
Chapter 4
A Perfect Match Between a Model and a Mode

Theo K. Dijkstra

Abstract When the partial least squares estimation methods, the “modes,” are
applied to the standard latent factor model against which methods are designed and
calibrated in PLS, they will not yield consistent estimators without adjustments. We
specify a different model in terms of observables only, that satisfies the same rank
constraints as the latent variable model, and show that now mode B is perfectly
suitable without the need for corrections. The model explicitly uses composites,
linear combinations of observables, instead of latent factors. The composites
may satisfy identifiable linear structural equations, which need not be regression
equations, estimable via 2SLS or 3SLS. Each time practitioners contemplate the use
of PLS’ basic design model the composites model is a viable alternative. The chapter
is conceptual mainly, but a small Monte Carlo study exemplifies the feasibility of
the new approach.

4.1 Introduction

Herman (H.O.A.) Wold (1908–1992) developed partial least squares (PLS) in a
series of papers, published as well as privately circulated. The seminal published
papers are Wold (1966, 1975, 1982). A key characteristic of PLS is the determi-
nation of composites, linear combinations of observables, by weights that are fixed

This chapter “continues” a sometimes rather spirited discussion with Wold, that started in 1977,
at the Wharton School in Philadelphia, via my PhD thesis, Dijkstra (1981), and a paper Dijkstra
(1983). There was a long silence, until about 2008, when Peter M. Bentler (UCLA) rekindled my
interest in PLS, one of the many things for which I owe him my gratitude. Crucial also is the
collaboration with Joerg Henseler (Twente), that led to a number of papers on PLS and on ways
to get consistency without the need to increase the number of indicators, PLSc, as well as to a
software program ADANCO for composites. I am very much in his debt too. The present chapter
expands on Dijkstra (2010) by avoiding unobservables as much as possible while still adhering to
Wold’s fundamental principle of soft modeling.
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points of sequences of alternating least squares programs, called “modes.” Wold
distinguished three types of modes (not models!): mode A, reminiscent of principal
component analysis, mode B, related to canonical variables analysis, and mode C,
that mixes the former two. In a sense PLS is an extension of canonical variables
and principal components analyses. While Wold designed the algorithms, great
strides were made in the estimation, testing, and analysis of structured covariance
matrices, as induced by linear structural equations in terms of latent factors and
indicators (LISREL first, then EQS et cetera). Latent factor modeling became the
dominant backdrop against which Wold designed his tools. One model in particular,
the “basic design,” became the model of choice in calibrating PLS. Here each latent
factor is measured indirectly by a unique set of indicators, with all measurement
errors usually assumed to be mutually uncorrelated. The composites combine the
indicators for each latent factor separately, and their relationships are estimated
by regressions.1 The basic design embodies Wold’s “fundamental principle of soft
modeling”: all information between the blocks of observables is assumed to be
conveyed by latent variables (Wold 1982).2 However, in this model PLS is not
well-calibrated3: when applied to the true covariance matrix it yields by necessity
approximations, see, e.g., Dijkstra (1981, 1983; 2010; 2014). For consistency,
meaning that the probability limit of the estimators equals the theoretical value,
Wold also requires the number of indicators to increase alongside the number of
observations (consistency-at-large).

In this chapter we leave the realm of the unobservables, and build a model in
terms of manifest variables that satisfies the fundamental principle of soft modeling,
adjusted to read: all information between the blocks is conveyed solely by the
composites. For this model, mode B is the perfect match, in the sense that estimation
via mode B is the natural thing to do: when applied to the true covariance matrix it
yields the underlying parameter values, not approximations that require corrections.
A latent factor model, in contrast, would need additional structure (like uncorrelated
measurement errors) and fitting it would produce approximations.

The chapter is structured as follows. The next section, Sect. 4.2, outlines the new
model. We specify for a vector y of observable variables, “indicators,” a structural
model that generates via linear composites of separate blocks of indicators all the
standard basic design rank restrictions on the covariance matrix, without invoking

1This includes simultaneous equations systems, which are generally not regressions. They
were estimated by a Fix Point method, essentially iterations of 2SLS (two-stage-least-squares)
regressions (Boardman et al. 1981). See below for 2SLS and Dijkstra and Henseler (2015a,b).
2“Soft modeling” indicates that PLS is meant to perform “substantive analysis of complex
problems that are at the same time data-rich and theory-primitive” (Wold 1982).
3I am not saying here that methods that are not well-calibrated are intrinsically “bad.” This would
be ludicrous given the inherent approximate nature of statistical models. Good predictions typically
require a fair amount of misspecification, to put it provocatively. But knowing what happens when
we apply a statistical method to “the population” helps answering what it is that it is estimating.
Besides, consistency, and to a much lesser extent “efficiency,” was very important to Wold.
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the existence of unobservable latent factors. They, the composites, are linked to each
other by means of a “structural,” “simultaneous,” or “interdependent” equations
system, that together with the loadings fully captures the (linear) relationships
between the blocks of indicators.

Section 4.3 is devoted to estimation issues. We describe a step-wise procedure:
first the weights defining the composites via generalized canonical variables,4 then
their correlations and the loadings in the simplest possible way, and finally the
parameters of the simultaneous equations system using the econometric methods
2SLS or 3SLS. The estimation proceeds essentially in a non-iterative fashion (even
when we use one of the PLS’ traditional algorithms, it will be very fast), making it
potentially eminently suitable for bootstrap analyses. We give the results of a Monte
Carlo simulation for a model for 18 indicators; they are generated by six composites
linked to each other via two linear equations, which are not regressions. We also
show that mode A, when applied to the true covariance matrix of the indicators, can
only yield the correct results when the composites are certain principal components.
As in PLSc, mode A can be adjusted to produce the right results (in the limit).

Section 4.4 suggests how to test various aspects of the model, via tests of the rank
constraints, via prediction/cross-validation, and via global goodness-of-fit tests.

Section 4.5 contains some final observations and comments. We briefly return
to “the latent factors versus composites”-issue and point out that in a latent factor
model the factors cannot fully be replaced by linear composites, no matter how
we choose them: the regression of the indicators on the composites will not yield
the loadings on the factors, or (inclusive) the composites cannot satisfy the same
equations that the factors satisfy.

The Appendix contains a proof for a statement needed in Sect. 4.3.

4.2 The Model: Composites as Factors

Our point of departure is a random vector5 y of “indicators” that can be partitioned
into N subvectors, “blocks” in PLS parlance, as y D .y1I y2I y3I : : : I yN/. Here
the semi-colon stacks the subvectors one underneath the other, as in MATLAB;
yi is of order pi � 1 with pi usually larger than one. So y is of dimension p � 1

with p WD PN
iD1 pi. We will denote cov.y/ by †, and take it to be positive

definite (p.d.), so no indicator is redundant. We will let †ii WDcov.yi/. †ii is of
order pi � pi and it is of course p.d. as well. It is not necessary to have other
constraints on †ii; in particular it need not have a one-factor structure. Each block
yi is condensed into a composite, a scalar ci, by means of a conformable weight

4It should be pointed out that I see PLS’ mode B as one of a family of generalized canonical
variables estimation methods (Sect. 4.3.1), to be treated on a par with the others, without
necessarily claiming that mode B is the superior or inferior method. None of the methods will
be uniformly superior in every sensible aspect.
5Vectors and matrices will be distinguished from scalars by printing them in boldface.
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vector wi: ci WD w|
i yi. The composites will be normalized to have variance one:

var.ci/ D w|
i †iiwi D 1. The vector of composites c WD .c1I c2I c3I : : : I cN/ has

a p.d. covariance/correlation matrix denoted by Rc D �
rij
�

with rij D w|
i †ijwj

where †ij WDE.yi � Eyi/
�
yj � Eyj

�|
. A regression of yi on ci and a constant gives

a loading vector Li of order pi � 1:

Li WD E .yi � Eyi/ � .ci � Eci/ D E .yi � Eyi/ .yi � Eyi/
| wi D †iiwi (4.1)

So far all we have is a list of definitions but as yet no real model: there are no
constraints on the joint distribution of y apart from the existence of moments6 and
a p.d. covariance matrix. We will now impose our version of Wold’s fundamental
principle in soft modeling:

all information between the blocks is conveyed solely by the composites
We deviate from Wold’s original formulation in an essential way: whereas Wold

postulated that all information is conveyed by unobserved, even unobservable, latent
variables, we let the information to be fully transmitted by indices, by composites
of observable indicators. So we postulate the existence of weight vectors such that
for any two different blocks yi and yj

†ij D rijLiL
|
j (4.2)

D w|
i †ijwj � †iiwi � �†jjwj

�|

D corr
�
w|

i yi;w
|
j yj
�

� cov
�
yi;w

|
i yi
� �
�

cov
�
yj;w

|
j yj
��|

(4.3)

The cross-covariances between the blocks are determined by the correlation
between their corresponding composites and the loadings of the blocks on those
composites. Note that line (4.2) is highly reminiscent of the corresponding equation
for the basic design, with latent variables. There it would read �ij�i�

|
j with �ij

representing the correlation between the latent variables, with �i and �j capturing
the loadings. So the rank-one structure of the covariance matrices between
the blocks is maintained fully, without requiring the existence of N additional
unobservable variables.

We now have:

† D

2

6
6
6
6
6
4

†11 r12L1L
|
2 r13L1L

|
3 � r1NL1L

|
N

†22 r23L2L
|
3 � r2NL2L

|
N

� � �
†N�1;N�1 rN�1;NLN�1L

|
N

†NN

3

7
7
7
7
7
5

(4.4)

6A random sample of indicator-vectors and the existence of second order moments is sufficient
for the consistency of the estimators to be developed below; with the existence of fourth-order
moments we also have asymptotic normality.
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The appendix contains a proof of the fact that † is positive definite when and only
when the correlation matrix of the composites, Rc, is positive definite. Note that in a
Monte Carlo analysis we can choose the weight vectors (or loadings) and the values
of Rc independently.

We can add more structure to the model by imposing constraints on Rc. This is
done most conveniently by postulating a set of simultaneous equations to be satisfied
by c. We will call one subvector of c the exogenous composites, denoted by cexo, and
the remaining elements will be collected in cendo, the endogenous composites. There
will be conformable matrices B and C with B invertible such that

Bcendo D Ccexo C z (4.5)

It is customary to normalize B, i.e., all diagonal elements equal one (perhaps after
some re-ordering). The residual vector z has a zero mean and is uncorrelated with
cexo. In this type of (econometric) model the relationships between the exogenous
variables are usually not the main concern. The research focus is on the way
they drive the endogenous variables and the interplay or the feedback mechanism
between the latter as captured by a matrix B that has nonzero elements both above
and below the diagonal. A special case, with no feedback mechanism at all, is the
class of recursive models, where B has only zeros on one side of its diagonal, and
the elements of z are mutually uncorrelated. Here the coefficients in B and C can
be obtained directly by consecutive regressions, given the composites. For general
B this is not possible, since cendo is a linear function of z so that zi will typically be
correlated with every endogenous variable in the ith equation.7

Even when the model is not recursive, the matrices B and C will be postulated to
satisfy certain zero constraints (and possibly other types of constraints, but we focus
here on the simplest situation). So some Bij’s and Ckl’s are zero. We will assume that
the remaining coefficients are identifiable from a knowledge of the so-called reduced
form matrix …

… WD B�1C (4.6)

Note that

cendo D …cexo C B�1z (4.7)

so … is a matrix of regression coefficients. Once we have those, we should be able to
retrieve B and C from them. Identifiability is equivalent to the existence of certain
rank conditions on …, we will have more to say about them later on. We could
have additional constraints on the covariance matrices of cexo and z but we will not
develop that here, taking the approach that demands the least in terms of knowledge

7See Pearl (2009) for an in-depth causal analysis of simultaneous equations systems (based on and
extending (Haavelmo 1944), probably the best apologia of econometrics ever).
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about the relationships between the composites. It is perhaps good to note that
granted identifiability, the free elements in B and C can be interpreted as regression
coefficients, provided we replace the “explanatory” endogenous composites by their
regression on the exogenous composites. This is easily seen as follows:

cendo D .I � B/ cendo C Ccexo C z (4.8)

D .I � B/
�
…cexo C B�1z

�C Ccexo C z (4.9)

D .I � B/ .…cexo/ C Ccexo C B�1z (4.10)

where B�1z is uncorrelated with …cexo and cexo. So the free elements of .I � B/

and C can be obtained by a regression of cendo on …cexo and cexo, equation by
equation.8 Identifiability is here equivalent to invertibility of the covariance matrix
of the “explanatory” variables in each equation. A necessary condition for this to
work is that we cannot have more coefficients to estimate in each equation than the
total number of exogenous composites in the system.

We have for Rc

Rc D
�

cov .cexo/ cov .cexo/ � …|

…cov .cexo/ …| C B�1cov .z/ .B|/�1

�

(4.11)

Thanks to the structural constraints, the number of parameters in Rc could be
(considerably) less than 1

2
N.N�1/; potentially allowing for an increase in estimation

efficiency.
As far as † is concerned, the model is now completely specified.

4.2.1 Fundamental Properties of the Model and Wold’s
Fundamental Principle

Now define for each i the measurement error vector di via

yi � mean .yi/ D Li .ci � mean .ci// C di (4.12)

where Li D †ii wi, the loadings vector obtained by a regression of the indicators on
their composite (and a constant).

By construction di has a zero mean and is uncorrelated with ci. In what follows
it will be convenient to have all variables de-meaned, so we have yi D Lici C di: It
is easy to verify that:

8The estimation method based on these observations is called 2SLS, two-stage-least-squares, for
obvious reasons, and was developed by econometricians in the 1950s of the previous century.
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The measurement error vectors are mutually uncorrelated, and uncorrelated with
all composites:

Edid
|
j D 0 for all different i and j (4.13)

Edicj D 0 for all i and j (4.14)

It follows that Eyid
|
j D 0 for all different i and j. In addition:

cov .di/ D †ii � LiL
|
i (4.15)

The latter is also very similar to the corresponding expression in the basic design,
but we cannot in general have a diagonal cov.di/, because cov.di/wi is identically
zero (implying that the variance of w|

i di is zero, and therefore w|
i di D 0 with

probability one). The following relationships can be verified algebraically using
regression results, or by using conditional expectations formally (so even though
we use the formalism of conditional expectations and the notation, we do just mean
regression).

E .y1jc1/ D L1c1 (4.16)

because E.y1jc1/ DE.L1c1 C d1jc1/ D L1c1 C 0: Also note that

E .c1jy2; y3; : : : ; yN/ (4.17)

D E.E .c1jy2; y3; : : : ; yN ;d2;d3; : : : ;dN/ jy2; y3; : : : ; yN/ (4.18)

D E.E .c1jc2; c3; : : : ; cN ;d2;d3; : : : ;dN/ jy2; y3; : : : ; yN/ (4.19)

D E.E .c1jc2; c3; : : : ; cN/ jy2; y3; : : : ; yN/ (4.20)

D E .c1jc2; c3; : : : ; cN/ (4.21)

We use the “tower property” of conditional expectation on the second line. (In order
to project on a target space, we first project on a larger space, and then project
the result of this on the target space.) On the third line we use yi D Lici C di so
that conditioning on the yi’s and the di’s is the same as conditioning on the ci’s
and the di’s. The fourth line is due to zero correlation between the ci’s and the
di’s, and the last line exploits the fact that the composites are determined fully by
the indicators. So because E.y1jy2; y3; : : : ; yN/ DE.L1c1 C d1jy2; y3; : : : ; yN/ D
L1E.c1jy2; y3; : : : ; yN/ we have

E .y1jy2; y3; : : : ; yN/ D L1E .c1jc2; c3; : : : ; cN/ (4.22)

In other words, the best (least squares) predictor of a block of indicators given other
blocks is determined by the best predictor of the composite of that block given the
composites of the other blocks, together with the loadings on the composite. This
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contrasts rather strongly with the model Wold used, with latent factors/variables f.
Here instead of L1E.c1jc2; c3; : : : ; cN/ we have

E .y1jy2; y3; : : : ; yN/ D �1E.E . f1j f2; f3; : : : ; fN/ jy2; y3; : : : ; yN/ (4.23)

Basically, we can follow the sequence of steps as above for the composites except
the penultimate step, from (4.20) to (4.21). I would maintain that the model as
specified answers more truthfully to the fundamental principle of soft modeling than
the basic design.

4.3 Estimation Issues

We will assume that we have the outcome of a Consistent and Asymptotically
Normal (CAN-)estimator for †. One can think of the sample covariance matrix
of a random sample from a population with covariance matrix † and finite fourth-
order moments (the latter is sufficient for asymptotic normality, consistency requires
finite second-order moments only). The estimators to be described are all (locally)
smooth functions of the CAN-estimator for †, hence they are CAN as well.

We will use a step-wise approach: first the weights, then the loadings and the
correlations between the composites, and finally the structural form coefficients.
Each step uses a procedure that is essentially non-iterative, or if it iterates, it is very
fast. So no explicit overall fit-criterion, although one could interpret the approach
as the first iterate in a block relaxation program that aims to optimize a positive
combination of target functions appropriate for each step. The view that a lack of
an overall criterion to be optimized is a major flaw is ill-founded. Estimators should
be compared on the basis of their distribution functions, the extent to which they
satisfy computational desiderata, and the induced quality of the predictions. There
is no theorem, and their cannot be one, to the effect that estimators that optimize
a function are better than those that are not so motivated. For composites a proper
comparison between the “step-wise” (partial) and the “global” approaches is still
open. Of the issues to be addressed two stand out: efficiency in case of a proper,
correct specification, and robustness with respect to distributional assumptions and
specification errors (the optimization of a global fitting function that takes each and
every structural constraint seriously may not be as robust to specification errors as a
step-wise procedure).

4.3.1 Estimation of Weights, Loadings, and Correlations

The only issue of some substance in this section is the estimation of the weights.
Once they are available, estimates for the loadings and correlations present them-
selves: the latter are estimated via the correlation between the composites, the
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former by a regression of each block on its corresponding composite. One could
devise more intricate methods but in this stage there seems little point in doing so.

To estimate the weights we will use generalized Canonical Variables (CV’s)
analysis.9 This includes of course the approach proposed by Wold, the so-called
mode B estimation method. Composites simply are canonical variables. Any
method that yields CV’s matches naturally, “perfectly,” with the model. We will
describe some of the methods while applying them to † and show that they do
indeed yield the weights. A continuity argument then gives that when they are
applied to the CAN-estimator for † the estimators for the weights are consistent
as well. Local differentiability leading to asymptotic normality is not difficult to
establish either.10

For notational ease we will employ a composites model with three blocks,N D 3,
but that is no real limitation. Now consider the covariance matrix, denoted by R .v/,
of v|1y1, v|2y2, and v|3y3 where each vi is normalized (var

�
v|i yi

� D 1). So

R .v/ WD
2

4
1 v|1 †12v2 v|1 †13v3

v|1 †12v2 1 v|2 †23v3

v|1 †13v3 v|2 †23v3 1

3

5 : (4.24)

Canonical variables are composites whose correlation matrix has “maximum dis-
tance” to the identity matrix of the same size. They are “collectively maximally
correlated.” The term is clearly ambiguous for more than two blocks. One program
that would seem to be natural is to maximize with respect to v

z .v/ WD abs .R12/ C abs .R13/ C abs .R23/ (4.25)

subject to the usual normalizations. Since

abs
�
Rij
� D abs

�
rij
� � abs

�
v|i †iiwi

� � abs
�
v|j †jjwj

�
(4.26)

we know, thanks to Cauchy–Schwarz, that

abs
�
v|i †iiwi

� D abs

�

v|i †
1
2

ii †
1
2

iiwi

	

�
q

v|i †
1
2

ii †
1
2

ii vi � w|
i †

1
2

ii †
1
2

iiwi (4.27)

D
q
v|i †iivi � w|

i †iiwi D 1 (4.28)

with equality if and only if vi D wi (ignoring irrelevant sign differences). Observe
that the upper bound can be reached for vi D wi for all terms in which vi appears,

9Kettenring (1971) is the reference for generalized canonical variables.
10These statements are admittedly a bit nonchalant if not cavalier, but there seems little to gain by
elaborating on them.
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so maximization of the sum of the absolute correlations gives w: A numerical,
iterative routine11 suggests itself by noting that the optimal v1 satisfies the first order
condition

0 D sgn .R12/ � †12v2 C sgn .R13/ � †13v3 � l1†11v1 (4.29)

where l1 is a Lagrange multiplier (for the normalization), and two other quite
similar equations for v2 and v3: So with arbitrary starting vectors one could solve
the equations recursively for v1, v2, and v3, respectively, updating them after each
complete round or at the first opportunity, until they settle down at the optimal value.
Note that each update of v1 is obtainable by a regression of a “sign-weighted sum”

sgn .R12/ � v|2y2 C sgn .R13/ � v|3y3 (4.30)

on y1, and analogously for the other weights. This happens to be the classical form
of PLS’ mode B.12 For † we do not need many iterations, to put it mildly: the update
of v1 is already w1, as straightforward algebra will easily show. And similarly for
the other weight vectors. In other words, we have in essentially just one iteration a
fixed point for the mode B equations that is precisely w.

If we use the correlations themselves in the recursions instead of just their signs,
we regress the “correlation weighted sum”

R12 � v|2y2 C R13 � v|3y3 (4.31)

on y1 (and analogously for the other weights), and end up with weights that
maximize

z .v/ WD R2
12 C R2

13 C R2
23 (4.32)

the simple sum of the squared correlations. Again, with the same argument, the
optimal value is w.

Observe that for this z .v/ we have

tr
�
R2
� D 2 � z .v/ C 3 D

3P

iD1

�2
i (4.33)

where �i WD �i .R .v// is the ith eigenvalue of R .v/. We can take other functions of
the eigenvalues, in order to maximize the difference between R .v/ and the identity
matrix of the same order. Kettenring (1971) discusses a number of alternatives. One

11With † one does not really need an iterative routine of course: †ij D rij†iiwiw
|

j †jj can be
solved directly for the weights (and the correlation). But in case we just have an estimate, an
algorithm comes in handy.
12See chapter two of Dijkstra (1981).
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of them minimizes the product of the �i’s, the determinant of R .v/, also known as
the generalized variance. The program is called GENVAR. Since

PN
iD1 �i is always

N (three in this case) for every choice of v, GENVAR tends to make the eigenvalues
as diverse as possible (as opposed to the identity matrix where they are all equal to
one). The determinant of R .v/ equals

�
1 � R2

23

�
, which is independent of v1, times

1 � 

R12 R13

�
�

1 R23

R23 1

��1 �
R12

R13

�

(4.34)

D 1 � �
v|1 †11w1

�2 

r12v

|
2 †22w2 r13v

|
3 †33w3

�
�

1 R23

R23 1

��1 �
r12v

|
2 †22w2

r13v
|
3 †33w3

�

where the last quadratic form does not involve v1 either and we have with the usual
argument that GENVAR produces w also. See Kettenring (1971) for an appropriate
iterative routine (this involves the calculation of ordinary canonical variables of yi
and the .N � 1/-vector consisting of the other composites).

Another program is MAXVAR, which maximizes the largest eigenvalue. For
every v one can calculate the linear combination of the corresponding composites
that best predicts or explains them: the first principal component of R .v/. No
other set is as well explained by the first principal component as the MAXVAR
composites. There is an explicit solution here, no iterative routine is needed for
the estimate of †, if one views the calculation of eigenvectors as non-iterative, see
Kettenring (1971) for details.13 One can show again that the optimal v equals w
when MAXVAR is applied to †, although this requires a bit more work than for
GENVAR (due to the additional detail needed to describe the solution).

As one may have expected, there is also MINVAR, the program aimed at
minimizing the smallest eigenvalue (Kettenring 1971). The result is a set of
composites with the property that no other set is “as close to linear dependency”
as the MINVAR set. We also have an explicit solution, and w is optimal again.

4.3.2 Mode A and Mode B

In the previous subsection we recalled that mode B generates weight vectors by
iterating regressions of certain weighted sums of composites on blocks. There is
also mode A (and a mode C which we will not discuss), where weights are found
iteratively by reversing the regressions: now blocks are regressed on weighted sums
of composites. The algorithm generally converges, and the probability limits of

13This is true when applied to the estimate for † as well. With an estimate the other methods
will usually require more than just one iteration (and all programs will produce different results,
although the differences will tend to zero in probability).
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the weights can be found as before by applying mode A to †. If we denote the
probability limits (plims) of the (normalized) mode A weights by ewi, we have in the
generic case that yi is regressed on

P
j¤isgn(cov.ew|

i yi, ew
|
j yj/)�ew|

j yj so that

ewi / P

j¤i

sgn.cov.ew|
i yi;ew

|
j yj// � †ijewj (4.35)

D P

j¤i

sgn.cov.ew|
i yi;ew

|
j yj// � rijLiL

|
j ewj (4.36)

D Li �
 
P

j¤i
sgn.cov.ew|

i yi;ew
|
j yj// � rijL|

j ewj

!

(4.37)

and so

ewi / Li; infactewi D 1
q
L|
i †iiLi

Li (4.38)

An immediate consequence is that the plim of mode A’s correlation,erij, equals

erij D ew|
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One would expect this to be smaller in absolute value than rij, and so it is, since
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because of Cauchy–Schwarz. In general, mode A’s composites,ec, will not satisfy
Becendo D Cecexo Cez withez uncorrelated withecexo. Observe that we haveerij D rij
when and only when †iiwi / wi & †jjwj / wj, in which case each composite is a
principal component of its corresponding block.

For the plim of the loadings,eLi, we note

eLi D 1
q
L|
i †iiLi

†iiLi (4.42)

So mode A’s loading vector is in the limit proportional to the true vector when and
only when †iiwi / wi.
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To summarize:

1. Mode A will tend to underestimate the correlations in absolute value.14

2. The plims of the correlations between the composites for Mode A and Mode B
will be equal when and only when each composite is a principal component of
its corresponding block, in which case we have a perfect match between a model
and two modes as far as the relationships between the composites are concerned.

3. The plims of the loading vectors for Mode A and Mode B will be proportional
when and only when each composite is a principal component of its correspond-
ing block.

A final observation: we can “correct” mode A to yield the right results in the general
situation via

†�1
ii ewi

q
ew|

i †�1
ii ewi

D wi (4.43)

and

ewi
q
ew|

i †�1
ii ewi

D Li (4.44)

4.3.3 Estimation of the Structural Equations

Given the estimate of Rc we now focus on the estimation of Bcendo D Ccexo C z:
We have exclusion constraints for the structural form matrices B and C, i.e., certain
coefficients are a priori known to be zero. There are no restrictions on cov.z/, or if
there are, we will ignore them here (for convenience, not as a matter of principle).
This seems to exclude Wold’s recursive system where the elements of B on one
side of the diagonal are zero, and the equation-residuals are uncorrelated. But we
can always regress the first endogenous composite cendo;1 on cexo, and cendo;2 on
[cendo;1I cexo], and cendo;3 on [cendo;1I cendo;2I cexo] et cetera. The ensuing residuals are
by construction uncorrelated with the explanatory variables in their corresponding
equations, and by implication they are mutually uncorrelated. In a sense, there are
no assumptions here, the purpose of the exercise (prediction of certain variables
using a specific set of predictors) determines the regression to be performed; there
is also no identifiability issue.15

14A working paper version of this paper said that the elements of the mode A loading vector
would always be “larger” than the corresponding true values. I am obliged to Michel Tenenhaus
for making me realize that the statement was not true.
15See Dijkstra (2014) for further discussion of Wold’s approach to modeling. There is a subtle
issue here. One could generate a sample from a system with B lower-triangular, a full matrix C
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Now consider P, the regression matrix obtained from regressing the (estimated)
endogenous composites on the (estimated) exogenous composites. It estimates …,
the reduced form matrix B�1C. We will use P; and possible other functions of Rc,
to estimate the free elements of B and C. There is no point in trying when …

is compatible with different values of the structural form matrices. So the crucial
question is whether … D B�1C, or equivalently B… D C, can be solved uniquely
for the free elements of B and C. Take the ith equation16

Bi�… D Ci� (4.45)

where the ith row of B, Bi�, has 1 in the ith entry (normalization) and possibly some
zeros elsewhere, and where the ith row of C, Ci�, may also contain some zeros. The
free elements in Ci� are given when those in Bi� are known, and the latter are to be
determined by the zeros in Ci�. More precisely

B.i;kWBik free or unit/ � ….kWBik free or unit; jWCijD0/ D 0 (4.46)

So we have a submatrix of …, the rows correspond with the free elements (and the
unit) in the ith row of B; and the columns with the zero elements in the ith row
of C. This equation determines B.i;kWBik free or unit/ uniquely, apart from an irrelevant
nonzero multiple, when and only when the particular submatrix of … has a rank
equal to its number of rows minus one. This is just the number of elements to be
estimated in the ith row of B. To have this rank requires the submatrix to have at
least as many columns. So a little thought will give that a necessary condition for
unique solvability, identifiability, is that we must have as least as many exogenous
composites in the system as coefficients to be estimated in any one equation. We
emphasize that this order condition as it is traditionally called is indeed nothing
more than necessary.17 The rank condition is both necessary and sufficient.

and a full, non-diagonal covariance matrix for z. Then no matter how large the sample size, we
can never retrieve the coefficients (apart from those of the first equation which are just regression
coefficients). The regressions for the other equations would yield values different from those we
used to generate the observations, since the zero correlation between their equation-residuals would
be incompatible with the non-diagonality of cov(z).
16What follows will be old hat for econometricians, but since non-recursive systems are relatively
new for PLS-practitioners, some elaboration could be meaningful.
17As an example consider a square B with units on the diagonal but otherwise unrestricted, and a
square C of the same dimensions, containing zeros only except the last row, where all entries are
free. The order condition applies to all equations but the last, but none of the coefficients can be
retrieved from …. This matrix is, however, severely restricted: it has rank one. How to deal with
this and similar situations is handled by Bekker et al. (1994).
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A very simple example, which we will use in a small Monte Carlo study in the
next subsection is as follows. Let

�
1 b12

b21 1

� �
cendo;1

cendo;2

�

D
�
c11 c12 0 0

0 0 c23 c24

�
2

6
6
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cexo;2

cexo;3

cexo;4

3

7
7
5C

�
z1

z2

�

(4.47)

with 1 � b12b21 ¤ 0. The order conditions are satisfied: each equation has three free
coefficients and there are four exogenous composites.18 Note that

… D 1

1 � b12b21

�
c11 c12 �b12c23 �b12c24

�b21c11 �b21c12 c23 c24

�

(4.48)

The submatrix of … relevant for an investigation into the validity of the rank
condition for the first structural form equation is

�
…13 …14

…23 …24

�

D 1

1 � b12b21

��b12c23 �b12c24

c23 c24

�

(4.49)

It should have rank one, and it does so in the generic case, since its first row is
a multiple of its second row.19 Note that we cannot have both c23 and c24 zero.
Clearly, b12 can be obtained from … via �…13=…23 or via -…14=…24. A similar
analysis applies to the second structural form equation. We note that the model
imposes two constraints on …: …11…22 �…12…21 D 0 and …13…24 �…14…23 D 0,
in agreement with the fact that the 8 reduced form coefficients can be expressed in
terms of 6 structural form parameters. For an extended analysis of the number and
type of constraints that a structural form imposes on the reduced form see Bekker
and Dijkstra (1990) and Bekker et al. (1994).

It will be clear that the estimate P of … will not in general satisfy the rank
conditions (although we do expect them to be close for sufficiently large samples),
and using either �P13=P23 or �P14=P24 as an estimate for b12 will give different
answers. Econometric methods construct explicitly or implicitly compromises
between the possible estimates. 2SLS, as discussed above is one of them. See
Dijkstra and Henseler (2015a,b) for a specification of the relevant formula (formula

18With 2SLS cendo;2 in the first equation is in the first stage replaced by its regression on the four
exogenous variables. In the second stage we regress cendo;1 on the replacement for cendo;2 and two
exogenous variables. So the regression matrix with three columns in this stage is spanned by four
exogenous columns, and we should be fine in general. If there were four exogenous variables on
the right-hand side, the regression matrix in the second stage would have five columns, spanned by
only four exogenous columns, the matrix would not be invertible and 2SLS (and all other methods
aiming for consistency) would break down.
19For more general models one could ask MATLAB, say, to calculate the rank of the matrices,
evaluated for arbitrary values. A very pragmatic approach would be to just run 2SLS. If it breaks
down and gives a singularity warning, one should analyze the situation. Otherwise you are fine.
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(23)) for 2SLS that honors the motivation via two regressions. Here we will outline
another approach based on Dijkstra (1989) that is close to the discussion about
identifiability.

Consider a row vector20 with ith subvector Bi�P � Ci�. If P would equal … we
could get the free coefficients by making Bi�P � Ci� zero. But that will not be the
case. So we could decide to choose values for the free coefficients that make each
Bi�P � Ci� as “close to zero as possible.” One way to implement that is to minimize
a suitable quadratic form subject to the exclusion constraints and normalizations.
We take

�
vec



.BP � C/|

��| �
�
W˝bRexo

�
� vec



.BP � C/|

�
(4.50)

Here ˝ stands for Kronecker’s matrix multiplication symbol, bRexo is the estimated
p.d. correlation matrix of the estimated exogenous composites, W is a p.d. matrix
with as many rows and columns as there are endogenous composites, and the
operator “vec” stacks the columns of its matrix-argument one underneath the other,
starting with the first. If we take a diagonal matrix W the quadratic form disin-
tegrates into separate quadratic forms, one for each subvector, and minimization
yields in fact 2SLS estimates. A non-diagonal W tries to exploit information about
the covariances between the subvectors. For the classical econometric simultaneous
equation model it is true that vec



.BP � C/|

�
is asymptotically normal with zero

mean and covariance matrix cov.z/ ˝R�1
exo divided by the sample size, adapting the

notation somewhat freely. General estimation theory tells us to use the inverse of an
estimate of this covariance matrix in order to get asymptotic efficiency. So W should
be the inverse of an estimate for cov.z/. The latter is traditionally estimated by the
obvious estimate based on 2SLS. Note that the covariances between the structural
form residuals drive the extent to which the various optimizations are integrated.
There is no or little gain when there is no or little correlation between the elements
of z. This more elaborate method is called 3SLS.

We close with some observations. Since the quadratic form in the parameters is
minimized subject to zero constraints and normalizations only, there is an explicit
solution, see Dijkstra (1989, section 5), for the formulae.21 If the fact that the
weights are estimated can be ignored, there is also an explicit expression for
the asymptotic covariance matrix, both for 2SLS and 3SLS. But if the sampling
variation in the weights does matter, this formula may not be accurate and 3SLS
may not be more efficient than 2SLS. Both methods are essentially non-iterative
and very fast, and therefore suitable candidates for bootstrapping. One potential
advantage of 2SLS over 3SLS is that it may be more robust to model specification
errors, because as opposed to its competitor, it estimates equation by equation, so
that an error in one equation need not affect the estimation of the others.

20This is in fact, see below:
�
vec



.BP � C/|

��|
.

21For the standard approach and the classical formulae, see, e.g., Ruud (2000)
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4.3.4 Some Monte Carlo Results

We use the setup from Dijkstra and Henseler (2015a,b) adapted to the present
setting. We have
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(4.51)

All variables have zero mean, and we will take them jointly normal. Cov.cexo/ has
ones on the diagonal and 0:50 everywhere else; the variances of the endogenous
composites are also one and we take cov.cendo;1;cendo;2/ D p

0:50. The values as
specified imply for the covariance matrix for the structural form residuals z:

cov .z/ D
�

0:5189 �0:0295

�0:0295 0:1054

�

(4.52)

Note that the correlation between z1 and z2 is rather small, �0:1261, so the setup has
the somewhat unfortunate consequence to potentially favor 2SLS. The R-squared
for the first reduced form equation is 0:3329 and for the second reduced form
equation this is 0:7314.

Every composite is built up by three indicators, with a covariance matrix that
has ones on the diagonal and 0:49 everywhere else. This is compatible with a one-
factor model for each vector of indicators but we have no use nor need for that
interpretation here.

The composites .cexo;1;cexo;2;cexo;3;cexo;4;cendo;1;cendo;2/ need weights. For the first
and fourth we take weights proportional to Œ1; 1; 1�. For the second and fifth the
weights are proportional to Œ1; 2; 3� and for the third and sixth they are proportional
to Œ1; 4; 9�. There are no deep thoughts behind these choices.

We get the following weights (rounded to two decimals for readability):
Œ0:41; 0:41; 0:41� for blocks one and four, Œ0:20; 0:40; 0:60� for blocks two and
five, and Œ0:08; 0:33; 0:74� for blocks three and six.

The loadings are now given as well: Œ0:81; 0:81; 0:81� for blocks one and four,
Œ0:69; 0:80; 0:90� for blocks two and five, and Œ0:61; 0:74; 0:95� for blocks three and
six.

One can now calculate the 18 by 18 covariance/correlation matrix † and its
unique p.d. matrix square root †1=2. We generate samples of size 300, which
appears to be relatively modest given the number of parameters to estimate. A
sample of size 300 is obtained via †1=2�randn.18; 300/ : We repeat this ten
thousand times, each time estimating the weights via MAXVAR,22 the loadings

22One might as well have used mode B of course, or any of the other canonical variables
approaches. There is no fundamental reason to prefer one to the other. MAXVAR was available,
and is essentially non-iterative.
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via regressions and the correlations in the obvious way, and all structural form
parameters via 2SLS and 3SLS using standardized indicators.23

The loadings and weights are on the average slightly underestimated, see Dijkstra
(2015) for some of the tables: when rounded to two decimals the difference is at
most 0:01. The standard deviations of the weights estimators for the endogenous
composites are either the largest or the smallest: for the weights of cendo;1 we have
resp. Œ0:12; 0:12; 0:11� and for cendo;2 Œ0:04; 0:04; 0:04�; the standard deviations for
the weights of the exogenous composites are, roughly, in between. And similarly
for the standard deviations for the loadings estimators: for the loadings on cendo;1 we
have resp. Œ0:08; 0:07; 0:05� and for cendo;2 Œ0:05; 0:04; 0:01�; the standard deviations
for the loadings on the exogenous composites are again, roughly, in between.

The following table gives the results for the coefficients in B and C, rounded to
two decimals:

Value Mean 2SLS Mean 3SLS std 2SLS std 3SLS

b12 �0:25 �0:26 �0:26 0:08 0:08

b21 �0:50 �0:50 �0:50 0:05 0:05

c11 �0:30 �0:29 �0:28 0:05 0:05

c12 C0:50 C0:49 C0:49 0:06 0:06

c23 C0:50 C0:49 C0:49 0:03 0:03

c24 C0:25 C0:25 C0:25 0:03 0:03

Clearly, for the model at hand 3SLS has nothing to distinguish itself positively
from 2SLS24 (its standard deviations are only smaller than those of 2SLS when we
use three decimals). This might be different when the structural form residuals are
materially correlated.

We also calculated, not shown, for each of the 10;000 samples of size 300 the
theoretical (asymptotic) standard deviations for the 3SLS estimators. They are all
on the average 0:01 smaller than the values in the table, they are relatively stable,
with standard deviations ranging from 0:0065 for b12 to 0:0015 for c24. They are not
perfect but not really bad either.

It would be reckless to read too much into this small and isolated study, for one
type of distribution. But the approach does appear to be feasible.

23The whole exercise takes about half a minute on a slow machine: 4CPU 2.40 Ghz; RAM 512 MB.
24It is remarkable that the accuracy of the 2SLS and 3SLS estimators is essentially as good, in three
decimals, as those reported by Dijkstra and Henseler (2015a,b) for Full Information Maximum
Likelihood (FIML) for the same model in terms of latent variables, i.e., FIML as applied to the
true latent variable scores. See Table 2 on p. 18 there. When the latent variables are not observed
directly but only via indicators, the performance of FIML clearly deteriorates (stds are doubled or
worse).
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4.4 Testing the Composites Model

In this section we sketch four more or less related approaches to test the appropri-
ateness or usefulness of the model. In practice one might perhaps want to deploy
all of them. Investigators will easily think of additional, “local” tests, like those
concerning the signs or the order of magnitude of coefficients et cetera.

A thorny issue that should be mentioned here is capitalization on chance, which
refers to the phenomenon that in practice one runs through cycles of model testing
and adaptation until the current model tests signal that all is well according to
popular rules-of-thumb.25 This makes the model effectively stochastic, random.
Taking a new sample and going through the cycles of testing and adjusting all over
again may well lead to another model. But when we give estimates of the distribution
functions of our estimators we imply that this helps to assess how the estimates
will vary when other samples of the same size would be employed, while keeping
the model fixed. It is tempting, but potentially very misleading, to ignore the fact
that the sample (we/you, actually) favored a particular model after a (dedicated)
model search, see Freedman et al. (1988), Dijkstra and Veldkamp (1988), Leeb
and Pötscher (2006), and Freedman (2009)26. It is not clear at all how to properly
validate the model on the very same data that gave it birth, while using test statistics
as design criteria.27 Treating the results conditional on the sample at hand, as purely
descriptive (which in itself may be rather useful, Berk 2008), or testing the model
on a fresh sample (e.g., a random subset of the data that was kept apart when the
model was constructed), while bracing oneself for a possibly big disappointment,
appear to be the best or most honest responses.

25“Capitalization on chance” is sometimes used when “small-sample-bias” is meant. That is quite
something else.
26Freedman gives the following example. Let the 100 � 51 matrix Œy;X� consists of independent
standard normals. So there is no (non-) linear relationship whatsoever. Still, a regression of y on X
can be expected to yield an R-square of 0:50. On the average there will be 5 regression coefficients
that are significant at 10%. If we keep the corresponding X-columns in the spirit of “exploratory
research” and discard the others, a regression could easily give a decent R-square and “dazzling t-
statistics” (Freedman 2009, p.75). Note that here the “dedicated” model search consisted of merely
two regression rounds. Just think of what one can accomplish with a bit more effort, see also, e.g.,
Dijkstra (1995).
27At one point I thought that “a way out” would be to condition on the set of samples that favor the
chosen model using the same search procedure (Dijkstra and Veldkamp 1988): if the model search
has led to the simplest true model, the conditional estimator distribution equals, asymptotically,
the distribution that the practitioner reports. This conditioning would give substance to the retort
given in practice that “we always condition on the given model.” But the result referred to says
essentially that we can ignore the search if we know it was not needed. So much for comfort. It is
even a lot worse: Leeb and Pötscher (2006) show that convergence of the conditional distribution
is only pointwise, not uniform, not even on compact subsets of the parameter space. The bootstrap
cannot alleviate this problem, Leeb and Pötscher (2006), Dijkstra and Veldkamp (1988).
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4.4.1 Testing Rank Restrictions on Submatrices

The covariance matrix of any subvector of yi with any choice from the other
indicators has rank one. So the corresponding regression matrix has rank one.
To elaborate a bit, since E.c1jc2; c3; : : : ; cN/ is a linear function of y the formula
E.y1jy2; y3; : : : ; yN/ D L1E.c1jc2; c3; : : : ; cN/ tells us that the regression matrix
is a column times a row vector. Therefore its p1 � . p � p1/ elements can be
expressed in terms of just . p � 1/ parameters (one row of . p � p1/ elements plus
. p1 � 1/ proportionality factors). This number could be even smaller when the
model imposes structural constraints on Rc as well. A partial check could be
performed using any of the methods developed for restricted rank testing. A possible
objection could be that the tests are likely to be sensitive to deviations from the
Gaussian distribution, but jackknifing or bootstrapping might help to alleviate this.
Another issue is the fact that we get many tests that are also correlated, so that
simultaneous testing techniques based on Bonferroni or more modern approaches
are required.28

4.4.2 Exploiting the Difference Between Different Estimators

We noted that a number of generalized canonical variable programs yield identical
results when applied to a † satisfying the composites factor model. But we expect
to get different results when this is not the case. So, when using the estimate for
† one might want to check whether the differences between, say PLS mode B and
MAXVAR (or any other couple of methods), are too big for comfort. The scale
on which to measure this could be based on the probability (as estimated by the
bootstrap) of obtaining a larger “difference” than actually observed.

4.4.3 Prediction Tests, via Cross-Validation

The path diagram might naturally indicate composites and indicators that are most
relevant for prediction. So it would seem to make sense to test whether the model’s
rank restrictions can help improve predictions of certain selected composites or
indicators. The result will not only reflect model adequacy but also the statistical
phenomenon that the imposition of structure, even when strictly unwarranted, can
help in prediction. It would therefore also reflect the sample size. The reference
for an elaborate and fundamental discussion of prediction and cross-validation in a
PLS-context is Shmueli et al. (2016).

28See, e.g., chapter 34 from DasGupta (2008).
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4.4.4 Global Goodness-of-Fit Tests

In SEM we test the model by assessing the probability value of a distance measure
between the sample covariance matrix S and an estimated matrix b† that satisfies the
model. Popular measures are

1

2
tr
�
S�1

�
S � b†

��2

(4.53)

and

tr
�
Sb†�1

�
� log

�
det
�
Sb†�1

��
� p (4.54)

They belong to a large class of distances, all expressible in terms of a suitable
function f :

pP

kD1

f
�
�k

�
S�1b†

��
: (4.55)

Here �k .�/ is the kth eigenvalue of its argument, and f is essentially a smooth real
function defined on positive real numbers, with a unique global minimum of zero at
the argument value 1.The functions are “normalized,” f

00

.1/ D 1, entailing that the
second-order Taylor expansions around 1 are identical.29 For the examples referred
to we have f .�/ D 1

2
.1 � �/2 and f .�/ D 1=�Clog.�/ � 1, respectively. Another

example is f .�/ D 1
2

.log .�//2, the so-called geodesic distance; its value is the

same whether we work with S�1b† or with Sb†�1. The idea is that when the model
fits perfectly, so S�1b† is the identity matrix, then all its eigenvalues equal one, and
conversely. This class of distances was first analyzed by Swain (1975).30 Distance
measures outside of this class are those induced by WLS with general fourth-order

moments based weight matrices,31 but also the simple ULS: tr
�
S � b†

�2

. We can

take any of these measures, calculate its value, and use the bootstrap to estimate
the corresponding probability value. It is important to pre-multiply the observation
vectors by b†

1
2 S� 1

2 before the bootstrap is implemented, in order to ensure that their
empirical distribution has a covariance matrix that agrees with the assumed model.

29The estimators based on minimization of these distances are asymptotically equivalent. The value
of the third derivative of f appears to affect the bias: high values tend to be associated with small
residual variances. So the first example, “GLS,” with f

000

.1/ D 0, will tend to underestimate these
variances more than the second example, “LISREL,” with f

000

.1/ D �4. See Swain (1975).
30Swain (1975). See also Dijkstra (1990).
31The manual of EQS, Bentler (2006) is a treasure trove with information on goodness-of-fit testing
with WLS, and Structural Equations Modeling generally. For related discussions, see Bentler and
Dijkstra (1985) and Wansbeek and Meijer (2000).
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For b† one could take in an obvious notation b†ii WD Sii and for i ¤ j

b†ij WDbrij � Siibwi �bw|
j Sjj: (4.56)

Herebrij D bw|
i Sijbwj if there are no constraints on Rc, otherwise it will be the ijth

element ofbRc. If S is p.d., then b† is p.d. (as follows from the appendix) and b†
1
2 S� 1

2

is well-defined.

4.5 Some Final Observations and Comments

In this chapter we outlined a model in terms of observables only while adhering to
the soft modeling principle of Wold’s PLS. Wold developed his methods against the
backdrop of a particular latent variables model, the basic design. This introduces N
additional unobservable variables which by necessity cannot in general be expressed
unequivocally in terms of the “manifest variables,” the indicators. However, we
can construct composites that satisfy the same structural equations as the latent
variables, in an infinite number of ways in fact. Also, we can design composites
such that the regression of the indicators on the composites yields the loadings. But
in the regular case we cannot have both.

Suppose y D ƒf C " with Ef"| D 0, ‚ WDcov."/ > 0, and ƒ has full column
rank. The p.d. cov.f/ will satisfy the constraints as implied by identifiable equations
like Bfendo D Cfexo C � with Efexo�| D 0. All variables have zero mean. Letbf, of
the same dimension as f, equal Fy for a fixed matrix F: If the regression of y onbf
yields ƒ we must have FƒD I because then

ƒ D E


y .Fy/|

� � Œcov .Fy/��1 D cov .y/F|ŒFcov .y/F|��1 (4.57)

Consequently

bf D F .ƒf C "/ D f C F" (4.58)

andbf has a larger covariance matrix then f (the difference is p.s.d., usually p.d.). One

example is32 F D �
ƒ|‚�1ƒ

��1
ƒ|‚�1 with cov

�
bf
�

�cov.f/ D �
ƒ|‚�1ƒ

��1
.

So, generally, if the regression of y on the composites yields ƒ, the covariance
matrices cannot be the same, and the composites cannot satisfy the same equations

32One can verify directly that the regression yields ƒ. Also note that here FƒD I.
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as the latent variables f.33 Conversely, if cov
�
bf
�

Dcov.f/, then the regression of y
on the composites cannot yield ƒ.

If we minimize E.y�ƒFy/| ‚�1 .y�ƒFy/ subject to cov.Fy/ Dcov.f/ we
get the composites that LISREL reports. We can generate an infinite number of
alternatives34 by minimizing E.f � Fy/| V .f � Fy/ subject to cov.Fy/ Dcov.f/ for
any conformable p.d. V. Note that each composite here typically uses all indicators.
Wold takes composites that combine the indicators per block. Of course, they
also cannot reproduce the measurement equations and the structural equations, but
the parameters can be obtained (consistently estimated) using suitable corrections
(PLSc.35)

Two challenging research topics present themselves: first, the extension of the
approach to more dimensions/layers, and second, the imposition of sign constraints
on weights, loadings, and structural coefficients, while maintaining as far as possible
the numerical efficiency of the approach.

Appendix

Here we will prove that † is positive definite when and only when the correlation
matrix of the composites, Rc, is positive definite. The “only when”-part is trivial:
The proof that {Rc is p.d.} implies {† is p.d.} is a bit more involved. It is helpful
to note for that purpose that we may assume that each †ii is a unit matrix (pre-

multiply and post-multiply by a block-diagonal matrix with †
� 1

2

ii on the diagonal,
and redefine wi such that w|

i wi D 1 for each i). So if we want to know whether the
eigenvalues of † are positive it suffices to study the eigenvalue problem e†x D�x:

2

6
6
6
6
6
4

Ip1 r12w1w
|
2 r13w1w

|
3 � r1Nw1w

|
N

Ip2 r23w2w
|
3 � r2Nw2w

|
N

� � �
IpN�1 rN�1;NwN�1w

|
N

IpN

3

7
7
7
7
7
5

2

6
6
6
6
6
4

x1

x2

�
xN�1

xN

3

7
7
7
7
7
5

D �

2

6
6
6
6
6
4

x1

x2

�
xN�1

xN

3

7
7
7
7
7
5

(4.59)

33One may wonder about the “best linear predictor” of f in terms of y: E.fj y/. Since f equals E.fj y/

plus an uncorrelated error vector, cov.E .fj y// is not “larger” but “smaller” than cov.f/. So E.fj y/

satisfies neither of the two desiderata.
34Dijkstra (2015).
35PLSc exploits the lack of correlation between some of the measurement errors within blocks. It
is sometimes equated to a particular implementation (e.g., assuming all errors are uncorrelated,
and a specific correction), but that is selling it short. See Dijkstra (2011, 2013a,b) and Dijkstra and
Schermelleh-Engel (2014).
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with obvious implied definitions. Observe that every nonzero solution of

2

6
6
6
6
6
4

w|
1 0 � � 0
0 w|

2 0 � 0
� � � � �
� � 0 w|

N�1 0
0 � � 0 w|

N

3

7
7
7
7
7
5

2

6
6
6
6
6
4

x1

x2

�
xN�1

xN

3

7
7
7
7
7
5

D 0 (4.60)

corresponds with � D 1, and there are
PN

iD1 pi � N linearly independent solutions.
The multiplicity of the root � D 1 is therefore

PN
iD1 pi � N and we need to find N

more roots. By assumption Rc has N positive roots. Let u be an eigenvector with
eigenvalue �, so Rcu D��u. We have

e†

2

6
6
4

u1w1

u2w2

�
uNwN

3

7
7
5 D

2

6
6
4

.u1 C r12u2 C � C r1NuN/w1

.r21u1 C u2 C � C r2NuN/w2

�
.rN1u1 C rN2u2 C � C uN/wN

3

7
7
5 D �

2

6
6
4

u1w1

u2w2

�
uNwN

3

7
7
5 (4.61)

In other words, the remaining eigenvalues are those of Rc; and so all eigenvalues of
e† are positive. Therefore † is p.d., as claimed.

Note for the determinant of † that

det .†/ D det .Rc/ � det .†11/ � det .†22/ � det .†33/ � : : : � det .†NN/ (4.62)

and so the Kullback–Leibler’ divergence between the Gaussian density for block-
independence and the Gaussian density for the composites model is � 1

2
log(det.Rc/).

It is well known that 0 �det.Rc/ � 1, with 0 in case of a perfect linear relationship
between the composites, so Kullback–Leibler divergence is infinitely large, and 1 in
case of zero correlations between all composites, with zero divergence.
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