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Foreword

I am immensely honored to have been asked to provide a foreword to this volume.
An aspiring high-school mathematics teacher, young Karl Jöreskog, is lured

into graduate study by celebrated econometrician Herman Wold. In the course of
his studies, Jöreskog turns from the mathematics that he loves to statistics. Under
Wold’s direction and encouragement, Jöreskog derives a maximum likelihood
(ML) approach to estimating confirmatory factor analysis models which yields an
inferential �2 distributed test statistic. Wold, a long-time advocate for least squares
estimation methods, invents partial least squares (PLS) path modeling as a tool for
approximating Jöreskog’s results but without the heavy distributional, computing
power and prior knowledge demands of ML estimation. From this origin story,
some have concluded that PLS path modeling is inherently a lesser method, and
now an anachronism which serves little purpose, given the cheap availability of
computing resources and the development of factor analysis estimation methods
that are increasingly robust to nonnormal distributions and that address an ever-
expanding assortment of complex research situations. Simulation research, using
populations defined by factor models, reaches the unsurprising conclusion that the
factor-based approach to SEM performed better than composite-based approaches
such as PLS path modeling.

This general theme, describing factor-based methods as “the real thing” and
belittling composite-based alternatives as cheap imitations, runs through a great deal
of the methods literature across the social sciences, and no wonder. In the earliest
years of the twentieth century, the pioneering works of Charles Spearman had
already bound together psychological measurement and factor analysis, making any
other analytical method seem deficient. But this identification of “factor analysis”
with “measurement” itself hinges on an anachronistic (and now somewhat quaint)
philosophy of science. Spearman the empiricist argued that the common factor he
extracted or fabricated from data, a common factor which Spearman labeled “gen-
eral intelligence” or g, was in fact general intelligence itself. Intelligence, indeed,
could be nothing else except the common factor resulting from this analysis of error-
prone data, because the realm of legitimate scientific inquiry begins and ends with
observable data. In philosophy of science circles, empiricism has long ago broadly
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given way to scientific realism, a perspective that takes unobservable conceptual
variables—attributes like intelligence, customer satisfaction, or attitude—to be real
entities with their own existence independent of data and statistical models. From
a realist perspective, both the common factors in factor-based models and the
composites in PLS path modeling are only proxies or empirical substitutes for the
actual psychological attributes. Making inferences about the actual psychological
attribute on the basis of a statistical model then requires that the researcher establish
the validity of each proxy. The mathematics of the indeterminacy of factors and the
unreliability of composites give reason enough for researchers to be cautious about
the quality of both kinds of proxies.

I think it is very important to have alternatives. When there is only one way
to do something, there is a tendency to just accept the limitations that come
with that single path. It can be hard to even imagine a better way, even if the
one available approach is actually rather weak. If there are alternatives, on the
other hand, it can be easier to recognize the shortcoming of any one method by
comparing it with the others. Moreover, if there are alternatives, then it may be
possible to use the strengths of one method to offset or bypass the weaknesses
of another method. For example, it was difficult to obtain ML estimates of the
“interbattery factor model” until Michael Browne showed how to obtain them by
transforming parameter estimates from canonical correlation, a composite-based
method. More recently, Theo Dijkstra and colleagues have obtained consistent
estimates of factor model parameters as a transformation of PLS path modeling
parameter estimates, suggesting the possibility of combining factor-based and
composite-based approaches within the same structural equation model.

We need to bring the composite-based approaches to SEM and the factor-based
approach into the kind of relationship that can enable a true cross-pollination.
Viewed as peers—mathematically different tools for accomplishing the same
very challenging task of learning about the behavior of unobserved conceptual
variables—the methods will be able to borrow from one another and to be inspired
by one another, just as Wold and Jöreskog inspired each other.

In order to be a genuine participant in such a relationship, the PLS path modeling
methodology must continue to grow, evolve, and mature. If PLS path modeling
seems either moribund or stuck in the past, outside researchers will not expect to find
new insights there and may not bother to look. Unfortunately, PLS path modeling
endured a period of years which saw very little growth, even as the factor-based
approach to SEM raced ahead. So it is doubly important that new research and
advanced applications in this area be strongly encouraged.

These days, as it happens, it is hard to keep up with the pace of developments in
PLS path modeling. Many exceptional packages are available as either commercial
or open-source software, enabling researchers to learn by doing and to actively
confront the limits of the known. And as researchers have become more familiar
with these tools, they have been driven by need, by curiosity, and by competition to
tackle new challenges.

For example, one of the major challenges for SEM is dealing with
heterogeneity—different parameter values for different respondents—in all its many
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aspects. Researchers encounter heterogeneity as differences between known groups,
as interaction or moderation effects, as the result of clustering of observations, and
as mixtures of distributions within the same population. One by one, methods
pioneers have stepped up and provided PLS path modeling procedures to address
these issues, while still seeking to minimize distributional assumptions and thus
honor the original spirit of Herman Wold’s method.

Not every problem has a statistical solution. At the birth of PLS path modeling,
one of the virtues claimed for PLS path modeling was its small sample size
capabilities. In contrast to the large sample sizes required for maximum likelihood
factor analysis, it was noted that PLS path modeling could yield parameter estimates
and (jackknife or bootstrap) standard errors even when sample size was very small.
This confidence in the small-sample performance of PLS path modeling drew
upon a misunderstanding. Yes, PLS path modeling algorithms will function—will
yield results and not simply quit or crash—even when sample size is quite small,
but the quality and usefulness of such results will be poor. Simulation research,
drawing data from correctly specified composite-based populations, has shown
that researchers with small sample sizes are likely to be as well or better served
by creating simple unit-weight composites, rather than seeking optimized weights
through PLS path modeling. Bias in PLS path modeling parameter estimates can
itself be a function of sample size, with bias shrinking toward 0 as sample size
increases. No statistical method can turn a small amount of information into a large
amount.

Undoubtedly, the different approaches to SEM—factor-based and composite-
based—are encumbered with more than their share of controversy. Differing
viewpoints are deeply entrenched within the factor method and PLS path modeling
communities, and their roots run far back in the history of quantitative analysis. Still,
I think the recently rising volume on this controversy could be a very positive sign
for PLS path modeling. On the one hand, advocates for the factor-based approach to
SEM find in PLS path modeling something worth opposing. That demonstrates the
collective strength of the PLS path modeling community, even as it means that some
users will face additional opposition when sharing their work in some academic
journals. At the same time, old hands within the PLS path modeling community
may wonder if they still recognize the method that they once knew. Unless PLS path
modeling as a method is already perfect and complete, there must be a continuing
evolution. And there is—a ferment, a liveliness, and a dissatisfaction with the status
quo. That is the mark of a strong method, with both the opportunity and the energy
to keep growing.

In June 2015, I was privileged to participate in a conference at the University of
Sevilla in Spain. The conference ended with a panel session, and the session ended
with Christian Ringle asking all the panelists whether they thought the future of
PLS path modeling was bright—whether the future would see PLS path modeling
widely accepted and embraced. At that moment, I must admit, I was full of doubt.
The development of quantitative “measurement” procedures in the social sciences
was a key step in those fields being recognized as true sciences, and factor analysis
is still the core of psychometrics. So anything perceived as a threat to the dominance
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of the factor-based approach to SEM can still be perceived as an existential threat to
an entire research establishment and something that must be fiercely resisted.

Today, however, I have reason to be more optimistic. First, some of the flawed
ideas that have come down to us from the dawn of PLS path modeling are being left
behind. Some of these ideas were easy targets for critics of PLS path modeling,
allowing those critics to avoid dealing with the substance of the methodology.
Leaving those notions behind will mean that critics will face a method with
stronger foundations. Second, there is the diversity of contributions to the corpus
of research, counting not only studies of PLS path modeling itself, coming from
so many disciplines and so many parts of the world, but also work on related
composite-based methods like generalized structured component analysis (GSCA)
and regularized generalized canonical correlation analysis (RGCCA). This diversity
only enriches the pool of ideas from which researchers can draw to build a better
PLS path modeling. Given all of that, and given the usefulness of PLS path modeling
in helping both researchers and practitioners to address the real-world problems
confronting our planet, I can’t help but see a bright future for composite-based
approaches to SEM, including PLS path modeling.

Of course, the further development and growth of PLS path modeling is itself
only a step toward a larger goal. The world faces a diversity of real problems.
Many of these problems seem to involve causal elements that are best framed
as unobserved conceptual variables. Structural equation modeling broadly offers
an exceptional family of tools for addressing these problems. SEM as a family
is stronger when all the members of that family are strong and robust, ready to
challenge each other and to contribute ideas to the further development of all
methods. Researchers facing the world’s real problems need the best possible
portfolio of tools to help them address these issues, to help them to make the world
a better place. A stronger and more vibrant PLS path modeling makes for a stronger
structural equation modeling, which in turn makes for a more hopeful tomorrow
around the world.

J. Mack Robinson College of Business Edward E. Rigdon
Georgia State University, USA



Editor’s Preface

Partial least squares-path modeling (PLS-PM) is a multivariate statistical technique
first introduced by Herman Wold in the late 1960s. The period from that time
until the late 1980s can be seen as the “gestation period,” which was followed
by continued development and especially rapid development in the past decade.
This can be seen by the increasing use of PLS-PM today for research in various
fields, including accounting, business ethics, education, family business, informa-
tion systems, international business, marketing, operations management, strategy
management, sustainability, and tourism. Despite the rapid pace of development,
PLS-PM has not escaped controversies. Some of the criticisms, such as its use
with small sample sizes, the absence of a goodness of fit indices, bias in parameter
estimation, and the problem of the measurement model, have spawned two groups
debating among scientists, academics, and practitioners. The final conclusion to be
addressed is whether the use of PLS-PM should be continued or abandoned.

In the past 3 years, loyal supporters of the PLS-PM have demonstrated that
this method is feasible to maintain and continue to develop. New breakthroughs
ranging from consistent partial least squares (PLSc), goodness of fit indices (i.e.,
SRMR and NFI), heterotrait–monotrait (HTMT) ratio, measurement invariance of
composite (MICOM), PLS predict, importance-performance map analysis (IPMA),
and new heterogeneity methods have led to a lively discussion of the emancipation
of the PLS-PM method. On the other hand, the outdated discourse has now been
left behind to build solid inferential statistics from the PLS-PM method. There is a
glimmer of hope and an intersection between the two debating groups now, where
consent and conclusion can be built. Thus, PLS-PM is no longer an alternative to
covariance-based SEM but has transformed into a stand-alone method capable of
solving real-world problems.

The purpose of this book is to introduce recent developments and techniques
in the PLS-PM field. This book as a whole discusses the recent developments of
the PLS-PM method and provides a comprehensive overview of the current state
of the most advanced research related to PLS-PM. By focusing primarily on the
advance of each PLS-PM technique, with example cases and situations, we hope
that the chapters are both enlightening and instructional. Each chapter assumes that
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the reader has already mastered the equivalent of a multivariate statistics course that
included coverage of most basic PLS-PM techniques.

Each chapter in this book contains an up-to-date description of a recent devel-
opment or technique in PLS-PM and is often written by the author(s) who
originally proposed or contributed substantially to its development. Each chapter
also provides complete references to the pertinent literature on the topic. The
decision regarding the selection and the organization of the chapters for this book
was quite challenging. Obviously, within a book only a limited number of topics
could be addressed. In the end, the choice of the material was governed by our own
beliefs concerning the most important new developments within the PLS-PM field.

The book is divided into three main sections. The first section consists of six
chapters emphasizing the basic concepts and extensions of the PLS-PM method.
In Chap. 1, Noonan deals with the early history of the PLS-PM and some of the
analytical context at the time. This chapter tells about some personal experiences
and some events that are considered important in the journey of the PLS-PM
method. It also discusses some important findings that occurred during that period.
In Chap. 2, Henseler, Hubona, and Ray discuss the modern view of the PLS-PM
method and provide rules of thumb covering several aspects and guidelines for the
use of PLS-PM today. In this chapter, the readers can find new guidelines that can
be useful in their research project.

In Chap. 3, Kock discusses the extension of the PLS-PM method into a factor-
based SEM by introducing a new algorithm. In this chapter, PLS-PM is used for a
common factor model using simulation. This chapter also provides practical steps to
change the PLS-PM algorithm for factor-based SEM. In Chap. 4, Dijkstra develops
a model that fully honors Wold’s fundamental principle of soft modeling in terms of
observable variables only. In this context, the principle states that “all information
between the blocks of indicators is conveyed solely by observable composites.” The
latter may satisfy an interdependent, non-recursive system of linear equations. Now
the model and mode B “like hand in glove,” to use one of Wold’s favorite phrases,
as opposed to the latent variables model, where mode B can by necessity only yield
an approximation. Here, it is an eminently natural approach, attaining consistency
without invoking “consistency at large.” In Chap. 5, Davino, Dolce, and Taralli
present a new approach called the quantile composite-based path modeling (QC-
PM). This approach can be used to explore the whole dependence structure and to
highlight whether and how the relationships among variables (both observed and
unobserved) change across quantiles. The approach is described from the point of
view of methodology and application. A preliminary approach to handle observed
heterogeneity is also provided. In Chap. 6, Schuberth and Cantaluppi present a
new approach OrdPLSc combining ordinal PLS and consistent PLS in order to
appropriately deal with ordinal categorical variables in the framework of PLS-PM.
In doing so, OrdPLSc overcomes drawbacks from earlier approaches.

The second section of this book discusses the methodological issues that are the
focus of the recent development of the PLS-PM method. This section consists of
seven chapters. In Chap. 7, Dolce, Esposito Vinzi, and Lauro discuss predictive
modeling with PLS-PM by introducing a new approach called nonsymmetrical
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composite-based path modeling (NSCPM). The authors demonstrate the capability
of PLS-PM in predictive-orientated contexts and offer measures and evaluation
criteria. This chapter tries to help readers understand how to evaluate the predictive
performance of component-based path models. In Chap. 8, Cepeda-Carrión, Nitzl,
and Roldán discuss the modern view for mediation analysis in PLS-PM. The authors
offer a new approach in examining the mediation effects in PLS-PM. Guidelines for
testing the effects of mediation are also available. Several examples are provided for
simple and complex mediation models for real-world cases. In Chap. 9, Sarstedt,
Ringle, and Hair propose a multi-method approach for identifying and treating
unobserved heterogeneity. Bridging prior latent class methods in PLS-PM, their
guideline contains many rules of thumb that researchers will find useful when
analyzing their data.

In Chap. 10, Matthews deals with multigroup analysis (PLS-MGA) by providing
examples of real-world applications. The author explains the PLS-MGA analysis
step by step. This chapter also provides some practical guidelines for PLS-PM
users in running PLS-MGA. In Chap. 11, Kock explains the common method
bias and how to solve it. The full-collinearity approach is used to handle it. In
Chap. 12, Petrarca, Russolillo, and Trinchera introduce a new algorithm to handle
nonmetric variables in PLS-PM. This chapter shows how to include nonmetric
variables (i.e., ordinal and/or nominal) in a PLS path model. It also discusses
nonmetric PLS approach for handling these types of variables and how to integrate
the logistic regression into the PLS path model for predicting binary outcomes via
an application on real data. In Chap. 13, Sharma, Pohlig, and Kim evaluate the
efficiency and accuracy of bootstrap parameter recovery in PLS-PM, CB-SEM, and
the Bollen-Stine methods under various conditions of measurement and structural
misspecifications, effect sizes, sample sizes, and data distributions. Model misspec-
ifications are especially likely to arise in exploratory research where theories are
uncertain and evolving. Their results suggest that PLS-PM is the method of choice
in exploratory modeling when structural parameters are of interest, while CB-SEM
and Bollen-Stine methods are favorable when measurement model parameters are
the focus. They recommend a two-pronged strategy that appropriately utilizes the
relative strengths of the two techniques when theoretical uncertainty exists at both
measurement and structural levels.

The third part of this book discusses the real-world application of the PLS-PM
method in various disciplines. This section consists of four chapters. In Chap. 14,
Falk provides examples of applications in the field of psychology. In Chap. 15,
Latan, Chiappetta Jabbour, and Lopes de Sousa Jabbour provide examples of
applications from PLSc, PLS-MGA (MICOM), IPMA, and mediation-moderation
analyses in the field of business ethics. In Chap. 16, Geladi, Grahn, and Esbensen
provide examples of PLS applications in hyperspectral imaging where huge data
sets can be collected. This requires special thinking about how dependent and
independent variables are created and used for making a PLS model but also for
dealing with the concept of replicate. One of the two examples shown uses PLS
discriminant analysis, which is a very useful tool for handling a large amount of
pixels in an image. Finally, in Chap. 17, Streuknes, Leroi-Werelds, and Willems
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discuss the application of IPMA and various usage guidelines for nonlinearity
relationships.

This book could not have been completed without the assistance and support
provided by many individuals. First, we would like to thank all the contributors for
their time and effort in preparing chapters for this book. We would like to thank the
referees who review each chapter on this book in the first and second rounds. We
are also greatly indebted to Springer Publisher, which has been willing to publish
this book. Thanks are also due to all the wonderful people on the editorial staff at
Springer for their assistance and support in putting together this volume. Finally, we
thank our families for their love and for continually enduring a seemingly endless
list of projects.

Semarang-Surabaya, Indonesia Hengky Latan
Stockholm, Sweden Richard Noonan
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Chapter 1
Partial Least Squares: The Gestation Period

Richard Noonan

Abstract The aim of this chapter is to describe the context of some of the earliest
applications of partial least squares in the analysis of large-scale school survey data.
In the late 1960s, several large school surveys had been conducted, but the analytical
methods available at the time were not capable of reflecting structural equation
models covering these large data sets. Instead analysis proceeded more by analogical
models than structural equation models. Such models had very limited usefulness
for addressing significant policy issues. The development of partial least squares
and its application in school survey research led not only to findings more relevant
to policy issues of concern but also supported the development of the underlying
theoretical models.

1.1 Introduction

A Personal Perspective Partial least squares (PLS) is a commonly used approach
to data analysis in a wide range of fields today. I am privileged to be able to look
back to the beginning of PLS and even a few years before and to some years
of collaboration with Professor Herman Wold, at Uppsala University and later
at Gothenburg University in Sweden. This chapter represents my personal “user”
perspective on the origins of PLS, the statistical problems and issues researchers
faced before PLS was developed, and the advantages derived from using PLS, as
seen from the perspective of applied social research, especially in the field of survey
research in education.

In 1969 I joined the small staff at the headquarters of the International Associa-
tion for the Evaluation of Educational Achievement (IEA) in Stockholm. My main
responsibility as Research Officer was to manage the analysis of the massive data
set from the “Six-Subject Study” of educational achievement in 21 countries (see
Peaker 1975). We had a massive amount of school survey data, but contemporary
analytical approaches were inadequate for the kinds of research and policy issues
we wanted to address.
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4 R. Noonan

It was in that context that I met Prof. Herman Wold. In 1973, when Wold invited
me to collaborate with him in the application of nonlinear iterative partial least
squares (NIPALS), a new world of data analysis methods opened before me. Wold
needed real-world data applications to test, develop, and demonstrate the methods;
we needed better methods for analyzing the massive IEA data set. We met often and
had a pleasant and fruitful research collaboration that lasted more than a decade.

This chapter begins a few years before the emergence of PLS, with a brief
prehistory of large-scale school survey research, some data analytic approaches
used, and some problems and limitations faced when using these approaches.
It continues with a brief account of some of the developments that led to the
development of PLS, describes some early applications in educational research, and
concludes with some personal observations.

1.2 A Prehistory: Large-Scale School Surveys

International Pilot Study of School Achievement In the late 1950s and early
1960s, a group of leading educational researchers, meeting under the auspices of
the UNESCO Institute for Education in Hamburg, Germany, conducted a pilot
study of school learning outcomes of 13-year-old students in 12 countries. Data
were collected from students (nonverbal ability, gender, father’s educational and
occupational status, size of community, and school learning outcomes), teachers
(rating of opportunity to learn the individual test items), and schools (use of
streaming). Reporting was mainly in the form of simple means, standard deviations,
cross tabulations, and breakdowns (Foshay 1962). Some simple probit regressions
were computed relating selected test item scores to estimated opportunity to learn
the tested item and student nonverbal ability.

Given the limitations of this pilot study, the research findings from a substantive
perspective were little more than suggestive, as the authors freely admitted. Nev-
ertheless, the results demonstrated that international comparative survey research
involving school learning outcomes was feasible and could make important contri-
butions to educational research and policy-making.

First International Mathematics Study (FIMS) Encouraged by the pilot study,
the newly formed International Association for the Evaluation of Educational
Achievement (IEA) launched the first full-scale international study of mathematics
achievement in 1963 in 12 countries by Husén (1967). Samples were larger
and more representative, and data were collected at four population levels. Tests
and background instruments were much more extensive than in the pilot study.
Reporting was mainly in the form of simple means, standard deviations, cross
tabulations, and breakdowns for each of the four populations. However, regression
analysis was used to study the relations between the achievement measures taken
as dependent variables and the parental, teacher, school, and student background
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variables as independent variables. On the basis of exploratory analysis, the number
of independent variables was reduced to 24, divided into 5 groups:

• Five parental variables (PAR1 : : : PAR5)
• Five teacher variables (TEA1 : : : TEA5)
• Four school variables related to teaching and learning processes (SCH11 : : :

SCH14)
• Six school variables related to the organization, management, and resources

(SCH21 : : : SCH26)
• Four student variables (STU1 : : : STU4)

For each country and population, the total mathematics test score (corrected for
guessing) was regressed on the 24 predictor variables in a single regression. The
regression equation had the form

ACH D f .PAR1 : : : PAR5; TEA1 : : : TEA5;

SCH11 : : : SCH14; SCH21 : : : SCH26; STU1 : : : STU4/

The results were presented first in the form of total variance accounted for (R2),
by country and for each of the four populations. Then in 20 tables (4 populations � 5
groups of variables), the correlations and standardized regression coefficients (beta-
weights, ˇ) were reported for each country and each variable in the respective
variable groups. Finally in each of these tables and for each country, the contribution
of the respective variable group to total variance explained (total R2) was reported,
calculated as

Contribution to Variance Explained D
XN

nD1
.ˇnrn/ ;

where N is the number of variables in each respective variable group.
Thus, for example, it was found in population 3b (students studying mathematics

in final year of upper secondary school) that the total R2 was 0.31 for England and
0.30 for Belgium (Husén op. cit., Vol. II, p. 264). However, the contribution of the
second block of school variables to R2 was 0.06 for England but �0.05 for Belgium
(ibid., p. 280). Altogether more than 6% of all coefficients representing the contri-
bution of a group of variables to the total R2 were negative. Interpretation of the
regression equations containing 24 predictor variables and negative contributions to
R2 was problematic.1

1Note that although the tables reported the correlations and regression coefficients for conceptually
distinct groups of variables, the regression equations yielding those regression coefficients
included all 24 predictor variables. On negative contributions to variance explained, see Note
on Commonality Analysis at the end of this chapter.
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Equality of Educational Opportunity Survey (EEOS) In the United States,
the Civil Rights Act of 1964 mandated the conduct of a survey into the lack of
equality of educational opportunity for individuals because of race, color, religion,
or national origin in public educational institutions at all levels in the United States.
That was a tall order. The survey addressed four issues:

• To what extent are racial and ethnic groups segregated in the public schools?
• Do the schools offer equal teaching and learning opportunities and financial,

physical, and human resources?
• How much do students learn, as measured by standardized achievement tests?
• How are the learning outcomes related to the kinds of schools they attend?

In 1965 a massive school survey was conducted with a nationally representative
probability sample of more than 500,000 students in some 780 schools covering the
United States. Data were collected from school principals, teachers, and students.
Five grade-level populations were defined, representing Grades 1, 3, 6, 9, and 12
(Coleman et al. 1966; Mayeske et al. 1969, 1972).

After preliminary exploratory analysis and aggregation of some 400 individual
indicators, there remained 103 variables in 6 groups used in the regression analysis:

B Student body social background
S School variables

T School personnel and financial expenditure
P Pupil programs and policies
F Facilities

O Outcomes, educational expectations, attitudes, educational plans and desires, study
habits, and achievement

The descriptive analysis comprised (a) means of the outcome variables, broken
down by grade, region, racial or ethnic categories, and gender, and (b) correlations
among these variables. The analytic objective of the study was twofold: “To find
characteristics or attributes of the schools that seem to be related to school outcomes,
and to suggest which of these characteristics may be most important in producing
these outcomes” (Mayeske et al. 1972, p. 41). For that purpose regression analysis
was used to partition explained variance among the predictor variables, following
an approach referred to as “commonality analysis.”2

In brief, the increment in R2 when an independent variable or set of variables
is entered last into the regression equation, as in stepwise multiple regression, is
termed the “unique contribution” or the “first-order commonality” coefficient. A
contribution shared by several independent variables or sets of variables is termed a
“joint contribution” or a “higher-order commonality” coefficient.

2Commonality analysis was developed within the framework of the early large-scale surveys
described in this chapter but is not widely used today. See Note on Commonality Analysis at
the end of this chapter.
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The data analytic work reported was comprehensive, covering many aspects of
the issues addressed, but there were only two main forms of the regression equation,
namely, O D f(B, S) and O D f(B, T, P, F), where O, B, S, T, P, and F represent
groups or blocks of individual indicators. The results were reported in tables (1 table
for each population and block of predictor variables, altogether 20 tables) showing
the unique and higher-order commonality coefficients for each individual variable
in the respective group of variables. No regression coefficients were reported. As the
authors explained in the Foreword, “We are little interested in regression coefficients
[...]. We are interested in the total amount of variation in the dependent variable
that can be associated with the independent variable” (Mayeske et al. 1972, p. iii;
emphasis in original).

IEA Six-Subject Study The successful completion of the mathematics study
(FIMS) was followed in 1967 by the formal incorporation of the International
Association for the Evaluation of Educational Achievement (IEA) as an independent
research organization. The international headquarters was established in Stockholm,
Sweden. In 1968 work began on the Six-Subject Study (SSS) in 21 countries. The
subjects covered were:

• Science
• Reading Comprehension
• Literature
• English as a Foreign Language
• French as a Foreign Language
• Civic Education

Three populations were tested:

• All students in full-time schooling aged 10 years at the time of testing
• All students in full-time schooling aged 14 years at the time of testing
• All students in the terminal year in full-time secondary schooling

In brief, the data sets covered students (including home background, gender,
attitudes, achievement), teachers (including educational background, experience,
gender), and schools (including type of school, size of school, student/teacher ratio,
expenditure). For the regression analysis, the indicators were organized into six
blocks of variables:

1: Home background
2: Type of school
3: Learning conditions (teachers and teaching resources)
4: Kindred variables (attitudes and opinions)
5: Word knowledge (a proxy for verbal IQ)
6: Achievement

The purpose of this international study was not to produce “league tables” but to
advance understanding of factors influencing school learning outcomes. There was
a massive amount of data—hundreds of indicators covering students, teachers, and
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Fig. 1.1 General multiple regression model used in the IEA Six-Subject Study

schools—but no statistical methods adequate to enable a coherent analysis of the
interrelationships among the variables. The main reports relied heavily on stepwise
multiple regression with a focus on commonality analysis.

The explanatory analysis was based on stepwise multiple regression using a
predetermined order of entry of these blocks of variables. The order of entry of
the blocks into the regression was determined by a “chronological” conceptual
model: The conditions of the home in which the child was raised represent the
earliest and longest influence, the type of school the child attended (selective or
general government school) had the second longest influence, etc. Thus, the home
background block was entered first, followed by the type of school, etc. In some of
the analyses, Reading Comprehension was entered as the final predictor, e.g., for
Science, Literature, English as a Foreign Language, French as a Foreign Language,
and Civic Education (Peaker 1975).

The general model followed is illustrated in Fig. 1.1 for science achievement.
This kind of analysis was conducted for each of the subjects tested, for each
population sampled, and for each participating country. Both between-student and
between-school analyses were conducted.

The results of the analyses were reported mainly in the form of:

• Increments in R2 as blocks of variables were entered into the regression in the
predetermined order

• The unique and joint contributions of blocks of variables to R2 (commonality
analysis)

• Regression coefficients (betas) and partial regression coefficients (partial betas)
as blocks of variables were entered into the regression in the predetermined order

• Increments in R2 for alternative orders of entry of blocks of variables into the
regression and in some cases

• Regression coefficients for the individual indicators making up the various blocks

It was a pioneering work and a significant contribution, and it was one of the
foundations for the coming of age of partial least squares analysis.

1.3 PLS Comes of Age

Problems of Interpretation Quite apart from any discussion of the substantive
results of the FIMS, the EEOS, and the IEA SSS, there was considerable discussion
in the education research community about suitable methods for the analysis of
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large and complex data sets covering social systems. Percent of variance explained
does not yield a satisfactory understanding of how things work, and the extension
of variance explained to include unique and joint contributions can rapidly lead to
incomprehensibility as the number of predictor variables increases.

Simple multiple regression analysis involving dozens of predictor is often beset
by such multicollinearity problems as to render interpretation virtually impossible.
What meaningful interpretation can be given to the frequently observed combi-
nation of positive and negative regression coefficients when mother’s education,
father’s education, father’s occupation, number of books in the home, type of
school, teacher’s education, teacher’s years of experience, school resources, student
attitudes, and a dozen other variables are used as predictors of science achievement
when all these variables are positively correlated? What operational meaning can
be given to “the effect of mother’s education, holding father’s education constant”
when in the real world the two are highly correlated, especially when the regression
coefficient for mother’s education is negative (it happens)? No one can believe
that student achievement would be higher if only mothers had lower levels of
education, and yet a negative regression coefficient for mother’s education is not
uncommon in such simple multiple regressions. Reference to suppressor effects
might be satisfying to statisticians but not to educators and education policy-makers.

Given these difficulties, why were variance-explained approaches, such as
increments in R2 and commonality analysis, used at all? Coleman (1975) noted that
the use of such approaches was due partly to the fact that increments in R2 were
one of the few easily obtainable measures of the effect of a block of variables, as
distinct from the effect of a single variable. As an alternative, Mayeske et al. (1972),
in a reanalysis of the EEOS data set, formed composite variables using principal
component weights with blocks of indicators.

Coleman (1975) recommended the use of composite variables representing each
block. The composite variable for a given block was formed as a linear combination
of the individual indicators in the block, weighted by the beta coefficients from
the regression of the criterion variable (Achievement) on the predictor variables in
the block. The blocks of variables could thus be reduced to individual composite
variables, and the desired regression coefficients for the composites could be
obtained in the usual manner. This approach could also be elaborated with other
approaches (Noonan 1976). It was a step forward, but more was needed.

I met Herman Wold in 1973, and for the next decade, I would continue to pursue a
research program to develop a comprehensive and coherent analysis of the IEA SSS
data. The SSS data set covered large portions of the school system—characteristics
of the student and the home, characteristics and resources of the school, teachers,
teaching methods, and learning outcomes. Most of the studies based on the SSS data
covered only small proportions of the massive data set, but my goal—inspired by
PLS—was to achieve an analysis covering virtually all dimensions within a single
coherent analytical framework.
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The Dawn of Partial Least Squares The ideas on which PLS is based emerged
from Herman Wold’s work in econometrics. A crucial issue was the causal-
predictive interpretation of a system of simultaneous equations. In the 1940s
and 1950s, Wold focused on the causal-predictive issues, emphasizing a clear-
cut causal interpretation of recursive systems. From the 1950s to the mid-1970s,
his focus shifted from causation to prediction. This work led to the development
of an iterative approach solving structural equation systems called fix-point (FP)
approach, “fix-point” referring to the solution toward which the algorithm converges
with successive iterations (Wold 1964, 1965, 1981, pp. 1–36).

One of the basic problems faced in applied social research is how to represent the
dependence of a criterion Y on a set of explanatory variables Xi which are correlated
and where neither variables Xi nor Y can be measured directly. Instead the variables
Xi and Y can often be measured only by using some mathematical combination of
indicators, xij and yi. These variables Xi and Y are referred to as latent variables and
are taken to represent underlying theoretical constructs � i and �. The indicators xij

and yi are referred to as manifest variables. Wold developed the FP approach further
with the introduction of nonlinear iterative least squares (NILES) in 1966 (Wold
1966), renamed nonlinear iterative partial least squares (NIPALS) by 1973 (Wold
1973). NIPALS was further developed with path modeling using latent variables in
1975 (Wold 1975).

NIPALS Applications in Educational Research The first application of NIPALS
in educational research appeared in 1975, mainly as an illustration of its utility in
the context of “complex situations with soft information” (Noonan et al. 1975).
Our first joint article in the Scandinavian Journal of Educational Research (SJER),
published in 1977, used three relatively simple latent variables, as illustrated in
Fig. 1.2a (Noonan and Wold 1977). It showed that with some relatively simple
models, the NIPALS approach is equivalent to that proposed by Coleman (op cit).
More importantly, it also showed that compared with the commonality approach
referred to above, NIPALS was clearly superior, in terms of both interpretation and
predictive power.

Fig. 1.2 NIPALS path models 1977 and 1978
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A much more comprehensive application in 1978 based on the IEA data involved
a path analysis model with hierarchically structured latent variables (Noonan
1978).3 The purpose of that study was to investigate the effect of teacher education
on student science achievement in developing countries. The IEA SSS data sets for
Chile and India were used.

The IEA SSS data files contained a large number of items, but previous analyses
used only a very small proportion of them in any one analysis. A new paradigm
was needed for thinking about and analyzing the effects of student, home, school,
and teacher factors on student learning outcomes. There was a need for methods for
reducing the mass of data available to a smaller set of parsimonious descriptions
of the underlying phenomena. There was also a need for a causal conceptualization
of the educational situation in models elaborate enough to cover all major relevant
aspects of schooling, within the limits of the data set.

In investigating the effects of teacher education on student achievement, it was
necessary to control for other relevant variables. This was done with the help of
a model of the schooling situation which covered as wide a scope as possible,
within the limits of the IEA data bank. The analytical methods used enabled the
calculation of both the direct effect of formal teacher education, holding all other
relevant variables constant, and the indirect effect, through other variables that
teacher education influences. A simplified version of the path model used is shown
in Fig. 1.2b. It illustrates the “inner relations” among the variables representing
the underlying theoretical concepts and the “outer relations” between the manifest
variables and the latent variables. The term “inner variable” is used to cover
theoretical constructs represented by either a single indicator (e.g., X2, verbal IQ,
and Y, achievement, in Fig. 1.2b) or a linear combination of several indicators (e.g.,
X1, home, and X3, teacher education).

Several weighting schemes had been proposed for combining the manifest
variables to form the latent variables. In this article two of these weighting schemes
were applied. For the outer relations, Fig. 1.2b illustrates the distinction then made
between the two weighting schemes used in this study, “Mode A” and “Mode B.”
In Mode A, the manifest variables were weighted by simple correlations between
the manifest variables and the latent variable (compare with principal components
analysis). In Mode B, the manifest variables were weighted by multiple regression
coefficients (compare with canonical variate analysis). These “modes” correspond
to the “formative” and “reflective” outer relations discussed by Hauser (1973).

A large number of manifest variables were reduced to a total of 17 hierarchically
structured latent variables covering the school science learning situation in as wide
a scope as possible within the limits of the IEA data bank. In preparing this study, I

3This was a first and informal step toward the use of hierarchically structured latent variables within
the NIPALS/PLS framework. There were two levels of latent variables. The “lower level” latent
variables were formed using principal component weights. The resulting compounds were then
treated as manifest variables in the usual manner.
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Fig. 1.3 PLS path model 1980

wrote a computer program with the capacity to handle an unlimited (in principle)4

number of manifest variables and latent variables. Inner and outer relations were
specified as input parameters.

From NIPALS to PLS By the end of the 1970s, Wold had dropped the terms
“nonlinear” and “iterative” from the name and thereafter used the simpler name
partial least squares, PLS (Wold 1980, 1981). Our second joint article in the SJER
was published in 1980 (Noonan and Wold 1980). It represented a continuation of the
same broad research program aiming at a comprehensive and coherent analysis of
the SSS data for Sweden. Despite the name change from NIPALS to PLS, the article
was titled “Part II,” referencing the 1977 article using the name NIPALS. The first
SJER article was mainly an illustration of the use of the NIPALS approach and a
comparison with some other approaches used for the analysis of school survey data
(stepwise multiple by blocks of variables, commonality analysis).

This second SJER article focused mainly on substantive issues but also tested five
alternative forms for the specification of the latent variables as linear compounds
of the manifest variables. The article assesses the magnitude of the effects of a
variety of regional, home, student, teacher, and school factors on variation in student
cognitive and affective outcomes in science learning. Fifty-nine indicators in 16
blocks were entered into a PLS analysis using the path model shown in Fig. 1.3.

Differences between national school systems are often reflected in analyses
of hypothesized causal effects of home, school, and teacher variables on student
learning outcomes. In 1982 a comparative study conducted of England, Scotland,

4Unlimited in principle, in practice limited by the maximum memory space allowed by the IBM
mainframe computer we used, but never a problem in our analyses. This program was later
developed to include hierarchically structured latent variables as a standard PLS option. The
program was written in FORTRAN IV, later FORTRAN G, and comprised some 1500 lines of
code. Around the same time, Lohmöller was writing his program (see Lohmöller 1989), which
became the basis from which the most commonly used program today has evolved.
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and Sweden using the IEA SSS science achievement data aimed to find universal
patterns of causal effects (Noonan 1982). A distinction is made here between the
causal effect and allocation effects, for example:

• Causal effect: Additional time on learning tasks causes additional learning,
which results in a positive correlation between time on task and learning
outcomes.

• Allocation effect: Students with special learning needs might receive more
instructional time than other students, which could result in an observed negative
correlation between time on task and learning outcomes for the population as a
whole, even though the causal effect is positive for all students.

The school systems of these three counties differed considerably with respect to
the relationship between home background, school resource allocation, and learning
outcomes. Altogether more than 100 manifest variables were used, and these were
distributed over 20 blocks of indicators used in the construction of the latent
variables. In the search for universal patterns of causal effects, the study focused
ultimately not on resources but on classroom practices. It was found, for example,
that classroom activities that are most directly related to the “practice of science”
(e.g., laboratory activities and field work) are more efficient in generating learning
outcomes than such activities as discussion, questioning, and explication of the text.

With the 1982 search for universal patterns of causal effects, the “macro-focus”
on school and teacher characteristics gave way of a “micro-focus” on teaching
and learning activities. It appeared as if the use of path models for describing the
influence of the education system on learning was itself somewhat limiting. In 1983
the use of PLS in the evaluation of school systems was described (Noonan and Wold
1983). It included the first explicit presentation of PLS with hierarchically structured
latent variables.

Although model specification followed the standard path analytic approach, a
broader and more comprehensive approach was needed in order to visualize the full
range of significant factors influencing school learning. The analogue model shown
in Fig. 1.4a represented a new beginning for the conceptualization of the scope of
my own research program and my view of the analytical potential offered by PLS.

It might be said that PLS officially entered the world of educational research
in 1986 with the publication of an article in the International Encyclopedia of
Education (Noonan and Wold 1986) and an international handbook on educational
research, methodology, and measurement (Noonan and Wold 1988).

My final contribution in the PLS story (Noonan 1989), published under my
name but in reality very much a collaborative work, was the most comprehensive
study of the IEA data to date. It covered a total of 191 manifest variables in 41
blocks. This was reduced, using hierarchically structured latent variables, to only
13 predictors in the inner relations, including 8 hierarchical latent variables which
represented altogether 35 basic latent variables. Following the conceptual model
shown in Fig. 1.4a, the results were presented as shown in Fig. 1.4b.

The visualization of the path model in Fig. 1.4b was by Herman Wold himself
to correspond to the concentric circle diagram of the 1983 publication shown in
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Fig. 1.4a. I had not drawn a path diagram because I thought it was too complicated.
At our next meeting over coffee, he showed me his visualization.

1.4 Some Concluding Personal Comments

As a young researcher struggling with the analysis of IEA’s massive data set, I was
excited to learn about NIPALS. It promised to solve some of the basic problems
associated with the contemporary analytical methods for large-scale survey research
data. My first forays into the world of NIPALS were small and simple, but the results
were fruitful. With each succeeding publication, the aims became broader, and the
path models became larger, as the limits of what was possible seemed to vanish. At
some point I began to wonder where the limits lay. Were there any limits? And if so,
where were the limits and what were the limiting factors?

In a complex, real-world social science context, regression coefficients become
increasingly difficult to interpret as the number of predictors increases because
of the limited validity of the ceteris paribus5 assumption—the ceteris is often
not paribus. For example, what is the effect of mother’s education on student
achievement, holding constant mother’s occupation, father’s education, father’s
occupation, number of books in the home, etc.? In reality these factors covary, and
the use of these variables together as predictors can yield results very difficult to
interpret without resorting to a discussion of “suppressor effects,” as noted above. In
such a situation, the formation of a compound variable would be the usual solution.

Even if the correlations among the predictor variables were low (so any suppres-
sor effects would be small), interpretation would become increasingly difficult as
the number of predictors increased. The main difficulty would be the ability of the
mind to comprehend projections in multidimensional space of increasingly higher
order. Thus, if the model is as comprehensive as that shown in Fig. 1.4a, even the
use of latent variables can be unwieldy. I drew the conclusion, therefore, that the
limit lay not in the method, the program, or computer power but in the ability of the
mind to comprehend large and complex models. As the models got larger and larger,
therefore, the introduction of multilevel hierarchically structured latent variables
was a natural move.

Since those early days, the PLS family of methods has evolved and grown
dramatically, as seen in the remaining chapters of this book. It has been a wonderful
journey.

5Ceteris paribus: Latin. Other things being equal, holding other things constant
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1.4.1 Notes on Commonality Analysis

Commonality analysis is not widely used today in the analysis of large data sets
covering open systems. In the late 1960s and the 1970s, however, it was one of the
most useful tools available, despite considerable shortcomings (which were often
simply ignored). A brief review of the method is given here to illustrate the level at
which we stood when NIPALS/PLS first appeared and opened vast new horizons.

Commonality analysis [developed and applied by Mood (1969, 1971), and
Mayeske et al. (1969); see Kerlinger and Pedhazur (1973, pp. 297–305)] separates
the explained variance of a dependent variable into unique and joint contributions
of the predictor variables. The unique contribution of an independent variable is
defined as the variance attributed to it (i.e., the increment in R2) when it is entered
last into the regression equation (as in a stepwise multiple regression analysis). In
the simple case of a dependent variable Y regressed on two independent variables
X1 and X2, the unique contributions of X1 and X2 are defined as:

U1 D R2
y:12 � R2

y:2

U2 D R2
y:12 � R2

y:1

The joint contribution of X1 and X2 is defined as:

J12 D R2
y:12 � U1 � U2

Thus,

R2
y:12 D U1 C U2 C J12

Commonality analysis can be extended to any number of predictor variables or
blocks (groups) of predictor variables. For example, U1 might represent the unique
contribution of a block of student home background variables in predicting student
learning outcomes, and U2 might represent the unique contribution of a block of
school variables predicting student learning outcomes. Then J12 would represent
the joint (or “shared”) contribution (or “the commonality”) of the home and school
blocks of variables in predicting student learning outcomes.

Commonality analysis is more useful in a predictive framework than in an
explanatory framework, inasmuch as both the unique and joint contributions are
defined in terms of variance explained. Because the unique and joint contributions
are influenced by the intercorrelations among the independent variables, interpreta-
tion can be difficult, especially when there are many independent variables. For a
regression with n predictors, there are 2n � 1 commonality coefficients, including
n unique contribution coefficients and 2n � 1 � n joint contribution coefficients.
This can lead to considerable difficulties in interpretation of the higher-order joint
contribution coefficients, especially when they are negative.
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Finally, I argue that, contrary to the view expressed by Mayeske et al. (1972, p.
iii), and regardless of the interpretational difficulties mentioned above, as scientists
and policy-makers, we are interested in regression coefficients.
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Chapter 2
Partial Least Squares Path Modeling: Updated
Guidelines

Jörg Henseler, Geoffrey Hubona, and Pauline Ash Ray

Abstract Partial least squares (PLS) path modeling is a variance-based structural
equation modeling technique that is widely applied in business and social sciences.
It is the method of choice if a structural equation model contains both factors
and composites. This chapter aggregates new insights and offers a fresh look at
PLS path modeling. It presents the newest developments, such as consistent PLS,
confirmatory composite analysis, and the heterotrait-monotrait ratio of correlations
(HTMT). PLS path modeling can be regarded as an instantiation of generalized
canonical correlation analysis. It aims at modeling relationships between compos-
ites, i.e., linear combinations of observed variables. A recent extension, consistent
PLS, makes it possible to also include factors in a PLS path model. The chapter
illustrates how to specify a PLS path model consisting of construct measurement
and structural relationships. It also shows how to integrate categorical variables.
A particularly important consideration is model identification: Every construct
measured by multiple indicators must be embedded into a nomological net, which
means that there must be at least one other construct with which it is related. PLS
path modeling results are useful for exploratory and confirmatory research. The
chapter provides guidelines for assessing the fit of the overall model, the reliability
and validity of the measurement model, and the relationships between constructs.
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Moreover, it provides a glimpse on various extensions of PLS, many of which will
be described in more detail in later chapters of the book.

2.1 Introduction

Structural equation modeling (SEM) is a family of statistical techniques that have
become very popular in business and social sciences. Its ability to model latent
variables, to take into account various forms of measurement error, and to test entire
theories makes it useful for a plethora of research questions.

Two types of SEM can be distinguished: covariance- and variance-based SEM.
Covariance-based SEM estimates model parameters using the empirical variance-
covariance matrix, and it is the method of choice if the hypothesized model consists
of one or more common factors. In contrast, variance-based SEM first creates
proxies as linear combinations of observed variables and then estimates the model
parameters using these proxies. Variance-based SEM is the method of choice if the
hypothesized model contains composites.

Among variance-based SEM methods, partial least squares (PLS) path modeling
is regarded as the “most fully developed and general system” (McDonald 1996,
p. 240) and has been called a “silver bullet” (Hair et al. 2011). PLS is widely
used in information systems research (Marcoulides and Saunders 2006), strategic
management (Hair et al. 2012a), marketing (Hair et al. 2012b), and beyond. Its
ability to model both factors and composites is appreciated by researchers across
disciplines and makes it a promising method particularly for new technology
research and information systems research. Whereas factors can be used to model
latent variables of behavioral research such as attitudes or personality traits,
composites can be applied to model strong concepts (Höök and Löwgren 2012),
i.e., the abstraction of artifacts such as management instruments, innovations, or
information systems. A particularly interesting class of artifacts is success factors
for businesses. Consequently, PLS path modeling is a preferred statistical tool for
success factor studies (Albers 2010).

Not only has PLS and its use been subject of various reviews (c.f. Hair et al.
2012a, b), but just recently it has also undergone a series of serious examinations
and has been the target of heated scientific debates. Scholars have discussed
the conceptual underpinnings (Rigdon 2012, 2014; Sarstedt et al. 2014) and the
strengths and weaknesses (Henseler et al. 2014; Rigdon et al. 2014) of PLS. As a
fruitful outcome of these debates, substantial contributions to PLS emerged, such as
bootstrap-based tests of overall model fit (Dijkstra and Henseler 2015a), consistent
PLS to estimate factor models (PLSc, see Dijkstra and Henseler 2015b), and the
heterotrait-monotrait ratio of correlations as a new criterion for discriminant validity
(HTMT, see Henseler et al. 2015). All these changes render the extant guidelines
on PLS path modeling outdated, if not even invalid. Consequently, Rigdon (2014)
recommends breaking the chains and forging ahead, which implies an urgent need
for updated guidelines on why, when, and how to use PLS.
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The purpose of this chapter is manifold. First, it provides an updated view on
what PLS actually is and which algorithmic steps it includes since the invention
of consistent PLS. Second, it explains how to specify PLS path models, taking
into account the nature of the measurement models (composite vs. factor), model
identification, sign indeterminacy, special treatments for categorical variables, and
determination of sample size. Third, it explains how to assess and report PLS results,
including the novel bootstrap-based tests of model fit, the SRMR as a measure of
approximate model fit, the new reliability coefficient rhoA, and the HTMT. Fourth,
it sketches several ways of how to extend PLS analyses. Finally, it contrasts the
understanding of PLS as presented in this chapter with the traditional view and
discusses avenues for future developments.

2.2 The Nature of PLS Path Modeling

The core of PLS is a family of alternating least squares algorithms that emulate
and extend principal component analysis as well as canonical correlation analysis.
The method was invented by Herman Wold (c.f. 1974, 1982) for the analysis of
high-dimensional data in a low-structure environment and has undergone various
extensions and modifications. In its most modern appearance (c.f. Dijkstra and
Henseler 2015a, b), PLS path modeling can be understood as a full-fledged struc-
tural equation modeling method that can handle both factor models and composite
models for construct measurement, estimate recursive and non-recursive structural
models, and conduct tests of model fit.

PLS path models are formally defined by two sets of linear equations: the
measurement model (also called outer model) and the structural model (also called
inner model). The measurement model specifies the relations between a construct
and its observed indicators (also called manifest variables), whereas the structural
model specifies the relationships between the constructs. Figure 2.1 depicts an
example of a PLS path model.

PLS path models can contain two different forms of construct measurement:
factor models or composite models (see Rigdon 2012, for a nice comparison of both
types of measurement models). The factor model hypothesizes that the variance of
a set of indicators can be perfectly explained by the existence of one unobserved
variable (the common factor) and individual random error. It is the standard model
of behavioral research. In Fig. 2.1, the exogenous construct Ÿ and the endogenous
construct �2 are modeled as factors. In contrast, composites are formed as linear
combinations of their respective indicators. The composite model does not impose
any restrictions on the covariances between indicators of the same construct, i.e.,
it relaxes the assumption that all the covariation between a block of indicators is
explained by a common factor. The composites serve as proxies for the scientific
concept under investigation (Ketterlinus et al. 1989; Maraun and Halpin 2008;
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Fig. 2.1 PLS path model example

Rigdon 2012; M. Tenenhaus 2008).1 The fact that composite models are less
restrictive than factor models makes it likely that they have a higher overall model
fit (Landis et al. 2000).

The structural model consists of exogenous and endogenous constructs as well
as the relationships between them. The values of exogenous constructs are assumed
to be given from outside the model. Thus, exogenous variables are not explained
by other constructs in the model, and there must not be any arrows in the structural
model that point to exogenous constructs. In contrast, endogenous constructs are
at least partially explained by other constructs in the model. Each endogenous
construct must have at least one arrow of the structural model pointing to it. The
relationships between the constructs are usually assumed to be linear. The size and
significance of path relationships are typically the focus of the scientific endeavors
pursued in empirical research.

The estimation of PLS path model parameters happens in four steps: (1) an
iterative algorithm that determines composite scores for each construct, (2) a
correction for attenuation for those constructs that are modeled as factors (Dijkstra
and Henseler 2015b), (3) parameter estimation, and (4) bootstrapping for inference
testing.

1Note that also factors are nothing else than proxies (Rigdon 2012).
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Step 1 For each construct, the iterative PLS algorithm creates a proxy as a linear
combination of the observed indicators. The indicator weights are determined such
that each proxy shares as much variance as possible with the proxies of causally
related constructs. The PLS algorithm can be viewed at as an approach to extend
canonical correlation analysis to more than two sets of variables; it can emulate
several of Kettenring’s (1971) techniques for the canonical analysis of several sets
of variables (M. Tenenhaus et al. 2005). For a more detailed description of the
algorithm, see Henseler (2010). The major outputs of the first step are the proxies
(i.e., composite scores), the proxy correlation matrix, and the indicator weights.

Step 2 Correcting for attenuation is a necessary step if a model involves factors. As
long as the indicators contain random measurement error, so will the proxies. Con-
sequently, proxy correlations are typically underestimations of factor correlations.
Consistent PLS (PLSc) corrects for this tendency (Dijkstra and Henseler 2015a, b)
by dividing a proxy’s correlations by the square root of its reliability (the so-called
correction for attenuation). PLSc addresses the issue of what the correlation between
constructs would be if there were no random measurement error. The major output
of this second step is a consistent construct correlation matrix.

Step 3 Once a consistent construct correlation matrix is available, it is possible to
estimate the model parameters. If the structural model is recursive (i.e., there are
no feedback loops), ordinary least squares (OLS) regression can be used to obtain
consistent parameter estimates for the structural paths. In the case of non-recursive
models, instrumental variable techniques such as two-stage least squares (2SLS)
should be employed. In addition to the path coefficient estimates, this third step can
also provide estimates for loadings, indirect effects, total effects, and several model
assessment criteria.

Step 4 Finally, the bootstrap is applied in order to obtain inference statistics for
all model parameters. The bootstrap is a nonparametric inferential technique which
rests on the assumption that the sample distribution conveys information about the
population distribution. Bootstrapping is the process of drawing a large number of
resamples with replacement from the original sample and then estimating the model
parameters for each bootstrap resample. The standard error of an estimate is inferred
from the standard deviation of the bootstrap estimates.

The PLS path modeling algorithm has favorable convergence properties
(Henseler 2010). However, as soon as PLS path models involve common factors,
there is the possibility of so-called Heywood cases (Krijnen et al. 1998), meaning
that one or more variances implied by the model would be negative. The occurrence
of Heywood cases may be caused by an atypical or too-small sample, or the common
factor structure may not hold for a particular set of indicators.

PLS path modeling is not as efficient as maximum likelihood covariance-
based SEM. One possibility is to further minimize the discrepancy between the
empirical and the model-implied correlation matrix, an approach followed by
efficient PLS (PLSe, see Bentler and Huang 2014). Alternatively, one could embrace
the notion that PLS is a limited-information estimator and is less affected by model
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misspecification in some subparts of a model (Antonakis et al. 2010). Ultimately,
there is no clear-cut resolution of the issues on this trade-off between efficiency and
robustness with respect to model misspecification.

2.3 Model Specification

The analysts must take care that the specified statistical model complies with the
conceptual model to be tested and further that the model complies with technical
requirements such as identification and with the data conforming to the required
format and statistical power.

Typically, the structural model is theory-based and is the prime focus of the
research question and/or research hypotheses. The specification of the structural
model addresses two questions: Which constructs should be included in the model?
And how are they hypothesized to be interrelated? That is, what are the directions
and strengths of the causal influences between and among the latent constructs? In
general, analysts should keep in mind that the constructs specified in a model are
only proxies and that there will always be a validity gap between these proxies and
the theoretical concepts that are the intended modeling target (Rigdon 2012). The
paths, specified as arrows in a PLS model, represent directional linear relationships
between proxies. The structural model, and the indicated relationships among the
latent constructs, is regarded as separate from the measurement model.

The specification of the measurement model entails decisions for composite or
factor models and the assignment of indicators to constructs. Factor models are
the predominant measurement model for behavioral constructs such as attitudes or
personality traits. Factor models are strongly linked to true score theory (McDonald
1999), the most important measurement paradigm in behavioral sciences. If a
construct has this background and random measurement error is likely to be an
issue, analysts should choose the factor model. Composites help model emergent
constructs, for which elements are combined to form a new entity. Composites
can be applied to model strong concepts (Höök and Löwgren 2012), i.e., the
abstraction of artifacts (man-made objects). Typical artifacts in new technology
research would include innovations, technologies, systems, processes, strategies,
management instruments, or portfolios. Whenever a model contains this type of
construct, it is preferable to use a composite model.

Measurement models of PLS path models may appear less detailed than those
of covariance-based structural equation modeling, but in fact some specifications
are implicit and are not visualized. For instance, neither the unique indicator errors
(nor their correlations) of factor models nor the correlations between indicators
of composite models are drawn. Because PLS currently does not allow to either
constrain these parameters or to free the error correlations of factor models,
by convention these model elements are not drawn. No matter which type of
measurement is chosen to measure a construct, PLS requires that there is at least
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one indicator available. Constructs without indicators, so-called phantom variables
(Rindskopf 1984), cannot be included in PLS path models.

In some PLS path modeling software (e.g., SmartPLS and PLS-Graph), the
direction of arrows depicted in the measurement model does not indicate whether
a factor or composite model is estimated but whether correlation weights (Mode
A, represented by arrows pointing from a construct to its indicators) or regression
weights (Mode B, represented by arrows pointing from indicators to their construct)
shall be used to create the proxy. In both cases PLS will estimate a composite model.
Indicator weights estimated by Mode B are consistent (Dijkstra 2010), whereas
indicator weights estimated by Mode A are not, but the latter excel in out-of-sample
prediction (Rigdon 2012).

Some model specifications are made automatically and cannot be manually
changed: Measurement errors are assumed to be uncorrelated with all other variables
and errors in the model; structural disturbance terms are assumed to be orthogonal
to their predictor variables as well as to each other2; correlations between exogenous
variables are free. Because these specifications hold across models, it has become
customary not to draw them in PLS path models.

Identification has always been an important issue for SEM, although it has been
neglected in the realm of PLS path modeling in the past. It refers to the necessity to
specify a model such that only one set of estimates exists that yields the same model-
implied correlation matrix. It is possible that a complete model is unidentified, but
also only parts of a model can be unidentified. In general, it is not possible to
derive useful conclusions from unidentified (parts of) models. In order to achieve
identification, PLS fixes the variance of factors and composites to one. An important
requirement of composite models is a so-called nomological net. It means that
composites cannot be estimated in isolation but need at least one other variable
(either observed or latent) to have a relation with. Since PLS also estimates factor
models via composites, this requirement extends to all factor models estimated
using PLS. If a factor model has exactly two indicators, it does not matter which
form of SEM is used—a nomological net is then required to achieve identification.
If a construct is only measured by one indicator, one speaks of single-indicator
measurement (Diamantopoulos et al. 2012). The construct scores are then identical
to the standardized indicator values. In this case it is not possible to determine the
amount of random measurement error in this indicator. If an indicator is error-prone,
the only possibility to account for the error is to utilize external knowledge about
the reliability of this indicator to manually define the indicator’s reliability.

A typical characteristic of SEM and factor-analytical tools in general is sign
indeterminacy, in which the weight or loading estimates for a factor or a composite
can only be determined jointly for their value but not for their sign. For example,
if a factor is extracted from the strongly negatively correlated customer satisfaction
indicators “How satisfied are you with provider X?” and “How much does provider
X differ from an ideal provider?” the method cannot “know” whether the extracted

2This assumption should be relaxed in case of non-recursive models (Dijkstra and Henseler 2015a).
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factor should correlate positively with the first or with the second indicator.
Depending on the sign of the loadings, the meaning of the factor would either be
“customer satisfaction” or “customer non-satisfaction.” To avoid this ambiguity, it
has become practice in SEM to determine one particular indicator per construct with
which the construct scores are forced to correlate positively. Since this indicator
dictates the orientation of the construct, it is called the “dominant indicator.”
While in covariance-based structural equation modeling this dominant indicator also
dictates the construct’s variance, in PLS path modeling, the construct variance is
simply set to one.

Like multiple regression, PLS path modeling requires metric data for the
dependent variables. Dependent variables are the indicators of the factor model(s)
as well as the endogenous constructs. Quasi-metric data stemming from multipoint
scales such as Likert scales or semantic differential scales are also acceptable as long
as the scale points can be assumed to be equidistant and the number of scale points
is sufficiently high (Rhemtulla et al. 2012). If these assumptions are not fulfilled,
but the data are ordinal, researchers should rely on dedicated PLS-based approaches
such as OrdPLSc (Schuberth et al. 2016; see also Chap. 6 of this book). To some
extent it is also possible to include categorical variables in a model. Categorical
variables (which are not necessarily ordinal) are particularly relevant for analyzing
experiments (c.f. Streukens et al. 2010) or for control variables such as industry
(Braojos-Gomez et al. 2015) or ownership structure (Chen et al. 2015). Figure 2.2
illustrates how a categorical variable “marital status” would be included in a PLS
path model. If a categorical variable has only two levels (i.e., it is dichotomous), it
can serve immediately as a construct indicator. If a categorical variable has more
than two levels, it should be transformed into as many dummy variables as there
are levels. A composite model is formed out of all but one dummy variable. The
remaining dummy variable characterizes the reference level. Preferably, categorical
variables should only play the role of exogenous variables in a structural model.

Sample size plays a dual role, namely, technically and in terms of inference
statistics. Technically, the number of observations must be high enough that the
regressions that form part of the PLS algorithm do not evoke singularities. It can

Fig. 2.2 Including a
categorical control variable in
a PLS path model (here
marital status with the four
categories “unmarried,”
“married,” “divorcee,”
“widower”; the reference
category is “unmarried”)

… η

marital
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married (yes/no)

divorcee (yes/no)

widower (yes/no)

http://dx.doi.org/10.1007/978-3-319-64069-3_6
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thus be that the number of parameters or the number of variables in a model
exceeds the number of observations. Inference statistics become relevant if an
analyst wants to generalize from a sample to a population. The larger the sample
size, the smaller the confidence intervals of the model’s parameter estimates, and
the smaller the chance that a parameter estimate’s deviation from zero are due to
sampling variation. Moreover, a larger sample size increases the likelihood to detect
model misspecification (see Sect. 2.4 for PLS’ tests of model fit). Hence, a larger
sample size increases the rigor to falsify the model in the Popperian sense, but at
the same time, the likelihood increases that a model gets rejected due to minor
and hardly relevant aspects. The statistical power of PLS should not be expected
to supersede that of covariance-based SEM.3 Consequently, there is no reason to
prefer PLS over other forms of SEM with regard to inference statistics. In research
practice, there are typically many issues that have an impact on the final sample
size. One important consideration should be the statistical power, i.e., the likelihood
to find an effect in the sample if it indeed exists in the population. Optimally,
researchers make use of Monte Carlo simulations to quantify the statistical power
achieved at a certain sample size (for a tutorial, see Aguirre-Urreta and Rönkkö
2015).

2.4 Assessing and Reporting PLS Analyses

PLS path modeling can be used both for explanatory and predictive research.
Depending on the analyst’s aim—either explanation or prediction—the model
assessment will be different. If the analyst’s aim is to predict, the assessment should
focus on blindfolding (M. Tenenhaus et al. 2005) and the model’s performance
with regard to holdout samples (Cepeda Carrión et al. 2016; Lancelot-Miltgen et
al. 2016). However, since prediction-orientation still tends to be scarce in business
research (Shmueli and Koppius 2011), in the remainder we will focus on model
assessment if the analyst’s aim is explanation.

PLS path modeling results can be assessed globally (i.e., for the overall model)
and locally (for the measurement models and the structural model). For a long time,
it was said that PLS path modeling did not optimize any global scalar and therefore
did not allow for global model assessment. However, because PLS in the form as
described above provides consistent estimates for factor and composite models, it
is possible to meaningfully compare the model-implied correlation matrix with the
empirical correlation matrix, which opens up the possibility for the assessment of
global model fit.

3An allegedly higher statistical power of PLS (Reinartz et al. 2009) can be traced back to model
misspecification, namely, making use of a composite model although the factor model would have
been true (Goodhue et al. 2011).
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The overall goodness of fit of the model should be the starting point of model
assessment. If the model does not fit the data, the data contains more information
than the model conveys. The obtained estimates may be meaningless, and the
conclusions drawn from them become questionable. The global model fit can be
assessed in two non-exclusive ways: by means of inference statistics, i.e., so-called
tests of model fit, or through the use of fit indices, i.e., an assessment of approximate
model fit. In order to have some frame of reference, it has become customary to
determine the model fit both for the estimated model and for the saturated model.
Saturation refers to the structural model, which means that in the saturated model
all constructs correlate freely.

PLS path modeling’s tests of model fit rely on the bootstrap to determine
the likelihood of obtaining a discrepancy between the empirical and the model-
implied correlation matrix that is as high as the one obtained for the sample at
hand if the hypothesized model was indeed correct (Dijkstra and Henseler 2015a).
Bootstrap samples are drawn from modified sample data. This modification entails
an orthogonalization of all variables and a subsequent imposition of the model-
implied correlation matrix. In covariance-based SEM, this approach is known as
Bollen-Stine bootstrap (Bollen and Stine 1992). If more than 5% (or a different
percentage if an alpha-level different from 0.05 is chosen) of the bootstrap samples
yield discrepancy values above the ones of the actual model, it is not that unlikely
that the sample data stems from a population that functions according to the
hypothesized model. The model thus cannot be rejected. There is more than one
way to quantify the discrepancy between two matrices, for instance, the maximum
likelihood discrepancy, the geodesic discrepancy dG, or the unweighted least squares
discrepancy dULS (Dijkstra and Henseler 2015a), and so there are several tests of
model fit. Monte Carlo simulations confirm that the tests of model fit can indeed
discriminate between well-fitting and ill-fitting models (Henseler et al. 2014).
More precisely, both measurement model misspecification and structural model
misspecification can be detected through the tests of model fit (Dijkstra and Henseler
2014). Because it is possible that different tests have different results, a transparent
reporting practice would always include several tests.

In addition to conducting the tests of model fit, it is also possible to determine the
approximate model fit. Approximate model fit criteria help answer the question how
substantial the discrepancy between the model-implied and the empirical correlation
matrix is. This question is particularly relevant if this discrepancy is significant.
Currently, the only approximate model fit criterion implemented for PLS path
modeling is the standardized root mean square residual (SRMR, Hu and Bentler
1998, 1999). As can be derived from its name, the SRMR is the square root of
the sum of the squared differences between the model-implied and the empirical
correlation matrix, i.e., the Euclidean distance between the two matrices. A value of
0 for SRMR would indicate a perfect fit, and generally, an SRMR value less than
0.05 indicates an acceptable fit (Byrne 2013). A recent simulation study shows that
even entirely correctly specified model can yield SRMR values of 0.06 and higher
(Henseler et al. 2014). Therefore, a cutoff value of 0.08 as proposed by Hu and
Bentler (1999) appears to be more adequate for PLS path models. Another useful
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approximate model fit criterion could be the Bentler-Bonett index or normed fit
index (NFI, Bentler and Bonett 1980). The suggestion to use the NFI in connection
with PLS path modeling can be attributed to Lohmöller (1989). For factor models,
NFI values above 0.90 are considered as acceptable (Byrne 2013). For composite
models, thresholds for the NFI are still to be determined. Because the NFI does
not penalize for adding parameters, it should be used with caution for model
comparisons. In general, the usage of the NFI is still rare.4 Another promising
approximate model fit criterion is the root mean square error correlation (RMStheta,
see Lohmöller 1989). A recent simulation study (Henseler et al. 2014) provides
evidence that the RMStheta can indeed distinguish well-specified from ill-specified
models. However, thresholds for the RMStheta are yet to be determined, and PLS
software still needs to implement this approximate model fit criterion. Note that
early suggestions for PLS-based goodness-of-fit measures such as the “goodness-
of-fit” (GoF, see M. Tenenhaus et al. 2004) or the “relative goodness-of-fit” [GoFrel,
proposed by Esposito Vinzi et al. (2010)] are—contrary to what their name might
suggest—not informative about the goodness of model fit (Henseler et al. 2014;
Henseler and Sarstedt 2013). Consequently, there is no reason to evaluate and report
them if the analyst’s aim is to test or to compare models.

If the specified measurement (or outer) model does not possess minimum
required properties of acceptable reliability and validity, then the structural (inner)
model estimates become meaningless. That is, a necessary condition to even proceed
to assess the “goodness” of the inner structural model is that the outer measurement
model has already demonstrated acceptable levels of reliability and validity. There
must be a sound measurement model before one can begin to assess the “goodness”
of the inner structural model or to rely on the magnitude, direction, and/or statistical
strength of the structural model’s estimated parameters. Factor and composite
models are assessed in a different way.

Factor models can be assessed in various ways. The bootstrap-based tests of
overall model fit can indicate whether the data is coherent with a factor model, i.e.,
it represents a confirmatory factor analysis. In essence, the test of model fit provides
an answer to the question “Does empirical evidence speak against the existence
of the factor?” This quest for truth illustrates that testing factor models is rooted
in the positivist research paradigm. If the test of overall model fit has not provided
evidence against the existence of a factor,5 several questions with regard to the factor
structure emerge: Does the data support a factor structure at all? Is it clear that a
factor can be extracted? How well has this factor been measured? Note that tests of
overall model fit cannot answer these questions; in particular, entirely uncorrelated
empirical variables do not necessarily lead to the rejection of the factor model. To

4For an application of the NFI, see Ziggers and Henseler (2016).
5Interestingly, the methodological literature on factor models is quite silent about what to do if
the test speaks against a factor model. Some researchers suggest considering the alternative of
a composite model, because it is less restrictive (Henseler et al. 2014) and not subject to factor
indeterminacy (Rigdon 2012).
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answer these questions, one should rather rely on several local assessment criteria
with regard to the reliability and validity of measurement.

The amount of random error in construct scores should be acceptable, or in other
words, the reliability of construct scores should be sufficiently high. Nunnally and
Bernstein (1994) recommend a minimum reliability of 0.7. The most important
reliability measure for PLS is rhoA (Dijkstra and Henseler 2015b); it currently is
the only consistent reliability measure for PLS construct scores. Most PLS software
also provides a measure of composite reliability (also called Dillon-Goldstein’s rho,
factor reliability, Jöreskog’s rho, omega, or rhoc) as well as Cronbach’s alpha. Both
refer to sum scores, not construct scores. In particular, Cronbach’s alpha typically
underestimates the true reliability and should therefore only be regarded as a lower
boundary to the reliability (Sijtsma 2009).

The measurement of factors should also be free from systematic measurement
error. This quest for validity can be fulfilled in several non-exclusive ways. First,
a factor should be unidimensional, a characteristic examined through convergent
validity. The dominant measure of convergent validity is the average variance
extracted (AVE, Fornell and Larcker 1981).6 If the first factor extracted from a set
of indicators explains more than one half of their variance, there cannot be any
second, equally important factor. An AVE of 0.5 or higher is therefore regarded
as acceptable. A somewhat more liberal criterion was proposed by Sahmer et al.
(2006): They find evidence for unidimensionality as long as a factor explains sig-
nificantly more variance than the second factor extracted from the same indicators.
Second, each pair of factors that stand in for theoretically different concepts should
also statistically be different, which raises the question of discriminant validity. Two
criteria have been shown to be informative about discriminant validity (Voorhees et
al. 2016): the Fornell-Larcker criterion (proposed by Fornell and Larcker 1981) and
the heterotrait-monotrait ratio of correlations (HTMT, developed by Henseler et al.
2015). The Fornell-Larcker criterion says that a factor’s AVE should be higher than
its squared correlations with all other factors in the model. The HTMT is an estimate
for the factor correlation (more precisely, an upper boundary). In order to clearly
discriminate between two factors, the HTMT should be significantly smaller than
one. Third, the cross-loadings should be assessed to make sure that no indicator is
incorrectly assigned to a wrong factor.

The assessment of composite models is somewhat less developed. Again, the
major point of departure should be the tests of model fit. The tests of model fit for
the saturated model provide evidence for the external validity of the composites.
Henseler et al. (2014) call this step a “confirmatory composite analysis.” For
composite models, the major research question is “Does it make sense to create
this composite?” This different question shows that testing composite models

6The AVE must be calculated based on consistent loadings; otherwise, the assessment of
convergent and discriminant validity based on the AVE is meaningless.
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follows a different research paradigm, namely, pragmatism (Henseler 2015). Once
confirmatory composite analysis has provided support for the composite, it can be
analyzed further. One follow-up suggests itself: How is the composite made? Do all
the ingredients contribute significantly and substantially? To answer these questions,
an analyst should assess the sign and the magnitude of the indicator weights as well
as their significance. Particularly if indicators weights have unexpected signs or are
insignificant, this can be due to multicollinearity. It is therefore recommendable to
assess the variance inflation factor (VIF) of the indicators. VIF values much higher
than one indicate that multicollinearity might play a role.

Once the measurement model is deemed to be of sufficient quality, the analyst can
proceed and assess the structural model. If OLS is used for the structural model, the
endogenous constructs’ R2 values would be the point of departure. They indicate the
% of variability accounted for by the precursor constructs in the model. The adjusted
R2 values take into account model complexity and sample size and are thus helpful
to compare different models or the explanatory power of a model across different
datasets.

If the analyst’s aim is to generalize from a sample to a population, the path
coefficients should be evaluated for significance. Inference statistics include the
empirical bootstrap confidence intervals as well as one-sided or two-sided p-values.
We recommend to use 4999 bootstrap samples. This number is sufficiently close to
infinity for usual situations, is tractable with regard to computation time, and allows
for an unambiguous determination of empirical bootstrap confidence intervals (for
instance, the 2.5% [97.5%] quantile would be the 125th [4875th] element of the
sorted list of bootstrap values). A path coefficient is regarded as significant (i.e.,
unlikely to purely result from sampling error) if its confidence interval does not
include the value of zero or if the p-value is below the predefined alpha-level.
Despite strong pleas for the use of confidence intervals (Cohen 1994), reporting
p-values still seems to be more common in business research.

For the significant effects, it makes sense to quantify how substantial they are,
which can be accomplished by assessing their effect size f2. Values for f2 above 0.35,
0.15, and 0.02 can be regarded as strong, moderate, and weak, respectively (Cohen
1988). The path coefficients are essentially standardized regression coefficients,
which can be assessed with regard to their sign and their absolute size. They should
be interpreted as the change in the dependent variable if the independent variable
is increased by one and all other independent variables remain constant. Indirect
effects and their inference statistics are important for mediation analysis (Zhao et
al. 2010), and total effects are useful for success factor analysis (Albers 2010).
Table 2.1 sums up the discussed criteria for model assessment.
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Table 2.1 Assessment of PLS path modeling results in explanatory research settings

Assessment Criterion

Overall model

Test of model fit (estimated model) SRMR < 95% bootstrap quantile (HI95 of SRMR)
dULS < 95% bootstrap quantile (HI95 of dULS)
dG < 95% bootstrap quantile (HI95 of dG)

Approximate model fit (estimated
model)

SRMR < 0.08

Measurement model

Confirmatory composite and/or
factor analysis (saturated model)

SRMR < 95% bootstrap quantile (HI95 of SRMR)
dULS < 95% bootstrap quantile (HI95 of dULS)
dG < 95% bootstrap quantile (HI95 of dG)

Approximate model fit (saturated
model)

SRMR < 0.08

Internal consistency reliability Dijkstra-Henseler’s �A > 0.7
Dillon-Goldstein’s �c > 0.7
Cronbach’s ˛ > 0.7

Convergent validity AVE > 0.5
Discriminant validity HTMT significantly smaller than 1

Fornell-Larcker criterion
Loadings exceed cross-loadings

Structural model

Endogenous variables R2, adjusted R2

Direct effects Path coefficient (absolute size, sign)
Significance (p-value, confidence interval)
Effect size

Indirect effects Coefficient (absolute size, sign)
Significance (p-value, confidence interval)

Total effects Coefficient (absolute size, sign)
Significance (p-value, confidence interval)

2.5 Extensions

PLS path modeling as described so far analyzes linear relationships between factors
or composites of observed indicator variables. There are many ways how this rather
basic model can be extended.

A first extension is to depart from the assumption of linearity. Researchers have
developed approaches to include nonlinear relationships into the structural model. In
particular, interaction effects and quadratic effects can be easily analyzed by means
of some rudimentary extensions to the standard PLS path modeling setup (Dijkstra
and Henseler 2011; Dijkstra and Schermelleh-Engel 2014; Henseler and Chin 2010;
Henseler and Fassott 2010; Henseler et al. 2012). Interaction effects pay tribute to
the fact that not all individuals function according to the same mechanism but that
the strength of relationships depends on contingencies.
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In addition to interaction effects, there are more comprehensive tools to take
into account the heterogeneity between individuals. Heterogeneity can be observed,
i.e., it can be traced back to an identified variable, or unobserved, i.e., there is no
a priori explanation for why an individual’s mechanism would differ from others.
Because incorrectly assuming that all individuals function according to the same
mechanism represents a validity thread (Becker et al. 2013b), several PLS-based
approaches to discover unobserved heterogeneity have been proposed. Prominent
examples include finite mixture PLS (Ringle et al. 2010a, c), PLS prediction-
oriented segmentation (PLS-POS, Becker et al. 2013b), and PLS genetic algorithm
segmentation (PLS-GAS, Ringle et al. 2010b, 2014). In order to assess observed
heterogeneity, analysts should make use of multigroup analysis (Sarstedt et al.
2011). No matter whether heterogeneity is observed or unobserved, another concern
for the analysts must be not to confound heterogeneity in the structural model with
variation in measurement. Particularly in cross-cultural research, it has therefore
become a common practice to assess the measurement model invariance before
drawing conclusions about structural model heterogeneity. There is a plethora of
papers discussing how to assess the measurement invariance of factor models
(see, e.g., French and Finch 2006); there is only one approach for assessing the
measurement invariance of composite models (Henseler et al. 2016).

2.6 Discussion

The plethora of discussions and developments around PLS path modeling called for
a fresh look at this technique as well as new guidelines. As important aspect of this
endeavor, we provide an answer to the question “What has changed?” This answer
is given in Table 2.2, which contrasts traditional and modern perspectives on PLS. It
is particularly helpful for researchers who have been educated in PLS path modeling
in the past and who would like to update their understanding of the method.

The fact that PLS today strongly differs from how it used to be has also
implications for the users of PLS software. They should verify that they use a
software that has implemented the newest developments in the PLS field. One
possibility would be ADANCO (Henseler and Dijkstra 2015), a new software for
variance-based SEM, which also includes PLS path modeling.

The modularity of PLS path modeling as introduced in the second section opens
up the possibility of replacing one or more steps by other approaches. For instance,
the least squares estimators of the third step could be replaced by neural networks
(Buckler and Hennig-Thurau 2008; Turkyilmaz et al. 2013). One could even replace
the PLS algorithm in Step 1 by alternative indicator weight generators, such as
principal component analysis (M. Tenenhaus 2008), generalized structured com-
ponent analysis (Henseler 2012; Hwang and Takane 2004), regularized generalized
canonical correlation analysis (A. Tenenhaus and Tenenhaus 2011), or even plain
sum scores. Because in these instances the iterative PLS algorithm would not serve
as eponym, one could not speak of PLS path modeling anymore. However, it still
would be variance-based structural equation modeling.
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Table 2.2 Contrasting traditional and modern perspectives on PLS

Traditional view on PLS Modern view on PLS

PLS has some but not all abilities of
structural equation modeling

PLS is a full-fledged structural equation modeling
approach

PLS can estimate formative (using
Mode B) and reflective measurement
models (using Mode A)

PLS can consistently estimate composite models
(using Mode B), formative models (MIMIC
specification), and factor models (using consistent
PLS for the latter)

Identification is not an issue for PLS To ensure identification, analysts must provide a
nomological net for each multi-item construct

PLS path models must be recursive PLS path models can contain feedback loops or take
into account endogeneity if an adequate estimator is
used for the structural model. A sufficient number of
exogenous variables must be available

PLS needs fewer observations than
other SEM techniques

PLS does not need fewer observations than other
techniques when it comes to inference statistics.
Analysts should ensure sufficient statistical power
and representativeness of data

In contrast to other SEM techniques,
PLS does not rely on the assumption of
normality

With regard to assumptions made for the estimation
of parameters, PLS does not differ from other SEM
techniques. For inference statistics, PLS applies a
nonparametric technique, namely, bootstrapping,
which can equally be applied by other SEM
techniques

PLS only permits local model
assessment by means of certain criteria

PLS path models can and should be assessed globally
by means of tests of model fit and approximate
measures of model fit. Models should be locally
assessed, too

The reliability of PLS construct scores
is indicated by Cronbach’s alpha
and/or composite reliability

The reliability coefficient rhoA is a consistent
estimate of the reliability of PLS construct scores;
composite reliability (based on consistent loadings) is
a consistent estimate of the reliability of sum scores

Discriminant validity should be
assessed by comparing each
construct’s average variance extracted
with its squared construct correlations

Discriminant validity should be assessed by means of
the heterotrait-monotrait ratio of correlations
(HTMT) and by comparing each construct’s average
variance extracted (based on consistent loadings)
with its squared consistent construct correlations

Bootstrapping should be conducted in
combination with sign change
correction in order to avoid inflated
standard errors

For each construct, a dominant indicator should be
defined in order to avoid sign indeterminacy

Finally, recent research confirms that PLS serves as a promising technique for
prediction purposes (Becker et al. 2013a). Both measurement models and structural
models can be assessed with regard to their predictive validity. Blindfolding is
the standard approach used to examine if the model or a single effect of it can
predict values of reflective indicators. It is already widely applied (Hair et al. 2012b;
Ringle et al. 2012). Criteria for the predictive capability of structural models have
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been proposed (c.f. Chin 2010) but still need to disseminate. We anticipate that
once business and social science researchers’ interest in prediction becomes more
pronounced, PLS will face an additional substantial increase in popularity.
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Chapter 3
Going Beyond Composites: Conducting
a Factor-Based PLS-SEM Analysis

Ned Kock

Abstract There has been a long and ongoing debate, at points resembling an
acrimonious dispute, among proponents and detractors of the use of the partial least
squares (PLS) approach for structural equation modeling (SEM). The composite-
factor estimation dichotomy has been the epicenter of this debate. In this chapter,
we briefly discuss the implementation of a new method to conduct factor-based
PLS-SEM analyses, which could be a solid step in the resolution of this debate.
This method generates estimates of both true composites and factors, in two stages,
fully accounting for measurement error. Our discussion is based on an illustrative
model in the field of e-collaboration. A Monte Carlo experiment suggests that model
parameters generated by the method are asymptotically unbiased. The method is
implemented as part of the software WarpPLS, starting in version 5.0. This chapter
provides enough details for the method’s implementation in other venues such as R
and GNU Octave.

3.1 Introduction

Structural equation modeling (SEM) is extensively used in many areas of research,
including various business disciplines, as well as the social and behavioral sciences.
The techniques underlying SEM are relevant for the incipient field of business data
analytics. SEM employs latent variables, which are measured indirectly through
“observed” or “manifest” variables, in sets associated with latent variables that are
normally called “indicators.”

The measurement of latent variables via indicators obtained from the administra-
tion of questionnaires includes error. Latent variables typically refer to perception-
based constructs (e.g., satisfaction with one’s job). Indicators normally store
numeric answers to sets of questions in questionnaires, each set designed to refer
to a latent variable and expected to measure it with a certain degree of imprecision.
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There has been an ongoing debate among proponents and detractors of the
use of Wold’s partial least squares (PLS) method (Adelman and Lohmöller 1994;
Lohmöller 1989; Wold 1980) in the context of SEM. This debate has been at points
acrimonious and has been going on for a long time. So far, it shows no signs of
resolution. It arises from common factor model assumptions, which form the basis
on which covariance-based SEM (CB-SEM) rests (Kline 2010; Mueller 1996). The
debate is centered around two main issues.

The first issue is that Wold’s original PLS design for “soft” SEM has a number
of advantages over CB-SEM, such as minimal model identification demands,
practically no data or model parameter distribution assumptions, virtually universal
convergence to solutions, and estimation of “pseudo-factors.” The latter, “pseudo-
factors,” provide a partial solution to the factor indeterminacy problem of CB-SEM.

The second issue fueling the debate is that the original PLS design does not base
its model parameter estimation methods on the estimation of true factors. Estimation
is based on “composites,” which are exact linear combinations of indicators and are
referred to above as “pseudo-factors.” The composite estimates generated by the
original PLS design can be conceptually seen as factors minus their corresponding
measurement errors. Reliance on them leads to biased model parameter estimates
(notably path coefficients and loadings) even as sample sizes grow to infinity (Kock
2014b).

In this chapter, we briefly describe what could be a solid step in the resolution
of this debate, although it may open new avenues for debate on different issues. We
show how researchers can implement what we refer to as “factor-based PLS-SEM”
(PLSF-SEM). This new method generates estimates of both true composites and
factors, in two stages, fully accounting for measurement error.

The PLSF-SEM method is implemented starting in version 5.0 of WarpPLS
(Kock 2015). WarpPLS is an SEM software tool that is unique in that it enables
nonlinear analyses where best-fitting nonlinear functions are estimated for each
pair of structurally linked variables in path models and subsequently used (i.e.,
the nonlinear functions) to estimate path coefficients that take into account the
nonlinearity. Moreover, WarpPLS provides a comprehensive set of model fit and
quality indices that are compatible with both composite-based and factor-based
SEM.

In our discussion all variables are assumed to be standardized, i.e., scaled to
have a mean of zero and standard deviation of one. This has no impact on the
generality of the method or of the discussion. All standardized variables can be
rescaled back to their original scales. Also, our discussion builds on common
factor model assumptions, a key one being that factors cause indicators. This
assumption is strongly anchored in an epistemological argument regarding data
collection via questionnaires: question-statements associated with indicators are
developed by researchers based on mental representations of factors that exist prior
to that development. Therefore, even with multidimensional factors (sometimes
referred to as “formative”), the factors exist before the indicators. Given this, the
idea that indicators may cause factors is questionable when data is obtained via
questionnaires.
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3.2 Measurement Error and the Attenuation Bias

Figure 3.1 shows two correlated factors F1 and F2 with three indicators each. Even
though the indicators “reflect” their common factors (top part of figure), the factors
can also be seen as aggregations of their respective indicators and measurement
errors (bottom part of figure). In each factor the measurement error is uncorrelated
with the factor’s indicators.

Note that even though factor-to-indicator causality is assumed, weights do exist
and factors can be seen as akin to “composites” that aggregate both indicators and
measurement errors. The measurement error that is thus aggregated in each factor
could be viewed as an “extra” indicator that (a) is uncorrelated with the actual
indicators and (b) accounts for the variance in the factor that is not explained by
the actual indicators.

The two correlated factors F1 and F2 can be expressed as weighted sums of their
corresponding true composites C1 and C2 and measurement errors "1 and "2. These
true composites are estimated in a specific way, as we will see later, and are generally
not the same as the composites estimated via PLS algorithms. The weights !1C and
!2C are applied to the true composites, and !1" and !2" are the measurement error
weights. The true reliabilities ˛1 and ˛2 equal the corresponding true composite
weights squared: !1C

2 and !2C
2. Since the standardized base measurement errors

and true composites are uncorrelated, it follows that the measurement error weights
and !1" and !2" equal

p
1 � ˛1 and

p
1 � ˛2, respectively. The factors F1 and F2 are

correlated. Therefore their composites and measurement errors are cross-correlated,
even though composites and measurement errors that refer to the same factor are
uncorrelated. That is, even though r(Ci, "i) D 0, we have r(Ci, "j) ¤ 0, r(Ci, Cj) ¤ 0
and r("i, "j) ¤ 0. These nonzero cross-correlations are represented in Fig. 3.2.

q11
q12
q13
qe1

q21
q22
q23
qe2

x11
x12
x13
e1

x11
x12
x13
e1

x21
x22
x23
e2

x21
x22
x23
e2

F1 F2

F1 F2

Fig. 3.1 Measurement errors for any pair of correlated factors. Note: factors (latent variables) are
represented within ovals; the equivalent graph for composites would have the errors "1 and "2

removed
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Fig. 3.2 Cross-correlation of
measurement errors and
composites. Note: factors,
composites, and measurement
errors are cross-correlated,
but composites and
measurement errors that refer
to the same factor are not

The idea that measurement errors can give rise to an increase in the strength of
the correlations between two factors is counterintuitive at first. Generally speaking,
the presence of error tends to lead to a decrease in the strength of correlations. The
discussion above, however, illustrates why the measurement errors associated with
the factors F1 and F2 are important in making the strength of the correlation between
the factors greater than the strength of the correlation between the corresponding
composites.

The nonzero correlations r(C1, "2), r(C2, "1), and r("1, "2) contribute additively,
together with r(C1, C2), to the correlation between the factors r(F1, F2). This is
why the absolute correlation Ír(C1, C2)Í between the true composites is lower than
the absolute correlation Ír(F1, F2)Í between the factors and ultimately why PLS-
SEM tends to underestimate path coefficients. This is a fundamental problem, with
obvious implications for practitioners, that our PLSF-SEM method aims to address.

3.3 Illustrative Model

Our discussion is based on the illustrative model depicted in Fig. 3.3, which builds
on an actual empirical study in the field of e-collaboration (Kock 2005, 2008; Kock
and Lynn 2012). This illustrative model incorporates the belief that e-collaboration
technology use (F1) by teams of workers tasked with the development of new
products in organizations (e.g., a new consulting service, a new car part) increases
both team efficiency (F2) and team performance (F3). Team efficiency (F2) is related
to the speed and cost at which teams operate. Team performance (F3) is related to
how well the new products developed by teams perform in terms of sales and profits.
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Fig. 3.3 Illustrative model

In this illustrative model, ˇij is the path coefficient for the link going from factor
Fj to factor Fi; �ij is the loading for the jth indicator of factor Fi; � ij is the indicator
error for the jth indicator of factor Fi; "i is the measurement error associated with Fi;
and � i is the structural error associated with Fi, which exists only for endogenous
factors. An endogenous factor has at least one other factor pointing at it in the model.

Note that the measurement errors "i are not the same as the structural errors � i.
Measurement errors exist for any factors that are measured with a certain degree
of imprecision, whether the factors are exogenous or endogenous. Structural errors
exist only for endogenous factors. Analogously, the measurement errors "i should
not be confused with the indicator errors � ij, even though these two types of errors
are related. The former arise due to the existence of the latter and can be seen as
“extra” indicators that account for the explained variances in their respective factors
that are not accounted for by the actual factor indicators.

3.4 PLSF-SEM’s First Stage: Composites

PLSF-SEM’s first stage yields initial estimates of the composites. These estimates
are used in the method’s second stage, where factors and other model parameter
estimates are produced. It starts by setting weights and loadings as 1 (reversed
indicators must be properly adjusted) and initializing the composite estimates with
a standardized vector of the summed indicators. Then measurement errors b"i,
reliabilities b̨i, measurement error weights b! i", and composite weights b!iC are set
as indicated in Eqs. (3.1)–(3.4).

b"i ´ Stdz ŒRnd.N/	 : (3.1)

b̨i ´ ni

�
†xixih

1 C .ni � 1/
�
†xixi

i : (3.2)

b!i" ´
p

1 � b̨i: (3.3)
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b! iC ´
p
b̨i: (3.4)

In these equations, Rnd(N) is a function that returns an independent and
identically distributed (i.i.d.) variable with N rows, with N being the sample size;
Stdz(•) is a function that returns a standardized column vector; ni is the number of
indicators of factor Fi; xi is a matrix with N rows and with each column referring to

one of the indicators associated with Fi; and
�
†xixi is the mean of the nonredundant

correlation coefficients among the column vectors that make up xi (e.g., the mean of
the lower triangular version of †xixi ).

Technical readers will notice that the reliability estimate b̨i above is the Cron-
bach’s alpha coefficient (Cronbach 1951; Kline 2010). We are aware that serious
questions have been raised regarding Cronbach’s alpha’s psychometric properties.
However, while the PLSF-SEM method uses the Cronbach’s alpha coefficient as
a basis for the estimation of measurement error and composite weights, it makes
no assumptions about the coefficient’s main purported psychometric properties that
have been the target of criticism (Sijtsma 2009). This is an important distinction in
light of measurement error theory (Nunnally and Bernstein 1994).

Moreover, we developed and tested a number of experimental versions of the
PLSF-SEM method prior to writing this chapter, using various reliability estimates.
The versions employing the Cronbach’s alpha coefficient tended to yield the best
results. Arguably employing Cronbach’s alpha coefficients tended to yield good
results in our simulations because the Cronbach’s alpha coefficients provide good
estimates of the true reliabilities when the degree of heterogeneity among the
loadings in each latent variable is low. This appears to frequently be the case in
practice. Two alternatives can be employed when this is not the case:

• To use the reliability estimates generated by Dijkstra’s consistent PLS (a.k.a.
PLSc) technique, which appear to be closer to the true reliabilities than Cron-
bach’s alpha coefficients under high-loading heterogeneity conditions. Here
Dijkstra’s consistent PLS’ reliabilities would be used in place of the Cronbach’s
alpha coefficients.

• To use Cronbach’s alpha coefficients as initial reliability estimates and iterate
across the two stages of the PLSF-SEM method, where the two stages are
contained within an outermost loop. This outermost loop is responsible for
convergence toward an asymptotically unbiased reliability measure. In each
iteration the reliability estimates for each latent variable i would be adjusted

to 1=2
�
b! i

0b�i Cb�i

�
, where b�i is the composite reliability estimate for latent

variable i.

PLSF-SEM’s first stage then proceeds by iteratively estimating factors bFi,
matrices b� i with N rows and with each column storing one of the indicator error
terms, column vectors of weightsb!i, compositesbCi, and column vectors of loadings
b�i according to Eqs. (3.5)–(3.9). Convergence is achieved when the sum of the
absolute differences between successive estimates of the matrix of loadings for the
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entire modelb� changes by less than a small fraction.

bFi ´ Stdz
�
bCib! iC Cb"ib!i"

�
: (3.5)

b� i ´ xi �bFi
b�i

0
: (3.6)

b!i ´ †xixi
�1
h
†xixi � diag

�
†

xib� i

�i
b�i

0C
: (3.7)

bCi ´ 1

b! iC
.xib!i/ : (3.8)

b�i ´
�
bCi

C
xi

�0
b!iC: (3.9)

In these equations diag
�
†

xib� i

�
is the diagonal matrix of covariances among the

indicators and corresponding error terms, and the superscript C denotes the Moore-

Penrose pseudoinverse transformation. It is useful to observe that diag
�
†

xib� i

�
is

a diagonal matrix because in the common factor model, †xij�ij D 0 for all i ¤ j.
That is, in the common factor model, indicator error terms are correlated with their
corresponding indicators and uncorrelated with other indicators in the same factor.

Researchers familiar with the mathematics underlying PLS will see that the
estimation steps above differ significantly from those employed in Wold’s orig-
inal PLS design (Adelman and Lohmöller 1994; Lohmöller 1989; Wold 1980).
Particularly noteworthy is that the estimation steps above incorporate significantly
more information in defining the relationships among weights and loadings, chiefly
information about the relationships among indicators and their error terms.

In Wold’s original PLS design and its variants, weights and loadings are
typically assumed to be proportional to one another and thus linearly related. At
the population level, our simulations suggest that usually they are not (i.e., the
relationship between any factor’s weights and loadings is usually nonlinear). As
a result, the original PLS design does not yield estimates of the true composites. It
is our contention that there is one unique true composite associated with each factor
and that the PLSF-SEM method yields estimates of the true composites.

3.5 PLSF-SEM’s Second Stage: Factors

PLSF-SEM’s second stage starts with the estimation of the elements b†FiFj of a

target correlation matrix b†FF via Eq. (3.10), which follows from the correlation
attenuation notion of measurement error theory (Nunnally and Bernstein 1994).
In this equation †bCibCj

is the correlation between composites estimated in the first

stage, corresponding to the pair of factors Fi and Fj. Here b†FiFj are the elements
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of the matrix of estimated correlations among factors b†FF, which can be seen as a
population matrix estimate.

b†FiFj ´
†bCibCjp
b̨ib̨j

: (3.10)

In this second stage, the PLSF-SEM method will fit the matrix of correlations
among estimated factors †bFbF , which can be seen as a model-implied matrix

estimate, to b†FF. To that end, the method proceeds by initializing factors as
indicated in Eq. (3.14) and iteratively performing the assignments in Eqs. (3.11)–
(3.15). Since factors and measurement errors are reestimated in each iteration,
so must the correlation matrix elements †bFibFj

, †bFibCi
, and †bFib"i

. These are the

elements of the correlation matrices among factors, factors and composites, and
factors and measurement errors, respectively.

b"i ´ Stdz

"
b"i C

�
b†FiFj � †bFibFj

� b†FiFj

b!i"

�
bCjb!jC Cb"jb!j"

�#
: (3.11)

bFi ´ Stdz
h
bFi C

�
b!iC � †bFibCi

�
bCib!iC

i
: (3.12)

b"i ´ Stdz
h
b"i � †bCib"i

bCib!iC C
�
b!i" � †bFib"i

�
bFib! i"

i
: (3.13)

bFi ´ Stdz
�
bCib! iC Cb"ib!i"

�
: (3.14)

b"i ´ Stdz

�
1

b! i"

�
bFi �bCib!iC

��
: (3.15)

The assignments in Eqs. (3.11)–(3.13) are called “variation sharing” assignments
and constitute a critical ingredient of the PLSF-SEM method. As a group they
are akin to a “soft” version of the classic expectation-maximization algorithm
(Dempster et al. 1977) used in maximum likelihood estimation, but with apparently
faster convergence and nonparametric properties. Through these assignments factors
and measurement errors obtain variation that they did not have at the end of PLSF-
SEM’s first stage, but that is an integral part of the true measurement errors and
factors. Ultimately all of this variation emanates from the true composites.

The assignments above are only carried out for the variables indexed by i
where b!i" > 0. That is, factors and measurement errors are only adjusted in
those cases where measurement error is assumed to exist, which are also cases
where b̨i < 1. Convergence is achieved when the sum of the absolute differences
b†FiFj �†bFibFj

falls below a small fraction or when the sum of the absolute differences
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between successive estimates of †bFibFj
changes by less than a small fraction. Once

convergence is achieved, final estimates of the composites, weights, and loadings
are generated through Eqs. (3.16)–(3.18).

bCi ´ Stdz

�
1

b!iC

�
bFi �b"ib! i"

��
: (3.16)

b!i ´ xi
CbCib! iC: (3.17)

b�i ´ xi
0bFi

0C
: (3.18)

The PLSF-SEM method then lastly proceeds to estimate path coefficients
through a standard path analysis (Mueller 1996; Wright 1934, 1960) using the factor
estimates. Standard errors for path coefficients and any other model parameter can
be estimated via resampling or stable P value calculation methods (Kock 2014a,
2015), as is usually done in the original PLS design. The standard errors can
subsequently be used to obtain chance probability estimates for hypothesis testing
(Kock 2014c), for any model parameter.

3.6 Monte Carlo Experiment

We conducted a Monte Carlo experiment (Paxton et al. 2001) based on the true
population model depicted in Fig. 3.4, whereby 300 samples were created for each
of the following sample sizes: 50, 100, and 300. This Monte Carlo experiment was
conducted as part of extensive internal tests of version 5.0 of WarpPLS.

A summarized set of results based on the analyses of simulated samples is shown
in Table 3.1. True values, mean parameter estimates, and standard errors are shown
next to one another. Results obtained through the PLSF-SEM method (under the

Fig. 3.4 True population model
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Table 3.1 Summarized Monte Carlo experiment results

SEM method PLSA PLSF PLSA PLSF PLSA PLSF

Sample size 50 50 100 100 300 300
EU>TE(TruePath) .400 .400 .400 .400 .400 .400
EU>TE(AvgPath) .339 .380 .309 .385 .303 .394
EU>TE(SEPath) .125 .161 .128 .127 .110 .070
EU>TP(TruePath) .300 .300 .300 .300 .300 .300
EU>TP(AvgPath) .260 .301 .248 .294 .234 .297
EU>TP(SEPath) .135 .157 .108 .133 .085 .079
TE>TP(TruePath) .200 .200 .200 .200 .200 .200
TE>TP(AvgPath) .201 .234 .189 .225 .174 .203
TE>TP(SEPath) .144 .163 .098 .132 .061 .079
EU3<EU(TrueLoad) .700 .700 .700 .700 .700 .700
EU3<EU(AvgLoad) .793 .692 .802 .695 .808 .699
EU3<EU(SELoad) .129 .108 .113 .077 .112 .049

Notes: XX>YY D link from factor XX to YY; EU D e-collaboration technology use; TE D
team efficiency; TP D team performance; XX1 : : : XXn D indicators associated with factor XX;
TruePath D true path coefficient; AvgPath D mean path coefficient estimate; SEPath D standard
error of path coefficient estimate; TrueLoad D true loading; AvgLoad D mean loading estimate;
SELoad D standard error of loading estimate

“PLSF” columns) are contrasted with results obtained through the PLS Mode A
algorithm (under the “PLSA” columns). PLS Mode A with the “path weighting”
scheme was employed, the most widely used in analyses employing the original
PLS design. We show results for all of the structural paths in the model but restrict
ourselves to loadings for one indicator in one factor since all loadings are the same
in the true population model used. This is also done to avoid repetition, as the same
general pattern of results for loadings repeats itself for all indicators in all factors.

As we can see from the summarized results, the PLSF-SEM method yielded
virtually unbiased estimates at N D 300, whereas PLS Mode A yielded significantly
biased estimates at that same sample size. One of the reasons for these significantly
biased estimates with PLS Mode A is the relatively low loadings in the true
population model (�ij D . 7, for all i and j), which tend to be a challenge for
algorithms based on the original PLS design.

The relatively low loadings in the true population model apparently had little
effect on PLSF-SEM’s asymptotic convergence to the true values of the model
parameters, although those loadings probably slowed down that convergence some-
what as sample sizes increased. In other simulations we conducted with higher
loadings, convergence was achieved at smaller sample sizes. Generally speaking,
high loadings are to be expected based on the common factor model, as they imply
the use of psychometrically sound measurement instruments.

For several of the path coefficients and loadings, the PLSF-SEM method yielded
lower standard errors, particularly as sample sizes increased. This is noteworthy
because the PLSF-SEM method is clearly more computationally complex than PLS
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Mode A and thus could have been expected to have a greater “cost” in terms of
standard errors.

However, standard errors yielded at N D 50 were generally higher for the PLSF-
SEM method. Apparently the difference was enough to have a negative effect on
power, as the ratios of path coefficients to standard errors indicate. That is, at
N D 50, one could argue based on the results that PLS Mode A has greater power
than the PLSF-SEM method for this particular model, although the ratios of path
coefficients to standard errors suggest that both methods may struggle to avoid type
II errors at this small sample size, particularly for the paths whose true coefficients
were lower than .400 (the path with the highest strength).

3.7 Discussion and Conclusion

While Wold’s original PLS design offers several advantages over CB-SEM, it is
largely incompatible with the common factor model (Kline 2010; Mueller 1996).
Arguably the common factor model is the core foundation of CB-SEM. Given
this, in Monte Carlo simulations where data is created based on common factor
model assumptions, the original PLS design yields biased model parameters.
Generally path coefficients are underestimated, and loadings are overestimated. This
“advantages-with-costs” scenario has led to much debate over the years among
proponents and detractors of the original PLS design.

In this chapter, we discussed what could be a solid step in the resolution of this
debate. We showed how researchers can implement factor-based PLS-SEM (PLSF-
SEM), a new method that generates estimates of both true composites and factors.
The method does so in two stages and fully accounts for measurement error. Since
it generates estimates of both true composites and factors, the PLSF-SEM method
can potentially place researchers in a position where they can subsequently estimate
a large number of model parameters.

At this point the reader may ask a reasonable question. Given that confirmatory
factor analyses and hypothesis testing require primarily estimates of loadings and
path coefficients, why would one want to generate factor estimates? The answer
is that there are certain types of analyses that require factor scores and more will
likely be developed in the future as estimates of true factor scores become available
to methodological researchers.

For example, the recently developed full collinearity test concurrently assesses
lateral and vertical collinearity among factors (Kock and Lynn 2012), providing
the basis on which a number of methodological issues can be addressed (e.g.,
common method bias), but cannot be properly conducted without factor scores.
Also, factor scores enable nonlinear analyses where best-fitting nonlinear functions
are estimated for each pair of linked factors and subsequently used to estimate path
coefficients that take into account the nonlinearity (Guo et al. 2011; Kock 2015;
Moqbel et al. 2013).
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It is our belief that the PLSF-SEM method is a solid step in the legitimization of
modified versions of Wold’s original “soft” PLS techniques for confirmatory factor
and full-blown SEM analyses that are consistent with the common factor model.
However, common sense suggests that the PLSF-SEM method has weaknesses that
will be uncovered as time goes by. It is very unlikely that any new method will be
problem-free.

As the PLSF-SEM method is refined and improved, it may serve as the basis
for the development of novel statistical tests that could lead to new insights in the
context of SEM. Users of WarpPLS, starting in version 5.0, will be able to test
the PLSF-SEM method and variations for themselves. Also, we hope that this brief
chapter will provide enough details for implementations, in numerical programming
environments such as R and GNU Octave, to be developed and tested under various
conditions. We welcome comments, suggestions, and corrections.
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Chapter 4
A Perfect Match Between a Model and a Mode

Theo K. Dijkstra

Abstract When the partial least squares estimation methods, the “modes,” are
applied to the standard latent factor model against which methods are designed and
calibrated in PLS, they will not yield consistent estimators without adjustments. We
specify a different model in terms of observables only, that satisfies the same rank
constraints as the latent variable model, and show that now mode B is perfectly
suitable without the need for corrections. The model explicitly uses composites,
linear combinations of observables, instead of latent factors. The composites
may satisfy identifiable linear structural equations, which need not be regression
equations, estimable via 2SLS or 3SLS. Each time practitioners contemplate the use
of PLS’ basic design model the composites model is a viable alternative. The chapter
is conceptual mainly, but a small Monte Carlo study exemplifies the feasibility of
the new approach.

4.1 Introduction

Herman (H.O.A.) Wold (1908–1992) developed partial least squares (PLS) in a
series of papers, published as well as privately circulated. The seminal published
papers are Wold (1966, 1975, 1982). A key characteristic of PLS is the determi-
nation of composites, linear combinations of observables, by weights that are fixed

This chapter “continues” a sometimes rather spirited discussion with Wold, that started in 1977,
at the Wharton School in Philadelphia, via my PhD thesis, Dijkstra (1981), and a paper Dijkstra
(1983). There was a long silence, until about 2008, when Peter M. Bentler (UCLA) rekindled my
interest in PLS, one of the many things for which I owe him my gratitude. Crucial also is the
collaboration with Joerg Henseler (Twente), that led to a number of papers on PLS and on ways
to get consistency without the need to increase the number of indicators, PLSc, as well as to a
software program ADANCO for composites. I am very much in his debt too. The present chapter
expands on Dijkstra (2010) by avoiding unobservables as much as possible while still adhering to
Wold’s fundamental principle of soft modeling.

T.K. Dijkstra (�)
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points of sequences of alternating least squares programs, called “modes.” Wold
distinguished three types of modes (not models!): mode A, reminiscent of principal
component analysis, mode B, related to canonical variables analysis, and mode C,
that mixes the former two. In a sense PLS is an extension of canonical variables
and principal components analyses. While Wold designed the algorithms, great
strides were made in the estimation, testing, and analysis of structured covariance
matrices, as induced by linear structural equations in terms of latent factors and
indicators (LISREL first, then EQS et cetera). Latent factor modeling became the
dominant backdrop against which Wold designed his tools. One model in particular,
the “basic design,” became the model of choice in calibrating PLS. Here each latent
factor is measured indirectly by a unique set of indicators, with all measurement
errors usually assumed to be mutually uncorrelated. The composites combine the
indicators for each latent factor separately, and their relationships are estimated
by regressions.1 The basic design embodies Wold’s “fundamental principle of soft
modeling”: all information between the blocks of observables is assumed to be
conveyed by latent variables (Wold 1982).2 However, in this model PLS is not
well-calibrated3: when applied to the true covariance matrix it yields by necessity
approximations, see, e.g., Dijkstra (1981, 1983; 2010; 2014). For consistency,
meaning that the probability limit of the estimators equals the theoretical value,
Wold also requires the number of indicators to increase alongside the number of
observations (consistency-at-large).

In this chapter we leave the realm of the unobservables, and build a model in
terms of manifest variables that satisfies the fundamental principle of soft modeling,
adjusted to read: all information between the blocks is conveyed solely by the
composites. For this model, mode B is the perfect match, in the sense that estimation
via mode B is the natural thing to do: when applied to the true covariance matrix it
yields the underlying parameter values, not approximations that require corrections.
A latent factor model, in contrast, would need additional structure (like uncorrelated
measurement errors) and fitting it would produce approximations.

The chapter is structured as follows. The next section, Sect. 4.2, outlines the new
model. We specify for a vector y of observable variables, “indicators,” a structural
model that generates via linear composites of separate blocks of indicators all the
standard basic design rank restrictions on the covariance matrix, without invoking

1This includes simultaneous equations systems, which are generally not regressions. They
were estimated by a Fix Point method, essentially iterations of 2SLS (two-stage-least-squares)
regressions (Boardman et al. 1981). See below for 2SLS and Dijkstra and Henseler (2015a,b).
2“Soft modeling” indicates that PLS is meant to perform “substantive analysis of complex
problems that are at the same time data-rich and theory-primitive” (Wold 1982).
3I am not saying here that methods that are not well-calibrated are intrinsically “bad.” This would
be ludicrous given the inherent approximate nature of statistical models. Good predictions typically
require a fair amount of misspecification, to put it provocatively. But knowing what happens when
we apply a statistical method to “the population” helps answering what it is that it is estimating.
Besides, consistency, and to a much lesser extent “efficiency,” was very important to Wold.



4 A Perfect Match Between a Model and a Mode 57

the existence of unobservable latent factors. They, the composites, are linked to each
other by means of a “structural,” “simultaneous,” or “interdependent” equations
system, that together with the loadings fully captures the (linear) relationships
between the blocks of indicators.

Section 4.3 is devoted to estimation issues. We describe a step-wise procedure:
first the weights defining the composites via generalized canonical variables,4 then
their correlations and the loadings in the simplest possible way, and finally the
parameters of the simultaneous equations system using the econometric methods
2SLS or 3SLS. The estimation proceeds essentially in a non-iterative fashion (even
when we use one of the PLS’ traditional algorithms, it will be very fast), making it
potentially eminently suitable for bootstrap analyses. We give the results of a Monte
Carlo simulation for a model for 18 indicators; they are generated by six composites
linked to each other via two linear equations, which are not regressions. We also
show that mode A, when applied to the true covariance matrix of the indicators, can
only yield the correct results when the composites are certain principal components.
As in PLSc, mode A can be adjusted to produce the right results (in the limit).

Section 4.4 suggests how to test various aspects of the model, via tests of the rank
constraints, via prediction/cross-validation, and via global goodness-of-fit tests.

Section 4.5 contains some final observations and comments. We briefly return
to “the latent factors versus composites”-issue and point out that in a latent factor
model the factors cannot fully be replaced by linear composites, no matter how
we choose them: the regression of the indicators on the composites will not yield
the loadings on the factors, or (inclusive) the composites cannot satisfy the same
equations that the factors satisfy.

The Appendix contains a proof for a statement needed in Sect. 4.3.

4.2 The Model: Composites as Factors

Our point of departure is a random vector5 y of “indicators” that can be partitioned
into N subvectors, “blocks” in PLS parlance, as y D .y1I y2I y3I : : : I yN/. Here
the semi-colon stacks the subvectors one underneath the other, as in MATLAB;
yi is of order pi � 1 with pi usually larger than one. So y is of dimension p � 1

with p WD PN
iD1 pi. We will denote cov.y/ by †, and take it to be positive

definite (p.d.), so no indicator is redundant. We will let †ii WDcov.yi/. †ii is of
order pi � pi and it is of course p.d. as well. It is not necessary to have other
constraints on †ii; in particular it need not have a one-factor structure. Each block
yi is condensed into a composite, a scalar ci, by means of a conformable weight

4It should be pointed out that I see PLS’ mode B as one of a family of generalized canonical
variables estimation methods (Sect. 4.3.1), to be treated on a par with the others, without
necessarily claiming that mode B is the superior or inferior method. None of the methods will
be uniformly superior in every sensible aspect.
5Vectors and matrices will be distinguished from scalars by printing them in boldface.
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vector wi: ci WD w|
i yi. The composites will be normalized to have variance one:

var.ci/ D w|
i †iiwi D 1. The vector of composites c WD .c1I c2I c3I : : : I cN/ has

a p.d. covariance/correlation matrix denoted by Rc D �
rij
�

with rij D w|
i †ijwj

where †ij WDE.yi � Eyi/
�
yj � Eyj

�|
. A regression of yi on ci and a constant gives

a loading vector Li of order pi � 1:

Li WD E .yi � Eyi/ � .ci � Eci/ D E .yi � Eyi/ .yi � Eyi/
| wi D †iiwi (4.1)

So far all we have is a list of definitions but as yet no real model: there are no
constraints on the joint distribution of y apart from the existence of moments6 and
a p.d. covariance matrix. We will now impose our version of Wold’s fundamental
principle in soft modeling:

all information between the blocks is conveyed solely by the composites
We deviate from Wold’s original formulation in an essential way: whereas Wold

postulated that all information is conveyed by unobserved, even unobservable, latent
variables, we let the information to be fully transmitted by indices, by composites
of observable indicators. So we postulate the existence of weight vectors such that
for any two different blocks yi and yj

†ij D rijLiL
|
j (4.2)

D w|
i †ijwj � †iiwi � �†jjwj

�|

D corr
�

w|
i yi; w|

j yj

�
� cov

�
yi; w|

i yi
� �
�

cov
�

yj; w|
j yj

��|
(4.3)

The cross-covariances between the blocks are determined by the correlation
between their corresponding composites and the loadings of the blocks on those
composites. Note that line (4.2) is highly reminiscent of the corresponding equation
for the basic design, with latent variables. There it would read �ij�i�

|
j with �ij

representing the correlation between the latent variables, with �i and �j capturing
the loadings. So the rank-one structure of the covariance matrices between
the blocks is maintained fully, without requiring the existence of N additional
unobservable variables.

We now have:

† D

2

666664

†11 r12L1L|
2 r13L1L|

3 � r1NL1L|
N

†22 r23L2L|
3 � r2NL2L|

N

� � �
†N�1;N�1 rN�1;N LN�1L|

N

†NN

3

777775
(4.4)

6A random sample of indicator-vectors and the existence of second order moments is sufficient
for the consistency of the estimators to be developed below; with the existence of fourth-order
moments we also have asymptotic normality.
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The appendix contains a proof of the fact that † is positive definite when and only
when the correlation matrix of the composites, Rc, is positive definite. Note that in a
Monte Carlo analysis we can choose the weight vectors (or loadings) and the values
of Rc independently.

We can add more structure to the model by imposing constraints on Rc. This is
done most conveniently by postulating a set of simultaneous equations to be satisfied
by c. We will call one subvector of c the exogenous composites, denoted by cexo, and
the remaining elements will be collected in cendo, the endogenous composites. There
will be conformable matrices B and C with B invertible such that

Bcendo D Ccexo C z (4.5)

It is customary to normalize B, i.e., all diagonal elements equal one (perhaps after
some re-ordering). The residual vector z has a zero mean and is uncorrelated with
cexo. In this type of (econometric) model the relationships between the exogenous
variables are usually not the main concern. The research focus is on the way
they drive the endogenous variables and the interplay or the feedback mechanism
between the latter as captured by a matrix B that has nonzero elements both above
and below the diagonal. A special case, with no feedback mechanism at all, is the
class of recursive models, where B has only zeros on one side of its diagonal, and
the elements of z are mutually uncorrelated. Here the coefficients in B and C can
be obtained directly by consecutive regressions, given the composites. For general
B this is not possible, since cendo is a linear function of z so that zi will typically be
correlated with every endogenous variable in the ith equation.7

Even when the model is not recursive, the matrices B and C will be postulated to
satisfy certain zero constraints (and possibly other types of constraints, but we focus
here on the simplest situation). So some Bij’s and Ckl’s are zero. We will assume that
the remaining coefficients are identifiable from a knowledge of the so-called reduced
form matrix …

… WD B�1C (4.6)

Note that

cendo D …cexo C B�1z (4.7)

so … is a matrix of regression coefficients. Once we have those, we should be able to
retrieve B and C from them. Identifiability is equivalent to the existence of certain
rank conditions on …, we will have more to say about them later on. We could
have additional constraints on the covariance matrices of cexo and z but we will not
develop that here, taking the approach that demands the least in terms of knowledge

7See Pearl (2009) for an in-depth causal analysis of simultaneous equations systems (based on and
extending (Haavelmo 1944), probably the best apologia of econometrics ever).
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about the relationships between the composites. It is perhaps good to note that
granted identifiability, the free elements in B and C can be interpreted as regression
coefficients, provided we replace the “explanatory” endogenous composites by their
regression on the exogenous composites. This is easily seen as follows:

cendo D .I � B/ cendo C Ccexo C z (4.8)

D .I � B/
�
…cexo C B�1z

�C Ccexo C z (4.9)

D .I � B/ .…cexo/ C Ccexo C B�1z (4.10)

where B�1z is uncorrelated with …cexo and cexo. So the free elements of .I � B/

and C can be obtained by a regression of cendo on …cexo and cexo, equation by
equation.8 Identifiability is here equivalent to invertibility of the covariance matrix
of the “explanatory” variables in each equation. A necessary condition for this to
work is that we cannot have more coefficients to estimate in each equation than the
total number of exogenous composites in the system.

We have for Rc

Rc D
�

cov .cexo/ cov .cexo/ � …|

…cov .cexo/ …| C B�1cov .z/ .B|/�1

�
(4.11)

Thanks to the structural constraints, the number of parameters in Rc could be
(considerably) less than 1

2
N.N�1/; potentially allowing for an increase in estimation

efficiency.
As far as † is concerned, the model is now completely specified.

4.2.1 Fundamental Properties of the Model and Wold’s
Fundamental Principle

Now define for each i the measurement error vector di via

yi � mean .yi/ D Li .ci � mean .ci// C di (4.12)

where Li D †ii wi, the loadings vector obtained by a regression of the indicators on
their composite (and a constant).

By construction di has a zero mean and is uncorrelated with ci. In what follows
it will be convenient to have all variables de-meaned, so we have yi D Lici C di: It
is easy to verify that:

8The estimation method based on these observations is called 2SLS, two-stage-least-squares, for
obvious reasons, and was developed by econometricians in the 1950s of the previous century.
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The measurement error vectors are mutually uncorrelated, and uncorrelated with
all composites:

Edid
|
j D 0 for all different i and j (4.13)

Edicj D 0 for all i and j (4.14)

It follows that Eyid
|
j D 0 for all different i and j. In addition:

cov .di/ D †ii � LiL
|
i (4.15)

The latter is also very similar to the corresponding expression in the basic design,
but we cannot in general have a diagonal cov.di/, because cov.di/ wi is identically
zero (implying that the variance of w|

i di is zero, and therefore w|
i di D 0 with

probability one). The following relationships can be verified algebraically using
regression results, or by using conditional expectations formally (so even though
we use the formalism of conditional expectations and the notation, we do just mean
regression).

E .y1jc1/ D L1c1 (4.16)

because E.y1jc1/ DE.L1c1 C d1jc1/ D L1c1 C 0: Also note that

E .c1jy2; y3; : : : ; yN/ (4.17)

D E.E .c1jy2; y3; : : : ; yN ; d2; d3; : : : ; dN/ jy2; y3; : : : ; yN/ (4.18)

D E.E .c1jc2; c3; : : : ; cN ; d2; d3; : : : ; dN/ jy2; y3; : : : ; yN/ (4.19)

D E.E .c1jc2; c3; : : : ; cN/ jy2; y3; : : : ; yN/ (4.20)

D E .c1jc2; c3; : : : ; cN/ (4.21)

We use the “tower property” of conditional expectation on the second line. (In order
to project on a target space, we first project on a larger space, and then project
the result of this on the target space.) On the third line we use yi D Lici C di so
that conditioning on the yi’s and the di’s is the same as conditioning on the ci’s
and the di’s. The fourth line is due to zero correlation between the ci’s and the
di’s, and the last line exploits the fact that the composites are determined fully by
the indicators. So because E.y1jy2; y3; : : : ; yN/ DE.L1c1 C d1jy2; y3; : : : ; yN/ D
L1E.c1jy2; y3; : : : ; yN/ we have

E .y1jy2; y3; : : : ; yN/ D L1E .c1jc2; c3; : : : ; cN/ (4.22)

In other words, the best (least squares) predictor of a block of indicators given other
blocks is determined by the best predictor of the composite of that block given the
composites of the other blocks, together with the loadings on the composite. This
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contrasts rather strongly with the model Wold used, with latent factors/variables f.
Here instead of L1E.c1jc2; c3; : : : ; cN/ we have

E .y1jy2; y3; : : : ; yN/ D �1E.E . f1j f2; f3; : : : ; fN/ jy2; y3; : : : ; yN/ (4.23)

Basically, we can follow the sequence of steps as above for the composites except
the penultimate step, from (4.20) to (4.21). I would maintain that the model as
specified answers more truthfully to the fundamental principle of soft modeling than
the basic design.

4.3 Estimation Issues

We will assume that we have the outcome of a Consistent and Asymptotically
Normal (CAN-)estimator for †. One can think of the sample covariance matrix
of a random sample from a population with covariance matrix † and finite fourth-
order moments (the latter is sufficient for asymptotic normality, consistency requires
finite second-order moments only). The estimators to be described are all (locally)
smooth functions of the CAN-estimator for †, hence they are CAN as well.

We will use a step-wise approach: first the weights, then the loadings and the
correlations between the composites, and finally the structural form coefficients.
Each step uses a procedure that is essentially non-iterative, or if it iterates, it is very
fast. So no explicit overall fit-criterion, although one could interpret the approach
as the first iterate in a block relaxation program that aims to optimize a positive
combination of target functions appropriate for each step. The view that a lack of
an overall criterion to be optimized is a major flaw is ill-founded. Estimators should
be compared on the basis of their distribution functions, the extent to which they
satisfy computational desiderata, and the induced quality of the predictions. There
is no theorem, and their cannot be one, to the effect that estimators that optimize
a function are better than those that are not so motivated. For composites a proper
comparison between the “step-wise” (partial) and the “global” approaches is still
open. Of the issues to be addressed two stand out: efficiency in case of a proper,
correct specification, and robustness with respect to distributional assumptions and
specification errors (the optimization of a global fitting function that takes each and
every structural constraint seriously may not be as robust to specification errors as a
step-wise procedure).

4.3.1 Estimation of Weights, Loadings, and Correlations

The only issue of some substance in this section is the estimation of the weights.
Once they are available, estimates for the loadings and correlations present them-
selves: the latter are estimated via the correlation between the composites, the
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former by a regression of each block on its corresponding composite. One could
devise more intricate methods but in this stage there seems little point in doing so.

To estimate the weights we will use generalized Canonical Variables (CV’s)
analysis.9 This includes of course the approach proposed by Wold, the so-called
mode B estimation method. Composites simply are canonical variables. Any
method that yields CV’s matches naturally, “perfectly,” with the model. We will
describe some of the methods while applying them to † and show that they do
indeed yield the weights. A continuity argument then gives that when they are
applied to the CAN-estimator for † the estimators for the weights are consistent
as well. Local differentiability leading to asymptotic normality is not difficult to
establish either.10

For notational ease we will employ a composites model with three blocks, N D 3,
but that is no real limitation. Now consider the covariance matrix, denoted by R .v/,
of v|

1 y1, v|
2 y2, and v|

3 y3 where each vi is normalized (var
�
v|

i yi
� D 1). So

R .v/ WD
2

4
1 v|

1 †12v2 v|
1 †13v3

v|
1 †12v2 1 v|

2 †23v3

v|
1 †13v3 v|

2 †23v3 1

3

5 : (4.24)

Canonical variables are composites whose correlation matrix has “maximum dis-
tance” to the identity matrix of the same size. They are “collectively maximally
correlated.” The term is clearly ambiguous for more than two blocks. One program
that would seem to be natural is to maximize with respect to v

z .v/ WD abs .R12/ C abs .R13/ C abs .R23/ (4.25)

subject to the usual normalizations. Since

abs
�
Rij
� D abs

�
rij
� � abs

�
v|

i †iiwi
� � abs

�
v|

j †jjwj

�
(4.26)

we know, thanks to Cauchy–Schwarz, that

abs
�
v|

i †iiwi
� D abs

�
v|

i †
1
2

ii †
1
2

ii wi

	
�
q

v|
i †

1
2

ii †
1
2

ii vi � w|
i †

1
2

ii †
1
2

ii wi (4.27)

D
q

v|
i †iivi � w|

i †iiwi D 1 (4.28)

with equality if and only if vi D wi (ignoring irrelevant sign differences). Observe
that the upper bound can be reached for vi D wi for all terms in which vi appears,

9Kettenring (1971) is the reference for generalized canonical variables.
10These statements are admittedly a bit nonchalant if not cavalier, but there seems little to gain by
elaborating on them.
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so maximization of the sum of the absolute correlations gives w: A numerical,
iterative routine11 suggests itself by noting that the optimal v1 satisfies the first order
condition

0 D sgn .R12/ � †12v2 C sgn .R13/ � †13v3 � l1†11v1 (4.29)

where l1 is a Lagrange multiplier (for the normalization), and two other quite
similar equations for v2 and v3: So with arbitrary starting vectors one could solve
the equations recursively for v1, v2, and v3, respectively, updating them after each
complete round or at the first opportunity, until they settle down at the optimal value.
Note that each update of v1 is obtainable by a regression of a “sign-weighted sum”

sgn .R12/ � v|
2 y2 C sgn .R13/ � v|

3 y3 (4.30)

on y1, and analogously for the other weights. This happens to be the classical form
of PLS’ mode B.12 For † we do not need many iterations, to put it mildly: the update
of v1 is already w1, as straightforward algebra will easily show. And similarly for
the other weight vectors. In other words, we have in essentially just one iteration a
fixed point for the mode B equations that is precisely w.

If we use the correlations themselves in the recursions instead of just their signs,
we regress the “correlation weighted sum”

R12 � v|
2 y2 C R13 � v|

3 y3 (4.31)

on y1 (and analogously for the other weights), and end up with weights that
maximize

z .v/ WD R2
12 C R2

13 C R2
23 (4.32)

the simple sum of the squared correlations. Again, with the same argument, the
optimal value is w.

Observe that for this z .v/ we have

tr
�
R2
� D 2 � z .v/ C 3 D

3P
iD1


2
i (4.33)

where 
i WD 
i .R .v// is the ith eigenvalue of R .v/. We can take other functions of
the eigenvalues, in order to maximize the difference between R .v/ and the identity
matrix of the same order. Kettenring (1971) discusses a number of alternatives. One

11With † one does not really need an iterative routine of course: †ij D rij†iiwiw
|

j †jj can be
solved directly for the weights (and the correlation). But in case we just have an estimate, an
algorithm comes in handy.
12See chapter two of Dijkstra (1981).
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of them minimizes the product of the 
i’s, the determinant of R .v/, also known as
the generalized variance. The program is called GENVAR. Since

PN
iD1 
i is always

N (three in this case) for every choice of v, GENVAR tends to make the eigenvalues
as diverse as possible (as opposed to the identity matrix where they are all equal to
one). The determinant of R .v/ equals

�
1 � R2

23

�
, which is independent of v1, times

1 � 

R12 R13

� � 1 R23

R23 1

��1 �
R12

R13

�
(4.34)

D 1 � �
v|

1 †11w1

�2 

r12v|

2 †22w2 r13v|
3 †33w3

� � 1 R23

R23 1

��1 �
r12v|

2 †22w2

r13v|
3 †33w3

�

where the last quadratic form does not involve v1 either and we have with the usual
argument that GENVAR produces w also. See Kettenring (1971) for an appropriate
iterative routine (this involves the calculation of ordinary canonical variables of yi

and the .N � 1/-vector consisting of the other composites).
Another program is MAXVAR, which maximizes the largest eigenvalue. For

every v one can calculate the linear combination of the corresponding composites
that best predicts or explains them: the first principal component of R .v/. No
other set is as well explained by the first principal component as the MAXVAR
composites. There is an explicit solution here, no iterative routine is needed for
the estimate of †, if one views the calculation of eigenvectors as non-iterative, see
Kettenring (1971) for details.13 One can show again that the optimal v equals w
when MAXVAR is applied to †, although this requires a bit more work than for
GENVAR (due to the additional detail needed to describe the solution).

As one may have expected, there is also MINVAR, the program aimed at
minimizing the smallest eigenvalue (Kettenring 1971). The result is a set of
composites with the property that no other set is “as close to linear dependency”
as the MINVAR set. We also have an explicit solution, and w is optimal again.

4.3.2 Mode A and Mode B

In the previous subsection we recalled that mode B generates weight vectors by
iterating regressions of certain weighted sums of composites on blocks. There is
also mode A (and a mode C which we will not discuss), where weights are found
iteratively by reversing the regressions: now blocks are regressed on weighted sums
of composites. The algorithm generally converges, and the probability limits of

13This is true when applied to the estimate for † as well. With an estimate the other methods
will usually require more than just one iteration (and all programs will produce different results,
although the differences will tend to zero in probability).
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the weights can be found as before by applying mode A to †. If we denote the
probability limits (plims) of the (normalized) mode A weights by ewi, we have in the
generic case that yi is regressed on

P
j¤isgn(cov.ew|

i yi, ew|
j yj/)�ew|

j yj so that

ewi / P
j¤i

sgn.cov.ew|
i yi;ew|

j yj// � †ijewj (4.35)

D P
j¤i

sgn.cov.ew|
i yi;ew|

j yj// � rijLiL
|
j ewj (4.36)

D Li �
 
P
j¤i

sgn.cov.ew|
i yi;ew|

j yj// � rijL
|
j ewj

!
(4.37)

and so

ewi / Li; infactewi D 1q
L|

i †iiLi

Li (4.38)

An immediate consequence is that the plim of mode A’s correlation,erij, equals

erij D ew|
i

�
rijLiL

|
j

�
ewj D rij � L|

i Liq
L|

i †iiLi

L|
j Ljq

L|
j †jjLj

(4.39)

One would expect this to be smaller in absolute value than rij, and so it is, since

L|
i Liq

L|
i †iiLi

D w|
i †2

iiwiq
w|

i †3
iiwi

(4.40)

D w|
i †

1=2
ii †

3=2
ii wiq

w|
i †3

iiwi

�
q

w|
i †iiwi

q
w|

i †3
iiwi

q
w|

i †3
iiwi

D 1 (4.41)

because of Cauchy–Schwarz. In general, mode A’s composites,ec, will not satisfy
Becendo D Cecexo Cez withez uncorrelated withecexo. Observe that we haveerij D rij

when and only when †iiwi / wi & †jjwj / wj, in which case each composite is a
principal component of its corresponding block.

For the plim of the loadings,eLi, we note

eLi D 1q
L|

i †iiLi

†iiLi (4.42)

So mode A’s loading vector is in the limit proportional to the true vector when and
only when †iiwi / wi.
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To summarize:

1. Mode A will tend to underestimate the correlations in absolute value.14

2. The plims of the correlations between the composites for Mode A and Mode B
will be equal when and only when each composite is a principal component of
its corresponding block, in which case we have a perfect match between a model
and two modes as far as the relationships between the composites are concerned.

3. The plims of the loading vectors for Mode A and Mode B will be proportional
when and only when each composite is a principal component of its correspond-
ing block.

A final observation: we can “correct” mode A to yield the right results in the general
situation via

†�1
ii ewiq

ew|
i †�1

ii ewi

D wi (4.43)

and

ewiq
ew|

i †�1
ii ewi

D Li (4.44)

4.3.3 Estimation of the Structural Equations

Given the estimate of Rc we now focus on the estimation of Bcendo D Ccexo C z:

We have exclusion constraints for the structural form matrices B and C, i.e., certain
coefficients are a priori known to be zero. There are no restrictions on cov.z/, or if
there are, we will ignore them here (for convenience, not as a matter of principle).
This seems to exclude Wold’s recursive system where the elements of B on one
side of the diagonal are zero, and the equation-residuals are uncorrelated. But we
can always regress the first endogenous composite cendo;1 on cexo, and cendo;2 on
[cendo;1I cexo], and cendo;3 on [cendo;1I cendo;2I cexo] et cetera. The ensuing residuals are
by construction uncorrelated with the explanatory variables in their corresponding
equations, and by implication they are mutually uncorrelated. In a sense, there are
no assumptions here, the purpose of the exercise (prediction of certain variables
using a specific set of predictors) determines the regression to be performed; there
is also no identifiability issue.15

14A working paper version of this paper said that the elements of the mode A loading vector
would always be “larger” than the corresponding true values. I am obliged to Michel Tenenhaus
for making me realize that the statement was not true.
15See Dijkstra (2014) for further discussion of Wold’s approach to modeling. There is a subtle
issue here. One could generate a sample from a system with B lower-triangular, a full matrix C
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Now consider P, the regression matrix obtained from regressing the (estimated)
endogenous composites on the (estimated) exogenous composites. It estimates …,
the reduced form matrix B�1C. We will use P; and possible other functions of Rc,
to estimate the free elements of B and C. There is no point in trying when …

is compatible with different values of the structural form matrices. So the crucial
question is whether … D B�1C, or equivalently B… D C, can be solved uniquely
for the free elements of B and C. Take the ith equation16

Bi�… D Ci� (4.45)

where the ith row of B, Bi�, has 1 in the ith entry (normalization) and possibly some
zeros elsewhere, and where the ith row of C, Ci�, may also contain some zeros. The
free elements in Ci� are given when those in Bi� are known, and the latter are to be
determined by the zeros in Ci�. More precisely

B.i;kWBik free or unit/ � ….kWBik free or unit; jWCijD0/ D 0 (4.46)

So we have a submatrix of …, the rows correspond with the free elements (and the
unit) in the ith row of B; and the columns with the zero elements in the ith row
of C. This equation determines B.i;kWBik free or unit/ uniquely, apart from an irrelevant
nonzero multiple, when and only when the particular submatrix of … has a rank
equal to its number of rows minus one. This is just the number of elements to be
estimated in the ith row of B. To have this rank requires the submatrix to have at
least as many columns. So a little thought will give that a necessary condition for
unique solvability, identifiability, is that we must have as least as many exogenous
composites in the system as coefficients to be estimated in any one equation. We
emphasize that this order condition as it is traditionally called is indeed nothing
more than necessary.17 The rank condition is both necessary and sufficient.

and a full, non-diagonal covariance matrix for z. Then no matter how large the sample size, we
can never retrieve the coefficients (apart from those of the first equation which are just regression
coefficients). The regressions for the other equations would yield values different from those we
used to generate the observations, since the zero correlation between their equation-residuals would
be incompatible with the non-diagonality of cov(z).
16What follows will be old hat for econometricians, but since non-recursive systems are relatively
new for PLS-practitioners, some elaboration could be meaningful.
17As an example consider a square B with units on the diagonal but otherwise unrestricted, and a
square C of the same dimensions, containing zeros only except the last row, where all entries are
free. The order condition applies to all equations but the last, but none of the coefficients can be
retrieved from …. This matrix is, however, severely restricted: it has rank one. How to deal with
this and similar situations is handled by Bekker et al. (1994).
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A very simple example, which we will use in a small Monte Carlo study in the
next subsection is as follows. Let

�
1 b12

b21 1

� �
cendo;1

cendo;2

�
D
�

c11 c12 0 0

0 0 c23 c24

�
2
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cexo;1

cexo;2

cexo;3

cexo;4

3

775C
�

z1

z2

�
(4.47)

with 1 � b12b21 ¤ 0. The order conditions are satisfied: each equation has three free
coefficients and there are four exogenous composites.18 Note that

… D 1

1 � b12b21

�
c11 c12 �b12c23 �b12c24

�b21c11 �b21c12 c23 c24

�
(4.48)

The submatrix of … relevant for an investigation into the validity of the rank
condition for the first structural form equation is

�
…13 …14

…23 …24

�
D 1

1 � b12b21

��b12c23 �b12c24

c23 c24

�
(4.49)

It should have rank one, and it does so in the generic case, since its first row is
a multiple of its second row.19 Note that we cannot have both c23 and c24 zero.
Clearly, b12 can be obtained from … via �…13=…23 or via -…14=…24. A similar
analysis applies to the second structural form equation. We note that the model
imposes two constraints on …: …11…22 �…12…21 D 0 and …13…24 �…14…23 D 0,
in agreement with the fact that the 8 reduced form coefficients can be expressed in
terms of 6 structural form parameters. For an extended analysis of the number and
type of constraints that a structural form imposes on the reduced form see Bekker
and Dijkstra (1990) and Bekker et al. (1994).

It will be clear that the estimate P of … will not in general satisfy the rank
conditions (although we do expect them to be close for sufficiently large samples),
and using either �P13=P23 or �P14=P24 as an estimate for b12 will give different
answers. Econometric methods construct explicitly or implicitly compromises
between the possible estimates. 2SLS, as discussed above is one of them. See
Dijkstra and Henseler (2015a,b) for a specification of the relevant formula (formula

18With 2SLS cendo;2 in the first equation is in the first stage replaced by its regression on the four
exogenous variables. In the second stage we regress cendo;1 on the replacement for cendo;2 and two
exogenous variables. So the regression matrix with three columns in this stage is spanned by four
exogenous columns, and we should be fine in general. If there were four exogenous variables on
the right-hand side, the regression matrix in the second stage would have five columns, spanned by
only four exogenous columns, the matrix would not be invertible and 2SLS (and all other methods
aiming for consistency) would break down.
19For more general models one could ask MATLAB, say, to calculate the rank of the matrices,
evaluated for arbitrary values. A very pragmatic approach would be to just run 2SLS. If it breaks
down and gives a singularity warning, one should analyze the situation. Otherwise you are fine.
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(23)) for 2SLS that honors the motivation via two regressions. Here we will outline
another approach based on Dijkstra (1989) that is close to the discussion about
identifiability.

Consider a row vector20 with ith subvector Bi�P � Ci�. If P would equal … we
could get the free coefficients by making Bi�P � Ci� zero. But that will not be the
case. So we could decide to choose values for the free coefficients that make each
Bi�P � Ci� as “close to zero as possible.” One way to implement that is to minimize
a suitable quadratic form subject to the exclusion constraints and normalizations.
We take

�
vec



.BP � C/|

��| �
�

W˝bRexo

�
� vec



.BP � C/|

�
(4.50)

Here ˝ stands for Kronecker’s matrix multiplication symbol, bRexo is the estimated
p.d. correlation matrix of the estimated exogenous composites, W is a p.d. matrix
with as many rows and columns as there are endogenous composites, and the
operator “vec” stacks the columns of its matrix-argument one underneath the other,
starting with the first. If we take a diagonal matrix W the quadratic form disin-
tegrates into separate quadratic forms, one for each subvector, and minimization
yields in fact 2SLS estimates. A non-diagonal W tries to exploit information about
the covariances between the subvectors. For the classical econometric simultaneous
equation model it is true that vec



.BP � C/|

�
is asymptotically normal with zero

mean and covariance matrix cov.z/ ˝R�1
exo divided by the sample size, adapting the

notation somewhat freely. General estimation theory tells us to use the inverse of an
estimate of this covariance matrix in order to get asymptotic efficiency. So W should
be the inverse of an estimate for cov.z/. The latter is traditionally estimated by the
obvious estimate based on 2SLS. Note that the covariances between the structural
form residuals drive the extent to which the various optimizations are integrated.
There is no or little gain when there is no or little correlation between the elements
of z. This more elaborate method is called 3SLS.

We close with some observations. Since the quadratic form in the parameters is
minimized subject to zero constraints and normalizations only, there is an explicit
solution, see Dijkstra (1989, section 5), for the formulae.21 If the fact that the
weights are estimated can be ignored, there is also an explicit expression for
the asymptotic covariance matrix, both for 2SLS and 3SLS. But if the sampling
variation in the weights does matter, this formula may not be accurate and 3SLS
may not be more efficient than 2SLS. Both methods are essentially non-iterative
and very fast, and therefore suitable candidates for bootstrapping. One potential
advantage of 2SLS over 3SLS is that it may be more robust to model specification
errors, because as opposed to its competitor, it estimates equation by equation, so
that an error in one equation need not affect the estimation of the others.

20This is in fact, see below:
�
vec



.BP � C/|

��|
.

21For the standard approach and the classical formulae, see, e.g., Ruud (2000)
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4.3.4 Some Monte Carlo Results

We use the setup from Dijkstra and Henseler (2015a,b) adapted to the present
setting. We have

�
1 �0:25

�0:50 1

� �
cendo;1

cendo;2

�
D
��0:30 0:50 0 0

0 0 0:50 0:25

�
2
664

cexo;1

cexo;2

cexo;3

cexo;4

3
775C

�
z1

z2

�
(4.51)

All variables have zero mean, and we will take them jointly normal. Cov.cexo/ has
ones on the diagonal and 0:50 everywhere else; the variances of the endogenous
composites are also one and we take cov.cendo;1;cendo;2/ D p

0:50. The values as
specified imply for the covariance matrix for the structural form residuals z:

cov .z/ D
�

0:5189 �0:0295

�0:0295 0:1054

�
(4.52)

Note that the correlation between z1 and z2 is rather small, �0:1261, so the setup has
the somewhat unfortunate consequence to potentially favor 2SLS. The R-squared
for the first reduced form equation is 0:3329 and for the second reduced form
equation this is 0:7314.

Every composite is built up by three indicators, with a covariance matrix that
has ones on the diagonal and 0:49 everywhere else. This is compatible with a one-
factor model for each vector of indicators but we have no use nor need for that
interpretation here.

The composites .cexo;1;cexo;2;cexo;3;cexo;4;cendo;1;cendo;2/ need weights. For the first
and fourth we take weights proportional to Œ1; 1; 1	. For the second and fifth the
weights are proportional to Œ1; 2; 3	 and for the third and sixth they are proportional
to Œ1; 4; 9	. There are no deep thoughts behind these choices.

We get the following weights (rounded to two decimals for readability):
Œ0:41; 0:41; 0:41	 for blocks one and four, Œ0:20; 0:40; 0:60	 for blocks two and
five, and Œ0:08; 0:33; 0:74	 for blocks three and six.

The loadings are now given as well: Œ0:81; 0:81; 0:81	 for blocks one and four,
Œ0:69; 0:80; 0:90	 for blocks two and five, and Œ0:61; 0:74; 0:95	 for blocks three and
six.

One can now calculate the 18 by 18 covariance/correlation matrix † and its
unique p.d. matrix square root †1=2. We generate samples of size 300, which
appears to be relatively modest given the number of parameters to estimate. A
sample of size 300 is obtained via †1=2�randn.18; 300/ : We repeat this ten
thousand times, each time estimating the weights via MAXVAR,22 the loadings

22One might as well have used mode B of course, or any of the other canonical variables
approaches. There is no fundamental reason to prefer one to the other. MAXVAR was available,
and is essentially non-iterative.
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via regressions and the correlations in the obvious way, and all structural form
parameters via 2SLS and 3SLS using standardized indicators.23

The loadings and weights are on the average slightly underestimated, see Dijkstra
(2015) for some of the tables: when rounded to two decimals the difference is at
most 0:01. The standard deviations of the weights estimators for the endogenous
composites are either the largest or the smallest: for the weights of cendo;1 we have
resp. Œ0:12; 0:12; 0:11	 and for cendo;2 Œ0:04; 0:04; 0:04	; the standard deviations for
the weights of the exogenous composites are, roughly, in between. And similarly
for the standard deviations for the loadings estimators: for the loadings on cendo;1 we
have resp. Œ0:08; 0:07; 0:05	 and for cendo;2 Œ0:05; 0:04; 0:01	; the standard deviations
for the loadings on the exogenous composites are again, roughly, in between.

The following table gives the results for the coefficients in B and C, rounded to
two decimals:

Value Mean 2SLS Mean 3SLS std 2SLS std 3SLS

b12 �0:25 �0:26 �0:26 0:08 0:08

b21 �0:50 �0:50 �0:50 0:05 0:05

c11 �0:30 �0:29 �0:28 0:05 0:05

c12 C0:50 C0:49 C0:49 0:06 0:06

c23 C0:50 C0:49 C0:49 0:03 0:03

c24 C0:25 C0:25 C0:25 0:03 0:03

Clearly, for the model at hand 3SLS has nothing to distinguish itself positively
from 2SLS24 (its standard deviations are only smaller than those of 2SLS when we
use three decimals). This might be different when the structural form residuals are
materially correlated.

We also calculated, not shown, for each of the 10;000 samples of size 300 the
theoretical (asymptotic) standard deviations for the 3SLS estimators. They are all
on the average 0:01 smaller than the values in the table, they are relatively stable,
with standard deviations ranging from 0:0065 for b12 to 0:0015 for c24. They are not
perfect but not really bad either.

It would be reckless to read too much into this small and isolated study, for one
type of distribution. But the approach does appear to be feasible.

23The whole exercise takes about half a minute on a slow machine: 4CPU 2.40 Ghz; RAM 512 MB.
24It is remarkable that the accuracy of the 2SLS and 3SLS estimators is essentially as good, in three
decimals, as those reported by Dijkstra and Henseler (2015a,b) for Full Information Maximum
Likelihood (FIML) for the same model in terms of latent variables, i.e., FIML as applied to the
true latent variable scores. See Table 2 on p. 18 there. When the latent variables are not observed
directly but only via indicators, the performance of FIML clearly deteriorates (stds are doubled or
worse).
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4.4 Testing the Composites Model

In this section we sketch four more or less related approaches to test the appropri-
ateness or usefulness of the model. In practice one might perhaps want to deploy
all of them. Investigators will easily think of additional, “local” tests, like those
concerning the signs or the order of magnitude of coefficients et cetera.

A thorny issue that should be mentioned here is capitalization on chance, which
refers to the phenomenon that in practice one runs through cycles of model testing
and adaptation until the current model tests signal that all is well according to
popular rules-of-thumb.25 This makes the model effectively stochastic, random.
Taking a new sample and going through the cycles of testing and adjusting all over
again may well lead to another model. But when we give estimates of the distribution
functions of our estimators we imply that this helps to assess how the estimates
will vary when other samples of the same size would be employed, while keeping
the model fixed. It is tempting, but potentially very misleading, to ignore the fact
that the sample (we/you, actually) favored a particular model after a (dedicated)
model search, see Freedman et al. (1988), Dijkstra and Veldkamp (1988), Leeb
and Pötscher (2006), and Freedman (2009)26. It is not clear at all how to properly
validate the model on the very same data that gave it birth, while using test statistics
as design criteria.27 Treating the results conditional on the sample at hand, as purely
descriptive (which in itself may be rather useful, Berk 2008), or testing the model
on a fresh sample (e.g., a random subset of the data that was kept apart when the
model was constructed), while bracing oneself for a possibly big disappointment,
appear to be the best or most honest responses.

25“Capitalization on chance” is sometimes used when “small-sample-bias” is meant. That is quite
something else.
26Freedman gives the following example. Let the 100 � 51 matrix Œy; X	 consists of independent
standard normals. So there is no (non-) linear relationship whatsoever. Still, a regression of y on X
can be expected to yield an R-square of 0:50. On the average there will be 5 regression coefficients
that are significant at 10%. If we keep the corresponding X-columns in the spirit of “exploratory
research” and discard the others, a regression could easily give a decent R-square and “dazzling t-
statistics” (Freedman 2009, p.75). Note that here the “dedicated” model search consisted of merely
two regression rounds. Just think of what one can accomplish with a bit more effort, see also, e.g.,
Dijkstra (1995).
27At one point I thought that “a way out” would be to condition on the set of samples that favor the
chosen model using the same search procedure (Dijkstra and Veldkamp 1988): if the model search
has led to the simplest true model, the conditional estimator distribution equals, asymptotically,
the distribution that the practitioner reports. This conditioning would give substance to the retort
given in practice that “we always condition on the given model.” But the result referred to says
essentially that we can ignore the search if we know it was not needed. So much for comfort. It is
even a lot worse: Leeb and Pötscher (2006) show that convergence of the conditional distribution
is only pointwise, not uniform, not even on compact subsets of the parameter space. The bootstrap
cannot alleviate this problem, Leeb and Pötscher (2006), Dijkstra and Veldkamp (1988).
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4.4.1 Testing Rank Restrictions on Submatrices

The covariance matrix of any subvector of yi with any choice from the other
indicators has rank one. So the corresponding regression matrix has rank one.
To elaborate a bit, since E.c1jc2; c3; : : : ; cN/ is a linear function of y the formula
E.y1jy2; y3; : : : ; yN/ D L1E.c1jc2; c3; : : : ; cN/ tells us that the regression matrix
is a column times a row vector. Therefore its p1 � . p � p1/ elements can be
expressed in terms of just . p � 1/ parameters (one row of . p � p1/ elements plus
. p1 � 1/ proportionality factors). This number could be even smaller when the
model imposes structural constraints on Rc as well. A partial check could be
performed using any of the methods developed for restricted rank testing. A possible
objection could be that the tests are likely to be sensitive to deviations from the
Gaussian distribution, but jackknifing or bootstrapping might help to alleviate this.
Another issue is the fact that we get many tests that are also correlated, so that
simultaneous testing techniques based on Bonferroni or more modern approaches
are required.28

4.4.2 Exploiting the Difference Between Different Estimators

We noted that a number of generalized canonical variable programs yield identical
results when applied to a † satisfying the composites factor model. But we expect
to get different results when this is not the case. So, when using the estimate for
† one might want to check whether the differences between, say PLS mode B and
MAXVAR (or any other couple of methods), are too big for comfort. The scale
on which to measure this could be based on the probability (as estimated by the
bootstrap) of obtaining a larger “difference” than actually observed.

4.4.3 Prediction Tests, via Cross-Validation

The path diagram might naturally indicate composites and indicators that are most
relevant for prediction. So it would seem to make sense to test whether the model’s
rank restrictions can help improve predictions of certain selected composites or
indicators. The result will not only reflect model adequacy but also the statistical
phenomenon that the imposition of structure, even when strictly unwarranted, can
help in prediction. It would therefore also reflect the sample size. The reference
for an elaborate and fundamental discussion of prediction and cross-validation in a
PLS-context is Shmueli et al. (2016).

28See, e.g., chapter 34 from DasGupta (2008).
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4.4.4 Global Goodness-of-Fit Tests

In SEM we test the model by assessing the probability value of a distance measure
between the sample covariance matrix S and an estimated matrix b† that satisfies the
model. Popular measures are

1

2
tr
�

S�1
�

S � b†
��2

(4.53)

and

tr
�

Sb†�1
�

� log
�

det
�

Sb†�1
��

� p (4.54)

They belong to a large class of distances, all expressible in terms of a suitable
function f :

pP
kD1

f
�

k

�
S�1b†

��
: (4.55)

Here 
k .�/ is the kth eigenvalue of its argument, and f is essentially a smooth real
function defined on positive real numbers, with a unique global minimum of zero at
the argument value 1.The functions are “normalized,” f

00

.1/ D 1, entailing that the
second-order Taylor expansions around 1 are identical.29 For the examples referred
to we have f .
/ D 1

2
.1 � 
/2 and f .
/ D 1=
Clog.
/ � 1, respectively. Another

example is f .
/ D 1
2

.log .
//2, the so-called geodesic distance; its value is the

same whether we work with S�1b† or with Sb†�1. The idea is that when the model
fits perfectly, so S�1b† is the identity matrix, then all its eigenvalues equal one, and
conversely. This class of distances was first analyzed by Swain (1975).30 Distance
measures outside of this class are those induced by WLS with general fourth-order

moments based weight matrices,31 but also the simple ULS: tr
�

S � b†
�2

. We can

take any of these measures, calculate its value, and use the bootstrap to estimate
the corresponding probability value. It is important to pre-multiply the observation
vectors by b† 1

2 S� 1
2 before the bootstrap is implemented, in order to ensure that their

empirical distribution has a covariance matrix that agrees with the assumed model.

29The estimators based on minimization of these distances are asymptotically equivalent. The value
of the third derivative of f appears to affect the bias: high values tend to be associated with small
residual variances. So the first example, “GLS,” with f

000

.1/ D 0, will tend to underestimate these
variances more than the second example, “LISREL,” with f

000

.1/ D �4. See Swain (1975).
30Swain (1975). See also Dijkstra (1990).
31The manual of EQS, Bentler (2006) is a treasure trove with information on goodness-of-fit testing
with WLS, and Structural Equations Modeling generally. For related discussions, see Bentler and
Dijkstra (1985) and Wansbeek and Meijer (2000).
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For b† one could take in an obvious notation b†ii WD Sii and for i ¤ j

b†ij WDbrij � Siibwi �bw|
j Sjj: (4.56)

Herebrij D bw|
i Sijbwj if there are no constraints on Rc, otherwise it will be the ijth

element ofbRc. If S is p.d., then b† is p.d. (as follows from the appendix) and b† 1
2 S� 1

2

is well-defined.

4.5 Some Final Observations and Comments

In this chapter we outlined a model in terms of observables only while adhering to
the soft modeling principle of Wold’s PLS. Wold developed his methods against the
backdrop of a particular latent variables model, the basic design. This introduces N
additional unobservable variables which by necessity cannot in general be expressed
unequivocally in terms of the “manifest variables,” the indicators. However, we
can construct composites that satisfy the same structural equations as the latent
variables, in an infinite number of ways in fact. Also, we can design composites
such that the regression of the indicators on the composites yields the loadings. But
in the regular case we cannot have both.

Suppose y D ƒf C " with Ef"| D 0, ‚ WDcov."/ > 0, and ƒ has full column
rank. The p.d. cov.f/ will satisfy the constraints as implied by identifiable equations
like Bfendo D Cfexo C � with Efexo�| D 0. All variables have zero mean. Letbf, of
the same dimension as f, equal Fy for a fixed matrix F: If the regression of y onbf
yields ƒ we must have FƒD I because then

ƒ D E


y .Fy/|

� � Œcov .Fy/	�1 D cov .y/ F|ŒFcov .y/ F|	�1 (4.57)

Consequently

bf D F .ƒf C "/ D f C F" (4.58)

andbf has a larger covariance matrix then f (the difference is p.s.d., usually p.d.). One

example is32 F D �
ƒ|‚�1ƒ

��1
ƒ|‚�1 with cov

�
bf
�

�cov.f/ D �
ƒ|‚�1ƒ

��1
.

So, generally, if the regression of y on the composites yields ƒ, the covariance
matrices cannot be the same, and the composites cannot satisfy the same equations

32One can verify directly that the regression yields ƒ. Also note that here FƒD I.
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as the latent variables f.33 Conversely, if cov
�
bf
�

Dcov.f/, then the regression of y
on the composites cannot yield ƒ.

If we minimize E.y�ƒFy/| ‚�1 .y�ƒFy/ subject to cov.Fy/ Dcov.f/ we
get the composites that LISREL reports. We can generate an infinite number of
alternatives34 by minimizing E.f � Fy/| V .f � Fy/ subject to cov.Fy/ Dcov.f/ for
any conformable p.d. V. Note that each composite here typically uses all indicators.
Wold takes composites that combine the indicators per block. Of course, they
also cannot reproduce the measurement equations and the structural equations, but
the parameters can be obtained (consistently estimated) using suitable corrections
(PLSc.35)

Two challenging research topics present themselves: first, the extension of the
approach to more dimensions/layers, and second, the imposition of sign constraints
on weights, loadings, and structural coefficients, while maintaining as far as possible
the numerical efficiency of the approach.

Appendix

Here we will prove that † is positive definite when and only when the correlation
matrix of the composites, Rc, is positive definite. The “only when”-part is trivial:
The proof that {Rc is p.d.} implies {† is p.d.} is a bit more involved. It is helpful
to note for that purpose that we may assume that each †ii is a unit matrix (pre-

multiply and post-multiply by a block-diagonal matrix with †
� 1

2

ii on the diagonal,
and redefine wi such that w|

i wi D 1 for each i). So if we want to know whether the
eigenvalues of † are positive it suffices to study the eigenvalue problem e†x D
x:

2
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xN�1

xN

3
777775

(4.59)

33One may wonder about the “best linear predictor” of f in terms of y: E.fj y/. Since f equals E.fj y/

plus an uncorrelated error vector, cov.E .fj y// is not “larger” but “smaller” than cov.f/. So E.fj y/

satisfies neither of the two desiderata.
34Dijkstra (2015).
35PLSc exploits the lack of correlation between some of the measurement errors within blocks. It
is sometimes equated to a particular implementation (e.g., assuming all errors are uncorrelated,
and a specific correction), but that is selling it short. See Dijkstra (2011, 2013a,b) and Dijkstra and
Schermelleh-Engel (2014).
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with obvious implied definitions. Observe that every nonzero solution of

2
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1 0 � � 0
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2 0 � 0
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� � 0 w|

N�1 0
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D 0 (4.60)

corresponds with 
 D 1, and there are
PN

iD1 pi � N linearly independent solutions.
The multiplicity of the root 
 D 1 is therefore

PN
iD1 pi � N and we need to find N

more roots. By assumption Rc has N positive roots. Let u be an eigenvector with
eigenvalue �, so Rcu D��u. We have

e†
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uNwN
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775 D

2
664

.u1 C r12u2 C � C r1NuN/ w1
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�
.rN1u1 C rN2u2 C � C uN/ wN

3
775 D �
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�
uNwN

3
775 (4.61)

In other words, the remaining eigenvalues are those of Rc; and so all eigenvalues of
e† are positive. Therefore † is p.d., as claimed.

Note for the determinant of † that

det .†/ D det .Rc/ � det .†11/ � det .†22/ � det .†33/ � : : : � det .†NN/ (4.62)

and so the Kullback–Leibler’ divergence between the Gaussian density for block-
independence and the Gaussian density for the composites model is � 1

2
log(det.Rc/).

It is well known that 0 �det.Rc/ � 1, with 0 in case of a perfect linear relationship
between the composites, so Kullback–Leibler divergence is infinitely large, and 1 in
case of zero correlations between all composites, with zero divergence.

References

Bekker, P. A., & Dijkstra, T. K. (1990). On the nature and number of the constraints on the reduced
form as implied by the structural form. Econometrica, 58(2), 507–514

Bekker, P. A., Merckens, A., & Wansbeek, T. J. (1994). Identification, equivalent models and
computer algebra. Boston: Academic.

Bentler, P. M., & Dijkstra, T. K. (1985). Efficient estimation via linearization in structural models.
In P. R. Krishnaiah (Ed.), Multivariate analysis (Chap 2, pp. 9–42). Amsterdam: North-
Holland.

Bentler, P. M. (2006). EQS 6 structural equations program manual. Multivariate Software Inc.
Berk, R. A. (2008). Statistical learning from a regression perspective. New York: Springer.
Boardman, A., Hui, B., & Wold, H. (1981). The partial least-squares fix point method of

estimating interdependent systems with latent variables. Communications in Statistics-Theory
and Methods, 10(7), 613–639.



4 A Perfect Match Between a Model and a Mode 79

DasGupta, A. (2008). Asymptotic theory of statistics and probability. New York: Springer,
Dijkstra, T. K. (1983). Some comments on maximum likelihood and partial least squares methods.

Journal of Econometrics, 22(1/2), 67–90 (Invited contribution to the special issue on the
Interfaces between Econometrics and Psychometrics).

Dijkstra, T. K. (1981). Latent variables in linear stochastic models (PhD thesis, University of
Groningen). Available on Research Gate.

Dijkstra, T. K. (1989). Reduced Form estimation, hedging against possible misspecification.
International Economic Review, 30(2), 373–390.

Dijkstra, T. K. (1990). Some properties of estimated scale invariant covariance structures.
Psychometrika 55(2), 327–336.

Dijkstra, T. K. (1995). Pyrrho’s Lemma, or have it your way. Metrika, 42(1), 119–125.
Dijkstra, T. K. (2010). Latent variables and indices: Herman Wold’s basic design and partial least

squares. In V. E. Vinzi, W. W. Chin, J. Henseler & H. Wang (Eds.), Handbook of partial least
squares, concepts, methods and applications (Chap, 1, pp. 23–46). Berlin: Springer.

Dijkstra, T. K. (2011). Consistent partial least squares estimators for linear and polynomial factor
models. Technical Report. Research Gate. doi:10.13140/RG.2.1.3997.0405.

Dijkstra, T. K. (2013a). A note on how to make PLS consistent. Technical Report. Research Gate,
doi:10.13140/RG.2.1.4547.5688.

Dijkstra, T. K. (2013b). The simplest possible factor model estimator, and successful suggestions
how to complicate it again. Technical Report. Research Gate. doi:10.13140/RG.2.1.3605.6809.

Dijkstra, T. K. (2014). PLS’ Janus face. Long Range Planning, 47(3), 146–153.
Dijkstra, T. K. (2015). All-inclusive versus single block composites. Technical Report. Research

Gate. doi:10.13140/RG.2.1.2917.8082.
Dijkstra, T. K., & Henseler, J. (2015a). Consistent and asymptotically normal PLS estimators for

linear structural equations. Computational Statistics and Data Analysis, 81, 10–23.
Dijkstra, T. K., & Henseler, J. (2015b). Consistent partial least squares path modeling. MIS

Quarterly, 39(2), 297–316.
Dijkstra, T. K., & Schermelleh-Engel, K. (2014). Consistent partial least squares for nonlinear

structural equation models. Psychometrika, 79(4), 585–604 [published online (2013)].
Dijkstra, T. K., & Veldkamp, J. H. (1988). Data-driven selection of regressors and the bootstrap. In

T. K. Dijkstra (Ed.), On model uncertainty and its statistical implications (Chap. 2, pp. 17–38).
Berlin: Springer.

Freedman, D. A. (2009). Statistical models, theory and practice. Cambridge: Cambridge Univer-
sity Press. Revised ed.

Freedman, D. A., Navidi, W., & Peters, S. C. (1988). On the impact of variable selection in
fitting regression equations. In T. K. Dijkstra (Ed.), On model uncertainty and its statistical
implications (Chap. 1, pp. 1–16). Berlin: Springer.

Haavelmo, T. (1944). The probability approach in econometrics. PhD-thesis Econometrica
12(Suppl.), 118pp. http://cowles.econ.yale.edu/

Leeb, H., & Pötscher, B. M. (2006). Can one estimate the conditional distribution of post-model-
selection estimators? The Annals of Statistics, 34(5), 2554–2591.

Ruud, P. A. (2000). Classical econometric theory. New York: Oxford University Press.
Shmueli, G., Ray, S., Velasquez Estrada, J. M., & Chatla, S. (2016). The elephant in the room:

Predictive performance of PLS models. Journal of Business Research, 69, 4552–4564.
Kettenring, J. R. (1971). Canonical analysis of several sets of variables. Biometrika, 58(3), 433–

451.
Pearl, J. (2009). Causality—models, reasoning and inference. Cambridge: Cambridge University

Press.
Swain, A. J. (1975). A class of factor analysis estimation procedures with common asymptotic

sampling properties. Psychometrika, 40, 315–335.
Wansbeek, T. J. & Meijer, E. (2000). Measurement error and latent variables in econometrics.

Amsterdam: North-Holland.
Wold, H. (1966). Nonlinear estimation by iterative least squares procedures. In F. N. David (Ed.),

Research papers in statistics. Festschrift for J. Neyman (pp. 411–444). New York: Wiley.

http://cowles.econ.yale.edu/


80 T.K. Dijkstra

Wold, H. (1975). Path models with latent variables: The NIPALS approach. In H. M. Blalock et al.
(Eds.), Quantitative sociology (Chap. 11, pp. 307–358). New York: Academic.

Wold, H. (1982). Soft modeling: The basic design and some extensions. In K. G. Jöreskog &
H. Wold (Eds.), Systems under indirect observation, Part II (Chap. 1, pp. 1–54). Amsterdam:
North-Holland.



Chapter 5
Quantile Composite-Based Model: A Recent
Advance in PLS-PM

A Preliminary Approach to Handle Heterogeneity
in the Measurement of Equitable and Sustainable
Well-Being

Cristina Davino, Pasquale Dolce, and Stefania Taralli

Abstract The aim of the present chapter is to discuss a recent contribution in the
partial least squares path modeling framework: the quantile composite-based path
modeling. We introduce this recent contribution from both a methodological and
an applicative point of view. The objective is to provide an exploration of the
whole dependence structure and to highlight whether and how the relationships
among variables (both observed and unobserved) change across quantiles. We use a
real data application, measuring the equitable and sustainable well-being of Italian
provinces. Partial least squares path modeling is first applied to study the relation-
ships among variables assuming homogeneity among observations. Afterwards, a
multi-group analysis is performed, assuming that a specific factor (the geographic
area) causes heterogeneity in the population. Finally, the quantile approach to
composite-based path modeling provides a more in-depth analysis. Some relevant
results are selected and described to show that the quantile composite-based path
modeling can be very useful in this real data application, as it allows us to explore
territorial disparities in depth.
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5.1 Introduction

The aim of this chapter is to discuss a recent advance in the partial least squares
path modeling (PLS-PM) framework: the quantile composite-based path modeling
(QC-PM). QC-PM was recently introduced by Davino and Vinzi (2016) and further
developments from the theoretical and applicative point of view have been described
in few papers (Davino 2016; Davino et al. 2016a,b). QC-PM can be considered
a complementary approach to PLS-PM, one of the most widespread methods
used to analyse a network of relationships between unobserved and observed
variables. QC-PM aims to broaden such analysis by going beyond the estimation
of average effects in the network of relationships among variables. In particular,
QC-PM aims to highlight whether and how the relationships among observed and
unobserved variables as well as among the unobserved variables change according
to the quantile of interest, thus providing an exploration of the whole dependence
structure. To this purpose, quantile regression (QR) and quantile correlation (QC)
are introduced in all the estimation phases of a PLS-PM algorithm.

In this chapter, QC-PM is examined from both a methodological and an
applicative point of view. The former is based on the description of the main
features and potentialities of QR. The latter is provided in the context of a highly
debated issue: the measurement of Equitable and Sustainable Well-being (the so-
called Bes, from the Italian acronym of Benessere Equo e Sostenibile). In 2011,
the Italian National Institute of Statistics (ISTAT) launched two pilot projects to
deepen the measurement of BES at the local level: UrBes and Provinces’ BES. This
chapter deals with the set of indicators that have been selected and implemented
by the Provinces’ BES Statistical Information System (SIS)1 (Cuspi-Istat 2015a).
A hierarchical construct model is implemented to measure the BES index and to
study the relationships among the BES components, as BES is a multidimensional
construct composed of several different domains and themes. The chapter provides a
comparison of the results obtained using both the classical PLS-PM and the QC-PM
approach.

The chapter also proposes a preliminary in-depth analysis of BES in the case
of observed heterogeneity. It is a matter of fact that living conditions in Italy vary
widely across the different geographic areas of the country. For this reason, it is
advisable to support the global analysis with an evaluation of the differences among
the Italian provinces.

This chapter is organized as follows. Section 5.2 provides a detailed description
of the concept of equitable and sustainable well-being. A brief description of the
data is provided in Sect. 5.2.2. Sections 5.3 and 5.4 illustrate the theoretical PLS-PM
model and the main results obtained both on the whole set of Italian provinces and
taking into account the geographic area. A detailed description of QR potentialities

1http://www.besdelleprovince.it/.

http://www.besdelleprovince.it/
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with respect to QC-PM is reported in Sect. 5.5 together with the BES results. Finally,
some conclusions are given in Sect. 5.6.

5.2 Measuring Equitable and Sustainable Well-Being

5.2.1 The Reference Framework

Equitable and sustainable well-being is the official Italian statistical contribution
to the commitment of the European Statistical System (ESS) to measure progress
going beyond gross domestic product (GDP). This effort intends to develop high-
quality statistics able to provide a shared vision of well-being and to support policy-
making. The so-called BES Project, from the Italian acronym of Benessere Equo e
Sostenibile, was jointly undertaken by the ISTAT and the Italian National Council
for Economy and Labour (CNEL) in 2010 (Istat 2013).

The BES Project is an attempt to integrate the measurement of the well-being
level with the assessment of its equitable distribution and future sustainability.
Concerning the equity dimension, both the social and territorial cohesion are of
great importance, but the BES indicators provide at best a regional breakdown (i.e.
at the NUTS2 level.2) Thus, to deepen the measurement of BES at local level, in
2011 Istat launched two pilot projects: UrBes and Provinces’ BES.

This work deals with the set of indicators that was selected and implemented
by the Provinces’ BES Statistical Information System (SIS),3 which allows a
breakdown at the NUTS3 level (Cuspi-Istat 2015a), thus meeting the need to
highlight territorial disparities in order to assess territorial cohesion, which is of
primary importance in the reference framework of local development policies.

BES is divided into 12 domains, most of which concern those items that have
a direct impact on human and environmental well-being (Alkire 2012). These
outcome domains are as follows: health, education and training, work and life
balance, economic well-being, subjective well-being, social relationships, security,

2The acronym NUTS (from the French “Nomenclature des unitès territoriales statistiques”) stands
for Nomenclature of Territorial Units for Statistics, that is, the European Statistical System official
classification for the territorial units. The NUTS is a partitioning of the EU territory for statistical
purposes based on local administrative units. The NUTS codes for Italy have three hierarchical
levels: NUTS1 (groups of regions), NUTS2 (regions) and NUTS3 (provinces). The current NUTS
2013 classification is valid from 1 January 2015, and for Italy at the NUTS3 level it includes
110 territorial units, coinciding with the 110 provinces that existed in Italy at the reference date.
During 2016, following reforms by local authorities implemented by the Italian government, some
provinces have become metropolitan cities, while other provinces have been suppressed due to
regional laws (in particular the provinces of Sicily and Friuli-Venezia Giulia). As these changes
have not yet been added to the statistical classification, in this chapter, the term provinces refers to
the 110 units classified in NUTS3, so including the new metropolitan cities and the provinces that
no longer exist.
3For more information see www.besdelleprovince.it.

www.besdelleprovince.it
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landscape and cultural heritage and environment. The BES theoretical framework
is completed by those domains that quantify the main elements underling the well-
being itself. The context domains are as follows: politics and institutions, research
and innovation and quality of services. The BES statistical construct consists of 134
basic indicators distributed across the above-mentioned domains.

Compared to BES, the Provinces’ BES has some limitations: specifying BES
at such detailed geographical level leads to a trade-off between information needs
and data availability. At the first stage of the implementation (in 2012), the
dataset contained just 29 indicators at the NUTS3 level that were equivalent to
the national indicators. After further developments, the database was supplemented
with additional “proxy” indicators, and other indicators were added to highlight
gender or generational differences, thus reaching, in the 2014 release, a total of 87
basic indicators in 11 domains. Despite this, at the current stage, Provinces’ BES
SIS does not yet satisfactorily measures BES; thus, processing this data requires
managing many constraints and distinctive features (Chelli et al. 2015; Taralli et al.
2015; Taralli and D’Andrea 2015).

First of all, subjective indicators at the NTUS3 level are missing in all domains
and the equity and sustainability measures are poor. Moreover, the domains are
not always suitably measured: as a whole, the most severe gaps affect the Social
relationships and Economic well-being domains, besides Subjective well-being is
completely missing. In order to increase the availability of indicators, several basic
statistics were integrated; the input information is provided from 37 data sources
managed by 13 different institutions. The quality of the indicators therefore varies
because data have different reference periods and are affected by different kinds of
bias depending on the features of the statistical source used (ESS 2001; Hall et al.
2010; Istat 2012).

The database contains data from primary surveys (social or administrative, total
or sample), statistical compilations, information systems and administrative archives
processed for statistical purposes. Finally, concerning the quality of indicators, and
particularly the desirable properties of the indicators to be used for evaluation
purposes, it should be noted that very detailed indicators are not always quite
reliable, robust or relevant (Delvecchio 1995).

Given the above-mentioned issues, and considering that “what is badly defined
is likely to be badly measured” OECD (2008), we carefully assessed and selected
the Provinces’ BES indicators to build the measurement model as consistently as
possible with the BES theoretical framework and with our research goals.

Summarizing BES indicators at the local level requires emphasizing the differ-
ences among geographical areas; this raises the question of the weighted importance
of each well-being indicator. The issue of each indicator’s contribution to the com-
posite index requires a trade-off between the need for synthesis and the composite
responsiveness to territorial disparities: the question is whether the contribution of
each determinant to the BES varies significantly or remains substantially the same
according to the geographical area considered, the specific well-being structure and
the global level of well-being.
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The model was built using a “theory-driven” process. In fact, BES is an emerging
construct, clearly based on a formative measurement model (Dolce and Lauro
(2015)). Therefore, to measure BES, it is important to have a set of indicators
suitable for capturing all the well-being components, including equity and sus-
tainability. Furthermore, the elementary indicators should all be equally important
from a theoretical point of view (Albers and Hildebrandt 2006; Diamantopoulos and
Winklhofer 2001; Istat 2015).

Only the indicators of primary importance, that is, those that provide specific
information that other indicators do not provide (so-called non-substitutable indica-
tors), contribute to the synthesis of BES; thus, we included in each domain just those
indicators that measure direct effects or impacts on well-being. Furthermore, as in
the Provinces’ BES SIS, the indicators in a given domain are grouped according
to whether they pertain to the same subdimension (called as theme), we used
this intermediate level among elementary indicators and domains to improve the
specificity and sensitivity of the measurement model.

The Provinces’ BES themes are the first-order constructs in the structural model
described in Fig. 5.1, while domains are the second-order constructs, which are
grouped into outcome and context domains at the higher level. The synthesis of
outcome and context defines BES at the top of the model.

Within the limits described above (lower availability of relevant and reliable
data at the NUTS3 level), the structural model explains for each Italian province or
metropolitan city the impact of a single determinant (or group of determinants, i.e.
themes or domains) on the overall well-being levels (outcome) and on the framework
conditions (context), as well as the contribution of outcome and context to the BES
of that area. This approach, in concept, is in line with the one followed by Istat
to construct the BES domain composites at the regional level (Istat 2015). The
main differences, compared to Istat’s method, are in the aggregation mode applied
and in the synthesis of the domain composites that, in this study, leads up to the
construction of a global BES composite.

5.2.2 Data Description

The original Provinces’ BES dataset covers 11 domains, structured into 31 themes,
for a total of 87 indicators observed across the totality of the Italian Provinces and
metropolitan cities (110 units).

Extensive data cleaning and data tuning was necessary to cover several issues that
are crucial to start a multidimensional analysis and in particular carry out model-
based path modeling (for example, missing data, multicollinearity, indicators’
polarity).

After the data pre-processing, the data matrix contained 40 indicators, partitioned
into 11 domains and 12 themes. A descriptive univariate analysis of each indicator
is provided in Davino et al. (2016a, Sections 2.2 and 3).
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Tables 5.7 and 5.8 in the Appendix list the final domains, themes and indicators;
labels in the last column are used in graphs and tables showing the results of the
study. The indicators with reversed polarity are marked by the asterisk symbol in
the tables.

5.3 A Hierarchical Composite Model for BES

As Fig. 5.1 shows, we consider a hierarchical structure for BES. The specification
of this hierarchical structure derives from the available theoretical knowledge (Istat
2015). In particular, BES is considered as a multidimensional construct at the
highest order. It is composed of several different domains, some of which in turn
are composed of a number of themes (for example, the domain health is composed
of two themes: life expectancy and safeguard from health vulnerability).

Figure 5.1 shows the specified hierarchical structure for BES and how domains
and themes are connected to overall BES and to one another.

PLS-PM (Tenenhaus et al. 2005; Wold 1982) is an important method for
assessing hierarchical models (Becker et al. 2012; Ringle et al. 2012; Wetzels et al.
2009; Wilson 2010) and particularly such complex models.

PLS-PM computes proxies of constructs as composites (i.e. weighted aggregates
of the corresponding manifest variables, or MVs), assuming that all the information
concerning the relationships among the blocks of MVs is conveyed by the constructs
(Rigdon 2016; Sarstedt et al. 2016a). Consequently, hierarchical models in PLS-
PM can be better defined as hierarchical composite models. Furthermore, proxies
of constructs computed in hierarchical composite models are actually defined as
composite indicators. In this specific model, the composite indicator for BES is
the global score, while all the other composite indicators (for the domains and the
themes) are partial scores (Guinot et al. 2001).

The weighting in PLS path modeling is aimed at maximizing variances in each
block of variables and correlations between adjacent composites. If the MVs have
different relationships with their own underlying construct, PLS-PM has important
advantages compared to the traditional aggregation methods, such as principal
component analysis or unit-weight composite model (i.e. a simple arithmetic mean
of the MVs) (Henseler et al. 2014). In particular, depending on the chosen estimation
mode for the calculation of the outer weights and schemes for the inner model, PLS-
PM determines the weights of the MVs such that the more reliable MVs have larger
weights; it also provides components that are as highly correlated as possible to each
other while explaining the variances of their own set of variables.

We apply PLS-PM to estimate the parameters of the hierarchical composite
model, using the most popular conceptualization of a hierarchical model: the so-
called repeated indicators approach (Lohmöller 1989). As the name suggests, the
repeated indicators approach is based on a repeated use of manifest variables. In
particular, as constructs without associated MVs are not allowed in PLS-PM, higher-
order constructs are defined considering all the MVs of the underlying lower-order
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constructs. For example, a second-order construct is directly measured by the MVs
related to all the first-order constructs.

The repeated indicators method is not the only possible approach to assess
hierarchical composite models (Becker et al. 2012; Wilson and Henseler 2007);
indeed, the repeated indicator approach is said to have some limitations when the
number of MVs is not balanced among blocks (Hair et al. (2014)). However, to the
best of our knowledge, except for a study by Becker et al. (2012), there are hardly
any studies in the literature that provide substantive reasons for this assumption or
that analyse it in detail. Becker et al. (2012) analyse the effect of unbalanced blocks
on the relationships among composites. The authors show that this effect mainly
depends on the applied outer mode (i.e. Mode B and Mode A). When using Mode B,
the repeated indicator approach does not seem to be affected by an unequal number
of indicators per block.

We chose the repeated indicator approach because it considers simultaneously
the entire path model in the estimation procedure while remaining in the well-
established realm of the basic PLS-PM algorithm.

The path directions in the structural model are specified following the arrows in
the path diagram in Fig. 5.1. In particular, the higher-order composites depend on
the corresponding lower-order constructs.

In this study, the choice of the outer mode (the way to compute the outer
weights) has nothing to do with the hypothesized measurement model. In the recent
PLS-PM literature, researchers have started to clarify that the outer mode and the
measurement model are separate in PLS-PM, and any association may be an illusion
(Becker et al. 2013; Henseler et al. 2016; Rigdon 2016; Sarstedt et al. 2016a). Mode
A and Mode B are just two different ways of computing the outer weights, and the
choice between the two modes goes beyond the specified measurement model and
requires a more thoughtful approach (Becker et al. 2013; Sarstedt et al. 2016a).
Note that PLS-PM computes proxies for all constructs as weighted composites of
the corresponding MVs, no matter which outer mode is used.

In order to maintain coherency with the path directions specified in the structural
model (Dolce et al. 2016), we use Mode A for all the higher-order constructs and
Mode B for the first-order constructs.

We apply PLS-PM to compute the BES global score and the partial scores and
to examine the magnitude of effects of each domain and theme on overall BES, in
order to search for the primary factors influencing BES.

First, we estimate a global model at the national level, considering all the
provinces together. Afterwards, in Sect. 5.4.1, we introduce geographic area as a
variable. In particular, we estimate a model for each of the following geographic
areas of Italy: north-east, north-west, centre and south and islands.
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5.3.1 Global Model PLS-PM Results

We present in this section the main results of application of PLS-PM to the global
model. In particular, we show the estimated effects (i.e. the path coefficients) of the
two drivers of BES (i.e. outcome and context domains), and the estimated effects of
the different domains on the outcome and context drivers. Finally, as a measure of fit
of the model, we consider the redundancy index. In hierarchical composite models
the R2 is very close to 1 for each structural equation, as higher-order constructs
are almost fully explained by their lower-order constructs. Consequently, we do not
consider the R2 a measure of fit of the model.

The PLS-PM path coefficients for the global model are reported in Table 5.1.
Both outcome and context have a significant effect on BES. As expected, outcome
has a greater impact on BES than context because, as the number of variables for
this domain is greater than for context. However, the effect of the context on BES is
larger than expected.

In general, all the results are coherent with the hypothesized model, except for
the outcome domain environment, which has a negative effect. However, in this case,
the path coefficient is very small and not significant.

Except for the environment, all the domain effects on the outcome are significant.
Table 5.1 gives an ordered list of the domains (the path coefficients are in decreasing
order), in order to differentiate those factors that strongly influence BES from those
domains with a smaller effect.

All the context domain path coefficients are significant, and the factor with the
greatest influence for context is quality of services.

The redundancy index is a measure of the ability of the predictive composite to
explain the variation in the dependent blocks. For example, the redundancy index of
BES expresses how much of the variability in the MVs of BES is explained by the
outcome and context composites. Redundancy index refers to each dependent MV.

Table 5.1 PLS-PM path
coefficients of the global
model (non-significant
coefficients are shown in
italics)

Composite Path coefficient

BES Outcome 0.674

Context 0.353
Outcome Work and life balance 0.270

Economic well-being 0.236

Health 0.234

Social relationships 0.191

Education 0.139

Cultural heritage 0.110

Protection from crimes 0.061

Environment �0.007
Context Quality of services 0.542

Politics and institutions 0.352

Research and innovation 0.238
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Table 5.2 Average
redundancies for the global
model

Composite Redundancy

BES 0:315

Outcome 0:314

Context 0:367

Table 5.2 shows the redundancies for BES, outcome domain and context domain,
computed as means of the redundancies of the corresponding blocks of variables.

Redundancy-based prediction is the relevant criterion for assessing the in-sample
predictive ability of the structural model (Chin 2010a) as well as for comparing
structural equation models. However, as noted by Lohmöller (1989), the average of
all the redundancies can be considered as an index of goodness of fit of the global
model.

Therefore, we compute the average redundancy index as the mean of all the
block-redundancies weighted by the number of MVs of each block. The averaged
redundancy index is equal to 0.357. Given the complexity of the model, and because
redundancy values are generally small in PLS-PM, the fit of the model, in terms of
redundancy measure, is judged as satisfactory and sufficient to justify interpretation
of the results.

5.4 Observed and Unobserved Heterogeneity in PLS-PM

The global model assumes homogeneity across provinces. However, if heterogene-
ity is present, ignoring it may result in poor parameter estimates, and the model
performance may seriously degrade.

In some special cases, heterogeneity in the models may be captured by observ-
able variables that form homogeneous groups of statistical units. This special
situation, usually referred to as observed heterogeneity, is actually very rare in
practice. More frequently, unobserved heterogeneity (i.e. when the sources of
heterogeneity are not known a priori) is the case in real applications (Rigdon et al.
2010). In general, regardless of the specific case, it is desirable to detect and treat
heterogeneity in PLS-PM (Sarstedt et al. 2016b, 2011b).

A number of methods and approaches for identifying and treating unobserved
heterogeneity (the so-called latent class techniques) have been proposed in the
literature (Becker et al. 2013; Esposito Vinzi et al. 2008; Hahn et al. 2002; Lamberti
et al. 2016; Ringle et al. 2010; Sarstedt 2008; Sarstedt et al. 2011a).

The desire to treat unobserved heterogeneity also led to the new method called
QCPM, which is described in Sect. 5.5.

In Sect. 5.4.1, we treat observed heterogeneity, assuming that heterogeneity
across provinces is due to the difference in geographic area. Thus, we apply a multi-
group analysis in PLS-PM, creating four different groups of provinces generated
from the four geographic areas. We test whether differences between pairs of path
coefficients across areas are statistically significant, using the Chin and Dibberns
(2010b) permutation test.
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This first analysis focuses on the relationships in the structural model. The
objective here is to determine which path coefficients are responsible for the
differences between sub-models. An important limitation of this first study concerns
the lack of measurement invariance assessment (Henseler et al. 2015). Assessing
measurement invariance in PLS-PM is not a trivial task but should not be completely
disregarded when comparing path coefficients. Ideally, we should have tested for
measurement invariance to ensure that the differences between path coefficients do
not result from a different meaning of the estimated composites.

5.4.1 PLS-PM Results Across Geographic Areas

A more in-depth analysis of the Province’s BES must take into account that living
conditions are quite different according to the geographic position of the province.
Italian provinces are usually grouped into five areas: north-west, north-east, centre,
south and islands.

In this study the last two areas were combined because of the small size of the
group islands. Therefore, we obtain the following percentages of provinces: centre
(20%), north-east (20%), north-west (23%) and south and islands (37%).

Estimating the structural model in Fig. 5.1 for each area, it is possible to highlight
several differences among the areas from both a descriptive and an inferential point
of view. Figures 5.2 and 5.3 show the distribution of the three main composite
indicators of the model: BES, outcome and context. The graphs clearly show a
different behaviour in the south and islands provinces. These provinces show not
only lower median values but also higher variability and asymmetry. Moreover, in
the South of Italy, the context domains are more critical than the outcome domains.
Provinces located in the Centre also show a certain degree of heterogeneity,
particularly in the lower tail of the construct distribution.

In Fig. 5.4, the 110 provinces are plotted according to BES, context and outcome.
Different symbols are used to distinguish the geographic areas of location. Numbers
in the lower diagonal are the correlation coefficients. There is a very high correlation
between the BES and the outcome. The lower, but still strong, correlation between
the outcome and the context indicates that the context domain is less discriminating
between northern and southern provinces as compared to the outcome domain. In
addition, the chart shows a marked divergence between the levels of outcome and
context for a significant number of provinces of the north-east group (denoted by
triangles in the figure).

In order to take into account observed heterogeneity among provinces, repre-
sented by the different geographic areas, path coefficients obtained in the multi-
group analysis are compared with those derived from the global model. The impact
of context and outcome on BES varies strongly moving from the north to the south
of Italy. The bars in Fig. 5.5 represent the path coefficients obtained from separate
analysis of each area while the horizontal lines represent the path coefficients
estimated for the whole group of provinces. With respect to the outcome, the south
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geographic area

and islands area has a very high coefficient, even higher than the coefficient of the
global analysis. The opposite happens for the context domain. Concerning north-
east, the negative sign of the context is mainly due to those provinces (already
highlighted in Fig. 5.4) where the context level differs significantly from that of the
outcome.

Heterogeneity among geographic areas also occurs across the different domains
of the outcome and the context. Figure 5.6 shows the path coefficients of the
eight constructs influencing the outcome (left-hand side) and the three constructs
influencing the context (right-hand side). The domains are represented in decreasing
order according to the results of the global analysis (shown as black points). To
simplify the left-hand graph, letters are used to denote each domain: A (work/life),
B (economic well-being), C (health), D (social relationships), E (education),
F (cultural heritage), G (protection form crimes) and H (environment). Figure 5.6
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can be interpreted in several ways. For example, let us compare the results related to
the south and islands group with the other areas and with the whole set of provinces.
This area is characterized by a high impact on the outcome (even higher than the
global path coefficient) with respect to social relationships, education, cultural
heritage and protection from crimes. Among all the areas, social relationships
have the highest impact in the north-west provinces. In the context framework, the
negative role of politics and institutions is strongly indicated.

From an inferential point of view, it is possible to evaluate whether, for each pair
of areas, differences between path coefficients are statistically significant. Tables 5.3
and 5.4 show p-values of the difference test between path coefficients. Low p-values
indicate significantly different coefficients between areas.

The same approach can be followed for each theme of the outcome and context
domains. To facilitate the interpretation of the results, Tables 5.5 and 5.6 show
only the themes with a p-value lower than 0.1. The arrows indicate which path

Table 5.3 P-values of the difference test between the path coefficients of the context in the
different geographical areas

North-east North-west Centre south and islands

North-east 0:03 0:02 0:01

North-west 0:36 0:01

Centre 0:03

South and islands

Table 5.4 P-values of the difference test between the path coefficients of the outcome in the
different geographical areas

North-east North-west Centre South and islands

North-east 0:94 0:49 0:01

North-west 0:47 0:01

Centre 0:01

South and islands

Table 5.5 Outcome domains with a p-value lower than 0.10 in the different geographical areas

North-east North-west Centre South and islands
North-east Education "

Economic well-being #
Cultural heritage"

North-west Social relationships " Work and life balance "
Economic well-being "
Social relationships "
Environment "

Centre Education "
South and islands
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Table 5.6 Context domains with a p-value lower than 0.10 in the different geographical areas

North-east North-west Centre South and islands

North-east Quality of services "
North-west Quality of services # Quality of services "
Centre Quality of services #
South and islands

coefficient is higher. For example, the education path coefficient in the south and
islands provinces is significantly different from that obtained in the north-east
group. Moreover, the impact of education on outcome increases in the north-east
compared to the south of Italy (up arrow).

5.5 Quantile Composite-Based Path Modeling

5.5.1 Methodology

The QC-PM proposed by Davino and Esposito (2016) introduces both quantile
regression (QR) (Koenker and Basset 1978) and quantile correlation (QC) (Li
et al. 2015) in the traditional PLS-PM algorithm. While PLS-PM is based on
simple and multiple ordinary least squares (OLS) regressions, in some particular
cases, the estimates of coefficients may vary along the distribution of the dependent
variable. In such cases, QC-PM can complement traditional PLS-PM, because it
allows exploration of the entire dependence structure beyond the estimation of the
average effects.

A brief introduction to QR is provided to better highlight the added value of
QC-PM.

Quantile regression, as introduced by Koenker and Basset (1978), may be
considered an extension of OLS regression because it is based on the estimation of a
set of conditional quantiles of a response variable as a function of a set of covariates
(Davino et al. 2013). The main features of QR can be summarized as follows:

– Q� .OyjX/ D X Ǒ .�/ represents the QR model for a given conditional quantile �

where Q� .:j:/ denotes the conditional quantile function for the � th quantile. This
chapter will refer to linear regression models.

– As 0 < � < 1, it is potentially possible to estimate an infinite number of
regression lines, but in practice a finite number is numerically distinct, which
is known as the quantile process. For each quantile of interest, a regression line
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is estimated and, consequently, a set of coefficients and a fitted response vector
can be obtained.

– No parametric distribution assumptions are required for the error distribution.
– The estimation is realized by minimizing the weighted sum of absolute residuals

which weights positive and negative residuals asymmetrically, respectively, with
weights equal to .1 � �/ and � .

– The parameter estimates have the same interpretation as those of any other linear
model.

– The estimators are asymptotically normally distributed with different forms of
the covariance matrix depending on the model assumptions (Koenker and Basset
1982a,b). Resampling methods can represent a valid alternative to the asymptotic
inference (among many, see Kocherginsky et al. 2005) because they allow the
estimation of parameter standard errors without requiring any assumption in
relation to the error distribution.

– The assessment of goodness of fit exploits the general idea leading to the typical
R2 goodness of fit index in classical regression analysis. The most common
goodness of fit index in the QR framework is called pseudoR2 (Koenker and
Machado 1999).

To appreciate QR features and results, a very simple example is provided using
two indicators from the Provinces’ BES dataset. A classical OLS regression and a
QR for a set of selected quantiles (� = [0.1, 0.25, 0.5, 0.75, 0.9]) are performed
to explore the dependence of the non-profit institutions indicator from the gross
disposable income per household indicator.

The graphical representation of the coefficients can aid in interpretation of the
results. The left-hand side of Fig. 5.7 shows OLS (solid) and QR (dashed) lines
imposed on the scatterplot of the dependent variable and the considered regressor.
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Greater variability of the response variable for high gross disposable income values
is evident from the scatterplot and from the fan shape of the QR lines. The effect
of the regressor around the non-profit institutions variable remains stable around the
average or median, but differs in size below and above the median. Moreover it is
evident that in case of a generic quantile � , .100 � .1 � �// % of points lie above
the quantile regression line and .100 � �/ % lie below the regression line (a number
of points equal to the number of model parameters lies exactly on the line).

The right-hand side of Fig. 5.7 shows the QR coefficient trends. The horizontal
axis displays the different quantiles, while the effect of the regressor is represented
on the vertical axis. QR confidence bands (in grey) are obtained through the
bootstrap method for ˛ = 0.1. The two solid lines parallel to the horizontal
axis represent 0 and the OLS coefficients. The related confidence intervals are
represented using dashed lines for ˛ = 0.1. This figure gives a graphic representation
of the coefficient trend moving from lower to upper quantiles.

A quantile measure of correlation is introduced as well in the QC-PM in place of
classical quantile correlation. Such a measure was introduced by Li et al. (2015) as
a correlation measure between two random variables for a given quantile � 2 .0; 1/.
The quantile correlation index (QC) is constructed just like the Pearson correlation
coefficient as the ratio between a covariance and the squared root of the product
between the variances of the two variables. QC has the same properties as a
correlation coefficient (it increases with the slope of the regression line and lies
between �1 and 1) but it is not symmetric. Thus, it is necessary to identify which
variable plays the role of dependent variable. With respect to the inferential aspects,
a bootstrap approach is proposed, based on the complexity of the estimation of the
variance–covariance matrix of the estimator (Davino and Esposito 2016).

QC-PM is in essence based on the introduction of a quantile approach in the
estimation steps of the PLS-PM algorithm: the inner estimation, the outer estimation
and the estimation of the path coefficients and loadings.

Several options for QC-PM can be implemented according to the choices adopted
in the model estimation. For example, in the inner estimation (structural model), the
LV estimation depends on the adopted weighting scheme. If the path weighting
scheme is chosen, the inner weights linking the jth successor LV to its predecessors
are estimated through a QR, while the inner weights among the jth LV and its
successor LVs are determined using the QC. As in the quantile framework, the
correlation is a non-symmetric measure and the use of QC distinguishes between
predecessors and successors. QC is proposed as an alternative to the Pearson
correlation coefficient if the centroid or the factorial scheme is adopted. As QC
is an asymmetric index, the great benefit of this proposal is the possibility of taking
into account the direction of the structural relationships. Therefore, by using QC,
even the factorial and the centroid schemes take into account the role played by
predecessor and successor LVs.
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In the outer estimation (measurement model), simple (Mode A) or multiple
(Mode B) quantile regressions allow computation of the composite scores for each
quantile of interest. An innovative estimation mode (Mode Q) in the outer model
is represented by the use of QC to compute the weights. Mode Q allows taking
explicitly into account both outwards-directed and inwards-directed measurement
models because, as stated before, unlike the Pearson correlation coefficient, QC
is asymmetric. The advantage of Mode Q over Mode A and Mode B is mainly
computational. QC is a descriptive bivariate measure while the choice of Mode A
or Mode B in QC-PM requires the estimation of several QRs. Moreover, in case of
inwards-directed relationships, the computational gain is greater because Mode B
would require the estimation of multiple QRs.

Once convergence is reached and scores are computed, the path coefficients and
the loadings are estimated by means of quantile regressions. For each quantile of
interest, a vector of estimates including the intercept is obtained.

The proposed QC-PM method provides, for each quantile of interest � , a set of
weights, loadings, path coefficients and scores.

A final evaluation of the quality of the QC-PM results from both a descriptive
(assessment) and inferential (validation) point of view has been proposed by Davino
et al. (2016b). The goodness-of-fit measures typically used in PLS-PM have been
extended to QC-PM and a non-parametric approach can be used to validate the
significance of the estimates.

QC-PM is not meant to replace PLS-PM but rather to complement PLS-PM when
the average effects are not sufficient to summarize the relationships among variables.
In these cases, a more in-depth analysis of the whole distribution of the dependent
variables is needed and can be obtained by exploiting its various quantiles.

5.5.2 Results

The estimation of a QC-PM provides a set of outer weights and path coefficients
for each quantile of interest. The former represent the weights of each observed
indicator on the corresponding theme or domain while the latter are an estimate of
the impact of each theme on the corresponding domain as well as the impact of each
domain on BES.

In the following, a selection of relevant results is described. A complete view
of the PLS-PM and QC-PM results for all the themes is provided in Davino et al.
(2016a).

The impacts of the different domains on the outcome and context drivers are
shown in Fig. 5.8 where the PLS-PM and the QC-PM (for two quantiles of interest
� = 0.1 and � = 0.9) path coefficients are represented. To facilitate the comparison,
the eight constructs impacting on the outcome are shown in decreasing order,
according to the PLS-PM results (black bars). If on average the most important
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(right-hand side) domains from PLS-PM and from QC-PM for two quantiles of interest (� = [0.1,
0.9])

domain for the outcome seems to be work and life balance, followed by economic
well-being, in the 10% of the provinces with the lowest outcome values, health is the
most important factor and protection from crimes and the environment come to light
too. Results change in the upper quantile, where the social relationships domain
exceeds all the others in terms of impact on the outcome. Intangible issues related
to cultural heritage are also worth highlighting.

With respect to the context (right-hand side of Fig. 5.8), a central role is played
by the quality of services, whose importance can be considered very high, while
research and innovation assumes a different influence in the top (90%) or bottom
(10%) of the context distribution.

PLS-PM and QC-PM also provide a weight for each indicator, representing the
role played by the given indicator in constructing the corresponding theme. For
illustrative purpose, Fig. 5.9 shows the outer weights of the social relationships
theme for five selected quantiles (� = [0.1, 0.25, 0.5, 0.75, 0.9]) and for the classical
PLS-PM. For ease of interpretation, PLS-PM results are shown on the right-hand
edge of the figure.

Limiting the analysis to the measurement of the average effects of the indicators
V.7 (non-profit institutions) and V.8 (volunteers in non-profit institutions (per 100
residents aged 14+) on the level of social relationships, the results show that
both have a positive weight. Such a result was expected as the two indicators are
correlated. A more in-depth analysis is provided by the exploration of the results
for the bottom and top part of the construct distribution. Provinces characterized
by low social relationships are typically characterized also by a fragile institutional
structure and consequently the number of volunteer-based associations increases
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Fig. 5.9 PLS-PM and QC-PM outer weights for social relationships across a set of selected
quantiles

even if the participation of volunteers is not adequate. On the other hand, when
the social relationships are stable and strengthened, the weight of the participation
becomes relevant even if the presence of the associative pattern is negligible.

A tentative approach to connect QC-PM results to the observed heterogeneity
represented by the geographic area is provided in Fig. 5.10. This graph is a
simultaneous representation of the first factorial plane of a principal component
analysis performed on the data matrix of the QC-PM outcome path coefficients
(on the rows the quantiles, in the columns the themes and in the cells the path
coefficients). Path coefficients obtained from the multi-group PLS-PM are plotted as
supplementary rows. The aim of the representation, purely descriptive, is twofold.
First, it provides a simultaneous visualization of the obtained results for the five
considered quantiles while Fig. 5.8 just compares the extreme quantiles. Second,
it allows to explore the impact played by each domain in the different parts of
the outcome distribution to the coefficients related to a given geographic area. For
example, high values of economic well-being and environment characterize the top
part of the outcome distribution, and similar values are obtained in the centre and
north-east provinces.

Further research will be developed to take into account both observed and
unobserved heterogeneity in QC-PM. In the quantile regression framework, dif-
ferent approaches have been proposed in the literature to analyse group effects in
a dependence model (Geraci and Bottai 2014; Koenker 2004; Lamarche 2010),
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Fig. 5.10 PLS-PM and QC-PM outer weights for social relationships across a set of selected
quantiles

although some of these studies deal with longitudinal data. With respect to the
case described in this chapter, that is observed heterogeneity, we will explore the
possibility of estimating different QC-PM models for each group or the introduction
of dummy variables among the regressors to denote group membership. A more
complex, but even more suitable approach, could be the adaptation in QC-PM of the
procedure proposed by Davino and Vistocco (2007) and Davino and Vistocco (2015)
in the quantile regression framework. The method provides a separate analysis of the
dependence structure for each group but results are obtained on the whole sample,
so to detect group effects and easily compare the coefficients estimated for each
group

5.6 Concluding Remarks

The QC-PM method is complementary to PLS-PM and aims to broaden the
analysis going beyond the estimation of average effects, exploring the network of
relationships among variables.
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The real data application presented in this chapter is related to the indicators
of well-being released by the Italian National Institute of Statistics within the
Provinces’ Bes Project, which is one of the projects recently undertaken by Istat
to study well-being at the local level. We apply PLS-PM to examine how and how
much each driver contributes to well-being as a whole, by determining which factors
primarily influence well-being both nationally and locally. For this last purpose, we
introduce in the model the geographic area as a “ stratification criterion”, and then
we estimate a global model at the national level and one model for each of the
following four geographic areas of Italy: north-east, north-west, centre, south and
islands. Consequently, we apply a multi-group analysis assuming that heterogeneity
across provinces is due to their geographic location. The results of this analysis are
statistically significant and very interesting from an analytical point of view, as they
highlight different behaviours of the well-being drivers across geographic areas.

QC-PM provides a more in-depth analysis, introducing a quantile approach in
the estimation steps of the PLS-PM algorithm. This method provides a set of outer
weights and path coefficients for each quantile of interest, allowing estimation and
comparison of the impact of each driver of well-being according to the distribution
of the global well-being itself. This allows testing of whether and how much the
importance of each component of well-being, as measured in average by PLS-
PM, varies across the overall well-being distribution. Some relevant results are
presented which show that QC-PM is very useful when analysing the well-being
at the local level because it focuses on the distributional aspects and thus it reveals
and measures in-depth the underlying structure of territorial disparities in the well-
being distribution.

Appendix

See Tables 5.7 and 5.8.



104 C. Davino et al.

Table 5.7 Dimensions, themes, indicators and labels

Health Indicator Label
Life expectancy Life expectancy at birth (male) I.1

Life expectancy at birth (female) I.2

Safeguard from specific Infant mortality rate I.3*

health vulnerabilities Mortality rate for road accidents (15–34 years old) I.4*

Mortality rate for cancer (20–64 years old) I.5*

Mortality rate for dementia (65 years old and over) I.6*

Avoidable mortality rate (0–74 years old) I.8*

Education and training Indicator Label
Educational attainment Early leavers from education and training II.1*

People of working age with lower secondary
education or less

II.2*

Participation and competencies Participation in tertiary education (19–25 years old) II.4

Level of literacy and numeracy II.6–7

Lifelong learning Participation in lifelong learning (25–64 years old) II.8

Work and life balance Indicator Label

Work participation Employment rate III.1–3
Labour market gender equality Gender inequality in non-participation rate (M-F) III.2*

Gender inequality in employment rate (M-F) III.4*

Safety at work Incidence rate of occupational injuries, fatal or
leading to permanent disability

III.9*

Economic well-being Indicator Label
Economic well-being Gross disposable income per household IV.1

Households assets (total average amount) IV.6

Social relationships Indicator Label
Social relationships Non-profit institutions V.7

Volunteers in non-profit institutions (per 100
residents aged 14+)

V.8

Politics and institutions Indicator Label
Political participation Electoral participation (European parliament

elections)
VI.1

Electoral participation (provincial elections) VI.2
Institutional representation Women and political representation in municipalities VI.3

Young people (<40 years old) and political
representation in municipalities

VI.4
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Table 5.8 Dimensions, themes, indicators and labels

Protection from crimes Indicator Label
Protection from homicides Homicide rate VII.1*

and violent crimes Violent crimes reported VII.3*

Landscape and cultural heritage Indicator Label
Landscape and cultural heritage Conservation of historic urban fabric VIII.1

Presence of historic parks/gardens of
significant public interest

VIII.2

Museums and similar institutions VIII.3

Environment Indicator Label
Quality of environment Urban green areas IX.1

Low air pollution (PM10) IX.3*
Restraint of resource consumption Energy from renewable sources (electricity) IX.7

Restraint of landfill storage of waste IX.8*

Research and innovation Indicator Label
Research and innovation Propensity to patent X.1

Production industry specialization in
knowledge-intensive sectors

X.7

Quality of services Indicator Label
Quality of services Regular electricity supply XI.1

Separate collection of urban waste XI.3

No prisons exceeding capacity limits XI.4

Density of urban public transportation
networks

XI.6

Taking charge of users for early childhood
services

XI.2
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Chapter 6
Ordinal Consistent Partial Least Squares

Florian Schuberth and Gabriele Cantaluppi

Abstract In this chapter, we present a new variance-based estimator called ordinal
consistent partial least squares (OrdPLSc). It is a promising combination of consis-
tent partial least squares (PLSc) and ordinal partial least squares (OrdPLS), respec-
tively, which is capable to deal in structural equation models with common factors,
composites, and ordinal categorical indicators. Besides providing the theoretical
background of OrdPLSc, we present three approaches to obtain constructs scores
from OrdPLS and OrdPLSc, which can be used, e.g., in importance-performance
matrix analysis. Finally, we show its behavior on an empirical example and provide
a practical guidance for the assessment of SEMs with ordinal categorical indicators
in the context of OrdPLSc.

6.1 Introduction

Structural equation modeling (SEM) has become a customary method, in particular,
in the fields of business and social sciences. Its capacity to model nomological
networks, to take into account various forms of measurement error, and to test whole
theories makes it a prime candidate for a variety of research issues.

The estimators for SEM can be generally divided into two groups: covariance-
and variance-based estimators. Covariance-based parameter estimates are obtained
by minimizing the discrepancy between the empirical and model-implied covariance
matrix of the indicators. In contrast, variance-based estimators first build linear
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combinations of the observed indicators as stand-ins for the theoretical constructs
and subsequently estimate the parameters of interest using these stand-ins. Variance-
based estimators are the proper estimators if the underlying model consists of
constructs modeled as composites especially in an endogenous position, while
covariance-based estimators are preferred if the constructs are modeled as common
factors.

The most prominent estimator among the variance-based ones is probably partial
least squares path modeling (PLS). Its application is prevalent in many fields, e.g., in
management (Hair et al. 2012a) or business research (Gelhard and Von Delft 2016).
Its capacity to estimate models with constructs modeled as common factors or as
composites1 makes it an attractive estimator for SEM.

Over the last decade, a lot of enhancements and extensions of PLS have been
developed. The heterotrait–monotrait ratio of common factor correlations (Henseler
et al. 2015b) for testing discriminant validity and a test for measurement invariance
of composites (Henseler et al. 2016b) were introduced. Furthermore, the consistent
PLS (PLSc) (Dijkstra and Henseler 2015b) and an exact test of overall-model
fit (Dijkstra and Henseler 2015a) were developed which allow for the consistent
estimation of SEMs with composites and common factors and their goodness-of-
fit evaluation. Since all these approaches are based on the traditional PLS algorithm
which uses ordinary least squares (OLS) regression analysis, it is implicitly assumed
that all indicators are on a metric scale.

A lot of empirical studies are based on data collected by questionnaires, thus
the indicators used are rarely on a metric scale: in many situations researchers are
faced with data measured on ordinal categorical scales, e.g., in marketing research,
in particular customer satisfaction surveys (Hair et al. 2012b; Coelho and Esteves
2007).

It is well known in the PLS literature, as well as in other fields, that treating
categorical variables as continuous can lead to biased estimates and therefore to
invalid inferences and erroneous conclusions. Lohmöller recognizes that the “Œ: : :	

standard procedures cannot be used for the categorical and ordinal-scaled variables
Œ: : :	” (Lohmöller 1989, chapter 4). Furthermore Hair et al. (2012b) mention that
PLS is often used with categorical indicators but that their use in a procedure like
PLS which is based on the OLS estimator can be problematic.

Several methods to address this issue in the context of PLS are provided in the
literature, e.g., ordinal PLS (OrdPLS2) an innovative approach to deal with ordinal
categorical indicators in a psychometric way (Cantaluppi 2012; Cantaluppi and
Boari 2016). As OrdPLS is based on the traditional PLS algorithm, its use is limited
to models where all constructs are modeled as composites. However, researchers
are often faced with models containing constructs which are modeled as common

1For a comparison of constructs modeled as composites or common factors, see Rigdon (2012,
2016).
2In the original paper, ordinal PLS was abbreviated to OPLS. To avoid confusion with orthogonal
partial least squares regression, in its latest version it is abbreviated to OrdPLS.
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Fig. 6.1 A typology of PLS methods

factors instead of composites (Ringle et al. 2012; Hair et al. 2012b). So, there is a
real need of methods like OrdPLSc which are able to deal with common factors,
composites, and ordinal categorical indicators.

In this chapter, we present ordinal consistent partial least squares (OrdPLSc)
(Schuberth et al. 2016) which is a combination of PLSc and OrdPLS, so providing
the advantages of both. OrdPLSc is an estimator which is capable to consistently
estimate SEMs including not only composites, but common factors and ordinal
categorical indicators too. Figure 6.1 compares the properties of traditional PLS,
PLSc, OrdPLS, and OrdPLSc with respect to dealing with common factors and
taking into account the scale of ordinal categorical indicators.

As Schuberth et al. (2016) investigate the performance of OrdPLSc by a Monte
Carlo simulation, we empirically examine the behavior of OrdPLSc. For this reason,
we re-estimate the well-known European customer satisfaction model for the mobile
phone industry (Tenenhaus et al. 2005) using OrdPLSc and compare the results with
those from PLS, PLSc, and OrdPLS. We also provide commonly used instruments
in PLS to assess construct validity and composite reliability taking into account
the qualitative scale of ordinal categorical indicators. Additionally, we show how
construct scores can be obtained from OrdPLSc.

The remainder of the chapter is organized as follows: the next section shows
the development from PLS to PLSc and provides a reformulation of these two
procedures in terms of indicators correlation matrices. In Sect. 6.3, we give a
literature review of existing approaches dealing with categorical indicators in the
framework of PLS, in particular we present the idea of the OrdPLS approach.
Section 6.4 presents the ordinal consistent PLS (OrdPLSc). In the following



112 F. Schuberth and G. Cantaluppi

Sects. 6.5 and 6.6, we present methods to obtain construct scores and show ways to
assess the results from OrdPLSc. In Sect. 6.7, we assess the results from OrdPLSc
and compare them with those obtained from PLS, PLSc, and OrdPLS using an
empirical example. The chapter closes with the conclusion in Sect. 6.8. Furthermore,
we provide additional results in the Appendix.

6.2 The Development from PLS Path Modeling to Consistent
PLS Path Modeling

PLS was developed by Wold (1975) for the analysis of high dimensional data in a
low-structure environment and has undergone various extensions and modifications.
It is an approach similar to generalized canonical correlation analysis (GCCA),
and in addition able to emulate several of Kettenring’s (1971) techniques for the
canonical analysis of several sets of variables (Tenenhaus et al. 2005).

In its most modern appearance known as consistent PLS (PLSc) (Dijkstra and
Henseler 2015a,b), it can be understood as a well-developed SEM method. It is
capable to estimate recursive and non-recursive structural models with constructs
modeled as composites and common factors. Figure 6.2 compares PLS with PLSc.
Both obtain the outer weights and estimated stand-ins for the constructs by the
classical PLS algorithm. While traditional PLS simply relies on OLS to estimate
the model parameters, its extended version, PLSc, uses two-stage least squares
(2SLS) to consistently estimate recursive path models. Furthermore, PLSc is able
to handle both, constructs modeled as composites and common factors by using a
post-correction for attenuation, for correlations affected by common factors.

OLS
PLS

algorithm

Traditional PLS

OLS/2SLS
PLS

algorithm

Correction for
attenuation

(common factors)

PLSc

Fig. 6.2 Development of PLS to PLSc
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Fig. 6.3 Common factor versus composite

The classical common factor model assumes that the variance of a block of
indicators .x1; : : : ; xK/ is completely explained by the underlying common factor
(� in the large circle) and by their random errors ."1; : : : ; "K/, see Fig. 6.3a. This
kind of model is commonly used in behavioral research. As Fig. 6.3b depicts,
composites (� in the hexagon) are formed as linear combinations of their belonging
indicators .x1; : : : ; xK/. Since the composite model does not put any restrictions on
the covariances of the indicators belonging to one block, it relaxes the assumption
that all of the covariation between the indicators has to be explained by the common
factor.3 Composites are often used as proxies for scientific concepts of interest
(Ketterlinus et al. 1989; Maraun and Halpin 2008; Tenenhaus 2008; Rigdon 2012).

For the derivation of OrdPLS(c)4 it is crucial to describe the well-known PLS
algorithm (Wold 1975) and its extension to PLSc in terms of indicator covariances
or correlations, respectively. Since in PLS no distinction between exogenous and
endogenous constructs is made, we use the following notation: � is a . J � 1/ vector
containing all stand-ins for constructs which are connected by the structural model,
whether they are modeled as common factors or as composites . The .K � 1/ vector
x contains the indicators which measure the common factor or build the composite,
respectively.

6.2.1 Partial Least Squares

For a sample of size n, all observations of the K indicators are stacked in a data
matrix X of dimension .n � K/. For simplicity, the Kj indicators belonging to one

3See Bollen and Bauldry (2011) for a description of the different kinds of indicators.
4We use hereafter the notation OrdPLS(c) when we refer to OrdPLS and OrdPLSc.
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common factor or one composite �j are grouped to form block j with j D 1; : : : ; J.
Observations of block j are stacked in the data matrix Xj of dimension .n � Kj/ withPJ

jD1 Kj D K. Without loss of generality, each indicator is standardized to have
mean zero and a variance of one, such that the sample covariance matrix S equals
the sample correlation matrix.

The PLS estimation procedure consists of three parts. In the first part, initial
arbitrary outer weights Ow.0/

j .Kj � 1/ for each block j are chosen which satisfy

the following condition: Ow.0/0
j Sjj Ow.0/

j D 1 where the .Kj � Kj/ matrix Sjj contains
the sample correlations of the indicators of block j. This condition holds for all
outer weights in each iteration i and can be achieved by using a scaling factor
. Ow.i/0

j Sjj Ow.i/
j /� 1

2 for the outer weights Ow.i/
j in each iteration.

In the second part, the iterative PLS algorithm starts with step one, the outer
estimation of �j:

O�.i/
j D Xj Ow.i/

j with Ow.i/0
j Sjj Ow.i/

j D 1; (6.1)

where O�.i/
j is again a column vector of length n. Since outer weights are scaled, all

outer estimates also have mean zero and unit variance.
In the second step, the inner estimate of �j is calculated as a linear combination

of inner weights and outer estimates of �l:

Q�.i/
j D

JX

lD1

e.i/
jl O�.i/

l ; (6.2)

where Q�.i/
j is a column vector of length n. The inner weight ejl defines how the

inner estimate Q�j is built. Three different schemes for determination of ejl exist:
centroid (Wold 1982b), factorial (Lohmöller 1989), and path weighting. However,
all schemes produce essentially the same results (Noonan and Wold 1982), hence,
we only consider the centroid scheme.5 The inner weights are chosen according to
the signs of the correlations between the outer estimates

e.i/
jl D

(
sign. Ow.i/0

j Sjl Ow.i/
l /; for j ¤ l if construct j and l are adjacent

0; otherwise;
(6.3)

where adjacent refers to the constructs j and l being directly connected by the path
model. All inner estimates Q�.i/

j are again scaled to have unit variance.
In the third and last step of the iterative part, new outer weights are calculated.

This can be done in three ways: mode A, mode B, and mode C. For mode A, estimated
outer weights of block j equal the estimated coefficients of a multivariate regression

5For more details on the other schemes, see Tenenhaus et al. (2005).
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from the indicators of block j on its related inner estimate. Due to standardization,
new outer weights equal the correlations between the inner estimates of �j and its
related indicators:

Ow.iC1/
j /

JX

lD1

Sjl Ow.i/
l e.i/

jl with Ow.iC1/0
j Sjj Ow.iC1/

j D 1: (6.4)

In contrast, for mode B, the new outer weights equal the estimated coefficients of a
regression from the inner estimate on its connected indicators:

Ow.iC1/
j / S�1

jj

JX

lD1

Sjl Ow.i/
l e.i/

jl with Ow.iC1/0
j Sjj Ow.iC1/

j D 1: (6.5)

Mode C, also known as MIMIC mode, is a mixture of mode A and B and is not
considered here.

Since the traditional PLS algorithm has no single optimization criteria to be
minimized, the new outer weights Ow.iC1/

j are checked for significant changes

compared to the outer weights from the iteration step before Ow.i/
j . If there is a

significant change in the weights, the algorithm starts again at step one by building
new outer estimates O�.iC1/

j with the new outer weights Ow.iC1/
j , otherwise it stops.

In the last part, at the algorithm convergence, the obtained stable outer weights
Owj are used to build the final composite stand-ins for both type of constructs:

O�j D Xj Owj: (6.6)

For constructs which are modeled as common factors, the factor loadings are
estimated by OLS in accordance with the measurement model. In contrast, for
constructs which are modeled as composites, the final weights equal the stable
weights from the last iteration. Finally, path coefficients are estimated by OLS with
respect to the structural model.

6.2.2 Consistent Partial Least Squares

As traditional PLS is based on composites, whose estimates are biased if constructs
are modeled as common factors.6 In general, a composite model has larger
absolute inter composite correlations compared to the absolute inter common factor
correlations of a model with the same structure but where all constructs are modeled
as common factors. However, a transformation of the model-implied correlation

6Both, common factors and composites are possible ways of construct modeling, see Rigdon
(2012).
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matrix of a composite model into the model-implied correlation matrix of a common
factor model can be achieved by a correction for attenuation (Cohen et al. 2013,
chapter 2.10). Consistent PLS (PLSc) uses this correction to obtain consistent
estimates for models where the underlying constructs are modeled by common
factors (Dijkstra and Henseler 2015a,b).

The correction requires that each common factor is measured by at least
two indicators and uses the linearity between population factor loadings and the
population weights, �j D cjwj. The estimated correction factor for block j satisfies
the following condition:

plim.Ocj/ D
q

�0
j†jj�j; (6.7)

where �j is a column vector of length Kj containing the population loadings of
common factor �j and †jj is the .Kj � Kj/ population correlation matrix of the
indicators of block j.7 The correction factor Ocj can be obtained by

Oc2
j D Ow0

j.Sjj � diag.Sjj// Owj

Ow0
j. Owj Ow0

j � diag. Owj Ow0
j// Owj

: (6.8)

It is chosen such that the Euclidean distance between

Sjj � diag.Sjj/ and .cj Owj/.cj Owj/
0 � diag..cj Owj/.cj Owj/

0/ (6.9)

is minimized (Dijkstra and Henseler 2015a). The factor loadings of block j are
consistently estimated by

O�j D Ocj Owj: (6.10)

As PLSc is able to estimate recursive and non-recursive models, path coefficients
are estimated by OLS or 2SLS according to the underlying structural model. Since
all variables are standardized, the estimated path coefficients are based on the
correlation between the columns of O�. The correlation between the common factors
j and l is consistently estimated by:

ccor.�j; �l/ D Ow0
jSjl Owlq

Oc2
j Ow0

j Owj Oc2
l Ow0

l Owl

: (6.11)

Using the corrected correlation of Eq. (6.11) for the estimation of the structural
model, one obtains consistently estimated path coefficients between the common

7The use of mode B for common factors is not considered here. For a consistent version of PLS for
mode B, see Dijkstra (2011).
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factors.8 For constructs which are modeled as composites no correction of the
correlation is required because, by construction, they are not affected by attenuation.
For example, if construct j is modeled as a common factor and construct l as a
composite, the consistently estimated correlation is obtained by

ccor.�j; �l/ D Ow0
jSjl Owlq
Oc2

j Ow0
j Owj

: (6.12)

6.3 The Development from PLS to Ordinal PLS

Since incorrectly handling ordinal categorical variables as continuous can lead
to biased inferences and therefore to erroneous conclusions, the PLS literature
provides approaches dealing with discrete indicators: dichotomize the ordinal
categorical indicator, a mixture of PLS and correspondence analysis (CA), partial
maximum likelihood PLS (PML-PLS), and non-metric PLS (NM-PLS).

Common practice in PLS is to replace a categorical indicator by a dummy matrix
which is known as dichotomizing. Since the categorical indicator is replaced by
M �1 dummy variables, where M is the number of observed categories, M �1 outer
weights are obtained for the original variable. This contradicts the idea of treating
an indicator as a whole.

Betzin and Henseler (2005) use correspondence analysis to quantify ex-ante
categorical indicators. As the quantified indicators are obtained, PLS is used to
estimate the model parameters. As a result, individual weights are obtained for each
category of the categorical indicator. Again, this has the drawback that no single
outer weight for a categorical indicator is calculated.

Partial maximum likelihood partial least squares (PML-PLS) (Jakobowicz and
Derquenne 2007) is a modified version of the original PLS algorithm. It is a com-
bination of PLS and generalized linear models, designed to deal with indicators of
any scale. For categorical indicators, individual outer weights are computed for each
category by ANOVA. Based on those, one “global” weight per categorical indicator
is calculated. However, statistical properties like the proportionality of outer weights
to factor loadings are unknown for the global weight and further investigation is
needed. Moreover, the authors note that PML-PLS “is especially advantageous in
the case of nominal or binary variables” (Jakobowicz and Derquenne 2007) but we
focus on ordinal categorical indicators.

The last approach, non-metric partial least squares (NM-PLS) combines the PLS
algorithm with optimal scaling to quantify qualitative indicators (Trinchera and

8For more details, e.g., the consistent estimation of non-recursive models and the correction
for nonlinear structural equation models, see Dijkstra (1985, 1983, 2010, 2011); Dijkstra and
Schermelleh-Engel (2014).
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Russolillo 2010; Russolillo 2012). Optimal scaling is a procedure, which quantifies
qualitative variables by preserving properties of the original measurement scales. In
case of NM-PLS, the categorical indicator is quantified in a way that the correlation
between the inner LV estimate and the quantified categorical indicator is maximized.
As a result for each variable one outer weight is obtained as in traditional PLS for
continuous indicators.

6.3.1 Ordinal Partial Least Squares

A further promising approach to deal with ordinal categorical variables is ordinal
PLS (OrdPLS) (Cantaluppi 2012). It is a modified procedure for handling ordinal
categorical variables in a classical psychometric way. In Sect. 6.2 we showed that
all parameters can be obtained by the use of the correlation matrix S. Traditional
PLS uses the Bravais-Pearson (BP) correlation matrix, which requires all indicators
to be continuous for consistency. The observation of an ordinal categorical variable
is a qualitative measure, yet it is often coded as numeric and therefore mistakenly
treated as quantitative by researchers. This routinely happens in applications with
binary and ordinal categorical indicators, which results in biased BP correlation
estimates (Quiroga 1992; O’Brien and Homer 1987; Wylie 1976; Carroll 1961).
To fix this, OrdPLS uses a consistent correlation matrix as input to the traditional
PLS algorithm. An advantage of OrdPLS over the approaches previously introduced
is its transparent way of dealing with ordinal categorical variables. Furthermore,
as Fig. 6.4 illustrates, the original PLS algorithm remains untouched and it is just
provided by a consistent correlation matrix as input for the algorithm.

Since OrdPLS does not correct for attenuation, it shows the same drawbacks as
PLS if common factors are included in the model. Nevertheless, we consider Ord-
PLS as a powerful extension of PLS when applied under appropriate circumstances,
i.e., for models with only composites. Furthermore, it is straightforward to extent
by PLSc, to overcome its drawback, see Sect. 6.4. In the following subsection we
present Pearson’s considerations of ordinal categorical variables to provide a better
understanding of the polychoric and polyserial correlation.

OLSPLS
algorithm

Determining
polychoric
correlation

OrdPLS

Fig. 6.4 Ordinal partial least squares



6 Ordinal Consistent Partial Least Squares 119

τ1 τm−1 τm τM−1

. . . . . .

xmx1 xM

x∗

φ (x∗)

Fig. 6.5 Pearson’s idea of an ordinal categorical variable

6.3.2 Ordinal Categorical Variables According to Pearson

Pearson (1900, 1913) considers an ordinal categorical variable as a crude measure of
an underlying continuous random variable, while Yule (1900) assumes categorical
variables being inherently discrete. In this chapter we follow the idea of Pearson:
an observed ordinal categorical indicator x is the result of a polytomized standard
normally distributed random variable x�:

x D xm if �m�1 � x� < �m m D 1; : : : ; M (6.13)

where the threshold parameters �0; : : : ; �M determine the observed categories. The
first and last threshold are fixed: �0 D �1 and �M D 1. Moreover, the thresholds
are assumed to be strictly increasing: �0 < �1 < : : : < �M .9

Figure 6.5 depicts the idea of an underlying continuous variable: for indicator x
category xm is observed if the realization of the underlying continuous variable x�
is in between the thresholds �m�1 and �m.

6.3.3 Polychoric and Polyserial Correlation

Since an ordinal categorical variable is determined by an underlying continuous
variable, it is more appropriate to consider the correlation between these underlying

9In empirical work it can happen that two consecutive threshold parameters are equal, �m�1 D �m,
if the corresponding category xm is not observed.
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quantitative continuous variables for evaluating the linear relationship of interest.
This is achieved by using the polychoric or polyserial correlation (Drasgow 1986).
To illustrate the principles of the polychoric correlation, we consider two ordinal
categorical variables x1 and x2 with consecutive categories denoted by m1 and m2

for x1 and x2, respectively, with m1 D 1; : : : ; M1 and m2 D 1; : : : ; M2, see Eq. (6.13).
The two underlying continuous variables are assumed to be jointly bivariate standard
normally distributed with correlation �. The correlation between x�

1 and x�
2 can be

consistently estimated by maximum likelihood using the following log-likelihood
function:

ln L D ln.c/ C
M1X

m1D1

M2X

m2D1

nm1m2 ln.
m1m2 /; (6.14)

where ln.c/ is a constant term, nm1m2 denotes the observed joint absolute frequency
of x1 D m1 and x2 D m2, and 
m1m2 is the probability that category m1 and m2 are
observed jointly. Due to the bivariate normality assumption, 
m1m2 is obtained as:


m1m2 D (6.15)

ˆ2.�m1 ; �m2 ; �/ � ˆ2.�m1 ; �m2�1; �/ � ˆ2.�m1�1; �m2 ; �1/ C ˆ2.�m1�1; �m2�1; �/;

where ˆ2 is the cumulative distribution function of the bivariate standard normal
distribution. The parameters �m1 , �m2 , and � are chosen to maximize the function
ln L. In order to reduce computational burden, a two-step procedure can be used
(Olsson 1979). In the first step, estimated threshold parameters are separately
calculated for both ordinal categorical indicators xk, with k D 1; 2; as quantiles of
cumulative marginal frequencies, O�mk D ˆ�1. Fmk / where Fmk equals the cumulative
marginal relative frequency up to category mk. The function ˆ�1 represents the
quantile function of the univariate standard normal distribution. Second, given the
estimated threshold parameters, Eq. (6.14) is maximized with respect to �. In case
of a continuous and an ordinal categorical variable, the correlation between the
two continuous variables is obtained by the polyserial correlation (Olsson et al.
1982). For more than two variables, a multivariate version is used to estimate the
correlations (Poon and Lee 1987). Moreover, a less computational intensive two-
step approach can be used for the multivariate version (Lee and Poon 1987). OrdPLS
as well as OrdPLSc makes use of the polychoric and polyserial correlation when
ordinal categorical indicators are part of the model.

6.4 Ordinal Consistent Partial Least Squares

Ordinal consistent partial least squares (OrdPLSc) is an approach which deals with
ordinal categorical indicators in the same way as OrdPLS, but it additionally uses
the correction for attenuation known from PLSc on the resulting model-implied
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Correction
for attenuation
(common factor)

OLS/2SLSPLS
algorithm

Determining
polychoric
correlation

OrdPLSc

Fig. 6.6 Ordinal consistent partial least squares

x∗ xξ

ε

(a) Exogenous common factor:
    ordinal categorical indicators

x∗ xξ

(b) Exogenous composite model: ordinal
categorical indicators 

Fig. 6.7 Ordinal categorical indicators in common factor and composite models

correlation matrix if common factors are included in the model. Since, OrdPLS does
not affect the original PLS algorithm, the statistical properties of the outer weights
are maintained. This is important for the combination of PLSc and OrdPLS because
the correction for attenuation of PLS estimates for common factors is heavily
based on the proportional property of the outer weights. Figure 6.6 depicts the new
approach and shows that OrdPLSc is PLSc provided with a consistent correlation
matrix as input.

The role of an ordinal categorical indicator .x/, more precisely its underlying
continuous variable .x�/, is influenced by its position in the model. As Fig. 6.7a
displays, when an ordinal categorical indicator belongs to a common factor, the
outcome of the indicator variable is indirectly influenced by the underlying common
factor � and a measurement error " through the underlying continuous variable
x�. An ordinal categorical indicator that is part of a composite, see Fig. 6.7b, is
simply a crude measure of an underlying continuous variable which actually builds
the composite � along with other indicators belonging to this block (the double
headed arrow represents the relationship between the underlying continuous and the
observed ordinal categorical indicator).

Serious problems may appear when the nature of the ordinal categorical indi-
cators is ignored. First, in common factor models the correlation between the
indicator and its underlying factor is underestimated (Quiroga 1992; O’Brien and
Homer 1987), which leads to biased estimates. Second, in the case of a composite,
disregarding the scale of the ordinal categorical indicator leads to biased estimates,
too. This is well known as the error-in-variables problem (Wooldridge 2012,
chapter 15).
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6.5 Evaluation of the Construct Scores in OrdPLS
and OrdPLSc

A useful feature of PLS is that construct scores can be calculated directly enabling,
e.g., importance-performance matrix analysis (IPMA).10 In this section, we present
three ways of calculating construct scores in the framework of OrdPLS and
OrdPLSc11 to obtain a category indication, which is expressed on the same common
ordinal scale characterizing the manifest indicators12 of the latent variable.13 As
the continuous variables x�

j underlying each ordinal categorical indicator are not
observable (see Fig. 6.7), unique construct scores O�j cannot be calculated directly.
We are only able to determine the probability function of each composite O�j and
an interval of possible values conditional on the threshold values pertaining to the
latent variables x�

jk that underlie each ordinal categorical indicator related to �j. This
information can be used for approximating construct scores.

Each underlying latent variable x�
jk with k D 1; : : : ; Kj is assumed to be standard

normally distributed. Therefore, the composite O�j, which is defined by the following
linear combination (analogous to Eq. (6.6)):

O�j D
KjX

kD1

Owjkx�
jk; (6.16)

is also normally distributed and on a continuous scale. In order to assign a location

value to the composite O�j, a set of threshold parameters for the composite �
O�j

m , m D
1; : : : ; M�1, can be derived from the individual indicators threshold parameters �

xjk
m

referred to the underlying variable x�
jk, k D 1; : : : ; Kj, where M denotes the number

of categories for the indicator xjk, as

�
O�j

m D
KjX

kD1

Owjk�
xjk
m : (6.17)

For practical reasons, threshold parameters equal to ˙1 are replaced by ˙4.

10IPMA is a technique aimed at finding which construct is better to act on, in order to
improve the average level of a target construct. It is based on a scatterplot diagram, for each
endogenous construct, representing summary location measures (performances) of its antecedent
latent variables and their impacts (regression coefficients) on the analyzed endogenous construct.
11As the weights are unaffected by the correction for attenuation, the construct scores are the same
for PLS and PLSc as well as for OrdPLS and OrdPLSc.
12Calculating construct scores in presence of indicators defined on Likert scales with different
numbers of categories will be considered in future research.
13In PLS, a linear transformation of standardized scores is sufficient to assign location and scale to
construct scores as shown, e.g., in Bayol et al. (2000).
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Fig. 6.8 Categorical
construct scores, see
Eq. (6.21)

τ1 τ2 τ3 τ4 τM−1

. . .

η̂ j

αi βi

Mode estimation

In the following, we first define an interval of O�ji, with i D 1; : : : ; n, which is the
image of xjki, k D 1; : : : ; Kj, where xjki is the observation of subject i for indicator xjk

linked to the corresponding composite O�j. Using the interval, we propose three ways
to obtain construct scores on the common ordinal scale characterizing the indicators.

In case subject i chooses the same category m for all the indicators connected to
O�j, xj1i D � � � D xjKji D m with m 2 f1; : : : ; Mg, the image is of the type

Am � .�
O�j

m�1; �
O�j

m 	 (6.18)

which we call homogeneous thresholds. Otherwise, as illustrated in Fig. 6.8, the set
which is the image of all possible responses xjki, will not correspond exactly to one
subset Am. Let us denote this set for subject i with

Cji � .˛
O�j

i ; ˇ
O�j

i 	; (6.19)

where

˛
O�j

i D
KjX

kD1

Owjk�
xjki

m�1 and ˇ
O�j

i D
KjX

kD1

Owjk�
xjki
m : (6.20)

The parameters �
xjki

m�1 and �
xjki
m are the threshold parameters which determine the

observed category for subject i of indicator xjk and which can be used to define
the values for the interval of x�

jk. To assign a category to the i-th observation of the
composite O�j, we propose one of the following options:

1. Mode estimation: compute, see Fig. 6.8, the probabilities for Cji to overlap each
set Am defined by the “homogeneous thresholds”

P
�
Cji \ Am

�
m D 1; : : : ; M (6.21)
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and select for observation i the set Am with the maximum probability. To the set
Am corresponds the assignment of category m as a score estimate for the construct
�j. In Fig. 6.8 category 3 (interval from �2 to �3) is assigned.

2. Median estimation: compute the median for each observation i of the variable
O�j over the interval Cji,

median. O�jij O�ji 2 Cji/ D ˆ�1

�
1

2
.ˆ.˛

O�j

i / C ˆ.ˇ
O�j

i /

	
: (6.22)

The category m pertaining the set Am to which median. O�jij O�ji 2 Cji/ belongs is
assigned to subject i.

3. Mean estimation: compute the mean of the variable O�ji over the interval Cji,

E. O�jij O�ji 2 Cji/ D �.˛
O�j

i / � �.ˇ
O�j

i /

ˆ.ˇ
O�j

i / � ˆ.˛
O�j

i /
: (6.23)

The category m pertaining the set Am to which E. O�jij O�ji 2 Cji/ belongs is assigned
to subject i.

6.6 Assessing the Results of OrdPLSc

The main focus of this section is the assessment of the OrdPLSc results. In the
following, we give a brief overview of approaches commonly followed in PLS and
PLSc which can be also used to assess the results from OrdPLSc. Furthermore,
we present approaches for the model evaluation in the case of ordinal categorical
indicators.

6.6.1 Overall Model Evaluation

Statistical tests for the evaluation of the overall-model fit were not available for a
long time in PLS. Most recently, a bootstrap-based test was developed for PLSc
(Dijkstra and Henseler 2015a). It is a combination of a bootstrap test about the
model-implied covariance matrix (Beran and Srivastava 1985; Bollen and Stine
1992) and PLSc. In the context of OrdPLSc, this approach is under development
and object of future research.14 Nevertheless, the standardized root mean square
residual (SRMR) (Hu and Bentler 1999) as an approximate model fit criteria can

14Applying simply the transformation proposed by Beran and Srivastava (1985) is not recom-
mended, since the transformation of the qualitative categorical indicators is not clear.
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be used. It captures the sum of the squared differences between the empirical and
the model-implied correlation matrix. Hence, the smaller the SRMR, the better the
model fit. Furthermore, as PLS was developed as prediction method (Wold 1982a),
models estimated by PLS should be compared with regard to their predictive power
(Shmueli et al. 2016).15

6.6.2 Measurement Model

In the following, we focus on criteria to assess convergent validity, discriminant
validity, and internal consistency in the case of OrdPLSc.

6.6.2.1 Convergent Validity

Convergent validity refers to the extent to which the reflective indicators under each
common factor are actually measuring the same common factor. A typically used
measure for convergent validity is the average variance extracted (AVE) (Fornell
and Larcker 1981; Fornell and Cha 1994; Farrell 2010), which can be appropriately
used in the context of OrdPLSc.

6.6.2.2 Discriminant Validity

Discriminant validity refers to the extent to which a given common factor differs
from the other common factors of a model. It can be examined for OrdPLSc in the
same manner as for PLSc and is usually assessed by the Fornell–Larcker criterion
(Fornell and Larcker 1981). In addition, in PLS(c) the heterotrait–monotrait ratio of
common factor correlations (HTMT) (Henseler et al. 2015b) and the cross-loadings
are used to investigate whether different common factors are also statistically
different. Since all approaches mentioned are based on the factor loading estimates
or the indicators correlation matrix, it is straightforward to use them in the context
of OrdPLSc.

6.6.2.3 Internal Consistency

Internal consistency relates to the correlations among the indicators of one block and
reflects the reliability of the measurement model. To evaluate internal consistency

15We investigate the predictive power of OrdPLSc and compare it to other approaches which are
able to deal with ordinal categorical indicators in a future study.
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for a block of indicators belonging to a common factor,16 the use of the reliability
measure �A is recommended (Dijkstra and Henseler 2015b; Henseler et al. 2016a).
Furthermore, measures of composite reliability like Dillon–Goldstein’s � (also
known as Jöreskog �c) (Chin 1998) or Cronbach’s ˛ are usually considered. Since
all these measures are based on the estimated factor loadings or the indicators
correlations, they also can be used in the context of OrdPLSc.17

In general, it is noted that measures used in the context of OrdPLSc refer to
the underlying continuous latent variables x�

j instead to the ordinal categorical
indicators xj themselves.

6.6.3 Structural Model

Since OrdPLSc is also based on OLS, the coefficient of determination R2 of the
endogenous composites can be used to assess the structural model. It measures how
well the explanatory composites explain an endogenous composite O�j.

6.7 An Empirical Example: Customer Satisfaction

Traditional PLS has been successfully applied to models aiming at measuring
customer satisfaction: first on a national level (Fornell et al. 1996; Fornell 1992)
and later also in a business context (Johnson et al. 2001). We replicate the study
from Bayol et al. (2000) and Tenenhaus et al. (2005) on customer satisfaction in
the mobile phone industry to empirically investigate the performance of OrdPLSc
in the presence of ordinal data collected on questionnaires with a large number of
categories.18 Furthermore, we compare the results of OrdPLSc to those of PLS,
PLSc, and OrdPLS.

The assumed underlying customer satisfaction model refers to a version of
the European Customer Satisfaction Index (ECSI) with one exogenous and 6
endogenous common factors, see Fig. 6.9 for a depiction of the structural model. The
data set consists of 250 observations on 24 ordinal categorical indicators with ten
categories each: 5 measures of Image (IMG), 3 measures of Customers Expectations

16Since composites are by assumption fully reliable, their assessment of internal consistency
meaningless.
17The idea to calculate a Cronbach’s ˛ using the polychoric correlation is already known and
denoted as ordinal alpha (Zumbo et al. 2007). Ordinal alpha avoids the negative bias of Cronbach’s
˛ in the case of ordinal categorical indicators.
18The data set is publicly available, e.g., from the R package plspm (Sanchez et al. 2015).
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Fig. 6.9 Path diagram of the mobile phone industry customer satisfaction model

(EXP), 7 measures of Perceived Quality (QUA), 2 measures of Perceived Value
(VAL), 3 measures of Customer Satisfaction (SAT), one measure of Complaints
(COM), and 3 measures of Loyalty (LOY). For more details on the questionnaire,
see Tenenhaus et al. (2005).

The estimation of the model is conducted in R (R Core Team 2016) using the
package matrixpls (Rönkkö 2016).19 For the estimation we use the centroid scheme
for inner weighting, mode A for outer estimation, and the algorithm proposed by
Wold (1982b) to obtain the final weights. To obtain the polychoric correlation for
OrdPLS and OrdPLSc, we use a modified version20 of the polychoric function of
the psych package (Revelle 2016). Moreover, we use the NONE approach in the
case of non-occupied cells, which is recommended for indicators with more than 2
categories (Savalei 2011). For the calculation of the construct scores we use user-
written functions, which are provided upon request. In the bootstrap procedures,
improper solutions are discarded. Figure 6.10 is built by the R package ggplot2
(Wickham 2009).

Since the SRMR is below the recommended cut-off value of 0.08 (Hu and Bentler
1998) with regard to OrdPLSc, overall-model fit is established and we proceed with

19As matrixpls is still under development, we cross validated the results for PLS and PLSc with
ADANCO (Henseler and Dijkstra 2015a).
20The original polychoric function does not allow to calculate the polychoric correlation between
indicators with more than 8 categories.
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Fig. 6.10 Construct scores for PLS(c) and OrdPLS(c) (mode estimation)

considering the parameter estimates. In Table 6.1, we provide the path coefficient
estimates of the mobile phone customer satisfaction model for PLS, PLSc, OrdPLS,
and OrdPLSc.

The results show that OrdPLSc produces significant path coefficient estimates
for ˇ21, ˇ32, ˇ65, and ˇ75 while the other approaches produce a larger number
of significant path coefficient estimates. Under the approaches considered, PLS
and OrdPLS yield the most path coefficients which are significantly different from
zero. Comparing the magnitude of the significant estimates, the consistent versions
of PLS and OrdPLS lead to larger absolute path coefficient estimates. However,
the path coefficient estimates for PLS and OrdPLS are known to be biased for
common factor models (Schneeweiss 1993; Schuberth et al. 2016). Therefore, it
is recommended to rely on the OrdPLSc estimates since they have been corrected
for attenuation and take the scale of the ordinal indicators into account. Moreover,
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estimates obtained from PLS and OrdPLS as well as PLSc and OrdPLSc are quite
similar for most path coefficients. Such a result is expected since the discrepancy
between the polychoric and the BP correlation is reduced by the large number of
categories per indicator (here: 10).

As all constructs are modeled as common factors, estimated factor loadings O�j

instead of weights are of main interest in the measurement model. Considering the
factor loadings, see Table 6.2, PLS and OrdPLS mostly produce larger estimates
than their consistent counterparts. Moreover, all factor loading estimates are
significantly different from zero, except the factor loading of indicator loy2 is not
significant for OrdPLSc, OrdPLS, and PLSc. The factor loading estimates of PLS
and OrdPLS as well as of PLSc and OrdPLSc are not comparable, since we report
the standardized estimates of OrdPLS and OrdPLSc and the non-standardized factor
loadings of PLS and PLSc.21 The difference in the magnitude of PLS and PLSc as
well as OrdPLS and OrdPLSc factor loading estimates is not surprising as PLS as
well as OrdPLS estimates suffers from attenuation in the case of a common factor
model. The consistent versions control for this bias leading in general to smaller
factor loading estimates.

In the following, we investigate the convergent validity of the common factors.
On the main diagonals in Table 6.3a–d, we provide the AVEs which are commonly
used to investigate the convergent validity.

It is obvious that OrdPLS and PLS as well as OrdPLSc and PLSc lead to similar
results, which is expected as the AVEs are based on the standardized factor loading
estimates which only slightly differ because of the large number of categories per
indicator, see Table 6.8. It is noteworthy that the AVEs obtained from PLS and
OrdPLS estimates are not trustworthy if the common factor model holds, since the
factor loading estimates are biased. Since only the AVEs for the common factors
QUA, VAL, and SAT are larger than the recommended threshold of 0.5 (Fornell
and Larcker 1981) using OrdPLSc, convergent validity cannot be established for the
remaining common factors.

To assess discriminant validity, we first consider the standardized cross-factor
loadings, see Tables 6.9, 6.10, 6.11, 6.12 in the Appendix. For PLS and OrdPLS, all
factor loading estimates are larger than the estimated cross-loadings, which leads to
believe that discriminant validity is achieved. In contrast, OrdPLSc as well as PLSc
leads to a different conclusion. In almost every block is at least one indicator where
a cross-loading exceeds the corresponding factor loading, except for the common
factor VAL. This finding is supported by the Fornell–Larcker criterion. Using
PLS and OrdPLS estimates, respectively, the Fornell–Larcker criterion indicates
that discriminant validity is established for all common factors except for IMG
and QUA. While the Fornell–Larcker criterion based on the PLSc and OrdPLSc
estimates shows that only for the common factor VAL discriminant validity can
be established. Following Henseler et al. (2015b), we recommend to interpret the

21Non-standardized factor loading estimates are easier to interpret. Standardized are referred to
Table 6.8 in the Appendix.



6 Ordinal Consistent Partial Least Squares 131

T
ab

le
6.

2
Fa

ct
or

lo
ad

in
g

an
d

co
nfi

de
nc

e
in

te
rv

al
es

ti
m

at
es

P
L

S
C

Ia
P

L
S

c
C

Ib
O

rd
P

L
S

C
Ia

O
rd

P
L

S
c

C
Ic

im
a1

1:
21

6
0
:9

3
1

1
:4

6
2

1:
03

6
0
:8

1
4

1
:2

5
1

0:
76

4
0
:6

9
0

0
:8

1
8

0:
66

2
0
:5

5
5

0
:7

6
0

im
a2

0:
95

3
0
:6

6
5

1
:2

0
9

0:
90

5
0
:6

4
9

1
:1

6
9

0:
64

8
0
:5

2
5

0
:7

3
4

0:
59

2
0
:4

7
1

0
:6

9
1

im
a3

1:
39

9
1
:0

1
5

1
:6

9
8

0:
97

5
0
:6

5
3

1
:2

5
6

0:
60

2
0
:4

6
3

0
:6

9
5

0:
48

3
0
:3

1
8

0
:6

1
0

im
a4

1:
45

5
1
:2

0
3

1
:6

6
9

1:
26

2
0
:9

8
9

1
:4

8
3

0:
79

9
0
:7

2
9

0
:8

5
4

0:
72

0
0
:6

0
4

0
:8

1
8

im
a5

1:
08

5
0
:8

5
4

1
:3

5
9

1:
02

8
0
:8

2
1

1
:2

3
2

0:
78

0
0
:7

2
4

0
:8

2
6

0:
71

0
0
:6

2
3

0
:7

9
1

ex
p1

1:
11

1
0
:8

0
8

1
:3

6
7

0:
80

9
0
:5

6
2

1
:1

0
6

0:
78

0
0
:6

5
4

0
:8

4
8

0:
55

6
0
:4

2
6

0
:6

8
6

ex
p2

1:
15

3
0
:7

2
4

1
:5

4
7

0:
78

6
0
:5

1
8

1
:1

9
8

0:
74

3
0
:5

8
9

0
:8

3
2

0:
53

9
0
:3

9
1

0
:7

0
7

ex
p3

1:
52

3
1
:0

2
2

1
:9

3
1

0:
88

5
0
:5

8
5

1
:2

4
2

0:
62

3
0
:4

7
6

0
:7

3
8

0:
47

9
0
:3

6
0

0
:6

2
0

qu
a1

1:
10

4
0
:9

1
6

1
:2

8
1

1:
14

7
0
:9

6
9

1
:3

3
7

0:
82

8
0
:7

7
9

0
:8

7
5

0:
83

5
0
:7

6
1

0
:8

9
5

qu
a2

1:
22

8
0
:9

2
9

1
:5

2
9

0:
99

7
0
:7

5
1

1
:3

0
6

0:
64

7
0
:5

3
1

0
:7

3
7

0:
55

3
0
:4

4
7

0
:6

8
3

qu
a3

1:
45

6
1
:1

9
9

1
:6

8
5

1:
37

3
1
:1

3
1

1
:5

6
4

0:
80

1
0
:7

4
7

0
:8

5
2

0:
76

9
0
:6

7
9

0
:8

4
9

qu
a4

1:
25

3
1
:0

5
1

1
:4

2
8

1:
10

3
0
:8

9
4

1
:2

9
4

0:
80

9
0
:7

4
4

0
:8

7
1

0:
73

3
0
:6

5
6

0
:8

1
9

qu
a5

1:
06

2
0
:8

7
4

1
:2

3
7

0:
98

0
0
:7

7
7

1
:1

4
2

0:
78

2
0
:7

1
8

0
:8

3
7

0:
72

0
0
:6

1
6

0
:8

2
1

qu
a6

1:
24

6
1
:0

6
9

1
:4

0
2

1:
10

9
0
:9

4
0

1
:2

9
4

0:
82

6
0
:7

5
2

0
:8

8
9

0:
75

8
0
:6

8
4

0
:8

4
9

qu
a7

1:
47

7
1
:2

5
2

1
:7

3
8

1:
50

2
1
:2

7
6

1
:7

3
2

0:
79

9
0
:7

3
5

0
:8

4
9

0:
82

2
0
:7

5
8

0
:8

9
1

va
l1

2:
03

2
1
:8

2
3

2
:2

2
6

1:
64

6
1
:4

1
2

1
:9

5
0

0:
91

4
0
:8

6
9

0
:9

4
4

0:
77

1
0
:6

7
4

0
:8

6
4

va
l2

1:
67

4
1
:4

1
3

1
:9

0
7

1:
70

4
1
:5

0
4

1
:9

6
5

0:
94

3
0
:9

2
5

0
:9

5
8

0:
94

3
0
:8

8
1

0
:9

9
6

sa
t1

0:
87

5
0
:7

1
5

1
:0

3
1

0:
85

4
0
:6

9
4

0
:9

8
1

0:
82

5
0
:7

6
8

0
:8

7
0

0:
73

4
0
:6

4
4

0
:8

1
3

sa
t2

1:
53

6
1
:3

2
9

1
:7

5
1

1:
24

7
1
:0

3
5

1
:4

4
5

0:
85

8
0
:8

1
4

0
:8

9
3

0:
72

4
0
:6

5
6

0
:8

0
2

sa
t3

1:
54

3
1
:3

1
9

1
:7

7
4

1:
42

2
1
:2

4
6

1
:6

5
3

0:
86

7
0
:8

3
0

0
:9

0
1

0:
83

4
0
:7

8
0

0
:9

1
0

lo
y1

2:
26

8
1
:9

3
6

2
:5

3
8

1:
55

9
1
:2

5
7

2
:0

0
2

0:
84

9
0
:7

6
6

0
:9

0
3

0:
64

1
0
:5

2
4

0
:7

3
9

lo
y2

0:
77

5
0
:0

3
7

1
:3

9
6

0
:5

1
3

�0
:0

6
5

0
:8

6
7

0
:1

9
3

�0
:0

5
6

0
:3

9
3

0
:1

6
3

�0
:0

1
3

0
:2

7
4

lo
y3

1:
92

3
1
:6

1
1

2
:2

0
5

1:
89

3
1
:7

0
4

2
:2

0
5

0:
92

4
0
:8

9
8

0
:9

4
2

0:
90

3
0
:8

5
6

0
:9

8
9

B
ol

d
pr

in
te

d
va

lu
es

ar
e

th
e

co
ef

fi
ci

en
te

st
im

at
es

w
he

re
th

e
co

rr
es

po
nd

in
g

C
I

do
es

no
tc

ov
er

th
e

ze
ro

P
er

ce
nt

ile
co

nfi
de

nc
e

in
te

rv
al

s
ar

e
ca

lc
ul

at
ed

at
a

95
%

co
nfi

de
nc

e
le

ve
l

a
ba

se
d

on
50

0
bo

ot
st

ra
p

sa
m

pl
es

b
ba

se
d

on
31

7
bo

ot
st

ra
p

sa
m

pl
es

c
ba

se
d

on
27

0
bo

ot
st

ra
p

sa
m

pl
es



132 F. Schuberth and G. Cantaluppi

T
ab

le
6.

3
A

ve
ra

ge
va

ri
an

ce
ex

tr
ac

te
d

an
d

sh
ar

ed
va

ri
an

ce
es

ti
m

at
es

(a
)

PL
S

IM
A

E
X

P
Q

U
A

V
A

L
SA

T
L

O
Y

IM
A

0:
47

6
0
:2

4
3

0
:5

3
5

0
:2

5
8

0
:4

5
0

0
:3

0
0

E
X

P
0
:4

9
3

0:
47

1
0
:2

9
7

0
:1

3
0

0
:2

3
1

0
:1

3
4

Q
U

A
0
:7

3
1

0
:5

4
5

0:
57

4
0
:3

3
2

0
:6

2
6

0
:2

7
5

V
A

L
0
:5

0
8

0
:3

6
0

0
:5

7
6

0:
85

0
0
:3

6
5

0
:2

6
7

SA
T

0
:6

7
1

0
:4

8
1

0
:7

9
1

0
:6

0
4

0:
68

3
0
:4

0
3

L
O

Y
0
:5

4
8

0
:3

6
6

0
:5

2
4

0
:5

1
7

0
:6

3
5

0:
52

0

(b
)

PL
Sc

IM
A

E
X

P
Q

U
A

V
A

L
SA

T
L

O
Y

IM
A

0:
35

6
0
:7

8
6

0
:8

3
5

0
:4

3
3

0
:7

8
6

0
:6

0
0

E
X

P
0
:8

8
7

0:
20

7
0
:7

9
6

0
:3

7
3

0
:6

9
3

0
:4

6
0

Q
U

A
0
:9

1
4

0
:8

9
2

0:
50

5
0
:4

6
0

0
:9

0
6

0
:4

5
5

V
A

L
0
:6

5
8

0
:6

1
1

0
:6

7
9

0:
71

5
0
:5

6
7

0
:4

7
5

SA
T

0
:8

8
6

0
:8

3
3

0
:9

5
2

0
:7

5
3

0:
54

9
0
:7

4
7

L
O

Y
0
:7

7
5

0
:6

7
8

0
:6

7
4

0
:6

8
9

0
:8

6
4

0:
37

0

(c
)

O
rd

PL
S IM

A
E

X
P

Q
U

A
V

A
L

SA
T

L
O

Y

IM
A

0:
52

2
0
:3

4
2

0
:6

3
6

0
:3

0
9

0
:5

5
0

0
:4

2
1

E
X

P
0
:5

8
4

0:
51

7
0
:3

7
5

0
:1

6
1

0
:3

0
0

0
:2

1
8

Q
U

A
0
:7

9
7

0
:6

1
2

0:
61

9
0
:3

8
3

0
:6

7
2

0
:3

7
1

V
A

L
0
:5

5
6

0
:4

0
2

0
:6

1
9

0:
86

2
0
:4

1
3

0
:3

5
9

SA
T

0
:7

4
2

0
:5

4
7

0
:8

2
0

0
:6

4
3

0:
72

3
0
:5

0
5

L
O

Y
0
:6

4
9

0
:4

6
7

0
:6

0
9

0
:6

0
0

0
:7

1
1

0:
53

7

(d
)

O
rd

PL
Sc IM

A
E

X
P

Q
U

A
V

A
L

SA
T

L
O

Y

IM
A

0:
40

9
0
:8

1
4

0
:8

9
8

0
:4

5
5

0
:8

6
3

0
:6

8
1

E
X

P
0
:9

0
2

0:
27

6
0
:7

7
5

0
:3

4
8

0
:6

8
8

0
:5

1
6

Q
U

A
0
:9

4
7

0
:8

8
0

0:
55

7
0
:4

8
9

0
:9

1
4

0
:5

2
0

V
A

L
0
:6

7
5

0
:5

9
0

0
:6

9
9

0:
74

2
0
:5

8
6

0
:5

2
6

SA
T

0
:9

2
9

0
:8

3
0

0
:9

5
6

0
:7

6
6

0:
58

6
0
:7

8
7

L
O

Y
0
:8

2
5

0
:7

1
8

0
:7

2
1

0
:7

2
5

0
:8

8
7

0:
41

7

C
or

re
la

ti
on

s
ar

e
be

lo
w

th
e

di
ag

on
al

,s
qu

ar
ed

co
rr

el
at

io
ns

ar
e

ab
ov

e
th

e
di

ag
on

al
,a

nd
A

V
E

es
ti

m
at

es
ar

e
pr

es
en

te
d

on
th

e
di

ag
on

al
(i

n
bo

ld
fa

ce
)



6 Ordinal Consistent Partial Least Squares 133

Table 6.4 HTMT results for
PLS(c) and OrdPLS(c)

IMA EXP QUA VAL SAT LOY

IMA 0:917 0:949 0:681 0:929 0:943

EXP 0:888 0:888 0:602 0:843 0:824
QUA 0:929 0:878 0:699 0:958 0:802
VAL 0:652 0:589 0:673 0:765 0:865
SAT 0:910 0:865 0:954 0:741 1:001

LOY 0:867 0:770 0:723 0:797 0:957

Fornell–Larcker criterion with caution when it is based on PLS or OrdPLS factor
loading estimates, as these are known to be upward-biased.

Moreover, the HTMT further supports the suspicion that some indicators are
incorrectly assigned. The lower triangular of Table 6.4 represents the results based
on the BP correlations, while the upper triangular contains the results based on the
polychoric correlations. Since the HTMT is solely based on indicators correlations,
it leads to the same results for PLS and PLSc as well as for OrdPLS and OrdPLSc.

The HTMT based on the polychoric correlation indicates that the common
factors IMA and EXP, IMA and QUA, IMA and SAT, IMA and LOY, QUAL and
SAT, and SAT and LOY cannot be adequately distinguished since it is above the
recommended threshold of 0.9 (Gold and Arvind Malhotra 2001).22 The use of
the HTMT based on the BP correlation in case of ordinal categorical indicators
is not recommended because it does not take into account the qualitative character
of the indicators. For a tutorial on how to proceed if the discriminant validity is not
satisfied, see Farrell (2010) and Henseler et al. (2015b).

Furthermore, we assess internal consistency. In doing so, we consider Cronbach’s
alpha and ordinal alpha, respectively, which are lower-bound estimates for the
reliability. Moreover, we refer to Dijkstra and Henseler’s �A and Dillon–Goldstein’s
�c in order to examine the internal consistency. Table 6.5c provides the results of
the three measures for the various PLS approaches.

The results for Dillon–Goldstein’s �c (Table 6.5c) for PLS and OrdPLS as well
as their consistent version are again very similar, which is explained by the large
number of indicators categories. Although the results for PLS and OrdPLS are
more desirable, it is recommended to use them with caution as they are based on
attenuated factor loading estimates (Zumbo et al. 2007). Comparing the values
of Dillon–Goldstein’s �c for OrdPLSc with the recommended threshold of 0.7
(Henseler et al. 2016a), we conclude that construct scores are reliable except for the
common factors EXP and LOY. This conclusion is fully supported by Cronbach’s
˛ and by ordinal alpha, see Table 6.5a. However, it is well known that the use of
Cronbach’s ˛ should be done with circumspection as it can only be appropriately
interpreted if the assumption of tau-equivalence holds. If this assumption is violated,
Cronbach’s ˛ underestimates the reliability (Raykov 2004). Moreover, drawing

22Furthermore, the HTMT correlation can be used in a bootstrap procedure that allows the
construction of confidence intervals (Henseler et al. 2015b), which is not done here.
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Table 6.5 Internal consistency reliability

(a) Cronbach’s ˛ and ordinal alpha

Cronbach’s ˛ ordinal alpha

IMA 0:723 0:768
EXP 0:452 0:526

QUA 0:877 0:896
VAL 0:824 0:842
SAT 0:779 0:809
LOY 0:472 0:497

(b) Dijkstra–Henseler’s �A

PLS(c) OrdPLS(c)

IMA 0:728 0:784
EXP 0:425 0:536

QUA 0:879 0:903
VAL 0:820 0:866
SAT 0:786 0:813
LOY 0:687 0:789

(c) Dillon–Goldstein’s �c

PLS PLSc OrdPLS OrdPLSc

IMA 0:818 0:731 0:844 0:772
EXP 0:727 0:437 0:761 0:533

QUA 0:904 0:876 0:919 0:897
VAL 0:919 0:832 0:926 0:850
SAT 0:865 0:784 0:887 0:809
LOY 0:735 0:582 0:736 0:625

Results for COM are not reported, as it is measured by only one indicator

Table 6.6 R2 of the
endogenous composites

PLS PLSc OrdPLS OrdPLSc

IMA 0:000 0:000 0:000 0:000

EXP 0:243 0:786 0:342 0:814

QUA 0:297 0:796 0:374 0:773

VAL 0:335 0:461 0:384 0:490

SAT 0:672 0:931 0:719 0:936

COM 0:292 0:371 0:319 0:391

LOY 0:432 0:750 0:538 0:790

conclusion from Cronbach’s ˛ in the case of ordinal categorical indicators is not
recommended (Zumbo et al. 2007) as it is based on the BP correlation.

Finally we consider Dijkstra–Henseler’s �A (Table 6.5b) which also largely
supports our conclusion since most reliability estimates exceeds the threshold of
0.7, except for EXP. Even though Dijkstra–Henseler’s �A is quite similar for PLS
and OrdPLS as well as for PLSc and OrdPLSc in our example, �A based on the BP
correlation should be used cautiously in the context of ordinal categorical indicators,
as it does not take into account the qualitative scale of the indicators. Again, due to
the large number of categories, �A leads to quite similar results for PLS and OrdPLS
as well as for PLSc and OrdPLSc.

Besides studying the significance levels of the path coefficients, it is common
practice to consider the coefficient of determination R2 of the endogenous compos-
ites (Table 6.6) to investigate the structural model.
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Table 6.7 Coherency of construct scores between PLS(c) and OrdPLS(c)

Method IMG EXP QUA VAL SAT LOY

Mode estimationa 70:4 71:2 79:2 84:4 71:6 48:0

Median estimationa 75:2 74:8 78:0 88:0 70:4 51:6

Mean estimationa 73:2 76:8 75:6 86:8 71:6 49:2

Mode estimationb 98:8 98:0 100:0 99:6 99:6 90:8

Median estimationb 99:2 98:4 100:0 100:0 99:6 94:0

Mean estimationb 99:2 98:4 100:0 99:6 100:0 91:6

a Percentages of exact concordance after having rounded PLS scores to integer values
b Percentages of concordance with a difference between rounded values not larger than 1

Table 6.6 illustrates that the consistent PLS versions result in larger R2s, which
means that more variance of the endogenous composite is explained by the adjacent
composites. The R2s for OrdPLS and PLS as well as OrdPLSc and PLSc are again
quite similar.

Finally, we investigate the construct scores for OrdPLSc. Figure 6.10 shows a
comparison of the latent scores calculated with PLS(c) and OrdPLS(c).23 Construct
scores for the common factor COM are not reported since the variable is identical
to its single indicator.

According to the approaches described in Sect. 6.5, we obtain ordinal construct
scores for OrdPLS(c). For PLS(c) we use rounded scores for a better comparison.
Table 6.7 shows the degree of coherency between the construct scores obtained
from PLS(c) and the three procedures for OrdPLS(c). Using the rounded scores
for PLS(c) the percentages of exact concordance are reported in the first three rows,
while the remaining rows contain the percentages of concordance with a difference
between rounded values not larger than 1. We have at least 70% exact concordance
except for the common factor LOY. More than 90% of the cases for all common
factors show a difference between rounded values lower than 1.

6.8 Conclusion

In our study, we present the development from PLS to OrdPLSc, a variance-based
estimator which is capable to consistently estimate common factor models and to
deal with ordinal categorical indicators. While Schuberth et al. (2016) examine the
behavior and properties of OrdPLSc by a simulation study, we show how OrdPLSc
is applied to a common factor model. Furthermore, we present the assessment of
models with ordinal categorical indicators. For this purpose, we use a well-known
empirical example from Tenenhaus et al. (2005). The results show that OrdPLS and

23As the weights are the same for PLS and PLSc as well as for OrdPLS and OrdPLSc, we only
report the scores of PLS and OrdPLS.
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OrdPLSc as well as PLS and PLSc produce quite similar estimates which is not
surprising as the large number of categories per indicator reduces the discrepancy
between the BP and the polychoric correlation. However, in contrast to the original
study where traditional PLS was applied, OrdPLSc leads to substantially different
results. This is mainly due to the correction for attenuation of the estimates and
to the use of validity and reliability measures based on the polychoric correlation.
Moreover, we present procedures which can be used to obtain construct scores on
the indicators scale. In general, we recommend the use of OrdPLSc in case of
ordinal categorical indicators, in particular when indicators with a small number
of categories are included in the model.

Our study only considers situations where all indicators are measured on an
ordinal categorical scale. Of course, in practice, continuous indicators are often part
of the model. In such a context the polyserial correlation can be used to adequately
address the issue of ordinal categorical indicators. Hence, future research should
investigate the behavior of OrdPLSc for models containing a mixture of both ordinal
categorical and continuous indicators. Furthermore, out-of-sample prediction plays
an increasingly important role in PLS (Shmueli et al. 2016). Thus, the prediction
power needs to be investigated for approaches dealing ordinal categorical indicators,
e.g., using k-fold cross-validation. Moreover, we recommend the extension to the
polychoric correlation for other variance-based estimators to deal with ordinal
categorical indicators, e.g., generalized structural component analysis (Hwang and
Takane 2014). Of particular interest is also their comparison to OrdPLS(c). Finally,
tests for overall-model fit in case of ordinal categorical indicators need to be
developed.
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Appendix

Appendix 1: Standardized Loading and Cross-Loading
Estimates

See Tables 6.8, 6.9, 6.10, 6.11, 6.12.
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Table 6.8 Standardized
factor loading estimates

PLS PLSc OrdPLS OrdPLSc

ima1 0:717 0:611 0:764 0:662

ima2 0:566 0:537 0:648 0:592

ima3 0:658 0:458 0:602 0:483

ima4 0:792 0:686 0:799 0:720

ima5 0:698 0:662 0:780 0:710

exp1 0:687 0:500 0:780 0:556

exp2 0:644 0:439 0:743 0:539

exp3 0:726 0:422 0:623 0:479

qua1 0:778 0:808 0:828 0:835

qua2 0:651 0:528 0:647 0:553

qua3 0:801 0:755 0:801 0:769

qua4 0:760 0:669 0:809 0:733

qua5 0:732 0:676 0:782 0:720

qua6 0:766 0:682 0:826 0:758

qua7 0:803 0:816 0:799 0:822

val1 0:933 0:756 0:914 0:771

val2 0:911 0:927 0:943 0:943

sat1 0:711 0:693 0:825 0:734

sat2 0:872 0:708 0:858 0:724

sat3 0:885 0:815 0:867 0:834

loy1 0:855 0:587 0:849 0:641

loy2 0:273 0:181 0:193 0:163

loy3 0:869 0:855 0:924 0:903
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Table 6.9 Standardized cross-loading estimates of PLS

IMA EXP QUA VAL SAT COM LOY

ima1 0:717 0:347 0:571 0:393 0:540 0:423 0:338

ima2 0:566 0:387 0:492 0:269 0:398 0:188 0:293

ima3 0:658 0:272 0:368 0:332 0:339 0:207 0:309

ima4 0:792 0:374 0:571 0:459 0:542 0:440 0:461

ima5 0:698 0:340 0:544 0:260 0:501 0:337 0:485

exp1 0:349 0:687 0:437 0:293 0:362 0:183 0:268

exp2 0:404 0:644 0:343 0:175 0:345 0:225 0:320

exp3 0:285 0:726 0:357 0:273 0:300 0:126 0:190

qua1 0:622 0:534 0:778 0:454 0:661 0:380 0:461

qua2 0:405 0:308 0:651 0:295 0:474 0:300 0:319

qua3 0:621 0:423 0:801 0:467 0:651 0:472 0:461

qua4 0:480 0:389 0:760 0:390 0:587 0:379 0:353

qua5 0:598 0:406 0:732 0:455 0:517 0:389 0:373

qua6 0:551 0:447 0:766 0:405 0:539 0:418 0:333

qua7 0:596 0:411 0:803 0:547 0:707 0:465 0:446

val1 0:405 0:314 0:477 0:933 0:495 0:287 0:435

val2 0:542 0:354 0:594 0:911 0:629 0:360 0:525

sat1 0:558 0:495 0:637 0:403 0:711 0:334 0:484

sat2 0:524 0:395 0:672 0:480 0:872 0:416 0:484

sat3 0:612 0:382 0:684 0:588 0:885 0:547 0:609

loy1 0:430 0:281 0:393 0:407 0:455 0:237 0:855
loy2 0:109 0:095 0:065 0:148 0:115 0:122 0:273
loy3 0:528 0:351 0:537 0:481 0:658 0:448 0:869

The bold printed value in each row shows on which construct the indicator loads most
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Table 6.10 Standardized cross-loading estimates of PLSc

IMA EXP QUA VAL SAT COM LOY

ima1 0:611 0:533 0:608 0:434 0:609 0:423 0:408

ima2 0:537 0:594 0:524 0:297 0:449 0:188 0:353

ima3 0:458 0:417 0:392 0:367 0:382 0:207 0:373

ima4 0:686 0:574 0:609 0:507 0:612 0:440 0:556

ima5 0:662 0:522 0:580 0:287 0:565 0:337 0:586

exp1 0:409 0:500 0:466 0:324 0:409 0:183 0:324

exp2 0:473 0:439 0:366 0:193 0:389 0:225 0:386

exp3 0:334 0:422 0:381 0:301 0:338 0:126 0:229

qua1 0:729 0:819 0:808 0:501 0:745 0:380 0:556

qua2 0:474 0:473 0:528 0:326 0:535 0:300 0:385

qua3 0:728 0:649 0:755 0:516 0:734 0:472 0:556

qua4 0:563 0:596 0:669 0:430 0:662 0:379 0:426

qua5 0:701 0:623 0:676 0:503 0:583 0:389 0:450

qua6 0:646 0:686 0:682 0:448 0:608 0:418 0:402

qua7 0:698 0:631 0:816 0:604 0:797 0:465 0:538

val1 0:475 0:482 0:509 0:756 0:558 0:287 0:525

val2 0:635 0:543 0:633 0:927 0:710 0:360 0:633

sat1 0:654 0:760 0:679 0:445 0:693 0:334 0:584

sat2 0:614 0:606 0:717 0:530 0:708 0:416 0:584

sat3 0:718 0:587 0:729 0:649 0:815 0:547 0:735

loy1 0:504 0:431 0:419 0:450 0:514 0:237 0:587
loy2 0:128 0:146 0:069 0:164 0:130 0:122 0:181
loy3 0:618 0:539 0:572 0:531 0:742 0:448 0:855

The bold printed value in each row shows on which construct the indicator loads most
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Table 6.11 Cross-loading estimates of OrdPLS

IMA EXP QUA VAL SAT COM LOY

ima1 0:765 0:423 0:620 0:453 0:614 0:458 0:440

ima2 0:647 0:445 0:559 0:324 0:474 0:253 0:399

ima3 0:602 0:325 0:408 0:362 0:378 0:247 0:376

ima4 0:799 0:453 0:652 0:517 0:609 0:491 0:545

ima5 0:780 0:456 0:610 0:346 0:570 0:389 0:559

exp1 0:415 0:779 0:475 0:334 0:407 0:245 0:336

exp2 0:490 0:747 0:428 0:240 0:421 0:273 0:400

exp3 0:348 0:621 0:415 0:293 0:346 0:164 0:263

qua1 0:688 0:559 0:828 0:522 0:719 0:416 0:563

qua2 0:460 0:351 0:647 0:329 0:511 0:314 0:398

qua3 0:671 0:474 0:801 0:509 0:678 0:502 0:531

qua4 0:593 0:466 0:809 0:457 0:658 0:435 0:435

qua5 0:664 0:495 0:781 0:495 0:564 0:435 0:453

qua6 0:642 0:534 0:826 0:482 0:620 0:458 0:445

qua7 0:641 0:466 0:799 0:577 0:731 0:495 0:505

val1 0:429 0:343 0:511 0:912 0:523 0:322 0:480

val2 0:589 0:397 0:627 0:944 0:661 0:385 0:620

sat1 0:633 0:526 0:691 0:473 0:820 0:379 0:575

sat2 0:572 0:440 0:696 0:524 0:859 0:451 0:549

sat3 0:681 0:435 0:705 0:633 0:871 0:592 0:677

loy1 0:524 0:383 0:461 0:492 0:513 0:275 0:855
loy2 0:095 0:066 0:076 0:138 0:114 0:123 0:178
loy3 0:625 0:445 0:610 0:563 0:726 0:496 0:922

The bold printed value in each row shows on which construct the indicator loads most
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Table 6.12 Cross-loading estimates of OrdPLSc

IMA EXP QUA VAL SAT COM LOY

ima1 0:666 0:578 0:653 0:486 0:679 0:458 0:497

ima2 0:587 0:608 0:588 0:348 0:525 0:253 0:451

ima3 0:482 0:443 0:429 0:388 0:419 0:247 0:425

ima4 0:722 0:619 0:686 0:554 0:674 0:491 0:615

ima5 0:709 0:623 0:641 0:371 0:630 0:389 0:631

exp1 0:469 0:554 0:500 0:358 0:450 0:245 0:379

exp2 0:554 0:545 0:450 0:257 0:466 0:273 0:452

exp3 0:393 0:476 0:436 0:314 0:383 0:164 0:297

qua1 0:777 0:764 0:834 0:559 0:795 0:416 0:635

qua2 0:519 0:480 0:557 0:353 0:566 0:314 0:449

qua3 0:758 0:648 0:772 0:546 0:750 0:502 0:599

qua4 0:670 0:637 0:737 0:490 0:729 0:435 0:491

qua5 0:749 0:676 0:713 0:531 0:624 0:435 0:512

qua6 0:725 0:729 0:753 0:516 0:685 0:458 0:502

qua7 0:724 0:637 0:825 0:619 0:808 0:495 0:570

val1 0:485 0:469 0:538 0:764 0:579 0:322 0:542

val2 0:665 0:543 0:660 0:951 0:731 0:385 0:700

sat1 0:714 0:719 0:727 0:507 0:713 0:379 0:649

sat2 0:646 0:601 0:732 0:561 0:725 0:451 0:619

sat3 0:769 0:595 0:742 0:678 0:854 0:592 0:764

loy1 0:591 0:524 0:485 0:527 0:567 0:275 0:660
loy2 0:108 0:090 0:080 0:148 0:127 0:123 0:142

loy3 0:705 0:609 0:641 0:603 0:804 0:496 0:891

The bold printed value in each row shows on which construct the indicator loads most

Appendix 2: Results for PLS and PLSc Based on the Indicators
Correlation Matrix

See Tables 6.13, 6.14, 6.15, 6.16, 6.17, 6.18, 6.19.
Since the HTMT is based on the indicators correlations it is the same as in

Table 6.4.
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Table 6.13 Path coefficient
estimates of the mobile phone
customer satisfaction model
based on the correlation
matrix

PLS CIa PLSc CIb

ˇ21 0:505 0:398 0:622 0:864 0:694 0:946

ˇ51 0:179 0:075 0:305 0:148 �0:275 0:841

ˇ71 0:195 0:051 0:345 �0:114 �0:721 0:594

ˇ32 0:557 0:459 0:663 0:872 0:707 0:951

ˇ42 0:051 �0:085 0:235 �0:051 �0:694 0:644

ˇ52 0:064 �0:040 0:157 0:036 �0:471 0:504

ˇ43 0:557 0:385 0:691 0:721 �0:012 1:291

ˇ53 0:513 0:376 0:626 0:667 �0:082 1:095

ˇ54 0:192 0:089 0:304 0:177 �0:029 0:311

ˇ65 0:526 0:405 0:632 0:594 0:472 0:690

ˇ75 0:483 0:314 0:633 0:983 0:208 1:517

ˇ76 0:071 �0:040 0:194 �0:036 �0:175 0:114

Bold printed values are the coefficient estimates whose corre-
sponding CI does not cover the zero
Percentile confidence intervals are calculated at a 95% confi-
dence level
a based on 500 bootstrap samples
b based on 483 bootstrap samples
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Table 6.14 Factor loading
and confidence interval
estimates based on the
correlation matrix

PLS CIa PLSc CIb

ima1 0:743 0:636 0:807 0:612 0:439 0:746

ima2 0:601 0:474 0:696 0:538 0:375 0:657

ima3 0:578 0:438 0:686 0:451 0:305 0:581

ima4 0:768 0:665 0:838 0:673 0:515 0:797

ima5 0:744 0:675 0:802 0:667 0:576 0:776

exp1 0:771 0:663 0:845 0:511 0:365 0:673

exp2 0:687 0:454 0:818 0:458 0:303 0:644

exp3 0:612 0:450 0:746 0:440 0:317 0:572

qua1 0:803 0:752 0:847 0:807 0:748 0:879

qua2 0:637 0:517 0:734 0:542 0:419 0:651

qua3 0:784 0:714 0:833 0:753 0:669 0:831

qua4 0:769 0:674 0:849 0:673 0:570 0:779

qua5 0:756 0:674 0:821 0:683 0:560 0:783

qua6 0:775 0:629 0:868 0:682 0:551 0:811

qua7 0:779 0:705 0:836 0:810 0:740 0:877

val1 0:904 0:856 0:936 0:754 0:661 0:856

val2 0:938 0:922 0:951 0:928 0:860 0:986

sat1 0:799 0:744 0:849 0:693 0:616 0:778

sat2 0:846 0:798 0:885 0:701 0:630 0:773

sat3 0:852 0:813 0:886 0:810 0:754 0:880

loy1 0:814 0:701 0:877 0:594 0:486 0:721

loy2 0:219 0:010 0:413 0:173 �0:013 0:301

loy3 0:917 0:890 0:937 0:869 0:801 0:971

Bold printed values are the coefficient estimates where the
corresponding CI does not cover the zero
Percentile confidence intervals are calculated at a 95%
confidence level
a based on 500 bootstrap samples
b based on 483 bootstrap samples
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Table 6.16 Internal consistency reliability using the correlation matrix

(a) Dijkstra–Henseler’s �A

PLS(c)

IMA 0:740
EXP 0:462

QUA 0:884
VAL 0:849
SAT 0:785
LOY 0:746

(b) Dillon–Goldstein’s �c

PLS PLSc

IMA 0:819 0:720
EXP 0:733 0:459

QUA 0:905 0:877
VAL 0:918 0:833
SAT 0:871 0:780
LOY 0:724 0:590

Values larger than 0.7 are printed in boldface. Results for COM are not reported, as it is measured
by only one indicator

Table 6.17 R2 of the
endogenous composites

PLS PLSc

IMA 0:000 0:000

EXP 0:255 0:746

QUA 0:311 0:761

VAL 0:345 0:457

SAT 0:680 0:931

COM 0:277 0:353

LOY 0:457 0:739

Table 6.18 Cross-loadings PLS based on the correlation matrix

IMAG EXPE QUAL VAL SAT COMP LOY

ima1 0:743 0:350 0:571 0:396 0:549 0:423 0:354

ima2 0:601 0:380 0:497 0:274 0:418 0:188 0:304

ima3 0:578 0:284 0:368 0:338 0:331 0:207 0:308

ima4 0:768 0:370 0:573 0:475 0:548 0:440 0:460

ima5 0:744 0:359 0:552 0:271 0:514 0:337 0:493

exp1 0:352 0:771 0:436 0:294 0:372 0:183 0:271

exp2 0:408 0:687 0:348 0:179 0:366 0:225 0:321

exp3 0:288 0:612 0:370 0:274 0:320 0:126 0:196

qua1 0:634 0:514 0:803 0:469 0:680 0:380 0:476

qua2 0:430 0:319 0:637 0:307 0:490 0:300 0:342

qua3 0:628 0:434 0:784 0:473 0:645 0:472 0:473

qua4 0:496 0:391 0:769 0:395 0:601 0:379 0:368

qua5 0:609 0:419 0:756 0:464 0:524 0:389 0:377

qua6 0:568 0:445 0:775 0:410 0:549 0:418 0:343

qua7 0:586 0:417 0:779 0:553 0:698 0:465 0:452

val1 0:395 0:312 0:474 0:904 0:486 0:287 0:431

val2 0:530 0:351 0:595 0:938 0:619 0:360 0:536

sat1 0:577 0:492 0:642 0:411 0:799 0:334 0:504

sat2 0:523 0:398 0:670 0:491 0:846 0:416 0:497

sat3 0:624 0:391 0:673 0:598 0:852 0:547 0:627

loy1 0:434 0:294 0:394 0:413 0:455 0:237 0:814
loy2 0:100 0:093 0:063 0:139 0:107 0:122 0:219
loy3 0:539 0:356 0:534 0:494 0:663 0:448 0:917

The largest loading of each indicator is printed in boldface
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Table 6.19 Cross-loadings PLSc based on the correlation matrix

IMAG EXPE QUAL VAL SAT COMP LOY

ima1 0:612 0:515 0:607 0:430 0:619 0:423 0:410

ima2 0:538 0:560 0:529 0:298 0:472 0:188 0:352

ima3 0:451 0:418 0:391 0:367 0:374 0:207 0:357

ima4 0:673 0:545 0:610 0:516 0:619 0:440 0:532

ima5 0:667 0:529 0:587 0:294 0:580 0:337 0:571

exp1 0:410 0:511 0:464 0:319 0:420 0:183 0:313

exp2 0:475 0:458 0:370 0:195 0:413 0:225 0:372

exp3 0:334 0:440 0:393 0:298 0:361 0:126 0:227

qua1 0:738 0:756 0:807 0:509 0:768 0:380 0:551

qua2 0:500 0:470 0:542 0:333 0:553 0:300 0:396

qua3 0:730 0:639 0:753 0:514 0:727 0:472 0:548

qua4 0:577 0:575 0:673 0:428 0:678 0:379 0:426

qua5 0:708 0:617 0:683 0:504 0:591 0:389 0:437

qua6 0:660 0:655 0:682 0:445 0:620 0:418 0:397

qua7 0:681 0:613 0:810 0:600 0:788 0:465 0:523

val1 0:459 0:458 0:504 0:754 0:549 0:287 0:499

val2 0:616 0:517 0:632 0:928 0:698 0:360 0:620

sat1 0:671 0:724 0:683 0:446 0:693 0:334 0:584

sat2 0:608 0:585 0:712 0:533 0:701 0:416 0:575

sat3 0:726 0:575 0:716 0:649 0:810 0:547 0:726

loy1 0:505 0:433 0:419 0:448 0:514 0:237 0:594
loy2 0:116 0:136 0:067 0:151 0:120 0:122 0:173
loy3 0:627 0:525 0:567 0:536 0:748 0:448 0:869

The bold printed value in each row shows on which construct the indicator loads most
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Chapter 7
Predictive Path Modeling Through PLS
and Other Component-Based Approaches:
Methodological Issues and Performance
Evaluation

Pasquale Dolce, Vincenzo Esposito Vinzi, and Carlo Lauro

Abstract This chapter deals with the predictive use of PLS-PM and related
component-based methods in an attempt to contribute to the recent debates on the
suitability of PLS-PM for predictive purposes. Appropriate measures and evaluation
criteria for the assessment of models in terms of predictive ability are more and more
desirable in PLS-PM. The performance of the models can be improved by choosing
the appropriate parameter estimation procedure among the different existing ones
or by making developments and modifications of the latter. A recent example
of this type of work is the non-symmetrical approach for component-based path
modeling, which leads to a new method, called non-symmetrical composite-based
path modeling. In the composites construction stage, this new method explicitly
takes into account the directions of the relationships in the inner model. Results are
promising for this new method, especially in terms of predictive relevance.

7.1 Introduction

Partial least square path modeling (PLS-PM) is certainly an important technique
that deserves a prominent place in research applications when the aim of the
analysis is prediction. In fact, the predictive ability of PLS-PM is more and more of
interest (Becker et al. 2013; Evermann and Tate 2016; Shmueli et al. 2016; Ringle
et al. 2012; Hair et al. 2012).
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However, despite the predictive aim of many PLS-PM studies, most do not
provide appropriate predictive ability metrics. The abilities of PLS-PM have not
been fully explored and appreciated. As noted also by Rigdon (2012), ‘researchers
applying PLS path modeling often assert the “predictive” nature of their research,
though researchers often seem to mean nothing more than aiming to maximise R2

for dependent variables’. Moreover, in most cases, the main results produced by
studies applying PLS-PM are statistical tests for evaluating the precision of PLS-
PM estimates (mainly applying the bootstrap approach).

Improving the explanatory power of a model and reproducing model parameters
do not imply good predictions about individual observations. Prediction modeling
has a different goal in the analysis, one that cannot be achieved through explanatory
measures.

A confusion between explanatory and predictive modeling can be the source
of misunderstandings and misapplications of the component-based path model-
ing (Sarstedt et al. 2014). Only recently have researchers begun to discuss the
suitability of PLS-PM for predictive purposes more accurately, clarifying what is
really meant by prediction and what are the proper criteria for measuring PLS-PM
predictive ability (Evermann and Tate 2016; Shmueli et al. 2016).

Predictive and explanatory modeling are two separate statistical concepts, each
with different purposes and separate practical implications (Shmueli 2010; Shmueli
and Koppius 2011). Explanatory modeling aims at describing a statistical model and
testing theoretical hypotheses about the relationships between variables. Thus, in
explanatory modeling, we want to evaluate the strength of the relationships between
variables and the explanatory power of a model by using statistical tests on the
parameters and explanatory measures (like the R2) (Shmueli and Koppius 2011).

In the context of predictive modeling, the effect sizes between variables are not of
primary importance. Instead, the goal is to make a good prediction of the manifest
variable (MV) values of the dependent blocks from the MV values of predictor
blocks. Consequently, the predictive performance of a model should be evaluated
using appropriate measures, which refer to the ability of the model to make highly
accurate predictions for dependent variables’ values and new observations.

Evaluating the predictive performance of a model should be not of interest if
the focus of the research is not prediction. In particular, there are several situations
where researchers want to use component-based path modeling only for explanation
and for reproducing model parameters, without evaluating out-of-sample predictive
ability. In such a case, testing loadings, path coefficients and the explanatory power
(using R2, for example) can be can be largely sufficient.

However, it should be noted that even if explanation and prediction are two
separate goals for the analysis, there are situations where the question of the research
concerns both aspects; therefore, explanation and prediction can exist with each
other.

As noted by Shmueli (2010), rather than considering explanation and prediction
as extremes on a continuum, they can be seen as two different dimensions. A model
possesses some level of explanatory power and some level predictive accuracy.
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Consequently, the goal of the analysis will help in the choice of the appropriate
method (Hair et al. 2017), but the performance of the model should be evaluated
considering both explanatory and predictive qualities.

When prediction is not the goal, evaluating both the predictive performance of
a model and the explanatory power may help when comparing different models.
On the contrary, when prediction is the goal, considering explanation quality in the
analysis helps in theory building.

Shmueli (2010) mentions some examples where the combination of explanatory
and predictive modeling may be important, especially for bridging the gap between
methodological development and practical application.

In component-based predictive path modeling, the quality of the measurement
model and the structural model, in terms of how the variables’ relationships are
explained and how much variance is explained by the components, is of interest but
should not be the sole objective if prediction is also if interest.

Certainly, parameter recovery is a very important aspect in PLS-PM and should
be considered. Further studies in this direction are necessary to validate the
component-based approach to structural equation modeling.1

However, because PLS-PM is also an oriented-prediction method, true predictive
ability measures should be included in the evaluation criteria, and extensions and
developments of further measures and evaluation criteria for the assessment of
PLS-PM are desirable (Sarstedt et al. 2014). Starting from the criterion of interest,
further extensions and modifications can be made on the basic PLS-PM algorithm
to improve the predictive capabilities of the model.

The non-symmetrical approach for component-based path modeling proposed
by Dolce (2015) is an example of work in this direction. The authors proposed
a new algorithm that replaces the original PLS-PM iterative algorithm, with the
desire to follow the directions of the relationships specified in the inner model and
improve predictive ability. This new method, called non-symmetrical composite-
based path modeling (NSCPM), seems to be very promising when one is interested
in predictive power, as well as in understanding the relative importance of predictors
on endogenous components and their own manifest variables.

In the next section, we will discuss the issue of prediction in component-based
path modeling. In Sect. 7.3, we will look at the different ways for computing
the outer weights in PLS-PM and how they affect the predictive ability of PLS-
PM. Section 7.4 is dedicated to a discussion of the appropriate predictive ability
metrics. Section 7.5 discusses the ‘path directions incoherence’ in PLS-PM, and
a comparison between NSCPM with the classical PLS-PM is provided. Finally,
Sect. 7.6 offers some general comments on predictive relevance in component-based
path modeling and, in particular, in NSCPM.

1See, for example, the recent paper by Hair et al. (2017), which gives also some guidelines for
choosing among composite-based approaches.
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7.2 Predictive Ability in Component-Based Path Modeling

In the context of predictive-oriented PLS-PM, the investigator should focus on
model performance in terms of prediction, without discarding the hypothesised
relationships in the structural model, ones that also imply the predictive directions
of the model. It is in this latter perspective that Lohmöller refers to ‘predictor
specification’ in his thesis (Lohmöller 1989), stressing the relationship between
a faithful representation of causal mechanisms underlying a phenomenon by the
structural equations and the purposes of the prediction.

If PLS-PM were merely used either for testing causal mechanisms underlying
a phenomenon or to develop a predictive model, then its use might be dubious.
For the first case, if the theoretical model is correct and the standard assumptions
underlying the factor-based approach are satisfied, covariance-based SEM (Jöreskog
1977) may do a better job. PLS-PM is considered also an alternative to covariance-
based SEM because there are many situations where the assumptions of factor
models are not fulfilled, even though this position has been harshly criticised in
some academic literature, e.g., Rönkkö and Evermann (2013); Rönkkö et al. (2016);
Rigdon (2012). One of the most common criticisms about PLS-PM is the lack of
consistency. However, as recently noted by some authors (see, for example, Sarstedt
et al. 2016; Rigdon 2016), PLS-PM estimators turned out to be inconsistent because
simulations evaluate PLS-PM estimators using samples drawn from populations
consistent with common factor models. The recent PLS-PM literature (e.g. Rigdon
2016; Sarstedt et al. 2016; Henseler et al. 2016; Becker et al. 2013; Henseler et al.
2014) provides an unambiguous distinction between the composite-based approach
and common factor-based approach. The composite-based model is becoming more
recognised as the reference model of the PLS-PM and has been recently used as
the ‘correct population’ in simulation studies. When a correct population is used
in simulation studies (i.e. composite-based populations), PLS-PM estimates are
consistent. However, a number of works by Dijkstra and Henseler (see, for example,
Dijkstra and Henseler 2015a,b) showed that the PLS-PM algorithm yields all the
ingredients for obtaining CAN (consistent and asymptotically normal) estimations
of loadings and latent variables squared correlations of the factor-based model.

As for the second justification behind using PLS-PM for developing a predictive
model, it should be noted that modern prediction methods (Hastie et al. 2009)
may perform better in terms of predictive capability. Undoubtedly, a drawback of
data-driven methods is that the weighting criterion may not necessarily reflect the
theoretical importance of all the components, and given that the weights are obtained
from the data, they may not be constant over time and space.

For all these reasons, it is extremely important for the investigators to provide
a clear statement of the position of their research and the objectives of the specific
analysis.

Even though predictive-oriented PLS-PM is mainly a data analysis approach
and a data-driven component method, the development of the models should not
be a-theoretical if one wants to remain in the context of component-based path
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modeling (which is commonly used in real applications). It is worth bearing in
mind that predictions in PLS-PM should be sensitive to the theory and that the
theoretical model represented by the structural equations and prediction should
not be separated (Lohmöller 1989). In developing a predictive-oriented component-
based path modeling, the structural model specification should derive from theory
while one can improve the predictive performance of the model by choosing the
appropriate parameter estimation procedure among the different existing ones or by
making developments and modifications of the latter. Dolce (2015); Shmueli et al.
(2016) are examples of works in this direction.

7.3 Outer Weights Computation in PLS-PM

The literature on PLS-PM offers two main modes in the outer estimation step for
computing the outer weights, which are known as Mode A and Mode B (Lohmöller
1989). By using Mode A, each MV is regressed on the corresponding instrumental
component in the outer estimation step. Mode B applies multiple linear regression of
the inner component on the corresponding MVs. Hence, Mode B takes into account
both the MV-component correlation and the within-block intercorrelations. On the
contrary, Mode A ignores correlations among MVs. However, because PLS-PM is
a component-based method, components are computed as weighted aggregates of
their MVs, whatever outer mode is applied.

Although Mode B and Mode A were originally presented as two different ways for
computing outer weights (Wold 1982), researchers have traditionally associated the
two modes with two different measurement model specifications, based essentially
on the hypothesised relationships between the components and their own MVs. The
PLS-PM literature has long indicated that the MV’s weights in blocks defined as
reflective (Fornell and Bookstein 1982), or outwards directed (Lohmöller 1989), are
to be estimated using Mode A while MVs weights in blocks defined as inwards
directed or formative are to be estimated using Mode B (e.g. Chin 1998; Hair et al.
2014; Esposito 2013; Dolce and Lauro 2015). Under conditions of low theoretical
knowledge on the nature of the constructs, a rule of thumb in PLS-PM is to apply
Mode B to the exogenous block and Mode A to the endogenous block (Wold 1980,
1982).

Consequently, there has been always a confusion between the two modes
to compute outer weights (i.e. Mode A and Mode B) and the two theoretical
measurement models (i.e. reflective and formative) (Rigdon 2016; Rönkkö et al.
2016).

Only recently, have researchers started to clarify this argument, recognising that
the outer mode and the measurement model are separate in PLS-PM, and this
association may be just an illusion (Rigdon 2016; Rönkkö et al. 2016; Sarstedt et al.
2016; Henseler et al. 2016; Becker et al. 2013). Actually, Mode A and Mode B are
just two different ways for computing the outer weights, which are used as a vehicle
for the computing components. The choice between the two modes goes beyond the
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specified measurement model and requires a more thoughtful approach (Sarstedt
et al. 2016; Becker et al. 2013).

The important point here is that PLS-PM optimisation criteria change depending
on the way the outer weights are calculated (Krämer 2007; Hanafi 2007; Tenenhaus
and Tenenhaus 2011). When all weights are computed using Mode B, the solution
can be characterised by a sum of absolute values of correlations between compo-
nents. Mode A applied to all the blocks does not lead to a stationary equation related
to the optimisation of a twice differentiable function (Krämer 2007). However, a
modified version of Mode A, in which the outer weights rather than the components
are normalised to unitary variance at each step of the algorithm, if applied to all
blocks maximises the covariances between components (Krämer 2007; Tenenhaus
and Tenenhaus 2011); this takes into account the component variances too. We
believe that researchers applying PLS-PM should focus more on these latter findings
than the distinction between reflective and formative measurement models.

Moreover, the choice between the two outer modes has certainly an effect in
terms of the predictive ability of the model (Becker et al. 2013) and on how the
predictive directions between components in the structural model are considered
(Dolce et al. 2015). The only way to give an explanatory role to a block of manifest
variables is to apply Mode B. Applying Mode A gives it a dependent role, whatever
the path direction may be.

7.3.1 The Effects of the Different Outer Weighting Schemes
on PLS-PM Predictive Ability

Mode A actually indicates that correlation weights are used to compute the outer
weights. On the other hand, Mode B indicates that multiple regression weights
are used. Therefore, the two different outer modes within PLS-PM methodology
certainly lead models with different predictive.

Dana and Dawes (2004) demonstrated in the context of conventional regression
that correlation weights (which ignore collinearity among the predictors) outper-
form multiple regression weights for out-of-sample predictions, unless the sample
size is very large. For this reasons, the authors suggest avoiding using multiple
regression weights for out-of-sample predictions. Dana and Dawes (2004) have also
demonstrated that out-of-sample predictive ability depends on sample size.

As noted by Becker et al. (2013) and Rigdon (2012), Dana and Dawes’s
suggestions would translate into an advantage for the Mode A estimation of outer
weights (which corresponds to the use of correlation weights) over Mode B.
However, further studies are necessary to examine this issue further.

Within the literature on forecasting, it has been established that when the objec-
tive is to make as good a forecast as possible, then combinations of forecasts can
yield improvements in terms of prediction compared to single forecasts (Bates and
Granger 1969; Makridakis and Hibon 2000; Armstrong 2001) because each forecast
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nearly always contains some useful independent information. In this perspective,
multiple-indicator approaches should have an advantage in prediction over single-
indicator methods. Moreover, multiple linear regression adjusts for multicollinearity
and gives less weight to predictors that are more redundant. Hence, Mode B in PLS-
PM is certainly consistent for forecasting purposes (Becker et al. 2013).

In general, Mode B in PLS-PM produces higher R2 in the structural model,
providing more accurate multi-component prediction for individual endogenous
component observations while Mode A produces higher loadings, leading to better
multi-component individual observation predictions of MVs.

Becker et al. (2013) considered the sample size as an experimental condition;
the authors conducted simulation studies aimed at analysing the out-of-sample
prediction capability of PLS-PM. The results showed that if the criterion is out-of-
sample predictive ability, PLS-PM performs poorly when the sample size is small.
Sample sizes that would be adequate for the estimation of the parameters of the
model may be highly inadequate for out-of-sample predictions.

7.3.2 PLS Regression for Outer Model Regularisation
and Multi-component Estimation

PLS-PM has been recently criticised because it ‘typically forms just one composite
for each set of indicators, constraining the relationship between each set of
predictors to be unidimensional’ (Rigdon 2012, p. 354). The unidimensionality
assumption may be very restrictive and limiting in several applications. Further-
more, unidimensional relationships may limit drastically the predictive ability of
the model because most of the important information in the predictor blocks may be
left out.

From a predictive point of view, the performance of PLS-PM can be certainly
improved by extracting more than one component in each block of MVs. Certainly,
this point of view severs all ties with the concept of one common factor, while
putting emphasis on prediction ability. Consequently, multi-components PLS-PM
conforms well when the goal is predicting, but it cannot be used to mimic the factor-
based structural equation modeling.

Some proposals in this direction have already been introduced (Apel and Wold
1982; Höskuldsson 2009; Lohmöller 1989). An interesting approach was proposed
by Esposito et al. (2010). The authors originally proposed this new approach as a
solution to the issue of multicollinearity when applying Mode B. In fact, the problem
of multicollinearity can be addressed by providing a PLS regression for estimating
the outer weights, which would be an alternative to OLS regression. Moreover, by
using this approach, we can extract more than one dimension for each block of MVs
(the PLSR components) in alignment with a prediction purpose. The new approach,
called Mode PLS, can be considered a fine-tuning between Mode A and Mode B,
because it is based on the selection of a certain number of components of the PLS
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regression (Esposito et al. 2010) (Mode A corresponds to taking the first component
from a PLS regression while Mode B corresponds to taking all the PLS regression
components). This new mode is available in the PLS-PM module of the XLSTAT
software.

7.4 Performance Metrics for Component-Based Predictive
Path Modeling

When predictive relevance is of interest in component-based path modeling, one
would be curious as to how the model performs in terms of prediction. It would
be also interesting to compare different methods on their prediction performance
for the same prediction problem; this would help show which method is the one to
use for the specific real-data application. Nevertheless, which are the appropriate
performance metrics to the specific prediction problem and real-data application?

The aim in predictive analysis is not to test whether the relationships among
variables are significant, but instead to accurately predict values for individual cases.
As noted by Shmueli et al. (2016), ‘A statistically significant effect or relationship
does not guarantee high predictive power, because the precision or magnitude of the
causal effect might not be sufficient for obtaining levels of predictive accuracy that
are practically meaningful’.

Prediction in composite-based path modeling could refer to the ability to predict
the individual observations of components or individual observations for MVs of
the endogenous blocks. Moreover, a distinction must be made between in-sample
and out-of-sample predictions.

The R2 in the structural model is an appropriate metric only for measuring
the performance of the exogenous components in the endogenous components
explanation. Instead, when prediction is to be made for individual observations of
MVs of the endogenous blocks, redundancy-based measures are a more appropriate
metric for assessing the in-sample predictive ability of the model.

However, metrics for the out-of-sample predictive power are needed to measure
the performance of the model for prediction outside the dataset (on the data that
has not been used during the model-building process). For this reason, a distinction
between in-sample and out-of-sample predictions is necessary.

In this chapter, we focus on the predictive ability of the structural model because
we want to take into account the predictive directions and the structural paths in the
model and we want to maintain coherence with the theoretical structural model. To
this purpose, redundancy-based prediction is the relevant criterion for assessing the
predictive ability of the model (Chin 2010; Shmueli et al. 2016; Evermann and Tate
2016), as well as for comparing structural models. Communality-based measures
are used if prediction of the individual cases is made through the components, but
this is not the point of this study.
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7.4.1 In-Sample Redundancy-Based measure

When investigators are interested in measuring the portion of the variance in the
dependent blocks explained by their own predictors, they can use the redundancy
index. Redundancy-based prediction is a relevant criterion for assessing the predic-
tive ability of the structural model when a prediction is to be made for individual
observations of MVs of the endogenous blocks (Chin 2010). In addition, the average
of the redundancy indexes for each endogenous block can be also considered as an
index of the goodness of fit of the global model (Lohmöller 1989).

Given two blocks of variables, X1 D .x11; : : : ; xP11/ and X2 D .x12; : : : ; xP22/,
the redundancy index, as proposed by Stewart and Love (1968), measures the
proportion of the variance in the dependent set X2 accounted for by the predictor
set X1. The redundancy analysis model, proposed by Van den Wollenberg (1977),
searches for the linear combination, O�1 D X1w1 (the first redundancy variate), which
maximises the redundancy index, RX2 , defined as

RX2 D
P2X

pD1

corr. O�1; xp2/
2=P2 (7.1)

under the restriction that the variance of O�1 D 1.
In the context of canonical correlation analysis (Hotelling 1935, 1936), the

redundancy index [Eq. (7.1)] can be written as follows:

RX2 D �2

P2X

pD1

corr. O�2; xp2/
2=P2 (7.2)

where � is the canonical correlation coefficient and �2 D X2 Qw2 is the first canonical
component of X2 (Rencher 1998).

To define the redundancy index in the context of PLS-PM, assume that P
variables are collected in a partitioned table of standardised data X in K blocks:

X D ŒX1; : : : ; XJ ; XJC1; : : : ; XK 	;

where Xk (k D 1; : : : ; J) are the exogenous blocks and Xk (k D J C1; : : : ; K) are the
endogenous blocks. We denote by �k .k D 1; : : : ; K/ the corresponding components
for each block of variables. A generic MV is denoted by xpk . p D 1; : : : ; Pk/; .k D
1; : : : ; K/, where Pk is the number of MVs in the kth block.

For each endogenous block, in the PLS-PM context the redundancy index is
computed as follows:

Redk D Comk � R2
k : (7.3)
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where Comk is the average of the communalities in the kth block and R2
k is the

multiple linear determination coefficient in the regression model of O�q on its own
predictor components.

Considering the way the redundancy index is obtained from the two different
perspectives, it is clear that in PLS-PM the redundancy index is computed as in the
context of CCA.

When the aim of the analysis is the maximisation of the explained variance
of the MVs in the endogenous block from the MVs of the exogenous blocks
(i.e. a redundancy-related criterion in a multi-block framework), the portion of
the variability of each endogenous block’s MV explained by its own predictors
(represented by the explanatory components) can be defined as the following:

Redxpk D R2.xpk; f O�0
k0s explaining O�kg (7.4)

that is, as in the context of RA.
For a block k, the redundancy index is defined as follows:

Redk D
PkX

pD1

Redxpk =Pk (7.5)

In this perspective, we can use the average of all the Redxpk as a measure of global
goodness of in-sample prediction. As a matter of fact, Lohmöller (1989) already
considered the redundancy index as an index of goodness of fit of the global model
and stated that the fit of the global model can be judged as satisfactory if the average
of the redundancy indexes is sufficiently high. Because Xk (k D J C 1; : : : ; K)
corresponds to the endogenous blocks, if we denote by QP the number of MVs of the
endogenous blocks, the global goodness of prediction is defined as follows:

Red D 1

QP
KX

kDJC1

Pk � Redk (7.6)

Just as with canonical correlations, no generally accepted guidelines have been
established for the minimum acceptable redundancy index needed to judge a fit of
the model as satisfactory. The researcher must judge the specific research problem
being investigated to determine whether the redundancy index is enough to justify
interpretation.

7.4.2 Out-of-Sample Prediction

To measure the performance of the model for prediction outside the dataset, out-of-
sample prediction measures are needed.
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7.4.2.1 The Stone-Geisser’s Q2 as a Measure of the Model’s Predictive
Relevance

To evaluate the model in terms of out-of-sample predictive ability, the so-called
blindfolding procedure, which uses the Stone-Geisser’s Q2 (Geisser 1975; Stone
1974), is generally used in PLS-PM (Chin 1998). However, although the Q2 is
largely recommended in PLS-PM literature, it is not unanimously considered a
true out-of-sample evaluation method (Shmueli et al. 2016) because there is no full
observation omission (i.e. the omission of entire rows of the dataset). Therefore,
there is no real ‘test set’ as in cross-validation, and this may lead to overestimation
of the out-of sample predictive ability (Shmueli et al. 2016; Evermann and Tate
2016).

However, the blindfolding procedure is not even a purely in-sample evaluation
method. In short, we may use it as an out-of-sample evaluation method, bearing in
mind its limitations.

The PLS-PM adaptation of this approach follows a blindfolding procedure that,
in brief, proceeds as follows: given a block of n cases and QP MVs (e.g. the MVs of
the endogenous blocks), the procedure takes out a portion of the considered block
during parameter estimations and then attempts to estimate the omitted part using
the estimated parameters. The estimates for the omitted values are then compared to
the observed values (Chin 1998). Beginning with the first data point (row 1, column
1) of this block, every mth observation is omitted, where m is the omission distance.

For an omission distance m, a proportion of 1=m of the sample will be discarded.
Hence, a small omission distance will retain relatively less of the original sample for
the parameter estimation than a large omission distance. Wold (1982, p. 33) suggests
the use of an omission distance m equal to a number between the number of MVs
per block and the sample size while (Chin 2010, p. 680) recommends a small value
of around 5–10.

Blindfolding can be done on any set of variables. However, the predictive ability
of the model typically involves the MVs of the endogenous blocks.

Different forms of Q2 can be obtained based on different procedures for
predicting observations from the model. In communality-based Q2, prediction of
observations is made by the computed composite and the estimated loadings and
can be applied to all MVs (Chin 2010; Evermann and Tate 2012). Redundancy-
based Q2 is still based on the estimated loadings, but the composite are predicted
from the structural model using the estimated path coefficients. It is applicable only
to observations of the MVs of the endogenous blocks.

We use redundancy-based Q2, which represents a measure of how well-observed
values in endogenous blocks are reconstructed by the structural model and its
parameter estimates (Chin 2010; Evermann and Tate 2012); therefore, it should be
chosen when the predictive performance of the structural model is to be evaluated
(Chin 2010; Evermann and Tate 2016). Q2 > 0 implies that the model has predictive
relevance, whereas Q2 < 0 represents a lack of predictive relevance.
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7.4.2.2 Cross-Validation Method to Evaluate Predictive Ability: The
Mean Squared Prediction Errors

In some specific cases, which will be described in the last section, true out-of-sample
evaluation methods (Hastie et al. 2009), such as the cross-validation method, can
also be performed in the PLS-PM framework (Evermann and Tate 2016).

In the cross-validation method, entire rows of the dataset are omitted and
represent the ‘test set’. A sample of size n is split randomly into m sub-samples,
each one of size equal to n=m. In the procedure, each sub-sample appears once as a
test sample and m�1 times as training set. For each sub-sample used as a test set, the
model parameters are estimated using the remaining m�1 sub-samples (the training
sample). Then, the observation values of the dependent MVs for the test sub-sample
are predicted using the observation values of predictor manifest variables of the
test sub-sample and the estimated model parameters. This procedure is repeated m
times.

We use the structural model parameter estimates for prediction so that we remain
in the redundancy-based prediction context.

Following the description as in Evermann and Tate (2016), the definition of
root-mean-squared error (RMSE), which measures the prediction error, is provided
below.

Let Oxh;i;p be the predicted value for the subject i, (i D 1; : : : ; n=m), of the sub-
samples h, (h D 1; : : : ; m), for the MVs of endogenous blocks, . p D 1; : : : ; OP/,
and xh;i;p the corresponding true values. The prediction error is then defined as the
RMSE averaged over all m sub-samples:

RMSE D 1

m

X

hD1:::m

vuut
m

n OP
X

iD1:::n=m

X

pD1::: OP
.Oxh;i;p � xh;i;p/2 (7.7)

7.5 Predictive Directions of the Relationships Among Blocks

The PLS-PM algorithm proceeds in three stages (Wold 1982). The first stage
computes the outer weights (the weights of the MVs) iteratively, which, in turn,
serves to compute the weighted aggregates of their corresponding MVs (i.e. the
weighted composites). Consequentially, this stage is of paramount importance
because the quality of the overall results depends directly on it. The second
stage estimates the multiplicative parameters of the model (path coefficients and
loadings), and the third stage computes the location parameters. Only the second
stage of the PLS-PM is concerned with the directionality of the structural model.
The path directions are not taken into account in the first stage of the PLS-PM;
therefore, the procedure fails to distinguish between dependent and explanatory
composites in the weighted component construction.
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This PLS-PM ‘path directions incoherence’ is mainly because of two factors.
The first one concerns the way each component is defined in the inner step of the
PLS-PM iterative algorithm. In particular, each component is defined as a linear
combination of all the connected components. Two components are connected if a
link exists between the two blocks: an arrow goes from one component to the other
in the path diagram independently of the path direction. Consequently, the PLS-
PM iterative algorithm does not distinguish between dependent and explanatory
blocks. The directions of the links in the structural model do not play a role in
the PLS-PM iterative algorithm, apart from the specific case of the so-called path-
weighting scheme for the inner estimation (Tenenhaus et al. 2005). However, in the
path-weighting scheme, the path direction is taken into account only in the way the
inner weights are computed, but each component is still defined in the inner step of
the algorithm as a function of all the connected components.

The second reason why the ‘path directions incoherence’ arises is because of the
way the outer weights are computed. More specifically, the choice between the two
outer modes has an effect on the predictive directions among blocks. The only way
to give an explanatory role to a block is to apply Mode B while applying Mode A
gives it a dependent role, whatever the path’s direction is Dolce et al. (2015). Thus,
the predictive direction in the structural model is given by the utilised outer mode.

If we wanted to respect the path directions, the use of Mode B to explanatory
blocks and Mode A to dependent blocks may seem to be a natural choice. However,
in the case of more than two blocks of variables, where some endogenous blocks
may appear as both explanatory and dependent, this choice can be a much more
complicated matter.

In short, the directions of the links in the structural model do not play a role in
the PLS-PM iterative algorithm (the first stage of the PLS-PM). What actually has
an effect on the predictive directions among blocks is the outer mode that is chosen.

7.5.1 A New Algorithm Coherent with the Predictive Directions

Because PLS-PM has been increasingly considered a predictive-oriented method,
recent extensions and modifications have been made on the basic PLS-PM proce-
dure to improve the predictive capabilities of the model (Dolce 2015; Shmueli et al.
2016).

The non-symmetrical approach for composite-based path modeling proposed
by Dolce (2015) is an example of work in this direction. The authors proposed a
new algorithm that replaces the original PLS-PM iterative algorithm to respect the
directions of the relationships specified in the structural model and to improve the
predictive ability of the model.

This new method (the NSCPM) explicitly takes into account the predictive
direction among blocks and determines the MVs weights so that the corresponding
composite is a good predictor of the dependent blocks (i.e. the composite fulfils its
role in the inner model as well as possible).
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The distinction between reflective and formative measurement models is disre-
garded while a great amount of emphasis is placed on the direction of relationships
between components in the structural model. The main point is the distinction
between explanatory blocks and dependent blocks in the model.

In particular, because some blocks play a double role in the model (i.e. they
appear as both explanatory and dependent blocks in the model), in the NSC-PM
method they are considered as explanatory when they play an explanatory role in
the particular step of the algorithm and as dependent when they play a dependent
role. When a block of variables plays an explanatory role in a specific step of the
algorithm, we apply Mode B for computing the outer weights and apply Mode A
when a block of variables plays a dependent role.

7.5.2 A Comparison Between Non-symmetrical
Component-Based Path Modeling and PLS-PM

In general, because different component-based methods optimise different criteria,
they must be judged by different metrics. However, in this study, we clearly state
our position, as we are interested in evaluating the performance of the NSCPM and
the classical PLS-PM in terms of predictive ability.

The comparison between the two methods is made using artificial data. Because
in the case of a strong correlation within-blocks the results of most of the
component-based methods are quite similar (because of the strength of the correla-
tions), we generated a limit situation. In particular, we generated data from specific
correlation structures, where the three blocks of variables in the model are defined
as follows: three MVs, one in each set, are not characteristic of the whole set, but
they are highly correlated among each other (see Fig. 7.1).2 The variable x4 and
the variable x8 are not highly correlated with the variables of their own blocks, but
instead, they are both more correlated with the variable x12.

The mean of the correlations between the three related variables in each block is
equal to 0.6. By including the fourth contaminating variable in each block, we get
a mean correlation level within-blocks equal to 0.35. However, in each block, the
Cronbach’s ˛ is about 0.7, and only the first eigenvalue is greater than one while the
second one is slightly less than one. Therefore, this is a borderline situation in which
the blocks of variables are generally considered consistent and unidimensional.

The data-generation process and the subsequent analysis are conducted in R (R
Core Team 2014). We generated 500 Monte Carlo samples for six different levels of
correlation averages between-blocks ( N� D 0:16; 0:19; 0:22; 0:25; 0:28; 0:31; 0:34;

0:37/ to understand the effects of the different strengths of relationships between

2Note that we do not generate data using the standard factor-based structural equation modeling
approach (i.e. using the implied covariance matrix). Instead, data are draw directly from a
multivariate distribution with the pre-specified correlation matrix.
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Fig. 7.1 Theoretical model
for artificial data

blocks as well. However, because we did not find different results for different levels
of correlation average between-blocks, we show only the results for the correlation
averages between-blocks that are equal to 0.28, the conditions that represent a
middle ground between the case of low correlation between blocks ( N� D 0:16)
and the case of high correlations between blocks ( N� D 0:37).

We compared NSCPM with PLS-PM, applying Mode B for the exogenous block
and Mode A for the endogenous blocks—we refer this model as PLS-PM(B,A,A)—
and with PLS-PM applying Mode B for the first two blocks and Mode A for the
last endogenous block—PLS-PM(B,B,A). We consider these two models, PLS-
PM(B,A,A) and PLS-PM(B,B,A), because they are the most realistic for prediction
use and the most coherent with the prediction directions among the path models.
When either Mode A or Mode B is applied for all the blocks, predictive evaluation
of the models may not be appropriate for the lack of predictive directoriality
(Evermann and Tate 2016).

Consequently, the three statistics reported above (redundancy index, Q2 and
RMSE) can be applied to examine the predictive ability of the different methods
considered here. As for the redundancy index, we use the index as it is computed in
the context of PLS-PM to make the comparison possible.

As for the computation of Q2, we chose an omission distance equal to 10, follow-
ing the Wold (1982) and Chin (2010)’s recommendations. As for the computation
of RMSE, following Evermann and Tate (2016), each sample is split randomly into
ten sub-samples.

The computed statistics are not reported for each MVs and for each block of
MVs because all three block have the same number of variables. Moreover, in the



168 P. Dolce et al.

comparison between NSCPM and PLS-PM(B,B,A), the statistics are computed only
for the last endogenous block.

In the following figures, the distributions of the three considered index values are
reported for NSCPM, PLS-PM(B,A,A) and PLS-PM(B,B,A). These plots allow us
to compare the performance of the two different PLS-PM estimation methods to one
another and to NSCPM (Figs. 7.2, 7.3, and 7.4).

NSCPM performs slightly better than PLS-PM in terms of both in-sample
and out-of-sample predictive relevance. In general, the worst model is the PLS-
PM(B,B,A). Evidently, the differences are not large, but the results are in favour
of NSCPM because prediction performance of the latter method is systematically
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superior to the PLS-PM one. The largest advantage of NSCPM on PLS-PM is
obtained when predictive power is assessed using RMSE, showing that better out-
of-sample prediction can be achieved with NSCPM.

Even though we did not find very large differences between NSCPM and PLS-
PM, we believe that this slight performance improvement may translate into real
advantages in practice. Moreover, considering that the NSCPM algorithm is not
more complicated than the PLS-PM algorithm and does not require more iterations
to converge, we think that NSCPM can serve as an alternative procedure for the
existing PLS-PM procedures and could be an important technique when the aim of
the analysis is prediction. In addition, NSCPM is coherent with the direction of the
relationship specified in the structural model.

7.6 Conclusions

PLS-PM is a statistical method that can certainly be considered an important
technique in research applications, especially when the aim of the analysis is
prediction and maintaining a strong interest in the explanation of the relationships
between variables. The predictions of path models should be sensitive to the theory.
In particular, the theoretical model represented by the structural equations and
prediction should not be separated.

This chapter tries to help readers understand how to evaluate the predictive per-
formance of component-based path models. Moreover, to improve the performance
of the models in terms of predictive ability, researchers are recommended to apply
further extensions and modifications to the basic PLS-PM algorithm.
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A recent example of work in this direction, the NSCPM, was illustrated and
compared to the classical PLS-PM. NSCPM seems to be very promising when
researchers are interested in redundancy-based prediction. Certainly, this study is
not exhaustive, but it is of help for appreciating the NSCPM performance in this
specific example. To further evaluate the NSCPM performance in terms of predictive
relevance, a Monte Carlo simulation study should be performed, one where several
complementary conditions are considered. Accordingly, future research should aim
to design a much broader simulation study for a more rigorous testing of the
proposed method and to fully investigate the NSCPM properties.

Furthermore, future works should examine in detail Shmueli et al.’s PLSpredict
procedure (Shmueli et al. 2016), for further investigating the NSCPM’s predictive
performance in the PLS-based method context.
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Chapter 8
Mediation Analyses in Partial Least Squares
Structural Equation Modeling: Guidelines
and Empirical Examples

Gabriel Cepeda Carrión, Christian Nitzl, and José L. Roldán

Abstract Partial least squares structural equation modeling (PLS-SEM) is one of
the options used to analyze mediation effects. Over the past few years, the methods
for testing mediation have become more sophisticated. However, many researchers
continue to use outdated methods to test mediation effects in PLS-SEM, which can
lead to erroneous results in some cases. One reason for the use of outdated methods
is that PLS-SEM tutorials do not draw on the newest statistical findings. This chapter
illustrates how to perform modern procedures in PLS-SEM by challenging the
conventional approach to mediation analysis and providing better alternatives.

These novel methods offer a wide range of testing options (e.g., multiple medi-
ators) that go beyond simple mediation analysis alternatives, helping researchers to
discuss their studies in a more accurate way. This chapter seeks to illustrate and help
to operationalize the mediation in Nitzl et al.’s (Indus Manag Data Syst 116:1849–
1864, 2016) paper about mediation in PLS, published in Industrial Management &
Data Systems, with examples of two potential mediations: a multiple mediation with
two mediators and a multistep multiple mediation.

8.1 Introduction

Partial least squares structural equation modeling (PLS-SEM) is a variance-based
structural equation modeling technique that has been used to model latent variables,
specifically composites, and the relationships between them (Henseler 2017). There-
fore, it is a useful tool for testing hypotheses and answering research questions.
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One of these research questions investigates mediation. Mediation considers the
presence of an intermediate variable or mechanism that transmits the effect of an
antecedent variable to an outcome (Aguinis et al. 2017). For instance, mediation
usually appears when the effect of reputation on customer loyalty is transmitted by
customer satisfaction, such that reputation impact on customer satisfaction in turn
influences customer loyalty (Hair et al. 2017). Hence, mediation refers to underlying
effects that link antecedent and consequences variables. Despite the continuous
use of mediation testing, studies in PLS-SEM often do not consider mediation
effects in their hypotheses and therefore do not analyze the relevance in relevant
structural models (Hair et al. 2017). In the worst case, researchers focus only on
direct relationships and overlook mediation effects.

While there is a large body of literature on methods for testing mediation effects
(Hayes and Scharkow 2013), the analytical tools that researchers have used in PLS-
SEM studies to test mediation effects have generally been outdated compared to
those for other statistical methods. Nitzl et al. (2016) have recently shown the
misapplication of Baron and Kenny’s procedure in the PLS-SEM field. Whereas
researchers studying covariance-based structural equation modeling (CB-SEM)
have often considered the latest findings when testing mediation (e.g., Iacobucci
et al. 2007; Hair et al. 2010), most PLS-SEM researchers fail to do so, and in fact,
they often avoid carrying out this kind of analysis. This is somewhat surprising
because state-of-the-art applications for testing the significance of a mediator are
also very suitable for PLS-SEM.

Therefore, we can state that one of the key reasons authors do not assess media-
tion effects in PLS path models is the lack of illustrative guidelines on conducting
state-of-the-art mediation analysis with PLS-SEM. Furthermore, because these
publications on PLS-SEM have been subjected to several recent changes (Henseler
et al. 2016; Nitzl et al. 2016), an adequate illustration of these new guidelines related
to mediation is badly needed.

Therefore, the objective of our chapter is to provide researchers with a nice
illustration to implement mediation models in PLS-SEM. Thus, we offer complete
examples and guidelines on how to conduct mediation analysis using PLS-SEM,
inspired by Nitzl et al. (2016).

Our chapter is structured as follows: We first describe an advanced procedure for
mediation analysis in PLS-SEM. We then list different types of mediation. Next,
we offer illustrative examples of how to perform and discuss a mediation analysis
with PLS. We also offer detailed guidelines for carrying out this type of analysis in
PLS. Finally, we summarize our chapter and highlight potential avenues for future
research.



8 Mediation Analyses in Partial Least Squares Structural Equation Modeling:. . . 175

8.2 Advanced Procedure for Mediation Analysis
in PLS-SEM

8.2.1 The Mediation Effect

The core characteristic of a mediating effect (i.e., indirect effect or mediation) is that
it involves a third variable that plays an intermediate role in the relationship between
the independent and dependent variables. Technically speaking, the effect of the
independent variable X on the dependent variable Y is mediated by a third variable,
M, called the mediating variable or mediator (see Fig. 8.1). Thus, when we formulate
mediation hypotheses, we focus on “how, or by what means, an independent variable
(X) affects a dependent variable (Y) through one or more potential intervening
variables, or mediators (M)” (Preacher and Hayes 2008). The researcher’s objective
in mediation analysis is mainly explanation (Henseler et al. 2016), although some
scholars have also recently added the purpose of prediction (Shmueli et al. 2016).

Figure 8.1a shows the total effect c of the causal relationship between variables
X and Y, and Fig. 8.1b shows a mediated effect in which X exerts an indirect effect
a � b through M on Y.

Once we have defined the mediation effect, we briefly describe the procedure
developed by Nitzl et al. (2016) to test mediation effects on PLS-SEM and also
define the different types of mediation that researchers can find in their analysis.
The procedure considers five important statements for testing mediating effects in
PLS:

1. Testing the indirect effect a � b provides researchers with all the information
they need to assess the significance of a mediation. Therefore, it is not necessary
to conduct separate tests for paths a and b by applying PLS-SEM.

Fig. 8.1 (a) Simple cause-effect relationship and (b) general mediation model
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2. The strength of the indirect effect a � b should determine the size of the
mediation. Therefore, it is also not necessary to test the difference between c
and c0.

3. A significant indirect effect a � b is the only prerequisite for establishing a
mediation effect.

4. A bootstrap test should be used to test the significance of the indirect effect a � b.
5. The significance of the direct effect (c0) has to be tested in order to determine the

type of effect and/or mediation.

These important statements are summarized in the procedure described by Nitzl
et al. (2016). The procedure has two main steps (see Nitzl et al. (2016) for a more
detailed description).

Step 1: Determining the significance of indirect effects and their magnitude
The indirect effect a � b must be significant in step 1 to establish a mediation
effect. When testing mediation effects in PLS-SEM, researchers should bootstrap
the sample of the indirect effects in order to obtain necessary information about the
population distribution, in accordance with the nonparametric PLS-SEM method
where bootstrap procedures are typically used for inference statistics, such as the
calculation of the so-called pseudo t-value and confidence intervals (Henseler et al.
2009). The bootstrapping procedure is a nonparametric inferential technique that
randomly withdraws several subsamples (e.g., 5000) with replacement from the
original dataset. PLS-SEM uses each of the subsamples to estimate the underlying
PLS path model.

The bootstrap routines of PLS-SEM software often provide results for at least
direct effects (e.g., path a and path b). However, for a more detailed analysis of
mediation, particularly in more complex model structures (e.g., multiple mediators),
it is often necessary to compute the bootstrapping results for the indirect effects with
the help of a spreadsheet application, such as Microsoft Excel or CALC in Open
Office. For each bootstrapping subsample, the results of path a must be multiplied
by path b to create the product term a � b of the indirect effect in a new column.
For example, the computation of k D 5000 bootstrapping subsamples entails the
generation of k D 5000 products a � b in a new column. The information about the
characteristics of the distribution of mediation effects is obtained by calculating a
ci% confidence interval for a � b. For that, the subsamples (k) for a � b from the
bootstrapping procedure must be arranged from smallest to largest (Hayes 2009).
In the next step, a researcher has to select a specific alpha error; for example, for
a probability of error of 5%, a 95% confidence interval must be determined with a
2.5% probability of error at each tail when conducting a two-sided test. The lower
bound of a � b is in the k � (.5 � ci%/2)th ordinal position of the ordered list;
for example, if one uses k D 5000 subsamples and a 95% confidence interval, the
lower bound is the 5000 � (.5 � 0.95/2) D 125th ordinal position. Similarly, the
(1 C k � (.5 C ci%/2))th ordinal determines the upper bound of the bootstrap
confidence, which is the 1 C 5000 � (.5 C 0.95/2) D 4876th in the previous
example. If zero is not included in the confidence interval, a researcher can assume
that there is a significant indirect effect a � b.



8 Mediation Analyses in Partial Least Squares Structural Equation Modeling:. . . 177

Another problem often occurs when the mean of the bootstrapped distribution for
the indirect effect a � b is not equal to the estimated indirect effect a � b (Chernick
2011). As a result, researchers must correct for this bias in PLS-SEM. This can
be accomplished by calculating the difference between the estimated indirect effect
aPM � bPM from the path model (PM) and the mean value of the indirect effect
aB � bB from the bootstrap sample (B). Consequently, the bias-corrected ci%
confidence interval for an indirect effect a � b can be defined as

Œ.k � .:5 � ci%=2// th C .aPM � bPM � aB � bB/ I
.1 C k � .:5 C ci%=2// th C .aPM � bPM � aB � bB/	 : (8.1)

Hayes and Scharkow (2013) show that the bias-corrected bootstrap confidence
interval is the best approach for detecting mediation effects when a mediation
effect is present (i.e., Type II error or power). Conversely, the percentile bootstrap
confidence interval that is not bias corrected is a good compromise if a researcher
is also concerned about Type I errors (Hayes and Scharkow 2013). Thus, the bias-
corrected bootstrap confidence interval is the most reliable test if power is of the
utmost concern, while the percentile bootstrap confidence interval provides a good
compromise.

Step 2: Determining the type of effect and/or mediation
Step 2 involves defining the type of effect and/or mediation. A mediating effect
always exists when the indirect effect a � b in step 1 is significant. The current
mediation literature discusses two different types of mediation, full and partial
mediation. Partial mediation can be subdivided into complementary and competitive
partial mediation. We also discuss two effects that occur when the indirect effect is
not significant, which means that only the direct effect is significant and no effect at
all is significant. The latter cases do not represent a mediating effect in the narrow
sense.

8.2.2 Full Mediation

A full mediation is indicated in the case where the direct effect c0 is not significant,
whereas the indirect effect a � b is significant. This means only the indirect effect
via the mediator exists. In other words, full mediation means that the effect of the
variable X on Y is completely transmitted with the help of another variable M. It
also means the condition Y completely absorbs the positive or negative effect of
X. In this way, it can completely pass an effect, or it can completely hinder the
effect in terms of another effect. Technically speaking, the variable X extracts its
influence only under a certain condition of M on Y. However, in the case of small
samples, a researcher is to exercise some caution when talking about full mediation.
As Rucker et al. (2011) showed, “the smaller the sample, the more likely mediation
(when present) is to be labeled full as opposed to partial, because c0 is more easily
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rendered non-significant” (p. 364). Hence, it is advisable to ensure that the sample
size is great enough so that the necessary power of 0.8 for an alpha level of 0.05 for
detecting effects in a PLS path model is obtained. For a simple mediation model, the
necessary sample size can be quite low. Notwithstanding, a medium and small effect
size would require a bigger sample. In contrast, in many cases, it can be observed
that some small direct effects, c0, remain even though the mediating effect is quite
high in relation to the mediated direct effect. However, when this relation of the
direct effect to the mediating effect becomes low but nevertheless stays significant,
it can also be seen as full mediation. A researcher could indicate this with the help of
the variance accounted for (VAF) value, which we will discuss in more detail below
in our example. Conversely, when the absolute value of the indirect path a � b is
larger than the absolute value of the total effect (a � b) C c0, there is a suppressor
effect (Cheung and Lau 2008); this situation could also be defined as full mediation
(Hair et al. 2017).

8.2.3 Partial Mediation

All other situations under the condition that both the direct effect c0 and the
indirect effect a � b are significant represent partial mediation. Two types of partial
mediation can be distinguished.

8.2.3.1 Complementary Partial Mediation

In a complementary partial mediation, the direct effect c0 and indirect effect a � b
point in the same (positive or negative) direction (Baron and Kenny 1986). It is
an often observed result that a � b and c0 are significant and a � b � c0 is positive,
which indicates that a portion of the effect of X on Y is mediated through M, while X
still explains a portion of Y that is independent of M. This complementary mediation
hypothesis suggests that the intermediate variable explains, possibly confounds, or
falsifies the relationships between the independent and dependent variables.

8.2.3.2 Competitive Partial Mediation

In a competitive partial mediation, the direct effect c0 and indirect effect a � b
point in a different direction. A negative a � b � c0 value indicates the presence of
competitive mediation in step 2. As mentioned above, this indicates that a portion of
the effect of X on Y is mediated through M, while X still explains a portion of Y that
is independent of M. In the past, researchers often focused only on complementary
mediation (Zhao et al. 2010). In the competitive partial mediation hypothesis, it is
assumed that the intermediate variable will reduce the magnitude of the relationship
between the independent and dependent variables. However, it is possible that the
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intermediate variable could increase the magnitude of the relationship between the
independent and dependent variables. Competitive partial mediation has often been
called a “negative confounding” or an “inconsistent” model. Thus, other types of
mediation beyond complementary mediation should be considered in a PLS path
model.

PLS researchers might also be interested in evaluating the strength (portion)
in the case of a partial mediation. Mediation analyses regularly involve partial
mediation, and therefore it can be helpful to have further information on the
mediated portion. One approach for this is calculating the ratio of the indirect to
total effect. This ratio is also known as the variance accounted for (VAF) value.
VAF determines the extent to which the mediation process explains the dependent
variable’s variance. For a simple mediation, the proportion of mediation is defined as

VAF D a � b

.a � b/ C c0 : (8.2)

8.2.4 No Mediation

When the indirect effect is not significant, we can find another two situations.
Although these cannot be considered mediation cases in a narrow sense, two types
of effects can be distinguished.

8.2.4.1 Only Direct Effect

If the indirect effect a � b is not significant while the direct path c’ is, the mediator
variable has no impact; this indicates that a direct, non-mediating effect is present.
In this case, the study was perhaps searching for a wrong mediation relationship.
However, it is possible that an unrecognized mediation relationship still exists and
another mediation variable is present that mediates an effect between X and Y
(Shrout and Bolger 2002). Thus, a researcher should rethink his theoretical basis
when he has not found the expected mediation relationship (cf. Zhao et al. 2010).

8.2.4.2 No Effect

There is no effect if neither the indirect effect a � b nor the direct effect c0 is signif-
icant. The total effect can still be significant. First of all, in this case, a researcher
should check if the sample size has enough power to show an effect when there is an
effect. Putting the last two cases together—the indirect effect a � b is not significant
and the direct path c0 is or is not—frequently indicates a problematic or flawed
theoretical framework (Zhao et al. 2010). In this case, a researcher has to thoroughly
examine the hypothesized model. When, for example, the total effect c is significant,
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it can indicate that the mediation variable should be deleted because it brings no
further degree of explanation. In the case where the mediation variable M has no
real effect, it only dilutes the effect of the direct variable X and should be deleted.

8.2.5 Multiple Mediation

PLS is regularly applied in complex path models. There may be multiple relation-
ships between one or more independent variables, one or more mediator variables,
and one or more dependent variables. For instance, a complementary mediation
variable (M1) may mitigate the independent variable (X) to a dependent variable
(Y), and at the same time, a competitive mediation variable (M2) may also exist.
From a naïve perspective, someone can assume that the independent variable is
not relevant because there is no relevant total effect c. However, when one of the
mediator variables has a strong influence in a certain situation, the independent
variable also wins in terms of relevance. Such areas can become very challenging,
for example, when analyzing which process improves or hinders the influence of the
external pressure to work on the outcome in a PLS path model. However, when more
than one mediating effect is present, the abovementioned differentiation between
direct and indirect effects for detecting mediation relationships remains applicable,
and the above recommendations are inalterable (Hayes 2009).

Figure 8.2 presents an example of a PLS path model with two mediators. The
total effect is equal to the direct effect of X on Y, in addition to the sum of the indirect
effects of M1 and M2. A given meditator’s indirect effect is referred to as a specific
indirect effect (e.g., through M1). The sum of the two specific indirect effects is the
complete indirect effect. Thus, the total effect is the sum of the direct effect and the
complete indirect effects (i.e., the sum of the specific indirect effects includes the
relationship between M1 and M2). For the example in Fig. 8.3, the calculation of the
total effect is

c D c0 C .a1 � b1/ C .a2 � b2/ : (8.3)

Fig. 8.2 Multiple mediator model



8 Mediation Analyses in Partial Least Squares Structural Equation Modeling:. . . 181

Unlearning
context

Organizational
outcomes

Realized
absorptive
capacity

Organizational
agility

a1

a2 b2

b1

c’

H1 = c’
H2 = a1b1
H3 = a2b2

Fig. 8.3 An example of a multiple mediator model. Source: Roldán et al. (2014)

An interesting situation occurs when a1 � b1 and a2 � b2 in Eq. (8.2) have an
opposite sign; this indicates that one effect functions as a complementary effect
and the other functions as a competitive mediator effect. Such a model is called
an inconsistent mediation model (MacKinnon et al. 2007). Consequently, even
though significant specific indirect effects exist, the complete indirect effect [e.g.,
(a1 � b1) C (a2 � b2)] may not be significant.

Preacher and Hayes (2008) argue that the incorporation of multiple mediators
and the comparison of their specific mediating effects are also useful for comparing
different competing theories. Given this background, researchers are interested in
comparing the strengths of specific mediating effects [e.g., (a1 � b1) and (a2 � b2)]
in complex models (Williams and MacKinnon 2008). For example, a researcher
could test for two complementary mediator variables if mediator (M1) has a stronger
mediator effect than mediator (M2). The previous explanation of how to compute
bootstrap confidence intervals in PLS can be extended to test the significance of the
difference between two specific mediating effects (Lau and Cheung 2012). For that
purpose, a researcher must calculate the following equation:

DM D M1 � M2; (8.4)

where M1 and M2 are the specific indirect effects and DM is the difference between
these two specific indirect effects. In this way, we test whether two specific indirect
effects are equal or if they amount to zero. In the case examined in this study, the
equation for Fig. 8.2 would be DM D (a1 � b1) � (a2 � b2). Again, researchers can
calculate the equation using a spreadsheet application to build a confidence interval
with the help of the bootstrapping results of the PLS program (cf. Chin et al. 2013;
Rodríguez-Entrena et al. 2016).

A frequently encountered case is that in which two mediators are connected
to each other. This indicates an additional relationship between M1 and M2 in
Fig. 8.2. Next, we provide examples of how to test such multiple mediation
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relationships in a PLS path model. In such a case, the total effect c can be calculated
as follows: c D c

0 C (a1 � b1) C (a2 � b2) C (a1 � a3 � b2), where a3 stands for the
relation between M1 and M2. An interesting case in this situation is when a2, b2,
and c0 are not significantly different from zero, but the indirect effect (a1 � a3 � b2)
is (e.g., when M1 is the causal predecessor of M2); this would mean that M1 fully
mediates the direct effect between X and M2 and that M2 fully mediates the direct
effect between M1 and Y, thus establishing a direct causal chain X ! M1 ! M2 ! Y
(Mathieu et al. 2008). Next, we illustrate this in our second example.

8.3 Illustrative Examples

8.3.1 A Case of a Multiple Mediator Model

In this first example, we take data from Roldán et al. (2014). This research
examines the relationship between a key component of the absorptive capacity, the
realized absorptive capacity (RACAP), and the organizational outcomes, this link
being mediated by the unlearning context and the organizational agility (Fig. 8.3).
These connections are examined through an empirical investigation of 112 large
companies.

8.3.1.1 Data Collection and Measures

The population of this study consists of Spanish organizations that use Editran TM

and which have more than 100 employees. EditranTM is a software used to enhance
communications over different platforms and is a de facto standard in the Spanish
banking system. This population is suitable for our study, because these businesses
are more familiar with knowledge and technology management. There were 464
companies identified from the SABI (Sistema de Análisis de Balances Ibéricos)
database and invited to participate in the study, and 121 companies agreed. A total
of 112 valid and completed questionnaires were collected.

We modeled RACAP and unlearning context as multidimensional constructs
(composites). We measured RACAP by two first-order dimensions (composites):
transformation and exploitation. The unlearning context variable was assessed
using three first-order dimensions (composites): the examination of lens fitting
(ELF), the framework for changing individual habits (CIH), and the framework for
consolidation of emergent understandings (CEU). The example’s constructs were
estimated in Mode A, and the characteristics of the scales are the following:

(a) RACAP. Items were measured using a seven-point Likert scale from the study
by Jansen et al. (2008). RACAP includes the transformation and exploitation of
new external knowledge. The final cleansed scale consists of four items for the
transformation dimension and three items for the exploitation dimension.
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(b) Unlearning context. At the organizational level, it is viewed as memory
elimination in general and as changing beliefs, norms, values, procedures, and
routines in particular. As described above, the unlearning context has three
dimensions: the consolidation of emergent understandings, the examination of
lens fitting, and the framework for changing individual habits. The measures
relating to consolidation of emergent understandings consisted of six items
taken from a scale designed by Cegarra and Sanchez (2008). Five items were
used to measure the examination of lens fitting. Finally, we measured the
framework for changing individual habits using seven items.

(c) Organizational agility. A business-wide capability to deal with changes that
often arise unexpectedly in business environments via rapid and innovative
responses that exploit changes as opportunities to grow and prosper. The
indicators of organizational agility are based on the measures of organizational
agility used by Lu and Ramamurthy (2011). The scale was composed of six
items.

(d) Organizational outcomes. It is understood as an assessment of the global
performance of the business. The scale for organizational outcomes consisted
of ten reflective items adapted from Quinn and Rohrbaugh (1983).

8.3.1.2 Hypotheses Development

Once the conceptual framework is shown, the next step is hypotheses development.
The research model depicted in Fig. 8.3 includes one direct and two mediating
hypotheses:

H1: RACAP is positively associated with organizational outcomes.
H2: The relationship between RACAP and organizational outcomes is positively

mediated by the unlearning context.
H3: The relationship between RACAP and organizational outcomes is positively

mediated by organizational agility.

8.3.1.3 PLS-SEM Practical Considerations

This chapter’s goal is not to illustrate the complete data analysis with PLS, but to
focus on the structural model, specifically on how to test this mediation model with
PLS. Guidelines for a complete analysis with PLS can be found in Henseler et al.
(2016) and Hair et al. (2017).

Significance of Direct and Indirect Effects

We assess the significance of one direct (c0) and two indirect effects (a1 � b1 and
a2 � b2). The critical issue is that if the significance of each indirect effect cannot be
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R2 = 0.513
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a1= 0.827sig

a2= 0.637sig b2 = 0.509sig

b1 = 0.259sig

c’ = 0.006nsig

H1 = c’
H2 = a1b1
H3 = a2b2

sig: significant based on one-sided test
nsig: not significant based on one-sided test

Fig. 8.4 An example of a multiple mediator model. Results. Source: Roldán et al. (2014)

established, there is no mediating effect. Consequently, having a significant indirect
effect is the key to determining the type of mediation effect and its magnitude.
Considering that our hypotheses have been formulated with direction (C), we will
use a one-sided test. Accordingly, we will estimate 90% confidence intervals (CI).

Nitzl et al. (2016) suggested a procedure using a spreadsheet and multiplying
the bootstrapping outputs (i.e., a1 � b1 and a2 � b2) to calculate the percentile and
the bias-corrected confidence intervals. Therefore, once we run the model, we next
perform the bootstrapping procedure with 5000 subsamples and no sign changes. In
Fig. 8.4 we can see the estimates for direct effects.

In order to calculate the specific indirect effects and the different confidence
intervals, we use a spreadsheet application (i.e., Excel or CALC) to obtain the
significance of mediator effects (a1 � b1 and a2 � b2) in the relationship between
RACAP and organizational outcomes. We suggest carrying out the following
steps:

1. Take the 5000 sets of path coefficients from all direct effects created by the
bootstrap procedure and copy and paste into a spreadsheet’s columns (Fig. 8.5).

2. Create a new column for each indirect effect under assessment. In this case, we
generate two new columns (a1 � b1 and a2 � b2) and explicitly calculate the
product of the direct paths that form such indirect paths. In addition, we include
another column for estimating the total indirect effect (a1 � b1) C (a2 � b2)
(Fig. 8.6).

3. Copy the original values (O) provided by PLS for the direct effects. Then
calculate the product of the direct paths that form each indirect path. In the line
below, calculate the mean (M) for each column of the paths obtained with the
bootstrapping process (Fig. 8.7).

4. Insert a new line where you estimate the bias as original (O) � mean (M) for
each column (Fig. 8.8).
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Fig. 8.5 Example 1. Step 1

1) Create two new columns a1 b1 and
a2 b2, and explicitly calculate the product

of the direct paths that form the indirect
paths under assessment

2) Insert a column for estimating the total
indirect effect (a1 b1)+(a2 b2)

Fig. 8.6 Example 1. Step 2

5. Estimate the percentile bootstrap CI for each column using the function PER-
CENTILE (range, k), k being the percentile value between 0 and 1. In our case,
given our hypotheses are postulated with direction (C), we will use one-sided
test, and we will estimate 90% CI (Fig. 8.9).

6. Estimate the bias-corrected CI adding the bias to the previously calculated
percentile CI (Fig. 8.10).
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1) Copy the original values (O) 
provided by PLS for the direct 
effects. 

2) Calculate the product of 
the direct paths that form the 

indirect paths 

4) Calculate the mean (M) for each column, =AVERAGE(range). 
E.g. for c’, =AVERAGE(B10:B5009)

3) estimating the total 
indirect effect =G2+H2 

Fig. 8.7 Example 1. Step 3

Calculate the Bias: Original (O) – Mean (M)

Fig. 8.8 Example 1. Step 4

7. If the confidence interval (CI) for a mediation effect (products) does not include
0 value, it means the mediating effect is significantly different from 0. In our
example, both indirect effects are significant. In addition, the total indirect effect
is also significant (Table 8.1).

The key point to determine a mediation effect is the evaluation of the significance
of the indirect effect (Table 8.1). In our example, both indirect effects are significant;
therefore, H2 and H3 are supported. However, the direct effect is not significant;
consequently H1 is not supported.
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Percentile LOWER (5%) for c’ =PERCENTILE(B10:B5009,0,05)
Percentile LOWER (95%) for c’ =PERCENTILE(B10:B5009,0,95)

Fig. 8.9 Example 1. Step 5

Fig. 8.10 Example 1. Step 6

Type of Mediation and Magnitude

Once we have determined the significance of the two mediation effects, we can go
for the second step to determine the type of mediation and its magnitude. Table
8.1 shows the point estimate for the direct effect (c0), the indirect effects (a1 � b1,
a2 � b2), and the total indirect effect [(a1 � b1) C (a2 � b2)]. Given that c0 is
not significant and both the indirect and the total indirect effects are significant, a
full mediation can be defended. In addition, we can calculate VAF to assess the
magnitude for each mediation. It can be said that almost 99% of the total effect is
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Table 8.1 Example 1. Summary of mediating effects tests

Bootstrap 90% CI
Direct effects Coefficient Percentile BC

H1: c0 0.006nsig �0:189 0:194 �0.191 0.192
a1 0.827sig 0:757 0:884 0.758 0.885
a2 0.637sig 0:509 0:748 0.506 0.745
b1 0.259sig 0:022 0:474 0.030 0.482
b2 0.509sig 0:365 0:670 0.356 0.661
Indirect effects Point estimate Percentile BC VAF

H2: a1 � b1 0.214sig 0.018 0.396 0.025 0.403 39.3%
H3: a2 � b2 0.324sig 0.217 0.459 0.208 0.451 59.6%
Total indirect effect 0.538sig 0.373 0.715 0.372 0.714 98.9%

Notes: sig significant, nsig not significant, BC bias corrected, VAF variance accounted for

due to two mediation effects jointly. Because the VAF exceeds 80%, this implies an
additional argument for a full mediation.

Comparison of Mediating Effects

When we evaluate a multiple mediator model, we can go further comparing the
different mediating effects. In our example, we want to test whether the unlearning
context (M1) has a stronger mediator effect than the organizational agility (M2)
variable. With this aim in mind, we will assess the potential statistical difference
between a1 � b1 and a2 � b2 following the guidelines provided by Chin et al. (2013)
and Rodríguez-Entrena et al. (2016). Thus, we will include a new column where
we estimate the difference between a1 � b1 and a2 � b2 and calculate percentile
and bias-corrected CI. Because we have not postulated any hypothesis about the
differential impact of both indirect effects, we will carry out a two-sided test (95%
CI) (Fig. 8.11).

The test (Table 8.2) shows there is not a differential impact between M1 and
M2 since both CIs contain the zero value. Accordingly, we cannot state that the
unlearning context (M1) has a stronger mediator effect than the organizational agility
(M2) variable and vice versa.

8.3.2 An Example of a Multistep Multiple Mediator Model

Our second example has been extracted from Roldán et al. (2017). This study
examines post-adoption behaviors (i.e., frequency of use, routinization, and infu-
sion) and their effects on the sense of community in the domain of social network
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Insert a column for
estimating the differential
impact M1 – M2 =
(a1 b1) – (a2 b2)

Two-sided test = 95% CI

Fig. 8.11 Example 1. Comparison of mediating effects. Spreadsheet illustration

Table 8.2 Example 1. Comparison of mediating effects

Bootstrap 95% CI
Differential effect Coefficient Percentile BC

M1 � M2 D (a1 � b1) � (a2 � b2) �0.110 �0.455 0.174 �0.440 0.189

sites. Specifically, this contribution formulates a multistep mediator model where
frequency of use affects social integration via routinization and infusion (Fig. 8.12).
The data was collected from 278 users of Tuenti, a popular social network site
among the Spanish college student population during the period 2006–2012.

8.3.2.1 Data Collection and Measures

Undergraduate students, users of the Tuenti social network, were recruited from
social studies at a public university in Southern Spain. A total of 278 questionnaires
were collected from members who responded to an offline survey.

Frequency of use is defined as the number of times that an individual uses a
social network site (SNS). It was operationalized by two self-reported measures.
Routinization describes the state in which SNS use is no longer perceived as out
of the ordinary but becomes institutionalized, being associated with habitual and
standardized usage, that is, the integrating of the SNS into daily routines. We
measure it by adapting a scale developed by Sundaram et al. (2007). Infusion is
conceptualized as the extent to which a person uses an SNS to its highest level to
maximize its potential, implying the notion of a deeper use. We use an adaptation of
the measure developed by Jones et al. (2002). Finally, social integration measures
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Infusion
a3

a1

a2

b2

b1

c’

H1 = Frequency of use Social Integration = c’
H2 = Frequency of use Routinization Social Integration = a1b1
H3 = Frequency of use Infusion Social Integration = a2b2
H4 = Frequency of use Routinization Infusion Social Integration = a1a3b2

‡
‡ ‡
‡ ‡
‡ ‡ ‡

Fig. 8.12 An example of a model with a three-path mediated effect. Source: Roldán et al. (2017)

both the sense of belongingness to, and the identification with, the SNS and the
social community’s interactivity level. Consequently, social integration is modeled
as a multidimensional construct composed of two dimensions: community partici-
pation and community integration. All variables have been estimated in Mode A.

8.3.2.2 Hypotheses Development

Considering the research model described in Fig. 8.12, we have postulated one direct
and three mediating hypotheses, one of them proposing a three-path mediated effect:

H1: Frequency of use is positively related to social integration.
H2: The relationship between frequency of use and social integration is positively

mediated by routinization.
H3: The relationship between frequency of use and social integration is positively

mediated by infusion.
H4: The relationship between frequency of use and social integration is sequentially

and positively mediated by routinization and infusion.

8.3.2.3 PLS-SEM Practical Considerations

We follow the guidelines described in the previous example. Therefore, we will
show the final results of our analyses in order to avoid excessive redundancy in the
explanation (Fig. 8.13).



8 Mediation Analyses in Partial Least Squares Structural Equation Modeling:. . . 191

Routinization
R2= 0.376

Social 
integration
R2= 0.489

Frequency of 
use

Infusion
R2= 0.334

a3 = 0.404sig

a1 = 0.613sig

a2 = 0.235sig

b2 = 0.498sig

b1 = 0.277sig

c’ = .014nsig

H1 = Frequency of use Social Integration = c’
H2 = Frequency of use Routinization Social Integration = a1b1 
H3 = Frequency of use Infusion Social Integration = a2b2
H4 = Frequencyof use Routinization Infusion Social Integration = a1a3b2 

sig: significant based on one-sided test
nsig: not significant based on one-sided test

‡
‡ ‡
‡ ‡
‡ ‡ ‡

Fig. 8.13 An example of a model with a three-path mediated effect. Results. Source: Roldán et al.
(2017)

Fig. 8.14 Example 2. Final spreadsheet with the estimation of indirect effects and confidence
intervals

The evaluation of our research model involves estimating the significance of one
direct (c0) and the three indirect effects (a1 � b1, a2 � b2, and a1 � a3 � b2).
Considering that our hypotheses have been formulated with direction (C), we will
use a one-sided test, calculating 90% confidence intervals (Fig. 8.14).

Significance of Direct and Indirect Effects

Frequency of use has no significant direct effect on social integration (H1: c0) (Table
8.3). Therefore, H1 is not supported. On the other hand, all the indirect effects of
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Table 8.3 Example 2. Summary of mediating effects tests

Bootstrap 90% CI
Direct effects Coefficient Percentile BC

H1: c0 0.014 nsig �0:073 0.107 �0:074 0.106
a1 0.613sig 0:548 0.672 0:547 0.671
a2 0.235sig 0:132 0.339 0:131 0.339
a3 0.404sig 0:286 0.521 0:286 0.521
b1 0.277sig 0:165 0.386 0:166 0.386
b2 0.498sig 0:408 0.584 0:408 0.584

Indirect effects Point estimate Percentile BC VAF

H2: a1 � b1 0.170 0.101 0.240 0.101 0.240 40.0%
H3: a2 � b2 0.117 0.063 0.176 0.063 0.176 27.6%
H4: a1 � a3 � b2 0.123 0.080 0.172 0.079 0.171 29.0%
Total indirect effect 0.410 0.343 0.479 0.343 0.478 96.6%

Notes: sig significant, nsig not significant, BC bias corrected, VAF variance accounted for

frequency of use on social integration are significant. This means that H2–H4 have
been supported. Thus, routinization positively mediates the relationship between
frequency of use and social integration (H2: a1 � b1). Likewise, infusion mediates
the path between frequency of use and social integration (H3: a2 � b2). Finally,
we find that frequency of use is positively associated with higher routinization and
infusion, which relates to higher levels of social integration (H4: a1 � a3 � b2).

Type of Mediation and Magnitude

Table 8.3 indicates that c0 is not significant and all postulated indirect effects
are significant. Consequently, this means that routinization and infusion fully and
jointly mediate the influence of frequency of use on social integration. This is
also supported by applying the variance accounted for (VAF) index. When the
VAF has an outcome above 80%, a full mediation can be assumed. This occurs
when we assess the total indirect effect of frequency of use on social integration
(VAF D 96.6%).

Comparison of Mediating Effects

Finally, we will test whether routinization (M1) has a stronger mediator effect
than infusion (M2). As we did in the previous example, we evaluate the statistical
difference between a1 � b1 and a2 � b2 (Table 8.4). In this case, we do not observe
a significant difference between both indirect effects.
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Table 8.4 Example 2. Comparison of mediating effects

Bootstrap 95% CI
Differential effect Coefficient Percentile BC

M1 � M2 D (a1 � b1) � (a2 � b2) 0.053 �0.067 0.175 �0.067 0.175

8.4 Conclusion

PLS-SEM is a statistical procedure for structural equation modeling that social
science researchers can consider when conducting research. This chapter helps
readers to understand how PLS-SEM can be applied in mediation analysis through
two illustrative examples. PLS-SEM seems not to be “a panacea for flaws in research
design or execution” (Rigdon 2016: 604), but research must not ignore the proper
model assessment prior to drawing a conclusion. This kind of advanced modeling
(i.e., mediation analysis) can be performed by PLS-SEM as illustrated by this
chapter. The adoption of these guidelines is advised for researchers who use PLS-
SEM, particularly when they tackle multiple mediation models.
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Chapter 9
Treating Unobserved Heterogeneity
in PLS-SEM: A Multi-method Approach

Marko Sarstedt, Christian M. Ringle, and Joseph F. Hair

Abstract Accounting for unobserved heterogeneity has become a key concern to
ensure the validity of results when applying partial least squares structural equation
modeling (PLS-SEM). Recent methodological research in the field has brought
forward a variety of latent class techniques that allow for identifying and treating
unobserved heterogeneity. This chapter raises and discusses key aspects that are
fundamental to a full and adequate understanding of how to apply these techniques
in PLS-SEM. More precisely, in this chapter, we introduce a systematic procedure
for identifying and treating unobserved heterogeneity in PLS path models using
a combination of latent class techniques. The procedure builds on the FIMIX-
PLS method to decide if unobserved heterogeneity has a critical impact on the
results. Based on these outcomes, researchers should use more recently developed
latent class methods, which have been shown to perform superior in recovering the
segment-specific model estimates. After introducing these techniques, the chapter
continues by discussing the means to identify explanatory variables that characterize
the latent segments. Our discussion also broaches the issue of measurement
invariance testing, which is a fundamental requirement for a subsequent comparison
of parameters across groups by means of a multigroup analysis.

M. Sarstedt (�)
Institute of Marketing, Otto-von-Guericke University Magdeburg, Magdeburg, Germany

Faculty of Business and Law, University of Newcastle, Callaghan, NSW, Australia
e-mail: marko.sarstedt@ovgu.de

C.M. Ringle
Institute of Human Resource Management and Organizations (HRMO), Hamburg University
of Technology (TUHH), Hamburg, Germany

Faculty of Business and Law, University of Newcastle, Callaghan, NSW, Australia
e-mail: ringle@tuhh.de

J.F. Hair
University of South Alabama, Mobile, AL, USA
e-mail: joefhair@gmail.com

© Springer International Publishing AG 2017
H. Latan, R. Noonan (eds.), Partial Least Squares Path Modeling,
DOI 10.1007/978-3-319-64069-3_9

197

mailto:marko.sarstedt@ovgu.de
mailto:ringle@tuhh.de
mailto:joefhair@gmail.com


198 M. Sarstedt et al.

9.1 Introduction

Researchers routinely create groups of data and analyze their group-specific results
to account for heterogeneity (e.g., Kotler 1989; Völckner et al. 2010). But the
sources of heterogeneity in the data are often difficult to know a priori. When
researchers do not properly account for heterogeneity and the presence of substantial
group-specific differences, results may be substantially biased. As a consequence,
conclusions drawn are false and misleading (Sarstedt et al. 2009). In structural
equation modeling (e.g., Byrne 2016; Diamantopoulos and Siguaw 2000; Rigdon
1998, 2005) in general and, more specifically, in partial least squares structural
equation modeling (PLS-SEM) (e.g., Hair et al. 2017c; Lohmöller 1989; Wold 1975,
1982), uncovering unobserved heterogeneity is a key concern (Becker et al. 2013;
Jedidi et al. 1997) researchers must address in their analysis and result evaluation
(Hair et al. 2017b, 2012). Conversely, if researchers demonstrate that unobserved
heterogeneity does not affect their results, they can analyze the data in a single
model on the aggregate level (Hair et al. 2017a).

The application of standard data clustering procedures, such as k-means, is a
common approach for dealing with unobserved heterogeneity. In the context of PLS-
SEM, however, the traditional clustering approaches perform very poorly regarding
the identification of group differences in the estimated path coefficients (Sarstedt
and Ringle 2010). Hence, methodological PLS-SEM research has proposed dif-
ferent methods for identifying and treating unobserved heterogeneity, commonly
referred to as latent class techniques (Sarstedt 2008).

Applying these latent class techniques is far from trivial, as evidenced in Sarstedt
et al.’s (2016b) critical commentary on Marques and Reis’s (2015) use of finite
mixture PLS (FIMIX-PLS), which is the most commonly used latent class approach
in PLS-SEM to date—Table 9.3 (in the Appendix) provides a summary of studies
applying the technique. For this reason, this chapter raises and discusses key aspects
that are fundamental to a full and adequate understanding of how to uncover
and treat unobserved heterogeneity in PLS-SEM. More precisely, in this chapter,
we introduce a systematic procedure for identifying and treating unobserved
heterogeneity in PLS path models using a combination of latent class techniques.
The procedure builds on the FIMIX-PLS method (Hahn et al. 2002; Sarstedt et al.
2011a) to decide if unobserved heterogeneity has a critical impact on the results. If
so, researchers can use the method to identify the number of segments to retain from
the data. Based on these results, researchers should use more recently developed
latent class methods, which have been shown to perform superior in recovering the
segment-specific model estimates. After introducing these techniques, the chapter
continues by discussing the means to identify explanatory variables that characterize
the latent segments, followed by an introduction of multigroup analysis that allows
comparing parameters between two or more segments for significant differences.
Our discussion also broaches the issue of measurement invariance testing, which is
a fundamental requirement for comparing parameters across groups. Our aim is to
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offer further guidance to those researchers who work with PLS-SEM and related
methods.

9.2 Guidelines for Uncovering and Treating Unobserved
Heterogeneity in PLS Path Models

Treating unobserved heterogeneity in PLS path models is not a trivial endeavor.
It requires careful application of latent class analysis in combination with mea-
surement invariance assessment and multigroup analysis in a recurring process.
Figure 9.1 illustrates the guidelines for uncovering and treating unobserved het-
erogeneity in PLS-SEM, which we will briefly introduce in this section and discuss
in greater detail in the sections that follow.

Step 1 involves running FIMIX-PLS—by using the default settings (also see
Ringle et al. 2010a) across a range of segments � D f�1, : : : , �maxg. Starting with
a one-segment solution �1, the range depends on the relationships between the
number of observations and the model complexity. Researchers need to compare the
different segmentation results using a series of metrics that guide the decision of how
many segments to retain. The assignment of the observations to separate segments
follows. This assignment is based on the FIMIX-PLS membership probabilities.
Each observation is therefore fully assigned to the segment where the FIMIX-PLS
solutions revealed its highest membership probability. Again, in the final solution,
the minimum number of observations per segment must be large enough to warrant
a sufficient level of accuracy and statistical power in the group-specific model
estimations. See Kock and Hadaya (2017) for two accurate and simple approaches
for minimum sample size estimation in PLS-SEM and Hair et al. (2017d) for a
recent evaluation of PLS-SEM’s performance in small sample size constellations.

Step 2 uses the FIMIX-PLS solution from Step 1 as the starting partition for
running a follow-up latent class analysis. This analysis draws on PLS prediction-
oriented segmentation (PLS-POS) (Becker et al. 2013), PLS genetic algorithm
segmentation (PLS-GAS) (Ringle et al. 2013, 2014), or PLS iterative reweighted
regressions segmentation (PLS-IRRS) (Schlittgen et al. 2016) in order to further
improve the FIMIX-PLS solution. The combined use of FIMIX-PLS and PLS-POS,
as explained in Hair et al. (2017a), is easily accessible, since both methods are
implemented in the SmartPLS 3 software (Ringle et al. 2015). Again, in the final
solution, the minimum number of observations per segment of data must meet the
PLS-SEM algorithm’s minimum sample size requirements for producing accurate
estimates in each group.

In Step 3, researchers have to run an ex post analysis to identify one or more
explanatory variables that are a good match for the solution obtained in Step 2. A
suitable (set of) explanatory variable(s) (e.g., age, gender, income) then facilitate(s)
the forming of the final partition. Careful deliberation that examines whether the role
of the explanatory variable(s) is theoretically and/or logically meaningful should
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Fig. 9.1 Guidelines for uncovering and treating unobserved heterogeneity in PLS-SEM
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supplement the statistical element comprising this step. Subsequently, to ensure
that further assessments are based on actionable segments, researchers should
create—based on the explanatory variables—observable segments and produce
corresponding segment-specific PLS-SEM estimations.

Before comparing segment-specific PLS-SEM estimates, researchers must assess
measurement invariance in Step 4 by means of the measurement invariance of
composite models (MICOM) approach. Depending on the results of Step 4,
researchers can run a multigroup analysis to compare the segment-specific results
for significant differences.

9.3 Step 1: Run FIMIX-PLS

9.3.1 Basic Concept

As its name indicates, the FIMIX-PLS approach relies on the finite mixture model
concept, which assumes that the overall population is a mixture of group-specific
density functions. The aim of FIMIX-PLS is to disentangle the overall mixture
distribution and estimate parameters (e.g., the path coefficients) of each group in
a regression framework. Figure 9.2 shows an example of a mixture distribution that
FIMIX-PLS aims to separate into segment-specific distributions.

FIMIX-PLS follows two steps. In the first step, the standard PLS-SEM algorithm
(Lohmöller 1989) is run on the full set of data to obtain the scores of all the latent
variables in the model. These latent variable scores then serve as input for a series of
mixture regression analyses in the second step (Mclachlan and Peel 2000; Wedel and
Kamakura 2000). The mixture regressions allow for the simultaneous probabilistic
classification of observations into groups and the estimation of group-specific path

Segment-specific distributions

Mixture distribution

0.8

0.6

0.4

0.2

0.0

f(
x)

Fig. 9.2 Mixture distribution example (Hair et al. 2016, p. 66)
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coefficients. While the researcher needs to explicitly define the number of segments,
FIMIX-PLS offers several metrics that provide an indication of how many segments
are present in the data (Hahn et al. 2002; Sarstedt et al. 2011a), which is a clear
advantage of the method. Importantly, researchers can also use the FIMIX-PLS
results to argue that unobserved heterogeneity is not a critical issue. In the latter
case, one can interpret the aggregate data level as representing a single segment.

9.3.2 Considerations When Using FIMIX-PLS

9.3.2.1 Algorithm Settings

Running the FIMIX-PLS procedure requires the researcher to make several choices
regarding the algorithm settings. In FIMIX-PLS, the model estimation process
follows the likelihood principle, which asserts that all of the evidence in a sample
that is relevant for the model parameters is contained in the likelihood function.
This likelihood function is maximized by using the expectation-maximization
(EM) algorithm (Dempster et al. 1977). The EM algorithm alternates between
performing an expectation (E) step and a maximization (M) step. The E step
creates a function for the expectation of the log-likelihood, which is evaluated by
using the parameters’ current estimate. The M step computes the parameters by
maximizing the expected log-likelihood identified in the E step. The E and M steps
are successively applied until the results stabilize. Stabilization is reached when
there is no substantial improvement in the (log) likelihood value from one iteration
to the next. A threshold value of 1 � 10�5 is recommended as a stop criterion to
ensure that the algorithm converges at reasonably low levels of iterative changes in
the log-likelihood values. When the stop criterion is set very low, the FIMIX-PLS
algorithm may not converge within a reasonable time. Therefore, the researcher also
needs to specify a maximum number of iterations, after which the algorithm will
automatically terminate. Specifying a maximum number of 5,000 iterations ensures
a sound balance between warranting acceptable computational running time and
obtaining results that are precise enough.

Drawing on the EM algorithm for model estimation is attractive because it is
very efficient and always converges. A downside of the EM algorithm, however, is
its possible convergence in a local optimum (Steinley 2003). That is, the algorithm
converges in a solution that is optimal within a neighboring set of candidate
solutions but not among all possible solutions. To avoid convergence in a local
optimum, researchers should run FIMIX-PLS several times for a predefined number
of segments using random starting values. While simulation studies typically use
30 repetitions, empirical applications usually rely on ten repetitions. While more
repetitions increase the likelihood of obtaining the global optimum FIMIX-PLS
solution, they also take longer time to compute. Bearing this tradeoff in mind, we
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recommend using ten repetitions as this number typically yields stable results.1

After comparing the results of multiple runs per given number of segments, the
researcher chooses the solution with the highest log-likelihood value.

A further important consideration when running FIMIX-PLS involves the treat-
ment of missing values. Kessel et al. (2010) have shown that as little as 5% missing
values in one variable can cause severe problems in an FIMIX-PLS analysis when
the missing values are replaced with the overall sample mean of that indicator’s
valid values (i.e., mean value replacement). In this case, the missing value treatment
option creates a set of common scores, which FIMIX-PLS identifies as a distinct
homogeneous segment. As a consequence, the number of segments will likely be
over-specified, and observations that truly belong to other segments will be forced
into this artificially generated one. Therefore, mean value replacement must not
be used in a FIMIX-PLS context, even if there are only very few missing values
in the data set. Research has put forward a wide range of alternative missing
value imputation methods such as EM imputation or multiple imputation (Schafer
1997). However, as their efficacy has not been tested in a FIMIX-PLS context yet,
researchers should remove all cases from the analysis that include missing values in
any of the indicators used in the model (i.e., casewise deletion). While this approach
also has its problems, particularly when values are missing at random (Sarstedt and
Mooi 2014), it avoids the generation of an artificial segment, as is the case with
mean value replacement. However, when missing values are at reasonable levels for
running a PLS-SEM analysis [e.g., the number of missing values per observation
and variable does not exceed 15%; (Hair et al. 2017c)], one may consider including
these cases later after identifying a suitable explanatory variable in Step 3 of the
procedure shown in Fig. 9.1.

Finally, the FIMIX-PLS algorithm needs to be run for alternating numbers of
segments, starting with the one-segment solution. Since the number of segments
is a priori unknown, researchers have to compare the solutions with the different
segment numbers in terms of their statistical adequacy and interpretability. The
range of possible segment numbers depends on the interplay between the sample
size and the minimum sample size requirements to reliably estimate the given
model (Kock and Hadaya 2017). Assume, for example, that the analysis of a
certain model requires a minimum sample size of 50. When analyzing this model
with 200 observations, it is not reasonable to run FIMIX-PLS with more than
4 segments. Specifically, when extracting more than 4 segments from a data set
with 200 observations, at least 1 segment has less than 50 observations. If 50
observations is the minimum sample size to warrant sufficient accuracy and power
given a certain degree of model complexity, extracting 5 or more segments does not
produce solutions with the desired minimum sample size per extracted segment. It
is therefore imperative to consider model-specific minimum segment sample size

1While ten repetitions achieve a sound balance between accuracy and computational time, future
research should systematically explore the effect of model complexity and sample size on the
number of repetitions to use.
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requirements—as documented in, for example, Hair et al. (2017c)—before defining
a range of segment solutions to consider in the FIMIX-PLS analysis. The largest
integer gives the theoretical maximum number of segments to consider by dividing

the sample size n by the minimum sample size nmin:
j

n
.

nmin

k
. However, since it is

unlikely that the observations are evenly distributed across the segments, especially
when the upper bound is high, considering a lower number of segments is generally
preferred.

9.3.2.2 Determining the Number of Segments

One of the greatest challenges in the application of FIMIX-PLS relates to the
determination of the number of segments to retain from the data (Sarstedt et al.
2011a). A misspecification can result in under- or over-segmentation and thus
produce a flawed understanding of respondents’ behaviors and of the ensuing
managerial decisions, which is very likely to influence the specification of behaviors
(Andrews and Currim 2003). Researchers can draw on a broad range of segment
retention criteria to compare different segmentation solutions in terms of their
model fit and avoid such misspecification. Well-known information criteria are, for
example, Akaike’s information criterion (AIC) (Akaike 1973), modified AIC with
factor 3 (AIC3) (Bozdogan 1994), consistent AIC (CAIC) (Bozdogan 1987), and
Bayesian information criterion (BIC) (Schwarz 1978). The smaller these criteria’s
value, the better the segmentation solution. Hence, it is important to analyze and
compare the segmentation solutions for different prespecified numbers of segments
(e.g., 1–5) and to select the solution with the best information criterion outcome.

Sarstedt et al. (2011a) provide a formal representation of these criteria. Further,
these authors have evaluated the efficacy of 18 different segment retention criteria
in FIMIX-PLS across a broad range of data and model constellations. They
demonstrate that researchers should jointly consider AIC3 (Bozdogan 1994) and
CAIC (Bozdogan 1987). More precisely, when both criteria indicate the same
number of segments, this result is likely to be most appropriate. Alternative well-
performing criteria are AIC with factor 4 (AIC4) (Bozdogan 1994) and BIC.
Other criteria show pronounced overestimation, such as AIC or underestimation
tendencies such as minimum description length 5 [MDL5; (Liang et al. 1992)].
Using these criteria, researchers can identify a reasonable range of segments. For
example, if AIC indicates a five-segment solution, the research should consider a
smaller number of segments. Conversely, if MDL5 indicates a two-segment solution,
the researcher should consider three or more segments. Table 9.1 highlights selected
FIMIX-PLS information criteria and their performance.

Segment retention criteria are not a panacea for determining the most suitable
number of segments in FIMIX-PLS. The relative differences in the segment reten-
tion criteria results are often marginal in terms of different numbers of segments.
For example, in Rigdon et al. (2011), the average AIC3 (CAIC) value in their
industry sample 1 (2) is 31,055.31 (31,313.63), with a standard deviation of merely
303.06 (268.49)—for another example, see Navarro et al. (2011). In such a case,



9 Treating Unobserved Heterogeneity in PLS-SEM: A Multi-method Approach 205

Table 9.1 Selected information criteria and their performance in FIMIX-PLS (Hair et al. 2016,
p. 70)

Abbreviation Criterion Performance in FIMIX-PLS

AIC Akaike’s information
criterion

Weak performance
Very strong tendency to overestimate the
number of segments
Can be used to determine the upper limit of
reasonable segmentation solutions

AIC3 Modified Akaike’s
information criterion
with factor 3

Fair to good performance
Tends to overestimate the number of segments
Works well in combination with CAIC and BIC

AIC4 Modified Akaike’s
information criterion
with factor 4

Good performance
Tends to over- and underestimate the number of
segments

BIC Bayesian information
criterion

Good performance
Tends to underestimate the number of segments
Should be considered jointly with AIC3

CAIC Consistent Akaike’s
information criterion

Good performance
Tends to underestimate the number of segments
Should be considered jointly with AIC3

MDL5 Minimum description
length with factor 5

Weak performance
Very strong tendency to underestimate the
number of segments
Can be used to determine the lower limit of
reasonable segmentation solutions

the criteria offer only limited means to differentiate between the segment solutions.
More importantly, information criteria such as AIC3 and CAIC do not give any
indication of how well separated the segments are. For this reason, researchers are
advised to consider the complementary use of the entropy-based measures, such as
the entropy statistic (Ramaswamy et al. 1993):

ENs D 1 �
hPn

iD1

Ps
jD1 �pij � ln pij

i

n � ln.s/
; (9.1)

where pij is the probability that observation i (i D 1, : : : ,n) belongs to segment j
(j D 1, : : : ,s). The EN ranges between 0 and 1; higher values indicate that more
observations exhibit high probabilities of segment membership pij and thus uniquely
belong to a certain segment. Sarstedt et al. (2011a, p. 52) note that “this criterion
is critical to assessing whether the analysis produces well separated clusters, which
is important for deriving management implications from any analysis.” In line with
prior research on this topic (e.g., Ringle et al. 2010a; Sarstedt and Ringle 2010),
EN values of less than 0.50 indicate fuzzy segment memberships that prevent
meaningful segmentation and limit the applied value of the solution.

Apart from the points above, the identified segments must meet certain standards,
particularly in terms of their size. FIMIX-PLS relies on the EM algorithm, which
always converges to the prespecified number of segments. While this characteristic
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is generally advantageous, especially compared with the problems that result from
other optimization techniques, such as the Newton-Raphson method (Mclachlan and
Peel 2000), it also entails two problems. First, the final solution strongly depends
on the (random) starting values of the EM algorithm (Mclachlan 1988; Wedel and
Kamakura 2000), which may converge in local optimum solutions. Therefore, it is of
pivotal importance to run FIMIX-PLS analyses repeatedly (e.g., ten times) (Ringle
et al. 2010a) for a prespecified number of segments and to select the best solution
(i.e., the one with the highest likelihood value). This and similar settings should be
reported to obtain insight into the specificities of the analyses and to have confidence
in the conclusions. Second, the EM algorithm can “force” observations into an
extraneous segment, even though they fit adequately into another segment. Such
extraneous segments are usually very small, account for only a marginal portion of
heterogeneity in the overall data set, and are unlikely to translate into meaningful
market segmentation opportunities (Rigdon et al. 2010).

Finally, any similar data-driven approach to partitioning data should include
practical considerations (e.g., Sarstedt et al. 2009), as the data can often only provide
rough guidance to the number of segments to retain. Heuristics, such as information
criteria or entropy measures, are fallible, as they are sensitive to data and model
characteristics. For example, Becker et al. (2015) show that even low levels of
collinearity in the structural model can have adverse consequences for the criteria’s
performance. Researchers might occasionally have a priori knowledge or a theory
to rely on in making the choice. Researchers should thus ensure that the results
are interpretable and meaningful. Not only must the number of segments be small
enough to ensure parsimony and manageability, but each segment should also be
large enough to warrant strategic attention (Kotler and Keller 2015). Finally, it is
important to remember that unobserved heterogeneity can also exist within a priori
formed segments (Rigdon et al. 2011).

9.4 Step 2: Follow-Up Latent Class Analysis

FIMIX-PLS offers important guidance in determining whether or not a significant
level of unobserved heterogeneity is present. Furthermore, FIMIX-PLS provides a
data-driven indication of the number of segments to retain from the data. Simulation
studies show that FIMIX-PLS reliably reveals the existence of heterogeneity in PLS
path models and correctly indicates the appropriate number of segments to retain
from the data (Sarstedt et al. 2011a). At the same time, however, FIMIX-PLS is
clearly limited in terms of correctly identifying the underlying segment structure
that the group-specific path coefficients define (Ringle et al. 2013, 2014), especially
when the path model includes formative measures (Becker et al. 2013).

Addressing these limitations, research has proposed a range of alternative latent
class approaches. As a distance-based segmentation approach, Squillacciotti (2005,
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2010) introduced the PLS typological path modeling procedure, which Esposito
Vinzi et al. (2007, 2008) advanced by presenting the response-based procedure
for detecting unit segments (REBUS-PLS). REBUS-PLS gradually reallocates
observations from one segment to the other based on the objective of minimizing
the model residuals.

Becker et al. (2013) further improve these latent class approaches by presenting
the PLS-POS method. PLS-POS uses an improved distance measure and data
reassignment procedure, which is applicable to all types of PLS path models,
regardless of whether the latent variables draw on reflectively or formatively
specified measurement models. Based on the distance measure, PLS-POS selects
candidates for reassignment which improve the objective criterion. Becker et al.
(2013) suggest using the sum of each group’s sum of R2 values as objective criterion.
However, depending on the research goal, alternative objective criteria such as the
sum of a specific target construct’s R2 value or the weighted sum of R2 value(s) may
be preferable. Becker et al.’s (2013) simulation study shows that PLS-POS performs
well for segmentation purposes and provides favorable outcomes when compared
with alternative segmentation techniques. As with FIMIX-PLS, researchers can
apply PLS-POS by using this method’s implementation in the software SmartPLS 3
(Ringle et al. 2015).

PLS-GAS (Ringle et al. 2013, 2014) is another versatile approach for uncovering
and treating heterogeneity in measurement and structural models. This approach
consists of two stages. The first stage applies a genetic algorithm that aims at
finding the partition which minimizes the endogenous latent variables’ unexplained
variance. Implementing a genetic algorithm has the advantage that it can overcome
local optimum solutions and covers a wide area of the potential search space before
delivering a final best solution. In the second stage, a deterministic hill-climbing
approach aims at delivering a solution that further improves the original one. The
PLS-GAS method returns excellent results that usually outperform FIMIX-PLS and
REBUS-PLS outcomes in particular. The downside, however, is that PLS-GAS is
computationally very demanding.

For the latter reason, researchers have recently introduced PLS-IRRS (Schlittgen
et al. 2016). The PLS-IRRS approach builds on Schlittgen’s (2011) clusterwise
robust regression. Robust regression reduces the weighting of observations with
extreme values, which mitigates the influence of outliers in the data set. In the
adaption of this concept for PLS-SEM-based segmentation, the weighting of obser-
vations with extreme values is not reduced. Instead, the observations are assigned
to a separate segment. Hence, in PLS-IRRS groups of outliers represent distinct
segments. At the same time, PLS-IRRS reduces the impact of inhomogeneous
observations on the computation of segment-specific PLS-SEM solutions. Like
PLS-POS and PLS-GAS, PLS-IRRS is generally applicable to all kinds of PLS path
models. Moreover, initial simulation results show that PLS-IRRS performs well in
terms of parameter recovery and predictive power (Schlittgen et al. 2015). The key
advantage of PLS-IRRS, however, is its speed. PLS-IRRS is much faster than PLS-
GAS but provides very similar results.
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In light of their advantages, a combination of FIMIX-PLS with PLS-POS, PLS-
GAS, or PLS-IRRS is particularly useful for treating unobserved heterogeneity
as a multi-method approach in PLS-SEM. More specifically, researchers should
first run FIMIX-PLS to ascertain whether or not heterogeneity is present in the
data. If heterogeneity is present, the information criteria help to identify a suitable
number of segments to retain. The final partition of observations that FIMIX-PLS
produces serves as a starting partition for the other methods. Thereby, PLS-POS,
PLS-GAS, or PLS-IRRS can further improve the FIMIX-PLS results. Combining
FIMIX-PLS with one of the three other methods proves particularly useful because
each method has its distinct strengths in the analysis process, for example, in terms
of indicating the number of segments (FIMIX-PLS) or considering heterogeneity
in the measurement models (PLS-GAS, PLS-POS, and PLS-IRRS). The PLS-POS
method is a specifically suitable candidate for this kind of combination, because
like FIMIX-PLS, it has been implemented in the SmartPLS 3 software package.
Specifically, SmartPLS 3 allows running PLS-POS using the results of a prior
FIMIX-PLS analysis in a single execution. In the following steps, we therefore refer
to PLS-POS when discussing the further processing of results from Step 2 of the
guidelines.

9.5 Step 3: Ex Post Analysis

The segments produced in Step 2 are—by definition—latent. Turning such a statisti-
cally derived insight into actionable understanding requires researchers to interpret
the segments in terms of observable and managerially meaningful variables. They
can do so by conducting an ex post analysis whose aim is to identify one or more
explanatory variable(s) that match the method’s partition in the best possible way
(Hahn et al. 2002; Ringle et al. 2010a; Sarstedt and Ringle 2010).

Many researchers simply use available explanatory variables to charac-
terize the latent segments (e.g., segment 1 includes 62% female customers,
while segment 2 includes 24% female customers). However, PLS-POS-
based ex post analysis goes far beyond a mere profiling of segments and
is an integral part of any latent class analysis. In an ex post analysis,
researchers need to partition the data by using an explanatory variable, or
a combination of several explanatory variables, which yield a grouping of
data that corresponds largely to the one produced by PLS-POS. Consider
Table 9.2, which shows a sample partition of ten observations into two groups.
The first six observations belong to the first latent segment, whereas the final four
observations belong to the second latent segment. Partitioning the data based on the
respondents’ gender yields a grouping that fully corresponds to the one produced in
the latent class analysis. The first latent segment comprises only females, whereas
the second latent segment only comprises males. In this example, we are able to fully
reproduce the latent segmentation result by means of an observable characteristic. In
practice, however, reproducing latent segment structures by means of explanatory
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Table 9.2 Ex post analysis
example

Latent class
Observation # partition Gender

1 1 Female
2 1 Female
3 1 Female
4 1 Female
5 1 Female
6 1 Female
7 2 Male
8 2 Male
9 2 Male

10 2 Male

variables is very challenging. As the observable characteristics do not usually
match the latent segment structures well, an overlap of 60% between the PLS-POS
partition and the one produced by the explanatory variable(s) can be considered
satisfactory; also see Hair et al. (2017a).

To identify suitable explanatory variables, prior latent class analyses have relied
on, among other methods, logistic regressions (Money et al. 2012; Wilden and
Gudergan 2015) as well as on classification and regression trees (Ringle et al.
2010a; Sarstedt and Ringle 2010). More precisely, by using the latent class partition
as the dependent variable and a set of observable characteristics as independent
variables, these methods help to identify variables that enable the latent segments to
be reproduced. Researchers may also use cross tabs (e.g., Sarstedt and Mooi 2014)
to tabulate the PLS-POS partition against the partition produced by the explanatory
variable with the aim of maximizing the overlap between the two (Matthews et al.
2016).

9.6 Step 4: Run the MICOM Procedure

Once the researcher has identified one or more suitable explanatory variable(s)
that matches the latent class partition, the next step is to compare the segments
by means of a multigroup analysis. Multigroup analysis allows researchers to test
whether the numerical differences between segment-specific path coefficients are
also significantly different (Hair et al. 2017a; Matthews 2018).

Prior to running a multigroup analysis, researchers need to test for measurement
invariance to be confident; the group differences in model estimates do not result
from either the distinctive content or meanings of the latent variables across groups
or from the measurement scale. Research has proposed a variety of methods for
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measurement invariance testing whose applicability is, however, limited to factor-
based SEM (Steenkamp and Baumgartner 1998; Vandenberg and Lance 2000).
Henseler et al. (2015) introduced a procedure to assess the measurement invariance
of composite models, which is consistent with PLS’s nature as a composite-based
approach to SEM (Sarstedt et al. 2016a). The MICOM approach involves three
steps. Step 1 addresses establishing configural invariance (i.e., equal parameteri-
zation and way of estimation) to ensure that a composite has been equally specified
for all the groups. A qualitative assessment of the composites’ specification across
all the groups must ensure the use of (1) identical indicators per measurement
model, (2) identical data treatment, and (3) identical algorithm settings. Configural
invariance is a precondition for the assessment of compositional invariance in Step
2 of the MICOM procedure. In the latter case, researchers must ensure that the
differences in structural coefficients do not result from differences in the way
the composite is formed. Compositional invariance assessment therefore involves
testing whether the composite scores are created equally across groups, despite
possible differences in the indicator weights. If the Step 2 results support invariance,
the MICOM procedure continues with Step 3. This final step involves testing
the equality of the composites’ mean values and variances. In assessing whether
the composite scores differ between two groups of data with regard to (1) the
composition of the score vector (Step 2) and (2) the group means and variances
(Steps 3a and 3b), MICOM follows a composite model logic analogous to the PLS-
SEM approach (Rigdon et al. 2017). Hence, MICOM can be used for assessing
the measurement invariance regardless of whether constructs have been specified
reflectively or formatively.

Comparing path coefficients across groups in the course of a multigroup
analysis requires establishing configural (Step 1) and compositional (Step 2)
invariance, which is equivalent to partial measurement invariance. If, additionally,
the composites have equal mean values and variances across the groups, full
measurement invariance is supported. In this case, researchers can pool the data
and interpret the results on an aggregate level. Henseler et al. (2015) provide
full details of the MICOM procedure, including simulation study results and an
empirical application (see also Schlägel and Sarstedt 2016). The establishment
of partial measurement invariance allows comparing parameters between two or
more segments for significant differences that result from the multigroup analysis.
A group-specific importance-performance map analysis (IPMA) is a particularly
useful tool comparing and interpreting the group-specific PLS-SEM results (Ringle
and Sarstedt 2016; Schloderer et al. 2014).

9.7 Step 5: Assess the Group-Specific Solutions

Provided that Step 4 of the guidelines in Fig. 9.1 indicated at least partial
measurement invariance, the researcher can test whether differences between group-
specific path coefficients are statistically significant. For this purpose, one needs to
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conduct a multigroup analysis (Hair et al. 2017a). Technically, a multigroup analysis
tests the null hypotheses that the path coefficients are not significantly different.

Standard approaches to multigroup analysis in PLS-SEM, such as the parametric
approach, permutation test, and the PLS-MGA, enable testing differences between
two segments. Among these approaches, Chin and Dibbern’s (2010) permutation
test is the most versatile approach and should be given preference (Hair et al.
2017b). When the latent class analysis involves comparing more than two segments,
researchers should make use of Sarstedt et al.’s (2011b) omnibus test of group
differences.2 The omnibus test of group differences corresponds to an F test in that
it tests for the equality of a parameter across multiple groups. The test applies a
combination of bootstrapping and permutation to derive a probability value of the
variance that the grouping variable explains. If this variance is significantly different
from zero, researchers can conclude that at least one group-specific coefficient dif-
fers significantly from the others. To test for group-specific differences, researchers
need to engage in pairwise comparisons, potentially correcting for an alpha inflation
that occurs due to multiple testing.

Alternatively, if Step 4 (Fig. 9.1) did not indicate partial (or full) measurement
invariance, researchers can only interpret the segment-specific PLS-SEM results in
isolation without testing for significant differences. In this case, respondents may
have ascribed different meanings to the construct measures, which implies that the
constructs represent different concepts in the segments.

9.8 Summary

The impact of unobserved heterogeneity on PLS-SEM results can be considerable
and, if not taken into account, may entail misleading interpretations (Becker et al.
2013). As a consequence, PLS-SEM analyses require the use of complementary
latent class techniques, such as FIMIX-PLS, which allow testing for and treating
unobserved heterogeneity (Hair et al. 2017c). Running such a latent class analysis
is far from trivial, as it requires several choices that, if made incorrectly, can lead
to incorrect findings, interpretations, and conclusions. For this reason, this chapter
raises and discusses key aspects that are fundamental to a full and adequate under-
standing of how to uncover and treat unobserved heterogeneity in PLS-SEM. These
include (1) the determination of the number of segments, (2) their specification
by means of explanatory variables, (3) the comparison of path coefficients across
segments by means of multigroup analysis, and (4) the requirements for doing so
(i.e., the establishment of measurement invariance).

This chapter offers guidelines (Fig. 9.1) on how to systematically address the
issue of unobserved heterogeneity following a multi-method approach, which draws

2The following link gives access to a Microsoft Excel file that supports computing the omnibus
test of group differences for more than two segments: http://derwinchan.iwopop.com/MG-PLS.

http://derwinchan.iwopop.com/MG-PLS
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on a combination of FIMIX-PLS and more advanced latent class techniques such as
PLS-POS, PLS-GAS, or PLS-IRRS. These guidelines help researchers decide if
unobserved heterogeneity affects their results and how to address these issues by
partitioning their data into different segments. If unobserved heterogeneity is not a
critical issue, researchers’ FIMIX-PLS results substantiate that they can analyze the
data on the aggregate level.
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Appendix

Table 9.3 Examples of FIMIX-PLS applications

Topic Publication

Auction bidders’ behavior Mancha et al. (2014)
Behavior of supermarket shoppers Teller and Gittenberger (2011)
Brand equity Valette-Florence et al. (2011)
Brand loyalty Loureiro (2012), Loureiro and Miranda (2011)
Brand value Barnes and Mattson (2011),
Competitiveness in tourism destinations Mazanec and Ring (2011)
Corporate reputation Matthews et al. (2016), Sarstedt and Ringle (2010)
Customer satisfaction Hahn et al. (2002), Human and Naudé (2014),

Rigdon et al. (2011), Ringle et al. (2010a, b)
Dynamic capabilities Wilden and Gudergan (2015)
Environmental orientation of firms Mondéjar-Jiménez et al. (2015)
Environmental sustainable management Ferrari et al. (2010)
Information systems user characteristics Semina and Muris (2013)
SMEs’ internet usage Caniëls et al. (2015), Lenaerts and Gelderman

(2015)
Knowledge sharing Stewart Jr. et al. (2015)
Perceived value Jiménez-Castillo et al. (2013)
Performance of organizations Oyewobi et al. (2016)
Sport sponsorship Alonso-Dos-Santos et al. (2016)
Stakeholder segmentation Money et al. (2012)
Strategic marketing management Navarro et al. (2011)
Switching costs in the ICT industry Matzler et al. (2015)
Tourism management Marques and Reis (2015)

http://www.smartpls.com
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Chapter 10
Applying Multigroup Analysis in PLS-SEM:
A Step-by-Step Process

Lucy Matthews

Abstract This book chapter identifies the importance and different uses for multi-
group analysis, such as research interests in cross-cultural or gender differences.
Multigroup analysis via partial least squares structural equations modeling, which
tests a single structural relationship at a time, is an effective way to evaluate
moderation across multiple relationships versus standard moderation. Step-by-step
instructions and guidelines using SmartPLS 3.0 are provided using a sample dataset.
The instructions include an assessment of the measurement characteristics of the
constructs by including the MICOM procedure, which adds an additional level of
accuracy. Examples of both positive and negative outcomes as well as potential
solutions to problems are provided in order to help users understand how to apply
multigroup analysis to their own dataset. By using multigroup analysis, researchers
are able to uncover differences of subsamples within the total population that is
not evident when examined as a whole. Researchers having the ability to run
multigroup analysis considerably improve the likelihood of identifying significant
and meaningful differences in various relationships across group-specific results.

10.1 Introduction

Many research studies report their findings based on an analysis of a single
population. Unfortunately, studies that pool data as a single population fail to
assess whether there are significant differences across two or more subgroups
of data (Chin and Dibbern 2010). As a result, interpreting results from a single
population can be misleading (Sarstedt et al. 2016a). But if categorical moderating
variables are available in the dataset, group-specific path coefficient estimates
that are significantly different can be identified efficiently, thereby accounting for
observed heterogeneity (Sarstedt et al. 2011) and minimizing the potential for
misrepresentation of the results (Sarstedt et al. 2009).
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Multigroup analysis (MGA) or between-group analysis as applied using partial
least squares structural equations modeling (PLS-SEM) is a means of testing prede-
fined data groups to determine if there are significant differences in group-specific
parameter estimates (e.g., outer weights, outer loadings, and path coefficients) (Hair
et al. 2014a; Henseler and Chin 2010). By applying MGA, researchers are therefore
able to test for differences between two identical models for different groups. The
ability to identify the presence or absence of multigroup differences can be based
on either a bootstrapping or permutation result for every group. Partial least squares
structural equation modeling multigroup analysis (PLS-MGA) can be instrumental,
therefore, in identifying differences among a priori-specified groups within the
dataset (e.g., Hair et al. 2014a; Horn and McArdle 1992; Keil et al. 2000).

MGA is particularly useful for globally focused research, such as cross-cultural
studies. For example, the method has been used to compare antecedents of market
orientation across three countries (Brettel et al. 2008), to test the determinants and
outcomes of cultural intelligence (Schlagel and Sarstedt 2016), and to examine
company stakeholder orientation in five European countries (Patel et al. 2016).
Alternatively, MGA has been used to understand the differences between consumers
with high vs. low tendency toward loyalty (Picon-Berjoyo et al. 2016). This type of
analysis enabled researchers to uncover differences between groups such as the low
impact of switching costs for individuals exhibiting high loyalty (Picon-Berjoyo et
al. 2016). Additionally, by gaining insight into group differences, a more accurate
assessment is conducted, and strategy implementation based on the outcomes can
be more specific for the heterogeneous groups in the data. Finally, the differences
can highlight the error associated with incorrectly treating these subpopulations as
a single homogeneous group (Schlagel and Sarstedt 2016).

MGA via PLS-SEM is an efficient way to assess moderation across multiple
relationships as opposed to standard moderation, which examines a single structural
relationship at a time (Hair et al. 2010, 2011, 2012c). According to Hair et al.
(2014a, p. 246) “...this approach offers a more complete picture of the moderator’s
influence on the analysis results as the focus shifts from examining its impact on
one specific model relationship to examining its impact on all model relationships.”

Continuous moderators are relatively easy to examine in PLS-SEM, but deserve
special attention. They are often measured with multiple items, which will increase
the predictive validity compared to single-item measurements (Diamantopoulous
et al. 2012; Sarstedt et al. 2016b). Within the context of moderation, this can be
particularly problematic as moderation is usually associated with rather limited
effect sizes (Aguinis et al. 2005). As a result, any lack of predictive power makes
it more difficult to identify significant relationships. Moreover, when modeling
moderating effects, the measurement model construct is contained in the model
twice. The construct is the moderator variable itself in addition to being in the
interaction term. The result amplifies the limitations of single-item measurement
when used to execute moderation.
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10.2 Overview of Steps for Running MGA in PLS-SEM

Comparison of group-specific outcomes can be undertaken in three simple to apply
steps, thus increasing the rigor of the data analysis and reducing misleading results.
An overview of the steps (Fig. 10.1) is provided as an introduction to the process
that draws upon information from Hair et al. (2014a). The overview is followed
by an in-depth discussion of each step, including examples for an easy application
to your own dataset. To facilitate the discussion, the SmartPLS software is used to
describe the process (Ringle et al. 2015).

Step 1 involves generating data groups that are based on the categorical variable
of interest [e.g., gender (Rutherford et al. 2011), country of origin (Brettel et al.
2008), urban vs. rural (Rasoolimanesh et al. 2016)]. Data groups are generated in
SmartPLS by double-clicking on the data for the model of interest and selecting
“Generate Data Groups.” A name can be specified for the group being generated,
and then, the group is established by selecting the categorical variable of interest
from your dataset. For example, if your theory or judgment suggests that males and
females produce different results, then your analysis would be set up to examine
gender. For more extensive analyses, more than one categorical variable can be
selected (e.g., gender and marital status), which would create multiple outcome
groups (single female, single male, married females, married males, etc.). For the
example in this chapter, however, a single categorical variable will be used.

After specifying the variable of interest, the data groups are generated. Output
is provided on a separate tab labeled “data groups.” The groups are listed based on
the coding of your data. Additionally, the number of records for each data group is
provided. Each line item can be edited to rename the subgroup a more identifiable
name [e.g., female, rather than gender (1.0)]. Once the data is subdivided, it is
important to confirm that the new subgroups are large enough and comparable in
size so as not to introduce error (Becker et al. 2013; Hair et al. 2014a). The minimum
sample size recommendation in PLS-SEM has differing views by researchers.
One view is that the number of responses for each subgroup should equal (or be
comparable to) the sample size recommendations for a statistical power of 80%,
as recommended by Cohen (1992) and Hair et al. (2014a). Groups with fewer
observations than that recommended for a statistical power of 80% in most situations
should not be used (Table 10.1).

Alternatively, Kock and Hadaya (2016) analyze the gamma-exponential method
and the inverse square root method. They demonstrate that while the gamma-
exponential method is much more complex of an application, for PLS-SEM users
who are not methodological researchers, the inverse square root method may be
a simpler equation for minimum sample size estimations at the early stage of the
research design (Table 10.2) (Kock and Hadaya 2016). Although the method leads
to a small overestimation, the slight imperfection allows for a safe minimum sample
size (Kock and Hadaya 2016).

Step 2 involves using the three-step procedure to analyze the measurement
invariance of composite models (MICOM) (Henseler et al. 2016). Measurement
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Fig. 10.1 Guidelines for
running MGA in PLS-SEM Step 1 – Generate Data Groups

Step 2 – Test for Invariance

- Select the categorical variable of interest
- Name the groups appropriately

- Measurement invariance of composite models
(MICOM) – Three Step Process

- Confirm that groups are large enough for
  statistical power

MICOM-Step 1 – Configural Invariance

MICOM - Step 2 – Compositional Invariance

- Identical Indicators

- Original Correlation is greater than or
  equal to the 5% quantile
- If the Original Correlation is smaller than
  the 5% quantile, then measurement
  invariance is not established (Can not
  proceed)

- Identical Data Treatment
- Identical Algorithm Settings/Criteria

Step 3 – Analyze & Interpret
Permutation Results

MICOM - Step 3 – Composite Equality

- Mean Original Difference falls between
 the 2.5% and 97.5% boundaries

- Run PLS Algorithm and Bootstrapping for each
   group separately
- Under Path Coefficients Output, look for p-
  values less than (<) 0.10 for significant
  differences between groups

- Only one of the two above (Mean or
  Variance Original Difference) falls
  between the 2.5% and 97.5% boundaries

- Neither Mean nor Variance Original
  Difference falls between the 2.5% and
  97.5% boundaries (Can not proceed).

- Variance Original Difference falls
  between the 2.5% and 97.5% boundaries
 

Full Invariance:

No Invariance:

AND

Partial Invariance:



10 Applying Multigroup Analysis in PLS-SEM: A Step-by-Step Process 223

Table 10.1 Sample size recommendation in PLS-SEM for a statistical power of 80% (Cohen
1992; Hair et al. 2014a)

Maximum Significance level
number of 1% 5% 10%
arrows pointing Minimum R2

at a construct 0.10 0.25 0.50 0.75 0.10 0.25 0.50 0.75 0.10 0.25 0.50 0.75

2 158 75 47 38 110 52 33 26 88 41 26 21
3 176 84 53 42 124 59 38 30 100 48 30 25
4 191 91 58 46 137 65 42 33 111 53 34 27
5 205 98 62 50 147 70 45 36 120 58 37 30
6 217 103 66 53 157 75 48 39 128 62 40 32
7 228 109 69 56 166 80 51 41 136 66 42 35
8 238 114 73 59 174 84 54 44 143 69 45 37
9 247 119 76 62 181 88 57 46 150 73 47 39

10 256 123 79 64 189 91 59 48 156 76 49 41

Table 10.2 Alternative sample size recommendation in PLS-SEM using inverse square root
method (Kock and Hadaya 2016)

Maximum number of arrows Minimum R2 in the model
pointing at a construct 0.10 0.25 0.50 0.75

2 110 52 33 26
3 124 59 38 30
4 137 65 42 33
5 147 70 45 36
6 157 75 48 39
7 166 80 51 41
8 174 84 54 44
9 181 88 57 46

10 189 91 59 48

invariance (also referred to as equivalence) is a means of determining if the mea-
surement models specify measures of the same attribute under different conditions
(Henseler et al. 2015, 2016). This is a critical issue that must be addressed in MGA.
Testing for measurement invariance determines “whether or not, under different
conditions of observing and studying phenomena, measurement models yield
measures of the same attribute” (Henseler et al. 2015, p. 117). When measurement
invariance is established, researchers can conclude that different model estimation
parameters are not the result of the distinct content or meaning of the latent
variables/constructs that comprise the measurement model of any one group (Chin
and Dibbern 2010; Henseler et al. 2016). Additionally, by not establishing invari-
ance in the measurement model constructs, measurement error may be introduced
leading to biased results (Hult et al. 2008). Therefore, when analyzing differences
between groups, type II errors are minimized (Hult et al. 2008), and the resulting
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differences are the result of actual group-specific differences in the parameters
and not measurement invariance (Henseler et al. 2016). The MICOM procedure
compares group parameters and identifies if there is no measurement invariance,
partial measurement invariance, or full measurement invariance (Henseler et al.
2016).

In Step 3, results of the statistical tests for multigroup comparisons are assessed.
A number of approaches can be used to compare the path coefficients of the group
SEMs. Three tests are included in the SmartPLS MGA (PLS-MGA) option—
Henseler et al.’s (2009) PLS-MGA procedure, parametric, and Welch-Satterthwaite.
A fourth approach to making group comparisons—permutation (Hair et al. 2014a;
Henseler et al. 2016)—is a separate option in the SmartPLS software. The paramet-
ric test results tend to be liberal and subject to type I errors and are also limited
because they are based on distribution assumptions that are not consistent with
the nonparametric PLS-SEM method (Hair et al. 2017b; Sarstedt et al. 2011). The
Welch-Satterthwaite test is a variant of the parametric test, but does not assume
equal variances when comparing the means of two groups. The Henseler et al.’s
PLS-MGA procedure (Henseler et al. 2009) and the permutation test are both
nonparametric approaches. The Henseler et al.’s PLS-MGA procedure (Henseler
et al. 2009) approach is included in the regular multigroup option. The Henseler
et al.’s PLS-MGA procedure (Henseler et al. 2009) derives a probability value
for a one-tailed test by comparing each bootstrap estimate of one group to all the
bootstrap estimates of the same parameter in the other group (Hair et al. 2011).
While considered to be an appropriate test, the results may be a bit challenging to
interpret due to the one-tailed test. Moreover, since bootstrap distributions are not
necessarily symmetrical, the Henseler et al.’s PLS-MGA procedure (Henseler et al.
2009) cannot be used to test two-tailed hypotheses. In contrast, the permutation
test is a separate option and is run during Step 2 of the analysis as part of the
test for measurement invariance. The output of the path coefficients from the
measurement invariance option is another means of comparing the path coefficients
of the subgroups. The permutation test is more conservative than the parametric
test and controls well for type I error. Moreover, most researchers recommend the
permutation test (Hair et al. 2017b); therefore, that approach is examined in this
chapter.

10.3 Example Application of PLS-MGA

As a means of providing clarity for the execution of these steps, examples are
provided for each step. The examples include output and explanation for the results
that are the primary focus of the analysis. The next section revisits each step in the
PLS-MGA process and provides specific details and interpretation.
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10.3.1 Step 1: Generate Data Groups

Before executing an MGA, you must generate groups in your data. When you
do this, the analysis is able to statistically assess the differences between the
group-specific parameters, most often path coefficients resulting from different
subpopulations (Brettel et al. 2008; Grewal et al. 2008). This procedure enables
researchers to evaluate observed heterogeneity in model relationships (Lohmöller
1989).

MGA is similar to moderator analysis where the moderator is a categorical
variable, and it is anticipated that the moderator will affect at least one and perhaps
all of the model relationships (Sarstedt et al. 2011). The models in Fig. 10.2 examine
the differences between female and male sales representatives. The question to
be investigated is “Do the sales roles of females and males differ with regard to
autonomy, skill discrepancy, and cognitive engagement?”

[+]

[+] [+]

Skill
Discrepancy

Autonomy Cognitive
Engagement

[+]

[+] [+]

Skill
Discrepancy

Autonomy Cognitive
Engagement

Significant Difference?

Group 1: Females

Group 2: Males

Fig. 10.2 Categorical variable PLS-MGA example
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The data used for the examples in this chapter was collected via a Qualtrics
online panel of business-to-business salespeople. After removal of one outlier and
two straight-line responses, the final sample size is 235. The outlier identified
himself or herself as a business-to-business salesperson, but when responding to
the number of customers, these respondents stated 10,000 customers while the
remaining respondents identified a number in the range of 1–400. Since a portion of
the research is related to levels of customer service, this participant was identified
as being more closely related to retail rather than business to business and was
therefore removed. The questionnaire employed established scales, when available.
Modifications were made to adapt the scales to the context of sales.

Recall that the sample sizes of the subpopulations must be large enough to
meet statistical power guidelines. Therefore, groups that do not meet sample size
recommendations should not be utilized. You may consider combining one or more
smaller groups with another group if the groups exhibit similar characteristics.

For this example, the sample size for the female subgroup is 101 and for the
male subgroup is 134. Each of these subpopulations exceeds the minimum for the
theoretical model in Fig. 10.2 that has two arrows pointing at a construct—i.e.,
cognitive engagement (10% with a minimum R2 of 0.10 D 88). In order to exceed
the minimum R2 of 0.10 at a 5% significance level, both the male and female
subgroups would need to exceed 110 (Hair et al. 2014a). Ultimately, subsamples
of 158 for both males and females would provide a significance level of 1%.

The two subpopulations (male and female) meet the minimum sample size
criteria, but are not the same size. While two subpopulations do not have to be
exactly the same size, they do need to be comparable in size. The guideline to
consider regarding group sample size differences is when one group is more than
50% larger than the other, the difference is likely to bias the results of the statistical
test of differences (Hair et al. 2016a). The recommended procedure when confronted
with groups that differ substantially in sizes, therefore, is to randomly withdraw
respondents from the larger subgroup (males) to make the groups comparable in
size, with each subpopulation totaling 101 (Hair et al. 2016a). Another option, when
possible, is to collect more data for the subgroup with the smaller sample size. When
the sample sizes of the groups are considered comparable, it is appropriate to move
to Step 2. Note that the groups are not required to be the exact same sample size but
should be comparable to avoid producing biased results (Hair et al. 2017b).

The theoretical model for the example (Fig. 10.2) includes three constructs:
autonomy, skill discrepancy, and cognitive engagement. Autonomy measures the
extent to which salespeople have the freedom to determine which customers are
pursued or not, how resources should be distributed among the firm’s customers, as
well as which customer relationships to continue and which to end. The autonomy
construct had 13 items and was measured using 7-point Likert-type scales (rho_A D
0.954 male sample, 0.973 female sample; AVE D 0.600 male sample, 0.608 female
sample). The skill discrepancy construct had four items and was measured using 11-
point (0–10) Likert-type scales (rho_A D 0.915 male sample, 0.860 female sample;
AVE D 0.785 male sample, 0.69 female sample). Finally, the cognitive engagement
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construct had five items measured using 11-point Likert-type scales (rho_A D
0.940 male sample, 0.942 female sample; AVE D 0.773 male sample, 0.797 female
sample) (Table 10.3). In addition to meeting recommended guidelines for reliability
and convergent validity, the heterotrait-monotrait ratio (HTMT) was used to assess
discriminant validity. All measures were well below the 0.90 thresholds, thus
indicating discriminant validity (Hair et al. 2014a) (Table 10.4).

To generate the subpopulations within the dataset in SmartPLS, go to the Project
Explorer window and identify the dataset your model is using. Next, double-click on
the data icon for your model. The “Generate Data Groups” icon will appear at the top
of your SmartPLS screen. You will need to assign an initial name for your groups.
The name can be edited to be more specific once the subpopulations have been
established. Next, the categorical variable of interest is selected in the group column
section (see Fig. 10.3). Note that more than one group variable can be included in
the analysis (e.g., gender and age), but only one group variable will be discussed in
the example for this chapter. The “Prune groups” option can remain at the default
of 10 for the initial processing. Groups can be manually pruned (eliminated) after
they are generated if the subpopulation is not large enough to meet statistical power
guidelines (Cohen 1992; Hair et al. 2014a).

As noted earlier, the categorical variable we are using in this analysis is gender.
After specifying the overall group name of gender, the output displayed in the
data groups tab indicates two groups were generated (see Fig. 10.4). The first
group is specified as Group_Gender_Q31_Gender(1.0) and shows the number of
records (responses) associated with that group. The second group is specified as
Group_Gender_Q31_Gender(2.0) and shows the number of respondents associated
with this particular group. To rename these initial group labels, highlight (click on)
the row for the first group, and two buttons will appear on the right side of the row
(Delete and Edit). By selecting the edit button, the group name can be edited for this
subpopulation. In this case, the coding for gender 1.0 represents the male portion of
the population. Therefore, the group name is revised to read male (see Fig. 10.5).
Similarly, Group_Gender_Q31_Gender(2.0) is renamed female.

10.3.2 Step 2: Test for Invariance

The next step in the process is to test for measurement invariance. To test for
measurement invariance in PLS-SEM, the MICOM procedure is executed (Henseler
et al. 2016). This procedure requires three steps to test for configural and com-
positional invariance, as well as equality of composite mean values and variances
(Henseler et al. 2016).

The first step in the MICOM procedure involves examining configural invariance
(Henseler et al. 2016). The assessment of configural invariance consists of an
evaluation of the measurement models for all groups to determine if the same basic
factor structure exists in all the groups (same number of constructs as well as items
for those constructs). Establishing configural invariance involves the fulfillment of
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Fig. 10.3 Assign initial name to group and selection of categorical variable

Fig. 10.4 Subpopulations generated

Fig. 10.5 Subpopulation Group_GENDER_Q31_GENDER(1.0) is renamed to male
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the following criteria: (a) identical indicators per measurement model, (b) identical
data treatment, and (c) identical algorithm settings or optimization criteria (Henseler
et al. 2016). All measurement indicators must be included in the constructs across
all groups.

The execution of the MICOM procedure includes reviewing the process that
was followed during the survey development. Specifically, this evaluation involves
a further qualitative assessment of the items to ensure the constructs were initially
designed as equivalent. For example, with international studies, translation and back
translation practices should have been employed. Additionally, all the data must
have been treated identically (e.g., dummy coding, reverse coding, or other forms
of recoding, standardization, or missing value treatment). Outliers should also be
identified and treated in a similar manner. The items loading on each construct must
be invariant across groups as well. Finally, algorithm settings must be identical, and
optimization criteria should be applied (Henseler et al. 2016). All of these guidelines
are observed to ensure that a composite is a unidimensional entity with the same
nomological net across all the groups (Henseler et al. 2016). If all of the above
criteria have been met, which is the case for the present example, then configural
invariance is established.

The objective of the second step of the MICOM procedure is to examine
compositional invariance, which occurs when composite scores are created equally
across groups (Dijkstra and Henseler 2011). Permutation tests are also conducted
to statistically assess whether compositional invariance is present. Permutation tests
are nonparametric (Henseler et al. 2016). For each permutation run, the correlations
between the composite scores using the weights obtained from the first group are
computed against the composite scores using the weights obtained from the second
group (Henseler et al. 2016).

First, select calculate, then Permutation. Under Setup (see Fig. 10.6), specify the
desired subpopulations for Group A and Group B. Permutations should be set at
5000. The test type option generally can remain at the two-tailed default as can
the significance level of 0.05. But if the sample sizes are smaller and directional
hypotheses are involved, a one-tailed test can be applied. Parallel Processing can
also remain as the default. Under the Partial Least Squares tab, the Maximum
Iterations should be set to 5000, and the Weighting Scheme should remain on Path.
The Stop Criterion defaults to 7, but can be adjusted to another small number, such
as 5. With regard to missing values, mean replacement is recommended when there
are less than 5% of the values missing per indicator (Hair et al. 2014a). Casewise or
listwise deletion removes all cases from the analysis that include missing values in
any of the indicators used. This may result in a much lower dataset due to missing
values. Pairwise deletion uses all observations that contain complete responses for
the calculations within the model parameters. Therefore, based on the volume of
missing data, select the appropriate setting. The default is set to Mean Replacement.
All other defaults are appropriate (e.g., No Weighting Vector).

After the calculation, the output report will default to the Path Coefficients. Under
the Quality Criteria options at the bottom of the screen, the desired output report is
MICOM. Tabs are available in the MICOM results for the second and third steps.
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Fig. 10.6 Setup for permutation

The MICOM permutation results report also includes the subsequent Step 3 portion
of the MICOM procedure (Henseler et al. 2016).

We continue our example with the three-construct theoretical model that exam-
ines gender and salesperson roles. As shown in Table 10.5, the MICOM results
report for the second step which indicates that compositional invariance has been
demonstrated for all the constructs. This is evident based on the original correlations
being equal to or greater than the 5.00% quantile correlations (shown in the 5%
column).

A permutation test compares the composite scores of the first and second group to
determine if the correlation c is significantly different from the empirical distribution
of cu (represented by the 5.00% quantile) (Henseler et al. 2016). If the results
indicate that compositional invariance is a problem for one or more of the constructs,
items can be deleted from the constructs in an effort to achieve invariance. Another
much less desirable option is to remove entire constructs from the group-specific
comparisons, provided that doing so is supported by theory (Henseler et al. 2016).

The next step is to evaluate the results tab for the third step of the MICOM
procedure. Table 10.6 shows the first portion of the results. In this step, we assess the
composites’ (constructs) equality of mean values and variances across the groups.
For invariance to be established, the first column (mean original difference) must
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Table 10.5 MICOM Step 2 results report

Original correlation
Correlation
permutation mean 5.00%

Permutation
p-values

Autonomy 0.99 0.995 0.987 0.093
Cognitive engagement 0.999 0.998 0.995 0.485
Skill discrepancy 0.999 0.998 0.994 0.722

Table 10.6 MICOM Step 3 results report—part 1

Mean original
difference (males
� females)

Mean permutation
mean difference
(males � females) 2.50% 97.50%

Permutation
p-values

Autonomy 0:098 �0:005 �0.268 0.245 0.442
Cognitive
engagement

0:117 �0:006 �0.253 0.26 0.4

Skill
discrepancy

�0:217 0:001 �0.245 0.269 0.088

Table 10.7 MICOM Step 3 results report—part 2

Variance original
difference (males
� females)

Variance permutation
mean difference
(males � females) 2.50% 97.50%

Permutation
p-values

Autonomy �0.207 0.011 �0.378 0.398 0.242
Cognitive
engagement

�0.544 0.014 �0.518 0.495 0.03

Skill
discrepancy

0.187 0.002 �0.581 0.586 0.569

be a number that falls within the 95% confidence interval. This is assessed by
comparing the mean original difference to the lower (2.5%) and upper (97.5%)
boundaries shown in columns three and four. If the mean original difference is a
number that falls within the range of the lower and upper boundaries, then the first
part of step three has been met, thus providing initial evidence of invariance. The
constructs in Table 10.6 all pass this portion of the test for invariance.

The second portion of the results for the MICOM step three is shown in
Table 10.7. Within SmartPLS, these results will appear to the right of the output
presented in Table 10.6. Additionally, for illustration purposes, the construct titles
have been displayed again with the output for this second assessment. Similar
to the assessment conducted using Table 10.6, the data in column one (variance
original difference) must be a number that falls within the 95% confidence interval.
Therefore, the first column is again compared to the lower (2.5%) and upper
(97.5%) confidence interval. In order to conclude full measurement invariance
for the composites (Henseler et al. 2016), all the constructs must fall within the
95% confidence interval. However, in Table 10.7, note that the variance original
difference value for the construct cognitive engagement does not fall within the
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95% confidence interval. The first portion of Step 3 (Table 10.6) indicated partial
invariance for cognitive engagement. But the construct did not meet the guidelines
in this step for establishing full invariance. Therefore, only partial invariance is
confirmed for this construct. Partial invariance is present when a construct passes
only one of the two confidence interval tests, as illustrated with the example shown
in Tables 10.6 and 10.7. The permutation p-values greater than 0.05 in Table
10.6 provide additional support for the cognitive engagement construct passing the
measurement invariance test.

By establishing full measurement invariance, the composites (measurement
models) of the two groups can be analyzed using the pooled data. However, using
such pooled data without first establishing full measurement invariance could be
misleading if there are differences in the structural model that have not been
accounted for (Henseler et al. 2016).

If a construct does not pass the third MICOM step (e.g., had cognitive engage-
ment failed both tests in Tables 10.6 and 10.7), and there is a significant difference
in the composites’ equality of mean values and variances across groups, then that
construct should be removed from the analysis. Another possibility, however, is
the group differences in the structural model can be accounted for by using the
non-invariant construct as a moderator (e.g., cognitive engagement could be the
moderator) (Henseler et al. 2016). This would be similar to using gender as the
moderator. That is, since we know there are differences in the measurement for
the construct, it could be used as the categorical variable of interest. For example,
respondents with high cognitive engagement could be compared to those with low
cognitive engagement. Using a mean or median split to divide the respondents into
high and low groups is not a good approach since the division into groups is arbitrary
and non-theoretical. Rather, a better methodology is to apply a cluster analysis to
the variable/construct to identify high and low groups (Hair et al. 2016a).

10.3.3 Step 3: Analyze and Interpret Permutation Results

Once invariance is established, the focus is to determine if the path coefficients of
the theoretical models for the two groups are significantly different. We will first
begin by analyzing the group separately prior to determining if there are group-
specific differences. In order to run each group separately, a data file containing
only the male participants and another containing only the female participants is
needed. For this example, those files were generated in SPSS, converted to .csv
files, and imported into my current project. Therefore, this project in SmartPLS
contains one model and three data files. Using the guidelines set out for evaluation
of a measurement model (Hair et al. 2014a), run the model for each group separately.
As noted in Table 10.8, the relationship between autonomy and skill discrepancy is
significant for males (p-value D 0.00) and is not for females (p-value D 0.222). The
other relationships, autonomy and cognitive engagement as well as skill discrepancy
and cognitive engagement, do not indicate a major difference between males and
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females. Next, it is necessary to determine if the difference between the two
groups is significant. This can be accomplished by returning to the output for the
permutation test.

The permutation test results were obtained as a part of testing for measurement
invariance. As you may recall, when running the permutation test, the output reports
were set to default on the path coefficient output. If you again review the permutation
output reports, you will note that the initial column under the path coefficient
results (see Table 10.9) displays the hypothesized structural relationships. The
next two columns show the original path coefficients for the groups of interest,
in this example, males and females. The following two columns indicate the path
coefficient original differences as well as the permutation mean differences, which
are followed by the lower and upper boundaries for the 95% confidence interval.
The final column contains the permutation p-Value. A permutation p-value of less
than or equal to 0.10 designates a significant difference between the two groups
of interest. The relationship between autonomy and skill discrepancy indicates a
significant difference between males and females. This is evident by the permutation
p-value of 0.04 in Table 10.9.

Using the information from the group-specific bootstrapping as well as the above
permutation test, we can now indicate that there is a significant difference between
male and female salespeople as it relates to autonomy and skill discrepancy. This
is important for sales managers to understand. Specifically, the findings reveal that
male and female salespeople operate differently in their roles as salespersons. For
example, there is a significant relationship between autonomy and skill discrepancy
for male salespersons, as well as a significant relationship between skill discrepancy
and cognitive engagement. Therefore, skill discrepancy partially mediates the
relationship between autonomy and cognitive engagement. Since sales managers
want their sales force to be cognitively engaged in the sales process, these findings
indicate that for males, autonomy is indirectly related to sales engagement, as well
as being directly related. In contrast, the link between autonomy and skill discrep-
ancy is not significant for females, indicating that skill discrepancy does not mediate
the relationship between autonomy and cognitive engagement. Therefore, additional
research is needed to identify alternative antecedents for female salespersons that
will lead to stronger cognitive engagement in their sales roles.

MGA allows researchers to determine significant differences among observed
characteristics such as age, gender, or country of origin. While the path coefficients
for the partitioned groups will almost always indicate numerical differences,
understanding when those differences are significant is the role that MGA plays.
These differences may not be evident in aggregate data since significant positive
and negative group-specific results may offset one another.
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10.4 Summary

Virtually, all previous social sciences research focused on understanding a sin-
gle sample of data. Researchers examined the total sample, without considering
subsamples, primarily because they assumed this approach provided an accurate
understanding of the findings. They also analyzed the total sample findings because
there were limited scientific, rigorous analytical procedures to divide the sample
into meaningful subgroups. The most widely applied approach was to use the-
oretical a priori-defined simple approaches, such as size of firms, age, gender,
or income. While helpful, subgroup analyses based on a priori-defined groups
often did not assess measurement characteristics and were typically limited to
attempting to understand a single relationship or model parameter. What was lacking
was a simple, straightforward, efficient method for examining multiple relation-
ships/parameters simultaneously and efficiently. The PLS-MGA, particularly in
combination with assessing invariance, represents considerable progress in filling
this void for researchers that are using PLS-SEM.

PLS-MGA substantially improves the ability of researchers to identify mean-
ingful and significant differences in multiple relationships across group-specific
results (Picon-Berjoyo et al. 2016; Sarstedt et al. 2014; Schlagel and Sarstedt 2016).
Specifically, multiple model parameters can be examined simultaneously, and if
statistically significant differences are present in the theoretical model, they can
be efficiently identified. Moreover, in combination with the MICOM procedure,
researcher can add an additional level of accuracy to their findings by including
an assessment of the measurement characteristics of their constructs. Since research
that does not examine group-specific differences often leads to misinterpretation of
the results (Hult et al. 2008), it is important for researchers to apply this procedure
when meaningful subgroups are present in the data or when they are subsequently
identified using methods for assessing unobserved heterogeneity in sample data.

A primary concern of social science researchers, when comparing path coef-
ficients among groups, should be to confirm that the construct measures are
equivalent across the groups. Therefore, testing for measurement invariance is
necessary to avoid introducing bias into research findings (Hair et al. 2014a;
Henseler et al. 2016). MGA can be easily executed by following the approach
provided in this chapter (Fig. 10.1): Step 1, Generate Data Groups; Step 2, Test for
Invariance; and Step 3, Analyze and Interpret Results. By observing and following
the guidelines, predefined data groups can be examined using PLS path modeling,
and if meaningful and significant differences are present in the data, they can
be reported and explained (Hair et al. 2014a, 2017b; Lohmöller 1989), therefore
improving the rigor of research publication practices (Hair et al. 2012a, b, 2013,
2014b; Sarstedt and Mooi 2014) and improving our understanding of previously
misunderstood theoretical relationships.

This study focused on differences between two groups; however, there are
times when more than two groups are involved. Future research should provide
step-by-step instructions on comparing more than two groups. Additionally, this
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study explained the permutation procedure for conducting MGA. Since there are
several means of conducting MGA, future research is needed that compares the
various methods of MGA to better understand the differences in the results of each.
Similarly, since the introduction of consistent PLS (PLSc) (Dijkstra and Henseler
2015), MGA has yet to be combined with that process to determine the proper use
of traditional bootstrapping and consistent bootstrapping. Finally, the guidelines
provided for conducting a MGA with PLS-SEM include the MICOM test for
invariance; future research should explore the possibility of simplifying the process
allowing for simultaneous assessment of configural and compositional invariance.
Finally, due to the controversy over minimum sample size, the establishment of a
procedure to test for a lack of statistical power due to sample size is encouraged.

Beyond the analysis conducted in this chapter based on a priori knowledge,
researchers should also conduct an analysis to examine potential differences that
may not have been identified via a priori-defined categorical variables. That is,
unobserved heterogeneity should be examined (Hair et al. 2016b; Jedidi et al.
1997; Matthews et al. 2016; Sarstedt et al. 2018). Both MGA and tests to uncover
unobserved heterogeneity can be used to identify differences among subpopulations
within a larger dataset. MGA, however, uses categorical variables that have been
identified a priori and collected in the dataset. However, sources of such differences
can be difficult to identify; therefore, recent methods such as PLS-GAS, PLS-POS,
and PLS-IRRS can be instrumental for uncovering other areas that partition data into
groups (Hair et al. 2014a). In an effort to improve the validity of PLS-SEM results,
which continue to be enhanced (Hair et al. 2017a), researchers are encouraging the
routine application of such techniques (Hair et al. 2011, 2012c, 2013; Wilson et al.
2014).

Acknowledgments This chapter refers to the use of the statistical software SmartPLS (http://
www.smartpls.com) (Ringle et al. 2015).
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Chapter 11
Common Method Bias: A Full Collinearity
Assessment Method for PLS-SEM

Ned Kock

Abstract In the context of structural equation modeling employing the partial
least squares (PLS-SEM) method, common method bias is a phenomenon caused
by common variation induced by the measurement method used and not by the
network of causes and effects in the model being studied. Two datasets were created
through a Monte Carlo simulation to illustrate our discussion of this phenomenon:
one contaminated by common method bias and the other not contaminated. A
practical approach is presented for the identification of common method bias based
on variance inflation factors generated via a full collinearity test. Our discussion
builds on an illustrative model in the field of e-collaboration, with outputs generated
by the software WarpPLS. We demonstrate that the full collinearity test is successful
in the identification of common method bias with a model that nevertheless
passes standard convergent and discriminant validity assessment criteria based on
a confirmation factor analysis.

11.1 Introduction

The foundation on which structural equation modeling (SEM) rests owes much
of its existence to one of the greatest evolutionary biologists in history: Sewall
Wright. A key element of that foundation is the method of path analysis, which has
been developed by Wright (1934, 1960) to study causal assumptions in the field of
evolutionary biology (Kock 2011). Both path analysis and SEM rely on the creation
of models expressing causal relationships through links among variables. Two main
types of SEM find widespread use today: covariance-based and PLS-based SEM.
While the former relies on the minimization of differences between covariance
matrices, the latter employs the partial least squares (PLS) method developed by
Herman Wold (1980). PLS-based SEM is often referred to simply as PLS-SEM and
is widely used in the field of e-collaboration and many other fields. A third SEM
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type has recently been gaining increasing attention, factor-based PLS-SEM, which
combines elements of both covariance based and PLS-SEM (Kock 2014, 2015c).

Regardless of SEM flavor, models expressing causal assumptions include latent
variables. These latent variables are measured indirectly through other variables
generally known as indicators (Maruyama 1998; Mueller 1996). Indicator values
are usually obtained from questionnaires where answers are provided on numeric
scales, of which the most commonly used are Likert-type scales (Cohen et al. 2003).
Using questionnaires answered on Likert-type scales constitutes an integral part of
an SEM study’s measurement method. Common method bias is a phenomenon that
is caused by the measurement method used in an SEM study and not by the network
of causes and effects among latent variables in the model being studied.

We provide a discussion of common method bias in PLS-SEM and of a method
for its identification based on full collinearity tests (Kock and Lynn 2012). Our
discussion builds on an illustrative model in the field of e-collaboration, with outputs
from the software WarpPLS, version 5.0 (Kock 2015a). This software provides the
most extensive set of outputs of any PLS-SEM software and thus is a good choice
for our illustrative discussion.

The algorithm used to generate latent variable scores based on indicators was
PLS Mode A, employing the path weighting scheme. While this is the algorithm-
scheme combination most commonly used in PLS-SEM, it is by no means the only
combination available. The recent emergence of factor-based PLS-SEM algorithms
further broadened the space of existing combinations (Kock 2014, 2015c).

We created two datasets based on a Monte Carlo simulation (Robert and Casella
2005; Paxton et al. 2001). One of the two datasets was contaminated by common
method bias; the other was not. We demonstrate that the full collinearity test
is successful in the identification of common method bias with a model that
nevertheless passes standard validity assessment criteria based on a confirmation
factor analysis.

In our discussion, all variables are assumed to be standardized, i.e., scaled to have
a mean of zero and standard deviation of one. This has no impact on the generality
of the discussion. Standardization of any variable is accomplished by subtraction
of its mean and division by its standard deviation. A standardized variable can be
rescaled back to its original scale by reversing these operations.

11.2 What Is Common Method Bias?

Common method bias, in the context of PLS-SEM, is a phenomenon that is caused
by the measurement method used in an SEM study and not by the network of causes
and effects in the model being studied. For example, the instructions at the top of
a questionnaire may influence the answers provided by different respondents in the
same general direction, causing the indicators to share a certain amount of common
variation. Another possible cause of common method bias is the implicit social
desirability associated with answering questions in a questionnaire in a particularly
way, again causing the indicators to share a certain amount of common variation.
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Fig. 11.1 Common method
bias in a simple model with
two factors

To better illustrate this point, let us consider a simple model with two latent
variables represented by two factors F1 and F2. In this model, we hypothesize that
F1 causes F2. Because of this causal link, we expect the two factors to share common
variation but not the type of common variation that is associated with common
method bias. In other words, while the two factors are expected to be correlated, the
common variation that induces this correlation is not normally a cause of common
method bias.

This is illustrated in Fig. 11.1 where the areas within the ovals provide a
schematic representation of variation in the factors, with the shared variation being
in the overlap area, in the middle of the figure. The overlap representing shared
variation is divided into two parts: one for common variation due to measurement
method and the other for common variation due to the structural link going from F1

to F2.
Since common method bias is caused by common variation that emerges in the

measurement model (factor-indicator links) and not in the structural model (factor-
factor links), it is particularly difficult to detect and isolate. The difficulty comes
from the fact that non-pathological common variation (“good” common variation)
nearly always exists in correctly specified SEM models. Otherwise, all factors would
be uncorrelated—which would defeat the purposes of the SEM analyses in most
cases—to uncover actual associations among latent variables that may have a causal
basis.

11.3 Illustrative Model

A mathematical understanding of common method bias is likely to be useful in
clarifying some aspects of the nature of the phenomenon. The adoption of an
illustrative model can in turn help reduce the level of abstraction of a mathematical
exposition. Therefore, our discussion is based on the illustrative model depicted
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Fig. 11.2 Illustrative model

in Fig. 11.2, which is inspired by an actual empirical study in the field of e-
collaboration (Kock 2005, 2008; Kock and Lynn 2012). The illustrative model
incorporates three latent variables, each measured through six indicators. It assumes
that the unit of analysis is the firm.

The latent variables are collaborative culture (F1), the perceived degree to which
a firm’s culture promotes continuous collaboration among its members to improve
the firm’s productivity and the quality of the firm’s products; e-collaboration
technology use (F2), the perceived degree of use of e-collaboration technologies
by the members of a firm; and competitive advantage (F3), the perceived degree of
competitive advantage that a firm possesses when compared with firms that compete
with it. Mathematically, if our model were not contaminated with common method
bias, each of the six indicators xij would be derived from its latent variable Fi (of
which there are three in the model) according to Eq. (11.1), where �ij is the loading
of indicator xij on Fi, � ij is the standardized indicator error term, and !� j is the
weight of � ij with respect to xij:

xij D �ijFi C !� j�ij; i D 1 : : : 3; j D 1 : : : 6: (11.1)

Since � ij and Fi are assumed to be uncorrelated, the value of !� j in this scenario
can be easily obtained as:

!� j D
q

1 � �ij
2:

If our model were contaminated with common method bias, each of the six
indicators xij would be derived from its latent variable Fi according to Eq. (11.2),
where M is a standardized variable that represents common method variation and
!M is the common method weight (aka common method loading or the positive
square root of the common method variance):

xij D �ijFi C !MM C !� j�ij; i D 1 : : : 3; j D 1 : : : 6: (11.2)

In this scenario, the value of !� j can be obtained as:

!� j D
q

1 � �ij
2 � !M

2:
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In Eq. (11.2), we assume that the common method weight !M is the same for
all indicators. An alternative perspective assumes that the common method weight
!M is not the same for all indicators, varying based on a number of factors. Two
terms are used to refer to these different perspectives, namely, congeneric and non-
congeneric, although there is some confusion in the literature as to which term refers
to what perspective.

Note that the term !MM introduces common variation that is shared by all
indicators in the model. Since latent variables aggregate indicators in PLS-SEM,
this shared variation has the effect of artificially increasing the level of collinearity
among latent variables. As we will see later, this also has the predictable effect of
artificially increasing path coefficients.

Nevertheless, it is important to point out that in some cases, path coefficients may
be suppressed by common method variation, although this is much less common.
Latent variables are linked in pairs in SEM models, each pair including one predictor
and one criterion latent variable. If the common variation is in one direction for one
of the latent variables of a linked pair and in the other direction for the other latent
variable, then it is likely that the corresponding path coefficient will underestimate
the true value. This is illustrated in Fig. 11.3.

The scenario illustrated in the figure is one in which the use of a technology is
forced upon employees in an organization, leading to a hostile work environment.
This occurs as part of an action research study of the impact that the technology has
on employees’ performance at work. When answering questions on a questionnaire
administered as part of the study, employees consistently overestimate their use of

Fig. 11.3 Path coefficient suppression example
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the technology, due to their dislike of the technology. That is, the employees dislike
the technology so much that any use is perceived as too much use.

On the other hand, when answering questions about their performance, employ-
ees consistently underestimated their performance, due to the hostile work envi-
ronment. That is, being in a hostile work environment gives the employees the
impression that they are performing below their usual level. This common percep-
tion shared by employees, together with the common perception that they use the
technology too much, leads to a suppression of the path coefficient associated with
the causal link going from technology use to performance at work. The common
source of bias here is not the questionnaire used for data collection but the hostile
environment associated with the forced technology use.

11.4 Data Used in the Analysis

We created two datasets of 300 rows of data, equivalent to 300 returned question-
naires, with answers provided on Likert-type scales going from 1 to 7. This was
done based on a Monte Carlo simulation (Robert and Casella 2005; Paxton et al.
2001). The data was created for the 3 latent variables and the 18 indicators (6 per
latent variable) in our illustrative model.

Using this method, we departed from a “true” model, which is a model for
which we know the nature and magnitude of all of the relationships among variables
beforehand. One of the two datasets was contaminated by common method bias; the
other was not. In both datasets, path coefficients and loadings were set as follows:

ˇ21 D ˇ31 D ˇ32 D :45

�ij D :7; i D 1 : : : 3; j D 1 : : : 6:

That is, all path coefficients were set as .45 and all indicator loadings as .7. In the
dataset contaminated by common method bias, the common method weight was set
to values lightly lower than the indicator loadings:

!M D :6:

In Monte Carlo simulations where samples of finite size are created, true
sample coefficients vary. Usually, true sample coefficients vary according to a
normal distribution centered on the true population value. Given this, and since
we created a single sample of simulated data, our true sample coefficients differed
from the true population coefficients. Nevertheless, when we compared certain
coefficients obtained via a PLS-SEM analysis for the two datasets, with and
without contamination, the effects of common method bias became visible. This is
particularly true for path coefficients, which tend to be inflated by common method
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bias. As noted earlier, path coefficient inflation is a predictable outcome of shared
variation among latent variables.

11.5 Path Coefficient Inflation

Table 11.1 shows the path coefficients for the models not contaminated by common
method bias (No CMB) and contaminated (CMB). As we can see, all three path
coefficients were greater in the model contaminated by common method bias. The
differences among path coefficients ranged from a little over 20 to nearly 40%.

This path coefficient inflation effect is one of the key reasons why researchers are
concerned about common method bias, as it may cause type I errors (false positives).
Nevertheless, as illustrated earlier, common method bias may also be associated
with path coefficient deflation, potentially leading to type II errors (false negatives).

As we can see, the inflation effect can lead to marked differences in path
coefficients. In the case of the path coefficient ˇ21, the difference is of approximately
39.82%. As noted earlier, path coefficient inflation occurs because common varia-
tion is introduced, being shared by all indicators in the model. As latent variables
aggregate indicators, they also incorporate the common variation, leading to an
increase in the level of collinearity among latent variables. Greater collinearity
levels in turn lead to inflated path coefficients. One of the goals of a confirmatory
factor analysis is to assess two main types of validity in a model: convergent and
discriminant validity. Acceptable convergent validity occurs when indicators load
strongly on their corresponding latent variables. Acceptable discriminant validity
occurs when the correlations among a latent variable and other latent variables
in a model are lower than a measure of communality among the latent variable
indicators.

Given these expectations underlying acceptable convergent and discriminant
validity, one could expect that a confirmatory factor analysis would allow for the
identification of common method bias. In fact, many researchers in the past have
proposed the use of confirmatory factor analysis as a more desirable alternative to
Harman’s single-factor test—a widely used common method bias test that relies
on exploratory factor analysis. Unfortunately, as we will see in the next section,
conducting a confirmatory factor analysis is not a very effective way of identifying
common method bias. Models may pass criteria for acceptable convergent and
discriminant validity and still be contaminated by common method bias.

Table 11.1 Path coefficients ˇ21 ˇ31 ˇ32

No CMB .447 .409 .357
CMB .625 .512 .435

Note: CMB common method bias
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11.6 Confirmatory Factor Analysis

Table 11.2 is a combined display showing loadings and cross-loadings. Loadings,
shown in shaded cells, are unrotated. Cross-loadings are oblique-rotated. Acceptable
convergent validity would normally be assumed if the loadings were all above a
certain threshold, typically .5. As we can see, all loadings pass this test. This is the
case for both models, with and without common method bias contamination. That
is, both models present acceptable convergent validity.

These results highlight one interesting aspect of the common method bias
phenomenon in the context of PLS-SEM. There appears to be a marked inflation
in loadings, similarly to what was observed for path coefficients. Since convergent
validity relies on the comparison of loadings against a fixed threshold, then it follows
that common method bias would tend to artificially increase the level of convergent
validity of a model.

Table 11.3 shows correlations among latent variables and square roots of average
variances extracted (AVEs). The latter are shown in shaded cells, along diagonals.
Acceptable discriminant validity would typically be assumed if the number in the

Table 11.2 Assessing convergent validity

No CMB CMB

.742 .010 -.095 .902 .072 -.075

.730 .029 .010 .912 .060 -.100

.772 .051 -.043 .900 -.075 .054

.771 -.061 .109 .891 .004 -.064

.766 .004 .042 .913 -.085 .176

.729 -.033 -.044 .890 .026 .001

.022 .690 -.102 .011 .900 .031

-.060 .709 -.027 -.003 .892 -.063

.049 .701 .005 .080 .893 -.113

.018 .766 .031 -.068 .921 .077

-.106 .731 .040 .020 .905 .002

.055 .766 .033 -.036 .924 .057

.022 -.003 .721 .020 -.005 .911

-.039 .029 .712 .052 -.013 .908

-.029 -.063 .693 -.003 -.012 .913

-.018 -.008 .724 -.037 .035 .909

.013 -.060 .754 -.065 -.072 .920

.041 .088 .762 .030 .065 .903

Notes: loadings are unrotated and cross-loadings are oblique-rotated; loadings shown in shaded
cells
CMB common method bias

Table 11.3 Assessing discriminant validity

No CMB CMB

.752 .447 .568 .901 .625 .785

.447 .728 .540 .625 .906 .756

.568 .540 .728 .785 .756 .911

Notes: Square roots of average variances extracted (AVEs) shown on shaded diagonal
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diagonal cell for each column is greater than any of the other numbers in the same
column.

That is, if the square root of the AVE for a given latent variable is greater than
any correlation involving that latent variable, and this applies to all latent variables
in a model, then the model presents acceptable discriminant validity. As we can
see, this is the case for both of our models, with and without common method bias
contamination. Both models can thus be assumed to display acceptable discriminant
validity.

Here, we see another interesting aspect of the common method bias phenomenon
in the context of PLS-SEM. While correlations among latent variables increase, the
same happens with the AVEs. This simultaneous increase in correlations and AVEs
is what undermines the potential of a discriminant validity check in the identification
of common method bias.

In summary, two key elements of a traditional confirmatory factor analysis are a
convergent validity test and a discriminant validity test. According to our analysis,
neither test seems to be very effective in the identification of common method bias.
An analogous analysis was conducted by Kock and Lynn (2012), which prompted
them to offer the full collinearity test as an effective alternative for the identification
of common method bias.

11.7 The Full Collinearity Test

Collinearity has classically been defined as a predictor-predictor phenomenon in
multiple regression models. In this traditional perspective, when two or more
predictors measure the same underlying construct, or a facet of such construct,
they are said to be collinear. This definition is restricted to classic, or vertical,
collinearity. Lateral collinearity is defined as a predictor-criterion phenomenon,
whereby a predictor variable measures the same underlying construct, or a facet of
such construct, as a variable to which it points in a model. The latter is the criterion
variable in the predictor-criterion relationship of interest.

Kock and Lynn (2012) proposed the full collinearity test as a comprehensive
procedure for the simultaneous assessment of both vertical and lateral collinearity
(see, also, Kock and Gaskins 2014). Through this procedure, which is fully
automated by the software WarpPLS, variance inflation factors (VIFs) are generated
for all latent variables in a model. The occurrence of a VIF greater than 3.3 is
proposed as an indication of pathological collinearity and also as an indication
that a model may be contaminated by common method bias. Therefore, if all VIFs
resulting from a full collinearity test are equal to or lower than 3.3, the model can
be considered free of common method bias.

Table 11.4 shows the VIFs obtained for all the latent variables in both of our
models, based on a full collinearity test. As we can see, the model contaminated with
common method bias includes a latent variable with VIF greater than 3.3, which is
shown in a shaded cell. That is, the common method bias test proposed by Kock and
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Table 11.4 Full collinearity
VIFs No CMB 1.541 1.472 1.739

CMB 2.619 2.347 3.720

Note: CMB common method bias

Lynn (2012), based on the full collinearity test procedure, seems to succeed in the
identification of common method bias.

While it is noteworthy that the full collinearity test was successful in the
identification of common method bias in a situation where a confirmation factor
analysis was not, this success is not entirely surprising given our previous discussion
based on the mathematics underlying common method bias. That discussion clearly
points at an increase in the overall level of collinearity in a model, corresponding
to an increase in the full collinearity VIFs for the latent variables in the model, as a
clear outcome of common method bias.

11.8 Discussion and Conclusion

Figure 11.4 summarizes key themes emerging from the results presented here.
Common method variation leads to variation that is shared by all factors (i.e.,
latent variables) in an SEM model. This leads, more often than not, to inflation
in factor-indicator loadings and linked factor-factor path coefficients. This joint
inflation makes it difficult to detect possible common method bias using classic
factor analysis and related tests. Our results demonstrate the need for a test that
unveils excessive and pathological common variation. We offer a discussion of one
such test, the full collinearity test, with promising outcomes.

There is disagreement among methodological researchers about the nature of
common method bias, how it should be addressed, and even whether it should
be addressed at all. Richardson et al. (2009) discuss various perspectives about
common method bias, including the perspective put forth by Spector (1987) that
common method bias is an “urban legend.” Assuming that the problem is real, what
can we do to avoid common method bias in the first place? A seminal source in this
respect is Podsakoff et al. (2003), who provide a number of suggestions on how to
avoid the introduction of common method bias during data collection.

Our discussion focuses on the identification of common method bias based on
full collinearity assessment, whereby a model is checked for the existence of both
vertical and lateral collinearity (Kock and Gaskins 2014; Kock and Lynn 2012).
If we find evidence of common method bias, is there anything we can do to
eliminate or at least reduce it? The answer is arguably “yes,” and, given the focus
of our discussion, the steps discussed by Kock and Lynn (2012) for dealing with
collinearity are an obvious choice: indicator removal, indicator reassignment, latent
variable removal, latent variable aggregation, and hierarchical analysis. Readers are
referred to that publication for details on how and when to implement these steps.
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Fig. 11.4 The need for the full collinearity test

Full collinearity VIFs tend to increase with model complexity, in terms of number
of latent variables in the model, because (a) the likelihood that questions associated
with different indicators will overlap in perceived meaning goes up as the size of a
questionnaire increases, which should happen as the number of constructs covered
grows and (b) the likelihood that latent variables will overlap in terms of the facets
of the constructs to which they refer goes up as more latent variables are added to a
model.

Models found in empirical research studies in the field of e-collaboration
typically contain more than three latent variables. This applies to many other fields
where path analysis and SEM are employed. Therefore, we can reasonably conclude
that our illustration of the full collinearity test of common method bias discussed
here is conservative in its demonstration of the likely effectiveness of the test in
actual empirical studies.

Kock and Lynn (2012) pointed out that classic PLS-SEM algorithms are par-
ticularly effective at reducing model-wide collinearity, because those algorithms
maximize the variance explained in latent variables by their indicators. Such
maximization is due in part to classic PLS-SEM algorithms not modeling measure-
ment error, essentially assuming that it is zero. As such, the indicators associated
with a latent variable always explain 100% of the variance in the latent variable.
Nevertheless, one of the key downsides of classic PLS-SEM algorithms is that path
coefficients tend to be attenuated (Kock 2015b). In a sense, they reduce collinearity
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levels “too much.” The recently proposed factor-based PLS-SEM algorithms (Kock
2014) address this problem. Given this, one should expect the use of factor-based
PLS-SEM algorithms to yield slightly higher full collinearity VIFs than classic PLS-
SEM algorithms, with those slightly higher VIFs being a better reflection of the true
values. Consequently, the VIF threshold used in common method bias tests should
arguably be somewhat higher than 3.3 when factor-based PLS-SEM algorithms are
used. In their discussion of possible thresholds, Kock and Lynn (2012) note that a
VIF of 5 could be employed when algorithms that incorporate measurement error
are used. Even though they made this remark in reference to covariance-based SEM
algorithms, the remark also applies to factor-based PLS-SEM algorithms, as both
types of algorithms incorporate measurement error.

Our goal here is to help empirical researchers who need practical and straightfor-
ward methodological solutions to assess the overall quality of their measurement
frameworks. To that end, we discussed and demonstrated a practical approach
whereby researchers can conduct common method bias assessment based on a
full collinearity test of a model. Our discussion was illustrated with outputs of
the software WarpPLS (Kock 2015a), in the context of e-collaboration research.
Nevertheless, our discussion arguably applies to any field where path analysis and
SEM can be used.
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Chapter 12
Integrating Non-metric Data in Partial Least
Squares Path Models: Methods and Application

Francesca Petrarca, Giorgio Russolillo, and Laura Trinchera

Abstract In this chapter we discuss how to include non-metric variables (i.e.,
ordinal and/or nominal) in a PLS path model. We present the Non-Metric PLS
approach for handling these type of variables, and we integrate the logistic
regression into the PLS path model for predicting binary outcomes. We discuss
features and properties of these PLS Path Modeling enhancements via an application
on real data. We use data collected by merging the archives of Sapienza University
of Rome and the Italian Ministry of Labor and Social Policy. The analysis of this
data measured quantitatively, for the first time in Italy, the impact of graduates’
Educational Performance on the first 3 years of their job career.

12.1 Introduction

In recent years, Italian universities have been urged to improve their understanding
of labor market demand for their graduates. Due to the ongoing crisis in Italy,
assessing young people’s employment conditions, especially those with higher
education qualifications, has become crucial.

In March 2008, the Italian government initiated administrative archives for the
labor market. Since then, all employers (individuals, companies and public entities)
are required to fill out several forms regarding the start and end dates and any
extension or alteration of their employees’ contracts. These communications are
collected in the Compulsory Communication (CO) administrative archive. In 2011,
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for the first time in Italy, the Italian Ministry of Labor archive was merged with that
of the Italian University “Sapienza,” the largest European university by enrollments
and the oldest of Rome’s four state universities. This amalgamation has generated
a new archive, UNI.CO, which we were able to use to investigate quantitatively,
for the first time in Italy, the employability of Sapienza alumni in the Italian labor
market, and how their careers develop during the first three years after graduation.

We modeled data from the UNI.CO database by means of Partial Least Squares
Path Modeling (PLS-PM). To take into account the scale of ordinal and nominal
manifest variables correctly in the outer model we introduce the Non-Metric PLS-
PM approach (NM-PLSPM) (Russolillo 2012, 2014). Moreover, we use logistic
regression instead of ordinary least squares (OLS) regression to estimate structural
coefficients for predicting binary outcomes within the inner model.

The chapter is structured as follows. In Sect. 12.2, we briefly describe PLS-
PM and NM-PLSPM. We also present an extension of PLS-PM for endogenous
latent variables with a binary single indicator. We present the UNI.CO archive in
Sect. 12.3. In Sects. 12.4 and 12.5, we present and analyze two different models for
analyzing Sapienza alumni careers. The first model describes alumni who had not
yet obtained employment when they graduated. The second model refers to alumni
who had already obtained a job when they graduated. Finally, in Sect. 12.6 we draw
our conclusions.

12.2 Methods

12.2.1 Partial Least Squares Path Modeling

The aim of Partial Least Square Path Modeling (PLS-PM) is to analyze path models
with unobserved variables. The key idea behind PLS-PM is that each unobserved
variable [commonly referred to as construct or latent variable (LV)] in the path
model can be approximated by a linear combination (that is a composite, according
to Lohmöller 1989 and Bollen and Bauldry 2011) of related observed variables
[commonly referred to as manifest variable (MV)]. The system of weights to be
applied to the manifest variables to compute LV proxies is obtained as the result
of an iterative algorithm, i.e., the PLS algorithm. The PLS algorithm comprises
two different steps, the inner and outer estimation steps. In the inner estimation
step, composites are obtained as weighted aggregates of connected composites,
while in the outer estimation step, composites are calculated as weighted aggregates
of their corresponding MVs. Different options exist for calculating the weights
in the two steps. In practice, the option chosen for the inner weights does not
substantially affect the results of the algorithm (Noonan and Wold 1982). Here,
we focus on two options, called the centroid scheme and the factorial scheme,
for which theoretical convergence proprieties have been proved. As for the outer
weights, two main modes can be used for a set of MVs related to a LV: Mode A
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and Mode B, which are graphically represented in the path diagram by outward
and inward directed arrows, respectively. Mode A uses correlation weights, while
Mode B uses OLS regression weights. Since correlation weights do not account for
shared variability among MVs, their stability is not affected by multicollinearity.
Moreover, correlation weights tend to yield higher out-of-sample R2 when sample
size and true predictability are moderate. On the other hand, OLS regression weights
are recommended for very high sample sizes and low multicollinearity (Becker et al.
2013). Once the algorithm converges, the composites are obtained as weighted sums
of corresponding MVs with the system of weights given by the PLS algorithm.
Finally, path coefficients and loadings are estimated as simple or multiple regression
coefficients according to the system of interdependent equations represented by the
path diagram. A complete description of the PLS algorithm and of the statistical
properties of the PLS-PM can be found in Esposito et al. (2010).

The PLS algorithm does not maximize a unique criterion: the solution depends
on the chosen inner weighting scheme and on the selected mode for each block in
the model. Although Dijkstra (1981) first pointed out a relationship between Mode
B and Generalized Canonical Correlation Analysis as early as 1981, for a long
while no other significant results on the properties of the PLS-PM algorithm were
published. In 2007, 26 years after Dijkstra’s first findings, Hanafi (2007) proved
that when Mode B is selected for all blocks in the model, the PLS algorithm, as
proposed by Wold (1985), monotonically converges to at least a local maximum of
the function:

f .w1; w2; : : : wQ/ D
X

q¤q0

cqq0g.cov.Xqwq; Xq0wq0// (12.1)

s:t: var.Xqwq/ D1; q D f1; : : : ; Qg

where q is an index that generically refers to one of the Q LVs in the model; Xq

refers to the block of MVs related to the qth LV; wq refers to the system of weights
to be applied to Xq to compute the LV proxy; cqq0 D 1 if two LVs are connected in
the path diagram, and cqq0 D 0 otherwise; g./ is a function depending on the inner
weight scheme, i.e., g./ D square./ if the factorial scheme is used, and g./ D abs./
if the centroid scheme is used.

In the same year, Krämer (2007) showed that the “full Mode A” PLS-PM
algorithm is not based on a stationary equation related to the optimization of a
twice differentiable function. She proposed a slightly adjusted Mode A (known
in the literature as New Mode A), in which a normalization constraint is put on
outer weights rather than composites, to obtain a stationary point of the optimization
problem linked to the maximization of the following criterion:

f .w1; w2; : : : wQ/ D
X

q¤q0

cqq0g.cov.Xqwq; Xq0wq0// (12.2)

s:t: kwqk2 D1; q D f1; : : : ; Qg
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Tenenhaus and Tenenhaus (2011) extended Hanafi’s results and proposed a more
flexible criterion, called Regularized Generalized Canonical Correlation Analysis
(RGCCA), in which “New Mode A” and “Mode B” are mixed by means a vector of
regularization parameters �q .q D 1; : : : ; Q/; when �q is either zero or 1, RGCCA
becomes PLS-PM when “New Mode A” is used for some blocks and “Mode B”
for others. In this case, PLS-PM procedure monotonically converges towards the
maximization of the criterion

f .w1; w2; : : : wQ/ D
X

q¤q0

cqq0 g.cov.Xqwq; Xq0wq0// (12.3)

s:t: �qjjwqjj2 C .1 � �q/var.Xqwq/ D1; q D f1; : : : ; Qg; �q D f0; 1g

Moreover, Tenenhaus and Tenenhaus (2011) rewrote criterion (12.3) as a function
of the inner estimates of the latent variables zq:

f .w1; w2; : : : wQ/ D
X

q

cov.Xqwq; zq/ (12.4)

From criterion (12.3) it is clear that, if Mode B is chosen, the PLS algorithm
provides a system of weights that maximizes the sum of the correlations between
connected composites. If the New Mode A is used instead, the algorithm searches
for weights providing composites that are correlated as much as possible to both the
connected composites and to their own MVs. Even if Mode A cannot be proven to
converge to criterion (12.2), in practice it yields solutions very close to those of new
Mode A.

12.2.2 PLS-PM with Binary Single-Indicator Endogenous
Latent Variables

As discussed in Sect. 12.2.1, once the PLS algorithm has converged, the path coef-
ficients are obtained as regression coefficients of linear models among composite,
b�q. Hence, each endogenous compositeb�q is modeled as:

b�q D
X

q0Wb�q0 2˝q

ˇq0qb�q0 C �q (12.5)

where ˝q is the set of composites explainingb�q, ˇq0q is the path coefficient linking
the q0th composite to the qth endogenous composite, and �q is a residual vector.

In the case of single-indicator latent variables (i.e., LVs associated with a single
MV), the computed composite and the associated MV are perfectly collinear. If
the single indicator is a binary variable, the connected composite also has a binary
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structure. In such particular cases, the linear model in Eq. (12.5) is no longer
appropriate. Therefore, we propose to model the composite as a Bernoulli random
variable of parameter 
 , and to use a generalized linear model to predict an
endogenous single-indicator binary composite:


q D E.b�q D 1jb�q02˝q/ D
exp.

P
q0Wb�q0 2˝q

ˇq0qb�q0/

1 C exp.
P

q0Wb�q0 2˝q
ˇq0qb�q0/

(12.6)

where 
q is the conditional probability ofb�q D 1.
In such models, it is possible to interpret each path coefficient as the marginal

effect on the (logarithmic) odds ratio and to estimate the probability that each single-
indicator binary endogenous composite will be equal to 1. This yields new insights
into the interpretation of the structural model involving binary single-indicator
endogenous LVs.

12.2.3 Non-metric Partial Least Squares Path Modeling

PLS-PM assumes that

• each manifest variable is measured on an interval (or ratio) scale;
• relations between variables and latent constructs are linear and, consequently,

monotone.

Therefore, traditional PLS-PM can only handle data measured on a scale with metric
properties, but it cannot properly handle ordinal and nominal variables, which are
by definition (Stevens 1946) sets in which the notion of distance (metric) between
elements in the set is not defined. Most software suggests performing PLS analyses
by replacing nominal MVs with the corresponding indicator matrix. However, this
solution is not recommended because, as pinpointed by Russolillo (2012):

• complete disjunctive coding conflicts with the idea of the variable as a whole: it
considers categories as if they were variables in themselves;

• binary coding inflates the dimensionality of the data matrix;
• the weight of a dummy variable representing a category mainly associated

with central values of the corresponding LV score distribution is systematically
underestimated.

Ordinal MVs, frequently measured on Likert scales, are usually handled as if they
were numerical variables; this pragmatic approach leads to a (non-optimal) scaling
procedure which assigns a numerical value to each level of the ordinal variable under
the assumption that consecutive levels are equally spaced.

Three main approaches have been proposed in the literature for handling
specifically nominal and ordinal MVs in PLS-PM. Jakobowicz and Derquenne
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(2007) proposed a modified PLS-PM algorithm which interprets the categories of a
nominal variable as distinct variables, and computes a weight for each of them. The
second approach (Cantaluppi 2012; Cantaluppi and Boari 2016) applies the standard
PLS-PM algorithm to a polychoric correlation matrix rather than the traditional
Bravais-Pearson correlation matrix, to handle ordinal categorical MVs. The use of
the polychoric correlation matrix has recently been combined with Consistent PLS
(Dijkstra and Henseler 2015) to obtain a consistent estimator in the framework of
traditional common factor models using ordinal MVs (Schuberth et al. 2016). The
third approach, recently proposed by Russolillo (2012, 2014), is Non-Metric Partial
Least Squares (NM-PLS).

NM-PLS refers to a new class of PLS type algorithms that allow the iterative
PLS algorithm to act as an Optimal Scaling (OS) algorithm. To briefly review this
approach, we introduce three concepts of OS theory: scaling, scaling level, and
optimal scaling. Scaling a variable means providing the original variable with a
metric: if the original variable takes a set of K categories (or levels, or distinct
values), a scaling operator replaces these modalities by a new set of numeric values
�k .k D 1; : : : ; K/, named scaling values or quantifications. The set of suitable
scaling values is constrained by a scaling level. The scaling level defines the
properties of the original measurement scale that have to be kept in the new interval
scale. For example, a variable observed on an ordinal scale has two properties:
order (modalities have an inherent order from smaller to larger) and grouping (each
modality defines a particular group of units); one can choose to retain the grouping
property only: in this case, the variable will be scaled at a nominal level. On the
other hand, if also the order property is preserved, the scaling level will be ordinal.
The ordinal scaling level can also be applied to quantitative variables, to reject the
hard assumption of linearity in favor of the milder assumption of monotonicity. To
define this scaling process as optimal, the set of scaling values must be:

• Suitable, as it must respect the constraints defined by the scaling level;
• Optimal, as it must optimize the same criterion as the analysis in which the

scaling process is involved.

In Non-Metric PLS Path Modeling (NM-PLSPM), scaling values are used to
transform each original variable xpq (the pth variable of the qth block, p D
1; : : : ; Pq) into a new variable Oxpq with a metric structure (an interval measurement
scale). The new variable is obtained as Oxpq D QXpq�pq, where the matrix QXpq defines
a space in which constraints imposed by the scaling level are respected. Here, the
scaling level imposed for ordinal quantifications is defined according to Kruskal’s
weak monotonicity approach (Kruskal 1964), which preserves the order of the
categories of x as required by the conditions

.xi � xi0 / ) .Oxi D Oxi0 / and .xi � xi0 / ) .Oxi � Oxi0 /: (12.7)
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where i and i0 are two distinct observations and the symbol � indicates empirical
order.

To guarantee the optimality of the scaling process in the PLS-PM framework, in
NM-PLSPM the following optimization problem is considered:

Maximize
8wq;�pq

X

q¤q0

cqq0g.cov. OXqwq; OXq0 wq0// (12.8)

s:t: �qjjwqjj2 C .1 � �q/var.Xqwq/ D 1; var.Oxpq/ D 1

�q D f0; 1g; p D f1; : : : ; Pqg; q D f1; : : : ; Qg

This criterion is similar to that optimized by PLS-PM, but it depends on two set
of parameters: model parameters (wq) and scaling parameters (�pq). Moreover, it is
equivalent to the criterion

Maximize
8wq;�pq

X

q

cov. OXqwq; zq/ (12.9)

where function g./ and zq are defined in Sect. 12.2.1. Russolillo (2012) proposed
the NM-PLSPM algorithm to solve this optimization problem when New Mode A is
used for all the blocks. He then extended the algorithm to include the Mode B option
(Russolillo 2014). The NM-PLSPM algorithm alternately optimizes criterion (12.9)
with respect to each subset of parameters, keeping the other fixed. When PLS
parameters wq are optimized for fixed scaling parameters �pq, the usual PLS-PM
iteration steps are used, while a quantification step is introduced in the iteration for
optimizing �pq for fixed wq. In particular, when either New Mode A or Mode A are

used, the optimal solution for �pq is given by the quantification function Q. QXpq; zq/

which orthogonally projects zq into the space spanned by QXpq; Russolillo (2014)
proposed a backfitting procedure for optimizing �pq for a given wq when Mode

B is used. This procedure yields the quantification function Q. QXpq; z�
q /, which

orthogonally projects the vector z�
q D .1=bpq/.zq � P

j¤p bjq Oxjq/ into the space

spanned by QXpq, where bpq is the pth element of the regression coefficient vector
bq D . OX0

q
OXq/�1 OX0

qzq.
The NM-PLSPM algorithm is expected to converge to at least a local solution

of the general optimization problem presented in Eq. (12.8). Hence, whenever the
PLS-PM algorithm is used to optimize a known criterion with respect to the model
parameters, the corresponding Non-Metric version can be used to optimize to the
same criterion with respect to both scaling and model parameters.
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12.3 Data

The UNI.CO archive contains information about 21,782 Sapienza alumni who
graduated between March 1st, 2008 and February 28th, 2009 and who signed a
job contract in the subordinate or para-subordinate labor markets.1 For more details
about the UNI.CO archive and for preliminary statistical analyses based on a subset
of this archive, see Alleva and Petrarca (2013), Gruppo UNI.CO (2015) and Petrarca
(2014a,b).

We selected the 5602 alumni from the UNI.CO archive who graduated from a
master program and “occurred” at least once in the CO archive. An occurrence is
defined as working experience (paid contract) or professional experience (unpaid
contract), either signed within 3 years of graduation or already in effect at the time
of graduation. Job contracts in the UNI.CO archive are classified in five classes
according to the amount of protection provided under Italian employment legislation
as defined by the Italian National Statistical Institute (ISTAT). Class 1 corresponds
to poor contractual protection, and Class 5 corresponds to the highest level of
contractual protection. In addition, we classified the job contracts in nine groups
of jobs according to tasks and duties undertaken, as indicated by the International
Standard Classification of Occupations (ISCO) scale.2 ISCO9 corresponds to least
skilled jobs and ISCO1 corresponds to the highest skill level. For interpretation
purposes we used the reversed ISCO scale in the model.

We focused on job contracts signed by each graduate within 3 years of gradua-
tion, and selected their first and last jobs together with the two jobs with the highest
protection and skill levels. Note that for a given graduate one, two, three, or four
jobs could be selected: e.g., they may only have had one job, and the highest level of
protection/skill could overlap with the first and/or last jobs. Using this information
we defined the trend in contractual protection as a binary variable indicating whether
a graduate obtained more, or at least equal, contractual protection over time. In the
same way, we defined the trend in job skill as a binary variable indicating whether
a graduate obtained more skilled or equally skilled work over time. We used these
two binary variables as indicators of career development in the three years after
graduation. The list of variables used in the successive analyses is provided in
Table 12.1.

1A para-subordinate job is a hybrid between a paid employment (subordinate job) and a self-
employed economic activity.
2More details about this classification at http://www.ilo.org/public/english/bureau/stat/isco/docs/
resol08.pdf.

http://www.ilo.org/public/english/bureau/stat/isco/docs/resol08.pdf
http://www.ilo.org/public/english/bureau/stat/isco/docs/resol08.pdf
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Table 12.1 List of observed variables: for ordinal variables the number of levels is reported in
parentheses

MV Description Scale

Age at graduation Age at the time of graduation Metric

Graduation grade Graduation grade Metric

Average grade Average grade during the master degree Metric

Supplementary year student
Dummy variable representing

Binary
whether a student graduated on time (or not)

First ISCO Skill level of first employment Ordinal (9)

First protection Contractual protection level of first employment Ordinal (5)

Highest ISCO
Most skilled job obtained

Ordinal (9)
within three years of graduation

Highest protection
Highest job contract protection obtained

Ordinal (5)
within three years of graduation

Dummy variable indicating whether

Protection improvement a graduate obtained more, or at least equal, Binary

contractual protection over time

Dummy variable indicating whether

Skill level improvement a graduate obtained more skilled Binary

or equally skilled work over time

Table 12.2 Descriptive statistics for the metric variables in the model

MVs Min 1st qu. Median Mean 3rd qu. Max.

Age at graduation
Students 23 26 27 27:58 29 59

Student workers 23 26 28 30:36 33 63

Graduation grade
Students 72 103 110 106:12 111 111

Student workers 72 100 106 104:20 111 111

Average grade
Students 20.27 25.93 27.54 27:13 28.61 30

Student workers 18.75 25.33 27.00 26:69 28.36 30

12.4 Structural Paths and Constructs Definition

Preliminary analyses of variables in Table 12.1 revealed a high degree of hetero-
geneity among the alumni. Consequently we decided to analyze two groups of
alumni separately:

• STUDENTS: alumni who had not yet signed a job contract at the time of
graduation (4605 units).

• STUDENT WORKERS: alumni with job contract in effect at the time of graduation
(997 units).

We provide descriptive statistics for the quantitative variables in Table 12.2, and
relative frequencies for the non-metric variables are provided in Table 12.3.
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Table 12.3 Descriptive statistics for the non-metric variables in the model

STUDENTS
STUDENT
WORKERS All

MVs Categories (4605) (997) (5602)

First protection (1) Professional experience 0:04 0:18 0:08

(2) Apprenticeships 0:04 0:21 0:07

(3) Non-standard employment 0:66 0:47 0:62

(4) Part-time permanent employment 0:05 0:06 0:05

(5) Full-time permanent employment 0:21 0:08 0:18

Highest
protection

(1) Professional experience 0:04 0:14 0:06

(2) Apprenticeships 0:03 0:15 0:05

(3) Non-standard employment 0:61 0:49 0:58

(4) Part-time permanent employment 0:08 0:1 0:85

(5) Full-time permanent employment 0:24 0:12 0:22

First ISCO (1) ISCO 9 0:02 0:03 0:02

(2) ISCO 8 0:00 0:00 0:00

(3) ISCO 7 0:01 0:01 0:01

(4) ISCO 6 0:00 0:0 0:00

(5) ISCO 5 0:13 0:18 0:13

(6) ISCO 4 0:22 0:31 0:24

(7) ISCO 3 0:24 0:26 0:24

(8) ISCO 2 0:38 0:20 0:35

(9) ISCO 1 0:00 0:01 0:00

Highest ISCO (1) ISCO 9 0:01 0:01 0:01

(2) ISCO 8 0:00 0:00 0:00

(3) ISCO 7 0:00 0:03 0:00

(4) ISCO 6 0:00 0:00 0:00

(5) ISCO 5 0:08 0:10 0:08

(6) ISCO 4 0:18 0:25 0:19

(7) ISCO 3 0:23 0:28 0:25

(8) ISCO 2 0:50 0:34 0:47

(9) ISCO 1 0:00 0:01 0:00

Supplementary
year student

(1) No 0:64 0:74 0:66

(0) Yes 0:36 0:26 0:34

Protection
improvement

(0) No 0:83 0:91 0:84

(1) Yes 0:17 0:09 0:16

Skill level
improvement

(0) No 0:87 0:84 0:87

(1) Yes 0:13 0:16 0:13
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We assumed that the same latent variables would be involved in the analysis,
but that the relations between them would be different. Because of the sequence
of events characterizing each group of alumni and to the characteristics of the
Italian university system we assumed a number of prior hypotheses that specify
two different structural models. The first model applies to STUDENTS. The second
model refers to alumni with a job contract in effect at the time of graduation. For
both the STUDENTS and STUDENT WORKERS we expect that students who perform
better graduate faster than others, thus at an earlier age. We also expect that brilliant,
younger graduates find jobs with high protection and skill level; and that the best
job graduates obtain within 3 years of graduation depends on their educational
performance, their age at graduation, and their first employment. Furthermore we
assumed that improvement in both contract protection and job skill level depends
on the best and the first employments.

The main difference between the two models relies on the role of the first
employment in the model: for STUDENTS we supposed the first employment
to depend on age at graduation and on educational performance; however, in
the STUDENT WORKERS model, the first employment is an exogenous variable
impacting both age at graduation and educational performance. We summarize the
postulated hypotheses in Table 12.4 and in Figs. 12.1 and 12.2.

Three of the six latent variables in the models are single-indicator latent variables,
i.e., Age at graduation, Protection improvement, and Skill level improvement. Two
are inwards constructs, i.e., First employment and Best employment, each formed by
two observed variables. The last, i.e., Educational performance is approximated by
a composite built on three indicators. We provide the list of the latent variables with
associated MVs in Table 12.5.

Table 12.4 Structural model hypotheses. Hypotheses H1 and H3a to H5 refer to both STUDENTS
and STUDENT WORKERS models

STUDENTS STUDENT WORKERS

H1: Age at graduation depends on Educational performance

H2a: First employment depends on Educational performance H2aReversed: First
employment impacts
Educational performance

H2b:First employment depends on Age at graduation H2bReversed: First
employment impacts Age at
graduation

H3a: Best employment depends on Educational performance

H3b: Best employment depends on First employment

H3c: Best employment depends on Age at graduation

H4a: Protection improvement depends on First employment

H4b: Protection improvement depends on Best employment

H5a: Skill level improvement depends on First employment

H5b: Skill level improvement depends on Best employment
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Fig. 12.2 Path diagram for STUDENT WORKERS

Table 12.5 Measurement model

LVs Mode MVs

Age at graduation Single-indicator LV Age at graduation

Educational performance Mode A Graduation grade

Average grade

Supplementary year

First employment Mode B First ISCO

First protection

Best employment Mode B Highest ISCO

Highest protection

Protection improvement Binary single-indicator LV Protection improvement

Skill level improvement Binary single-indicator LV Skill level improvement
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We used the Non-Metric Partial Least Squares approach, as implemented in
the plspm R-package (Sanchez et al. 2013), to estimate outer and inner model
parameters referring to linear regressions. Afterwards, we used the glm() R function
to estimate inner model parameters referring to the logistic regressions. To update
the external weights, we used Mode A for Educational performance, because
of the high collinearity between the corresponding MVs; we used Mode B for
First employment and Best employment, as the corresponding MVs share very
little variability. We used the centroid scheme for inner estimation and obtained
confidence intervals for weights and path coefficients by percentile bootstrapping
with k D 1000 re-samples.

12.5 Results

12.5.1 STUDENTS Model

A preliminary analysis of the STUDENTS dataset (4605 alumni) allowed us to
remove the MV first ISCO from the model defined in Fig. 12.1, since bootstrapping
did not validate the corresponding outer weight. When applying the NM-PLSPM
we obtained the same kind of outputs as for standard PLS-PM, plus a scaling value
for each category of ordinal/categorical variables in the model.

Figure 12.3 reports the optimal scaling values of the three ordinal MVs in the
STUDENTS model. The more the dashed lines deviate from linearity, the more
the new scale of the variable deviates from the assumption of equal distance
between contiguous levels. Moreover, the optimal scaling values can be used to
reduce the number of levels; for example, the quantifications obtained for the
modalities of highest ISCO suggest that they could be grouped into three categories
(ISCO9-ISCO6 for raw values 1–4, ISCO5-ISCO3 for raw values 5–7, ISCO2-
ISCO1 for raw values 8–9). This result is consistent with the recent literature on
occupational classification (Maselli 2012), which groups ISCO categories into the
same categories, labeled low-skilled, medium-skilled, and high-skilled, respectively.

We report the measurement model results in Table 12.6. Along with the point
estimates, we report 95% confidence intervals and the corresponding standard
errors obtained using 1000 bootstrap samples. We have not reported the weights
associated with single-indicator LVs because they equal 1, since the NM-PLSPM
returns standardized manifest variables. As expected for an outward block, the
three MVs associated with Educational performance show similar weights. High
Educational performance is associated with no supplementary year, and high values
of graduation grade and average grade. In other words, the best performing students
graduated on time and with good final and average grades. When we compare the
outer weights of the two indicators related to the Best employment, it is clear that
the MV highest protection is associated with the highest impact. This is coherent
with the Italian job market, in which people prefer to leave a poorly protected job to
obtain better contactual protection than to obtain a more skilled job.



272 F. Petrarca et al.

1 2 3 4 5

-1
.0

-0
.5

0.
0

0.
5

1.
0

1.
5

2.
0

first protection

raw values

sc
al

in
g 

va
lu

es

1 2 3 4 5

-1
.0

-0
.5

0.
0

0.
5

1.
0

1.
5

highest protection

raw values
sc

al
in

g 
va

lu
es

2 4 6 8

-2
-1

0
1

highest ISCO

raw values

sc
al

in
g 

va
lu

es

Fig. 12.3 STUDENT model results: optimal scaling values for ordinal MVs

Table 12.6 Measurement model results for STUDENTS: weights associated with single-indicator
LVs are not shown

LVs MVs Weigths Std. Error C.I.

Educational performance Supplementary year 0.44 0.02 [0.40, 0.47]

Graduation grade 0.40 0.09 [ 0.39, 0.42]

Average grade 0.37 0.09 [0.35, 0.38]

Best employment Highest protection 0.98 0.01 [0.94, 0.99]

Highest ISCO 0.14 0.06 [0.10, 0.29]

Confidence interval values were obtained by bootstrapping 1000 replicates

We report the results of our structural model, with the corresponding 95%
confidence intervals, in Table 12.7 and Fig. 12.4. We used logistic regression to
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Table 12.7 Structural model results for STUDENTS: we indicated pseudo-Nagelkerke R2 with �
in the R2 column; O.R. indicates the odds ratio for logistic regressions

Paths R2 Ǒ Std. error C.I. O.R.

Edu. perf. ! Age graduation 0.17 �0:41 0:02 [�0:44; �0:38] –

Edu. perf. ! First empl.
0.03

0:08 0:02 [0.05, 0.13] –

Age graduation ! First empl. �0:13 0:01 [�0:15; �0:10] –

Edu. perf. ! Best empl.
0.77

0:03 0:01 [0.01, 0.05] –

Age graduation ! Best empl. �0:05 0:00 [�0:06; �0:03] –

First empl. ! Best empl. 0:87 0:00 [0.85, 0.88] –

Best empl. ! Protection impr.
0:77�

3:05 0:23 [2.64, 3.56] 21:11

First empl. ! Protection impr. 0:57 0:07 [0.43, 0.72] 1:77

Best empl. ! Skill level impr.
0:07�

0:77 0:07 [0.62, 0.91] 2:16

First empl. ! Skill level impr. �0:32 0:07 [�0:45; �0:18] 0:73

-0.13

0.08

0.03 -0.32 (0.73)

0.57 (1.77)

Age at graduation

0.77 (2.16)

3.05 (21.11)

R2=0.77

R2=0.17

R2=0.03

R2=0.77*

R2 =0.07*

-0.41

-0.05

0.87

Educational 
 Performance

Best EmploymentFirst Employment

Skill level improvement

Protection improvement

Fig. 12.4 Structural model for STUDENTS: values in parentheses indicate odds ratios; � indicates
pseudo-Nagelkerke R2

predict the two binary single-indicator endogenous LV in the model, i.e., Protection
improvement and Skill level improvement.

Our model does not explain First employment well, but predicts both Best
employment and Protection improvement accurately. Figure 12.5 shows the ROC
curves associated with the logistic regression in the structural model. The values of
the AUC are 0.71 for the logistic model predicting Skill level improvement and 0.99
for that predicting Protection improvement.

Our results show that Educational performance has a significant negative
impact on Age at graduation. H1 is validated: on average, high performing
students graduate younger. First employment is significantly related to Educational
performance and Age at graduation. Hypotheses 2a and 2b are validated: high
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Fig. 12.5 Validation model for STUDENTS: the ROC curve. We report the value of the area under
the curve (AUC)

performing graduates find better first jobs. Best employment mainly depends on
First employment Hypotheses 3a, 3b, and 3c are validated. The two latent predictors
First employment and Best employment positively influence the binary response
Protection improvement, validating H4a and H4b. Holding the Best employment
at a fixed value, for every one-unit increase in First employment score, the odds
of observing increased contractual protection changes by a factor of 1.77 (with an
average marginal effect of 0.004). Alumni who obtained a highly protected first
contract are more likely to move to a more (or at least equally) protected job. Indeed,
74% of those who obtained a initial fulltime permanent contract changed it for a
new contract of the same type. On the other hand, holding First Employment at
a fixed value, for every one-unit increase in the Best Employment score, the odds
of observing increased contractual protection changes by a factor of 21.11 (with
an average marginal effect of 0.023). Therefore alumni with a highly skilled first
employment are likely to improve their contractual protection.

First employment and Best employment also influence Skill level improve-
ment significantly. As expected, Best employment positively influences Skill level
improvement, as it results from individual efforts to obtain a highly skilled job.
However the negative effect of First employment on Skill level improvement
is less intuitive. Since the correlation between First employment and Skill level
improvement is low (r D 0:09), while the correlation between First employment and
Best employment is very high (r D 0:88), we have a negative classical suppression
effect (see Cohen and Cohen (1975), Krus and Wilkinson (1986), Baron and Kenny
(1986), Little et al. (2007) for details on suppression effects).
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12.5.2 STUDENT WORKERS Model

We report measurement model results for STUDENT WORKERS in Table 12.8.
The interpretation of outer weights is similar to the STUDENTS model. The only
remarkable difference is that highest ISCO has a higher weight in this model than in
the STUDENTS model, probably due to the fact that these alumni working longer.

We report structural model results in Table 12.9. The bootstrapping procedure
validated all our hypotheses except for H1, H2b reversed, and H3c, so Age at
graduation was excluded from the model. The path diagram representing the
validated model is depicted in Fig. 12.6.

Hypothesis H2a reversed was validated, as we found a significant positive effect
of First employment (for Student workers) on Educational performance: the better
the job, the higher is student worker educational performance. Similarly to the
previous model, First employment has a significant impact on Best ermployment,
unlike Educational performance, whose impact is slight. First employment and
Best employment explain Alumni’s Protection improvement accurately. As for
the STUDENTS, the impact of Best employment is much greater than that of
First employment. Keeping Best employment at a fixed value, for every one-unit
increase in the First employment score, the odds of observing increased contractual
protection changes by a factor of 2.32 (with an average marginal effect of 0.001);
on the other hand, keeping the First employment at a fixed value, for every one-unit
increase in the Best employment score, the odds of observing increased contractual

Table 12.8 Measurement model results for STUDENT WORKERS: weights associated with single-
indicator LVs are not shown

LVs MVs Weights Std. error C.I.

Educational performance Supplementary year 0.40 0.04 [0.31, 0.48]

Graduation grade 0.40 0.02 [0.37, 0.45]

Average grade 0.40 0.02 [0.36, 0.46]

Best employment Highest protection 0.91 0.01 [0.89, 0.94]

Highest ISCO 0.29 0.03 [0.23, 0.34]

We obtained confidence interval values by bootstrapping 1000 replicates

Table 12.9 Structural model results for STUDENT WORKERS: we indicate pseudo-Nagelkerke R2

with � in the R2 column; O.R. indicates the odds ratio

Paths R2 Ǒ Std. err C.I. O.R.

First empl. ! Edu. perf. 0.06 0:24 0:03 [0.19, 0.32] –

Edu. perf. ! Best empl.
0.55

0:10 0:02 [0.05, 0.14] –

First empl. ! Best empl. 0:71 0:03 [0.66, 0.76] –

First empl. ! Protection impr.
0:84�

0:61 0:13 [0.36, 0.88] 2:32

Best empl. ! Protection impr. 2:53 0:36 [1.94, 3.41] 12:55

First empl. ! Skill level impr.
0:11�

�0:50 0:11 [�0:71; �0:28] 0:61

Best empl. ! Skill level impr. 0:86 0:11 [0.64, 1.064] 2:36
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Fig. 12.6 Structural model for STUDENT WORKERS: values in parentheses indicate odds ratios;
� indicates pseudo-Nagelkerke R2

protection changes by a factor of 12.55 (with an average marginal effect of 0.005).
Confirming the findings for the STUDENTS, Skill level improvement negatively
influences STUDENT WORKERS’ First employment, but it is positively related to
Best employment. Again, this is due to a suppression effect.

Figure 12.7 shows the ROC curves for the two logistic regressions. The values
of the Area Under the Curve (AUC) are high in both cases: AUC equals 0.81
for the Skill level improvement logistic regression, and 0.99 for that of Protection
improvement.

12.6 Conclusions

Analyzing real data from observational social science studies requires the use of
soft modeling techniques, which are not based on rigid assumptions about the
measurement scale and the distribution of the theoretical population from which the
sample is supposed to be drawn. We exploited the flexibility of the PLS approach to
model a predictive network of relationships between latent and manifest variables.

We enhanced the PLS analysis by introducing the Non-Metric approach to PLS-
PM and integrating logistic regression in the structural model to manage ordinal
manifest variables correctly and predict binary outcomes. These enhancements
allowed us to measure the impact of the educational performance of Sapienza
graduates on their career within 3 years of graduation. We analyzed a new database,
UNI.CO, whose data combines the archives of the Sapienza University of Rome and
the Italian Ministry of Labor and Social Policy. We proposed two different models
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Fig. 12.7 Validation model for STUDENT WORKERS: the ROC curves. We report the value of the
Area Under the Curve (AUC)

linking several latent concepts related to education and careers: one for STUDENTS

and the other for STUDENT WORKERS.
Our analysis of UNI.CO dataset reveals three main insights:

• The academic performance of (non-worker) students strongly affects their age at
graduation; this is typical in Italy, where students graduate when they pass all the
required exams, no matter how long this takes. In such a context, students are
allowed to take extra time to terminate their studies and only brilliant students
tends to get their degree in due time.

• Academic performance and age at graduation only marginally affect careers,
which mainly depends on alumni’s performances at work, rather than at uni-
versity.

• Graduates who obtain “good” first jobs tend to obtain better jobs more than those
who obtain less advantageous first jobs, mostly in terms of contractual protection
rather than of skill level.

We are aware that our analysis has at least two limits. First, our data do not
represent a sample, but the whole Sapienza alumni population. The computational
inference on model parameters aims to extend the conclusions of our model to
all Italian State University graduates, under the hypothesis that Sapienza alumni
provide a representative sample of Italian State University alumni. In our opinion
this hypothesis is plausible, as Sapienza University is the biggest Italian University
and attracts students from all over Italy. Second, we performed all our analyses on
all Sapienza alumni whatever their field. Further studies are required to investigate
whether different models hold for graduates in different fields.
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As a final remark, in this application we proposed the use of NM-PLSPM to
model composites. However, recent literature on consistent PLS-PM (Dijkstra and
Henseler 2015) sketches new avenues for future research; in particular, we are
currently investigating the use of NM-PLSPM to estimate parameters of factor
models (Bollen 1989) involving categorical and/or ordinal MVs.
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Chapter 13
Model Misspecifications and Bootstrap
Parameter Recovery in PLS-SEM
and CBSEM-Based Exploratory Modeling

Pratyush N. Sharma, Ryan T. Pohlig, and Kevin H. Kim

Abstract Theories are uncertain and evolving in exploratory research. This uncer-
tainty can manifest itself in SEM studies either at the measurement or structural
level, or both, and result in model misspecifications. Researchers often favor the use
of PLS-SEM over CBSEM in exploratory research due to its tractability, flexibility,
and its ability to avoid factor indeterminacy. While these strengths of PLS-SEM
are undoubtedly appealing, empirical support regarding the robustness of model
parameters under conditions of model misspecifications is lacking. This Monte
Carlo study evaluates the efficiency and accuracy of bootstrap parameter recovery
by PLS-SEM, CBSEM, and the Bollen-Stine methods under various conditions of
measurement and structural misspecification effect sizes, sample sizes, and data
distributions. Results point to the favorability of PLS-SEM in exploratory modeling
when structural parameters are of interest, while CBSEM and Bollen-Stine methods
are appealing when the focus is at the measurement level. A two-pronged strategy is
advisable when theoretical uncertainty exists both at the measurement and structural
levels.
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13.1 Introduction

Structural equation modeling (SEM) is a widely used technique in the social and
behavioral sciences to model complex relationships among observed and latent
variables. Two of the most popular methods for model estimation are the covariance-
based SEM (CBSEM) and partial least squares-based SEM (PLS-SEM). Despite
the similarity in their function, the two methods differ in their respective goals.
CBSEM attempts to estimate parameters that minimize the difference between
the observed and model-based covariance matrix. PLS-SEM attempts to maximize
the variance explained in the endogenous variables, rather than the true accuracy
of the parameter estimates. The most common estimation method in CBSEM is
the maximum likelihood (ML),1 which assumes multivariate normality and large
sample theory. PLS-SEM is a variance-based method that uses partial regression
equations that minimize the residual variance in the dependent variables (Roldán
and Sánchez-Franco 2012). PLS-SEM based models do not assume multivariate
normality and are considered distribution-free; instead, the working assumption is
that the sample distribution represents the population distribution (Lohmöller and
Wold 1982; Hair et al. 2011). To help facilitate these methods, bootstrapping is
often used to gather accurate estimates or to provide tests of inference.

Unlike the traditional parametric approaches, bootstrapping is a nonparametric
approach to statistical inference that does not make any distributional assumptions
for the parameters. Bootstrapping draws conclusions about the characteristics of
a population strictly from the sample at hand, rather than making unrealistic
assumptions about the population. That is, given the absence of information about a
population, the sample is assumed to be the best estimate of the population. Hence,
bootstrapping has advantages in situations where there is weak or no statistical
theory about the distribution of a parameter or when the underlying distributional
assumptions needed for valid parametric inference are violated (Mooney 1996).
Bootstrapping allows for the possibility of conducting significance testing of a
statistic such as a regression coefficient or factor loading, without distributional
assumptions, by creating an empirical sampling distribution from the observed data.
Such significance tests help analyze the probability of observing a statistic of that
size or larger when the null hypothesis is true, i.e., H0: � D 0. While allowing
for a distribution free test, researchers have cautioned against a blind faith in
bootstrapping, as it assumes that the sample approximates of the intended population
(Yung and Bentler 1994).

Bootstrapping is widely applied in both PLS-SEM and ML-SEM. While PLS-
SEM relies completely on bootstrapping to obtain standard errors for hypothesis
testing, ML-SEM uses bootstrapping when distributional assumptions are violated.
Significance testing is based on finding a test statistic that is considered extreme or
highly unlikely given that the null hypothesis is true; therefore, it is important to

1We use the terms CBSEM and ML-SEM interchangeably there. Further, we use the terms PLS-
SEM and PLS interchangeably whenever appropriate.
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ensure that the test statistic comes from a distribution where the null hypothesis is
true. Bollen and Stine (1992) showed that when using the Naïve bootstrap in ML,
the bootstrap samples are taken from a population in which the null hypothesis is
not true, leading to researchers incorrectly rejecting H0 too often. It should be noted
that this error is more likely for misspecified models, which are likely to arise in
exploratory research. As a remedy, Bollen and Stine proposed a transformation of
the data that makes the null hypothesis true, which forces H0 to be true, resulting in
fewer type-I errors (Bollen and Stine 1992).

In addition to its advantages over ML-SEM (Hair et al. 2011), a frequently
stated assertion for favoring PLS-SEM over ML-SEM is its ability to provide
robust results for exploratory modeling (Ringle et al. 2012) due to its flexibility
(Noonan and Wold 1988) and the avoidance of inadmissible solutions and factor
indeterminacy (Fornell and Bookstein 1982). Exploratory modeling is a process
that involves guesswork and relatively loosely formulated hunches to refine existing
theory that is currently weak and under development (Stebbins 2001). Through this
process of exploration, and by focusing on the explanatory power of the models
(i.e., R2), researchers seek to arrive at a more accurate picture of the phenomena and
in turn strengthen theory. However, performing exploratory analyses often leads
to researchers creating misspecified or inaccurate models. Since PLS-SEM relies
largely on the Naïve bootstrap, its use may lead to an increase in type-I errors. Yet,
to the best of the authors’ knowledge, this aspect of the oft-cited assertion, i.e., that
PLS-SEM is preferred for exploratory modeling, has not been empirically tested in
the PLS-SEM literature.

We suggest that researchers should have a better understanding of the bootstrap
behavior, especially under conditions of model misspecifications and small sample
sizes—conditions that are likely to arise in exploratory research. The goal of this
Monte Carlo study is to evaluate the efficiency and accuracy of parameter recovery
by PLS, ML, and the Bollen-Stine bootstrapping methods under various conditions
of measurement and structural model misspecification effect sizes, sample sizes,
and data distributions. In doing so, we extend the work by Sharma and Kim (2013),
to provide researchers with guidelines when choosing to use either ML-SEM or
PLS-SEM for exploratory research.

13.2 The Naïve Bootstrap

The bootstrap is a method for evaluating parameter estimates (Stine 1989) and a
data-based approach for producing inferences (Efron and Tibshirani 1993). It is
most commonly used to estimate quantities associated with a sampling distribution
of an estimate or test statistic (Boos 2003). Conceptually, bootstrapping treats
the observed data as a pseudo-population and repeatedly random samples with
replacement from it. A random sample is defined as a selection of units of size
a, selected at random with each unit’s probability of being chosen equal to 1/a.
Sampling with replacement returns a unit to the population after being chosen,
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making the unit eligible to be selected again. The population from which the
bootstrap samples (B) are taken come from the resample space (R), which is the
original observed distribution (Efron and Tibshirani 1993). When the bootstrap
sample size is equal to the observed sample size, the distribution of the test statistic
from the bootstrap samples forms an empirical sampling distribution (bFED) (Rodgers
1999).

This empirical sampling distribution is an approximation of the statistic’s true
population distribution. When bootstrap samples are of the same size as the observed
sample n, then the standard deviation of bFED is an estimate of the population
parameter’s standard error. Bootstrapping has two main assumptions. The first, for
accurate inferences to be made from the analysis, the original observed sample must
be representative of the population of interest. Second, the relationship between a
population and its sample can be modeled by the relationship between R and B
(Efron and Tibshirani 1993; Yung and Bentler 1996). Bickel and Friedman (1981)
conclude that the success of all bootstrap methods depend upon the assumption that
the sampling behavior of a statistic is the same when it is taken from the empirical
distribution and when it is taken from the original population.

13.2.1 Model-Based Bootstrap (Bollen-Stine)

As previously stated, the Naïve bootstrap in SEM causes the bootstrap samples to
be taken from a population in which the null hypothesis is not true (Bollen and
Stine 1992). Efron and Tibshirani (1993) and Yung and Bentler (1996) describe the
steps for Naïve bootstrapping in SEM, after performing an analysis on the raw data.
The steps are the same as outlined above, except the covariance matrix from each
bootstrapped sample is used to perform the analyses. Then, the test statistic from
the original data can be compared to the distribution from the bootstrapped test
statistic values for significance. Bollen and Stine (1992) showed that the expected
mean value and the variance of the observed test statistic and the bootstrapped test
statistics are not equal. The expected values for the bootstrap estimates are larger
than the ML methods causing the null hypothesis test to fail when using Naïve
bootstrapping, regardless of whether it is true in the population or not. This violates
the assumption of bootstrapping—the empirical distribution created by resampling
is different from the population distribution and can lead to an increase in type-I
errors.

To remedy this, Bollen and Stine (1992) proposed a semi-parametric bootstrap
method as a solution. The sample covariance matrix is transformed to have a
covariance structure specified by the null hypothesis, and the bootstrap samples are
taken from the transformed data. Applying the transformation enables the observed
sample test statistic to be compared to an empirical sampling distribution where the
null hypothesis is true. After this transformation, the empirical sampling distribution
behaves appropriately, meeting the bootstrap assumption. Then, similar to Naïve
bootstrapping, the empirical sampling distribution can be used as a reference
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distribution for obtaining a test of significance (Finney and Distefano 2006). Nevitt
and Hancock (2001) examined the performance of model-based bootstrapping for
both normal and non-normal data, as well as correctly specified and misspecified
models for a range of sample sizes. ML estimation performed well for correctly
specified models when the assumption of normality was met. Regardless of the
sample size, ML performed poorly for non-normal data. The Bollen and Stine
model-based bootstrapping performed well regardless of normality and sample size
conditions but was conservative with respect to type-I error and had overall less
power (Nevitt and Hancock 2001). Similar results were found by Fouladi (2000).

13.3 Method

A Monte Carlo study was conducted to ascertain the impact of measurement and
structural model misspecifications on the parameter recovery accuracy of three
methods: Naïve and Bollen-Stine bootstrap in SEM and the Naïve PLS bootstrap.
The latent variable model used in this study had two exogenous (�1 and �2) and
two endogenous variables (�1 and �2) with three reflective indicators each. The
factor loadings (lambdas) for the measurement model were set to 0.6, and the path
loadings (betas) for the structural model were set at 0.3. For the structural model
misspecification case (Fig. 13.1), the path between �1 and �2 (
21; highlighted in
red) was misspecified, and its effect size was manipulated; 
21 D f0.0, 0.1, 0.2,
0.3, 0.5g. A cross-loading item was introduced in the model setup to simulate

Fig. 13.1 Structural model misspecification
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Fig. 13.2 Measurement model misspecification

measurement model misspecification (Fig. 13.2, highlighted in red); �41 D f0.0,
0.1, 0.2, 0.3, 0.5g.

Data were generated using Fleishman and Vale-Maurelli’s method (Fleishman
1978; Vale and Maurelli 1983) for five sample sizes (50, 100, 150, 200, and
500) and four distributions [N(0, 1), �2

dfD3, tdf D 5, and � U(0, 1)]. The different
distributions used cover a range of skewness and kurtosis. The �2

dfD3 has higher
skew than the normal distribution and is more leptokurtic; the tdf D 5 is more
platykurtic and has more variability compared to a normal distribution; and the
uniform distribution is highly platykurtic and with greater variability. One hundred
replications were performed for each of the 100 conditions, with 250 bootstrap
replications for each dataset. Two hundred and fifty was chosen as increasing the
number of resamples taken would increase computing time for relatively small gain
in efficiency (Nevitt and Hancock 2001). Standardized parameter estimates from
PLS, ML, and ML Bollen-Stine bootstraps were compared. All simulations were
run on the R computing environment (R Core Team 2014) using the sem (Fox 2006)
and semPLS packages (Monecke and Leisch 2012). PLS parameters were estimated
using path weighting scheme for inner weight computation and Mode-A (reflective)
outer weight computation.

Both descriptive and inferential statistics were used to assess the methods’
performances across all conditions for both types of misspecifications. A series of
3 � 5 � 4 � 5 mixed design ANOVAs were performed to examine the independent
variable impact on estimation failure, bias, and root mean square difference (RMSD)
for the parameter estimates. The first factor is the within subject factor of the
bootstrapping method (Naïve, Bollen-Stine, and PLS). The between subject factors
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were sample size, data distribution, and misspecification size. Due to the fact that
this is a simulation study with 100 replications per cell and 100 cells in the design
each being tested with three methods, ntotal D 300,000, examining p-values is not of
interest since nearly every effect would be significant; therefore, only effects with
at least a moderate effect size, �2

p > :06, were interpreted. A separate analysis was
performed for the type-I error and power conditions, and the results were unchanged
from the simultaneous analysis of all the conditions. Average bias is useful for
assessing the direction of the errors (i.e., under or overestimation), whereas RMSD
is an estimate of the error magnitudes which examines accuracy.

13.4 Results

13.4.1 Structural Misspecification Case

13.4.1.1 Convergence

Convergence rates of the bootstrap replications were tracked to test the stability of
the methods being used. At sample sizes 150 or less, PLS bootstrap outperformed
both the Bollen-Stine and Naïve methods in SEM by having less convergence
failures. At sample sizes greater than 150, all methods performed comparably with
negligible failures (Table 13.7 in Appendix).

13.4.1.2 Structural Parameters

Average bias and RMSD of the structural model regression coefficients, ˇ and 


(elements of the B and � matrices), were tested. Both Bollen-Stine and the Naïve
SEM bootstrap methods tended to overestimate the strength of the relationships
among the coefficients, whereas PLS bootstrap underestimated the relationships
(Table 13.1).

In order to assess the magnitude of error for the structural coefficients, the
RMSD was examined. The pattern of differences for the methods differed among
(1) the effect size averaged across the other factors, F .8; 23760/ D 301:64; p <

:001; �2
p D :092, and (2) the sample sizes averaged across the other factors,

F .10; 23760/ D 202:61; p < :001; �2
p D :079 (see Table 13.8 in the Appendix).

Table 13.1 Structural
coefficient bias by effect size
and method

Effect size (
21)
.00 .10 .20 .30 .50

Bollen-Stine .003 .022 .047 .071 .137
Naïve .001 .021 .045 .069 .134
PLS �.076 �.070 �.062 �.055 �.039
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Table 13.2 Structural
coefficient RMSD by effect
size and method

Effect size (
21)
.00 .10 .20 .30 .50

Bollen-Stine .133 .138 .151 .172 .230
Naïve .127 .135 .146 .163 .224
PLS .106 .103 .099 .096 .095

Table 13.3 Structural
coefficient RMSD by sample
size and method

Sample size
50 100 150 200 250 500

Bollen-Stine .270 .190 .155 .138 .128 .107
Naïve .241 .185 .155 .138 .129 .107
PLS .133 .101 .094 .092 .091 .089

PLS had a smaller RMSD (i.e., less error) than both the Naïve and Bollen-Stine
bootstrapping for all misspecification effect sizes (all p < .05). PLS also had a stable
RMSD compared to the Naïve and Bollen-Stine methods, whose RMSDs increased
as the size of the misspecification increased (Table 13.2).

Additionally, PLS had a smaller RMSD (i.e., less error) than both the Naïve
and Bollen-Stine bootstrapping for all sample sizes, (all p < .05). While PLS had a
smaller RMSD, as sample size increased, all the methods had similar results in the
largest sample size condition (Table 13.3).

13.4.1.3 Measurement Parameters

Average bias and RMSD of the measurement model factor loadings, �x and �y

(elements of the �x and �y matrices), were tested. Bollen-Stine and the Naïve
bootstrap tended to underestimate the strength of the relationships among the
coefficients, whereas PLS overestimated the relationships (see Table 13.9 in the
Appendix).

The RMSD for the factor loadings differed (1) among methods F .2; 23760/ D
44402:83; p < :001; �2

p D :789 averaged across the other factors, and (2) differed
among sample sizes averaged across the other factors, F .5; 11880/ D 4093:97; p <

:001; �2
p D :633. For presentation purposes, we will discuss the results of the

method by sample size interaction, although the effect just misses our interpretation
criteria, F .10; 23760/ D 106:10; p < :001; �2

p D :043 (see Table 13.10 in the
Appendix). PLS had a larger RMSD (i.e., more error) than both the Naïve and
Bollen-Stine bootstrap for all sample sizes, (all p < .05). The Naïve and Bollen-
Stine bootstrap methods had smaller RMSDs across the sample sizes; as sample
size increased, their RMSDs continued to shrink, while PLS did not change (Table
13.4).
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Table 13.4 Factor loading
RMSD by sample size and
method

Sample size
50 100 150 200 250 500

Bollen-Stine .156 .108 .085 .072 .065 .045
Naïve .142 .106 .085 .073 .065 .045
PLS .246 .192 .175 .170 .165 .161

13.4.2 Measurement Misspecification Case

13.4.2.1 Convergence

Convergence rates of the bootstrap replications were tracked to show stability
of the methods being used. Again, PLS outperformed both the Bollen-Stine and
Naïve methods at sample sizes 150 or less and had less convergence failures. At
sample sizes greater than 150, all methods performed comparably (Table 13.11 in
Appendix).

13.4.2.2 Structural Parameters

Average bias and RMSD of the structural model regression coefficients, ˇ and

 (elements of the B and � matrices), were tested. Bollen-Stine (M D 0.001,
SE D 0.001) and the Naïve (M D 0.001, SE D 0.001) bootstrap methods tended
to overestimate the strength of the relationships among the coefficients; on the other
hand, PLS (M D �0.077, SE D 0.001) again underestimated the relationships.

In order to assess the magnitude of error for the structural coefficients, the
RMSD was examined. The pattern of differences on the RMSD for the structural
coefficients among the methods differed among the sample sizes averaged across
the other factors, F .10; 23760/ D 249:89; p < :001; �2

p D :095 (see Table 13.12 in
the Appendix). A more nuanced relationship existed for the RMSD of the structural
parameters in the presence of measurement misspecification. PLS had a smaller
RMSD (i.e., less error) than both the Naïve and Bollen-Stine bootstrapping for
samples sizes below 200, (all p < .05). There were no differences at sample size
200 (p > .05), but for larger sample sizes, the Naïve and Bollen-Stine bootstrapping
exhibited smaller RMSDs (all p < .05) (Table 13.5).

13.4.2.3 Measurement Parameters

Average bias and RMSD of the measurement model factor loadings, �x and �y

(elements of the �x and �y matrices), were tested. Again, Bollen-Stine and the
Naïve bootstrapping tended to underestimate the strength of the relationships among
the coefficients, whereas PLS overestimated the relationships (see Table 13.13 in the
Appendix).
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Table 13.5 Structural
coefficient RMSD by sample
size and method

Sample size
50 100 150 200 250 500

Bollen-Stine .252 .165 .126 .106 .093 .065
Naïve .232 .162 .127 .105 .093 .065
PLS .137 .107 .102 .101 .100 .100

Table 13.6 Factor loading
RMSD by sample size and
method

Sample size
50 100 150 200 250 500

Bollen-Stine .157 .110 .086 .073 .065 .045
Naïve .143 .108 .087 .074 .066 .045
PLS .258 .201 .181 .173 .167 .161

The RMSD for the factor loadings differed (1) among methods F .2; 23760/ D
33186:03; p < :001; �2

p D :736 averaged across the other factors, and (2) differed
among sample sizes averaged across the other factors, F .5; 11880/ D 3727:30; p <

:001; �2
p D :611. For presentation purposes, we will discuss the results of the

method by sample size interaction, although the effect just misses our interpretation
criteria, F .10; 23760/ D 56:01; p < :001; �2

p D :023 (see Table 13.14 in the
Appendix). PLS had a larger RMSD (i.e., more error) than both the Naïve and
Bollen-Stine bootstrapping for all sample sizes (all p < .05). And as sample size
increased, their RMSDs continued to get smaller (Table 13.6).

13.5 Discussion

Theories are uncertain and evolving in exploratory research (Stebbins 2001). This
uncertainty can manifest itself in SEM studies either at the measurement or struc-
tural level, or both. Researchers often favor PLS-SEM over ML-SEM (CBSEM)
for exploratory research based on its tractability, flexibility, and its ability to avoid
factor indeterminacy (Ringle et al. 2012; Noonan and Wold 1988; Fornell and
Bookstein 1982). While these strengths of PLS-SEM are undoubtedly appealing,
empirical support regarding the robustness of model parameters under conditions
of model misspecifications is lacking in the literature. The crux of this chapter is
that exploratory research may often create conditions that give rise to misspecified
models, both at the structural and measurement levels. Yet, to the authors’ best
knowledge, no existing studies have tested the accuracy and efficiency of parameter
recovery by PLS bootstrap and compared them with ML under such conditions. Our
goal was to fill this gap by testing the bootstrap parameter recoveries of PLS, ML,
and Bollen-Stine methods under various conditions of model misspecification effect
sizes, sample sizes, and distributional conditions. Building on the previous work
by Sharma and Kim (2013), our results largely validate the researchers’ assertions
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regarding the strength of PLS-SEM in exploratory modeling, while also pointing to
the utility of CBSEM in certain conditions.

Specifically, under conditions where structural misspecification is suspected and
the theory is evolving at the structural level, PLS bootstrap had better parameter
accuracy and efficiency than ML and Bollen-Stine methods for structural parame-
ters. On the other hand, under the same conditions of structural misspecifications,
ML and Bollen-Stine had better measurement model recoveries. Under conditions
where measurement misspecification is suspected, i.e., theory is uncertain at the
construct level, PLS had less error at smaller sample sizes (250 or less) beyond
which ML and Bollen-Stine methods performed better in recovering structural
estimates. ML and Bollen-Stine also had better measurement model recoveries in
this case. In terms of the experimental conditions, smaller sample sizes and larger
misspecified effect sizes had a detrimental effect on the accuracy of parameter
recovery. On the other hand, data distributions did not have any appreciable
detrimental effect on any of the three methods.

With established tools and instruments, it might be argued that measurement
misspecifications are less likely to occur. In this case, model exploration is based at
the structural level, and PLS-SEM might be the preferred method. If the constructs
are not well defined by the previous literature, and the focus is on construct
reliability, measurement misspecifications might be more likely to occur, and ML-
SEM is the preferred approach. Studies that consider the refinement of measurement
models as their goal often validate the construct reliabilities using ML-SEM (Garver
and Mentzer 1999). In comparison, PLS-SEM-based studies are often used in
exploratory research with the goal of investigating structural links. Our results bear
this practice out. We find that, in general, the Naïve PLS bootstrap was more
accurate and efficient than ML and Bollen-Stine SEM bootstraps for estimating
structural model parameters. However, the reverse was true for measurement model
estimates. These results point to the favorability of PLS when the structural
parameters are of interest. On the other hand, ML and Bollen-Stine methods are
appealing when the focus of the study is at the measurement level. When both
structural and measurement model misspecifications are suspected, our suggestion
is that the researchers use a two-pronged strategy by first using ML or Bollen-Stine
methods to clarify the measurement model and then continue with PLS to estimate
structural paths.

Finally, we note that these results and recommendations are valid only under the
specific context considered in this study—in exploratory research, where structural
and measurement model misspecifications are likely and where parameter accuracy
is of interest. This study used a common factor-based data model where PLS-SEM
is known to be at a relative disadvantage as compared to CBSEM (Sarstedt et al.
2016). Further analyses based on a composite model may provide more insights
regarding the strengths and weaknesses of PLS-SEM vis-à-vis CBSEM, including
the recently proposed consistent version of PLS (Dijkstra and Henseler 2015).
While we maintained a narrow focus on model misspecifications, there are other
aspects of exploratory research (e.g., data considerations, such as its availability
and appropriateness) that have not been considered. Also not considered were the
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differences between exploratory and confirmatory approaches, and there exists a
vast literature on this topic. The onus remains on the researcher to correctly specify
their study as exploratory or confirmatory. This decision depends to a large extent
on the goal and the context of the study and the general state of theoretical and
methodological developments in the field. In his influential essay, Tukey asserted
that exploratory research is an “attitude” and that both confirmatory and exploratory
approaches are necessary for theory development (Tukey 1980). PLS- and ML-
based methods are complementary in this regard, and their judicious application
can help in creating stronger theories.

Appendix

Table 13.7 Convergence rates by sample size and method

Sample size
50 100 150 200 250 500

Bollen-Stine 90.80% 98.78% 99.84% 99:98% 100:00% 100.00%
Naïve 81.38% 93.83% 98.33% 99:56% 99:87% 100.00%
PLS 99.88% 99.97% 99.99% 100:00% 100:00% 100.00%

Table 13.8 Structural coefficients RMSD

Effect Df F p �2
p

Method 2 3115:27 <.001 .208
Method � sample size 10 202:61 <.001 .079
Method � effect size 8 301:64 <.001 .092
Method � distribution 6 :950 .458 .000
Method � sample size � effect size 40 4:94 <.001 .008
Method � sample size � distribution 30 :51 .989 .001
Method � effect size � distribution 24 1:2 .228 .001
Method � sample size � effect size � distribution 120 :82 .927 .004
Sample size 5 867:85 <.001 .268
Effect size 4 385:13 <.001 .115
Distribution 3 :12 .951 .000
Sample size � effect size 20 6:82 <.001 .011
Sample size � distribution 15 :52 .930 .001
Effect size � distribution 12 1:14 .319 .001
Sample size � effect size � distribution 60 :74 .931 .004
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Table 13.9 Measurement model (factor loading) average bias

Effect Df F p �2
p

Method 2 122; 745:60 <.001 .912
Method � sample size 10 645:53 <.001 .214
Method � effect size 8 51:87 <.001 .107
Method � distribution 6 1:39 .213 .000
Method � sample size � effect size 40 3:20 <.001 .005
Method � sample size � distribution 30 1:57 .024 .002
Method � effect size � distribution 24 :90 .608 .001
Method � sample size � effect size � distribution 120 1:17 .104 .006
Sample size 5 318:35 <.001 .118
Effect size 4 4:33 .002 .001
Distribution 3 4:42 .004 .001
Sample size � effect size 20 :79 .734 .001
Sample size � distribution 15 1:86 .022 .002
Effect size � distribution 12 :74 .709 .001
Sample size � effect size � distribution 60 :86 .771 .004

Table 13.10 Measurement model (factor loading) RMSD

Effect Df F p �2
p

Method 2 44; 402:83 <.001 .789
Method � sample size 10 106:10 <.001 .043
Method � effect size 8 10:51 <.001 .004
Method � distribution 6 :87 .514 .000
Method � sample size � effect size 40 1:74 .003 .003
Method � sample size � distribution 30 1:30 .125 .002
Method � effect size � distribution 24 1:00 .467 .001
Method � sample size � effect size � distribution 120 1:24 .038 .006
Sample size 5 4093:97 <.001 .633
Effect size 4 9:68 <.001 .003
Distribution 3 4:29 .005 .001
Sample size � effect size 20 2:13 .002 .004
Sample size � distribution 15 1:86 .023 .002
Effect size � distribution 12 1:13 .327 .001
Sample size � effect size � distribution 60 1:20 .140 .006
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Table 13.11 Convergence rates by sample size and method

Sample size
50 100 150 200 250 500

Bollen-Stine 90.65% 98.36% 99.68% 99:65% 99:72% 99:60%
Naïve 82.02% 93.92% 98.19% 99:41% 99:52% 99:66%
PLS 99.82% 99.95% 99.99% 100:00% 100:00% 100:00%

Table 13.12 Structural coefficient RMSD

Effect Df F p �2
p

Method 2 368:45 <.001 .030
Method � sample size 10 249:89 <.001 .095
Method � effect size 8 :51 .849 .000
Method � distribution 6 1:54 .160 .000
Method � sample size � effect size 40 :48 .998 .001
Method � sample size � distribution 30 1:10 .319 .001
Method � effect size � distribution 24 1:23 .200 .001
Method � sample size � effect size � distribution 120 1:44 .001 .007
Sample size 5 921:63 <.001 .280
Effect size 4 1:18 .320 .000
Distribution 3 :50 .682 .000
Sample size � effect size 20 :77 .734 .001
Sample size � distribution 15 1:66 .052 .002
Effect size � distribution 12 1:58 .089 .002
Sample size � effect size � distribution 60 :87 .759 .004

Table 13.13 Measurement model (factor loading) average bias

Effect Df F p �2
p

Method 2 86; 873:07 <.001 .880
Method � sample size 10 666:01 <.001 .219
Method � effect size 8 1:05 .394 .000
Method � distribution 6 1:00 .423 .000
Method � sample size � effect size 40 1:22 .163 .002
Method � sample size � distribution 30 1:37 .084 .002
Method � effect size � distribution 24 :94 .549 .001
Method � sample size � effect size � distribution 120 1:35 .006 .007
Sample size 5 353:86 <.001 .130
Effect size 4 1:17 .323 .000
Distribution 3 4:20 .006 .001
Sample size � effect size 20 :69 .838 .001
Sample size � distribution 15 2:01 .012 .003
Effect size � distribution 12 :77 .687 .001
Sample size � effect size � distribution 60 :90 .704 .004
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Table 13.14 Measurement model (factor loading) RMSD

Effect Df F p �2
p

Method 2 33; 186:03 <.001 .736
Method � sample size 10 56:01 <.001 .023
Method � effect size 8 :89 .526 .000
Method � distribution 6 :84 .541 .000
Method � sample size � effect size 40 1:05 .385 .002
Method � sample size � distribution 30 1:08 .347 .001
Method � effect size � distribution 24 :99 .473 .001
Method � sample size � effect size � distribution 120 1:29 .018 .006
Sample size 5 3727:30 <.001 .611
Effect size 4 1:18 .318 .000
Distribution 3 2:71 .043 .001
Sample size � effect size 20 1:10 .339 .002
Sample size � distribution 15 1:73 .039 .002
Effect size � distribution 12 :78 .676 .001
Sample size � effect size � distribution 60 1:39 .025 .007
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Chapter 14
Personality, Intellectual Ability,
and the Self-Concept of Gifted Children:
An Application of PLS-SEM

R. Frank Falk

Abstract The latent variable path analysis program LVPLS was based on Herman
Wold’s nonlinear iterative partial least squares (NIPALS) approach to theory
construction and data analysis. Current developments derived from NIPALS have
formed partial least squares structural equation modeling (PLS-SEM). Both serve
as appropriate techniques for data analysis under varying conditions. The study
described in this chapter uses PLS-SEM to explore the predictive relationships
among personality, intellectual ability, and self-concept in a sample of gifted youth.
In the model, intellectual ability and introversion accounted for 24% of the variance
in self-concept. Calculations and presentation of results are courtesy of Christian M.
Ringle and the SmartPLS 3 computer program (http://www.smartpls.com).

Herman Wold’s nonlinear iterative partial least squares (NIPALS) approach to
theory construction and data analysis, first introduced in the late 1960s, later become
known as soft modeling (Wold 1980) and latent variable path analysis (LVPLS). My
introduction to Dr. Wold and his work occurred in the 1980s at the University of
Denver. Dr. John Horn, professor in psychology, brought Dr. Wold to the University
for a number of presentations. Wold’s soft modeling represented a new way of
bringing together measurement and theory. This approach had a profound effect
on the way I began to conceptualize data analysis.

Several years later as a visiting scholar at the University of Virginia, I was
able to work with J. Jack McArdle, who introduced me to Jan-Bernd Lohmöller.
Lohmöller’s program latent variable path analysis with partial least squares esti-
mation (LVPLS 1989) provided the means to calculate PLS. His program and my
interest in soft modeling eventually led to the publication of a book titled A Primer
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for Soft Modeling in the early 1990s (Falk and Miller 1992). Thus, my work falls
under the heading of what Henseler et al. (2016) refer to as the “traditional” method
as opposed to the “modern” method. The modern method is the result of work by
many in the international business disciplines, beginning in the late 1990s and early
2000s and continuing to the present (e.g., Chin 1998; Haenlein and Kaplan 2004;
Hair et al. 2017; Tenenhaus et al. 2005).

Conceptually, part of the difference between the traditional and modern method
is explained by the terms latent variable path modeling (LVPLS), also known as PLS
regression, and structural equation modeling (PLS-SEM). In LVPLS, the emphasis
is on prediction of the relationships between latent variables in the structural model.
In PLS-SEM, the emphasis is on explanation. The fundamental concern in the
manifest variable model in LVPLS is between mode A and mode B, known as
reflective and formative modes. The original assumption was that the manifest
variables were reliable and represented either a single latent variable or separate
aspects of a latent variable. Today in PLS-SEM there is much greater emphasis
on the measurement model in which higher reliability standards are sought and
measures of convergent and discriminate validity are employed. Finally, in PLS-
SEM a statistical technique called bootstrapping is used to test the probability
that the reflective loadings and composite weights are non-zero. Additionally, the
predictive power or relevance of the model can be examined, in certain cases,
using the blindfolding procedure. Thus, PLS-SEM represents a causality model,
based on highly reliable and valid instrumentation and well-established theoretical
relationships.

In LVPLS, soft modeling refers to the notion that measurement and theory are
at a formative stage. The essential idea is to gain some degree of predictability as a
way to move measurement and theory forward. While achieving high predictability
is the goal in science, having some degree of predictability is better than having
none. In other words, although “10% predictability means that only 10% [of the
variance] is understood : : : this may be a valuable piece of information” (Falk and
Miller 1992, p. 5).

In principle, this study belongs more in the traditional than the modern method.
The theoretical relationships are speculative and the data relatively soft. In the model
to be examined, only one of the manifest variables meets normality and linearity
assumptions. However, well-established measures are used for the measurement
of all latent variables, although some probably do not meet the interval level of
measurement. My interest in using PLS-SEM techniques in this study is to explore
the procedures of the modern era with available measures and provisional theory.

14.1 The Theoretical Model

Parents and clinicians tend to see a positive view of the self as an indicator of
healthy child development. For this reason, self-concept is measured in all children
assessed at the Gifted Development Center. In cases where self-appraisal is low,
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“the discovery of giftedness is often ameliorative, kindling aspirations and healing
self-concepts” (Silverman 2013, p. 200).

According to William James (1915), one’s self is unique in that the person is
both the knower and the known. Charles Cooley (1902) referred to the self as the
reflective self and called it the reflected appraisal of others or “the looking-glass
self.” Research indicates that gifted children may be even more sensitive to the
feedback of others (Falk and Miller 1998), especially adolescent girls (Gross et al.
2007).

Self-concept, or the way we see ourselves, is based on the way we think others see
and evaluate us. However, not all others have the same impact on our self-concept;
some are more significant than others (Mead 1934).

The goal of this study is to understand the factors that contribute to the self-
concept of the gifted child. Parents usually exert the greatest influence on the child’s
view of the self. Two measures of parents’ observations of the child’s personality
are introversion-extraversion and overexcitability (OE). These factors are believed
to be related to self-concept (Silverman 2013).

Introversion/Extroversion In the early 1930s, Carl Jung (1971) developed the
idea of introversion and extraversion as a continuum of personality type. In Jung’s
view introverts conserve energy, while extraverts expend energy. He asserted that
individuals are born with an introvert or extravert personality type.

Moving from the clinical perspective of personality, researchers in the area
of temperament sought to establish the biological features of personality. This
culminated in the work of Buss and Plomin (1984) on temperament. For them,
extraversion and introversion were understood as sociability and shyness. Socia-
bility was measured by the degree of preference for being with others; shyness was
understood as a person’s behavior in the presence of casual others and strangers.
Extraverts are outgoing, prefer being with others, and are not self-conscious in
the presence of strangers. Introverts prefer doing things alone and do not initiate
social behaviors. In the Big Five personality model, the extraversion scale is on a
continuum from solitary/reserved to outgoing/energetic (Gallagher 2013).

In discussing extraversion and introversion in the gifted, Silverman (2013)
emphasizes Jung’s conception.

Introverts are oriented inward toward the subjective world of thoughts and concepts; they
get their energy from inside themselves; and they are inclined toward reflection. Extraverts
are oriented outward, become energized through interaction with people and things, and
are directed toward action. Whereas introverts feel drained by too much interaction with
people, extraverts are energized by interaction—the more, the merrier. (p. 151)

Overexcitability OE is an innate characteristic that describes a person’s reaction
to external stimuli. It represents a heightened sensitivity and intensity of the
central nervous system. There are five areas of OE: psychomotor (high energy
levels), sensual (sensory enjoyment), imaginational (rich fantasy), intellectual (high
curiosity), and emotional (strong feelings). The OEs were introduced in 1937
by Kazimierz Dabrowski, a Polish psychiatrist and theorist, based on clinical
observation (Piechowski 2014a).
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OEs have been explored extensively in the field of gifted education as charac-
teristics of gifted children, adolescents, and adults (see, e.g., Falk and Miller 2009;
Mendaglio 2008; Piechowski 2014b; Silverman 2013). In cross-cultural research of
gifted children, Kuo et al. (2012) found each OE was correlated with a specific area
of the brain, supporting the notion of its inherent quality.

Four of the OEs are associated with facets of the openness to experience
factor in the Big Five model of personality—sensual, imaginational, intellectual,
and emotional. These OEs have been shown to correlate with esthetics, fantasy,
ideas, and feelings, respectively (Gallagher 2013). A dimension of the perception
of self, verbal self-concept, was found to be positively correlated with sensual,
imaginational, intellectual, and emotional OE (Gross et al. 2007). Two studies have
found relationships between intellectual OE and self-concept (Gross et al. 2007;
Rinn et al. 2010).

Intellectual ability is a term that captures many cognitive capabilities, such
as reasoning, thinking, and remembering. Commons (1985) suggested that the
possible number of intellectual abilities could be as high as 800,000 or more. The
question of how many separate factors are required to account for the multitude of
individual abilities varies from 1 to 9, according to Horn and Noll (1994). Verbal
comprehension and perceptional reasoning, two components of abstract reasoning,
are used in this study because they are the best indicators of intellectual giftedness.

14.2 Hypotheses

The general proposition of this study is that intellectual ability is associated with
self-concept, introversion/extraversion, and OE. Intellectual ability influences the
way others respond to the child and, in turn, his or her self-concept. The latent
variable hypotheses are as follows: (1) intellectual ability has a direct positive effect
on self-concept, OE, and introversion/extraversion; (2) introversion-extraversion has
a direct positive effect on self-concept; and (3) OE positively affects self-concept.

14.3 Method

14.3.1 Subjects

Data used in the study was collected at the Gifted Development Center, a testing and
counseling center in Westminster, Colorado, USA. Subjects were children tested at
the Center between 1994 and 2014. Only those cases where parents gave permission
for their children to participate in research and those cases having no missing data
on the variables in the study were included. These criteria were met by 242 cases
with children between the ages of 9 and 12. The gender distribution was as follows:
64% male and 36% female.
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14.3.2 Manifest Variables

In the preliminary analysis, 17 manifest variables were included in the model
that formed 4 latent variables—intellectual ability, introversion/extraversion, OE,
and self-concept. The manifest variables included two measures of intellectual
ability (Verbal Comprehension and Perceptual Reasoning), five measures of OE
(psychomotor, sensual, imaginational, intellectual, and emotional), four indicants
of introversion and extroversion (mother’s and father’s scores), and six dimensions
of self-concept. Bootstrap tests that show no loadings, weights, and paths were
statistically significant. Thus a different analytic approach was pursued that included
all 17 manifest variables.

The second tactic was to create two hierarchical latent variables by com-
bining first-order latent variables (Becker et al. 2012). One hierarchical latent
variable “overexcitability” was created by combining one latent variable defined
by psychomotor and sensual OE and another made up of imaginational, intel-
lectual, and emotional OE. A second hierarchical latent variable was created
for introversion-extraversion from two first-level latent variables—fathers’ scores
for child’s introversion and extraversion and mothers’ scores for their child’s
introversion and extraversion. Unfortunately, the bootstrap procedure produced
nonsignificant results. It was also not possible to predict the variance in the
hierarchical variables (OE and introversion/extraversion) with intellectual ability
since the total variance was already accounted for by first-order latent variables.
Using these findings, the following 11 manifest variables were included in a reduced
manifest variable model.

Self-Concept The Self-Perception Profile for Children—ages 8–12, “What I Am
Like”—was used as a measure of the child’s self-concept (Harter 1982). It was
designed for children in what Harter has described as middle childhood. It is in
this period that children have evaluations of self in different areas of their life
experiences. This instrument assesses the following areas: scholastic competence,
social acceptance, athletic competence, physical appear, behavioral conduct, and
global self-worth. Global self-worth, a sense of overall self-esteem, is a separate
dimension and not a summary of the other five. All six dimensions are independent
factors both theoretically and empirically. There are 36 items on the Self-Perception
Inventory, a self-report questionnaire. The inventory, which was validated using
factor analytic techniques, has been widely used to assess children’s self-concepts
(Harter 1982).

Introversion-Extraversion In 2011, Silverman revised her original introversion-
extraversion scale (Silverman 2002) to include 12 additional items. The revised
scale is used in this study. While the scale has been useful for clinical assessment,
its reliability and other psychometric properties have not been established.
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The introversion-extraversion scale contains items representing sociability and
shyness, as well as cognitive and psychological traits. Parents are asked to check the
column indicating how close their child is to one of the descriptors in each pair, e.g.,
“Can focus on many ideas at once” versus “Likes to concentrate on one activity at
a time.” Introversion and extroversion are two ends of a continuum. Only mothers’
scores were used. (See Appendix for other examples of the items used in measuring
introversion and extraversion.)

Overexcitability The Overexcitability Inventory for Parents (OIP-II) is a 25-item
parent report questionnaire that measures the parents’ perception, or appraisal, of
their child’s five independent overexcitability factors. Its level of measurement is
ordered-metric. The psychometric properties in the general population are unknown.
Reliability for OEs in this instrument has been reported as high (ranging from 0.77
to 0.89) (Falk and Silverman 2016). Intellectual OE (mean D 4.08) has been found
to correlate with giftedness in many studies (e.g., Bouchet and Falk 2001; Wirthwein
and Rost 2011; Van den Broeck et al. 2014); it is the only measure of OE included in
the model. (See Appendix for examples of the items used in measuring intellectual
OE.)

Intellectual Ability To assess intellectual ability, subtests from the Wechsler
Intelligence Scale for Children, Fourth Edition (WISC-IV), were used. Six unique
abilities form two of the four Composites—Verbal Comprehension and Perceptual
Reasoning. These two Composites create measures of general intelligence that
are less influenced by a child’s performance on auditory memory tasks (Working
Memory) and speed (Processing Speed).

Greater discrepancies among WISC-IV Composite scores have been found for
gifted children than for the non-gifted (Rimm, cited in Silverman 2013). In the
WISC-IV manual, Composite scores for the gifted in a normative sample are similar
and highest for Verbal Comprehension and Perceptual Reasoning (124.7 and 120.4,
respectively) and lowest for Working Memory and Processing Speed (112.5 and
110.6, respectively) (Wechsler 2003). Therefore, the child’s Verbal Comprehension
and Perceptual Reasoning Composites were selected to assess intellectual ability in
this study of gifted children.

Verbal Comprehension is composed of three subtests: Vocabulary, Similarities,
and Comprehension. Information or Word Reasoning may, at appropriate times,
be substituted for any one of these. Perceptual Reasoning includes Block Design,
Matrix Reasoning, and Picture Concepts. Picture Completion is an acceptable
alternative for one of these in certain cases (Flanagan and Kaufman 2004). Verbal
Comprehension Composite scores in this study ranged from 121 to 182, with a mean
of 141 and a standard deviation of 12. Scores higher than 160 were calculated with
extended norms (Zhu et al. 2008). This demonstrates that the sample represents a
gifted population.
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14.4 Analysis

Data were entered into the SmartPLS 3 program (Ringle et al. 2015). The output
from this program consists of a graphic presentation of the model as well as a
complete set of calculations. A primer on partial least square structural equation
modeling is also available for assistance in using and interpreting the program (Hair
et al. 2017).

14.5 Results

The initial model had 11 manifest variables and 4 latent variables. The latent
variables introversion and self-concept had inner directed arrows from the manifest
variables to the latent construct, sometimes referred to as mode B or formative
measurements. Thus, the values of the arrows represented composite weights used
to create the latent variables. Intellectual ability is a first principal component factor.
The values of the manifest variables represented first latent variable loadings; their
residuals were quite small. The test for collinearity, called the variance inflation
factor (VIF) for self-concept, was 1.05 and indicated no significant collinearity.
Convergent validity using redundancy analysis was 0.70, reaching the minimum
standard.

Verbal Comprehension and Perceptual Reasoning Composites from the WISC-
IV both had high loadings on the latent variable intellectual ability (Verbal
Comprehension D 0.86 and Perceptual Reasoning D 0.80). The measurement of
these Composites has well-established reliability and validity (Wechsler 2003). The
composite weights on introversion were approximately equal, with extraversion
being negative (�0.49) and introversion being positive (0.54). The label of this
latent variable was now “introversion” as its positive loading defined the variable.
The composite reliability for intellectual ability was 0.8; AVE was 0.68, indicating
reliable and convergent validity.

The weight of parents’ report of the child’s intellectual OE on the latent variable
(intellectual OE) was 1.00. This measure was a single manifest variable; therefore
the latent variable and the manifest variable were equivalent. Earlier attempts to
include other OE measures produced insignificant weights.

The composite weights on self-concept were as follows: athletic competence,
0.63; behavioral conduct, 0.36; global self-worth, 0.25; physical appearance, 0.14;
scholastic competence, 0.60; and social competence, 0.31. By the traditional LVPLS
method, all variables in the measurement model would be retained; but in the
modern PLS-SEM method, bootstrap statistical tests are applied to all reflective
loadings and composite weights.

All of the loadings on intellectual ability had a probability of 0.05 and were
therefore significant. The weight for extroversion on the latent variable introversion
was not significant, and the remaining manifest variable is mother’s score on
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Fig. 14.1 PLS model

introversion. Three manifest variables on self-concept had acceptable levels of
significance: athletic competence 0.00, behavioral conduct 0.00, and social compe-
tence 0.00. Recalculating the entire model (See Fig. 14.1) with the newly specified
measurements shows all reflective loadings and composite weights with a significant
probability of 0.05 or less.

The discriminant validity for the remaining manifest variables in the model was
measured using the heterotrait-monotrait ratio (HTMT). The results show a ratio of
0.30 between intellectual ability and intellectual OE and 0.06 between intellectual
ability and introversion. The ratio for intellectual OE and introversion was 0.14.
Thus, discriminant validity is established.

The standardized root mean square residual (SRMR) was used to assess the
model fit. A value of below 0.08 is considered a good fit in covariance-based
structural equation modeling but may be too restrictive for PLS (Hair et al. 2017).
For this model the SRMR D 0.07, well below the more restrictive 0.08 criteria,
indicating a good fit of the model for the data.

Paths were positive between latent variables intellectual ability and intellectual
OE (0.22) and between intellectual ability and self-concept (0.40). The path between
intellectual ability and introversion was 0.04. The path from introversion to self-
concept was 0.24, while the path between intellectual OE and self-concept was small
(0.03), indicating that intellectual OE had almost no direct influence on a child’s
self-concept in this model.

Twenty-four percent of the variance (R2 D 0.24, p D 0.00) in the child’s self-
concept was accounted for by intellectual ability and introversion, with intellectual
ability having the largest contribution. The indirect effect for intellectual ability was
0.016. For intellectual OE, variance explained was small (R2 D 0.05, p D 0.06).
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Therefore little variance in intellectual OE was accounted for by intellectual ability
since no other predictors were present. This is a strong indication that intellectual
OE is different from intellectual ability. The variance explained for introversion was
very small (R2 D 0.002, p D 0.51) Statistical significance was established by the
bootstrap procedure in SmartPLS 3.

14.6 Discussion

The strongest predictor of self-concept in the model was the child’s intellectual
ability. Findings indicate that the higher a child’s general intelligence, the more
positive his or her self-concept. This should be good news to parents of gifted
children who may worry about their children being out of sync with age peers and
how this might affect their self-appraisal. However, the discovery of giftedness can
often lead to feelings of self-worth. Likewise, the opportunity to associate with other
gifted youth, either in school or in special programs where true peers are discovered,
is likely to increase positive views of oneself (Silverman 2013).

Introversion was also a strong predictor of self-concept, indicating that gifted
introverts have positive self-views. This suggests that children who need time alone,
learn by observing, like to concentrate on one activity at a time, prefer one close
friend, and are more cautious and reflective have higher self-concepts. Therefore,
children who exhibit introversion should be valued and supported at home and in the
school. Their self-reflection should be appreciated and the benefits of their depth of
thought and preference for listening recognized (Helgoe 2013; Olwen Laney 2002).

No relationship was found between intellectual OE and self-concept in this study.
Two previous studies found that psychomotor OE related to academic self-concept;
however, both of those studies used different measures of self-concept and assessed
older children (Gross et al. 2007; Rinn et al. 2010). Further research is needed to
examine the effect of other OEs on the self-concept of children.

One limitation of this study is the lack of children’s self-report for variables such
as introversion-extraversion and overexcitability. Although parents’ perceptions are
frequently the best measures of the child, and certainly reveal the way the child
is seen by significant others, information about the child’s perception may be
important.

It is clear from the results of this study that more predictive variables are needed
to account for the variance in the self-concept of gifted children. For example, the
child’s perception of his or her own overexcitability could be assessed using a new
instrument called the Overexcitability Questionnaire-Two-C for children ages 6–11
(Falk et al. 2016). This instrument was designed for use with children too young to
complete the Overexcitability Questionnaire-II, a self-report measure for those 12
years old and older.

Having explored the modern PLS-SEM, there are some measurement features
that I can appreciate. These include a reliability measure for reflective measure-
ment models, called average variance extracted, and a variance inflation factor
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for examining the collinearity in formative measurement models. Additionally,
the bootstrapping procedure for assessing the statistical significance of loadings,
weights, and paths can be useful as long as appropriate significance values are
chosen. These must be consistent with the psychometric properties of the manifest
variables; values of 0.05 or smaller may not be appropriate.

NIPLS and LVPLS were intended to provide researchers with a tool to explore
measurement and latent variable relationships when the data and the theoretical
relationships are soft. The push for greater reliability of variables and stronger
theory, while commendable, should not exclude meaningful attempts to better
understand the relationship between concepts with less than ideal specifications.

Appendix

Instruments used in this study have copyright privileges that apply to distribution of
test items as follows. Publishers of the Wechsler Intelligence Scale for Children
forbid that any test items be distributed. The Self-Perception Profile and the
Overexcitability Instrument for Parents (OIP-II) allow example items to be shown
(see below).

Responses to the Self-Perception Profile are along a four-category continuum of
“Very True,” “True,” “Sometimes,” and “Neutral.” There are a total of 25 items
measuring introversion and extroversion in facing pairs. Two examples of these
items are “Needs time alone” versus “Needs social interaction” and “Reflective”
versus “Impulsive.”

The Overexcitability Inventory for Parents-II (OIP-II) has a total of 25 items.
Five items measure each of the five OE’s: psychomotor, sensual, imaginational,
intellectual, and emotional. There are six response categories ranging from “Not
at all like my child” to “Very much like my child.” Two examples of intellectual
OE are “My child observes and analyzes everything” and “My child loves to solve
problems and develop new concepts.”
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Chapter 15
Ethical Awareness, Ethical Judgment,
and Whistleblowing: A Moderated Mediation
Analysis

Hengky Latan, Charbel Jose Chiappetta Jabbour, and Ana Beatriz Lopes
de Sousa Jabbour

Abstract This study aims to examine the ethical decision-making (EDM) model
proposed by Schwartz (J Bus Ethics, 2015. doi:10.1007/s10551-015-2886-8), where
we consider the factors of nonrationality and aspects that affect ethical judgments
of auditors to make the decision to blow the whistle. In this chapter, we argue that
the intention of whistleblowing depends on ethical awareness (EAW) and ethical
judgment (EJW) as well as there is a mediation-moderation due to emotion (EMT)
and perceived moral intensity (PMI) of auditors. Data was collected using an online
survey with 162 external auditors who worked in audit firms in Indonesia as well as
173 internal auditors working in the manufacturing and financial services. The result
of multigroup analysis shows that emotion (EMT) can mediate the relationship
between EAW and EJW. The nature of this relationship is more complex, so we
then tested it by adding moderating variables using consistent partial least squares
(PLSc) approach. We found that EMT and PMI can improve the relationship
between ethical judgments and whistleblowing intentions. These findings indicate
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that internal auditors are more likely to blow the whistle than external auditors,
and reporting wrongdoing internally and anonymously is the preferred way of
professional accountants to blow the whistle in Indonesia.

15.1 Introduction

Whistleblowing has gained the attention of the global community and the media
in recent years, partly because of large awards offered by the Dodd-Frank Act of
2010 and partly due to a case of fraud involving Olympus corporation and Michael
Woodford who was fired when he revealed payment irregularities (Archambeault
and Webber 2015; Rao et al. 2011; MacGregor and Stuebs 2014). This indicates
that a whistleblower does not only arise from inside the organization, but it can also
come from outside, referred to as an external whistleblower (Maroun and Atkins
2014b; Maroun and Gowar 2013).

An internal whistleblower can observe the various violations that occur within
an organization such as discrimination, corruption, cronyism, or other unethical
behavior. Meanwhile, an external whistleblower can observe noncompliance with
the fulfillment of corporate social responsibility and the environment (Culiberg
and Mihelic 2016; Vandekerckhove and Lewis 2012). Thus, the important role
of whistleblowers in detecting wrongdoing cannot be denied (Latan et al. 2016).
However, being a whistleblower is not easy, because one must consider the positive
and negative impacts caused, and it also involves the complicated process of
ethical decision-making (EDM) (Ponemon 1994; Shawver et al. 2015; Webber
and Archambeault 2015; O’Sullivan and Ngau 2014). EDM can be understood as
deciding or judging whether the action or decision is ethical (Lehnert et al. 2015).
Given that the internal control system is designed to minimize risks such as financial
fraud, it will rely heavily on moral reasoning which is conducted by auditors (both
internal and external). However, an auditor is often faced with ethical issues that pit
ethics and professional codes against ethical decisions.1

The critical reviews conducted by Culiberg and Mihelic (2016) and Vandeker-
ckhove and Lewis (2012) showed that there is still an empirical gap in this area
that requires further testing. For example, most previous studies have focused too
much on internal whistleblowers (such as employees, managers, internal auditors,
and management accountants) and ignored external whistleblowers (Latan et al.
2016; Alleyne et al. 2016; Miceli et al. 2014).2 In this context, subjects such as
how to protect external whistleblowers (Maroun and Gowar 2013) and how they
are perceived need to be further addressed (Maroun and Atkins 2014a, b). At the
same time, the body of literature currently offers little insight into how a person
reacts to wrongdoings to make a decision to blow the whistle. This relates to the
ethical decision-making (EDM) model proposed by Rest (1986), where there are

1Jubb (2000) gives a detailed explanation of the roles of auditors as whistleblowers.
2Miceli et al. (2014) provide a detailed distinction between internal and external whistleblowers.
In this chapter, we use the term external whistleblower compared to the “bell-ringers” proposed by
them to be more familiar.
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four stages that must be passed, namely, awareness, judgment, intent, and actual
behavior.

As stated by Culiberg and Mihelic (2016), most of the existing empirical research
related to whistleblowing has examined the relationship between judgment and
intent (Zhang et al. 2009; Chiu 2002, 2003; Liyanarachchi and Newdick 2009)
and supports it fully. However, there are no studies that extend this testing to
other stages, such as considering the influence of ethical awareness on ethical
judgment. In addition, some studies also show that there are other factors that
can affect this process, such as moral intensity (Jones 1991) and emotion (Henik
2008, 2015; Hollings 2013). Schwartz (2015) showed an EDM model of integration,
combining the factors of rationality and nonrationality. This model assumes that
ethical behavior depends on people who face ethical biases (related to mood or
moral intensity) and the environmental situation at the time. Jones (1991) defines
moral intensity as a measure of moral imperatives-related problems in certain
situations.

Perceived moral intensity will help auditors when facing an ethical dilemma,
while emotions are feelings that arise (such as anger or fear) when encountering
wrongdoing. These influence the auditor’s decision to blow the whistle (Jones 1991;
Henik 2008, 2015; Latan et al. 2016). Both of these factors play an important
role and are a key element in the EDM model of whistleblowing. Therefore, the
purpose of this study was to extend the EDM model of testing for whistleblowing
by considering the role of two whistleblower groups (internal and external) in the
Indonesian context.

Indonesia provides a good setting to test this model because it offers an
interesting phenomenon to study. For example, according to a report from global
fraud study conducted by the Association of Certified Fraud Examiners (ACFE)
in 2016, Southeast Asia was in first position for cases of fraud, and Indonesia is
one of five countries in the world experiencing higher levels of fraud after South
Africa, India, Nigeria, and China. This is an indication that auditors in Indonesia
(internal and external) may be still reluctant to become whistleblowers (Latan et al.
2016). As stated by Jubb (2000), internal or external auditors are often faced with an
ethical dilemma when wanting to reveal wrongdoings in the workplace: they have
conflicts of loyalty and professionalism. Hence, the decision to blow the whistle is
complicated. However, research in Southeast Asia and Indonesia is rare, and there
is still an empirical gap (Culiberg and Mihelic 2016; Latan et al. 2016). Thus, it is
important to examine what factors are instrumental to the auditor’s decision to blow
the whistle.

Our study contributes to the current literature in several ways. First, this is the
first study to extend the testing EDM model to whistleblowing, where there are many
factors and relationships between variables that have not been tested in previous
research.3 Thus, this study answers the call of Culiberg and Mihelic (2016) to extend

3This study provides empirical evidence of EDM theoretical models developed by Schwartz
(2015). Although not all of the variables considered, this provides sufficient preliminary evidence.
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the testing of these models in the context of accounting and ethics. Although some
previous studies have discussed this model (Zhang et al. 2009; Chiu 2003; Arnold
et al. 2013; Yu 2015), they can be developed further. Second, this is the first study
to compare two groups of whistleblowers—internal and external auditors—which is
helpful in explaining which group is more prone to blowing the whistle. Until now,
no previous empirical studies have fully considered testing the two whistleblower
groups together in a single model. Although Shawver et al. (2015) used professional
accountants as samples (including internal and external auditors) in testing the EDM
model for whistleblowing, they did not test the samples separately.4

Third, this study extends state-of-the-art research on whistleblowing by provid-
ing evidence from Indonesia. To the best of our knowledge, no study conducted
in Indonesia has tested EDM models of decisions to blow the whistle. As there
are no empirical results available from Indonesia on whistleblowing in the context
of accounting, this study provides initial evidence of the importance of individual
and nonrationality factors in favor of EDM model proposed by Schwartz (2015)
which have been the focus of research lately. Finally, it is important to conduct
this study with experienced professionals such as auditors, who experience real-life
ethical dilemmas that maybe different from those outside professional organizations
(e.g., employees, consultants, customers, shareholders). However, few studies use
the auditor as a sample (Curtis and Taylor 2009; Latan et al. 2016; Culiberg and
Mihelic 2016; Alleyne et al. 2013).

The remainder of the chapter is organized as follows. The next section presents
the development of the hypotheses, followed by the research methodology. Next,
we discuss our results. Finally, we further analyze our results and provide important
implications of our study as well as its limitations.

15.2 Literature Review and Hypothesis Development

15.2.1 The Ethical Decision-Making Model

EDM is one of the issues that have attracted the attention of researchers in the field
of business ethics but also in other disciplines such as marketing, moral psychology,
organizational behavior, philosophy, and social economics. The extent of illegal and
unethical behavior that occurs in organizations and society in general has motivated
researchers to develop an EDM model on an ongoing basis. The main assumption
among all bodies of knowledge in the literature on EDM is a rationality-based
process. One of the most widely cited and tested EDM models was proposed by Rest
(1986) which consists of four components, namely, awareness, judgment, intent, and
actual behavior. Until now, there have been several theoretical models of EDM that
have been proposed, including a model of the contingency by Ferrell and Gresham

4Shawver et al. (2015) combine the two groups into a single dataset. This makes the results of the
analysis become inaccurate and biased.
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(1985), a situational interactionist model by Trevino (1986), the general theory of
ethics and its modifications (Hunt and Vitell 1986, 2006), modified Rest model by
Jones (1991), and the integrated EDM model by Schwartz (2015). The main purpose
of building these models is to explain and predict the process by which a person
makes ethical decisions and the factors underlying such decisions.

Ferrell and Gresham (1985) adopted a framework for contingency aiming to
explain the processes of EDM that influence ethical decisions of marketers. In this
model, they propose three contingency factors: individual factors (e.g., knowledge,
values, attitudes, and intentions), organizational factors (e.g., organizational pres-
sures and opportunities), and environmental factors (e.g., company policies and
interactions between groups) that directly affect the ethical decisions of individuals.
Trevino (1986) developed a situational interactionist model by combining individual
factors (such as moral development) with the situational factors to explain and
predict the EDM of individuals within an organization. More specifically, the model
shows that the relationship between the individual’s cognitive moral development
and ethical behavior will be moderated by the two factors. Individual factors
include the strength of the ego, field dependence, and locus of control, whereas
situational factors include the immediate context of work, organizational culture,
and nature of work.5 In addition, Trevino (1986) also adopted the six stages of
cognitive moral development developed by Kohlberg which becomes operative in
the EDM process. Hunt and Vitell (1986) proposed a general theory of ethics that
is more comprehensive in explaining the process of EDM and widely accepted
in the field of marketing. According to their theory, once a person is faced with
an ethical dilemma, where there are alternatives and consequences (influenced
by cultural, environmental, professional, organizational, industrial, and personal
characteristics), they will make an evaluation (both deontological and teleological),
before making ethical judgments. After that, the ethical judgment will directly affect
the ethical intentions which in turn affect the actual behavior (Hunt and Vitell 2006).
The Hunt-Vitell model also added feedback generated from the actual consequences
of people behavior to make personal experience in the future.

Unlike the previous three competing models, Jones (1991) built an EDM model
considering Rest (1986)’s model. According to Jones (1991), the literature does
not have a model which shows the characteristics of a moral problem itself which
affects the EDM process, and he proposes an issues-contingent model of EDM. This
combines the concept of moral intensity and organizational factors in the Rest’s
model, which is a new paradigm in EDM models. In addition, it considers that
individuals who have a superior position in the organization, as a routine, more
often faced ethical issues in decision-making and vice versa. Thus, the stronger the
intensity of the ethical issues, the more likely the decision-makers are to lean toward
ethical behavior. Therefore, Jones (1991) hypothesizes that moral intensity and

5There is a similarity between the model of Trevino (1986) with the model of Ferrell and Gresham
(1985), which consider individual and situational factors. The difference is the role of both, one as
a predictor and the other as moderator.
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organizational factors play a role as predictor variables that directly and separately
contribute to the EDM process.

Most recently, Schwartz (2015) conducted a synthesis of all existing EDM
models and previous studies and proposed a new model called the “integrated
EDM model.” This combines all theoretical and empirical models into a single
comprehensive model. This present study adopts the perspective of the framework
proposed by Schwartz (2015), where we consider factors of nonrationality (such as
emotions) as well as individual factors (such as moral intensity) as the mediation-
moderation effects in the relationship between the variables that affect the decision-
making process of an auditor to blow the whistle (see Fig. 15.1). As stated by
Schwartz (2015), EDM is a complex process that involves many variables that
are interrelated (neurocognitive-affective processes) and influence each other. For
example, in the EDM model described earlier, nonrationality factors were not fully
discussed, and for this reason the rationalist approach seems to have limitations
and shortcomings, especially in conditions that are unpredictable and dynamic. We
chose the nonrationality factors to be tested because they are more dominant in
the process of moral judgment, in which rationality plays a secondary role after “a
fact” is clear. In other words, when someone finds wrongdoing, but it is outside of
the organization’s ethical code of conduct, for example, the nonrationality factor
will dominate the EDM process. Conversely, when the wrongdoing is common and
has been agreed upon, then the rationality factor will dominate. If the rights and
duties of the auditor as a whistleblower have not been set out clearly in the law
on protection, then the nonrationality of factors tends to be more important in the
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Fig. 15.1 Conceptual model of the whistleblowing decision-making process
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EDM process to blow the whistle.6 The EDM model proposed by Schwartz (2015)
is also built on the model of Rest but with additional modification factors of rational
and nonrational as intermediaries as well as individual and situational factors as
moderating variables. This model has not been widely tested in comparison with
previous models, especially in decision-making for whistleblowing.

15.2.2 Ethical Awareness, Emotions, and Ethical Judgment

Butterfield et al. (2000) define ethical awareness as consciousness owned by an
individual at a certain time point when faced with ethical dilemmas that require
a decision or action that may affect the interests of themselves or others in a
way that may conflict with one or more of moral standards. Classical theory of
EDM found ethical awareness is a strong predictor of ethical judgment (Rest 1986;
Jones 1991) and mediated by nonrationality factors (affective) such as emotions
(Lehnert et al. 2015; Henik 2008; Schwartz 2015). As proposed by Henik (2008)
and developed further by Schwartz (2015), emotions (such as fear or anger) are also
able to mediate the relationship between ethical awareness and ethical judgment
for whistleblowing. Emotions can form prosocial or antisocial behavior which can
affect a person’s decision to reveal any wrongdoing. Previous research has found
a significant relationship between ethical awareness and ethical judgment among
marketing professionals (Singhapakdi et al. 1996), among upper-division business
students (Haines et al. 2008), and in formal infrastructure (Rottig et al. 2011) and
mediated by emotion (Connelly et al. 2004; Singh et al. 2016; Henik 2015). From
the above discussion, the following hypotheses can be derived:

H1a Ethical awareness has a positive direct effect on ethical judgment.

H1b Ethical awareness has a positive indirect effect on ethical judgment through
emotions.

15.2.3 Moderating Effect of Perceived Moral Intensity
on Ethical Awareness and Ethical Judgment

Jones (1991) defines moral intensity as a measure of moral imperative-related
problems in certain situations. According to Jones (1991), EDM models should
place emphasis on the characteristics of ethical issues themselves. Based on the
issues-contingency perspective, Jones placed moral intensity as a predictor variable
that affects every phase of the EDM process. Many previous studies have examined

6See Leys and Vandekerckhove (2014) for an explanation of the rights and duties of a whistle-
blower for some types of wrongdoings.
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this variable in the context of business ethics (Lehnert et al. 2015; Craft 2013;
O’Fallon and Butterfield 2013) and provide results that can be developed further. We
adopt this perspective that assumes individuals more easily identify ethical issues
when they have high moral intensity. Moral intensity consists of six components
(see Jones 1991), but according to Curtis and Taylor (2009), only three factors are
relevant in the context of the audit, namely, magnitude of consequences, probability
of effect, and proximity; these three factors can affect the auditor’s ethical judgment
to blow the whistle (p. 198).7

Magnitude of consequences is how much loss will result from the wrongdoings
and affect the ethical judgment of the auditor. Probability of effect is the impact
of that loss in the future (such as retaliation or job loss) and also how it will
influence the ethical judgment of the auditor and the intention to blow the whistle.
Finally, proximity is a direct influence caused by unethical behavior which harms
one of the group members (such as co-workers or family members) and how it
affects the ethical judgment of auditors to blow the whistle. In other words, if the
impact of the one act does not directly affect the lives of people nearby, the auditor
may be reluctant to disclose the error. Previous research has found a significant
relationship between moral intensity and ethical judgments (Singer et al. 1998;
Valentine and Hollingworth 2012; Yu 2015; McMahon and Harvey 2007; Leitsch
2004). Other studies of Beu et al. (2003) and Singh et al. (2016) showed that moral
intensity moderates the relationship between several independent variables to ethical
judgments. From the above discussion, the following hypothesis can be derived:

H2 Moral intensity moderates the relationship between ethical awareness and
ethical judgment.

15.2.4 Moderating Effect of Emotions on Ethical Judgment
and Whistleblowing Intentions

By recognizing that decisions can be divided into (a) rationalist based (i.e., reason)
and (b) nonrationalist based (i.e., intuition and emotion) (Schwartz 2015), several
previous studies have realized the importance of the role of emotions in influencing
ethical decisions (Connelly et al. 2004; Curtis 2006). Emotions are feelings that
arise (such as anger or fear) when encountering wrongdoing and also influence the
auditors’ ethical judgment to arrive at the decision to blow the whistle (Henik 2008).
Emotions can directly affect the ethical judgment and moral reasoning (Singh et al.
2016). For example, negative mood can be associated with lower intentions to report
the unethical actions of others to a superior within an organization (Curtis 2006).
According to Schwartz (2015), emotions can also serve as a moderating variable

7Alleyne et al. (2016) and Latan et al. (2016) have used the moral intensity as a moderating variable
in research related to the whistleblowing intentions.
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on the relationship between ethical judgments and whistleblowing intentions. When
the auditor is making ethical judgments on specific cases, for example, feelings
like anger or fear will continue to be part of a subsequent decision, whether to
reveal wrongdoing through internal routes (IWB), external (EWB), or anonymous
(AWB) whistleblowing. If the auditor is quite afraid of revealing errors found,
because it will affect personal and professional dimensions in the future, then the
internal and anonymous route of whistleblowing is usually selected. Conversely,
when the auditors ignore the risks, because wrongdoing affects the lives of many
people (e.g., Edward Snowden who leaked secret documents from the NSA), they
will probably choose the route of external whistleblowing. Previous research has
found a significant relationship between emotion and ethical judgments (Connelly
et al. 2004; Curtis 2006) and the role of emotions as a moderator in the relationship
between ethical judgments and whistleblowing intentions (Hollings 2013; Henik
2015; Schwartz 2015). From the above discussion the following hypothesis can be
derived:

H3a Emotions moderate the relationship between ethical judgment and IWB.

H3b Emotions moderate the relationship between ethical judgment and EWB.

H3c Emotions moderate the relationship between ethical judgment and AWB.

15.2.5 Moderating Effect of Perceived Moral Intensity
on Ethical Judgment and Whistleblowing Intentions

Recent research shows that high moral intensity can affect ethical judgments of
auditors (Yu 2015) and will have a positive impact on the intention to blow the
whistle (Alleyne et al. 2013). The model proposed by Jones (1991) placed moral
intensity as a predictor variable in influencing every stage of the EDM process.
We revise the role of the moral intensity variable by placing it as a moderating
variable in line with the integrated EDM model proposed by Schwartz (2015).
Ethical judgments made by individuals will be better when matched with high moral
intensity and interaction, which in turn have a positive influence on the intention to
report wrongdoings. In other words, the higher the perceived moral intensity of an
issue, the more likely the person is to make ethical decisions, which in turn affects
the intention to blow the whistle. Previous research has shown that ethical judgment
has a positive influence on whistleblowing intentions (Zhang et al. 2009; Chiu 2003)
and is moderated by moral intensity (Alleyne et al. 2013; Latan et al. 2016). From
the above discussion, the following hypothesis can be derived:

H4a Ethical judgment has a positive direct effect on IWB.

H4b Ethical judgment has a positive direct effect on EWB.

H4c Ethical judgment has a positive direct effect on AWB.
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H5a Moral intensity moderates the relationship between EJW and IWB.

H5b Moral intensity moderates the relationship between EJW and EWB.

H5c Moral intensity moderates the relationship between EJW and AWB.

15.3 Research Method

15.3.1 Sample Selection and Data Collection

The respondents in our survey are professional accountants working for audit, man-
ufacturing, and financial service companies listed on the Indonesia Stock Exchange
(BEI). We chose companies in manufacturing and financial services because, as
reported by ACFE 2016, these sectors have the most cases of wrongdoing in
Southeast Asia. We also ensure that external auditors who audited the companies
were used as a sample and matched with the internal auditor of the companies.
The data collection was done using a questionnaire placed on an online platform. A
Web link to the questionnaire was then sent by email to the firms. Email addresses
from the audit firms were obtained from the directory of the Indonesian Institute of
Certified Public Accountants (IAPI) for 2015. Email addresses of manufacturing
and financial service companies were extracted from each company’s website.
Based on the directory and the information available, approximately 74 audit firms
were contacted with 400 total respondents from external auditors. Furthermore, 223
manufacturing and financial service companies were contacted. These companies
had, in total, 560 internal auditors. After sending a request to participate in the
survey, we sent three subsequent emails as a reminder. To ensure data quality
control, we checked the collected data, to verify whether there was missing data,
straight line responses, or similarity of answers. We found a few problematic cases
that were removed from the data before further analysis. Finally, we made additional
efforts to increase the response rate, by directly calling the target respondents. To
convince the respondents, we conceal their identity (such as name and address of the
company), and they remain anonymous. Furthermore, we determine the cutoff time
for the return of the questionnaire, which was 3 months, for the purpose of testing
nonresponse bias, as suggested by Dillman et al. (2014).

Between July and October 2016, we obtained 179 questionnaire responses from
external auditors and 194 questionnaires from internal auditors, of which 38 were
incomplete, so the number of questionnaires that were valid and could be used in this
study was 335 with a 34.89% response rate. Of the total questionnaires collected,
48.35% came from audit firms and the rest, respectively, 36.09% and 15.56%, came
from manufacturing and financial services (see Table 15.1).

Results of the t-test showed that there was no difference in statistical significance
of responses (p < 0.05) between public accountants who came from the Big 4 and
non-Big 4 and also for the social desirability response bias problems (Randall and
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Table 15.1 Response rate and profile of respondents

Survey Result Frequency Percent
A. Response Rate

External auditors , Initial = 400

Internal auditors,   Initial = 560

Incomplete questionnaires

Response Rate

B. Profile of Respondents
Gender

Male

Female

Total

Organizational position

Senior audit staff

Junior audit staff

Total

Academic qualifications (education)

Bachelor’s degree
Master’s degree and doctorate

Total

Professional qualifications

CPA

QIA and CIA

Unqualified

Total

179

194

38

335

212

123

335

143

192

335

207

128

335

147

145

43

335

18.64 %

20.21 % 

3.96 %

34.89 %

63.28 %

36.72 %

100 %

42.7 %

57.3 %

100 %

61.8 %

38.2 %

100 %

43.9 %

43.3 %

12.8 %

100 %

Fernandes 2013). This indicates that the size of the audit firm will not affect the
results of analysis and there are no problems in social desirability response bias
of the respondent’s own reporting of whistleblowing intentions.8 These results also
indicate that there is no problem of selection bias that causes the auditor not to
take part in the survey (Randall and Fernandes 2013). In addition, the statistical test
results also showed that there was no significant difference between respondents
who answered in the beginning of data collection, compared with respondents who
answered at the end, which means there is no problem of nonresponse bias that
occurs systematically (Dillman et al. 2014). To ensure there is no common method
bias (Podsakoff et al. 2012), we use the full collinearity approach (Kock 2015). The
AVIF (acquired value of in-force) value obtained from analysis is less than 3.3, thus
indicating that there is no common method bias problem in this study.

Table 15.1 presents the profile of respondents in this study. The 335 completed
questionnaires were divided into two subsamples: 162 external auditors and 173
internal auditors; 63.3% were male and 36.7% were female, with an average
age of 37.2 years. In terms of positions, 42.7% of the sample comprised senior
audit staff, and 57.3% comprised junior audit staff. As for qualifications, 61.8%

8Social desirability response bias is broadly understood as the tendency of individuals to deny
socially undesirable traits and behaviors and to admit to socially desirable ones.
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held a bachelor’s degree, and 38.2% held a master’s degree or doctorate, while
87.2% of the sample had professional qualifications, with 43.9% of the sample
having completed a professional qualification CPA and 43.3% having completed the
Qualified Internal Auditor (QIA) and Certified Internal Auditor (CIA) examinations.

15.3.2 The Survey Structure

The survey used to measure each of the variables in this study consists of three parts.
The first section described the purpose and objectives of this research, by asking
the respondent’s willingness to participate in the survey. The second section asked
for the respondents’ demographic information such as gender, age, education level,
occupation, and qualifications. The third section presented scenarios and questions
related to the variables to be studied. Given the difficulty in gaining access to the
object in order to observe real unethical behavior, a scenario approach is commonly
used in research in the field of accounting and ethics (e.g., Alleyne et al. 2016;
Arnold et al. 2013; Chan and Leung 2006; Curtis and Taylor 2009; Shawver et al.
2015). This approach illustrates a specific case, and the respondents are asked to
respond and put themselves as an actor in such situations. The scenario used in this
study was adopted from the scenario used by Bagdasarov et al. (2016), Clements
and Shawver (2011), Curtis and Taylor (2009), Kaplan and Whitecotton (2001), and
Schultz et al. (1993) with modifications, which highlights the numerous violations
of professional ethics and wrongdoings in a company.9

To create a scale able to measure the intentions to blow the whistle, we used
a total of ten items of questions based on the internal, external, and anonymous
reporting routes adopted by Park et al. (2008). The survey respondents were
asked about reporting routes that they use to select when they find wrongdoings
that occur (hypothetical scenario). The variable ethical awareness was measured
by three questions adopted from Arnold et al. (2013). Respondents were asked
about whether an action in the case scenario is ethical or unethical behavior. The
variable ethical judgment for whistleblowing was measured through four items
inspired by Reidenbach and Robin (2013). Respondents were asked about whether
an action in the scenario is moral or not morally right, just or unjust, acceptable
or unacceptable, and so on. Tables 15.2 and 15.3 show indicators and outcome
measurement models for variables of ethical awareness, ethical judgment, and
intentions of whistleblowing.

The moral intensity variable is measured by six questions adopted from Clements
and Shawver (2011). Respondents were asked to provide feedback on the scenarios
to assess the intensity level of their morals. Finally, emotional variables measured
four items of questions adopted from Connelly et al. (2004). Respondents were

9The use of scenarios is more effective to give stimuli to the auditor in making ethical decisions
when faced with certain situations.
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Table 15.2 Construct indicators and measurement model of whistleblowing intentions

Indicators/items Code FL AVE rho_A

Internal whistleblowing (IWB)
Report it to the appropriate persons within the firm IWB1 0.864 0.608 0.875
Use the reporting channels inside of the firm IWB2 0.738
Let upper-level management know about it IWB3 0.880
Tell my supervisor about it IWB4 0.604

External whistleblowing (EWB)
Report it to the appropriate authorities outside of the
firm

EWB1 0.800 0.578 0.849

Use the reporting channels outside of the firm EWB2 0.800
Provide information to outside agencies EWB3 0.762
Inform the public about it EWB4 0.671

Anonymous whistleblowing (AWB)
Reports it using an assumed name AWB1 0.783 0.668 0.803
Reports the wrongdoing but doesn’t give any
information about himself

AWB2 0.850

FL factor loading

Table 15.3 Construct indicators and measurement model of EAW and WBJ

Indicators/items Code FL AVE rho_A

Ethical awareness (EAW)
To what extent do you regard the action as unethical EAW1 0.918 0.622 0.863
To what extent would the “typical” [internal] auditor at
your level in your firm [company] regard this action as
unethical

EAW2 0.562

To what extent would the “typical” [external] auditor at
your level in your firm [company] regard this action as
unethical

EAW3 0.841

Ethical judgment whistleblowing (EJW)
Fair/unfair EJW1 0.925 0.809 0.945
Just/unjust EJW2 0.848
Acceptable/unacceptable EJW3 0.892
Morally/not morally right EJW4 0.929

FL factor loading

asked to provide feedback on the scenarios to assess the level of their emotions.
The value of the loading factor, average variance extracted (AVE), and reliability
derived from the analysis of the measurement model for all variables are loading
factor >0.60, composite reliability/rho_A > 0.70, and AVE > 0.50, so it meets the
recommended requirements (Hair et al. 2017; Henseler et al. 2018). However, there
are some indicators of measurement models that were retained, with the value of the
loading factor being >0.5. As stated by Hair et al. (2017, p. 114), the value of the
loading factor shows the explained variance in a construct. So, if the value AVE is
already more than 0.5, the indicator with low loading values can be kept to maintain
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the content validity. Table 15.4 shows the indicators and outcome measurement
model for moral intensity and emotional variables.

In addition, we tested the discriminant validity or divergent validity for all latent
variables in the model using the heterotrait-monotrait ratio (HTMT). As stated by
Henseler et al. (2015), HTMT is a new procedure to test the discriminant validity
and is more appropriate than the Fornell-Larcker criterion. The HTMT approach
has reliable performance and overcomes bias in the estimation of parameters of the
structural model. In Table 15.5, it is shown that the value of HTMT was smaller than
0.90, which means that it meets the recommended rule of thumb (Hair et al. 2017;
Henseler et al. 2015).

Table 15.4 Construct indicators and measurement model of PMI and emotions

Indicators/items Code FL AVE rho_A

Perceived moral intensity (PMI)
Should not do the proposed action PMI1 0.660 0.619 0.911
Approving the bad debt adjustment is wrong PMI2 0.750
Approving the bad debt adjustment will cause harm PMI3 0.826
Approving the bad debt adjustment will not cause any
harm

PMI4 0.875

If the CEO is a personal friend, approving the bad debt
adjustment is wrong

PMI5 0.829

Approving the bad debt adjustment will harm very few
people if any

PMI6 0.761

Emotions (EMT)
Feel that you have really accomplished something
significant

EMT1 0.803 0.515 0.826

Find it incredible how you have had an influence in
others’ lives

EMT2 0.835

Think that a change will not necessarily improve your
situation

EMT3 0.643

Feel like there was nothing you could do EMT4 0.553

FL factor loading

Table 15.5 Correlations and discriminant validity results

Construct Mean SD 1 2 3 4 5 6 7

AWB 4.73 1.32 1 0.766 0.443 0.651 0.681 0.762 0.567
EMT 4.86 1.36 0.615* 1 0.701 0.801 0.711 0.822 0.721
EAW 5.55 1.14 0.353* 0.563* 1 0.514 0.633 0.647 0.595
EJW 4.93 1.44 0.562* 0.697* 0.446* 1 0.658 0.655 0.812
EWB 5.42 1.21 0.564* 0.587* 0.549* 0.589* 1 0.826 0.697
IWB 4.94 1.22 0.628* 0.684* 0.539* 0.591* 0.707* 1 0.628
PMI 5.19 1.46 0.481* 0.615* 0.508* 0.754* 0.609* 0.555* 1

Notes: Below the diagonal elements are the correlations between the construct values
Above the diagonal elements are the HTMT values
Correlation is significant at the 0.05 level (2-tailed)
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15.3.3 Data Analysis

Before we analyzed the overall model, we ensured that the adequacy of the sample
size for estimation of the model had been fulfilled. Because the data analysis in this
study uses the consistent partial least squares (PLSc) approach, a sample needs to
have at least 100 cases (Latan and Ghozali 2015). The main purpose of PLSc is to
mimic the covariance-based SEM approach to test or confirm the theory (Dijkstra
and Henseler 2015). By using PLSc, the estimator of the model will be consistent for
the loading and the correlation between latent variables and allows us to access the
goodness of fit (Dijkstra 2014). We chose PLSc with the consideration that it is more
appropriate to test complex models, where the CB-SEM approach would be difficult
to apply (Richter et al. 2016; Rigdon 2016). Previous research in this area already
uses PLS-SEM as an analytical tool (Buchan 2005; Haines et al. 2008). In contrast
to other SEM techniques, PLS-SEM does not rely on the assumption of normality
(distribution free) because it is nonparametric. However, some assumptions, such
as multicollinearity and goodness of fit for the local models assessment, need to
be considered. Overall, the data analysis in this study goes through three stages.
First, we analyze the measurement model to ensure indicator constructs are valid
and reliable using the full sample. Second, we examine multigroup analysis to
compare the two subsamples for each path coefficient. Third, we examine the effect
of mediation-moderation to determine the role of moral intensity and emotional
variables.

15.4 Results

In this study, data analysis and hypotheses testing were conducted by using variance-
based SEM. One of the techniques available today is PLS-SEM, which is the most
fully developed and has become a vital tool for researchers to examine various issues
of social science. PLS-SEM was developed with the main purpose of prediction and
then extended to test the theory with consistent results for the factor models. We
chose to use PLSc (on selection algorithms and bootstrapping) considering that it
will provide similar results to CB-SEM.10 We use the SmartPLS 3 program (Ringle
et al. 2015) to analyze these models by using PLSc.

PLS-SEM analysis proceeds through two stages, namely, the measurement model
and the structural model. Assessment of the measurement model is intended to
test the validity (convergent and discriminant) and reliability of each indicator
forming latent constructs. After we make sure that all the indicators’ constructs are
valid and reliable (see Fig. 15.2), we continue the analysis to the second stage of
assessing the quality of the structural model and run multigroup analysis to test the

10Dijkstra and Henseler (2015) give a detailed explanation related to PLSc.
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Table 15.6 Structural model results

Constructs R2 Adj. R2 f 2 Q2 VIF SRMR NFI AFVIF

Ethical awareness
(EAW)

– – 0.067–0.494 – 2.030 – – –

Ethical judgment (EJW) 0.771 0.769 0.056–0.178 0.764 2.945 – – –
Moral intensity (PMI) – – 0.010–0.520 – 2.193 – – –
Emotions (EMT) 0.496 0.494 0.049–0.472 0.491 2.845 – – –
Internal whistleblowing
(IWB)

0.461 0.458 – 0.453 – 0.049 0.837 2.503

Anonymous
whistleblowing (AWB)

0.428 0.425 – 0.423 – 0.049 0.837 2.503

External whistleblowing
(EWB)

0.510 0.507 – 0.502 – 0.049 0.837 2.503

hypothesis. The results of the quality assessment for the structural model are given in
Table 15.6.

In Table 15.6 it is shown that the whistleblowing intention (IWB, AWB, and
EWB) can be explained by the predictor variables with adjusted R2 of 0.425–0.507.
This value indicates that the ability of the predictor variables to explain the outcome
variables was approaching substantial (Latan and Ghozali 2015). The resulting
effect size value of each predictor variable in the model ranged from 0.01 to 0.520,
which is included in the category of small to large. The value of variance inflation
factor (VIF) generated for all the independent variables in the model is <3.3, which
means that there was no collinearity problem between the predictor variables. The
Q2 predictive relevance value generated excellent endogenous variables, i.e., >0,
which means that the model has predictive relevance. The value of goodness of fit
is generated through the standardized root mean squared residual (SRMR) that is
equal to 0.049 <0.080 and the normed fix index (NFI) 0.837 >0.80, which means
that our model fits the empirical data.

15.4.1 Multigroup Analysis (PLS-MGA)

We run multigroup analysis to compare the two subsamples of internal whistle-
blower (internal auditor) and external whistleblower (external auditor) for each path
coefficients using the PLS-MGA approach. The purpose of the analysis of PLS-
MGA was to compare two groups of samples to determine statistically significant
differences in group-specific parameter estimates (Matthews 2018; Sarstedt et
al. 2011) and in this case which group is more prone or unlikely to blow the
whistle. Before running the PLS-MGA, we consider it to test the measurement
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invariance of composite models (MICOM) using a permutation procedure.11 We test
measurement invariance to ensure that the specific group difference of the estimation
model does not affect the results for latent variables in the whole group (Henseler
et al. 2016; Solovida and Latan 2017). The analysis showed that there was no
significant difference between variance and average values for the two groups (see
Table 15.7), which means no invariance problem that will affect the outcome.

Based on the analysis in Table 15.7, it can be seen that the ethical awareness
(EAW) has no effect on ethical judgment (EJW) for either internal or external
group auditors. The analysis for each group obtained coefficient (ˇ) values for
the relationship EAW ! EJW of 0.070 and �0.057, with 95% bias corrected
and accelerated (BCa) > 0.05. This means that the hypothesis 1a (H1a) was
rejected. These results support previous studies (Chan and Leung 2006; Valentine
and Fleischman 2004). EAW cannot be a direct predictor of the EJW, and this
is consistent with the integrated EDM model by Schwartz (2015), where there is
another factor that mediates both. EAW of professional accountants in this study
also found variance in their ability to respond to a case scenario. Furthermore, the
values of the coefficient (ˇ) for the relationship EAW ! EMT are 0.670 and 0.553,
and EMT ! EJW are 0.482 and 0.386, with 95% bias corrected and accelerated
(BCa) < 0.01, respectively. This means that the hypothesis 1b (H1b) is supported.

We also tested the indirect effect by using the method proposed by Cepeda
et al. (2018) and obtained the same results.12 These results support previous
studies (Henik 2015; Connelly et al. 2004; Singh et al. 2016; Curtis 2006). This
suggests that emotions may serve as indirect-only mediation or full mediation of
the relationship between EAW and EJW. When someone finds wrongdoing, it will
affect their emotions prior to making ethical judgments. From these findings, it can
be concluded that the internal auditors have more intense EAW, EMT, and EJW than
the external auditors.

Finally, from Table 15.7, it can be seen that the values of the coefficient (ˇ) for
the relationship EJW ! IWB are 0.446 and 0.317; EJW ! AWB is 0.400; 0.419
and EJW ! EWB is 0.315; and 0.309 for each group of samples with 95% bias
corrected and accelerated (BCa) < 0.01, respectively. This means that the hypothesis
4 (H4a, H4b, and H4c) is supported. These results support previous studies (Zhang
et al. 2009; Chiu 2003; Arnold et al. 2013; Buchan 2005). As stated by Culiberg
and Mihelic (2016), most of the research in this area has provided conclusive results
for the relationship between EJW and whistleblowing intentions. A professional
accountant who has made ethical judgments can report wrongdoing found through
one of these three route options available: internal, external, or anonymous. The
results showed that the internal route is the most preferred by the internal auditor
followed by an anonymous and external route. In contrast, for external auditors,
the anonymous route is the most preferred, followed by internal and external. This

11Conceptually, measurement invariance expresses the idea that the measurement properties of X
in relation to the target latent trait Wt are the same across populations.
12Cepeda et al. (2018) propose to use a spreadsheet to calculate the indirect effects.



15 Ethical Awareness, Ethical Judgment, and Whistleblowing: A Moderated. . . 329

T
ab

le
15

.7
PL

S-
M

G
A

re
su

lt
s

(d
ir

ec
te

ff
ec

t)

95
%

B
C

a
C

I
E

qu
al

St
ru

ct
ur

al
pa

th
In

te
rn

al
(ˇ

)
E

xt
er

na
l(

ˇ
)

PL
S-

M
G

A
pe

rm
ut

at
io

n
M

IC
O

M
va

ri
an

ce
s

C
on

cl
us

io
n

E
A

W
!

E
JW

0.
07

0n.
s.

�0
.0

57
n.

s.
0.

06
8n.

s.
0.

13
3n.

s.
(�

0.
03

8;
�0

.1
02

)n.
s.

Y
es

H
1a

no
ts

up
po

rt
ed

E
A

W
!

E
M

T
0.

67
0*

*
0.

55
3*

*
0.

05
2n.

s.
0.

11
2n.

s.
(�

0.
03

8;
�0

.1
91

)n.
s.

Y
es

H
1b

su
pp

or
te

d
E

M
T

!
E

JW
0.

48
2*

*
0.

38
6*

*
0.

17
5n.

s.
0.

19
5n.

s.
(�

0.
19

1;
�0

.1
02

)n.
s.

Y
es

H
1b

su
pp

or
te

d
E

JW
!

IW
B

0.
44

6*
*

0.
31

7*
*

0.
17

8n.
s.

0.
22

6n.
s.

(�
0.

10
2;

0.
00

7)
n.

s.
Y

es
H

4a
su

pp
or

te
d

E
JW

!
A

W
B

0.
40

0*
*

0.
41

9*
*

0.
83

8n.
s.

0.
21

9n.
s.

(�
0.

10
2;

�0
.2

06
)n.

s.
Y

es
H

4b
su

pp
or

te
d

E
JW

!
E

W
B

0.
31

5*
*

0.
30

9*
*

0.
75

1n.
s.

0.
26

0n.
s.

(�
0.

10
2;

�0
.0

84
)n.

s.
Y

es
H

4c
su

pp
or

te
d

n.
s.

no
ts

ig
ni

fic
an

t
p

<
0.

05
(o

ne
-t

ai
le

d
te

st
)

*p
<

0.
01

(o
ne

-t
ai

le
d

te
st

)



330 H. Latan et al.

indicates that professional accountants of both groups in the cases of Indonesia
chose an external route to blow the whistle as the last option. They are more likely
to disclose an error discovered through internal and anonymous routes. One reason
that might affect their decisions is fear of retaliation and the various risks that arise
when using an external route for whistleblowing.

These findings indicate that internal auditors have a higher (more likely) intention
to report any act than external auditors and blowing the whistle internally and
anonymously can be more useful for professional accountants. Findings are aligned
with the general statement that employees are not the only ones with privileged
information about a company, and consequently outsiders may observe various
wrongdoings (Culiberg and Mihelic 2016). However, the present study adds a more
detailed suggestion that internal auditors are more likely to report than external
auditors. Although the literature has suggested that there is not, a priori, a profile
of whistleblowers that organizations can attempt to screen out during recruitment
(Henik 2015), our findings suggest that internal auditors are more likely to blow the
whistle than external ones. While the literature recognizes that there are challenges
in fully protecting external whistleblowers (Maroun and Gowar 2013), our findings
suggest that discussing how to fully protect internal auditors should also be a
priority.

However, as discussed by Maroun and Atkins (2014a, b), there is an upward
trend of increasing the availability of information to stakeholders and enhancing
the level of expectation that the public have on auditors, in terms of transparency
and accountability and in terms of relevance of audit reports (Maroun and Atkins
2014a, b). If this were reinforced in Indonesia, our results would be different. This
scenario will need to further consider the challenges in fully protecting external
whistleblowers (Maroun and Gowar 2013).

15.4.2 Importance Performance-Map Analysis

We tested importance-performance map analysis (IPMA). Ringle and Sarstedt
(2016) stated that the IPMA gives researchers the opportunity to enrich their
PLS-SEM analysis and, thereby, gain additional results and findings. Nevertheless,
PLS-SEM has several key advantages over traditional IPMA that typically relies
on multiple regression analysis. First, in determining the importance scores, PLS-
SEM is a valuable analytical tool as it is capable of integrally assessing a complex
network of relationships connecting drivers to a target construct of interest. Second,
it can incorporate latent constructs (see Streukens et al. 2018). The IPMA analysis
results are shown in Table 15.8.

From the above analysis (Table 15.8), it can be seen that the EMT has a
relatively low performance value of 64.45. If matched by other constructs, EMT’s
performance is slightly below average. On the other hand, with a total effect of
0.595, this construct’s importance is high enough. Therefore, a one-unit increase in
EMT’s performance from 64.45 to 65.45 would increase the performance of IWB,
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Table 15.8 The IPMA for construct IWB, AWB, and EWB

IWB AWB EWB
Constructs Importance Performance Importance Performance Importance Performance

EAW 0.377 71.60 0.369 71.60 0.283 71.60
EMT 0.595 64.45 0.590 64.45 0.460 64.45
EJW 0.170 65.52 0.237 65.52 0.259 65.52
PMI 0.098 69.71 0.137 69.71 0.150 69.71

Table 15.9 Relationships between variables (interaction effect)

Structural path Coef (ˇ) SD 95\% BCa CI Conclusion

EAW � PMI ! EJW 0.031 0.044 (0.140, 0.046) H2 not supported
EJW � EMT ! IWB 0.181 0.051 (0.015, 0.262)* H3a supported
EJW � EMT ! AWB 0.115 0.046 (0.049, 0.133)* H3b supported
EJW � EMT ! EWB 0.151 0.049 (0.034, 0.200)* H3c supported
EJW � PMI ! IWB 0.176 0.049 (0.011, 0.257)* H5a supported
EJW � PMI ! AWB 0.103 0.050 (0.043, 0.108)* H5b supported
EJW � PMI ! EWB 0.098 0.044 (0.042, 0.125)* H5c supported

Note: **, * Statistically significant at the 1\% and 5\% levels, respectively

AWB, and EWB to 0.595, 0.590, and 0.460, respectively. Therefore, if companies
aim to improve the IWB, AWB, and EWB of internal and external auditors, their first
priority must be to improve the performance aspects of EMT. Furthermore, aspects
related to EJW, PMI, and EAW follow as second, third, and fourth priorities.

15.4.3 Interaction Effect Analysis

We tested the interactions using the orthogonalization approach. This approach was
chosen because it produces an accurate estimate, has a high predictive accuracy,
and is able to minimize the collinearity problem. The results of the analysis of
interactions are shown in Table 15.9.

In Table 15.9 it is shown that H3a, H3b, and H3c and H5a, H5b, and H5c
are fully supported, showing that moral intensity and emotional may moderate
the relationship between EJW and whistleblowing intentions. The relationship
EAW � PMI ! EJW obtained insignificant results, with coefficient (ˇ) D 0.031
and 95% bias corrected and accelerated (BCa) D 0.140 >0.05. This suggests that
emotions or feelings of auditors themselves play an important role in improving
the ethical assessment of auditors with the consequence that they have a higher
whistleblowing intention to report any wrongdoing that occurs, reinforcing the
discussion on nonrationalist-based decision-making (Schwartz 2015). This finding
can be understood by taking into account a broader discussion on how mood and
emotions can influence whistleblowing (Curtis 2006).



332 H. Latan et al.

While the moral intensity that comes from the experience of auditors would assist
in considering any magnitude of consequences, the possibility of future losses and
the proximity to the organization influence actions to blow the whistle. Emotions
felt would assist the auditor in considering the various risks arising from actions
taken.

From the results of this analysis, we reached the same conclusion, that the
internal and anonymous route is a favorite choice for professional accountants in
Indonesia to reporting wrongdoing. These results support previous studies (Hollings
2013; Henik 2015; Alleyne et al. 2016; Latan et al. 2016). Given the cultural and
social norms’ strength in Indonesia, the freedom to act and speak out becomes a
supporting factor for professional accountants in improving the intention to report
wrongdoing without fear of reprisal. Nevertheless, it is important to further develop
institutional mechanisms capable of fully protecting whistleblowing (Maroun and
Gowar 2013).

15.5 Conclusion

This study aims to examine the integrated EDM model proposed by Schwartz
(2015), where we consider the factors of individual nonrationality that affect ethical
judgments of the auditor to arrive at the decision to blow the whistle. We answered
the call of Culiberg and Mihelic (2016) to extend the testing of EDM models
in the whistleblowing context. In this chapter, we argue that the intention of
whistleblowing depends on EAW and EJW as well as on emotion and perceived
moral intensity.

We support the hypothesis that EAW cannot directly affect the EJW but must go
through the nonrationality of factors such as emotion. We also found that internal
and anonymous whistleblowing routes were used by professional accountants in
the case of Indonesia. In terms of practical implications, these findings provide a
deep understanding of how audit firms, manufacturing, and financial services should
be selective in choosing audit staff who uphold professional and ethical standards
of behavior. In addition, companies need to make strong efforts to implement a
comprehensive ethics program including training in ethics and codes of conduct,
which provide guidance to staff auditors to resolve ethical conflicts and increase
professional responsibility to report wrongdoing. Companies also need to apply the
right strategy to enhance the auditor’s whistleblowing intentions and reduce the fear
of retaliation, for example, by providing a whistleblowing hotline or reporting of
anonymity, which was a favorite choice for the Indonesian context.
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15.6 Limitation and Future Research

There are several limitations to this study which need the attention of the reader.
First, this study did not consider cultural factors that may affect the EDM process.
Some cultural factors such as nationality, patriotism, religion, and political system
may affect the EAW and EJW of auditors. These findings may differ in other
countries. Second, this study only considers the factors of nonrationality in the
integrated EDM model proposed by Schwartz (2015), without examining the factors
of rationality. Different results may be obtained when considering both. Third,
this study only used two variables as mediation-moderation in the model. Lehnert
et al. (2015) showed that there are still many relevant variables (moderation and
mediation) more important to be considered and tested in the EDM model. Fourth,
this study did not consider the effect of extraneous variables (such as age, gender,
education, or total tenure) and unobserved heterogeneity that might interfere with
the results. However, several previous studies showed inconsistency in the role of
extraneous variables in the EDM model (Chan and Leung 2006; Cagle and Baucus
2006; Ebrahimi et al. 2005; Shafer et al. 2001; Marques and Azevedo-Pereira 2009).
In addition, the selection bias could have been handled more carefully. Finally, this
study only tested the whistleblowing intentions without testing actual behavior.

Further research can follow up the testing of integrated EDM model by Schwartz
(2015) for whistleblowing by considering factors of rationality and nonrationality
as intuition, reason, and confirmation. Cultural factors also need to be considered
for further study. This is a call for research to provide empirical evidence of the
model. Furthermore, future research may use other moderating variables such as
intrinsic religiosity, personal spirituality, moral obligation, retaliation, intelligence,
and others which have an important role in the EDM process (Liyanarachchi and
Newdick 2009; Haines et al. 2008; Bloodgood et al. 2008). Replication studies on
the other subject group (e.g., consumers vs shareholder) and other organizations
(e.g., government and public administration) will also allow access to generalize the
findings of this study. Overall, the researchers feel that it is necessary to replicate this
study by using qualitative approaches such as case studies or fuzzy-set qualitative
comparative analysis (Ragin 2008), taking into account unobserved heterogeneity
testing (Hair et al. 2012; Schlittgen et al. 2016), which might be fruitful for new
avenues for future study,13 as there are not many studies have used a qualitative
approach to test the EDM model for whistleblowing.

13Lehnert et al. (2015) were surprised to find only two studies using qualitative approach in their
literature review.
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Chapter 16
Latent Variable Regression for Laboratory
Hyperspectral Images

Paul Geladi, Hans Grahn, and Kim H. Esbensen

Abstract This chapter is about the application of latent variable-based regression
methods on hyperspectral images. It is an applied chapter, and no new PLS
algorithms are presented. The emphasis is on visual diagnostics and interpretation
by showing how these work for the examples given. Section 16.1 of this chapter
introduces the basic concepts of multivariate regression and of multivariate and
hyperspectral images. In Sect. 16.2 the hyperspectral imaging technique used and
the two examples (cheese and textile) are explained. Also some sampling issues are
discussed here. Principal component analysis (PCA) is a powerful latent variable-
based tool for cleaning images. Section 16.3 describes PLS quantitative model
building and diagnostics, both numerical and visual for the cheese example, and
finishes with PLSDA qualitative modeling for the textile example.

16.1 Multivariate and Hyperspectral Images and Their
Relation to Regression

16.1.1 Multivariate Regression

It is good to start with some definitions and nomenclature. Multivariate regression
in its simplest format can be written as:

ycal D Xcalb C fcal
� or y D Xb C f (16.1)
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ycal: a vector** I � 1 of 1 variable measured on I objects “dependent variable” used
for calibration

Xcal: a data matrix (I � K) of K variables measured on I objects (calibration samples)
“independent variables or predictors” used for calibration

b: a vector of regression coefficients (K � 1)
fcal: a vector of residuals (I � 1)

Xcalb can also be called yhat. It is the part of ycal that can be modeled.

*The index cal helps in differentiating calibration and test set.
**All vectors are column vectors; if row vectors are needed, column vectors can

be transposed, and this is indicated by the transpose operator superscript T (see
Eq. 16.5).

Equation (16.1) can also be written for more than one y.

Ycal D XcalB C Fcal (16.2)

Ycal: a matrix I � J of “dependent” variables
B: a matrix K � J of regression coefficients
Fcal: a residual matrix of size I � J

This equation is not used in the remainder of the text because of space limitations.
The K variables in Xcal can, e.g., be from a spectroscopic technique, and the

variables in ycal could typically be chemical composition. The solution for obtaining
b can be MLR (OLS), a latent variable solution (like PLS), or some other regression
technique. An example would be protein content (in a food commodity material)
in ycal and NIR spectra (with many hundreds of wavelengths responses) for the
calibration materials in Xcal. When a useful b vector is found, it can be used for
calculating or predicting protein contents from new NIR spectra according to:

ypred D Xtestb (16.3)

This is done for a test set that contains different objects from the same population
of the calibration set in Eq. (16.1).

ypred: (J � 1) predicted values for test objects
Xtest: (J � K) spectra measured for new objects (test samples)

ftest has to be defined:

ftest D ytest � ypred (16.4)

ytest: (J � 1) known values for the objects in the test set

The very welcome property of such a solution is that inexpensive and quick
NIR spectral measurements, X, can replace slow and expensive (and not always
environmentally friendly) protein determinations, y. Finding a useful b vector
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Fig. 16.1 Generic
relationship between y and
yhat. Green points for
calibration model and blue
points for test pred

yknown

ymod
or 
ypred

has shown to be a very tricky undertaking, especially if K > I, and this is why
latent variable regression methods such a PLS were introduced. The chemometrics
literature from the late 1980s onwards contains many descriptions of how PLS
regression is applied in such situations (Martens and Næs 1989; Næs et al. 2002;
Beebe et al. 1998; Brereton 2003; Varmuza and Filzmoser 2009; Brown 1993).
The PLS algorithms used in this chapter are the same as those explained in the
references.

Figure 16.1 shows some properties of Eqs. (16.1) and (16.3).
The horizontal axis gives the values of the dependent variables ycal and ytest in

some relevant measurement unit. The vertical axis shows yhat and ypred in the same
units. The green points represent the data (values) used to calibrate and to find b
as in Eq. (16.1). The blue points are the test data (values) as in Eq. (16.3). Ideally
both green and blue points should be close to or on the black diagonal (slope 45
degrees). One also wants the green data to have a realistic spread with respect to the
future prediction scenarios, and the blue points should have a similar spread. With
real-world samples/analytical measurements, there will always be some uncertainty,
and the points never fall exactly on the diagonal line. This is due to sampling,
preparation, and analytical errors, among other things.

16.1.2 Images, Multivariate, and Hyperspectral Images

An image representing the surface of a target material is organized as an array
of L � M, where a measured intensity is registered for each pixel. Photographic
images are monochrome (an average intensity over all colors) or RGB (intensities
for red, green, and blue). Color images are thus arrays of fixed size L � M � 3 (see
Fig. 16.2).

While standard RGB color images are very useful for scientific documentation,
and sometimes for quantitative measurements as well (but restricted to three
intensities), new methods of constructing images have also emerged.
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Fig. 16.2 An RGB image
consisting of three planes

L

M
R
G 
B

Fig. 16.3 A multivariate
image (10 variables)

L

M

10-
many
hundred

This leads to the concept of the multivariate image, size (L � M � K) where K is
now a number of variables, often significantly larger than 3. From airborne imaging
comes the term hyperspectral, meaning that K is usually over 100 and possibly in
the range of thousands, which Fig. 16.3 illustrates.

In a hyperspectral image, each pixel position is now assigned a complete
spectrum vector; see Fig. 16.4 for a graphical presentation.

Good review descriptions are given in the literature (Goetz and Curtiss 1996;
Roggo et al. 2005; Winson et al. 1997; Fernandez-Pierna et al. 2006; Geladi et al.
2010; Grahn and Geladi 2007; Cloutis 1996; Ghiyamat and Shafri 2010; Van der
Meer 2012; Van der Meer et al. 2012) not the least in the remote sensing community.

Multivariate and hyperspectral images have a 2-D spatial extension and a spectral
dimension. They occur in a number of measurement situations. Very popular are
satellite and clinical imaging, but also laboratory, field, and industrial applications
are emerging. Imaged scenes or objects occur in all sizes from astronomical down
to atomic. A large number of physical principles are used to acquire these types of
imagery. Many of the physical imaging principles give multivariate information per
pixel. A typical example in the optical region would be images of size 2050 � 2050
with 19 wavelength bands or images in the near infrared of 384 � 500 with 288
wavelengths.
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Fig. 16.4 A hyperspectral image of K variables, K is usually >100. Every pixel (coordinates i,j)
is assigned with a complete intensity spectrum of K variables

Among the spectral methods leading to hyperspectral imaging are ultra-
violet transmission, ultraviolet fluorescence, visual transmission, reflection or
fluorescence, near-infrared transmission or reflectance, infrared transmission
or reflectance, Raman reflectance or transmission, and infrared emission. Also
acoustic, magnetic resonance, electron, and ion microscopy methods in all their
modalities are able to produce images having many variables per pixel (Geladi and
Grahn 1996; Grahn et al. 2016; Li et al. 2016).

16.2 Multivariate Analysis for Hyperspectral Images

16.2.1 The Example and Image Recording

The easiest way to explain the key principles of analyzing multivariate and
hyperspectral images is by a master example: 15 cheeses with different
composition regarding fat, protein, and energy content are used for this purpose.
The cheeses were bought in the supermarket. From each cheese a small
20 mm � 20 mm � 20 mm bit was cut out to make a mosaic with a paper plate
as background. This mosaic was made in three replicates. Figure 16.5 shows the
layout of the experimental design.

In Table 16.1, it is shown the composition of all these calibration cheeses. These
data are read off from the cheese packages and do not represent actual analysis but
very likely close enough for the present demonstration purposes. Figure 16.5 is just
a standard RGB color image. However, the visual color of the cheeses has only a
very small role with respect to the compositional contents, and therefore scanning
in the near-infrared region becomes more useful regarding quantitative prediction
purposes.
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Energy 1500
Fat 28

Protein 27

Energy 1750
Fat  38
Protein 19

Fig. 16.5 Experimental layout of 15 cheese cubes, in three replicates. Counting on each plate is
1–4 upper left to right, then 5–8 one row lower, 9–12 one row below, and 13–15 last row. The
numbers are explained in Table 16.1. Three bulk analysis results are shown as examples

Table 16.1 ID numbers, names, and composition data of 15 calibration cheeses

ID number Name Energy (kJ/100 g) Fat (g/100 g) Protein (g/100 g)

1 Herrgård 1500 28 27
2 Västan 895 10 30
3 Fontana 6 1604 30 24.9
4 Boxholm 1750 38 19
5 Greve 1200 17 33
6 Munken 1782 38 21
7 Old Dutch Master 1811 36 28
8 Emmental 1605 30 25
9 Fontana 12 1315 30 25

10 Billinge 1142 17 29
11 FB QuesoIberico 1737 25.8 23.3
12 FB Gruyere 1660 32 27
13 FB Chevre 1819 37 26
14 FB Appenzeller 1690 32 25
15 FB Manchego 1820 37 25
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Moving belt

Measuring monitors

NIR camera

Sample

Lamps

Fig. 16.6 The linescan equipment. Moving belt, linescan camera, screens, and keyboard

The paper plates and the cheeses were measured using a hyperspectral camera, a
linescan Specim model SWIR 3.0 (Fig. 16.6).

The camera is based on an HgCdTe detector and a prism-grating-prism (PGP)
monochromator. A 15 mm lens was used giving a line width of 150 mm. An
exemplar image can be seen in Fig. 16.7.

The specific camera setup results in lines of width: 384 pixels, with 288
intensities (variables, K) for the different NIR wavelengths employed (nominal 970–
2500 nm, 5.6 nm for each variable bin) in each pixel. By scanning the samples, lines
are added to each other to make an elongated rectangular image. This is done by a
synchronized belt transport. The resulting images were approximately 500 lines by
384 pixels per line and 288 wavelengths per pixel. For each image, a white reference
sample (Spectralon) was also measured as was a dark current “image.” These were
used to calculate corrected absorbance values. Exactly the same setup has been used
for the textile example in Sect. 16.3.4.
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Fig. 16.7 The mosaic of the three replicate images at 1800 nm. The total mosaic is 415 lines and
929 pixels per line (385,535 pixels). A scale for size is given. Replicate 1 is left, replicate 2 is
middle, and replicate 3 is right

16.2.2 Sampling Issues

The cheese cubes in Fig. 16.5 are cutouts from larger pieces of 50–300 g right off
the shelves in the supermarket. These pieces are in their turn representative of a
whole daily, weekly, or monthly production in a diary. It is of course important that
all samples are representative of the target material, which can be many orders of
magnitude larger than what is actually imaged. In a typical real-world industrial
situation, the measured cubes could represent, for example, a daily or weekly
production batch. For the present purpose, these issues are not fatal because the
example is only used for a technical demonstration of the imaging and its regression
modeling.

However there are a few sampling issues that still matter:

– Do replicate cubes cut from the same original sample of cheese have the same
properties? Three replicate cubes were prepared to obtain some information in
this matter.

– Are the cubes themselves homogeneous? Here imaging is a good solution,
because it will be able to show some aspects of inhomogeneity. Not every pixel
will have an identical spectrum, and there may be spatial patterns (2-D) to this
inhomogeneity. Bulk analysis does not give information on this sampling aspect.
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– Is multispectral imaging producing identical results for every pixel in a cube?
Imaging suffers from various shading and edge effects, and these should be kept
in control or, if detected, compensated for, or removed.

– Pixels are square and the objects imaged may have round edges. This always
gives edge pixels containing information from both object and background.

Some of these issues are illustrated in the next section. Some discussion of
sampling issues can be found in Esbensen and Geladi (2009) and in Esbensen and
Julius (2009).

Finally there is the archetypical regression issue. Is there a composition value for
every pixel in the image? And, of course there is not—it would be physically and
economically impossible to do a chemical analysis for each pixel in the image. This
means that for every cube of material, there is only one bulk composition available.
In order to make a sensible regression model, a cube of material should then be
represented by an average spectrum.

16.2.3 Image Cleaning and Exploratory Analysis

Figure 16.7 was prepared by removing the basic background regions. In the obtained
image, it was also necessary to remove some more detailed background patches
together with regions of shading or faulty illumination (specular reflection).This
was done effectively by calculating a number of principal component images and
by studying score and image plots by interactive brushing (see below).

Principal component analysis on images is carried out by first reorganizing
(“unfolding or matricizing”) them into a data matrix.

X D TPT C E (16.5)

X: the unfolded matrix the image is of size (L � M) � K. PCA is usually done after
variable-wise mean-centering.

T: the score matrix (L � M) � A where A is the number of components calculated.
P: the loading matrix size K � A.
E: the residual matrix size (L � M) � K.
T: transposition symbol.

A very important point needs to be mentioned here. PCA modeling shown in Eq.
(16.5) is performed iteratively to identify and remove pixels that are not expected
to conform to the PLS model in Eq. (16.1).Cleaning is almost never just a simple
one-step procedure.

The L � M elements of each of the score vectors in T (Eq. 16.5) have pixel
coordinates. This means that they can be used to construct an image; this may
be called back projection. The result of back projection is A score images. The
elements of T can also be plotted against each other to form score scatter plots,
i.e., traditional score plots. In traditional score plots, each pixel is represented by
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Fig. 16.8 Interactive cleaning of the image using PCA and brushing used to remove the cardboard
background

a point. For the many thousands of pixels in images, the points would fall on top
of each other and make the score plot unreadable. Therefore, score plots are shown
as pixel density contours. Both score images and score plots can be used to find
outliers, background, illumination errors, etc. that should be removed.

The first operation in the present example is removing the paper background. The
result of this is seen in Fig. 16.8, which still retains shadows between the cheese bits
as well as irregular reflections at the object edges, and these are removed by further
cleaning in the same manner as before.

Figure 16.9 shows the final image result that will be used for regression
calibration purposes.

In Fig. 16.10 it is shown how region of interest (ROI) selection can be done on
the cheeses. The regions of interest are selected in such a way that edge errors are
avoided. The regions of interest can then be used when calculating average spectra.

Figure 16.11 shows such a set of average spectra. Each spectrum now represents
a specific cheese. The number of wavelengths was at the same time reduced from
288 to 276 to leave out some noisy wavelengths below 1000 nm, a mild form of
variable selection. The range is 1000–2547 nm with one variable still supporting
5.6 nm.

Figure 16.12 shows very interesting properties of the cheeses in two calculated
principal components: the first and fifth component score plot.
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Fig. 16.9 The final cleaned image where only cheese is left. There are still imaging errors such as
shades in holes and edge effects

Fig. 16.10 Region of interest (ROI) selection in the cheeses to make average spectra for regression
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Fig. 16.11 A set of average spectra of 276 wavelengths representing the15 different cheeses

The color annotation shows that there are some differences between the cheeses,
and heterogeneities within cheese blocks can also be seen. There are also still
illumination effects at the edges. This illustrates that imaging in the near infrared
is quite unique in revealing such properties, some of which are beneficial for
analytical credibility, and others are method artifacts which must be controlled
or eliminated. This also shows the importance of producing average spectra in
the correct object regions to represent each cheese properly. Some reviews about
hyperspectral imaging and analysis of the data have appeared in the literature in
recent years: in agricultural and food industry, pharmaceutical, nanomaterials, and
forensic traces (Grahn et al. 2016).
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16.3 Latent Variable (PLS) Regression for Hyperspectral
Images

16.3.1 PLS Regression Models Between Mean Spectra
and Data

There are regions in the image where an average concentration would seem a
reasonable target (see Fig. 16.13).

It is then possible to make a regression model between the average spectrum of
such a region and the concentration. For mean spectral characterization, a spatial
region in the middle of the cheese cuts was outlined to avoid peripheral shade and
edge effects.

The three replicate hyperspectral images (Fig. 16.9) were all used to extract mean
spectra. This gives 15 spectra � 3 replicates or 45 spectra. These were used as X
variables in a PLS model with the composition (fat, protein) and energy content as
y variables, respectively. Given enough data, at least two-thirds should be used for
modeling. The resulting data sets were 45 � 276 for X and 45 � 3 for Y. On this
basis a split can easily be made into a calibration and a test set. In Fig. 16.9, the left
and middle parts were used for extracting calibration vectors, and the right one was
used for extracting test vectors.

This gives 30 � 276 and 30 � 3 calibration data sets (Xcal and Ycal) and 15 � 276
and 15 � 3 test sets (Xtest and Ytest). The test set is used to check whether the
calibration really works by calculating diagnostics in a validation step. Ycal and
Ytest were made into three vectors each for separate modeling of energy, fat, and
protein. This means that Eq. (16.1) was used, not Eq. (16.2).

Instead of using exactly one average for each cheese bit, it would have been
possible to make a number of averages for each bit using different subsets. This trick
is sometimes used to create more objects and therefore more degrees of freedom for
the regression equation.

Fig. 16.13 For certain
regions in the hyperspectral
image, a bulk concentration is
known
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Table 16.2 % X variance and % y variance used by each component and cumulative

Component X variance X varcumul y variance y varcumul

1 85:12 85:12 37:16 37.16
2 12:18 97:3 21:06 58.21
3 0:74 98:04 31:03 89.24
4 0:90 98:94 2:98 92.23
5 0:73 99:67 1:22 93.45
6 0:17 99:84 1:61 95.06
7 0:04 99:88 1:58 96.64
8 0:01 99:89 1:65 98.29
9 0:06 99:95 0:29 98.59

The model was made for only one y variable: energy content, so y is a vector of 30 � 1, not a
matrix

An intrinsic issue regarding any regression model is that the appropriate number
of components in the prediction model to be used has to be determined. This is the
critically important validation issue, which has been the topic of many discussions in
the dedicated literature in statistics and data analysis in general and in chemometrics
in particular. How can the future prediction performance be ascertained? Can this
question be reliable answered based only on the existing calibration data set? Or is
it necessary to have access to at least some data from said “future”? This critical
issue can only be raised here : : : reference is made to the extensive literature which
can be found starting with the key entries below:

Important issues are:

– How should a split in calibration and test set be done?
– How should test set validation be carried out?
– What diagnostic parameter needs to be optimized for getting the optimal model?

According to Table 16.2, at least 3–4 PLS components should be used to build
an adequate model, but up to eight components could be used. Figure 16.14 shows
this graphically.

In the case of energy content, it was decided to stay with four components. A
typical error that is often made is over-fitting a PLS model. It is also clear that very
small amounts of X variance are used for the higher components. Such components
would be rather unreasonable to include in the predictive model.

16.3.2 Some Important PLS Regression Diagnostics

Table 16.3 shows the diagnostic results for all y variables as an overview. For
explaining the diagnostics, Eqs. (16.1) and (16.3) can be repeated, remembering that
for PLS models X and y are mean-centered. ytest represents the measured values for
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Fig. 16.14 Percentage of the total variance of y explained against component number

Table 16.3 PLS modeling and test results for the y variables: energy, fat, and protein

Name # comp R2cal R2test RMSEC RMSEP Bias Range

Energy 4 0.92 0.93 77 76 �5:5 895–1820
Fat 4 0.89 0.89 2.7 2.9 0:76 10–38
Fat 7 0.93 0.91 2.2 2.6 �0:70 10–38
Protein 4 0.84 0.79 1.3 1.7 �0:44 19–33
Protein 7 0.95 0.85 0.76 1.5 �0:18 19–33

the y-variables in the test set.

ycal D Xcalb C fcal (16.1)

ypred D Xtestb (16.3)

The equations for the diagnostics are (SS means sum of squares):

R2cal D 1 � SS .fcal/ =SS .ycal/ (16.6)

R2test D 1 � SS .ftest/ =SS .ytest/ (16.7)
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R2cal and R2test are similar to variance ratios. They can vary between 0 and 1.
1 means a perfect model (zero residual). 0.5 means that the modeled part and the
residual part are equal, so this means no model at all can be made. Usually, an R2cal
of above 0.9 and R2test of above 0.85 is necessary for a useful PLS prediction to be
possible.

RMSEC is the root mean squared error of calibration, and RMSEP is the root
mean squared error of prediction. They are given by:

RMSEC D
h
fcal

Tfcal.df/�1
i0:5

(16.8)

RMSEP D 

ftest

TftestJ
�1
�0:5

(16.9)

where df is some number of degrees of freedom, usually number of calibration
objects I minus number of components used. These numbers are expected to be
small compared to the range of the data.

The bias is given as:

bias D 1TftestJ
�1 (16.10)

where J is the number of test objects. The bias should be much less than RMSEP,
ideally 0.

For interpreting Table 16.3 this means:

Energy: R2cal and R2test are above 0.9 with only four PLS components, which is
very good. The bias is only 7% of the RMSEP. The RMSEP is 12 times smaller
than the range, and that is also good.

Fat: R2cal and R2test are above 0.9 with seven components. The bias is 27% of
the RMSEP, and this is clearly open for improvement. The RMSEP is ten times
smaller than the range. With only four components, the model does not become
much worse.

Protein: R2cal is high, but R2test is only 0.85 with seven components. The bias
is 12% of the RMSEP, and the RMSEP fits nine times in the range. With only
four components, the model does not become too much worse. For both fat and
protein, there are definitely more calibration samples needed in order to define
the most useful number of PLS components.

As a general conclusion, PLS calibrations with only four components for
energy work rather well, PLS calibrations for fat and protein may need more PLS
components, but then more calibration objects than the present complement will
have to be used. One should also be aware of the fact that no real analyses were
carried out; only the label information was used; this must certainly be considered
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1604 1750

1200 1782 1811 1605

1315            1 1 42 1727 1660

1819 1630 1820

1500 895

Fig. 16.16 Prediction for the test set (replicate 3, energy, four PLS components) with average
energy values indicated

89% Acryl
10% Polyester
1% Elastan

80% Cotton
20% polyester

57% Polyester
41% Cotton
2% Spandex

34% Cotton
34% Polyamide
22% Wool
9% Polyester
1% Elastan

Fig. 16.17 Textile materials (socks) of different composition measured for the example
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Fig. 16.18 The first PCA score component of the “textile image.” The acryl material is indicated

as an extra source of error between X and y. Also the design of the test set is open
to criticism. The test set used here is probably not the ideal one, and many other
choices could have been made. But the present choice serves well for illustrating
the principles behind validation and the resulting diagnostics. See Esbensen and
Lied (2007), Esbensen and Geladi (2010), and Esbensen (2012).
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Fig. 16.19 The score plot of
the textile image for
components 1 and 2. The
cluster for acryl pixels is
indicated
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16.3.3 PLS Prediction Visualized in Images

A calibration image was made using replicates 1 and 2 (2 � 15 cheeses) as shown
in Figs. 16.7–16.9.For this image, average spectra were calculated, and regression
was carried out against the energy values in Table 16.1.

Image preprocessing was by dividing each spectrum by its standard deviation and
removing the mean value. This often corrects many optical errors. Mean centering
of Xcal and ycal was also used. A four component PLS model was found to be good
enough.

Figure 16.15 left shows the PLS calculated y-values yhat against the ones from
the cheese packages ycal. The linear relation is reasonable good. The PLS regression
coefficients were then used for calculating energy values for every pixel in the
image. The result is shown in Fig. 16.15 right panel. The energies are color coded.
One may notice a good correspondence between the colors for replicate 1 and that
for replicate 2. The PLS model was also used for predicting the energy values for
replicate image 3 for each pixel. The result is given in Fig. 16.16, and the average
energy ytest values are also given in the figure.

It is easily seen by the color coding that average energy values are well predicted.
One may also observe that the cheeses are not homogeneous, because color contrasts
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Fig. 16.20 The first score image of the PLSDA model

are seen within each cheese. For some of the cheeses, this is worse than for others.
This is the real advantage of using regression on images. All interpretation can be
visualized where statistical diagnostics only give a number calculated by averaging
over many pixels.
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Fig. 16.21 The score plot of
first and second score of the
PLSDA model
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16.3.4 PLS Discriminant Analysis PLSDA

PLSDA uses the Eqs. (16.1) and (16.3), but instead of a continuous response
variable y, there is a categorical 0–1 variable, e.g., indicating composition or class
membership. The response variable y only contains ones and zeroes.

The PLSDA model is constructed just as a usual PLS model with all diagnostics
and problems of how many components are needed and how a calibration and test
set can be constructed. This was described in Sect. 16.3.2. Once a good PLSDA
model is found, it is possible to use it to predict class membership or whatever was
used as the response variable y.

For explaining PLSDA and its advantages, textile composition was used. Figure
16.17 gives a number of socks and their composition as can be read on the
packaging.

One thing about textiles is that the color has very little to do with the composition.
Color is often determined by a minute amount of textile dye; see Fig. 16.17. The
hyperspectral image was made as described in Sect. 16.2.2, and only the wavelength
range 2001–2493 nm (89 variables) was used.

The only preprocessing was mean-centering. Figure 16.18 gives a PCA result
after cleaning for background and error pixels. The remaining pixels are 159,558.

The scatter plot of scores 1 and 2 is given in Fig. 16.19. The cluster for the acryl
material is not well separated from other clusters.

For doing PLSDA, a new variable with ones and zeros is created: one for not
acryl and zero for acryl. Using this new y variable, a PLSDA model can be made.
The model explains 97% of the y-variance with three PLS components.
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Fig. 16.22 The modeled responses of the PLSDA model in color coding [acryl D 0 (blue), non-
acryl D 1 (orange)]

Figure 16.20 gives the first PLSDA component. It is clear that the acryl
is quite different in color (PLSDA score) from the other materials. This is a
huge improvement over Fig. 16.18. Figure 16.21 gives the score scatter plot of
components 1 and 2.

Also here the acryl is better separated from the other materials than it was in
Fig. 16.19. A conclusion is that PLSDA helps in making more meaningful clusters
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70% acryl
18% polyamide
12% wool

78% cotton
19% polyamide
2% elastan

Fig. 16.23 The test set image at 2068 nm (upper panel) and the PLSDA prediction (lower panel).
The left sock is mainly cotton; the right sock is mainly acryl
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of pixels that PCA sometimes cannot make or separate. Figure 16.22 shows the
PLSDA response yhat as modeled in color code. Figures like this can be used to
quickly visually locate the presence of acryl based textile materials.

A test set was made with two new socks (bought in a different store and different
brands, measured on different days). The image was pretreated by taking away
background pixels. The prediction image is given in Fig. 16.23 upper part, with
the composition in the figure. Below in Fig. 16.23 is the PLSDA prediction ypred

using the model used for Fig. 16.22. The 70% acryl sock is predicted as high in
acryl (blue), and the other sock is predicted as low in acryl (dark red).

A more thorough exposé (and methodological critique) of the pitfalls of ill-
reflected PLSDA application can be found in Brereton and Lloyd (2014), greatly
recommended.

In recent years a number of review articles on using regression models for
hyperspectral imaging have been published, mainly for food processing (Chen et
al. 2016; Pang et al. 2016; Gowen et al. 2015; Dai et al. 2014; Tao et al. 2013;
Prats-Montalban et al. 2012; Nicolai et al. 2007). Furthermore, there are many
applications of a similar nature in the remote sensing literature, but these are not
mentioned here.
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Chapter 17
Dealing with Nonlinearity
in Importance-Performance Map Analysis
(IPMA): An Integrative Framework
in a PLS-SEM Context

Sandra Streukens, Sara Leroi-Werelds, and Kim Willems

Abstract Importance-performance map analysis (IPMA) combines PLS-SEM esti-
mates, indicating the importance of an exogenous construct’s influence on another
endogenous construct of interest, with an additional dimension comprising the
exogenous construct’s performance in a two-dimensional map. From a practical
point of view, IPMA contributes to more rigorous management decision-making.
The basic principles of IPMA are well understood, yet the inter-construct relation-
ships are typically modeled as being linear. An abundance of empirical literature
indicates that this may lead to erroneous conclusions. In an IPMA context, this can
lead to false conclusions regarding an exogenous construct’s importance. Although
several approaches exist to account for nonlinear inter-construct relationships, these
approaches are characterized by drawbacks impeding their applications in practice.
Overall, this serves as a backdrop for the current chapter which aims to contribute
to (PLS-SEM) IPMA theory in the following ways. First, we provide an integrative
framework to guide IPMAs using PLS-SEM. Second and synergistically with the
first contribution, we introduce a so-called log-log model that allows to capture the
most common functional forms (i.e., both linear and nonlinear) without the need to
make a priori assumptions about the correct functional form specification. Third, a
comprehensive empirical application is provided that illustrates our proposed IPMA
framework as well as the proposed log-log model to more adequately capture the
nature of the PLS-SEM relationships ultimately defining the IPMA’s importance
dimension.
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17.1 Introduction

The central tenet of the satisfaction-profit chain (SPC) is that effectively managing
drivers of customer satisfaction is the road to enhanced business performance
(Anderson and Mittal 2000; Kamakura et al. 2002). From a decision-making point
of view, and building on the relationships put forward in the SPC, importance-
performance map analysis (IPMA) can be considered an effective tool in satisfaction
and thus business performance and management (cf. Matzler et al. 2004). The
fact that managers are increasingly held financially accountable for their decisions
further underscores the relevance of IPMA (Seggie et al. 2007).

In a nutshell and in general terms, IPMA contrasts the impact of key exogenous
constructs or indicators (both are also referred to as drivers or input constructs or
variables) in shaping a certain endogenous target construct with the average value,
representing performance of the driver construct or indicator (Ringle and Sarstedt
2016). Combining the importance and performance measures of the drivers in a
two-dimensional map then allows managers to identify key drivers of the target
construct, to formulate improvement priorities, to find areas of possible overkill,
and to pinpoint areas of “acceptable” disadvantages (see also Matzler et al. 2004).

IPMA per se is not restricted to a partial least squares structural equation
modeling (PLS-SEM) context. However, IPMA in combination with PLS-SEM
offers several key advantages, such as PLS-SEM’s ability to model a comprehensive
nomological web of interrelations among constructs and its ability to include latent
constructs. In line with these advantages, the focus in this chapter will be on IPMA
in a PLS-SEM context.

Although several IPMA applications in a PLS-SEM context have emerged in
the literature in recent years (e.g., Hock et al. 2010; Völckner et al. 2010; Rigdon
et al. 2011), a common characteristic of these applications is that they all assume
linear relationships. Inspection of the literature reveals that linear relationships are
not necessarily appropriate in modeling business phenomena. Examples include
Narasimhan and Kim (2002) in operations research, Langfred (2004) and Sciascia
and Mazzola (2008) in management, Titah and Barki (2009) in management
information systems, Lu and Beamish (2004) in strategy, and Seiders et al. (2005)
in marketing.

Also regarding customer satisfaction management, which is the substantive
domain central to this chapter, the possibility of nonlinearity needs to be taken
into account when modeling the nomological web of relationships put forward
in the SPC (Mittal et al. 1998; Dong et al. 2011; Anderson and Mittal 2000).
In terms of IPMA, failing to take into account possible nonlinearities might lead
to erroneous strategic decision-making regarding the management of customer
satisfaction drivers.

Ignoring the customer satisfaction management background for the moment, the
two general objectives of this chapter are twofold: first, to provide an integrative
framework on how to conduct an IPMA that is both managerially relevant and theo-
retically valid and, second, to compare and contrast different analytical approaches
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to account for nonlinear structural model effects that determine importance scores
in the IPMA. Given the added value of PLS-SEM in conducting an IPMA, the
proposed IPMA framework and the approaches to deal with nonlinear relationships
are, without loss of generalizability, discussed in a PLS-SEM context.

In relation to the work by Ringle and Sarstedt (2016) on IPMA as an extension
of basic PLS-SEM, addressing the abovementioned research objectives yields the
following contributions to theory and practice. First, our framework extends the
work by Ringle and Sarstedt (2016) by paying attention to key decisions that need
to be made in the pre-analytical stages of IPMA. That is, in order to arrive at
an IPMA that is truly relevant both practically and theoretically, it is critical to
keep in mind that IPMA is more than just a data analytical tool. Rather, IPMA
involves making several interrelated decisions that start already at the research
design phase, such as measurement model specification and questionnaire design.
Second, although the current research focuses on nonlinearities in the SPC, the
different methods to account for nonlinearity in structural model relationships
discussed are generally applicable. As such, this study responds to the recent surge
of interest in modeling nonlinear effects in PLS-SEM (see also Henseler et al. 2012).
Third, in terms of IPMA, being able to adequately capture the functional form
of structural relationships leads to an increased likelihood of improved strategic
decision-making.

The remainder of this chapter is structured as follows. The subsequent two
sections, Sects. 17.2 and 17.3, serve as a preparatory basis for the actual contri-
butions as outlined above. Section 17.2 explains the basic principles of IPMA.
In Sect. 17.3, the SPC is discussed as well as the need for taking into account
nonlinearities in the SPC. Section 17.4 introduces the integrative IPMA framework
and discusses the various stages involved. Again, without loss of generalizability, the
framework discusses IPMA in combination with PLS-SEM. In Sect. 17.4, attention
is particularly devoted to the modeling of nonlinear relationships in PLS-SEM.
Section 17.5 describes the application of the proposed IPMA framework using real-
life data. Sections 17.6 and 17.7 conclude this chapter.

17.2 IPMA: The Basics

17.2.1 What Is IPMA?

IPMA, originally introduced by Martilla and James (1977), yields insight into
which drivers must be prioritized to achieve superior levels of a target construct
of interest (e.g., satisfaction). In general, data derived from (satisfaction) surveys
are used to construct a two-dimensional map, where performance is depicted along
the horizontal axis (i.e., x-axis) and importance on the vertical axis (i.e., y-axis). As
is shown in Fig. 17.1, for both axes, a cutoff value is specified to split each axis in a
low and a high segment, dividing the matrix into the following four quadrants.
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Fig. 17.1 Basic PLS-SEM IPMA chart

Drivers in quadrant I, named “Keep up the good work,” are characterized
by both a high importance level and a high performance level. These drivers
represent opportunities for gaining or sustaining a superior level of the target
construct. The drivers in quadrant II, named “Concentrate here,” are key elements
for improvement, as these drivers are considered important by respondents, while
the perceived level of performance leaves things to be desired. The two quadrants
at the bottom of the matrix are characterized by a low importance level. Hence,
assuming equal costs, improvement initiatives concerning drivers located here can
be expected to provide the lowest return on investment. Quadrant III, referred to
as “Low priority,” combines low importance with low performance. Drivers in this
quadrant do not merit special attention or additional effort. Finally, quadrant IV,
named “Possible overkill,” represents drivers on which the respondents perceive
a high level of performance but do not considered them very important. Similar
to quadrant III, these drivers do not represent feasible alternatives for improving
target construct performance. Rather, to avoid the risk of possible overkill, resources
committed to these drivers would be better employed elsewhere.
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17.2.2 IPMA and PLS-SEM

In a PLS-SEM context, the basic idea of IPMA as described above and shown in
Fig. 17.1 remains unaltered. Nevertheless, PLS-SEM has several key advantages
over traditional IPMA, which typically relies on multiple regression analysis. First,
in determining the importance scores, PLS-SEM is a valuable analytical tool as it
is capable of integrally assessing a complex network of relationships connecting
drivers to a target construct of interest. Second, it can incorporate latent constructs.
This is particularly relevant as in many research contexts, key constructs can only
be validly measured by a set of indicators. These key constructs may concern both
drivers and target constructs in the IPMA.

Consistent with Ringle and Sarstedt (2016), it should be stressed that in a PLS-
SEM context, the IPMA may be conducted at either the latent variable or indicator
level. The IPMA principles are not influenced by whether the analysis is done at the
latent variable or indicator level. However, analysis at the indicator level leads to
improved actionability, as indicators describe elements that shape the corresponding
construct.

17.2.3 Performance Scores

As can be seen in Fig. 17.1, the horizontal axis captures driver performance. There
are several ways to express these performance scores, depending on whether the
IPMA is done at the indicator or latent variable level.

For IPMA at the indicator level, the mean or median score of the indicator
represents the relevant performance score. Alternatively, for IPMA at the latent
variable level, the average latent variable score represents perceived performance.
With regard to the latter, it needs to be stressed that, in order to be meaningful, the
latent variable’s indicator weights all need to be in the same direction (Tenenhaus
et al. 2005; Ringle and Sarstedt 2016).

Furthermore, to enhance the interpretability of the results, the performance scores
are usually rescaled on 0–100 scale. Equation (17.1) shows how the latent variable
scores are rescaled using the procedure suggested by Fornell et al. (1996):
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CCCA � 100 (17.1)

In Eq. (17.1), wi is the indicator weights associated with indicator xi, while
max[xi] and min[xi] denote, respectively, the maximum and minimum possible
values for indicator xi. Again, all weights need to be in the same direction. Equation
(17.1) is also applicable at the indicator level. In this case, the calculation needs to
be done at the indicator level using a weight equal to 1. Note that this rescaling is
done automatically by SmartPLS 3 (Ringle et al. 2015).
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17.2.4 Importance Scores

As can be seen in Fig. 17.1, the vertical axis of the chart captures the drivers’
importance scores. Analytically, the importance score reflects the total effect of a
predictor construct (i.e., driver) on a particular target construct. In general terms,
and assuming a recursive structural model, let parameter ıkl(k ¤ l) reflect the total
effect of construct k on construct l. Thus, parameter ıkl reflects the entire set of
relationships in a structural model connecting latent construct k to latent construct
l. Parameter ıkl can be calculated from the empirical results describing the set of
relationships connecting latent construct k to latent construct l, as shown below in
Eq. (17.2):
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In Eq. (17.2), and in the case of linear relationships, ˇij are the structural model
coefficients belonging to the paths that connect latent construct k to latent construct
l. In words, Eq. (17.2) states that the total effect of construct k on construct l
can be computed by calculating the product of the structural model coefficients
ˇij belonging to each of the separate direct relationships connecting construct k
and construct l and subsequently summing these products’ overall relevant paths
connecting construct k and construct l. Or equivalently, as Nitzl et al. (2016) put it,
the total effect is the sum of the relevant direct and indirect effects.

The idea expressed by Eq. (17.2) can be extended to include measurement model
parameters as well, which is relevant for IPMAs conducted at the indicator level.
In this case, the weight of indicator needs to be included in Eq. (17.2) as well. A
graphical illustration of this can be found in Streukens and Leroi-Werelds (2016).
Note that Ringle and Sarstedt (2016, p. 1869) indicate that this extension to the
indicator level by including the indicator’s weight in Eq. (17.2) can be done for
both formative and reflective indicators.

Finally, the statistical significance of the importance scores can be assessed by
means of bootstrap confidence intervals as outlined in detail by Streukens and Leroi-
Werelds (2016).

17.2.5 Defining the Quadrants

Determining the cutoff values concerning what constitutes low performance/
importance and high performance/importance is rather arbitrary. Multiple ways
exist to specify these values. A commonly used way to specify these cutoff values is
to use the mean (e.g., see Matzler et al. 2004) or median (e.g., see Berghman et al.
2013) value accompanying each of the axes.
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17.3 The SPC and Nonlinear Relationships

17.3.1 Introduction of the SPC

As mentioned in the introduction, the IPMA and the SPC are a golden combination
for many (marketing) managers. This stems from the fact that both the IMPA and
the SPC are concerned with making effective resource allocation decisions in order
to enhance business performance. To integrate the strengths of both models, the
relationships put forward in the SPC (see also Fig. 17.2) can be estimated using
PLS-SEM. Subsequently, the PLS-SEM estimation results can be used to calculate
the importance scores (see also Eq. 17.2).

Starting at the back end of the chain, business profitability is positively influenced
by customer loyalty, which reflects a customer’s overall attachment to an offering,
brand, or organization (Oliver 1999). In customer research, behavioral intentions
are typically used as a proxy for customer loyalty. Customer satisfaction is
the customers’ cumulative evaluation that is based on all experiences with the
company’s offering over time (Anderson et al. 1994), and ample research supports
the positive impact of this construct on customer loyalty (e.g., see Leroi-Werelds et
al. 2014; Streukens et al. 2011). Consistent with Fishbein’s (1967) multi-attribute
model, customer satisfaction is a function of perceived attribute performance. Here,
attributes are specific and measurable characteristics associated with a particular
offering (see also Streukens et al. 2011). For example, in Gomez et al.’s (2004)
study, attributes related to customer service, quality, and value for money were
included as predictors of overall satisfaction with a supermarket.

Note that for the current study, the focus will be on the relationship between
attribute performance and overall satisfaction and the relationship between overall
satisfaction and loyalty. This is indicated in Fig. 17.2 by the dotted rectangle.

Performance

Attribute 1 

Performance

Attribute 2 

Performance

Attribute p 

Overall

satisfaction 
Loyalty Profitability

.

.

.

Scope of current study

Fig. 17.2 The satisfaction-profit chain (adapted from Anderson and Mittal 2000)
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17.3.2 Nonlinear Relationships in the SPC

Although the significance and direction of the relationships put forward in the SPC
are well supported, an increasing amount of research suggests that the functional
form of these relationships is not necessarily linear. Failing to account for possible
nonlinearity in the links comprising the SPC may result in not finding support for
expected linkages and/or incorrectly prioritize efforts to improve performance. Put
differently, the danger of conducting PLS-SEM and the subsequent IPMA through
a linear lens could be the misallocation of resources (see also Anderson and Mittal
2000).

In Sect. 17.3.2.1 the Kano-model (Kano et al. 1984) will be used to discuss
the different (non)linear functional forms that may describe the attribute-overall
satisfaction relationship. After that, Sect. 17.3.2.2 outlines five possible (non)linear
functional forms regarding the relationship between overall satisfaction and loyalty.

17.3.2.1 Attribute Performance and Overall Satisfaction: Kano’s Model

The Kano model distinguishes among three different types of attributes: attractive
attributes (“delighters”), must-be attributes (“dissatisfiers”), and one-dimensional
attributes (“satisfiers”). Figure 17.3 provides a graphical overview of Kano’s model.

Satisfaction

Dissatisfaction

Low
attribute

performance

High
attribute

performance

Attractive attribute

(“Delighter”)

One-dimensional attribute

(“Satisfier”)

Must-be attribute

(“Dissatisfier”)

Fig. 17.3 Kano’s model
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Attractive attributes are attributes that increase satisfaction when fulfilled and
have little influence on satisfaction ratings even when not fulfilled. Theoretically,
attractive attributes are associated with customer delight, which is a positive
emotion generally resulting from a surprisingly positive experience (Rust and
Oliver 2000). In terms of functional form, attractive attributes are characterized
by increasing returns. Must-be attributes cause dissatisfaction when absent but do
not have an impact on satisfaction when present. Prospect theory (Kahneman and
Tversky 1979), according to which “losses loom larger than gains,” provides a
theoretical rationale for this pattern. The functional form associated with must-be
attributes is characterized by decreasing returns. The third and final category of
attributes consists of so-called one-dimensional attributes or performance attributes.
These attributes lead to satisfaction if performance is high and to dissatisfaction if
performance is low (Matzler et al. 2004). One-dimensional attributes are character-
ized by a linear functional form, implying that a change in attribute performance has
a constant impact on satisfaction.

17.3.2.2 Nonlinearities in the Satisfaction-Loyalty Link

According to Anderson and Mittal (2000), the relationship between satisfaction and
loyalty may also exhibit nonlinearity. Based on an overview of the literature, Dong et
al. (2011) discern among five different functional forms that have been put forward
and empirically tested regarding the satisfaction-loyalty relationship. What Dong
et al. (2011) refer to as a linear, concave, and convex relationship coincides with
the functional form associated with Kano’s one-dimensional, attractive, and must-
be attributes, respectively. The two other functional forms discussed by Dong et al.
(2011) include the S-shaped and inverse S-shaped function. An S-shaped function
suggests decreasing returns for customers that are highly satisfied but increasing
returns for customers who are less satisfied. The inverse S-shaped function implies
increasing returns for customers who are highly satisfied and decreasing returns for
customers with low satisfaction. Figure 17.4 summarizes the five functional forms
of the satisfaction-loyalty relationship as presented by Dong et al. (2011).

17.4 IPMA: An Integrative Framework

This section outlines a three-stage integrative framework to conduct a strategically
relevant IPMA. It is important to note that this framework, which is graphically
presented in Fig. 17.5, implies that IPMA is more than just analytical approach.

That is, in order to be of true value, a strategically relevant IPMA requires
addressing several key questions prior to the actual data analysis (e.g., the identifica-
tion of attributes). This is reflected by stage 1 in Fig. 17.5. As indicated by stage 2 in
Fig. 17.5, and in line with the discussion of possible nonlinearity in the relationships
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Fig. 17.4 Functional forms satisfaction-loyalty relationship (cf. Dong et al. 2011)

comprising a nomological network (i.e., the SPC), modeling the appropriate func-
tional form is pivotal to adequately making strategic decisions involving resource
allocation. As can be concluded from Fig. 17.5, several approaches are proposed to
model nonlinear relationships. Finally, in stage 3, to make the transition from the
statistical results to actionable practical implication, attention needs to be devoted
to the interpretation of the results. Whereas the interpretation of the performance
scores is rather straightforward, the interpretation of the importance scores will be
relatively complex in case of nonlinear functional forms. Furthermore, stage 3 also
includes (external) validation of the results. This is particularly relevant given the
prediction-oriented nature of PLS-SEM (Shmueli et al. 2016; Carrión et al. 2016).

Two additional remarks concerning the framework in Fig. 17.5 need to be made.
First, the steps in Fig. 17.5 are presented sequentially. However, for some decisions,
these steps are interrelated. Whenever that is the case, it is explicitly mentioned.
Second, although this chapter focuses in particular on the modeling of nonlinear
relationships, the presented framework is also applicable to models that consist
of only linear relationships. Rather, the basic IPMA, which assumes only linear
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relationships, can be considered as a special, very restricted case of the more
advanced model that accounts for nonlinearity.

17.4.1 Stage 1: Research Design

A truly actionable IPMA is more than an analytical approach and requires several
key considerations in the research design stage, such as attribute identification and
questionnaire design.

17.4.1.1 Attribute1 Identification

Conducting a series of interviews is often an excellent first step in identifying
the relevant attributes, as the validity of the results of the IPMA depends on the
completeness of the set of attributes under consideration. Or as Anderson and Mittal
(2000) put it: the set of attributes should be as distinct and as broad as possible.
An alternative method, preferably to be used in conjunction with interviews, is to
use critical incident technique (CIT) data to identify active and/or salient sources
of (dis)satisfaction. Moreover, the process of attribute identification needs to be
repeated from time to time, as the list of attributes predicting overall satisfaction
is likely to change due to a change in customer needs.

A frequently encountered issue involves the number of interviews that needs to be
conducted. There is no fixed number that can be put forward here, but the saturation
rule of Strauss and Corbin (1990) is a useful guideline. According to this rule, the
researcher needs to continue conducting interviews until no new information comes
to light (i.e., saturation point). Furthermore, in contrast to quantitative research, the
samples used in interviews and other forms of qualitative research are not meant to
be representative of the underlying population (see also Malhotra et al. 2012).

17.4.1.2 Modeling Attributes

Closely related to identification of the attributes is the specification of the accom-
panying measurement model. Several aspects need to be considered here. First, and
also mentioned previously, is that attributes may be defined at the indicator or latent
variable level. Second, although Fishbein’s (1967) attribute model that is typically
used in customer satisfaction research (see also Sect. 17.3.1) implies a formative

1Attribute identification is a term that is often used in the customer satisfaction research/SPC.
More generally, what we refer to as attributes can be considered as the drivers or input variables of
various kinds in an IPMA.
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measurement model, Ringle and Sarstedt (2016) state that reflective measurement
models can also be used to measure the latent constructs underlying an IPMA.

Although formatively and reflectively specified constructs can act as exogenous
constructs (i.e., drivers) in an IPMA, formatively specified constructs are preferred
for reasons of actionability and thus strategical relevance of the IPMA (see also
Ringle and Sarstedt 2016, p. 1869).

17.4.1.3 Questionnaire Design

Data for an IPMA typically stem from (satisfaction) surveys. Consistent with the
need to identify the complete set of relevant attributes (see Sect. 17.4.1.1), the
key term for the design of the questionnaire is content validity. This means that
all elements relevant to the customer in a particular situation need to be included.
To achieve this, the output from the qualitative research conducted to identify the
relevant attributes serves as input for the design of the questionnaire. Furthermore,
whenever possible one is advised to use validated scales. This is typically the case
for constructs that serve as target or intermediary constructs in an IPMA such as, in
casu, loyalty intentions, and satisfaction.

Multicollinearity is a common issue in analyzing IPMA data, especially for
formatively measured constructs. Although there are several technical ways to
deal with this problem, the multicollinearity problem can be minimized through
the design of the questionnaire. To do so, Mikulić and Prebežac (2009) suggest
the following guidelines for questionnaire design. First, there should not be any
overlapping between the conceptual domains of attributes, and the predictors should
be on the same level of abstraction. Second, employ a so-called hierarchical design
in which the different hierarchical levels measure attribute performance at various
levels of abstraction. For an example of this latter recommendation, see the work of
Dagger et al. (2007). The use of a hierarchical level model reduces multicollinearity
as it decreases the number of independent variables per equation. Guidelines on how
to model higher-order constructs in a PLS-SEM context can be found in Becker et
al. (2012).

17.4.1.4 Response Formats

The estimation of (non)linear models requires metric data. Rating scales such as
Likert scales are most often used in marketing research and are generally considered
metric when at least five response categories are employed (Weijters et al. 2010).
From a strict methodological point of view, Dawes (2008) concludes that the
number of categories (i.e., five, seven, or ten) is trivial in case of regression-
based techniques. However, Preston and Colman (2000) suggest that researchers
should opt for seven, nine, or ten categories to warrant optimal levels of reliability,
validity, discrimination power, and respondent preference. In terms of the analytical
approaches to be discussed in the subsequent section, the use of Likert scales is
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a feasible option in the penalty-reward analysis, the linear model, the log-linear
model, the linear-log model, and the log-log model.

In contrast, for a polynomial model, the use of Likert-type scales is not suitable
(Finn 2011; Russell and Bobko 1992; Carte and Russell 2003) as it causes infor-
mation loss that may result in an unknown systematic error. Hence, for polynomial
models, the use of continuous rating scales is needed (see also Russell and Bobko
1992).

17.4.1.5 Sample Size

Similar to other analytical approaches, the needed sample size for a (PLS-SEM
based) IPMA needs to be driven by statistical power considerations (Marcoulides
et al. 2009) as well as representativeness (Streukens and Leroi-Werelds 2016).

17.4.2 Stage 2: The Functional Forms of the Relationships

Several approaches exist to model nonlinear relationships in a PLS-SEM context.
Three alternative methods are discussed and compared below: the penalty-reward
contrast analysis (PRCA), polynomial model, and analysis with transformed vari-
ables (i.e., linear-log, log-linear, and log-log models).

17.4.2.1 Penalty-Reward Contrast Analysis

Probably the most frequently used analytical approach in modeling the different
types of attributes as implied by the Kano model is PRCA. Examples of studies
employing PRCA include the work of Matzler et al. (2004), Busacca and Padula
(2005), and Conklin et al. (2004).

PRCA analyzes the impact of high and low attribute performance on satisfac-
tion by using two dummies, say DL

i and DH
i , for each attribute i (Mikulić and

Prebežac 2011). The coding of the two dummies for attributei is done as follows:�
DL

i ; DH
i

� D .1; 0/ indicates “low attribute performance,”
�
DL

i ; DH
i

� D .0; 1/

indicates “high attribute performance,” and
�
DL

i ; DH
i

� D .0; 0/ indicates “average
attribute performance.”

Running a PRCA thus implies that for each attribute, two coefficients are
obtained: one to reflect the impact when performance is low, say ˇL

i , and one to
reflect the impact when performance is high, say ˇH

i . Figure 17.6 presents the
PRCA model in a PLS-SEM context. The model in Fig. 17.6 focuses on a single
attribute measured by a single item. Moreover, satisfaction acts as target construct
and is, consistent with the literature, measured by two reflective items.For academic
research, it may be of interest to formally assess the nature of the attributes involved
(e.g., see Mittal et al. 1998; Streukens and De Ruyter 2004). This can be done by
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Fig. 17.6 PRCA in PLS-SEM

testing the following null hypothesis using the procedure outlined in Streukens and
Leroi-Werelds (2016):

H0 W ˇL
i D ˇH

i

If this null hypothesis cannot be rejected, the attribute can be regarded as a one-
dimensional or linear attribute. Conversely, if the null hypothesis is rejected, then
the attribute is either an attractive attribute (i.e., ˇL

i < ˇH
i ) or a must-be attribute

(i.e., ˇH
i < ˇL

i ).
Despite its simplicity, several key disadvantages are associated with the use

of PRCA. First, PRCA does not really capture nonlinearity. At best, it addresses
whether the relationship between attribute performance and overall satisfaction
is (a)symmetric. In the case of a symmetric relationship, low and high attribute
performances have an equal impact on overall satisfaction. In the case of an
asymmetric relationship, low and high attribute performances have a different
impact on overall satisfaction. For more information on (a)symmetric relationships,
the reader is referred to the work of Matzler et al. (2004). Second, as pointed out
by Mikulić and Prebežac (2011), standardized coefficients for the PRCA dummies
(as in PLS-SEM) may yield misleading results if the dummies have unequal
distributions of zeros and ones, which is typically the case. Although a notable
disadvantage, it can be circumvented by using the unstandardized model coefficients
for model interpretation.

17.4.2.2 Polynomial Models

Polynomial models offer a flexible approach to capture a wide variety of functional
forms without having to specify a specific form of nonlinearity a priori. Likewise,
assessing whether nonlinearity is significant is straightforward in the case of
polynomial models as it can be directly concluded from the statistical significance
of the higher-order terms (Finn 2011; Dong et al. 2011). When modeling the link
between attribute performance and overall satisfaction as implied by the Kano
model, the quadratic model presented in Eq. (17.3) would apply:

SAT D ˇ1ATTi C ˇ2ATT2
i (17.3)
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Assessing the statistical significance of the model parameters reveals information
about the functional form of the relationship between attribute performance and
overall satisfaction. That is, in the case ˇ1 > 0 and ˇ2 D 0, a linear functional
form is implied (“one-dimensional attribute”); if ˇ2 < 0, the relationship displays
decreasing returns (must-be attribute); if ˇ2 > 0, the relationship exhibits increasing
returns (attractive attribute). To capture the five different functional forms for the
satisfaction-loyalty relationship as proposed by Dong et al. (2011), a cubic model,
as presented in Eq. (17.4), is needed.

LOY D ˇ1SAT C ˇ2SAT2 C ˇ3SAT3 (17.4)

This cubic model is able to capture the five functional forms displayed in Fig.
17.4. The pattern of the model coefficients contains information about the functional
form. If ˇ1 > 0 and ˇ2 D ˇ3 D 0, a linear functional form is implied; if ˇ2 < 0
and ˇ3 D 0, the relationship is concave; if ˇ2 > 0 and ˇ3 D 0, the relationship is
convex; if ˇ3 < 0, an S-shaped relationship exists; and if ˇ3 > 0, the relationships are
characterized by an inverse S-shaped pattern.

The approach to estimate a polynomial PLS-SEM model depends on the nature of
the exogenous’ construct measurement model (see also Henseler et al. 2012; Fassott
et al. 2016). In case of a formative exogenous construct, the two-stage approach
needs to be used.2

In the first stage, the PLS-SEM model without the quadratic effect is estimated
to obtain estimates for the latent variable scores. These latent variable scores are
saved for further analysis. In the second stage, the quadratic term is added to the
model. The indicator of this quadratic term is the squared value of the relevant
latent variable score obtained in stage 1. Furthermore, the latent variable scores
obtained in the previous stage act also as indicators of the first-order term in the
model and the endogenous construct, respectively. Figure 17.7 graphically presents
the two-stage approach for a formative exogenous construct assessing attribute
performance. Note that, although in Fig. 17.7 the formative exogenous construct
only has a single indicator, the approach is readily applicable to multi-item formative
exogenous constructs. Likewise, the approach can be easily extended to higher-order
polynomial effects.

As evidenced by Henseler and Chin (2010), the analytical approach to be used for
reflective exogenous construct is less straightforward, as the optimal choice depends
on the objective of the researcher. Henseler and Chin (2010) distinguish three
different types of research objectives: assessing the significance of the polynomial
effect (case 1), finding an estimate for the true parameter of the polynomial effect

2Technically, the hybrid approach is also a feasible approach (see also Henseler et al. 2012).
However, as this approach is not available in any of the standard PLS-SEM software packages,
this approach will not be discussed in this chapter.
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(case 2), and predicting the endogenous construct (case 3). All three cases will be
discussed below.

Case 1: Assessing the Statistical Significance of the Polynomial Effect If the
researcher is primarily interested in the significance of the polynomial effect, the
two-stage approach is the method of choice. Here, a similar approach as outlined
above for formative exogenous constructs applies.

Case 2: Finding Estimate of the True Parameter of the Polynomial Effect If the
researcher is interested in finding an estimate for the true parameter of a polynomial
effect, Henseler and Chin (2010) recommend using the orthogonalizing approach.
Drawing upon Lance’s (1988) residual centering technique, orthogonalizing essen-
tially involves creating polynomial terms that are uncorrelated with (i.e., orthogonal
to) its lower-order constituents. In the relationship between satisfaction and loyalty,
satisfaction is measured by two reflective indicators (i.e., sat1 and sat2). We follow
the procedure outlined by Henseler and Chin (2010) and Little et al. (2006). The
computations for the quadratic and cubic term and the accompanying PLS-SEM
models for the orthogonalizing approach are presented in Figs. 17.8 and 17.9,
respectively.

Case 3: Prediction of Endogenous Construct The third and final case that needs
to be distinguished with reflective exogenous constructs occurs when a researcher
strives for optimal prediction accuracy of the target construct. In this case, Henseler
and Chin (2010) recommend using either the orthogonalizing approach (see also
Figs. 17.8 and 17.9) or the product-indicator approach. For the relationship between
satisfaction (two reflective items) and loyalty (three reflective items), the product-
indicator approach is shown in Fig. 17.10.

As mentioned above, key advantages of the polynomial approach are that it is
flexible and the user does not need to specify the exact functional form in advance.
Moreover, the often mentioned disadvantage of multicollinearity can be relatively
easily resolved by orthogonalizing the involved terms. An important drawback of
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Computations prior to PLS-SEM estimation
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the polynomial model is the need for ratio-scaled data for the exogenous constructs
(Carte and Russell 2003). Although Russell and Bobko (1992) recommend using
continuous rating scales to solve this issue (see also Sect. 17.4.1.3), it needs to be
acknowledged that for many constructs in business research, ratio scales do not
exist. Although not impossible to create, it may represent a considerable challenge
for researcher to develop ratio scales. Another disadvantage of the polynomial
model is that it does not capture consistently decreasing or increasing returns (see
also Streukens and De Ruyter 2004). For instance, the quadratic function describing
the relationship between a must-be attribute and overall satisfaction may reach a
maximum value after which the relationship under consideration becomes negative,
which conflicts with the theory underlying the SPC.
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17.4.2.3 PLS-SEM with Transformed Variables: The Linear-Log Model
and the Log-Linear Model

This section introduces two models with transformed variables, namely, the linear-
log model and the log-linear model, that are directly related to the basic linear
PLS-SEM model. The name “transformed variables” stems from the fact that by
transforming either the criterion or predictor variable, the standard linear PLS-SEM
model can be used to capture a nonlinear functional form. Given the log-linear
and linear-log models’ kinship to the linear PLS-SEM model, the discussion of
PLS-SEM with transformed variables will use the commonly-used linear model as
a starting point. Although the focus in the sections below is on the relationship
between attribute performance and overall satisfaction, the models can be readily
applied to other relationships as well, e.g., the satisfaction-loyalty link.

The Linear Model For the simplest case of the relationship between overall
satisfaction and performance of a single attribute, the linear model is defined as
shown in Eq. (17.5):

SAT D ˇiATTi (17.5)

In terms of Kano’s framework, this linear model is suitable for capturing the
relationship between performance on a one-dimensional attribute and a higher-order
evaluative judgment such as customer satisfaction.

The Linear-Log Model Relationships which are characterized by decreasing
returns can be captured by means of a so-called linear-log model, which is shown in
Eq. (17.6). Compared to the linear model (see also Eq. 17.5), the linear-log model
uses the natural logarithm of the original variable as predictor. In terms of Kano’s
model, the linear-log model is suitable for modeling must-be attributes.

SAT D ˇi ln ATTi (17.6)

The Log-Linear Model In contrast to must-be attributes, the relationship between
attractive attributes and a higher-order customer evaluative judgment displays
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increasing returns. Also in this case, a simple variation of the basic model presented
in Eq. (17.5) can be used to adequately capture this specific relationship. That is,
increasing returns can be modeled by means of a log-linear model. Compared to the
basic linear model, the log-linear model uses the natural logarithm of the original
dependent variable as criterion. The general structure of a log-linear model is shown
in Eq. (17.7):

ln SAT D ˇiATTi (17.7)

Their obvious kinship to the linear model which is typically used and the ease
with which the linear-log model and log-linear model can be implemented in a
PLS-SEM context are key advantages of these models. To learn more about the
implementation in a PLS-SEM context of the models implied by Eqs. (17.5)–(17.7),
see the three upper panels in Fig. 17.11. Consistent with marketing literature and
practice, single-item attribute performance measures are assumed, and a reflective
multiple-item scale is assumed for the satisfaction construct in the models shown in
Fig. 17.11.

It is important to stress that the models outlined in Eqs. (17.5)–(17.7) and shown
in Fig. 17.11 require the specification of the functional form in advance. That is,
one needs to know prior to the estimation whether one is dealing with a one-
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Fig. 17.11 PLS-SEM with transformed variables
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dimensional, must-be, or attractive attribute. Although this may be perceived as
a disadvantage, this drawback can be solved by carrying out an additional study in
which Kano et al.’s (1984) approach to classifying attributes is applied. See the work
of Mikulić and Prebežac (2011; pp. 48–51) for a detailed description of this attribute
classification approach. Another problem arises when a relationship with increasing
returns needs to be included in a single model that also needs to account for a
linear relationship and/or a relationship displaying decreasing returns. Because the
dependent variable of the log-linear model is different than the dependent variable
of the linear and linear-log model, they cannot be included in a single model.
For example, suppose attribute 1 (ATT1) is a one-dimensional attribute, attribute
2 (ATT2) is a must-be attribute, and attribute 3 (ATT3) is an attractive attribute.
Including attractive attribute ATT3 in the same equation as ATT1 and ATT2 is not
possible, as the dependent variable for the attribute ATT3 differs from the dependent
variable in modeling the impact of the latter two attributes (i.e., lnSAT vs. SAT). One
possible way to overcome this problem is to estimate separate equations. However,
this possibility is undesirable as it leads to biased coefficient estimates due to the
omission of relevant variables.

17.4.2.4 PLS-SEM with Transformed Variables: The Log-Log Model

In line with its name, the log-log model involves taking the natural logarithm of both
the dependent and independent variable. Departing from the basic model (see also
Eq. 17.5), the log-log model is defined as shown in Eq. (17.8):

ln SAT D ˇi ln ATTi (17.8)

The log-log model can account for all the functional forms implied by the Kano
model without having to specify in advance the nature of the relationship. The
magnitude of the model parameter ˇi reveals the functional form best describing the
relationship between variables involved. More specifically, ˇi D 1 implies a linear
relationship (i.e., one-dimensional attribute), ˇi > 1 corresponds with increasing
returns (i.e., attractive attribute), and 0 < ˇi < 1 reflects decreasing returns (i.e.,
must-be attribute). The fourth panel in Fig. 17.11 indicates how the log-log model
can be applied in a PLS-SEM context. Just as for the other models related to the
attribute performance-satisfaction link, a single-item attribute performance mea-
surement model and a reflective multiple-item scale for satisfaction are assumed.

To understand the exact nature of the functional form (see, for instance, the
work of Streukens and De Ruyter 2004), bias-corrected and accelerated bootstrap
confidence intervals (see also Streukens and Leroi-Werelds 2016) need to be
constructed to test whether ˇi D 1, ˇi > 1, or 0 < ˇi < 1.

Overall, in comparison to other models with transformed variables (i.e., log-
linear model and linear-log model), the log-log model offers an elegant solution
to the two drawbacks associated with the former type of models, namely, a priori
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specification of functional form and incorporating attractive attributes in single
models with must-be and/or one-dimensional attributes.

To conclude this part on modeling different functional forms, Table 17.1 sum-
marizes the advantages and disadvantages associated with the different approaches
available to account for nonlinear functional forms. It is important to stress the role
of theory in opting for the appropriate functional forms.

17.4.3 Stage 3: Interpretation of Results

The third and final stage of our framework focuses on the interpretation of the
analytical results. This stage is critical in making the transition from statistical
output to actionable results.

17.4.3.1 Requirement Check

Regardless of the measurement model being reflectively or formatively specified,
an important requirement to determine the performance scores on the latent variable
level is that all outer weights are positive (Ringle and Sarstedt 2016; Tenenhaus et al.
2005). Cenfetelli and Bassellier (2009) and Ringle and Sarstedt (2016) acknowledge
the problem of co-occurrence of both positive and negative weights and warn for
the adverse effects this may have on the interpretation of the results. Different
reasons, conceptual as well as methodological, may underlie the co-occurrence of
positive and negative weights. Depending on the cause, different courses of action
are needed.

Conceptually, a negative indicator weight may result from the opposite formula-
tion of the corresponding questionnaire item. In such instances, the researcher has
to reverse the scale on which the item was measured.

Methodologically, negative indicator weights may be the result of multicollinear-
ity. Inspection of the VIF values provides evidence of the existence of multi-
collinearity. In case of substantial multicollinearity (i.e., VIF 	 5), the researcher
may consider deleting indicators, constructing higher-order constructs, or combin-
ing collinear indicators into a single new composite indicator (see Hair et al. 2014,
p. 125 for more information).

Dijkstra and Henseler (2011) propose the use of best-fitting proper indices
(BFPI) to assure that the indicator weights (as well as the loading) for a formative
measurement model are nonnegative (i.e., proper). Despite its apparent attractive
features, a current drawback of using BFPI is that it is not, to the best of our
knowledge, available in software packages such as SmartPLS 3 (Ringle et al. 2015).
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17.4.3.2 Importance Scores: Marginal Effects

To assess the impact or importance of a driver on the target, the structural model
parameters play a pivotal role. In this respect, it is not necessarily the structural
model parameters per se we are interested but rather the rate of change in a target
construct for a driver or the driver’s marginal effect. Mathematically, the first
(partial) derivative of any type of equation gives the formula for the rate of change
in the criterion variable for any predictor variable (Johnson et al. 1978; Stolzenberg
1980).

For a simple linear model (e.g., in the format of SAT D ˇiATTi), the first
derivative boils down to ˇi and thus equals the structural model coefficient that
can be readily derived from the PLS-SEM output. For all other functional forms
discussed above, the marginal effect of a particular driver on a target construct is
less straightforward but still can be derived from the PLS-SEM output. Just as for a
simple linear function, the first derivative equals the marginal effect, but it yields a
formula rather than a constant (see also Stolzenberg 1980). Table 17.2 summarizes
the first derivatives for the different functions discussed in this chapter.

To arrive at the actual value reflecting the importance of a certain driver, the mean
score of the latent or indicator variable is plugged into the equations listed in Table
17.2 (see also Roncek 1991, 1993).

In line with PLS-SEM’s capability to integrally assess a nomological network
of relationships, the importance rating equals the total effect of the driver on an
endogenous construct of interest. That is, the idea of the total effects as expressed
by Eq. (17.2) still applies when the nomological network contains one or more
nonlinear effects. However, in this latter case, the formulae presented in Table 17.2
represent the different marginal effects that need to be used in combination with Eq.
(17.2) to compute the total effect (see also Streukens et al. 2011).

17.4.3.3 Performance Scores

The determination of the performance scores in an IPMA remains unaffected by
the nature of the relationships connecting the different constructs. Hence, the same
guidelines as discussed in Sect. 17.2.2 apply. It should be noted the performance
scores need to be calculated for the untransformed variables.

17.4.3.4 Cutoff Values

The definition of the quadrants remains arbitrary. See Sect. 17.2.4 for alternative
ways to set the cutoff values that define the different quadrants.
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17.4.3.5 Setting the Right Priorities

Information on each driver in terms of performance and importance can be
graphically presented in a two-dimensional map (see also Fig. 17.1). The subsequent
resource allocation decisions are straightforward in case of linear functional forms
but may be more complicated for nonlinear relationships. We summarize below
the resource allocation guidelines proposed by Anderson and Mittal (2000) for
attractive (log-linear model) and must-be (linear-log model) attributes. An important
assumption regarding the guidelines below is that the relationships among subse-
quent constructs (e.g., the link between satisfaction and loyalty) are linear.

For attractive attributes that are characterized by both a high performance and
a high importance score, the current investments should be maintained (“Keep up
the good work”). When attractive attributes are characterized by low performance
and low importance scores, no improvement initiatives need to be undertaken as
an increase in performance will yield only a very limited increase in importance
(i.e., flat part of the nonlinear relationship). Must-be attributes display diminishing
returns, which means that the performance increases have a diminishing effect as
the level of performance rises. Anderson and Mittal (2000) therefore recommend
investments to improve the performance of must-be attributes which are important
but on which the performance is still low.

17.4.3.6 Validation

In line with the prediction-oriented nature of PLS-SEM, being able to generate
out-of-sample predictions from a model and to evaluate its predictive power is
vital when conducting an IPMA (cf. Shmueli et al. 2016; Carrión et al. 2016). As
outlined below, several approaches are available to assess the model’s predictive
performance.

Carrión et al. (2016) strongly recommend the use of a split-sample approach
(“holdout samples”) as a means for establishing whether or not a model has an
adequate level of predictive performance. In their work, they provide an excellent
overview of how to implement this in a PLS-SEM context.

In case of small- to medium-sized samples, the abovementioned split-sample
approach may not be feasible as partitioning the already relatively small sample
size into a training and validation sample can introduce too much bias. For these
situations, Shmueli et al. (2016) propose the use of a k-fold cross-validation
approach. With regard to this k-fold cross-validation approach, which is available
in SmartPLS 3 (Ringle et al. 2015) under the name “blindfolding,” Shmueli et al.
(2016) and Rigdon (2014) rightly point out that the traditionally reported Stone-
Geisser Q2 statistics suffer from serious limitations and should only be used with
the greatest care.

Another way of assessing predictive performance is to use samples from other
contexts as validation samples. In a PLS-SEM context, this is demonstrated in
the work of Miltgen et al. (2016). In a similar vein as the split-sample approach
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suggested by Carrión et al. (2016), this approach involves using parameter estimates
from the original sample to predict the outcomes in another external sample.

17.5 Empirical Illustration3

This fifth section demonstrates how the log-log model can be used in an IPMA.
Data were collected from customers of a European DIY company whose business
consisted of providing customers with the resources needed to install ventilation
systems by themselves. All analyses were performed using SmartPLS 3 (Ringle
et al. 2015).

17.5.1 Stage 1: Research Design

Based on interviews with a set of customers (n D 10), six attributes were identified
as being drivers of customer satisfaction. These six items can be found in Table 17.3.

For each attribute, the questionnaire included a single item to tap customers’
quality perceptions. The respondents were asked to rate each attribute’s quality on
a 9-point Likert scale (1 D very low quality, 9 D very high quality). In a similar
vein, overall satisfaction was measured using single item in combination with a 9-
point Likert scale (1 D very dissatisfied, 9 D very satisfied). The accompanying
descriptive statistics can be found in Table 17.3. In total, an effective sample size of
n D 149 was obtained.

As can be observed in subsequent figures, we employed a single-item measure-
ment model for each attribute. Technically this implies that the IPMA at the latent
construct level and IPMA at the indicator level coincide.

17.5.2 Stage 2: The Functional Forms of the Relationships

The log-log model was used to account for possible nonlinearity in the attribute-
satisfaction relationships. The key advantage of the chosen approach is that one
does not have to specify the functional form in advance. Prior to running the model
in SmartPLS 3 (Ringle et al. 2015), the natural log transformation was performed
on all variables involved. For reasons to be explained later on in Sect. 17.5.3, the
researcher is advised to construct a data file that contains both the original variables
and the transformed variables.

3All files pertaining to this application are available upon request from the first author.
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To estimate the log-log model, the structural model as shown in Fig. 17.12 panel
A is run. The unstandardized coefficients (cf. Hock et al. 2010) and the accom-
panying bias-corrected and accelerated percentile bootstrap confidence intervals
based on 10,000 samples (cf. Streukens and Leroi-Werelds 2016) are presented in
Table 17.3. Note that in SmartPLS 3 (Ringle et al. 2015), the option “importance-
performance matrix analysis (IPMA)” was selected as this automatically yields the
unstandardized coefficients and the rescaled performance scores.

Note that for the significant attributes, bootstrap confidence intervals were con-
structed to determine the shape of the functional forms describing the relationship
between the attribute’s performance and overall satisfaction. Based on the results
listed in Table 17.3, it can be concluded that the two significant attributes are so-
called must-be attributes.

17.5.3 Stage 3: Interpretation

As evidenced in Table 17.1, the marginal effects for the log-log model depend
on the value of the (in)dependent constructs involved. Hence, in order to obtain
the appropriate importance scores for the situation at hand, the performance
scores of the relevant variables need to be imputed in equations describing the
marginal effects for the log-log model (see Table 17.2). For this aim, either the
original untransformed variables or the rescaled performance of the untransformed
variables, both of which can be found in Table 17.3, can be used. A quick way
to obtain the rescaled performance scores of the untransformed variables is to
run the PLS-SEM model with the untransformed variables (see also Fig. 17.12,
panel B). This is the reason why the researcher was advised to store both the
transformed and untransformed variables in a single data file. Table 17.2 contains
the marginal effects for the different attributes. Also for this second estimation run,
the option “importance-performance matrix analysis” was selected in the program.
It is important to stress that the second estimation (estimation of model shown in
Fig. 17.12, panel B) is technically not required to determine the performance scores.
Rather, it is merely a handy shortcut to obtain the rescaled performance levels.

The actual IPMA chart can be created using Microsoft Excel. Although Smart-
PLS 3 (Ringle et al. 2015) can produce these charts automatically, the nonconstant
marginal effects in the case of nonlinear functional forms cannot (yet) be taken
into account by the program. The only data needed to construct the chart are the
importance and performance scores described in the previous section and listed
in Table 17.3. In Table 17.3, the entries in the column named “Performance (0–
100%)” provide the x-axis coordinates (i.e., driver performance), and the entries in
the columns named “Marginal effects” provide the y-axis coordinates (i.e., driver
importance). The resulting chart, shown in Fig. 17.13, only contains two data points
as we only include drivers that have a significant impact on the target construct.

The cutoff values for the axis are determined as follows. For the importance
score, a cutoff value of 0.30 is used, which corresponds to a medium effect size
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Fig. 17.13 IPMA chart empirical illustration

for correlation coefficients. For the performance score, the cutoff value equals 50,
which is the midpoint of the 0–100 range to which the drivers are rescaled.

Based on the chosen cutoff values, attribute IQ03 (quality working plan) falls in
the quadrant “Keep up the good work,” whereas attribute PQ01 (quality delivery)
falls in the “Possible overdrive” quadrant. This would imply that investments
to at least maintain the perceived performance of attribute IQ03 are warranted,
whereas investments to maintain the perceived performance of attribute PQ01 are
less relevant. Given that resources are scarce, one could even argue that resources
currently spent on PQ01 could be (partly) reallocated to maintaining or even
improving the performance on attribute IQ03.

Ideally, the final step involves the validation of the findings. Unfortunately, the
sample size was too small to apply a split-sample procedure, nor was an external
validation sample available.

17.6 Conclusion

In times when managers are increasingly held accountable for the financial perfor-
mance implications of their strategic actions, IPMA is an effective method to help
set priorities and to optimally allocate scarce resources. As convincingly argued
by Ringle and Sarstedt (2016), IPMA adds valuable additional insights above and
beyond the results of a standard PLS-SEM.

Consistent with the view expressed in the academic literature across various
domains that the structural model relationships do not necessarily exhibit a linear
functional form, a strategically relevant IPMA must be able to take into account
possible nonlinearities in the inter-construct relations.
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In response to the need for IPMAs that will contribute to optimal strategic
decision-making, this chapter proposes an integrative IPMA framework in which the
possibility of nonlinear functional structural relationships is explicitly accounted for.
Although the suggested IPMA framework is applicable regardless of the analytical
approach to model the involved relationships that ultimately yield the importance
score, we have deliberately chosen to discuss the framework through a PLS-SEM
lens. The value of PLS-SEM as a basis for an IPMA stems from the fact that
PLS-SEM is capable of integrally estimating complex nomological networks of
relationships and can take into account latent constructs as well.

Compared to previous IPMA guidelines, the proposed framework takes a broader
perspective on IPMA than just a data analytical tool. Rather, designing and
conducting an IPMA that is both managerially relevant and theoretically sound start
already at the research design stage. Moreover, in line with PLS-SEM’s prediction-
oriented nature, validation is suggested to constitute an essential element of IPMA.

Within the proposed IPMA framework, the estimation of (possible) nonlinear
relationships plays a dominant role. We compare and contrast several approaches
to account for a variety of functional forms in a PLS-SEM context. Similar to the
overall IPMA framework, the focus on PLS-SEM in modeling nonlinearities in no
way limits the generalizability of our work.

Complementing existing work on modeling nonlinear function in a PLS-SEM
context, this study introduces the log-log model as a flexible approach to capture all
possible functional forms without having to specify the functional form in advance.
Being a direct extension of the commonly used linear model, the log-log model will
be easy to apply for most PLS-SEM users.

We drew upon the SPC to illuminate and empirically illustrate the ideas put
forward in the suggested framework. Also regarding this choice, it is pivotal to
stress that this does not limit the generalizability of our work in any way. Despite the
focus on a specific substantive domain, we sincerely believe that access to the data
and other files associated with our empirical application may have a positive impact
on the practical implementation of our ideas. Hence, feel free to ask for them, use
them, and adapt them to your own IPMA in the hope to arrive at a truly valuable
IPMA and to get even more from your PLS-SEM results than ever before.

Regarding the link between overall satisfaction and loyalty, the literature pro-
poses even a larger variety of functional forms that may describe this relationship.
The log-log model is not capable of capturing all of the suggested functional forms
by Dong et al. (2011). To account for all the possible functional forms of the
satisfaction-loyalty link, a cubic model offers the most flexible approach. Similar
to the log-log model, the cubic model does not require to specify the functional
form in advance. However, a key drawback of the cubic model is that it requires
the use of ratio data (Carte and Russell 2003), which may not always be possible
to collect. Finally, although the current study focuses on customer satisfaction and
PLS-SEM, the proposed IPMA framework and the approaches to capture nonlinear
functional forms are also applicable in other contexts.
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17.7 Limitations and Suggestions for Further Research

This study has not taken into account possible dynamic effects. Past research (e.g.,
Bolton 1998) has shown that changes in performance have a different effect on
satisfaction depending on the duration of the relationship. In a similar vein, Mittal
et al. (1999) provide empirical evidence that the nature of the attribute performance-
satisfaction link may change over time. More research is needed on how these effects
can be incorporated in an IPMA to optimize strategic decisions.

Closely related to the previous point is the recognition that the relationships in
the SPC vary as a function of customer characteristics (e.g., see Garbarino and
Johnson 1999; Mittal and Katrichis 2000). If customer characteristics that influence
the relationships determining the importance scores in an IPMA can be identified
beforehand, this problem may be solved by conducting a separate IPMA for each
segment. If customer heterogeneity is unobserved, as is often the case, possible
solutions may be found along the lines of FIMIX PLS-SEM. Hence, a promising
avenue for future research is how to make strategic resource allocation decisions
while taking into account observed customer heterogeneity.

Hopefully the integrative IPMA framework proposed in this chapter advances
the existing knowledge and skills to make well-informed strategic decisions. The
focus of the current chapter is on the increase in attribute performance and other
constructs which ultimately translate into enhanced revenues (i.e., SPC). To fully
understand the impact of investments associated with strategic decisions, both the
revenues and the costs of the investment need to be taken into account (Zhu et al.
2004). As such, research that places the results from an IPMA in a larger investment
framework, such as proposed by Streukens et al. (2011), might further increase the
managerial relevance of the suggested framework.
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