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Abstract. The work presented here investigates how environmental fea-
tures can be used to help select a task allocation mechanism from a
portfolio in a multi-robot exploration scenario. In particular, we look at
clusters of task locations and the positions of team members in relation to
cluster centres. In a data-driven approach, we conduct experiments that
use two different task allocation mechanisms on the same set of scenar-
ios, providing comparative performance data. We then train a classifier
on this data, giving us a method for choosing the best mechanism for
a given scenario. We show that selecting a mechanism via this method,
compared to using a single state-of-the-art mechanism only, can improve
team performance in certain environments, according to our metrics.
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1 Introduction

We are studying task allocation in multi-robot teams, known as the multi-robot
task allocation (MRTA) problem. This is an issue of critical importance in the
deployment of such teams, and an issue that must be addressed if the future
potential of autonomous robots is going to be fullfilled. A popular approach
to the problem is to apply market-based methods, such as auctions [3]. In this
approach, tasks are offered to the team members and team members bid against
each other for the tasks. A typical bidding strategy has bids derived from the
distance of the robot from the site at which the task needs to be carried out.
Allocating tasks to the robot making the lowest bid can then ensure an allocation
which reduces the total distance travelled by the team.

Many market-based mechanisms have been suggested for the task allocation
problem. These mechanisms vary considerably in the trade-offs that they make
between computation time and space, and the quality of solutions that they
deliver, measured by metrics such as the total distance covered by the team
while completing a set of tasks. In addition, the performance of mechanisms
seems to be greatly affected by the environments in which they are deployed. In
some environments, a simple, greedy mechanism which might not be expected to
perform well in the general case may, in fact, perform competitively with more
c© Springer International Publishing AG 2017
Y. Gao et al. (Eds.): TAROS 2017, LNAI 10454, pp. 421–435, 2017.
DOI: 10.1007/978-3-319-64107-2 33



422 E. Schneider et al.

sophisticated mechanisms, with the advantage of scaling better. Prior work has
shown evidence that this is the case in both simulated and physical experiments
[22–24].

In particular, in our earlier work, we showed [23,24] that while the sequential
single-item auction [12] performs better than the parallel single-item auction [12]
when the allocation is carried out with robots clustered together geographically,
this advantage diminishes as robots are distributed over space and tasks are
distributed over space and time. Based on this observation, in this paper we
propose a portfolio-based approach to the MRTA problem. Given a set of task
allocation mechanisms and a set of environmental features that we can measure,
we would like to be able to classify a previously unseen environment in order to
choose a task allocation mechanism that performs well in it.

By “environments”, we refer here to the spatial arrangements and distribu-
tions of robots and tasks. It seems appropriate to apply the tools and techniques
of cluster analysis to these environments. We need to consider environmental
obstacles like walls, so it seems natural to model environments as graphs, where
nodes may be robots and/or task locations, and edges are paths computed by a
path planner (e.g., A* [8]) between these nodes, around obstacles. The graphs
we can construct in this way resemble something like road networks, and that
suggests an approach to characterising different environments.

The distribution of sites over road-network-like graphs is a well-studied
research area in Geographic Information Systems (GIS). One particular class
of problem from GIS that is useful to apply here is location-allocation or facil-
ity location, which seeks to determine the ideal locations for “facilities” and
allocates “demand points” to them in a way that minimises some measure of
overall cost or maximises some overall utility. Examples of facilities and demand
points might be warehouses and customers, or police stations and potential crime
scenes, respectively. In the family of facility location problems [19], the p-median
problem seems most suitable here, with p representing the number of facilities
one wishes to locate.

In our case we can think of robot team members as facilities and task loca-
tions as demand points. If we can solve such a facility location problem for
one of our scenarios, where the number of facilities is equal to the number of
team members, we might find an ideal set of team starting locations for a sim-
ple, greedy mechanism like the parallel single-item auction. Our hypothesis is
that if actual robot start locations are close to ideal facility locations, then the
parallel single-item auction will lead to competitive performance. Conversely, if
actual robot start locations are far away from ideal facility locations, then a
more sophisticated mechanism like the sequential single-item auction is a better
choice. Furthermore, it will be possible to select the best mechanism for specific
sets of start and facility locations based only on knowledge about those loca-
tions. This paper provides an empirical test of this hypothesis and finds that,
at least for some sets of locations, we can use machine learning to identify the
best mechanism to use. We show that this approach can produce significant
improvements in team performance.
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The rest of this paper is structured as follows. Section 2 reviews the related
literature. Section 3 then introduces our methodology, and Sect. 4 describes the
experiments that we carried out to test our hypothesis. Section 5 presents our
results; Sect. 6 discusses our results, arguing that they support our hypothesis,
at least for some sets of robot start locations and some performance metrics;
and Sect. 7 concludes.

2 Related Work

The use of market mechanisms in distributed computing can be considered
to start with Smith’s contract net protocol [25]. A strength of market-based
approaches is their reliance only on local information and/or the self-interest
of agents to arrive at efficient solutions to large-scale, complex problems that
are otherwise intractable [3]. The most common instantiations of market mech-
anisms in multi-robot systems are auctions. Auctions are commonly used for
distribution tasks, where resources or roles are treated as goods and auctioned
to agents. Existing work analyses the effects of different auction mechanisms on
overall solution quality [1,3,13,30]. A body of work has grown up around the
sequential single-item auction (ssi) [12], which has been proven to create close
to optimal allocations, exploiting synergies of related tasks while not suffering
from the complexity issues of combinatorial auctions.

Location theory sits at the intersection of Geographic Information Systems
(GIS) and economics. The p-median problem is one class of location-allocation or
facility location problem that seeks to find optimal locations among existing sets
of points that either maximize some measure of distribution utility or minimize
some measure of cost [19]. Hakimi developed such problems on a graph to locate
optimal switching centres for communication networks or police stations in a
highway system [7]. Kariv and Hakimi showed that finding solutions to p-median
problems is NP-hard on a general graph [11], but heuristics have been developed
to make this more efficient [2,26].

Clustering or bundling of tasks has been investigated in the design of task
allocation mechanisms. Sandholm extended Smith’s Contract Net Protocol with
C-contracts (cluster contracts), which award bundles of tasks, rather than sin-
gle tasks, to agents [21]. Dias and Stentz proposed a mechanism that clusters
geographically close tasks into a forest of minimum spanning trees, which may
then be auctioned and potentially swapped [4]. Heap proposed sequential-single-
cluster (ssc) auctions, an extension to ssi that uses an agglomerative clustering
algorithm to create task bundles, which are then auctioned as in ssi [9]. Liu
and Shell [16] develop a hybrid distributed-centralised approach to MRTA. The
task set is first partitioned into subsets that are then solved in parallel using a
centralised assignment algorithm [14].

The problem of algorithm selection and criteria for selecting an algorithm were
proposed at least as early as Rice [20]. Computational or algorithm portfolios
that use domain knowledge to define features of problem instances in order to
select an appropriate algorithm have been investigated by Huberman et al. [10],
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Gomes and Bart [6], and Leyton-Brown et al. [15]. Portfolio-based SAT solvers
like SATzilla [29] and Hydra [28] have had success in selecting appropriate heuris-
tics to solve NP-hard problems. As far as we are aware, a portfolio-based approach
to market-based mechanism selection for MRTA problems, as we propose here, is
novel.

3 Methodology

Here we define terms and notation and describe the software architecture used
to conduct our experiments before detailing the proposed method for mechanism
selection.

3.1 Definitions and System Architecture

As discussed above, our work focuses on task allocation in multi-robot teams.
As in prior work [23], we consider that a set of n robots R = {r0, . . . , rn−1}
comprises a team and a mission is a set of m tasks T = {t0, . . . , tm−1}. A task
scenario defines a map and the locations of tasks in T . Finally, a parameterised
environment defines a task scenario, the starting locations of the team, and
properties of tasks such as precedence ordering or arrival time. In the work
presented here, all parameterised environments are, in the classification of [24],
SR-IT-SA, that is, they comprise single-robot, independently ordered, statically
allocated tasks.

Also as discussed above, this work makes use of the concept of the median
of a graph. In particular, we consider the p-median problem:

Given a graph or a network G = (V,E), find Vp ⊆ V such that |Vp| = p
and the sum of the shortest distances from the vertices in {V \ V p} to
their nearest vertex in Vp is minimized [19].

We use the p-medians of a graph that spans robot start locations and task
locations to determine which task allocation mechanism to employ in a given
scenario.

Our work makes use of MRTeAm, a software framework for conducting multi-
robot coordination experiments [23,24]. It is written on top of ROS [18] and its
main components are a central auctioneer agent and multiple robot controller
agents. The auctioneer is responsible for loading a task scenario and conducting
auctions according to the rules of one of several types of auction mechanisms.
That is, it announces tasks to, receives and aggregates bids from, and finally
awards tasks to the robot controller agents. The robot controllers are responsible
for computing and submitting bids using an A* path planner [8] and executing
tasks once they have all been awarded.
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3.2 Task Allocation Mechanisms

The portfolio method proposed here considers two auction mechanisms that we
have investigated in previous work. In a sequential single-item auction (ssi) [12],
unallocated tasks are advertised to all robots at once. Each robot bids on the
task with the lowest path cost and each task is allocated to the robot that made
the lowest bid for that task. The winning task is removed from the set of tasks to
be advertised in the next round and the process is repeated until all tasks have
been allocated. In a parallel single-item auction (psi) [12], allocation starts like
ssi but all robots bid on all points from their current locations. All the tasks are
allocated in one round, with each task going to the lowest bidding robot that
bid on it. In later sections we also refer to sel, which represents our portfolio
selection method.

3.3 Classification of Mechanism Selection Methods

The method we propose works as follows. On a map (shown in Figs. 1 and 2), we
generate a large number of parameterised environments in which task and robot
starting locations are randomly chosen over a uniform distribution with some
buffer distance from walls (and robots from each other). For each environment,
we conduct an experimental run with both psi and ssi mechanisms. This gener-
ates a pair of results with the same starting conditions but different performance
outcomes. From these results, we create a training instance for each environment
by recording properties of that environment as training features (Table 1) and
the winning mechanism, for some performance metric we wish to optimise, as a
label. Finally, after balancing the training set and selecting features, we train a
(binary) classifier to predict a winning mechanism.

We can now, in previously unseen environments (i.e., arrangements of task
and robot starting locations), query our classifier at runtime to select the mech-
anism that is predicted to perform best in that environment.

3.4 Features and Training

The features used to build our training sets are defined in Table 1. For a given
parameterised environment, there are three main steps to produce a training
instance:

1. Building the graph: ROS’s global planner1 is invoked to construct a path
between each pair of task locations. The result is a complete graph whose
nodes are task locations and whose edges are paths planned between them.
The graph is complete for the sake of simplifying the calculation in step 2, but
completeness comes at a price: the path planner is invoked O(m2) times. This
cost is important to consider, as the graph ultimately needs to be constructed
at runtime.

1 http://wiki.ros.org/global planner.

http://wiki.ros.org/global_planner
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Table 1. Environmental properties recorded as training features

Feature Description

total distance to assigned medians Sum of all robots’ distances to their (ssi-)
assigned medians

total distance to all medians Sum of all robots’ distances to all medians

maximum distance to assigned median Maximum distance of any robot to its
(ssi-)assigned median

maximum distance to any median Maximum distance of any robot to any
median

minimum distance to assigned median Minimum distance of any robot to its
(ssi-)assigned median

minimum distance to any median Minimum distance of any robot to any
median

assigned median distance spread maximum distance to assigned median
minus minimum distance to assigned median

total median distance spread maximum distance to any median minus
minimum distance to any median

greedy median count spread Max. number of p-medians greedily
(psi-)assigned to any one robot minus
min. number of the same

team diameter Longest distance between any two team
members

2. Finding the medians: The task graph is represented as a weighted adjacency
matrix as input for a p-median solver. We use the Teitz-Bart method [26] from
Xiao [27]. The result is a list of p = n nodes, coincident with task locations,
which we hypothesise to be ideal start locations for the robot team members
when using psi.

3. Assigning medians to robots: Deciding which median should be assigned to
which robot is a task allocation problem in itself. Here we use both the psi
and ssi mechanisms to compute possible assignments. With all data in the
memory of a single process (the auctioneer), no messages need be communi-
cated among separate agents. Once an assignment of medians to robots has
been computed, we can calculate the distance of each robot’s start location to
its assigned median(s). Examples of assignments are shown in Figs. 1 and 3.
Assignments in Fig. 3 are shown as straight line paths for clarity of illustra-
tion. It should be mentioned that different robot-to-median assignments will
produce different distance measurements (Table 1).

4 Experiments

Our main hypothesis is that if robot start locations are close to medians (i.e.,
ideal “facility” locations), then psi will perform at least as well as ssi, if not
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Fig. 1. The path distance of each robot to its assigned median for clustered (faint) and
distributed (dark) start configurations with the same set of task locations.

better. We ran experiments to investigate if this hypothesis could be supported
over a range of environments. One shortcoming of our prior work was that task
and robot start locations were somewhat ad hoc, being chosen manually. To
address this, in the experiments reported here, locations were randomised as
described in Sect. 3.3.

4.1 Environments

To test our mechanism selection method, two types of randomised environments
were investigated:

1. In fixed start, random task location environments, robot start locations were
fixed in the clustered and distributed arrangements shown in Figs. 1 and 2b2

and task locations were chosen randomly.
2. In random start, random task location environments, both robot start loca-

tions and task locations were chosen randomly.

In all environments that we investigated, the size of the robot team (n = 3)
and number of tasks (m = 16) were fixed. All experiments were conducted using
the Stage simulator [5]. For fixed start, random task location environments, 150
environments were generated to test mechanism selection, for a total of 150 ×
{clustered |distributed} starts × {psi|ssi|sel} mechanisms = 900 experimental
runs for each performance objective. For random start, random task location
environments, 300 environments were generated for a total of 300 × {psi|ssi|sel}
mechanisms = 900 experimental runs for each performance objective.
2 These are the same arrangements as used in [23,24].
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(a) A task scenario (b) Fixed (clustered) start locations

Fig. 2. Examples of task and start locations discussed in Sect. 4.1. (a) shows an example
task scenario with randomly chosen task locations. (b) shows one of the fixed (clustered)
sets of robot starting locations.

4.2 Performance Metrics

While there are a number of ways to measure performance, we generally measure
the travel distance and the time it takes for the team to reach all of the task
locations. Specifically, we define four performance metrics.

Total distance travelled (meters) is the sum of the lengths of the paths trav-
elled by team members over the course of an experiment. This is a measure of the
use of resources (e.g. battery power or fuel) by the team as a whole. Maximum
robot distance (meters) is the maximum distance travelled by any one robot.
It also measures resource usage, but gives an indication of how balanced the
load of a mission is across the team for a given allocation. Execution phase time
(seconds) measures how long it takes the team, after an allocation has been com-
puted, to travel to all task locations. Total run time (seconds) measures the time
it takes for a mechanism to compute and conduct an allocation, plus execution
phase time. Smaller values are preferred. Ideally, a task allocation mechanism
will seek to perform well by minimising all of these metrics.

5 Results

We present results from three stages of our experiments. First we show some
properties of the initial set of experiments that served as training data for clas-
sifiers. Second, we show classifier accuracy on held-out portions of the training
data. Finally, we show the ultimate results of using these classifiers to select
mechanisms from our portfolio.

5.1 Training Data

Properties of the initial set of experiments that served as training data are shown
in Tables 2, 3 and Fig. 3. In general, psi was better, in all environments tested,
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Table 2. Fixed start, random task locations

Metric PSI wins % SSI wins %

Team distance 403 90.97 40 9.03

Maximum robot distance 135 30.47 308 69.53

Total run time 148 33.41 295 66.59

Execution phase time 117 26.41 326 73.59

Table 3. Random start, random task locations

Metric PSI wins % SSI wins %

Team distance 744 81.2 172 18.8

Maximum robot distance 85 9.28 831 90.72

Total run time 230 25.11 686 74.89

Execution phase time 118 12.88 798 87.12

at producing allocations that led to shorter team distances than ssi. ssi was
better, in all environments, at producing shorter maximum robot distances. In
the random start, random task locations environments (Table 3), ssi greatly out-
performaned psi on the maximum robot distance, total run time, and execution
phase time objectives. In the fixed start, random task locations environments
(Table 2), ssi was somewhat less dominant. These results show that, while ssi
performs better overall, psi allocations do sometimes result in performance that
is competitive with ssi allocations, as we have seen in previous work [23,24].

5.2 Classifier Performance

Initially, the training sets had a severe class imbalance. In the training set for the
maximum robot distance objective, for example, ssi was the winning mechanism
in 1139 cases compared to psi’s count of 220 (Tables 2 and 3). We balanced the
training sets using a random undersampling method,3 although other methods
are also possible.

Table 4. Accuracy of several classifiers trained for different performance objectives.

Classifier type Objective Accuracy Std. Dev.

Random forest Execution phase time 75.22% 0.91%

SVM Execution phase time 74.55% 1.00%

Random forest Maximum robot distance 80.88% 1.26%

SVM Maximum robot distance 76.80% 1.20%

3 https://github.com/scikit-learn-contrib/imbalanced-learn.

https://github.com/scikit-learn-contrib/imbalanced-learn
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(a) ssi, max. robot dist. loser (b) psi, max. robot dist. winner

(c) ssi, max. robot dist. winner (d) psi, max. robot dist. loser

Fig. 3. Trajectories and p-median assignments for two sets of random start, random
task location environments. Robot start locations are shown as large open coloured
squares, task locations are shown as × marks, and medians are shown as small closed
coloured squares. (a) and (b) show an environment where the psi allocation led to a
smaller maximum robot distance. (c) and (d) show an environment in which an ssi
allocation led to a smaller maximum robot distance.

We used the scikit-learn [17] library to select features and train classifiers. Var-
ious types of classifier were investigated, including decision trees, k-nearest neigh-
bours, random forests and support vector machines. Table 4 shows the average
accuracy of some of these classifiers on held-out data over 10-fold cross validation.

As a result of these experiments, we selected the random forest classifier for
the remainder of the work presented here. The features selected for the ran-
dom forest classifier trained to optimise the execution phase time objective dis-
cussed in the next section were: {maximum distance to assigned median, assigned
median distance spread, team diameter, and greedy median count spread}. Fea-
tures selected for the random forest classifier trained to optimise the maxi-
mum robot distance objective were: {total distance to all medians, maximum
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distance to any median, team diameter, and greedy median count spread}. Hyper-
parameters of the classifiers were tuned using a grid search.4

5.3 Mechanism Selection Results

Having trained a classifier, we then used it in experiments to see if a method
which uses initial locations to pick an allocation mechanism using this classifier,
a method we called sel, can outperform either ssi or psi. Some of the ultimate
results of these experiments are shown in Figs. 4, 5, 6 and 7. Each figure shows
the average value measured for a particular metric and mechanism with 95%
confidence intervals. Figures 4, 5 and 6 show results for fixed start, random task
locations environments. Figure 7 shows results for random start, random task
locations environments. We trained classifiers for both the maximum robot dis-
tance and execution phase time performance objectives, but only the results for
the execution phase time objective are shown here.

(a) Clustered (b) Distributed (c) Combined

Fig. 4. Execution phase time for clustered starts (a), distributed starts (b), and the
combination of clustered and distributed starts (c). Units are seconds.

(a) Clustered (b) Distributed (c) Combined

Fig. 5. Total run time for clustered starts (a), distributed starts (b), and the combi-
nation of clustered and distributed starts (c). Units are seconds.

4 http://scikit-learn.org/stable/modules/grid search.html.

http://scikit-learn.org/stable/modules/grid_search.html
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(a) Clustered (b) Distributed (c) Combined

Fig. 6. Maximum robot distance for clustered starts (a), distributed starts (b), and
the combination of clustered and distributed starts (c). Units are meters.

(a) Exec. Phase Time (b) Max. Robot Distance (c) Total Run Time

Fig. 7. Mechanism selection results for random start, random task locations environ-
ments. Time units are seconds. Distance units are meters.

6 Discussion

Examining the full range of environments we investigated, the performance
improvements of our mechanism selection method are mixed.

In random start, random task location environments, the classifier we trained
to predict which of the two mechanisms would minimise the execution phase time
objective did not perform better, on average, than ssi. It led to execution phase
times and total run times that were only slightly lower than psi (Fig. 7a and c).
It also did not lead to significantly shorter maximum robot distances (Fig. 7b),
but then it was not trained to do so.

In fixed start, random task location environments, we did observe a significant
performance improvement in execution phase time and total run time when
combining results from the clustered and distributed fixed start locations (Fig. 4c
and 5c). ssi led to an average execution phase time of 274.95± 10.04 s while sel
reduced that to 252.10 ± 11.23 s. (Both figures are 95% confidence intervals; an
independent t-test yields a t-statistic of 2.99 at p = 0.0029.)

These early results are encouraging, but the current sel method has room
for improvement. In addition to reducing execution phase time for randomised
task locations with fixed start locations, we would like it to do so for randomised
robot starting locations as well. We can make two general kinds of improvements.
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First, to improve classifier accuracy we might devise more descriptive envi-
ronmental features than those listed in Table 1. We might also develop better
methods of producing or preparing the training data, train different kinds of
classifiers, or learn weights that reward the contributions of these (or other) fea-
tures. Secondly, we can improve the time it takes to perform the selection method
itself. As described in Sect. 3.4, the current method requires the construction of
a complete graph with a number of edges that scales quadratically with the size
of the mission. A simply connected, rather than complete, graph may suffice, so
that building the graph scales linearly with the size of the mission.

7 Summary

We have developed a method of selecting an auction-based task allocation mech-
anism from a portfolio of mechanisms to address the multi-robot task allocation
(MRTA) problem. We have shown that, in some environments, this method can
provide an allocation that leads a robot team to execute its mission in signifi-
cantly less time than that of a single, state-of-the-art mechanism. While these
early results are encouraging, the method can be improved in several ways.
We are working to improve its performance for more general cases of a known
environment, in particular for randomised robot start locations. We are also
working to generalise the approach to consider more mechanisms and richer
environments—combining it with our previous work on multi-robot, precedence-
ordered, and dynamically appearing tasks [23,24]—and on other maps.
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for multi-robot teams in dynamic environments. In: Dixon, C., Tuyls, K. (eds.)
TAROS 2015. LNCS, vol. 9287, pp. 246–257. Springer, Cham (2015). doi:10.1007/
978-3-319-22416-9 29

25. Smith, R.G.: The contract net protocol: high-level communication and control in a
distributed problem solver. In: Bond, A.H., Gasser, L. (eds.) Distributed Artificial
Intelligence. Morgan Kaufmann Publishers Inc. (1988)

26. Teitz, M.B., Bart, P.: Heuristic methods for estimating the generalized vertex
median of a weighted graph. Oper. Res. 16(5), 955–961 (1968)

http://dx.doi.org/10.1007/3-540-47745-4_7
http://dx.doi.org/10.1007/978-3-319-40379-3_32
http://dx.doi.org/10.1007/978-3-319-40379-3_32
http://dx.doi.org/10.1007/978-3-319-22416-9_29
http://dx.doi.org/10.1007/978-3-319-22416-9_29


Mechanism Selection for Multi-Robot Task Allocation 435

27. Xiao, N.: GIS Algorithms. SAGE Publications, Thousand Oaks (2015)
28. Xu, L., Hoos, H.H., Leyton-Brown, K.: Hydra: automatically configuring algo-

rithms for portfolio-based selection. In: Proceedings of the Twenty-Fourth AAAI
Conference on Artificial Intelligence, pp. 210–216. AAAI Press (2010)

29. Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: Satzilla: portfolio-based algo-
rithm selection for sat. J. Artif. Intell. Res. 32, 565–606 (2008)

30. Zlot, R., Stentz, A., Dias, M.B., Thayer, S.: Multi-robot exploration controlled
by a market economy. In: Proceedings of the IEEE Conference on Robotics and
Automation (2002)


	Mechanism Selection for Multi-Robot Task Allocation
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Definitions and System Architecture
	3.2 Task Allocation Mechanisms
	3.3 Classification of Mechanism Selection Methods
	3.4 Features and Training

	4 Experiments
	4.1 Environments
	4.2 Performance Metrics

	5 Results
	5.1 Training Data
	5.2 Classifier Performance
	5.3 Mechanism Selection Results

	6 Discussion
	7 Summary
	References




