Key Topics

Algol 60

Axiomatic semantics

Calculus of weakest preconditions
Communicating sequential processes
Graph algorithms

Operating systems

Predicate calculus

Tabular expressions

Normal table

12.1 Introduction

Edsger W. Dijkstra, C.A.R. Hoare and David Parnas are famous names in computer
science, and they have received numerous awards for their contribution to the dis-
cipline. Their work has provided a scientific basis for computer software develop-
ment and a rigorous approach to the development of software. We present a selection
of their contributions in this chapter, including Dijkstra’s calculus of weakest pre-
conditions; Hoare’s axiomatic semantics and Parnas’s tabular expressions. There is
more detailed information on the contributions of these pioneers in [1].
Mathematics and Computer Science were regarded as two completely separate
disciplines in the 1960s, and software development was based on the assumption
that the completed code would always contain defects. It was therefore better and
more productive to write the code as quickly as possible and to then perform
debugging to find the defects. Programmers then corrected the defects, made

© Springer International Publishing AG 2017 219
G. O’Regan, Concise Guide to Formal Methods, Undergraduate Topics
in Computer Science, DOI 10.1007/978-3-319-64021-1_12

220 12 Overview of Formal Methods

Fig. 12.1 Edsger Dijkstra.
Courtesy of Brian Randell

patches and retested and found more defects. This continued until they could no
longer find defects. Of course, there was always the danger that defects remained in
the code that could give rise to software failures.

John McCarthy argued at the IFIP congress in 1962 that the focus should instead
be to prove that the programs have the desired properties, rather than testing the
program ad nauseum. Robert Floyd believed that there was a way to construct a
rigorous proof of the correctness of the programs using mathematics, and he
demonstrated techniques (based on assertions) in a famous paper in 1967 that
mathematics could be used for program verification. The NATO conference on
software engineering in 1968 highlighted the extent of the problems that existed
with software, and the term “software crisis” was coined to describe this. The
problems included cost and schedule overruns and problems with the reliability of
the software.

Dijkstra (Fig. 12.1) was born in Rotterdam in Holland, and he studied mathe-
matics and physics at the University of Leyden. He obtained a PhD in Computer
Science from the University of Amsterdam in 1959. He decided not to become a
theoretical physicist, as he believed that programming offered a greater intellectual
challenge.

12.1 Introduction 221

Table 12.1 Dijkstra’s achievements

Area Description

Go to statement Dijkstra argued against the use of the goto statement in
programming. This eventually led to its abolition in
programming

Graph algorithms Dijkstra developed several efficient graph algorithms to

determine the shortest or longest paths from a vertex u to
vertex v in a graph

Operating systems Dijkstra introduced ideas such as semaphores and deadly
embrace, and that operating systems can be built as
synchronized sequential processes

Algol 60 Dijkstra contributed to the definition of the language, and he
designed and coded the first Algol 60 compiler

Formal program development Dijkstra introduced guarded commands and predicate

(guarded commands and transformers as a means of defining the semantics of a

predicate transformers) programming language. He showed how weakest
preconditions can be used as a calculus (wp-calculus) to
develop reliable programs. This led to a science of
programming using mathematical logic as a methodology for
formal program construction
His approach involves the development of programs from
mathematical axioms

He commenced his programming career at the Mathematics Centre in Amster-
dam in the early 1950s, and he invented the shortest path algorithm in the
mid-1950s. He contributed to the definition of Algol 60, and he designed and coded
the first Algol 60 compiler.

Dijkstra has made many contributions to computer science, including contri-
butions to language development, operating systems, formal program development
and to the vocabulary of Computer Science. He received the Turing award in 1972,
and some of his achievements are listed in Table 12.1.

Dijkstra advocated simplicity, precision and mathematical integrity in his formal
approach to program development. He insisted that programs should be composed
correctly using mathematical techniques and not debugged into correctness. He
considered testing to be an inappropriate means of building quality into software,
and his statement on software testing is well known:

Testing a program shows that it contains errors never that it is correct.’

Dijkstra corresponded with other academics through an informal distribution
network known as the EWD series. These contain his various personal papers
including trip reports and technical papers.

'Software testing is an essential part of the software process, and various types of testing are
described in [2]. Modern software testing is quite rigorous and can provide a high degree of
confidence that the software is fit for use. It cannot, of course, build quality in; rather, it can
provide confidence that quality has been built in. The analysis of the defects identified during
testing may be useful in improving the software development process.

222 12 Overview of Formal Methods

Fig. 12.2 C.A.R Hoare

Charles Anthony Richard (C.A.R or Tony) Hoare studied philosophy (including
Latin and Greek) at Oxford University (Fig. 12.2). He studied Russian at the Royal
Navy during his National Service in the late 1950s. He then studied statistics and
went to Moscow University as a graduate student to study machine translation of
languages and probability theory. He discovered the well-known sorting algorithm
“Quicksort”, while investigating efficient ways to look up words in a dictionary.

He returned to England in 1960 and worked as a programmer for Elliot Brothers
(a company that manufactured scientific computers). He led a team to produce the
first commercial compiler for Algol 60, and it was a very successful project. He
then led a team to implement an operating system, and the project was a disaster. He
managed a recovery from the disaster and then moved into the research division of
the company.

He took a position at Queens University in Belfast in 1968, and his research
goals included examining techniques to assist with the implementation of operating
systems, especially to see if advances in programming methodologies could assist
with the problems of concurrency. He also published material on the use of
assertions to prove program correctness.

He moved to Oxford University in 1977 following the death of Christopher
Strachey (well known for his work in denotational semantics) and built up the
programming research group. This group later developed the Z specification lan-
guage and CSP, and Hoare received the ACM Turing award in 1980. Following his

12.1 Introduction 223

Table 12.2 Hoare’s achievements

Area Description
Quicksort Quicksort is a highly efficient sorting algorithm
Axiomatic semantics Hoare defined a small programming language in terms of

axioms and logical inference rules for proving partial
correctness of programs

Communicating Sequential CSP is a mathematical approach to the study of

Processes (CSP) communication and concurrency. It is applicable to the
specification and design of computer systems that
continuously interact with their environment

retirement from Oxford, he took up a position as senior researcher at Microsoft
Research in the UK.

Hoare has made many contributions to computer science and these include the
quicksort algorithm, the axiomatic approach to program semantics, and program-
ming constructs for concurrency (Table 12.2). He remarked on the direction of the
Algol programming language:

Algol 60 was a great achievement in that it was a significant advance over most of its
SUCCESSOTS.

Hoare has made fundamental contributions to programming languages, and his
1980 ACM Lecture on the “Emperors Old Clothes” is well known. He stresses the
importance of communicating ideas (as well as having ideas) and enjoys writing
(and rewriting).

David L. Parnas (Fig. 12.3) has been influential in the computing field, and his
ideas on the specification, design, implementation remain important. He has won
numerous awards (including ACM best paper award in 1979); influential paper
awards from ICSE; the ACM SigSoft outstanding researcher award and honorary
doctorates for his contribution to Computer Science.

He studied at Carnegie Mellon University and was awarded B.S., M.S., and PhD
degrees in Electrical Engineering by the university. He has worked in both industry
and academia, and his approach aims to achieve a middle way between theory and
practice. His research has focused on real industrial problems that engineers face
and on finding solutions to these practical problems. Several organizations such as
Phillips in the Netherlands; the Naval Research Laboratory (NRL) in Washing-
ton; IBM Federal Systems Division and the Atomic Energy Board of Canada have
benefited from his advice and expertise.

He advocates a solid engineering approach to the development of high-quality
software and argues that software engineers® today do not have the right engi-
neering education to perform their roles effectively. The role of engineers is to

2Parnas argues that the term engineer’ should be used only in its classical sense as a person who is
qualified and educated in science and mathematics to design and inspect products. The evolution
of language that has led to a debasement of the term ‘engineer’ with various groups who do not
have the appropriate background to be considered ‘engineers’ in the classical sense applying this
title.

224 12 Overview of Formal Methods

Fig. 12.3 David Parnas

apply scientific principles and mathematics to design and develop useful products.
He argues that the level of mathematics taught in most Computer Science courses is
significantly less than that taught to traditional engineers. In fact, computer science
graduates often enter the work place with knowledge of the latest popular tech-
nologies, but with only a limited knowledge of the foundations needed to be
successful in producing safe and useful products. Consequently, he argues that it
should not be surprising that the quality of software produced today falls below the
desired standard, as the current approach to software development is informal and
based on intuition rather than sound engineering principles. He argues that com-
puter scientists should be educated as engineers and provided with the right sci-
entific and mathematical background to do their work effectively.

Parnas has made a strong contribution to software engineering, including con-
tributions to requirements specification, software design, software inspections,
testing, tabular expressions, predicate logic and ethics for software engineers
(Table 12.3). His reflections on software engineering remain valuable and contain
the insight gained over a long career.

12.2 Calculus of Weakest Preconditions

The weakest precondition calculus was developed by Dijkstra [4] and applied to the
formal development of programs. This section is based on material from [5], and a
programming notation is introduced and defined in terms of the weakest precon-
dition. The weakest precondition wp(S, R) is a predicate that describes a set of

12.2 Calculus of Weakest Preconditions 225

Table 12.3 Parnas’s achievements

Area

Tabular expressions

Mathematical
documentation

Requirements
specification

Software design

Software inspections

Predicate logic

Industry
contributions

Ethics for software
engineers

Description

Tabular expressions are mathematical tables that are employed for
specifying requirements. They enable complex predicate logic
expressions to be represented in a simpler form

He advocates the use of mathematical documents for software
engineering that are precise and complete. These documents are for
system requirements, system design, software requirements, module
interface specification and module internal design

His approach to requirements specification (developed with Kathryn
Heninger and others) involves the use of mathematical relations to
specify the requirements precisely

His contribution to software design was revolutionary. A module is
characterized by its knowledge of a design decision (secret) that it
hides from all others. This is known as the information hiding
principle, and it allows software to be designed for changeability.
Every information-hiding module has an interface that provides the
only means to access the services provided by the modules. The
interface hides the module’s implementation. Information hiding is
used in object-oriented programming

His approach to software inspections is quite distinct from the
well-known Fagan inspection methodology. The reviewers are
required to take an active part in the inspection and are provided with
a list of questions by the author. The reviewers are required to provide
documentation of their analysis to justify the answers to the individual
questions. This involves the production of mathematical tables

He introduced a novel approach to deal with undefined values® in
predicate logic expressions which preserves the two-valued logic. His
approach is quite distinct from the logic of partial functions developed
by Cliff Jones [3]

His industrial contribution is impressive including work on defining
the requirements of the A7 aircraft and the inspection of safety critical
software for the automated shutdown of the nuclear power plant at
Darlington

He has argued that software engineers have a professional
responsibility to build safe products, to accept individual
responsibility for their design decisions, and to be honest about current
software engineering capabilities. He applied these principles in
arguing against the strategic defence initiative (SDI) of the Reagan
administration in the mid 1980s

“His approach allows undefinedness to be addressed in predicate calculus while maintaining the
two-valued logic. A primitive predicate logic expression that contains an undefined term is
considered false in the calculus, and this avoids the three-valued logics developed by Jones and

Dijkstra

states, and it is a function with two arguments that results in a predicate. The
function has two arguments (a command and a predicate), where the predicate
argument describes the set of states satisfying R after the execution of the com-
mand. It is defined as follows:

226 12 Overview of Formal Methods

Definition (Weakest Precondition)

The predicate wp(S, R) represents the set of all states such that, if execution of
S commences in any one of them, then it is guaranteed to terminate in a state
satisfying R.

Let S be the assignment command i : =i + 5, and let R be i < 3 then

wp(i=i+5i<3)= (i< -2)

The weakest precondition wp(S, T) represents the set of all states such that if
execution of § commences in any one of them, then it is guaranteed to terminate.

wp(i:=i+5 T)=T

The weakest precondition wp(S, R) is a precondition of S with respect to R, and it
is also the weakest such precondition. Given another precondition P of S with
respect to R, then P = wp(S, R).

For a fixed command S then wp(S, R) can be written as a function of one
argument: wpg(R), and the function wpg transforms the predicate R to another
predicate wpg(R). In other words, the function wpg acts as a predicate transformer.

An imperative program may be regarded as a predicate transformer. This is since
a predicate P characterizes the set of states in which the predicate P is true, and an
imperative program may be regarded as a binary relation on states, leading to the
Hoare triple P{F}Q. That is, the program F acts as a predicate transformer. The
predicate P may be regarded as an input assertion, i.e. a predicate that must be true
before the program F is executed. The predicate Q is the output assertion, and is
true if the program F' terminates, having commenced in a state satisfying P.

12.2.1 Properties of WP

The weakest precondition wp(S, R) has several well-behaved properties as descri-
bed in Table 12.4.

12.2.2 WP of Commands

The weakest precondition can be used to provide the definition of commands in a
programming language. The commands considered are taken from [5].

e Skip Command

wp(skip, R) =R

12.2 Calculus of Weakest Preconditions 227

Table 12.4 Properties of WP

Property
Law of the excluded

miracle
wp(S, F) = F

Distributivity of
conjunction

wp(S, Q) Awp(S, R) = wp
(S, OAR)

Law of monotonicity
0O = R then wp(S, Q) =
wp(S, R)

Distributivity of
disjunction

wp(S, Q) V wp(S, R) =
wp(S, O V R)

Description

This describes the set of states such that if execution commences
in one of them, then it is guaranteed to terminate in a state
satisfying false. However, no state ever satisfies false, and
therefore wp(S, F) = F. The name of this law derives from the
fact that it would be a miracle if execution could terminate in no
state

This property stipulates that the set of states such that if execution
commences in one of them, then it is guaranteed to terminate in a
state satisfying QAR is precisely the set of states such that if
execution commences in one of them then execution terminates
with both Q and R satisfied

This property states that if a postcondition Q is stronger than a
postcondition R, then the weakest precondition of S with respect
to Q is stronger than the weakest precondition of § with respect to
R

This property states that the set of states corresponding to the
weakest precondition of S with respect to Q or the set of states
corresponding to the weakest precondition of S with respect to
R is stronger than the weakest precondition of S with respect to
QOVR

Equality holds for distributivity of disjunction only when the
execution of the command is deterministic

The skip command does nothing and is used to explicitly say that nothing should
be done. The predicate transformer wpg, is the identity function.

e Abort Command

wp(abort, R) = F

The abort command is executed in a state satisfying false (i.e. no state). This
command should never be executed. If program execution reaches a point where
abort is to be executed then the program is in error and abortion is called for.

¢ Sequential Composition

p(Sla S23 R) = Wp(Slv Wp(SZaR))

The sequential composition command composes two commands S; and S, by
first executing S; and then executing S,. Sequential composition is expressed

by Sl; S2.

228 12 Overview of Formal Methods

Sequential composition is associative:

wp(S1; (825 83), R) = wp((S1;52); 53, R)

¢ Simple Assignment Command

wp(x := e,R) = dom(e) cand R,

The execution of the assignment command consists of evaluating the value of
the expression e and storing its value in the variable x. However, the command may
be executed only in a state where e may be evaluated.

The expression R; denotes the expression obtained by substituting e for all free
occurrences of x in R. For example,

(x+y>2)y=v+y>2

The cand operator is used to deal with undefined values, and it was discussed in
Chap. 7. It is a non-commutative operator and the expression a cand b is equivalent
to:

acand b =2 if a then b else F

The explanation of the definition of the weakest precondition of the assignment
statement wp(x : = e, R) is that R will be true after execution if and only if the
predicate R with the value of x replaced by e is true before execution (since x will
contain the value of e after execution).

Often, the domain predicate dom(e) that describes the set of states that e may be
evaluated is omitted as assignments are usually written in a context in which the
expressions are defined.

wp(x:=e¢,R) =R

The simple assignment can be extended to a multiple assignment to simple
variables. The assignment is of the form x;,x,,..x,, : = ej,es,..¢, and is described in

[5].

e Assignment to Array Element Command

wp(bli] := e, R) = inrange(b, i) cand dom (e) cande’h;i:e)

12.2 Calculus of Weakest Preconditions 229

The execution of the assignment to an array element command consists of
evaluating the expression e and storing its value in the array element subscripted by
i. The inrange (b, i) and dom(e) are usually omitted in practice as assignments are
usually written in a context in which the expressions are defined and the subscripts
are in range. Therefore, the weakest precondition is given by:

Wp(b[l] =e R) = R/(jb;i:e)

The notation (b;i:e) denotes an array identical to array b except that the array
element subscripted by i contains the value e. The explanation of the definition of
the weakest precondition of the assignment statement to an array element (wp(b
[{] : =e, R) is that R will be true after execution if and only if the value of
b replaced by (b;ize) is true before execution (since b will become (b;i:e) after
execution).

e Alternate Command

Wp(lF7 R) :dom(31 \/Bz\/..\/Bn)/\(Bl \/Bz\/...\/Bn)
A (By = wp(S1,R)) A (B = wp(S2, R)) A... A (B, = wp(S,,R))

The alternate command is the familiar if statement of programming languages.
The general form of the alternate command is:

If B] — S]
0 B, — 8,
O B,— S,

Each B; —S; is a guarded command (S; is any command). The guards must be
well defined in the state where execution begins, and at least one of the guards must
be true or execution aborts. If at least one guard is true, then one guarded command
B; —S; with true guard B; is chosen and §; is executed.

For example, in the if statement below, the statement z: = x + 1 is executed if
x > 2, and the statement z: = x + 2 is executed if x < 2. For x = 2 either (but not
both) statements are executed. This is an example of non-determinism.

ifx>2—z:=x+1
Ox<2—z:=x+42
fi

230 12 Overview of Formal Methods
o Iterative Command

The iterate command is the familiar while loop statement of programming
languages. The general form of the iterate command is:

do Bl —>S1
O B[—>S1
D BI1_>SH
od

The meaning of the iterate command is that a guard B; is chosen that is true, and
the corresponding command S; is executed. The process is repeated until there are
no more true guards. Each choice of a guard and execution of the corresponding
statement is an iteration of the loop. On termination of the iteration command all of
the guards are false.

The meaning of the DO command wp(DO, R) is the set of states in which
execution of DO terminates in a bounded number of iterations with R true.

wp(DO, R) = (Fk : 0<k : Hi(R))
where Hi(R) is defined as:
H(R) = Ho(R) V wp(IF, Hi1(R))

A more detailed explanation of loops is in [5]. The definition of procedure call
may be given in weakest preconditions also.

12.2.3 Formal Program Development with WP

The use of weakest preconditions for formal program development is described in
[5]. The approach is a radical departure from current software engineering, and it
involves developing the program and a formal proof of its correctness together.
A program P is correct with respect to a precondition Q and a postcondition R if
{O}P{R}, and the idea is that the program and its proof should be developed
together. The proof involves weakest preconditions and uses the formal definition
of the programming constructs (e.g. assignment and iteration) as discussed earlier.

Programming is viewed as a goal-oriented activity in that the desired result (i.e.
the postcondition R) plays a more important role in the development of the program
than the precondition Q. Programming is employed to solve a problem, and the
problem needs to be clearly stated with precise preconditions and postconditions.

12.2 Calculus of Weakest Preconditions 231

The example of a program® P to determine the maximum of two integers x and
y is discussed in [5]. A program P is required that satisfies:

{T}P{R : z = max(x,)}
The postcondition R is then refined by replacing max with its definition:
{R:(z>xNz>y)AN(z=xVz=Y)}

The next step is to identify a command that could be executed in order to
establish the postcondition R. One possibility is z - = x and the conditions under
which this assignment establishes R is given by:

Another possibility is z: = y and the conditions under which this assignment
establishes R is given by:

wp(z:=yR)=y=>x
The desired program is then given by:

ifx>y—-z:=x
Oy>x—z:i=y
fi

There are many more examples of formal program development in [5].

12.3 Axiomatic Definition of Programming Languages

An assertion is a property of the program’s objects: e.g. the assertion (x —y > 5) is
an assertion that may or may not be satisfied by a state of the program during
execution. For example, the state in which the values of the variables x and y are 7
and 1, respectively, satisfies the assertion; whereas a state in which x and y have
values 4 and 2, respectively, does not.

Robert Floyd (Fig. 12.4) did pioneering work on software engineering from the
1960s, including important contributions to the theory of parsing; the semantics of
programming languages and methodologies for the creation of efficient and reliable
software.

*Many of these examples are considered “toy programs” when compared to real-world industrial
software development, but they illustrate the concepts involved in developing software rigorously
using the weakest precondition calculus.

232 12 Overview of Formal Methods

Fig. 12.4 Robert Floyd

Floyd believed that there was a way to construct a rigorous proof of the cor-
rectness of the programs using mathematics. He showed that mathematics could be
used for program verification, and he introduced the concept of assertions that
provided a way to verify the correctness of programs. His first article on program
proving techniques based on assertions was in 1967 [6].

Floyd’s 1967 paper was concerned with assigning meaning to programs, and he
also introduced the idea of a loop invariant. His approach was based on programs
expressed by flowcharts, and an assertion was attached to the edge of the flowchart.
The meaning was that the assertion would be true during execution of the corre-
sponding program whenever execution reached that edge. For a loop, Floyd placed
an assertion P on a fixed position of the cycle, and proved that if execution com-
menced at the fixed position with P true, and reached the fixed position again, then
P would still be true.

Flowcharts were employed in the 1960s to explain the sequence of basic steps
for computer programs. Floyd’s insight was to build upon flowcharts and to apply
an invariant assertion to each branch in the flowchart. These assertions state the
essential relations that exist between the variables at that point in the flowchart. An
example relation is “R=2>0, X =1, Y =0". He devised a general flowchart
language to apply his method to programming languages. The language essentially
contains boxes linked by flow of control arrows.

12.3 Axiomatic Definition of Programming Languages 233

Fig. 12.5 Branch assertions
in flowcharts l

Consider the assertion Q that is true on entry to a branch where the condition at
the branch is P. Then, the assertion on exit from the branch is Q A —P if P is false
and Q A P otherwise (Fig. 12.5).

The use of assertions may be employed in an assignment statement. Suppose
X represents a variable and v represents a vector consisting of all the variables in the
program. Suppose f(x, v) represents a function or expression of x and the other
program variables represented by the vector v. Suppose the assertion S(f(x, v), v) is
true before the assignment x = f(x, v). Then the assertion S(x, v) is true after the
assignment (Fig. 12.6). This is given by:

Floyd used flowchart symbols to represent entry and exit to the flowchart. This
included entry and exit assertions to describe the program’s entry and exit
conditions.

Floyd’s technique showed how a computer program is a sequence of logical
assertions. Each assertion is true whenever control passes to it, and statements
appear between the assertions. The initial assertion states the conditions that must
be true for execution of the program to take place, and the exit assertion essentially
describes what must be true when the program terminates.

He recognized that if it can be shown that the assertion immediately following
each step is a consequence of the assertion immediately preceding it, then the
assertion at the end of the program will be true, provided the appropriate assertion
was true at the beginning of the program.

His influential 1967 paper, “Assigning Meanings to Programs” influenced
Hoare’s work on preconditions and postconditions leading to Hoare logic [7].
Hoare recognized that Floyd’s approach provided an effective method for proving
the correctness of programs, and he built upon Floyd’s work to cover the familiar

l S(f(x,v), v)

x:ij(x,v)

S(x,v)

Fig. 12.6 Assignment assertions in flowcharts

234 12 Overview of Formal Methods

constructs of high-level programming languages. Floyd’s paper also presented a
formal grammar for flowcharts, together with rigorous methods for verifying the
effects of basic actions like assignments.

Hoare logic is a formal system of logic for programming semantics and program
verification, and it was originally published in Hoare’s 1969 paper “An axiomatic
basis for computer programming” [7]. Hoare and others have subsequently refined
it, and it provides a logical methodology for precise reasoning about the correctness
of computer programs. The well-formed formulae of the logical system are of the
form:

P{a}Q

where P is the precondition; a is the program fragment and Q is the postcondition.
The precondition P is a predicate (or input assertion), and the postcondition R is a
predicate (output assertion). The braces separate the assertions from the program
fragment. The well-formed formula P{a}Q is itself a predicate that is either true or
false. This notation expresses the partial correctness of a with respect to P and Q,
where partial correctness and total correctness are defined as follows:

Definition (Partial Correctness)

A program fragment a is partially correct for precondition P and postcondition
Q if and only if whenever a is executed in any state in which P is satisfied and the
execution terminates, then the resulting state satisfies Q.

The proof of partial correctness requires proof that the postcondition Q is sat-
isfied if the program terminates. Partial correctness is a useless property unless
termination is proved, as any non-terminating program is partially correct with
respect to any specification.

Definition (Total Correctness)

A program fragment « is totally correct for precondition P and postcondition Q if
and only if whenever a is executed in any state in which P is satisfied then
execution terminates and the resulting state satisfies Q.

The proof of total correctness requires proof that the postcondition Q is satisfied
and that the program terminates. Total correctness is expressed by {P} a {Q}. The
calculus of weakest preconditions developed by Dijkstra (discussed in the previous
section) is based on total correctness, whereas Hoare’s approach is based on partial
correctness.

Hoare’s axiomatic theory of programming languages consists of axioms and
rules of inference to derive certain pre-post formulae. The meaning of several
constructs in programming languages is presented here in terms of pre-post
semantics.

12.3 Axiomatic Definition of Programming Languages 235
e Skip
The meaning of the skip command is:
P{skip}P

Skip does nothing and it’s this instruction guarantees that whatever condition is
true on entry to the command is true on exit from the command.

e Assignment

The meaning of the assignment statement is given by the axiom:
P {x:=e}P

The notation P, has been discussed previously and denotes the expression
obtained by substituting e for all free occurrences of x in P.

The meaning of the assignment statement is that P will be true after execution if
and only if the predicate P, with the value of x replaced by e in P is true before
execution (since x will contain the value of e after execution).

e Compound

The meaning of the conditional command is:

P{S1}0, O{S:}R
P{Sl; SZ}R

The execution of the compound statement involves the execution of S followed
by S,. The correctness of the compound statement with respect to P and R is
established by proving that the correctness of S; with respect to P and Q, and the
correctness of S, with respect to Q and R.

¢ Conditional

The meaning of the conditional command is:

PAB{S1}Q, PA-B{$:}0
P{if Bthen S| else S, }Q

The execution of the if statement involves the execution of S; or S,. The exe-
cution of S, takes place only when B is true, and the execution of S, takes place
only when —B is true. The correctness of the if statement with respect to P and Q is
established by proving that S| and S, are correct with respect to P and Q.

236 12 Overview of Formal Methods
However, S| is executed only when B is true, and therefore it is required to prove

the correctness of S; with respect to P A B and O, and the correctness of S, with

respect to P A —B and Q.

e While Loop

The meaning of the while loop is given by:

P AB{S}P
P{while Bdo S}P A —B

The property P is termed the loop invariant as it remains true throughout the
execution of the loop. The invariant is satisfied before the loop begins and each
iterations of the loop preserves the invariant.

The execution of the while loop is such that if the truth of P is maintained by one
execution of S, then it is maintained by any number of executions of S. The exe-
cution of S takes place only when B is true, and upon termination of the loop P A
—B is true.

Loops may fail to terminate and therefore there is a need to prove termination.
The loop invariant needs to be determined for formal program development.

12.4 Tabular Expressions

Tables of constants have used for millennia to define mathematical functions. The
tables allow the data to be presented in an organized form that is easy to reference
and use. The data presented in tables is well-organized and provides an explicit
definition of a mathematical function. This allows the computation of the function
for a particular value to be easily done. The use of tables is prevalent in schools
where primary school children are taught multiplication tables and high school
students refer to sine or cosine tables. The invention of electronic calculators may
lead to a reduction in the use of tables as students may compute the values of
functions immediately.

Tabular expressions are a generalization of tables in which constants may be
replaced by more general mathematical expressions. Conventional mathematical
expressions are a special case of tabular expressions. In fact, everything that can be
expressed as a tabular expression can be represented by a conventional expression.
Tabular expressions can represent sets, relations, functions and predicates and
conventional expressions. A tabular expression may be represented by a conven-
tional expression, but its advantage is that the tabular expression is easier to read
and use, since a complex conventional expression is replaced by a set of simpler
expressions.

12.4 Tabular Expressions 237

Tabular expressions are invaluable in defining a piecewise continuous function,
as it is relatively easy to demonstrate that all cases have been considered in the
definition. It is easy to miss a case or to give an inconsistent definition in the
conventional definition of a piecewise continuous function. The evaluation of a
tabular expression is easy once the type of tabular expression is known. Tabular
expressions have been applied to practical problems including the precise docu-
mentation of the system requirements of the A7 aircraft [8].

Tabular expressions have been applied to precisely document the system
requirements and to solve practical industrial problems. A collection of tabular
expressions are employed to document the system requirements. The meaning of
these tabular expressions in terms of their component expressions was done by
Parnas [9]. He identified several types of tabular expressions and provided a formal
meaning for each type. A more general model of tabular expressions was proposed
by Janicki [10], although this approach was based on diagrams using an
artificial cell connection graph to explain the meaning of the tabular expressions.
Parnas and others have proposed a general mathematical foundation for tabular
expressions.

The function f{x, y) is defined in the tabular expression below. The tabular
expressions consist of headers and a main grid. The headers define the domain of
the function and the main grid gives the definition. It is easy to see that the function
is defined for all values on its domain as the headers are complete. It is also easy to
see that the definition is consistent as the headers partition the domain of the
function.

The evaluation of the function for a particular value (x, y) involves determining
the appropriate row and column from the headers of the table and computing the
grid element for that row and column (Fig. 12.7).

For example, the evaluation of f{2, 3) involves the selection of row 1 of the grid
(asx =2 > 0in H;) and the selection of column 3 (as y = 3 < 5 in H,). Hence, the
value of f{2, 3) is given by the expression in row 1 and column 3 of the grid, i.e.—y’
evaluated with y = 3 resulting in —9. The table simplifies the definition of the
function. Tabular expressions have several applications (Table 12.5).

Examples of Tabular Expressions

The objective of this section is to illustrate the power of tabular expressions by
considering a number of examples. The more general definition of tabular
expressions allows for multidimensional tables, including multiple headers, and
supports rectangular and non-rectangular tables. However, the examples presented
here will be limited to two-dimensional rectangular tables, and will usually include
two headers and one grid, with the meaning of the tables given informally.

y=5 y>5 r<5 2
H, x>0 0 y -’
x<0 X x+y X-y

Fig. 12.7 Tabular expressions (normal table)

238 12 Overview of Formal Methods

Table 12.5 Applications of

1 Applications of tabular expressions
tabular expressions

Specify requirements
Specify module interface design
Description of implementation of module

Mathematical software inspections

The role of the headers and grid will become clearer in the examples, and
usually, the headers contain predicate expressions, whereas the grid usually con-
tains terms. However, the role of the grid and the headers change depending on the
type of table being considered.

Normal Function Table

The first table that we discuss is termed the normal function table, and this table
consists of two headers (H; and H,) and one grid G. The headers are predicate
expressions that partition the domain of the function; header H; partitions the
domain of y, whereas header H, partitions the domain of x. The grid consists of
terms. The function f(x, y) is defined by the following table (Fig. 12.8):

The evaluation of the function f{x, y) for a particular value of x, y is given by:

1. Determine the row i in header H; that is true.
2. Determine the column j in header H, that is true.
3. The evaluation of f(x, y) is given by G(i, j).

For example, the evaluation of f(—2, 5) involves row 3 of H; as y is 5 (>0) and
column 1 of header H, as x is —2 (<0). Hence, the element in row 3 and column 1 of
the grid is selected (i.e. the element x + y). The evaluation of {—2, 5)is =2 + 5 = 3.

The usual definition of the function f{x, y) defined piecewise is:

f(xa)’)zxz—yz where x§0/\y<0,
flx,y) =x*+y*> wherex >0Ay<O0;
f(xay) :x+y WherexZO/\yzo;
f(x,y) =Xx—-Yy wherex <0 Ay = 0;
f(xa)’):ery Wherex§0/\y>0;
f(xa)’)=x2+y2 wherex > 0Ay > 0;
x<0 x=0 x>0 H2
H, v Xy’ Xy’ Ky’
y=0 Xy xty x+y
2 2 G
y>0 xty xty Xty

Fig. 12.8 Normal table

12.4 Tabular Expressions 239

The danger with the usual definition of the piecewise function is that it is more
difficult to be sure that every case has been considered, as it is easy to miss a case or
for the cases to be overlap. Care needs to be taken with the value of the function on
the boundary, as it is easy to introduce inconsistencies. It is straightforward to check
that the tabular expression has covered all cases, and that there are no overlapping
cases. This is done by examination of the headers to check for consistency and
completeness. The headers for the tabular representation of f{x, y) must partition the
values that x and y may take, and this is clear from an examination of the headers.

Normal relation tables and predicate expression tables are interpreted similarly to
normal function tables except that the grid entries are predicate expressions rather
than terms as in the normal function table. The result of the evaluation of a predicate
expression table is a Boolean value of true or false, whereas the result of the
evaluation of the normal relation table is a relation. A characteristic predicate table
is similar except that it is interpreted as a relation whose domain and range consist
of tuples of fixed length. Each element of the tuple is a variable and the tuples are of
the form ((‘x1,’x,....°%,,), (X", X%2",....x,")).

Inverted Function Table

The inverted function table is different from the normal table in that the grid
contains predicates, and the header H, contains terms. The function f{x, y) is defined
by the following inverted table (Fig. 12.9):

The evaluation of the function f{x, y) for a particular value of x, y is given by:

1. Determine the row i in header H; that is true.
2. Select row i of the grid and determine the column j of row i that is true.
3. The evaluation of f{x, y) is given by H,(j).

For example, the evaluation of f{—2,5) involves the selection of row 3 of H; as
yis 5 (>0). This means that row 3 of the grid is then examined and as x is —2 (<0)
column 2 of the grid is selected. Hence, the element in column 2 of H; is selected as
the evaluation of flx, y) (i.e. the element x — y). The evaluation of f(—2, 5) is
therefore —2 — 5 = —7.

Xty x=y Xy H,
H, y<0 x<0 x=0 x>0
y=0 x>0 x<0 x=0 G
y>0 x=0 x<0 x>0

Fig. 12.9 Inverted table

240 12 Overview of Formal Methods

The usual definition of the function f{x, y) defined piecewise is:

fx,y) =x+y wherex<0Ay<O0;

.f(X;Y) =x—y wherex=0Ay<0;
flx,y) =xy wherex > 0 A y<0;
f(x,y)=x+y wherex >0Ay=0;
flx,y) =x—y wherex<0Ay=0;
flx,y) = xy wherex =0 Ay = 0;
f(x»Y):ery Wherex:O/\y>0;
f(x,y) =x—y wherex<0Ay>0;
flx,y)=xy wherex>0Ay>0;

Clearly, the tabular expression provides a more concise representation of the
function. The inverted table arises naturally when there are many cases to consider, but
only a few distinct values of the function. The function f{x, y) can also be represented in
an equivalent normal function table. In fact, any function that can be represented by an
inverted function table may be represented in a normal function table and vice versa.

Inverted predicate expression tables and inverted relation tables are interpreted
similarly to inverted function tables except that the header H; consists of predicate
expressions rather than terms. The result of the evaluation of an inverted predicate
expression table is the Boolean value true or false, whereas the evaluation of an
inverted relation table is a relation.

There is more detailed information on Parnas’s contributions to software engineering,
including software requirements, software design and software inspections in [8].

12.5 Review Questions

—_

What are Dijkstra’s main achievements in computer science?

2. Describe Dijkstra’s weakest precondition calculus and its application to

formal program development.

What are Hoare’s main achievements in computer science?

4. Describe Hoare’s axiomatic semantics and its application to the correct-
ness of computer programs.

5. What are Parnas’s main achievements in computer science?

&

12.5 Review Questions 241

6. Describe tabular expressions and their applications.
7. What is a normal function table? What is an inverted function table?
8. Investigate Floyd’s contributions to the computing field.

12.6 Summary

Dijkstra, Hoare and Parnas have made important contributions to computer science,
and they have received numerous awards in recognition of their achievements.
Their work has provided a scientific basis for computer software development, and
we presented a selection of their contributions in this chapter.

Dijkstra has made contributions to language development, operating systems,
formal program development and to the vocabulary of Computer Science. His
calculus of weakest preconditions is used for the formal development of computer
programs, where a program and its proof of correctness are developed together.

Hoare has developed the quicksort algorithm, the axiomatic approach to program
semantics, and programming constructs for concurrency. He was responsible for
producing the first commercial compiler for Algol 60 at Elliot Brothers.

Parnas has made a strong contribution to software engineering, including con-
tributions to requirements specification, software design, software inspections,
testing, tabular expressions, predicate logic and ethics for software engineers. His
reflections on software engineering remain valuable and contain the insight gained
over a long career. His tabular expressions are useful in defining piecewise con-
tinuous functions, where tabular expressions are a generalization of tables in which
constants can be replaced by more general mathematical expressions.

Reference

1. G. O’Regan, Mathematical Approaches to Software Quality, vol 26 (Springer, London)
2. G. O’Regan, A Practical Approach to Software Quality (Springer Verlag, New York, 2002)
3. C. Jones, Systematic Software Development using VDM (Prentice Hall International, 1986)
4. E.W. Dijkstra, A Disciple of Programming (Prentice Hall, Englewood Cliffs, NJ, 1976)
5. D. Gries, The Science of Programming (Springer, Berlin, 1981)
6. R. Floyd, Assigning Meanings to Programs, in Proc. Symp. Appl. Math. (19), 19-32 (1967)
7. C.A.R. Hoare, An axiomatic basis for computer programming. Commun. ACM 12(10), 576—
585 (1969)
8. D. Hoffman, D.L. Parnas, in Software Fundamentals, ed. by D. Weiss. Collected Papers by
D.L. Parnas (Addison Wesley, Reading, 21)
9. D.L. Parnas, Tabular Representation of Relations. CRL Report 260.McMaster University,
Canada (1992)
10. R. Janicki, On a Formal Semantics of Tabular Expressions. Technical Report CRL 355.
Communications Research Laboratory, McMaster University, Ontario (1997)

	12 Dijkstra, Hoare and Parnas
	12.1 Introduction
	12.2 Calculus of Weakest Preconditions
	12.2.1 Properties of WP
	12.2.2 WP of Commands
	12.2.3 Formal Program Development with WP

	12.3 Axiomatic Definition of Programming Languages
	12.4 Tabular Expressions
	12.5 Review Questions
	12.6 Summary
	Reference

