom/3123. {458, 463}

[JL12] U. D. Jentschura and E. Lötstedt. Numerical calculation of Bessel, Hankel and Airy functions. Computer Physics Communications, 183
(3):506–519, March 2012. CODEN CPHCBZ. ISSN 0010-4655 (print), 1879-2944 (electronic). URL http://www.sciencedirect.com/
science/article/pii/S0010465511003729. DOI 10.1016/j.cpc.2011.11.010. {693}

[JLM13a] Claude-Pierre Jeannerod, Nicolas Louvet, and Jean-Michel Muller. Further analysis of Kahan’s algorithm for the accurate computation
of 2× 2 determinants. Mathematics of Computation, 82(284):2245–2264, 2013. CODEN MCMPAF. ISSN 0025-5718 (print), 1088-6842 (elec-
tronic). URL http://www.ams.org/journals/mcom/2013-82-284/S0025-5718-2013-02679-8; http://www.ams.org/journals/
mcom/2013-82-284/S0025-5718-2013-02679-8/S0025-5718-2013-02679-8.pdf. DOI 10.1090/S0025-5718-2013-02679-8. {463}

[JLM13b] Claude-Pierre Jeannerod, Nicolas Louvet, and Jean-Michel Muller. On the componentwise accuracy of complex floating-point division
with an FMA. In IEEE [IEE13], pages 83–90. ISBN 0-7695-4957-8; 978-0-7695-4957-6. ISSN 1063-6889. LCCN QA76.9.C62 S95 2013.
DOI 10.1109/ARITH.2013.8. {463}

[JLMP11] Claude-Pierre Jeannerod, Nicolas Louvet, Jean-Michel Muller, and Adrien Panhaleux. Midpoints and exact points of some algebraic
functions in floating-point arithmetic. IEEE Transactions on Computers, 60(2):228–241, February 2011. CODEN ITCOB4. ISSN 0018-9340
(print), 1557-9956 (electronic). DOI 10.1109/TC.2010.144. {28}

[JLMP16] Claude-Pierre Jeannerod, Nicolas Louvet, Jean-Michel Muller, and Antoine Plet. Sharp error bounds for complex floating-point inver-
sion. Numerical Algorithms, 73(3):735–760, November 2016. CODEN NUALEG. ISSN 1017-1398 (print), 1572-9265 (electronic). URL
http://link.springer.com/article/10.1007/s11075-016-0115-x. DOI 10.1007/s11075-016-0115-x. {463}

1018 Bibliography

[JP89] P. Johnstone and F. E. Petry. Higher radix floating point representations. In Miloš D. Ercegovac and Earl E. Swartzlander, Jr., editors,
Proceedings: 9th Symposium on Computer Arithmetic: September 6–8, 1989, Santa Monica, California, USA, pages 128–135. IEEE Computer
Society Press, Silver Spring, MD, USA, 1989. ISBN 0-8186-8963-3 (case), 0-8186-5963-7 (microfiche); 978-0-8186-8963-5 (case), 978-0-
8186-5963-8 (microfiche). LCCN QA 76.9 C62 S95 1989. DOI 10.1109/ARITH.1989.72818. IEEE catalog number 89CH2757-3. {964}

[JPS07] Jon Jagger, Nigel Perry, and Peter Sestoft. Annotated C# standard. Morgan Kaufmann Publishers, Los Altos, CA 94022, USA, 2007.
ISBN 0-12-372511-9; 978-0-12-372511-0. xxiii + 825 pp. LCCN QA76.73.C154 J35 2007. {102, 103, 917}

[JT74] William B. Jones and Wolfgang J. Thron. Numerical stability in evaluating continued fractions. Mathematics of Computation, 28(127):
795–810, July 1974. CODEN MCMPAF. ISSN 0025-5718 (print), 1088-6842 (electronic). URL http://www.jstor.org/stable/2005701.
DOI 10.2307/2005701. {13}

[JT84] William B. Jones and Wolfgang J. Thron. Continued Fractions: Analytic Theory and Applications, volume 11 of Encyclopedia of Mathematics
and its Applications. Cambridge University Press, Cambridge, UK, 1984. ISBN 0-521-30231-5; 978-0-521-30231-9. xxviii + 428 pp. LCCN
QA295 .J64 1984. {19}

[JW91] Kathleen Jensen and Niklaus Wirth. Pascal User Manual and Report: ISO Pascal Standard. Springer-Verlag, Berlin, Germany / Heidel-
berg, Germany / London, UK / etc., fourth edition, 1991. ISBN 0-387-97649-3, 3-540-97649-3; 978-0-387-97649-5, 978-3-540-97649-3.
xvi + 266 pp. LCCN QA76.73.P2 J46 1991. DOI 10.1007/978-1-4612-4450-9. Revised by Andrew B. Mickel and James F. Miner. {vii,
989}

[Kah65] William M. Kahan. Further remarks on reducing truncation errors. Communications of the Association for Computing Machinery, 8(1):40,
January 1965. CODEN CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic). DOI 10.1145/363707.363723. {353}

[Kah83] William M. Kahan. Minimizing q∗m − n. Technical report, Department of Mathematics and Department of Electrical Engineering and
Computer Science, University of California, Berkeley, Berkeley, CA, USA, March 1983. URL http://www.cs.berkeley.edu/~wkahan/
testpi/nearpi.c. This important report discusses the use of continued fractions for finding worst cases for argument reduction. {251,
265}

[Kah87] William M. Kahan. Branch cuts for complex elementary functions or much ado about nothing’s sign bit. In A. Iserles and M. J. D.
Powell, editors, The State of the Art in Numerical Analysis: Proceedings of the Joint IMA/SIAM Conference on the State of the Art in Numerical
Analysis held at the University of Birmingham, 14–18 April 1986, volume 9 of Inst. Math. Appl. Conf. Ser. New Ser., pages 165–211. Oxford
University Press, Oxford, UK, 1987. ISBN 0-19-853614-3; 978-0-19-853614-7. LCCN QA297 .S781 1987. {69, 476, 482, 514}

[Kah90] William M. Kahan. How Cray’s arithmetic hurts scientific computation (and what might be done about it), June 14, 1990. URL
http://754r.ucbtest.org/issues/cray-hurts.pdf. Manuscript prepared for the Cray User Group meeting in Toronto, Canada,
April 10, 1990. {953}

[Kah04a] William M. Kahan. A logarithm too clever by half. World-Wide Web document, August 9, 2004. URL http://www.cs.berkeley.edu/
~wkahan/LOG10HAF.TXT. {81, 259}

[Kah04b] William M. Kahan. On the cost of floating-point computation without extra-precise arithmetic. World-Wide Web document, November
20, 2004. URL http://www.cs.berkeley.edu/~wkahan/Qdrtcs.pdf. See [Bol09] for a proof of this algorithm for accurate computation
of the discriminant needed for the solution of quadratic equations. {472, 1000}

[Kap99] Robert Kaplan. The Nothing That Is: A Natural History of Zero. Oxford University Press, Oxford, UK, 1999. ISBN 0-19-512842-7;
978-0-19-512842-0. xii + 225 pp. LCCN QA141 .K36 1999. {59}

[Kar85] Richard Karpinski. Paranoia: a floating-point benchmark. Byte Magazine, 10(2):223–235, February 1985. CODEN BYTEDJ. ISSN
0360-5280 (print), 1082-7838 (electronic). {773}

[Kat09] Victor J. Katz. A History of Mathematics: An Introduction. Addison-Wesley, Reading, MA, USA, third edition, 2009. ISBN 0-321-38700-7;
978-0-321-38700-4. xvi + 976 pp. LCCN QA21 .K33 2009. {59}

[KB67] Donald E. Knuth and Thomas J. Buckholtz. Computation of tangent, Euler, and Bernoulli numbers. Mathematics of Computation, 21
(100):663–688, October 1967. CODEN MCMPAF. ISSN 0025-5718 (print), 1088-6842 (electronic). URL http://www.jstor.org/stable/
2005010. DOI 10.2307/2005010. {574}

[KBJ00] Samuel Kotz, N. Balakrishnan, and Norman Lloyd Johnson. Continuous Multivariate Distributions: Volume 1: Models and Applications.
Wiley series in probability and statistics. Wiley, New York, NY, USA, second edition, 2000. ISBN 0-471-18387-3 (cloth); 978-0-471-
18387-7 (cloth). xxii + 722 pp. LCCN QA273.6 .K68 2000. {196}

[KD98] William M. Kahan and Joseph D. Darcy. How Java’s floating-point hurts everyone everywhere. Technical report, Department of
Mathematics and Department of Electrical Engineering and Computer Science, University of California, Berkeley, Berkeley, CA, USA,
June 18, 1998. 80 pp. URL http://www.cs.berkeley.edu/~wkahan/JAVAhurt.pdf. {4, 64, 105}

[KE97] Aleksandr Yakovlevich Khinchin and Herbert Eagle. Continued Fractions. Dover, New York, NY, USA, 1997. ISBN 0-486-69630-8
(paperback); 978-0-486-69630-0 (paperback). xi + 95 pp. LCCN QA295 .K513 1997. {19}

[Ker81] Brian W. Kernighan. Why Pascal is not my favorite programming language. Computer Science Report 100, AT&T Bell Laboratories,
Murray Hill, NJ, USA, July 1981. URL http://cm.bell-labs.com/cm/cs/cstr/100.ps.gz. Published in [Ker84]. See also [WSH77].
{989, 1018, 1037}

[Ker84] Brian W. Kernighan. Why Pascal is not my favorite programming language. In Alan R. Feuer and Narain Gehani, editors, Comparing
and Assessing Programming Languages: Ada, C, and Pascal, Prentice-Hall software series, pages 170–186. Prentice-Hall, Upper Saddle
River, NJ, USA, 1984. ISBN 0-13-154840-9 (paperback), 0-13-154857-3 (hardcover); 978-0-13-154840-4 (paperback), 978-0-13-154857-2
(hardcover). LCCN QA76.73.A35 C66 1984. See also [WSH77, Ker81]. {1018, 1037}

Bibliography 1019

[KGD13] Edin Kadric, Paul Gurniak, and André DeHon. Accurate parallel floating-point accumulation. In IEEE [IEE13], pages 153–162. ISBN
0-7695-4957-8; 978-0-7695-4957-6. ISSN 1063-6889. LCCN QA76.9.C62 S95 2013. DOI 10.1109/ARITH.2013.19. {385}

[KGD16] Edin Kadric, Paul Gurniak, and André DeHon. Accurate parallel floating-point accumulation. IEEE Transactions on Computers, 65(11):
3224–3238, November 2016. CODEN ITCOB4. ISSN 0018-9340 (print), 1557-9956 (electronic). DOI 10.1109/TC.2016.2532874. {385}

[KH92] Gerry Kane and Joe Heinrich. MIPS RISC Architecture. Prentice-Hall, Upper Saddle River, NJ, USA, 1992. ISBN 0-13-590472-2; 978-0-
13-590472-5. LCCN QA76.8.M52 K37 1992. {73, 146}

[Khr08] Sergey V. Khrushchev. Orthogonal Polynomials and Continued Fractions: from Euler’s Point of View, volume 122 of Encyclopedia of Math-
ematics and its Applications. Cambridge University Press, Cambridge, UK, 2008. ISBN 0-521-85419-9 (hardcover); 978-0-521-85419-1
(hardcover). xvi + 478 pp. LCCN QA404.5 .K47 2008. {19, 59}

[Kin21] Louis Vessot King. On some new formulae for the numerical calculation of the mutual induction of coaxial circles. Proceedings of the
Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 100(702):60–66, October 4, 1921. ISSN 0950-
1207 (print), 2053-9150 (electronic). URL http://www.jstor.org/stable/93861. DOI 10.1098/rspa.1921.0070. This is the first known
publication of the AGM method, discovered by the author in 1913, for computing Jacobian elliptic functions. See also [Kin24, Kin07].
{663}

[Kin24] Louis Vessot King. On the Direct Numerical Calculation of Elliptic Functions and Integrals. Cambridge University Press, Cambridge, UK,
1924. viii + 42 pp. LCCN QA343. {663, 1019}

[Kin07] Louis Vessot King. On the Direct Numerical Calculation of Elliptic Functions and Integrals. Mellon Press, 2007. ISBN 1-4067-4226-0;
978-1-4067-4226-8. 56 pp. {663, 1019}

[KIR+07] Victor J. Katz, Annette Imhausen, Eleanor Robson, Joseph W. Dauben, Kim Plofker, and J. Lennart Berggren, editors. The Mathematics
of Egypt, Mesopotamia, China, India, and Islam: a Sourcebook. Princeton University Press, Princeton, NJ, USA, 2007. ISBN 0-691-11485-4
(hardcover); 978-0-691-11485-9 (hardcover). xiv + 685 pp. LCCN QA22 .M3735 2007. {59}

[KK67] Melvin Klerer and Granino A. Korn, editors. Digital Computer User’s Handbook. McGraw-Hill, New York, NY, USA, 1967. LCCN
QA76.5 .K524. {947, 978}

[KL85] William M. Kahan and E. LeBlanc. Anomalies in the IBM ACRITH package. In Kai Hwang, editor, Proceedings: 7th Symposium on
Computer Arithmetic, June 4–6, 1985, University of Illinois, Urbana, Illinois, pages 322–331. IEEE Computer Society Press, Silver Spring,
MD, USA, 1985. ISBN 0-8186-0632-0 (paperback), 0-8186-8632-4 (hard), 0-8186-4632-2 (microfiche); 978-0-8186-0632-8 (paperback),
978-0-8186-8632-0 (hard), 978-0-8186-4632-4 (microfiche). LCCN QA76.9.C62 S95 1985. DOI 10.1109/ARITH.1985.6158956. IEEE
catalog number 85CH2146-9. IEEE Computer Society order number 632. {967}

[Kla05] Robert Klarer. Decimal types for C++: Second draft. Report C22/WG21/N1839 J16/05-0099, IBM Canada, Ltd., Toronto, ON, Canada,
June 24, 2005. URL http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2005/n1839.html. {109, 875, 928}

[KLL+10] Peter Kornerup, Christoph Lauter, Vincent Lefèvre, Nicolas Louvet, and Jean-Michel Muller. Computing correctly rounded integer
powers in floating-point arithmetic. ACM Transactions on Mathematical Software, 37(1):4:1–4:23, January 2010. CODEN ACMSCU. ISSN
0098-3500 (print), 1557-7295 (electronic). DOI 10.1145/1644001.1644005. {28, 420}

[KLLM12] Peter Kornerup, Vincent Lefèvre, Nicolas Louvet, and Jean-Michel Muller. On the computation of correctly rounded sums. IEEE
Transactions on Computers, 61(3):289–298, March 2012. CODEN ITCOB4. ISSN 0018-9340 (print), 1557-9956 (electronic). DOI 10.1109/
TC.2011.27. {385}

[KM91] Peter Kornerup and David W. Matula, editors. Proceedings: 10th IEEE Symposium on Computer Arithmetic: June 26–28, 1991, Greno-
ble, France. IEEE Computer Society Press, Silver Spring, MD, USA, 1991. ISBN 0-8186-9151-4 (case), 0-8186-6151-8 (microfiche), 0-
7803-0187-0 (library binding); 978-0-8186-9151-5 (case), 978-0-8186-6151-8 (microfiche), 978-0-7803-0187-0 (library binding). LCCN
QA76.9.C62 S95 1991. IEEE catalog number 91CH3015-5. {1002, 1019, 1025, 1028}

[KM95] Simon Knowles and William H. McAllister, editors. Proceedings of the 12th Symposium on Computer Arithmetic, July 19–21, 1995, Bath,
England. IEEE Computer Society Press, Silver Spring, MD, USA, 1995. ISBN 0-8186-7089-4 (paperback), 0-8186-7089-4 (case), 0-8186-
7149-1 (microfiche), 0-8186-7089-4 (softbound), 0-7803-2949-X (casebound); 978-0-8186-7089-3 (paperback), 978-0-8186-7089-3 (case),
978-0-8186-7149-4 (microfiche), 978-0-8186-7089-3 (softbound), 978-0-7803-2949-2 (casebound). LCCN QA 76.9 C62 S95 1995. {1009,
1021}

[KM07] Peter Kornerup and Jean-Michel Muller, editors. Proceedings of the 18th IEEE Symposium on Computer Arithmetic, June 25–27, 2007,
Montpellier, France. IEEE Computer Society Press, Silver Spring, MD, USA, 2007. ISBN 0-7695-2854-6; 978-0-7695-2854-0. ISSN 1063-
6889. LCCN QA76.9.C62. URL http://www.lirmm.fr/arith18/. {1000, 1002, 1015, 1022, 1035}

[KM10] Peter Kornerup and David W. Matula. Finite Precision Number Systems and Arithmetic, volume 133 of Encyclopedia of Mathematics and its
Applications. Cambridge University Press, Cambridge, UK, 2010. ISBN 0-521-76135-2 (hardcover); 978-0-521-76135-2 (hardcover). xv
+ 699 pp. LCCN QA248 .K627 2010. {978}

[KMN89] David Kahaner, Cleve B. Moler, and Stephen Nash. Numerical Methods and Software. Prentice-Hall, Upper Saddle River, NJ, USA, 1989.
ISBN 0-13-627258-4; 978-0-13-627258-8. xii + 495 pp. LCCN TA345 .K341 1989. {202, 299}

[Kna92] Anthony W. Knapp. Elliptic Curves, volume 40 of Mathematical notes. Princeton University Press, Princeton, NJ, USA, 1992. ISBN
0-691-08559-5 (paperback); 978-0-691-08559-3 (paperback). xv + 427 pp. LCCN QA567.2.E44 K53 1992. {222}

[Knö91] A. Knöfel. Fast hardware units for the computation of accurate dot products. In Kornerup and Matula [KM91], pages 70–74.
ISBN 0-8186-9151-4 (case), 0-8186-6151-8 (microfiche), 0-7803-0187-0 (library binding); 978-0-8186-9151-5 (case), 978-0-8186-6151-8 (mi-
crofiche), 978-0-7803-0187-0 (library binding). LCCN QA76.9.C62 S95 1991. DOI 10.1109/ARITH.1991.145536. IEEE catalog number
91CH3015-5. {385}

1020 Bibliography

[Knu74] Donald E. Knuth. Structured programming with go to statements. ACM Computing Surveys, 6(4):261–301, December 1974. CODEN
CMSVAN. ISSN 0360-0300 (print), 1557-7341 (electronic). DOI 10.1145/356635.356640. Reprinted with revisions in Current Trends
in Programming Methodology, Raymond T. Yeh, ed., 1 (Englewood Cliffs, NJ: Prentice-Hall, 1977), 140–194; Classics in Software
Engineering, Edward Nash Yourdon, ed. (New York: Yourdon Press, 1979), 259–321. Reprinted with “final” revisions in [Knu92,
pp. 17–89]. This paper is a response to [Dij68]. {1007}

[Knu85] Donald E. Knuth. Deciphering a linear congruential encryption. IEEE Transactions on Information Theory, IT-31(1):49–52, January 1985.
CODEN IETTAW. ISSN 0018-9448 (print), 1557-9654 (electronic). DOI 10.1109/TIT.1985.1056997. Russian translation, to appear.
{207}

[Knu90] Donald E. Knuth. A simple program whose proof isn’t. In Feijen et al. [FvGM90], chapter 27, pages 233–242. ISBN 0-387-97299-4;
978-0-387-97299-2. LCCN QA76 .B326 1990. DOI 10.1007/978-1-4612-4476-9_28. This paper discusses the algorithm used in TEX for
converting between decimal and scaled fixed-point binary values, and for guaranteeing a minimum number of digits in the decimal
representation. See also [Cli90, Cli04] for decimal to binary conversion, [SW90, SW04] for binary to decimal conversion, and [Gri90]
for an alternate proof of Knuth’s algorithm. {895, 995, 1004, 1011, 1013, 1034}

[Knu92] Donald E. Knuth. Literate Programming. CSLI Lecture Notes Number 27. Stanford University Center for the Study of Language and
Information, Stanford, CA, USA, 1992. ISBN 0-937073-80-6 (paperback), 0-937073-81-4 (hardcover); 978-0-937073-80-3 (paperback),
978-0-937073-81-0 (hardcover). xiii + 368 pp. LCCN QA76.6 .K644 1992. {1020}

[Knu97] Donald E. Knuth. Seminumerical Algorithms, volume 2 of The Art of Computer Programming. Addison-Wesley, Reading, MA, USA, third
edition, 1997. ISBN 0-201-89684-2; 978-0-201-89684-8. xiii + 762 pp. LCCN QA76.6 .K64 1997. {89, 170, 182, 184, 186, 188, 200, 214, 366,
416}

[Knu99] Donald E. Knuth. MMIXware: a RISC computer for the third millennium, volume 1750 of Lecture Notes in Computer Science. Springer-Ver-
lag, Berlin, Germany / Heidelberg, Germany / London, UK / etc., 1999. ISBN 3-540-66938-8 (softcover); 978-3-540-66938-8 (softcover).
ISSN 0302-9743 (print), 1611-3349 (electronic). viii + 550 pp. LCCN QA76.9.A73 K62 1999. DOI 10.1007/3-540-46611-8. {104}

[Kod07] Masao Kodama. Remark on Algorithm 644. ACM Transactions on Mathematical Software, 33(4):28:1–28:3, August 2007. CODEN
ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic). DOI 10.1145/1268776.1268783. See [Amo86, Amo90, Amo95]. {693, 996}

[Kod08] Masao Kodama. Algorithm 877: A subroutine package for cylindrical functions of complex order and nonnegative argument. ACM
Transactions on Mathematical Software, 34(4):22:1–22:21, July 2008. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic).
DOI 10.1145/1377596.1377602. {693}

[Kor02] Israel Koren. Computer Arithmetic Algorithms. A. K. Peters, Wellesley, MA, USA, second edition, 2002. ISBN 1-56881-160-8; 978-1-
56881-160-4. xv + 281 pp. LCCN QA76.9.C62 K67. {68, 881, 978}

[KP99] Brian W. Kernighan and Rob Pike. The Practice of Programming. Addison-Wesley, Reading, MA, USA, 1999. ISBN 0-201-61586-X; 978-0-
201-61586-9. xii + 267 pp. LCCN QA76.6 .K48 1999. URL http://cm.bell-labs.com/cm/cs/tpop/code.html; http://tpop.awl.com.
{6}

[Kra14] Ilia Krasikov. Approximations for the Bessel and Airy functions with an explicit error term. LMS Journal of Computation and Mathemat-
ics, 17(1):209–225, 2014. ISSN 1461-1570. DOI 10.1112/S1461157013000351. {693}

[Kro10] Kirk L. Kroeker. News: Celebrating the legacy of PLATO. Communications of the Association for Computing Machinery, 53(8):19–20,
August 2010. CODEN CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic). DOI 10.1145/1787234.1787261. The PLATO system
on time-shared CDC mainframes was the first major effort at developing online courseware. {949}

[KSS95] Marek A. Kowalski, Krzysztof A. Sikorski, and Frank Stenger. Selected Topics in Approximation and Computation. Oxford University
Press, Oxford, UK, 1995. ISBN 0-19-508059-9; 978-0-19-508059-9. xiv + 349 pp. URL http://site.ebrary.com/lib/utah/Doc?id=
10087215. {733}

[KT99] Eugene Eric Kim and Betty Alexandra Toole. Ada and the first computer: The collaboration between ada, countess of
lovelace, and computer pioneer Charles Babbage resulted in a landmark publication that described how to program the world’s
first computer. Scientific American, 280(5):76–81, May 1999. CODEN SCAMAC. ISSN 0036-8733 (print), 1946-7087 (elec-
tronic). URL http://www.nature.com/scientificamerican/journal/v280/n5/pdf/scientificamerican0599-76.pdf. DOI 10.1038/
scientificamerican0599-76. {568}

[Kul13] Ulrich Kulisch. Computer Arithmetic and Validity, volume 33 of De Gruyter studies in mathematics. Walter de Gruyter, Berlin, Germany,
second edition, 2013. ISBN 3-11-030173-3, 3-11-030179-2 (e-book), 3-11-030180-6 (set); 978-3-11-030173-1, 978-3-11-030179-3 (e-book),
978-3-11-030180-9 (set). ISSN 0179-0986. xxii + 434 pp. LCCN QA76.9.C62 K853 2013. DOI 10.1515/9783110301793. {978}

[KW96] Chiang Kao and J. Y. Wong. An exhaustive analysis of prime modulus multiplicative congruential random number generators with
modulus smaller than 215. Journal of Statistical Computation and Simulation, 54(1–3):29–35, 1996. CODEN JSCSAJ. ISSN 0094-9655
(print), 1026-7778 (electronic), 1563-5163. URL http://www.tandfonline.com/doi/abs/10.1080/00949659608811717. DOI 10.1080/
00949659608811717. {170}

[Lan64] Cornelius Lanczos. A precision approximation of the gamma function. Journal of the Society for Industrial and Applied Mathematics: Series
B, Numerical Analysis, 1(1):86–96, 1964. ISSN 0887-459X (print), 1095-7170 (electronic). URL http://www.jstor.org/stable/2949767.
DOI 10.1137/0701008. {521, 536}

[Lan87] Eberhard Lange. Implementation and test of the ACRITH facility in a System/370. IEEE Transactions on Computers, C-36(9):1088–
1096, September 1987. CODEN ITCOB4. ISSN 0018-9340 (print), 1557-9956 (electronic). URL http://ieeexplore.ieee.org/stamp/
stamp.jsp?tp=&arnumber=5009539. DOI 10.1109/TC.1987.5009539. {967}

[Lap08] Michel L. Lapidus. In Search of the Riemann Zeros: Strings, Fractal Membranes and Noncommutative Spacetimes. American Mathematical
Society, Providence, RI, USA, 2008. ISBN 0-8218-4222-6; 978-0-8218-4222-5. xxix + 558 pp. LCCN QA333 .L37 2008. {303, 521, 579}

Bibliography 1021

[LAS+95] Tom Lynch, Ahmed Ahmed, Michael J. Schulte, Tom Callaway, and Robert Tisdale. The K5 transcendental functions. In Knowles
and McAllister [KM95], pages 163–171. ISBN 0-8186-7089-4 (paperback), 0-8186-7089-4 (case), 0-8186-7149-1 (microfiche), 0-8186-7089-
4 (softbound), 0-7803-2949-X (casebound); 978-0-8186-7089-3 (paperback), 978-0-8186-7089-3 (case), 978-0-8186-7149-4 (microfiche),
978-0-8186-7089-3 (softbound), 978-0-7803-2949-2 (casebound). LCCN QA 76.9 C62 S95 1995. URL http://mesa.ece.wisc.edu/
publications/cp_1995-04.pdf; http://www.acsel-lab.com/arithmetic/arith12/papers/ARITH12_Lynch.pdf. DOI 10.1109/
ARITH.1995.465368. The K5 is one of AMD’s IA-32-compatible microprocessors. {293}

[Lau08] Detleff Laugwitz. Bernhard Riemann 1826–1866: Turning Points in the Conception of Mathematics. Modern Birkhäuser classics. Birkhäuser
Boston Inc., Cambridge, MA, USA, 2008. ISBN 0-8176-4776-7 (paperback), 0-8176-4777-5; 978-0-8176-4776-6 (paperback), 978-0-8176-
4777-3. xvi + 357 pp. LCCN QA29 R425 L3813 2008. URL http://www.gbv.de/dms/bowker/toc/9780817647766. DOI 10.1007/
978-0-8176-4777-3. Translated by Abe Shenitzer from the 1996 German original, Bernhard Riemann 1826–1866: Wendepunkte in der
Auffassung der Mathematik. {579, 590}

[Law89] Derek F. Lawden. Elliptic Functions and Applications, volume 80 of Applied mathematical sciences. Springer-Verlag, Berlin, Germany /
Heidelberg, Germany / London, UK / etc., 1989. ISBN 0-387-96965-9; 978-0-387-96965-7. xiv + 334 pp. LCCN QA1 .A647 vol. 80;
QA343. DOI 10.1007/978-1-4757-3980-0. {619, 627, 654, 682, 688}

[Law06] Averill M. Law. Simulation Modeling and Analysis. McGraw-Hill series in industrial engineering and management science. McGraw-
Hill, New York, NY, USA, fourth edition, 2006. ISBN 0-07-298843-6 (hardcover), 0-07-125519-2 (paperback), 0-07-329441-1, 0-07-
110336-8, 0-07-110051-2; 978-0-07-298843-7 (hardcover), 978-0-07-125519-6 (paperback), 978-0-07-329441-4, 978-0-07-110336-7, 978-0-
07-110051-9. xix + 768 pp. LCCN QA76.9.C65 L38 2005. {196}

[LB92] J. Lund and K. L. Bowers. Sinc Methods for Quadrature and Differential Equations. SIAM (Society for Industrial and Applied Mathemat-
ics), Philadelphia, PA, USA, 1992. ISBN 0-89871-298-X; 978-0-89871-298-8. x + 304 pp. LCCN QA372 .L86 1992. {733}

[LBC93] Pierre L’Ecuyer, François Blouin, and Raymond Couture. A search for good multiple recursive random number generators. ACM
Transactions on Modeling and Computer Simulation, 3(2):87–98, April 1993. CODEN ATMCEZ. ISSN 1049-3301 (print), 1558-1195 (elec-
tronic). DOI 10.1145/169702.169698. {170}

[LCM16] Cedric Lichtenau, Steven Carlough, and Silvia Melitta Mueller. Quad precision floating point on the IBM z13. In Montuschi
et al. [MSH+16], pages 87–94. ISBN 1-5090-1615-5; 978-1-5090-1615-0. ISSN 1063-6889. LCCN QA76.9.C62 S95 2016. URL
http://ieeexplore.ieee.org/servlet/opac?punumber=7562813. DOI 10.1109/ARITH.2016.26. {928}

[LDB+00] Xiaoye S. Li, James W. Demmel, David H. Bailey, Greg Henry, Yozo Hida, J. Iskandar, William M. Kahan, Anil Kapur, M. C. Mar-
tin, T. Tung, and D. J. Yoo. Design, implementation and testing of extended and mixed precision BLAS. LAPACK Working
Note 149, Department of Computer Science, University of Tennessee, Knoxville, Knoxville, TN 37996, USA, October 2000. URL
http://www.netlib.org/lapack/lawnspdf/lawn149.pdf. Appendix B contains an improved version of Smith’s algorithm for com-
plex division [Smi62], using scaling to avoid premature overflow and underflow. {452, 1032}

[LE80] Henry M. Levy and Richard H. Eckhouse, Jr. Computer Programming and Architecture—the VAX-11. Digital Press, Bedford, MA, USA,
1980. ISBN 0-932376-07-X; 978-0-932376-07-7. xxi + 407 pp. LCCN QA76.8 .V37 L48 1980. {956}

[L’E96] Pierre L’Ecuyer. Maximally equidistributed combined Tausworthe generators. Mathematics of Computation, 65(213):203–213, January
1996. CODEN MCMPAF. ISSN 0025-5718 (print), 1088-6842 (electronic). URL http://www.ams.org/jourcgi/jour-pbprocess?fn=
110&arg1=S0025-5718-96-00696-5&u=/mcom/1996-65-213/. DOI 10.1090/S0025-5718-96-00696-5. {177}

[L’E98] Pierre L’Ecuyer. Random number generation. In Banks [Ban98], chapter 4, pages 93–137. ISBN 0-471-13403-1 (hardcover); 978-0-471-
13403-9 (hardcover). LCCN T57.62 .H37 1998. DOI 10.1002/9780470172445.ch4. {196}

[Lef05] Vincent Lefèvre. New results on the distance between a segment and Z2. Application to the exact rounding. In Montuschi and Schwarz
[MS05], pages 68–75. ISBN 0-7695-2366-8; 978-0-7695-2366-8. LCCN QA76.9.C62 .S95 2005. URL http://arith17.polito.it/final/
paper-147.pdf. DOI 10.1109/ARITH.2005.32. {28}

[Lef16] Vincent Lefèvre. Correctly rounded arbitrary-precision floating-point summation. In Montuschi et al. [MSH+16], pages 71–78. ISBN
1-5090-1615-5; 978-1-5090-1615-0. ISSN 1063-6889. LCCN QA76.9.C62 S95 2016. URL http://ieeexplore.ieee.org/servlet/opac?
punumber=7562813. DOI 10.1109/ARITH.2016.9. {385}

[Leh51] D. H. Lehmer. Mathematical methods in large-scale computing units. In Anonymous, editor, Proceedings of a Second Symposium on
Large-Scale Digital Calculating Machinery, Harvard University Computation Laboratory, 13–16 September 1949, volume 26 of Annals of the
Computation Laboratory of Harvard University, pages 141–146. Harvard University Press, Cambridge, MA, USA, 1951. LCCN QA75
.S9 1949. URL http://archive.org/stream/proceedings_of_a_second_symposium_on_large-scale_/Proceedings_of_a_Second_
Symposium_on_Large-Scale_Digital_Calculating_Machinery_Sep49_djvu.txt. {169}

[Lev09] Thomas Levenson. Newton and the Counterfeiter: the Unknown Detective Career of the World’s Greatest Scientist. Houghton Mifflin
Harcourt, Boston, MA, USA, 2009. ISBN 0-15-101278-4; 978-0-15-101278-7. xii + 318 pp. LCCN Q143.N495 L48 2009. {8}

[Lew75] John Gregg Lewis. Certification of “Algorithm 349: Polygamma functions with arbitrary precision”. ACM Transactions on
Mathematical Software, 1(4):380–381, December 1975. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic). DOI
10.1145/355656.355664. See [TS69]. {1035}

[LHKK79] Charles L. Lawson, Richard J. Hanson, David R. Kincaid, and Fred T. Krogh. Basic Linear Algebra Subprograms for Fortran usage.
ACM Transactions on Mathematical Software, 5(3):308–323, September 1979. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295
(electronic). DOI 10.1145/355841.355847. {223}

[Lia99] Sheng Liang. Java Native Interface: Programmer’s Guide and Specification. Addison-Wesley, Reading, MA, USA, 1999. ISBN 0-201-32577-2;
978-0-201-32577-5. xiv + 303 pp. LCCN QA76.38 .L53 1999. {979, 983}

1022 Bibliography

[Lin81] Seppo Linnainmaa. Software for doubled-precision floating-point computations. ACM Transactions on Mathematical Software, 7(3):
272–283, September 1981. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic). DOI 10.1145/355958.355960. {370}

[Lin89] Jinn Tyan Lin. Approximating the normal tail probability and its inverse for use on a pocket calculator. Applied Statistics, 38(1):
69–70, 1989. CODEN APSTAG. ISSN 0035-9254 (print), 1467-9876 (electronic). URL http://www.jstor.org/stable/2347681. DOI
10.2307/2347681. {618}

[Lin90] Jinn Tyan Lin. Miscellanea: A simpler logistic approximation to the normal tail probability and its inverse. Applied Statistics, 39(2):
255–257, 1990. CODEN APSTAG. ISSN 0035-9254 (print), 1467-9876 (electronic). URL http://www.jstor.org/stable/2347764. DOI
10.2307/2347764. {618}

[Lio96] John Lions. Lions’ Commentary on UNIX 6th Edition, with Source Code. Computer classics revisited. Peer-to-Peer Communications, San
Jose, CA 95164-0218, USA, 1996. ISBN 1-57398-013-7; 978-1-57398-013-5. 254 pp. URL http://www.peer-to-peer.com/catalog/
opsrc/lions.html. With forewords by Dennis M. Ritchie and Ken Thompson. Prefatory notes by Peter H. Salus and Michael Tilson; a
historical note by Peter H. Salus; and appreciations by Greg Rose, Mike O’Dell, Berny Goodheart, Peter Collinson, and Peter Reintjes.
Originally circulated as two restricted-release volumes: “UNIX Operating System Source Code Level Six”, and “A Commentary on
the UNIX Operating System”. This document was the first published detailed analysis of the entire source code of an operating-system
kernel. {850}

[Liu87] Zhi-Shun Alex Liu. Berkeley elementary function test suite: Research project. Master of Science, Plan II, Computer Science Division,
Department of Electrical Engineering and Computer Science, Univerity of California at Berkeley, Berkeley, CA, USA, December 1987.
{774}

[Liu88] Zhi-Shun Alex Liu. Berkeley elementary function test suite. Technical report, Computer Science Division, Department of Electrical
Engineering and Computer Science, Univerity of California at Berkeley, Berkeley, CA, USA, December 30, 1988. ii + 59 pp. URL
http://www.netlib.org/fp/ucbtest.tgz; http://www.ucbtest.org/zaliu-papers/zaliu-beef-doc.pdf. {774}

[Liv02] Mario Livio. The Golden Ratio: The Story of Phi, the World’s Most Astonishing Number. Broadway Books, New York, NY, USA, 2002. ISBN
0-7679-0815-5; 978-0-7679-0815-3. viii + 294 pp. LCCN QA466 .L58 2002. The golden ratio is φ = 1

2 (
√

5 + 1) ≈ 1.618. It is the last of the
big five mathematical constants: e, i, π, γ, and φ. {8, 14, 59, 577}

[Liv05] Mario Livio. The Equation that Couldn’t be Solved: How Mathematical Genius Discovered the Language of Symmetry. Simon and Schuster,
New York, NY, USA, 2005. ISBN 0-7432-5820-7; 978-0-7432-5820-3. x + 353 pp. LCCN QA174.2 .L58 2005. {7}

[LL73] G. P. Learmonth and P. A. W. Lewis. Naval Postgraduate School random number generator package LLRANDOM. Report
NP555LW73061A, Naval Postgraduate School, Monterey, CA, USA, 1973. The shuffling algorithm proposed in this report does not
lengthen the period, and only marginally reduces the lattice structure of linear congruential generators, despite the apparently tiny
difference with the [BD76] algorithm: see [Bay90] for a comparison, both mathematical, and graphical. {179, 997, 998}

[LL01] Eli Levin and Doran S. Lubinsky. Orthogonal Polynomials for Exponential Weights, volume 4 of CMS books in mathematics. Springer-Verlag,
Berlin, Germany / Heidelberg, Germany / London, UK / etc., 2001. ISBN 0-387-98941-2 (hardcover); 978-0-387-98941-9 (hardcover).
xi + 476 pp. LCCN QA404.5 .L48 2001. DOI 10.1007/978-1-4613-0201-8. {59}

[LL07] Philippe Langlois and Nicolas Louvet. How to ensure a faithful polynomial evaluation with the compensated Horner algorithm. In
Kornerup and Muller [KM07], pages 141–149. ISBN 0-7695-2854-6; 978-0-7695-2854-0. ISSN 1063-6889. LCCN QA76.9.C62. URL
http://www.lirmm.fr/arith18/. DOI 10.1109/ARITH.2007.21. {89}

[LM01] Vincent Lefèvre and Jean-Michel Muller. Worst cases for correct rounding of the elementary functions in double precision. In
N. Burgess and L. Ciminiera, editors, 15th IEEE Symposium on Computer Arithmetic: ARITH-15 2001: proceedings: Vail, Colorado, 11–13
June, 2001, pages 111–118. IEEE Computer Society Press, Silver Spring, MD, USA, 2001. ISBN 0-7695-1150-3; 0-7695-1152-X; 978-0-
7695-1150-4; 978-0-7695-1152-8. ISSN 1063-6889. LCCN QA76.9.C62 S95 2001. DOI 10.1109/ARITH.2001.930110. IEEE order number
PR01150. {28}

[LM03a] Vincent Lefèvre and Jean-Michel Muller. The Table Maker’s Dilemma: our search for worst cases. World-Wide Web software project
archive, October 28, 2003. URL http://perso.ens-lyon.fr/jean-michel.muller/Intro-to-TMD.htm. {28}

[LM03b] Vincent Lefèvre and Jean-Michel Muller. Worst cases for correct rounding for the elementary functions in double precision. Technical
report, INRIA, Projet Spaces, LORIA, Campus Scientifique, B.P. 239, 54506 Vandoeuvre-lès-Nancy Cedex, France, August 14, 2003.
URL http://perso.ens-lyon.fr/jean-michel.muller/TMDworstcases.pdf. {28}

[LM08] Lawrence M. Leemis and Jacquelyn T. McQueston. Univariate distribution relationships. The American Statistician, 62(1):45–53, Febru-
ary 2008. CODEN ASTAAJ. ISSN 0003-1305 (print), 1537-2731 (electronic). URL http://www.ingentaconnect.com/content/asa/tas/
2008/00000062/00000001/art00008. DOI 10.1198/000313008X270448. {196}

[Loi10] Florian Loitsch. Printing floating-point numbers quickly and accurately with integers. ACM SIGPLAN Notices, 45(6):233–243, June
2010. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic). DOI 10.1145/1809028.1806623. {895}

[Loz03] Daniel W. Lozier. NIST Digital Library of Mathematical Functions. Annals of Mathematics and Artificial Intelligence, 38(1–3):105–119,
May 2003. CODEN AMAIEC. ISSN 1012-2443 (print), 1573-7470 (electronic). URL http://math.nist.gov/acmd/Staff/DLozier/
publications/Linz01.ps. DOI 10.1023/A:1022915830921. {826}

[LS02] Pierre L’Ecuyer and Richard Simard. TestU01: A software library in ANSI C for empirical testing of random number generators:
Software user’s guide. Web report, Départment d’Informatique et de Recherche Opérationelle, Université de Montréal, Montréal,
Québec, Canada, 2002. URL http://www.iro.umontreal.ca/~simardr/TestU01.zip. {200}

[LS07] Pierre L’Ecuyer and Richard Simard. TestU01: A C library for empirical testing of random number generators. ACM Transactions
on Mathematical Software, 33(4):22:1–22:40, August 2007. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic). DOI
10.1145/1268776.1268777. {170, 178, 200, 214}

Bibliography 1023

[LS14] Pierre L’Ecuyer and Richard Simard. On the lattice structure of a special class of multiple recursive random number generators.
INFORMS Journal on Computing, 26(3):449–460, 2014. ISSN 1091-9856 (print), 1526-5528 (electronic). DOI 10.1287/ijoc.2013.0576.
Analysis and exposure of serious lattice structure in earlier work on fast multiple recursive generators [DX03, Den05, DLS09, DSL12a,
DSL12b]. {176}

[LSZ06] Vincent Lefèvre, Damien Stehlé, and Paul Zimmermann. Worst cases for the exponential function in the IEEE 754r decimal64 format.
Technical report, LORIA/INRIA Lorraine, Villers-lès-Nancy Cedex, France, September 2006. 14 pp. URL http://www.loria.fr/
~zimmerma/papers/decimalexp-lncs-final.pdf. {28}

[Luk69a] Yudell L. Luke. The Special Functions and Their Approximations, volume 53-I of Mathematics in Science and Engineering. Academic
Press, New York, NY, USA, 1969. ISBN 0-12-459901-X; 978-0-12-459901-7. xx + 349 pp. LCCN QA351 .L94 1969. URL http://
www.sciencedirect.com/science/book/9780124599017. DOI 10.1016/S0076-5392(08)62628-4. {521, 693, 827}

[Luk69b] Yudell L. Luke. The Special Functions and Their Approximations, volume 53-II of Mathematics in Science and Engineering. Aca-
demic Press, New York, NY, USA, 1969. ISBN 0-12-459902-8; 978-0-12-459902-4. xx + 485 pp. LCCN QA351 .L797. URL
http://www.sciencedirect.com/science/bookseries/00765392/53/part/P2. DOI 10.1016/S0076-5392(09)60064-3. {521, 827}

[Luk77] Yudell L. Luke. Algorithms for the Computation of Mathematical Functions. Academic Press, New York, NY, USA, 1977. ISBN 0-12-459940-
0; 978-0-12-459940-6. xiii + 284 pp. LCCN QA351 .L7961. {693, 827}

[LW92] Lisa Lorentzen and Haakon Waadeland. Continued Fractions with Applications, volume 3 of Studies in Computational Mathematics. North-
Holland, Amsterdam, The Netherlands, 1992. ISBN 0-444-89265-6; 978-0-444-89265-2. xvi + 606 pp. LCCN QA295 .L64 1992. {19}

[LW08] Lisa Lorentzen and Haakon Waadeland. Continued Fractions: Convergence Theory, volume 1 of Atlantis Studies in Mathematics for
Engineering and Science. Atlantis Press, Amsterdam, The Netherlands, second edition, 2008. ISBN 90-78677-07-4; 978-90-78677-07-9.
ISSN 1875-7642. xii + 308 pp. LCCN QA295 .L64 2008. {19}

[LY97] Tim Lindholm and Frank Yellin. The Java Virtual Machine Specification. The Java Series. Addison-Wesley, Reading, MA, USA, 1997.
ISBN 0-201-63452-X; 978-0-201-63452-5. xvi + 475 pp. LCCN QA76.73.J38L56 1997. URL http://www.aw.com/cp/javaseries.html.
{viii, 80, 979}

[LY99] Tim Lindholm and Frank Yellin. The Java Virtual Machine Specification. Addison-Wesley, Reading, MA, USA, second edition, 1999.
ISBN 0-201-43294-3; 978-0-201-43294-7. xv + 473 pp. LCCN QA76.73.J38L56 1999. {viii, 80, 979}

[LYBB13] Tim Lindholm, Frank Yellin, Gilad Bracha, and Alex Buckley. The Java Virtual Machine Specification. Addison-Wesley, Addison-Wes-
ley, Java SE 7 edition, 2013. ISBN 0-13-326049-6, 0-13-326044-5; 978-0-13-326049-6, 978-0-13-326044-1. xvii + 587 (est.) pp. LCCN
QA76.73.J38 L56 1999. URL http://proquest.tech.safaribooksonline.de/9780133260496. {viii, 979}

[LYBB14] Tim Lindholm, Frank Yellin, Gilad Bracha, and Alex Buckley. The Java Virtual Machine Specification: Java SE 8 edition. Addison-Wesley,
Addison-Wesley, 2014. ISBN 0-13-390590-X (paperback), 0-13-392274-X (e-book); 978-0-13-390590-8 (paperback), 978-0-13-392274-5
(e-book). xvi + 584 pp. LCCN QA76.73.J38 L56 2014. {viii, 979}

[Mac65] M. Donald MacLaren. Algorithm 272: Procedure for the normal distribution functions [S15]. Communications of the Association for
Computing Machinery, 8(12):789–790, December 1965. CODEN CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic). DOI 10.1145/
365691.365957. See remarks [HJ67b, Mac68]. {618, 1015, 1023}

[Mac68] M. Donald MacLaren. Remark on Algorithm 272: Procedure for the normal distribution functions. Communications of the Association
for Computing Machinery, 11(7):498, July 1968. CODEN CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic). DOI 10.1145/
363397.363553. See [Mac65]. {618, 1023}

[Mac92] N. M. Maclaren. A limit on the usable length of a pseudorandom sequence. Journal of Statistical Computation and Simulation, 42(1–2):
47–54, 1992. CODEN JSCSAJ. ISSN 0094-9655 (print), 1026-7778 (electronic), 1563-5163. URL http://www.tandfonline.com/doi/abs/
10.1080/00949659208811409. DOI 10.1080/00949659208811409. {180}

[Mac98] I. G. Macdonald. Symmetric Functions and Orthogonal Polynomials, volume 12 of University lecture series. American Mathematical Society,
Providence, RI, USA, 1998. ISBN 0-8218-0770-6 (softcover); 978-0-8218-0770-5 (softcover). ISSN 1047-3998. xv + 53 pp. LCCN QA212
.M33 1998. {59}

[Mal72] M. A. Malcolm. Algorithms to reveal properties of floating-point arithmetic. Communications of the Association for Computing Machinery,
15(11):949–951, November 1972. CODEN CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic). DOI 10.1145/355606.361870. See
also [GM74]. {103, 1012}

[Mao91] Eli Maor. To Infinity and Beyond: A Cultural History of the Infinite. Princeton paperbacks. Princeton University Press, Princeton, NJ,
USA, 1991. ISBN 0-691-02511-8 (paperback); 978-0-691-02511-7 (paperback). xvi + 284 pp. LCCN QA9 .M316 1991. {59}

[Mao94] Eli Maor. e: The Story of a Number. Princeton University Press, Princeton, NJ, USA, 1994. ISBN 0-691-03390-0; 978-0-691-03390-7. xiv +
223 pp. LCCN QA247.5.M33 1994. URL http://www-gap.dcs.st-and.ac.uk/~history/HistTopics/e.html. The number e ≈ 2.718
is the base of the natural logarithms, and is one of the big five mathematical constants: e, i, π, γ, and φ. {59, 269}

[Mao07] Eli Maor. The Pythagorean Theorem: a 4,000-year History. Princeton University Press, Princeton, NJ, USA, 2007. ISBN 0-691-12526-0;
978-0-691-12526-8. xvi + 259 pp. LCCN QA460.P8 M36 2007. {59}

[Mar68] George Marsaglia. Random numbers fall mainly in the planes. Proceedings of the National Academy of Sciences of the United
States of America, 61(1):25–28, September 15, 1968. CODEN PNASA6. ISSN 0027-8424 (print), 1091-6490 (electronic). URL
http://www.pnas.org/content/61/1/25. This important, and frequently cited, paper was the first to point out the serious problem of
correlations in random numbers produced by all congruential generators. {170}

[Mar00] Peter Markstein. IA-64 and Elementary Functions: Speed and Precision. Hewlett-Packard professional books. Prentice-Hall, Upper
Saddle River, NJ, USA, 2000. ISBN 0-13-018348-2; 978-0-13-018348-4. xix + 298 pp. LCCN QA76.9.A73 M365 2000. URL http://
www.markstein.org/. {86, 87, 101, 241, 242, 410, 412, 824, 827, 940, 953}

1024 Bibliography

[Mar03a] George Marsaglia. Random number generators. Journal of Modern Applied Statistical Methods, 2(1):2–13, May 2003. ISSN 1538-
9472. URL http://stat.fsu.edu/pub/diehard/; http://tbf.coe.wayne.edu/jmasm/; http://www.csis.hku.hk/~diehard/.
DOI 10.22237/jmasm/1051747320. {207}

[Mar03b] George Marsaglia. Xorshift RNGs. Journal of Statistical Software, 8(14):1–6, 2003. CODEN JSSOBK. ISSN 1548-7660. URL http:
//www.jstatsoft.org/v08/i14; http://www.jstatsoft.org/v08/i14/xorshift.pdf. DOI 10.18637/jss.v008.i14. See [Bre04]
for corrections and the equivalence of xorshift generators and the well-understood linear feedback shift register generators. See also
[SMDS11, SM12, SLF14] for the failure of Marsaglia’s xorwow() generator from this paper. See [PL05, Vig16] for detailed analysis. {176,
1001, 1028}

[Mat68a] David W. Matula. The base conversion theorem. Proceedings of the American Mathematical Society, 19(3):716–723, June 1968.
CODEN PAMYAR. ISSN 0002-9939 (print), 1088-6826 (electronic). URL http://www.ams.org/journals/proc/1968-019-03/
S0002-9939-1968-0234908-9/S0002-9939-1968-0234908-9.pdf. DOI 10.1090/S0002-9939-1968-0234908-9. {840, 851}

[Mat68b] David W. Matula. In-and-out conversions. Communications of the Association for Computing Machinery, 11(1):47–50, January 1968.
CODEN CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic). DOI 10.1145/362851.362887. {840, 851}

[MBdD+10] Jean-Michel Muller, Nicolas Brisebarre, Florent de Dinechin, Claude-Pierre Jeannerod, Vincent Lefèvre, Guillaume Melquiond,
Nathalie Revol, Damien Stehlé, and Serge Torres. Handbook of Floating-Point Arithmetic. Birkhäuser Boston Inc., Cambridge, MA,
USA, 2010. ISBN 0-8176-4704-X; 978-0-8176-4704-9. xxiii + 572 pp. LCCN QA76.9.C62 H36 2010. DOI 10.1007/978-0-8176-4704-9.
{42, 104, 407, 881, 978}

[McC81] Peter McCullagh. A rapidly convergent series for computing ψ(z) and its derivatives. Mathematics of Computation, 36(153):247–248,
January 1981. CODEN MCMPAF. ISSN 0025-5718 (print), 1088-6842 (electronic). URL http://www.jstor.org/stable/2007741. DOI
10.2307/2007741. The psi function, ψ(z), is the logarithmic derivative of the gamma function, Γ(z). The higher derivatives are called
polygamma functions. {543}

[McL85] A. Ian McLeod. Statistical algorithms: Remark AS R58: a remark on Algorithm AS 183. an efficient and portable pseudo-random
number generator. Applied Statistics, 34(2):198–200, 1985. CODEN APSTAG. ISSN 0035-9254 (print), 1467-9876 (electronic). URL
http://lib.stat.cmu.edu/apstat/183. DOI 10.2307/2347378. See [WH82, Zei86]. {1037}

[McL91] John McLeish. The Story of Numbers: How Mathematics has Shaped Civilization. Fawcett Columbine, New York, NY, USA, 1991. ISBN
0-449-90938-7; 978-0-449-90938-6. 266 + 8 pp. LCCN QA21.M38 1991. {59}

[MF53] Philip McCord Morse and Herman Feshbach. Methods of Theoretical Physics. International series in pure and applied physics. McGraw-
Hill, New York, NY, USA, 1953. ISBN 0-07-043316-X (vol. 1), 0-07-043317-8 (vol. 2); 978-0-07-043316-8 (vol. 1), 978-0-07-043317-5 (vol.
2). xxii + 997 (vol. 1), xviii + 1978 (vol. 2) pp. LCCN QC20 .M6 1999. {693}

[MH72] Tohru Morita and Tsuyoshi Horiguchi. Convergence of the arithmetic-geometric mean procedure for the complex variables and the
calculation of the complete elliptic integrals with complex modulus. Numerische Mathematik, 20(5):425–430, October 1972. CODEN
NUMMA7. ISSN 0029-599X (print), 0945-3245 (electronic). URL http://www.springerlink.com/openurl.asp?genre=article&issn=
0029-599X&volume=20&issue=5&spage=425. DOI 10.1007/BF01402565. {632}

[MH80] Jerry B. Marion and Mark A. Heald. Classical Electromagnetic Radiation. Academic Press, New York, NY, USA, second edition, 1980.
ISBN 0-12-472257-1; 978-0-12-472257-6. xvii + 488 pp. LCCN QC661 .M38 1980. {693}

[MH03] J. C. Mason and D. C. Handscomb. Chebyshev Polynomials. Chapman and Hall/CRC, Boca Raton, FL, USA, 2003. ISBN 0-8493-0355-9;
978-0-8493-0355-5. xiii + 341 pp. LCCN QA404.5 .M37 2003. {58}

[MH08] A. M. Mathai and H. J. Haubold. Special Functions for Applied Scientists. Springer Science + Business Media, New York, NY, USA, 2008.
ISBN 0-387-75893-3; 978-0-387-75893-0. xxv + 464 pp. LCCN QA351.M37; QA351.M37 2008. DOI 10.1007/978-0-387-75894-7. {827}

[MH16] Jamshaid Sarwar Malik and Ahmed Hemani. Gaussian random number generation: a survey on hardware architectures. ACM
Computing Surveys, 49(3):53:1–53:37, November 2016. CODEN CMSVAN. ISSN 0360-0300 (print), 1557-7341 (electronic). DOI 10.1145/
2980052. {196}

[Mis10] Thomas J. Misa. An interview with Edsger W. Dijkstra. Communications of the Association for Computing Machinery, 53(8):41–47, August
2010. CODEN CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic). DOI 10.1145/1787234.1787249. {962}

[ML15] George Michelogiannakis and Xiaoye S. Li. Extending summation precision for network reduction operations. International Journal of
Parallel Programming, 43(6):1218–1243, December 2015. CODEN IJPPE5. ISSN 0885-7458 (print), 1573-7640 (electronic). URL http://
link.springer.com/article/10.1007/s10766-014-0326-5. DOI 10.1007/s10766-014-0326-5. {385}

[MM65] M. Donald MacLaren and George Marsaglia. Uniform random number generators. Journal of the Association for Computing Machinery,
12(1):83–89, January 1965. CODEN JACOAH. ISSN 0004-5411 (print), 1557-735X (electronic). DOI 10.1145/321250.321257. {179}

[MM83] Cleve B. Moler and Donald Morrison. Replacing square roots by Pythagorean sums. IBM Journal of Research and Development, 27
(6):577–581, November 1983. CODEN IBMJAE. ISSN 0018-8646 (print), 2151-8556 (electronic). URL http://ieeexplore.ieee.org/
stamp/stamp.jsp?tp=&arnumber=5390405. DOI 10.1147/rd.276.0577. See [Dub83] and generalization [Jam89]. {227, 1008, 1017}

[MN98] Makoto Matsumoto and Takuji Nishimura. Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number
generator. ACM Transactions on Modeling and Computer Simulation, 8(1):3–30, January 1998. CODEN ATMCEZ. ISSN 1049-3301 (print),
1558-1195 (electronic). DOI 10.1145/272991.272995. {177}

[MNZ90] George Marsaglia, B. Narasimhan, and Arif Zaman. A random number generator for PC’s. Computer Physics Communications, 60(3):
345–349, October 1990. CODEN CPHCBZ. ISSN 0010-4655 (print), 1879-2944 (electronic). URL http://www.sciencedirect.com/
science/article/pii/001046559090033W. DOI 10.1016/0010-4655(90)90033-W. {177}

Bibliography 1025

[Møl65a] Ole Møller. Note on quasi double-precision. Nordisk Tidskrift for Informationsbehandling, 5(4):251–255, December 1965. CODEN BITTEL,
NBITAB. ISSN 0006-3835 (print), 1572-9125 (electronic). URL http://www.springerlink.com/openurl.asp?genre=article&issn=
0006-3835&volume=5&issue=4&spage=251. DOI 10.1007/BF01937505. See [Møl65b]. {1025}

[Møl65b] Ole Møller. Quasi double-precision in floating point addition. Nordisk Tidskrift for Informationsbehandling, 5(1):37–50, March 1965.
CODEN BITTEL, NBITAB. ISSN 0006-3835 (print), 1572-9125 (electronic). URL http://www.springerlink.com/openurl.asp?genre=
article&issn=0006-3835&volume=5&issue=1&spage=37. DOI 10.1007/BF01975722. See also [Møl65a]. {353, 1025}

[Mos89] Stephen L. B. Moshier. Methods and Programs for Mathematical Functions. Ellis Horwood, New York, NY, USA, 1989. ISBN 0-7458-0289-3;
978-0-7458-0289-3. vii + 415 pp. LCCN QA331 .M84 1989. URL http://www.netlib.org/cephes. {133, 270, 521, 556, 558, 567, 583,
593, 600, 617, 644, 657, 693, 708, 823}

[MP98] Charlene Morrow and Teri Perl, editors. Notable Women in Mathematics: A Biographical Dictionary. Greenwood Press, Westport, CT,
USA, 1998. ISBN 0-313-29131-4; 978-0-313-29131-9. xv + 302 pp. LCCN QA28 .N68 1998. {59}

[MPFR04] MPFR: The Multiple Precision Floating-Point Reliable Library: Edition 2.1.0: November 2004, 2004. ii + 35 pp. URL http://www.mpfr.org/
mpfr-current/mpfr.pdf. {401, 407, 825}

[MR90] Michael Metcalf and John Ker Reid. Fortran 90 Explained. Oxford science publications. Oxford University Press, Oxford, UK, 1990.
ISBN 0-19-853772-7 (paperback); 978-0-19-853772-4 (paperback). xiv + 294 pp. LCCN QA76.73.F28 M48 1990. {106}

[MR04] James S. Miller and Susann Ragsdale. The Common Language Infrastructure Annotated Standard. Addison-Wesley, Reading, MA, USA,
2004. ISBN 0-321-15493-2; 978-0-321-15493-4. xxxii + 891 pp. LCCN QA76.7 .M52 2003. {917}

[MRR91] Michael Müller, Christine Rüb, and Wolfgang Rülling. Exact accumulation of floating-point numbers. In Kornerup and Matula
[KM91], pages 64–69. ISBN 0-8186-9151-4 (case), 0-8186-6151-8 (microfiche), 0-7803-0187-0 (library binding); 978-0-8186-9151-5 (case),
978-0-8186-6151-8 (microfiche), 978-0-7803-0187-0 (library binding). LCCN QA76.9.C62 S95 1991. DOI 10.1109/ARITH.1991.145535.
IEEE catalog number 91CH3015-5. {385}

[MRR96] Michael Müller, Christine Rüb, and Wolfgang Rülling. A circuit for exact summation of floating-point numbers. Information
Processing Letters, 57(3):159–163, February 12, 1996. CODEN IFPLAT. ISSN 0020-0190 (print), 1872-6119 (electronic). URL
http://www.sciencedirect.com/science/article/pii/0020019095002057. DOI 10.1016/0020-0190(95)00205-7. {385}

[MS00a] Michael Mascagni and Ashok Srinivasan. Algorithm 806: SPRNG: a scalable library for pseudorandom number generation. ACM
Transactions on Mathematical Software, 26(3):436–461, September 2000. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (elec-
tronic). DOI 10.1145/358407.358427. See correction [MS00b]. {158, 1025}

[MS00b] Michael Mascagni and Ashok Srinivasan. Corrigendum: Algorithm 806: SPRNG: a scalable library for pseudorandom number gener-
ation. ACM Transactions on Mathematical Software, 26(4):618–619, December 2000. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295
(electronic). DOI 10.1145/365723.365738. See [MS00a]. {1025}

[MS05] Paolo Montuschi and Eric M. Schwarz, editors. Proceedings of the 17th IEEE Symposium on Computer Arithmetic, ARITH-17 2005, June
27–29, 2005, Cape Cod, Massachusetts, USA. IEEE Computer Society Press, Silver Spring, MD, USA, 2005. ISBN 0-7695-2366-8; 978-0-
7695-2366-8. LCCN QA76.9.C62 .S95 2005. {1000, 1021, 1034}

[MSH+16] Paolo Montuschi, Michael Schulte, Javier Hormigo, Stuart Oberman, and Nathalie Revol, editors. 2016 IEEE 23nd Symposium on
Computer Arithmetic (ARITH 2016), Santa Clara, California, USA, 10–13 July 2016. IEEE Computer Society Press, Silver Spring, MD,
USA, 2016. ISBN 1-5090-1615-5; 978-1-5090-1615-0. ISSN 1063-6889. LCCN QA76.9.C62 S95 2016. URL http://ieeexplore.ieee.org/
servlet/opac?punumber=7562813. {104, 1021}

[MT02] George Marsaglia and Wai Wan Tsang. Some difficult-to-pass tests of randomness. Journal of Statistical Software, 7(3):1–
8, 2002. CODEN JSSOBK. ISSN 1548-7660. URL http://www.jstatsoft.org/v07/i03; http://www.jstatsoft.org/v07/
i03/tuftests.c; http://www.jstatsoft.org/v07/i03/tuftests.pdf; http://www.jstatsoft.org/v07/i03/updates. DOI
10.18637/jss.v007.i03. {200}

[MU49] Nicholas Metropolis and Stanisław Ulam. The Monte Carlo method. Journal of the American Statistical Association, 44(247):335–341,
September 1949. CODEN JSTNAL. ISSN 0162-1459 (print), 1537-274X (electronic). URL http://www.jstor.org/stable/2280232.
DOI 10.2307/2280232. This may be the earliest published article on the Monte Carlo method after the algorithm was declassified
following World War II. {203}

[Mul97] Jean-Michel Muller. Elementary Functions: Algorithms and Implementation. Birkhäuser, Cambridge, MA, USA; Berlin, Germany; Basel,
Switzerland, 1997. ISBN 0-8176-3990-X; 978-0-8176-3990-7. xv + 204 pp. LCCN QA331.M866 1997. URL http://perso.ens-lyon.fr/
jean-michel.muller/; http://www.birkhauser.com/cgi-win/ISBN/0-8176-3990-X. {251, 827}

[Mul05] Jean-Michel Muller. On the definition of ulp(x). Rapport de recherche LIP RR2005-09, INRIA RR-5504, Laboratoire de l’Informatique
du Parallélisme, Lyon, France, February 2005. 19 pp. URL ftp://ftp.inria.fr/INRIA/publication/publi-pdf/RR/RR-5504.pdf.
The function ulp(x) returns the unit in the last place of x. {82}

[Mul06] Jean-Michel Muller. Elementary Functions: Algorithms and Implementation. Birkhäuser, Cambridge, MA, USA; Berlin, Ger-
many; Basel, Switzerland, second edition, 2006. ISBN 0-8176-4372-9; 978-0-8176-4372-0. xxii + 266 pp. LCCN QA331
.M866 2006. URL http://perso.ens-lyon.fr/jean-michel.muller/SecondEdition.html; http://www.springer.com/sgw/cda/
frontpage/0,,4-40109-22-72377986-0,00.html. {55, 827}

[Mul15] Jean-Michel Muller. On the error of computing ab + cd using Cornea, Harrison and Tang’s method. ACM Transactions on Mathematical
Software, 41(2):7:1–7:8, January 2015. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic). DOI 10.1145/2629615. {463}

[Mul16] Jean-Michel Muller. Elementary Functions: Algorithms and Implementation. Birkhäuser Boston Inc., Cambridge, MA, USA, third edition,
2016. ISBN 1-4899-7981-6 (print), 1-4899-7983-2 (e-book); 978-1-4899-7981-0 (print), 978-1-4899-7983-4 (e-book). xxv + 283 pp. LCCN
QA331 .M866 2016. DOI 10.1007/978-1-4899-7983-4. {827}

1026 Bibliography

[MvA06] Francisco Marcellán and Walter van Assche, editors. Orthogonal Polynomials and Special Functions: Computation and Applications, volume
1883 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, Germany / Heidelberg, Germany / London, UK / etc., 2006. ISBN 3-
540-31062-2; 978-3-540-31062-4. ISSN 0075-8434 (print), 1617-9692 (electronic). xiv + 418 pp. LCCN QA3 .L28 no. 1883; QA404.5 .O735
2006. DOI 10.1007/b128597. {59, 827}

[MWKA07] Makoto Matsumoto, Isaku Wada, Ai Kuramoto, and Hyo Ashihara. Common defects in initialization of pseudorandom number
generators. ACM Transactions on Modeling and Computer Simulation, 17(4):15:1–15:20, September 2007. CODEN ATMCEZ. ISSN 1049-
3301 (print), 1558-1195 (electronic). DOI 10.1145/1276927.1276928. {176}

[MXJ04] D. N. Prabhakar Murthy, Min Xie, and Renyan Jiang. Weibull Models. Wiley series in probability and statistics. Wiley, New York, NY,
USA, 2004. ISBN 0-471-36092-9 (cloth); 978-0-471-36092-6 (cloth). xvi + 383 pp. LCCN QA273.6 .M87 2004. {196}

[MZ91] George Marsaglia and Arif Zaman. A new class of random number generators. Annals of Applied Probability, 1(3):462–480, August
1991. ISSN 1050-5164. URL http://projecteuclid.org/euclid.aoap/1177005878. DOI 10.1214/aoap/1177005878. See remarks in
[EH95, TLC93] about the extremely bad lattice structure in high dimensions of the generators proposed in this paper. {177, 1035}

[MZ93] George Marsaglia and Arif Zaman. Monkey tests for random number generators. Computers and Mathematics with Applications, 26(9):
1–10, November 1993. CODEN CMAPDK. ISSN 0898-1221 (print), 1873-7668 (electronic). DOI 10.1016/0898-1221(93)90001-C. See
also [PW95]. {200, 1028}

[MZM94] George Marsaglia, Arif Zaman, and John C. W. Marsaglia. Rapid evaluation of the inverse of the normal distribution function.
Statistics & Probability Letters, 19(4):259–266, March 15, 1994. CODEN SPLTDC. ISSN 0167-7152 (print), 1879-2103 (electronic). DOI
10.1016/0167-7152(94)90174-0. {618}

[Nah06] Paul J. Nahin. Dr. Euler’s Fabulous Formula: Cures Many Mathematical Ills. Princeton University Press, Princeton, NJ, USA, 2006. ISBN
0-691-11822-1 (hardcover); 978-0-691-11822-2 (hardcover). xx + 380 pp. LCCN QA255 .N339 2006. The Euler formula, eiπ + 1 = 0,
relates five important mathematical constants, and the digits of the binary number system. {14, 59, 591, 623}

[Nea73] Henry R. Neave. Miscellanea: On using the Box–Muller transformation with multiplicative congruential pseudo-random number
generators. Applied Statistics, 22(1):92–97, 1973. CODEN APSTAG. ISSN 0035-9254 (print), 1467-9876 (electronic). URL http://
www.jstor.org/stable/2346308. DOI 10.2307/2346308. {193}

[Nea15] Radford M. Neal. Fast exact summation using small and large superaccumulators. Report, Department of Statistical Sciences and
Department of Computer Science, University of Toronto, Toronto, ON, Canada, 2015. 22 pp. URL http://www.cs.toronto.edu/
~radford/ftp/xsum.pdf. {385}

[Neh07] Markus Neher. Complex standard functions and their implementation in the CoStLy library. ACM Transactions on Mathematical Soft-
ware, 33(1):2:1–2:27, March 2007. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic). DOI 10.1145/1206040.1206042.
{476}

[Nev44] Eric Harold Neville. Jacobian Elliptic Functions. Clarendon Press, Oxford, UK, 1944. xiii + 2 + 331 + 1 pp. LCCN QA343 .N5. {678}
[Nev51] Eric Harold Neville. Jacobian Elliptic Functions. Clarendon Press, Oxford, UK, second edition, 1951. xiv + 345 pp. LCCN QA343 .N5

1951. {678}
[New05] M. E. J. Newman. Power laws, Pareto distributions and Zipf’s law. Contemporary physics, 46(5):323–351, September 2005. CODEN

CTPHAF. ISSN 0010-7514 (print), 1366-5812 (electronic). DOI 10.1080/00107510500052444. {196}
[Ng92] K. C. Ng. Argument reduction for huge arguments: Good to the last bit. SunPro, July 13, 1992. URL http://www.validlab.com/

arg.pdf. {250}
[Nie78] Harald Niederreiter. Quasi-Monte Carlo methods and pseudo-random numbers. Bulletin of the American Mathematical Society, 84(6):

957–1041, November 1978. CODEN BAMOAD. ISSN 0002-9904 (print), 1936-881X (electronic). URL http://www.ams.org/bull/
1978-84-06/S0002-9904-1978-14532-7/S0002-9904-1978-14532-7.pdf. DOI 10.1090/S0002-9904-1978-14532-7. {203}

[Nie92] Harald Niederreiter. Random Number Generation and Quasi-Monte Carlo Methods, volume 63. SIAM (Society for Industrial and Applied
Mathematics), Philadelphia, PA, USA, 1992. ISBN 0-89871-295-5; 978-0-89871-295-7. vi + 241 pp. LCCN QA298 .N54 1992. {203}

[Nie03] Yves Nievergelt. Scalar fused multiply-add instructions produce floating-point matrix arithmetic provably accurate to the penultimate
digit. ACM Transactions on Mathematical Software, 29(1):27–48, March 2003. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295
(electronic). DOI 10.1145/641876.641878. {87}

[NIS15] NIST. SHA-3 standard: Permutation-based hash and extendable-output functions. FIPS PUB 202, National Institute for Standards
and Technology, Gaithersburg, MD, USA, 2015. viii + 29 pp. DOI 10.6028/NIST.FIPS.202. {178}

[NW97] Roger M. Needham and David J. Wheeler. TEA extensions. Report, Cambridge University, Cambridge, UK, October 1997. URL
http://www.movable-type.co.uk/scripts/xtea.pdf. See also original TEA [WN95] and extension XXTEA [WN98]. {178, 1037}

[OE74] R. E. Odeh and J. O. Evans. Statistical algorithms: Algorithm AS 70: The percentage points of the normal distribution. Applied Statistics,
23(1):96–97, March 1974. CODEN APSTAG. ISSN 0035-9254 (print), 1467-9876 (electronic). URL http://lib.stat.cmu.edu/apstat/
70. DOI 10.2307/2347061. {618}

[OLBC10] Frank W. J. Olver, Daniel W. Lozier, Ronald F. Boisvert, and Charles W. Clark, editors. NIST Handbook of Mathematical Functions.
Cambridge University Press, Cambridge, UK, 2010. ISBN 0-521-19225-0; 978-0-521-19225-5. xv + 951 pp. LCCN QA331 .N57 2010.
URL http://dlmf.nist.gov/; http://www.cambridge.org/catalogue/catalogue.asp?isbn=9780521192255. {6, 58, 269, 301, 303,
341, 498, 521, 560, 562, 574, 589, 593, 600, 619, 624, 627, 632, 653, 657, 661, 666, 673, 675, 678, 682, 689, 693, 826}

[Olv74] Frank W. J. Olver. Asymptotics and Special Functions. Academic Press, New York, NY, USA, 1974. ISBN 0-12-525850-X; 978-0-12-525850-
0. xvi + 572 pp. LCCN QA351 .O481 1974. {19, 521, 693, 827}

Bibliography 1027

[Omo94] Amos R. Omondi. Computer Arithmetic Systems: Algorithms, Architecture, and Implementation. Prentice-Hall, Upper Saddle River, NJ,
USA, 1994. ISBN 0-13-334301-4; 978-0-13-334301-4. xvi + 520 pp. LCCN QA76.9.C62 O46 1994. {407, 881, 978}

[OMS09] Keith B. Oldham, Jan Myland, and Jerome Spanier, editors. An Atlas of Functions. Springer-Verlag, Berlin, Germany / Heidelberg,
Germany / London, UK / etc., second edition, 2009. ISBN 0-387-48807-3 (softcover), 0-387-48806-5 (hardcover); 978-0-387-48807-3
(softcover), 978-0-387-48806-6 (hardcover). xi + 748 pp. LCCN QA331 .S685 2009. DOI 10.1007/978-0-387-48807-3. {1032}

[OOO16] Katsuhisa Ozaki, Takeshi Ogita, and Shin’ichi Oishi. Error-free transformation of matrix multiplication with a posteriori validation.
Numerical Linear Algebra with Applications, 23(5):931–946, October 2016. CODEN NLAAEM. ISSN 1070-5325 (print), 1099-1506 (elec-
tronic). DOI 10.1002/nla.2061. {385}

[ORO05] Takeshi Ogita, Siegfried M. Rump, and Shin’ichi Oishi. Accurate sum and dot product. SIAM Journal on Scientific Computing, 26(6):
1955–1988, November 2005. CODEN SJOCE3. ISSN 1064-8275 (print), 1095-7197 (electronic). URL http://epubs.siam.org/sam-bin/
dbq/article/60181. DOI 10.1137/030601818. {385}

[O’S07] Donal O’Shea. The Poincaré Conjecture: in Search of the Shape of the Universe. Walker and Company, New York, NY, USA, 2007. ISBN
0-8027-1532-X; 978-0-8027-1532-6. ix + 293 pp. LCCN QA612 .O83 2007. {521, 579}

[Ove01] Michael L. Overton. Numerical Computing with IEEE Floating Point Arithmetic, Including One Theorem, One Rule of Thumb, and One
Hundred and One Exercises. SIAM (Society for Industrial and Applied Mathematics), Philadelphia, PA, USA, 2001. ISBN 0-89871-482-6;
978-0-89871-482-1. xiv + 104 pp. LCCN QA76.9.M35 O94 2001. URL http://www.cs.nyu.edu/cs/faculty/overton/book/; http:
//www.siam.org/catalog/mcc07/ot76.htm. {67, 103}

[Pag77] E. Page. Miscellanea: Approximations to the cumulative normal function and its inverse for use on a pocket calculator. Applied
Statistics, 26(1):75–76, 1977. CODEN APSTAG. ISSN 0035-9254 (print), 1467-9876 (electronic). URL http://www.jstor.org/stable/
2346872. DOI 10.2307/2346872. {618}

[Pai19] Eleanor Pairman. Tables of the Digamma and Trigamma Functions, volume I of Tracts for computers. Cambridge University Press, Cam-
bridge, UK, 1919. 9 + 11 pp. LCCN QA47 .T7 no.1. {537}

[Par69] Ronald G. Parson. Certification of Algorithm 147 [S14]: PSIF. Communications of the Association for Computing Machinery, 12(12):691–692,
December 1969. CODEN CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic). DOI 10.1145/363626.363651. See [Ami62, Tha63].
{996, 1035}

[Par00] Behrooz Parhami. Computer Arithmetic: Algorithms and Hardware Designs. Oxford University Press, Oxford, UK, 2000. ISBN 0-19-
512583-5; 978-0-19-512583-2. xx + 490 pp. LCCN QA76.9.C62P37 1999. {68, 881, 978}

[PAS82] Specification for Computer Programming Language Pascal, ISO 7185-1982. International Organization for Standardization, Geneva,
Switzerland, 1982. URL http://www.iso.ch/cate/d13802.html. {70}

[PAS90] Extended Pascal ISO 10206:1990. International Organization for Standardization, Geneva, Switzerland, 1990. xii + 218 pp. URL
http://www.iso.ch/cate/d18237.html. Available in PostScript for personal use only at http://pascal.miningco.com/msub1.htm.
{vii, 989}

[Pat88] S. J. Patterson. An Introduction to the Theory of the Riemann Zeta-function, volume 14 of Cambridge studies in advanced mathematics.
Cambridge University Press, Cambridge, UK, 1988. ISBN 0-521-33535-3; 978-0-521-33535-5. xiii + 156 pp. LCCN QA246 .P28 1988.
{579}

[Pea00] Karl Pearson. On a criterion that a given system of deviations from the probable in the case of a correlated system of variables is
such that it can be reasonably supposed to have arisen in random sampling. Philosophical Magazine, 50(302):157–175, July/December
1900. CODEN PHMAA4. ISSN 0031-8086. URL http://www.tandfonline.com/doi/pdf/10.1080/14786440009463897. DOI 10.1080/
14786440009463897. {197}

[PGPB90] E. S. Pearson, William Sealy Gosset, R. L. Plackett, and George A. Barnard, editors. Student: a Statistical Biography of William Sealy
Gosset. Clarendon Press, Oxford, UK, 1990. ISBN 0-19-852227-4; 978-0-19-852227-0. viii + 142 pp. LCCN QA276.157.G67 P43 1990.
Gosset is the originator of the widely used Student t-test in the statistics of small sample sizes. {196}

[PH83a] M. H. Payne and R. N. Hanek. Degree reduction for trigonometric functions. ACM SIGNUM Newsletter, 18(2):18–19, April 1983.
CODEN SNEWD6. ISSN 0163-5778 (print), 1558-0237 (electronic). DOI 10.1145/1057605.1057606. {250, 253}

[PH83b] M. H. Payne and R. N. Hanek. Radian reduction for trigonometric functions. ACM SIGNUM Newsletter, 18(1):19–24, January 1983.
CODEN SNEWD6. ISSN 0163-5778 (print), 1558-0237 (electronic). DOI 10.1145/1057600.1057602. {250, 253}

[PH02] David A. Patterson and John L. Hennessy. Computer Architecture — A Quantitative Approach. Morgan Kaufmann Publishers, Los Altos,
CA 94022, USA, third edition, 2002. ISBN 1-55860-596-7; 978-1-55860-596-1. xxi + 883 + A-87 + B-42 + C-1 + D-1 + E-1 + F-1 + G-1 + H-1
+ I-1 + R-22 + I-44 pp. LCCN QA76.9.A73 P377 2003. URL http://www.mkp.com/books_catalog/catalog.asp?ISBN=1-55860-596-7;
http://www.mkp.com/CA3. {103, 1013}

[PH08] David A. Patterson and John L. Hennessy. Computer Organization and Design: the Hardware/Software Interface. Elsevier/Morgan Kauf-
mann, San Francisco, CA, USA, fourth edition, 2008. ISBN 0-12-374493-8; 978-0-12-374493-7. xxv + 703 + A-77 + B-83 + I-26 pp. LCCN
QA76.9.C643. {103}

[PH12] David A. Patterson and John L. Hennessy. Computer Organization and Design: the Hardware/Software Interface. The Morgan Kaufmann
series in computer architecture and design. Morgan Kaufmann/Elsevier, Waltham, MA, USA, fourth edition, 2012. ISBN 0-12-374750-
3 (paperback); 978-0-12-374750-1 (paperback). xxv + 703 pp. LCCN QA76.9.C643 H46 2012. URL http://store.elsevier.com/
product.jsp?isbn=9780080922812. With contributions by Perry Alexander, Peter J. Ashenden, Javier Bruguera, Jichuan Chang,
Matthew Farrens, David Kaeli, Nicole Kaiyan, David Kirk, James R. Larus, Jacob Leverich, Kevin Lim, John Nickolls, John Oliver,
Milos Prvulovic, and Parta Ranganthan. {103}

1028 Bibliography

[Phi60] J. R. Philip. The function inverfc θ. Australian Journal of Physics, 13(1):13–20, March 1960. CODEN AUJPAS. ISSN 0004-9506 (print),
1446-5582 (electronic). DOI 10.1071/PH600013. {600}

[Phi86] Jen Phillips. The NAG Library. Clarendon Press, Oxford, UK, 1986. ISBN 0-19-853263-6; 978-0-19-853263-7. viii + 245 pp. LCCN
QA297.P53 1986. {826}

[PK91] Vern Paxson and William M. Kahan. A program for testing IEEE binary–decimal conversion. World-Wide Web document, May 1991.
URL ftp://ftp.ee.lbl.gov/testbase-report.ps.Z; ftp://ftp.ee.lbl.gov/testbase.tar.Z. {1015}

[PL05] François Panneton and Pierre L’Ecuyer. On the xorshift random number generators. ACM Transactions on Modeling and Computer Simu-
lation, 15(4):346–361, October 2005. CODEN ATMCEZ. ISSN 1049-3301 (print), 1558-1195 (electronic). DOI 10.1145/1113316.1113319.
See [Mar03b, Bre04, Vig16]. {1001, 1024}

[PL07] Alfred S. Posamentier and Ingmar Lehmann. The Fabulous Fibonacci Numbers. Prometheus Books, Amherst, NY, USA, 2007. ISBN
1-59102-475-7; 978-1-59102-475-0. 385 pp. LCCN QA241 .P665 2007. {15}

[Pla92] P. J. Plauger. The Standard C Library. Prentice-Hall, Upper Saddle River, NJ, USA, 1992. ISBN 0-13-838012-0; 978-0-13-838012-0. xiv +
498 pp. LCCN QA76.73.C15 P563 1991. {133, 827}

[PM75] Robert Piessens and Irene Mertens. Remark and certification on “Algorithm 446: Ten subroutines for the manipulation of Chebyshev
series”. Communications of the Association for Computing Machinery, 18(5):276, 1975. CODEN CACMA2. ISSN 0001-0782 (print), 1557-
7317 (electronic). DOI 10.1145/360762.360782. See [Bro73]. {1001}

[PM84] John F. Palmer and Stephen P. Morse. The 8087 Primer. Wiley, New York, NY, USA, 1984. ISBN 0-471-87569-4; 978-0-471-87569-7. viii
+ 182 pp. LCCN QA76.8.I2923 P34 1984. Excellent coverage of the 8087 numeric coprocessor by the chief architects of the Intel 8087
(Palmer) and 8086 (Morse). Contains many candid statements about design decisions in these processors. A must for serious assembly
language coding of the 8087 and 80287 chips. See also [Int85]. {63, 104}

[PM88] Stephen K. Park and Keith W. Miller. Random number generators: Good ones are hard to find. Communications of the Association
for Computing Machinery, 31(10):1192–1201, October 1988. CODEN CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic). URL
http://www.acm.org/pubs/toc/Abstracts/0001-0782/63042.html. DOI 10.1145/63039.63042. {170, 214}

[Pól49] George Pólya. Remarks on computing the probability integral in one and two dimensions. In Proceedings of the [First] Berkeley Sympo-
sium on Mathematical Statistics and Probability: held at the Statistical Laboratory, Department of Mathematics, University of California, August
13–18, 1945, January 27–29, 1946, pages 63–78. University of California Press, Berkeley, CA, USA, 1949. LCCN QA276 .B4. URL
http://projecteuclid.org/euclid.bsmsp/1166219199. {618}

[POP64] IBM Corporation, San Jose, CA, USA. IBM System/360 Principles of Operation, 1964. 168 pp. URL http://bitsavers.org/pdf/ibm/
360/poo/A22-6821-0_360PrincOps.pdf. File number S360-01. Form A22-6821-5. {928, 963, 964}

[POP67] IBM Corporation, San Jose, CA, USA. IBM System/360 Principles of Operation, seventh edition, January 13, 1967. 175 pp. URL http://
www.bitsavers.org/pdf/ibm/360/poo/A22-6821-6_360PrincOpsJan67.pdf. File number S360-01. Form A22-6821-6. {964}

[POP75] IBM Corporation, San Jose, CA, USA. IBM System/370 Principles of Operation, September 1, 1975. viii + 9–326 pp. URL http://
bitsavers.org/pdf/ibm/360/poo/A22-6821-0_360PrincOps.pdf. File number S/360-01. Form GA22-7000-4. {965}

[Pop00] Bogdan A. Popov. Optimal starting approximation and iterative algorithm for inverse error function. SIGSAM Bulletin (ACM Special
Interest Group on Symbolic and Algebraic Manipulation), 34(1):25–26, March 2000. CODEN SIGSBZ. ISSN 0163-5824 (print), 1557-9492
(electronic). DOI 10.1145/373500.373510. {600, 604}

[POP04] IBM Corporation, Department 55JA Mail Station P384, 2455 South Road Poughkeepsie, NY, 12601-5400, USA. z/Architecture Principles
of Operation, fourth edition, May 2004. xxvi + 1124 pp. URL http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/download/
DZ9ZR003.pdf. IBM order number SA22-7832-03. {963, 965}

[PP05] Wolfgang K. H. Panofsky and Melba Phillips. Classical Electricity and Magnetism. Dover books on physics. Dover, New York, NY, USA,
second edition, 2005. ISBN 0-486-43924-0; 978-0-486-43924-2. xvi + 494 pp. LCCN QC518 .P337 2005. {693}

[Pri91] Douglas M. Priest. Algorithms for arbitrary precision floating point arithmetic. In Kornerup and Matula [KM91], pages 132–143.
ISBN 0-8186-9151-4 (case), 0-8186-6151-8 (microfiche), 0-7803-0187-0 (library binding); 978-0-8186-9151-5 (case), 978-0-8186-6151-8 (mi-
crofiche), 978-0-7803-0187-0 (library binding). LCCN QA76.9.C62 S95 1991. DOI 10.1109/ARITH.1991.145549. IEEE catalog number
91CH3015-5. {385, 407, 476}

[Pri92] Douglas M. Priest. On Properties of Floating Point Arithmetics: Numerical Stability and the Cost of Accurate Computations. Thesis (Ph.D. in
mathematics), Department of Computer Science, University of California, Berkeley, Berkeley, CA, USA, December 1992. iv + 136 pp.
URL ftp://ftp.icsi.berkeley.edu/pub/theory/priest-thesis.ps.Z. {89}

[Pri04] Douglas M. Priest. Efficient scaling for complex division. ACM Transactions on Mathematical Software, 30(4):389–401, December 2004.
CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic). DOI 10.1145/1039813.1039814. {453–455, 1033}

[PSLM00] P. J. Plauger, Alexander A. Stepanov, Meng Lee, and David R. Musser. The C++ Standard Template Library. Prentice-Hall, Upper Saddle
River, NJ, USA, 2000. ISBN 0-13-437633-1; 978-0-13-437633-2. xii + 485 pp. LCCN QA76.73.C153 C17 2000. {827}

[PTVF07] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery. Numerical Recipes — The Art of Scientific Computing.
Cambridge University Press, Cambridge, UK, third edition, 2007. ISBN 0-521-88068-8 (hardcover), 0-521-88407-1 (with source code
CD ROM), 0-521-70685-8 (source code CD ROM); 978-0-521-88068-8 (hardcover), 978-0-521-88407-5 (with source code CD ROM), 978-
0-521-70685-8 (source code CD ROM). xxi + 1235 pp. LCCN QA297 .N866 2007. URL http://www.cambridge.org/numericalrecipes.
{19, 196, 567, 589, 657}

[PW95] Ora E. Percus and Paula A. Whitlock. Theory and application of Marsaglia’s monkey test for pseudorandom number generators.
ACM Transactions on Modeling and Computer Simulation, 5(2):87–100, April 1995. CODEN ATMCEZ. ISSN 1049-3301 (print), 1558-1195
(electronic). DOI 10.1145/210330.210331. See [MZ93]. {200, 1026}

Bibliography 1029

[Rai60] Earl David Rainville. Special Functions. Chelsea Publishing Company, New York, NY, USA, 1960. ISBN 0-8284-0258-2; 978-0-8284-
0258-3. xii + 365 pp. LCCN QA351 .R3 1971. Reprinted in 1971. {521, 827}

[Ran82] Brian Randell, editor. The Origins of Digital Computers: Selected Papers. Texts and monographs in computer science. Springer-Verlag,
Berlin, Germany / Heidelberg, Germany / London, UK / etc., third edition, 1982. ISBN 0-387-11319-3, 3-540-11319-3; 978-0-387-
11319-7, 978-3-540-11319-5. xvi + 580 pp. LCCN TK7885.A5 O741 1982. DOI 10.1007/978-3-642-61812-3. This book collects many
important early papers on computers from 1837 to 1949. {104}

[Ray04] Eric Steven Raymond. The Art of UNIX Programming. Addison-Wesley, Reading, MA, USA, 2004. ISBN 0-13-124085-4, 0-13-142901-9;
978-0-13-124085-8, 978-0-13-142901-7. xxxii + 525 pp. LCCN QA76.76.O63 R395 2003. {956}

[RB05a] Arnold Robbins and Nelson H. F. Beebe. Classic Shell Scripting. O’Reilly Media, Sebastopol, CA, USA, 2005. ISBN 0-596-00595-4; 978-
0-596-00595-5. xxii + 534 pp. LCCN QA76.76.O63 R633 2005. URL http://www.oreilly.com/catalog/shellsrptg/. Also available in
Chinese [RB08], French [RB05b], German [RB06a], Japanese [RB06c], and Polish [RB06b] translations. {ix, 873, 1029}

[RB05b] Arnold Robbins and Nelson H. F. Beebe. Introduction aux Scripts Shell. O’Reilly & Associates, Sebastopol, CA, USA, and Cambridge,
MA, USA, 2005. ISBN 2-84177-375-2; 978-2-84177-375-6. xxii + 558 pp. URL http://www.silicon.fr/getarticle.asp?id=14015.
French translation of [RB05a] by Eric Jacoboni. {1029}

[RB06a] Arnold Robbins and Nelson H. F. Beebe. Klassische Shell-Programmierung: [automatisieren Sie Ihre Unix/Linux-Tasks]. O’Reilly & As-
sociates, Sebastopol, CA, USA, and Cambridge, MA, USA, 2006. ISBN 3-89721-441-5; 978-3-89721-441-5. xxiii + 572 pp. LCCN
QA76.76.O63 R563 2005. URL http://www.gbv.de/dms/hebis-darmstadt/toc/17645067X.pdf. German translation of [RB05a] by
Kathrin Lichtenberg. {1029}

[RB06b] Arnold Robbins and Nelson H. F. Beebe. Programowanie Skryptów Powłoki. Helion, Gliwice, Poland, 2006. ISBN 83-246-0131-
7; 978-83-246-0131-8. 557 + 2 pp. URL http://www.empik.com/b/o/19/f1/19f16b85e0d75ae1d3a1e7062569fbb0.jpg; http://
www.empik.com/programowanie-skryptow-powloki-ksiazka,360529,p. Polish translation of [RB05a] by Przemysław Szeremiota.
{1029}

[RB06c] Arnold Robbins and Nelson H. F. Beebe. Shōkai shieru sukuriputo. Orairı̄ Japan, Tōkyō, Japan, 2006. ISBN 4-87311-267-2; 978-4-87311-
267-1. 345 pp. Japanese translation of [RB05a] by Aoi Hyūga. {1029}

[RB08] Arnold Robbins and Nelson H. F. Beebe. Shell Jiao Ben Xue Xi Zhi Nan = Shell Script Study Guide. O’Reilly Media, Sebastopol, CA, USA,
2008. ISBN 7-111-25504-6; 978-7-111-25504-8. vi + 494 pp. Simplified Chinese translation of [RB05a]. {1029}

[RBJ16] Siegfried M. Rump, Florian Bünger, and Claude-Pierre Jeannerod. Improved error bounds for floating-point products and Horner’s
scheme. BIT Numerical Mathematics, 56(1):293–307, March 2016. CODEN BITTEL, NBITAB. ISSN 0006-3835 (print), 1572-9125 (elec-
tronic). URL http://link.springer.com/article/10.1007/s10543-015-0555-z. DOI 10.1007/s10543-015-0555-z. {89}

[Ree77] James A. Reeds. “Cracking” a random number generator. Cryptologia, 1(1):20–26, January 1977. CODEN CRYPE6. ISSN 0161-1194
(print), 1558-1586 (electronic). URL http://alumni.cs.ucr.edu/~jsun/random-number.pdf; http://www.dean.usma.edu/
math/pubs/cryptologia/ClassicArticleReprints/V01N1PP20-26JamesReeds.pdf; http://www.informaworld.com/smpp/
content~content=a748865252~db=all~order=page. DOI 10.1080/0161-117791832760. Reprinted in [DKKM87, pp. 509–515].
{207}

[Ree79] James A. Reeds. Cracking a multiplicative congruential encryption algorithm. In Information linkage between applied mathematics and
industry (Proc. First Annual Workshop, Naval Postgraduate School, Monterey, Calif., 1978), pages 467–472. Academic Press, New York, NY,
USA, 1979. DOI 10.1016/B978-0-12-734250-4.50037-0. {207}

[Rei06] Constance Reid. From Zero to Infinity: What Makes Numbers Interesting. A. K. Peters, Wellesley, MA, USA, fifth edition, 2006. ISBN
1-56881-273-6; 978-1-56881-273-1. xvii + 188 pp. LCCN QA93 .R42 2006. {59}

[REXX96] American National Standard for information technology: programming language REXX: ANSI X3.274-1996. American National Standards
Institute, New York, NY, USA, 1996. iv + 167 pp. {viii, 968}

[Rib91] Paulo Ribenboim. The Little Book of Big Primes. Springer-Verlag, Berlin, Germany / Heidelberg, Germany / London, UK / etc., 1991.
ISBN 0-387-97508-X (New York), 3-540-97508-X (Berlin); 978-0-387-97508-5 (New York), 978-3-540-97508-3 (Berlin). xvii + 237 pp.
LCCN QA246 .R472 1991. DOI 10.1007/978-1-4757-4330-2. {590}

[Rib96] Paulo Ribenboim. The New Book of Prime Number Records. Springer-Verlag, Berlin, Germany / Heidelberg, Germany / London, UK /
etc., third edition, 1996. ISBN 0-387-94457-5 (hardcover); 978-0-387-94457-9 (hardcover). xxiv + 541 pp. LCCN QA246 .R47 1996. DOI
10.1007/978-1-4612-0759-7. {590}

[Rib04] Paulo Ribenboim. The Little Book of Bigger Primes. Springer-Verlag, Berlin, Germany / Heidelberg, Germany / London, UK / etc.,
second edition, 2004. ISBN 0-387-20169-6; 978-0-387-20169-6. xxiii + 356 pp. LCCN QA246 .R473 2004. DOI 10.1007/b97621. {590}

[Ric64] John R. Rice. The Approximation of Functions, volume 1. Addison-Wesley, Reading, MA, USA, 1964. LCCN QA221 .R5 V.1-2. {31}
[Rip90] B. D. Ripley. Thoughts on pseudorandom number generators. Journal of Computational and Applied Mathematics, 31(1):153–163, July 24,

1990. CODEN JCAMDI. ISSN 0377-0427 (print), 1879-1778 (electronic). URL http://www.sciencedirect.com/science/article/pii/
0377042790903462. DOI 10.1016/0377-0427(90)90346-2. {178}

[Riv74] Theodore J. Rivlin. The Chebyshev Polynomials. Pure and applied mathematics. Wiley, New York, NY, USA, 1974. ISBN 0-471-72470-X;
978-0-471-72470-4. vi + 186 pp. LCCN QA404.5 .R58 1974. {58}

[Riv90] Theodore J. Rivlin. Chebyshev Polynomials: From Approximation Theory to Algebra and Number Theory. Pure and applied mathematics.
Wiley, New York, NY, USA, second edition, 1990. ISBN 0-471-62896-4; 978-0-471-62896-5. xiii + 249 pp. LCCN QA404.5 .R58 1990.
{58}

1030 Bibliography

[Rob82] C. S. Roberts. Implementing and testing new versions of a good, 48-bit, pseudo-random number generator. The
Bell System Technical Journal, 61(8):2053–2063, October 1982. CODEN BSTJAN. ISSN 0005-8580 (print), 2376-7154 (elec-
tronic). URL http://bstj.bell-labs.com/BSTJ/images/Vol61/bstj61-8-2053.pdf; http://www.alcatel-lucent.com/bstj/
vol61-1982/articles/bstj61-8-2053.pdf. DOI 10.1002/j.1538-7305.1982.tb03099.x. {162}

[Roc00] Daniel N. Rockmore. The FFT: An algorithm the whole family can use. Computing in Science and Engineer-
ing, 2(1):60–64, January/February 2000. CODEN CSENFA. ISSN 1521-9615 (print), 1558-366X (electronic). URL
http://dlib.computer.org/cs/books/cs2000/pdf/c1060.pdf; http://www.computer.org/cse/cs1999/c1060abs.htm; http:
//www.cs.dartmouth.edu/~rockmore/cse-fft.pdf. DOI 10.1109/5992.814659. [FFT = Fast Fourier Transform]. {969}

[Roc06] Daniel N. Rockmore. Stalking the Riemann Hypothesis: the Quest to Find the Hidden Law of Prime Numbers. Vintage Books, New York, NY,
USA, 2006. ISBN 0-375-72772-8 (paperback); 978-0-375-72772-6 (paperback). x + 292 pp. LCCN QA246 .R63 2006. {60, 303, 521, 579}

[ROO08a] Siegfried M. Rump, Takeshi Ogita, and Shin’ichi Oishi. Accurate floating-point summation. Part I: Faithful rounding. SIAM Journal on
Scientific Computing, 31(1):189–224, 2008. CODEN SJOCE3. ISSN 1064-8275 (print), 1095-7197 (electronic). DOI 10.1137/050645671.
{385}

[ROO08b] Siegfried M. Rump, Takeshi Ogita, and Shin’ichi Oishi. Accurate floating-point summation. Part II: Sign, K-fold faithful and rounding
to nearest. SIAM Journal on Scientific Computing, 31(2):1269–1302, 2008. CODEN SJOCE3. ISSN 1064-8275 (print), 1095-7197 (electronic).
DOI 10.1137/07068816X. {385}

[Ros11] Greg Rose. KISS: A bit too simple. Report, Qualcomm Inc., San Diego, CA, USA, April 18, 2011. URL http://eprint.iacr.org/2011/
007.pdf. {177}

[RS92] Andrew Mansfield Rockett and Peter Szüsz. Continued Fractions. World Scientific Publishing, Singapore, 1992. ISBN 981-02-1047-7;
978-981-02-1047-2. ix + 188 pp. LCCN QA295.R6 1992; QA295 .R6 1992. {19}

[RSN+01] Andrew Rukhin, Juan Soto, James Nechvatal, Miles Smid, Elaine Barker, Stefan Leigh, Mark Levenson, Mark Vangel, David
Banks, Alan Heckert, James Dray, and San Vo. A Statistical Test Suite For Random and Pseudorandom Number Generators
for Cryptographic Applications. National Institute for Standards and Technology, Gaithersburg, MD, USA, May 15, 2001.
162 pp. URL http://csrc.nist.gov/rng/rng2.html; http://csrc.nist.gov/rng/SP800-22b.pdf; http://csrc.nist.gov/rng/
sts-1.5.tar; http://csrc.nist.gov/rng/sts.data.tar; http://csrc.nist.gov/rng/StsGui.zip. NIST Special Publication
800-22. {200}

[Rud07] Peter Strom Rudman. How Mathematics Happened: the First 50,000 Years. Prometheus Books, Amherst, NY, USA, 2007. ISBN 1-59102-
477-3; 978-1-59102-477-4. 314 pp. LCCN QA22 .R86 2007. {59}

[Rum09] Siegfried M. Rump. Ultimately fast accurate summation. SIAM Journal on Scientific Computing, 31(5):3466–3502, 2009. CODEN SJOCE3.
ISSN 1064-8275 (print), 1095-7197 (electronic). DOI 10.1137/080738490. {385}

[Rum12] Siegfried M. Rump. Error estimation of floating-point summation and dot product. BIT Numerical Mathematics, 52(1):201–220, March
2012. CODEN BITTEL, NBITAB. ISSN 0006-3835 (print), 1572-9125 (electronic). URL http://www.springerlink.com/openurl.asp?
genre=article&issn=0006-3835&volume=52&issue=1&spage=201. DOI 10.1007/s10543-011-0342-4. {385}

[Rus78] Richard M. Russell. The Cray-1 computer system. Communications of the Association for Computing Machinery, 21(1):63–72, January
1978. CODEN CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic). DOI 10.1145/359327.359336. {952}

[Ryd74] Barbara G. Ryder. The PFORT verifier. Software — Practice and Experience, 4(4):359–377, October/December 1974. CODEN SPEXBL.
ISSN 0038-0644 (print), 1097-024X (electronic). DOI 10.1002/spe.4380040405. {823}

[Sab03] Karl Sabbagh. The Riemann Hypothesis: the Greatest Unsolved Problem in Mathematics. Farrar, Straus and Giroux, New York, NY, USA,
2003. ISBN 0-374-25007-3; 978-0-374-25007-2. viii + 340 pp. LCCN QA241 .S23 2003. Originally published in 2002 as Dr. Riemann’s
zeroes by Grove Atlantic, London, UK. {60, 303, 521, 579, 590}

[SAI+90] Herbert Schildt, American National Standards Institute, International Organization for Standardization, International Electrotechnical
Commission, and ISO/IEC JTC 1. The Annotated ANSI C Standard: American National Standard for Programming Languages C: ANSI/
ISO 9899-1990. Osborne/McGraw-Hill, Berkeley, CA, USA, 1990. ISBN 0-07-881952-0; 978-0-07-881952-0. xvi + 219 pp. LCCN
QA76.73.C15S356 1990. URL http://www.iso.ch/cate/d29237.html. {4}

[Sal76] Eugene Salamin. Computation of π [pi] using arithmetic-geometric mean. Mathematics of Computation, 30(135):565–570, July 1976.
CODEN MCMPAF. ISSN 0025-5718 (print), 1088-6842 (electronic). URL http://www.jstor.org/stable/2005327. DOI 10.2307/
2005327. {623}

[Sal94] Peter H. Salus. A Quarter Century of UNIX. Addison-Wesley, Reading, MA, USA, 1994. ISBN 0-201-54777-5; 978-0-201-54777-1. xii +
256 pp. LCCN QA76.76.O63 S342 1994. {956}

[San07a] Charles Edward Sandifer. The Early Mathematics of Leonhard Euler, volume 1 of Spectrum series; MAA tercentenary Euler celebration.
Mathematical Association of America, Washington, DC, USA, 2007. ISBN 0-88385-559-3; 978-0-88385-559-1. xix + 391 pp. LCCN
QA29.E8 S26 2007. {591}

[San07b] Charles Edward Sandifer. How Euler did it, volume 3 of The MAA tercentenary Euler celebration; Spectrum series. Mathematical Associa-
tion of America, Washington, DC, USA, 2007. ISBN 0-88385-563-1; 978-0-88385-563-8. xiv + 237 pp. LCCN QA29.E8. {591}

[SC08] Walter Schreppers and Annie Cuyt. Algorithm 871: A C/C++ precompiler for autogeneration of multiprecision programs. ACM
Transactions on Mathematical Software, 34(1):5:1–5:20, January 2008. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic).
DOI 10.1145/1322436.1322441. {410}

[Sch78] J. L. Schonfelder. Chebyshev expansions for the error and related functions. Mathematics of Computation, 32(144):1232–1240, October
1978. CODEN MCMPAF. ISSN 0025-5718 (print), 1088-6842 (electronic). URL http://www.jstor.org/stable/2006347. DOI 10.2307/
2006347. {600}

Bibliography 1031

[Sch79a] Bruce W. Schmeiser. Miscellanea: Approximations to the inverse cumulative normal function for use on hand calculators. Applied
Statistics, 28(2):175–176, 1979. CODEN APSTAG. ISSN 0035-9254 (print), 1467-9876 (electronic). URL http://www.jstor.org/stable/
2346737. DOI 10.2307/2346737. {618}

[Sch79b] Linus Schrage. A more portable Fortran random number generator. ACM Transactions on Mathematical Software, 5(2):132–138, June
1979. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic). DOI 10.1145/355826.355828. {174, 175, 214}

[Sch81] Norman L. Schryer. A test of a computer’s floating-point arithmetic unit. Technical Report Computer Science Technical Report 89,
AT&T Bell Laboratories, February 1981. 66 pp. URL http://plan9.bell-labs.com/cm/cs/cstr/89.ps.gz. {775}

[Sch96] Bruce Schneier. Applied Cryptography: Protocols, Algorithms, and Source Code in C. Wiley, New York, NY, USA, second edition, 1996. ISBN
0-471-12845-7 (cloth), 0-471-11709-9 (paper); 978-0-471-12845-8 (cloth), 978-0-471-11709-4 (paper). xxiii + 758 pp. LCCN QA76.9.A25
S35 1996. {207, 214, 591}

[Sch00] Bruce Schneier. Secrets and Lies: Digital Security in a Networked World. Wiley, New York, NY, USA, 2000. ISBN 0-471-25311-1; 978-0-471-
25311-2. xv + 412 pp. LCCN QA76.9.A25 S352 2000. {214, 591}

[Sch03] Bruce Schneier. Beyond Fear: Thinking Sensibly about Security in an Uncertain World. Copernicus Books, New York, NY, USA, 2003. ISBN
0-387-02620-7; 978-0-387-02620-6. 295 pp. LCCN HV6432 .S36 2003. {591}

[Sea05] Robert C. Seacord. Secure Coding in C and C++. Addison-Wesley, Reading, MA, USA, 2005. ISBN 0-321-33572-4 (paperback); 978-0-
321-33572-2 (paperback). xxiv + 341 pp. LCCN QA76.9.A25 S368 2005. URL http://www.cert.org/books/secure-coding/. {870}

[Sei00] Charles Seife. Zero: The Biography of a Dangerous Idea. Viking, New York, NY, USA, 2000. ISBN 0-670-88457-X, 0-14-029647-6 (paper-
back); 978-0-670-88457-5, 978-0-14-029647-1 (paperback). vi + 248 pp. LCCN QA141 .S45 2000. {59}

[Set13] Sachin Seth. Understanding Java Virtual Machine. Alpha Science International, Oxford, UK, 2013. ISBN 1-84265-815-8; 978-1-84265-815-4.
318 pp. LCCN QA76.73.J38 S437 2013. {viii, 979}

[Sev98a] Charles Severance. An interview with the old man of floating-point. Reminiscences elicited from William Kahan. World-Wide Web
document, February 1998. URL http://www.cs.berkeley.edu/~wkahan/ieee754status/754story.html. A shortened version appears
in [Sev98b]. {63}

[Sev98b] Charles Severance. Standards: IEEE 754: An interview with William Kahan. Computer, 31(3):114–115, March 1998. CODEN CPTRB4.
ISSN 0018-9162 (print), 1558-0814 (electronic). URL http://pdf.computer.org/co/books/co1998/pdf/r3114.pdf. DOI 10.1109/
MC.1998.10038. {63, 1031}

[SF16] Wafaa S. Sayed and Hossam A. H. Fahmy. What are the correct results for the special values of the operands of the power opera-
tion? ACM Transactions on Mathematical Software, 42(2):14:1–14:17, June 2016. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295
(electronic). DOI 10.1145/2809783. {413}

[Sha45] Claude E. Shannon. A mathematical theory of cryptography. Memorandum MM 45-110-02, Bell Laboratories, Murray Hill, NJ, USA,
September 1, 1945. 114 + 25 pp. Classified report. Superseded by [Sha49]. {969, 1031}

[Sha48a] Claude E. Shannon. A mathematical theory of communication. The Bell System Technical Journal, 27(3):379–423, July 1948. CODEN
BSTJAN. ISSN 0005-8580 (print), 2376-7154 (electronic). DOI 10.1002/j.1538-7305.1948.tb01338.x. From the first page: “If the base
2 is used the resulting units may be called binary digits, or more briefly, bits, a word suggested by J. W. Tukey.”. This is the first known
printed instance of the word ‘bit’ with the meaning of binary digit. {969}

[Sha48b] Claude E. Shannon. A mathematical theory of communication (continued). The Bell System Technical Journal, 27(4):623–656, October
1948. CODEN BSTJAN. ISSN 0005-8580 (print), 2376-7154 (electronic). DOI 10.1002/j.1538-7305.1948.tb00917.x. {969}

[Sha49] Claude E. Shannon. Communication theory of secrecy systems. The Bell System Technical Journal, 28(4):656–715, October 1949. CODEN
BSTJAN. ISSN 0005-8580 (print), 2376-7154 (electronic). URL http://bstj.bell-labs.com/BSTJ/images/Vol28/bstj28-4-656.pdf;
http://en.wikipedia.org/wiki/Communication_Theory_of_Secrecy_Systems; http://www.cs.ucla.edu/~jkong/research/
security/shannon1949.pdf. DOI 10.1002/j.1538-7305.1949.tb00928.x. A footnote on the initial page says: “The material in this
paper appeared in a confidential report, ‘A Mathematical Theory of Cryptography’, dated Sept. 1, 1945 ([Sha45]), which has now been
declassified.”. This paper is sometimes cited as the foundation of modern cryptography. {1031}

[Sho82] Haim Shore. Simple approximations for the inverse cumulative function, the density function and the loss integral of the normal
distribution. Applied Statistics, 31(2):108–114, 1982. CODEN APSTAG. ISSN 0035-9254 (print), 1467-9876 (electronic). URL http://
www.jstor.org/stable/2347972. DOI 10.2307/2347972. {618}

[Sid03] Avram Sidi. Practical Extrapolation Methods: Theory and Applications, volume 10 of Cambridge monographs on applied and computational
mathematics. Cambridge University Press, Cambridge, UK, 2003. ISBN 0-521-66159-5; 978-0-521-66159-1. xxii + 519 pp. LCCN QA281
.S555 2003. {589}

[Sig02] L. E. Sigler. Fibonacci’s Liber Abaci: A Translation into Modern English of Leonardo Pisano’s Book of Calculation. Sources and studies in the
history of mathematics and physical sciences. Springer-Verlag, Berlin, Germany / Heidelberg, Germany / London, UK / etc., 2002.
ISBN 0-387-95419-8; 978-0-387-95419-6. viii + 636 pp. LCCN QA32 .F4713 2002. DOI 10.1007/978-1-4613-0079-3. This historically
important book is the first English translation of the original Latin edition of 1202, on the 800th anniversary of the book that introduced
to Europe the Hindu numerals 0 through 9, the word zero, the notion of an algorithm, and the subject of algebra. {15, 59, 575}

[Sil06] Joseph H. Silverman. A Friendly Introduction to Number Theory. Pearson Prentice Hall, Upper Saddle River, NJ 07458, USA, third
edition, 2006. ISBN 0-13-186137-9; 978-0-13-186137-4. vii + 434 pp. LCCN QA241 .S497 2006. {186}

[Sin97] Simon Singh. Fermat’s Enigma: The Epic Quest to Solve the World’s Greatest Mathematical Problem. Walker and Company, New York, NY,
USA, 1997. ISBN 0-8027-1331-9; 978-0-8027-1331-5. xiii + 315 pp. LCCN QA244.S55 1997. {60}

1032 Bibliography

[Sin99] Simon Singh. The Code Book: the Evolution of Secrecy from Mary, Queen of Scots, to Quantum Cryptography. Doubleday, New York, NY,
USA, 1999. ISBN 0-385-49531-5; 978-0-385-49531-8. xiii + 402 pp. LCCN Z103 .S56 1999. {214, 591}

[SK99] Eric M. Schwarz and C. A. Krygowski. The S/390 G5 floating-point unit. IBM Journal of Research and Development, 43(5/6):707–721,
September/November 1999. CODEN IBMJAE. ISSN 0018-8646 (print), 2151-8556 (electronic). URL http://www.research.ibm.com/
journal/rd/435/schwarz.html. DOI 10.1147/rd.435.0707. {963}

[SKC09] Eric M. Schwarz, John S. Kapernick, and Michael F. Cowlishaw. Decimal floating-point support on the IBM System z10 processor.
IBM Journal of Research and Development, 53(1):4:1–4:10, January/February 2009. CODEN IBMJAE. ISSN 0018-8646 (print), 2151-8556
(electronic). URL http://www.research.ibm.com/journal/rd/531/schwarz.pdf. DOI 10.1147/JRD.2009.5388585. {927}

[Sko75] Ove Skovgaard. Remark on “Algorithm 236: Bessel functions of the first kind [S17]”. ACM Transactions on Mathematical Software, 1
(3):282–284, September 1975. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic). DOI 10.1145/355644.355653. See
[Gau64]. {693, 1011}

[SLF14] Guy L. Steele Jr., Doug Lea, and Christine H. Flood. Fast splittable pseudorandom number generators. ACM SIGPLAN Notices,
49(10):453–472, October 2014. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic). DOI 10.1145/
2714064.2660195. {1024}

[Slo07] Neil J. A. Sloane. The on-line encyclopedia of integer sequences. Web database, 2007. URL http://oeis.org/. See also [SP95]. {627,
629, 1033}

[SLZ02] Damien Stehlé, Vincent Lefèvre, and Paul Zimmermann. Worst cases and lattice reduction. Research report, LORIA/INRIA Lorraine,
Villers-lès-Nancy Cedex, France, October 15, 2002. 10 pp. URL http://www.loria.fr/~zimmerma/papers/wclr.ps.gz. {28}

[SLZ03] Damien Stehlé, Vincent Lefèvre, and Paul Zimmermann. Worst cases and lattice reduction. In Bajard and Schulte [BS03], pages 142–
147. ISBN 0-7695-1894-X; 978-0-7695-1894-7. ISSN 1063-6889. LCCN QA76.6 .S919 2003. URL http://www.dec.usc.es/arith16/. DOI
10.1109/ARITH.2003.1207672. {28}

[SLZ05] Damien Stehlé, Vincent Lefèvre, and Paul Zimmermann. Searching worst cases of a one-variable function using lattice reduction.
IEEE Transactions on Computers, 54(3):340–346, March 2005. CODEN ITCOB4. ISSN 0018-9340 (print), 1557-9956 (electronic). URL
http://csdl.computer.org/dl/trans/tc/2005/03/t0340.pdf. DOI 10.1109/TC.2005.55. {28}

[SM12] Mutsuo Saito and Makoto Matsumoto. A deviation of CURAND: Standard pseudorandom number generator in CUDA for GPGPU.
Slides presented at the Tenth International Conference on Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing,
February 2012. URL http://www.mcqmc2012.unsw.edu.au/slides/MCQMC2012_Matsumoto.pdf. {1024}

[SMDS11] John K. Salmon, Mark A. Moraes, Ron O. Dror, and David E. Shaw. Parallel random numbers: as easy as 1, 2, 3. In Scott Lathrop,
Jim Costa, and William Kramer, editors, SC’11: Proceedings of 2011 International Conference for High Performance Computing, Networking,
Storage and Analysis, Seattle, WA, November 12–18 2011, pages 16:1–16:12. ACM Press and IEEE Computer Society Press, New York,
NY 10036, USA and Silver Spring, MD, USA, 2011. ISBN 1-4503-0771-X; 978-1-4503-0771-0. LCCN QA76.5 .S96 2011. DOI 10.1145/
2063384.2063405. {1024}

[Smi58] David Eugene Smith. History of Mathematics. Dover histories, biographies and classics of mathematics and the physical sciences.
Dover, New York, NY, USA, 1958. ISBN 0-486-20430-8, 0-486-20429-4; 978-0-486-20430-7, 978-0-486-20429-1. xii + 725 pp. LCCN QA21
.S62. {59}

[Smi62] Robert L. Smith. Algorithm 116: Complex division. Communications of the Association for Computing Machinery, 5(8):435, August 1962.
CODEN CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic). DOI 10.1145/368637.368661. See also an improved version-with-
scaling of this algorithm [LDB+00]. {451–453, 455, 1021}

[Smi75] Alan Jay Smith. Comments on a paper by T. C. Chen and I. T. Ho. Communications of the Association for Computing Machinery, 18(8):463,
August 1975. CODEN CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic). DOI 10.1145/360933.360986. See [CH75]. {1003}

[Smi91] David M. Smith. Algorithm 693: A FORTRAN package for floating-point multiple-precision arithmetic. ACM Transactions
on Mathematical Software, 17(2):273–283, June 1991. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic). URL
http://www.acm.org/pubs/citations/journals/toms/1991-17-2/p273-smith/. DOI 10.1145/108556.108585. {827}

[Smi95] Roger Alan Smith. A continued-fraction analysis of trigonometric argument reduction. IEEE Transactions on Computers, 44(11):1348–
1351, November 1995. CODEN ITCOB4. ISSN 0018-9340 (print), 1557-9956 (electronic). DOI 10.1109/12.475133. {251, 253}

[Smi98] David M. Smith. Algorithm 786: Multiple-precision complex arithmetic and functions. ACM Transactions on Mathematical Software, 24
(4):359–367, December 1998. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic). DOI 10.1145/293686.293687. See
also [Bai95, Bre78b, Bre79, BHY80]. {476, 509, 827, 997, 1000, 1001}

[SN05] James E. Smith and Ravi Nair. Virtual Machines: Versatile Platforms for Systems and Processes. Morgan Kaufmann Publishers,
San Francisco, CA, USA, 2005. ISBN 1-55860-910-5; 978-1-55860-910-5. xxii + 638 pp. LCCN QA76.9.V5 S54 2005. URL
http://www.elsevierdirect.com/product.jsp?isbn=9781558609105. {viii}

[SO87] Jerome Spanier and Keith B. Oldham. An Atlas of Functions. Hemisphere Publishing Corporation, Washington, DC, USA, 1987. ISBN
0-89116-573-8, 3-540-17395-1; 978-0-89116-573-6, 978-3-540-17395-3. ix + 700 pp. LCCN QA331 .S685 1987. See also the second edition
[OMS09]. {521, 556, 558, 593, 657}

[Sor95] Jonathan Sorenson. An analysis of Lehmer’s Euclidean GCD algorithm. In A. H. M. Levelt, editor, ISSAC ’95: Proceedings of the
1995 International Symposium on Symbolic and Algebraic Computation: July 10–12, 1995, Montréal, Canada, ISSAC -PROCEEDINGS- 1995,
pages 254–258. ACM Press, New York, NY 10036, USA, 1995. ISBN 0-89791-699-9; 978-0-89791-699-8. LCCN QA 76.95 I59 1995. URL
http://www.acm.org:80/pubs/citations/proceedings/issac/220346/p254-sorenson/. DOI 10.1145/220346.220378. ACM order
number 505950. {184}

Bibliography 1033

[SP95] Neil J. A. Sloane and Simon Plouffe. The Encyclopedia of Integer Sequences. Academic Press, New York, NY, USA, 1995. ISBN 0-
12-558630-2; 978-0-12-558630-6. xiii + 587 pp. LCCN QA246.5 .S66 1995. URL http://oeis.org/. See also the more-recent online
resource [Slo07]. {524, 568, 572, 576, 1032}

[SR05] W. Richard Stevens and Stephen A. Rago. Advanced Programming in the Unix Environment. Addison-Wesley, Reading, MA, USA, second
edition, 2005. ISBN 0-201-43307-9 (hardcover); 978-0-201-43307-4 (hardcover). xxviii + 927 pp. LCCN QA76.76.O63 S754 2005. {91}

[SS66] A. H. Stroud and Don Secrest. Gaussian Quadrature Formulas. Prentice-Hall, Upper Saddle River, NJ, USA, 1966. ix + 374 pp. LCCN
QA299.4.G3 S7 1966. {560}

[SS94] Jeffrey Shallit and Jonathan Sorenson. Analysis of a left-shift binary GCD algorithm. Journal of Symbolic Computation, 17(6):473–486,
June 1994. CODEN JSYCEH. ISSN 0747-7171 (print), 1095-855X (electronic). URL http://www.sciencedirect.com/science/article/
pii/S0747717184710303. DOI 10.1006/jsco.1994.1030. {184}

[SSB01] Robert F. Stärk, Joachim Schmid, and Egon Börger. Java and the Java Virtual Machine: definition, verification, validation. Springer-Ver-
lag, Berlin, Germany / Heidelberg, Germany / London, UK / etc., 2001. ISBN 3-540-42088-6; 978-3-540-42088-0. x + 381 pp. LCCN
QA76.73.J38 S785 2001. DOI 10.1007/978-3-642-59495-3. Includes CD-ROM with the entire text of the book and numerous examples
and exercises. {viii, 979}

[Ste67] Josef Stein. Computational problems associated with Racah algebra. Journal of Computational Physics, 1(3):397–405, February 1967.
CODEN JCTPAH. ISSN 0021-9991 (print), 1090-2716 (electronic). URL http://www.sciencedirect.com/science/article/pii/
0021999167900472. DOI 10.1016/0021-9991(67)90047-2. {184}

[Ste74] Pat H. Sterbenz. Floating Point Computation. Prentice-Hall Series in Automatic Computation. Prentice-Hall, Upper Saddle River, NJ,
USA, 1974. ISBN 0-13-322495-3; 978-0-13-322495-5. xiv + 316 pp. LCCN QA76.8.I12 S771 1974. {948}

[Ste81a] David Stevenson. A proposed standard for binary floating-point arithmetic. Computer, 14(3):51–62, March 1981. CODEN CP-
TRB4. ISSN 0018-9162 (print), 1558-0814 (electronic). URL http://ieeexplore.ieee.org/document/1667284/. DOI 10.1109/
C-M.1981.220377. See [IEEE85a]. {63, 1016}

[Ste81b] David Stevenson. A Proposed Standard for Binary Floating-Point Arithmetic: Draft 8.0 of IEEE Task P754. IEEE Computer Society Press,
Silver Spring, MD, USA, 1981. 36 pp. See [IEEE85a]. {63, 1016}

[Ste84] R. G. Stewart. P854 working group completes radix-independent floating-point draft. IEEE Micro, 4(1):82–83, February 1984. CODEN
IEMIDZ. ISSN 0272-1732 (print), 1937-4143 (electronic). DOI 10.1109/MM.1984.291326. {104}

[Ste85] G. W. Stewart. A note on complex division. ACM Transactions on Mathematical Software, 11(3):238–241, September 1985. CODEN
ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic). URL http://www.acm.org/pubs/citations/journals/toms/1985-11-3/
p238-stewart/. DOI 10.1145/214408.214414. See corrigendum [Ste86] and the faster and more robust algorithm in [Pri04]. {452, 453,
455, 476, 1033}

[Ste86] G. W. Stewart. Corrigendum: “A note on complex division”. ACM Transactions on Mathematical Software, 12(3):285, September 1986.
CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic). DOI 10.1145/7921.356182. See [Ste85]. {1033}

[Ste90] Guy L. Steele Jr. Common Lisp — The Language. Digital Press, Bedford, MA, USA, second edition, 1990. ISBN 1-55558-041-6 (paper-
back), 1-55558-042-4 (hardcover), 0-13-152414-3 (Prentice-Hall); 978-1-55558-041-4 (paperback), 978-1-55558-042-1 (hardcover), 978-0-
13-152414-9 (Prentice-Hall). xxiii + 1029 pp. LCCN QA76.73.L23 S73 1990. URL http://www.cs.cmu.edu/Groups/AI/html/cltl/
cltl2.html. {341, 476}

[Ste93] Frank Stenger. Numerical Methods Based on Sinc and Analytic Functions, volume 20 of Springer Series in Computational Mathemat-
ics. Springer-Verlag, Berlin, Germany / Heidelberg, Germany / London, UK / etc., 1993. ISBN 0-387-94008-1 (New York), 3-
540-94008-1 (Berlin); 978-0-387-94008-3 (New York), 978-3-540-94008-1 (Berlin). xv + 565 pp. LCCN QA372 .S82 1993. DOI
10.1007/978-1-4612-2706-9. {733}

[Ste11] Guy L. Steele Jr. An interview with Frances E. Allen. Communications of the Association for Computing Machinery, 54(1):39–45, January
2011. CODEN CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic). DOI 10.1145/1866739.1866752. This article contains an
important half-century retrospective on the IBM 7030 Stretch project, and its impact on subsequent computer designs. {959}

[Sti80] George R. Stibitz. Early computers. In Nicholas Metropolis, Jack Howlett, and Gian-Carlo Rota, editors, A History of Computing in
the Twentieth Century: A Collection of Essays, pages 479–483. Academic Press, New York, NY, USA, 1980. ISBN 0-12-491650-3; 978-0-12-
491650-0. LCCN QA75.5 .I63 1976. DOI 10.1016/B978-0-12-491650-0.50034-4. Original versions of these papers were presented
at the International Research Conference on the History of Computing, held at the Los Alamos Scientific Laboratory, 10–15 June 1976.
{463}

[Sti02] John Stillwell. Mathematics and its History. Undergraduate texts in mathematics. Springer-Verlag, Berlin, Germany / Heidelberg,
Germany / London, UK / etc., second edition, 2002. ISBN 0-387-95336-1; 978-0-387-95336-6. xviii + 542 pp. LCCN QA21 .S84 2002.
DOI 10.1007/978-1-4684-9281-1. {59, 541}

[Str59] C. Strachey. On taking the square root of a complex number. The Computer Journal, 2(2):89, July 1959. CODEN CMPJA6. ISSN 0010-4620
(print), 1460-2067 (electronic). URL http://www3.oup.co.uk/computer_journal/hdb/Volume_02/Issue_02/020089.sgm.abs.html;
http://www3.oup.co.uk/computer_journal/hdb/Volume_02/Issue_02/tiff/89.tif. DOI 10.1093/comjnl/2.2.89. {481}

[Str68] Anthony J. Strecok. On the calculation of the inverse of the error function. Mathematics of Computation, 22(101):144–158, January 1968.
CODEN MCMPAF. ISSN 0025-5718 (print), 1088-6842 (electronic). URL http://www.jstor.org/stable/2004772. DOI 10.2307/
2004772. {600, 603}

1034 Bibliography

[Stu95] Students of Prof.William M.Kahan. UCBTEST: a suite of programs for testing certain difficult cases of IEEE 754 floating-point arith-
metic. World-Wide Web document, March 12, 1995. URL http://www.netlib.org/fp/ucbtest.tgz. From the source code, students
and authors credited are (in alphabetical order) M. Alemi, D. Feenberg, Warren Ferguson, David G. Hough, David Gay, William J.
Cody, Jr., R. Karkinski, Zhi-Shun Alex Liu, S. Ma, Stephen Moshier, M. Mueller, K. C. Ng, Douglas M. Priest, T. Quarles, T. Sumner, G.
Taylor, B. Toy, William Waite, and Brian A. Wichmann. {774}

[Suz02] Jeff Suzuki. A History of Mathematics. Prentice-Hall, Upper Saddle River, NJ, USA, 2002. ISBN 0-13-019074-8; 978-0-13-019074-1. xiii +
815 pp. LCCN QA21 .S975 2002. {59}

[SvG12] Stefan Siegel and Jürgen Wolff von Gudenberg. A long accumulator like a carry-save adder. Computing, 94(2–4):203–213, March
2012. CODEN CMPTA2. ISSN 0010-485X (print), 1436-5057 (electronic). URL http://www.springerlink.com/openurl.asp?genre=
article&issn=0010-485X&volume=94&issue=2&spage=203. DOI 10.1007/s00607-011-0164-x. {385}

[SW90] Guy L. Steele Jr. and Jon L. White. How to print floating-point numbers accurately. ACM SIGPLAN Notices, 25(6):112–126, June
1990. CODEN SINODQ. ISBN 0-89791-364-7; 978-0-89791-364-5. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).
URL http://www.acm.org:80/pubs/citations/proceedings/pldi/93542/p112-steele/. DOI 10.1145/93548.93559. See also input
algorithm in [Cli90, Cli04], and a faster output algorithm in [BD96] and [Knu90], IBM S/360 algorithms in [ABC+99] for both IEEE
754 and S/360 formats, and a twenty-year retrospective in [SW04]. In electronic mail dated Wed, 27 Jun 1990 11:55:36 EDT, Guy Steele
reported that an intrepid pre-SIGPLAN 90 conference implementation of what is stated in the paper revealed 3 mistakes:

1. Table 5 (page 124):
insert k <- 0 after assertion, and also delete k <- 0 from Table 6.

2. Table 9 (page 125):
for -1:USER!("");
substitute -1:USER!("0");

and delete the comment.

3. Table 10 (page 125):
for fill(-k, "0")
substitute fill(-k-1, "0")

{895, 896, 995, 998, 1004, 1020, 1034}
[SW95] Richard L. Sites and Richard L. Witek. Alpha AXP Architecture Reference Manual. Digital Press, Bedford, MA, USA, second edition,

1995. ISBN 1-55558-145-5; 978-1-55558-145-9. LCCN QA76.9.A73A46 1995. {107}
[SW04] Guy L. Steele Jr. and Jon L. White. Retrospective: How to print floating-point numbers accurately. ACM SIGPLAN Notices, 39(4):372–

389, April 2004. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic). DOI 10.1145/989393.989431.
Best of PLDI 1979–1999. Reprint of, and retrospective on, [SW90]. {895, 995, 998, 1004, 1020, 1034}

[SW05] Alicja Smoktunowicz and Iwona Wróbel. On improving the accuracy of Horner’s and Goertzel’s algorithms. Numerical Algorithms, 38
(4):243–258, April 2005. CODEN NUALEG. ISSN 1017-1398 (print), 1572-9265 (electronic). DOI 10.1007/s11075-004-4570-4. {89}

[Swa90a] Earl E. Swartzlander, Jr. Computer Arithmetic, volume 1. IEEE Computer Society Press, Silver Spring, MD, USA, 1990. ISBN 0-8186-
8931-5; 978-0-8186-8931-4. xiii + 378 pp. LCCN QA76.6 .C633 1990. This is part of a two-volume collection of influential papers on the
design of computer arithmetic. See also [Swa90b]. {104, 978, 1034}

[Swa90b] Earl E. Swartzlander, Jr. Computer Arithmetic, volume 2. IEEE Computer Society Press, Silver Spring, MD, USA, 1990. ISBN 0-8186-
8945-5; 978-0-8186-8945-1. ix + 396 pp. LCCN QA76.9 .C62C66 1990. This is part of a two-volume collection of influential papers on
the design of computer arithmetic. See also [Swa90a]. {104, 966, 978, 1034}

[Swe65] D. W. Sweeney. An analysis of floating-point addition. IBM Systems Journal, 4(1):31–42, 1965. CODEN IBMSA7. ISSN 0018-8670.
URL http://www.research.ibm.com/journal/sj/041/ibmsjIVRID.pdf. DOI 10.1147/sj.41.0031. This important paper describes
the analysis that led to the adoption of a hexadecimal base for floating-point arithmetic in IBM System/360, an unfortunate decision
that numerical analysts later came to deplore. Reprinted in [Swa90a, pp. 317–328]. {963}

[SZ49] Herbert E. Salzer and Ruth Zucker. Tables of the zeros and weight factors of the first fifteen Laguerre polynomials. Bulletin of the
American Mathematical Society, 55(10):1004–1012, October 1949. CODEN BAMOAD. ISSN 0002-9904 (print), 1936-881x (electronic).
URL http://projecteuclid.org/euclid.bams/1183514167. {560}

[SZ04] Damien Stehlé and Paul Zimmermann. Gal’s accurate tables method revisited. World-Wide Web document, 2004. URL
http://www.loria.fr/~stehle/downloads/2x-double.txt; http://www.loria.fr/~stehle/downloads/sincos-double.txt;
http://www.loria.fr/~stehle/IMPROVEDGAL.html. {28}

[SZ05] Damien Stehlé and Paul Zimmermann. Gal’s accurate tables method revisited. In Montuschi and Schwarz [MS05], pages 275–264.
ISBN 0-7695-2366-8; 978-0-7695-2366-8. LCCN QA76.9.C62 .S95 2005. URL http://arith17.polito.it/final/paper-152.pdf. DOI
10.1109/ARITH.2005.24. {28}

[Szp03] George Szpiro, editor. Kepler’s Conjecture: How Some of the Greatest Minds in History Helped Solve One of the Oldest Math Problems in the
World. Wiley, New York, NY, USA, 2003. ISBN 0-471-08601-0; 978-0-471-08601-7. viii + 296 pp. LCCN QA93 .S97 2003. {60}

[Szp07] George Szpiro. Poincaré’s Prize: The Hundred-Year Quest to Solve One of Math’s Greatest Puzzles. Dutton, New York, NY, USA, 2007. ISBN
0-525-95024-9; 978-0-525-95024-0. ix + 309 pp. LCCN QA43 .S985 2007. {60}

[Tan89] Ping Tak Peter Tang. Table-driven implementation of the exponential function in IEEE floating-point arithmetic. ACM Transactions
on Mathematical Software, 15(2):144–157, June 1989. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic). DOI 10.1145/
63522.214389. {271}

Bibliography 1035

[Tan06] Hui-Chin Tang. An exhaustive analysis of two-term multiple recursive random number generators with efficient multipliers. Journal of
Computational and Applied Mathematics, 192(2):411–416, August 2006. CODEN JCAMDI. ISSN 0377-0427 (print), 1879-1778 (electronic).
URL http://dl.acm.org/citation.cfm?id=1148032.1148047. DOI 10.1016/j.cam.2005.06.001. {170, 176}

[Tau63] A. H. Taub, editor. John von Neumann: Collected Works. Volume V: Design of Computers, Theory of Automata and Numerical Analysis.
Pergamon, New York, NY, USA, 1963. ix + 784 pp. {1036}

[TB86] I. J. Thompson and A. R. Barnett. Coulomb and Bessel functions of complex arguments and order. Journal of Computational Physics, 64
(2):490–509, June 1986. CODEN JCTPAH. ISSN 0021-9991 (print), 1090-2716 (electronic). DOI 10.1016/0021-9991(86)90046-X. {18}

[TC11] Hui-Chin Tang and Hwapeng Chang. An exhaustive search for good 64-bit linear congruential random number generators
with restricted multiplier. Computer Physics Communications, 182(11):2326–2330, November 2011. CODEN CPHCBZ. ISSN
0010-4655 (print), 1879-2944 (electronic). URL http://www.sciencedirect.com/science/article/pii/S0010465511002360. DOI
10.1016/j.cpc.2011.06.013. {170}

[Tem96] Nico M. Temme. Special Functions: An Introduction to the Classical Functions of Mathematical Physics. Wiley, New York, NY, USA, 1996.
ISBN 0-471-11313-1; 978-0-471-11313-3. xii + 374 pp. LCCN QC20.7.F87 T46 1996. {521, 627, 827}

[Ten06] M. B. W. Tent. The Prince of Mathematics: Carl Friedrich Gauss. A. K. Peters, Wellesley, MA, USA, 2006. ISBN 1-56881-261-2; 978-1-56881-
261-8. xviii + 245 pp. LCCN QA29.G3 T46 2006. {59}

[Ten09] M. B. W. Tent. Leonhard Euler and the Bernoullis: Mathematicians from Basel. A. K. Peters, Wellesley, MA, USA, 2009. ISBN 1-56881-464-X;
978-1-56881-464-3. xix + 276 pp. LCCN QA28 .T46 2009. {591}

[TGNSC11] Charles Tsen, Sonia Gonzalez-Navarro, Michael J. Schulte, and Katherine Compton. Hardware designs for binary integer decimal-
based rounding. IEEE Transactions on Computers, 60(5):614–627, May 2011. CODEN ITCOB4. ISSN 0018-9340 (print), 1557-9956
(electronic). DOI 10.1109/TC.2010.268. {929}

[Tha63] Henry C. Thacher, Jr. Certification of Algorithm 147 [S14]: PSIF. Communications of the Association for Computing Machinery, 6(4):168,
April 1963. CODEN CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic). DOI 10.1145/366349.366537. See [Ami62, Par69].
{996, 1027}

[Tho70] James E. Thornton. Design of a Computer: the Control Data 6600. Scott, Foresman, Glenview, IL, USA, 1970. 181 pp. LCCN TK7889.C6
T5 1970; TK7889.C2 T5. {951}

[Tho80] James E. Thornton. The CDC 6600 project. Annals of the History of Computing, 2(4):338–348, October/December 1980. CODEN AH-
COE5. ISSN 0164-1239. URL http://dlib.computer.org/an/books/an1980/pdf/a4338.pdf. DOI 10.1109/MAHC.1980.10044. {949,
951}

[Tho97] William J. Thompson. Atlas for Computing Mathematical Functions: an Illustrated Guide for Practitioners with Programs in Fortran 90 and
Mathematica. Wiley, New York, NY, USA, 1997. ISBN 0-471-18171-4 (cloth); 978-0-471-18171-2 (cloth). xiv + 888 pp. LCCN QA331.T386
1997. Includes CD-ROM. {520, 521, 556, 558, 567, 583, 593, 595, 644, 657, 693, 827}

[TLC93] Shu Tezuka, Pierre L’Ecuyer, and Raymond Couture. On the lattice structure of the add-with-carry and subtract-with-borrow random
number generators. ACM Transactions on Modeling and Computer Simulation, 3(4):315–331, October 1993. CODEN ATMCEZ. ISSN
1049-3301 (print), 1558-1195 (electronic). DOI 10.1145/159737.159749. See remark in [EH95, page 248], and [MZ91] for the original
work analyzed in this paper. {177, 1026}

[TS69] Adilson Tadeu de Medeiros and Georges Schwachheim. Algorithm 349: Polygamma functions with arbitrary precision. Communi-
cations of the Association for Computing Machinery, 12(4):213–214, April 1969. CODEN CACMA2. ISSN 0001-0782 (print), 1557-7317
(electronic). DOI 10.1145/362912.362928. See certification [Lew75]. {521, 552, 555, 558, 1021}

[TSGN07] Charles Tsen, Michael J. Schulte, and Sonia Gonzalez-Navarro. Hardware design of a binary integer decimal-based IEEE P754 round-
ing unit. In IEEE, editor, ASAP 07: conference proceedings: IEEE 18th International Conference on Application-Specific Systems, Architectures,
and Processors: Montréal, Canada: July 8–11, 2007, pages 115–121. IEEE Computer Society Press, Silver Spring, MD, USA, 2007. ISBN
1-4244-1027-4; 978-1-4244-1027-9. LCCN TK7874.6 .I57a 2007. URL http://ieeexplore.ieee.org/servlet/opac?punumber=4429947.
DOI 10.1109/ASAP.2007.4429967. {929}

[TSSK07] Son Dao Trong, Martin Schmookler, Eric M. Schwarz, and Michael Kroener. P6 binary floating-point unit. In Kornerup and Muller
[KM07], pages 77–86. ISBN 0-7695-2854-6; 978-0-7695-2854-0. ISSN 1063-6889. LCCN QA76.9.C62. URL http://www.lirmm.fr/
arith18/. DOI 10.1109/ARITH.2007.26. The P6 processor is the sixth generation of the IBM POWER and PowerPC architecture.
{927}

[Tuk58] John W. Tukey. The teaching of concrete mathematics. American Mathematical Monthly, 65(1):1–9, January 1958. CODEN AMMYAE.
ISSN 0002-9890 (print), 1930-0972 (electronic). DOI 10.2307/2310294. This article is believed to contain the first published instance of
the word ‘software’ in the meaning of instructions to a computer: “Today the ‘software’ comprising the carefully planned interpretive
routines, compilers, and other aspects of automative programming are at least as important to the modern electronic calculator as its
‘hardware’ of tubes, transistors, wires, tapes and the like.” [page 2]. {969}

[Tur87] Peter R. Turner. The distribution of l.s.d. and its implications for computer design. The Mathematical Gazette, 71(455):26–31, March
1987. CODEN MAGAAS. ISSN 0025-5572 (print), 2056-6328 (electronic). DOI 10.2307/3616283. [l.s.d. = least significant digits]. The
topic is variously known as Benford’s Law, the Law of Anomalous Numbers, and Zipf’s Law. {964}

[TW99] K. V. Tretiakov and K. W. Wojciechowski. Efficient Monte Carlo simulations using a shuffled nested Weyl sequence random number
generator. Physical Review E (Statistical physics, plasmas, fluids, and related interdisciplinary topics), 60(6):7626–7628, December 1999.
CODEN PLEEE8. ISSN 1539-3755 (print), 1550-2376 (electronic). URL http://link.aps.org/doi/10.1103/PhysRevE.60.7626. DOI
10.1103/PhysRevE.60.7626. {177}

1036 Bibliography

[Ueb97] Christoph W. Ueberhuber. Numerical Computation: Methods, Software, and Analysis. Springer-Verlag, Berlin, Germany / Heidelberg,
Germany / London, UK / etc., 1997. ISBN 3-540-62058-3 (vol. 1: softcover), 3-540-62057-5 (vol. 2: softcover); 978-3-540-62058-7
(vol. 1: softcover), 978-3-540-62057-0 (vol. 2: softcover). xvi + 474 (vol. 1), xvi + 495 (vol. 2) pp. LCCN QA297 .U2413 1997. DOI
10.1007/978-3-642-59118-1. {627}

[vA87] Walter van Assche. Asymptotics for Orthogonal Polynomials, volume 1265 of Lecture Notes in Mathematics. Springer-Verlag, Berlin,
Germany / Heidelberg, Germany / London, UK / etc., 1987. ISBN 0-387-18023-0 (paperback); 978-0-387-18023-6 (paperback). vi +
201 pp. LCCN QA3 .L28 no. 1265; QA404.5. DOI 10.1007/BFb0081880. {59}

[Van92] Charles F. Van Loan. Computational Frameworks for the Fast Fourier Transform. SIAM (Society for Industrial and Applied Mathematics),
Philadelphia, PA, USA, 1992. ISBN 0-89871-285-8; 978-0-89871-285-8. xiii + 273 pp. LCCN QA403.5 .V35 1992. {299}

[VC06] Joris Van Deun and Ronald Cools. Algorithm 858: Computing infinite range integrals of an arbitrary product of Bessel functions.
ACM Transactions on Mathematical Software, 32(4):580–596, December 2006. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295
(electronic). DOI 10.1145/1186785.1186790. {693}

[VCV01a] Brigitte Verdonk, Annie Cuyt, and Dennis Verschaeren. A precision- and range-independent tool for testing floating-point arithmetic I:
Basic operations, square root, and remainder. ACM Transactions on Mathematical Software, 27(1):92–118, March 2001. CODEN ACMSCU.
ISSN 0098-3500 (print), 1557-7295 (electronic). URL http://www.win.ua.ac.be/~cant/ieeecc754.html. DOI 10.1145/382043.382404.
{776, 827}

[VCV01b] Brigitte Verdonk, Annie Cuyt, and Dennis Verschaeren. A precision- and range-independent tool for testing floating-point arithmetic
II: Conversions. ACM Transactions on Mathematical Software, 27(1):119–140, March 2001. CODEN ACMSCU. ISSN 0098-3500 (print),
1557-7295 (electronic). URL http://www.win.ua.ac.be/~cant/ieeecc754.html. DOI 10.1145/382043.382405. {776, 827}

[Vig16] Sebastiano Vigna. An experimental exploration of Marsaglia’s xorshift generators, scrambled. ACM Transactions on Mathematical
Software, 42(4):30:1–30:23, July 2016. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic). URL http://dl.acm.org/
citation.cfm?id=2845077. DOI 10.1145/2845077. {1001, 1024, 1028}

[vN51] John von Neumann. 13. Various techniques used in connection with random digits. In Alston S. Householder, George E. Forsythe,
and Hallett-Hunt Germond, editors, Monte Carlo method. Proceedings of a Symposium Held June 29, 30 and July 1, 1949 in Los Angeles, Cal-
ifornia, volume 12 of Applied Mathematics Series / National Bureau of Standards, pages 36–38. United States Government Printing Office,
Washington, DC, USA, 1951. URL http://dornsifecms.usc.edu/assets/sites/520/docs/VonNeumann-ams12p36-38.pdf. Summary
written by G. E. Forsythe. Reprinted in [Tau63, Paper 23, pp. 768–770]. {190}

[VS04] P. W. J. Van Eetvelt and S. J. Shepherd. Accurate, computable approximations to the error function. Mathematics Today, 40(1):25–27,
February 2004. ISSN 1361-2042. {600, 606}

[Wal96] P. L. Walker. Elliptic Functions: a Constructive Approach. Wiley, New York, NY, USA, 1996. ISBN 0-471-96531-6; 978-0-471-96531-2. xv +
214 pp. LCCN QA343 .W3 1996. {619}

[Wal00] H. S. Wall. Analytic Theory of Continued Fractions. American Mathematical Society, Providence, RI, USA, 2000. ISBN 0-8218-2106-7;
978-0-8218-2106-0. xiii + 433 pp. LCCN QA295 .W28 2000. This is a reprint of the definitive, and widely cited, treatise first published
in 1948. {19}

[War03] Henry S. Warren. Hacker’s Delight. Addison-Wesley, Reading, MA, USA, 2003. ISBN 0-201-91465-4; 978-0-201-91465-8. xiv + 306 pp.
LCCN QA76.6 .W375 2003. URL http://www.hackersdelight.org/. While this book does not specifically address computational
aspects of floating-point arithmetic (apart from the nine-page Chapter 15), it has extensive coverage of, and clever algorithms for,
integer arithmetic operations that are fundamental for implementing hardware floating-arithmetic and software multiple-precision
arithmetic. The book’s Web site contains supplementary material in preparation for the second edition [War13]. {166, 176, 978}

[War13] Henry S. Warren. Hacker’s Delight. Addison-Wesley, Reading, MA, USA, second edition, 2013. ISBN 0-321-84268-5 (hardcover); 978-
0-321-84268-8 (hardcover). xvi + 494 pp. LCCN QA76.6 .W375 2013. URL http://www.pearsonhighered.com/educator/product/
Hackers-Delight/9780321842688.page. {166, 176, 978, 1036}

[Wat95] G. N. Watson. A Treatise on the Theory of Bessel Functions. Cambridge mathematical library. Cambridge University Press, Cambridge,
UK, second edition, 1995. ISBN 0-521-48391-3 (paperback), 0-521-06743-X (hardcover); 978-0-521-48391-9 (paperback), 978-0-521-
06743-0 (hardcover). vi + 804 pp. LCCN QA408 .W2 1995. {693}

[WE12] Dong Wang and Miloš D. Ercegovac. A radix-16 combined complex division/square root unit with operand prescaling. IEEE
Transactions on Computers, 61(9):1243–1255, September 2012. CODEN ITCOB4. ISSN 0018-9340 (print), 1557-9956 (electronic). DOI
10.1109/TC.2011.143. {463}

[Web08] Charles F. Webb. IBM z10: The next-generation mainframe microprocessor. IEEE Micro, 28(2):19–29, March/April 2008. CODEN
IEMIDZ. ISSN 0272-1732 (print), 1937-4143 (electronic). DOI 10.1109/MM.2008.26. {927}

[Wei99] Eric W. Weisstein. The CRC Concise Encyclopedia of Mathematics. CRC Press, Boca Raton, FL, USA, 1999. ISBN 0-8493-9640-9; 978-0-
8493-9640-3. 1969 pp. LCCN QA5.W45 1999. URL http://mathworld.wolfram.com/. {619}

[Wei09] Eric W. Weisstein. CRC Encyclopedia of Mathematics. CRC Press/Taylor and Francis, Boca Raton, FL, third edition, 2009. ISBN 1-4200-
7221-8; 978-1-4200-7221-1. 4307 pp. LCCN QA5 .W45 2009. Three hardcover volumes. {58, 569, 572, 576, 579, 587}

[WET+10] Liang-Kai Wang, Mark A. Erle, Charles Tsen, Eric M. Schwarz, and Michael J. Schulte. A survey of hardware designs for decimal arith-
metic. IBM Journal of Research and Development, 54(2):8:1–8:15, 2010. CODEN IBMJAE. ISSN 0018-8646 (print), 2151-8556 (electronic).
URL http://www.research.ibm.com/journal/abstracts/rd/542/wang-schwarz.html. DOI 10.1147/JRD.2010.2040930. {927}

[WF82] Shlomo Waser and Michael J. Flynn. Introduction to Arithmetic for Digital Systems Designers. Holt, Reinhart, and Winston, New York,
NY, USA, 1982. ISBN 0-03-060571-7; 978-0-03-060571-0. xvii + 308 pp. LCCN TK7895 A65 W37 1982. This book went to press while
the IEEE 754 Floating-Point Standard was still in development; consequently, some of the material on that system was invalidated by
the final Standard (1985) [IEEE85a]. {1016}

Bibliography 1037

[WG89] Z. X. Wang and D. R. Guo. Special Functions. World Scientific Publishing, Singapore, 1989. ISBN 9971-5-0659-9; 978-9971-5-0659-9. xiii
+ 422 pp. LCCN QA331 .W296 1989. {521, 827}

[WH82] Brian A. Wichmann and Ian David Hill. Statistical algorithms: Algorithm AS 183: An efficient and portable pseudo-random number
generator. Applied Statistics, 31(2):188–190, June 1982. CODEN APSTAG. ISSN 0035-9254 (print), 1467-9876 (electronic). URL http:
//lib.stat.cmu.edu/apstat/183. DOI 10.2307/2347988. See correction [WH84] and remarks [McL85, Zei86]. Reprinted in [GH85,
pages 238–242]. See also the extended 32-bit generator in [WH06]. {177, 1024, 1037}

[WH84] Brian A. Wichmann and Ian David Hill. Statistical algorithms: Correction: Algorithm AS 183: An efficient and portable pseudo-
random number generator. Applied Statistics, 33(1):123, 1984. CODEN APSTAG. ISSN 0035-9254 (print), 1467-9876 (electronic). URL
http://www.jstor.org/stable/2347676. DOI 10.2307/2347676. {1037}

[WH06] Brian A. Wichmann and Ian David Hill. Generating good pseudo-random numbers. Computational Statistics & Data Anal-
ysis, 51(3):1614–1622, December 1, 2006. CODEN CSDADW. ISSN 0167-9473 (print), 1872-7352 (electronic). URL http://
www.sciencedirect.com/science/article/pii/S0167947306001836. DOI 10.1016/j.csda.2006.05.019. This work extends a widely
used generator [WH82] developed for 16-bit arithmetic to a new four-part combination generator for 32-bit arithmetic with a period
of 2121 ≈ 1036. {177, 1037}

[Wic88] Michael J. Wichura. Statistical algorithms: Algorithm AS 241: The percentage points of the normal distribution. Applied Statistics,
37(3):477–484, September 1988. CODEN APSTAG. ISSN 0035-9254 (print), 1467-9876 (electronic). URL http://lib.stat.cmu.edu/
apstat/241. DOI 10.2307/2347330. {600}

[Wic92] Brian A. Wichmann. Surveyor’s Forum: “What every computer scientist should know about floating-point arithmetic”. ACM Comput-
ing Surveys, 24(3):319, September 1992. CODEN CMSVAN. ISSN 0360-0300 (print), 1557-7341 (electronic). See [Gol91a, Gol91b, Dun92].
{1008, 1013}

[Wie99] Thomas Wieder. Algorithm 794: Numerical Hankel transform by the Fortran program HANKEL. ACM Transactions on Mathematical
Software, 25(2):240–250, June 1999. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic). URL http://www.netlib.org/
toms/794. DOI 10.1145/317275.317284. {693}

[Wil02] Robin J. Wilson. Four Colors Suffice: How the Map Problem Was Solved. Princeton University Press, Princeton, NJ, USA, 2002. ISBN
0-691-11533-8; 978-0-691-11533-7. xii + 262 pp. LCCN QA612.19 .W56 2002. {60}

[Wir71a] Niklaus Wirth. The design of a PASCAL compiler. Software — Practice and Experience, 1(4):309–333, October/December 1971. CODEN
SPEXBL. ISSN 0038-0644 (print), 1097-024X (electronic). DOI 10.1002/spe.4380010403. {949}

[Wir71b] Niklaus Wirth. The programming language Pascal. Acta Informatica, 1(1):35–63, January 1971. CODEN AINFA2. ISSN 0001-5903
(print), 1432-0525 (electronic). URL http://link.springer.com/article/10.1007/BF00264291. DOI 10.1007/BF00264291. {949}

[Wir76] Niklaus Wirth. Algorithms + Data Structures = Programs. Prentice-Hall Series in Automatic Computation. Prentice-Hall, Upper Saddle
River, NJ, USA, 1976. ISBN 0-13-022418-9; 978-0-13-022418-7. xvii + 366 pp. LCCN QA76.6 .W561. {3}

[WN95] David J. Wheeler and Roger M. Needham. TEA, a tiny encryption algorithm. Lecture Notes in Computer Science, 1008:363–366, 1995.
CODEN LNCSD9. ISSN 0302-9743 (print), 1611-3349 (electronic). URL http://www.springerlink.com/content/p16916lx735m2562/.
DOI 10.1007/3-540-60590-8_29. {178, 1026, 1037}

[WN98] David J. Wheeler and Roger M. Needham. Correction to XTEA. Report, Cambridge University, Cambridge, UK, October 1998. URL
http://www.movable-type.co.uk/scripts/xxtea.pdf. See also original TEA [WN95] and first extension XTEA [NW97]. {178, 1026}

[WSH77] J. Welsh, W. J. Sneeringer, and C. A. R. Hoare. Ambiguities and insecurities in Pascal. Software — Practice and Experience, 7(6):685–696,
November/December 1977. CODEN SPEXBL. ISSN 0038-0644 (print), 1097-024X (electronic). DOI 10.1002/spe.4380070604. See also
[Ker81, Ker84]. {989, 1018}

[Wu97] Pei-Chi Wu. Multiplicative, congruential random-number generators with multiplier ±2k1 ± 2k2 and modulus 2p − 1. ACM Transactions
on Mathematical Software, 23(2):255–265, June 1997. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic). URL http://
www.acm.org/pubs/citations/journals/toms/1997-23-2/p255-wu/. DOI 10.1145/264029.264056. {170}

[YM98] Robyn V. Young and Zoran Minderović, editors. Notable Mathematicians: From Ancient Times to the Present. Gale, Detroit, MI, USA,
1998. ISBN 0-7876-3071-3; 978-0-7876-3071-3. xxi + 612 pp. LCCN QA28 .N66 1998. {59}

[Ypm95] Tjalling J. Ypma. Historical development of the Newton–Raphson method. SIAM Review, 37(4):531–551, December 1995. CODEN
SIREAD. ISSN 0036-1445 (print), 1095-7200 (electronic). URL http://epubs.siam.org/23425.htm; http://link.aip.org/link/
?SIR/37/531/1. DOI 10.1137/1037125. {8}

[ZC70] D. G. Zill and Bille Chandler Carlson. Symmetric elliptic integrals of the third kind. Mathematics of Computation, 24(109):199–214,
January 1970. CODEN MCMPAF. ISSN 0025-5718 (print), 1088-6842 (electronic). URL http://www.jstor.org/stable/2004890. DOI
10.2307/2004890. {646, 651}

[Zei86] H. Zeisel. Statistical algorithms: Remark ASR 61: a remark on Algorithm AS 183. an efficient and portable pseudo-random
number generator. Applied Statistics, 35(1):89, 1986. CODEN APSTAG. ISSN 0035-9254 (print), 1467-9876 (electronic). URL
http://www.jstor.org/stable/2347876. See [WH82, McL85]. {1024, 1037}

[ZH10] Yong-Kang Zhu and Wayne B. Hayes. Algorithm 908: Online exact summation of floating-point streams. ACM Transac-
tions on Mathematical Software, 37(3):37:1–37:13, 2010. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic). DOI
10.1145/1824801.1824815. {385}

[Zim06] Paul Zimmermann. Worst cases for sin(BIG). World-Wide Web slides, November 2, 2006. URL http://www.loria.fr/~zimmerma/
talks/sinbig.pdf. {28}

1038 Bibliography

[Ziv91] Abraham Ziv. Fast evaluation of elementary mathematical functions with correctly rounded last bit. ACM Transactions on
Mathematical Software, 17(3):410–423, September 1991. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic). URL
http://www.acm.org/pubs/citations/journals/toms/1991-17-3/p410-ziv/. DOI 10.1145/114697.116813. {827}

[ZJ96] Shanjie Zhang and Jianming Jin. Computation of Special Functions. Wiley, New York, NY, USA, 1996. ISBN 0-471-11963-6; 978-0-471-
11963-0. xxvi + 717 pp. LCCN QA351.C45 1996. {521, 556, 567, 593, 644, 657, 693, 827}

[ZM08] Stephen Thomas Ziliak and Deirdre N. McCloskey. The Cult of Statistical Significance: How the Standard Error Costs Us Jobs, Justice, and
Lives. Economics, cognition, and society. University of Michigan Press, Ann Arbor, MI, USA, 2008. ISBN 0-472-07007-X (cloth), 0-
472-05007-9 (paperback); 978-0-472-07007-7 (cloth), 978-0-472-05007-9 (paperback). xxiii + 321 pp. LCCN HB137 .Z55 2008. This book
about the use and abuse of statistics, and the historical background of the t-test, is recommended for all producers and consumers of
statistical analyses. {196}

[ZOHR01] Abraham Ziv, Moshe Olshansky, Ealan Henis, and Anna Reitman. Accurate portable mathematical library (IBM APMathLib).
World-Wide Web document, December 20, 2001. URL ftp://www-126.ibm.com/pub/mathlib/mathlib12.20.2001.tar.gz; http:
//oss.software.ibm.com/mathlib/. {827}

[ZRP05] Paul Zimmermann, Nathalie Revol, and Patrick Pélissier. mpcheck: a program to test the accuracy of elementary functions. World-
Wide Web software archive, 2005. URL http://www.loria.fr/~zimmerma/free/mpcheck-1.1.0.tar.gz; http://www.loria.fr/
~zimmerma/mpcheck/. {825}

[Zwi92] Daniel Zwillinger. Handbook of Integration. Jones and Bartlett, Boston, MA, USA, 1992. ISBN 0-86720-293-9; 978-0-86720-293-9. xv +
367 pp. LCCN QA299.3 .Z85 1992. {58, 560}

[Zwi03] Daniel Zwillinger, editor. CRC Standard Mathematical Tables and Formulae. Chapman and Hall/CRC, Boca Raton, FL, USA, 31st edition,
2003. ISBN 1-58488-291-3, 1-4200-3534-7 (electronic); 978-1-58488-291-6, 978-1-4200-3534-6 (electronic). xiv + 910 pp. LCCN QA47
.M315 2003. {58}

[Zwi12] Daniel Zwillinger, editor. CRC Standard Mathematical Tables and Formulae. CRC Press, Boca Raton, FL, USA, 32nd edition, 2012.
ISBN 1-4398-3548-9; 978-1-4398-3548-7. xiii + 819 pp. LCCN QA47 C73 2012; QA47 .M315 2012. URL http://www.crcpress.com/
CRC-Standard-Mathematical-Tables-and-Formulae-32nd-Edition/Zwillinger/p/book/9781439835487. {58}

Author/editor index

IF AUTHORS DID NOT WRITE,
WHAT WOULD EDITORS DO?

— ANONYMOUS.

Primary authors are shown in SMALL CAPS, and secondary authors in roman. Page numbers of citations of primary authors are in bold.

A
ABBOTT, PAUL H. 895, 998, 1004, 1034
ABRAMOWITZ, MILTON 6, 58, 59, 196, 269, 301, 303, 341, 498, 521,

560, 562, 587, 589, 593, 600, 619, 624, 632, 638, 643, 651, 657,
661, 666, 673, 675, 678, 681–683, 689, 693, 731, 826

ABRAMS, BRAD 917
Abrham, A. see HULL, T. E., 216, 827
ADAMS, ARTHUR G. 618
ADAMS, JEANNE C. 106
Adams, Jeanne C. see BRAINERD, WALTER S., 106
AFFLERBACH, LOTHAR 193
AGRESTI, ALAN 196
Aharoni, M. see DUALE, A. Y., 927
Ahmed, Ahmed see LYNCH, TOM, 293
AHRENS, P. 385
ALEXANDRESCU, ANDREI 830
Amanatides, John see GRANLUND, TORBJÖRN, 401, 407, 825
AMDAHL, GENE M. 963
American National Standards Institute see SCHILDT, HERBERT, 4
AMIT, D. 521, 1027, 1035
AMMANN, URS 949
AMOS, DONALD E. 521, 693, 995, 996, 1020
Anderson, Cristina see CORNEA, MARIUS, 928
ANDREWS, GEORGE E. 521, 619, 630, 827
ANDREWS, LARRY C. 827
ANONYMOUS 1014
ANSI/IEEE 1, 104, 109, 827, 928, 966
Appelbaum, Jacob see HALDERMAN, J. ALEX, 208
ARFKEN, GEORGE B. 8, 196, 303, 582, 627, 693
ARMITAGE, J. V. 627
ARNDT, JÖRG 14, 623, 632
ARNOLD, KEN vii
ASHENHURST, ROBERT L. 960, 966
Ashihara, Hyo see MATSUMOTO, MAKOTO, 176
Askey, Richard see ANDREWS, GEORGE E., 521, 619, 630, 827
ASSCHE, WALTER VAN 59
Assche, Walter van see MARCELLÁN, FRANCISCO, 59, 827
AURENTZ, JARED L. 57
AYOUB, RAYMOND 579, 590

B
Bachelis, Boris see GAL, SHMUEL, 827
BACKELJAUW, FRANKY 776, 827
BAIK, J. 59
BAILEY, B. J. R. 618
BAILEY, DAVID H. 622, 623, 631, 1032
Bailey, David H. see BORWEIN, JONATHAN M., see HIDA, YOZO,

see LI, XIAOYE S., 268, 366, 407, 452, 622, 624, 631, 632, 777,
781, 1032

BAIN, LEE J. 196
BAJARD, JEAN CLAUDE 998, 1005, 1032
BAKER, FRANK B. 618

BAKER, JR., GEORGE A. 589
BAKER, LOUIS 521, 556, 558, 567, 583, 589, 593, 657, 682, 827
Balakrishnan, N. see JOHNSON, NORMAN LLOYD, see KOTZ,

SAMUEL, 196
Ball, James S. see BEEBE, NELSON H. F., 521, 525
Ballabio, Gerardo see GRANLUND, TORBJÖRN, 401, 407, 825
BALLARD, G. 385
Banks, David see RUKHIN, ANDREW, 200
BANKS, JERRY 1003, 1021
Barbin, E. see CHABERT, JEAN-LUC, 59
BARDI, JASON SOCRATES 8
Barker, Elaine see RUKHIN, ANDREW, 200
Barnard, George A. see PEARSON, E. S., 196
BARNETT, A. R. 17
Barnett, A. R. see THOMPSON, I. J., 18
BARROW, JOHN D. 14, 623
Barrow-Green, June see GOWERS, TIMOTHY, 59, 60
BAUDIN, MICHAEL 463
BAYS, CARTER 178, 179, 997, 998, 1022
BEALS, RICHARD 827
BEASLEY, J. D. 618
BECKMANN, PETR 14, 59, 623
BEEBE, NELSON H. F. 15, 73, 521, 525, 952, 954, 978
Beebe, Nelson H. F. ix, see ROBBINS, ARNOLD, 873, 1029
BELL, C. GORDON 954
BELL, ERIC TEMPLE 59
BELL, W. W. (WILLIAM WALLACE) 827
Belozerova, Tatyana see HENNER, VICTOR, 827
BENTLEY, JON LOUIS 168
Berggren, J. Lennart see KATZ, VICTOR J., 59
BERGGREN, LENNART 14, 59, 623
BERGSON, A. 618, 1015
Berlekamp, Elwyn see GOLOMB, SOLOMON W., 969
Beuning, Brian see GRANLUND, TORBJÖRN, 401, 407, 825
BIANCOLIN, DAVID 385
BLAAUW, GERRIT A. 104, 947, 978
Blaauw, Gerrit A. see AMDAHL, GENE M., see BROOKS, JR.,

FREDERICK P., 963, 969
BLAIR, J. M. 600
BLANCH, G. 13
BLATNER, DAVID 14, 59, 623
Blouin, François see L’ECUYER, PIERRE, 170
BLUE, JAMES L. 223
BODENSTAB, D. E. 74, 972
BOGOLYUBOV, N. N. 591
Bohizic, T. J. see DUALE, A. Y., 927
BOHLENDER, GERD 366
BOISVERT, RONALD F. 693, 823, 1001
Boisvert, Ronald F. see OLVER, FRANK W. J., 6, 58, 269, 301, 303,

341, 498, 521, 560, 562, 574, 589, 593, 600, 619, 624, 627, 632,
653, 657, 661, 666, 673, 675, 678, 682, 689, 693, 826

BOJANCZYK, ADAM W. 186

© Springer International Publishing AG 2017
N.H.F. Beebe, The Mathematical-Function Computation
Handbook, DOI 10.1007/978-3-319-64110-2

1039

1040 Author/editor index . . . D

BOLDO, SYLVIE 89, 366, 397, 403, 406, 472, 1002, 1018
Boortz, Kent see GRANLUND, TORBJÖRN, 401, 407, 825
Booth, Michael see GALASSI, MARK, 567, 583, 693, 694, 825
Börger, Egon viii, see STÄRK, ROBERT F., 979
Borowczyk, Jacques see CHABERT, JEAN-LUC, 59
BORWEIN, JONATHAN M. 268, 622–624, 631, 632
Borwein, Jonathan M. see BAILEY, DAVID H., see BERGGREN,

LENNART, 14, 59, 622, 623, 631
Borwein, Peter B. see BAILEY, DAVID H., see BERGGREN,

LENNART, see BORWEIN, JONATHAN M., 14, 59, 622, 623
Bothner, Per see GRANLUND, TORBJÖRN, 401, 407, 825
Bowers, K. L. see LUND, J., 733
BOX, G. E. P. 193
BOYAR, JOAN 207
Bracha, Gilad vii, viii, see GOSLING, JAMES, see LINDHOLM, TIM,

978, 979
BRADLEY, ROBERT E. 591
BRAINERD, WALTER S. 106
Brainerd, Walter S. see ADAMS, JEANNE C., 106
BRATLEY, PAUL 203
BRENT, RICHARD P. 28, 104, 184, 407, 458, 476, 574, 623, 978, 1000,

1001, 1024, 1028, 1032
Brent, Richard P. see BOJANCZYK, ADAM W., 186
BREZINSKI, CLAUDE 19, 59, 589
BRISEBARRE, NICOLAS 42, 89
Brisebarre, Nicolas see MULLER, JEAN-MICHEL, 42, 104, 407, 881,

978
BROOKS, JR., FREDERICK P. 963, 969
Brooks, Jr., Frederick P. see AMDAHL, GENE M., see BLAAUW,

GERRIT A., 104, 947, 963, 978
BROUCKE, R. 48, 1028
BRUGUERA, JAVIER D. 1014
Brunner, Thomas A. see CLEVELAND, MATHEW A., 385
Brush, David G. see ABBOTT, PAUL H., 895, 998, 1004, 1034
BRYCHKOV, YURY ALEKSANDROVICH 58, 521, 556, 827
BUCHHOLZ, WERNER 959, 998
Buchholz, Werner see BROOKS, JR., FREDERICK P., 969
Buckholtz, Thomas J. see KNUTH, DONALD E., 574
Buckley, Alex vii, viii, see GOSLING, JAMES, see LINDHOLM, TIM,

979
BULTHEEL, ADHEMAR 59
Bünger, Florian see RUMP, SIEGFRIED M., 89
BURGER, ROBERT G. 895, 995, 1004, 1034
BURTON, DAVID M. 59
BYRD, PAUL F. 58, 619, 630, 659, 664, 666, 682, 683, 686

C
CAI, LIANG-WU 693
CAJORI, FLORIAN 59
Calandrino, Joseph A. see HALDERMAN, J. ALEX, 208
CALINGER, RONALD 7
Calkin, Neil J. see BAILEY, DAVID H., 631
Callaway, Tom see LYNCH, TOM, 293
CAMPBELL, J. B. 693
CAMPBELL-KELLY, MARTIN 59
Cantó, Enrique see DESCHAMPS, JEAN-PIERRE, 978
CARLITZ, L. 600
Carlough, Steven see LICHTENAU, CEDRIC, 928
CARLSON, BILLE CHANDLER 623, 644–646, 648–651, 653, 682, 827
Carlson, Bille Chandler see ZILL, D. G., 646, 651
CARLSON, JAMES A. 60, 303, 521, 579, 590
Carson, E. see BALLARD, G., 385
CATLIN, DON 297
CAVAGNINO, D. 176
CHABERT, JEAN-LUC 59
CHAKRABORTY, KALYAN 827

CHAN, PATRICK vii
Chang, Hwapeng see TANG, HUI-CHIN, 170
CHEN, TIEN CHI 928, 1032
Cheney, E. W. see HART, JOHN F., 1, 270, 306, 521, 589, 593, 644,

693, 768, 827
CHENG, RUSSELL C. H. 196
CHIHARA, THEODORE SEIO 59
Clark III, Clarence W. see ABBOTT, PAUL H., 895, 998, 1004, 1034
Clark, Charles W. see OLVER, FRANK W. J., 6, 58, 269, 301, 303,

341, 498, 521, 560, 562, 574, 589, 593, 600, 619, 624, 627, 632,
653, 657, 661, 666, 673, 675, 678, 682, 689, 693, 826

Clarkson, William see HALDERMAN, J. ALEX, 208
CLEGG, BRIAN 59
CLEVELAND, MATHEW A. 385
CLINGER, WILLIAM D. 895, 896, 995, 998, 1004, 1020, 1034
CODY, JR., WILLIAM J. viii, 1, 63, 104, 152, 270, 344, 411, 476, 521,

525, 593, 644, 693, 763, 769, 823, 939, 949, 1004, 1005, 1016
Cody, Jr., William J. see FISHERKELLER, M. A., 644
COHEN, DANNY 956, 963
COHEN, HENRI 589
COLLANGE, SYLVAIN 385
Compton, Katherine see TSEN, CHARLES, 929
COOLEY, JAMES W. 969
Cools, Ronald see VAN DEUN, JORIS, 693
COONEN, JEROME T. 63, 79, 104, 856, 1005, 1016
Coonen, Jerome T. see CODY, JR., WILLIAM J., 104, 152
COQUEREAUX, R. 689
CORNEA, MARIUS 299, 928
Cornea, Marius see BRUGUERA, JAVIER D., 1014
Couture, Raymond see L’ECUYER, PIERRE, see TEZUKA, SHU, 170,

177, 1026
Cover, Thomas M. see GOLOMB, SOLOMON W., 969
COWELL, WAYNE R. 823, 826
COWLISHAW, MICHAEL F. viii, 109, 387, 433, 897, 927, 928, 968,

1005
Cowlishaw, Michael F. see SCHWARZ, ERIC M., 927
Croarken, Mary see CAMPBELL-KELLY, MARTIN, 59
Crocker, S. see EASTLAKE, 3RD, D., 214
Crone, Chris J. see ABBOTT, PAUL H., 895, 998, 1004, 1034
CUYT, ANNIE 19, 58, 776, 827
Cuyt, Annie see BACKELJAUW, FRANKY, see SCHREPPERS,

WALTER, see VERDONK, BRIGITTE, 410, 776, 827
Cwalina, Krzysztof see ABRAMS, BRAD, 917
CYVIN, S. J. 618, 1015

D
D’Antonio, Lawrence A. see BRADLEY, ROBERT E., 591
Dai, Hui-Hui see JEFFREY, ALAN, 58, 619
Daniel, S. L. see AMOS, DONALD E., 693, 996
DANIELSON, GORDON C. 969
Darcy, Joseph D. see KAHAN, WILLIAM M., 4, 64, 105
DasSarma, Debjit see BRUGUERA, JAVIER D., 1014
Dauben, Joseph W. see KATZ, VICTOR J., 59
Daumas, Marc see BOLDO, SYLVIE, 89, 366, 1002
Davies, Jim see GALASSI, MARK, 567, 583, 693, 694, 825
DAVIS, PHILIP J. 560
DEAVOURS, CIPHER A. 1029
Decker, M. H. see DUALE, A. Y., 927
Defour, David see COLLANGE, SYLVAIN, see DINECHIN, FLORENT

DE, 28, 385
DeHon, André see KADRIC, EDIN, 385
DEKKER, THEODORUS J. 353, 361, 365, 379
Demmel, J. see AHRENS, P., see BALLARD, G., 385
DEMMEL, JAMES 79, 385
Demmel, James W. see LI, XIAOYE S., 452, 1032
DENG, LIH-YUAN 176, 1023

Author/editor index . . . E 1041

DERBYSHIRE, JOHN 59, 60, 303, 521, 579, 590
Derflinger, Gerhard see HÖRMANN, WOLFGANG, 196
DESCHAMPS, JEAN-PIERRE 978
DEVLIN, KEITH J. 15, 59, 60, 303, 521
Devlin, Keith J. see BORWEIN, JONATHAN M., 631
DEVORE, JAY L. 196, 610
DEVROYE, LUC 196
DIJKSTRA, EDSGER W. 962, 1020
DINECHIN, FLORENT DE 28
Dinechin, Florent de see MULLER, JEAN-MICHEL, 42, 104, 407,

881, 978
Djebbar, Ahmed see CHABERT, JEAN-LUC, 59
Dohse, Fritz-Egbert see DUNNINGTON, GUY WALDO, 59
DOLZMANN, ANDREAS 28
DOMINICI, DIEGO 600
DONEV, ALEKSANDER 941
Dray, James see RUKHIN, ANDREW, 200
Dror, Ron O. see SALMON, JOHN K., 1024
DUALE, A. Y. 927
DUBRULLE, AUGUSTIN A. 228, 1017, 1024
DUNHAM, CHARLES B. 1013, 1037
DUNHAM, WILLIAM 59, 541, 591
DUNNINGTON, GUY WALDO 59
Durham, S. D. see BAYS, CARTER, 178, 997, 1022
DYADKIN, IOSIF G. 170, 189
Dybvig, R. Kent see BURGER, ROBERT G., 895, 995, 1004, 1034

E
Eagle, Herbert see KHINCHIN, ALEKSANDR YAKOVLEVICH, 19
EASTLAKE, 3RD, D. 214
Eberlein, W. F. see ARMITAGE, J. V., 627
ECKHOUSE, JR., RICHARD H. 956
Eckhouse, Jr., Richard H. see LEVY, HENRY M., 956
ECMA vii, 830, 917, 918
Edwards, C. A. see BLAIR, J. M., 600
Ehrman, John R. see ABBOTT, PAUL H., 895, 998, 1004, 1034
EICHENAUER, JÜRGEN 180
EICHENAUER-HERRMANN, JÜRGEN 177, 180, 1026, 1035
Ekedahl, Torsten see GRANLUND, TORBJÖRN, 401, 407, 825
EL ATTAR, REFAAT A. 59
ELZEN, BOELIE 952
Emde, Fritz see JAHNKE, E., 58
Enenkel, Robert F. see GUSTAVSON, FRED G., 354
ENGE, ANDREAS 825
Engelhardt, Max see BAIN, LEE J., 196
ENTACHER, KARL 170, 172
Ercegovac, Miloš D. see WANG, DONG, 463
ERCEGOVAC, MILOŠ DRAGUTIN 104, 407, 881, 978
Erle, Mark A. see WANG, LIANG-KAI, 927
EULER, LEONHARD 591
Evans, J. O. see ODEH, R. E., 618
EVES, HOWARD 59
Ewart, Graham W. see ABBOTT, PAUL H., 895, 998, 1004, 1034
EYMARD, PIERRE 14, 59, 623

F
Fahmy, Hossam A. H. see SAYED, WAFAA S., 413
Fairgrieve, Thomas F. see HULL, T. E., 476, 996
FALKOFF, A. D. 928
FEIJEN, W. H. J. 1013, 1020
Feldman, Ariel J. see HALDERMAN, J. ALEX, 208
FELLMANN, EMIL ALFRED 591
Felten, Edward W. see HALDERMAN, J. ALEX, 208
Feng, D. H. see BARNETT, A. R., 17
FERGUSON, JR., WARREN E. 271
FERGUSON, NIELS 168, 206, 214, 591

Feshbach, Herman see MORSE, PHILIP MCCORD, 693
FETTIS, HENRY E. 600
FINCH, STEVEN R. 59
FINKEL, B. F. 591
FISHERKELLER, M. A. 644
FISHMAN, GEORGE S. 170, 1010
Flannery, Brian P. see PRESS, WILLIAM H., 19, 196, 567, 589, 657
Flannery, David see FLANNERY, SARAH, 208, 591
FLANNERY, SARAH 208, 591
Flood, Christine H. see STEELE JR., GUY L., 1024
Flood, Raymond see CAMPBELL-KELLY, MARTIN, 59
FLYNN, MICHAEL J. 17
Flynn, Michael J. see WASER, SHLOMO, 1016
Forinash, Kyle see HENNER, VICTOR, 827
FORSYTHE, GEORGE E. 472, 474
FOUSSE, LAURENT 401, 407
Fox, Bennett L. see BRATLEY, PAUL, 203
FOX, L. 58
FOX, PHYLLIS A. 341, 352, 823, 1009, 1010, 1012
FRANCESCHETTI, DONALD R. 59
Franklin, Christine A. see AGRESTI, ALAN, 196
FRIEDLAND, PAUL 481
Friedman, Morris D. see BYRD, PAUL F., 58, 619, 630, 659, 664,

666, 682, 683, 686
Fripiat, J. G. see HARRIS, FRANK E., 693
FUKUSHIMA, TOSHIO 627, 645, 690
FULLERTON, L. WAYNE 341, 352
Fullerton, L. Wayne see CODY, JR., WILLIAM J., 693

G
GAL, SHMUEL 827
GALASSI, MARK 567, 583, 693, 694, 825
Gallager, Robert G. see GOLOMB, SOLOMON W., 969
GAMOW, GEORGE 59
GANCARZ, MIKE 956
Garcia-Escartin, Juan Carlos see HERRERO-COLLANTES, MIGUEL,

178
Gast, Nicolas see DINECHIN, FLORENT DE, 28
GAUTSCHI, WALTER 58, 59, 562, 591, 693, 705, 1032
GAY, DAVID M. 895, 1009, 1010
Gay, David M. see CODY, JR., WILLIAM J., 104, 152
Gentile, Nicholas A. see CLEVELAND, MATHEW A., 385
GENTLE, JAMES E. 214
GENTLEMAN, M. W. 1023
George, Kit see ABRAMS, BRAD, 917
GIL, AMPARO 13, 17, 18, 58, 567, 644, 693, 827
GILL, S. 353
Girgensohn, Roland see BAILEY, DAVID H., see BORWEIN,

JONATHAN M., 631
Goldberg, Charles H. see BRAINERD, WALTER S., 106
GOLDBERG, DAVID 103, 1008, 1013, 1037
GOLDBERG, I. BENNETT 840, 844, 851
Golde, Peter vii, see HEJLSBERG, ANDERS, 80, 917
Goldfarb, L. J. B. see BARNETT, A. R., 17
GOLOMB, SOLOMON W. 969
Gonzales-Vera, Pablo see BULTHEEL, ADHEMAR, 59
Gonzalez-Navarro, Sonia see TSEN, CHARLES, 929
GOOD, I. J. 169
Goodrich, Clark A. see ABBOTT, PAUL H., 895, 998, 1004, 1034
GORDON, ROBERT 979
GOSLING, JAMES vii, 978, 979
Gosling, James vii, see ARNOLD, KEN

Gosset, William Sealy see PEARSON, E. S., 196
Gough, Brian see GALASSI, MARK, 567, 583, 693, 694, 825
GOWERS, TIMOTHY 59, 60
Grabowski, Artur see RAADT, THEO DE, 207

1042 Author/editor index . . . J

GRADSHTEYN, I. S. 58, 619, 682, 687
GRAILLAT, STEF 89, 529
Graillat, Stef see COLLANGE, SYLVAIN, 385
GRANLUND, TORBJÖRN 401, 407, 825
GRATTAN-GUINNESS, I. 59
Graves-Morris, Peter see BAKER, JR., GEORGE A., 589
GRAY, JEREMY 579, 590
Gray, Jeremy see DUNNINGTON, GUY WALDO, 59
GRIES, DAVID 895, 1011, 1020
Gries, David see FEIJEN, W. H. J., 1013, 1020
GRIFFITHS, PAUL 1037
Grosse, Eric see GAY, DAVID M., 1009, 1010
Grossmann, A. see COQUEREAUX, R., 689
Grunkemeyer, Brian see ABRAMS, BRAD, 917
Gudenberg, Jürgen Wolff von see SIEGEL, STEFAN, 385
Guillemot, Michel see CHABERT, JEAN-LUC, 59
Guo, D. R. see WANG, Z. X., 521, 827
Gurniak, Paul see KADRIC, EDIN, 385
GUSTAFSON, JOHN 960, 967
GUSTAVSON, FRED G. 354
GUTMANN, PETER 214

H
Hack, Michel see ABBOTT, PAUL H., 895, 998, 1004, 1034
HACKING, IAN 197
Haenel, Christoph see ARNDT, JÖRG, 14, 623, 632
HALDERMAN, J. ALEX 208
Hall, A. D. see FOX, PHYLLIS A., 341, 352, 823, 1010, 1012
Hallqvist, Niklas see RAADT, THEO DE, 207
HAMAKER, HUGO C. 618
Hamilton, Kenneth G. see DYADKIN, IOSIF G., 170, 189
Handscomb, D. C. see MASON, J. C., 58
Hanek, R. N. see PAYNE, M. H., 250, 253
HANROT, GUILLAUME 28
Hanrot, Guillaume see BRISEBARRE, NICOLAS, see FOUSSE,

LAURENT, 42, 89, 401, 407
HANSEN, ELDON R. 89
Hanson, K. see CODY, JR., WILLIAM J., 104, 152
Hanson, Richard J. see LAWSON, CHARLES L., 223
Harley, Robert see GRANLUND, TORBJÖRN, 401, 407, 825
HARRIS, FRANK E. 693
Harris, Frank E. see ARFKEN, GEORGE B., 8, 196, 303, 582, 627, 693
HARRIS, V. C. 184
HARRISON, JOHN 693, 716, 826
Harrison, John see BRUGUERA, JAVIER D., see CORNEA, MARIUS,

299, 928, 1014
HARS, LASZLO 184
HART, JOHN F. 1, 270, 306, 521, 589, 593, 644, 693, 768, 827
HASTINGS, JR., CECIL 269, 600, 643, 827
Haubold, H. J. see MATHAI, A. M., 827
HAVIL, JULIAN 59, 591
HAWKING, STEPHEN 59, 299, 521
Hayes, Wayne B. see ZHU, YONG-KANG, 385
Heald, Mark A. see MARION, JERRY B., 693
HEARN, ANTHONY C. 28
Heckert, Alan see RUKHIN, ANDREW, 200
Heinrich, Joe see KANE, GERRY, 73, 146
HEJLSBERG, ANDERS vii, 80, 917
Hejlsberg, Anders see ABRAMS, BRAD, 917
HELLEKALEK, PETER 178
HELLMAN, HAL 59
Hemani, Ahmed see MALIK, JAMSHAID SARWAR, 196
Hendriksen, Erik see BULTHEEL, ADHEMAR, 59
Heninger, Nadia see HALDERMAN, J. ALEX, 208
Henis, Ealan see ZIV, ABRAHAM, 827
HENNER, VICTOR 827

HENNESSY, JOHN L. 103
Hennessy, John L. see PATTERSON, DAVID A., 103, 1013
Henry, Greg see LI, XIAOYE S., 452, 1032
HENSLEY, DOUG 19
HERRERO-COLLANTES, MIGUEL 178
Herrmann, Eva see EICHENAUER-HERRMANN, JÜRGEN, 180
HERZ-FISCHLER, ROGER 8, 14, 59, 577
Heyne, Alice K. see HEYNE, ANDREAS K., 59, 591
HEYNE, ANDREAS K. 59, 591
HIDA, YOZO 366, 407, 777, 781
Hida, Yozo see DEMMEL, JAMES, see LI, XIAOYE S., 385, 452, 1032
HILL, GEOFFREY W. 693
HILL, IAN DAVID 618, 999, 1006, 1015, 1023
Hill, Ian David see GRIFFITHS, PAUL, see WICHMANN, BRIAN A.,

177, 1024, 1037
Hillstrom, K. E. see CODY, JR., WILLIAM J., 521
Ho, Irving T. see CHEN, TIEN CHI, 928, 1032
HOARE, C. A. R. 963
Hoare, C. A. R. see WELSH, J., 989, 1018
Hoemmen, M. see BALLARD, G., 385
HOLIAN, BRAD LEE 177
Hollman, Joachim see GRANLUND, TORBJÖRN, 401, 407, 825
Holmes, David vii, see ARNOLD, KEN

Hooper, Judith A. see BRENT, RICHARD P., 1001, 1032
Horiguchi, Tsuyoshi see MORITA, TOHRU, 632
HÖRMANN, WOLFGANG 196
Hormigo, Javier see MONTUSCHI, PAOLO, 104, 1021
HOUGH, DAVID G. 63, 851, 1016
Hough, David G. see CODY, JR., WILLIAM J., 104, 152
Houghton, Thomas F. see BODENSTAB, D. E., 74, 972
HUBBARD, RAYMOND 196
HULL, T. E. 216, 476, 827, 996
Huskey, Harry D. see HUSKEY, VELMA R., 568
HUSKEY, VELMA R. 568

I
Iakymchuk, Roman see COLLANGE, SYLVAIN, 385
IEEE 967, 1017, 1019
IFRAH, GEORGES 59
Imhausen, Annette see KATZ, VICTOR J., 59
INTEL 1028
International Electrotechnical Commission see SCHILDT,

HERBERT, 4
International Organization for Standardization see SCHILDT,

HERBERT, 4
IOANNIDIS, JOHN P. A. 196
Ishizaki, Hideharu see FUKUSHIMA, TOSHIO, 645, 690
Iskandar, J. see LI, XIAOYE S., 452, 1032
ISO vii, 1, 104, 825, 966
ISO/IEC JTC 1 see SCHILDT, HERBERT, 4
Iverson, K. E. see FALKOFF, A. D., 928

J
JABLONSKI, ALEKSANDER 693
JACKSON, JOHN DAVID 627, 693
JACOBSON, DAVID 966
Jaffe, Arthur see CARLSON, JAMES A., 60, 303, 521, 579, 590
JAGGER, JON 102, 103, 917
JAHNKE, E. 58
JAMES, F. 177
JAMIESON, M. J. 228, 1008, 1024
JEANNEROD, CLAUDE-PIERRE 28, 458, 463
Jeannerod, Claude-Pierre see MULLER, JEAN-MICHEL, see RUMP,

SIEGFRIED M., 42, 89, 104, 407, 881, 978
JEFFREY, ALAN 58, 619
Jeffrey, Alan see GRADSHTEYN, I. S., 58, 619, 682, 687

Author/editor index . . . K 1043

JENSEN, KATHLEEN vii, 989
JENTSCHURA, U. D. 693
Jiang, Renyan see MURTHY, D. N. PRABHAKAR, 196
Jin, Jianming see ZHANG, SHANJIE, 521, 556, 567, 593, 644, 657,

693, 827
Johnson, J. H. see BLAIR, J. M., 600
Johnson, J. Howard see MACKAY, STEPHEN A., 354
JOHNSON, NORMAN LLOYD 196
Johnson, Norman Lloyd see KOTZ, SAMUEL, 196
JOHNSTONE, P. 964
JONES, WILLIAM B. 13, 19
Jones, William B. see CUYT, ANNIE, 19, 58, 776, 827
Joy, Bill vii, see GOSLING, JAMES, 978, 979
Joyce, S. A. see HILL, IAN DAVID, 618, 999, 1006, 1015, 1023
Jungman, Gerard see GALASSI, MARK, 567, 583, 693, 694, 825

K
KADRIC, EDIN 385
KAHAN, WILLIAM M. 4, 64, 69, 81, 105, 251, 259, 265, 353, 472,

476, 482, 514, 953, 967, 1000
Kahan, William M. see COONEN, JEROME T., see LI, XIAOYE S.,

see PAXSON, VERN, see CODY, JR., WILLIAM J., 104, 152, 452,
1015, 1032

KAHANER, DAVID 202, 299
Kahn, David see DEAVOURS, CIPHER A., 1029
KANE, GERRY 73, 146
Kanemitsu, Shigeru see CHAKRABORTY, KALYAN, 827
KAO, CHIANG 170
Kapernick, John S. see ABBOTT, PAUL H., see SCHWARZ, ERIC M.,

895, 927, 998, 1004, 1034
KAPLAN, ROBERT 59
Kapur, Anil see LI, XIAOYE S., 452, 1032
KARPINSKI, RICHARD 773
Karpinski, Richard see CODY, JR., WILLIAM J., 104, 152
KATZ, VICTOR J. 59
Keasler, Jeffrey A. see CLEVELAND, MATHEW A., 385
Kelleman, Keith A. see BODENSTAB, D. E., 74, 972
Kemp, Adrienne W. see JOHNSON, NORMAN LLOYD, 196
KERNIGHAN, BRIAN W. 6, 989, 1018, 1037
Keromytis, Angelos D. see RAADT, THEO DE, 207
KHINCHIN, ALEKSANDR YAKOVLEVICH 19
KHRUSHCHEV, SERGEY V. 19, 59
KIM, EUGENE ERIC 568
Kincaid, David R. see LAWSON, CHARLES L., 223
KING, LOUIS VESSOT 663, 1019
KLARER, ROBERT 109, 875, 928
KLERER, MELVIN 947, 978
KNAPP, ANTHONY W. 222
Knight, N. see BALLARD, G., 385
KNÖFEL, A. 385
KNOWLES, SIMON 1009, 1021
KNUTH, DONALD E. 89, 104, 170, 182, 184, 186, 188, 200, 207, 214,

366, 416, 574, 895, 995, 1004, 1007, 1011, 1013, 1020, 1034
KODAMA, MASAO 693, 996
Koenig, Jack see BIANCOLIN, DAVID, 385
Kohno, Tadayoshi see FERGUSON, NIELS, 214
KOREN, ISRAEL 68, 881, 978
Korn, Granino A. see KLERER, MELVIN, 947, 978
KORNERUP, PETER 28, 385, 420, 978, 1000, 1002, 1015, 1019, 1022,

1025, 1028, 1035
Kornerup, Peter see BOHLENDER, GERD, see JEANNEROD,

CLAUDE-PIERRE, 366, 458, 463
KOTZ, SAMUEL 196
Kotz, Samuel see JOHNSON, NORMAN LLOYD, 196
KOWALSKI, MAREK A. 733
Kramer, Doug vii, see CHAN, PATRICK

KRASIKOV, ILIA 693
Kriecherbauer, T. see BAIK, J., 59
KROEKER, KIRK L. 949
Kroener, Michael see TRONG, SON DAO, 927
Krogh, Fred T. see LAWSON, CHARLES L., 223
Kruh, Louis see DEAVOURS, CIPHER A., 1029
Krygowski, C. A. see SCHWARZ, ERIC M., 963
KULISCH, ULRICH 978
Kuramoto, Ai see MATSUMOTO, MAKOTO, 176

L
L’ECUYER, PIERRE 170, 176–178, 196, 200, 214
L’Ecuyer, Pierre see PANNETON, FRANÇOIS, see TEZUKA, SHU,

177, 1001, 1024, 1026
Lafon, Jean-Pierre see EYMARD, PIERRE, 14, 59, 623
LANCZOS, CORNELIUS 521, 536
Lanczos, Cornelius see DANIELSON, GORDON C., 969
Lang, Tomás see ERCEGOVAC, MILOŠ DRAGUTIN, 104, 407, 881,

978
LANGE, EBERHARD 967
LANGLOIS, PHILIPPE 89
Langlois, Philippe see GRAILLAT, STEF, 89
LAPIDUS, MICHEL L. 303, 521, 579
LAUGWITZ, DETLEFF 579, 590
Lauter, Christoph see DINECHIN, FLORENT DE, see KORNERUP,

PETER, 28, 420
Lautrup, B. E. see COQUEREAUX, R., 689
LAW, AVERILL M. 196
LAWDEN, DEREK F. 619, 627, 654, 682, 688
LAWSON, CHARLES L. 223
Lawson, Charles L. see HART, JOHN F., 1, 270, 306, 521, 589, 593,

644, 693, 768, 827
Lea, Doug see GRANLUND, TORBJÖRN, see STEELE JR., GUY L.,

401, 407, 825, 1024
Leader, Imre see GOWERS, TIMOTHY, 59, 60
LEARMONTH, G. P. 179, 997, 998
LeBlanc, E. see KAHAN, WILLIAM M., 967
Lee, Meng see PLAUGER, P. J., 827
Lee, Rosanna vii, see CHAN, PATRICK

LEEMIS, LAWRENCE M. 196
LEFÈVRE, VINCENT 28, 385
Lefèvre, Vincent see FOUSSE, LAURENT, see HANROT,

GUILLAUME, see KORNERUP, PETER, see MULLER,
JEAN-MICHEL, see STEHLÉ, DAMIEN, 28, 42, 104, 385, 401,
407, 420, 881, 978

Lehmann, Ingmar see POSAMENTIER, ALFRED S., 15
LEHMER, D. H. 169
Lehn, Jürgen see EICHENAUER, JÜRGEN, 180
Leigh, Stefan see RUKHIN, ANDREW, 200
Levenson, Mark see RUKHIN, ANDREW, 200
LEVENSON, THOMAS 8
LEVIN, ELI 59
LEVY, HENRY M. 956
LEWIS, JOHN GREGG 1035
Lewis, P. A. W. see LEARMONTH, G. P., 179, 997, 998
Leydold, Josef see HÖRMANN, WOLFGANG, 196
Li, Huajiang see DENG, LIH-YUAN, 1023
LI, XIAOYE S. 452, 1032
Li, Xiaoye S. see HIDA, YOZO, see MICHELOGIANNAKIS,

GEORGE, 366, 385, 407, 777, 781
LIANG, SHENG 979, 983
LICHTENAU, CEDRIC 928
LIN, JINN TYAN 618
LINDHOLM, TIM viii, 80, 979
LINNAINMAA, SEPPO 370
LIONS, JOHN 850

1044 Author/editor index . . . N

LIU, ZHI-SHUN ALEX 774
LIVIO, MARIO 7, 8, 14, 59, 577
LOITSCH, FLORIAN 895
LORENTZEN, LISA 19
Lösch, Friedrich see JAHNKE, E., 58
Lötstedt, E. see JENTSCHURA, U. D., 693
Louvet, Nicolas see GRAILLAT, STEF, see JEANNEROD,

CLAUDE-PIERRE, see KORNERUP, PETER, see LANGLOIS,
PHILIPPE, 28, 89, 385, 420, 458, 463

LOZIER, DANIEL W. 826
Lozier, Daniel W. see OLVER, FRANK W. J., 6, 58, 269, 301, 303,

341, 498, 521, 560, 562, 574, 589, 593, 600, 619, 624, 627, 632,
653, 657, 661, 666, 673, 675, 678, 682, 689, 693, 826

Lu, Henry Horng-Shing see DENG, LIH-YUAN, 176, 1023
Lubinsky, Doran S. see LEVIN, ELI, 59
Luke, D. Russell see BAILEY, DAVID H., 631
LUKE, YUDELL L. 521, 693, 827
LUND, J. 733
LYNCH, TOM 293

M
MACDONALD, I. G. 59
MACKAY, STEPHEN A. 354
MacKenzie, Donald see ELZEN, BOELIE, 952
MACLAREN, M. DONALD 179, 618, 1015, 1023
MACLAREN, N. M. 180
Maehly, Hans J. see HART, JOHN F., 1, 270, 306, 521, 589, 593, 644,

693, 768, 827
MALCOLM, M. A. 103, 1012
MALIK, JAMSHAID SARWAR 196
MAOR, ELI 59, 269
MARCELLÁN, FRANCISCO 59, 827
Marcey, Joel see ABRAMS, BRAD, 917
MARION, JERRY B. 693
MARKSTEIN, PETER 86, 87, 101, 241, 242, 410, 412, 824, 827, 940,

953
Marovich, S. B. see GENTLEMAN, M. W., 1023
MARSAGLIA, GEORGE 170, 176, 177, 200, 207, 618, 1001, 1028,

1035
Marsaglia, George see MACLAREN, M. DONALD, 179
Marsaglia, John C. W. see MARSAGLIA, GEORGE, 618
Martin, Jeanne T. see ADAMS, JEANNE C., 106
Martin, M. C. see LI, XIAOYE S., 452, 1032
Martzloff, Jean-Claude see CHABERT, JEAN-LUC, 59
MASCAGNI, MICHAEL 158, 1025
MASON, J. C. 58
Massey, James L. see GOLOMB, SOLOMON W., 969
MATHAI, A. M. 827
Matheson, Tahu see HEYNE, ANDREAS K., 59, 591
MATSUMOTO, MAKOTO 176, 177
Matsumoto, Makoto see SAITO, MUTSUO, 1024
MATULA, DAVID W. 840, 851
Matula, David W. see BOHLENDER, GERD, see KORNERUP, PETER,

366, 978, 1002, 1019, 1025, 1028
McAllister, William H. see KNOWLES, SIMON, 1009, 1021
McClellan, Alan see GORDON, ROBERT, 979
McCloskey, Deirdre N. see ZILIAK, STEPHEN THOMAS, 196
MCCULLAGH, PETER 543
McLaughlin, K. T.-R. see BAIK, J., 59
MCLEISH, JOHN 59
MCLEOD, A. IAN 1037
McNamara, John E. see BELL, C. GORDON, 954
McQueston, Jacquelyn T. see LEEMIS, LAWRENCE M., 196
Mellen, Greg see DEAVOURS, CIPHER A., 1029
Melquiond, Guillaume see BOLDO, SYLVIE, see MULLER,

JEAN-MICHEL, 42, 104, 403, 407, 881, 978

Mertens, Irene see PIESSENS, ROBERT, 1001
Mesztenyi, Charles K. see HART, JOHN F., 1, 270, 306, 521, 589,

593, 644, 693, 768, 827
METCALF, MICHAEL 106
METROPOLIS, NICHOLAS 203
Metropolis, Nicholas see ASHENHURST, ROBERT L., 960, 966
Michel-Pajus, Anne see CHABERT, JEAN-LUC, 59
MICHELOGIANNAKIS, GEORGE 385
Mikhaı̆lov, G. K. see BOGOLYUBOV, N. N., 591
MILLER, JAMES S. 917
Miller, Keith W. see PARK, STEPHEN K., 170, 214
Miller, P. D. see BAIK, J., 59
Minchau, Brian J. see ABBOTT, PAUL H., 895, 998, 1004, 1034
Minderović, Zoran see YOUNG, ROBYN V., 59
MISA, THOMAS J. 962
Misra, J. see FEIJEN, W. H. J., 1013, 1020
MOLER, CLEVE B. 227, 1008, 1017
Moler, Cleve B. see KAHANER, DAVID, 202, 299
Moll, Victor see BAILEY, DAVID H., 631
MØLLER, OLE 353, 1025
MONTUSCHI, PAOLO 104, 1000, 1021, 1034
Moore III, Louis R. see FISHMAN, GEORGE S., 170, 1010
Moraes, Mark A. see SALMON, JOHN K., 1024
Moreira, José E. see GUSTAVSON, FRED G., 354
MORITA, TOHRU 632
Morris, L. Robert see ECKHOUSE, JR., RICHARD H., 956
Morrison, Donald see MOLER, CLEVE B., 227, 1008, 1017
MORROW, CHARLENE 59
MORSE, PHILIP MCCORD 693
Morse, Stephen P. see PALMER, JOHN F., 63, 104
MOSHIER, STEPHEN L. B. 133, 270, 521, 556, 558, 567, 583, 593,

600, 617, 644, 657, 693, 708, 823
Motley, Rose M. see CODY, JR., WILLIAM J., 693
Mudge, J. Craig see BELL, C. GORDON, 954
Mueller, Silvia Melitta see LICHTENAU, CEDRIC, 928
MULLER, JEAN-MICHEL 42, 55, 82, 104, 251, 407, 463, 827, 881,

978
Muller, Jean-Michel see BOLDO, SYLVIE, see JEANNEROD,

CLAUDE-PIERRE, see KORNERUP, PETER, see LEFÈVRE,
VINCENT, 28, 385, 397, 403, 406, 420, 458, 463, 1000, 1002,
1015, 1022, 1035

Muller, Mervin E. see BOX, G. E. P., 193
MÜLLER, MICHAEL 385
MURTHY, D. N. PRABHAKAR 196
Musser, David R. see PLAUGER, P. J., 827
Myland, Jan see OLDHAM, KEITH B., 1032

N
NAHIN, PAUL J. 14, 59, 591, 623
Nair, Ravi viii, see SMITH, JAMES E.
Narasimhan, B. see MARSAGLIA, GEORGE, 177
Nash, Stephen see KAHANER, DAVID, 202, 299
NEAL, RADFORD M. 385
NEAVE, HENRY R. 193
Nechvatal, James see RUKHIN, ANDREW, 200
NEEDHAM, ROGER M. 178, 1037
Needham, Roger M. see WHEELER, DAVID J., 178, 1026, 1037
NEHER, MARKUS 476
NEUMANN, JOHN VON 190
NEVILLE, ERIC HAROLD 678
NEWMAN, M. E. J. 196
NG, K. C. 250
Nguyen, H. D. see AHRENS, P., 385
NIEDERREITER, HARALD 203
Niederreiter, Harald see BRATLEY, PAUL, 203
NIEVERGELT, YVES 87

Author/editor index . . . O 1045

Nishimura, Takuji see MATSUMOTO, MAKOTO, 177
NIST 178
Njastad, Olav see BULTHEEL, ADHEMAR, 59
Nordberg, Linus see GRANLUND, TORBJÖRN, 401, 407, 825
Notis, Elaine M. see CARLSON, BILLE CHANDLER, 646, 648, 650

O
O’SHEA, DONAL 521, 579
Oberman, Stuart see MONTUSCHI, PAOLO, 104, 1021
Oberman, Stuart F. see FLYNN, MICHAEL J., 17
ODEH, R. E. 618
OGITA, TAKESHI 385
Ogita, Takeshi see OZAKI, KATSUHISA, see RUMP, SIEGFRIED M.,

385
Oishi, Shin’ichi see OGITA, TAKESHI, see OZAKI, KATSUHISA, see

RUMP, SIEGFRIED M., 385
OLDHAM, KEITH B. 1032
Oldham, Keith B. see SPANIER, JEROME, 521, 556, 558, 593, 657
Olshansky, Moshe see ZIV, ABRAHAM, 827
OLVER, FRANK W. J. 6, 19, 58, 269, 301, 303, 341, 498, 521, 560,

562, 574, 589, 593, 600, 619, 624, 627, 632, 653, 657, 661, 666,
673, 675, 678, 682, 689, 693, 826, 827

OMONDI, AMOS R. 407, 881, 978
OVERTON, MICHAEL L. 67, 103
OZAKI, KATSUHISA 385

P
PAGE, E. 618
PAIRMAN, ELEANOR 537
PALMER, JOHN F. 63, 104
Palmer, John F. see COONEN, JEROME T., see CODY, JR., WILLIAM

J., 104, 152
Panhaleux, Adrien see JEANNEROD, CLAUDE-PIERRE, 28
PANNETON, FRANÇOIS 1001, 1024
PANOFSKY, WOLFGANG K. H. 693
PARHAMI, BEHROOZ 68, 881, 978
PARK, STEPHEN K. 170, 214
Parker, I. B. see FOX, L., 58
PARSON, RONALD G. 996, 1035
Patrick, Merrell L. see HANSEN, ELDON R., 89
PATTERSON, DAVID A. 103, 1013
Patterson, David A. see HENNESSY, JOHN L., 103
PATTERSON, S. J. 579
Paul, William see HALDERMAN, J. ALEX, 208
PAXSON, VERN 1015
Paxson, Vern see HOUGH, DAVID G., 851
PAYNE, M. H. 250, 253
PEARSON, E. S. 196
PEARSON, KARL 197
Pélissier, Patrick see FOUSSE, LAURENT, see ZIMMERMANN,

PAUL, 401, 407, 825
Percival, Colin see BRENT, RICHARD P., 458, 476
PERCUS, ORA E. 200, 1026
Percus, Ora E. see HOLIAN, BRAD LEE, 177
Perl, Teri see MORROW, CHARLENE, 59
Perry, Nigel see JAGGER, JON, 102, 103, 917
Petersen, Vigdis B. see CUYT, ANNIE, 19, 58, 776, 827
Petry, F. E. see JOHNSTONE, P., 964
PHILIP, J. R. 600
PHILLIPS, JEN 826
Phillips, Melba see PANOFSKY, WOLFGANG K. H., 693
PIESSENS, ROBERT 1001
Pike, Rob see KERNIGHAN, BRIAN W., 6
Pini, Elena S. see HEYNE, ANDREAS K., 59, 591
Pittman, Tom see COONEN, JEROME T., 104
Plackett, R. L. see PEARSON, E. S., 196

PLAUGER, P. J. 133, 827
Plet, Antoine see JEANNEROD, CLAUDE-PIERRE, 463
Plofker, Kim see KATZ, VICTOR J., 59
Plouffe, Simon see BAILEY, DAVID H., see SLOANE, NEIL J. A.,

524, 568, 572, 576, 622, 623, 1032
PÓLYA, GEORGE 618
POPOV, BOGDAN A. 600, 604
POSAMENTIER, ALFRED S. 15
PRESS, WILLIAM H. 19, 196, 567, 589, 657
PRIEST, DOUGLAS M. 89, 385, 407, 453–455, 476, 1033
Provos, Niels see RAADT, THEO DE, 207

R
RAADT, THEO DE 207
Rabinowitz, Philip see DAVIS, PHILIP J., 560
Rago, Stephen A. see STEVENS, W. RICHARD, 91
Ragsdale, Susann see MILLER, JAMES S., 917
RAINVILLE, EARL DAVID 521, 827
RANDELL, BRIAN 104
RAYMOND, ERIC STEVEN 956
Redivo Zaglia, Michela see BREZINSKI, CLAUDE, 589
REEDS, JAMES A. 207
REID, CONSTANCE 59
Reid, John Ker see METCALF, MICHAEL, 106
Reitman, Anna see ZIV, ABRAHAM, 827
Revol, Nathalie see MONTUSCHI, PAOLO, see MULLER,

JEAN-MICHEL, see ZIMMERMANN, PAUL, 42, 104, 407, 825,
881, 978, 1021

RIBENBOIM, PAULO 590
RICE, JOHN R. 31
Rice, John R. see HART, JOHN F., 1, 270, 306, 521, 589, 593, 644,

693, 768, 827
Richter, Jeffrey see ABRAMS, BRAD, 917
Riesel, Hans see GRANLUND, TORBJÖRN, 401, 407, 825
RIPLEY, B. D. 178
Ris, Frederic N. see CODY, JR., WILLIAM J., 104, 152
RIVLIN, THEODORE J. 58
ROBBINS, ARNOLD ix, 873, 1029
ROBERTS, C. S. 162
Robson, Eleanor see CAMPBELL-KELLY, MARTIN, see KATZ,

VICTOR J., 59
ROCKETT, ANDREW MANSFIELD 19
ROCKMORE, DANIEL N. 60, 303, 521, 579, 969
Ronkin, George see BODENSTAB, D. E., 74, 972
Root, Steve see GRANLUND, TORBJÖRN, 401, 407, 825
ROSE, GREG 177
Rossi, Fabrice see GALASSI, MARK, 567, 583, 693, 694, 825
Roy, Ranjan see ANDREWS, GEORGE E., 521, 619, 630, 827
Rüb, Christine see MÜLLER, MICHAEL, 385
RUDMAN, PETER STROM 59
Ruiz-Antolín, Diego see GIL, AMPARO, 567
RUKHIN, ANDREW 200
Rülling, Wolfgang see MÜLLER, MICHAEL, 385
RUMP, SIEGFRIED M. 89, 385
Rump, Siegfried M. see OGITA, TAKESHI, 385
RUSSELL, RICHARD M. 952
Ryde, Kevin see GRANLUND, TORBJÖRN, 401, 407, 825
RYDER, BARBARA G. 823
Ryzhik, I. M. see GRADSHTEYN, I. S., 58, 619, 682, 687

S
SABBAGH, KARL 60, 303, 521, 579, 590
SAITO, MUTSUO 1024
SALAMIN, EUGENE 623
SALMON, JOHN K. 1024
SALUS, PETER H. 956

1046 Author/editor index . . . T

SALZER, HERBERT E. 560
SANDIFER, CHARLES EDWARD 591
Sandifer, Charles Edward see BRADLEY, ROBERT E., 591
Saunders, Bonita V. see BOISVERT, RONALD F., 693, 823, 1001
SAUTOY, MARCUS DU 60, 303, 521
Saxe, James B. see BENTLEY, JON LOUIS, 168
SAYED, WAFAA S. 413
Schan, Edward P. see BODENSTAB, D. E., 74, 972
Schell, Thomas see ENTACHER, KARL, 170
SCHILDT, HERBERT 4
Schiller, J. see EASTLAKE, 3RD, D., 214
SCHMEISER, BRUCE W. 618
Schmid, Joachim viii, see STÄRK, ROBERT F., 979
Schmookler, Martin see TRONG, SON DAO, 927
Schneider, Eric see CORNEA, MARIUS, 928
SCHNEIER, BRUCE 207, 214, 591
Schneier, Bruce see FERGUSON, NIELS, 168, 206, 214, 591
Schoen, Seth D. see HALDERMAN, J. ALEX, 208
SCHONFELDER, J. L. 600
SCHRAGE, LINUS 174, 175, 214
SCHREPPERS, WALTER 410
SCHRYER, NORMAN L. 775
Schryer, Norman L. see FOX, PHYLLIS A., 341, 352, 823, 1010, 1012
Schulte, Michael see MONTUSCHI, PAOLO, 104, 1021
Schulte, Michael J. see BAJARD, JEAN CLAUDE, see LYNCH, TOM,

see TSEN, CHARLES, see WANG, LIANG-KAI, 293, 927, 929,
998, 1005, 1032

Schwab, Andreas see GRANLUND, TORBJÖRN, 401, 407, 825
Schwachheim, Georges see TADEU DE MEDEIROS, ADILSON, 521,

552, 555, 558, 1021
Schwartz, O. see BALLARD, G., 385
SCHWARZ, ERIC M. 927, 963
Schwarz, Eric M. see MONTUSCHI, PAOLO, see TRONG, SON DAO,

see WANG, LIANG-KAI, 927, 1000, 1021, 1034
SEACORD, ROBERT C. 870
Seal, David see GRANLUND, TORBJÖRN, 401, 407, 825
Secrest, Don see STROUD, A. H., 560
Segura, Javier see GIL, AMPARO, 13, 17, 18, 58, 567, 644, 693, 827
Seidl, Andreas see DOLZMANN, ANDREAS, 28
SEIFE, CHARLES 59
Sestoft, Peter see JAGGER, JON, 102, 103, 917
SETH, SACHIN viii, 979
SEVERANCE, CHARLES 63, 1031
SHALLIT, JEFFREY 184
SHANNON, CLAUDE E. 969, 1031
Shaw, David E. see SALMON, JOHN K., 1024
Shepard, William C. see ABBOTT, PAUL H., 895, 998, 1004, 1034
Shepherd, S. J. see VAN EETVELT, P. W. J., 600, 606
Shiau, Jyh-Jen H. see DENG, LIH-YUAN, 176, 1023
Shiau, Jyh-Jen Horng see DENG, LIH-YUAN, 1023
SHORE, HAIM 618
SIDI, AVRAM 589
SIEGEL, STEFAN 385
SIGLER, L. E. 15, 59, 575
Sikorski, Krzysztof A. see KOWALSKI, MAREK A., 733
SILVERMAN, JOSEPH H. 186
Simard, Richard see L’ECUYER, PIERRE, 170, 176, 178, 200, 214
SINGH, SIMON 60, 214, 591
SITES, RICHARD L. 107
Sjödin, Gunnar see GRANLUND, TORBJÖRN, 401, 407, 825
SKOVGAARD, OVE 693, 1011
SLOANE, NEIL J. A. 524, 568, 572, 576, 627, 629, 1032, 1033
Smid, Miles see RUKHIN, ANDREW, 200
SMITH, ALAN JAY 1003
Smith, Brian T. see ADAMS, JEANNE C., 106
SMITH, DAVID EUGENE 59

SMITH, DAVID M. 476, 509, 827, 997, 1000, 1001
SMITH, JAMES E. viii
SMITH, ROBERT L. 451–453, 455, 1021
Smith, Robert L. see BAUDIN, MICHAEL, 463
SMITH, ROGER ALAN 251, 253
Smith, Sr., Ronald M. see ABBOTT, PAUL H., 895, 998, 1004, 1034
SMOKTUNOWICZ, ALICJA 89
Sneeringer, W. J. see WELSH, J., 989, 1018
SORENSON, JONATHAN 184
Sorenson, Jonathan see SHALLIT, JEFFREY, 184
Soto, Juan see RUKHIN, ANDREW, 200
SPANIER, JEROME 521, 556, 558, 593, 657
Spanier, Jerome see OLDHAM, KEITH B., 1032
Springer, S. G. see BEASLEY, J. D., 618
Srinivasan, Ashok see MASCAGNI, MICHAEL, 158, 1025
Stallman, Richard see GRANLUND, TORBJÖRN, 401, 407, 825
STÄRK, ROBERT F. viii, 979
Steed, J. W. see BARNETT, A. R., 17
STEELE JR., GUY L. 341, 476, 895, 896, 959, 995, 998, 1004, 1020,

1024, 1034
Steele Jr., Guy L. vii, see GOSLING, JAMES, 978, 979
Stegun, Irene A. see ABRAMOWITZ, MILTON, 6, 58, 59, 196, 269,

301, 303, 341, 498, 521, 560, 562, 587, 589, 593, 600, 619, 624,
632, 638, 643, 651, 657, 661, 666, 673, 675, 678, 681–683, 689,
693, 731, 826

STEHLÉ, DAMIEN 28
Stehlé, Damien see HANROT, GUILLAUME, see LEFÈVRE,

VINCENT, see MULLER, JEAN-MICHEL, 28, 42, 104, 407, 881,
978

STEIN, JOSEF 184
STENGER, FRANK 733
Stenger, Frank see KOWALSKI, MAREK A., 733
Stepanov, Alexander A. see PLAUGER, P. J., 827
STERBENZ, PAT H. 948
STEVENS, W. RICHARD 91
STEVENSON, DAVID 63, 1016
Stevenson, David see COONEN, JEROME T., see CODY, JR.,

WILLIAM J., 104, 152
STEWART, G. W. 452, 453, 455, 476, 1033
STEWART, R. G. 104
STIBITZ, GEORGE R. 463
STILLWELL, JOHN 59, 541
Stoltz, L. see CODY, JR., WILLIAM J., 521, 593, 693, 769
STRACHEY, C. 481
STRECOK, ANTHONY J. 600, 603
Strecok, Anthony J. see CODY, JR., WILLIAM J., 521
STROUD, A. H. 560
STUDENTS OF PROF.WILLIAM M.KAHAN 774
Sturm, Thomas see DOLZMANN, ANDREAS, 28
Sussenguth, E. H. see FALKOFF, A. D., 928
Sutter, Gustavo D. see DESCHAMPS, JEAN-PIERRE, 978
SUZUKI, JEFF 59
SWARTZLANDER, JR., EARL E. 104, 966, 978, 1034
SWEENEY, D. W. 963
SZPIRO, GEORGE 60
Szüsz, Peter see ROCKETT, ANDREW MANSFIELD, 19

T
TADEU DE MEDEIROS, ADILSON 521, 552, 555, 558, 1021
Tallman, Richard see ABBOTT, PAUL H., 895, 998, 1004, 1034
TANG, HUI-CHIN 170, 176
TANG, PING TAK PETER 271
Tang, Ping Tak Peter see CORNEA, MARIUS, see HULL, T. E., 299,

476, 928, 996
TAUB, A. H. 1036
TEMME, NICO M. 521, 627, 827

Author/editor index . . . U 1047

Temme, Nico M. see GIL, AMPARO, 13, 17, 18, 58, 567, 644, 693,
827

TENT, M. B. W. 59, 591
Teukolsky, Saul A. see PRESS, WILLIAM H., 19, 196, 567, 589, 657
TEZUKA, SHU 177, 1026
THACHER, JR., HENRY C. 996, 1027
Thacher, Jr., Henry C. see CODY, JR., WILLIAM J., 521
Thatcher, Jr., Henry G. see HART, JOHN F., 1, 270, 306, 521, 589,

593, 644, 693, 768, 827
Theiler, James see GALASSI, MARK, 567, 583, 693, 694, 825
Théveny, Philippe see ENGE, ANDREAS, 825
THOMPSON, I. J. 18
THOMPSON, WILLIAM J. 520, 521, 556, 558, 567, 583, 593, 595,

644, 657, 693, 827
THORNTON, JAMES E. 949, 951
Thorsen, Hans see GRANLUND, TORBJÖRN, 401, 407, 825
Thron, Wolfgang J. see JONES, WILLIAM B., 13, 19
Tisdale, Robert see LYNCH, TOM, 293
Togersen, Mads see HEJLSBERG, ANDERS, 917
Toole, Betty Alexandra see KIM, EUGENE ERIC, 568
Torres, Serge see MULLER, JEAN-MICHEL, 42, 104, 407, 881, 978
Trefethen, Lloyd N. see AURENTZ, JARED L., 57
TRETIAKOV, K. V. 177
TRONG, SON DAO 927
Tsang, Wai Wan see MARSAGLIA, GEORGE, 200
TSEN, CHARLES 929
Tsen, Charles see CORNEA, MARIUS, see WANG, LIANG-KAI, 927,

928
Tsukada, Haruo see CHAKRABORTY, KALYAN, 827
TUKEY, JOHN W. 969
Tukey, John W. see COOLEY, JAMES W., 969
Tung, T. see LI, XIAOYE S., 452, 1032
TURNER, PETER R. 964

U
UEBERHUBER, CHRISTOPH W. 627
Uhl, Andreas see ENTACHER, KARL, 170
Ulam, Stanisław see METROPOLIS, NICHOLAS, 203

V
VAN DEUN, JORIS 693
VAN EETVELT, P. W. J. 600, 606
van Gasteren, A. J. M. see FEIJEN, W. H. J., 1013, 1020
VAN LOAN, CHARLES F. 299
Vangel, Mark see RUKHIN, ANDREW, 200
VERDONK, BRIGITTE 776, 827
Verdonk, Brigitte see CUYT, ANNIE, 19, 58, 776, 827
Verschaeren, Dennis see VERDONK, BRIGITTE, 776, 827
Vetterling, William T. see PRESS, WILLIAM H., 19, 196, 567, 589,

657
VIGNA, SEBASTIANO 1001, 1024, 1028
Villegas, Fernando Rodriguez see COHEN, HENRI, 589
Viterbi, Andrew J. see GOLOMB, SOLOMON W., 969
Vo, San see RUKHIN, ANDREW, 200

W
Waadeland, Haakon see CUYT, ANNIE, see LORENTZEN, LISA, 19,

58, 776, 827
Wada, Isaku see MATSUMOTO, MAKOTO, 176
Wagener, Jerrold L. see ADAMS, JEANNE C., 106
Waite, William viii, see CODY, JR., WILLIAM J., 1, 270, 344, 411,

763, 823, 939
WALKER, P. L. 619
Walkowiak, Steven see ABBOTT, PAUL H., 895, 998, 1004, 1034
WALL, H. S. 19
Walter, W. see BOHLENDER, GERD, 366

WANG, DONG 463
WANG, LIANG-KAI 927
Wang, Richard L. C. see HANSEN, ELDON R., 89
WANG, Z. X. 521, 827
Warnock, Tony T. see HOLIAN, BRAD LEE, 177
WARREN, HENRY S. 166, 176, 978, 1036
WASER, SHLOMO 1016
Watanabe, Akio see ABBOTT, PAUL H., 895, 998, 1004, 1034
WATSON, G. N. 693
WEBB, CHARLES F. 927
Weber, Hans-Jürgen see ARFKEN, GEORGE B., 8, 196, 303, 582,

627, 693
Weber, Ken see GRANLUND, TORBJÖRN, 401, 407, 825
Wegenkittl, Stefan see EICHENAUER-HERRMANN, JÜRGEN, see

HELLEKALEK, PETER, 178, 180
WEISSTEIN, ERIC W. 58, 569, 572, 576, 579, 587, 619
WELSH, J. 989, 1018
Wenzel, Klaus see AFFLERBACH, LOTHAR, 193
Werbrouck, A. E. see CAVAGNINO, D., 176
Weston, M. K. see AMOS, DONALD E., 693, 996
WHEELER, DAVID J. 178, 1026, 1037
Wheeler, David J. see NEEDHAM, ROGER M., 178, 1037
White, Jon L. see STEELE JR., GUY L., 895, 896, 995, 998, 1004,

1020, 1034
White, W. Romney see ABBOTT, PAUL H., 895, 998, 1004, 1034
Whitlock, Paula A. see HOLIAN, BRAD LEE, see PERCUS, ORA E.,

177, 200, 1026
WICHMANN, BRIAN A. 177, 1008, 1013, 1024, 1037
WICHURA, MICHAEL J. 600
WIEDER, THOMAS 693
Wiles, Andrew see CARLSON, JAMES A., 60, 303, 521, 579, 590
WILSON, ROBIN J. 60
Wiltamuth, Scott vii, see HEJLSBERG, ANDERS, 80, 917
WIRTH, NIKLAUS 3, 949
Wirth, Niklaus vii, see JENSEN, KATHLEEN, 989
Witek, Richard L. see SITES, RICHARD L., 107
Witzgall, Christoph see HART, JOHN F., 1, 270, 306, 521, 589, 593,

644, 693, 768, 827
Wojciechowski, K. W. see TRETIAKOV, K. V., 177
Wong, J. Y. see KAO, CHIANG, 170
Wong, R. (Roderick) see BEALS, RICHARD, 827
Wróbel, Iwona see SMOKTUNOWICZ, ALICJA, 89
WU, PEI-CHI 170

X
Xie, Min see MURTHY, D. N. PRABHAKAR, 196
Xu, Hongquan see DENG, LIH-YUAN, 1023

Y
Yee, Bennet see GRANLUND, TORBJÖRN, 401, 407, 825
Yellin, Frank viii, see LINDHOLM, TIM, 80, 979
Yohe, J. Michael see BRENT, RICHARD P., 1001, 1032
Yoo, D. J. see LI, XIAOYE S., 452, 1032
YOUNG, ROBYN V. 59
YPMA, TJALLING J. 8
Yushkevich, A. P. see BOGOLYUBOV, N. N., 591

Z
Zagier, Don see COHEN, HENRI, 589
Zaman, Arif see MARSAGLIA, GEORGE, 177, 200, 618, 1028, 1035
ZEISEL, H. 1024, 1037
ZHANG, SHANJIE 521, 556, 567, 593, 644, 657, 693, 827
ZHU, YONG-KANG 385
ZILIAK, STEPHEN THOMAS 196
ZILL, D. G. 646, 651
ZIMMERMANN, PAUL 28, 825

1048 Author/editor index . . . Z

Zimmermann, Paul see BRENT, RICHARD P., see ENGE, ANDREAS,
see FOUSSE, LAURENT, see GRANLUND, TORBJÖRN, see
HANROT, GUILLAUME, see LEFÈVRE, VINCENT, see STEHLÉ,
DAMIEN, 28, 104, 401, 407, 458, 476, 574, 825, 978

Zipperer, H.-G. see DUALE, A. Y., 927
ZIV, ABRAHAM 827
Zucker, Ruth see SALZER, HERBERT E., 560
ZWILLINGER, DANIEL 58, 560
Zwillinger, Daniel see GRADSHTEYN, I. S., 58, 619, 682, 687

Function and macro index

FUNCTION: A MATHEMATICAL QUANTITY WHOSE CHANGES OF VALUE

DEPEND ON THOSE OF OTHER QUANTITIES CALLED ITS VARIABLES.

— New Century Dictionary (1914).

MACRO: A NAME (POSSIBLY FOLLOWED BY A FORMAL arg LIST)
THAT IS EQUATED TO A TEXT OR SYMBOLIC EXPRESSION TO WHICH IT IS TO BE EXPANDED

(POSSIBLY WITH THE SUBSTITUTION OF ACTUAL ARGUMENTS) BY A MACRO EXPANDER.

— The New Hacker’s Dictionary (1996).

Page numbers of defining and primary entries are shown in bold. The entries for algorithm, function, macro, and mathematical function each contain
a lengthy list of subentries. Uppercase macro names followed by empty parentheses are often wrappers for integer, binary floating-point, and
decimal floating-point functions of all supported lengths. Greek letters are indexed by their English names.

Symbols
-FP_T_MAX macro 398
%REF() function 941
%VAL() function 941
_FPU_GETCW() macro 125, 126
_FPU_SETCW() macro 125, 126
_IPOW() macro 417–419
_Imaginary_I macro 441, 441
_MAXRANL macro 213
_XPG4 macro 163
__FILE__ macro 74
__FP_FAST_FMAF__ macro 392
__FP_FAST_FMA__ macro 392
__GNUC__ macro 391
__INV_LOG_B macro 782
__LINE__ macro 74
__LN_MAXNORMAL macro 782
__LN_MINSUBNORMAL macro 782
__LOG_B macro 782
__LOG_B_HI macro 782
__LOG_B_LO macro 782
__MACHEPS__ macro 782
__STDC_IEC_559__ macro 219
__STDC_IEC_559_COMPLEX__ macro 442
__asm__() macro 293, 339, 391, 392
__cplusplus macro 983, 984
__acs() function 325
_controlfp_s() function 125
_cvits() function 846
_cvtcmp() function 882, 886, 886, 887,

889, 901
_cvtdir() function 845, 848, 849, 893,

894
_cvtfsf() function 884, 892, 897
_cvtgpn() function 863
_cvtgrp() function 862
_cvtinf() function 887
_cvtisf() function 884, 893
_cvtits() function 846, 858, 862
_cvtjus() function 847, 858
_cvtnan() function 889

_cvtpow() function 884, 890, 898
_cvtsgn() function 881, 886, 890, 901
_cvtupper() function 847, 848
_pxy() function 430
_pxydl() function 439
_pxyl() function 439
_pxyll() function 430
_reddll() function 307
_rp() function 308
_rph() function 308

A
aam() function (mathematical) 665–667
ab() function (mathematical) 678
Abs() function 922
abs() function 57, 191, 711, 782, 922
abs() function (Maple) 551, 609
Abs[] function (Mathematica) 41
ABS() macro 245, 246, 444
ABSF() function 961
absf() function 922
absl() function 922
AccSum() function 385
AccSumK() function 385
acd() function (mathematical) 665, 667
acn() function (mathematical) 665–667
Acos() function 913, 914, 921
acos() function 43, 44, 58, 62, 323,

654–656, 763, 826, 827, 913, 921, 925,
981, 983, 992

acos() function (mathematical) 43, 62,
323–325, 504, 507, 624, 646, 654, 656,
665–667, 801, 803, 804, 812

ACOS() macro xxv, 325, 326, 509
acosdeg() function 59
Acosf() function 913–915, 921
acosf() function 326, 913, 921, 925, 983,

992
Acosh() function 913, 914, 921
acosh() function 43, 44, 58, 62, 348, 350,

352, 654–656, 808, 826, 913, 921, 981,

992
acosh() function (mathematical) 43, 62,

348–350, 517, 518, 624, 654
Acoshf() function 913–915, 921
acoshf() function 350, 913, 921, 992
Acoshl() function 913, 914
acoshl() function 913, 921, 992
Acosl() function 913, 914
acosl() function 913, 921, 925, 992
acosp() function 59
acospi() function 59
ACOSSIN() macro 325, 326, 331, 331
acot() function 654–656
acot() function (mathematical) 654
acoth() function 654–656
acoth() function (mathematical) 654
acs() function (mathematical) 665, 667
adc() function (mathematical) 665, 667
adn() function (mathematical) 665–667
ads() function (mathematical) 665, 667
Adx() function 913
adx() function 59, 913, 981
Adxf() function 913
adxf() function 913
Adxl() function 913
adxl() function 913
agm() function 59, 620, 622, 634
agm() function (mathematical) 620, 624,

631–635, 638, 640
AGM() macro 620, 621, 633, 636
AGM_function() function 620
Ai() function (mathematical) 695
aint() function 129
alias() function (Maple) 717, 724
altsum() function 589, 589, 590
am() function (mathematical) 657–662,

665, 683, 691
amod() function 129
anc() function (mathematical) 665, 667
and() function 206

© Springer International Publishing AG 2017
N.H.F. Beebe, The Mathematical-Function Computation
Handbook, DOI 10.1007/978-3-319-64110-2

1049

1050 Function and macro index . . . C

and() function (mathematical) 175, 665,
667

anint() function 129
annuity() function 59, 294, 295–298
ans() function (mathematical) 665, 667
app_ierf() function (Maple) 606, 606
arccos() function 323
arccos() function (Maple) 10
Arccosf() function 914
Arccosf() macro 913
arcsin() function 323
arcsin() function (Maple) 10
ArcSin[] function (Mathematica) 21
Arcsinf() function 914
Arcsinf() macro 913
arctan() function (Maple) 10
Arctanf() macro 913
arctanh() function (Maple) 607
arg() function 826
arg() function (mathematical) 446, 570
ArithmeticGeometricMean[] function

(Mathematica) 620
array() function (Maple) 623
asc() function (mathematical) 666, 667
asd() function (mathematical) 666, 667
asin() function 44, 58, 62, 323, 654–656,

763, 826, 827
asin() function (mathematical) 44, 62,

323–325, 504, 517, 630, 653, 654, 661,
662, 665–667, 801, 803, 804, 812

ASIN() macro xxv, 325, 327, 663
asindeg() function 59, 340
asinh() function 44, 58, 62, 348, 350,

352, 654–656, 808, 826
asinh() function (mathematical) 62,

348–350, 504, 517, 518, 654, 667
asinp() function 59, 340
asinpi() function 59, 340
asm() function 824
asn() function (mathematical) 666, 667
asplit() function (Maple) 247, 247
assert() function 181, 182, 186, 187
assert macro 164, 424, 837, 839,

844–846, 855
assert() macro 255, 256, 259, 263, 264,

425, 437, 861
assume() function (Maple) 623
asympt() function (Maple) 615
atan() function 58, 62, 331, 336,

654–656, 763, 765, 824, 826, 827
atan() function (mathematical) 62, 79,

331–333, 338, 340, 408, 504, 517, 539,
623, 631, 654, 659, 661, 801–804, 812

ATAN() macro xxv, 333, 335, 338, 338, 804
atan2() function 58, 70, 71, 202, 336,

336, 338, 340, 445, 479, 763, 827
atan2() function (mathematical) xxxi, 71,

336, 338, 495, 812
ATAN2() macro 445, 463
atan2deg() function 59
atan2f() function 71, 336
atan2l() function 71, 336
atan2p() function 59
atan2pi() function 59
atandeg() function 59
atanf() function 333

atanh() function 44, 58, 61, 62, 96, 348,
352, 654–656, 808, 826

atanh() function (mathematical) 61, 62,
96–99, 348, 350, 504, 517, 518, 606,
631, 654

ATANH() macro 350
atanhd() function 350
atanhdf() function 350
atanhf() function 350
atanp() function 59
atanpi() function 59
atof() function 896, 899, 901
atoi() function 896
atol() function 896

B
Bn() function (mathematical) 987
B macro 307, 308, 345, 633, 636, 640, 643,

708, 780, 791
B_TO_CEIL_HALF_T macro 331
B_TO_MINUS_HALF_T macro 331
B_TO_T macro 250
B_TO_T_MINUS_ONE macro 135, 139
BASE macro 155, 354
bei() function (mathematical) 695
ber() function (mathematical) 695
bern() function 569
bernfrac() function 569
Bernoulli() function 569
bernoulli() function 569
bernoulli() function (Maple) 569, 570
BernoulliB[] function (Mathematica)

569
bernum() function 59, 571
BERNUM() macro 572, 585
bessel_j() function 694
bessel_j0() function 694
bessel_y() function 694
BesselI() function (Maple) 724
BesselI[] function (Mathematica) 751
BesselJ() function 694
besselJ() function 694
besselj() function 694
BesselJ[] function (Mathematica) 694
BesselJZeros() function (Maple) 697
BesselK() function (Maple) 726
besseln() function 694
BesselY() function 694
besselY() function 694
BesselY[] function (Mathematica) 694
BesselYZeros() function (Maple) 697
β() function (mathematical) 587, 587,

588, 589
beta() function 59, 590
BETA() macro 590
betam1() function 59, 590, 773
BETAM1() macro 590, 592
betnm1() function 59, 590
BETNM1() macro 590, 592
betnum() function 59, 590
bfpsi() function 548
bfpsi0() function 537, 548
Bi() function (mathematical) 695
bi0() function xxviii, 59, 719, 725, 726,

729
BI0() macro 760, 761

bi1() function xxviii, 59, 719, 725, 727
BI1() macro 760, 761
BigMul() function 57
bin() function xxviii, 59, 62, 719, 728
BIN() macro 761
binarySearch() function 976
binfp() function 851
binom() function 59
BINOM() macro 591
binsearch() function 425, 426, 439
bis0() function xxviii, 59, 719, 725, 729
BIS0() macro 725
bis1() function xxviii, 59, 719, 725, 730
bisn() function xxviii, 59, 719, 731
BISN() macro 761
bitsof() macro 256, 256
bk0() function xxviii, 59, 719, 728, 732
bk1() function xxviii, 59, 719, 728, 733
bkn() function xxviii, 59, 62, 719, 729,

734
bks0() function xxviii, 59, 719, 726, 729,

735
bks1() function xxviii, 59, 719, 726, 729,

736
bksn() function xxviii, 59, 719, 729, 737
BKSN() macro 730
Block[] function (Mathematica) 39, 40
BM_FMA() macro 406, 406

C
Cn() function (mathematical) 695
cabs() function 442, 445, 479, 495
CABS() macro 445
cacos() function xxvi, 479, 506, 507, 510
CACOS() macro 509
cacosh() function xxvi, 479, 516–519
CACOSH() macro 517
cadd() function 59, 445
CADD() macro 445
carg() function 446, 479, 495
CARG() macro 446
casin() function xxvi, 479, 506, 510
CASIN() macro 509
casinh() function xxvi, 479, 516, 518,

519
CASINH() macro 517
catan() function xxvi, 479, 506, 510
CATAN() macro 509
catanh() function xxvi, 479, 516, 518,

519
CATANH() macro 517
cbrt() function 44, 58, 62, 237, 237, 240,

479, 485, 982
cbrt() function (mathematical) 62, 238,

485, 486
CBRT() macro 379, 487
cbrtf() function 240
cbrtl() function 240
CC macro xxxvi
ccbrt() function xxvi, 479, 485–488
CCBRT() macro 487
CChebyshevFit[] function (Mathematica)

56, 57
cconj() function 59
ccopy() function 59, 448
CCOPY() macro 448

Function and macro index . . . C 1051

ccos() function xxvi, 479, 503, 505
CCOS() macro 504
ccosh() function xxvi, 479, 511, 513, 515
CCOSH() macro 514
cd() function (mathematical) 658, 661,

665
cdiv() function 59, 451
CDIV() macro 451, 458
ceil() function 57, 58, 129, 136, 136,

137, 161, 852, 864
ceil() function (mathematical) 136, 360,

361, 414, 415, 547
CEIL() macro 136, 137, 837
ceilf() function 136
(ceiling ...) function (Lisp) 130
ceiling() function 130
ceill() function 136
cexp() function xxvi, 479, 488–490, 492,

493
cexp() function (mathematical) 488
CEXP() macro 492
cexpm1() function xxvi, 494
cexpm1() function (mathematical) 492
CEXPM1() macro 492, 494
cf() function 711, 712
CFLAGS macro 5
CForm[] function (Mathematica) 37–39,

41
CFormat[] function (Mathematica) 39,

40
CHAR_BIT macro 159, 250, 256, 257, 419
chebsort() function (Maple) 47, 51, 52
chebyshev() function (Maple) 47, 50–52,

726
ChebyshevApproximation[] function

(Mathematica) 56
CHECK_FILTER macro 764
chisq() function 59, 199
chisq() function (mathematical) 561, 562
chisq_measure() function 199, 199
cimag() function 445, 446, 451, 456, 458,

460
CIMAG() macro 442, 446, 456, 461, 462
cis() function (mathematical) 443
CLAMP() macro 908
CLEAR() macro 840, 840, 842
clock() function 158, 159
clog() function xxvi, 479, 495–497
CLOG() macro 497
clog1p() function xxvi, 500, 501, 507
CLOG1P() macro 497, 500, 509
clp2() function 59, 166, 167, 168
cmplx() function 443, 994
CMPLX() macro 442, 443, 446
cmul() function 59, 458
CMUL() macro 458, 459
cn() function (mathematical) 657–665,

675, 691
cneg() function 59, 460
CNEG() macro 460
CodeGeneration[C]() function (Maple)

54
coeff() function (Maple) 54, 554
Coefficient[] function (Mathematica)

37, 40, 41

compound() function 59, 294, 294,
295–298

conj() function 446, 480, 482, 485, 486,
488, 490, 495, 496, 507, 513, 514, 518,
826

CONJ() macro 446
CONS() macro 944
Console.WriteLine() function 90
ContinuedFraction[] function

(Mathematica) 17
convert() function (Maple) 15, 16, 53,

251, 277, 554, 604
COPY() macro 187, 188
copySign() function 982
copysign() function 58, 135, 147, 150,

152–154, 451, 458, 460, 478, 544, 975
copysign() function (mathematical) 315
COPYSIGN() macro 135, 147, 150,

152–154, 331, 338, 356, 364, 366, 367,
369, 371, 373, 375, 379, 398, 432, 433,
451, 458, 460, 484, 487, 491, 492, 494,
497, 500, 509, 656, 677, 761, 841, 885

copysignf() function 154
copysignl() function 154
cos() function 4, 43, 44, 58, 62, 299, 305,

306, 479, 763, 824, 826, 827
cos() function (Maple) 10
COS() macro xxv, 311, 321, 323
cosbritishmil() macro 305
cosd() function 305
cosdeg() function 59, 305, 313
COSDEG() macro 314, 315
cosec() function (mathematical) 299
cosh() function 43, 44, 58, 62, 341, 345,

352, 479, 749, 763, 826, 982
cosh() function (Maple) 10
cosnatomil() macro 305
cosp() function 59, 304
cospi() function 59, 304, 315, 316
cospi() function (mathematical) 315, 317
COSPI() macro 318, 584
cospi4() function 318
cospi4() function (mathematical)

316–318
cosusmil() macro 305
cot() function 44, 61, 62, 827
cot() function (Maple) 10, 11, 551
cotan() function 59, 763
cotan() function (mathematical) 302,

303, 310, 315, 340
COTAN() macro 677
cotandeg() function 59
cotanp() function 59
cotanpi() function 59, 315, 318
cotanpi() function (mathematical) 315,

320
COTANPI() macro 557
CPoly[] function (Mathematica) 40, 40
cpow() function xxvi, 479, 502
CPOW() macro 502
cproj() function 460, 460
CPROJ() macro 460
CRatComment[] function (Mathematica)

41, 42
CRatData[] function (Mathematica) 42,

42

CRatPoly[] function (Mathematica) 40,
42

creal() function 445, 446, 451, 458, 460,
461

CREAL() macro 442, 446, 461, 462
crlwp() function 690
cs() function (mathematical) 658, 661,

665, 683
csc() function (mathematical) 569
csch() function (mathematical) 569
csin() function xxvi, 479, 503, 505
CSIN() macro 504
csinh() function xxvi, 479, 511, 513, 515
CSINH() macro 514
csqrt() function xxvi, 479–482, 484, 485
CSQRT() macro 484, 487
csub() function 59, 461
CSUB() macro 461
ctable() function (Maple) 54, 55
ctan() function xxvi, 479, 503, 505
CTAN() macro 504
ctanh() function xxvi, 479, 511, 514, 515
CTANH() macro 514
ctn() function (mathematical) 302
CTOCX() macro 448
CTOCX_() macro 442, 445, 446, 448, 451,

458, 460, 462, 463, 484
CUTOFF macro 527, 528, 536, 546, 547
CVT_FE_DOWNWARD macro 845, 849, 894
CVT_FE_TONEAREST macro 845, 849, 894
CVT_FE_TOWARDZERO macro 845, 849, 894
CVT_FE_UPWARD macro 845, 849, 894
cvt_precision() function 855, 864
CVT_SUFFIX_DD macro 892
CVT_SUFFIX_DF macro 892
CVT_SUFFIX_DL macro 892
CVT_SUFFIX_DLL macro 892
CVT_SUFFIX_F macro 892
CVT_SUFFIX_L macro 892, 893
CVT_SUFFIX_LL macro 892, 893
CVT_SUFFIX_NONE macro 892, 893
CVT_SUFFIX_U macro 893
CVT_SUFFIX_UL macro 893
CVT_SUFFIX_ULL macro 893
cvtia() function 59, 900, 901, 901, 905,

906, 910
CVTIA() macro 900, 901
cvtib() function 59, 881, 881
CVTIB() macro 881, 881, 885, 894, 901
cvtibf() function 881
cvtibl() function 881
cvtid() function 59, 895, 897, 910
CVTID() macro 895, 897, 897, 901
cvtidf() function 865
cvtig() function 59, 899
cvtih() function 59, 895, 895
CVTIH() macro 895, 895, 901
cvtihf() function 895
cvtihl() function 895
CVTINF() macro 881, 887, 901
cvtio() function 59, 894, 894
CVTIO() macro 894, 895, 901
cvtiof() function 894
cvtiol() function 894
CVTNAN() macro 881, 889, 901
CVTO_E_STYLE macro 854, 855

1052 Function and macro index . . . D

CVTO_F_STYLE macro 854, 855
CVTO_FILL_WITH_ZERO macro 840, 842
CVTO_FLAG_EQUALS macro 840
CVTO_FLAG_MINUS macro 840, 862
CVTO_FLAG_PLUS macro 840, 855
CVTO_FLAG_SHARP macro 840, 855, 857
CVTO_FLAG_SPACE macro 840, 855
CVTO_FLAG_ZERO macro 840, 855
CVTO_G_STYLE macro 854, 855
CVTO_JUSTIFY_CENTER macro 840
CVTO_JUSTIFY_LEFT macro 840
CVTO_JUSTIFY_RIGHT macro 840
CVTO_NONE macro 840, 842
CVTO_SHOW_EXACT_ZERO macro 840, 843,

855
CVTO_SHOW_MIXEDCASE macro 840
CVTO_SHOW_PLUS macro 840, 841
CVTO_SHOW_PLUS_AS_SPACE macro 840,

841, 847
CVTO_SHOW_POINT macro 840, 843, 844,

846, 857
CVTO_SHOW_SUBNORMAL macro 840, 842
CVTO_SHOW_UPPERCASE macro 840, 842,

847, 855
CVTO_TRIM_TRAILING_ZEROS macro 840,

846, 855
cvtob() function 59, 878
cvtod() function 59, 851, 853
CVTOD() macro 854–856, 860, 864–866
cvtodf() function 865
cvtog() function 59, 866
CVTOG() macro 866
cvtoh() function 59, 834, 839, 839, 878
CVTOH() macro 834, 839, 839, 840, 845,

847, 848, 850
cvtohf() function 839
cvtohl() function 839
cvtoi() function 59, 866
CVTOI() macro 842, 858, 866
cvton() function 59, 866, 867
CVTON() macro 842, 858, 866, 867
cvtonf() function 867
cvtoo() function 59, 878
CVTOO() macro 850, 895
cvtrnd() function 894
CVTRND() macro 885, 894
cxabs() function 59, 442, 444, 445
CXABS() macro 444, 484, 487, 497, 500
cxacos() function 59
CXACOS() macro 509, 509
cxacosh() function 59
CXACOSH() macro 517
cxadd() function 59, 445
CXADD() macro 445, 517
CXADD_() macro 491, 494, 500
CXADDR_() macro 491, 500
cxarg() function 59, 445, 446
CXARG() macro 445, 446, 487, 497, 500
cxasin() function 59
CXASIN() macro 517
cxasinh() function 59
CXASINH() macro 517
cxatan() function 59
cxatanh() function 59
cxcbrt() function 59
CXCBRT() macro 487, 487

cxconj() function 59, 446
CXCONJ() macro 446
cxcopy() function 59, 448
CXCOPY() macro 448
CXCOPY_() macro 448, 500
cxcos() function 59
CXCOS() macro 504
cxcosh() function 59
CXCOSH() macro 514
cxdiv() function 59, 451, 451, 471
CXDIV() macro 451, 451, 452, 471, 494,

500, 514
cxexp() function 59
CXEXP() macro 491, 492, 492, 494
cxexpm1() function 59
CXEXPM1() macro 494, 494
CXFMA() macro 491, 491, 500
CXHALF1NORM_() macro 491, 500, 509
cximag() function 59, 456
CXIMAG() macro 456
CXIMAG_() macro 443, 444–446, 451, 453,

454, 456, 458–464, 484, 487, 491, 492,
494, 497, 500, 501, 504, 509, 514, 517

cxipow() function 59
CXIPOW() macro 502
cxlog() function 59
CXLOG() macro 497, 497, 500, 517
cxlog1p() function 59
CXLOG1P() macro 497, 500, 500
cxmul() function 59, 458, 458
CXMUL() macro 458, 458, 491, 500
CXMULBYI_() macro 507, 517
cxneg() function 59, 459
CXNEG() macro 459, 459
cxpow() function 59
CXPOW() macro 501, 502
cxproj() function 59, 460, 460
CXPROJ() macro 460, 460
cxreal() function 59, 461
CXREAL() macro 461
CXREAL_() macro 443, 444–446, 451, 453,

454, 458–464, 484, 487, 491, 492, 494,
497, 500, 501, 504, 509, 514, 517

CXSCALE_() macro 484, 487, 491, 500
cxset() function 59, 451
CXSET_() macro 442, 443, 443, 445, 446,

451, 453, 454, 458–461, 463, 484, 487,
491, 492, 494, 497, 500, 501, 504, 509,
514, 517

cxsin() function 59
cxsinh() function 59
CXSINH() macro 514
cxsqrt() function 59, 485
CXSQRT() macro 484, 484, 517
cxsub() function 59, 461
CXSUB() macro 461, 461
CXSUB_() macro 500
CXSUBR_() macro 494, 497, 500
cxtan() function 59
cxtanh() function 59
CXTANH() macro 494, 514
CXTOC() macro 448
CXTOC_() macro 443, 443, 448, 451, 458,

460, 463, 484

D
D macro 4, 255

DBL_EPSILON macro 161, 852
DBL_MANT_DIG macro 164, 165, 391, 397,

402
DBL_MAX macro 161
DBL_MAX_10_EXP macro 855
DBL_MAX_EXP macro 252, 391
DBL_MIN macro 100, 123, 598
DBL_MIN_10_EXP macro 855
dc() function (mathematical) 659, 661,

665
DEC128_DEN macro 937
DEC128_EPSILON macro 937
DEC128_MANT_DIG macro 937
DEC128_MAX macro 937
DEC128_MAX_EXP macro 937
DEC128_MIN macro 937
DEC128_MIN_EXP macro 937
DEC256_DEN macro 937
DEC256_EPSILON macro 937
DEC256_MANT_DIG macro 937
DEC256_MAX macro 937
DEC256_MAX_EXP macro 937
DEC256_MIN macro 937
DEC256_MIN_EXP macro 937
DEC32_DEN macro 937
DEC32_EPSILON macro 937
DEC32_MANT_DIG macro 937
DEC32_MAX macro 937
DEC32_MAX_EXP macro 937
DEC32_MIN macro 937
DEC32_MIN_EXP macro 937
DEC64_DEN macro 937
DEC64_EPSILON macro 937
DEC64_MANT_DIG macro 937
DEC64_MAX macro 937
DEC64_MAX_EXP macro 937
DEC64_MIN macro 937
DEC64_MIN_EXP macro 937
DEC_DBL_DEN macro 937
DEC_DBL_EPSILON macro 937
DEC_DBL_MANT_DIG macro 937
DEC_DBL_MAX macro 937
DEC_DBL_MAX_EXP macro 937
DEC_DBL_MIN macro 937
DEC_DBL_MIN_EXP macro 937
DEC_EVAL_METHOD macro 936, 937
DEC_FLT_DEN macro 937
DEC_FLT_EPSILON macro 937
DEC_FLT_MANT_DIG macro 937
DEC_FLT_MAX macro 937
DEC_FLT_MAX_EXP macro 937
DEC_FLT_MIN macro 937
DEC_FLT_MIN_EXP macro 937
DEC_INIT_DECIMAL128 macro 403
DEC_LDBL_DEN macro 937
DEC_LDBL_EPSILON macro 937
DEC_LDBL_MANT_DIG macro 937
DEC_LDBL_MAX macro 937
DEC_LDBL_MAX_EXP macro 937
DEC_LDBL_MIN macro 937
DEC_LDBL_MIN_EXP macro 937
DEC_LLDBL_DEN macro 937
DEC_LLDBL_EPSILON macro 937
DEC_LLDBL_MANT_DIG macro 937
DEC_LLDBL_MAX macro 937
DEC_LLDBL_MAX_EXP macro 937

Function and macro index . . . E 1053

DEC_LLDBL_MIN macro 937
DEC_LLDBL_MIN_EXP macro 937
decContextDefault() function 403
decimal128FromNumber() function 403
decimal128ToNumber() function 403
decNumberAdd() function 403
decNumberMultiply() function 403
decNumberNormalize() function 932
decNumberQuantize() function 931
decNumberSameQuantum() function 931
decrypt() function 205, 207
DEG_TO_RAD macro 315
degcos() function 305
denom() function (mathematical) 627,

629
Denominator[] function (Mathematica)

37, 40, 41
dfabs() function 59
dfact() function 59
DFACT() macro 591
dfadd() function 59
dfdiv() function 59
dfmul() function 59
dfneg() function 59
dfsqrt() function 59
dfsub() function 59
diff() function (Maple) 551, 603
digit_frequency() function 198, 199,

199
DIGIT_VALUE() macro 834, 839, 845, 850,

883, 890, 895
dint() function 129
DivRem() function 57
DllImport() function 921
dn() function (mathematical) 658–665,

675, 691
dnint() function 129
dnrm2() function 223, 231
double() function 400
ds() function (mathematical) 658, 661,

665, 683
dtoh() function 772
dump() function 205

E
Eν() function (mathematical) 695
E() function 630
E() function (Maple) 638
E’() function (mathematical) 628, 629
E() function (mathematical) 627, 629,

638, 987
e2norm() function 113, 114, 114
E2NORM() macro 114
EC() function 630
echeb() function 49, 49, 50, 50, 51, 52, 59
ECHEB() macro 724
echeb2() function 51, 59
EDOM macro 71, 91, 93–96, 141–143, 148,

150, 152, 155, 563, 700, 719, 758, 803
egcd() function 186–188, 188, 189
EILSEQ macro 91, 93
elementsof() macro 256, 259, 263, 396,

846, 847, 858, 860, 862, 863, 865, 893
elf() function 645
eljaam() function 59, 667
eljacd() function 59

eljacn() function 59
eljacs() function 59
eljadc() function 59
eljadn() function 59
eljads() function 59
eljag() function 59
ELJAG() macro 663, 663, 681
eljam() function 59
ELJAM() macro 659
eljanc() function 59
eljand() function 59
eljans() function 59
eljasc() function 59
eljasd() function 59
eljasn() function 59, 667
eljcd() function 59
ELJCD() macro 659
eljcn() function 59
ELJCN() macro 659, 663
eljcs() function 59
ELJCS() macro 659
eljdc() function 59
eljdn() function 59
eljds() function 59
eljh() function 59
ELJH() macro 681, 688
eljh4() function 59
ELJH4() macro 688, 692
eljnc() function 59
ELJNC() macro 659
eljnd() function 59
ELJND() macro 659
eljns() function 59
ELJNS() macro 659
eljsc() function 59
ELJSC() macro 659, 663
eljsd() function 59
ELJSD() macro 659
eljsn() function 59
ELJSN() macro 659, 663
eljt() function 59
ELJT() macro 681
eljt1() function 59
ELJT1() macro 674
eljt2() function 59
ELJT2() macro 674
eljt3() function 59
ELJT3() macro 674
eljt4() function 59
ELJT4() macro 674
eljta() function 59
ELJTA() macro 674
eljtd1() function 59
ELJTD1() macro 676
eljtd2() function 59
ELJTD2() macro 676
eljtd3() function 59
ELJTD3() macro 676
eljtd4() function 59
ELJTD4() macro 676
eljtda() function 59
ELJTDA() macro 676, 677, 677
eljz() function 59
ELJZ() macro 681
elk() function 59
ELK() macro 669, 672, 674

elkm1() function 59, 672
ELKM1() macro 669, 672, 673
elldi() function 59
elldi() function (mathematical) 651
elle() function 59, 628, 630, 985
elle() function (mathematical) 628, 629,

638
ELLE() macro 640, 640, 643, 681, 691
ellec() function 59, 630, 985
ellec() function (mathematical) 629
ELLEC() macro 643, 643
ellei() function 59, 651, 653
ellei() function (mathematical) 651, 653
ELLEI() macro 681
ellfi() function 59, 651, 653
ellfi() function (mathematical) 651
ELLFI() macro 681
ellipj() function 659
elliptic_ec() function 628
elliptic_kc() function 625
elliptic_pi() function 631
EllipticCE() function (Maple) 628
EllipticCE[] function (Mathematica)

628
EllipticCK() function (Maple) 625
EllipticCK[] function (Mathematica)

628
EllipticE() function (Maple) 628, 638,

653
EllipticE[] function (Mathematica)

628, 653
EllipticF() function (Maple) 653
EllipticF[] function (Mathematica)

653, 667
EllipticK() function 625
EllipticK() function (Maple) 625, 638
EllipticK[] function (Mathematica)

625, 628
EllipticModulus() function (Maple)

669, 670, 672
EllipticNome() function (Maple) 669
EllipticNomeQ[] function (Mathematica)

669
EllipticPi() function (Maple) 631, 653
EllipticPi[] function (Mathematica)

631, 653
EllipticTheta() function 674
EllipticTheta[] function (Mathematica)

674
ellk() function 59, 630, 645
ellk() function (Maple) 626
ellk() function (mathematical) 625, 626,

628, 629, 632, 633
ELLK() macro 633, 640, 643, 672, 681, 691
ellkc() function 59, 630
ellkc() function (Maple) 626
ellkc() function (mathematical) 625, 626,

629, 633–635
ELLKC() macro 636, 643, 673
ellkn() function 59
ELLKN() macro 672
ellpi() function 59, 652, 653
ellpi() function (mathematical) 651
ELLPI() macro 631
ellrc() function 59
ELLRC() macro 649, 650

1054 Function and macro index . . . F

ellrd() function 59
ELLRD() macro 649
ellre() function 59
ellre() function (mathematical) 653
ELLRE() macro 649
ellrf() function 59
ellrf() function (mathematical) 682
ELLRF() macro 649
ellrg() function 59
ellrg() function (mathematical) 654
ELLRG() macro 649
ellrh() function 59
ELLRH() macro 649
ellrj() function 59
ELLRJ() macro 649
ellrk() function 59
ellrk() function (mathematical) 654
ELLRK() macro 649
ellrl() function 59
ELLRL() macro 649
ellrm() function 59
ELLRM() macro 649
ellwp() function 685
elntc() function 59
ELNTC() macro 678
elntd() function 59
ELNTD() macro 678
elntn() function 59
ELNTN() macro 678
elnts() function 59
ELNTS() macro 678
elq() function 59
ELQ() macro 669
elq1p() function 59
ELQ1P() macro 669
elqc() function 59
ELQC() macro 669
elqc1p() function 59
ELQC1P() macro 669
elwdp() function 59
ELWDP() macro 685, 689
elwe() function 59
ELWE() macro 683, 692
elwg() function 59
ELWG() macro 683
elwip() function 59
ELWIP() macro 685
elwk() function 59
ELWK() macro 685, 688
elwo() function 59
ELWO() macro 685
elwp() function 59
ELWP() macro 685, 690
elws() function 59
ELWS() macro 688
elwz() function 59
ELWZ() macro 688
EMAX macro 83, 85, 251, 252
EMIN macro 83, 85, 251, 837, 846
encrypt() function 205, 206–208
envp() function 117
EOF macro 868, 901
ERANGE macro 91, 93, 96, 130, 141–143,

690, 758, 885, 897
ercw() function 59, 211, 212
ercw_r() function 59, 211

ereduce() function 59, 265
EREDUCE() macro 254, 340
erf() function 44, 58, 62, 593, 593, 617,

768, 768, 925
erf() function (Maple) 602, 603, 607
erf() function (mathematical) 44, 62, 100,

561, 593–598, 600, 605–609, 768, 769
erfc() function 44, 58, 62, 593, 593, 617,

768, 768, 769
erfc() function (Maple) 602, 603
Erfc[] function (Mathematica) 601
erfc() function (mathematical) 20, 44, 62,

100, 561, 593–598, 600, 603, 609, 610,
614, 616, 768, 769

erfc_scaled() function 593
erfcinv() function (Matlab) 601
erfcs() function 59
erfcs() function (mathematical) 598
ERFCS() macro 598
Erff() function 916
erff() function 993
erfinv() function (Matlab) 601
eriduce() function 59, 265, 306
ERIDUCE() macro 254, 255, 258, 261, 262,

308, 340
ERRDIV() macro 529
errmag() function (mathematical) 268,

283, 700, 721, 732, 733
ERRMUL() macro 527, 529, 529
error() function 74, 870, 871
error() macro 74
ERRSQRT() macro 529
ERRSUM() macro 529, 529
ESUB macro 85
η() function (mathematical) 587, 587
euler() function 573
euler() function (Maple) 573
EulerE[] function (Mathematica) 573
eulnum() function 59, 574
EULNUM() macro 573, 587, 590
eval_cf_lentz() function 19
eval_cf_steed() function 18
evalb() function (Maple) 33, 51, 247,

551, 553
evalf() function (Maple) 52, 53, 247,

269, 316, 486, 554, 604, 606, 607, 609,
638

evch() function 724, 725
exact() function (mathematical) 467, 468
exact_add() function 397
exact_add()() function 406
EXACT_ADD() macro 399, 406
exact_mul()() function 405, 406
EXACT_MUL() macro 406, 407
ExactAdd() function (mathematical) 403
ExactMult() function (mathematical)

403
exit() function 870
EXIT_FAILURE macro 870
EXIT_SUCCESS macro 92–94, 101, 113,

127, 905, 925, 935
exp() function 12, 44, 58, 62, 191, 267,

271, 272, 294, 479, 781, 788, 824, 826,
827

exp() function (Maple) 10, 26, 27, 269,
569, 603, 724, 726

Exp[] function (Mathematica) 17, 42, 56
EXP() macro xxv, 192, 272, 273, 275, 345,

491, 492, 528, 557, 566, 668, 725, 730,
746, 749

exp10() function 44, 59, 62, 267
exp10() function (mathematical) 62
EXP10() macro 272, 558
exp10m1() function 59, 62, 273, 279, 281
exp10m1() function (mathematical) 62
EXP10M1() macro 277
exp16() function 59, 267
EXP16() macro 272, 558
exp16m1() function 59, 273, 281
EXP16M1() macro 277
exp2() function 44, 58, 62, 267, 827
exp2() function (mathematical) 62, 281
EXP2() macro 272, 558, 584, 586, 663
exp2m1() function 59, 62, 273, 281
exp2m1() function (mathematical) 62
EXP2M1() macro 277, 587
exp8() function 59, 267
EXP8() macro 272, 558
exp8m1() function 59, 273, 281
EXP8M1() macro 277
EXPBASE() macro 558
expdf() function 271
expf() function 272
expm1() function 58, 62, 273, 273, 277,

290, 298, 347, 492, 772, 793, 982
expm1() function (mathematical) 62,

273, 274, 295, 298, 347, 668, 747, 793,
794, 804, 805

EXPM1() macro xxv, 277–279, 494, 560
expm1ts() function 275
Exponent[] function (Mathematica) 40,

41
exponent() function (mathematical) 832
Export[] function (Mathematica) 37

F
F() function (Maple) 33
F() function (mathematical) 624
F32() function 31
F_to_C_string() function 944, 945, 945
fabs() function 57, 58, 82, 83, 114, 135,

147, 150, 152–154, 224, 228, 359, 366,
367, 415, 451, 452, 778, 782, 785, 788,
791, 922, 982

FABS() macro 114, 147, 150, 152–154,
315, 331, 335, 338, 359, 366, 367, 451,
621, 785, 791

fabsf() function 114, 154, 922
fabsl() function 114, 154
fact() function 59
FACT() macro 557, 591
factor() function 419, 419
Factor[] function (Mathematica) 752
factorial() function 571, 574
fadj() function 59
fast_pprosum() function 456, 458
FastAccSum() function 385
(fceiling ...) function (Lisp) 130
fcoef() function 59
fdim() function 58
FE_ALL_EXCEPT macro 108, 109, 113, 114,

117, 119

Function and macro index . . . G 1055

FE_DBLPREC macro 108, 124, 126, 127, 401
FE_DEC_DOWNWARD macro 109
FE_DEC_TONEAREST macro 109
FE_DEC_TONEARESTFROMZERO macro 109
FE_DEC_TOWARDZERO macro 109
FE_DEC_UPWARD macro 109
FE_DFL_ENV macro 108, 116
FE_DFL_ENV() macro 116
FE_DIVBYZERO macro 108, 121
FE_DOWNWARD macro 108, 112, 116, 400,

405
FE_FAILURE macro 112, 117–119, 126
FE_FLTPREC macro 108, 124, 126, 127
FE_INEXACT macro 108, 113, 121, 140
FE_INVALID macro 108, 121
FE_LDBLPREC macro 108, 124, 126
FE_OVERFLOW macro 108, 114, 121
FE_SUBNORMAL macro 108, 121
FE_SUCCESS macro 111, 112, 117, 118
FE_TONEAREST macro 108, 112, 400, 405
FE_TOWARDZERO macro 108, 112, 400
FE_UNDERFLOW macro 108, 114, 121
FE_UPWARD macro 108, 112, 116, 400, 405
feclearexcept() function 58, 109, 110,

110, 111, 113, 114, 119, 122, 140
fegetenv() function 58, 109, 117, 117,

119, 120, 123
fegetexcept() function 58
fegetexceptflag() function 58, 109,

118, 118, 120, 123
fegetprec() function 58, 109, 124, 125,

125, 401
fegetround() function 58, 108, 109, 111,

111, 116, 848
feholdexcept() function 58, 109, 117,

119, 119, 120, 122, 123
FENV_ACCESS macro 110, 110, 113, 114,

405
feraiseexcept() function 58, 109, 111,

111, 117–120
ferror() function 868
fesetenv() function 58, 109, 117, 117,

118, 118, 120, 123
fesetexcept() function 120
fesetexceptflag() function 58, 109,

118, 118, 120, 123
fesetprec() function 58, 109, 124, 125,

126, 127, 400, 401
fesetround() function 58, 108, 109, 111,

111, 112, 116, 400, 405
fetestexcept() function 58, 109, 112,

112, 113, 114, 117–119, 121, 140
fetrapexcept() function 120
feupdateenv() function 58, 109, 119,

119, 120, 122, 123
fexpon() function 59
(ffloor ...) function (Lisp) 130
FFMUL() macro 418, 418
fgets() function 909
fibnum() function 59, 578, 579
FIBNUM() macro 578
FILE macro 902
find_a() function 439
fl() function (mathematical) 13, 13, 51,

86, 161, 230, 236, 239, 276, 285, 288,
290, 291, 304, 309, 310, 318, 323, 325,

347, 350, 395, 466–468, 530, 595, 598,
599, 602, 619, 635, 657, 672, 769, 775,
779, 780, 793

Float() function 916
float() function 946
(floor ...) function (Lisp) 130
floor() function 57, 58, 129, 130, 136,

136, 137, 165, 166, 174, 534
floor() function (mathematical) 136, 169,

177, 179, 473, 527, 534, 545, 798
FLOOR() macro 137, 258, 322, 472
floorf() function 136
floorl() function 136
flp2() function 59, 166
FLT_EPSILON macro 82
FLT_EVAL_METHOD macro 124
FLT_MANT_DIG macro 391, 397
FLT_MAX macro 265
FLT_MAX_EXP macro 252, 391
FLT_MIN macro 100, 598
FLT_RADIX macro 62, 161, 833
fma() function 58, 87, 88, 145, 218–220,

235, 237, 240, 370, 392, 394, 399,
401–403, 406, 410, 438, 455

fma() function (mathematical) 86, 145,
236, 239, 276, 289, 291, 318, 347, 426,
428, 437, 530, 700, 704, 705, 707, 713,
781

FMA() macro 32, 88, 218, 219, 225, 235,
237, 238, 240, 277, 278, 287, 292, 370,
388, 391, 391, 392, 397, 397, 398, 406,
407, 418, 430, 433, 455, 527, 596, 656,
677, 760

FMA_() macro 456
FMA_AND_ERR() macro 406, 407
fmaf() function 87, 399
fmal() function 87, 399
fmax() function 58, 228, 451, 982
FMAX() macro 451
fmin() function 58, 228
fmod() function 57, 58, 143, 143, 144,

146, 146, 147, 148–150, 152, 152, 153,
153, 154, 155, 173, 174, 177, 304, 305,
313, 860, 861

fmod() function (mathematical) 144, 153
FMOD() macro 147, 153, 153, 154, 155,

250, 315
fmodf() function 143, 154
fmodl() function 143, 154, 155
fmul() function 59, 942
FMUL() macro 407, 418, 430, 430, 433,

433, 434, 435
fmul2() function 435, 436, 439
For[] function (Mathematica) 40
FortranForm[] function (Mathematica)

37, 38
FP() macro 5, 102, 335
FP_ARCH_AMD64 macro 364
FP_ARCH_IA32 macro 364, 401
FP_ARCH_IA64 macro 364, 391
FP_ARCH_M68K macro 364
FP_ARCH_MIPS macro 391
FP_ARCH_PA_RISC macro 391
FP_ARCH_POWER macro 391
FP_ARCH_POWERPC macro 391
FP_ARCH_S390 macro 391

FP_INFINITE macro 58
FP_NAN macro 58
FP_NORMAL macro 58
FP_PAIR_T_EPSILON macro 785
FP_SUBNORMAL macro 58
FP_T_DIG macro 514, 672
FP_T_EPSILON macro 85, 218, 227, 232,

235, 237, 238, 274, 292, 491, 500, 509,
529, 621, 633, 636, 640, 643, 849

FP_T_MANT_DIG macro 256, 397, 399, 472
FP_T_MAX macro 19, 93, 153, 225, 227,

232, 274, 331, 338, 364, 398, 432, 436,
492, 497, 531, 536, 566, 636, 677, 725,
730, 745, 761

FP_T_MAX_10_EXP macro 527, 858, 859
FP_T_MAX_EXP macro 265, 397, 432
FP_T_MIN macro 85, 93, 232, 274, 331,

338, 398, 399, 436, 566, 664, 669, 688,
780, 785

FP_ZERO macro 58
fpclassify() function 58
fpgetprec() function 124
fpgetround() function 111
fpgetsticky() function 111, 112
fprintf() function 58, 868, 870, 873
fpsetprec() function 124
fpsetround() function 112
fpsetsticky() function 111
fputs() function 869
free() function 4
freestr() function 983, 983, 984
frexp() function 57, 58, 147, 150, 152,

155, 397, 769, 857, 937, 944, 981, 982
FREXP() macro 147, 148, 150, 152, 155,

257, 281, 284, 287, 364, 396, 398, 404,
421, 432, 433, 656, 837

FREXPF() function 944
frexpf() function 921, 922, 944, 992, 992
frexph() function 59
FREXPH() macro 837
frexpo() function 59
FREXPO() macro 837
(fround ...) function (Lisp) 130
frsqrta() function (mathematical) 241
fscanf() function 58, 901, 903
fseek() function 902
fsolve() function (Maple) 540, 541, 546,

552, 638
fsplit() function 59
FSPLIT() macro 432, 432, 433
ftell() function 902
FTN() macro 944, 944
ftoh() function 78
ftoo() function 955
(ftruncate ...) function (Lisp) 130
Function[] function (Mathematica) 628,

751

G
G() function 555
gami() function 59, 562
gami() function (mathematical) 562
gamib() function 59, 562
gamib() macro xxvii, 568
gamibd() function 567
gamibd() macro xxvii, 568

1056 Function and macro index . . . I

gamibdf() macro xxvii, 567
gamibf() macro xxvii, 567
gamic() function 59, 562
gamic() function (mathematical) 562
Γ() function (mathematical) 44, 61, 62,

521, 521, 522, 524, 525, 528, 530, 531,
534, 536, 766–768

GAMMA() function 561
gamma() function 62, 521, 521, 591, 766
Gamma[] function (Mathematica) 561, 751
gamma_incomplete() function 561
gamma_product() function 529
GaussAGM() function (Maple) 620
gcd() function 181–184, 184, 186
gcd_knuth_binary_new() function 186
gcd_trace() function 182
Get[] function (Mathematica) 34
get_fpc_csr() function 78
get_mpfr_rounding() function 402
getchar() function 902, 905, 909
getExponent() function 982
GetFloatArrayElements() function 984
getpid() function 159
getstr() function 983, 983, 984
GetStringUTFChars() function 983
gscw() function 211, 212
gsl_sf_zeta() function 583
gsl_sf_zeta_int() function 583
gsl_sf_zetam1() function 583
gsl_sf_zetam1_int() function 583

H
Hν() function (mathematical) 695
Hν() function (mathematical) 695
hn() function (mathematical) 695
h() function (Maple) 606
h2() function (Maple) 607
h3() function (Maple) 607
HALF_EVEN macro 186
HALF_MAXNORMAL macro 154
HALF_PI macro 303–305
HAVE_BROKEN_LONG_DOUBLE macro 391
HAVE_BROKEN_LONG_FP_T macro 397
HAVE_COMPLEX macro 442, 444
HAVE_CORRECT_MADD_D macro 392
HAVE_CORRECT_MADD_S macro 392
HAVE_FAST_HP_T macro 331
HAVE_FP_T_DOUBLE macro 364, 391, 401
HAVE_FP_T_EXTENDED macro 391
HAVE_FP_T_QUADRUPLE macro 391
HAVE_FP_T_SINGLE macro 308, 391
HAVE_GUARD_DIGIT macro 250, 331
HAVE_IEEE_754 macro 338, 492, 530, 791
HAVE_LONG_DOUBLE macro 391, 924, 925,

943
HAVE_LONG_LONG macro 924, 943
HAVE_LONG_LONG_INT macro 979, 980
HAVE_STORE macro 365
HAVE_USABLE_FMA macro 402
HAVE_WOBBLING_PRECISION macro 633,

636, 640, 643
hexfp() function 87, 220, 400, 409,

849–851
hexval() function 205
HornerForm[] function (Mathematica)

38

host_to_ieee_128() function 403
HP() macro 335
HP_COPYSIGN() macro 395
HP_CXADD_() macro 509
HP_CXCOSH() macro 514
HP_CXDIV() macro 514
HP_CXEXP() macro 501
HP_CXIMAG_() macro 501, 509, 514
HP_CXIPOW() macro 501
HP_CXLOG() macro 501, 509
HP_CXMUL() macro 501, 509
HP_CXREAL_() macro 501, 509, 514
HP_CXSET_() macro 501, 509, 514
HP_CXSINH() macro 514
HP_CXSQRT() macro 509
HP_CXSUB_() macro 509
HP_ELJAM() macro 664
HP_ELK() macro 672
HP_ERFC() macro 616
HP_ERRDIV() macro 672
HP_EXP() macro 566, 672
hp_fma() function 395, 395, 397
HP_FMA() macro 616, 617, 672
HP_FREXP() macro 395, 837
HP_IERFC() macro 617
HP_ILOGB() macro 85
HP_IPOW() macro 837
HP_LGAMMA_R() macro 566
HP_LOG() macro 566, 672
HP_LOG2() macro 837
HP_ONE_OVER_PI macro 245
HP_POWPY() macro 430
HP_ROUND macro 245
HP_RPH() macro 313
HP_SCALBN() macro 85
HP_SIGNBIT() macro 395, 509
HP_SIN() macro 315
HP_SINCOS() macro 504, 514
HP_SINHCOSH() macro 504, 514
HP_SQRT() macro 672
HP_STORE() macro 509
HP_T_DIG macro 514
HP_T_MANT_DIG macro 397, 399
HP_T_MAX_EXP macro 397
HP_VSUM() macro 309
htod() function 772
HUGE macro 91
HUGE_VAL macro 91, 92, 95, 96
HUGE_VALF macro 92
HUGE_VALL macro 92
hypot() function 44, 58, 70, 113, 202,

223, 224, 231, 233, 444, 479, 495, 982
HYPOT() macro 225, 227, 231, 444, 463
hypotf() function 223
hypotl() function 223

I
I0() function (mathematical) 724
I1() function (mathematical) 724
Iν() function (mathematical) 695, 823,

987
In() function (mathematical) 62, 718,

728, 755, 769, 823
i0() function (mathematical) 744
i1() function (mathematical) 747
iν() function (mathematical) 987

in() function (mathematical) 62, 695,
731, 743, 750

I macro 441, 441, 442, 446, 451, 458, 460
i_add() function 116
I_ADD() macro 116
IA32_HW_EXP2() macro 293
ichisq() function 60
idint() function 129
idnint() function 129
ieee_to_host_128() function 403
IEEERemainder() function 57
IEEEremainder() function 57
ierf() function 60–62, 600
ierf() function (Maple) 602, 602, 603,

604, 606, 607
ierf() function (mathematical) 61, 62,

600, 602–610
ierf2() function (Maple) 602
ierfc() function 60–62, 600
ierfc() function (Maple) 602, 603, 609
ierfc() function (mathematical) 61, 62,

600, 602, 603, 605, 607–610, 614
ierfc2() function (Maple) 602
ierfcf() function 946
ierff() function 946
if() function (Maple) 54
If[] function (Mathematica) 39
ifix() function 129
igamma() function 561
ilog2() function 60, 184
ilogb() function 58, 471
ILOGB() macro 466, 471
im() function 994
imag() function 826
imag() function (mathematical) 448, 500
imaginary macro 441, 441
imax() function 471
IMAX() macro 471
incgam() function 561
incw_r() function 211, 212
inf() function 451, 458
infnorm() function (Maple) 48
infty() function 60, 120, 122, 451, 458,

460, 478, 785, 791
INFTY() macro 275, 373, 433, 451, 458,

460, 526, 530, 617, 633, 636, 677, 730,
760, 785, 791, 792, 887

init_bits() function 837
int() function 129, 130, 415, 778
Int() function (Maple) 606
int() function (Maple) 653
INT() macro 74–76
INT_MAX macro 94, 130, 152, 155, 250,

262, 501, 885, 890
INT_MIN macro 130, 184, 186, 188, 885,

890
INT_T_MAX macro 75, 76
INT_T_MIN macro 75, 76
IntegerQ[] function (Mathematica) 39
interface() function (Maple) 47, 52
INTF() function 961
intf() function 129
intf() function (mathematical) 129
intxp() function 59
INTXP() macro 284, 421
INV_LN_B macro 785

Function and macro index . . . J 1057

inverse_jacobi_cd() function 667
inverse_jacobi_sn() function 667
InverseEllipticNomeQ[] function

(Mathematica) 669, 670
InverseErf[] function (Mathematica)

601
InverseErfc[] function (Mathematica)

601
InverseJacobiAM() function (Maple)

667
InverseJacobiSN() function (Maple)

667
InverseSeries[] function (Mathematica)

21, 601
InverseWeierstrassP[] function

(Mathematica) 685
invmodp() function 187, 189
invmodpx() function 188
iphi() function 60, 614
IPHI() macro 617
iphic() function 60, 614, 617
ipow() function 60, 415, 416, 419, 778,

782
IPOW() macro 417, 502, 557, 558, 560,

759, 846
irandtoint() function 167, 167
irandtoint_new() function 168
Is() function (mathematical) 719, 721,

724, 725, 728, 729, 761
is() function (mathematical) 732, 746,

747, 749, 750, 753, 754
is_abs_safe() function 60, 74, 75
IS_ABS_SAFE() macro 75
is_add_safe() function 60, 74, 75, 558,

885, 898
IS_ADD_SAFE() macro 75, 76
is_add_safel() function 74
is_add_safell() function 74
is_div_safe() function 60, 75
IS_DIV_SAFE() macro 75, 76
IS_EVEN macro 186
IS_EVEN() macro 313, 677
is_fdiv_safe() function 530, 531, 563,

566
is_fmul_safe() function 563, 566, 712
is_mul_safe() function 60, 75, 76, 558
IS_MUL_SAFE() macro 76, 419
is_neg_safe() function 60, 76
IS_NEG_SAFE() macro 76, 76
IS_ODD macro 186
IS_ODD() macro 650, 760, 791
is_rem_safe() function 60, 76
IS_REM_SAFE() macro 76
is_safe_add() function 898
IS_SET() macro 840, 840, 841–844, 846,

847, 855, 862
is_sub_safe() function 60, 76
IS_SUB_SAFE() macro 76
isalpha() function 901
ISBDIGIT() macro 882, 884
ISCFINITE() macro 464
iscinf() function 60
ISCINF() macro 462
iscnan() function 60
ISCNAN() macro 462
ISCNORMAL() macro 464

ISCSUBNORMAL() macro 464
ISCXFINITE() macro 464
iscxinf() function 60
ISCXINF() macro 462
iscxnan() function 60
ISCXNAN() macro 462, 462
ISCXNORMAL() macro 464
ISCXSUBNORMAL() macro 464, 464
ISCXZERO() macro 464
ISCZERO() macro 464
isdigit() function 862, 890, 901
isfinite() function 58, 451
ISFINITE() macro 451, 464
isgreater() function 58
isgreaterequal() function 58
isinf() function 1, 58, 135, 147, 150,

152, 154, 228, 364, 366, 367, 451, 458,
460, 471, 711, 780

ISINF() macro 85, 96, 135, 147, 150, 152,
154, 192, 255, 275, 315, 331, 338, 364,
366, 367, 373, 375, 379, 393, 432, 433,
451, 458, 460, 462, 471, 484, 487, 491,
494, 497, 500, 509, 616, 617, 621, 725,
760, 761, 780, 842, 846, 857, 885

isinff() function 154
isinfl() function 154
isless() function 58
islessequal() function 58
islessgreater() function 58
isnan() function 1, 58, 80, 80, 135, 141,

143, 147, 150, 152, 154, 228, 364, 368,
451, 458, 471, 780, 782, 785

ISNAN() macro 85, 96, 135, 141, 143, 147,
150, 152, 154, 192, 255, 275, 313, 315,
331, 335, 338, 364, 368, 373, 375, 379,
393, 432, 433, 451, 458, 462, 471, 484,
487, 491, 494, 497, 500, 509, 616, 617,
621, 633, 636, 640, 643, 663, 672, 677,
780, 785, 842, 846, 857

isnanf() function 154
isnanl() function 154
isnormal() function 58
ISNORMAL() macro 464
ISODIGIT() macro 895
isprime() function (Maple) 175
isprint() function 205
isqnan() function 60
issnan() function 60
isspace() function 880, 881, 904
issubnormal() function 60, 78
ISSUBNORMAL() macro 398, 464, 842
isunordered() function 58
ISXDIGIT() macro 895

J
J0() function (mathematical) 705, 707,

709
J1() function (mathematical) 707, 710
Jν() function (mathematical) 695, 823,

987
Jn() function (mathematical) 62, 694,

695, 696, 697, 701, 710, 713, 716, 755,
769, 823

Jν() function (mathematical) 695
j1() function (mathematical) 740
jν() function (mathematical) 987

jn() function (mathematical) 62, 695,
731, 735

J0() function 696, 711
j0() function xxvii, xxviii, 60, 120, 122,

694, 709
J1() function 711
j1() function xxvii, 60, 120, 122, 694,

709, 710
jacobi_am() function 659
jacobi_cd() function 659
jacobi_cn() function 659
jacobi_cs() function 659
jacobi_dc() function 659
jacobi_dn() function 659
jacobi_ds() function 659
jacobi_nc() function 659
jacobi_nd() function 659
jacobi_ns() function 659
jacobi_sc() function 659
jacobi_sd() function 659
jacobi_sn() function 659
JacobiAM() function (Maple) 659
JacobiAmplitude[] function

(Mathematica) 659
JacobiCD() function (Maple) 659
JacobiCD[] function (Mathematica) 659
JacobiCN() function (Maple) 659
JacobiCN[] function (Mathematica) 659
JacobiCS() function (Maple) 659
JacobiCS[] function (Mathematica) 659
JacobiDC() function (Maple) 659
JacobiDC[] function (Mathematica) 659
JacobiDN() function (Maple) 659
JacobiDN[] function (Mathematica) 659
JacobiDS() function (Maple) 659
JacobiDS[] function (Mathematica) 659
JacobiNC() function (Maple) 659
JacobiNC[] function (Mathematica) 659
JacobiND() function (Maple) 659
JacobiND[] function (Mathematica) 659
JacobiNS() function (Maple) 659
JacobiNS[] function (Mathematica) 659
JacobiSC() function (Maple) 659
JacobiSC[] function (Mathematica) 659
JacobiSD() function (Maple) 659
JacobiSD[] function (Mathematica) 659
JacobiSN() function (Maple) 659
JacobiSN[] function (Mathematica) 659
JacobiTheta1() function (Maple) 674
JacobiTheta2() function (Maple) 674
JacobiTheta3() function (Maple) 674
JacobiTheta4() function (Maple) 674
Java_MathCW_acos__D(() function 983
Java_MathCW_acos__F(() function 983
Java_MathCW_nan__F() function 984
Java_MathCW_vercwf() function 984
jn() function xxvii, 60, 62, 694, 713
Jncf() function 711
JNU_GetStringNativeChars() function

983

K
K0() function (mathematical) 726
K1() function (mathematical) 726
Kν() function (mathematical) 695, 823,

987

1058 Function and macro index . . . M

Kn() function (mathematical) 62, 718,
728, 755, 769

kν() function (mathematical) 987
kn() function (mathematical) 62, 695,

731, 743
K() function 630
K() function (Maple) 638
K’() function (mathematical) 625, 626
K() function (mathematical) 624, 626,

632, 638, 727, 987
KahanUlp() function 83, 84
KC() function 630
kei() function (mathematical) 695
ker() function (mathematical) 695
Ks() function (mathematical) 719, 721,

726, 727, 729, 761
ks() function (mathematical) 732, 754,

755

L
Lν() function (mathematical) 695
λ() function (mathematical) 587, 587
lclp2() function 166
lcm() function 183
lcm() function (mathematical) 183
LDBL_EPSILON macro 218, 238
LDBL_MANT_DIG macro 391
LDBL_MAX_EXP macro 252, 391
LDBL_MIN macro 100, 598
ldexp() function 57, 58, 147, 150, 152,

155, 272, 364, 413, 423, 439, 769, 782,
795, 896, 937

LDEXP() macro 147, 148, 150, 152, 155,
257–259, 277, 281, 287, 364, 398, 399,
404, 432, 433, 846, 885, 890

ldexpb() function 155
ldexpbl() function 155
ldexph() function 60
ldexpo() function 60
legcd() function 188
Length[] function (Mathematica) 41
LG_B macro 256
lgamma() function 44, 58, 521, 521, 522,

531–534, 536, 540, 765–767
lgamma() function (mathematical) 563
LGAMMA() macro xxvii, 536–538, 557, 558
lgamma_r() function 60, 522, 534
LGAMMA_R() macro 534
lgammaf_r() function 522
lgammal_r() function 522
lgcd() function 183
LIBS macro 765
limit() function (Maple) 51, 478, 623
linvmodpx() function 188
LK() function (Maple) 626
LKC() function (Maple) 626
llclp2() function 166
llcm() function 183
llegcd() function 188
llgcd() function 183
llinvmodpx() function 188
lllcm() function 183
llmscw() function 211, 212
LLONG_MAX macro 130, 141, 143
LLONG_MIN macro 130, 141, 143
llrancw() function 210, 212

llrancw_r() function 211, 212
llrincw() function 211, 212
llrincw_r() function 211
llrint() function 58, 142, 143
LLRINT() macro 143
llrintf() function 142
llrintl() function 142
llround() function 58, 140, 141
LLROUND() macro 141
llroundf() function 140
llroundl() function 140
lmscw() function 211, 212
ln() function (Maple) 626, 638
LN_B macro 785
LN_MAXNORMAL macro 785
LN_MINSUBNORMAL macro 785
LO_BITNUM_OF_WORDNUM() macro 258,

259
loadLibrary() function 982
log() function 12, 44, 58, 61, 62, 189,

191, 192, 282–284, 287, 290, 479, 532,
654–656, 657, 763, 782, 788, 791, 820,
824, 826, 827, 864

log() function (Maple) 10, 12, 33, 277,
546, 553, 606

LOG() macro 192, 288–290, 497, 500, 528,
546, 557, 566, 636, 643, 725, 791

log10() function 44, 58, 282, 283, 287,
763, 982

LOG10() macro 288–290
log101p() function 60, 62, 290, 292
log101p() function (mathematical) 62
log10f() function 287
log16() function 60, 283
LOG16() macro 289
log161p() function 60, 290, 292
log1p() function 44, 58, 62, 290, 290,

294, 298, 426, 656, 657, 767, 770, 982
log1p() function (mathematical) 44, 62,

290, 294, 295, 298, 348–350, 426, 535,
547, 607, 624, 643, 654, 655, 670, 704,
713, 793, 794, 808

LOG1P() macro xxv, 293, 350, 536, 640
log2() function 44, 58, 282, 283, 827, 852
LOG2() macro 289
log21p() function 60, 62, 290, 292
log21p() function (mathematical) 62
log8() function 60, 283
LOG8() macro 289
log81p() function 60, 290, 292
log_gamma() function 591
logb() function 58, 155, 451, 453, 937
logb() function (mathematical) 553, 557
LOGB() macro 284, 451, 558, 650
logbfact() function 60
LOGBFACT() macro 558, 591
logf() function 287
LOGN() macro 436
logonep() function 654, 655
LONG_MAX macro 130, 141, 143, 419
LONG_MIN macro 130, 141, 143, 419
longjmp() function 91, 107
lprint() function (Maple) 54
LR() function 630
lrancw() function 209, 210, 212, 213
lrancw_r() function 211, 212

lrand48() function 162, 163, 178, 202
lrcw() function 60, 211, 212
lrcw_r() function 60, 211
lrincw() function 211, 212
lrincw_r() function 211
lrint() function 58, 132, 142, 142, 143
lrint() function (mathematical) 142
LRINT() macro 143
lrintf() function 142
lrintl() function 142
lround() function 58, 140, 140, 141, 143,

785
lround() function (mathematical) 140
LROUND() macro 141, 141, 785

M
M68K_HW_EXP2() macro 293
macheps() function 87, 220, 233, 766, 955
Main() function 922
main() function 90, 92–94, 101, 101, 113,

121, 122, 905, 925, 935
makeseed() function 159, 159, 160, 212
malloc() function 4
MASK16 macro 261
MASK32 macro 262, 262
Math() function 922
MATH_ERREXCEPT macro 94
math_errhandling macro 94, 95
MATH_ERRNO macro 94, 95
MathCW() function 981
max() function 57
max() function (Maple) 553
Max[] function (Mathematica) 41
MAX() macro 621, 650, 663, 858, 945, 945
MAX_ACC macro 897, 898
MAX_UINT_LEAST32 macro 209
MAX_X macro 255
MAX_X_M macro 255
MAXAGM macro 622
MAXBIGBUF macro 841
MAXBUF macro 841, 844, 945
MAXEXTRAPREC macro 844
MAXINT macro 165
MAXLOSS macro 764
MAXNORMAL macro 71, 154
MAXSTEP macro 219
MAXSUBNORMAL macro 100
mchep() function 60
mcrule() function 203
MCW_B_TO_CEIL_HALF_T macro 431, 432
memset() function 257, 847, 909, 935
min() function 57
min() function (Maple) 553
MIN() macro 663, 858, 945
minimax() function 28, 33
minimax() function (Maple) 28, 29, 33,

52, 55, 270, 271, 724
MiniMaxApproximation[] function

(Mathematica) 34, 35, 35, 36, 42
minimize() function (Maple) 606, 607
MINNORMAL macro 79, 100, 154
MINSUBNORMAL macro 100
(mod ...) function (Lisp) 130
mod_add() function 174, 174
mod_mul() function 174, 174
MODF() function 961

Function and macro index . . . N 1059

modf() function 57, 58, 129, 132, 133,
135, 135, 136–139, 177, 263, 264, 304,
795

MODF() macro 130, 135, 136, 137, 139,
156, 304, 315, 316

modff() function 132, 135
modfl() function 132
Module[] function (Mathematica) 38–42
modulo() function 130
MP_DIV() macro 251
MP_FMS() macro 250
MP_FROM_FP_T() macro 250, 251
MP_FROM_STRING() macro 251
MP_MUL() macro 250
MP_ROUND() macro 250
MP_TO_FP_T() macro 250
mpfr_add() function 402
mpfr_get_d() function 402
mpfr_init2() function 402
mpfr_mul() function 402
mpfr_set_d() function 402
mscw() function 211, 212

N
Nν() function (mathematical) 695
nn() function (mathematical) 695
N[] function (Mathematica) 39, 41, 269
N_ASYMPTOTIC macro 545
nan() function 58, 122, 123, 147, 981
NAN() macro 889
NANF() function 945
nanf() function 147, 921, 925, 945, 981,

984, 992, 992
nanl() function 147
NBSEllE() function 653
NBSEllE() function (Maple) 653
NBSEllE[] function (Mathematica) 653
NBSEllF() function 653
NBSEllF() function (Maple) 653
NBSEllF[] function (Mathematica) 653
NBSEllPi() function 653
NBSEllPi() function (Maple) 653
NBSEllPi[] function (Mathematica) 653
nc() function (mathematical) 658, 661,

665
nd() function (mathematical) 658, 661,

665
NDEBUG macro 186, 257
nearbyint() function 58, 139, 140, 140
NEARBYINT() macro 140
nearbyintf() function 139
nearbyintl() function 139
NearSum() function 385
NevilleThetaC[] function (Mathematica)

678
NevilleThetaS[] function (Mathematica)

678
New_Line() function 916
new_sink_file() function 871, 872
new_sink_string() function 871, 872
new_source_file() function 904, 904
new_source_string() function 904, 904
next_bit() function 839, 839, 843
next_digit() function 839, 843, 844, 850
nextAfter() function 982
nextafter() function 1, 58, 161, 542

nextafterf() function 213
nextafterl() function 213
nexttoward() function 58, 921
nexttowardf() function 921
nextUp() function 982
nint() function 129, 130
nlz() function 60, 166, 167
NMAX macro 527
nome() function (mathematical) 686
nops() function (Maple) 52, 54
norm() function 826
norm2() function 223
normal() function (Maple) 52, 53
normalize() function xxxiii, 60, 934
normalized() function 933, 934
normalizedf() function 933
normalizedl() function 933
normalizedll() function 933
nrcw() function 60, 211, 212
nrcw_r() function 60, 211
ns() function (mathematical) 659, 661,

665, 683
ntos() function 60, 867, 867, 934
NTOS() macro 867
ntosdf() function 934, 935
ntz() function 60, 166, 184
NUL macro 206, 868, 874, 897, 906–909
NULL macro 3, 117–119, 132, 135, 152,

188, 250, 264, 265, 304, 620, 663, 830,
866, 871, 880, 881, 885–887, 889, 890,
892, 893, 897, 984

Numerator[] function (Mathematica) 37,
40, 41

O
octfp() function 850
ONE_OVER_PI macro 245
op() function (Maple) 47, 53–55, 554
Options[] function (Mathematica) 34,

40

P
℘() function (mathematical) 682
P macro 2, 4, 32
P() function (mathematical) 697–699,

709, 713, 739
P32() function 31
pabs() function 60, 356, 358, 785
PABS() macro 358, 785
pacos() function 60
PACOS() macro xxviii, 805
pacosh() function 60
PACOSH() macro xxix, 809
padd() function 60, 355, 356, 366, 367,

383, 785, 789, 791
PADD() macro 355, 366, 367, 371, 373,

376, 393, 785, 789, 791
paddf() function 355, 382
paddl() function 355
pade() function 33
Part[] function (Mathematica) 36
pasin() function 60
PASIN() macro xxviii, 803, 806
pasinh() function 60
PASINH() macro xxix, 810
patan() function 60

PATAN() macro xxviii, 804, 806
patan2() function 60
patanh() function 60
PATANH() macro xxix, 810
pcbrt() function 60, 356, 383
PCBRT() macro 379
pcbrt2() function 383, 384
pcbrt2f() function 382, 384
pcbrtf() function 382
pcmp() function 60, 356, 358, 368, 791
PCMP() macro 356, 358, 368, 376, 789, 791
pcon() function 60, 789, 791, 796
PCON() macro 788, 789, 791, 804
pcopy() function 60, 356, 358, 358, 779,

785, 791
PCOPY() macro 358, 358, 376, 379, 385,

386, 779, 785, 791
pcopysign() function 60
pcos() function 60
PCOS() macro xxviii, 799, 800
pcosh() function 60
PCOSH() macro xxviii, 807
pcotan() function 60
pdiv() function 60, 356, 383, 779, 785,

791
PDIV() macro 372, 373, 376, 779, 785, 791
pdivf() function 382
pdot() function 60, 356
PDOT() macro 386, 386, 410
peps() function 60, 779, 780
PEPS() macro 779, 780
perror() function 93, 94
peval() function 60, 356, 357, 451, 791
peval() function (mathematical) 794
PEVAL() macro 356, 357, 357, 375, 376,

379, 386, 393, 451, 458, 785, 791
pexp() function 60, 780, 782, 785, 791
pexp() function (mathematical) 795
PEXP() macro 780, 785, 788, 791, 794
pexp10() function 60, 795
pexp10() function (mathematical) 795
PEXP10() macro xxviii, 798
pexp10f() function 798
pexp16() function 60, 795
pexp16() function (mathematical) 795
PEXP16() macro xxviii, 799
pexp2() function 60, 795
pexp2() function (mathematical) 795
PEXP2() macro xxviii, 796
pexp2df() function 796
pexp8() function 60, 795
pexp8() function (mathematical) 795
PEXP8() macro xxviii, 797
pexpd() function 785, 786
PEXPD() macro xxviii, 786
pexpdf() function 786
pexpm1() function 60, 793, 794, 808
PEXPM1() macro xxviii, 793, 794, 795
pfdim() function 60
pfmax() function 60
pfmin() function 60
pfrexp() function 60
pfrexph() function 60
pgamma() function 60
pgamma() function (mathematical) 62
PGAMMA() macro xxvii, 556

1060 Function and macro index . . . Q

pgammadl() function 559
pgammal() function 559, 560
Φ() function (mathematical) 610, 610,

612–615, 617
Phi() function 610
phi() function 60, 614
PHI() macro 616
Φc() function (mathematical) 612–615,

617
Phic() function 610
phic() function 60, 614, 617
PHIC() macro 616
phigh() function 60, 356, 357
PHIGH() macro 356, 357, 357
phypot() function 60
PI_STR macro 251
pierf() function 60
pierfc() function 60
pilogb() function 60
pin() function 60
pinfty() function 60
pipow() function 60, 777, 779, 780, 785,

796
PIPOW() macro 777, 779, 779, 780, 785
pipowdf() function 796
pipowf() function 798
pisinf() function 60
PISINF() macro 376
pisnan() function 60
PISNAN() macro 376
pisqnan() function 60
pissnan() function 60
pldexp() function 60
pldexph() function 60
plog() function 60, 787, 788, 791, 796,

808
PLOG() macro 787, 791, 793
plog101p() function 60
plog1p() function 60, 793, 794
PLOG1P() macro 793, 793
plogb() function 60
plot() function (Maple) 26, 27
Plot[] function (Mathematica) 36, 37
plow() function 60, 356, 357
PLOW() macro 356, 357, 357
pmul() function 60, 356, 371, 383, 779,

780, 785, 789, 791
PMUL() macro 368, 371, 371, 373, 376,

779, 780, 785, 789, 791
pmul2() function 60, 356, 369, 370, 371
PMUL2() macro 365, 368, 369, 369, 370,

370, 371–373, 375, 378, 379, 393, 410,
432

pmulf() function 382
pneg() function 60, 356, 358, 358, 367,

791
PNEG() macro 358, 358, 367, 791
pnorm() function 616
pochhammer() function (Maple) 752
Pochhammer[] function (Mathematica)

752
polar() function 994
POLY() macro 88
POLY_n() macro 89
POLY_P() macro 32, 89, 277, 281, 287, 331
POLY_Q() macro 32, 89, 277, 281, 287, 331

polygamma() function 548
PolyGamma[] function (Mathematica)

537, 548
pop() function 60, 166, 184
pout() function 60
pow() function 44, 58, 411, 500, 815, 824,

826, 827, 856, 865, 866
pow() function (mathematical) 62
POW() macro 501, 502, 528, 584, 586
pow_exp() function 566, 567
pow_exp_gam() function 566, 567
powd() function 992
powdl() function 439
power_of_10() function 855, 859, 860,

865, 898, 899
powf() function 411
powl() function 411, 439, 820
powpy() function 429, 429, 430
PPDIV() macro 417, 418
PPMUL() macro 417, 418
pprosum() function 60, 356, 451
PPROSUM() macro 386, 387, 451, 455, 458,

471, 698
pq_approx_rounded() function (Maple)

43
pqnan() function 60
priest_cxdiv() function 454, 454
Print[] function (Mathematica) 40, 41
printf() function 50, 58, 78, 92, 93, 101,

113, 121, 166, 169, 199, 314, 463, 630,
829, 830, 840, 850, 851, 853, 854, 857,
860, 867–871, 873–875, 877, 878, 901,
904–906, 908–910, 925, 934, 935

printf() function (Maple) 48, 52, 54,
245, 247, 270, 271, 623, 626, 638

println() function 982, 985
process() function 901, 907, 909
proj() function 826
pscalbln() function 60
pscalbn() function 60
pset() function 60, 356, 356, 358, 359,

364, 366, 367, 370, 408, 409, 780, 785,
789, 791

PSET() macro 356, 356, 357–359,
364–367, 370, 373, 375, 376, 379, 385,
386, 393, 456, 780, 785, 789, 791

PSET_() macro 456
ψ() function (mathematical) 44, 61, 62,

536, 537, 538, 539, 539, 541–543,
552–554

psi() function 44, 60, 62, 536, 536, 537,
539–543, 548

Psi() function (Maple) 537, 540, 541,
546, 548, 552, 553

psi() function (MuPAD) 548
PSI() macro xxvii, 546, 556
psi[n]() function 548
psi_mccullagh() function 544
Psif() function 991
psif() function 991
psignbit() function 60
psiln() function 44, 60–62, 536, 537,

539, 546, 547
psiln() function (mathematical) 61, 62
PSILN() macro xxvii, 546, 547
Psilnf() function 991

psilnf() function 991
psin() function 60
PSIN() macro xxviii, 799, 801
psinh() function 60
PSINH() macro xxix, 807
psnan() function 60
psplit() function 60, 356, 364, 369, 370
PSPLIT() macro 364, 365, 368–371,

386–388, 393, 410
psqrt() function 60, 356, 383
PSQRT() macro 375, 376
psqrtf() function 382
psub() function 60, 356, 367, 368, 383,

780, 785, 791
PSUB() macro 367, 367, 368, 371, 373,

780, 785, 791
psubf() function 382
psum() function 60, 356
PSUM() macro 385, 386, 387, 410
psum2() function 60, 356, 359, 366, 367,

369, 371
PSUM2() macro 356, 358, 359, 359,

365–367, 369, 371, 373, 375, 385, 410,
804

ptan() function 60
PTAN() macro xxviii, 802
ptanh() function 60
PTANH() macro xxix, 809
Put() function 916
pythag() function 227, 228, 228, 229–233

Q
Q() function (mathematical) 697–699,

709, 713, 739
Q32() function 31
QABS() macro 85, 135, 184, 186–188, 225,

227, 237, 240, 255, 275, 277, 278, 309,
313, 321, 331, 395, 398, 399, 404, 432,
453, 456, 484, 487, 494, 497, 500, 501,
514, 531, 650, 656, 663, 759, 760

qert() function 60, 471, 942
QERT() macro 471, 471, 472, 473
QERT_COMPLEX macro 471
QERT_INDETERMINATE macro 471
QERT_REAL macro 471
QFMA() macro 227, 527, 672, 677, 741,

760, 761
qnan() function 60, 80, 135, 141, 147,

150, 152, 154, 471, 780, 785, 791, 981,
984

QNAN() macro 96, 135, 141, 147, 150, 152,
154, 192, 255, 307, 331, 373, 375, 376,
379, 433, 471, 484, 487, 491, 509, 544,
546, 621, 633, 636, 640, 643, 650, 663,
672, 677, 719, 730, 780, 785, 791, 889

qnanf() function 154, 925, 981
qnanl() function 154
qnorm() function 616
QP_FMOD() macro 265
QP_LDEXP() macro 263, 264
QP_MODF() macro 263, 264
QP_T_MANT_DIG macro 256
QP_T_MIN_EXP macro 263
quantize() function xxxiii, 60, 932
quantized() function 931, 932
quantizedf() function 931

Function and macro index . . . R 1061

quantizedl() function 931, 934
quantizedll() function 931
quicksort() function 966
quicktwosum() function 359
quotient() function 530

R
R() function (Maple) 26, 27
R21() function (Maple) 638
R2P() macro 659
R32() function 31
R32() function (Maple) 638
raise() function 90
rand() function 162–164, 171, 206, 622,

630
rand() function (Maple) 551
rand1() function 163, 163
rand1_new() function 164, 164
rand2() function 163, 165
rand3() function 163
rand4() function 163, 165
RAND_MAX macro 162–164
randab() function 340
randint() function 196, 199, 205, 206
randlog() function 191, 212
randlog() function (mathematical) 202
randoffset() function 160, 161, 161
random() function 57
randu() function 171, 201
RANSIGN() macro 382
RatScale[] function (Mathematica) 41,

42
RC() macro 656
rcos() macro 322, 323
rcosm1() macro 323
RD() function 83, 84, 404
re() function 994
re() function (Maple) 626
real() function 826
real() function (mathematical) 448, 500,

548, 579
rec() function (Maple) 626
reduce() function 265, 306
REDUCE() macro 250, 265, 270, 272, 274,

277, 279, 281, 307, 308, 340, 433, 434,
434, 435, 940

ReleaseFloatArrayElements() function
984

ReleaseStringUTFChars() function 983
relerr() function (mathematical) 468
relulpsf() function 82, 82
(rem ...) function (Lisp) 130
remainder() function 58, 143, 143, 144,

146, 148, 148, 149, 150, 150, 152, 152,
153, 154, 154, 155, 827

remainder() function (mathematical)
144

REMAINDER() macro 150, 152, 153, 154,
155

remainderf() function 143, 153, 154
remainderl() function 143, 154
remquo() function 58, 143, 143, 144, 150,

150, 152, 152, 155
REMQUO() macro 152, 152, 155
remquof() function 143
remquol() function 143

Replace[] function (Mathematica) 21
RESCALE_CUTOFF macro 529
Residue[] function (Mathematica) 477
Return[] function (Mathematica) 38
revert() function (MuPAD) 21
rint() function 57, 58, 132, 132, 138,

139, 139, 140, 142–144
rint() function (mathematical) 138
RINT() macro 139, 140, 143
Rint() macro 860
rintf() function 138
rintl() function 138
RN() function 83, 84, 403, 404
RN() macro 406
rnexp() function 189, 190, 190
rnnorm() function 192, 194
rnnorm_ext() function 194
RO() function 403, 404
RootOf() function 606
RootOf() function (Maple) 603
Round() function 57
(round ...) function (Lisp) 130
round() function 57, 58, 130, 137, 137,

139–141, 408, 782
round() function (Maple) 247, 408, 609
round() function (mathematical) 137,

243, 252, 253, 263, 265, 270, 271, 279,
306, 578, 781, 798

ROUND() macro 137, 141, 245, 250, 281
round_odd_sum() function 406
round_odd_sum()() function 405, 406
roundf() function 137
roundl() function 137
RP() macro 307, 308–310, 340
RPH() macro 308, 321, 340, 667
rsin() macro 322, 323
rsqrt() function 44, 60, 62, 233, 233,

234, 237
rsqrt() function (mathematical) 62, 234
RSQRT() macro 650, 667
rsqrtf() function 235, 237
RU() function 83, 84, 404
RZ() function 83

S
Sn() function (mathematical) 695
safe_split() function 404, 404, 431, 432
samequantum() function xxxiii, 60, 933
samequantumd() function 931, 933
samequantumdf() function 931
samequantumdl() function 931
samequantumdll() function 931
sbi0() function xxviii, 60, 743, 744, 747,

750, 753
sbi1() function xxviii, 60, 743, 749
sbin() function xxviii, 60, 62, 743, 750,

754
sbin[] function (Mathematica) 751
sbis0() function xxviii, 60, 743, 748, 754
sbis1() function xxviii, 60, 743, 750
sbisn() function xxviii, 60, 743, 753, 755
sbj0() function xxviii, 60, 741
sbj1() function xxviii, 60, 741, 742
sbjn() function xxviii, 60, 62, 743
sbk0() function xxviii, 60, 743, 756
sbk1() function xxviii, 60, 743, 756

sbkn() function xxviii, 60, 62, 743, 756
sbks0() function xxviii, 60, 743, 757
sbks1() function xxviii, 60, 743, 757
sbksn() function xxviii, 60, 743, 757
sby0() function xxviii, 60, 744
sby1() function xxviii, 60, 741, 742, 745
sbyn() function xxviii, 60, 62, 746
sc() function (mathematical) 657–659,

661, 663, 666
scalb() function 482, 982
scalbln() function 58
scalbn() function 58, 155, 451, 453, 471,

782, 785, 937
scalbn() function (mathematical) 418
SCALBN() macro 284, 419, 451, 466, 471,

472, 558, 650, 780, 785
scanf() function 58, 830, 869, 870, 874,

877, 901–903, 905–910
sccw() function 211, 212
sd() function (mathematical) 659, 661,

666
sec() function (mathematical) 572
sech() function (Maple) 573
sech() function (mathematical) 572, 657,

661
second() function 60
select() function 169, 169
seq() function (Maple) 552, 570
series() function (Maple) 11, 21, 319,

554, 604
Series[] function (Mathematica) 21,

477, 601, 670, 751
series() function (MuPAD) 21
SET() macro 187, 188
SET_EDOM() macro 95, 96, 135, 147, 150,

152, 154, 192, 255, 275, 307, 313, 315,
331, 335, 338, 375, 376, 379, 471, 616,
617, 621, 633, 636, 640, 643, 663, 672,
677, 730, 780, 785, 791

SET_ERANGE() macro 93, 96, 135, 192,
225, 227, 255, 275, 375, 376, 379, 530,
621, 633, 636, 730, 785, 791, 885

set_fpc_csr() function 78
SET_INVALID() macro 141, 143
SetFloatArrayRegion() function 984
setjmp() function 91, 107
SetOptions[] function (Mathematica)

40
setseed() function 205
setxp() function 59, 423, 439
SETXP() macro 284, 421
show() function 400, 935
SIGFPE macro 74, 107
σ() function (mathematical) 638
σw() function (mathematical) 686
Sign() function 922
sign() function 922
sign() function (mathematical) 348, 350,

467, 596, 598, 607, 680
signal() function 90
signbit() function 58, 975
SIGNBIT() macro 135, 150, 192, 433, 509,

530, 621, 841, 861
signf() function 922
significand() function (mathematical)

832

1062 Function and macro index . . . U

signl() function 922
signum() function 982
simplify() function (Maple) 623
Simplify[] function (Mathematica) 751
simpson() function (Maple) 606, 607
sin() function 4, 44, 58, 62, 299, 304,

306, 314, 479, 653, 763, 813, 824, 826,
827

sin() function (Maple) 10, 21, 52, 245,
653

Sin[] function (Mathematica) 21, 35–37,
653

sin() function (MuPAD) 21
SIN() macro xxv, 312, 321, 323, 663, 677
sinc() function 733
sincos() function 60, 320, 320, 321, 340,

479
SINCOS() macro 321, 323, 487, 491, 492,

494, 504, 514, 688, 738
sincosd() function 320, 321
sincosp() function 60
sincospi() function 60
sind() function 305
sindeg() function 60, 313, 340, 651, 652
single() function 394
sinh() function 44, 58, 62, 341, 352, 479,

749, 763, 826, 982
sinh() function (Maple) 10
SINH() macro 663
sinhcosh() function 60, 348, 348, 479,

749
SINHCOSH() macro 504, 514
sinhf() function 345, 818
sinp() function 60, 304, 340
sinpi() function 60, 304, 315, 316, 340,

531
sinpi() function (mathematical) 315, 317
SINPI() macro 318, 584
sinpi4() function 318
sinpi4() function (mathematical) 316,

317
sn() function (mathematical) 657–664,

666, 675, 680, 683
snan() function 60, 147, 981
SNAN() macro 889
snanf() function 866, 925, 981
snprintf() function 58, 205, 867, 868,

870, 871, 873, 907
solve() function (Maple) 21, 229, 486,

602
split() function 404, 405, 435, 435, 436,

439
SPLIT() macro 396, 396, 397, 398, 434
sprintf() function 58, 860, 868, 873
sqr() function 826
Sqrt() function 991, 991
sqrt() function 4, 44, 58, 62, 70, 87, 102,

114, 192, 215, 215, 216, 217, 224, 234,
467, 471, 479, 589, 630, 826, 827, 939,
982, 991

sqrt() function (Maple) 10, 15, 26, 27,
33, 51, 478, 606, 623, 626, 638, 726

Sqrt[] function (Mathematica) 17, 601,
751

sqrt() function (mathematical) 808
SQRT() macro 114, 225, 227, 241, 274,

331, 375, 376, 471, 484, 491, 500, 526,
621, 633, 636, 640, 643, 650, 656, 663,
686

sqrtd() function 102
sqrtdf() function 102
sqrtdl() function 102
sqrtdll() function 102
sqrtf() function 102, 114, 216–218
sqrtl() function 102, 114, 217
sqrtll() function 102
sqrtq() function 101, 102
sqrtw() function 101, 102
srg521() function 178
sscanf() function 58, 896, 901, 903
sscw() function 211, 212
stderr macro 868, 870
stdin macro 901
stdout macro 868
stewart_cxdiv() function 453
store() function 66, 66, 121, 135, 139,

240, 359, 364, 369, 370, 780, 785, 994
STORE() macro 93, 127, 135, 139, 163,

240, 245, 246, 250, 313, 326, 331, 335,
359, 362, 364, 365, 369, 370, 393, 397,
399, 404, 406, 431–433, 436, 471, 497,
636, 686, 746, 749, 761, 780, 785, 849

strchr() function 834, 847, 862, 889
strcmp() function 886
strcpy() function 842
strcspn() function 909
strerror() function 93, 94
StringJoin[] function (Mathematica)

38
StringJustifyRight[] function

(Mathematica) 38–40
StringLength[] function (Mathematica)

38
strlcat() function 60, 858, 862, 863
strlcpy() function 60, 842, 846, 858,

862, 863, 889
strlen() function 205, 846, 862, 874
strncmp() function 893
strncpy() function 847, 869, 945
strpbrk() function 909
strsep() function 909
strspn() function 909
strtoc() function 826
strtod() function 867, 879, 880, 885,

887, 896, 897, 901, 905, 906, 909, 910
strtof() function 879, 896
strtoimax() function 896
strtok() function 909
strtol() function 58, 896, 905, 909, 910
strtold() function 58, 879, 896
strtoll() function 58, 896, 910
strtoul() function 896, 905, 910
strtoull() function 896, 910
strtoumax() function 896
SUB() macro 187, 188
subs() function (Maple) 551
subs() function (MuPAD) 21
sum() function (Maple) 47, 553, 554, 583
SUM() macro 326, 326, 331
SWAP() macro 453, 471
Switch[] function (Mathematica) 41, 41
System.loadLibrary() function 982

T
Tn() function (mathematical) 987
T() function (Maple) 52
T macro 2, 4, 85, 256, 708, 883, 885
T1() function (Maple) 638
T2() function (Maple) 638
T3() function (Maple) 638
tan() function 44, 50, 58, 61, 62, 299,

310, 763, 824, 826, 827
tan() function (Maple) 10, 316, 319
Tan[] function (Mathematica) 17, 477
TAN() macro xxv, 313, 313, 663, 677
tand() function 305
tandeg() function 60, 313
tanh() function 44, 58, 62, 341, 345, 352,

826, 981, 982
tanh() function (Maple) 10, 607
tanhd() function 345
tanhdf() function 345
tanhf() function 352
tanhl() function 820
tanl() function 820
tanp() function 60, 304
tanpi() function 60, 304, 315, 318, 545
tanpi() function (mathematical) 315,

319, 320
TANPI() macro 320
taylor() function (Maple) 10–12, 277,

319, 569, 573, 602, 603, 717
TBITS macro 844
Test() function 916
test05() function 993
test_chisq() function 199, 199
tgamma() function 44, 58, 521, 522, 525,

534, 535, 544, 614, 765, 766, 981
TGAMMA() macro xxvi, 532–534, 566
time() function 158, 159
tn() function (mathematical) 659
TOLOWER() macro 886, 890, 892, 893
ToString[] function (Mathematica) 39
toupper() function 848
TOUPPER() macro 848, 886
ToUpperCase[] function (Mathematica)

41
traperror() function (Maple) 10
trunc() function 58, 130, 135, 136, 136,

144, 166, 785, 981
trunc() function (mathematical) 136,

145, 246, 279, 306
TRUNC() macro 136, 246, 250, 281, 287,

304, 364, 419, 434, 437, 501, 785
(truncate ...) function (Lisp) 130
truncf() function 136
truncl() function 136
TWICE_MINNORMAL macro 154
twoproduct() function 369
twosum() function 359, 369
type() function (Maple) 53

U
U_MINUS_V_Q() macro 187, 188
uacc16() function 261, 262
uadd32() function 209, 261, 262, 262
UI() macro 152, 155
UINT_BITS macro 152, 155
UINT_MAX macro 155, 166

Function and macro index . . . V 1063

uirand() function 165, 167–169
ulp() function 81–84, 630, 982
ulp() function (Maple) 609
ulpk() function 60
ULPK() macro 85
ulpmh() function 60
ULPMH() macro 85
ulps() function 579
ulpsf() function 83
umul64() function 177, 209, 261, 261, 262
unapply() function (Maple) 47
unchecked_ipow() function 417, 419
ungetc() function 902
UNIRAN() macro 382, 383
urand() function 165, 189–193, 202, 203
URAND() macro 192, 472, 473
urandom() function 826
urandtoint() function 165, 199, 212
Urcw() function 913, 914
urcw() function 60, 211, 212, 981
urcw1() function 60, 211, 212
urcw1_r() function 60, 211
urcw1df_r() function 211
urcw1f() function 925
urcw2() function 60, 211
urcw2_r() function 60, 211
urcw2f() function 213, 925
urcw2l() function 213
Urcw3() function 913, 921
urcw3() function 60, 211, 921
urcw3_r() function 60, 211
Urcw3f() function 913, 921
urcw3f() function 921, 925
Urcw3l() function 913
urcw3l() function 921
Urcw4() function 913, 914, 921
urcw4() function 60, 211, 212, 921
urcw4_r() function 60, 211
Urcw4f() function 913, 914, 921
urcw4f() function 921, 925
Urcw4l() function 913, 914
urcw4l() function 921
urcw_r() function 60, 211
Urcwf() function 913, 914
urcwf() function 925, 981
Urcwl() function 913, 914
USE_ASM macro 241, 292, 338, 352
USE_CHEBYSHEV macro 708
USE_DEKKER_CBRT macro 379
USE_DEKKER_SQRT macro 376
USE_FP_T_KERNEL macro 310, 345, 350
USE_SERIES macro 708
USE_XOR_ENCRYPTION macro 205, 206
usplit() function 438, 439

V
va_arg() macro 908
va_end() macro 870, 873, 903
va_list macro 868, 870, 871, 873, 901,

903, 904
va_start() macro 870, 873, 903
vagm() function 60
VAGM() macro 620, 640, 643, 662, 663
vbi() function 60, 758
vbis() function 60, 758
VBIS() macro 761
vbj() function 60, 758
vbk() function 60, 758

vbks() function 60, 758
vby() function 60, 758
vercw() function 60, 211, 984
vercw_r() function 60, 211
vfprintf() function 58, 868, 870, 871
vfscanf() function 58, 901, 904
vllrancw() function 211
vllrancw_r() function 211
vllrincw() function 211
vllrincw_r() function 211
vlrancw() function 211, 214
vlrancw_r() function 211
vlrcw() function 60, 211
vlrcw_r() function 60, 211
vlrincw() function 211
vlrincw_r() function 211
vnrcw() function 60, 211
vnrcw_r() function 60, 211
vprintf() function 58, 868, 871
vprt() function 871, 873, 904
vsbi() function 60, 758
vsbis() function 60, 758
vsbj() function 60, 758
vsbk() function 60, 758
vsbks() function 60, 758
vsby() function 60, 758
vsbyd() function 758
vscan() function 904, 904, 907, 908
vscanf() function 58, 901, 904
VSET() macro 759
vsnprintf() function 58, 868, 871
vsprintf() function 58, 868, 871, 872
vsscanf() function 58, 901, 904
vsum() function 60
VSUM() macro 275, 277, 279, 281, 286,

287, 289, 309, 347, 455
vurcw() function 60, 211, 214
vurcw1() function 60, 211, 214
vurcw1_r() function 60, 211
vurcw2() function 60, 211
vurcw2_r() function 60, 211
vurcw3() function 60, 211
vurcw3_r() function 60, 211
vurcw4() function 60, 211, 214
vurcw4_r() function 60, 211
vurcw_r() function 60, 211

W
W() function (mathematical) 627
w() function (mathematical) 627
WeierstrassP() function (Maple) 685
WeierstrassP[] function (Mathematica)

685
WeierstrassPPrime() function (Maple)

685
WeierstrassPPrime[] function

(Mathematica) 685
WeierstrassSigma() function (Maple)

688
WeierstrassSigma[] function

(Mathematica) 688
WeierstrassZeta() function (Maple)

688
WeierstrassZeta[] function

(Mathematica) 688
While[] function (Mathematica) 38
with() function (Maple) 28, 29, 47, 48,

52, 53, 270, 606, 724, 726

WORDNUM_OF_BITNUM() macro 258, 258,
259

Write() function 922
WriteLine() function 918, 922
writeln() function 993
wsplit() function 436, 438, 439

X
X1 macro 546
XBIG macro 528, 534, 536
XCUT_0_1 macro 544, 545
XCUT_ASYMPTOTIC macro 545
XCUT_MIN_32 macro 545
XCUT_REFLECT macro 544, 545
XCUT_TAN_2 macro 545
XHIGH macro 584, 585
xintf() function 129
XLARGE macro 545, 547
XMAX macro 526, 534, 544, 545, 584
xor() function 206
XP_EXP10() macro 865, 899
XP_FLOOR() macro 857
XP_FMA() macro 898
XP_FMOD() function 861
XP_FMOD() macro 860
XP_FREXP() macro 857
XP_LDEXP() macro 865, 899
XP_LOG10() macro 857
XP_RINT() macro 860
XREDMAX macro 307, 308
XSMALL macro 544

Y
Y0() function (mathematical) 713, 714
Y1() function (mathematical) 713
Yν() function (mathematical) 695, 823,

987
Yn() function (mathematical) 62, 694,

695, 696, 697, 701, 715, 716, 755, 769
y1() function (mathematical) 740
yn() function (mathematical) 62, 695,

731, 735
y0() function xxvii, 60, 694, 714
y1() function xxvii, 60, 694, 715
YMAX macro 246
yn() function xxvii, 60, 62, 120, 122, 123,

694, 717

Z
Zν() function (mathematical) 695
ζ() function (mathematical) 542,

551–554, 557, 579, 579, 581, 582, 582,
583, 583

ζn() function (mathematical) 695
ζw() function (mathematical) 686
zeta() function 60, 583
Zeta() function (Maple) 581, 583
Zeta[] function (Mathematica) 583
ZETA() macro xxvii, 585, 586
zetac() function 583
zetam1() function 60, 585
ZETAM1() macro xxvii, 585, 586, 592
zetnm1() function 60
ZETNM1() macro 551, 585, 586, 592
zetnum() function 60
ZETNUM() macro 551, 554, 557, 584–586

Subject index

IN THE BAD OLD DAYS, THE INDEX WAS A LIST OF

PROHIBITED BOOKS; MAY WE NOW, IN A MORE

ENLIGHTENED AGE, BAN BOOKS WITHOUT INDEXES?

— STEPHEN JAY GOULD

An Urchin in the Storm (1987).

Page numbers of biographical, defining, and primary entries are in bold. Publication titles explicitly cited in the text are in italic. Names of
people are indexed if they are explicitly mentioned prior to the bibliography. Personal names in the bibliography are recorded in the separate
author/editor index on page 1039.
Index entries for words inside verbatim code blocks are generated at end-of-block. Thus, blocks that cross page boundaries may produce off-by-
one page numbers in this index.
The Greek letter entry has subentries for each such letter used in this book, but ordered by their names in the Latin, rather than Greek, alphabet.

Symbols
*.dat.maple file 771
*.log file 771
*.map file 29
-Dvolatile= option 66
-G option 980
-I option xxxv
-L option xxxv, 946
-O3 option 218
-R/usr/local/lib option 944
-Wl,-rpath,/usr/local/lib option 944
-autodbl option 968
-classpath option 980
-fno-builtin option xxxv, 216
-fpwidetypes option 100, 101
-ftrap option 946
-g option 218
-gnaty option 913
-ieee option xxxv
-ieee_with_inexact option xxxv
-lc option 825
-lc128 option xxxv
-lfdm option 811
-lfmcw option 946
-lm option xxxv, 320, 765, 811, 825
-lmcr option 811
-lmcw option 765, 771, 946
-lmf option 811
-lsunmath option 294
-lultim option 811
-mfp-rounding-mode=d option xxxv
-mieee option xxxv
-mieee-conformant option xxxv
-mieee-with-inexact option xxxv
-qlongdouble option xxxv
-trapuv option 931, 951
-unsafe option 921
../maple file 771
.NET Framework viii, 867, 917
.adb file 911
.ads file 911
.dll file 920
.dylib file 920
.exe file 919

.so file 920
/6 (model) 597, 948, 970
/7 (model) 597, 948, 970
/depot/lib/libmcw.a file xxxv
/dev/random file 207
/dev/urandom file 207
/usr/local file xxxv
directive 3
#define directive 3, 116, 130, 131, 218, 219, 235, 237, 238
#elif directive 3
#error directive 3
#if directive 130
#include directive 101, 111, 113, 114, 130, 131
#pragma directive 110, 113, 114
#undef directive 924
$MachinePrecision option (Mathematica) 35, 39
% input conversion specifiers 906
% output conversion specifiers 873, 874
_Complex keyword 441
_Complex_I keyword 441, 442
_Imaginary data type 441, 463
_Imaginary_I keyword 441, 442
__GROUP__ global variable 851
__float128 data type 101, 877
__float128_pair data type 355
__float80 data type 101, 877
__float80_pair data type 355
__fpreg data type 101
__mcw_fe_dfl_env global variable 116, 117
__volatile__ keyword 293, 339
1 (model) 305, 948, 949, 951–953, 965, 970, 971
1000 (model) 970
1010 (model) 970
1100 (model) 74, 965, 966, 970, 972
1107 (model) 353
1130 (model) 948, 970
1400 (model) 970
1520 (model) 976
1604 (model) 948, 949, 970
160A (model) 970
160G (model) 970
1650 (model) 353
1700 (model) 396, 949
1S (model) 948, 952

© Springer International Publishing AG 2017
N.H.F. Beebe, The Mathematical-Function Computation
Handbook, DOI 10.1007/978-3-319-64110-2

1065

1066 Subject index . . . A

2 (model) 948, 952, 969, 970
200 (model) 948
2000/213 (model) 970
210B (model) 970
250 (model) 970
3 (model) 976, 977
3000 (model) 949
3000/400 (model) 976, 977
3090 (model) 976, 977
3200 (model) 970
32016 (CPU) 970
3400 (model) 948
3600 (model) 353, 520, 948, 949, 970
386 (model) 976
386i (model) 977
4 (model) 976, 977
4.3BSD operating system 237, 273, 290
4004 (CPU) 283, 970
418 (model) 970
470 (model) 963
490 (model) 970
50 (model) ix
502 (model) 970
503 (model) 970
520 (model) 970
600 (model) 305, 947, 948, 958, 970
6000 PPU (model) 970
6000 (model) 74, 80, 305, 948, 949, 970
601 (model) 970
6080 (model) 958
620 (model) 353
6200 (model) 949
6400 (model) 949, 970, 989
650 (model) 948
6500 (model) 949
6502 (CPU) 971
6600 (model) 949, 951
6700 (model) 949
68000 (CPU) 65, 68, 124, 145, 146, 150, 217, 240, 292–294, 338, 352,

362, 363, 395, 401, 823, 970
68020 (CPU) 976
68040 (CPU) 71, 216
7/32 (model) 970
700 (model) 959
7000 (model) 74, 80, 305, 948, 959, 970
7030 Stretch (model) 948, 949, 959, 969–971
704 (model) 353, 948, 959, 961, 963, 970, 971
7040 (model) 353, 948, 970
7044 (model) ix, 353, 948
709 (model) 341, 353, 948
7090 (model) 353, 520, 948, 954, 970, 971
7094 (model) 353, 948
7600 (model) 949
8/32 (model) ix, 896, 948, 965, 970
8008 (CPU) 970
801 (CPU) 86
80186 (CPU) 971
80286 (CPU) 971
803 (model) 970
80386 (CPU) 976
8080 (CPU) 954, 971
8086 (CPU) 970, 971
8087 (CPU) vii, 63, 105, 825, 928
840A (model) 970
85 (model) 948
86 (model) 948

8600 (model) 951
88000 (CPU) 970
88100 (CPU) 86
900 (model) 970
9080 (model) 948, 970
924 (model) 970

A
A Mathematical History of Golden Number 8
A Short Account of the History of Mathematics 927
A Treatise on the Theory of Bessel Functions 693
ABC (model) 970
Abel, Niels Henrik (1802–1829) 7, 619
Abrham, A. 217
abrupt underflow 78
absolute value

complex arithmetic 443, 444
of most negative integer 73, 74, 973
pair-precision arithmetic 358
safe integer 74

acc_t data type 897
acceleration of convergence 582, 589
accuracy of algorithms 811
Accuracy of Floating Point Arithmetic 366
Accurate Portable Mathematical Library 827
ACM Algorithm 116 451, 452
ACM Collected Algorithms 583
ACM Transactions on Mathematical Software 214
ACM Transactions on Mathematical Software (TOMS) 475, 583, 826
ACM Transactions on Modeling and Computer Simulation 214
ACM Turing Award 763, 941, 959, 963
ACRITH package 967
acroread program 1115
Ada

deficiencies in mathematical library 223
Ada 95 Reference Manual 914
ada file 911
Ada interface

building 911, 911
programming 912
using 915

Ada language vii, 1, 2, 223, 355, 829, 830, 870, 875, 899, 911–916,
923, 927, 928, 977, 993, see also Lovelace, Lady Augusta Ada

addition, safe integer 75
addition-rule evaluation 98
address, endian problem 930
Adobe (vendor) vii
Advanced Encryption Standard (AES) 178, 208
Advanced Scientific (vendor) 970
AEI (vendor) 970
AES see Advanced Encryption Standard
AGM see arithmetic-geometric mean
Airy function 695
Airy, Sir George Biddel (1801–1892) 695
AIX operating system xxxv, 71, 87, 109, 218, 233, 355, 816, 817
al-Khwarizmi, Muhammed (ca. 780–850) 575
algebra, origin of word 15, 575
Algol 60 language vii, 73, 353, 978
Algol 68 language vii
Algol language 763, 873, 963
algorithm

accuracy 811
add-with-carry generator 177
AES (Advanced Encryption Standard) 178
annuity (financial instrument) 294
argument reduction 243

Subject index . . . A 1067

argument reduction (exact)
implementation 253
retrospective 265
testing 265
theory 250

argument reduction (simple trigonometric) 243
arithmetic-geometric mean agm(a, b) 621
asymptotic expansion 19
backward evaluation of continued fraction 12
base determination 103
Bessel function
bis0(x) 725
bis1(x) 725
bks0(x) 726
bks1(x) 726
downward recurrence premature underflow 759
I0(x) 724
i0(x) 738, 744
I1(x) 724
i1(x) 738, 747
In(x) 728
in(x) 738, 743, 750
is0(x) 746
is1(x) 749
Isn(x) 719, 721, 724
isn(x) 753
J0(x) 707, 708
j0(x) 733, 734, 738
J1(x) 707
j1(x) 738, 740
Jn(x) 710, 712
jn(x) 738
Jν(x) 698
K0(x) 726
k0(x) 738
K1(x) 726
k1(x) 738
Kn(x) 728
kn(x) 738, 743, 754
Ksn(x) 719, 721
ksn(x) 754
large argument 716
large index 716
ratio in(x)/in−1(x) 750, 753
ratio Iν(x)/Iν−1(x) 721, 729
ratio jn(x)/j0(x) 738
ratio Jν(x)/Jν−1(x) 702, 710, 712
research literature 693
sbi0(x) 738, 744
sbi1(x) 738, 749
sbin(n,x) 738, 750, 753
sbisn(n,x) 753
sbj0(x) 733, 738
sbj1(x) 738, 741
sbjn(n,x) 738
sbk0(x) 738
sbk1(x) 738
sbkn(n,x) 738, 755
sbksn(n,x) 755
sby0(x) 734, 738
sby1(x) 738, 741
sbyn(n,x) 738
sequences 755
Y0(x) 705, 713
y0(x) 734, 738
Y1(x) 713

y1(x) 738, 740
Yn(x) 715, 716
yn(x) 738
Yν(x) 698

beta function 589, 590
beta function, minus one 590
binary search 976
Birthday Spacing test of random-number generator 200
ceiling function ceil(x) 136
chi-square function 561
cn(u, k) 659
combined generator 177
complementary cumulative distribution function Φc(x) 614
complementary error function erfc(x) 595
complex absolute value 443, 444
complex addition 445
complex argument 445
complex conjugate 446
complex conversion 448
complex copy 448
complex cube root 485
complex division

avoiding subtraction loss 455
C99 Standard 449
C99 style 449
LAPACK style 452
Priest style 453
Smith style 451
special cases 449
Stewart style 452
subtleties 451

complex exponential 487
complex exponential minus one, cexpm1()z 492
complex function

preserving symmetry properties 447
principal value 476

complex hyperbolic functions 509
complex imaginary part 456
complex infinity test 462
complex inverse hyperbolic functions 514
complex inverse trigonometric functions 504
complex logarithm 495
complex logarithm near one 497
complex multiplication 456
complex NaN test 462
complex negation 459
complex power 500
complex projection 460
complex real part 460
complex square root 480
complex subtraction 461
complex trigonometric functions 502
compound interest 294
congruential generator 171
continued fraction

backward evaluation 12
forward evaluation 12, 17
Lentz algorithm 18
Steed algorithm 17

cosine 306
cosine and sine together 320
cryptographic 214
cryptographic generator 178
cube root 237
cumulative distribution function Φ(x) 616
digits in base conversion 831

1068 Subject index . . . A

divide and conquer 425
dn(u, k) 659
duplication rule for elliptic functions 648
e (leading digits of) 268
elementary functions

from elliptic auxiliary function 655
in hardware 240, 292, 338, 350

elliptic function
auxiliary functions RX() 648
E′(m) 637
E(m) 637
elk(q) 669
elkm1(q) 671
elle(k) 638
ellec(k) 641
ellk(k) 632
ellkc(k) 635
first kind 624
historical forms 652
K′(m) 631
K(m) 631
RC(x, y) 649
second kind 627
third kind 630

error function 593
error function erf(x) 595
Euclid test of random-number generator 200
Euclidean norm 113
exponential function exp(x) 270

Tang style 271
exponential minus one, expm1(x) 273
fdlibm error function 595
floor function floor(x) 136, 137
forward evaluation of continued fraction 12, 17
fused multiply-add 388
fused multiply-add error correction 406
gamma function tgamma(x) 525
Gorilla test of random-number generator 200
historical elliptic integrals 643
historical inverse error function 603
history 59
hyperbolic cosine 347
hyperbolic cosine and sine together 348
hyperbolic functions 341, 804
hyperbolic sine 347
hyperbolic tangent 344
hypotenuse 224

iterative computation 227
improvement on Cody/Waite 823
incomplete gamma function 562
integer and fraction function modf(x,y) 134
integer power ipow(x,n) 415, 777
interest (compound) 294
inverse chi-square function 567
inverse complementary cumulative distribution function Φc(x)

614
inverse cosine by AGM 623
inverse cumulative distribution function Φ−1(x) 617
inverse error function 605, 609
inverse hyperbolic cosine by AGM 623
inverse hyperbolic functions 348, 349
inverse tangent 336
inverse tangent by AGM 623
Jacobian elliptic function 657

eljag() 662
eljsc() 663

eljtda() 676
inverse 664

Jacobian Eta function 679
Jacobian Theta function 679, 681
Jacobian theta function 673

logarithmic derivative 675
Jacobian Zeta function 679, 681
Kahan’s quadratic-equation discriminant 472
KISS generator 202
lagged Fibonacci generator 176
leading digits of e 268
Lentz continued fraction 18, 710
linear congruential generator 171
log-gamma function lgamma(x) 534
logarithm 282

argument near one 290
by AGM 624
decimal base 287

machine epsilon 62, 354, 779, 849
Mersenne Twister generator 202, 207

test results 200, 201
multiple recursive congruential generator 176
multiplication on early Cray models 953
multiplicative congruential generator 171
multiply-with-carry generator (MCW1038) 177
Neville theta functions 678
Newton–Raphson iteration for elwk() 685
oldest known 181
origin of word 15, 575
pair-precision function
pabs() 358
padd() 366
pcbrt() 378
pcmp() 368
pcon() 788
pcopy() 357
pcos() 799
pdiv() 372
pdot() 386
peps() 779
peval() 357
pexp() 782, 783
phigh() 357
pipow() 778
plog() 787, 789
plow() 357
pmul() 371
pmul2() 369, 370
pneg() 358
pprosum() 386
pset() 356
psplit() 363
psqrt() 373, 375
psub() 367
psum() 384
psum2() 359

pi (π) by the AGM 622
polygamma function 556
power function pow(x,y) 421
psi function ψ(x) 543
psi function psiln(x) 546
quadratic congruential generator 176
quadratic equation solution 467
random integer in given range 165, 167
random integers in order 168
remainder function

Subject index . . . A 1069

fmod() 146, 153
remainder() 149, 152, 154
remquo() 150

Riemann zeta function
zeta(x) 583
zetam1(x) 585
zetnm1(x) 585
zetnum(x) 585

rounding function
llrint(x) 143
llround(x) 141
lrint(x) 142
lround(x) 140
nearbyint(x) 139, 140
rint(x) 138
round(x) 137

scaled complementary error function erfcs(x) 598
secret is suspect 208
sequences of Bessel functions 729
series inversion 20
sine 306
spherical Bessel function

jn(x) 735
sbjn(n,x) 735
sbyn(n,x) 735
yn(x) 735

spherical Bessel functions 731
square root 217
Steed continued fraction 17, 710
subtract-with-borrow generator 177
tangent 310

continued fraction 17
testing nonuniform generator 202
testing uniform generator 196
theory of random-number generation 214
truncation function trunc(x) 136
vector sum 385
vector sum (exact) 385
Weierstrass function
℘() 689
σw() 689
ζw() 689

zeta function
zeta(x) 583
zetam1(x) 585
zetnm1(x) 585
zetnum(x) 585

Algorithms + Data Structures = Programs 3
all make target xxxv
all-hp make target xxxv
Allen, Frances Elizabeth 959
Alliant (vendor) 952
Alpha (CPU) xxxv, 68, 71, 79, 86, 105, 107, 108, 121, 123, 131, 147,

153, 216, 240, 439, 459, 812, 953, 956, 970, 976, 990
not fully conformant to IEEE 754 Standard 79

ALPINE operating system 825
Alto (model) 954
ALWAC III-E (model) 970
AMD (vendor) 65, 293, 339, 1021
AMD64 (CPU) ix, 65, 68, 69, 71, 108, 121, 123, 124, 131, 177, 216,

217, 220, 235, 239, 240, 242, 352, 362, 363, 382, 388, 439, 459,
681, 696, 765, 813, 824, 825, 911, 928, 967, 1115

precision control on 124
Amdahl (vendor) 963
Amdahl, Gene Myron (1922–2015) 963
American Revolution 206

AMI (vendor) 971
amsfonts package 1115
amsmath package 1115
An Atlas of Functions 657
An Urchin in the Storm 1065
Analytic Theory of Continued Fractions 19
Anderson, Carl David (1905–1991) 475
Anger’s function 695
annuity (financial instrument) 294

error magnification 295
Anomalies in the IBM ACRITH Package 967
ANSI standards see ISO standards
ANSI X3.9-1978 Fortran vii, 830
ANSI/ISO/IEC 1539-1:1997 Fortran Standard vii, 106
ANSI/MIL-STD-1815A Ada Standard vii
ansi2knr package 2
antilogarithms 282
APMathLib package 811, 820, 827
Apollo (vendor) 948
Apple (vendor) x, 71, 109, 818, 982
Applied Cryptography 214
Applied Statistics 214, 583
Approximations for Digital Computers 827
arc cosine see acos
arc hyperbolic cosine see acosh
arc hyperbolic sine see asinh
arc hyperbolic tangent see atanh
arc sine see asin
arc tangent see atan

AGM algorithm 623
signed zero 70

arccos see acos
Archimedes (ca. 287–212 BCE) 267
architecture see also CPU

CDC family 949
Cray family 952
DEC PDP-10 953
DEC PDP-11 956
DEC VAX 956
General Electric family 958
IBM family 959
Lawrence Livermore National Laboratory S-1 965

arcsin see asin
arctan see atan, atan2
Ardent (vendor) 952
argument

hidden 941
purification 97–99, 237, 239, 240, 339, 597, 766, 768, 811

argument reduction 243
base conversion 837
catastrophic bit loss 763
cosine 304, 306, 308
critical for Bessel functions 709, 734, 740, 762
difficulty in pair-precision arithmetic 797
effect on accuracy of complex functions 489, 504, 512, 520
elliptic functions of large modulus 663
exact 250, 253, 489, 512, 659, 667, 734
exponential 271, 272, 274, 275, 277, 279, 281, 781, 787
logarithm 283, 285, 291
Payne/Hanek algorithm 253
powers of integers 418
retrospective 265
role of remainder functions 156
simple 243
sine 304, 308, 531
tangent 304, 310

1070 Subject index . . . B

testing 265
trigonometric functions 243, 244, 250, 531, 709, 740, 762
with respect to π 306

argument-passing conventions
C 356
Fortran 941
Pascal 991

arithmetic see also floating-point arithmetic
biased integer 974
D’s-complement integer 263
exception 106
excess-n integer 974
integer division by zero 975, 977
integer overflow 550, 973–976, 978
integer parity test 975
integer sign test 975
nine’s-complement integer 263
one’s-complement integer 263, 951, 954, 972
pair-precision 353
sign-magnitude integer 961, 971
two’s-complement integer 132, 140, 142, 890, 896, 917, 952, 954,

955, 958, 963, 972
arithmetic-geometric mean 619

book about 623
Arpanet 954
arprec package 4
array package 1115
ASC (model) 963
ascending order for random integers 168
ASCII character set 905, 969, 983
ASI 2100 (model) 970
asin.h header file 326
AspectRatio option (Mathematica) 37
assembly (executable program in C#) 919
assembly language in C 106, 241, 292, 339, 388, 392
<assert.h> system header file 3
asteroid

1552 Bessel 693
orbital eccentricity 630

asymptotic expansion 19
Bessel function Iν(z) 723
Bessel function Jν(x) 697
Bessel function Kν(z) 723
Bessel function P(ν, x) 698
Bessel function Q(ν, x) 698
Bessel function Yν(x) 697
complementary cumulative distribution function Φc(x) 615
complementary error function erfc(x) 20, 595, 769
cumulative distribution function Φ(x) 615
factorial function n! 525
gamma function Γ(x) 524, 527
general f (x) 19
log-factorial function 525
log-gamma function 525, 528, 536, 569
polygamma functions 554, 555, 570
psi function ψ(x) 542, 570

Asymptotics and Special Functions 19
AT&T Bell Laboratories see Bell Laboratories
atan.h header file 32, 89
atan2x.h header file 70
atanhx.h header file 348, 350
atanx.h header file 32, 88, 89
Atlas (model) 948, 970
attribute list (in C#) 921
authidx package 1115
authidx program 1115

Autometrics (vendor) 970
awk language vii, 31, 811
AxesLabel option (Mathematica) 37
Axiom language 694, 773

B
B2n (Bernoulli number) 303, 304, 342, 525, 542, 554, 569–571,

573–575, 577, 582, 585, 800
B macro see also BASE macro
B1700 (model) 948, 969, 970, 977
B5000 (model) 970
B5700 (model) 305, 948
B6700 (model) 305, 948
B7700 (model) 305, 948
Babbage, Charles (1791–1871) 911
Babylonians 8, 299
backward evaluation of continued fraction 12
Bailey, David Harold 4, 366, 407, 777
Ball, Walter William Rouse (1850–1925) 927
Ballistic Research Laboratories Electronic Scientific Computer see

BRLESC
Ballistics Research Laboratory (vendor) 970
base 62

decimal 927
hexadecimal 24, 25, 155, 283, 290, 423, 427, 428, 437, 596, 608,

617
octal 283
run-time determination 103

BASE global variable 43, 782
BASE macro see also B macro
base-conversion precision 853
based number

conversion specifier 874
definition 829
input conversion 899

BaseStyle option (Mathematica) 37
BASIC language 251, 954
Basset function 695
Bateman G function 555
bc program 362, 408, 409, 1115
BCC-500 (model) 948
BCD character set 928, 961
BeEF package 774
Bell Laboratories x, 168, 341, 763, 775, 823, 941, 969

mathematical software libraries 823
Bell Laboratories (vendor) 463
bell-shaped curve 192
Berkeley (vendor) 237, 273, 290, 948
Berlin papyrus 465
Bernoulli family biography 591
Bernoulli Number 569
Bernoulli numbers 303, 304, 319, 342, 525, 542, 554, 568, 574, 800
Bernoulli, Daniel (1700–1782) 693
Bernoulli, Jacob (or Jacques or James) (1654–1705) 568
bernum.c file 572
bernum2*.c file 575
bernum3*.c file 575
bernumf.c file 572
bernx.h header file 573
Berra, Lawrence Peter “Yogi” 61
Bessel function 20, 57, 60, 120, 123, 541, 591, 693, 695, 823, 826, 987

cylindrical 693, 694, 769
I0(x) 724
I1(x) 724
In(x) 718, 728
J0(x) 707

Subject index . . . C 1071

J1(x) 707
Jn(x) 695, 697, 710
K0(x) 726
K1(x) 726
Kn(x) 718, 728
near zeros 716
Y0(x) 713
Y1(x) 713
Yn(x) 695, 697, 715

modified 718
ratios 702, 710, 712, 721, 729, 738, 750, 753
recurrence

cylindrical functions 700
In(z) 720, 721, 723, 729, 755, 759–761
in(z) 734, 750, 752, 753
is1(z) 750
isn(z) 754
J0(x) 705
Jn(x) 700, 701, 706, 710, 712, 717, 755, 759, 761
jn(z) 737, 738
Kn(z) 720, 723, 729, 755, 761
kn(z) 754
P(ν, x) 698
sbin(n, x) 750, 753
sbkn(n, x) 755
spherical functions 733
Yn(x) 700, 701, 716, 755, 761
yn(z) 737, 739

retrospective 761
sequences 755
spherical 693, 731

i1(x) 747
in(x) 731, 743
is0(x) 746
is1(x) 749
isn(x) 750, 753
j1(x) 740
jn(x) 731, 735
kn(x) 731, 743, 754
ksn(x) 754
y1(x) 740
yn(x) 731, 735

Bessel, Friedrich Wilhelm (1784–1846) 693, 695
beta*.map file 590
betnm.h header file 590
Bézout’s identity 186
Bias option (Mathematica) 34
biased integer 974
BibNet Project xi, 228
BIBTEX 954
bibtex program 1115
BID see Binary Integer Decimal
big epsilon 63
big-endian addressing 963
big-oh notation, O(xn) 11
bill (financial) 297
binary 158

conversion specifier 873, 874
floating-point conversion specifier 907
IEEE 754 floating-point arithmetic 63, 65, 67, 68
notation 977
search 425

Binary Floating-Point Arithmetic for Microprocessor Systems 133
Binary Integer Decimal (BID) 928, 929, 930
binary number

input conversion 879

output conversion 851
binomial

coefficient 43, 571, 573
distribution 195

binx.h header file 728
biography of mathematician 59
Birds and Frogs (2008 AMS Einstein Lecture) 475
Birthday Paradox 206
Birthday Spacings test 200
bisnx.h header file 728
BIT 476
bit

count 166
guard 67, 68
origin of word 969
rounding 67, 68
sticky 67, 68

bknx.h header file 730
Blinn, James Frederick 956
Bliss language 873, 954
bm-fma.c file 404, 405
Boldo, Sylvie 366, 403
Bolender, Gerd 366
bond (financial) 297
bool data type 453
Bowler, Roger x
Brake option (Mathematica) 34
branch cut 476, 732

numerical and symbolic computation 478
Branch Cuts for Complex Elementary Functions or Much Ado About

Nothing’s Sign Bit 476
break statement 219, 240, 264, 416, 566, 783, 842, 881
Brent, Richard Peirce 28
Brigham Young University 961
British mil 305
BRLESC (model) 970
Brooks, Jr., Frederick 963
bugs

inexact flag unset on 128-bit overflow and underflow on Alpha
79

invalid flag not set properly on IA-32 80
fma() incorrect on most GNU/LINUX systems 87
compiler mishandling of negative zero 885
computation of relative error 99, 940
failures to detect integer overflow in C library routines 889
from language features 982
integer overflow in binary search 425, 976

build-all program ix, 1115
Bull (vendor) 970
BUNCH (IBM competitors) 949
Burroughs (vendor) 305, 948, 949, 969, 970, 977
Byron, Lord George Gordon Noel (1788–1824) 911
byte

origin of word 969
storage order 2, 867, 917, 930, 956, 963
variable size 257, 959, 966, 969

BYTE data type 941
ByteInt data type 990

C
C language vii, x, xii, xxxv, xxxvi, 1–6, 24, 29, 34, 37, 39–42, 47, 48,

52, 54, 56–62, 64–66, 69–74, 77, 80, 81, 87, 90–93, 95, 96, 99–102,
104–110, 112, 113, 115, 117, 123–125, 127, 129, 130, 132, 133,
135, 139–144, 147, 152, 155, 156, 159, 167, 173, 176, 181, 186,
200, 206, 211, 218, 236, 238, 239, 241, 246, 251, 254, 256–258,
260, 264, 283, 290, 304, 326, 338, 340, 347, 353–356, 358, 359,

1072 Subject index . . . C

362, 365, 385, 397, 400, 404, 407, 410–413, 421, 426, 441, 448,
453, 459, 463, 472, 478, 488, 521, 560, 561, 583, 591, 595, 598,
614, 625, 675, 682, 690, 691, 694, 708, 712, 763–765, 769, 771,
772, 778, 780, 783, 785, 789, 824–827, 829, 830, 832, 834, 840,
841, 845, 848, 850, 851, 853, 854, 860, 867, 869, 870, 873, 875,
877–880, 886, 887, 889, 890, 892, 896, 897, 899, 901, 902, 904,
905, 908–911, 913, 914, 916, 917, 921, 923–925, 928, 931–933,
936, 940–945, 955, 956, 962, 965, 966, 972, 975, 978–984, 989–994

C Mathematical Function Handbook 827
C++

deficiencies in mathematical library 223
C++ interface 923

building 923
programming 924
using 925

C++ language vii, xxxv, 1, 2, 4–6, 29, 52, 57, 69, 71, 73, 74, 90,
100–102, 106, 109, 124, 125, 173, 176, 200, 211, 223, 354, 355,
365, 410, 441, 763, 776, 826, 827, 830, 870, 878, 917, 920,
923–925, 928, 932, 936, 967, 979, 982–984, 994

C++98 language 57
C89 language xxxv, 2, 3, 57, 58, 91, 93, 115, 121, 135, 162, 209, 223,

231, 233, 254, 255, 336, 341, 358, 362, 365, 413, 420, 441, 719,
765, 785, 868, 869, 871, 873–875, 877, 896, 906, 908

c89 program 816
C99 language xxxv, 1, 3–5, 57, 58, 74, 78, 85, 89, 91–95, 100,

105–110, 117, 120, 122–125, 127, 130–133, 155, 156, 173, 209,
210, 218, 219, 223, 227, 231, 233, 237, 256, 260, 284, 336, 338,
341, 358, 362, 370, 377, 385, 388, 405, 406, 409, 410, 412–415,
419, 441, 442, 444–446, 448, 449, 451, 453, 455, 456, 458–464,
466, 482, 485, 489, 490, 492, 495–497, 500, 502, 507, 512–514,
517, 518, 520–522, 524, 525, 534, 593, 719, 765, 785, 787, 791,
792, 829, 830, 832, 834, 841, 842, 848, 850, 857, 860, 868–870,
873–875, 877–879, 885, 896, 897, 902, 906–908, 937, 942, 951,
953, 954, 957, 964, 978, 979, 982

c99 program 818, 819, 822
C9X Rationale 223
C#

deficiencies
binary arithmetic 4, 80, 104, 105, 918
decimal arithmetic 102
integer arithmetic 978
mathematical library 57, 70, 223

virtual machine viii, 80, 917
C# interface

building 917, 918
programming 920
using 922

C# language vii, viii, 2, 4, 57, 70, 80, 90, 100, 102–105, 223, 341, 826,
830, 917–923, 927, 978, 994

CACM (Communications of the ACM) 826
Calcomp (vendor) 970
Calculating Instruments & Machines 829
calculator see also hoc

Leibniz’s 8
multiple-precision 408
Pascaline 972, 989

calligra package 1115
Cambridge (vendor) 970
Cartesian form of complex number 443
case statement 416, 789, 873, 904, 940
Catalan’s constant 587
Catalan, Eugène Charles (1814–1894) 587
catch statement 90, 830, 918
Cauchy, Augustin Louis (1789–1857) 194
cc program xxxv, 388, 812, 815–817, 820, 821, 905
cc128 program xxxv

CDC (vendor) 74, 80, 85, 305, 353, 365, 396, 520, 948–953, 956,
963–965, 969, 970, 972, 989

Indefinite floating-point value 80, 950
Cedar language 954
ceiling function 136
Central Limit Theorem 194, 196

numerical demonstration 196
Cephes package 133, 521, 583, 644, 708, 811, 821–823
certificate authority 204
char * data type 990
char data type 257, 877, 906–908
character conversion specifier 873
CHARACTER data type 941, 942, 945
character set

ASCII 905, 969, 983
BCD 928, 961
EBCDIC 905
regular expression 880
Unicode 921, 983
vendor/model dependence 963

CharSet keyword 921
chebfit.mth file 56
chebfun package 57
Chebfun Project 57
Chebyshev polynomial

closed forms 43
coefficient sorting 47
conversion to rational form 52, 55
definitions 48
economization 43, 58, 526, 535, 604, 703, 704, 707, 709, 713, 715,

724
equal extrema 44
error compensation 50
evaluation 48
fit improvement 51
fitting in Maple 47, 51
fitting in Mathematica 56
flexibility and generality 46
forms 45
function representation 57
numerical stability 48
orthogonal 44
plots 46
recurrence relation 45, 48
summation formula 43
zeros 56

Chebyshev, Pafnuty Lvovich (1821–1894) 43, 702
check-hp make target xxxv
checked keyword 90, 918, 978
Chen–Ho encoding 928
chi-square

distribution 195
measure 197, 198, 988
test 197

China 8
chkasm.c file 770
chkasm.h header file 770
chkasm.map file 770
chkatan2.c file 338
chkatan2d.c file 338
chkdelim program 1115
chkell.c file 681
chktex program 1115
ciphertext 203, 206
CITAC (vendor) 970
ckfinite instruction 918

Subject index . . . C 1073

class
Math 57, 920, 921, 979, 981, 982, 985
MathCW 921, 925, 979–982, 985, 990
numeric_limits 106
Single 100

class (programming construct) 2, 920, 979
class file for Java 979
CLASSPATH environment variable 980
Clemens, Samuel Langhorne (1835–1910) see Twain, Mark
CLI see Common Language Infrastructure
CLR see Common Language Runtime
COBOL language vii, 763, 927, 928, 963
Cody, Jr., William J. v, viii, xxv, 1, 2, 4, 10–12, 23–26, 28, 32, 42–44,

52, 57, 59, 61, 70, 79, 98, 102, 215, 245, 246, 270–272, 284, 285,
287, 289, 290, 298, 306, 308, 310, 324, 325, 332, 336, 340,
343–345, 349, 411, 412, 414, 421, 423–429, 433, 434, 438, 440,
644, 714, 763, 765, 781, 797, 798, 804, 811, 823, 823, 826, 939,
940, 949

cohaversine function 301
col program 1115
color package 1115
colortbl package 1115
combined

generator 177
Tausworthe generator 177

Comet
Halley’s 9, 630
Kohoutek 630

comet, orbital eccentricity 630
command program 954
comments in input files 909
commercial mathematical libraries 826
Common Language Infrastructure (CLI) 867, 917, 919, 921

floating-point deficiencies 918
virtual machine 80

Common Language Runtime (CLR) 917, 918
Common Lisp — The Language 476
Common Lisp language 130, 341
Common Random Numbers 158
Communications of the ACM (CACM) 826
Compaq (vendor) 71, 79, 812
compiler

64-bit integer support 173, 210, 260, 262
Ada floating-point support 911
argument-passing conventions 941, 942, 945
assembly-code support 241, 292, 338, 352, 391, 392, 824, 994
binary floating-point constant support 4, 409, 977
C/C++ compatibility 923
class overhead in C++ 925
comparison of floating-point values 934
complex-arithmetic caveats 441–443, 459, 463, 520
decimal-arithmetic support ix, 4, 101, 355, 826, 845, 928, 930,

936
float-to-double automatic conversions 877
floating-point deficiencies on MAC OS X 433, 818, 851
fused multiply-add support 87, 89, 362, 370, 392, 399, 401
IEEE 754 poorly supported 106
inline expansion 463, 914
integer division replaced by bit operations 176
integer-overflow caveats 73
interface between C and Fortran 941
interval-arithmetic support 967
just-in-time 982
mishandling of NaN in comparisons 80, 104, 137
mishandling of negative zero 69, 69, 104, 135, 478, 520, 885
need for volatile 66, 66, 121, 135, 358, 365, 471, 746, 761

one’s-complement arithmetic problems 972
precision control 124, 401
rounding control 105, 845, 951
shared-library support 944
storage initialization with NaN 931, 951
subnormals flushed to zero 78, 79
two’s-complement arithmetic problems 978
type promotion 79, 968
unsafe floating-point optimizations 64, 163
variable argument count handling 871
warning diagnostic elimination 331

complementary error function 593, 593
inverse 600
scaled 598

complex arithmetic 441, 475
absolute value 443
absolute value from hypotenuse 444
addition 445
argument 445
conjugate 446
conjugation symmetry 446
copy 448
cube root 485
data conversion 448
division 449, 451–453

avoiding subtraction loss 455
elementary functions 475
exponential 487
complex exponential minus one cexpm1()z 492
hyperbolic functions 509
imaginary part 456
infinity test 462
inverse hyperbolic functions 514
inverse trigonometric functions 504
logarithm 495
logarithm near one 497
multiplication 456

error analysis 458
NaN test 462
negation 459
power 500
projection 460
real part 460
Riemann sphere 460
square root 480
subtraction 461
trigonometric functions 502

complex data type 441, 442, 994
complex double data type 504, 509, 514, 517
complex elementary functions 475
complex number

Cartesian form 443
polar form 443

<complex> system header file 441
<complex.h> system header file 441, 442
complexcw.h header file 442
compound interest 294

error magnification 294
Computational Aspects of Three-Term Recurrence Relations 693
computational precision 65
Computer Approximations 827
computer architecture see CPU
Computer Architecture: Concepts and Evolution 104, 947, 978
Computer Arithmetic II 966
computer model see model
Computer Physics Communications 214, 693

1074 Subject index . . . C

computer vendor see vendor
Conference on Computer Arithmetic 104
congruential generator

computing 171
correlations between output values 170
deficiencies 170
good parameters are hard to find 170
recovery of parameters from output stream 207

Connolly, John William Domville 956
const char * data type 990
const keyword 3, 94, 356, 365, 992
const.h header file 365
constant, signed-zero 69
continued fraction 12

backward evaluation 12, 803
Bessel-function convergence failure 712, 738
Bessel-function ratios 701, 710, 712, 729, 738, 761
closest rational approximation 251
complementary error function erfc(x) 594, 768, 769
e (base of natural logarithms) 268
error function erf(x) 594, 768, 769
forward evaluation 12, 803
gamma function Γ(x) 524
history 59
incomplete gamma function 563
inverse tangent function atan(x) 802
Lentz algorithm 710, 712, 729, 753, 754

modified 18
relation to orthogonal polynomial 59
scaled complementary error function erfcs(x) 599
simple 13
special functions 827
Steed algorithm 17, 710, 712
tangent function tan(x) 17

Control Data Corporation see CDC
Control Data Corporation (vendor) 949
conventions

argument passing in Fortran 941
argument passing in Pascal 991
filename 3
naming 4
programming 2

convergence
acceleration 582, 589
cubic 10, 622
quadratic 8
quartic 23, 215, 622
quintic 622

convergent of infinite continued fraction 12
conversion

accuracy of floating-point to string 865
argument types 947
avoidance of integer to floating-point 761
based-number string to floating-point 899
between hexadecimal and decimal 772
between remainders 152
binary string to floating-point 879
binary string to higher base 977
binary to decimal 927
Chebyshev polynomial to rational form 52, 55
Chebyshev polynomial variable 318
compiler inaccuracy for floating-point string 162, 474, 525
complex to complex-as-real 448
cost of floating-point binary–decimal 164
decimal quantization to integer 932
decimal string to floating-point 895

decimal to binary 927
elliptic roots to modulus 685
floating-point ceiling and floor 136
floating-point decimal to binary 826
floating-point division to quotient and remainder 150
floating-point to based-number string 865
floating-point to binary string 851
floating-point to decimal string 851
floating-point to exact string 831
floating-point to floating-point 293
floating-point to floating-point with current rounding 138
floating-point to floating-point with fixed rounding 137
floating-point to floating-point without raising exception 139
floating-point to hexadecimal string 832
floating-point to integer 80, 129, 129, 918, 949, 952, 953

programming issues 130
rounding 132

floating-point to integer and fractional parts 132
floating-point to integer with current rounding 142
floating-point to integer with fixed rounding 140
floating-point to octal string 850
floating-point to remainder in nonbinary base 155
floating-point to remainder of division 143, 146, 148
floating-point to string 829
floating-point truncation 135
from complex Cartesian to polar 70, 479
general numeric string to floating-point 900
hardware out-of-range 131
hexadecimal string to floating-point 895
Infinity 866
integer to floating-point 161, 949, 952, 953
NaN 866
number to exact round-trip string 867
numbers to continued fractions 14
octal string to floating-point 894
overflow in string-to-numeric conversion 974
pair-precision constants 777
Pascal string to C string 991
plot to PostScript 36
printf() 867
problem with double rounding 265
real to complex 442
scanf() 901
string to floating-point 879

conversion specifier
binary floating-point 907
decimal floating-point 907
integer 907

converting floating-point values to integers 129
Convex (vendor) 952
convolution 966
Cooley, James William (1926–2010) 969
Corbett, Robert Paul 250
Coriolanus 411
correct rounding

cube root (almost) 239
reciprocal square root (almost) 235
square root 217

cosdbl.h header file 700
cosecant 299, 300
coshx.h header file 348
cosine 299

argument in degrees 313, 314
argument in units of fl(2π) 304
argument in units of π 315, 316
argument reduction 304, 306, 308

Subject index . . . C 1075

computing 306
computing with sine 320, 339
definition 299
derivative 301
error magnification 310
identities for testing 301, 339
in hardware 338
inverse 323
of 1

2 π 304
of angle sum 300
properties 299
range of 299
Taylor series 302
Taylor series of inverse 323

cospix.h header file 318
cosx.h header file 308
cotangent 299

argument in units of π 320
computing 310
identities for testing 340
notations for 302

cotanx.h header file 313
Coulomb wave function 693
coversine function 301
Coveyou, Robert R. 214
Cowlishaw, Michael F. ix
CP/M operating system 954
cpolyfma.map file 488
cpp file 923
cppcheck program 870
CPU see also model

801 86
4004 283, 970
6502 971
8008 970
8080 954, 971
8086 970, 971
8087 vii, 63, 105, 825, 928
32016 970
68000 65, 68, 124, 145, 146, 150, 217, 240, 292–294, 338, 352, 362,

363, 395, 401, 823, 970
68020 976
68040 71, 216
80186 971
80286 971
80386 976
88000 970
88100 86
Alpha xxxv, 68, 71, 79, 86, 105, 107, 108, 121, 123, 131, 147, 153,

216, 240, 439, 459, 812, 953, 956, 970, 976, 990
AMD64 ix, 65, 68, 69, 71, 108, 121, 123, 124, 131, 177, 216, 217,

220, 235, 239, 240, 242, 352, 362, 363, 382, 388, 439, 459, 681,
696, 765, 813, 824, 825, 911, 928, 967, 1115

EM64T ix, 65, 71, 124, 217, 362, 825, 928
G5 86, 217, 219, 370, 388
i860 86
IA-32 ix, xxv, xxxv, 63, 65, 68, 71, 80, 92, 100, 108, 109, 121,

124–127, 131, 146, 148, 150, 216–218, 234, 237, 240, 242,
292–294, 338, 339, 350, 352, 362, 363, 365, 388, 400, 401, 439,
459, 697, 716, 814, 818–820, 822–825, 867, 911, 917, 928, 967,
970, 1021, 1115

IA-64 viii, ix, xxxv, 58, 65, 68, 71, 86, 87, 100, 101, 108, 121, 123,
124, 131, 145, 146, 176, 200, 216–219, 230, 233–235, 237, 238,
240–242, 355, 362, 363, 365, 370, 382, 383, 388, 391, 392, 395,
399, 401, 412, 459, 765, 811, 814, 815, 819, 823, 824, 911, 928, 953

iAPX 432 970

Itanium-1 824, 970
Itanium-2 814, 815, 824, 970
K5 293
KA10 305, 948, 955
KI10 948, 955
KL10 305, 948, 954, 955
KLH10 ix, 216, 948, 954, 1115
KS10 948, 955
MC68040 131
MIPS 68, 71, 153, 240, 392, 439, 867, 976
Opteron 339
PA-RISC 68, 71, 86, 101, 131, 216, 218, 219, 240, 370, 383, 388,

392, 816, 970
PDP-1 970
PDP-10 v, viii, ix, 71, 72, 77, 107, 131, 147, 216, 251, 256, 257, 262,

305, 478, 608, 761, 763, 848, 849, 855, 908, 928, 947, 948, 951,
953–956, 958, 965, 966, 969–971, 977, 978, 1115

PDP-11 viii, ix, 66, 224, 478, 761, 850, 908, 928, 948, 953, 956,
957, 970, 971, 977

PDP-12 948
PDP-15 970
PDP-2 970
PDP-3 970
PDP-4 970
PDP-5 970
PDP-6 948, 954, 970
PDP-7 850, 956
PDP-8 970, 971
PDP-9 970
Pentium 339
POWER 65, 86, 87, 109, 218, 219, 370, 391, 410, 816, 825, 970,

976, 1035
PowerPC vii, 68, 71, 79, 87, 109, 131, 216, 219, 233, 240, 355, 370,

388, 392, 399, 438, 439, 459, 818, 878, 927, 936, 970, 976, 1035
R10000 131, 220, 392, 817
R2000 86
R3000 86
R4400SC 131, 817
R5000 392
ROMP 86
S-1 305, 463, 948, 965, 966
SPARC 68, 71, 86, 99, 109, 122, 129, 131, 216, 218, 240, 242, 383,

388, 392, 399, 439, 459, 697, 811, 818–821, 824, 867, 953, 956,
967, 970, 976, 990

VAX viii, ix, xxix, 71, 131, 146, 251, 271, 305, 365, 473, 478, 708,
761, 774, 855, 928, 947, 948, 951, 954, 956–958, 970, 974, 1115

VAX-11 956
x86 xxxv
Xeon 339
z-Series 241, 438
z10 927, 936
Z80 971
z9 927, 936

CPU register 13
crack1.c file 206
crack2.c file 206
Cray (vendor) 68, 85, 256, 257, 305, 365, 948, 949, 951–953, 955, 957,

964, 965, 969–971, 977
Cray 1 Computer System Hardware Reference Manual 952
Cray Research Inc. (vendor) 949
Cray, Seymour (1925–1996) 949
cryptanalysis 204
cryptographic generator 178
cryptographic quantum generator 178
cryptography

attacks on one-time pad 207

1076 Subject index . . . D

caveats 208
choosing keys and encryption methods 207
communicating encrypted keys 205
demonstration of one-time pad 204
hardware accelerators 207
problems 203

cryptanalysis of ciphertext patterns 204
distribution of secret keys 203
public-key ownership 204

provably secure encryption 204
public and private key pairs 207
public key 203
security of public-key methods 203
slow public-key methods 207
symmetric key 207

Cryptography Engineering 214
Cryptologia 214
cscc program 919
csharp file 918
CString data type 990
cube root 237

almost correct rounding 239
improved rounding 237

cubic convergence 10
cumulative distribution function 189, 593, 610, 610, 988
cvtdir.h header file 849
cvticw.h header file 879
cvtid.h header file 898
cvtocw.h header file 840, 854
cvtodx.h header file 864
cvtoh.h header file 840, 844
cvtohx.h header file 834, 850
cvtoox.h header file 850
cvtsfx.h header file 890, 892
cx_decimal_double data type 442
cx_decimal_float data type 442
cx_decimal_long_double data type 442
cx_decimal_long_long_double data type 442
cx_double data type 442
cx_float data type 442
cx_float128 data type 442
cx_float80 data type 442
cx_long_double data type 442
cx_long_long_double data type 442
cxcw.h header file 442, 507
cxl1px.h header file 497, 500
Cyber (model) 949
Cydrome (vendor) 952
cylindrical Bessel function see Bessel function
Cymbeline 215

D
D language vii, 830
D-floating 948, 956
D21 (model) 970
danger

absolute value of most negative integer 73, 74, 973
array indexing 982
comparison of floating-point values 934
conflict between input and output format specifiers 905
formatted input routines 904
formatted output routines 868
improperly initialized input strings 909
pointers 982
scanset ranges in input format specifiers 905
unsafe modifier in C# 921

Danielson, Gordon C. (1913–1983) 969
DASK (model) 970
Data General (vendor) 948, 963, 970
data type see also typedef

_Imaginary 441, 463
__float128 101, 877
__float128_pair 355
__float80 101, 877
__float80_pair 355
__fpreg 101
acc_t 897
bool 453
BYTE 941
ByteInt 990
char 257, 877, 906–908
char * 990
CHARACTER 941, 942, 945
complex 441, 442, 994
complex double 504, 509, 514, 517
const char * 990
CString 990
cx_decimal_double 442
cx_decimal_float 442
cx_decimal_long_double 442
cx_decimal_long_long_double 442
cx_double 442
cx_float 442
cx_float128 442
cx_float80 442
cx_long_double 442
cx_long_long_double 442
decContext 403
decimal 102, 103
decimal128 403
decimal_double 102, 758, 877, 936, 937
decimal_double * 907
decimal_double_pair 355
decimal_float 102, 211, 875, 877, 878, 936
decimal_float * 907
decimal_float_pair 355
decimal_long_double 102, 164, 865, 877, 936
decimal_long_double * 907
decimal_long_double_pair 355
decimal_long_long_double 102, 877
decimal_long_long_double * 907
decimal_long_long_double_pair 355
decNumber 403
DOUBLE 962
Double 990
double xxxv, xxxvi, 4, 5, 47, 58, 73, 91, 92, 102, 129, 130, 155, 163,

174, 210, 254, 256, 263, 265, 292, 293, 308, 310, 340, 355, 356,
388, 391, 395, 396, 399, 401, 402, 418, 420, 454, 459, 475, 527,
545, 555, 557, 558, 567, 572, 578, 586, 597, 614, 681, 709, 725,
738, 764, 770, 771, 811, 815, 817, 820, 821, 824, 827, 829, 833,
834, 842, 851, 854, 855, 857, 865, 867, 877, 890, 896, 908, 911,
918, 921, 923, 941, 948, 956, 962, 966, 981, 983, 990

double * 907
double complex 441
DOUBLE PRECISION 129, 941, 949, 962
double_pair xxxi, 355, 383, 384
exact_t 382
Extended 990
extended 58, 100, 101, 877
extended_pair 355
fenv_t 108, 116, 117, 120, 123
fexcept_t 108, 116, 123

Subject index . . . D 1077

Float 911
float xxxvi, 4, 5, 57, 58, 82, 92, 102, 129, 163, 210, 213, 237, 254,

265, 292, 293, 310, 355, 388, 391, 395, 396, 399, 420, 454, 459,
475, 527, 534, 557, 558, 572, 586, 597, 657, 724, 738, 764, 770,
771, 811, 815, 818, 824, 829, 834, 865, 875, 877–879, 890, 896,
908, 911, 918, 921, 941, 962, 981, 983, 990

float _Complex 441
float complex 441
float_pair xxxi, 355, 381, 382, 384
fp_c_t 442, 443
fp_cx_t 442, 443, 692
fp_pair_t 355
fp_t 3, 5, 85, 101, 135, 247, 250, 251, 265, 310, 313, 355, 356, 382,

429, 430, 667, 741
fpu_control_t 125
gmp_rounding_mode 402
hp_t 85, 310, 429, 430, 688, 741
int 73, 74, 90, 91, 94, 125, 131, 162, 163, 206, 209, 254, 257, 356,

421, 422, 667, 868, 877, 896, 941, 990
int * 874
int_t 74
INTEGER 129, 941, 962
Integer 911, 990
INTEGER*1 941
INTEGER*2 941
INTEGER*4 941
INTEGER*8 173, 941
interval_t 115
intmax_t 877, 896, 907
intmax_t * 907
jdouble 983
jfloat 983
JNICALL 983, 984
JNIEnv 983, 984
JNIEnv * 982
JNIEXPORT 983, 984
jobject 982
LOGICAL 941, 961
long 173
long double xxxv, xxxvi, 4, 5, 57, 58, 92, 100–102, 124, 129, 155,

164, 210, 213, 218, 237, 238, 293, 310, 347, 352, 355, 388, 391,
399, 412, 454, 764, 770, 815–818, 820, 821, 823, 829, 854, 856,
865, 867, 877, 879, 890, 896, 907, 908, 911, 921, 941, 990

long double * 907
long double complex 441
long int 74, 129, 131, 140, 161, 162, 209, 254, 257, 260, 877, 892,

896, 907, 908, 979, 990
long int * 907
long long double 4, 5, 58, 64, 890
long long int 74, 129, 131, 260, 453, 877, 892, 896, 907, 941,

979, 990
long long int * 907
long_double_pair 355
Long_Float 911
Long_Integer 911
long_long_double 102, 877
long_long_double * 907
long_long_double_pair 355
Long_Long_Float 911
Long_Long_Integer 911
LongInt 990
LongReal 990
MedInt 990
mp_t 250, 251
mpfr_t 402
number 907

opaque 108, 116, 120, 982
packed-decimal 928
Packed_Decimal 928
ptrdiff_t 877, 907, 908
ptrdiff_t * 907
qp_t 255–257, 263–265
quad 58, 101, 877
quad_pair 355
rancw_state_t 212
randcw_state_t 211
REAL 941, 948, 949, 962
Real 990
REAL (SELECTED_REAL_KIND(75)) 4
REAL*16 941
REAL*32 4, 64
REAL*4 941
REAL*8 941
short int 74, 116, 131, 829, 877, 907, 941, 990
short int * 907
ShortInt 990
ShortReal 990
signed char 257, 941, 990
signed char * 874, 907
SINGLE 962
Single 990
sink_t 871, 902
size_t 257, 846, 872, 877, 907, 908
size_t * 907
source_t 902, 904
split_t 396
String 981, 983
UINT_LEAST32_T 209, 211, 260–262
uint_least32_t 209
UINT_LEAST64_T 209–211, 260
uint_least64_t 209, 260
uintmax_t 877, 896, 907
uintmax_t * 907
unsigned char 257, 873, 908
unsigned char * 874
unsigned int 152, 892
unsigned long int 896
unsigned long int * 907
unsigned long long int 173, 896
unsigned long long int * 907
unsigned short int * 907
unsigned wchar_t 873
void 109, 125, 148, 355, 356, 442, 906
void * 874
wchar_t 877, 901, 906, 907
wchar_t * 874, 907
wint_t 877, 907
wint_t * 907
xp_t 854, 856, 857

Datasaab (vendor) 970
Daumas, Marc 366
de Laplace, Pierre Simon (1749–1827) 194, 195
de Moivre, Abraham (1667–1754) 194
DEC (vendor) v, viii, ix, 66, 71, 86, 107, 146, 153, 216, 224, 250, 251,

256, 305, 365, 478, 608, 761, 763, 774, 812, 850, 855, 928, 947,
948, 951–954, 956, 965, 969, 970, 974, 976–978, 1115

decContext data type 403
deccw.h header file 102
<decfloat.h> system header file xxxiii, 103, 252, 936, 937
decimal arithmetic 97–99, 927

algorithm design 763
argument purification problem 99

1078 Subject index . . . D

BID encoding 929
BID storage layout 930
Binary Integer Decimal (BID) format 928
compliance testing 827
conversion specifier 873, 874, 907
data types 102
Densely Packed Decimal (DPD) format 928
design issues 928
DPD encoding 929
DPD storage layout 930
elementary functions 4
exact scaling 937
exactly representable constants 597
header file 936, 937
language extensions 101
macros for rounding 109
mathematical libraries 826
need for 927
normalization 934
precisions 97, 99
quantization 931–933
remainder computation 144, 145
rounding 936
rounding mode extensions 109
standardization vii
storage initialization 935
type suffix

constant 102
library function 102

variable precision 216
decimal data type 102, 103
decimal number

input conversion 895
output conversion 851

decimal128 data type 403
decimal_double * data type 907
decimal_double data type 102, 758, 877, 936, 937
decimal_double_pair data type 355
decimal_float * data type 907
decimal_float data type 102, 211, 875, 877, 878, 936
decimal_float_pair data type 355
decimal_long_double * data type 907
decimal_long_double data type 102, 164, 865, 877, 936
decimal_long_double_pair data type 355
decimal_long_long_double * data type 907
decimal_long_long_double data type 102, 877
decimal_long_long_double_pair data type 355
decNumber data type 403
decNumber package 218, 387, 402, 403, 433, 867, 897, 928, 930–932,

936
decryption 203
DECstation (model) 976, 977
default statement 41, 419, 894
deficiencies of congruential generator 170
Dekker, Theodorus Jozef 353, 356, 360, 361, 365–371, 373, 375–377,

379–381, 387, 407
Demmel, James Weldon 385
Denelcor (vendor) 963
denial-of-service attack 207
denormalized number 78, see subnormal
Densely Packed Decimal (DPD) 928, 929, 930
derivative

complete elliptic integral functions 628
cosine function 301
cotangent function 548, 557
cubic methods 10

definition 61
elliptic integral function 628, 629
error functions 595, 603
error-magnification factor 61, 603
exponential function 267
gamma function 591
Halley’s method 9, 230
inverse error functions 603, 607
Jacobian Eta function 687, 692
Jacobian theta functions 675, 676
logarithm of gamma function 536
modified Bessel functions 721
Newton–Raphson iteration 8, 607
numerical approximation 8
ordinary Bessel functions 700
partial 680
psi function 539
quadratic equation 9
relation to quadrature error 560
sine function 301
tangent function 303
Taylor series 8
Weierstrass ℘() function 684, 685, 688
Weierstrass sigma function 686
Weierstrass zeta function 686, 689

Derivatives option (Mathematica) 34
deroff program 1115
descriptor 942
detecting sign of zero 69
Determination of Correct Floating-Point Model Parameters 958
detex program 1115
deviation see standard deviation
Devore, Jay Lewis 610
dgcc program 681, 938
Dictionnaire historique de la Suisse 568
DIDBR instruction 146
DIEBR instruction 146
Diehard Battery package 200, 202
diffraction grating 801
digamma (obsolete Greek letter) 521
digamma function 537
DIGIAC 3800 (model) 970
Digital Computer User’s Handbook 947, 978
digital cryptographic signature 204
Digital Electronics (vendor) 970
Digital Equipment Corporation see DEC
Digital Equipment Corporation (vendor) 954
Digits global variable 28, 29, 245, 247, 252, 408, 546, 604, 606, 626,

638, 724
Digits option (Mathematica) 39
Dijkstra, Edsger Wybe (1930–2002) 763, 947, 962
DIMENSION statement 962
Dirac, Paul Adrien Maurice (1902–1984) 475
directive

3
#define 3, 116, 130, 131, 218, 219, 235, 237, 238
#elif 3
#error 3
#if 130
#include 101, 111, 113, 114, 130, 131
#pragma 110, 113, 114
#undef 924

Dirichlet, Johann Peter Gustav Lejeune (1805–1859) 587
dirty zero 963
discriminant 466
distill program 1115

Subject index . . . E 1079

distribution
binomial 195
exponential 189, 190
F 195
function 189
gamma 195
hypergeometric 195
Laplace 195
logarithmic 190
normal 192, 194
Poisson 195
power-law 196
random number 189
Student’s t 195
uniform 189
univariate 196
Weibull 196

divbyzero exception flag 70, 71, 123, 336, 496, 518, 792
divide-and-conquer algorithm 425
division

by zero 70, 105
safe integer 75

DLL hell 920
DLMF Project 826
Dolphin (model) 954
Domain (model) 948
DotGNU Project viii, 917
double * data type 907
double complex data type 441
DOUBLE data type 962
Double data type 990
double data type xxxv, xxxvi, 4, 5, 47, 58, 73, 91, 92, 102, 129, 130,

155, 163, 174, 210, 254, 256, 263, 265, 292, 293, 308, 310, 340,
355, 356, 388, 391, 395, 396, 399, 401, 402, 418, 420, 454, 459,
475, 527, 545, 555, 557, 558, 567, 572, 578, 586, 597, 614, 681,
709, 725, 738, 764, 770, 771, 811, 815, 817, 820, 821, 824, 827,
829, 833, 834, 842, 851, 854, 855, 857, 865, 867, 877, 890, 896,
908, 911, 918, 921, 923, 941, 948, 956, 962, 966, 981, 983, 990

double factorial 523
double make target xxxv
DOUBLE PRECISION data type 129, 941, 949, 962
double rounding 265, 339, 359, 363, 396, 400, 908
double_pair data type xxxi, 355, 383, 384
doubled-double arithmetic 353, see pair-precision arithmetic
doubleword 969
DPD see Densely Packed Decimal
DRAGONFLYBSD operating system x
DRAGORA operating system 825
DSI (vendor) 970
duplication rule for elliptic auxiliary functions 648, 649, 690
dv2dt program 1115
dvips program 1115
dw program 1115

E
E2n (Euler number) 572, 572, 573, 574, 577, 587
E global variable 850, 851
e history 59
e10m1x.h header file 279
e: The Story of a Number 269
Earth (planet) 630
EBCDIC character set 905
eccentricity 630
Eclipse (model) 970
Eclipse S/200 (model) 948
ECMA-334 C# Specification vii

ECMAScript language vii
École Nationale Supérieure 825
edigs.c file 268
EDSAC (model) 353, 970
EDVAC (model) 970
egcdx.h file 188
egrep program 880, 1115
Egypt 299, 465
Eiffel language 830
Einstein, Albert (1879–1955) 303, 475
EISPACK package 227, 228, 232
EL X1 (model) 970
EL X8 (model) 970
El-tronics (vendor) 970
Electrologica (vendor) 970
electrostatic potential 627
ELEFUNT package 61, 96, 98–100, 216, 338–340, 342, 412, 430, 436,

438, 439, 763–765, 769, 770, 773, 774, 776, 811–822, 940
eljagx.h header file 662
eljcnx.h header file 664
eljdax.h header file 676
eljdnx.h header file 664
eljscx.h header file 663
ellfun.c file 655
Elliott (vendor) 970
ellipse perimeter 619, 630
elliptic integral functions 619
elliptic package 659
ellrcx.h header file 649
else statement 135, 148, 240, 275, 276, 338, 373, 378, 384, 397, 398,

785, 842
elwkx.h header file 685
ELXSI (vendor) 952, 970, 977
EM64T (CPU) ix, 65, 71, 124, 217, 362, 825, 928

precision control on 124
emacs program 2, 954, 1115
EMOD instruction 146
Emulab Network Emulation Testbed ix
encoding

PDP-10 fraction 954
PDP-10 numbers 954
CDC 6000 exponent 950
CDC 6000 signed zero 950
BID 928, 930
Chen–Ho 928
DPD 928, 930
floating-point exponent 974
function argument types 982
IEEE 754 binary 63
IEEE 754-2008 decimal BID 929
IEEE 754-2008 decimal DPD 929
signed integers 971

Encore (vendor) 952
encryption 203
Enenkel, Robert Frederick 353
English Electric (vendor) 948, 970
English Electric LEO-Marconi (vendor) 970
environment

access pragma 110
getting 117
setting 117
updating 119

environment variable
CLASSPATH 980
INITIALSEED 764
LD_LIBRARY_PATH 919, 946

1080 Subject index . . . E

MAXTEST 764, 812, 813
EPIC (Explicitly Parallel Instruction Computer) 824
EPIC mathematical functions 824
epigraph vii, xxxv, 1, 7, 12, 23, 61, 105, 129, 157, 214, 215, 243, 267,

299, 341, 353, 359, 411, 441, 465, 471, 472, 475, 521, 547, 593,
619, 657, 693, 763, 777, 811, 823, 829, 879, 911, 917, 923, 927,
939, 941, 947, 949, 952, 953, 956, 958, 959, 969, 971, 979, 987,
989, 995

equity 296
EQUIVALENCE statement 962
erf-cf.hoc file 594
erfc-cf.hoc file 594
erfcinv() function see also ierfc() function
erfcs() 598
erfcsx.h header file 598
erfcx.h header file 598
erfinv() function see also ierf() function
erid.h header file 255, 258
errata in Cody/Waite book 939
errno global variable 70, 71, 91, 93–96, 130, 132, 136, 137, 139–143,

148, 150, 152, 155, 563, 690, 700, 719, 730, 758, 763, 785, 791,
792, 803, 885, 897, 908

thread safety 95
values 91

<errno.h> system header file 3, 91, 93, 94
error function 593, 593

complementary 593
computing 595
inverse 600
inverse complementary 600
properties 593
scaled complementary 598

error magnification 61, 62, 340, 438, 439, 596, 603, 604, 795
annuity function 295
In(x) and Kn(x) 721
Isn(x) and Ksn(x) 721
Jn(x) and Yn(x) 700
complete elliptic integral functions 625, 628, 629
complex exponential function 500
compound interest function 294
cosine function cos(x) 310
elementary and special functions 61, 62
error functions 595, 596, 616
exponential function exp(x) 268, 343, 528, 557, 558, 578, 672,

746, 787
inverse cosine function acos(x) 324, 804
inverse error functions 603, 604, 616
inverse sine function asin(x) 324, 804
logarithm function log(x) 283, 531
power function 412, 528, 940
psi function 539
Riemann zeta function ζ(x) 584
roots of quadratic equations 471, 474
sine function sin(x) 309, 531
spherical Bessel functions in(x), jn(x), kn(x), and yn(x) 732
square root 517
tangent function tan(x) 310, 545

ESA/390 (model) x, 1115
ETA (vendor) 949, 952
Eta function (Jacobian) 679
Euclid of Alexandria (ca. 300 BCE) 180, 222
Euclid test of random-number generator 200
Euclid’s algorithm for extended gcd 186
Euclid’s algorithm for gcd 180, 183, 184
Euclidean distance 222, 444
Euclidean norm 113, 222, 223

Euler Archive 591
Euler formula 443
Euler identity (eiπ + 1 = 0) 59, 444
Euler numbers 568, 572
Euler, Leonhard (1707–1783) 12, 267, 267, 268, 269, 282, 521, 524,

541, 572, 589, 591, 619, 693, 702, 703, 722, 801
biography 59, 591

Euler–Maclaurin summation formula 570
Euler–Mascheroni constant 524, 541, 591, 702, 703, 722, 988
eulnum.c file 573
eulnumf.c file 573
eulnx.h header file 573
evaluation

addition-rule 98
order in C 64
Taylor series 97, 768

even series 25
exact quadrature conditions 560
exact round-trip conversion 840, 844, 851
exact summation 385
exact_t data type 382
exception 106
exception flag

access 107, 116
divbyzero 70, 71, 123, 336, 496, 518, 792
getting 118
holding 119
inexact 79, 79, 106, 111, 112, 114, 123, 133, 135–137, 139, 140, 142,

143, 275, 324, 325, 332, 338, 344, 345, 585, 598, 782, 803, 804
invalid 70, 71, 80, 80, 94, 114, 123, 135–137, 139–143, 336, 482,

486, 490, 496, 507, 513, 514, 518, 791
no access in Ada 914
overflow 71, 71, 111, 114, 124, 415, 778, 887
setting 118
subnormal 108, 123, 124
testing 112
underflow 78, 79, 106, 111, 114, 123, 124, 338, 415, 598, 778, 785
using 112, 120

excess-n integer 974
exclusive-OR 159, 176–178, 206
exered.c file 265
exerid.c file 265
exp file 123, 206, 233, 459, 572, 573
exp.h header file 272
Explication de l’Arithmétique Binaire 969
expm1x.h header file 274, 276
exponent

bias removal in hardware 950
boundaries and ulp measures 81
CDC 6000 950
dirty zero 963
encoding in decimal BID 929
encoding in decimal DPD 930, 931
encoding in storage 947
extended range 79, 82, 101, 124, 145, 241, 556, 572, 582, 655, 824,

826, 951, 953, 955, 956
extraction in Java 982
extraction with frexp() 148, 155, 257, 279, 284, 769, 837, 857,

914, 922, 937, 944, 981, 992
extraction with intxp() 284
extraction with logb() 284
flag bit 959, 960
IEEE 754 subnormal 78
inadequate range in C# decimal type 102
Indefinite 950, 951
Infinitesimal 960

Subject index . . . F 1081

Infinity 950, 953, 960, 963
limit symbols 251, 831
limited range in older systems 253, 555, 586, 899, 947, 955, 956,

961, 964
linking absent in pair-precision arithmetic 354, 365, 407, 779
maximum power in polynomial 40
minimum output width 840
need for larger range 407, 730, 752
nonzero for floating-point zero 951
order-of-magnitude-zero (OMZ) 960
phantom in second word 947
power operator 420
range

68000 extended 124
IA-64 extended 100, 101, 124, 241, 824
IEEE 754 binary arithmetic 65
IEEE 754-2008 decimal arithmetic 929
limits in continued-fraction evaluation 13
mandated by COBOL 928
multiple-precision arithmetic 407
not extended in pair-precision arithmetic 354, 781
RS/6000 817

reduced in second word 949, 955
reduction in integer-power computation 502
register 958
relation to maximum exactly representable number 133
scaling with ldexp() 148, 155, 257, 272, 279, 413, 418, 423, 439,

769, 795, 846, 885, 890, 896, 899
scaling with scalbn() 284
scaling with setxp() 284, 423, 439
smallest normal number 83
tapered arithmetic 966
testing extraction 769
undetected overflow 889, 896
unsymmetric range on Cray 953
unusual storage encoding 947, 956
widest range 670
wrapped on overflow or underflow 77, 955
zero with nonzero fraction 957

exponential 267, 267
AGM algorithm 624
argument reduction 271, 272, 274, 275, 277, 279, 281
distribution 189, 190
error magnification 268
in hardware 292
minus one, expm1(x) 273
Taylor series 267, 277

export statement 991
expx.h header file 272
extbook package 1115
Extended data type 990
extended data type 58, 100, 101, 877
extended Euclid’s algorithm for gcd 186
extended_pair data type 355
extending the library 57
extern keyword 984
external statement 991
extracting integral and fractional parts 132
Eyring, Henry (1901–1981) ix

F
F distribution 195
F-floating 956
f2c program 763
f2xm1 instruction 293, 294
f77 program 941, 942

facos instruction 338
factorial

definition 8
double 523
quadruple 523
triple 523

fasin instruction 338
Fast Fourier Transform 966, 969
fatan instruction 338
fatanh instruction 352
fcos instruction 338
fcosh instruction 352
fdlibm package 133, 153, 274, 325, 349, 352, 595, 597, 598, 811, 821,

824, 825, 940
fdtoi instruction 129
fdtox instruction 129
features package 69
fecmplx.c file 123
fecmplx2.c file 123
fecmplx3.c file 123
<fenv.h> system header file 107–109, 113, 116, 120
fenv_t data type 108, 116, 117, 120, 123
fenvcw.c file 107
fenvcw.h header file 108–110, 112, 116, 120, 121, 127
fenvx.h header file 107, 110, 116, 126
Fermat’s Last Theorem 60
Fermat, Pierre de (ca. 1601/1607–1665) 222
Ferranti (vendor) 970
Ferranti–Packard (vendor) 970
fetox instruction 294
fetoxm1 instruction 294
fexcept_t data type 108, 116, 123
FFT see Fast Fourier Transform
fibnx.h header file 578
Fibonacci biography 59
Fibonacci generator 176
Fibonacci numbers 15, 472, 575, 577

closed form 578
discriminant relation 473
generalization 473
history 59
in Euclid’s algorithm 182
recurrence relation 15, 473, 576
symmetry relation 576

Fibonacci’s Liber Abaci: A Translation into Modern English of Leonardo
Pisano’s Book of Calculation 575

file see also header file, see also system header file
*.dat.maple 771
*.log 771
*.map 29
../maple 771
.adb 911
.ads 911
.dll 920
.dylib 920
.exe 919
.so 920
/depot/lib/libmcw.a xxxv
/dev/random 207
/dev/urandom 207
/usr/local xxxv
ada 911
bernum.c 572
bernum2*.c 575
bernum3*.c 575
bernumf.c 572

1082 Subject index . . . F

beta*.map 590
bm-fma.c 404, 405
chebfit.mth 56
chkasm.c 770
chkasm.map 770
chkatan2.c 338
chkatan2d.c 338
chkell.c 681
cpolyfma.map 488
cpp 923
crack1.c 206
crack2.c 206
csharp 918
edigs.c 268
egcdx.h 188
ellfun.c 655
erf-cf.hoc 594
erfc-cf.hoc 594
eulnum.c 573
eulnumf.c 573
exered.c 265
exerid.c 265
exp 123, 206, 233, 459, 572, 573
fecmplx.c 123
fecmplx2.c 123
fecmplx3.c 123
fenvcw.c 107
filnam.ext 3
fitrndx.map 43
fixed-nearpi.c 251
frexpf.c 944
ftocs.c 945
gamierf*.c 566
gamiexp*.c 567
genmap-* 771
glquad.c 560
glquad.map 560
ipowx.h 420
irnint.c 167
ixsq*.c 567
J0taylor.map 718
java 979
jmmred.map 251
libMathCW.dylib 982
libMathCW.so 980, 982
libmcw.a 4, 771
libmcw.dylib 920
libmcw.so 4, 920
Makefile 3, 4, 442, 764, 765, 771, 911, 912, 919, 923, 925, 943,

946, 979, 989
maple 28, 29, 55, 408, 488, 772
mathcw.ads 911, 912, 914, 915
mathcw.bib xii
MathCW.c 982–984
MathCW.class 980
mathcw.cs 919–922
MathCW.dll 982
mathcw.gpi 993
MathCW.java 980
mathcw.map 772
MathCW.o 980
mathcw.o 993
mathcw.pas 989, 991–993
msbis0.c 771
myprog.exe 920
myprog.exe.config 920

nanf.c 944
nearpi.c 251
nearpi.dat 251
numtest.pas 994
okay 919, 924, 990
pascal 989
perf.adb 916
perf.java 982
pgamma.hoc 556
polyfit.mth 38, 42
polyfma.map 488
pxy*.c 430
pythagn.c 233
rndcb1.c 238–240
rndcb2.c 240
rndoff.c 161
rndrs1.c 235, 237
rndrs2.c 237
rndsq1.c 216, 220
rndsq3.c 217, 220
rndsq4.c 217, 220
rndsq5.c 217, 220
rndsq6.c 217, 220
sbj1taylor.map 740
sby1taylor.map 740
split-base.map 708
split.map 408
sqrt.c 3, 4
sqrtf.c 3, 4
sqrtl.c 3, 4
tatanh.c 99
tcmul2.c 459
tcmul3.c 459
terf.c 768, 769
terfc.c 768, 769
test*.cs 919
test*.pas 989
test-* 765, 769
test.adb 912, 915
test.ali 912
test00.pas 991
test01.cc 925
test01.pas 991
test02.cc 925
test02.pas 991
test03.cc 925
test03.pas 991
test05.pas 993
tfrexp.c 769
tgcd.c 184
timred*.c 265
tldexp.c 769
tlgamm.c 766
tpsi.c 768
tpsiln.c 768
tqert.c 473
tstkis.c 177
ttgamm.c 766

filename conventions 3
Filling option (Mathematica) 37
FillingStyle option (Mathematica) 37
filnam.ext file 3
final keyword 981
first-order Taylor-series approximation 8
Fisher, Sir Ronald Alymer (1890–1962) 196
fitrndx.map file 43

Subject index . . . F 1083

fixed-nearpi.c file 251
fixed-point accumulator 385, 898
fixed-point arithmetic

address calculation 961
binary 970
databases 928
decimal 928, 954
discarding fractional digits 133
divide exception 977
EDSAC 353
elementary functions viii, 763
emulating with floating-point arithmetic 931–933
exact summation 385
graphics processors 86
PL/1 928
representation of large integers 133
rescaling problem 927, 933

fld1 instruction 293
fldlg2 instruction 293
fldln2 instruction 293
float _Complex data type 441
float complex data type 441
Float data type 911
float data type xxxvi, 4, 5, 57, 58, 82, 92, 102, 129, 163, 210, 213,

237, 254, 265, 292, 293, 310, 355, 388, 391, 395, 396, 399, 420,
454, 459, 475, 527, 534, 557, 558, 572, 586, 597, 657, 724, 738,
764, 770, 771, 811, 815, 818, 824, 829, 834, 865, 875, 877–879,
890, 896, 908, 911, 918, 921, 941, 962, 981, 983, 990

float make target xxxv
<float.h> system header file 3, 62, 82, 100, 135, 252, 527, 598, 769,

785, 855, 859, 867, 936, 994
float_pair data type xxxi, 355, 381, 382, 384
Floating Point Computation 948
floating-point arithmetic see also wobbling precision

Binary Integer Decimal (BID) format 930
conversion specifier 907
conversion to integer 129
D-floating on PDP-10 948
D-floating on VAX 948, 957, 958
decimal design issues 928
decimal desirability 927
decimal exact scaling 937
decimal extensions 101, 927
decimal header file 936, 937
decimal NaN 930
decimal normalization 934
decimal quantization 932
decimal rounding 936
decimal storage initialization 935
Densely Packed Decimal (DPD) format 930
differences between decimal and binary 931
division by zero 70
exact scaling see ldexp(), see scalbln(), see scalbn()
exception 106
exception flags 107, 110, 112, 116, 120
F-floating on PDP-10 948
F-floating on VAX 948, 957
fused multiply-add (fma) 85
G-floating on PDP-10 948
G-floating on VAX 948, 957, 958
H-floating on VAX 948, 957, 958
hexadecimal formats on System/360 964
historical formats 948
I/O primitives 829, 879
IEEE 754 binary characteristics 65
IEEE 754 binary design 63

IEEE 754 binary formats 63
IEEE 754-2008 decimal characteristics 929
IEEE 754-2008 decimal design 927
IEEE 754-2008 decimal formats 930
inexact operation 79
invalid operation 79
NaN test 80
overflow 71
overflow in splitting 362
precision control 123, 126
rational numbers 15
rounding control 107, 110, 115
rounding operation 66
S-floating on Alpha 956
signed zero 69
significance loss 89
splitting 132, 359
subnormal number 78
T-floating on Alpha 956
test for decimal quantization 933
trap 106
underflow 77
unusual systems 966

floating-point conversion
format specifier 873, 874
output precision 876

floating-point environment 105
floating-point input 879
floating-point output 829
Floating-Point Systems (vendor) 952
flog10 instruction 294
flog2 instruction 294
flogn instruction 294, 352
flognp1 instruction 294, 352
floor function 136
Florida State University 200
FLT_MAXRANL_INV global variable 213
flush to zero see underflow
Flux Research Group ix
fma see fused multiply-add
fma instruction 86, 391
fma.d instruction 391
fma.s instruction 391
fmadd instruction 391
fmadds instruction 391
fmaxxx.h header file 391, 394
fmcw.h header file 944
FMOD instruction 150
fmpyfadd,dbl instruction 391
fmpyfadd,sgl instruction 391
FNLIB package xxxi, 341, 352, 823
fontenc package 1115
Foonly (vendor) 954
footnote viii, 3, 4, 7, 8, 13–16, 24, 28, 43, 48, 57, 63, 69, 104, 170, 176,

206, 223, 228, 267, 283, 297, 299, 303, 385, 433, 441, 460, 475,
524, 525, 550, 568, 569, 572, 576, 578, 579, 587, 589, 591, 604,
616, 630, 671, 693, 763, 769, 773, 774, 776, 801, 802, 823–826,
848, 869, 896, 899, 917, 947, 952, 963, 966, 969, 976, 979

FORMAT statement 829
Forsythe, George Elmer (1917–1972) 472
Fortran

deficiencies in mathematical library 223
support for IEEE 754 106

Fortran 2003 language 106, 130, 941
Fortran 2008 language 130, 223, 591, 593, 598, 694, 941
Fortran 66 language 129, 941, 942

1084 Subject index . . . G

Fortran 77 language 4, 57, 129, 875, 940–942, 945, 977, 994
Fortran 90 language 4, 57, 106, 130, 355, 829, 942, 945, 946, 967, 977
Fortran 95 language 57, 106, 946
FORTRAN Automatic Coding System for the IBM 704 EDPM 959
Fortran interface 941

building 943
programming 944
using 945

Fortran language vii, 1, 2, 4, 28, 29, 37, 57, 61, 64, 70, 72, 74, 77, 91,
99, 106, 108, 124, 129, 130, 173, 200, 223, 232, 341, 343, 385, 411,
412, 420, 441, 442, 449, 463, 520, 556, 562, 583, 593, 645, 650,
763, 769, 775, 823, 826, 829, 830, 832, 843, 869, 870, 873, 879,
904, 909, 910, 940–946, 949, 951, 952, 954, 955, 961, 963, 973,
974, 976, 977, 994

Fortran Version 3A/B Reference Manual 949
forward evaluation of continued fraction 12
Four-Color Problem 60
Fourier, Jean Baptiste Joseph (1768–1830) 299
FP-6000 (model) 970
fp_c_t data type 442, 443
fp_cx_t data type 442, 443, 692
fp_pair_t data type 355
fp_t data type 3, 5, 85, 101, 135, 247, 250, 251, 265, 310, 313, 355,

356, 382, 429, 430, 667, 741
fpatan instruction 338
FPREM instruction 146, 148, 150
FPREM1 instruction 146, 150
fptan instruction 338
fptest package 775
<fpu_control.h> system header file 125
fpu_control_t data type 125
France 802, 825
FREEBSD operating system viii, x, 71, 124, 131, 459, 825
Freely Distributable Math Library (fdlibm) 824
FREM instruction 146, 150
French libraries 825
FREQUENCY statement 962
frexpf.c file 944
fsin instruction 338
fsincos instruction 338, 339
fsinh instruction 352
fstoi instruction 129
fstox instruction 129
ftan instruction 338
ftanh instruction 352
ftentox instruction 294
ftocs.c file 945
ftwotox instruction 293, 294
Fujitsu (vendor) 952, 963
Fullerton, Louis Wayne 823
Fun with Fibonacci 578, 978
function

ceiling 136
floor 136
integer rounding 140, 142
rounding 137–139
truncation 135

FunctionApproximations package 34
further reading

computer arithmetic 103
cryptography 214
elementary functions 827
mathematical biographies 58
orthogonal polynomials 58
polynomial fits 58
random numbers 214

special functions 590, 827
fused multiply-add (fma) 85, 86–89, 145, 218–220, 224, 235–242,

362, 365, 452, 458, 491, 525, 528, 596, 599, 651, 681, 700, 704,
708, 713, 760, 781, 787, 824, 825

cheap but inaccurate 239
correcting for double rounding 393
divide algorithm 953
faulty implementation 87, 220, 235, 370
graphics processors 86
IEEE 754-2008 966
implemented with multiple precision 401
implemented with pair precision 388
implemented with round-to-odd 403
implemented without pair precision 395
in hardware 218
polynomial evaluation 88
significance of 86
square root evaluation 218

future value of an annuity 295
fyl2x instruction 294
fyl2xp1 instruction 294

G
G-15 (model) 970
G-20 (model) 970
G-floating 948, 955, 956
G5 (CPU) 86, 217, 219, 370, 388
gamierf*.c file 566
gamiexp*.c file 567
gamma (Euler’s constant, γ) history 59
Gamma 60 (model) 970
gamma distribution 195
gamma function Γ() 521, 521

regularized incomplete 595
GAMMA global variable 850, 851
garbage collection 91
Gauss, Carl Friedrich (1777–1855) 441, 558, 560, 619, 623, 631, 632,

663, 702, 969
biography 59

Gauss–Chebyshev quadrature 702
Gauss–Laguerre quadrature 560
Gauss–Legendre quadrature 702
Gautschi, Walter 562, 563
Gay, David M. 763, 896
gcc program xxxv, 87, 101, 153, 216, 292, 338, 391, 392, 401, 442,

813, 814, 817, 818, 821, 825, 826, 912
gcd

example 182
iteration counts 182
negative function value 184
symmetry relations 183
with iteration 182
with recursion 181

gcdcw.h header file 183, 188
GE 235 (model) 970
GE 435 (model) 970
GE 635 (model) 970
Gegenbauer, Leopold (1849–1903) 59
General Electric (vendor) 65, 305, 947, 948, 958, 959, 970
generator

AES 178
combined 177
computing congruential 171
cryptographic 178
deficiencies of congruential 170
Diehard Battery test suite 200

Subject index . . . G 1085

floating-point to integer 165
Gorilla test 200
Hansson–Pike–Hill 812, 813
improving 178
integer to floating-point 160
integer to integer 166
inversive congruential 180
KISS 177, 208, 210
lagged Fibonacci 176
linear congruential 169
lrand48() 162
mathcw library 208
Mersenne Twister 207
multiple recursive congruential 176
multiplicative congruential 169
multiply-with-carry (MCW1038) 177
NIST Statistical Test Suite 200
other algorithms 176
period 157
POSIX Standard 162
quadratic congruential 176
quantum cryptographic 178
range 157
seed 157
shuffled nested Weyl sequence 177
software guidelines 157
testing nonuniform 202
testing uniform 196, 200
TestU01 suite 200
tuftest suite 200
Weyl sequence 177
XOR-shift 176

genmap-* file 771
Gentle, James Eddie 214
Gentoo (vendor) 956
GHOSTBSD operating system x
GIER (model) 970
glibc package 133, 274, 825
Global Positioning System (GPS) 204
global variable

$MachinePrecision (Mathematica) 35, 39
__GROUP__ 851
__mcw_fe_dfl_env 116, 117
BASE 43, 782
Digits 28, 29, 245, 247, 252, 408, 546, 604, 606, 626, 638, 724
Digits (Mathematica) 39
E 850, 851
errno 70, 71, 91, 93–96, 130, 132, 136, 137, 139–143, 148, 150,

152, 155, 563, 690, 700, 719, 730, 758, 763, 785, 791, 792, 803,
885, 897, 908

FLT_MAXRANL_INV 213
GAMMA 850, 851
LDBL_MAXRANLL_INV 213
LLRANDCW_MAX 211
LRANDCW_MAX 211
MAXNORMAL 782, 955
MINNORMAL 711, 955
MINSUBNORMAL 394, 407, 782
Order 11, 21
PI 408, 409, 850, 851, 955
PRECISION 43
signgam 521, 534
sys_errlist 94
sys_nerr 94
thread problem 95, 132, 522, 897

glquad.c file 560

glquad.map file 560
GMP package 402, 433, 825, 994
<gmp.h> system header file 402
gmp_rounding_mode data type 402
gnat program 911, 915
gnatbind program 912
gnatlink program 912
gnatmake program 911–913
GNU (vendor) xxxv, 71, 87, 101, 133, 274, 320, 352, 391, 433, 442,

813, 814, 817, 819, 821, 825, 860, 911, 928, 930, 936, 944,
989–991, 993, 994

compiler family xxxv
GNU libraries 825
GNU MP: The GNU Multiple Precision Arithmetic Library 401, 407
GNU operating system x
GNU Scientific Library 583, 694, 825
GNU/LINUX operating system viii, x, xxxv, 71, 78, 87, 93, 109,

123, 125, 127, 131, 216, 218, 220, 235, 238, 239, 370, 399, 401,
459, 696, 811, 813–815, 817, 819, 825, 833, 834, 911, 956, 967

gnuplot program 223, 1115
Go language vii
GO TO statement 962
Go To Statement Considered Harmful 962
Goldberg base-conversion precision 853
Goldberg, I. Bennett 851, 853
golden ratio (φ = (1 +

√
5)/2 ≈ 1.618) 8, 473, 577, 988

golden ratio (φ) history 14, 59, 577
Good Ideas, Through the Looking Glass 959
Good, Irving John 169
googol 283, 542
googolplex 283
Gorilla test of random-number generator 200
Gosset, William Sealey (1876–1937) 196
goto statement 2, 184
Gould (vendor) 948, 963, 970
gp language 269
gp program 1115
gpc language 993
gpc program 989, 990, 993, 994
GPU (graphics processing units) 475
gradual underflow 64, 78
graphics processing units (GPU) 475
graphicx package 1115
greatest common divisor see gcd
Greece 299
Greek letter 988

alpha (α, A) 283, 624, 627, 632, 852
beta (β, B) 62, 283, 587
chi (χ, X) 197, 562
delta (δ, Δ) 61, 658
digamma (obsolete) 521
epsilon (ε, ε, E) 62
eta (η, H) 587, 643
gamma (γ, Γ) 61, 521
lambda (λ, Λ) 587
mu (μ, M) 194
nu (ν, N) 198, 562
omega (ω, Ω) 627
phi (φ, ϕ, Φ) 8, 172, 521, 577, 593, 610, 624, 627
pi (π, �, Π) 14, 630
psi (ψ, Ψ) 61, 521
rho (ρ, �, P) 645
sigma (σ, ς, Σ) 8, 194, 848
tau (τ, T) 344
theta (θ, ϑ, Θ) 70, 202, 299, 624, 697
xi (ξ, Ξ) 695

1086 Subject index . . . H

zeta (ζ, Z) 303, 427, 521, 695
Gregory, James (1638–1675) 801
groff program 1115
gs program 1115
GSL package 825
guard bit 67, 68, 256, 259, 882, 987
guidelines for random-number generator software 157
Guinness Brewery 196
Gustavson, Fred G. 353
Gutmann, Peter 214
gv program 1115
gzip program 1115

H
H-floating 956
Hacker’s Delight 166, 176, 978
HAIKU operating system x
half float 64
halfword 969
Halley’s Comet 630
Halley’s method 9, 10, 230, 610
Halley, Edmund (1656–1742) 9, 10, 604
Hamming, Richard Wesley (1915–1998) 22
Handbook of Continued Fractions for Special Functions 19, 827
Handbook of Elliptic Integrals 667, 682
Handbook of Floating-Point Arithmetic 104
Handbook of Mathematical Functions 6, 59, 269, 562, 600, 643, 651,

652, 657, 682, 684, 693, 731, 826, 827
Hanek, Robert N. 250, 253, 259, 265
Hankel function 695
Hankel, Hermann (1839–1873) 695
Hansson–Pike–Hill random-number generator 812, 813
hard-to-round base conversions 852
hard-to-round function values 28, 251
HARDENEDBSD operating system x
hardware instructions see also __asm__, see also instruction

exponential 292
fused multiply-add 388
hyperbolic functions 350
logarithm 292
precision control 124
reciprocal square root 240
square root 240
trigonometric functions 338

hardware out-of-range conversion 131
Hardy, Sir Godfrey Harold (1877–1947) 579
harmonic series 541, 579, 703, 722
Harrenstien, Ken ix
Harris (vendor) 254, 396, 597, 947, 948, 970
Hart, John F. 644
Harvard University (vendor) 970
Hastings, Jr., Cecil 643, 644
haversine function 301
Hayes, Wayne B. 385
header file see also file, see also system header file

asin.h 326
atan.h 32, 89
atan2x.h 70
atanhx.h 348, 350
atanx.h 32, 88, 89
bernx.h 573
betnm.h 590
binx.h 728
bisnx.h 728
bknx.h 730
chkasm.h 770

complexcw.h 442
const.h 365
cosdbl.h 700
coshx.h 348
cospix.h 318
cosx.h 308
cotanx.h 313
cvtdir.h 849
cvticw.h 879
cvtid.h 898
cvtocw.h 840, 854
cvtodx.h 864
cvtoh.h 840, 844
cvtohx.h 834, 850
cvtoox.h 850
cvtsfx.h 890, 892
cxcw.h 442, 507
cxl1px.h 497, 500
deccw.h 102
e10m1x.h 279
eljagx.h 662
eljcnx.h 664
eljdax.h 676
eljdnx.h 664
eljscx.h 663
ellrcx.h 649
elwkx.h 685
erfcsx.h 598
erfcx.h 598
erid.h 255, 258
eulnx.h 573
exp.h 272
expm1x.h 274, 276
expx.h 272
fenvcw.h 108–110, 112, 116, 120, 121, 127
fenvx.h 107, 110, 116, 126
fibnx.h 578
fmaxxx.h 391, 394
fmcw.h 944
gcdcw.h 183, 188
inttcw.h 209, 260
issafe.h 77
j0.h 708
j0x.h 708, 718
j1x.h 718
jnx.h 712
l21px.h 292
lgammx.h 534
lgbfax.h 558
log.h 287
logx.h 286, 292
MathCW.h 980, 983
mathcw.h xxxv, 2, 4, 5, 108, 130, 209, 308, 325, 816, 879, 923, 924
mathcw.hh 923, 924
mconf.h 824
modf.h 130
modfx.h 130
paircw.h 355
pcbrtx.h 379
pgammx.h 556–558
powx.h 411, 430
prec.h 85, 135, 256, 529
psix.h 543, 555
pspli.h 365
psqrtx.h 376
pxy*.h 427

Subject index . . . I 1087

pxy.h 438
pxyx.h 411, 429, 430, 433, 434
randcw.h 209, 211
remqu.h 152
rphx.h 308
rpx.h 306
sbinx.h 753, 754
sbis0x.h 747
sbis1x.h 750
sbisnx.h 754
sbj1x.h 738
sbk0x.h 755
sbk1x.h 755
sbknx.h 755
sbks0x.h 755
sbks1x.h 755
sbksnx.h 755
scpi4.h 318
seterr.h 96
shchx.h 348
sinhx.h 348
sinpix.h 318, 531
sinx.h 309
sqrt.h 3
sqrtx.h 3, 4, 87, 96, 219, 241
store.h 365
tanhx.h 805
tanpix.h 319, 545
tanx.h 313
tgamm.h 527
tgammx.h 525, 528, 529, 531, 534, 535
vprtx.h 878
x.h 3
y0x.h 718
y1x.h 718
zetax.h 583
zetm1x.h 583

Heaviside step function 477
heliotrope 441
Helmholtz equation 693
Henry Eyring Center for Theoretical Chemistry ix
Hercules program x, 1115
Hermite polynomials 57
Hermite, Charles (1822–1901) 16, 59, 267, 619
Hess, Victor Francis (1883–1964) 475
Hewlett–Packard (vendor) viii, xxxv, 4, 71, 86, 100, 101, 233, 355,

383, 388, 765, 812, 815, 816, 824, 970
Test Drive Laboratory ix, 811

hexadecimal
base 24, 25, 155, 283, 290, 423, 427, 428, 437, 596, 608, 617
conversion specifier 873, 874
floating-point layouts on System/360 964
notation 977

hexadecimal number
input conversion 895
output conversion 832, 834

hhmm package 1115
Hida, Yozo 366, 385, 407, 777
hidden argument 941
hidden bit (in floating-point significand) 63, 64, 67, 78, 956, 957,

965
High Accuracy Arithmetic option 964, 967
highest common factor see gcd
Hilbert, David (1862–1943) 579
HIPAC 103 (model) 970
Hisab Al-Jabr wal Mugabalah 575

histogram 189
historical floating-point architectures 947
history of mathematics 59
HITAC 3030 (model) 970
Hitachi (vendor) 952, 963, 970
Hoare, Charles Anthony Richard 963
hoc language vii, 31, 107, 166, 182, 196, 227, 231, 313, 316, 394, 400,

401, 407, 408, 415, 560, 570, 589, 590, 622, 630, 651, 653, 675,
689, 705, 706, 711, 777, 778, 782, 785, 787–789, 803, 830,
849–851, 873–876, 906, 950, 954

hoc program 1, 29, 78, 87, 696
hoc128 program 408, 766, 1115
hoc32 program 220, 850, 851, 1115
hoc36 program 107, 849, 955, 1115
hoc64 program 622, 1115
hoc72 program 1115
hoc80 program 78, 950, 1115
hocd128 program 1115
hocd32 program 1115
hocd64 program 1115
Hollerith string 941
Honeywell (vendor) 65, 305, 948, 949, 958, 959, 970
Horner’s rule 49, 89, 97, 221, 275, 745, 748

definition 24
Horner, William George (1786–1837) 24
Hough, David Granville 851
How Cray’s Arithmetic Hurts Scientific Computation 953
HP (vendor) see Hewlett–Packard
HP-UX operating system xxxv, 58, 71, 100, 101, 131, 218, 233, 355,

388, 765, 815, 816, 834, 877
hp_t data type 85, 310, 429, 430, 688, 741
Hull, Thomas E. (1922–1996) 217
HURD operating system 825
Hurwitz zeta function 583
hygrometer 802
hyperbolic cosecant 569
hyperbolic cosine see cosh

computing with hyperbolic sine 348
Taylor series 342

hyperbolic function 341, 341
improving 345
in hardware 350
inverse 348

hyperbolic secant function 572
hyperbolic sine see sinh

computing with hyperbolic cosine 348
Taylor series 342

hyperbolic tangent see tanh
Taylor series 342

hypergeometric distribution 195
hypotenuse 222, 480

by iteration 227
definition 299
relation to complex absolute value 444

I
I/O primitives 829, 879
i860 (CPU) 86
IA-32 (CPU) ix, xxv, xxxv, 63, 65, 68, 71, 80, 92, 100, 108, 109, 121,

124–127, 131, 146, 148, 150, 216–218, 234, 237, 240, 242,
292–294, 338, 339, 350, 352, 362, 363, 365, 388, 400, 401, 439,
459, 697, 716, 814, 818–820, 822–825, 867, 911, 917, 928, 967,
970, 1021, 1115

not fully conformant to IEEE 754 Standard 63, 365
IA-64 (CPU) viii, ix, xxxv, 58, 65, 68, 71, 86, 87, 100, 101, 108, 121,

123, 124, 131, 145, 146, 176, 200, 216–219, 230, 233–235, 237,

1088 Subject index . . . I

238, 240–242, 355, 362, 363, 365, 370, 382, 383, 388, 391, 392,
395, 399, 401, 412, 459, 765, 811, 814, 815, 819, 823, 824, 911,
928, 953

extended data types 100
instruction bundles 241, 824

iAPX 432 (CPU) 970
IAS (model) 970
IBM (vendor) vii–x, xxxv, 65, 68, 71, 79, 85–87, 104, 109, 146, 155,

171, 217, 218, 233, 241, 254, 287, 305, 341, 353, 355, 361, 365,
370, 375, 402, 410, 433, 438, 478, 520, 761, 811, 816, 817, 820,
825, 827, 848, 850, 855, 867, 896, 905, 927–930, 936, 942,
947–949, 951, 952, 954, 956, 959, 961–964, 967, 969–971,
976–978, 1035

Israel Scientific Center 827
Linux Community Development System ix

Icarus asteroid 630
icc program 87, 388, 442, 814, 815
IEC 60559:1989 standard for binary floating-point arithmetic 119,

123, 124, 133, 144, 914
IEEE 1788 interval arithmetic 967
IEEE 754

binary arithmetic 63, 105
decimal arithmetic 927
mathcw library support 106
programming-language support 105
single extended format 63

IEEE 754 Standard for Binary Floating-Point Arithmetic vii, 63, 966
IEEE Micro 104
IEEE Portable Operating System Interface (POSIX) Standard 441
IEEE Transactions on Circuits and Systems 104
IEEE Transactions on Computers 104
if statement 69, 85, 139, 140, 147, 150, 240, 260, 373, 395, 397, 399,

402, 413, 453, 562, 893, 940
III (model) 970
Illiac I (model) 948, 970
Illiac II (model) 948, 970
Illiac III (model) 948
Illiac IV (model) 947, 948
implementation issues 61
import statement 993
improving

Chebyshev fits 51
Cody/Waite algorithms 823

In Code 208
in keyword 914
incomplete gamma function 595
Indefinite 80, 950, 951, 953, 963
India 8, 299
Indigo-2 Extreme (model) 976
Indigo-2 (model) 977
Indy (model) 976, 977
inexact exception flag 79, 79, 106, 111, 112, 114, 123, 133, 135–137,

139, 140, 142, 143, 275, 324, 325, 332, 338, 344, 345, 585, 598,
782, 803, 804

inexact operation 79
Infinity 1, 71, 114, 115, 133, 135, 137, 139, 140, 147, 950, 951, 953,

956, 963, 965
arithmetic sets exception flag 123
pair-precision number 355, 364

infinity history 59
infinity norm 48, 223
initialization of floating-point storage 931, 935
INITIALSEED environment variable 764
Inline keyword 915
inline keyword 115
installation of mathcw library xxxv

instruction
ckfinite 918
DIDBR 146
DIEBR 146
EMOD 146
f2xm1 293, 294
facos 338
fasin 338
fatan 338
fatanh 352
fcos 338
fcosh 352
fdtoi 129
fdtox 129
fetox 294
fetoxm1 294
fld1 293
fldlg2 293
fldln2 293
flog10 294
flog2 294
flogn 294, 352
flognp1 294, 352
fma 86, 391
fma.d 391
fma.s 391
fmadd 391
fmadds 391
FMOD 150
fmpyfadd,dbl 391
fmpyfadd,sgl 391
fpatan 338
FPREM 146, 148, 150
FPREM1 146, 150
fptan 338
FREM 146, 150
fsin 338
fsincos 338, 339
fsinh 352
fstoi 129
fstox 129
ftan 338
ftanh 352
ftentox 294
ftwotox 293, 294
fused multiply-add 86
fyl2x 294
fyl2xp1 294
madbr 391
madd.d 391
madd.s 391
maebr 391
move 478
nop 230
return 443
store 960
store root 960
store rounded 960
TMI 962
TPL 962
TRA 962
TZE 962
video set 86

int * data type 874
int data type 73, 74, 90, 91, 94, 125, 131, 162, 163, 206, 209, 254,

257, 356, 421, 422, 667, 868, 877, 896, 941, 990

Subject index . . . I 1089

int_t data type 74
integer see also safe integer arithmetic

absolute value (safe) 74
addition (safe) 75
arithmetic 969
arithmetic problems 978
biased representation 974
binary notation 977
conversion

rounding modes 132
specifier 907

division (safe) 75
division by zero 975, 977
exception 975
excess-n 974
excess-n representation 974
hexadecimal notation 977
lack of symmetry of two’s-complement representation 973
largest signed and unsigned 975
memory addressing 971
multiplication (safe) 75
negation (safe) 76
octal notation 850, 908, 949, 950, 953, 955, 977
one’s-complement 972
one’s-complement representation 972
overflow 72, 550, 975

LCG computation 173
preventing 74
random-number generation 167

parity test 975
quartal notation 977
range 974
remainder (safe) 76
rounding function 140, 142
sign representation 971
sign test 975
sign-magnitude 971
subtraction (safe) 76
symmetry of one’s complement representation 972
symmetry of sign-magnitude representation 971
two’s-complement 973
two’s-complement representation 972
word sizes 970

INTEGER data type 129, 941, 962
Integer data type 911, 990
INTEGER*1 data type 941
INTEGER*2 data type 941
INTEGER*4 data type 941
INTEGER*8 data type 173, 941
integration (numerical) see quadrature
Intel (vendor) vii–ix, xxxv, 63, 65, 71, 80, 86, 87, 100, 104, 105, 124,

146, 148, 150, 283, 292, 293, 310, 338, 339, 350, 388, 395, 442,
716, 814, 815, 824, 867, 928–930, 953, 954, 959, 970, 971, 976

Interdata (vendor) ix, 896, 948, 963, 965, 970
interest (compound) 294
interface (programming construct) 2
Interlisp language 954
International Business Machines Corporation see IBM
Internet 954
interval arithmetic 84, 115, 128, 476, 827, 960, 966, 967
interval notation 23
interval_t data type 115
intmax_t * data type 907
intmax_t data type 877, 896, 907
inttcw.h header file 209, 260

invalid exception flag 70, 71, 80, 80, 94, 114, 123, 135–137, 139–143,
336, 482, 486, 490, 496, 507, 513, 514, 518, 791

invalid operation 79
inverse complementary error function 600
inverse cosine 323, see acos

accuracy 325
from elliptic function 654, 655
from inverse sine 323
identities for testing 340
Taylor series 323

inverse cotangent
from elliptic function 654, 655

inverse error function 600
computing 605
historical algorithms 603
properties 601

inverse hyperbolic cosine 348, see acosh
from elliptic function 654, 655
Taylor series 348

inverse hyperbolic cotangent
from elliptic function 654, 655

inverse hyperbolic function 348
inverse hyperbolic sine 348, see asinh

from elliptic function 654, 655
Taylor series 348

inverse hyperbolic tangent 348, see atanh
from elliptic function 654, 655
Taylor series 348

inverse normal distribution function 610
inverse sine 323, see asin

accuracy 325
from elliptic function 654, 655
identities for testing 340
Taylor series 323

inverse tangent 331, see atan, atan2
AGM algorithm 623
from elliptic function 654, 655
identities for testing 340
with two arguments 336

InverseErf[] function (Mathematica) see also ierf() function
InverseErfc[] function (Mathematica) see also ierfc() function
inversion of series 20
inversive congruential generator (ICG) 180

relative performance 189
ipowx.h file 420
IRIX operating system 78, 131, 153, 355, 817
irnint.c file 167
irrational number 14
Is Floating Point Really This Complicated? 947
ISO 10206:1990 Extended Pascal Standard vii, 989
ISO 7185-1982 Pascal Standard 70
ISO Standard C 1989 see ISO/IEC 9899:1990 C Standard
ISO Standard C 1999 see ISO/IEC 9899:1999 C Standard
ISO/IEC 14882:1998 C++ Standard vii, 57, 106, 441
ISO/IEC 14882:2003 C++ Standard vii, 57, 106
ISO/IEC 14882:2011 C++ Standard vii
ISO/IEC 1539-1:1997 Fortran Standard vii, 106
ISO/IEC 1539-1:2004 Fortran Standard 106, 941
ISO/IEC 1539-1:2010 Fortran Standard vii, 223, 591, 593, 694, 941
ISO/IEC 1539:1991(E) Fortran Standard vii, 106
ISO/IEC 23270:2006 C# Standard vii
ISO/IEC 8652:1995 Ada Standard vii
ISO/IEC 8652:2012 Ada Standard vii
ISO/IEC 9899:1990 C Standard vii, 4, 64–66, 70, 105, 109, 129, 152
ISO/IEC 9899:1999 C Standard vii, 4, 70, 87, 105, 106, 108–110, 117,

129, 133, 135, 136, 139–144, 147, 152, 411, 441, 942

1090 Subject index . . . K

complex division algorithm 449
complex multiplication algorithm 456
complex projection algorithm 460
hexadecimal floating-point output 832
output of NaN 842
Rationale 123
storage of complex data 441
Technical Corrigendum 2 (2005) 144, 857
violation 218, 238

ISO/IEC 9899:2011 C Standard vii
ispell program 1115
issafe.h header file 77
Itanium-1 (CPU) 824, 970
Itanium-2 (CPU) 814, 815, 824, 970
Itel (vendor) 963
iteration see also Newton–Raphson iteration

nonlinear equation solution 7
self-correcting 8

iterative solutions 7
its4 program 870
ixsq*.c file 567

J
j0.h header file 708
J0taylor.map file 718
j0x.h header file 708, 718
j1x.h header file 718
Jacobi, Carl Gustav Jacob (1804–1851) 59, 619, 657, 663, 679
Jacobian Elliptic Functions 678
Jacobian elliptic functions 657
Jacobian Eta function 679
Jacobian Theta function 679
Jacobian theta functions 673
Jacobian Zeta function 679
Jarno, Aurelien 129
Java

deficiencies
binary arithmetic 4, 104, 105
integer arithmetic 978
mathematical library 70, 223, 341

java file 979
Java interface 979

building 979
programming 980, 982
using 985

Java just-in-time compiler 982
Java language vii, viii, 2, 4, 29, 52, 57, 70, 71, 73, 74, 80, 90, 99, 100,

102, 104, 105, 173, 176, 223, 341, 353, 763, 826, 830, 867, 870,
917, 919–921, 923, 940, 945, 976–985, 994

Java Native Interface (JNI) 979, 979, 980
overhead 982

java program 980
Java Virtual Machine (JVM) viii, 73, 80, 867, 979

corruption 982
java.lang.math package 57
javac program 979
javah program 979
javald program 980
JavaScript language vii
jdouble data type 983
jfloat data type 983
jmmred.map file 251
JNI see Java Native Interface
<jni.h> system header file 983
JNICALL data type 983, 984
JNIEnv * data type 982

JNIEnv data type 983, 984
JNIEXPORT data type 983, 984
jnx.h header file 712
job termination (premature) 104, 381, 830, 950, 976
jobject data type 982
JOHNNIAC (model) 970
Journal of Computational Physics 214, 693
Jovial language 763
Julia language vii
Jupiter (planet) 630
just-in-time compiler 982
JVM see Java Virtual Machine

K
K5 (CPU) 293
KA10 (CPU) 305, 948, 955
Kahan, William Morton “Velvel” v, 63, 251, 265, 326, 353, 354, 358,

365, 366, 369, 384, 385, 952, 967
KD10 (model) 955
KDF 9 (model) 948
KDF9 (model) 970
Kelvin function 695
Kelvin, Lord (William Thomson) (1824–1907) 695
Kendall Square Research (vendor) 952
Kepler’s Conjecture (sphere-packing problem) 60
kermit program 954
Kernighan, Brian Wilson 2, 6
keyword

_Complex 441
_Complex_I 441, 442
_Imaginary_I 441, 442
__volatile__ 293, 339
CharSet 921
checked 90, 918, 978
const 3, 94, 356, 365, 992
extern 984
final 981
in 914
Inline 915
inline 115
name 991
native 979, 982
out 914, 921, 922
pow 992
private 981
protected 990, 992
Pure_Function 915
ref 921
restrict 868, 868, 871, 873, 901, 903, 904
sealed 920
sizeof 50, 58, 159, 256, 257, 419, 846, 847, 854, 855, 858, 862,

863, 889, 907
static 3, 174, 396, 402, 439, 841, 853, 866
unsafe 921
var 991
volatile 65, 66, 121, 127, 135, 139, 163, 231, 245, 246, 250, 275,

326, 358, 359, 362–366, 369–371, 393, 404–406, 431–433, 436,
451, 471, 478, 598, 746, 749, 761, 780, 785, 849, 994

Khoey Ho Tum Kahan 341
KI10 (CPU) 948, 955
King, Louis Vessot (1886–1956) 657, 663
KISS generator 177, 202, 208–210
KL10 (CPU) 305, 948, 954, 955
KLH10 (CPU) ix, 216, 948, 954, 1115
Knuth, Donald Ervin 6, 89, 157, 200, 366
Kohoutek see Comet

Subject index . . . L 1091

Kornerup, Peter 385
Kovacs, James 917
Kowa, Takakazu Seki (1642–1708) 568
Kronecker, Leopold (1823–1891) 619
KS10 (CPU) 948, 955
Kummer, Ernst Eduard (1810–1893) 589
KVM (Kernel-based Virtual Machine) x

L
l21px.h header file 292
lacheck program 1115
lagged Fibonacci generator 176
Lagrange, Joseph-Louis (1736–1813) 619, 623, 663, 802
Laguerre polynomials 57
Laguerre, Edmond Nicolas (1834–1886) 59, 560
Lambda (model) 970
Lambert, Johann Heinrich (1728–1777) 17, 802
Lanczos, Cornelius (1893–1974) 536, 969
language

Ada vii, 1, 2, 223, 355, 829, 830, 870, 875, 899, 911–916, 923, 927,
928, 977, 993

Algol 763, 873, 963
Algol 60 vii, 73, 353, 978
Algol 68 vii
awk vii, 31, 811
Axiom 694, 773
BASIC 251, 954
Bliss 873, 954
C vii, x, xii, xxxv, xxxvi, 1–6, 24, 29, 34, 37, 39–42, 47, 48, 52, 54,

56–62, 64–66, 69–74, 77, 80, 81, 87, 90–93, 95, 96, 99–102,
104–110, 112, 113, 115, 117, 123–125, 127, 129, 130, 132, 133,
135, 139–144, 147, 152, 155, 156, 159, 167, 173, 176, 181, 186,
200, 206, 211, 218, 236, 238, 239, 241, 246, 251, 254, 256–258,
260, 264, 283, 290, 304, 326, 338, 340, 347, 353–356, 358, 359,
362, 365, 385, 397, 400, 404, 407, 410–413, 421, 426, 441, 448,
453, 459, 463, 472, 478, 488, 521, 560, 561, 583, 591, 595, 598,
614, 625, 675, 682, 690, 691, 694, 708, 712, 763–765, 769, 771,
772, 778, 780, 783, 785, 789, 824–827, 829, 830, 832, 834, 840,
841, 845, 848, 850, 851, 853, 854, 860, 867, 869, 870, 873, 875,
877–880, 886, 887, 889, 890, 892, 896, 897, 899, 901, 902, 904,
905, 908–911, 913, 914, 916, 917, 921, 923–925, 928, 931–933,
936, 940–945, 955, 956, 962, 965, 966, 972, 975, 978–984, 989–994

C++ vii, xxxv, 1, 2, 4–6, 29, 52, 57, 69, 71, 73, 74, 90, 100–102,
106, 109, 124, 125, 173, 176, 200, 211, 223, 354, 355, 365, 410,
441, 763, 776, 826, 827, 830, 870, 878, 917, 920, 923–925, 928,
932, 936, 967, 979, 982–984, 994

C++98 57
C89 xxxv, 2, 3, 57, 58, 91, 93, 115, 121, 135, 162, 209, 223, 231,

233, 254, 255, 336, 341, 358, 362, 365, 413, 420, 441, 719, 765,
785, 868, 869, 871, 873–875, 877, 896, 906, 908

C99 xxxv, 1, 3–5, 57, 58, 74, 78, 85, 89, 91–95, 100, 105–110, 117,
120, 122–125, 127, 130–133, 155, 156, 173, 209, 210, 218, 219,
223, 227, 231, 233, 237, 256, 260, 284, 336, 338, 341, 358, 362,
370, 377, 385, 388, 405, 406, 409, 410, 412–415, 419, 441, 442,
444–446, 448, 449, 451, 453, 455, 456, 458–464, 466, 482, 485,
489, 490, 492, 495–497, 500, 502, 507, 512–514, 517, 518,
520–522, 524, 525, 534, 593, 719, 765, 785, 787, 791, 792, 829,
830, 832, 834, 841, 842, 848, 850, 857, 860, 868–870, 873–875,
877–879, 885, 896, 897, 902, 906–908, 937, 942, 951, 953, 954,
957, 964, 978, 979, 982

C# vii, viii, 2, 4, 57, 70, 80, 90, 100, 102–105, 223, 341, 826, 830,
917–923, 927, 978, 994

Cedar 954
COBOL vii, 763, 927, 928, 963
Common Lisp 130, 341
D vii, 830

ECMAScript vii
Eiffel 830
Fortran vii, 1, 2, 4, 28, 29, 37, 57, 61, 64, 70, 72, 74, 77, 91, 99, 106,

108, 124, 129, 130, 173, 200, 223, 232, 341, 343, 385, 411, 412,
420, 441, 442, 449, 463, 520, 556, 562, 583, 593, 645, 650, 763,
769, 775, 823, 826, 829, 830, 832, 843, 869, 870, 873, 879, 904,
909, 910, 940–946, 949, 951, 952, 954, 955, 961, 963, 973, 974,
976, 977, 994

Fortran 2003 106, 130, 941
Fortran 2008 130, 223, 591, 593, 598, 694, 941
Fortran 66 129, 941, 942
Fortran 77 4, 57, 129, 875, 940–942, 945, 977, 994
Fortran 90 4, 57, 106, 130, 355, 829, 942, 945, 946, 967, 977
Fortran 95 57, 106, 946
Go vii
gp 269
gpc 993
hoc vii, 31, 107, 166, 182, 196, 227, 231, 313, 316, 394, 400, 401,

407, 408, 415, 560, 570, 589, 590, 622, 630, 651, 653, 675, 689,
705, 706, 711, 777, 778, 782, 785, 787–789, 803, 830, 849–851,
873–876, 906, 950, 954

Interlisp 954
Java vii, viii, 2, 4, 29, 52, 57, 70, 71, 73, 74, 80, 90, 99, 100, 102,

104, 105, 173, 176, 223, 341, 353, 763, 826, 830, 867, 870, 917,
919–921, 923, 940, 945, 976–985, 994

JavaScript vii
Jovial 763
Julia vii
Lisp vii, 34, 90, 188, 830, 896, 954, 963
Lua vii
MacLisp 954
Macsyma 28, 954
MAINSAIL 954
Maple viii, x, 10, 11, 14, 16, 21, 25, 26, 28, 31–33, 35, 41, 43, 46,

47, 50–52, 54, 55, 82, 89, 215, 228, 237, 240, 243, 246, 251–253,
265, 269, 271, 277, 290, 313, 316, 318, 320, 323, 388, 401, 408,
463, 477, 486, 488, 523, 526, 527, 532, 533, 535, 537, 538, 546,
548, 550, 552, 553, 556, 559–561, 567, 569, 572, 583, 584, 587,
588, 590, 602–609, 615, 617, 620, 622, 623, 625, 626, 628, 631,
637, 638, 650, 653, 659, 667, 669, 670, 672, 674, 685, 688, 694,
697, 705, 708, 718, 724, 726, 740, 741, 749, 750, 752, 753,
770–773, 827, 954

Mathematica viii, x, 16, 21, 28, 33, 34, 36–38, 40, 42, 55, 56, 269,
401, 477, 537, 548, 556, 561, 569, 573, 583, 587, 590, 601, 620,
625, 628, 631, 653, 659, 667, 669, 670, 674, 678, 685, 688, 694,
750, 752, 753, 966

MATLAB x, 3, 57, 171, 228, 348, 385, 537, 539, 548, 583, 595, 596,
601, 603, 604, 608, 614, 659

Maxima viii, 28, 269, 537, 548, 561, 569, 573, 583, 625, 628, 631,
659, 667, 694, 773

Mesa 954
Modula vii
MuPAD viii, x, 21, 269, 537, 548, 561, 569, 583, 694
NetRexx viii, 928, 968
Oberon vii
OCaml vii
PARI/GP viii, 269, 537, 548, 561, 569, 583, 620, 685, 694
Pascal 2, 70, 74, 130, 223, 341, 411, 763, 829, 870, 879, 949,

989–994
PCL 954
Perl vii
PHP vii
PL/1 vii, 763, 927, 928
Portable Fortran 823
PostScript vii, 36, 105
PSL 954

1092 Subject index . . . L

PUB 954
Python vii
R 601, 616, 659
REDUCE viii, 28, 269, 537, 548, 569, 573, 620, 625, 628, 659, 674,

694, 954
Rexx vii, viii, 928, 968
Ruby vii, 923
Rust vii
S-Plus 601, 616
Sage 269
SAIL 954
Scheme vii
Scribe 954
SDL 977
Simulink 228
Smalltalk 954
SPELL 954
Tcl vii

LAPACK package 223
Laplace

distribution 195
equation 693
transform 673

Laplace, Pierre Simon (de) (1749–1827) 194, 195
LATEX 954
latex program 1115
Lawrence Livermore National Laboratory (vendor) 305, 463, 948,

965
lcc program 3
LCG (linear congruential generator) 169
lcm symmetry relations 183
LD_LIBRARY_PATH environment variable 919, 946
LDBL_MAXRANLL_INV global variable 213
leap-frog method 179
least common multiple see lcm
Legendre

polynomials 57
relation 630, 690

Legendre, Adrien Marie (1752–1833) 59, 537, 619, 663, 702
Lehmer, Derrick Henry (1905–1991) 169
Leibniz, Gottfried Wilhelm (1646–1716) 8, 969
Lentz algorithm for continued fractions 18
Lentz, W. J. 18
Leo 3 (model) 970
LEO I (model) 970
Leonhardi Euleri opera omnia 591
letter notation 987
lgammx.h header file 534
lgbfax.h header file 558
LGP-21 (model) 970
LGP-30 (model) 970
Li, Xiaoye S. 366, 407, 777
Liber Abaci 575
libMathCW.dylib file 982
libMathCW.so file 980, 982
libmcr package 811, 821, 824
libmcw.a file 4, 771
libmcw.dylib file 920
libmcw.so file 4, 920
library extensions 57
library testing 763
Librascope (vendor) 970
lightweight process see thread
limit operator 61
limitations of Cody/Waite polynomials 28
<limits.h> system header file 3, 94, 130, 152, 159, 260, 994

Lindemann, Carl Louis Ferdinand von (1852–1939) 16
linear congruential generator 169
Linnainmaa, Seppo 370
LINPACK benchmark 952
LINPACK package 223, 228
lint program 870, 908
Linux see GNU/Linux
Linux Community Development System at IBM ix
Lisp language vii, 34, 90, 188, 830, 896, 954, 963
little epsilon 63, 304
little-endian

addressing 956
format 917

LLRANDCW_MAX global variable 211
LMI (vendor) 970
log-gamma function log |Γ()| 521
log.h header file 287
logarithm 267, 282

AGM algorithm 624
argument near one 290, 654, 655
argument reduction 283, 285, 291
error magnification 283
from elliptic function 654, 655
in hardware 292
Napierian 282
natural 282
Taylor series 284, 285, 292

logarithmic distribution 190
LOGICAL data type 941, 961
logical-AND 177
logx.h header file 286, 292
long data type 173
long double * data type 907
long double complex data type 441
long double data type xxxv, xxxvi, 4, 5, 57, 58, 92, 100–102, 124,

129, 155, 164, 210, 213, 218, 237, 238, 293, 310, 347, 352, 355,
388, 391, 399, 412, 454, 764, 770, 815–818, 820, 821, 823, 829,
854, 856, 865, 867, 877, 879, 890, 896, 907, 908, 911, 921, 941, 990

long int * data type 907
long int data type 74, 129, 131, 140, 161, 162, 209, 254, 257, 260,

877, 892, 896, 907, 908, 979, 990
long long double data type 4, 5, 58, 64, 890
long long int * data type 907
long long int data type 74, 129, 131, 260, 453, 877, 892, 896, 907,

941, 979, 990
long_double_pair data type 355
Long_Float data type 911
Long_Integer data type 911
long_long_double * data type 907
long_long_double data type 102, 877
long_long_double_pair data type 355
Long_Long_Float data type 911
Long_Long_Integer data type 911
longdouble make target xxxv
LongInt data type 990
LongReal data type 990
longword 969
loop invariant 425
Los Alamos 202
Los Alamos Laboratory 959
Los Alamos Scientific Laboratories (vendor) 970
loss of significance see significance loss
Lovelace, Lady Augusta Ada (1815–1852) 568, 911
LRANDCW_MAX global variable 211
ls program 912
Lua language vii

Subject index . . . M 1093

luximono package 1115
Lyon, France 825
Lyons (vendor) 970

M
MAC OS X operating system x, 71, 109, 131, 399, 697, 818, 920, 982
MacBeth 777
Macdonald function 695
MACH operating system 71, 131
machine epsilon 62, 87, 97, 217, 234, 290, 544, 597, 602, 608, 765,

785, see also relative error, see also ulp (unit in the last place)
aberrant computation in pair-precision arithmetic 777
aberrant computation on PDP-10 849
definition 62, 466
extended arithmetic 100
IEEE 754 64-bit arithmetic 608
pair-precision arithmetic 779, 780
quad arithmetic 101
scaling in pythag() 232

machine number 62, 81, 83, 217, 218, 234, 238, 243, 245, 246, 290,
303, 305, 708, 897, 940

MacLisp language 954
MACOS operating system x
macro expansion prevention 112
Macsyma language 28, 954
madbr instruction 391
madd.d instruction 391
madd.s instruction 391
MADIC IIA (model) 970
MADIC III (model) 970
maebr instruction 391
Magnuson (vendor) 963
MAINSAIL language 954
make program 771, 911, 912, 916, 919, 924, 943, 944, 979, 980, 989,

990, 993, 1115
make target

all xxxv
all-hp xxxv
check-hp xxxv
double xxxv
float xxxv
longdouble xxxv

Makefile file 3, 4, 442, 764, 765, 771, 911, 912, 919, 923, 925, 943,
946, 979, 989

makeidx package 1115
makeindex program 1115
makeinfo program 1115
man2html program 1115
man2texi program 1115
Manchester University (vendor) 948
mangling of function names 981, 982
Manhattan Project 202
MANIAC (model) 970
mantissa see significand
maple file 28, 29, 55, 408, 488, 772
Maple language viii, x, 10, 11, 14, 16, 21, 25, 26, 28, 31–33, 35, 41,

43, 46, 47, 50–52, 54, 55, 82, 89, 215, 228, 237, 240, 243, 246,
251–253, 265, 269, 271, 277, 290, 313, 316, 318, 320, 323, 388,
401, 408, 463, 477, 486, 488, 523, 526, 527, 532, 533, 535, 537,
538, 546, 548, 550, 552, 553, 556, 559–561, 567, 569, 572, 583,
584, 587, 588, 590, 602–609, 615, 617, 620, 622, 623, 625, 626,
628, 631, 637, 638, 650, 653, 659, 667, 669, 670, 672, 674, 685,
688, 694, 697, 705, 708, 718, 724, 726, 740, 741, 749, 750, 752,
753, 770–773, 827, 954

maple program 10, 26–28, 251, 408, 602, 1115
Mark 1 (model) 970

Mark I (model) 970
Mark IIA (model) 948, 965
Markstein, Peter 410, 824
markup language see language
Mars (planet) 630
Marsaglia, George (1924–2011) 176, 177, 200, 214, 618
Mascheroni, Lorenzo (1750–1800) 524, 541, 591, 702, 703, 722
Math class 57, 920, 921, 979, 981, 982, 985
math program 601, 1115
<math.h> system header file xxxv, 2, 50, 57, 82, 91, 92, 94, 95, 100,

101, 108, 120, 130, 223, 336, 411, 816, 905
MathCW class 921, 925, 979–982, 985, 990
MathCW package 57
mathcw package xii, xxv, xxxv, xxxvi, 1, 2, 4–6, 20, 25, 28, 29, 33,

38, 43, 44, 50, 55, 57–62, 64–66, 70, 71, 77, 79, 80, 84, 85, 87, 89,
95, 96, 101–107, 109, 116, 117, 120, 123, 124, 130, 133, 147, 152,
155, 156, 166, 183, 184, 188, 206, 208, 210, 216, 219, 220, 224,
233, 237, 247, 250, 251, 254, 255, 257, 260, 271, 275, 277, 283,
284, 288–290, 292–294, 315, 331, 338–341, 345, 346, 351–353,
355, 356, 359, 363, 365–367, 370, 385, 386, 388, 391, 401–403,
406–408, 410–412, 414, 418, 427, 429, 430, 432, 434, 438,
440–442, 451, 459, 463, 464, 466, 478, 479, 484, 489, 492, 497,
512, 521, 522, 525–529, 531, 537, 542, 548, 550, 554, 555, 557,
558, 561, 562, 572, 573, 578, 583, 590–592, 595–598, 605, 608,
614, 616, 619, 620, 625, 628, 631–633, 643, 645, 649, 651, 653,
657, 659, 662, 667, 669, 671, 672, 674, 676, 678, 681, 682, 685,
688, 690, 693, 694, 707, 709, 716, 719, 724, 734, 738, 740, 755,
762–765, 767–769, 771, 776, 779, 792, 798, 808, 811–819, 826,
830, 831, 848, 853, 856, 865, 867, 868, 871, 873–879, 897, 899,
902, 905–907, 910, 911, 913–925, 928, 931–933, 936, 937, 939,
940, 942, 943, 945–947, 954, 967, 978, 979, 982, 989–991, 993,
1115

library contents 58–60
mathcw program 847
mathcw.ads file 911, 912, 914, 915
mathcw.bib file xii
MathCW.c file 982–984
MathCW.class file 980
mathcw.cs file 919–922
MathCW.dll file 982
mathcw.gpi file 993
MathCW.h header file 980, 983
mathcw.h header file xxxv, 2, 4, 5, 108, 130, 209, 308, 325, 816, 879,

923, 924
mathcw.hh header file 923, 924
MathCW.java file 980
mathcw.map file 772
MathCW.o file 980
mathcw.o file 993
mathcw.pas file 989, 991–993
Mathematica language viii, x, 16, 21, 28, 33, 34, 36–38, 40, 42, 55,

56, 269, 401, 477, 537, 548, 556, 561, 569, 573, 583, 587, 590, 601,
620, 625, 628, 631, 653, 659, 667, 669, 670, 674, 678, 685, 688,
694, 750, 752, 753, 966

mathematical function see function
mathematical library publications 826
Mathematical Methods for Physicists 8
mathematics history 59
Mathematics of Computation 476, 693
Mathematics of Physics and Modern Engineering 194
mathpazo package 1115
MathSciNet database 59, 576, 591, 693
MathWorld 465, 569, 572, 576, 587, 591
MATLAB language x, 3, 57, 171, 228, 348, 385, 537, 539, 548, 583,

595, 596, 601, 603, 604, 608, 614, 659
matlab program 228, 1115

1094 Subject index . . . M

Matsumoto, Yukihiro 923
Matsushita (vendor) 970
Matula base-conversion precision 853
Matula, David William 851–853, 866, 867, 875
Maxima language viii, 28, 269, 537, 548, 561, 569, 573, 583, 625,

628, 631, 659, 667, 694, 773
maxima program 1115
MaxIterations option (Mathematica) 34–36
MAXNORMAL global variable 782, 955
MAXTEST environment variable 764, 812, 813
MC68040 (CPU) 131
McCullagh, Peter 543
McDonald, Stuart 251
MCG (multiplicative congruential generator) 169
mconf.h header file 824
mcs program 919
mean value 194
MedInt data type 990
Melcom 1101F (model) 970
Melquiond, Guillaume 403
memory leak 91
Mercury (planet) 630
Mersenne Twister generator 177, 200–202, 207
Mesa language 954
Mesopotamia 299
METAFONT 954
METAPOST 954
method (in C++, C#, or Java) see function
Microsoft (vendor) viii, x, 125, 867, 917, 920, 954, 982
Middle Kingdom 465
MIDNIGHTBSD operating system x
mil (military angular measurement) 305
Millennium Prize problems 60
minifloat 64
minimax rational approximation 33
Minimizing q × m − n 251
MINIX operating system 92
MINNORMAL global variable 711, 955
MINSUBNORMAL global variable 394, 407, 782
MIPS (CPU) 68, 71, 153, 240, 392, 439, 867, 976

integer overflow detection 73
MIPS (vendor) 73, 78, 86, 146, 216, 219, 220, 355, 391, 392, 817, 970
MIPS IV architecture 391
MIPS RISC Architecture 73
mistake

0x prefix dropped for zero values 878
allowing machine epsilon constant to be a run-time value 785
balanced parentheses in NaN strings 889
C89 does not specify 00 413
C# has confusing names for floating-point limits 100
differences in input and output type modifiers 908, 909
exception flags may not be settable without causing the

exception 111
exception flags overlap sign bit 109
exception masks require bitwise-OR instead of addition 108
failure of programming language standards to recognize IEEE

754 Standard 914
FE_ALL_EXCEPT does not include all flags 109
fixed exponent size in formatted output 875
gcc does not support decimal complex arithmetic 442
global variables not thread safe 897
IEEE 754 subset in C# 918
inaccuracies in SOLARIS fmal() 388
inappropriate six-digit default precision in formatted output

853, 854, 857, 875

input handling of most-negative two’s-complement number
896

input parse failure not detectable 896
input pushback limit 902
irregular naming of reentrant functions 522
Java has no name for smallest normal number 100
lack of dynamic field widths in input format specifiers 907
lack of input overflow alerts 908
lack of overflow detection in type narrowing 908
library suffixes in MAC OS X 920
limited support for conversion of floating-point values to

integers in C89 129
missing output array size in string primitives 879
naming conventions in <decfloat.h> 936
naming of strtod() family 879
negative arguments unsupported by MATLAB ψ(x) 539
no standard names for common extended exception flags 108
prohibition on mixed lettercase of type suffixes 890
reversed precision-control return values on SOLARIS 124
some original C99 exception-flag functions fail to return a value

109
Standard C strtod() recognizes only a single NaN 887
subnormal formatting unspecified in formatted output 878
subnormals unrecognizable in formatted output 78
type suffixes on input numbers unrecognized 890
undetected format-specifier data type mismatch 908
undetected missing argument 908
unit leading hexadecimal digit 833
unspecified behavior for NULL pointer to modf() 264
unsupported exception masks are undefined instead of zero

108
unterminated input strings 908
widening of float arguments 877
zero powers of NaNs fail to produce a NaN 415
zero-length strings illegal in Fortran 77 945

Mitsubishi (vendor) 970
mod-mathpazo package 1115
model see also CPU

/6 597, 948, 970
/7 597, 948, 970
160A 970
160G 970
1S 948, 952
2000/213 970
210B 970
3000/400 976, 977
386i 977
6000 PPU 970
7/32 970
7030 Stretch 948, 949, 959, 969–971
8/32 ix, 896, 948, 965, 970
840A 970
1 305, 948, 949, 951–953, 965, 970, 971
2 948, 952, 969, 970
3 976, 977
4 976, 977
50 ix
85 948
86 948
200 948
250 970
386 976
418 970
470 963
490 970
502 970

Subject index . . . M 1095

503 970
520 970
600 305, 947, 948, 958, 970
601 970
620 353
650 948
700 959
704 353, 948, 959, 961, 963, 970, 971
709 341, 353, 948
803 970
900 970
924 970
1000 970
1010 970
1100 74, 965, 966, 970, 972
1107 353
1130 948, 970
1400 970
1520 976
1604 948, 949, 970
1650 353
1700 396, 949
3000 949
3090 976, 977
3200 970
3400 948
3600 353, 520, 948, 949, 970
6000 74, 80, 305, 948, 949, 970
6080 958
6200 949
6400 949, 970, 989
6500 949
6600 949, 951
6700 949
7000 74, 80, 305, 948, 959, 970
7040 353, 948, 970
7044 ix, 353, 948
7090 353, 520, 948, 954, 970, 971
7094 353, 948
7600 949
8600 951
9080 948, 970
ABC 970
Alto 954
ALWAC III-E 970
ASC 963
ASI 2100 970
Atlas 948, 970
B1700 948, 969, 970, 977
B5000 970
B5700 305, 948
B6700 305, 948
B7700 305, 948
BCC-500 948
BRLESC 970
Cyber 949
D21 970
DASK 970
DECstation 976, 977
DIGIAC 3800 970
Dolphin 954
Domain 948
Eclipse 970
Eclipse S/200 948
EDSAC 353, 970
EDVAC 970

EL X1 970
EL X8 970
ESA/390 x, 1115
FP-6000 970
G-15 970
G-20 970
Gamma 60 970
GE 235 970
GE 435 970
GE 635 970
GIER 970
HIPAC 103 970
HITAC 3030 970
IAS 970
III 970
Illiac I 948, 970
Illiac II 948, 970
Illiac III 948
Illiac IV 947, 948
Indigo-2 977
Indigo-2 Extreme 976
Indy 976, 977
JOHNNIAC 970
KD10 955
KDF 9 948
KDF9 970
Lambda 970
Leo 3 970
LEO I 970
LGP-21 970
LGP-30 970
MADIC IIA 970
MADIC III 970
MANIAC 970
Mark 1 970
Mark I 970
Mark IIA 948, 965
Melcom 1101F 970
Model 1 463
Model 4 463
Model 5 463
NORC 970
NORD-1 970
NORD-5 970
Nova 970
OKITAC 5090H 970
ORDVAC 970
PDP 850
PGM 948
Pilot ACE 970
R1 948, 970
R4000 976
R4400 976
RECOMP II 970
RS/6000 86, 817, 976, 977
RT 86
SDS 940 970
Sigma 948, 970
STAR-100 951, 952
System 85/86 970
System/360 viii, ix, xxix, 68, 86, 104, 155, 241, 254, 287, 305, 353,

361, 365, 375, 478, 761, 855, 947, 948, 951, 954, 956, 959, 963,
964, 967, 969, 970, 978

System/370 x, 964, 1115
System/390 146, 217, 370
TR440 970

1096 Subject index . . . N

X-MP 948, 952, 970, 971
Y-MP 948, 952, 970
z/Architecture x, 1115
Z1 970
z13 928
Z2 970
Z22 970
Z23 970
Z25 970
Z26 970
Z3 970
z9 936
ZEBRA 970
zSeries 930

Model 1 (model) 463
Model 4 (model) 463
Model 5 (model) 463
Modern Computer Arithmetic 104
modf.h header file 130
modfx.h header file 130
modified Bessel function 718
modified Lentz algorithm for continued fractions 18
Modula language vii
module (programming construct) 2
module statement 991
modulus (k) of elliptic integral function 625
Moivre, Abraham de (1667–1754) 194
Moler, Cleve Barry 228
Møller, Ole 326, 353, 354, 358, 365, 366, 369, 384, 385
Monaco 203
monetary calculation 102
mono program 919
Mono Project viii, 917, 919–921
Monte Carlo quadrature 202, 203
Moon 7
Moreira, José E. 353
mortgage 296
Moshier, Stephen Lloyd Baluk 133, 567, 644, 811, 821–823
Motorola (vendor) 65, 71, 86, 124, 145, 146, 150, 216, 217, 251, 292,

293, 338, 352, 363, 395, 823, 959, 970, 976
move instruction 478
mp_t data type 250, 251
MPC package 825, 826
mpcheck package 825
MPFI package 826
MPFR package 401, 825, 826
<mpfr.h> system header file 402
MPFR: The Multiple Precision Floating-Point Reliable Library 401, 407
mpfr_t data type 402
mpfun90 package 4
MS-DOS operating system 954
msbis0.c file 771
Muller, Jean-Michel 82, 251, 256, 265
multicol package 1115
MULTICS operating system 956, 958
Multiflow (vendor) 952
multiple recursive congruential generator 176
multiplication, safe integer 75
multiplicative congruential generator 169
multiplicative inverse 180
MuPAD language viii, x, 21, 269, 537, 548, 561, 569, 583, 694
mupad program 1115
musl package 825
MWC1038 177
myprog.exe file 920
myprog.exe.config file 920

myspell program 1115

N
NAG package 826
name keyword 991
name mangling 981, 982
namelist package 1115
NAMELIST statement 909, 910
namespace (programming construct) 2, 920, 921
naming conventions 4
NaN xxxv, 1, 69, 70, 114, 115, 133, 135–137, 139–143, 147, 148, 150,

152, 153, 155, 234, 595, 607, 950, 956, see also Indefinite
Lawrence Livermore National Laboratory S-1 965
pair-precision number 355, 364
quiet and signaling (binary) 63, 64
quiet and signaling (decimal) 930
testing 80

nanf.c file 944
Nanodata (vendor) 963
NaNQ 79
NaNS 79
Napier, John (1550–1617) 282
Napierian logarithm 282
National Institute of Standards and Technology see NIST
National Physical Laboratory (vendor) 970
National Semiconductor (vendor) 970
native keyword 979, 982
NATO mil 305
natural logarithm 282
nawk program 1115
NCR (vendor) 949
nearpi.c file 251
nearpi.dat file 251
NEC (vendor) 952, 963
negation

safe integer 76
zero 135, 885

negative epsilon 63
negative zero 58, 64, 69–71, 85, 135, 139, 234, 463, 478, 520, 841,

875, 885, 950, 951, 956, 965, see also signed zero
in pair-precision arithmetic 366

Neptune (planet) 630
nested Weyl sequence 177
NETBSD operating system x, 71, 131
NetRexx language viii, 928, 968
Neumann function 694, 695
Neumann, John von (1903–1957) 157, 190, 193, 202, 212
Neville theta functions 678
Neville, Eric Harold (1889–1961) 678
New Century Dictionary vii, 215, 243, 521, 593, 619, 979, 1049
New York Stock Exchange 977
Newton method see Newton–Raphson iteration
Newton, Isaac (1643–1727) 8
Newton–Raphson iteration 8–11, 44, 215–217, 232, 234, 237, 373,

375, 377, 379, 384, 605, 607, 608, 619, 624, 745, 748, 750, 787,
789, 792, 794, 808, 953

double 23, 218
higher-order 604

Newton–Raphson–Simpson method 8
NeXT (vendor) 71
nibble 969
nine’s-complement 263
NIST 178, 200, 826

libraries 826
Statistical Test Suite 200

nm program 981

Subject index . . . O 1097

Nobel Prize in Physics 475
noisy mode 960
nome q in elliptic functions 668
nonlinear equation 7

solution 8, 9
nop instruction 230
NORC (model) 970
NORD-1 (model) 970
NORD-5 (model) 970
norm

Euclidean 113, 223
infinity 48, 223
one 223, 480
p 223
two 223

normal distribution 192, 194
function 610

normalization requirement
dropped in significance arithmetic 966
relaxed for gradual underflow 78

normalized number 62
Norsk Data (vendor) 970
Not a Number see NaN
notation 987
note (financial) 297
Nova (model) 970
null-pointer check 117–119, 135, 152
nullification 824
numapprox package 28, 29, 32, 47, 52, 270, 724, 726
number base 62
number data type 907
number history 59
number of leading zero bits 166
number of one bits 166
number of trailing zero bits 166
numeric_limits class 106
Numerical Computation Guide 105
Numerical Computing with IEEE Floating Point Arithmetic 103
numerical integration see quadrature
Numerical Methods for Special Functions 827
Numerical Recipes 19
Numerische Mathematik 476
numtest.pas file 994
nybble 928, 969

O
Oberon language vii
OCaml language vii
octal

base 283
conversion specifier 874
notation 850, 908, 949, 950, 953, 955, 977
number system 977

octal number
input conversion 894
output conversion 850

octet 969
odd series 23
Ogita, Takeshi 385
Oishi, Shin’ichi 385
okay file 919, 924, 990
OKI Electric (vendor) 970
OKITAC 5090H (model) 970
oldest algorithm 181
OMZ see order-of-magnitude-zero
On-Line Encyclopedia of Integer Sequences 568, 671

one’s-complement arithmetic 74, 263, 949–951, 954, 972
one-norm 223, 480, 500
one-time pad 204, 206–208
opaque data type 108, 116, 120, 982
opcode see instruction
Open Group (vendor) x
OPENBSD operating system x, 71, 131, 459, 825, 842
OPENSOLARIS operating system x
operating system

4.3BSD 237, 273, 290
AIX xxxv, 71, 87, 109, 218, 233, 355, 816, 817
ALPINE 825
CP/M 954
DRAGONFLYBSD x
DRAGORA 825
FREEBSD viii, x, 71, 124, 131, 459, 825
GHOSTBSD x
GNU x
GNU/LINUX viii, x, xxxv, 71, 78, 87, 93, 109, 123, 125, 127, 131,

216, 218, 220, 235, 238, 239, 370, 399, 401, 459, 696, 811,
813–815, 817, 819, 825, 833, 834, 911, 956, 967

HAIKU x
HARDENEDBSD x
HP-UX xxxv, 58, 71, 100, 101, 131, 218, 233, 355, 388, 765, 815,

816, 834, 877
HURD 825
IRIX 78, 131, 153, 355, 817
MAC OS X x, 71, 109, 131, 399, 697, 818, 920, 982
MACH 71, 131
MACOS x
MIDNIGHTBSD x
MINIX 92
MS-DOS 954
MULTICS 956, 958
NETBSD x, 71, 131
OPENBSD x, 71, 131, 459, 825, 842
OPENSOLARIS x
OSF/1 xxxv, 71, 79, 123, 131, 147, 153, 305, 320, 697, 812, 956
PAC BSD x
PCBSD x
POSIX xxxv, 60, 120, 162, 163, 561, 694, 700, 702, 719, 755, 825
REACTOS x
SOLARIS 71, 99, 110, 122, 124, 125, 127, 131, 294, 304, 305, 320,

388, 399, 459, 528, 697, 819, 820, 834, 943, 946, 967, 979, 989
SOLARIS 10 124, 216, 218, 811, 818–822
SOLARIS 8 821
SYSTEM V 896
TOPS-20 ix, 71, 131, 763, 849, 1115
TRUEOS x
UNIX x
UNIX ix, x, xxxv, 3, 4, 60, 66, 70, 74, 87, 106, 124, 147, 207, 223,

224, 233, 237, 251, 273, 290, 362, 408, 557, 694, 697, 825, 827,
850, 870, 873, 896, 899, 905, 909, 916, 920, 941–944, 946, 956,
972, 980, 982, 1115

UNIX V3 896
UNIX V6 131, 896
UNIX V7 896
VMS 957
WINDOWS x, 125, 917, 920, 954, 982

Opteron (CPU) 339
option

-Dvolatile= 66
-G 980
-I xxxv
-L xxxv, 946
-O3 218

1098 Subject index . . . P

-R/usr/local/lib 944
-Wl,-rpath,/usr/local/lib 944
-autodbl 968
-classpath 980
-fno-builtin xxxv, 216
-fpwidetypes 100, 101
-ftrap 946
-g 218
-gnaty 913
-ieee xxxv
-ieee_with_inexact xxxv
-lc 825
-lc128 xxxv
-lfdm 811
-lfmcw 946
-lm xxxv, 320, 765, 811, 825
-lmcr 811
-lmcw 765, 771, 946
-lmf 811
-lsunmath 294
-lultim 811
-mfp-rounding-mode=d xxxv
-mieee xxxv
-mieee-conformant xxxv
-mieee-with-inexact xxxv
-qlongdouble xxxv
-trapuv 931, 951
-unsafe 921
AspectRatio (Mathematica) 37
AxesLabel (Mathematica) 37
BaseStyle (Mathematica) 37
Bias (Mathematica) 34
Brake (Mathematica) 34
Derivatives (Mathematica) 34
Filling (Mathematica) 37
FillingStyle (Mathematica) 37
MaxIterations (Mathematica) 34–36
PerformanceGoal (Mathematica) 37
PlotFlag (Mathematica) 34
PlotRange (Mathematica) 37
PlotStyle (Mathematica) 37
PrintFlag (Mathematica) 34
WorkingPrecision (Mathematica) 34, 39

orbital eccentricity of planets 630
Order global variable 11, 21
order-of-magnitude-zero (OMZ) 960
ORDVAC (model) 970
Oresme, Nicole (ca. 1323–1382) 541
orthogonal polynomial

books about 59
Chebyshev 44
products of sums 59
relation to continued fraction 59
research literature 59

Orthogonal Polynomials and Continued Fractions 59
orthopoly package 48, 52, 53
OSF/1 operating system xxxv, 71, 79, 123, 131, 147, 153, 305, 320,

697, 812, 956
Othello 7
out keyword 914, 921, 922
out-of-range conversion

hardware behavior 131
overflow 71, 105, 113–115, 130–132, 137, 139, 144, 145, 153, 824

Cray systems 953
Alpha processors xxxv
detection on MIPS (CPU) 73

integer 72, 149
LCG computation 173
premature 101, 113, 343, 348, 350, 362, 363, 414, 415, 449, 451,

456, 466, 528, 532, 595, 619, 621, 622, 635, 691, 768, 778, 804, 883
preventing integer 74
random-number generation 167

overflow exception flag 71, 71, 111, 114, 124, 415, 778, 887
overloaded function name 981
Overton, Michael 67
OVF (on Lawrence Livermore National Laboratory S-1) 965
Oxford English Dictionary 979, 995

P
P-code 989
p-norm 223
PA-RISC (CPU) 68, 71, 86, 101, 131, 216, 218, 219, 240, 370, 383,

388, 392, 816, 970
PAC BSD operating system x
package

ACRITH 967
amsfonts 1115
amsmath 1115
ansi2knr 2
APMathLib 811, 820, 827
arprec 4
array 1115
authidx 1115
BeEF 774
calligra 1115
Cephes 133, 521, 583, 644, 708, 811, 821–823
chebfun 57
color 1115
colortbl 1115
decNumber 218, 387, 402, 403, 433, 867, 897, 928, 930–932, 936
Diehard Battery 200, 202
EISPACK 227, 228, 232
ELEFUNT 61, 96, 98–100, 216, 338–340, 342, 412, 430, 436, 438,

439, 763–765, 769, 770, 773, 774, 776, 811–822, 940
elliptic 659
extbook 1115
fdlibm 133, 153, 274, 325, 349, 352, 595, 597, 598, 811, 821, 824,

825, 940
features 69
FNLIB xxxi, 341, 352, 823
fontenc 1115
fptest 775
FunctionApproximations 34
glibc 133, 274, 825
GMP 402, 433, 825, 994
graphicx 1115
GSL 825
hhmm 1115
java.lang.math 57
LAPACK 223
libmcr 811, 821, 824
LINPACK 223, 228
luximono 1115
makeidx 1115
MathCW 57
mathcw xii, xxv, xxxv, xxxvi, 1, 2, 4–6, 20, 25, 28, 29, 33, 38, 43,

44, 50, 55, 57–62, 64–66, 70, 71, 77, 79, 80, 84, 85, 87, 89, 95, 96,
101–107, 109, 116, 117, 120, 123, 124, 130, 133, 147, 152, 155,
156, 166, 183, 184, 188, 206, 208, 210, 216, 219, 220, 224, 233,
237, 247, 250, 251, 254, 255, 257, 260, 271, 275, 277, 283, 284,
288–290, 292–294, 315, 331, 338–341, 345, 346, 351–353, 355,
356, 359, 363, 365–367, 370, 385, 386, 388, 391, 401–403,

Subject index . . . P 1099

406–408, 410–412, 414, 418, 427, 429, 430, 432, 434, 438,
440–442, 451, 459, 463, 464, 466, 478, 479, 484, 489, 492, 497,
512, 521, 522, 525–529, 531, 537, 542, 548, 550, 554, 555, 557,
558, 561, 562, 572, 573, 578, 583, 590–592, 595–598, 605, 608,
614, 616, 619, 620, 625, 628, 631–633, 643, 645, 649, 651, 653,
657, 659, 662, 667, 669, 671, 672, 674, 676, 678, 681, 682, 685,
688, 690, 693, 694, 707, 709, 716, 719, 724, 734, 738, 740, 755,
762–765, 767–769, 771, 776, 779, 792, 798, 808, 811–819, 826,
830, 831, 848, 853, 856, 865, 867, 868, 871, 873–879, 897, 899,
902, 905–907, 910, 911, 913–925, 928, 931–933, 936, 937, 939,
940, 942, 943, 945–947, 954, 967, 978, 979, 982, 989–991, 993,
1115

mathpazo 1115
mod-mathpazo 1115
MPC 825, 826
mpcheck 825
MPFI 826
MPFR 401, 825, 826
mpfun90 4
multicol 1115
musl 825
NAG 826
namelist 1115
numapprox 28, 29, 32, 47, 52, 270, 724, 726
orthopoly 48, 52, 53
paranoia 773, 774
pifont 1115
PORT xxxi, 341, 343, 352, 823
resize-mathcw 1115
rgb 1115
Scalable Parallel Random Number Generators (SPRNG) 158
simpson 606
student 606
T 48, 53
TestU01 200, 214
tuftest 200–202
UCBTEST 774
url 1115
varioref 1115
vpa 4
widecenter 1115

package (programming construct) 2
packed-decimal data type 928
Packed_Decimal data type 928
pad see one-time pad
Padé approximation 33
Padé, Henri Eugène (1863–1953) 33
pair-precision

absolute value 358
accuracy 379
addition 365
arithmetic 353
comparison 368
copy 357
cube root 377
design considerations 355
division 371
dot product 385
elementary functions 777
evaluation 357
fused multiply-add 388
high part 357
initialization 356
limitations 354
low part 357
multiplication 368

negation 358
overflow in splitting 362
product sum 386
retrospective 407
splitting 359
square root 373
subtraction 367
sum 358
vector sum 384

paircw.h header file 355
Panthéon 802
Parallels (vendor) viii
parameter (m) of elliptic integral function 625
paranoia package 773, 774
PARI/GP language viii, 269, 537, 548, 561, 569, 583, 620, 685, 694
Paris, France 802
pascal file 989
Pascal interface 989

building 989
programming 990
using 993

Pascal language 2, 70, 74, 130, 223, 341, 411, 763, 829, 870, 879, 949,
989–994

mathematical-library deficiencies 223, 341
numeric programming 994

Pascal’s Triangle 576
Pascal, Blaise (1623–1662) 972, 989
Pascaline calculator 972, 989
Patashnik, Oren xi
Paxson, Vern Edward 851
Payne, Mary H. 250, 253, 259, 265
pcbrtx.h header file 379
PCBSD operating system x
PCL language 954
pdflatex program 1115
PDP (model) 850
PDP-1 (CPU) 970
PDP-10 (CPU) v, viii, ix, 71, 72, 77, 107, 131, 147, 216, 251, 256, 257,

262, 305, 478, 608, 761, 763, 848, 849, 855, 908, 928, 947, 948,
951, 953–956, 958, 965, 966, 969–971, 977, 978, 1115

PDP-11 (CPU) viii, ix, 66, 224, 478, 761, 850, 908, 928, 948, 953, 956,
957, 970, 971, 977

undefined variable 956
PDP-12 (CPU) 948
PDP-15 (CPU) 970
PDP-2 (CPU) 970
PDP-3 (CPU) 970
PDP-4 (CPU) 970
PDP-5 (CPU) 970
PDP-6 (CPU) 948, 954, 970
PDP-7 (CPU) 850, 956
PDP-8 (CPU) 970, 971
PDP-9 (CPU) 970
Pearson, Karl (1857–1936) 197
pendulum period 627
Pentium (CPU) 339
percent conversion specifier 873
perf.adb file 916
perf.java file 982
PerformanceGoal option (Mathematica) 37
perimeter of ellipse 619, 630
period

pendulum 627
random-number generator 157

Perl language vii
Perlis, Alan Jay (1922–1990) 941

1100 Subject index . . . P

pgamma.hoc file 556
pgammx.h header file 556–558
PGM (model) 948
phi (golden ratio, φ) history 14, 59, 577
Philco (vendor) 970
Philosophiae Naturalis Principia Mathematica 8
photometer 802
PHP language vii
PI global variable 408, 409, 850, 851, 955
pi (π) history 59
pifont package 1115
Pike, Rob 6
Pilot ACE (model) 970
Pisano, Leonardo (1175?–1250) 575, see also Fibonacci
PL/1 language vii, 763, 927, 928
plaintext 203, 204, 206
planets, orbital eccentricity 630
PLATO computer-assisted instruction system 949
Plauger, Phillip James “Bill” 133
PlotFlag option (Mathematica) 34
PlotRange option (Mathematica) 37
PlotStyle option (Mathematica) 37
Pluto (planet) 630
Pochhammer symbol 752
Poincaré’s Prize 60
pointer conversion specifier 874
Poisson distribution 195
Poisson equation 693
Poisson, Siméon-Dénis (1781–1840) 195
polar form of complex number 443
polyfit.mth file 38, 42
polyfma.map file 488
polygamma function 62, 537, 555, 556, 558
polynomial

1/Γ(x) 767
Abel’s proof for roots 7
absolute error vs. relative error 33
accuracy with increasing degree 34, 428, 437
adjustment of leading coefficient 33
approximate log(x) 832
approximation 23
asin(x) 324
atan(x) 332, 765
atanh(x) 350
bit precision P in mathcw library 2
bivariate 475
cbrt(x) 237
Chebyshev

closed forms 43
coefficient sorting 47
conversion to rational form 52, 55
definitions 48
economization 43, 58, 526, 535, 604, 703, 704, 707, 709, 713,

715, 724
equal extrema 44
error compensation 50
evaluation 48
fit improvement 51
flexibility and generality 46
forms 45
numerical stability 48
orthogonal 44
plots 46
recurrence relation 45, 48
summation formula 43
zeros 56

coefficient formatting 29
coefficients in Cody/Waite book 32, 939
coefficients of constant sign 24
complete elliptic functions 643, 644, 690
computation with symbolic-algebra programs 4
conditions for exact quadrature 560
convention for rational degrees 31
cos(1

4 πx) 318
cos(x) 308, 310, 321, 323
cotan(πx) 320
cotan(x) 310
deficiency of Cody/Waite fit to log(x) 287
difficulty in pair-precision arithmetic 777, 794, 797, 808
difficulty of minimax vs. Chebyshev fit 52
documenting and reproducing coefficients 939
eliminating quadratic term in cubic 682
evaluation accuracy 89
evaluation with fused multiply-add (fma) 88
evaluation with IBM 7030 Stretch multiply-and-add 960
even distribution of errors in Chebyshev and minimax fits 48
exact coefficients 42
exp(x) 26, 269, 270, 272
explicit root formulas for degree < 5 7
expm1(x) 279
factoring in Mathematica 752
failure to find with symbolic-algebra systems 28
fit in Maple 28, 32
fit in Mathematica 33, 42
from Taylor series 7
Γ(1 + x) 527
Γ(x) 524
Γ(x) in asymptotic region 528
hiding degree in source code 89
Horner form 24, 32, 37, 49, 54, 89, 97, 221, 275, 277, 285, 318,

500, 526, 686, 718, 741, 745, 748
improvement in rational form 32
improving evaluation accuracy 86
integer coefficients 751, 754
inverse error function 604
large base 254
large errors near roots 708, 713
large-argument modified Bessel functions 724
large-argument ordinary Bessel functions 716
limitations of Cody/Waite 28
log(1 − d) 670
log(x) 284, 286, 286, 288, 422, 426, 438, 440
log1p(x) 290
minimax 28, 32, 33
minimax vs. Chebyshev 51, 52
monotonicity guarantee is hard 824
near zeros of log(Γ(x)) 532
notation conventions 987
number representation 978
(nw − 1)/w in power function 437, 440
nw − 1 in power function 437
nw in power function 423
obscure origin of Cody/Waite coefficients 28, 43, 939
orthogonal 59
precision needed to find coefficients 28
problem of finding optimal fits 31
rational 43
rational vs. single 32
rational vs. single 52, 306, 323
refactoring to reduce operation counts 89
relation to transcendental numbers 16
relations between elliptic integrals 645

Subject index . . . P 1101

relative error vs. absolute error 33
reliability of Horner form 89
replacement by duplication rule for elliptic functions 649
replacement with Newton–Raphson iteration 808
reverse engineering 43
roots of cubic 682
roots of Weierstrass cubic 682
rsqrt(x) 234
scaling rational 24, 41, 215
sin(x) 306, 321, 323
sinh(x) 343, 345
size of polygamma coefficient tables 557
sqrt(x) 215
symmetry with complex variable and real coefficients 447
table-driven algorithms 827
tan(πx) 319
tan(x) 311
tan(x) 47, 310
tanh(x) 343, 345
testing all fits 763
tiny leading coefficient 55
two variables 475

Popov, Bogdan A. 604
population count (number of one bits) 166
PORT package xxxi, 341, 343, 352, 823
Portable Fortran language 823
Portable Operating System Interface (POSIX) Standard 441
positive epsilon 63
POSIX (IEEE Portable Operating System Interface Standard) 441
POSIX operating system xxxv, 60, 120, 162, 163, 561, 694, 700, 702,

719, 755, 825
PostScript language vii, 36, 105
pow keyword 992
POWER (CPU) 65, 86, 87, 109, 218, 219, 370, 391, 410, 816, 825, 970,

976, 1035
power function 411
power of two

nearest above 166
nearest below 166

power-law distributions 196
PowerPC (CPU) vii, 68, 71, 79, 87, 109, 131, 216, 219, 233, 240, 355,

370, 388, 392, 399, 438, 439, 459, 818, 878, 927, 936, 970, 976,
1035

powx.h header file 411, 430
pr program 1115
Pr1me (vendor) 947, 948
Practical Cryptography 168, 214
pragma 110, 113, 114, 124
pragma statement 110, 914
prec.h header file 85, 135, 256, 529
precision

HP-UX on IA-64 xxxv
historical architectures 948
IEEE 754 binary arithmetic 28, 97
IEEE 754 decimal arithmetic 97
wobbling 24, 25, 27, 104, 155, 215, 234, 254, 283, 290, 302, 316,

324, 342, 343, 345, 375, 423, 427, 428, 437, 596, 617, 632, 700,
704, 708, 718, 723, 755, 763, 785, 788, 804, 805, 896

precision control 105, 106, 108, 124
AMD64 124
EM64T 124
access to 123
in hardware 124
mathcw library 124
missing 126
no access in Ada 914

using 126
PRECISION global variable 43
premature

job termination 104, 381, 950, 976
overflow 101, 113, 343, 348, 350, 362, 363, 414, 415, 449, 451, 456,

466, 528, 532, 595, 619, 621, 622, 635, 691, 768, 778, 804, 883
underflow 101, 113, 414, 415, 449, 451, 456, 466, 532, 595, 598,

619, 621, 622, 634, 691, 768, 778, 883, 940
present value of an annuity 295
preventing macro expansion 112
Priest, Douglas M. 385, 407
prime number 170, 303, 590, 591, 967

history 60, 590, 591
relatively prime 170

Princeton University (vendor) 970
principal value 476
Principles of Operation 963, 964
print statement 622
printf program 251
printf statement 78, 830, 850, 851, 950, 955
PrintFlag option (Mathematica) 34
println statement 849–851
prism 801
private keyword 981
PRNG (pseudo-random-number generator) 157
program

acroread 1115
authidx 1115
bc 362, 408, 409, 1115
bibtex 1115
build-all ix, 1115
c89 816
c99 818, 819, 822
cc xxxv, 388, 812, 815–817, 820, 821, 905
cc128 xxxv
chkdelim 1115
chktex 1115
col 1115
command 954
cppcheck 870
cscc 919
deroff 1115
detex 1115
dgcc 681, 938
distill 1115
dv2dt 1115
dvips 1115
dw 1115
egrep 880, 1115
emacs 2, 954, 1115
f2c 763
f77 941, 942
gcc xxxv, 87, 101, 153, 216, 292, 338, 391, 392, 401, 442, 813, 814,

817, 818, 821, 825, 826, 912
gnat 911, 915
gnatbind 912
gnatlink 912
gnatmake 911–913
gnuplot 223, 1115
gp 1115
gpc 989, 990, 993, 994
groff 1115
gs 1115
gv 1115
gzip 1115
Hercules x, 1115

1102 Subject index . . . Q

hoc 1, 29, 78, 87, 696
hoc128 408, 766, 1115
hoc32 220, 850, 851, 1115
hoc36 107, 849, 955, 1115
hoc64 622, 1115
hoc72 1115
hoc80 78, 950, 1115
hocd128 1115
hocd32 1115
hocd64 1115
icc 87, 388, 442, 814, 815
ispell 1115
its4 870
java 980
javac 979
javah 979
javald 980
kermit 954
lacheck 1115
latex 1115
lcc 3
lint 870, 908
ls 912
make 771, 911, 912, 916, 919, 924, 943, 944, 979, 980, 989, 990,

993, 1115
makeindex 1115
makeinfo 1115
man2html 1115
man2texi 1115
maple 10, 26–28, 251, 408, 602, 1115
math 601, 1115
mathcw 847
matlab 228, 1115
maxima 1115
mcs 919
mono 919
mupad 1115
myspell 1115
nawk 1115
nm 981
pdflatex 1115
pr 1115
printf 251
ps2pdf 1115
QEMU 129, 1115
R 1115
ranlib 943
rats 870
reduce 1115
sage 1115
sed 251, 771, 1115
sh 1115
SIMH ix, 1115
size 557
sort 1115
spell 1115
splint 870, 908
Splus 1115
strings 981
test 912
true 943
xdvi 1115

program statement 993
Program Status Word (PSW) 964
programming conventions 2
programming language see language

Project Stretch 959
protected keyword 990, 992
Provo, Utah 961
ps2pdf program 1115
psi function 521, 536
psi() function

testing 768
psiln function 536
psiln() function

testing 768
psix.h header file 543, 555
PSL language 954
pspli.h header file 365
psqrtx.h header file 376
PSW see Program Status Word
ptrdiff_t * data type 907
ptrdiff_t data type 877, 907, 908
PUB language 954
public-key cryptography 203
Pure_Function keyword 915
purification of argument 97–99, 237, 239, 240, 339, 597, 766, 768,

811
pxy*.c file 430
pxy*.h header file 427
pxy.h header file 438
pxyx.h header file 411, 429, 430, 433, 434
Pyramid (vendor) 952
pythagn.c file 233
Pythagoras of Samos (ca. 580–572 BCE to 500–490 BCE) 222
Pythagoras’ Theorem 113, 222, see also e2norm(), see also hypot(),

see also pythag()
history 59

Pythagorean Triples 222
Python language vii

Q
QEMU (Quick EMUlator) hypervisor x
QEMU program 129, 1115
QNaN (Quiet Not-a-Number) 79
qp_t data type 255–257, 263–265
quad data type 58, 101, 877
quad_pair data type 355
quadratic

congruential generator 176
convergence 8
equation discriminant (Kahan style) 472
equation solution 465, 465, 467

quadrature
conditions for exact 560
Gauss–Chebyshev rule 702
Gauss–Laguerre rule 560
Gauss–Legendre rule 702
Monte Carlo rule 202, 203
Simpson’s rule 606, 607, 702, 722
standard rule 202
trapezoid rule 570

quadruple factorial 523
quadword 969
quantization in decimal arithmetic 931
quantum cryptographic generator 178
quartal notation 977
quarterword 969
quartic convergence 23, 215
quasi-Monte Carlo quadrature 203
quiet NaN 64, 79, 123

arithmetic does not set exception flag 80, 123

Subject index . . . R 1103

R
R language 601, 616, 659
R program 1115
R1 (model) 948, 970
R10000 (CPU) 131, 220, 392, 817
R2000 (CPU) 86
R3000 (CPU) 86
R4000 (model) 976
R4400 (model) 976
R4400SC (CPU) 131, 817
R5000 (CPU) 392
radian 299
radix 62
Ramanujan, Srinivasa (1887–1920) 619
rancw_state_t data type 212
RAND (vendor) 970
randcw.h header file 209, 211
randcw_state_t data type 211
random number 157, see also cryptography

applications 202
arithmetic pitfalls 157
C89 generator 162
chi-square test 197
combined generator 177

add-with-carry 177
KISS 177
Mersenne Twister 177
multiply-with-carry (MCW1038) 177
subtract-with-borrow 177

congruential generator
computing 171
deficiencies 170
faster 174
linear (LCG) 169
lrand48() 162
multiple recursive 176
multiplicative (MCG) 169
quadratic 176

cryptographic generator 178
demonstration of Central Limit Theorem 196
denial-of-service attack against generator 207
Diehard Battery test suite 200
distribution 189

continuous and discrete 195
exponential 189
logarithmic 190
normal 192, 194
uniform 189

endpoint conventions 160
floating-point values 160
from Advanced Encryption Standard (AES) 178
from cryptographic hardware accelerators 207
from /dev/random and /dev/urandom 207
from Secure Hash Algorithm (SHA-n) 178
further reading 214
gcd relation 180
generation 169
Gorilla test 200
historical generator deficiencies 214
importance of long periods 179
improving a generator 178
infinite period generator 177
integers

ascending order 168
from floating-point generator 165
from integer generator 166

inversive congruential generator (ICG) 180
lagged Fibonacci generator 176
LCG and MCG in double-precision floating-point arithmetic

173
LCG and MCG in long integer arithmetic 173
Monte Carlo quadrature 202
NIST Statistical Test Suite 200
other generators 176
period 157

AES generator 178
KISS generator 177, 208, 210
lagged Fibonacci generator 176
linear congruential generator 169–171
Mersenne Twister generator 177
modulus dependent in LCG and MCG 170
multiple recursive congruential generator 176
multiplicative congruential generator 169
multiply-with-carry (MCW1038) generator 177
quadratic congruential generator 176
Tausworthe generator 177
XOR-shift generator 177

portability issues 163
POSIX Standard generator 162
quantum cryptographic generator 178
range 157

exponential distribution 190
KISS generator 177, 208
linear congruential generator 169
logarithmic distribution 191
lrand48() 162
Mersenne Twister generator 177
multiplicative congruential generator 169
multiply-with-carry (MCW1038) generator unspecified 177
normal distribution 194
rand() 162
Tausworthe generator 177
XOR-shift generator 177

removing generator bias 178
routines in mathcw library 208
seed

access 157
creation 158

shuffled nested Weyl sequence generator 177
software guidelines 157
Tausworthe generator 177
test suites 200
testing

nonuniform generator 202
uniform generator 196

TestU01 suite 200
tuftest suite 200
Weyl sequence generator 177
Wichmann–Hill generator 177
XOR-shift generator 176

random numbers
distribution

Gaussian 196
Random Numbers Fall Mainly in the Planes 170
randu() test results 201
range of random-number generator 157
ranlib program 943
Raphson, Joseph (1648–1715) 8
rational number 62
rational polynomial 43, see also polynomial
rats program 870
Raytheon (vendor) 970

1104 Subject index . . . R

RCA (vendor) 963, 970
REACTOS operating system x
READ INPUT TAPE statement 962
READ statement 904, 962
READ TAPE statement 962
REAL (SELECTED_REAL_KIND(75)) data type 4
REAL data type 941, 948, 949, 962
Real data type 990
REAL*16 data type 941
REAL*32 data type 4, 64
REAL*4 data type 941
REAL*8 data type 941
reciprocal square root 233

almost-correct rounding 235
improved rounding 234
in hardware 240

RECOMP II (model) 970
recurrence relation

Bernoulli numbers 571, 572
Bessel auxiliary P(ν, x) 698
Bessel auxiliary Q(ν, x) 698
Chebyshev Tn(u) 45
continued fraction 12
Euler numbers 573, 574
expansion of i1(z) 748
expansion of In(z) 723
expansion of in(z) 744, 752
expansion of is1(z) 750
expansion of isn(z) 747, 754
expansion of Jn(z) 703
expansion of jn(z) 737
expansion of Kn(z) 723
expansion of yn(z) 737
Fibonacci numbers 576, 576, 578
Γ(z + n) 522, 535
Γ(z) 522, 524, 527, 539, 545, 566, 594, 766
In(z) 720, 721, 729, 755, 759–761
in(z) 733, 734, 750, 753
incomplete gamma G(a, x) 561, 563
incomplete gamma g(a, x) 561
J0(z) 705
Jn(z) 700, 701, 706, 710, 712, 717, 755, 759, 761
jn(z) 733, 738, 761
Kn(z) 720, 729, 755
kn(z) 733, 754
log |Γ(z)| 766, 767
polygamma ψ(n)(x) 552, 556, 557, 560
ψ(x ± n) 546
ψ(x) 539, 543, 544
psiln(x) 547
sbin(n, x) 750, 753
sbkn(n, x) 755
tangent numbers 575
Yn(z) 700, 701, 716, 755, 761
yn(z) 733, 739, 761

Redheffer, Raymond Moos (1921–2005) 194
REDUCE language viii, 28, 269, 537, 548, 569, 573, 620, 625, 628,

659, 674, 694, 954
reduce program 1115
reduction see argument reduction
ref keyword 921
reflecting telescope 801
register 13
Regnecentralen (vendor) 970
regularized incomplete gamma function 595

relative error see also machine epsilon, see also ulp (unit in the last
place)

computation 99
subtle bugs in computation 99, 940

relatively prime 170
remainder 143

base other than two 155
computing one from another 152
difficulty of computing 144
safe integer 76

remqu.h header file 152
reserved operand (VAX) 478, 948, 956, 957
resize-mathcw package 1115
restrict keyword 868, 868, 871, 873, 901, 903, 904
Retrospective: How to Print Floating-Point Numbers Accurately 879
return instruction 443
return statement 192, 711, 925, 944, 983
Revere, Paul (1734–1818) 206, 207
Revolution, American 206
Rexx language vii, viii, 928, 968
RFC 4086 214
rgb package 1115
Riccati, Jacopo (1676–1754) 695
Riccati–Bessel function 695
Rice Institute (vendor) 948, 970
Rice, John Rischard 31
Riemann Hypothesis 60, 303, 303, 521, 579, 590
Riemann sphere 460
Riemann zeta function 57, 303, 542, 579, 826, 988

computing 583
Greek relatives 587
relation to Catalan’s constant 587

Riemann zeta numbers 551
Riemann, Georg Friedrich Bernhard (1826–1866) 303, 521, 542,

551, 579, 619
biography 59, 579, 590

RISC (Reduced Instruction Set Computer) processor 73, 85, 86,
146, 148, 824, 952, 956, 974

rising factorial function 752
Ritchie, Dennis MacAlistair (1941–2011) 2, 3
rndcb1.c file 238–240
rndcb2.c file 240
rndoff.c file 161
rndrs1.c file 235, 237
rndrs2.c file 237
rndsq1.c file 216, 220
rndsq3.c file 217, 220
rndsq4.c file 217, 220
rndsq5.c file 217, 220
rndsq6.c file 217, 220
Rockett, Andrew Mansfield 12
Romeo and Juliet 987
ROMP (CPU) 86
root 215

cube 237
hardware instructions 240
nonlinear equation 8, 9
quadratic equation 7, 465
reciprocal square 233
square 215

rounding 66
7030 Stretch 960
bit 67, 68, 882, 987
CDC systems 951
control

access 107

Subject index . . . S 1105

using 115
direction 67, 105, 108, 111, 115, 123, 124, 129, 132, 138, 139, 142

extension for decimal 109, 927, 936
error in Cray divide 953
function 137–139
IEEE 754 132, 967
importance 968
interval arithmetic 967
modes and integer conversion 132
no access in Ada 914
PDP-10 955

peculiarity 848, 955
S-1 965
square root 216
System/360 964
System/370 964
taxman’s 109

rphx.h header file 308
rpx.h header file 306
RS/6000 (model) 86, 817, 976, 977
RT (model) 86
Ruby language vii, 923
Rump, Siegfried M. 385
Runge, Carl David Tolmé (1856–1927) 969
Russell, Bertrand Arthur William (1872–1970) 23
Rust language vii
Ryad (vendor) 963

S
S-1 (CPU) 305, 463, 948, 965, 966
S-floating 956
S-Plus language 601, 616
safe integer arithmetic

absolute value 74
addition 75
division 75
multiplication 75
negation 76
remainder 76
retrospective 77
subtraction 76

Sage language 269
sage program 1115
SAIL language 954
Saturn (planet) 630
sbinx.h header file 753, 754
sbis0x.h header file 747
sbis1x.h header file 750
sbisnx.h header file 754
sbj1taylor.map file 740
sbj1x.h header file 738
sbk0x.h header file 755
sbk1x.h header file 755
sbknx.h header file 755
sbks0x.h header file 755
sbks1x.h header file 755
sbksnx.h header file 755
sby1taylor.map file 740
Scalable Parallel Random Number Generators (SPRNG) package

158
scaled complementary error function 598
Scheme language vii
Schonfelder, Lawrie 4
Schryer, Norman L. 958
Schrödinger, Erwin Rudolf Josef Alexander (1887–1961) 475
Scientific Data (vendor) 970

Scientific Subroutine Package 171
scpi4.h header file 318
Scribe language 954
SDL language 977
SDS 940 (model) 970
sealed keyword 920
secant 299, 300, 569
secant method 8
second-order Taylor-series approximation 9
Secrets and Lies 214
Secure Hash Algorithm (SHA-n) 178
sed program 251, 771, 1115
seed of random-number generator 157
Seki Kowa, Takakazu (1642–1708) 568
SEL Systems (vendor) 948, 970
self-correcting iteration 8
Sequent (vendor) 952
series see asymptotic series, see Taylor series
series inversion 20
seterr.h header file 96
<setjmp.h> system header file 91
sexagesimal (base-60) number system 299
SGI see Silicon Graphics
SGI (vendor) 153
sh program 1115
SHA-n see Secure Hash Algorithm
Shakespeare, William (ca. 1564–1616) 7, 215, 341, 411, 777, 987
Shannon, Claude Elwood (1916–2001) 969
shared library xxxvi, 4, 911, 943, 944, 979, 980, 982

recording location 944
shchx.h header file 348
Shepherd, Simon J. 606
short int * data type 907
short int data type 74, 116, 131, 829, 877, 907, 941, 990
ShortInt data type 990
ShortReal data type 990
shuffled nested Weyl sequence generator 177
SIAM Journal on Mathematical Analysis 693
Siemens (vendor) 963
Sigler, Laurence E. 575
Sigma (model) 948, 970
sign-magnitude integer 69, 74, 971
<signal.h> system header file 90
signaling NaN 64

arithmetic sets exception flag 80
signature

digital cryptographic 204
function arguments 923, 981, 982

signed char * data type 874, 907
signed char data type 257, 941, 990
signed zero 69, 104, 147, 527, 974, see also negative zero

arc tangent argument 70
constant 69
correct argument handling 622
creating 135, 975
detecting 69, 975
faulty compiler handling 135
older architectures 69
pair-precision number 355, 364
power-function argument 412
preserving 69
problems in complex arithmetic 478

signgam global variable 521, 534
significance arithmetic 960, 966, 1017
significance loss 89, 306, 342, 345, 348, 379, 437, 539, 595, 638, 641,

767

1106 Subject index . . . S

detected by noisy mode 960
in Bessel functions 712
in complex arithmetic 449, 456
in gradual underflow 64
in hexadecimal base 302
in significance arithmetic 960

significand 2, 63
extraction 148, 155, 284, 769, 837, 937, 944, 981, 992
hidden bit 63, 64, 67, 78, 956, 957, 965
Infinity 63
NaN 63

Silicon Graphics (vendor) 71, 78, 355, 817, 976, 977
SIMH program ix, 1115
simple continued fraction 13
simpson package 606
Simpson’s rule quadrature 606, 702, 722
Simpson, Thomas (1710–1761) 8
Simson, Robert (1687–1768) 577
simulator see virtual machine
Simulink language 228
sine 299

argument in degrees 313, 314
argument in units of fl(2π) 304
argument in units of π 315, 316
argument reduction 304, 308
computing 306
computing with cosine 320, 339
definition 299
derivative 301
error magnification 309
identities for testing 301, 339
in hardware 338
inverse 323
of 1

2 π 304, 306
of angle sum 300
properties 299
range of 299
Taylor series 302
Taylor series of inverse 323

Single class 100
SINGLE data type 962
Single data type 990
sinhx.h header file 348
sink_t data type 871, 902
sinpix.h header file 318, 531
sinx.h header file 309
six sigma (phrase in advertising) 616
size program 557
size_t * data type 907
size_t data type 257, 846, 872, 877, 907, 908
sizeof keyword 50, 58, 159, 256, 257, 419, 846, 847, 854, 855, 858,

862, 863, 889, 907
Smalltalk language 954
Smith, Roger 251
SNaN (Signaling Not-a-Number) 79
software

origin of word 969
pipelining 241

Software Manual for the Elementary Functions viii, 763, 823
Sokolnikoff, Ivan Stephen (1901–1976) 194
SOLARIS 10 operating system 124, 216, 218, 811, 818–822
SOLARIS 8 operating system 821
SOLARIS operating system 71, 99, 110, 122, 124, 125, 127, 131, 294,

304, 305, 320, 388, 399, 459, 528, 697, 819, 820, 834, 943, 946,
967, 979, 989

solution

nonlinear equation 8, 9
quadratic equation 465

Solving a Quadratic Equation on a Computer 465
sort program 1115
sorted random integers 168
source_t data type 902, 904
Sources and Development of Mathematical Software 958
SPARC (CPU) 68, 71, 86, 99, 109, 122, 129, 131, 216, 218, 240, 242,

383, 388, 392, 399, 439, 459, 697, 811, 818–821, 824, 867, 953,
956, 967, 970, 976, 990

SPELL language 954
spell program 1115
spherical Bessel function see Bessel function
splint program 870, 908
split-base.map file 708
split.map file 408
split_t data type 396
splitting floating-point number

conditions for exact representation 361
constants in symbolic-algebra system 408
correctness proof 361
danger of higher intermediate precision 362
fraction and exponent 133
pair sums 359
premature overflow 362
product into pair sum 434
product of integer and power of base 253
sum of exact high and approximate low parts 236, 318, 387,

435, 708
sum of exact rational and approximate correction 246, 279
sum of integer and fractional parts 130, 132, 245, 286, 315, 781,

795
sunlight into separate colors 801
three-part sum 781

Splus program 1115
sprintf statement 830
sqrt.c file 3, 4
sqrt.h header file 3
sqrtf.c file 3, 4
sqrtl.c file 3, 4
sqrtx.h header file 3, 4, 87, 96, 219, 241
square root 215

correct rounding 217
IEEE 754 conventions 373
in hardware 240
reciprocal 233

almost-correct rounding 235
improved rounding 234
in hardware 240

rounding considerations 216
Stallman, Richard Matthew 825
standard deviation 194, 382–384, 681
Stanford University xi, 85, 952
STAR-100 (model) 951, 952
Stardent (vendor) 952, 976
statement

break 219, 240, 264, 416, 566, 783, 842, 881
case 416, 789, 873, 904, 940
catch 90, 830, 918
default 41, 419, 894
DIMENSION 962
else 135, 148, 240, 275, 276, 338, 373, 378, 384, 397, 398, 785, 842
EQUIVALENCE 962
export 991
external 991
FORMAT 829

Subject index . . . S 1107

FREQUENCY 962
GO TO 962
goto 2, 184
if 69, 85, 139, 140, 147, 150, 240, 260, 373, 395, 397, 399, 402, 413,

453, 562, 893, 940
import 993
module 991
NAMELIST 909, 910
pragma 110, 914
print 622
printf 78, 830, 850, 851, 950, 955
println 849–851
program 993
READ 904, 962
READ INPUT TAPE 962
READ TAPE 962
return 192, 711, 925, 944, 983
sprintf 830
struct 441
switch 41, 309, 331, 416, 417, 419, 691, 873, 894, 904, 940
throw 90, 830
try 90, 830, 918
typedef 2, 101, 102, 159, 209, 442
union 829, 934
use 915
using 920, 924
with 915, 916

static keyword 3, 174, 396, 402, 439, 841, 853, 866
static library 911
Statistics on the Table 194
STC (vendor) 970
<stdarg.h> system header file 868, 870, 871, 901
<stdbool.h> system header file 453
<stddef.h> system header file 3, 131, 257
<stdint.h> system header file 260, 978
<stdio.h> system header file 92–95, 101, 868, 870, 902, 905
<stdlib.h> system header file 92, 94, 95, 100, 101, 163, 905
Steed algorithm for continued fractions 17
Steed, J. W. 17
Stellar (vendor) 952
sticky bit 67, 67, 68, 882, 987
sticky exception flag see exception flag
Stigler, Stephen Mack 194
Stirling’s approximation for factorial of large numbers 525
Stirling’s series 525
Stirling, James (1692–1770) 525, 631
stock (financial) 297
stock market growth rate 297
storage precision 65, 133, 135, 139, 146
store instruction 960
store root instruction 960
store rounded instruction 960
store.h header file 365
Strecok, Anthony J. 603–605, 607
string conversion specifier 874
String data type 981, 983
<string.h> system header file 93
strings program 981
struct statement 441
Structured Programming 947
Struve function 695
Struve, Karl Hermann (1854–1920) 695
student package 606
Student’s t distribution 195
subnormal 78, 100, 153, 154, 607, 940, see also MAXSUBNORMAL,

MINSUBNORMAL

C# 918
IEEE 754 78
minimum 602
Silicon Graphics IRIX 817
testing for 78

subnormal exception flag 108, 123, 124
subtraction

loss 144
safe integer 76

sum-prime notation 46, 50
summation

accurate with error estimate 275, 279, 281, 286, 289, 309, 347,
455

exact 385
Sun (vendor) 824
Sun libraries 824
Sun Microsystems (vendor) viii, 71, 86, 99, 110, 124, 133, 153, 218,

274, 294, 304, 325, 349, 383, 388, 528, 595, 811, 818–822, 824,
967, 970, 973, 976, 977, 979, 989

supercomputer 68, 949, 969, 974
Superset (vendor) 948
Supertek (vendor) 952
Supnik, Robert ix
switch statement 41, 309, 331, 416, 417, 419, 691, 873, 894, 904, 940
Symbolics (vendor) 970
symmetry relations

Bateman function 555
Carlson elliptic functions 645
complementary inverse error function 608
complex argument function 495
complex arithmetic operations 446
complex conjugation 446
complex cube root 485
complex division 453
complex exponential 488
complex function of single variable 446
complex logarithm 495
complex polynomial with real coefficients 447
complex square root 480
cosine 299, 316, 796
cylindrical Bessel function In(x) 719
cylindrical Bessel function Jn(x) 697
cylindrical Bessel function Kn(x) 719
cylindrical Bessel function Yn(x) 697
elliptic function E 628
elliptic function F 624
elliptic function K 632
elliptic nome q 668
error function 593, 769
exponential function 342
Fibonacci numbers 576
floating-point numbers 63
gamma function 522
gcd and lcm 183
hyperbolic cosine 341, 512
hyperbolic sine 341, 512
hyperbolic tangent 273, 341, 512
integer numbers 74
inverse cosine 323, 504, 803
inverse elliptic functions 667
inverse error function 608
inverse hyperbolic functions 504, 517
inverse sine 323, 504, 803
inverse tangent 331, 504, 803
Jacobian elliptic functions 659, 680
Jacobian theta functions 673

1108 Subject index . . . T

psi function 541, 768
remainder functions 144
rounding direction 845
sine 299, 316, 531, 796
spherical Bessel function i0(x) 744
spherical Bessel function i1(x) 748
spherical Bessel function in(x) 732, 738
spherical Bessel function isn(x) 749, 753
spherical Bessel function jn(x) 732, 738
spherical Bessel function kn(x) 738
spherical Bessel function yn(x) 732, 738
tangent 302, 319, 545
Weierstrass elliptic function 683
Weierstrass sigma function 686
Weierstrass zeta function 686
zeta function 579

sys_errlist global variable 94
sys_nerr global variable 94
System 85/86 (model) 970
system header file see also file, see also header file

<assert.h> 3
<complex> 441
<complex.h> 441, 442
<decfloat.h> xxxiii, 103, 252, 936, 937
<errno.h> 3, 91, 93, 94
<fenv.h> 107–109, 113, 116, 120
<float.h> 3, 62, 82, 100, 135, 252, 527, 598, 769, 785, 855, 859,

867, 936, 994
<fpu_control.h> 125
<gmp.h> 402
<jni.h> 983
<limits.h> 3, 94, 130, 152, 159, 260, 994
<math.h> xxxv, 2, 50, 57, 82, 91, 92, 94, 95, 100, 101, 108, 120,

130, 223, 336, 411, 816, 905
<mpfr.h> 402
<setjmp.h> 91
<signal.h> 90
<stdarg.h> 868, 870, 871, 901
<stdbool.h> 453
<stddef.h> 3, 131, 257
<stdint.h> 260, 978
<stdio.h> 92–95, 101, 868, 870, 902, 905
<stdlib.h> 92, 94, 95, 100, 101, 163, 905
<string.h> 93
<time.h> 159
<unistd.h> 159
<varargs.h> 871

SYSTEM V operating system 896
System/360 (model) viii, ix, xxix, 68, 86, 104, 155, 241, 254, 287,

305, 353, 361, 365, 375, 478, 761, 855, 947, 948, 951, 954, 956,
959, 963, 964, 967, 969, 970, 978

System/370 (model) x, 964, 1115
System/390 (model) 146, 217, 370
Systems Concepts (vendor) 954
Szüsz, Peter 12

T
Tn(u) (Chebyshev polynomial) 43, 43, 45
T2n+1 (tangent number) 575
T package 48, 53
T-floating 956
tail recursion 181
Tang, Ping Tak Peter 271, 827
tangent 302

argument in degrees 313
argument in units of fl(π) 304

argument in units of π 315, 318
argument reduction 304, 310
computing 310
continued fraction 17
definition 299, 299, 302
derivative 303
error magnification 310
identities for testing 340
in hardware 338
inverse 331
inverse with two arguments 336
of 1

2 π 303
of angle sum 302
properties 302
range of 299
Taylor series 303
Taylor series of reciprocal 303

tangent numbers 575
tanhx.h header file 805
tanpix.h header file 319, 545
tanx.h header file 313
tapered arithmetic 966
tatanh.c file 99
Tausworthe generator 177
taxman’s rounding 109
Taylor series 7, 8–13, 17, 23, 25, 27, 58, 69, 79, 96–99, 126, 217, 221,

267, 270, 272–275, 277, 279, 281, 284, 285, 288, 290–292, 306,
309, 310, 321, 323, 324, 331, 332, 340, 342, 343, 345, 347, 535,
544, 563, 584, 594, 596, 602, 608, 609, 615, 637, 638, 640, 641,
644, 707, 712, 713, 716, 725, 735, 736, 744, 745, 747, 748, 750,
752–754, 758, 761, 766, 768, 769, 777, 780–782, 785, 787, 789,
792–794, 797, 800–804, 808√

1 − z2 507√
1 + r 224

arccosine function 11
arcsin function 11
arctangent function 11
i0(x) 744
i1(x) 748
in(x) 752
Iν(x) 722
is0(x) 747
is1(x) 750
isn(x) 753
J0(x) 716
j1(x) 740
Jn(x) 702
jn(x) 736
Jν(x) 702
k0(x) 754
k1(x) 754
Kn(x) 722
y1(x) 740
Yn(x) 703
yn(x) 736
beta function 587
coefficients 766, 768
combined sine and cosine functions 321
complementary error function 594
complex functions 447, 479
convergence for Bessel in(x) 753
cosecant function 569
cosine function 11, 302, 664

angle sum 310
cotangent function 11, 569
cube root function 238

Subject index . . . T 1109

cutoff 98
elliptic integral functions 626, 629, 631
elliptic modulus function 668
elliptic nome functions 668
error function 594
evaluation 97, 768
even series 25
exponential function 10, 347
exponential minus one expm1(x) 488
first-order approximation 8
gamma function 524
general series 25
hyperbolic cosecant function 569
hyperbolic cosine function 11
hyperbolic cotangent function 569
hyperbolic secant function 572
hyperbolic sine function 11
hyperbolic tangent function 11, 569
hypotenuse function hypot() 225
inverse complementary error function 603
inverse error function 602, 604
inverse hyperbolic functions 348
Jacobian elliptic integrals 660, 661
log-gamma function 524
logarithm function 10, 12
logarithm log(x) 292
logarithm of trigonometric cosine function 569
logarithm of trigonometric sine function 569
logarithm of trigonometric tangent function 569
logarithm plus one log(1 + z) 498
logarithm-base-2 plus one log2(1 + x) 292
logn(g/a) 426, 429
nw − 1 437
odd series 23
reciprocal square root function 234
Riemann zeta function 581
second-order approximation 9, 465
sine function 10, 302

angle sum 310
square root function 10
subnormal arguments 79
tangent function 11, 303, 569, 574

angle sum 310
term recurrence for asin(x) 803
test of gamma function 766
trigonometric secant function 572

Taylor, Brook (1685–1731) 7, 801
Tcl language vii
tcmul2.c file 459
tcmul3.c file 459
Technical Corrigendum 2 (2005) 144, 857
Telefunken (vendor) 970
template expansion 925
terf.c file 768, 769
terfc.c file 768, 769
test

NaN 80
negative zero 841
subnormal 78

Test Drive Laboratory at Hewlett–Packard ix
test program 912
test*.cs file 919
test*.pas file 989
test-* file 765, 769
test.adb file 912, 915
test.ali file 912

test00.pas file 991
test01.cc file 925
test01.pas file 991
test02.cc file 925
test02.pas file 991
test03.cc file 925
test03.pas file 991
test05.pas file 993
testing

erf() function 768
erfc() function 768
function implementations 96
lgamma() function 765
library 763
nonuniform generator 202
psi() function 768
psiln() function 768
tgamma() function 765
uniform generator 196, 200

TestU01 package 200, 214
TEX 954

mishandling of integer overflow 73
TEX User Group xi
Texas Instruments (vendor) 963
tfrexp.c file 769
tgamm.h header file 527
tgammx.h header file 525, 528, 529, 531, 534, 535
tgcd.c file 184
The 8087 Primer 104
The Art of Computer Programming 182, 184, 214
The C++ Standard Template Library 827
The Calculus Wars 8
The Code Book 214
The Columbia Encyclopedia 441
The Cult of Statistical Significance 196
The Design of a Pascal Compiler 949
The Emperor’s Old Clothes 963
The Equation That Couldn’t Be Solved 7
The Fibonacci Quarterly 576
The Golden Ratio 8
The Lottery Book 297
The Mythical Man Month 963
The New Hacker’s Dictionary 1049
The Practice of Programming 6
The Standard C Library 827
The Widespread Misinterpretation of p-Values as Error Probabilities 196
Theta function (Jacobian) 679
theta functions

Jacobian 673
Neville 678

Thinking Machines (vendor) 952
Thompson, Ken 956
Thompson, William Jackson 595
Thomson function 695
Thomson, William (Lord Kelvin) (1824–1907) 695
thread

access lock on shared variable 160
definition 107
global-variable problem 95, 132, 522, 897
internal state problem 211
internal static buffer access problem 830, 853, 866
rounding mode control problem 845
trap-handler problem 107

throw statement 90, 830
<time.h> system header file 159
timred*.c file 265

1110 Subject index . . . T

Tiny Encryption Algorithm (TEA) 178
title of publication

A Mathematical History of Golden Number 8
A Short Account of the History of Mathematics 927
A Treatise on the Theory of Bessel Functions 693
Accuracy of Floating Point Arithmetic 366
ACM Algorithm 116 451, 452
ACM Collected Algorithms 583
ACM Transactions on Mathematical Software 214
ACM Transactions on Mathematical Software (TOMS) 475, 583
ACM Transactions on Modeling and Computer Simulation 214
Ada 95 Reference Manual 914
Algorithms + Data Structures = Programs 3
An Atlas of Functions 657
An Urchin in the Storm 1065
Analytic Theory of Continued Fractions 19
Anomalies in the IBM ACRITH Package 967
Applied Cryptography 214
Applied Statistics 214, 583
Approximations for Digital Computers 827
Asymptotics and Special Functions 19
Bernoulli Number 569
Binary Floating-Point Arithmetic for Microprocessor Systems 133
Birds and Frogs (2008 AMS Einstein Lecture) 475
BIT 476
Branch Cuts for Complex Elementary Functions or Much Ado About

Nothing’s Sign Bit 476
C Mathematical Function Handbook 827
C9X Rationale 223
Calculating Instruments & Machines 829
Common Lisp — The Language 476
Computational Aspects of Three-Term Recurrence Relations 693
Computer Approximations 827
Computer Architecture: Concepts and Evolution 104, 947, 978
Computer Arithmetic II 966
Computer Physics Communications 214, 693
Conference on Computer Arithmetic 104
Coriolanus 411
Cray 1 Computer System Hardware Reference Manual 952
Cryptography Engineering 214
Cryptologia 214
Cymbeline 215
Determination of Correct Floating-Point Model Parameters 958
Dictionnaire historique de la Suisse 568
Digital Computer User’s Handbook 947, 978
e: The Story of a Number 269
Explication de l’Arithmétique Binaire 969
Fibonacci’s Liber Abaci: A Translation into Modern English of

Leonardo Pisano’s Book of Calculation 575
Floating Point Computation 948
FORTRAN Automatic Coding System for the IBM 704 EDPM 959
Fortran Version 3A/B Reference Manual 949
Fun with Fibonacci 578, 978
GNU MP: The GNU Multiple Precision Arithmetic Library 401, 407
GNU Scientific Library 583, 694, 825
Go To Statement Considered Harmful 962
Good Ideas, Through the Looking Glass 959
Hacker’s Delight 166, 176, 978
Handbook of Continued Fractions for Special Functions 19, 827
Handbook of Elliptic Integrals 667, 682
Handbook of Floating-Point Arithmetic 104
Handbook of Mathematical Functions 6, 59, 269, 562, 600, 643, 651,

652, 657, 682, 684, 693, 731, 826, 827
Hisab Al-Jabr wal Mugabalah 575
How Cray’s Arithmetic Hurts Scientific Computation 953
IEEE 754 Standard for Binary Floating-Point Arithmetic vii, 63, 966

IEEE Micro 104
IEEE Transactions on Circuits and Systems 104
IEEE Transactions on Computers 104
In Code 208
Is Floating Point Really This Complicated? 947
Jacobian Elliptic Functions 678
Journal of Computational Physics 214, 693
Khoey Ho Tum Kahan 341
Leonhardi Euleri opera omnia 591
Liber Abaci 575
MacBeth 777
Mathematical Methods for Physicists 8
Mathematics of Computation 476, 693
Mathematics of Physics and Modern Engineering 194
MathWorld 465, 569, 572, 576, 587, 591
Minimizing q × m − n 251
MIPS RISC Architecture 73
Modern Computer Arithmetic 104
MPFR: The Multiple Precision Floating-Point Reliable Library 401,

407
New Century Dictionary vii, 215, 243, 521, 593, 619, 979, 1049
Numerical Computation Guide 105
Numerical Computing with IEEE Floating Point Arithmetic 103
Numerical Methods for Special Functions 827
Numerical Recipes 19
Numerische Mathematik 476
On-Line Encyclopedia of Integer Sequences 568, 671
Orthogonal Polynomials and Continued Fractions 59
Othello 7
Oxford English Dictionary 979, 995
Philosophiae Naturalis Principia Mathematica 8
Portable Operating System Interface (POSIX) Standard 441
Practical Cryptography 168, 214
Principles of Operation 963, 964
Random Numbers Fall Mainly in the Planes 170
Retrospective: How to Print Floating-Point Numbers Accurately 879
RFC 4086 214
Romeo and Juliet 987
Scientific Subroutine Package 171
Secrets and Lies 214
SIAM Journal on Mathematical Analysis 693
Software Manual for the Elementary Functions viii, 763, 823
Solving a Quadratic Equation on a Computer 465
Sources and Development of Mathematical Software 958
Statistics on the Table 194
Structured Programming 947
The 8087 Primer 104
The Art of Computer Programming 182, 184, 214
The C++ Standard Template Library 827
The Calculus Wars 8
The Code Book 214
The Columbia Encyclopedia 441
The Cult of Statistical Significance 196
The Design of a Pascal Compiler 949
The Emperor’s Old Clothes 963
The Equation That Couldn’t Be Solved 7
The Fibonacci Quarterly 576
The Golden Ratio 8
The Lottery Book 297
The Mythical Man Month 963
The New Hacker’s Dictionary 1049
The Practice of Programming 6
The Standard C Library 827
The Widespread Misinterpretation of p-Values as Error Probabilities

196
Twelfth Night 341

Subject index . . . U 1111

What Every Computer Scientist Should Know About Floating-Point
Arithmetic 103

What is a Satisfactory Quadratic Equation Solver? 472
Why Do We Need a Floating-Point Arithmetic Standard? 952
Why Most Published Research Findings Are False 196

tldexp.c file 769
tlgamm.c file 766
TMI instruction 962
TOMS (ACM Transactions on Mathematical Software) 826
TOP 500 supercomputer sites 952
TOPS-20 operating system ix, 71, 131, 763, 849, 1115
TPL instruction 962
tpsi.c file 768
tpsiln.c file 768
tqert.c file 473
TR440 (model) 970
TRA instruction 962
traffic analysis 204
transcendental number 16
trap

arithmetic exception 106
integer overflow 918
overflow 72
signaling NaN 80
thread problem in handler 107
underflow 951
use before definition 931
zero divide 70, 977

trapezoid rule 570
triangle inequality 222
trigamma function 537
trigonometric functions 299
trigonometric secant function 572
triple factorial 523
true program 943
TRUEOS operating system x
truncation function 135
try statement 90, 830, 918
Tsang, Wai Wan 200
tstkis.c file 177
ttgamm.c file 766
tuftest package 200–202
Tukey, John Wilder (1915–2000) 969
Turing Award 763, 941, 959, 963
Twain, Mark (1835–1910) 823
Twelfth Night 341
two’s-complement arithmetic 73, 74, 132, 140, 142, 890, 896, 917,

952, 954, 955, 958, 963, 972
two-norm 223
typedef see also data type
typedef statement 2, 101, 102, 159, 209, 442
TZE instruction 962

U
UCBTEST package 774
UINT_LEAST32_T data type 209, 211, 260–262
uint_least32_t data type 209
UINT_LEAST64_T data type 209–211, 260
uint_least64_t data type 209, 260
uintmax_t * data type 907
uintmax_t data type 877, 896, 907
Ulam, Stanisław Marcin (1909–1984) 202
ulp (unit in the last place) 216, 217, 220, 597, 598, 608, 609, see also

machine epsilon
computation 608
definition 67

undefined variable (PDP-11) 956
underflow 77, 105, 113–115, 132, 137, 139, 145, 154, 595, 598, 607,

824
abrupt xxxv, 78
Alpha processors xxxv
gradual 64, 78, 940
premature 101, 113, 414, 415, 449, 451, 456, 466, 532, 595, 598,

619, 621, 622, 691, 768, 778, 883, 940
threshold 153

underflow exception flag 78, 79, 106, 111, 114, 123, 124, 338, 415,
598, 778, 785

UNF (on Lawrence Livermore National Laboratory S-1) 965
Unicode character set 921, 983
uniform distribution 189
union statement 829, 934
<unistd.h> system header file 159
Univac (vendor) 74, 353, 948, 949, 965, 966, 970, 972
univariate distributions 196
University of California, Berkeley 85, 250, 952
University of Illinois (vendor) 948, 970
University of Manchester (vendor) 970
University of Minnesota Supercomputing Institute ix
University of Pennsylvania (vendor) 970
University of Utah

Center for High-Performance Computing ix
Department of Chemistry ix
Department of Electrical Engineering ix
Department of Mathematics ix
Department of Physics and Astronomy ix
School of Computing ix

UNIX operating system x
UNIX operating system ix, x, xxxv, 3, 4, 60, 66, 70, 74, 87, 106, 124,

147, 207, 223, 224, 233, 237, 251, 273, 290, 362, 408, 557, 694,
697, 825, 827, 850, 870, 873, 896, 899, 905, 909, 916, 920,
941–944, 946, 956, 972, 980, 982, 1115

UNIX V3 operating system 896
UNIX V6 operating system 131, 896
UNIX V7 operating system 896
unsafe keyword 921
unsigned char * data type 874
unsigned char data type 257, 873, 908
unsigned int data type 152, 892
unsigned long int * data type 907
unsigned long int data type 896
unsigned long long int * data type 907
unsigned long long int data type 173, 896
unsigned short int * data type 907
unsigned wchar_t data type 873
Uranus (planet) 630
url package 1115
US mil 305
US National Institute of Standards and Technology see NIST
use statement 915
using statement 920, 924
Utah Supercomputing Institute ix
UTF-16 format 921
UTF-8 format 983

V
Van Eetvelt, P. W. J. 606
var keyword 991
<varargs.h> system header file 871
variance 158, 194
varioref package 1115
VAX (CPU) viii, ix, xxix, 71, 131, 146, 251, 271, 305, 365, 473, 478,

708, 761, 774, 855, 928, 947, 948, 951, 954, 956–958, 970, 974,
1115

1112 Subject index . . . V

reserved operand 478, 948, 956, 957
VAX-11 (CPU) 956
vector sum (exact) 385
vendor

Adobe vii
Advanced Scientific 970
AEI 970
Alliant 952
AMD 65, 293, 339, 1021
Amdahl 963
AMI 971
Apollo 948
Apple x, 71, 109, 818, 982
Ardent 952
Autometrics 970
Ballistics Research Laboratory 970
Bell Laboratories 463
Berkeley 237, 273, 290, 948
Bull 970
Burroughs 305, 948, 949, 969, 970, 977
Calcomp 970
Cambridge 970
CDC 74, 80, 85, 305, 353, 365, 396, 520, 948–953, 956, 963–965,

969, 970, 972, 989
CITAC 970
Compaq 71, 79, 812
Control Data Corporation 949
Convex 952
Cray 68, 85, 256, 257, 305, 365, 948, 949, 951–953, 955, 957, 964,

965, 969–971, 977
Cray Research Inc. 949
Cydrome 952
Data General 948, 963, 970
Datasaab 970
DEC v, viii, ix, 66, 71, 86, 107, 146, 153, 216, 224, 250, 251, 256,

305, 365, 478, 608, 761, 763, 774, 812, 850, 855, 928, 947, 948,
951–954, 956, 965, 969, 970, 974, 976–978, 1115

Denelcor 963
Digital Electronics 970
Digital Equipment Corporation 954
DSI 970
El-tronics 970
Electrologica 970
Elliott 970
ELXSI 952, 970, 977
Encore 952
English Electric 948, 970
English Electric LEO-Marconi 970
ETA 949, 952
Ferranti 970
Ferranti–Packard 970
Floating-Point Systems 952
Foonly 954
Fujitsu 952, 963
General Electric 65, 305, 947, 948, 958, 959, 970
Gentoo 956
GNU xxxv, 71, 87, 101, 133, 274, 320, 352, 391, 433, 442, 813, 814,

817, 819, 821, 825, 860, 911, 928, 930, 936, 944, 989–991, 993, 994
Gould 948, 963, 970
Harris 254, 396, 597, 947, 948, 970
Harvard University 970
Hewlett–Packard viii, xxxv, 4, 71, 86, 100, 101, 233, 355, 383,

388, 765, 812, 815, 816, 824, 970
Hitachi 952, 963, 970
Honeywell 65, 305, 948, 949, 958, 959, 970

IBM vii–x, xxxv, 65, 68, 71, 79, 85–87, 104, 109, 146, 155, 171,
217, 218, 233, 241, 254, 287, 305, 341, 353, 355, 361, 365, 370,
375, 402, 410, 433, 438, 478, 520, 761, 811, 816, 817, 820, 825,
827, 848, 850, 855, 867, 896, 905, 927–930, 936, 942, 947–949,
951, 952, 954, 956, 959, 961–964, 967, 969–971, 976–978, 1035

Intel vii–ix, xxxv, 63, 65, 71, 80, 86, 87, 100, 104, 105, 124, 146,
148, 150, 283, 292, 293, 310, 338, 339, 350, 388, 395, 442, 716,
814, 815, 824, 867, 928–930, 953, 954, 959, 970, 971, 976

Interdata ix, 896, 948, 963, 965, 970
Itel 963
Kendall Square Research 952
Lawrence Livermore National Laboratory 305, 463, 948, 965
Librascope 970
LMI 970
Los Alamos Scientific Laboratories 970
Lyons 970
Magnuson 963
Manchester University 948
Matsushita 970
Microsoft viii, x, 125, 867, 917, 920, 954, 982
MIPS 73, 78, 86, 146, 216, 219, 220, 355, 391, 392, 817, 970
Mitsubishi 970
Motorola 65, 71, 86, 124, 145, 146, 150, 216, 217, 251, 292, 293,

338, 352, 363, 395, 823, 959, 970, 976
Multiflow 952
Nanodata 963
National Physical Laboratory 970
National Semiconductor 970
NCR 949
NEC 952, 963
NeXT 71
Norsk Data 970
OKI Electric 970
Open Group x
Parallels viii
Philco 970
Pr1me 947, 948
Princeton University 970
Pyramid 952
RAND 970
Raytheon 970
RCA 963, 970
Regnecentralen 970
Rice Institute 948, 970
Ryad 963
Scientific Data 970
SEL Systems 948, 970
Sequent 952
SGI 153
Siemens 963
Silicon Graphics 71, 78, 355, 817, 976, 977
Stardent 952, 976
STC 970
Stellar 952
Sun 824
Sun Microsystems viii, 71, 86, 99, 110, 124, 133, 153, 218, 274,

294, 304, 325, 349, 383, 388, 528, 595, 811, 818–822, 824, 967,
970, 973, 976, 977, 979, 989

Superset 948
Supertek 952
Symbolics 970
Systems Concepts 954
Telefunken 970
Texas Instruments 963
Thinking Machines 952
Univac 74, 353, 948, 949, 965, 966, 970, 972

Subject index . . . W 1113

University of Illinois 948, 970
University of Manchester 970
University of Pennsylvania 970
Virtual Iron viii
VirtualBox viii
VMware viii, ix, 1115
Wang 963
Wolfram 465
Xen viii
Xerox 948, 954, 963, 970
XKL 954
Zilog 971
Zuse 948, 950, 970

Venus (planet) 630
versine function 301
video instruction set 86
violation of C99 Standard 218, 238
Virtual Iron (vendor) viii
virtual machine vii, viii, 65, 73, 80, 216, 917, 919, 947, 979

access to native code 979
C# viii, 80, 917, 921
CLI (Common Language Infrastructure) viii, 80, 917, 919, 921
Hercules x
IA-64 viii
Java viii, 80, 867
KLH10 ix
P-code 989
Parallels viii
PDP-10 viii
PDP-11 viii
QEMU 129
SIMH ix
System/360 viii
VAX viii
Virtual Iron viii
VirtualBox viii
VMware viii, ix
Xen viii

VirtualBox (vendor) viii
VMS operating system 957
VMware (vendor) viii, ix, 1115
void * data type 874
void data type 109, 125, 148, 355, 356, 442, 906
volatile keyword 65, 66, 121, 127, 135, 139, 163, 231, 245, 246, 250,

275, 326, 358, 359, 362–366, 369–371, 393, 404–406, 431–433,
436, 451, 471, 478, 598, 746, 749, 761, 780, 785, 849, 994

von Neumann, John (1903–1957) 157, 190, 193, 202, 212
vpa package 4
vprtx.h header file 878

W
Waite, William v, viii, xxv, 1, 2, 4, 10–12, 23–26, 28, 32, 42–44, 52,

57, 59, 61, 70, 79, 98, 102, 215, 245, 246, 270–272, 284, 285, 287,
289, 290, 298, 306, 308, 310, 324, 325, 332, 336, 340, 343–345,
349, 411, 412, 414, 421, 423–429, 433, 434, 438, 440, 714, 763,
765, 781, 797, 798, 804, 811, 823, 823, 826, 939, 940

Wang (vendor) 963
wchar_t * data type 874, 907
wchar_t data type 877, 901, 906, 907
Weber’s function 695
Weber, Heinrich (1842–1913) 695
Weibull distribution 196
Weibull, Ernst Hjalmar Waloddi (1887–1979) 196
Weierstrass, Karl Theodor Wilhelm (1815–1897) 619, 682, 682
Weisstein, Eric Wolfgang 465, 569, 579, 591
Weyl sequence generator 177

Weyl, Hermann (1885–1955) 177
What Every Computer Scientist Should Know About Floating-Point

Arithmetic 103
What is a Satisfactory Quadratic Equation Solver? 472
Why Do We Need a Floating-Point Arithmetic Standard? 952
Why Most Published Research Findings Are False 196
Wichmann–Hill generator 177
widecenter package 1115
WINDOWS operating system x, 125, 917, 920, 954, 982
wint_t * data type 907
wint_t data type 877, 907
Wirth, Niklaus 949, 959
with statement 915, 916
wobbling precision 24, 25, 27, 104, 155, 215, 234, 254, 283, 290, 302,

316, 324, 342, 343, 345, 375, 423, 427, 428, 596, 617, 632, 700,
704, 708, 718, 723, 755, 763, 785, 788, 804, 805, 964, 967

Wolfram (vendor) 465
women in mathematics 59
WorkingPrecision option (Mathematica) 34, 39
World War II 202, 969
worst case

argument reduction 15, 28, 251, 252, 265
base conversion 852
complex multiplication 458
cylindrical Bessel function of second kind 714
double rounding 265
floating-point powers 502
floating-point precision 287
gcd algorithm 182
integer powers 420
near zeros of cylindrical Bessel functions 716
pair-precision arithmetic 64, 407
quadratic equations 472

X
X-MP (model) 948, 952, 970, 971
x.h header file 3
x86 see IA-32, Pentium
x86 (CPU) xxxv
x86_64 see AMD64, EM64T, Opteron, Xeon
xdvi program 1115
Xen (vendor) viii
Xeon (CPU) 339
Xerox (vendor) 948, 954, 963, 970
XKL (vendor) 954
XOR-shift generator 176
xp_t data type 854, 856, 857
XTEA 178
XXTEA 178

Y
Y-MP (model) 948, 952, 970
y0x.h header file 718
y1x.h header file 718
Youdon, William John (1900–1971) 194

Z
Z format modifier 463
z-Series (CPU) 241, 438
z/Architecture (model) x, 1115
Z1 (model) 970
z10 (CPU) 927, 936
z13 (model) 928
Z2 (model) 970
Z22 (model) 970
Z23 (model) 970

1114 Subject index . . . Z

Z25 (model) 970
Z26 (model) 970
Z3 (model) 970
Z80 (CPU) 971
z9 (CPU) 927, 936
z9 (model) 936
zbMATH database 59, 576, 591, 693
ZEBRA (model) 970
zero see also signed zero

arc tangent 70
constant 69
creating signed 135, 975
detecting sign 69
dirty 963
division by 70
history 59
negative 58, 64, 69, 71, 366, 478, 520, 885, 950, 951
origin of 575, 927

zeta function 57, 303, 521, 579
Hurwitz generalization of Riemann 583

Zeta function (Jacobian) 679
zetax.h header file 583
zetm1x.h header file 583
Zhu, Yong-Kang 385
Zilog (vendor) 971
zoetrope 24
zSeries (model) 930
Zuse (vendor) 948, 950, 970
Zuse, Konrad (1910–1995) 950

Colophon
This book was typeset with LATEX 2ε using the extended extbook document class, with limited customization of the
layout. The book pages use Palatino text fonts, Palatino Italic and Computer Modern mathematical fonts, and De-
jaVuSansMono typewriter fonts, with 9.7pt type on 11.64pt leading.

The typographic features exploited in the design of this book were provided by several standard LATEX 2ε packages,
including at least these:

amsfonts color luximono pifont
amsmath colortbl makeidx url
array fontenc mathpazo varioref
calligra graphicx multicol

These private packages supplied the remaining LATEX 2ε extensions:

authidx mathcw namelist rgb
hhmm mod-mathpazo resize-mathcw widecenter

Document and software development and production were managed on UNIX-like systems on a score of vendor/
hardware platforms, on the SIMH VAX and Hercules System/370, ESA/390, and z/Architecture simulators, on DEC
TOPS-20 on the KLH10 PDP-10 simulator, and more than 100 operating systems running on QEMU and VMware
virtual machines for IA-32 and AMD64 processor families, with the help of at least these external programs:

acroread emacs hocd128 myspell
authidx gnuplot ispell nawk
bc gp lacheck pdflatex
bibtex groff latex pr
build-all gs makeindex ps2pdf
chkdelim gv makeinfo reduce
chktex gzip make R
col hoc32 man2html sage
deroff hoc36 man2texi sed
detex hoc64 maple sh
distill hoc72 math sort
dv2dt hoc80 matlab spell
dvips hoc128 maxima Splus
dw hocd32 mupad xdvi
egrep hocd64

© Springer International Publishing AG 2017
N.H.F. Beebe, The Mathematical-Function Computation
Handbook, DOI 10.1007/978-3-319-64110-2

1 511

	Dedication
	Preface
	Acknowledgements
	The Unix family
	Trademarks, copyrights, and property ownership
	To show code, or not
	To cite references, or not
	The MathCWWeb site

	Contents
	List of figures
	List of tables
	Quick start
	1 Introduction
	1.1 Programming conventions
	1.2 Naming conventions
	1.3 Library contributions and coverage
	1.4 Summary

	2 Iterative solutions and other tools
	2.1 Polynomials and Taylor series
	2.2 First-order Taylor series approximation
	2.3 Second-order Taylor series approximation
	2.4 Another second-order Taylor series approximation
	2.5 Convergence of second-order methods
	2.6 Taylor series for elementary functions
	2.7 Continued fractions
	2.8 Summation of continued fractions
	2.9 Asymptotic expansions
	2.10 Series inversion
	2.11 Summary

	3 Polynomial approximations
	3.1 Computation of odd series
	3.2 Computation of even series
	3.3 Computation of general series
	3.4 Limitations of Cody/Waite polynomials
	3.5 Polynomial fits with Maple
	3.6 Polynomial fits with Mathematica
	3.7 Exact polynomial coefficients
	3.8 Cody/Waite rational polynomials
	3.9 Chebyshev polynomial economization
	3.10 Evaluating Chebyshev polynomials
	3.11 Error compensation in Chebyshev fits
	3.12 Improving Chebyshev fits
	3.13 Chebyshev fits in rational form
	3.14 Chebyshev fits with Mathematica
	3.15 Chebyshev fits for function representation
	3.16 Extending the library
	3.17 Summary and further reading

	4 Implementation issues
	4.1 Error magnification
	4.2 Machine representation and machine epsilon
	4.3 IEEE 754 arithmetic
	4.4 Evaluation order in C
	4.5 The volatile type qualifier
	4.6 Rounding in floating-point arithmetic
	4.7 Signed zero
	4.7.1 Detecting the sign of zero
	4.7.2 Signed-zero constants
	4.7.3 Arc tangent and signed zero

	4.8 Floating-point zero divide
	4.9 Floating-point overflow
	4.10 Integer overflow
	4.10.1 Preventing integer overflow
	4.10.1.1 Safe integer absolute value
	4.10.1.2 Safe integer addition
	4.10.1.3 Safe integer division
	4.10.1.4 Safe integer multiplication
	4.10.1.5 Safe integer negation
	4.10.1.6 Safe integer remainder
	4.10.1.7 Safe integer subtraction
	4.10.1.8 Safe integer operations: a retrospective

	4.11 Floating-point underflow
	4.12 Subnormal numbers
	4.13 Floating-point inexact operation
	4.14 Floating-point invalid operation
	4.15 Remarks on NaN tests
	4.16 Ulps—units in the last place
	4.17 Fused multiply-add
	4.18 Fused multiply-add and polynomials
	4.19 Significance loss
	4.20 Error handling and reporting
	4.21 Interpreting error codes
	4.22 C99 changes to error reporting
	4.23 Error reporting with threads
	4.24 Comments on error reporting
	4.26 Extended data types on Hewlett–Packard HP-UX IA-64
	4.27 Extensions for decimal arithmetic
	4.28 Further reading
	4.29 Summary

	5 The floating-point environment
	5.1 IEEE 754 and programming languages
	5.2 IEEE 754 and the mathcw library
	5.3 Exceptions and traps
	5.4 Access to exception flags and rounding control
	5.5 The environment access pragma
	5.6 Implementation of exception-flag and rounding-control access
	5.6.1 Clearing exception flags: feclearexcept()
	5.6.2 Getting the rounding direction: fegetround()
	5.6.3 Raising exception flags: feraiseexcept()
	5.6.4 Setting the rounding direction: fesetround()
	5.6.5 Testing exception flags: fetestexcept()
	5.6.6 Comments on the core five

	5.7 Using exception flags: simple cases
	5.8 Using rounding control
	5.9 Additional exception flag access
	5.9.1 Getting the environment:
	5.9.2 Setting the environment:
	5.9.3 Getting exception flags:
	5.9.4 Setting exception flags:
	5.9.5 Holding exception flags:
	5.9.6 Updating the environment:
	5.9.7 Comments on the six functions

	5.10 Using exception flags: complex case
	5.11 Access to precision control
	5.11.1 Precision control in hardware
	5.11.2 Precision control and the AMD64 architecture
	5.11.3 Precision control in the mathcw library

	5.12 Using precision control
	5.13 Summary

	6 Converting floating-point values to integers
	6.1 Integer conversion in programming languages
	6.2 Programming issues for conversions to integers
	6.3 Hardware out-of-range conversions
	6.4 Rounding modes and integer conversions
	6.5 Extracting integral and fractional parts
	6.6 Truncation functions
	6.7 Ceiling and floor functions
	6.8 Floating-point rounding functions with fixed rounding
	6.9 Floating-point rounding functions with current rounding
	6.10 Floating-point rounding functions without
	exception
	6.11 Integer rounding functions with fixed rounding
	6.12 Integer rounding functions with current rounding
	6.13 Remainder
	6.14 Why the remainder functions are hard
	6.15 Computing fmod()
	6.16 Computing remainder()
	6.17 Computing remquo()
	6.18 Computing one remainder from the other
	6.19 Computing the remainder in nonbinary bases
	6.20 Summary

	7 Random numbers
	7.1 Guidelines for random-number software
	7.2 Creating generator seeds
	7.3 Random floating-point values
	7.4 Random integers from floating-point generator
	7.5 Random integers from an integer generator
	7.6 Random integers in ascending order
	7.7 How random numbers are generated
	7.7.1 Linear congruential generators
	7.7.2 Deficiencies of congruential generators
	7.7.3 Computing congruential generators
	7.7.4 Faster congruential generators
	7.7.5 Other generator algorithms
	7.7.6 Combined generators
	7.7.7 Cryptographic generators

	7.8 Removing generator bias
	7.9 Improving a poor random number generator
	7.10 Why long periods matter
	7.11 Inversive congruential generators
	7.11.1 Digression: Euclid’s algorithm
	7.11.1.1 Euclid’s algorithm for any integers
	7.11.1.2 Division-free gcd algorithm

	7.11.2 Another digression: the extended Euclid’s algorithm

	7.12 Inversive congruential generators, revisited
	7.13 Distributions of random numbers
	7.13.1 The uniform distribution
	7.13.2 The exponential distribution
	7.13.3 The logarithmic distribution
	7.13.4 The normal distribution
	7.13.5 More on the normal distribution

	7.14 Other distributions
	7.14.1 Numerical demonstration of the Central Limit Theorem

	7.15 Testing random-number generators
	7.15.1 The chi-square test
	7.15.2 Random-number generator test suites
	7.15.3 Testing generators for nonuniform distributions

	7.16 Applications of random numbers
	7.16.1 Monte Carlo quadrature
	7.16.2 Encryption and decryption
	7.16.2.1 Problems with cryptography
	7.16.2.2 A provably secure encryption method
	7.16.2.3 Demonstration of a one-time pad
	7.16.2.4 Attacks on one-time-pad encryption
	7.16.2.5 Choice of keys and encryption methods
	7.16.2.6 Caveats about cryptography

	7.17 The mathcw random number routines
	7.18 Summary, advice, and further reading

	8 Roots
	8.1 Square root
	8.1.1 Considerations for rounding of the square root
	8.1.2 An algorithm for correct rounding of the square root
	8.1.3 Variant iterations for the square root

	8.2 Hypotenuse and vector norms
	8.3 Hypotenuse by iteration
	8.4 Reciprocal square root
	8.4.1 Improved rounding of the reciprocal square root
	8.4.2 Almost-correct rounding of the reciprocal square root

	8.5 Cube root
	8.5.1 Improved rounding of the cube root
	8.5.2 Almost-correct rounding of the cube root

	8.6 Roots in hardware
	8.7 Summary

	9 Argument reduction
	9.1 Simple argument reduction
	9.2 Exact argument reduction
	9.3 Implementing exact argument reduction
	9.4 Testing argument reduction
	9.5 Retrospective on argument reduction

	10 Exponential and logarithm
	10.1 Exponential functions
	10.2 Exponential near zero
	10.3 Logarithm functions
	10.3.1 Computing logarithms in a binary base
	10.3.2 Computing logarithms in a decimal base

	10.4 Logarithm near one
	10.5 Exponential and logarithm in hardware
	10.6 Compound interest and annuities
	10.7 Summary

	11 Trigonometric functions
	11.1 Sine and cosine properties
	11.2 Tangent properties
	11.3 Argument conventions and units
	11.4 Computing the cosine and sine
	11.5 Computing the tangent
	11.6 Trigonometric functions in degrees
	11.7 Trigonometric functions in units of
	11.7.1 Cosine and sine in units of
	11.7.2 Cotangent and tangent in units of

	11.8 Computing the cosine and sine together
	11.9 Inverse sine and cosine
	11.10 Inverse tangent
	11.11 Inverse tangent, take two
	11.12 Trigonometric functions in hardware
	11.13 Testing trigonometric functions
	11.14 Retrospective on trigonometric functions

	12 Hyperbolic functions
	12.1 Hyperbolic functions
	12.2 Improving the hyperbolic functions
	12.3 Computing the hyperbolic functions together
	12.4 Inverse hyperbolic functions
	12.5 Hyperbolic functions in hardware
	12.6 Summary

	13 Pair-precision arithmetic
	13.1 Limitations of pair-precision arithmetic
	13.2 Design of the pair-precision software interface
	13.3 Pair-precision initialization
	13.4 Pair-precision evaluation
	13.5 Pair-precision high part
	13.6 Pair-precision low part
	13.7 Pair-precision copy
	13.8 Pair-precision negation
	13.9 Pair-precision absolute value
	13.10 Pair-precision sum
	13.11 Splitting numbers into pair sums
	13.12 Premature overflow in splitting
	13.13 Pair-precision addition
	13.14 Pair-precision subtraction
	13.15 Pair-precision comparison
	13.16 Pair-precision multiplication
	13.17 Pair-precision division
	13.18 Pair-precision square root
	13.19 Pair-precision cube root
	13.20 Accuracy of pair-precision arithmetic
	13.21 Pair-precision vector sum
	13.22 Exact vector sums
	13.23 Pair-precision dot product
	13.24 Pair-precision product sum
	13.25 Pair-precision decimal arithmetic
	13.26 Fused multiply-add with pair precision
	13.27 Higher intermediate precision and the FMA
	13.28 Fused multiply-add without pair precision
	13.29 Fused multiply-add with multiple precision
	13.30 Fused multiply-add, Boldo/Melquiond style
	13.31 Error correction in fused multiply-add
	13.32 Retrospective on pair-precision arithmetic

	14 Power function
	14.1 Why the power function is hard to compute
	14.2 Special cases for the power function
	14.3 Integer powers
	14.4 Integer powers, revisited
	14.5 Outline of the power-function algorithm
	14.6 Finding a and p
	14.7 Table searching
	14.8 Computing logn(g/a)
	14.9 Accuracy required for logn(
	14.10 Exact products
	14.11 Computing w, w1 and w2
	14.12 Computing
	14.13 The choice of
	14.14 Testing the power function
	14.15 Retrospective on the power function

	15 Complex arithmetic primitives
	15.1 Support macros and type definitions
	15.2 Complex absolute value
	15.3 Complex addition
	15.4 Complex argument
	15.5 Complex conjugate
	15.6 Complex conjugation symmetry
	15.7 Complex conversion
	15.8 Complex copy
	15.9 Complex division: C99 style
	15.10 Complex division: Smith style
	15.11 Complex division: Stewart style
	15.12 Complex division: Priest style
	15.13 Complex division: avoiding subtraction loss
	15.14 Complex imaginary part
	15.15 Complex multiplication
	15.16 Complex multiplication: error analysis
	15.17 Complex negation
	15.18 Complex projection
	15.19 Complex real part
	15.20 Complex subtraction
	15.21 Complex infinity test
	15.22 Complex NaN test
	15.23 Summary

	16 Quadratic equations
	16.1 Solving quadratic equations
	16.2 Root sensitivity
	16.3 Testing a quadratic-equation solver
	16.4 Summary

	17 Elementary functions in complex arithmetic
	17.1 Research on complex elementary functions
	17.2 Principal values
	17.3 Branch cuts
	17.4 Software problems with negative zeros
	17.5 Complex elementary function tree
	17.6 Series for complex functions
	17.7 Complex square root
	17.8 Complex cube root
	17.9 Complex exponential
	17.10 Complex exponential near zero
	17.11 Complex logarithm
	17.12 Complex logarithm near one
	17.13 Complex power
	17.14 Complex trigonometric functions
	17.15 Complex inverse trigonometric functions
	17.16 Complex hyperbolic functions
	17.17 Complex inverse hyperbolic functions
	17.18 Summary

	18 The Greek functions: gamma, psi, and zeta
	18.1 Gamma and log-gamma functions
	18.1.1 Outline of the algorithm for
	18.1.1.1 Asymptotic expansions
	18.1.1.2 Recurrence-relation accuracy
	18.1.1.3 Sums of rational numbers
	18.1.1.4 Avoiding catastrophic overflow

	18.1.2 Gamma function accuracy
	18.1.3 Computation of p/ sin(px)
	18.1.4 Why lgamma(x) is hard to compute accurately
	18.1.5 Outline of the algorithm for
	18.1.6 Log-gamma function accuracy

	18.2 The psi() and psiln() functions
	18.3 Polygamma functions
	18.3.1 Applications of polygamma functions
	18.3.2 Computing the polygamma functions
	18.3.3 Retrospective on the polygamma functions

	18.4 Incomplete gamma functions
	18.5 A Swiss diversion: Bernoulli and Euler
	18.5.1 Bernoulli numbers revisited

	18.6 An Italian excursion: Fibonacci numbers
	18.7 A German gem: the Riemann zeta function
	18.7.1 Computing the Riemann zeta function
	18.7.2 Greek relatives of the Riemann zeta function

	18.8 Further reading
	18.9 Summary

	19 Error and probability functions
	19.1 Error functions
	19.1.1 Properties of the error functions
	Figure 19.1:
	Figure 2.1
	Section 4.1
	Table 4.1
	Figure 19.2

	19.1.2 Computing the error functions

	19.2 Scaled complementary error function
	19.3 Inverse error functions
	19.3.1 Properties of the inverse error functions
	19.3.2 Historical algorithms for the inverse error functions
	19.3.3 Computing the inverse error functions

	19.4 Normal distribution functions and inverses
	19.5 Summary

	20 Elliptic integral functions
	20.1 The arithmetic-geometric mean
	20.2 Elliptic integral functions of the first kind
	20.3 Elliptic integral functions of the second kind
	20.4 Elliptic integral functions of the third kind
	20.5 Computing K(m) and K'(m)
	20.7 Historical algorithms for elliptic integrals
	20.8 Auxiliary functions for elliptic integrals
	20.9 Computing the elliptic auxiliary functions
	20.10 Historical elliptic functions
	20.11 Elliptic functions in software
	20.12 Applications of elliptic auxiliary functions
	20.13 Elementary functions from elliptic auxiliary functions
	20.14 Computing elementary functions via RC(x, y)
	20.15 Jacobian elliptic functions
	20.15.1 Properties of Jacobian elliptic functions
	20.15.2 Computing Jacobian elliptic functions

	20.16 Inverses of Jacobian elliptic functions
	20.17 The modulus and the nome
	20.18 Jacobian theta functions
	20.19 Logarithmic derivatives of the Jacobian theta functions
	20.20 Neville theta functions
	20.21 Jacobian Eta, Theta, and Zeta functions
	20.22 Weierstrass elliptic functions
	20.23 Weierstrass functions by duplication
	20.24 Complete elliptic functions, revisited
	20.25 Summary

	21 Bessel functions
	21.1 Cylindrical Bessel functions
	21.2 Behavior of Jn(x) and Yn(x)
	21.3 Properties of Jn(z) and Yn(z)
	21.4 Experiments with recurrences for J0(x)
	21.5 Computing J0(x) and J1(x)
	21.6 Computing Jn(x)
	21.7 Computing Y0(x) and Y1(x)
	21.8 Computing Yn(x)
	21.9 Improving Bessel code near zeros
	21.10 Properties of In(z) and Kn(z)
	21.11 Computing I0(x) and I1(x)
	21.12 Computing K0(x) and K1(x)
	21.13 Computing In(x) and Kn(x)
	21.14 Properties of spherical Bessel functions
	21.15 Computing jn(x) and yn(x)
	21.16 Improving j1(x) and y1(x)
	21.17 Modified spherical Bessel functions
	21.17.1 Computing i0(x)
	21.17.2 Computing is0(x)
	21.17.3 Computing i1(x)
	21.17.4 Computing is1(x)
	21.17.5 Computing in(x)
	21.17.6 Computing isn(x)
	21.17.7 Computing kn(x) and ksn(x)

	21.18 Software for Bessel-function sequences
	21.19 Retrospective on Bessel functions

	22 Testing the library
	22.1 Testing tgamma() and lgamma()
	22.2 Testing
	22.2 Testing psi() and psiln()
	22.3 Testing erf() and erfc()
	22.4 Testing cylindrical Bessel functions
	22.5 Testing exponent/significand manipulation
	22.6 Testing inline assembly code
	22.7 Testing with Maple
	22.8 Testing floating-point arithmetic
	22.9 The Berkeley Elementary Functions Test Suite
	22.10 The AT&T floating-point test package
	22.11 The Antwerp test suite
	22.12 Summary

	23 Pair-precision elementary functions
	23.1 Pair-precision integer power
	23.2 Pair-precision machine epsilon
	23.3 Pair-precision exponential
	23.4 Pair-precision logarithm
	23.5 Pair-precision logarithm near one
	23.6 Pair-precision exponential near zero
	23.7 Pair-precision base-n exponentials
	23.8 Pair-precision trigonometric functions
	23.9 Pair-precision inverse trigonometric functions
	23.10 Pair-precision hyperbolic functions
	23.11 Pair-precision inverse hyperbolic functions
	23.12 Summary

	24 Accuracy of the Cody/Waite algorithms
	25 Improving upon the Cody/Waite algorithms
	25.1 The Bell Labs libraries
	25.2 The Cephes library
	25.3 The Sun libraries
	25.4 Mathematical functions on EPIC
	25.5 The GNU libraries
	25.6 The French libraries
	25.7 The NIST effort
	25.8 Commercial mathematical libraries
	25.9 Mathematical libraries for decimal arithmetic
	25.10 Mathematical library research publications
	25.11 Books on computing mathematical functions
	25.12 Summary

	26 Floating-point output
	26.1 Output character string design issues
	26.2 Exact output conversion
	26.3 Hexadecimal floating-point output
	26.3.1 Hexadecimal floating-point output requirements
	26.3.2 Remarks on hexadecimal floating-point output
	26.3.3 Hexadecimal floating-point output-conversion code
	26.3.4 Conversion to uppercase
	26.3.5 Determining rounding direction

	26.4 Octal floating-point output
	26.5 Binary floating-point output
	26.6 Decimal floating-point output
	26.6.1 The decimal-conversion program interface
	26.6.2 Fast powers of ten
	26.6.3 Preliminary scaling
	26.6.4 Support for %g-style conversion
	26.6.5 Buffer sizes
	26.6.6 Special cases
	26.6.7 Scaling and rounding adjustment
	26.6.8 Digit generation
	26.6.9 Completing decimal output conversion
	26.6.10 Computing the minimum desirable precision
	26.6.11 Coding fast powers of ten

	26.7 Accuracy of output conversion
	26.8 Output conversion to a general base
	26.9 Output conversion of Infinity
	26.10 Output conversion of NaN
	26.11 Number-to-string conversion
	26.12 The printf() family
	26.12.1 Dangers of printf()
	26.12.2 Variable argument lists
	26.12.3 Implementing the printf() family
	26.12.4 Output conversion specifiers

	26.13 Summary

	27 Floating-point input
	27.1 Binary floating-point input
	27.1.1 Sign input conversion
	27.1.2 Prefix string matching
	27.1.3 Infinity input conversion
	27.1.4 NaN input conversion
	27.1.5 Power input conversion
	27.1.6 Floating-point suffix conversion
	27.1.7 Integer suffix conversion
	27.1.8 Input rounding adjustment

	27.2 Octal floating-point input
	27.3 Hexadecimal floating-point input
	27.4 Decimal floating-point input
	27.5 Based-number input
	27.6 General floating-point input
	27.7 The scanf() family
	27.7.1 Implementing the scanf() family
	27.7.2 Whitespace and ordinary characters
	27.7.3 Input conversion specifiers
	27.7.4 Retrospective on the scanf() family

	27.8 Summary

	A Ada interface
	A.1 Building the Ada interface
	A.2 Programming the Ada interface
	A.3 Using the Ada interface

	B C# interface
	B.1 C# on the CLI virtual machine
	B.2 Building the C# interface
	B.3 Programming the C# interface
	B.4 Using the C# interface

	C C++ interface
	C.1 Building the C++ interface
	C.2 Programming the C++ interface
	C.3 Using the C++ interface

	DDecimal arithmetic
	D.1 Why we need decimal floating-point arithmetic
	D.2 Decimal floating-point arithmetic design issues
	D.3 How decimal and binary arithmetic differ
	D.4 Initialization of decimal floating-point storage
	D.5 The <decfloat.h> header file
	D.6 Rounding in decimal arithmetic
	D.7 Exact scaling in decimal arithmetic

	E Errata in the Cody/Waite book
	F Fortran interface
	F.1 Building the Fortran interface
	F.2 Programming the Fortran interface
	F.3 Using the Fortran interface

	HHistorical floating-point architectures
	H.1 CDC family
	H.2 Cray family
	H.3 DEC PDP-10
	H.4 DEC PDP-11 and VAX
	H.5 General Electric 600 series
	H.6 IBM family
	H.6.1 IBM 7030 Stretch
	H.6.2 IBM and Fortran
	H.6.3 IBM System/360

	H.7 Lawrence Livermore S-1 Mark IIA
	H.8 Unusual floating-point systems
	H.9 Historical retrospective

	I Integer arithmetic
	I.1 Memory addressing and integers
	I.2 Representations of signed integers
	I.2.1 Sign-magnitude representation
	I.2.2 One’s-complement representation
	I.2.3 Two’s-complement representation
	I.2.4 Excess-n representation
	I.2.5 Ranges of integers

	I.3 Parity testing
	I.4 Sign testing
	I.5 Arithmetic exceptions
	I.6 Notations for binary numbers
	I.7 Summary

	J Java interface
	J.1 Building the Java interface
	J.2 Programming the Java MathCW class
	J.3 Programming the Java C interface
	J.4 Using the Java interface

	L Letter notation
	P Pascal interface
	P.1 Building the Pascal interface
	P.2 Programming the Pascal MathCW module
	P.3 Using the Pascal module interface
	P.4 Pascal and numeric programming

	Bibliography
	Author/editor index
	Function and macro index
	Subject index
	Colophon

