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Abstract. An autonomous sweet pepper harvesting robot must perform several
tasks to successfully harvest a fruit. Due to the highly unstructured environment
in which the robot operates and the presence of occlusions, the current chal-
lenges are to improve the detection rate and lower the risk of losing sight of the
fruit while approaching the fruit for harvest. Therefore, it is crucial to choose the
best approach direction with least occlusion from obstacles.
The value of ideal information regarding the best approach direction was

evaluated by comparing it to a method attempting several directions until suc-
cessful harvesting is performed. A laboratory experiment was conducted on
artificial sweet pepper plants using a system based on eye-in-hand configuration
comprising a 6DOF robotic manipulator equipped with an RGB camera. The
performance is evaluated in laboratorial conditions using both descriptive
statistics of the average harvesting times and harvesting success as well as
regression models. The results show roughly 40–45% increase in average har-
vest time when no a-priori information of the correct harvesting direction is
available with a nearly linear increase in overall harvesting time for each failed
harvesting attempt. The variability of the harvesting times grows with the
number of approaches required, causing lower ability to predict them.
Tests show that occlusion of the front of the peppers significantly impacts the

harvesting times. The major reason for this is the limited workspace of the robot
often making the paths to positions to the side of the peppers significantly longer
than to positions in front of the fruit which is more open.

1 Introduction

Due to the lack of skilled workforce and increasing labor costs, advanced automation is
required for greenhouse production systems [1]. Despite intensive R&D on harvesting
robots, there are no commercial harvesting robots for sweet peppers [2, 3]. Robotic
harvesting of sweet peppers includes several tasks: detecting the fruit, approaching it,
deciding whether the fruit is ripe, and finally detaching the fruit from the stem [4, 5].
The major limitation most commonly tackled today is the non-optimal detection rates;
Bac et al. [3] reported state of the art being 85% in their 2014 review. Viewpoints
analyses in harvesting robotics indicate that only 60% of the fruit can be detected from
a single detection direction [6]. Therefore, current research focuses on detection

© Springer International Publishing AG 2017
Y. Gao et al. (Eds.): TAROS 2017, LNAI 10454, pp. 516–525, 2017.
DOI: 10.1007/978-3-319-64107-2_41



algorithm development [3, 6–8]. Another challenge often described in the literature is
the task of how to grasp a fruit, due to the limitations of available robotic grippers and
the inherent difficulties of grasp planning [9, 10]. Eizicovits and Berman [10] devel-
oped geometry-based grasp quality measures based on 3D point cloud to determine the
best grasping pose of different objects, including sweet peppers. This kind of solution
depends on detailed 3D sensor information of the object [11] which is very difficult to
achieve in dense greenhouse environments. These environments have an unstructured
and dynamic nature [12]: fruits have a high inherent variability in size, shape, texture,
and location; in addition, occlusion and variable illumination conditions significantly
influence the detection performance. Given the complexity of both detection and grasp
planning tasks, approaching the correct fruit pose must be done dynamically, taking
into account obstacles such as stems and leaves. The most common way to do this is
visual servoing, i.e. using eye-in-hand sensing to guide the robot towards the fruit by
always keeping it in the center of the image [13]. When using this method, it is crucial
to choose the best approach direction with least occlusion from leaves and other
obstacles to maximize the chance for the visual servoing to reach the desired grasping
pose. This research focuses on measuring the value of ideal information regarding the
best approach direction for successful visual servoing, compared to a method using a
search pattern to find the best direction.

2 Methods

A 6DOF robotic manipulator Fanuc LR Mate 200iD equipped with an eye-in hand iDS
Ui-5250RE RGB camera and a Sick DT20HI displacement measurement laser sensor
was placed in-front of an artificial plastic pepper crop with yellow plastic fruits and
green leaves (Fig. 1). The workflow of the robot was implemented using a generic
software framework for development of agricultural and forestry robots [14]. The
framework is constructed with a hybrid robot architecture, using a state machine
implementing a flowchart as described by Ringdahl et al. [15].

Fig. 1. The experimental setup consisted of a robotic harvester in front of an artificial crop.
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A scene consisting of five plastic fruits placed at different locations on two artificial
stems was setup before each experiment. The number of fruits were set to 5 to be
similar to an actual sweet pepper plant, the right stem had three fruits, the left had two
fruits. Each fruit had one or two leaves placed on different side (left/front/right) of it to
create occlusion. An example of an overview image taken by the robot can be seen in
Fig. 2. For each fruit the best fit harvesting approach, defined as the “optimal” har-
vesting approach direction, was set as the angle from either left (−45°), front (0°), or
right (45°) where the target was least occluded, was noted manually. Figure 3 shows a
flowchart describing the decision process for the manual selection.

2.1 Harvesting Scenarios

Two harvesting scenarios were tested. The first scenario, the full a-priori knowledge
scenario, represents the ground-truth where both position Pi xi; yi; zið Þ and approach

Fig. 2. An overview image taken from the robot’s camera looking at a laboratorial scene with 5
peppers on two stems covered by leaves.

Fig. 3. Decision flowchart for manually selecting the optimal approach direction to a pepper.
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direction h�i are known for each fruit i. The harvesting cycle consists of approaching a
pre-defined overview waypoint W0 x; y; zð Þ, and then selecting each target fruit in order
from the list of positions and optimal approach directions of all fruits. The control unit
then calculates the path of the robotic manipulator to a waypointWi x; y; zð Þ, positioned at
a defined distance from fruit i with respect to the optimal harvesting approach direction
and position xi; yi; zi; h

�
i

� �
. After reaching the waypoint, a visual servo procedure based

on color blob detection and distance measurements received from the laser guides the
manipulator towards the target until the end-effector touches the fruit. If the manipulator
reaches the target fruit, the harvest of that fruit is marked as successful and the path to the
next waypoint is then calculated. In case the fruit was not found or was lost from view
while in visual servo, the harvest of the fruit is marked as failed and the path to the next
waypoint is calculated. The cycle ends when all fruits have been attempted to be
approached. The left part of Fig. 4 shows a flowchart of this harvesting scenario.

The second scenario, the auto approach direction search scenario, is a variation of
the ground-truth scenario in which the optimal approach direction h�i is unknown, and
therefore must be searched from a list of predefined possible approach directions h1::hk.
For each target fruit i and possible approach direction hj the control unit calculates the
path of the robotic manipulator to a waypoint Wij x; y; zð Þ positioned at a defined dis-
tance from the target fruit with respect to hj until the harvest of the fruit is marked as
successful or sight of the fruit is lost. If successful, the path to the waypoint Wij for fruit
iþ 1 and h1 is calculated. If the fruit was lost during visual servoing, the next approach
direction hjþ 1 is selected. In case all approach directions h1::hk were attempted without
being able to reach the fruit, the harvest of the target fruit is marked as failed and the
path to the waypoint Wij for fruit iþ 1 and h1 is calculated. The right part of Fig. 4
shows a flowchart of this harvesting scenario.

Fig. 4. Flowchart describing the two different harvesting scenarios. Left: auto approach
direction search scenario. Right: full a-priori knowledge scenario (differences marked with
dashed lines).
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2.2 Experimental Protocol

Six laboratory scenes with different leaves and optimal approach directions were set up
as defined in Table 1. The pose of each pepper was measured by manually moving the
robotic arm in the desired approach direction into the position where the gripper
touched the fruit, as seen in Fig. 5.

A harvesting cycle is performed for each of the defined scenes and scenarios
according to the following configurations. Each one of the scenes defined is performed
in three possible configurations:

• Full a-priori knowledge scenario selecting the optimal approach direction from the
set {−45°, 0°, 45°}

• Auto approach direction search scenario with two different search patterns:
• Side first: hj ¼ �45�; 0�; 45�½ � (left-center-right)
• Center first: hj ¼ 0�;�45�; 45�½ � (center-left-right)

Table 1. Six scenes with different configurations for leaf (L = left, F = front, R = right) and
approach direction (−45°, 0°, 45°).

Scene Pepper 1 Pepper 2 Pepper 3 Pepper 4 Pepper 5
L F R L F R L F R L F R L F R

1 � � 45 � � 0 � 0 � −45 � 0
2 � � 0 � � −45 � −45 � 0 � 0
3 � � 0 � � −45 � 0 � 0 � −45
4 � 0 � 0 � � 0 � −45 � � 45
5 � 0 � 45 � � 0 � 0 � � 45
6 � 0 � 0 � � 0 � −45 � � 45

Fig. 5. The pose of each pepper was measured by manually moving the robotic arm in the
desired approach direction to the position where the gripper touched the fruit.
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Each configuration is performed at 50% and 100% of maximum speed respectively
to enable sensitivity analysis in relation to the robot speed. At the end of each har-
vesting attempt cycle times and the result of the attempt (success/failure) are registered.

2.3 Measures and Statistical Analysis

To evaluate the performance, the following three measures are defined:

– Pepper harvest time Th is the time it takes from a fruit is selected from the list of
fruit poses until the fruit has been successfully harvested (all fruits were harvested
in the experiments).

– Average logarithmic harvest time LTh as shown in Eq. 1.

LTh ¼ 1
n

Xn

i¼1
ln Thið Þ ð1Þ

Where n is the number of successfully harvested fruits.
– The number of attempted approach directions Nhi for fruit i.

In addition to descriptive statistics of the aforementioned measures, the statistical
significance of the differences in the value of the measures was measured. The pepper
harvest time Th is analyzed in a form of a log transformed linear regression [16]:

ln Thið Þ ¼ b0 þ b1Hci þ b2Oi þ b3VR þ b4OFi þ b5Hci � Oi þ �i ð2Þ

Where Hci is the harvesting scenario of pepper i, Oi is the number of occluding
leaves, VR is the robot speed, OFi is the front occlusion (1 if the front is occluded, 0
otherwise), and b0; b1; b2; b3; b4; b5 the corresponding weights of the regression to
be estimated. Additionally, independence v2 test [17] is performed for analyzing the
relation between the number of failed approach directions NhFi and the harvesting
scenario Hci .

3 Results

To determine the value of an optimal harvesting approach direction, a total of 180 fruit
harvesting attempts were performed on 6 scenes with 5 artificial peppers each, in a set
up according to Table 1, with different harvesting scenarios (full a-priori, center first
search pattern, and side first search pattern) using two different robot velocities (50%
and 100% of maximum). The total average harvest time Th for all combinations was
8.56 s (SD = 3.88). The distribution among the three harvesting scenarios is presented
in Fig. 6. The results show roughly 40–45% increase in average harvest time when no
a-priori information of the correct harvesting direction is available.

Homogeneous subsets Tukey-HSD test show a significant (p-value = 0.011) dif-
ferences between LTh (Eq. 1) calculated from the full a-priori and the center first search
pattern harvesting scenarios. The difference between LTh for full a-priori and side first
search pattern harvesting scenarios was also significant (p-value = 0.006). The
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differences between LTh for the two search patterns were found to be statistically
insignificant (p-value = 0.98).

Results of the logarithmic transformed ln Thð Þ regression model (Eq. 2) revealed
significance for front occlusion (p-value < 0.001) and harvesting scenario
(p-value = 0.02). The number of occluding leaves was not found significant
(p-value = 0.774) on its own but was borderline significant in an interaction with the
harvesting scenario (p-value = 0.098). A profile plot describing the interaction is
presented in Fig. 7. It shows that both search patterns have shorter harvesting times for
less occluded scenes. It seems that in the full a-priori information scenario it takes
slightly less time to harvest in more complicated scenes with higher occlusion then for
simpler scenes. However, this difference was found statistically insignificant
(p-value = 0.16). The difference between the two robot velocities (50% or 100% of
maximum) was found to be insignificant (p-value = 0.155). This can be explained by
the visual servoing technique that limits step sizes between images causing the robot
not to obtain the maximum speed during this phase. This is needed to provide sufficient
time to process image data during visual servoing.

From the total of 180 harvesting attempts performed, all 60 approaches (100%)
performed with full a-priori information were successful on the first attempt with an
average harvesting time of 6.71 s (SD = 3.05). Out of the 120 cycles performed using a
search pattern, 76 (63%) were successful on the first attempt with average harvesting
time of 6.62 s (SD = 2.78). 30 cycles (25%) were successful on the second attempt
with average time of 11.16 s (SD = 5.4) and the remaining 14 cycles (12%) were
successful only on the third attempt with average time of 21.34 s (SD = 6.9). The
number of highly occluded peppers and partially occluded peppers were roughly the
same (46% and 54% respectively). While the average harvesting time increased as a
nearly linear function of the number of attempts, the standard deviation also increased
for more complex cases requiring more attempts until harvesting. The analysis of the

Fig. 6. Average harvesting time as function of the harvesting scenario
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number of approaches performed until successful harvest as function of search pattern
method is presented in Fig. 8. It can be seen that about 30% more fruits were harvested
at the first attempt using the side first search pattern than the center first pattern. An
independence v2 test showed border line significant dependences between the search
methods and the number of attempts (p-value 0.0978).

Fig. 7. Profiles plots for occlusion level and search method

Fig. 8. Number of approaches until successful harvest as function of the search pattern method
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4 Conclusions

Results show significant increase in harvesting times for a search pattern compared to
ideal initial information about the harvesting direction. The harvesting time grows near
linearly with the number of approaches required until successful harvest. Furthermore,
the variability of the harvesting time grows with the number of approaches required,
causing lower ability to predict harvesting times. Therefore, it is clear that ideal
information about the best harvesting approach direction is valuable for increasing the
performance of a robot harvesting system.

The harvesting time does not significantly differ for the two different harvesting
direction search patterns. This should be validated on a greater variation of search
patterns and in greenhouse conditions where the occlusion is less likely to appear in a
random manner as designed in the given experiment. To see how this depends on the
kind of robot used, validating the results using a robot with different kinematic setup
would also be beneficial. It has been shown that if there is an occlusion of the front of a
fruit the harvesting times significantly increase compared to fruits that can be harvested
from front, regardless of search method. The major reason for this is the limited
workspace of the robot; the distance to the fruits is around 35–40 cm, with leaves often
being even closer, and the gripper mounted on the end of the robot is 24 cm long. This
makes it difficult to reach positions to the side of the peppers and the paths often
become quite long due to the limited space and the joint limitations of the robot.
Pruning techniques used for crops optimization might take this into consideration to
facilitate robotic harvesting.

30% more fruits were harvested at the first attempt when using the side first search
pattern than when using the center first pattern. Equal number of scene configurations
had fruits blocked by leaves from left and center, therefore the number of approaches
would have been expected to be equal for both search patterns. A probable explanation
is that some fruits were detected during visual servoing even though they were (partly)
blocked by leaves and therefore should not have been possible to harvest. This
occurred in 26% of all attempts of harvest from the left and in 13% of all attempts from
the front. However, this most likely did not affect the reported recall and precision since
they are calculated in comparison to actual harvest approach success rates, i.e. that the
robot actually reached the fruit.

The results of this research have shown significant factors affecting harvesting
times and success rates in laboratorial conditions. Suggested validation of the results is
to perform experiments in greenhouse conditions, which must be done during the
growing season when ripe fruits are available.
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