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�Introduction

Alterations in gene expression in cancer are fundamental to the aberrant biology of 
cancer cells. Traditionally, genes are thought of as heritable units that encode pro-
teins, and indeed changes in expression of protein-coding genes are critical in the 
pathogenesis of cancer. A modern definition for a gene has been proposed to be “a 
union of genomic sequences encoding a coherent set of potentially overlapping 
functional products” [1]. This definition includes many types of transcripts that do 
not encode proteins and yet have important cellular functions that determine pheno-
type. These include transcripts such as miRNAs and long noncoding RNAs 
(lncRNAs), which are important in the biology of prostate cancer. There is growing 
evidence that such lncRNAs may be extremely useful for diagnosis and prediction 
of prognosis and as therapeutic targets in prostate cancer. These types of transcripts 
can be and have been studied using gene expression arrays [2], but this chapter will 
focus on protein-coding transcripts. See Chap. 16 for an in-depth discussion of 
miRNAs and lncRNAs.
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Recent studies have concluded that about 80% of the variation in protein levels 
can be linked to differences in mRNA levels after correcting for methodological 
bias [3]. The remainder of protein variation can be accounted for by protein degra-
dation and translational control. Thus, much of the variation in the proteome is 
controlled by mRNA abundance. In addition to the multiple factors controlling gene 
transcription in normal cells, mRNA levels in cancer cells can be linked to stable 
genomic alterations such as gains or losses of genes (copy number variation), the 
presence of gene fusions, promoter mutations, and alterations in DNA methylation. 
Such changes at the genome level are fundamental to the pathogenesis of cancer and 
often achieve phenotypic expression primarily by changes in mRNA levels. See 
Chaps. 9 and 13 for an in-depth discussion of copy number and epigenetic altera-
tions in prostate cancer.

With the advent of the molecular biology revolution in the 1970s, mRNA levels 
could be measured, albeit laboriously, with techniques such as Northern blotting. 
The discovery of polymerase chain reaction (PCR) and later quantitative reverse 
transcription PCR (Q-RT-PCR) made analysis of gene expression much easier 
and more quantitative. Indeed, using Q-RT-PCR arrays, hundreds of genes can 
be assayed in multiplexed formats, and such arrays are currently widely available 
for focused analysis of specific gene sets. However, high-throughput technologies 
such as expression microarray analysis have revolutionized our ability to carry out 
unbiased analysis of gene expression alterations in cancer. In expression microar-
ray analysis, thousands of cDNAs or oligonucleotides corresponding to individual 
genes are spotted on solid surface such as a glass slide or silicon chip. Fluorescently 
labeled cDNAs, generated from cellular RNA, are then hybridized to the chip, and 
after washing to remove nonspecific signals, the chip is scanned. The fluorescent 
signal is proportional to the abundance of the corresponding RNA used for labeling. 
The use of cDNAs on arrays has been largely supplanted by the use of oligonucle-
otides designed to hybridize to specific gene segments. In addition, some formats 
use beads rather than a solid surface. In any format, expression levels of tens of 
thousands of genes can be assayed simultaneously, dramatically increasing the abil-
ity to interrogate gene expression in a biological sample in a comprehensive manner.

�Biological Considerations

Gene expression array technology has been used to study prostate cancer in two 
major ways. One major type of analysis is studying changes in gene expression in 
vitro using prostate and prostate cancer cell lines. In this approach, large-scale 
changes in gene expression can be assessed in different cell lines or more commonly 
a single cell line under different conditions. This technique can assess the impact of 
gene knockdown or overexpression, drug treatments, alterations of environmental 
conditions, etc. on gene expression versus appropriate controls [4–6]. In recent 
years, such approaches have been used extensively to understand the underlying 
biology of prostate cancer. In general, biological duplicates or triplicates are needed 
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for each cell line for each condition to allow more reliable comparisons of gene 
expression in the two biological states.

The other major use of gene expression arrays has been the study of human and 
to a lesser extent mouse tumor tissues. The study of human prostate cancer tissues 
was certainly one of the first major applications of this technology and has yielded 
many important insights into prostate cancer biology and has identified novel diag-
nostic and prognostic biomarkers [7–10]. Most published studies have used cancer 
tissues (and corresponding benign tissues) from radical prostatectomy specimens. 
Such tissues are potentially readily available given that tens of thousands of radical 
prostatectomies are performed each year in the United States alone. However, spe-
cific precautions are needed to minimize “warm ischemia,” i.e., the interval between 
devascularization and rapid freezing of tissue for later analysis. This is a particularly 
important consideration in robotic prostatectomies, since warm ischemia can be 
prolonged in such specimens since they may remain in the patient after devascu-
larization [11]. However, with collaboration between surgeons, pathologists, and 
other health-care personnel, tissue can be collected in a manner which minimizes 
warm ischemia and maximizes RNA integrity [11–13]. However, it should be noted 
that it is impossible to completely eliminate warm ischemia in a surgical specimen. 
Generally, 15–30 min of warm ischemia is excellent, and up to 60 min is probably 
acceptable [14]. Of course, tissues with warm ischemia can be used for some stud-
ies, particularly DNA analysis, but mRNAs tend to be labile. Thus mRNA integrity 
can be a surrogate marker of overall tissue quality assuming that RNAs are not 
degraded during extraction.

One important consideration in the analysis of human prostate cancer specimens 
is that there is a significant amount of non-cancer cells in such tissues including 
tumor stroma, benign prostate tissue, and inflammatory cells (both in benign pros-
tate and tumor tissue). It should also be noted that the benign tissues can undergo 
atrophy and a variety of epithelial metaplasia and hyperplasia. In addition, high-
grade prostatic intraepithelial neoplasia (HGPIN) can be present in the non-tumor 
tissues. In general, it is best to use highly enriched tumor samples for microarray 
analysis to minimize the contribution from benign tissue components. While there 
is no official standard, this author believes 50% tumor is a reasonable minimum, 
although usable data can be obtained with less enriched tissues. However, it should 
be noted that prostate cancer foci can be difficult to identify by gross examination, 
and inevitably there will be selection bias for larger and more cellular tumors (often 
with higher Gleason score) if one uses only more cellular tumor samples. That said, 
it can be argued that smaller tumors with lower Gleason scores are not of great inter-
est since they rarely result in patient mortality.

It is known that a significant fraction of the alterations in gene expression in 
prostate cancer versus benign tissue is derived from the cancer stroma [15]. One 
method of insuring gene expression profiles which are derived from the cancer cells, 
cancer stroma, benign epithelium, or benign stroma is to carry out laser-capture 
microdissection [16, 17]. This technique is quite labor intensive but yields more 
specific results. Generally, amplification of the RNA obtained is required to yield 
sufficient quantities for gene expression analysis, and controls should always be 
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carried out to insure that no bias is occurring during amplification [16, 17]. A rela-
tively small number of studies have been carried out using this technique, but they 
have revealed novel paracrine interactions of tumor stroma with the cancer cells that 
biologically relevant to tumor progression [18].

If one is comparing cancer tissues to benign tissues from the same prostate, there 
are also caveats. Since most cancers arise in the peripheral zone, it is presumably 
better to use this tissue for comparison. Benign prostatic hyperplasia, which arises 
in the transition zone, is known to induce extensive changes in gene expression and 
is extremely common in radical prostatectomy specimens [19]. It should also be 
noted that the same issues of tissue heterogeneity of benign tissues apply to the 
control benign samples. In particular it is important to exclude high-grade prostatic 
intraepithelial neoplasia (HGPIN) in the benign samples. However, it would also 
important to exclude severe acute and/or granulomatous prostatitis, which can be 
seen in radical prostatectomy specimens. Unfortunately, it can be difficult at times 
to discern from published reports what are the criteria used, if any, to exclude benign 
tissues for analysis. Finally, it should be noted that benign adjacent tissues from 
radical prostatectomies may not be truly “normal” since there is evidence for pre-
malignant field effects in such tissues [20–22]. In practice, age-matched normal 
prostate tissue is very hard to obtain. Prostate can be harvested from organ donors, 
but such men are almost always considerably younger than the typical prostate can-
cer patient. Prostate tissue can also be obtained from radical cystoprostatectomies 
for treatment of bladder cancer, but one must be cautious about potential gene 
expression changes induced by bladder cancer treatments, i.e., BCG, etc. Thus, no 
perfect control tissue is readily available, but carefully characterized benign periph-
eral zone tissue is probably the best tissue to use in practice.

Metastatic tissues have also been used for gene expression arrays [23, 24]. Such 
tissues are not commonly obtained in routine clinical practice except for palliative 
procedures (channel TURPs, relief of spinal cord compression, etc.), but several 
leading institutions have developed rapid autopsy programs to obtain tissue from 
lethal prostate cancer. Of course, it should be noted that there is some contamination 
of normal tissues from various sites as well as tumor stroma, so not all of the RNA 
is derived from cancer cells in these tissues.

Given that most gene expression arrays have been done on clinically localized 
disease treated by radical prostatectomy or heavily treated end-stage disease, there 
is little known about specific gene expression patterns in other clinical prostate can-
cer states such as treatment-naïve advanced local disease or treatment-naïve meta-
static disease to the lymph nodes, bone, or other sites. With emphasis on targeted 
therapy, biopsy and molecular analysis of such disease states is likely to become 
more common in the research setting, allowing for further studies of such tissues.

While all of the above caveats may seem to detract from the utility of gene expres-
sion analysis of cancer tissues, in reality major advances have arisen from such studies 
as will be outlined below. However, it is best to be aware of these issues and try and 
minimize their impact on future studies. In addition, one must keep them in mind 
when interpreting data from various studies, particularly being aware that not all genes 
altered in prostate cancer tissues are actually altered in cancer cell themselves.
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Expression microarrays can also be used to analyze mouse tissues or human tis-
sues in mice. Analysis of xenografts of human tissues in immunocompromised mice 
is straightforward and can be used to examine treatment effects, impact of genetic 
alterations, etc. similar to studies in tissue culture [25–27]. Gene expression arrays 
can also be used to analyze gene expression in genetically engineered mouse mod-
els of prostate cancer [28, 29]. This can give unique insights into the biology of 
prostate cancer with genetically defined lesions. The mouse prostate consists of 
distinct lobes [30] (ventral, dorsal, lateral, and anterior) with their own distinct gene 
expression profiles [31]. Early small lesions can be examined in each lobe (with 
appropriate controls), while larger cancers usually invade adjacent tissues and can-
not be divided into lobes. A number of laboratories have recently used a combined 
approach in which both human and mouse expression data are mined to define key 
regulatory pathways in prostate cancer [32–34].

�Analytical Considerations

A key element in obtaining accurate gene expression array data is the quality of the 
input RNA. This is commonly expressed as an RNA integrity number (RIN) or RIN 
value [35]. The maximum value of RIN is ten, which is quite hard to achieve in 
practice. Generally, a RIN number of >7 is considered necessary for acceptable 
quality for RNA from fresh tissues. RNA can be partially degraded due to prolonged 
ischemia, slow freezing, thawing of tissue samples, and at many points during RNA 
extraction due to inadequate technique. The use of formalin-fixed paraffin-embedded 
(FFPE) samples for large-scale mRNA microarray analysis has remained challeng-
ing. RNA quality and degradation can be variable, and to date mRNA from frozen 
tissues remains the gold standard [36]. However, more focused mRNA analysis is 
certainly possible using specifically designed analytical platforms. DNA analysis in 
FFPE is more easily performed due to its higher stability but again is more difficult 
than analysis of DNAs from frozen tissues.

It goes without saying that meticulous attention to detail for reverse transcrip-
tion, labeling, hybridization, washing, and scanning is critical to obtain accurate 
results. It is beyond the scope of this review to examine these factors in details, 
particularly since multiple platforms and approaches are in use, each with distinct 
technical requirements. That said, several studies have shown generally high con-
cordance rates between different platforms and techniques of labeling [8].

There are two basic approaches to array hybridization. Two-color hybridization 
uses dyes of two different colors labeled to RNAs representing two conditions, i.e., 
Cy3 for cancer and Cy5 for matched benign. This gives a direct readout of the 
relative expression of any probe by the ratio of fluorescence at the two appropri-
ate wavelengths. One-color arrays use only a single dye, and intensity is measured 
directly and compared to intensity in other arrays directly. The assumption is that 
labeling and hybridization are relatively similar for all arrays and that any differ-
ences between samples in different batches can be accounted for by mathemati-
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cal normalization and correction of batch effects. The two methods yield similar 
results; one-color approach is the dominant mode of analysis and in practice gives 
robust data [37].

The number of oligonucleotide probes in an array for any given gene is variable. 
If multiple probes for a single gene show similar alterations of intensity in a given 
analysis, it adds confidence that the observed change reflects biology and is not an 
artifact. Of course differences between probes for the same gene may also reflect 
alternative RNA species arising by alternative splicing, alternative promoters, etc. 
Alternative splicing plays an important role in prostate cancer biology [38]. For 
example, changes in alternative splicing of FGF receptors [39] and androgen recep-
tor [40] are well documented in prostate cancer. One can use microarrays to detect 
alternative splicing using either custom-built arrays or arrays with all known exons 
[41]. The former is used for more focused analysis since it targets known slice junc-
tions. The latter reveals differences in exon usage but cannot really document the 
full repertoire of alternatively spliced transcripts. As a hypothetical example, if one 
detects decreased intensity of exon 2 of a given gene and exon 6 shows increased 
intensity, it can be hard to determine if these two alterations are occurring in the 
same or in independent transcripts or both. That said, exon arrays can provide 
important clues to potentially biologically important alternative RNA species.

�Data Analysis

After hybridization, arrays are scanned, and quality control performed. These files 
are then used to generate gene expression values using programs such as 
Bioconductor. Data is normalized to adjust the overall chip brightness of the arrays 
to a similar level [42]. This is needed since differences in labeling efficiency, hybrid-
ization, and wash conditions result in differences in signal between arrays. 
Techniques such as loess normalization, total intensity normalization, quantile nor-
malization, or invariant set normalization can be used. Batch effects also need to be 
assessed and corrected for in larger experiments.

Of course, data analysis performed depends on the design of the specific experi-
ment or study. Quite often, the goal of the microarray experiment is to define genes 
that are differentially expressed between two biological states, i.e., cancer and nor-
mal, and treated and untreated. Statistical analysis using t-tests can be used to define 
statistically significant differences between the two sets of data. However, such tests 
have significant issues in very large datasets. Simplistically, with 60,000 features, 
using a cutoff of p < 0.01 will yield ~600 false positive signals; if 6000 genes are 
differentially expressed, 10% of these are likely to be false positives. This has led to 
the use of the false discovery rate or permutation testing to estimate rates of false 
positivity [43]. While in-depth discussion of statistical approaches to the analysis of 
microarray data is beyond the scope of this chapter, users need to be aware that such 
false positive is always an issue. Of course, the actual fold changes are strong indi-
cators of biological significance, i.e., a threefold increase is more likely to be bio-
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logically significant than a 10% increase. It should be noted that fold increases tend 
to be underestimated at the higher end in expression microarrays due to technical 
factors with array hybridization such as saturation of probe on the array, so that two- 
or threefold changes in expression are usually highly significant. Outlier analysis 
has also emerged as important method of identifying differentially expressed genes 
that are biologically significant [44, 45]. Of course, correlation of gene expression 
analysis data with copy number analysis, mutations, and other genomic analysis can 
provide strong support for the importance of a given alteration. For example, if a 
gene with loss of expression also undergoes frequent homozygous deletion, it is a 
strong indication that the gene may be a critical tumor suppressor.

In addition to identifying specific genes that are differentially expressed in two 
datasets, more complex patterns of linked gene expression can be sought. Cluster 
analysis can be carried out to identify natural groupings of genes that may reflect 
biological subtypes or other natural groupings. A variety of approaches can be used 
such as hierarchical clustering, K-means clustering, and principle components anal-
ysis. The data is commonly visualized using heat maps [46]. Another useful 
approach is gene set enrichment analysis to compare a given gene expression signa-
ture to a gene set indicative of a specific function, chromosomal location, or regula-
tion [47]. It should be noted that of the thousands of genes that are differentially 
expressed in prostate cancer and benign tissues, we only understand the biological 
significance of a fraction of these genes. Thus, we are only beginning to understand 
the “big data” that has been unleashed over the last 15 years, and novel approaches 
almost certainly allow new insights into prostate cancer.

An important aspect of gene expression data is that much of it is publicly avail-
able. Most published data is deposited in publicly available websites. Of course, 
analysis of such data requires significant skill. Other sites, such as Oncomine [48] 
and cBioPortal [49], are usable by general cancer scientists and clinicians and are a 
very useful avenue for hypothesis testing and generation.

�Microarray-Based Discoveries in Prostate Cancer

�Prostate Cancer Biology and Pathogenesis

The discovery of recurrent fusion of the androgen-regulated TMPRSS2 gene to the 
ETS transcription factors, particularly the ERG gene, in the majority of prostate 
cancer lesions, has led to a paradigm shift in the study of prostate [44]. This discov-
ery will be discussed in greater detail in the next chapter but was based on outlier 
analysis of gene expression data by the Chinnaiyan group [44]. The TMPRSS2/
ERG (T/E) fusion gene occurs in approximately 50% of prostate cancers [50–58]. 
Experiments in prostate cancer cells containing the T/E fusion [44] indicate that the 
TMPRSS2 promoter, which contains androgen receptor (AR)-responsive promoter 
elements [59], increases ERG expression in response to androgens. The ubiquitous 
activity of AR in prostate cancer cells thus results in high expression of ERG fusion 
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transcripts. Immunohistochemical studies have shown that ERG overexpression is 
almost never seen in benign prostate epithelial cells. The high frequency of this 
genetic alteration argues that it plays a key role in the pathogenesis of those prostate 
cancers bearing the fusion gene. Indeed, it has been shown that downregulation of 
the T/E fusion gene by stable shRNA or liposomal siRNA targeting the fusion gene 
results in markedly reduced tumor growth in vivo [60, 61]. Thus, like the BCR-ABL 
gene in chronic myelogenous leukemia, it is an attractive therapeutic target as well 
as a potential diagnostic marker.

Another major finding growing out of gene expression microarray studies is the find-
ing that serine protease inhibitor Kazal type 1 (SPINK1) is overexpressed in approxi-
mately 5–15% of prostate cancers [45, 62–64]. SPINK1 overexpression is essentially 
mutually exclusive with ERG overexpression and thus constitutes a distinct subtype of 
prostate cancer. Many but not all studies have found SPINK1 overexpression to be asso-
ciated with adverse outcome [45, 62, 65]. SPINK1 has been shown potentiate EGFR 
signaling and as an extracellular protein is potentially therapeutically targetable [63].

�Diagnostic Biomarkers

Surgical pathologists frequently face the problem of trying to determine if a small 
cluster of glands in a needle biopsy is malignant. A very early discovery using expres-
sion microarrays was that alpha methyl-acyl CoA racemase (AMACR) [9, 66, 67] is 
markedly increased in prostate cancer. This has led to the widespread use of immuno-
histochemistry to detect this marker as an adjunct to diagnosis of difficult lesions [64, 
65]. Typically, this is combined with basal cell markers such as p63, CK5/6, and/or 
high molecular weight cytokeratin (34β[beta]E12), which are absent in cancer lesions. 
While these are caveats about this approach, using a combination of a positive marker 
such as AMACR along with negative basal cell-specific markers has proven to be a 
powerful diagnostic tool [68]. However, AMACR is not prostate cancer specific and 
can be expressed in benign prostatic glands and benign mimics of prostate cancer and 
high-grade PIN [68, 69]. Similarly, basal cells may be absent in some benign mimics 
of prostate cancer, particularly in a small clusters of glands. ERG is more specific to 
prostate cancer and thus is also useful as an immunohistochemical adjunct to diagno-
sis [70, 71]. Its utility is somewhat limited by the fact that it is present in only ~50% 
of prostate cancers in European-Americans [72] and ~20% of prostate cancers in 
African-Americans [73, 74]. See Chap. 27 for further discussion.

�Detection Biomarkers

Given the limitations of prostate-specific antigen (PSA) testing, it is clear that better 
biomarkers for the early detection are needed of clinically significant prostate cancer. 
A number of protein-coding genes initially detected as elevated in prostate cancer by 
gene expression arrays have been included in potential multiplexed panels to detect 
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prostate cancer using urine including T/E and SPINK1 (see above) as well as 
GOLPH2 [75] and GOLM1 [76]. Recently increasing interest has focused on non-
coding RNAs including lncRNAs and microRNAs. Novel blood-/serum-based tests 
are also under active development, although none are as yet in widespread clinical 
use. See Chap. 27 for additional discussion of this rapidly evolving area.

�Prognostic Biomarkers

Given the highly heterogeneous clinical behavior of prostate cancer, it is critical to 
define those men requiring treatment and, hopefully, the optimal treatment needed. 
A number of genes identified by gene expression analysis have been proposed as 
potential biomarkers of disease aggressiveness such as EZH2 [23, 77] and SPINK1 
[45]. One can also seek to define patterns of gene expression that are predictive of 
clinical outcome and response to therapy, etc. A number of such signatures have 
been proposed [10, 78–88] including signatures based on stromal markers [89]. One 
signature based on gene expression data is now commercially available.

(Oncotype Dx for prostate cancer). Whether such signatures will achieve wide-
spread usage is not yet clear. In-depth discussion of such approaches is beyond the 
scope of this chapter but is discussed in detail in Chap. 29.

�Prostate Cancer Classification

Expression array analysis has proven to be extremely powerful in defining biologi-
cal and clinically linked subclasses of cancer in a number of malignancies, notably 
in lymphoma [90] and breast cancer [91]. Expression microarray analysis suggests 
a classification of localized prostate cancer that certainly has biological significance 
and perhaps clinical significance as well. As described above, approximately 50% 
of localized prostate cancers have ERG overexpression due to the presence of the 
T/E fusion gene. Another 10–15% of prostate cancers have overexpression of ERG 
via alternative fusions or overexpression of other ETS factors. SPINK1 is overex-
pressed by approximately 10% of prostate cancers. A final category is defined by 
mutation of the SPOP gene (see Chap. 12 for details). Of note, these categories are 
almost mutually exclusive and account for approximately 80% of all prostate can-
cers. See Chap. 30 for further discussion.

�RNA-Seq and Future of Expression Microarrays

Gene expression arrays have had a tremendous impact on our understanding of the 
pathobiology of prostate cancer over the last 15 years. However, the use of gene 
expression microarrays is now being supplemented by the use of RNA-Seq, i.e., the 
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use of next-generation sequencing to sequence RNAs. Gene expression measured 
by this technology is highly concordant with measurements using one-channel 
microarrays [92]. RNA-Seq also has significant advantages over gene expression 
arrays. First, it can discover novel genes and is not limited by what is arrayed on the 
chip. Second, it has an almost limitless linear measurement range, while gene 
expression microarrays have limited sensitivity for low-expression genes and show 
signal saturation for highly expressed genes. Third, exon usage and alternative 
splicing can be more accurately evaluated. Finally, fusion genes, point mutations, 
and small deletions can be identified. While RNA-Seq is still more expensive than 
gene arrays, its cost is decreasing and is approaching the cost of gene arrays. This 
higher cost and more complex data analysis is still limiting penetration of RNA-Seq 
into prostate cancer analysis of gene expression, but it is clear that RNA-Seq is 
likely to substantially replace gene arrays in the future.
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