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Chapter 6
Tissue Engineering in Microgravity

Markus Wehland and Daniela Grimm

Abstract Tissue engineering enables the development of functional constructs 
from cells and has different applications in regenerative medicine and drug screen-
ing but also in non-therapeutic approaches.

In the course of several space flight missions as well as ground-based experiments, 
it has been shown that both real and simulated microgravity can induce the formation 
of three-dimensional tissues in different human cell types. Apart from scaffold-based 
approaches, which are also employed under normal gravity conditions on Earth, 
microgravity offers unique conditions to facilitate a scaffold-free development of 
three-dimensional multicellular aggregates or spheroids and even organotypic tissue. 
So far, the underlying mechanisms of the observed spontaneous cell aggregation are 
not yet known, but they are subject to intensive investigation in the gravitational biol-
ogy community. This knowledge can contribute to an optimization of three-dimen-
sional tissue growth on different microgravity platforms and to the understanding of 
scaffold-free tissue engineering. Additionally, these constructs provide an efficient 
tool for downstream experiments such as drug testing and could be used as a replace-
ment for in vivo models, thereby reducing the need for animal testing. Furthermore, 
future applications such as medical transplants are possible. This chapter will present 
an overview of the current state of microgravity-based tissue engineering.

Keywords Microgravity • Tissue Engineering • Spheroids • Cartilage • Bone  
• Endothelium

6.1  Introduction

Tissue engineering, a term first coined at the National Science Foundation Forum on 
Issues, Expectations, and Prospects for Emerging Technology Initiation, held at 
Granlibakken Resort, Lake Tahoe, California, in February 1988 and later refined by 
Robert Langer and Joseph P. Vacanti, is defined as “an interdisciplinary field that 
applies the principles of engineering and life sciences toward the development of 
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biological substitutes that restore, maintain, or improve tissue function” employing 
the use of isolated cells or cell substitutes, tissue-inducing substances or cells placed 
on or within matrices (Langer and Vacanti 1993).

Early experiments under real microgravity (r-μg) in space on board different 
Space Shuttle missions revealed that weightlessness has an influence on the aggre-
gation behavior of human cells. Tschopp et al. found that suspended human embry-
onic kidney cells tended to attach to carrier microbeads (Tschopp et al. 1984), while 
Dintenfass observed an aggregation of red blood cells in space (Dintenfass 1986). 
These results indicated that microgravity might be beneficial for the formation of 
three-dimensional cell aggregates and led to further studies, investigating this phe-
nomenon more thoroughly.

However, the increasing interest in the application of microgravity and the low 
availability of actual space flight opportunities meant that studying μg on Earth 
soon also came into focus. Unfortunately, because of the very short μg exposure 
time during parabolic flights (22 s) or sounding rocket missions (6 min), these 
two options are only of limited use for tissue engineering purposes. Therefore, 
devices for the simulation of microgravity (s-μg) have also been employed since 
the very early stages of μg-assisted tissue engineering. Most prominently, the 
NASA- developed Rotating Wall Vessel (RWV) bioreactor (Klaus 2001; Schwarz 
et  al. 1992; Hammond and Hammond 2001) has been used for cells (with or 
without scaffolds) in suspension, while the Random Positioning Machine (RPM) 
(Borst and van Loon 2008; van Loon 2007) or the fast-rotating clinostat (FRC) 
(Eiermann et  al. 2013) were preferred for adherent cell cultures. All these 
machines keep the samples in constant motion/rotation. The RWV counteracts 
the gravitational vector by rotating the circular culture vessel around a horizontal 
axis at a speed where the upward fluid flow of the medium and the downward 
sedimentation of the cells are a balance. This keeps the cells in a state of constant 
free fall. The FRC and the RPM rotate the culture flasks around one or all three 
axes in space leading to a mean annulled influence of the gravitational vector 
over time.

Under normal gravity conditions, isolated cells cultured in regular culture flasks 
will only grow in a monolayer (2D). In order to produce three-dimensional tissue 
constructs, it is therefore often necessary to introduce a so-called “scaffold”, a struc-
ture that provides a surface for the cells to attach to, determines the shape and con-
tributes to the overall mechanical stability of the generated tissue. Scaffolds are 
usually made from materials such as hydroxyapatite (HA), D,L-polylactic- 
polyglycolic acid (PLGA), bioactive glass, L-polylactic acid (L-PLA), polycapro-
lactone (PCL) or poly(ethylene glycol)-terephthalate (PEG/PBT) (Hollister 2005; 
Dutta et al. 2017). However, while helping the cells to assemble in a 3D structure in 
the initial phase of the tissue engineering process, the scaffolds might eventually 
pose some problems in the long run, such as unforeseen immunologic problems, a 
distorted structure of the newly formed tissue or an altered mechanical resilience 
compared to natural tissues. Therefore, the ultimate aim of tissue engineering is the 
de novo formation of scaffold-free, functional, organotypic tissue constructs. 
Employing microgravity-based tissue engineering techniques might be a step fur-
ther in this direction (Grimm et al. 2014).

6 Tissue Engineering in Microgravity
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6.2  Tissue Engineering in Simulated Microgravity

A wide spectrum of different cell and tissue types has been used for tissue engineering 
studies using s-μg on devices such as the RWV or the RPM. Compared to experiments 
in space, they have the advantages of a higher number of replicates, better control of 
the environment (temperature, humidity, atmospheric CO2 concentration), a higher 
throughput of samples, easier accessibility of suitable facilities and highly reduced 
costs. On the other hand, it has to be considered that both machines can only approxi-
mate r-μg conditions to a certain extent, as residual acceleration, shear forces and 
disturbances by bubbles are inherent to their functional principle (Wuest et al. 2015; 
Hammond and Hammond 2001; Lappa 2003). Nevertheless, s-μg-based techniques 
have been the methods of choice for the majority of tissue engineering approaches.

6.2.1  Cartilage

In 1991, the first report of cartilage tissue engineering in s-μg showed that rat 
embryonic limb mesenchymal cells growing on microcarrier beads in a RWV bio-
reactor eventually differentiated into functional chondrocytes, producing Alcian- 
blue positive matrix. Furthermore, over the 65-day experiment duration cells and 
microcarriers aggregated and the newly formed 3D structures kept increasing in size 
(Daane et al. 1991; Duke et al. 1993).

Similar observations were made in several following experiments, where in a 
RWV, chondrocytes of different origins seeded on polymer scaffolds formed macro-
scopically large (with lengths of each edge in the range of several mm) three- 
dimensional aggregates. The resulting tissues were very similar to natural cartilage, 
exhibiting comparable cell densities, glycosaminoglycan (GAG) and collagen II 
percentages. Furthermore, tissue constructs deriving from s-μg conditions were 
mechanically and structurally superior to those generated in spinner flasks or in Petri 
dishes (Baker and Goodwin 1997; Freed et al. 1998; Freed and Vunjak- Novakovic 
1997; Falsafi and Koch 2000; Gorti et al. 2003; Wu et al. 2013). It could also be 
shown that TGF-β1 supplementation of the growth medium (5 ng/mL) resulted in an 
improved proteoglycan production of rat articular chondrocytes cultured on three-
dimensional macroporous PLGA sponges for 4 weeks in a RWV (Emin et al. 2008).

The first scaffold-free generation of cartilage tissue in s-μg was reported by 
Conza et al. (2001). As a preparation for a space flight experiment, chondrocytes 
were seeded into a specially designed hardware intended for use on the ISS and 
were cultured on an RPM for up to 3 weeks. The culture chamber geometry was 
cylindrical with a diameter of 8 mm and a height of either 8 or 2 mm. Cartilage tis-
sue constructs obtained from the RPM were round in shape, in contrast to those 
from static controls, whose shape followed that of the culture chamber. The 
 chondrocytes also exhibited a more ordered arrangement than those grown in 1g. 
Later results, however, showed that cartilage grown in the same hardware on the ISS 
was inferior to the material from the ground controls and that the RPM samples had 
an intermediate quality (Stamenkovic et al. 2010).

6.2 Tissue Engineering in Simulated Microgravity
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Scaffold-free engineering of cartilage tissue has also been demonstrated using 
dedifferentiated chondrocytes in an RWV bioreactor. After 90 days of culture, a 
dense collagen-II- and proteoglycan-rich cartilaginous tissue was found consisting 
of highly metabolically active chondrocytes (Marlovits et al. 2003).

Another scaffold-free approach was used by Aleshcheva et al. (Aleshcheva et al. 
2016, Grimm et al. 2014). Adherent chondrocytes were cultured for up to 21 days 
on an RPM.  At the end of this period, some chondrocytes had spontaneously 
detached from the bottom of the culture flasks and formed multicellular spheroids 
suspended in the tissue culture medium. Their size was also in the mm range, but 
overall smaller in comparison to their scaffold-supported counterparts. First studies 
to elucidate the possible mechanisms of this scaffold-free cartilage growth employ-
ing parabolic flights and further experiments on the RPM indicated that genes 
involved in the mechanical properties of the cells as well as adhesion, growth and 
apoptosis were regulated upon exposure to μg. Furthermore, it could be shown that 
during cultivation on the RPM the chondrocytes switched from collagen I and –X 
production towards collagen II, chondroitin sulphate and aggrecan production 
(Ulbrich et al. 2010; Aleshcheva et al. 2013, 2016).

Besides employing already differentiated chondrocytes, it was also demonstrated 
by several groups that mesenchymal stem cells (MSCs) could be induced to differ-
entiate into a chondrocyte phenotype in RWV bioreactors. A scaffold-free method 
has been described by Ohyabu et  al. (2006), generating large 
(1.25 ± 0.06 × 0.60 ± 0.08 cm) cartilaginous tissue constructs from suspended rabbit 
bone marrow cells cultivated in an RWV for 3 weeks. Collagen I, II, safranin-O and 
toluidine blue staining together with the gene expression patterns of aggrecan, and 
collagens I and II as well as the glycosaminoglycan/DNA ratio confirmed the carti-
laginous properties of the tissue. The possible role of TGF-β1 is still debated, as one 
study showed no influence of this molecule on the s-μg-induced differentiation of 
MSCs into chondrocytes (Luo et al. 2011), while other authors showed that s-μg and 
TGF-β1 synergistically promote the differentiation into chondrocytes by activating 
the p38 MAPK pathway (Yu et al. 2011). However, very recently, it was reported 
that mesenchymal stem cells differentiated into chondrocytes without the use of an 
exogenous growth factor when cultivated on decellularized cartilage ECM-derived 
particles in a RWV for 21 days. The resulting cartilage microtissue aggregates. Most 
interestingly, these constructs, when implanted with fibrin glue into a rat model for 
cartilage defects, were shown to improve and accelerate joint function recovery and 
cartilage repair in comparison to the microtissue constructs or fibrin glue alone.

6.2.2  Thyroid Cancer Spheroids

S-μg has been identified as a means to produce spheroids from different types of 
malignant cells early on. Multicellular tumor spheroids (MCTSs) offer many pos-
sibilities for further studies of tumor development, metastasis, host-tumor interac-
tions and drug testing, among others (Jessup et  al. 1993; Ingram et  al. 1997). 

6 Tissue Engineering in Microgravity
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Currently, the majority of spheroids used for these kinds of analyses are still gener-
ated under classical 1gconditions, as illustrated by a selection of the most recent 
publications (Halfter et al. 2016; Akasov et al. 2016; Ravi et al. 2016; Wang et al. 
2016). More in-depth reviews are given in Mehta et  al. (2012) and Wang et  al. 
(2014). However, s-μg-generated spheroids might be superior to their 1g counter-
parts, as culture conditions allow for a more physiological structure of the tissue 
constructs, undisturbed by any potentially interfering sedimentation force, thereby 
simplifying the translation from in vitro results to in vivo applications. Due to the 
diversity of different MCTSs generated under s-μg, this paragraph will focus on 
thyroid cancer cells.

Using the RPM, Grimm et al. were successful in generating MCTSs from the 
adherent thyroid carcinoma cell lines ML-1 and FTC-133 (Grimm et  al. 2002; 
Pietsch et al. 2011). It was found that s-μg induced increased apoptosis in both cell 
lines, possibly reflecting the reduction of thyroid function observed in astronauts 
(Strollo 1999). Both proteomic and genomic analyses of FTC-133 MCTSs vs. 1g 
control cultures revealed that during spheroid formation the cells express fibronectin- 
binding surface proteins, thereby strengthening the cell-to cell adhesion (Pietsch 
et  al. 2011), and that the genes IL-6, IL-8, OPN, TLN1, CTGF, NGAL, VEGFA, 
IL17, VEGFD, MSN, MMP3, ACTB, ACTA2, KRT8, TUBB, EZR, RDX, MSN, 
PRKCA, MMP9, PAI1 and MCP1 were generally regulated in such a manner that 
they upregulated genes coding for proteins, which promote 3D growth (angiogene-
sis) and prevent excessive accumulation of extracellular proteins, while gene coding 
for structural proteins is downregulated in MCTSs (Pietsch et al. 2011; Grosse et al. 
2012; Warnke et al. 2014; Kopp et al. 2015; Riwaldt et al. 2015a, 2016).

6.2.3  Bone

Bone tissue is one of the most researched aspects in the field of tissue engineering 
in μg. So far, however, all efforts have been confined to experiments in s-μg.

The first step in bone tissue engineering was reported in 1998 by Qiu et  al. 
(1998). Secondary rat marrow stromal cells were cultured for 2 weeks on Cytodex-3 
microcarrier beads in an RWV and formed spherical aggregates exhibiting mineral-
ization as well as alkaline phosphatase activity and collagen type I and osteopontin 
expression. Over the years, the technique for bone tissue engineering was further 
refined, but in principle, it is always a variation of using either osteoblasts or mes-
enchymal stem cells grown on different scaffold (interconnected porous HA, porous 
PLGA, bioactive glass-polymer composites, human bioderived bone scaffolds, algi-
nate or gelatin) cultures in an s-μg device, usually an RWV. Most studies showed 
that the s-μg-derived tissue was comparable to natural bone and usually superior to 
engineered tissue from static cultures, as evidenced by their greater in vivo effec-
tiveness in repairing bone lesions in animal models (Sikavitsas et al. 2002; Nishikawa 
et al. 2005; Song et al. 2006, 2007, 2008; Hwang et al. 2009; Lv et al. 2009; Jin et al. 
2010; Cerwinka et al. 2012; Ulbrich et al. 2014).

6.2 Tissue Engineering in Simulated Microgravity
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6.2.4  Endothelium

Endothelial cells, the inner lining of the blood vessels, play an important role in 
many physiological processes in the human body, most notably in the regulation of 
blood pressure. Lesions in the endothelium can lead to life-threatening complica-
tions, such as infarctions. Therefore, endothelial repair/blood vessel replacement is 
an important topic in modern medicine. Furthermore, for complicated (micro) sur-
gical procedures it could be advantageous to produce autologous vessels to circum-
vent possible rejections of important grafts.

Three-dimensional endothelial cell constructs in a RWV were first generated by 
Sanford et  al. (2002). Bovine aortic endothelial cells were first seeded onto 
Cytodex-3 microcarrier beads and then cultivated in s-μg for 30 days. The authors 
found large tissue-like aggregates consisting of at least 20 beads and viable cells of 
typical endothelial cell morphology, forming multilayered sheet-like structures sep-
arated by a zone of matrix material. The cells showed tenfold enhanced NO produc-
tion compared to Spinner flask control cultures, which was inducible by l-arginine 
and blockable by L-NAME, indicating a physiological behavior. Furthermore, they 
showed increased barrier properties.

In 2005, CD34+ human umbilical cord stem cells were cultured in s-μg using 
RWVs with or without Cytodex-3 microcarrier beads for 14  days. The growth 
medium contained 50  ng/mL vascular endothelial growth factor (VEGF). 
Interestingly, on day 4 the cells cultured in the absence of microcarrier beads formed 
three-dimensional aggregates resembling tubular structures, whereas in the bead- 
containing RWVs only amorphic cell clusters were found. FACS analyses revealed 
that the cells in the tubular structures expressed endothelial markers such as CD34, 
CD31 and flk1 and microscopically they exhibited the morphologies of vascular 
endothelial-like cells and spindle cells (Chiu et al. 2005). In accordance with this 
study, it was later confirmed that s-μg conditions in a clinostat lead to differentiation 
of mesenchymal stem cells into an endothelial phenotype, expressing typical endo-
thelial markers such as Flk-1 and vWF (Zhang et al. 2013).

Using the RPM to culture the immortalized endothelial cell line EA.hy926, a 
fusion of human umbilical vein endothelial cells (HUVECs) with a thioguanine- 
resistant clone of A549 adenocarcinoma cells (Edgell et al. 1990), with and without 
a supplementation of 10 ng/mL VEGF in the growth medium for 72 h, Infanger 
et al. (2006) observed an initial increase in the expression of extracellular matrix 
proteins induced by both s-μg and VEGF alone, which was further augmented by 
s-μg after 12 h. In addition, s-μg induced apoptosis beginning from four h culture 
time and increasing until 72 h, while VEGF reduced the apoptosis rate. After 72 h, 
the authors also found that many non-apoptotic cells had formed tube-like aggre-
gates. These tubes were further characterized and it was found that adherent Ea.
hy926 cultured on an RPM began to form small colonies by spreading over neigh-
boring cells. From these colonies, tube-like structures emerged after 2  weeks of 
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cultivation, which formed a defined lumen and continued to elongate over the course 
of 2 more weeks of RPM culture. The tube walls resembled vascular intimas and 
consisted of a single layer of cells (Fig.  6.1), which produced more β1-integrin, 
laminin, fibronectin and α-tubulin than 1g control cells.

It can therefore be assumed that the specific s-μg culture conditions on an RPM 
offer a unique opportunity to study the mechanisms of 3D vessel development 
(Grimm et al. 2009). The first studies to elucidate the mechanism of tube formation 
hinted at an involvement of phosphokinase cα and of an interaction network formed 
by the genes RDX, EZR, MSN, GSN, CALD1, SPTAN1, VIM, TLN1, ITGB1, CAV1, 
ANXA2, ICAM1, ENG, SERPINE1, IL6 and IL8 (Grimm et al. 2010; Ma et al. 2013).

6.3  Tissue Engineering in Real Microgravity

Compared to tissue engineering approaches on Earth in an s-μg environment, con-
ducting such projects in space is a far more technically, logistically and, of course 
financially challenging endeavor. Therefore, their absolute number is relatively small.

Fig. 6.1 Endothelial tubular structure after 21 days culturing on the RPM. All three types of cell 
growth observed on the RPM are shown. In the background a 2D monolayer of adherently, grow-
ing endothelial cells can be seen, while two kinds of 3D aggregates are also present. White arrows 
point out multicellular spheroids, a large tubular structure similar to an intima, is highlighted in 
green for better visibility

6.3 Tissue Engineering in Real Microgravity



80

6.3.1  Cartilage

The first attempts to grow cartilage tissue constructs during space missions were 
undertaken by Freed et al. (Freed et al. 1997; Saltzman 1997). This was a long-term 
experiment lasting a total of 7 months. The authors first generated three- dimensional 
cell-polymer constructs from bovine articular chondrocytes and polyglycolic acid 
scaffolds in rotating bioreactors on Earth over a period of 3 months. Afterwards, one 
reactor containing ten 3D constructs was transported to the MIR space station and 
the cultivation continued under r-μg for a further 4 months. In parallel, a second 
bioreactor with ten constructs was left on Earth in 1g and was operated for the same 
time. Under both gravitational conditions, functional and viable cartilaginous con-
structs emerged. However, the r-μg samples tended to possess an overall rounder 
shape, smaller size and reduced mechanical stability when compared to those grown 
on Earth (Freed and Vunjak-Novakovic 1997; Freed et al. 1999).

A scaffold-free approach was used for the generation of neocartilage derived 
from porcine chondrocytes. The cells were seeded in cylindrical culture chambers 
and subsequently exposed to r-μg on board the ISS, s-μg on an RPM and, as a con-
trol, 1g in a stationary set-up on Earth (Stamenkovic et al. 2010; Conza et al. 2001). 
The experiment lasted for 16 days, after which the tissue was subjected to histologi-
cal and gene expression analyses. The authors found that, compared to those from 
s-μg and 1g, the samples from the ISS showed a weaker stain for extracellular 
matrix. The ISS samples also possessed a higher collagen II/I expression ratio than 
control tissue. On the other hand, aggrecan/versican expression and cell density 
were increased in 1g tissues compared to both r- and s-μg. These results are in 
accordance with those found by Freed et al. (1997) and seem to reflect the observed 
average loss of about 8% of cartilage thickness after 14 days of mechanical unload-
ing during a 6-degree head-down-tilt bedrest in young healthy subjects (Liphardt 
et al. 2009).

6.3.2  Thyroid Cancer Spheroids

Due to its tolerance to culture temperatures well below the ideal 37 °C, the human 
follicular thyroid cancer cell line FTC-133 was chosen for two space flight mis-
sions, aimed at generating MCTSs under r-μg. The first mission, SIMBOX on 
Shenzhou-8  in 2011, was conducted for 10 days, using a specially designed cell 
culture hardware by Airbus Defence and Space. After the flight, several MCTSs 
were found inside the culture vessels, which were considerably bigger (about 
4–5 mm in diameter) than comparable MCTSs generated on an RPM in a parallel 
control experiment (Pietsch et al. 2013). Subsequent analyses of the MCTSs and the 
cell culture supernatants suggested that EGF and CTGF might be involved in r-μg- 
induced MCTS formation and that a regulation of IL6, IL8, IL15, OPN, VEGFA, 
VEGFD, FGF17, MMP2, MMP3, TIMP1, PRKAA and PRKACA in r-μg (and s-μg 
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RPM control experiments) might shift the cells towards a less aggressive phenotype 
(Pietsch et al. 2013; Ma et al. 2014).

The second space-flown experiment was CellBox-1 in 2014, essentially designed 
as a replicate of the SIMBOX experiment, this time conducted for 10 days in the ESA 
Columbus module of the ISS. However, due to launch delays, the protocol for cell 
culture had to be adapted to the new situation. This led to an overgrowth of cells on 
the ground, ultimately preventing the formation of MCTSs in space. However, this 
led to the finding that an increased production of extracellular matrix-related proteins 
has the potential to prevent spheroid formation in r-μg (Riwaldt et al. 2015b).
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