
Undergraduate Topics in Computer Science

Concise Guide
to Formal
Methods

Gerard O’Regan

Theory, Fundamentals and Industry
Applications

Undergraduate Topics in Computer
Science

Series editor

Ian Mackie

Advisory Boards

Samson Abramsky, University of Oxford, Oxford, UK
Karin Breitman, Pontifical Catholic University of Rio de Janeiro,
Rio de Janeiro, Brazil
Chris Hankin, Imperial College London, London, UK
Dexter C. Kozen, Cornell University, Ithaca, USA
Andrew Pitts, University of Cambridge, Cambridge, UK
Hanne Riis Nielson, Technical University of Denmark, Kongens Lyngby, Denmark
Steven S. Skiena, Stony Brook University, Stony Brook, USA
Iain Stewart, University of Durham, Durham, UK

Undergraduate Topics in Computer Science (UTiCS) delivers high-quality
instructional content for undergraduates studying in all areas of computing and
information science. From core foundational and theoretical material to final-year
topics and applications, UTiCS books take a fresh, concise, and modern approach
and are ideal for self-study or for a one- or two-semester course. The texts are all
authored by established experts in their fields, reviewed by an international advisory
board, and contain numerous examples and problems. Many include fully worked
solutions.

More information about this series at http://www.springer.com/series/7592

Gerard O’Regan

Concise Guide to Formal
Methods
Theory, Fundamentals and Industry
Applications

123

Gerard O’Regan
SQC Consulting
Mallow
Ireland

ISSN 1863-7310 ISSN 2197-1781 (electronic)
Undergraduate Topics in Computer Science
ISBN 978-3-319-64020-4 ISBN 978-3-319-64021-1 (eBook)
DOI 10.1007/978-3-319-64021-1

Library of Congress Control Number: 2017946679

© Springer International Publishing AG 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made. The publisher remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

In memory of my dear aunt
Mrs. Noreen O’Regan

Preface

Overview

The objective of this book is to give the reader a flavour of the formal methods
field. The goal is to provide a broad and accessible guide to the fundamentals of
formal methods, and to show how they may be applied to various areas in
computing.

There are many existing books on formal methods, and while many of these
provide more in-depth coverage on selected topics, this book is different in that it
aims to provide a broad and accessible guide to the reader, as well as showing some
of the rich applications of formal methods.

Each chapter of this book could potentially be a book in its own right, and so
there are limits to the depth of coverage. However, the author hopes that this book
will motivate and stimulate the reader, and encourage further study of the more
advanced texts.

Organization and Features

Chapter 1 provides an introduction to the important field of software engineering.
The birth of the discipline was at the Garmisch conference in Germany in the late
1960s. The extent to which mathematics should be employed in software engi-
neering remains a topic of active debate.

Chapter 2 discusses software reliability and dependability, and covers topics
such as software reliability and software reliability models; the Cleanroom
methodology, system availability, safety and security critical systems, and
dependability engineering.

Chapter 3 discusses formal methods, which consist of a set of mathematic
techniques that provide an extra level of confidence in the correctness of the
software. They may be employed to formally state the requirements of the proposed

vii

system, and to derive a program from its mathematical specification. They allow a
rigorous proof that the implemented program satisfies its specification to be pro-
vided, and they have been mainly applied to the safety critical field.

Chapter 4 provides an introduction to fundamental building blocks in discrete
mathematics including sets, relations and functions. A set is a collection of
well-defined objects, and it may be finite or infinite. A relation between two sets A
and B indicates a relationship between members of the two sets, and is a subset
of the Cartesian product of the two sets. A function is a special type of relation such
that for each element in A there is at most one element in the co-domain B.
Functions may be partial or total and injective, surjective or bijective.

Chapter 5 presents a short history of logic, and we discuss Greek contributions to
syllogistic logic, stoic logic, fallacies and paradoxes. Boole’s symbolic logic and its
application to digital computing are discussed, and we consider Frege’s work on
predicate logic.

Chapter 6 provides an introduction to propositional and predicate logic.
Propositional logic may be used to encode simple arguments that are expressed in
natural language, and to determine their validity. The nature of mathematical proof
is discussed, and we present proof by truth tables, semantic tableaux and natural
deduction. Predicate logic allows complex facts about the world to be represented,
and new facts may be determined via deductive reasoning. Predicate calculus
includes predicates, variables and quantifiers, and a predicate is a characteristic or
property that the subject of a statement can have.

Chapter 7 presents some advanced topics in logic including fuzzy logic, tem-
poral logic, intuitionistic logic, undefined values, theorem provers and the appli-
cations of logic to AI. Fuzzy logic is an extension of classical logic that acts as a
mathematical model for vagueness. Temporal logic is concerned with the expres-
sion of properties that have time dependencies, and it allows properties about the
past, present and future to be expressed. Intuitionism was a controversial theory on
the foundations of mathematics based on a rejection of the law of the excluded
middle, and an insistence on constructive existence. We discuss three approaches to
deal with undefined values, including the logic of partial functions; Dijkstra’s
approach with his cand and cor operators; and Parnas’s approach which preserves a
classical two-valued logic

Chapter 8 presents the Z specification language, which is one of the more
popular formal methods. It was developed at the Programming Research Group at
Oxford University in the early 1980s. Z specifications are mathematical, and the use
of mathematics ensures precision, and allows inconsistencies and gaps in the
specification to be identified. Theorem provers may be employed to demonstrate
that the software implementation satisfies its specification.

Chapter 9 presents the Vienna Development Method, which is a popular formal
specification language. We describe the history of its development at IBM in
Vienna, and the main features of the language and its development method.
Chapter 10 discusses the Irish school of VDM, which is a variant of classical VDM.
We discuss its constructive mathematical approach, and where it differs from
standard VDM.

viii Preface

Chapter 11 presents the unified modelling language (UML), which is a visual
modelling language for software systems. It presents several views of the system
architecture, and was developed at Rational Corporation as a notation for modelling
object-oriented systems. We present various UML diagrams such as use case dia-
grams, sequence diagrams and activity diagrams.

Chapter 12 focuses on the approach of Dijkstra, Hoare and Parnas. We discuss
the calculus of weakest preconditions developed by Dijkstra and the axiomatic
semantics of programming languages developed by Hoare. We then discuss the
classical engineering approach of Parnas, and his tabular expressions.

Chapter 13 discusses automata theory, including finite-state machines, push-
down automata and Turing machines. Finite-state machines are abstract machines
that are in only one state at a time, and the input symbol causes a transition from the
current state to the next state. Pushdown automata have greater computational
power than finite-state machines, and they contain extra memory in the form of a
stack from which symbols may be pushed or popped. The Turing machine is the
most powerful model for computation, and this theoretical machine is equivalent to
an actual computer in the sense that it can compute exactly the same set of
functions.

Chapter 14 discusses model checking which is an automated technique such that
given a finite-state model of a system and a formal property, then it systematically
checks whether the property is true of false in a given state in the model. It is an
effective technique to identify potential design errors, and it increases the confi-
dence in the correctness of the system design.

Chapter 15 discusses the nature of proof and theorem proving, and we discuss
automated and interactive theorem provers. We discuss the nature of mathematical
proof and formal mathematical proof.

Chapter 16 discusses probability and statistics and includes a discussion on
discrete random variables; probability distributions; sample spaces; sampling; the
abuse of statistics; variance and standard deviation; and hypothesis testing.

Chapter 17 discusses a selection of tools that are available to support the formal
methodist in the performance of the various activities. Tools for VDM, Z, B, UML,
theorem provers and model checking are considered.

Chapter 18 discusses technology transfer of formal methods to industry, and is
concerned with the practical exploitation of new technology developed by an
academic or industrial research group, and the objective is to facilitate its use of the
technology in an industrial environment. Chapter 19 summarizes the journey that
we have travelled in this book.

Audience

The audience of this book includes computer science students who wish to gain a
broad and accessible overview of formal methods and its applications to the
computing field. This book will also be of interest to students of mathematics who

Preface ix

are curious as to how formal methods are applied to the computing field. This book
will also be of interest to the motivated general reader.

Acknowledgements

I am deeply indebted to family and friends who supported my efforts in this
endeavour, and my thanks, as always, to the team at Springer. This book is dedi-
cated to my late aunt (Mrs. Noreen O’ Regan), who I always enjoyed visiting in
Clonakilty, Co. Cork.

Cork, Ireland Gerard O’Regan

x Preface

The original version of this book was revised.
An erratum to this book can be found at
DOI: 10.1007/978-3-319-64021-1_20

xi

Contents

1 Software Engineering . 1
1.1 Introduction . 1
1.2 What Is Software Engineering?. 4
1.3 Challenges in Software Engineering . 6
1.4 Software Processes and Life cycles. 8

1.4.1 Waterfall Life cycle . 9
1.4.2 Spiral Life cycles. 10
1.4.3 Rational Unified Process . 11
1.4.4 Agile Development . 12

1.5 Activities in Waterfall Life cycle . 14
1.5.1 Business Requirements Definition 15
1.5.2 Specification of System Requirements 16
1.5.3 Design . 16
1.5.4 Implementation . 17
1.5.5 Software Testing . 18
1.5.6 Support and Maintenance . 19

1.6 Software Inspections . 20
1.7 Software Project Management. 21
1.8 CMMI Maturity Model . 22
1.9 Formal Methods . 23
1.10 Review Questions . 24
1.11 Summary . 24
References. 25

2 Software Reliability and Dependability . 27
2.1 Introduction . 27
2.2 Software Reliability . 28

2.2.1 Software Reliability and Defects 29
2.2.2 Cleanroom Methodology . 31
2.2.3 Software Reliability Models. 32

2.3 Dependability . 35
2.4 Computer Security . 37
2.5 System Availability. 38

xiii

2.6 Safety Critical Systems . 38
2.7 Review Questions . 39
2.8 Summary . 40
References. 40

3 Overview of Formal Methods . 41
3.1 Introduction . 41
3.2 Why Should We Use Formal Methods? 43
3.3 Industrial Applications of Formal Methods 45
3.4 Industrial Tools for Formal Methods . 46
3.5 Approaches to Formal Methods . 47

3.5.1 Model-Oriented Approach . 47
3.5.2 Axiomatic Approach . 49

3.6 Proof and Formal Methods . 49
3.7 Mathematics in Software Engineering. 50
3.8 The Vienna Development Method . 51
3.9 VDM♣, the Irish School of VDM. 52
3.10 The Z Specification Language. 54
3.11 The B-Method. 55
3.12 Predicate Transformers and Weakest Preconditions. 56
3.13 The Process Calculi . 56
3.14 Finite-State Machines . 57
3.15 The Parnas Way . 58
3.16 Model Checking . 59
3.17 Usability of Formal Methods . 60
3.18 Review Questions . 61
3.19 Summary . 61
References. 62

4 Sets, Relations and Functions . 65
4.1 Introduction . 65
4.2 Set Theory . 66

4.2.1 Set Theoretical Operations . 68
4.2.2 Properties of Set Theoretical Operations 71
4.2.3 Russell’s Paradox . 72
4.2.4 Computer Representation of Sets 73

4.3 Relations . 74
4.3.1 Reflexive, Symmetric and Transitive Relations 75
4.3.2 Composition of Relations . 78
4.3.3 Binary Relations . 79
4.3.4 Applications of Relations. 80

4.4 Functions . 82
4.5 Application of Functions. 87

4.5.1 Miranda Functional Programming Language 88

xiv Contents

4.6 Review Questions . 90
4.7 Summary . 91
References. 92

5 A Short History of Logic . 93
5.1 Introduction . 93
5.2 Syllogistic Logic . 94
5.3 Paradoxes and Fallacies . 96
5.4 Stoic Logic . 98
5.5 Boole’s Symbolic Logic . 99

5.5.1 Switching Circuits and Boolean Algebra 102
5.6 Application of Symbolic Logic to Digital Computing. 104
5.7 Frege. 105
5.8 Review Questions . 107
5.9 Summary . 107
References. 108

6 Propositional and Predicate Logic . 109
6.1 Introduction . 109
6.2 Propositional Logic . 110

6.2.1 Truth Tables . 112
6.2.2 Properties of Propositional Calculus 114
6.2.3 Proof in Propositional Calculus 116
6.2.4 Semantic Tableaux in Propositional Logic 118
6.2.5 Natural Deduction . 121
6.2.6 Sketch of Formalization of Propositional Calculus . . 121
6.2.7 Applications of Propositional Calculus 123
6.2.8 Limitations of Propositional Calculus 125

6.3 Predicate Calculus. 125
6.3.1 Sketch of Formalization of Predicate Calculus. 127
6.3.2 Interpretation and Valuation Functions 129
6.3.3 Properties of Predicate Calculus. 130
6.3.4 Applications of Predicate Calculus 130
6.3.5 Semantic Tableaux in Predicate Calculus. 131

6.4 Review Questions . 134
6.5 Summary . 134
References. 135

7 Advanced Topics in Logic. 137
7.1 Introduction . 137
7.2 Fuzzy Logic . 138
7.3 Temporal Logic . 139
7.4 Intuitionist Logic. 141
7.5 Undefined Values . 143

Contents xv

7.5.1 Logic of Partial Functions . 143
7.5.2 Parnas Logic . 145
7.5.3 Dijkstra and Undefinedness . 146

7.6 Logic and AI . 148
7.7 Theorem Provers for Logic . 151
7.8 Review Questions . 153
7.9 Summary . 153
References. 154

8 Z Formal Specification Language. 155
8.1 Introduction . 155
8.2 Sets . 158
8.3 Relations . 159
8.4 Functions . 161
8.5 Sequences . 162
8.6 Bags . 163
8.7 Schemas and Schema Composition. 164
8.8 Reification and Decomposition . 167
8.9 Proof in Z . 168
8.10 Industrial Applications of Z . 169
8.11 Review Questions . 170
8.12 Summary . 170
References. 171

9 Vienna Development Method . 173
9.1 Introduction . 173
9.2 Sets . 176
9.3 Sequences . 178
9.4 Maps. 179
9.5 Logic of Partial Functions in VDM . 180
9.6 Data Types and Data Invariants . 181
9.7 Specification in VDM . 182
9.8 Refinement in VDM . 183
9.9 Industrial Applications of VDM . 184
9.10 Review Questions . 185
9.11 Summary . 185
References. 186

10 Irish School of VDM . 187
10.1 Introduction . 187
10.2 Mathematical Structures and Their Morphisms 189
10.3 Models and Modelling . 191
10.4 Sets . 192
10.5 Relations and Functions . 194
10.6 Sequences . 196

xvi Contents

10.7 Indexed Structures . 197
10.8 Specifications and Proofs . 198
10.9 Refinement in Irish VDM . 200
10.10 Review Questions . 202
10.11 Summary . 203
References. 204

11 Unified Modelling Language. 205
11.1 Introduction . 205
11.2 Overview of UML . 206
11.3 UML Diagrams. 208
11.4 Object Constraint Language . 214
11.5 Industrial Tools for UML . 215
11.6 Rational Unified Process . 215
11.7 Review Questions . 217
11.8 Summary . 218
References. 218

12 Dijkstra, Hoare and Parnas . 219
12.1 Introduction . 219
12.2 Calculus of Weakest Preconditions . 224

12.2.1 Properties of WP . 226
12.2.2 WP of Commands . 226
12.2.3 Formal Program Development with WP 230

12.3 Axiomatic Definition of Programming Languages 231
12.4 Tabular Expressions . 236
12.5 Review Questions . 240
12.6 Summary . 241
Reference . 241

13 Automata Theory . 243
13.1 Introduction . 243
13.2 Finite-State Machines . 244
13.3 Pushdown Automata . 247
13.4 Turing Machines . 249
13.5 Review Questions . 251
13.6 Summary . 251
References. 252

14 Model Checking. 253
14.1 Introduction . 253
14.2 Modelling Concurrent Systems . 257
14.3 Linear Temporal Logic . 258
14.4 Computational Tree Logic . 259
14.5 Tools for Model Checking . 260

Contents xvii

14.6 Industrial Applications of Model Checking. 260
14.7 Review Questions . 261
14.8 Summary . 261
References. 262

15 The Nature of Theorem Proving . 263
15.1 Introduction . 263
15.2 Early Automation of Proof . 265
15.3 Interactive Theorem Provers . 267
15.4 A Selection of Theorem Provers . 269
15.5 Review Questions . 269
15.6 Summary . 269
Reference . 271

16 Probability and Statistics . 273
16.1 Introduction . 273
16.2 Probability Theory . 274

16.2.1 Laws of Probability . 275
16.2.2 Random Variables . 276

16.3 Statistics . 279
16.3.1 Abuse of Statistics . 280
16.3.2 Statistical Sampling . 280
16.3.3 Averages in a Sample . 281
16.3.4 Variance and Standard Deviation. 282
16.3.5 Bell-Shaped (Normal) Distribution 283
16.3.6 Frequency Tables, Histograms and Pie Charts 285
16.3.7 Hypothesis Testing . 287

16.4 Review Questions . 288
16.5 Summary . 289
References. 289

17 Industrial Tools for Formal Methods. 291
17.1 Introduction . 291
17.2 Tools for Z . 292
17.3 Tools for VDM. 293
17.4 Tools for B . 294
17.5 Tools for UML . 295
17.6 Tools for Model Checking . 296
17.7 Tools for Theorem Provers . 297
17.8 Review Questions . 298
17.9 Summary . 298
References. 299

xviii Contents

18 Technology Transfer to Industry . 301
18.1 Introduction . 301
18.2 Formal Methods and Industry . 302
18.3 Usability of Formal Methods . 304

18.3.1 Why Are Formal Methods Difficult? 305
18.3.2 Characteristics of a Usable Formal Method 305

18.4 Pilot of Formal Methods . 307
18.4.1 Technology Transfer of Formal Methods. 307

18.5 Review Questions . 308
18.6 Summary . 308
References. 309

19 Epilogue . 311
19.1 The Future of Formal Methods . 314

20 Erratum to: Concise Guide to Formal Methods E1
Gerard O’Regan

Glossary . 315

Index . 319

Contents xix

List of Figures

Fig. 1.1 Standish report—results of 1995 and 2009 survey 3
Fig. 1.2 Standish 1998 report—estimation accuracy 7
Fig. 1.3 Waterfall V lifecycle model . 9
Fig. 1.4 Spiral lifecycle model … public domain 10
Fig. 1.5 Rational Unified Process . 12
Fig. 3.1 Deterministic finite-state machine . 58
Fig. 4.1 Bertrand Russell . 73
Fig. 4.2 Reflexive relation . 76
Fig. 4.3 Symmetric relation . 76
Fig. 4.4 Transitive relation. 76
Fig. 4.5 Partitions of A . 77
Fig. 4.6 Composition of relations . 79
Fig. 4.7 Edgar Codd . 81
Fig. 4.8 PART relation . 82
Fig. 4.9 Domain and range of a partial function . 83
Fig. 4.10 Injective and surjective functions . 85
Fig. 4.11 Bijective function (one to one and onto) 86
Fig. 5.1 Zeno of Citium. 99
Fig. 5.2 George Boole . 100
Fig. 5.3 Binary AND operation . 103
Fig. 5.4 Binary OR operation . 103
Fig. 5.5 NOT operation . 103
Fig. 5.6 Half-adder . 103
Fig. 5.7 Claude Shannon . 105
Fig. 5.8 Gottlob Frege . 106
Fig. 6.1 Gerhard Gentzen . 121
Fig. 7.1 Conjunction and disjunction operators for LPF 144
Fig. 7.2 Implication and equivalence operators for LPF 144
Fig. 7.3 Negation for LPF . 144
Fig. 7.4 Finding index in array . 146
Fig. 7.5 John McCarthy. Courtesy of John McCarthy 149
Fig. 8.1 Specification of positive square root. 156
Fig. 8.2 Specification of a library system. 157
Fig. 8.3 Specification of borrow operation. 157

xxi

Fig. 8.4 Specification of vending machine using bags 164
Fig. 8.5 Schema inclusion . 165
Fig. 8.6 Merging schemas (S1 _ S2) . 165
Fig. 8.7 Schema composition. 167
Fig. 8.8 Refinement commuting diagram . 168
Fig. 10.1 Monoid homomorphism . 191
Fig. 10.2 Len homomorphism . 191
Fig. 10.3 Set removal endomorphism . 192
Fig. 10.4 Commuting diagram property. 200
Fig. 10.5 Commuting diagram for dictionary refinement 202
Fig. 11.1 Simple object diagram . 210
Fig. 11.2 Use case diagram of ATM machine . 211
Fig. 11.3 UML sequence diagram for balance enquiry 212
Fig. 11.4 UML activity diagram . 213
Fig. 11.5 UML state diagram . 213
Fig. 11.6 Iteration in Rational Unified Process . 216
Fig. 11.7 Phases and workflows in Rational Unified Process. 217
Fig. 12.1 Edsger Dijkstra. Courtesy of Brian Randell 220
Fig. 12.2 C.A.R Hoare . 222
Fig. 12.3 David Parnas . 224
Fig. 12.4 Robert Floyd . 232
Fig. 12.5 Branch assertions in flowcharts . 233
Fig. 12.6 Assignment assertions in flowcharts . 233
Fig. 12.7 Tabular expressions (normal table) . 237
Fig. 12.8 Normal table. 238
Fig. 12.9 Inverted table . 239
Fig. 13.1 Finite-state machine with output. 245
Fig. 13.2 Deterministic FSM . 245
Fig. 13.3 Non-deterministic finite-state machine . 246
Fig. 13.4 Components of pushdown automata . 248
Fig. 13.5 Transition in pushdown automata . 248
Fig. 13.6 Transition function for pushdown automata M. 249
Fig. 13.7 Turing machine . 249
Fig. 13.8 Transition on Turing machine . 251
Fig. 14.1 Concept of model checking . 255
Fig. 14.2 Model checking . 256
Fig. 14.3 Simple transition system. 257
Fig. 14.4 LTL operators . 259
Fig. 15.1 Idea of automated theorem proving . 266
Fig. 16.1 Carl Friedrich Gauss. 283
Fig. 16.2 Standard unit normal bell curve (Gaussian distribution) 284
Fig. 16.3 Histogram test results . 286
Fig. 16.4 Pie chart test results . 286
Fig. 17.1 Z/EVES specification window . 293

xxii List of Figures

Fig. 17.2 Overture editor view. 294
Fig. 17.3 IBM rational software modeler . 295
Fig. 17.4 PVS system . 297

List of Figures xxiii

List of Tables

Table 2.1 Adam’s 1984 study of software failures of IBM products 30
Table 2.2 New and old version of software . 31
Table 2.3 Cleanroom results in IBM . 32
Table 2.4 Characteristics of good software reliability model 33
Table 2.5 Software reliability models . 34
Table 2.6 Dimensions of dependability . 35
Table 3.1 Criticisms of formal methods . 44
Table 3.2 Parnas’s contributions to software engineering 59
Table 4.1 Properties of set operations . 72
Table 5.1 Types of syllogistic premises. 95
Table 5.2 Forms of syllogistic premises . 95
Table 5.3 Fallacies in arguments . 97
Table 6.1 Truth table for formula W . 111
Table 6.2 Conjunction . 112
Table 6.3 Disjunction . 112
Table 6.4 Implication. 113
Table 6.5 Equivalence . 113
Table 6.6 NOT operation. 113
Table 6.7 Truth table for W(P, Q, R) . 113
Table 6.8 Tautology B _ ¬B . 115
Table 6.9 Proof of argument with a truth table . 117
Table 6.10 Logical equivalence of two WFFs . 118
Table 6.11 Logical implication of two WFFs . 118
Table 6.12 Rules of semantic tableaux . 119
Table 6.13 Natural deduction rules . 122
Table 6.14 Extra rules of semantic tableaux (for predicate calculus) 132
Table 7.1 Examples of Parnas evaluation of undefinedness 145
Table 7.2 Example of undefinedness in array . 146
Table 7.3 a cand b . 147
Table 7.4 a cor b. 147
Table 8.1 Schema composition . 166
Table 9.1 Similarities and differences between VDM and Z 175
Table 9.2 Built-in types in VDM. 177
Table 9.3 Specification of a stack of integers . 179

xxv

Table 9.4 Composite data types in VDM . 181
Table 9.5 Composite data invariant for composite date datatype 182
Table 9.6 Structure of VDM specification . 183
Table 11.1 Classification of UML things. 207
Table 11.2 UML diagrams . 208
Table 11.3 Simple class diagram . 209
Table 11.4 Advantages of UML . 214
Table 11.5 OCL constraints. 215
Table 11.6 UML Tools . 215
Table 12.1 Dijkstra’s achievements . 221
Table 12.2 Hoare’s achievements . 223
Table 12.3 Parnas’s achievements . 225
Table 12.4 Properties of WP . 227
Table 12.5 Applications of tabular expressions . 238
Table 13.1 State transition table . 246
Table 14.1 Model checking process. 254
Table 14.2 Basic temporal operators . 259
Table 14.3 CTL temporal operators. 260
Table 15.1 Selection of theorem provers . 270
Table 16.1 Probability distributions . 279
Table 16.2 Sampling techniques . 281
Table 16.3 Types of survey . 281
Table 16.4 Frequency table—Salary . 286
Table 16.5 Frequency table—Test results . 286
Table 16.6 Hypothesis testing . 287
Table 18.1 Techniques for validation of formal specification. 305
Table 18.2 Factors in difficulty of formal methods 306
Table 18.3 Characteristics of a usable formal method 306
Table 18.4 Steps for pilot of formal methods . 307
Table 18.5 Steps for technology transfer of formal methods 308

xxvi List of Tables

1Software Engineering

Key Topics

Standish chaos report
Software life cycles
Waterfall model
Spiral model
Rational Unified Process
Agile development
Software inspections
Software testing
Project management

1.1 Introduction

The approach to software development in the 1950s and 1960s has beendescribed as the
“Mongolian Hordes Approach” by Brooks [1].1 The “method” or lack of method was
characterized by the use of a large number of inexperienced programmers to fix a
problem rather than solving it with a team of skilled programmers (i.e. throwing people
at a problem). The view of software development at that time was characterized by:

The completed code will always be full of defects.

The coding should be finished quickly to correct these defects.

Design as you code approach.

1The “Mongolian Hordes” management myth is the belief that adding more programmers to a
software project that is running late will allow it to catch-up. The reality is that adding people to a
late software project actually makes it later.

© Springer International Publishing AG 2017
G. O’Regan, Concise Guide to Formal Methods, Undergraduate Topics
in Computer Science, DOI 10.1007/978-3-319-64021-1_1

1

This philosophy accepted defeat in software development and suggested that
irrespective of a solid engineering approach, that the completed software would
always contain lots of defects, and that it therefore made sense to code as quickly as
possible, and then to identify the defects that were present, so as to correct them as
quickly as possible to solve a problem.

In the late 1960s, it was clear that the existing approaches to software devel-
opment were deeply flawed, and that there was an urgent need for change.
The NATO Science Committee organized two famous conferences to discuss
critical issues in software development [2], with the first conference held at
Garmisch, Germany, in 1968, and it was followed by a second conference in Rome
in 1969.

Over fifty people from eleven countries attended the Garmisch conference,
including Edsger Dijkstra, who did important theoretical work on formal specifi-
cation and verification. The NATO conferences highlighted problems that existed in
the software sector in the late 1960s, and the term “software crisis” was coined to
refer to these. There were problems with budget and schedule overruns, as well as
the quality and reliability of the delivered software.

The conference led to the birth of software engineering as a discipline in its own
right, and the realization that programming is quite distinct from science and
mathematics. Programmers are like engineers in that they build software products,
and they therefore need education in traditional engineering as well as the latest
technologies. The education of a classical engineer includes product design and
mathematics. However, often computer science education has placed an emphasis
on the latest technologies, rather than the important engineering foundations of
designing and building high-quality products that are safe for the public to use.

Programmers therefore need to learn the key engineering skills to enable them to
build products that are safe for the public to use. This includes a solid foundation on
design, and on the mathematics required for building safe software products.
Mathematics plays an important role in classical engineering, and it is also
potentially useful in supporting software engineers in the delivery of high-quality
software products in specialized domains such as safety critical systems. Several
mathematical approaches to assist software engineers are described in [3].

There are parallels between the software crisis of the late 1960s and the crisis
with bridge construction in the nineteenth century. Several bridges collapsed, or
were delivered late or over budget, due to the fact that people involved in their
design and construction did not have the required engineering knowledge. This led
to bridges that were poorly designed and constructed, and this led to their collapse
and loss of life, as well as endangering the lives of the public.

This led to legislation requiring engineers to be licensed by the Professional
Engineering Association prior to practicing as engineers. This organization speci-
fied a core body of knowledge that the engineer is required to possess, and the
licensing body verifies that the engineer has the required qualifications and expe-
rience. This helps to ensure that only personnel competent to design and build

2 1 Software Engineering

products actually do so. Engineers have a professional responsibility to ensure that
the products are properly built and are safe for the public to use.

The Standish group has conducted research (Fig. 1.1) on the extent of problems
with IT projects since the mid-1990s [4]. These studies were conducted in the USA,
but there is no reason to believe that European or Asian companies perform any
better. The results indicate serious problems with on-time delivery of projects, and
projects being cancelled prior to completion.2 However, the comparison between
1995 and 2009 suggests that there have been some improvements with a greater
percentage of projects being delivered successfully, and a reduction in the per-
centage of projects being cancelled.

Fred Brooks argues that software is inherently complex, and that there is no
silver bullet that will resolve all of the problems associated with software devel-
opment such as schedule or budget overruns [1, 5]. Poor software quality can lead
to defects in the software that may adversely impact the customer, and even lead to
loss of life. It is therefore essential that software development organizations place
sufficient emphasis on quality throughout the software development life cycle.

The Y2K problem was caused by a two-digit representation of dates, and it
required major rework to enable legacy software to function for the new millen-
nium. Clearly, well-designed programs would have hidden the representation of the
date, which would have required minimal changes for year 2000 compliance.
Instead, companies spent vast sums of money to rectify the problem.

The quality of software produced by some companies is impressive.3 These
companies employ mature software processes and are committed to continuous
improvement. There is a lot of industrial interest in software process maturity

Fig. 1.1 Standish report—
results of 1995 and 2009
survey

2These are IT projects covering diverse sectors including banking, telecommunications, etc., rather
than pure software companies. Software companies following maturity frameworks such as the
CMMI generally achieve more consistent results.
3I recall projects at Motorola that regularly achieved 5.6r-quality in a L4 CMM environment (i.e.
approx. 20 defects per million lines of code. This represents very high quality).

1.1 Introduction 3

models for software organizations, and various approaches to assess and mature
software companies are described in [6, 7].4 These models focus on improving the
effectiveness of the management, engineering and organization practices related to
software engineering, and in introducing best practice in software engineering. The
disciplined use of the mature software processes by the software engineers enables
high-quality software to be consistently produced.

The next section examines the nature of software engineering, and there is a
more detailed account in the companion book “Concise Guide to Software Engi-
neering” [8].

1.2 What Is Software Engineering?

Software engineering involves the multi-person construction of multi-version pro-
grams. The IEEE 610.12 definition is:

Software engineering is the application of a systematic, disciplined, quantifiable approach
to the development, operation, and maintenance of software; that is, the application of
engineering to software, and the study of such approaches.

Software engineering includes:

1. Methodologies to design, develop and test software to meet customers’ needs.
2. Software is engineered. That is, the software products are properly designed,

developed and tested in accordance with engineering principles.
3. Quality and safety are properly addressed.
4. Mathematics may be employed to assist with the design and verification of

software products. The level of mathematics employed will depend on the safety
critical nature of the product. Systematic peer reviews and rigorous testing will
often be sufficient to build quality into the software, with heavy mathematical
techniques reserved for safety and security critical software.

5. Sound project management and quality management practices are employed.
6. Support and maintenance of the software is properly addressed.

Software engineering is not just programming. It requires the engineer to state
precisely the requirements that the software product is to satisfy and then to produce
designs that will meet these requirements. The project needs to be planned and
delivered on time and budget. The requirements must provide a precise description
of the problem to be solved; that is, it should be evident from the requirements what
is and what is not required.

4Approaches such as the CMM or SPICE (ISO 15504) focus mainly on the management and
organizational practices required in software engineering. The emphasis is on defining software
processes that are fit for purpose and consistently following them. The process maturity models
focus on what needs to be done rather how it should be done. This gives the organization the
freedom to choose the appropriate implementation to meet its needs. The models provide useful
information on practices to consider in the implementation.

4 1 Software Engineering

The requirements need to be rigorously reviewed to ensure that they are stated
clearly and unambiguously and reflect the customer’s needs. The next step is then
to create the design that will solve the problem, and it is essential to validate the
correctness of the design. Next, the software code to implement the design is
written, and peer reviews and software testing are employed to verify and validate
the correctness of the software.

The verification and validation of the design is rigorously performed for safety
critical systems, and it is sometimes appropriate to employ mathematical techniques
for these systems. However, it will usually be sufficient to employ peer reviews or
software inspections as these methodologies provide a high degree of rigour. This
may include approaches such as Fagan inspections [9], Gilb inspections [10], or
Prince 2’s approach to quality reviews [11].

The term “engineer” is a title that is awarded on merit in classical engineering. It
is generally applied only to people who have attained the necessary education and
competence to be called engineers, and who base their practice on sound engi-
neering principles. The title places responsibilities on its holder to behave profes-
sionally and ethically. Often in computer science, the term “software engineer” is
employed loosely to refer to anyone who builds things, rather than to an individual
with a core set of knowledge, experience and competence.

Several computer scientists (such as Parnas5) have argued that computer sci-
entists should be educated as engineers to enable them to apply appropriate sci-
entific principles to their work. They argue that computer scientists should receive a
solid foundation in mathematics and design, to enable them to have the professional
competence to perform as engineers in building high-quality products that are safe
for the public to use. The use of mathematics is an integral part of the engineer’s
work in other engineering disciplines, and so the software engineer should be able
to use mathematics to assist in the modelling or understanding of the behaviour or
properties of the proposed software system.

Software engineers need education6 on specification, design, turning designs
into programs, software inspections and testing. The education should enable the
software engineer to produce well-structured programs that are fit for purpose.

Parnas has argued that software engineers have responsibilities as professional
engineers.7 They are responsible for designing and implementing high-quality and
reliable software that is safe to use. They are also accountable for their decisions

5Parnas has made important contributions to computer science. He advocates a solid engineering
approach with the extensive use of classical mathematical techniques in software development. He
also introduced information hiding in the 1970s, which is now a part of object-oriented design.
6Software companies that are following approaches such as the CMM or ISO 9001 consider the
education and qualification of staff prior to assigning staff to performing specific tasks. The
appropriate qualifications and experience for the specific role are considered prior to appointing a
person to carry out the role. Many companies are committed to the education and continuous
development of their staff, and on introducing best practice in software engineering into their
organization.
7The ancient Babylonians used the concept of accountability, and they employed a code of laws
(known as the Hammurabi Code) c. 1750 BC. It included a law that stated that if a house collapsed
and killed the owner, then the builder of the house would be executed.

1.2 What Is Software Engineering? 5

and actions8 and have a responsibility to object to decisions that violate professional
standards. Engineers are required to behave professionally and ethically with their
clients. The membership of the professional engineering body requires the member
to adhere to the code of ethics9 of the profession. Engineers in other professions are
licensed, and therefore, Parnas argues that a similar licensing approach be adopted
for professional software engineers10 to provide confidence that they are competent
for the particular assignment. Professional software engineers are required to follow
best practice in software engineering and the defined software processes.11

Many software companies invest heavily in training, as the education and
knowledge of its staff are essential to delivering high-quality products and services.
Employees receive professional training related to the roles that they are per-
forming, such as project management, service management and software testing.
The fact that the employees are professionally qualified increases confidence in the
ability of the company to deliver high-quality products and services. A company
that pays little attention to the competence and continuous development of its staff
will obtain poor results and suffer a loss of reputation and market share.

1.3 Challenges in Software Engineering

The challenge in software engineering is to deliver high-quality software on time
and on budget to customers. The research done by the Standish group was dis-
cussed earlier in this chapter, and the results of their 1998 research (Fig. 1.2) on
project cost overruns in the USA indicated that 33% of projects are between 21 and

8However, it is unlikely that an individual programmer would be subject to litigation in the case of
a flaw in a program causing damage or loss of life. A comprehensive disclaimer of responsibility
for problems rather than a guarantee of quality accompany most software products. Software
engineering is a team-based activity involving many engineers in various parts of the project, and it
would be potentially difficult for an outside party to prove that the cause of a particular problem is
due to the professional negligence of a particular software engineer, as there are many others
involved in the process such as reviewers of documentation and code and the various test groups.
Companies are more likely to be subject to litigation, as a company is legally responsible for the
actions of their employees in the workplace, and a company is a wealthier entity than one of its
employees. The legal aspects of licensing software may protect software companies from
litigation. However, greater legal protection for the customer can be built into the contract between
the supplier and the customer for bespoke-software development.
9Many software companies have a defined code of ethics that employees are expected to adhere.
Larger companies will wish to project a good corporate image and to be respected worldwide.
10The British Computer Society (BCS) has introduced a qualification system for computer science
professionals that it used to show that professionals are properly qualified. The most important of
these is the BCS Information Systems Examination Board (ISEB) which allows IT professionals to
be qualified in service management, project management, software testing, and so on.
11Software companies that are following the CMMI or ISO 9001 standards will employ audits to
verify that the processes and procedures have been followed. Auditors report their findings to
management and the findings are addressed appropriately by the project team and affected
individuals.

6 1 Software Engineering

50% overestimate, 18% are between 51 and 100% overestimate and 11% of pro-
jects are between 101 and 200% overestimate.

The accurate estimation of project cost, effort and schedule is a challenge in
software engineering. Therefore, project managers need to determine how good
their estimation process actually is and to make appropriate improvements. The use
of software metrics is an objective way to do this, and improvements in estimation
will be evident from a reduced variance between estimated effort and actual effort.
The project manager will determine and report the actual effort versus estimated
effort and schedule for the project.

Risk management is an important part of project management, and the objective
is to identify potential risks early and throughout the project and to manage them
appropriately. The probability of each risk occurring and its impact is determined,
and the risks are managed during project execution.

Software quality needs to be properly planned to enable the project to deliver a
quality product. Flaws with poor-quality software lead to a negative perception of
the company and could potentially lead to damage to the customer relationship with
a subsequent loss of market share.

There is a strong economic case to building quality into the software, as less time
is spent in reworking defective software. The cost of poor quality (COPQ) should
be measured, and targets were set for its reductions. It is important that lessons are
learned during the project and acted upon appropriately. This helps to promote a
culture of continuous improvement.

A number of high-profile software failures are discussed in [12]. These include
the millennium bug (Y2K) problem; the floating point bug in the Intel micropro-
cessor; the European Space Agency Ariane-5 disaster. These failures led to
embarrassment for the organizations involved, as well as the associated cost of
replacement and correction.

The millennium bug was due to the use of two digits to represent dates rather
than four digits. Its solution involved finding and analysing all code that that had a
Y2K impact; planning and making the necessary changes; and verifying the

Fig. 1.2 Standish 1998 report—estimation accuracy

1.3 Challenges in Software Engineering 7

correctness of the changes. The worldwide cost of correcting the millennium bug is
estimated to have been in billions of dollars.

The Intel Corporation was slow to acknowledge the floating point problem in its
Pentium microprocessor, and in providing adequate information on the impact to its
customers. It incurred a large financial cost in replacing microprocessors for its
customers, as well as reputation damage. The Ariane-5 failure caused major
embarrassment and damage to the credibility of the European Space Agency (ESA).
Its maiden flight ended in failure on 4 June 1996, after a flight time of just 40 s.

These failures indicate that quality needs to be carefully considered when
designing and developing software. The effect of software failure may be large
costs in correcting and retesting the software, damage to the credibility and repu-
tation of the company, or even loss of life.

1.4 Software Processes and Life cycles

Organizations vary by size and complexity, and the processes employed will reflect
the nature of their business. The development of software involves many processes
such as those for defining requirements; processes for project estimation and
planning; processes for design, implementation, testing.

It is important that the processes employed are fit for purpose, and a key premise
in the software quality field is that the quality of the resulting software is influenced
by the quality and maturity of the underlying processes, and compliance to them.
Therefore, it is necessary to focus on the quality of the processes as well as the
quality of the resulting software.

There is, of course, little point in having high-quality processes unless their use
is institutionalized in the organization. That is, all employees need to follow the
processes consistently. This requires that the affected employees are trained on the
processes, and that process discipline is instilled by an appropriate audit strategy
that ensures compliance to them. Data will be collected to improve the process. The
software process assets in an organization generally consist of:

– A software development policy for the organization
– Process maps that describe the flow of activities
– Procedures and guidelines that describe the processes in more detail
– Checklists to assist with the performance of the process
– Templates for the performance of specific activities (e.g. design, testing)
– Training Materials

The processes employed to develop high-quality software generally include:

– Project management process
– Requirements process
– Design process

8 1 Software Engineering

– Coding process
– Peer-review process
– Testing process
– Supplier selection and management processes
– Configuration management process
– Audit process
– Measurement process
– Improvement process
– Customer support and maintenance processes

The software development process has an associated life cycle that consists of
various phases. There are several well-known life cycles employed such as the
waterfall model [13], the spiral model [14], the Rational Unified Process [15] and
the Agile methodology [16] which has become popular in recent years. The choice
of a particular software development life cycle is determined from the particular
needs of the specific project. The various life cycles are described in more detail in
the following sections.

1.4.1 Waterfall Life cycle

The waterfall model (Fig. 1.3) starts with requirements gathering and definition. It
is followed by the system specification (with the functional and non-functional
requirements), the design and implementation of the software, and comprehensive
testing. The software testing generally includes unit, system and user acceptance
testing.

The waterfall model is employed for projects where the requirements can be
identified early in the project life cycle or are known in advance. We are treating the
waterfall model as identical to the “V” life cycle model, with the left-hand side of
the “V” detailing requirements, specification, design and coding and the right-hand
side detailing unit tests, integration tests, system tests and acceptance testing. Each
phase has entry and exit criteria that must be satisfied before the next phase
commences. There are several variations to the waterfall model.

Fig. 1.3 Waterfall V
lifecycle model

1.4 Software Processes and Life cycles 9

Many companies employ a set of templates to enable the activities in the various
phases to be consistently performed. Templates may be employed for project
planning and reporting; requirements definition; design; testing and so on. These
templates may be based on the IEEE standards or on industrial best practice.

1.4.2 Spiral Life cycles

The spiral model (Fig. 1.4) was developed by Barry Boehm in the 1980s [14], and
it is useful for projects where the requirements are not fully known at project
initiation, or where the requirements evolve as a part of the development life cycle.
The development proceeds in a number of spirals, where each spiral typically
involves objectives and an analysis of the risks, updates to the requirements, design,
code, testing and a user review of the particular iteration or spiral.

The spiral is, in effect, a reusable prototype with the business analysts and the
customer reviewing the current iteration and providing feedback to the development
team. The feedback is analysed and used to plan the next iteration. This approach is
often used in Joint Application Development, where the usability and look and feel
of the application is a key concern. This is important in Web-based development
and in the development of a graphical user interface (GUI). The implementation of
part of the system helps in gaining a better understanding of the requirements of the

Fig. 1.4 Spiral lifecycle model … public domain

10 1 Software Engineering

system, and this feeds into subsequent development cycles. The process repeats
until the requirements and the software product are fully complete.

There are several variations of the spiral model including Rapid Application
Development (RAD); Joint Application Development (JAD) models; and the
Dynamic Systems Development Method (DSDM) model. The Agile methodology
(discussed in Sect. 1.4.4) has become popular in recent years, and it employs sprints
(or iterations) of two weeks duration to implement a number of user stories.
A sample spiral model is shown in Fig. 1.4.

There are other lifecycle models such as the iterative development process that
combines the waterfall and spiral lifecycle model. The Cleanroom approach is
discussed in Chap. 2, and it was developed by Harlan Mills at IBM. It includes a
phase for formal specification, and its approach to software testing is based on the
predicted usage of the software product, which enables a software reliability
measure to be calculated. The Rational Unified Process (RUP) was developed by
Rational, and it is discussed in the next section.

1.4.3 Rational Unified Process

The Rational Unified Process (RUP) was developed at the Rational Corporation
(now part of IBM) in the late 1990s [15]. It uses the unified modelling language
(UML) as a tool for specification and design, where UML is a visual modelling
language for software systems that provides a means of specifying, constructing and
documenting the object-oriented system. RUP was developed by James Rumbaugh,
Grady Booch and Ivar Jacobson, and it facilitates the understanding of the archi-
tecture and complexity of the system.

RUP is use-case driven, architecture centric, iterative and incremental and
includes cycles, phases, workflows, risk mitigation, quality control, project man-
agement and configuration control (Fig. 1.5). Software projects may be very
complex, and there are risks that requirements may be incomplete, or that the
interpretation of a requirement may differ between the customer and the project
team. RUP is a way to reduce risk in software engineering.

Requirements are gathered as use cases, where the use cases describe the
functional requirements from the point of view of the user of the system. They
describe what the system will do at a high level and ensure that there is an
appropriate focus on the user when defining the scope of the project. Use cases also
drive the development process, as the developers create a series of design and
implementation models that realize the use cases. The developers review each
successive model for conformance to the use-case model, and the test team verifies
that the implementation correctly implements the use cases.

The software architecture concept embodies the most significant static and
dynamic aspects of the system. The architecture grows out of the use cases and
factors such as the platform that the software is to run on deployment considera-
tions, legacy systems and the non-functional requirements.

1.4 Software Processes and Life cycles 11

RUP decomposes the work of a large project into smaller slices or mini-projects,
and each mini-project is an iteration that results in an increment to the product.
The iteration consists of one or more steps in the workflow and generally leads to
the growth of the product. If there is a need to repeat an iteration, then all that is lost
is the misdirected effort of one iteration, rather that the entire product. In other
words, RUP is a way to mitigate risk in software engineering.

1.4.4 Agile Development

There has been a massive growth of popularity among software developers in
lightweight methodologies like Agile. This is a software development methodology
that is more responsive to customer needs than traditional methods such as the
waterfall model. The waterfall development model is similar to a wide and
slow-moving value stream, and halfway through the project, 100% of the require-
ments are typically 50% done. However, for agile development, 50% of require-
ments are typically 100% done halfway through the project.

This methodology has a strong collaborative style of working, and its approach
includes:

– Aims to achieve a narrow fast-flowing value stream
– Feedback and adaptation employed in decision-making
– User stories and sprints are employed
– Stories are either done or not done (no such thing as 50% done)
– Iterative and incremental development is employed
– A project is divided into iterations
– An iteration has a fixed length (i.e. time boxing is employed)

Fig. 1.5 Rational Unified Process

12 1 Software Engineering

– Entire software development life cycle is employed for the implementation of
each story

– Change is accepted as a normal part of life in the Agile world
– Delivery is made as early as possible.
– Maintenance is seen as part of the development process
– Refactoring and evolutionary design Employed
– Continuous integration is employed
– Short cycle times
– Emphasis on quality
– Stand-up meetings
– Plan regularly
– Direct interaction preferred over documentation
– Rapid conversion of requirements into working functionality
– Demonstrate value early
– Early decision-making

Ongoing changes to requirements are considered normal in the Agile world, and
it is believed to be more realistic to change requirements regularly throughout the
project rather than attempting to define all of the requirements at the start of the
project. The methodology includes controls to manage changes to the requirements,
and good communication and early regular feedback is an essential part of the
process.

A story may be a new feature or a modification to an existing feature. It is
reduced to the minimum scope that can deliver business value, and a feature may
give rise to several stories. Stories often build upon other stories, and the entire
software development life cycle is employed for the implementation of each story.
Stories are either done or not done; that is, there is such thing as a story being 80%
done. The story is complete only when it passes its acceptance tests. Stories are
prioritized based on a number of factors including as follows:

– Business value of Story
– Mitigation of risk
– Dependencies on other stories.

The Scrum approach is an Agile method for managing iterative development,
and it consists of an outline planning phase for the project followed by a set of
sprint cycles (where each cycle develops an increment). Sprint planning is per-
formed before the start of the iteration, and stories are assigned to the iteration to fill
the available time. Each scrum sprint is of a fixed length (usually 2–4 weeks), and it
develops an increment of the system. The estimates for each story and their priority
are determined, and the prioritized stories are assigned to the iteration. A short

1.4 Software Processes and Life cycles 13

morning stand-up meeting is held daily during the iteration and attended by the
scrum master, the project manager12 and the project team. It discusses the progress
made the previous day, problem reporting and tracking, and the work planned for
the day ahead. A separate meeting is held for issues that require more detailed
discussion.

Once the iteration is complete, the latest product increment is demonstrated to an
audience including the product owner. This is to receive feedback and to identify
new requirements. The team also conducts a retrospective meeting to identify what
went well and what went poorly during the iteration. This is to for continuous
improvement for future iterations. Planning for the next sprint then commences.
The scrum master is a facilitator who arranges the daily meetings and ensures that
the scrum process is followed. The role involves removing roadblocks so that the
team can achieve their goals, and communicating with other stakeholders.

Agile employs pair programming and a collaborative style of working with the
philosophy that two heads are better than one. This allows multiple perspectives in
decision-making and a broader understanding of the issues.

Software testing is very important, and Agile generally employs automated
testing for unit, acceptance, performance and integration testing. Tests are run
frequently with the goal of catching programming errors early. They are generally
run on a separate build server to ensure that all dependencies are checked. Tests are
rerun before making a release. Agile employs test-driven development with tests
written before the code. The developers write code to make a test pass with ideally
developers only coding against failing tests. This approach forces the developer to
write testable code.

Refactoring is employed in Agile as a design and coding practice. The objective
is to change how the software is written without changing what it does. Refactoring
is a tool for evolutionary design where the design is regularly evaluated, and
improvements are implemented as they are identified. It helps in improving the
maintainability and readability of the code and in reducing complexity. The auto-
mated test suite is essential in showing that the integrity of the software is main-
tained following refactoring.

Continuous integration allows the system to be built with every change. Early
and regular integration allows early feedback to be provided. It also allows all of the
automated tests to be run thereby identifying problems earlier. Agile is discussed in
more detail in Chap. 18 of [7].

1.5 Activities in Waterfall Life cycle

The waterfall software development life cycle consists of various activities
including as follows:

12Agile teams are self-organizing, and the project manager role is generally not employed for small
projects (<20 staff).

14 1 Software Engineering

• Business (User) requirements definition
• Specification of system requirements
• Design
• Implementation
• Unit testing
• System testing
• UAT testing
• Support and maintenance

These activities are discussed in the following sections, and the description is
specific to the non-Agile world.

1.5.1 Business Requirements Definition

The business (user) requirements specify what the customer wants and define what
the software system is required to do (as distinct from how this is to be done). The
requirements are the foundation for the system, and if they are incorrect, then the
implemented system will be incorrect. Prototyping may be employed to assist in
the definition and validation of the requirements. The process of determining the
requirements, analysing and validating them and managing them throughout the
project life cycle is termed requirements engineering.

The user requirements are determined from discussions with the customer to
determine their actual needs, and they are then refined into the system requirements,
which state the functional and non-functional requirements of the system. The
specification of the user requirements needs to be unambiguous to ensure that all
parties involved in the development of the system share a common understanding
of what is to be developed and tested.

Requirements gathering involve meetings with the stakeholders to gather all
relevant information for the proposed product. The stakeholders are interviewed,
and requirements workshops conducted to elicit the requirements from them. An
early working system (prototype) is often used to identify gaps and misunder-
standings between developers and users. The prototype may serve as a basis for
writing the specification.

The requirements workshops are used to discuss and prioritize the requirements,
as well as identifying and resolving any conflicts between them. The collected
information is consolidated into a coherent set of requirements. Changes to the
requirements may occur during the project, and these need to be controlled. It is
essential to understand the impacts (e.g. schedule, budget and technical) of a pro-
posed change to the requirements prior to its approval.

Requirements verification is concerned with ensuring that the requirements are
properly implemented (i.e. building it right) in the design and implementation.
Requirements validation is concerned with ensuring that the right requirements are
defined (building the right system), and that they are precise, complete and reflect
the actual needs of the customer.

1.5 Activities in Waterfall Life cycle 15

The requirements are validated by the stakeholders to ensure that they are
actually those desired and to establish their feasibility. This may involve several
reviews of the requirements until all stakeholders are ready to approve the
requirements document. Other validation activities include reviews of the prototype
and the design, and user acceptance testing.

The requirements for a system are generally documented in a natural language
such as “English”. Other notations that are employed include the visual modelling
language UML [17] and formal specification languages such as VDM or Z for the
safety critical field.

The Agile software development methodology was discussed earlier, and it
argues that as requirements change so quickly that a requirements document is
unnecessary, since such a document would be out of date as soon as it was written.

1.5.2 Specification of System Requirements

The specification of the system requirements of the product is essentially a state-
ment of what the software development organization will provide to meet the
business (user) requirements. That is, the detailed business requirements are a
statement of what the customer wants, whereas the specification of the system
requirements is a statement of what will be delivered by the software development
organization.

It is essential that the system requirements are valid with respect to the user
requirements, and they are reviewed by the stakeholders to ensure their validity.
Traceability may be employed to show that the business requirements are addressed
by the system requirements.

There are two categories of system requirements: namely functional and
non-functional requirements. The functional requirements define the functionality
that is required of the system, and it may include screenshots, report layouts or
desired functionality specified as use cases. The non-functional requirements will
generally include security, reliability, availability, performance and portability
requirements, as well as usability and maintainability requirements.

1.5.3 Design

The design of the system consists of engineering activities to describe the archi-
tecture or structure of the system, as well as activities to describe the algorithms and
functions required to implement the system requirements. It is a creative process
concerned with how the system will be implemented, and its activities include
architecture design, interface design and data structure design. There are often
several possible design solutions for a particular system, and the designer will need
to decide on the most appropriate solution.

The design may be specified in various ways such as graphical notations that
display the relationships between the components making up the design. The

16 1 Software Engineering

notation may include flowcharts or various UML diagrams such as sequence dia-
grams, state charts. Program description languages or pseudo code may be
employed to define the algorithms and data structures that are the basis for
implementation.

Function-oriented design is mainly historical, and it involves starting with a
high-level view of the system and refining it into a more detailed design. The
system state is centralized and shared between the functions operating on that state.

Object-oriented design has become popular, and it is based on the concept of
information hiding developed by Parnas [18]. The system is viewed as a collection
of objects rather than functions, with each object managing its own state infor-
mation. The system state is decentralized, and an object is a member of a class. The
definition of a class includes attributes and operations on class members, and these
may be inherited from superclasses. Objects communicate by exchanging
messages.

It is essential to verify and validate the design with respect to the system
requirements, and this will be done by traceability of the design to the system
requirements and design reviews.

1.5.4 Implementation

This phase is concerned with implementing the design in the target language and
environment (e.g. C++ or Java), and it involves writing or generating the actual
code. The development team divides up the work to be done, with each programmer
responsible for one or more modules. The coding activities often include code
reviews or walk-throughs to ensure that quality code is produced, and to verify its
correctness. The code reviews will verify that the source code conforms to the
coding standards and that maintainability issues are addressed. They will also verify
that the code produced is a valid implementation of the software design.

Software reuse provides a way to speed up the development process. Compo-
nents or objects that may be reused need to be identified and handled accordingly.
The implemented code may use software components that have either being
developed internally or purchased off the shelf. Open-source software has become
popular in recent years, and it allows software developed by others to be used
(under an open-source licence) in the development of applications.

The benefits of software reuse include increased productivity and a faster time to
market. There are inherent risks with customized-off-the shelf (COTS) software, as
the supplier may decide to no longer support the software, or there is no guarantee
that software that has worked successfully in one domain will work correctly in a
different domain. It is therefore important to consider the risks as well as the
benefits of software reuse and open-source software.

1.5 Activities in Waterfall Life cycle 17

1.5.5 Software Testing

Software testing is employed to verify that the requirements have been correctly
implemented, and that the software is fit for purpose, as well as identifying defects
present in the software. There are various types of testing that may be conducted
including unit testing, integration testing, system testing, performance testing and
user acceptance testing. These are described below:

Unit Testing
Unit testing is performed by the programmer on the completed unit (or module),
and prior to its integration with other modules. These tests are written by the
programmer, and the objective is to show that the code satisfies the design. The unit
test case is generally documented, and it should include the test objective, the test
procedure and the expected result.

Code coverage and branch coverage metrics are often generated to give an
indication of how comprehensive the unit testing has been. These metrics provide
visibility into the number of lines of code executed as well as the branches covered
during unit testing.

The developer executes the unit tests, records the results, corrects any identified
defects and retests the software. Test-driven development (TDD) has become
popular (e.g. in the Agile world), and this involves writing the unit test case (and
possibly other test cases) before the code, and the code is written to pass the defined
test cases.

Integration Test
The development team performs this type of testing on the integrated system, once
all of the individual units work correctly in isolation. The objective is to verify that
all of the modules and their interfaces work correctly together, and to identify and
resolve any issues. Modules that work correctly in isolation may fail when inte-
grated with other modules. This type of testing is generally performed by the
developers.

System Test
The purpose of system testing is to verify that the implementation is valid with
respect to the system requirements. It involves the specification of system test cases,
and their execution will verify that the system requirements have been correctly
implemented. An independent test group generally conducts this type of testing,
and the system tests are traceable to the system requirements.

Any system requirements that have been incorrectly implemented will be
identified, and defects logged and reported to the developers. The test group will
verify that the new version of the software is correct, and regression testing is
conducted to verify system integrity. System testing may include security testing,
usability testing and performance testing.

18 1 Software Engineering

The preparation of the test environment requires detailed planning, and it may
involve ordering special hardware and tools. It is important that the test environ-
ment is set up early to allow the timely execution of the test cases.

Performance Test
The purpose of performance testing is to ensure that the performance of the system
is within the bounds specified by the non-functional requirements. It may include
load performance testing, where the system is subjected to heavy loads over a long
period of time, and stress testing, where the system is subjected to heavy loads
during a short time interval.

Performance testing often involves the simulation of many users using the
system and involves measuring the response times for various activities. Test tools
are employed to simulate a large number of users and heavy loads. It is also
employed to determine whether the system is scalable to support future growth.

User Acceptance Test
UAT testing is usually performed under controlled conditions at the customer site,
and its operation will closely resemble the real-life behaviour of the system. The
customer will see the product in operation and will judge whether or not the system
is fit for purpose.

The objective is to demonstrate that the product satisfies the business require-
ments and meets the customer expectations. Upon its successful completion, the
customer is happy to accept the product.

1.5.6 Support and Maintenance

This phase continues after the release of the software product to the customer.
Software systems often have a long lifetime (e.g. consider the millions of lines of
legacy COBOL programs), and the software needs to be continuously enhanced over
its lifetime to meet the evolving needs of the customers. This may involve regular
new releases with new functionality and corrections to known defects.

Any problems that the customer notes with the software are reported as per the
customer support and maintenance agreement. The support issues will require
investigation, and the issue may be a defect in the software, an enhancement to the
software, or due to a misunderstanding. The support and maintenance team will
identify the causes of any identified defects and will implement an appropriate
solution to resolve. Testing is conducted to verify that the solution is correct, and

1.5 Activities in Waterfall Life cycle 19

that the changes made have not adversely affected other parts of the system. Mature
organizations will conduct post-mortems to learn lessons from the defect13 and will
take corrective action to prevent a reoccurrence.

The presence of a maintenance phase suggests an acceptance of the reality that
problems with the software will be identified postrelease. The goal of building a
correct and reliable software product the first time is very difficult to achieve, and
the customer is always likely to find some issues with the released software product.
It is accepted today that quality needs to be built into each step in the development
process, with the role of software inspections and testing to identify as many defects
as possible prior to release, and minimize the risk that that serious defects will be
found postrelease.

The more effective the in-phase inspections of deliverables, the higher the
quality of the resulting software, with a corresponding reduction in the number of
defects. The testing group plays a key role in verifying that the system is correct,
and in providing confidence that the software is fit for purpose and ready to be
released. The approach to software correctness involves testing and retesting, until
the testing group believes that all defects have been eliminated. Dijkstra [19]
argued that:

Testing a program demonstrates that it contains errors, never that it is correct.

That is, irrespective of the amount of time spent on testing, it can never be said
with absolute confidence that all defects have been found in the software. Testing
provides increased confidence that the program is correct, and statistical techniques
may be employed to give a measure of the software reliability.

Many software companies may consider one defect per thousand lines of code
(KLOC) to be reasonable quality. However, if the system contains one million lines
of code, this is equivalent to a thousand postrelease defects, which is unacceptable.

Some mature organizations have a quality objective of three defects per million
lines of code, which was introduced by Motorola as part of its six-sigma (6r)
program. It was originally applied it to its manufacturing businesses and subse-
quently applied to its software organizations. The goal is to reduce variability in
manufacturing processes and to ensure that the processes performed within strict
process control limits.

1.6 Software Inspections

Software inspections are used to build quality into software products. There are a
number of well-known approaches such as the Fagan methodology [20], Gilb’s
approach [10] and Prince 2’s approach.

13This is essential for serious defects that have caused significant inconvenience to customers (e.g.
a major telecoms outage). The software development organization will wish to learn lessons to
determine what went wrong in its processes that prevented the defect from been identified during
peer reviews and testing. Actions to prevent a reoccurrence will be identified and implemented.

20 1 Software Engineering

Fagan inspections were developed by Michael Fagan of IBM. It is a seven-step
process that identifies and removes errors in work products. The process mandates
that requirement documents, design documents, source code and test plans are all
formally inspected by experts independent of the author of the deliverable to ensure
quality.

There are various roles defined in the process including the moderator who
chairs the inspection. The reader’s responsibility is to read or paraphrase the par-
ticular deliverable, and the author is the creator of the deliverable and has a special
interest in ensuring that it is correct. The tester role is concerned with the test
viewpoint.

The inspection process will consider whether the design is correct with respect to
the requirements and whether the source code is correct with respect to the design.
Software inspections play an important role in building quality into software and in
reducing the cost of poor quality in the organization.

1.7 Software Project Management

The timely delivery of quality software requires good management and engineering
processes. Software projects have a history of being delivered late or over budget,
and good project management practices include the following activities:

– Estimation of cost, effort and schedule for the project
– Identifying and managing risks
– Preparing the project plan
– Preparing the initial project schedule and key milestones
– Obtaining approval for the project plan and schedule
– Staffing the project
– Monitoring progress, budget, schedule, effort, risks, issues, change requests and

quality
– Taking corrective action
– Re-planning and rescheduling
– Communicating progress to affected stakeholders
– Preparing status reports and presentations

The project plan will contain or reference several other plans such as the project
quality plan, the communication plan, the configuration management plan and the
test plan.

Project estimation and scheduling are difficult as often software projects are
breaking new ground and differ from previous projects. That is, previous estimates
may often not be a good basis for estimation for the current project. Often, unan-
ticipated problems can arise for technically advanced projects, and the estimates

1.6 Software Inspections 21

may often be optimistic. Gantt charts are often employed for project scheduling,
and these show the work breakdown for the project, as well as task dependencies
and allocation of staff to the various tasks.

The effective management of risk during a project is essential to project success.
Risks arise due to uncertainty, and the risk management cycle involves14 risk
identification; risk analysis and evaluation; identifying responses to risks; selecting
and planning a response to the risk; and risk monitoring. The risks are logged, and
the likelihood of each risk arising and its impact is then determined. Each risk is
assigned an owner and an appropriate response determined.

1.8 CMMI Maturity Model

The CMMI is a framework to assist an organization in the implementation of best
practice in software and systems engineering. It is an internationally recognized
model for software process improvement and assessment and is used worldwide by
thousands of organizations. It provides a solid engineering approach to the devel-
opment of software and supports the definition of high-quality processes for the
various software engineering and management activities.

It was developed by the Software Engineering Institute (SEI) who adapted the
process improvement principles used in the manufacturing field to the software
field. They developed the original CMM model and its successor the CMMI.
The CMMI states what the organization needs to do to mature its processes rather
than how this should be done.

The CMMI consists of five maturity levels with each maturity level consisting of
several process areas. Each process area consists of a set of goals, and these goals
are implemented by practices related to that process area. Level two is focused on
management practices; level three is focused on engineering and organization
practices; level four is concerned with ensuring that key processes are performing
within strict quantitative limits; level five is concerned with continuous process
improvement. Maturity levels may not be skipped in the staged representation of
the CMMI, as each maturity level is the foundation for the next level. The CMMI
and Agile are compatible, and CMMI v1.3 supports Agile software development.

The CMMI allows organizations to benchmark themselves against other orga-
nizations. This is done by a formal SCAMPI appraisal conducted by an authorized
lead appraiser. The results of the appraisal are generally reported back to the SEI,
and there is a strict qualification process to become an authorized lead appraiser.
An appraisal is useful in verifying that an organization has improved, and it enables
the organization to prioritize improvements for the next improvement cycle.
The CMMI is discussed in more detail in [21].

14These are the risk management activities in the Prince 2 methodology.

22 1 Software Engineering

1.9 Formal Methods

Dijkstra and Hoare have argued that the way to develop correct software is to derive
the program from its specifications using mathematics, and to employ mathematical
proof to demonstrate its correctness with respect to the specification. This offers a
rigorous framework to develop programs adhering to the highest quality constraints.
However, in practice, mathematical techniques have proved to be cumbersome to
use, and their widespread use in industry is unlikely at this time.

The safety critical area is one domain to which mathematical techniques have
been successfully applied. There is a need for extra rigour in this field, and
mathematical techniques can demonstrate the presence or absence of certain
desirable or undesirable properties (e.g. “when a train is in a level crossing, then the
gate is closed”).

Spivey [22] defines a “formal specification” as the use of mathematical notation
to describe in a precise way the properties which an information system must have,
without unduly constraining the way in which these properties are achieved. It
describes what the system must do, as distinct from how it is to be done. This
abstraction away from implementation enables questions about what the system
does to be answered, independently of the detailed code. Further, the unambiguous
nature of mathematical notation avoids the problem of ambiguity in an imprecisely
worded natural language description of a system.

The formal specification thus becomes the key reference point for the different
parties concerned with the construction of the system and is a useful way of
promoting a common understanding for all those concerned with the system. The
term “formal methods” is used to describe a formal specification language and a
method for the design and implementation of computer systems.

The specification is written precisely in a mathematical language. The derivation
of an implementation from the specification may be achieved via stepwise refine-
ment. Each refinement step makes the specification more concrete and closer to the
actual implementation. There is an associated proof obligation that the refinement
be valid, and that the concrete state preserves the properties of the more abstract
state. Thus, assuming the original specification is correct and the proofs of cor-
rectness of each refinement step are valid, then there is a very high degree of
confidence in the correctness of the implemented software.

Formal methods have been applied to a diverse range of applications, including
circuit design, Artificial Intelligence, specification of standards, specification and
verification of programs. They are described in more detail in the remainder of the
book.

1.8 CMMI Maturity Model 23

1.10 Review Questions

1. Discuss the research results of the Standish group on IT project delivery?
2. What are the main challenges in software engineering?
3. Describe various software life cycles.
4. Discuss the advantages and disadvantages of Agile.
5. Describe the purpose of the CMMI? What are the benefits?
6. Describe the main activities in software inspections.
7. Describe the main activities in software testing.
8. Describe the main activities in project management?
9. What are the advantages and disadvantages of formal methods?

1.11 Summary

The birth of software engineering was at the NATO conference held in 1968 in
Germany. This conference highlighted the problems that existed in the software
sector in the late 1960s, and the term “software crisis” was coined to refer to these.
This led to the realization that programming is quite distinct from science and
mathematics, and that software engineers need to be properly trained to enable them
to build high-quality products that are safe to use.

The Standish group conducts research on the extent of problems with the
delivery of projects on time and budget. Their research indicates that it remains a
challenge to deliver projects on time, on budget and with the right quality.

Programmers are like engineers in the sense that they build products. Therefore,
programmers need to receive an appropriate education in engineering as part of
their training. The education of traditional engineers includes training on product
design and an appropriate level of mathematics.

Software engineering involves multi-person construction of multi-version pro-
grams. It is a systematic approach to the development and maintenance of the
software, and it requires a precise statement of the requirements of the software
product, and then the design and development of a solution to meet these
requirements. It includes methodologies to design, develop, implement and test
software as well as sound project management, quality management and configu-
ration management practices. Support and maintenance of the software needs to be
properly addressed. There is a more detailed account of software engineering in
“Concise Guide to Software Engineering” [8].

24 1 Software Engineering

References

1. F. Brooks, The Mythical Man Month (Addison Wesley, 1975)
2. I.N. Buxton, P. Naur, B. Randell, Software Engineering. Petrocelli. 1975. Report on two

NATO Conferences held in Garmisch,Germany (October1968) and Rome, Italy (October
1969)

3. G. O’Regan, Guide to Discrete Mathematics (Springer, 2016)
4. Standish Group Research Note, Estimating: Art or Science. Featuring Morotz Cost Expert

(1999)
5. F. Brooks, No Silver Bullet. Essence and Accidents of Software Engineering. Information

Processing (Elsevier, Amsterdam, 1986)
6. G. O’Regan, Introduction to Software Process Improvement (Springer, 2010)
7. G. O’Regan, Introduction to Software Quality (Springer, 2014)
8. G. O’Regan, Concise Guide to Software Engineering (Springer, 2017)
9. M. Fagan, Design and Code Inspections to Reduce Errors in Software Development. IBM

Syst. J. 15(3) (1976)
10. T. Gilb, D. Graham, Software Inspections. (AddisonWesley, 1994)
11. Office of Government Commerce, Managing Successful Projects with PRINCE2 (2004)
12. G. O’Regan, Introduction to Software Quality (Springer, 2014)
13. W.Royce, in The Software Lifecycle Model (Waterfall Model). Proceedings of WESTCON,

August 1970
14. B. Boehm, A spiral model for software development and enhancement. Computer (1988)
15. I. Jacobson, G. Booch, J. Rumbaugh, The Unified Software Development Process

(Addison-Wesley, 1999)
16. K. Beck, Extreme Programming Explained. Embrace Change (Addison Wesley, 2000)
17. I. Jacobson, G. Booch, J. Rumbaugh, The Unified Software Modeling Language User Guide

(Addison-Wesley, 1999)
18. D. Parnas, On the criteria to be used in decomposing systems into modules. Commun. ACM,

15(12) (1972)
19. E.W. Dijkstra, Structured Programming. (Academic Press, 1972)
20. M. Fagan, Design and code inspections to reduce errors in software development. IBM Syst.

J. 15(3) (1976)
21. MB Chrissis, M. Conrad, S. Shrum, in CMMI. Guidelines for Process Integration and

Product Improvement, 3rdedn. SEI Series in Software Engineering (Addison Wesley, 2011)
22. J.M. Spivey, in The Z Notation. A Reference Manual. International Series in Computer

Science (Prentice Hall, 1992)

1.11 Summary 25

2Software Reliability and Dependability

Key Topics

Software reliability
Software reliability model
System availability
Dependability
Computer security
Safety critical systems
Cleanroom

2.1 Introduction

This chapter gives an introduction to the important area of software reliability and
dependability, and it discusses important topics in software engineering such as
software reliability; software availability; software reliability models; the Clean-
room methodology; dependability and its various dimensions; security engineering;
and safety critical systems.

Software reliability is the probability that the program works without failure for
a period of time, and it is usually expressed as the mean time to failure. It is
different from hardware reliability, in that hardware is characterized by components
that physically wear out, whereas software is intangible and software failures are
due to design and implementation errors. In other words, software is either correct
or incorrect when it is designed and developed, and it does not physically deteri-
orate with time.

© Springer International Publishing AG 2017
G. O’Regan, Concise Guide to Formal Methods, Undergraduate Topics
in Computer Science, DOI 10.1007/978-3-319-64021-1_2

27

Harlan Mills and others at IBM developed the Cleanroom approach to software
development, and the process is described in [1]. It involves the application of
statistical techniques to calculate a software reliability measure based on the
expected usage of the software.1 This involves executing tests chosen from the
population of all possible uses of the software in accordance with the probability of
its expected use. Statistical usage testing is more effective in finding defects that
lead to failure than coverage testing.

Models are simplifications of the reality, and a good model allows accurate
predictions of future behaviour to be made. A model is judged effective if there is
good empirical evidence to support it, and a good software reliability model will
have good theoretical foundations and realistic assumptions. The extent to which
the software reliability model can be trusted depends on the accuracy of its pre-
dictions, and empirical data will need to be gathered to judge its accuracy. A good
software reliability model will give good predictions of the reliability of the
software.

It is essential that software that is widely used is dependable, which means that
the software is available whenever required, and that it operates safely and reliably
without any adverse side effects. Today, billions of computers are connected to the
Internet, and this has led to a growth in attacks on computers. It is essential that
computer security is carefully considered, and developers need to be aware of the
threats facing a system and techniques to eliminate them. The developers need to be
able to develop secure systems that are able to deal with and recover from external
attacks.

2.2 Software Reliability

The design and development of high-quality software has become increasingly
important for society. The hardware field has been very successful in developing
sound reliability models, which allow useful predictions of how long a hardware
component (or product) will function to be provided. This has led to a growing
interest in the software field in the development of a sound software reliability
model. Such a model would provide a sound mechanism to predict the reliability of
the software prior to its deployment at the customer site, as well as confidence that
the software is fit for purpose and safe to use.

Definition 2.1 (Software Reliability)
Software reliability is the probability that the program works without failure for

a specified length of time, and it is a statement of the future behaviour of the
software. It is generally expressed in terms of the mean time to failure (MTTF) or
the mean time between failure (MTBF).

1The expected usage of the software (or operational profile) is a quantitative characterization
(usually based on probability) of how the system will be used.

28 2 Software Reliability and Dependability

Statistical sampling techniques are often employed to predict the reliability of
hardware, as it is not feasible to test all items in a production environment. The
quality of the sample is then used to make inferences on the quality of the entire
population, and this approach is effective in manufacturing environments where
variations in the manufacturing process often lead to defects in the physical
products.

There are similarities and differences between hardware and software reliability.
A hardware failure generally arises due to a component wearing out due to its age,
and often a replacement component is required. Many hardware components are
expected to last for a certain period of time, and the variation in the failure rate of a
hardware component is often due to variations in the manufacturing process, and to
the operating environment of the component. Good hardware reliability predictors
have been developed, and each hardware component has an expected mean time to
failure. The reliability of a product may then be determined from the reliability of
the individual components.

Software is an intellectual undertaking involving a team of designers and pro-
grammers. It does not physically wear out as such, and software failures manifest
themselves from particular user inputs. Each copy of the software code is identical,
and the software code is either correct or incorrect. That is, software failures are due
to design and implementation errors, rather than to the software physically wearing
out over time. The software community has not yet developed a sound software
reliability predictor model.

The software population to be sampled consists of all possible execution paths of
the software, and since this is potentially infinite, it is generally not possible to
perform exhaustive testing. The way in which the software is used (i.e. the inputs
entered by the users) will impact upon its perceived reliability. Let If represent the
fault set of inputs (i.e. if 2If if and only if the input of if by the user leads to failure).
The randomness of the time to software failure is due to the unpredictability in the
selection of an input if 2If. It may be that the elements in If are inputs that are rarely
used, and therefore, the software will be perceived as reliable.

Statistical usage testing may be used to make predictions on the future perfor-
mance and reliability of the software. This requires an understanding of the
expected usage profile of the system, as well as the population of all possible usages
of the software. The sampling is done in accordance with the expected usage
profile, and a software reliability measure is calculated.

2.2.1 Software Reliability and Defects

The release of an unreliable software product may result in damage to property or
injury (including loss of life) to a third party. Consequently, companies need to be
confident that their software products are fit for use prior to their release. The
project team needs to conduct extensive inspections and testing of the software, as
well as considering all associated risks prior to its release.

2.2 Software Reliability 29

Objective product quality criteria may be set (e.g. 100% of tests performed and
passed) that must be satisfied prior to the release of the product. This provides a
degree of confidence that the software has the desired quality, and is fit for purpose.
However, these results are historical in the sense that they are a statement of past
and present quality. The question is whether the past behaviour and performance
provides a sound indication of future behaviour.

Software reliability models are an attempt to predict the future reliability of the
software, and to assist in deciding on whether the software is ready for release.
A defect does not always result in a failure, as it may occur on a rarely used
execution path. Studies indicate that many observed failures arise from a small
proportion of the existing defects.

Adam’s 1984 case study [2] indicates that over 33% of the defects led to an
observed failure with mean time to failure greater than 5000 years, whereas less
than 2% of defects led to an observed failure with a mean time to failure of less than
5 years. This suggests that a small proportion of defects often lead to almost all of
the observed failures (Table 2.1).

The analysis shows that 61.6% of all fixes (groups 1 and 2) were for failures that
will be observed less than once in 1580 years of expected use, and that these
constitute only 2.9% of the failures observed by typical users. On the other hand,
groups 7 and 8 constitute 53.7% of the failures observed by typical users and only
1.4% of fixes.

This case study showed that coverage testing is not cost effective in increasing
MTTF. Usage testing, in contrast, would allocate 53.7% of the test effort to fixes
that will occur 53.7% of the time for a typical user. Harlan Mills has argued [3] that
the data in the table shows that usage testing is 21 times more effective than
coverage testing.

There is a need to be careful with reliability growth models, as there is no
tangible growth in reliability unless the corrected defects are likely to manifest
themselves as a failure.2 Many existing software reliability growth models assume
that all remaining defects in the software have an equal probability of failure, and
that the correction of a defect leads to an increase in software reliability. These
assumptions are questionable.

Table 2.1 Adam’s 1984 study of software failures of IBM products

Rare Frequent

1 2 3 4 5 6 7 8

MTTF (years) 5000 1580 500 158 50 15.8 5 1.58

Avg % fixes 33.4 28.2 18.7 10.6 5.2 2.5 1.0 0.4

Prob failure 0.008 0.021 0.044 0.079 0.123 0.187 0.237 0.300

2We are assuming that the defect has been corrected perfectly with no new defects introduced by
the changes made.

30 2 Software Reliability and Dependability

The defect count and defect density may be poor predictors of operational
reliability, and an emphasis on removing a large number of defects from the
software may not be sufficient to achieve high reliability.

The correction of defects in the software leads to a newer version of the soft-
ware, and many software reliability models assume reliability growth; i.e. the new
version is more reliable than the older version as several identified defects have
been corrected. However, in some sectors such as the safety critical field, the view
is that the new version of a program is a new entity, and that no inferences may be
drawn until further investigation has been done. There are a number of ways to
interpret the relationship between the new version of the software and the older
version (Table 2.2).

The safety critical industry (e.g. the nuclear power industry) takes the conser-
vative viewpoint that any change to a program creates a new program. The new
program is therefore required to demonstrate its reliability, and so extensive testing
needs to be performed.

2.2.2 Cleanroom Methodology

Harlan Mills and others at IBM developed the Cleanroom methodology as a way to
develop high-quality software [3]. Cleanroom helps to ensure that the software is
released only when it has achieved the desired quality level, and the probability of
zero defects is very high.

The way in which the software is used will impact on its perceived quality and
reliability. Failures will manifest themselves on certain input sequences, and as the
input sequences will vary among users, the result will be different perceptions of the
reliability of the software among the users. The knowledge of how the software will
be used allows the software testing to focus on verifying the correctness of common
everyday tasks carried out by users.

Therefore, it is important to determine the operational profile of the users to
enable effective software testing to be performed. This may be difficult to determine
and could change over time, as users may potentially change their behaviour as
their needs evolve. The determination of the operational profile involves identifying
the common operations to be performed, and the probability of each operation
being performed.

Table 2.2 New and old
version of software

Similarities and differences between new/old version

• The new version of the software is identical to the previous
version except that the identified defects have been corrected

• The new version of the software is identical to the previous
version, except that the identified defects have been corrected,
but the developers have introduced some new defects

• No assumptions can be made about the behaviour of the new
version of the software until further data is obtained

2.2 Software Reliability 31

Cleanroom employs statistical usage testing rather than coverage testing, and
this involves executing tests chosen from the population of all possible uses of the
software in accordance with the probability of its expected use. The software
reliability measure is calculated by statistical techniques based on the expected
usage of the software, and Cleanroom provides a certified mean time to failure of
the software.

Coverage testing involves designing tests that cover every path through the
program, and this type of testing is as likely to find a rare execution failure as well
as a frequent execution failure. However, it is essential to find failures that occur on
frequently used parts of the system.

The advantage of usage testing (that matches the actual execution profile of the
software) is that it has a better chance of finding execution failures on frequently
used parts of the system. This helps to maximize the expected mean time to failure
of the software.

The Cleanroom software development process and calculation of the software
reliability measure is described in [1], and the Cleanroom development process
enables engineers to deliver high-quality software on time and on budget. Some of
the benefits of the use of Cleanroom on projects at IBM are described in [3] and
summarized in Table 2.3.

2.2.3 Software Reliability Models

Models are simplifications of the reality, and a good model allows accurate pre-
dictions of future behaviour to be made. It is important to determine the adequacy of
the model, and this is done by model exploration, and determining the extent to
which it explains the actual manifested behaviour, as well as the accuracy of its
predictions.

A model is judged effective if there is good empirical evidence to support it, and
more accurate models are sought to replace inadequate models. Models are often
modified (or replaced) over time, as further facts and observations lead to

Table 2.3 Cleanroom results in IBM

Project Results

Flight control project (1987) 33KLOC Completed ahead of schedule
Error-fix effort reduced by factor of five
2.5 errors KLOC before any execution

Commercial product (1988) Deployment failures of 0.1/KLOC
Certification testing failures 3.4/KLOC
Productivity 740 LOC/month

Satellite Control (1989) 80 KLOC
(partial cleanroom)

50% improvement in quality
Certification testing failures of 3.3/KLOC
Productivity 780 LOC/month
80% improvement in productivity

Research project (1990) 12 KLOC Certified to 0.9978 with 989 test cases

32 2 Software Reliability and Dependability

aberrations that cannot be explained with the current model. A good software
reliability model will have the following characteristics (Table 2.4).

There are several software reliability predictor models employed (Table 2.5).
Some of them just compute defect counts rather than estimating software reliability
in terms of mean time to failure. They may be categorized into:

• Size and Complexity Metrics
These are used to predict the number of defects that a system will reveal in
operation or testing.

• Operational Usage Profile
These predict failure rates are based on the expected operational usage profile of
the system. The number of failures encountered is determined, and the software
reliability is predicted (e.g. Cleanroom and its prediction of the MTTF).

• Quality of the Development Process
These predict failure rates are based on the process maturity of the software
development process in the organization (e.g. CMMI maturity).

The extent to which the software reliability model can be trusted depends on the
accuracy of its predictions, and empirical data will need to be gathered to make a
judgment. It may be acceptable to have a little inaccuracy during the early stages of
prediction, provided the predictions of operational reliability are close to the
observations. A model that gives overly optimistic results is termed “optimistic”,
whereas a model that gives overly pessimistic results is termed “pessimistic”.

The assumptions in the reliability model need to be examined to determine
whether they are realistic. Several software reliability models have questionable
assumptions such as:

• All defects are corrected perfectly.
• Defects are independent of one another.
• Failure rate decreases as defects are corrected.
• Each fault contributes the same amount to the failure rate.

Table 2.4 Characteristics of
good software reliability
model

Good theoretical foundation

Realistic assumptions

Good empirical support

As simple as possible (Ockham’s Razor)

Trustworthy and accurate

2.2 Software Reliability 33

Table 2.5 Software reliability models

Model Description Comments

Jelinski/Moranda
model

The failure rate is a Poisson processa

and is proportional to the current
defect content of program. The
initial defect count is N; the initial
failure rate is Nu; it decreases to
(N − 1)u after the first fault is
detected and eliminated, and so on.
The constant u is termed the
proportionality constant

Assumes defects are corrected
perfectly, and no new defects are
introduced
Assumes each fault contributes the
same amount to failure rate

Littlewood/Verrall
model

Successive execution time between
failures is independent
exponentially distributed random
variablesb. Software failures are the
result of the particular inputs, and
faults are introduced from the
correction of defects

Does not assume perfect correction
of defects

Seeding and
tagging

This is analogous to estimating the
fish population of a lake (Mills).
A known number of defects are
inserted into a software program,
and the proportion of these
identified during testing is
determined
Another approach (Hyman) is to
regard the defects found by one
tester as tagged, and then to
determine the proportion of tagged
defects found by a second
independent tester

Estimate of the total number of
defects in the software but not a not
s/w reliability predictor
Assumes all faults are equally likely
to be found and introduced faults
representative of existing

Generalized
Poisson model

The number of failures observed in
ith time interval si has a Poisson
distribution with mean /(N − Mi−1)
si
a, where N is the initial number of
faults; Mi−1 is the total number of
faults removed up to the end of the
(i − 1)th time interval; and / is the
proportionality constant

Assumes faults are removed
perfectly at end of time interval

aThe Poisson process is a widely used counting process, and especially in counting the occurrence
of certain events that appear to happen at a certain rate but at random. A Poisson random variable
is of the form P{X = i} = e−k ki/i!
bThe exponential distribution is used to model the time between the occurrence of events in an
interval of time. The density function is given by f(x) = ke−kx

34 2 Software Reliability and Dependability

2.3 Dependability

Software is ubiquitous and is important to all sections of society, and so it is
essential that widely used software is dependable (or trustworthy). In other words,
the software should be available whenever required, as well as operating properly,
safely and reliably, without any adverse side effects or security concerns. It is
essential that the software used in systems in the safety critical and security critical
fields is dependable, as the consequence of failure (e.g. the failure of a nuclear
power plant) could be massive damage leading to loss of life or endangering the
lives of the public.

Dependability engineering is concerned with techniques to improve the
dependability of systems, and it involves the use of a rigorous design and devel-
opment process to minimize the number of defects in the software. A dependable
system is generally designed for fault tolerance, where the system can deal with
(and recover from) faults that occur during software execution. Such a system needs
to be secure, and able to protect itself from accidental or deliberate external attacks.
Table 2.6 lists several dimensions of dependability.

Modern software systems are subject to attack by malicious software such as
viruses that change the behaviour of the software, or corrupt data causing the
system to become unreliable. Other malicious attacks include a denial of service
attack that negatively impacts the system’s availability.

The design and development of dependable software needs to include protection
measures that protect against external attacks that could compromise the availability
and security of the system. Further, a dependable system needs to include recovery
mechanisms to enable normal service to be restored as quickly as possible fol-
lowing an attack.

Dependability engineering is concerned with techniques to improve the
dependability of systems, and in designing dependable systems. A dependable
system will generally be developed using an explicitly defined repeatable process,
and it may employ redundancy (spare capacity) and diversity (different types) to
achieve reliability.

There is a trade-off between dependability and the performance of the system, as
dependable systems will need to carry out extra checks to monitor themselves and
to check for erroneous states, and to recover from faults before failure occurs. This
inevitably leads to increased costs in the design and development of dependable
systems.

Table 2.6 Dimensions of dependability

Dimension Description

Availability System is available for use at any time

Reliability The system operates correctly and is trustworthy

Safety The system does not injure people or damage the environment

Security The system prevents unauthorized intrusions

2.3 Dependability 35

Software availability is the percentage of the time that the software system is
running, and is a measure of the uptime/downtime of the software during a par-
ticular time period. The downtime refers to a period of time when the software is
unavailable for use (including planned and unplanned outages), and many com-
panies aim to develop software that is available for use 99.999% of the time in the
year (i.e. a downtime of less than 5 min per annum). This goal is known as five
nines, and it is a common goal in the telecommunications sector.

Safety-critical systems are systems where it is essential that the system is safe for
the public, and that people or the environment is not harmed in the event of system
failure. These include aircraft control systems and process control systems for
chemical and nuclear power plants. The failure of a safety critical system could in
some situations lead to loss of life or serious economic damage.

Formal methods are discussed in Chap. 3, and they provide a precise way of
specifying the requirements of the proposed system, and demonstrating (using
mathematics) that key properties are satisfied in the formal specification. Further,
they may be used to show that the implemented program satisfies its specification.
The use of formal methods generally leads to increased confidence in the correct-
ness of safety critical and security critical systems.

The security of the system refers to its ability to protect itself from accidental or
deliberate external attacks, which are common today since most computers are
networked and connected to the Internet. There are various security threats in any
networked system including threats to the confidentiality and integrity of the system
and its data, and threats to the availability of the system.

Therefore, controls are required to enhance security and to ensure that attacks are
unsuccessful. Encryption is one way to reduce system vulnerability, as encrypted
data is unreadable to the attacker. There may be controls that detect and repel
attacks, and these controls are used to monitor the system and to take action to shut
down parts of the system or restrict access in the event of an attack. There may be
controls that limit exposure (e.g. insurance policies and automated backup strate-
gies) that allow recovery from the problems introduced.

It is important to have a reasonable level of security as otherwise all of the other
dimensions of dependability (reliability, availability and safety) are compromised.
Security loopholes may be introduced in the development of the system, and so care
needs to be taken to prevent hackers from exploiting security vulnerabilities.

Risk analysis plays a key role in the specification of security and dependability
requirements, and this involves identifying risks that can result in serious incidents.
This leads to the generation of specific security requirements as part of the system
requirements to ensure that these risks do not materialize, or if they do materialize
then serious incidents will not materialize.

36 2 Software Reliability and Dependability

2.4 Computer Security

The introduction of the Internet in the early 1990s transformed the world of
computing, and it led inexorably to more and more computers being connected to
the Internet. This has subsequently led to an explosive growth in attacks on com-
puters and systems, as hackers and malicious software seek to exploit known
security vulnerabilities. It is therefore essential to develop secure systems that can
deal with and recover from such external attacks.

Hackers will often attempt to steal confidential data and to disrupt the services
being offered by a system. Security engineering is concerned with the development
of systems that can prevent such malicious attacks, and recover from them. It has
become an important part of software and system engineering, and software
developers need to be aware of the threats facing a system, and develop solutions to
eliminate them.

Hackers may probe parts of the system for weaknesses, and system vulnera-
bilities may lead to attackers gaining unauthorized access to the system. There is a
need to conduct a risk assessment of the security threats facing a system early in the
software development process, and this will lead to several security requirements
for the system.

The system needs to be designed for security, as it is difficult to add security after
it has been implemented. Security loopholes may be introduced in the development
of the system, and so care needs to be taken to prevent these as well as preventing
hackers from exploiting security vulnerabilities. There may be controls that detect
and repel attacks, and these monitor the system and take appropriate action to
restrict access in the event of an attack.

The choice of architecture and how the system is organized is fundamental to the
security of the system, and different types of systems will require different technical
solutions to provide an acceptable level of security to its users. The following
guidelines for designing secure systems are described in [4]:

– Security decisions should be based on the security policy.
– A security critical system should fail securely.
– A secure system should be designed for recoverability.
– A balance is needed between security and usability.
– A single point of failure should be avoided.
– A log of user actions should be maintained.
– Redundancy and diversity should be employed.
– Organization information in system into compartments.

It is important to have a reasonable level of security, as otherwise all of the other
dimensions of dependability are compromised.

2.3 Dependability 37

2.5 System Availability

System availability is the percentage of time that the software system is running
without downtime, and robust systems will generally aim to achieve 5-nines
availability (i.e. 99.999% availability). This is equivalent to approximately 5 min of
downtime (including planned/unplanned outages) per year. The availability of a
system is measured by its performance when a subsystem fails, and its ability to
resume service in a state close to the original state. A fault-tolerant system continues
to operate correctly (possibly at a reduced level) after some part of the system fails,
and it aims to achieve 100% availability.

System availability and software reliability are related, with availability mea-
suring the percentage of time that the system is operational, and reliability mea-
suring the probability of failure-free operation over a period of time. The
consequence of a system failure may be to freeze or crash the system, and system
availability is measured by how long it takes to recover and restart after a failure.
A system may be unreliable and yet have good availability metrics (fast restart after
failure), or it may be highly reliable with poor availability metrics (taking a long
time to recover after a failure).

Software that satisfies strict availability constraints is usually reliable. The
downtime generally includes the time needed for activities such as rebooting a
machine, upgrading to a new version of software, planned and unplanned outages.
It is theoretically possible for software to be highly unreliable but yet to be highly
available. Consider, for example, software that fails consistently for 0.5 s every
day. Then, the total failure time is 183 s or approximately 3 min, and such a system
would satisfy 5-nines availability. However, this scenario is highly unlikely for
almost all systems, and the satisfaction of strict availability constraints usually
means that the software is also highly reliable.

It is possible that software that is highly reliable may satisfy poor availability
metrics. Consider the upgrade of the version of software at a customer site to a new
version, where the upgrade path is complex or poorly designed (e.g. taking 2 days).
Then, the availability measure is very poor even though the product may be highly
reliable. Further, the time that system unavailability occurs is relevant, as a system
that is unavailable at 03:00 in the morning may have minimal impacts on users.
Consequently, care is required before drawing conclusions between software reli-
ability and software availability metrics.

2.6 Safety Critical Systems

A safety critical system is a system whose failure could result in significant eco-
nomic damage or loss of life. There are many examples of safety critical systems
including aircraft flight control systems and missile systems. It is therefore essential
to employ rigorous processes in their design and development, and testing alone is
usually insufficient to verifying the correctness of a safety critical system.

38 2 Software Reliability and Dependability

The safety critical industry takes the view that any change to safety critical
software creates a new program. The new program is therefore required to
demonstrate that it is reliable and safe to the public, and so extensive testing needs
to be performed. Other techniques such as formal verification and model checking
may be employed to provide an extra level of assurance in the correctness of the
safety critical system.

Safety critical systems need to be dependable and available for use whenever
required. Safety critical software must operate correctly and reliably without any
adverse side effects. The consequence of failure (e.g. the failure of a weapons
system) could be massive damage, leading to loss of life or endangering the lives of
the public.

Safety critical systems are generally designed for fault tolerance, where the
system can deal with (and recover from) faults that occur during execution. Fault
tolerance is achieved by anticipating exceptional events, and in designing the
system to handle them. A fault-tolerant system is designed to fail safely, and
programs are designed to continue working (possibly at a reduced level of per-
formance) rather than crashing after the occurrence of an error or exception. Many
fault-tolerant systems mirror all operations, where each operation is performed on
two or more duplicate systems, and so if one fails, then the other system can take
over.

The development of a safety critical system needs to be rigorous, and subject to
strict quality assurance to ensure that the system is safe to use and that the public
will not be in danger. This involves rigorous design and development processes to
minimize the number of defects in the software, as well as comprehensive testing to
verify its correctness.

Formal methods consist of a set of mathematical techniques to rigorously state
the requirements of the proposed system. They may be employed to derive a
program from its mathematical specification, and they may be used to provide a
rigorous proof that the implemented program satisfies its specification. The
advantages of a mathematical specification are that it is not subject to the ambi-
guities inherent in a natural language description of a system, and they may be
subjected to a rigorous analysis to demonstrate the presence or absence of key
properties.

2.7 Review Questions

1. Explain the difference between software reliability and system availability.
2. What is software dependability?
3. Explain the significance of Adam’s 1984 study of failures at IBM.

2.6 Safety Critical Systems 39

4. Describe the Cleanroom methodology.
5. Describe the characteristics of a good software reliability model.
6. Explain the relevance of security engineering.
7. What is a safety critical system?

2.8 Summary

This chapter gave an introduction to some important topics in software engineering
including software reliability and the Cleanroom methodology; dependability;
availability; security; and safety critical systems.

Software reliability is the probability that the program works without failure for
a period of time, and it is usually expressed as the mean time to failure. Cleanroom
involves the application of statistical techniques to calculate software reliability,
and it is based on the expected usage of the software.

It is essential that software used in the safety and security critical fields is
dependable, with the software available when required, as well as operating safely
and reliably without any adverse side effects. Many of these systems are fault
tolerant and are designed to deal with (and recover) from faults that occur during
execution.

Such a system needs to be secure and able to protect itself from external attacks,
and needs to include recovery mechanisms to enable normal service to be restored
as quickly as possible. In other words, it is essential that if the system fails, then it
fails safely.

Today, billions of computers are connected to the Internet, and this has led to a
growth in attacks on computers. It is essential that developers are aware of the
threats facing a system and are familiar with techniques to eliminate them.

References

1. G. O’Regan, Mathematical Approaches to Software Quality (Springer, 2006)
2. E. Adams, Optimizing preventive service of software products. IBM Res. J. 28(1), 2–14 (1984)
3. R.H. Cobb, H.D. Mills, Engineering software under statistical quality control. IEEE Softw.

(1990)
4. I. Sommerville, Software Engineering, 9th edn. (Pearson, 2011)

40 2 Software Reliability and Dependability

3Overview of Formal Methods

Key Topics

Formal specification
Vienna Development Method
Z specification language
B-Method
Model-oriented approach
Axiomatic approach
Process calculus
Refinement
Finite-state machines
Usability of formal methods

3.1 Introduction

The term “formal methods” refers to various mathematical techniques used for the
formal specification and development of software. They consist of a formal spec-
ification language and employ a collection of tools to support the syntax checking
of the specification, as well as the proof of properties of the specification. They
allow questions to be asked about what the system does independently of the
implementation.

The use of mathematical notation avoids speculation about the meaning of
phrases in an imprecisely worded natural language description of a system. Natural
language is inherently ambiguous, whereas mathematics employs a precise rigorous
notation. Spivey [1] defines formal specification as:

© Springer International Publishing AG 2017
G. O’Regan, Concise Guide to Formal Methods, Undergraduate Topics
in Computer Science, DOI 10.1007/978-3-319-64021-1_3

41

Definition 3.1 (Formal Specification)
Formal specification is the use of mathematical notation to describe in a precise

way the properties that an information system must have, without unduly con-
straining the way in which these properties are achieved.

The formal specification thus becomes the key reference point for the different
parties involved in the construction of the system. It may be used as the reference
point for the requirements; program implementation; testing and program docu-
mentation. It thus promotes a common understanding for all those concerned with
the system. The term “formal methods” is used to describe a formal specification
language and a method for the design and implementation of a computer system.
Formal methods may be employed at a number of levels:

– Formal specification only (program developed informally);
– Formal specification, refinement and verification (some proofs);
– Formal specification, refinement and verification (with extensive theorem

proving).

The specification is written in a mathematical language, and the implementation
may be derived from the specification via stepwise refinement.1 The refinement step
makes the specification more concrete and closer to the actual implementation.
There is an associated proof obligation to demonstrate that the refinement is valid,
and that the concrete state preserves the properties of the abstract state. Thus,
assuming that the original specification is correct and the proof of correctness of
each refinement step is valid, then there is a very high degree of confidence in the
correctness of the implemented software.

Stepwise refinement is illustrated as follows: the initial specification S is the
initial model M0; it is then refined into the more concrete model M1, and M1 is then
refined into M2, and so on until the eventual implementation Mn = E is produced.

S ¼ M0YM1YM2YM3Y.YMn ¼ E:

Requirements are the foundation of the system to be built, and irrespective of the
best design and development practices, the product will be incorrect if the
requirements are incorrect. The objective of requirements validation is to ensure
that the requirements reflect what is actually required by the customer (in order to
build the right system). Formal methods may be employed to model the require-
ments, and the model exploration yields further desirable or undesirable properties.

1It is questionable whether stepwise refinement is cost effective in mainstream software
engineering, as it involves rewriting a specification ad nauseum. It is time consuming to
proceed in refinement steps with significant time also required to prove that the refinement step is
valid. It is more relevant to the safety-critical field. Others in the formal methods field may
disagree with this position.

42 3 Overview of Formal Methods

Formal methods provide the facility to prove that certain properties are true of
the specification, and this is valuable, especially in safety critical and security
critical applications. The properties are a logical consequence of the mathematical
definition, and the requirements may be amended where appropriate. Thus, formal
methods may be employed in a sense to debug the requirements during require-
ments validation.

The use of formal methods generally leads to more robust software and increased
confidence in its correctness. Formal methods may be employed at different levels
(e.g. just for specification with the program developed informally). The challenges
involved in the deployment of formal methods in an organization include the
education of staff in formal specification, as the use of these mathematical tech-
niques may be a culture shock to many staff.

Formal methods have been applied to a diverse range of applications, including
the safety and security critical fields to develop dependable software. The appli-
cations include the railway sector, microprocessor verification, the specification of
standards, and the specification and verification of programs. Parnas and others
have criticized formal methods (Table 3.1):

However, formal methods are potentially quite useful and reasonably easy to
use. The use of a formal method such as Z or VDM forces the software engineer to
be precise and helps to avoid ambiguities present in natural language. Clearly, a
formal specification should be subject to peer review to provide confidence in its
correctness. New formalisms need to be intuitive to be usable by practitioners, and
an advantage of classical mathematics is that it is familiar to students.

3.2 Why Should We Use Formal Methods?

There is a strong motivation to use best practice in software engineering in order to
produce software adhering to high-quality standards. Quality problems with soft-
ware may cause minor irritations or major damage to a customer’s business
including loss of life. Formal methods are a leading-edge technology that may be of
benefit to companies in reducing the occurrence of defects in software products.
Brown [2] argues that for the safety critical field that:

Comment 3.1 (Missile Safety)
Missile systems must be presumed dangerous until shown to be safe, and that the

absence of evidence for the existence of dangerous errors does not amount to
evidence for the absence of danger.

This suggests that companies in the safety critical field will need to demonstrate
that every reasonable practice was taken to prevent the occurrence of defects. One
such practice is the use of formal methods, and its exclusion may need to be
justified in some domains. It is quite possible that a software company may be sued

3.1 Introduction 43

for software which injures a third party, and this suggests that companies will need
a rigorous quality assurance system to prevent the occurrence of defects.

There is some evidence to suggest that the use of formal methods provides
savings in the cost of the project. For example, a 9% cost saving is attributed to the
use of formal methods during the CICS project; the T800 project attributes a
12-month reduction in testing time to the use of formal methods. These are dis-
cussed in more detail in Chap. 1 of [3].

The use of formal methods is mandatory in certain circumstances. The Ministry
of Defence (MOD) in the UK issued two safety-critical standards2 in the early
1990s related to the use of formal methods in the software development life cycle.

Table 3.1 Criticisms of formal methods

No. Criticism

1. Often the formal specification is as difficult to read as the programa

2. Many formal specifications are wrongb

3. Formal methods are strong on syntax but provide little assistance in deciding on what
technical information should be recorded using the syntaxc

4. Formal specifications provide a model of the proposed system. However, a precise
unambiguous mathematical statement of the requirements is what is neededd

5. Stepwise refinement is unrealistic. It is like, for example, deriving a bridge from the
description of a river and the expected traffic on the bridge. There is always a need for
the creative step in designe

6. Many unnecessary mathematical formalisms have been developed rather than using the
available classical mathematicsf

aOf course, others might reply by saying that some of Parnas’s tables are not exactly intuitive, and
that the notation he employs in some of his tables is quite unfriendly. The usability of all of the
mathematical approaches needs to be enhanced if they are to be taken seriously by industrialists
bObviously, the formal specification must be analysed using mathematical reasoning and tools to
provide confidence in its correctness. The validation of a formal specification can be carried out
using mathematical proof of key properties of the specification; software inspections; or
specification animation
cApproaches such as VDM include a method for software development as well as the specification
language
dModels are extremely valuable as they allow simplification of the reality. A mathematical study of
the model demonstrates whether it is a suitable representation of the system. Models allow
properties of the proposed requirements to be studied prior to implementation
eStepwise refinement involves rewriting a specification with each refinement step producing a
more concrete specification (that includes code and formal specification) until eventually the
detailed code is produced. It is difficult and time consuming but, tool support may make refinement
easier
fApproaches such as VDM or Z are useful in that they add greater rigour to the software
development process. They are reasonably easy to learn, and there have been some good results
obtained by their use. Classical mathematics is familiar to students, and therefore it is desirable that
new formalisms are introduced only where absolutely necessary

2The UK Defence Standards 0055 and 0056 were later revised to be less prescriptive on the use of
formal methods.

44 3 Overview of Formal Methods

The first is Defence Standard 00-55, “The Procurement of safety critical soft-
ware in defense equipment” [4], which makes it mandatory to employ formal
methods in the development of safety-critical software in the UK. The standard
mandates the use of formal proof that the most crucial programs correctly imple-
ment their specifications.

The other is Def. Stan 00-56 “Hazard analysis and safety classification of the
computer and programmable electronic system elements of defense equipment” [5].
The objective of this standard is to provide guidance to identify which systems or
parts of systems being developed are safety-critical and thereby require the use of
formal methods. This proposed system is subject to an initial hazard analysis to
determine whether there are safety-critical parts.

The reaction to these defence standards 00-55 and 00-56 was quite hostile
initially, as most suppliers were unlikely to meet the technical and organization
requirements of the standard. This is described in [6].

3.3 Industrial Applications of Formal Methods

Formal methods have been employed in several domains such as the transport
sector, the nuclear sector, the space sector, the defence sector, the semiconductor
sector, the financial sector and the telecom sector. The extent of the application of
formal methods has varied from formal specification only, to specification with
inspections, to proofs, to refinement, to test generation and to model checking.
Formal methods are applicable to the regulated sector, and it has been applied to
real-time applications in the nuclear industry, the aerospace industry, the security
technology area and the railroad domain. These sectors are subject to stringent
regulatory controls to ensure that safety and security are properly addressed.

Several organizations have piloted formal methods with varying degrees of
success. IBM developed the VDM specification language at its laboratory in
Vienna, and it piloted the Z and B formal specification languages on the CICS
(Customer Information Control System) project at its plant in Hursley, England.

The mathematical techniques developed by Parnas (i.e. his requirements model
and tabular expressions) were employed to specify the requirements of the A-7
aircraft (as part of a research project for the US Navy).3 Tabular expressions were
also employed for the software inspection of the automated shutdown software of
the Darlington nuclear power plant in Canada.4 These are two successful uses of
mathematical techniques in software engineering.

3However, the resulting software was never actually deployed on the A-7 aircraft.
4This was an impressive use of mathematical techniques, and it has been acknowledged that formal
methods must play an important role in future developments at Darlington. However, given the
time and cost involved in the software inspection of the shutdown software, some managers have
less enthusiasm in shifting from hardware to software controllers [7].

3.2 Why Should We Use Formal Methods? 45

There are examples of the use of formal methods in the railway domain, with
GEC Alsthom and RATP using B for the formal specification and verification of the
computerized signalling system on the Paris Metro. Several examples dealing with
the modelling and verification of a railroad gate controller and railway signalling
are described in [3]. Clearly, it is essential to verify safety critical properties such as
“when the train goes through the level crossing then the gate is closed”.

PVS is a mechanized environment for formal specification and verification, and
it was developed at SRI in California. It includes a specification language integrated
with support tools and an interactive theorem prover. The specification language is
based on higher-order logic, and the theorem prover is guided by the user in
conducting proof. It has been applied to the verification of hardware and software,
and PVS has been used for the formal specification and partial verification of the
microcode of the AAMP5 microprocessor.

A selection of applications of formal methods to industry is presented in [8].

3.4 Industrial Tools for Formal Methods

Formal methods have been criticized for the limited availability of tools to support
the software engineer in writing the formal specification and in conducting proof.
Many of the early tools were criticized as not being of industrial strength. However,
in recent years more advanced tools have become available to support the software
engineer’s work in formal specification and formal proof, and this is likely to
continue in the coming years.

The tools include syntax checkers that determine whether the specification is
syntactically correct; specialized editors which ensure that the written specification
is syntactically correct; tools to support refinement; automated code generators that
generate a high-level language corresponding to the specification; theorem provers
to demonstrate the correctness of refinement steps and to identify and resolve proof
obligations, as well proving the presence or absence of key properties; and speci-
fication animation tools where the execution of the specification can be simulated.

The B-Toolkit5 from B-Core is an integrated set of tools that supports the B-
Method. It provides functionality for syntax and type checking, specification ani-
mation, proof obligation generator, an auto-prover, a proof assistor and code gen-
eration. This, in theory, allows the complete formal development from the initial
specification to the final implementation, with every proof obligation justified,
leading to a provably correct program. There is also the Atelier B tool to support
formal specification and development in B.

5The source code for the B-Toolkit is now available.

46 3 Overview of Formal Methods

The IFAD Toolbox6 is a support tool for the VDM-SL specification language,
and it provides support for syntax and type checking, an interpreter and debugger to
execute and debug the specification, and a code generator to convert from VDM-SL
to C++. The Overture Integrated Development Environment (IDE) is an
open-source tool for formal modelling and analysis of VDM-SL specifications.

There are various tools for model checking including Spin, Bandera, SMV and
Uppaal. These tools perform a systematic check on property P in all states and are
applicable if the system generates a finite behavioural model. Spin is an
open-source tool, and it checks finite-state systems with properties specified by
linear temporal logic. It generates a counter-example trace if it determines that a
property is violated.

There are tools to support theorem provers, and the Boyer-Moore theorem
prover (NQTHM) was developed at the University of Texas in the late 1970s. It is
far more automated than many other interactive theorem provers, but it requires
detailed human guidance (with suggested lemmas) for difficult proofs. The user
therefore needs to understand the proof being sought and the internals of the the-
orem prover. Many well known mathematical theorems have been proved with
NQTHM including Gödel’s incompleteness theorem.

The HOL system was developed at the University of Cambridge, and it is an
environment for interactive theorem proving in a higher-order logic. It requires
skilled human guidance and has been used for the verification of microprocessor
design. It is one of the most widely used theorem provers.

3.5 Approaches to Formal Methods

There are two key approaches to formal methods: namely the model-oriented
approach of VDM or Z, and the algebraic or axiomatic approach of the process
calculi such as the calculus communicating systems (CCS) or communicating
sequential processes (CSP).

3.5.1 Model-Oriented Approach

The model-oriented approach to specification is based on mathematical models,
where a model is a simplification or abstraction of the real world that contains only
the essential details. For example, the model of an aircraft will not include the
colour of the aircraft, and the objective may be to model the aerodynamics of the
aircraft. There are many models employed in the physical world, such as meteo-
rological models that allow weather forecasts to be made.

6The IFAD Toolbox has been renamed to VDM Tools as IFAD sold the VDM Tools to CSK in
Japan. The CSK VDM Tools are available for worldwide use.

3.4 Industrial Tools for Formal Methods 47

The importance of models is that they serve to explain the behaviour of a
particular entity and may also be used to predict future behaviour. Different models
may vary in their ability to explain aspects of the entity under study. One model
may be good at explaining some aspects of the behaviour, whereas another model
might be good at explaining other aspects. The adequacy of a model is a key
concept in modelling, and it is determined by its effectiveness in representing the
underlying behaviour, and in its ability to predict future behaviour. Model explo-
ration consists of asking questions, and determining whether the model is able to
give an effective answer to the particular question. A good model is chosen as a
representation of the real world and is referred to whenever there are questions in
relation to the aspect of the real world.

It is fundamental to explore the model to determine its adequacy, and to
determine the extent to which it explains the underlying physical behaviour, and
allows accurate predictions of future behaviour to be made. There may be more than
one possible model of a particular entity; for example, the Ptolemaic model and the
Copernican model are different models of the solar system. This leads to the
question as to which is the best or most appropriate model to use, and on the criteria
to use to determine which is more suitable. The ability of the model to explain the
behaviour, its simplicity and its elegance will be part of the criteria. The principle of
“Ockham’s Razor” (law of parsimony) is used in modelling, and it suggests that the
simplest model with the least number of assumptions required should be selected.

The adequacy of the model will determine its acceptability as a representation of
the physical world. Models that are ineffective will be replaced with models that
offer a better explanation of the manifested physical behaviour. There are many
examples in science of the replacement of one theory by a newer one. For example,
the Copernican model of the universe replaced the older Ptolemaic model, and
Newtonian physics was replaced by Einstein’s theories of relativity. The structure
of the revolutions that take place in science are described in [9].

Modelling can play a key role in computer science, as computer systems tend to
be highly complex, whereas a model allows simplification or an abstraction of the
underlying complexity, and it enables a richer understanding of the underlying
reality to be gained. The model-oriented approach to software development
involves defining an abstract model of the proposed software system, and the model
is then explored to determine its suitability as a representation of the system. This
takes the form of model interrogation, i.e. asking questions, and determining the
extent to which the model can answer the questions. The modelling in formal
methods is typically performed via elementary discrete mathematics, including set
theory, sequences, functions and relations.

Various models have been applied to assist with the complexities in software
development. These include the Capability Maturity Model (CMM), which is
employed as a framework to enhance the capability of the organization in software
development; UML, which has various graphical diagrams that are employed to
model the requirements and design; and mathematical models that are employed for
formal specification.

48 3 Overview of Formal Methods

VDM and Z are model-oriented approaches to formal methods. VDM arose from
work done at the IBM laboratory in Vienna in formalizing the semantics for the
PL/1 compiler in the early 1970s, and it was later applied to the specification of
software systems. The origin of the Z specification language is in work done at
Oxford University in the early 1980s.

3.5.2 Axiomatic Approach

The axiomatic approach focuses on the properties that the proposed system is to
satisfy, and there is no intention to produce an abstract model of the system. The
required properties and behaviour of the system are stated in mathematical notation.
The difference between the axiomatic specification and a model-based approach
may be seen in the example of a stack.

The stack includes operators for pushing an element onto the stack and popping
an element from the stack. The properties of pop and push are explicitly defined in
the axiomatic approach. The model-oriented approach constructs an explicit model
of the stack, and the operations are defined in terms of the effect that they have on
the model. The axiomatic specification of the pop operation on a stack is given by
properties, for example, pop(push(s, x)) = s.

Comment 3.2 (Axiomatic Approach)
The property-oriented approach has the advantage that the implementer is not

constrained to a particular choice of implementation, and the only constraint is that
the implementation must satisfy the stipulated properties.

The emphasis is on specifying the required properties of the system, and
implementation issues are avoided. The properties are typically stated using
mathematical logic or higher-order logics. Mechanized theorem-proving techniques
may be employed to prove results.

One potential problem with the axiomatic approach is that the properties spec-
ified may not be satisfied in any implementation. Thus, whenever a “formal axio-
matic theory” is developed a corresponding “model” of the theory must be
identified, in order to ensure that the properties may be realized in practice. That is,
when proposing a system that is to satisfy some set of properties, there is a need to
prove that there is at least one system that will satisfy the set of properties.

3.6 Proof and Formal Methods

A mathematical proof typically includes natural language and mathematical sym-
bols, and often many of the tedious details of the proof are omitted. The proof may
employ a “divide and conquer” technique, i.e. breaking the conjecture down into
subgoals and then attempting to prove each of the subgoals.

3.5 Approaches to Formal Methods 49

Many proofs in formal methods are concerned with cross-checking the details of
the specification, or checking the validity of the refinement steps, or checking that
certain properties are satisfied by the specification. There are often many tedious
lemmas to be proved, and theorem provers7 are essential in dealing with this.
Machine proof is explicit and reliance on some brilliant insight is avoided. Proofs
by hand are notorious for containing errors or jumps in reasoning, while machine
proofs are explicit but are often extremely lengthy and unreadable. The infamous
machine proof of the correctness of the VIPER microprocessor8 consisted of several
million formulae [6].

A formal mathematical proof consists of a sequence of formulae, where each
element is either an axiom or derived from a previous element in the series by
applying a fixed set of mechanical rules.

The application of formal methods in an industrial environment requires the use
of machine-assisted proof, since thousands of proof obligations arise from a formal
specification, and theorem provers are essential in resolving these efficiently.
Automated theorem proving is difficult, as often mathematicians prove a theorem
with an initial intuitive feeling that the theorem is true. Human intervention to
provide guidance or intuition improves the effectiveness of the theorem prover.

The proof of various properties about a program increases confidence in its
correctness. However, an absolute proof of correctness9 is unlikely except for the
most trivial of programs. A program may consist of legacy software that is assumed
to work; a compiler that is assumed to work correctly creates it. Theorem provers
are programs that are assumed to function correctly. The best that formal methods
can claim is increased confidence in correctness of the software, rather than an
absolute proof of correctness.

3.7 Mathematics in Software Engineering

The debate concerning the level of use of mathematics in software engineering is
still ongoing. Many practitioners are against the use of mathematics and avoid its
use. They tend to employ methodologies such as software inspections and testing to
improve confidence in the correctness of the software. They argue that in the current
competitive industrial environment where time to market is a key driver that the use
of such formal mathematical techniques would seriously impact the market

7Most existing theorem provers are difficult to use and are for specialist use only. There is a need to
improve the usability of theorem provers.
8This verification was controversial with RSRE and Charter overselling VIPER as a chip design
that conforms to its formal specification.
9This position is controversial with others arguing that if correctness is defined mathematically,
then the mathematical definition (i.e., formal specification) is a theorem, and the task is to prove
that the program satisfies the theorem. They argue that the proofs for non-trivial programs exist,
and that the reason why there are not many examples of such proofs is due to a lack of
mathematical specifications.

50 3 Overview of Formal Methods

opportunity. Industrialists often need to balance conflicting needs such as quality,
cost and delivering on time. They argue that the commercial necessities require
methodologies and techniques that allow them to achieve their business goals
effectively.

The other camp argues that the use of mathematics is essential in the delivery of
high-quality and reliable software, and that if a company does not place sufficient
emphasis on quality, it will pay the price in terms of poor quality and loss of
reputation.

It is generally accepted that mathematics and formal methods must play a role in
the safety critical and security critical fields. Apart from that, the extent of the use of
mathematics is a hotly disputed topic. The pace of change in the world is
extraordinary, and companies face significant competitive forces in a global
marketplace.

It is unrealistic to expect companies to deploy formal methods unless they have
clear evidence that it will support them in delivering commercial products to the
marketplace ahead of their competition, at the right price and with the right quality.
Formal methods need to prove that it can do this if it wishes to be taken seriously in
mainstream software engineering. The issue of technology transfer of formal
methods to industry is discussed in Chap. 18.

3.8 The Vienna Development Method

VDM was developed by a research team at the IBM research laboratory in Vienna.
This group was specifying the semantics of the PL/1 programming language using
an operational semantic approach. That is, the semantics of the language were
defined in terms of a hypothetical machine which interprets the programs of that
language [10, 11]. Later work led to the Vienna Development Method (VDM) with
its specification language, Meta IV. This was used to give the denotational
semantics of programming languages; that is, a mathematical object (set, function,
etc.) is associated with each phrase of the language. The mathematical object is
termed the denotation of the phrase.

VDM is a model-oriented approach and this means that an explicit model of the
state of an abstract machine is given, and operations are defined in terms of the
state. Operations may act on the system state, taking inputs and producing outputs
as well as a new system state. Operations are defined in a precondition and post-
condition style. Each operation has an associated proof obligation to ensure that if
the precondition is true, then the operation preserves the system invariant. The
initial state itself is, of course, required to satisfy the system invariant.

VDM uses keywords to distinguish different parts of the specification, e.g.
preconditions, postconditions, as introduced by the keywords pre and post,
respectively. In keeping with the philosophy that formal methods specify what a
system does as distinct from how, VDM employs postconditions to stipulate the
effect of the operation on the state. The previous state is then distinguished by

3.7 Mathematics in Software Engineering 51

employing hooked variables, e.g. v(and the postcondition specifies the new state
which is defined by a logical predicate relating the prestate to the poststate.

VDM is more than its specification language VDM-SL and is, in fact, a software
development method, with rules to verify the steps of development. The rules
enable the executable specification, i.e. the detailed code, to be obtained from the
initial specification via refinement steps. Thus, we have a sequence S = S0, S1, …,
Sn = E of specifications, where S is the initial specification and E is the final
(executable) specification.

Retrieval functions enable a return from a more concrete specification to the
more abstract specification. The initial specification consists of an initial state, a
system state and a set of operations. The system state is a particular domain, where
a domain is built out of primitive domains such as the set of natural numbers,
integers or constructed from primitive domains using domain constructors such as
Cartesian product, disjoint union. A domain-invariant predicate may further con-
strain the domain, and a type in VDM reflects a domain obtained in this way. Thus,
a type in VDM is more specific than the signature of the type and thus represents
values in the domain defined by the signature, which satisfy the domain invariant.
In view of this approach to types, it is clear that VDM types may not be “statically
type checked”.

VDM specifications are structured into modules, with a module containing the
module name, parameters, types, operations, etc. Partial functions occur frequently
in computer science as many functions, may be undefined, or fail to terminate for
some arguments in their domain. VDM addresses partial functions by employing
non-standard logical operators, namely the logic of partial functions (LPFs), which
is discussed in Chap. 7.

VDM has been used in industrial projects, and its tool support includes the IFAD
Toolbox.10 VDM is described in more detail in Chap. 9. There are several variants
of VDM, including VDM++, the object-oriented extension of VDM and the Irish
School of the VDM, which is discussed in the next section.

3.9 VDM♣, the Irish School of VDM

The Irish School of VDM is a variant of standard VDM and is characterized by its
constructive approach, classical mathematical style and its terse notation [12]. This
method aims to combine the what and how of formal methods in that its terse
specification style stipulates in concise form what the system should do; further-
more, the fact that its specifications are constructive (or functional) means that the
how is included with the what.

However, it is important to qualify this by stating that the how as presented by
VDM♣ is not directly executable, as several of its mathematical data types have no
corresponding structure in high-level programming languages or functional

10The VDM Tools are now available from the CSK Group in Japan.

52 3 Overview of Formal Methods

languages. Thus, a conversion or reification of the specification into a functional or
higher-level language must take place to ensure a successful execution. Further, the
fact that a specification is constructive is no guarantee that it is a good imple-
mentation strategy if the construction itself is naive.

The Irish school follows a similar development methodology as in standard
VDM, and it is a model-oriented approach. The initial specification is presented,
with the initial state and operations defined. The operations are presented with
preconditions; however, no postcondition is necessary as the operation is “func-
tionally” (i.e. explicitly) constructed.

There are proof obligations to demonstrate that the operations preserve the
invariant. That is, if the precondition for the operation is true, and the operation is
performed, then the system invariant remains true after the operation. The philos-
ophy is to exhibit existence constructively rather than providing a theoretical proof
of existence that demonstrates the existence of a solution without presenting an
algorithm to construct the solution.

The school avoids the existential quantifier of predicate calculus, and reliance on
logic in proof is kept to a minimum, with emphasis instead placed on equational
reasoning. Structures with nice algebraic properties are sought, and one nice
algebraic structure employed is the monoid, which has closure, associative and a
unit element. The concept of isomorphism is powerful, reflecting that two structures
are essentially identical, and thus we may choose to work with either, depending on
which is more convenient for the task in hand.

The school has been influenced by the work of Polya and Lakatos. The former
[13] advocated a style of problem-solving characterized by first considering an
easier subproblem, and considering several examples. This generally leads to a
clearer insight into solving the main problem. Lakatos’s approach to mathematical
discovery [14] is characterized by heuristic methods. A primitive conjecture is
proposed, and if global counter-examples to the statement of the conjecture are
discovered, then the corresponding hidden lemma for which this global
counter-example is a local counter-example is identified and added to the statement
of the primitive conjecture. The process repeats, until no more global
counter-examples are found. A sceptical view of absolute truth or certainty is
inherent in this.

Partial functions are the norm in VDM♣, and as in standard VDM, the problem
is that functions may be undefined, or fail to terminate for several of the arguments
in their domain. The logic of partial functions (LPFs) is avoided, and instead care is
taken with recursive definitions to ensure termination is achieved for each argu-
ment. Academic and industrial projects have been conducted using VDM♣, but tool
support is limited. The Irish School of VDM is discussed in more detail in Chap. 10
.

3.9 VDM♣, the Irish School of VDM 53

3.10 The Z Specification Language

Z is a formal specification language founded on Zermelo set theory, and it was
developed by Abrial at Oxford University in the early 1980s. It is used for the
formal specification of software and is a model-oriented approach. An explicit
model of the state of an abstract machine is given, and the operations are defined in
terms of the effect on the state. It includes a mathematical notation that is similar to
VDM and the visually striking schema calculus. The latter consists essentially of
boxes (or schemas), and these are used to describe operations and states. The
schema calculus enables schemas to be used as building blocks and combined with
other schemas. The Z specification language was published as an ISO standard
(ISO/IEC 13568:2002) in 2002.

The schema calculus is a powerful means of decomposing a specification into
smaller pieces or schemas. This helps to make Z specification highly readable, as
each individual schema is small in size and self-contained. Exception handling is
done by defining schemas for the exception cases, and these are then combined with
the original operation schema. Mathematical data types are used to model the data
in a system, and these data types obey mathematical laws. These laws enable
simplification of expressions and are useful with proofs.

Operations are defined in a precondition/postcondition style. However, the
precondition is implicitly defined within the operation; that is, it is not separated out
as in standard VDM. Each operation has an associated proof obligation to ensure
that if the precondition is true, then the operation preserves the system invariant.
The initial state itself is, of course, required to satisfy the system invariant. Post-
conditions employ a logical predicate which relates the prestate to the poststate, and
the poststate of a variable v is given by priming, e.g. v′. Various conventions are
employed, e.g. v? indicates that v is an input variable and v! indicates that v is an
output variable. The symbol N Op operation indicates that this operation does not
affect the state, whereas D Op indicates that this operation affects the state.

Many data types employed in Z have no counterpart in standard programming
languages. It is, therefore, important to identify and describe the concrete data
structures that will ultimately represent the abstract mathematical structures. The
operations on the abstract data structures may need to be refined to yield operations
on the concrete data structure that yield equivalent results. For simple systems,
direct refinement (i.e. one step from abstract specification to implementation) may
be possible; in more complex systems, deferred refinement is employed, where a
sequence of increasingly concrete specifications are produced to eventually yield
the executable specification.

Z has been successfully applied in industry, and one of its well-known successes
is the CICS project at IBM Hursley in England. Z is described in more detail in
Chap. 8.

54 3 Overview of Formal Methods

3.11 The B-Method

The B-Technologies [15] consist of three components: a method for software
development, namely the B-Method; a supporting set of tools, namely the B-
Toolkit; and a generic program for symbol manipulation, namely the B-Tool (from
which the B-Toolkit is derived). The B-Method is a model-oriented approach and is
closely related to the Z specification language. Abrial developed the B specification
language, and every construct in the language has a set theoretic counterpart, and
the method is founded on Zermelo set theory. Each operation has an explicit
precondition.

A key role of the abstract machine in the B-Method is to provide encapsulation
of variables representing the state of the machine and operations that manipulate the
state. Machines may refer to other machines, and a machine may be introduced as a
refinement of another machine. The abstract machines are specification machines,
refinement machines or implementable machines. The B-Method adopts a layered
approach to design where the design is gradually made more concrete by a
sequence of design layers. Each design layer is a refinement that involves a more
detailed implementation in terms of the abstract machines of the previous layer. The
design refinement ends when the final layer is implemented purely in terms of
library machines. Any refinement of a machine by another has associated proof
obligations, and proof is required to verify the validity of the refinement step.

Specification animation of the abstract machine notation (AMN) specification is
possible with the B-Toolkit, and this enables typical usage scenarios n to be
explored for requirements validation. This is, in effect, an early form of testing, and
it may be used to demonstrate the presence or absence of desirable or undesirable
behaviour. Verification takes the form of a proof to demonstrate that the invariant is
preserved when the operation is executed within its precondition, and this is per-
formed on the AMN specification with the B-Toolkit.

The B-Toolkit provides several tools that support the B-Method, and these
include syntax and type checking, specification animation, proof obligation gen-
erator, auto-prover, proof assistor and code generation. Thus, in theory, a complete
formal development from initial specification to final implementation may be
achieved, with every proof obligation justified, leading to a provably correct
program.

The B-Method and toolkit have been successfully applied in industrial appli-
cations, including the CICS project at IBM Hursley in the UK [16]. The automated
support provided has been cited as a major benefit of the application of the B-
Method and the B-Toolkit.

3.10 The Z Specification Language 55

3.12 Predicate Transformers and Weakest Preconditions

The precondition of a program S is a predicate, i.e. a statement that may be true or
false, and it is usually required to prove that if the precondition Q is true, then
execution of S is guaranteed to terminate in a finite amount of time in a state
satisfying R. This is written as {Q} S {R}.

The weakest precondition of a command S with respect to a postcondition R [17]
represents the set of all states such that if execution begins in any one of these
states, then execution will terminate in a finite amount of time in a state with R true.
These set of states may be represented by a predicate Q′, so that wp(S,R) = wpS
(R) = Q′, and so wpS is a predicate transformer; that is, it may be regarded as a
function on predicates. The weakest precondition is the precondition that places the
fewest constraints on the state than all of the other preconditions of (S,R). That is,
all of the other preconditions are stronger than the weakest precondition.

The notation Q{S}R is used to denote partial correctness, and indicates that if
execution of S commences in any state satisfying Q, and if execution terminates,
then the final state will satisfy R. Often, a predicate Q which is stronger than the
weakest precondition wp(S,R) is employed, especially where the calculation of the
weakest precondition is non-trivial. Thus, a stronger predicate Q such that Q) wp
(S,R) is often employed.

There are many properties associated with the weakest preconditions, and these
may be used to simplify expressions involving weakest preconditions, and in
determining the weakest preconditions of various program commands such as
assignments, iterations. Weakest preconditions may be used in developing a proof
of correctness of a program in parallel with its development [18].

An imperative programmay be regarded as a predicate transformer. This is since a
predicate P characterises the set of states in which the predicate P is true, and an
imperative programmay be regarded as a binary relation on states, which, leads to the
Hoare triple P{F}Q. That is, the program F acts as a predicate transformer with the
predicate P regarded as an input assertion, i.e. a Boolean expression that must be true
before the program F is executed, and the predicateQ is the output assertion, which is
true if the program F terminates (where F commenced in a state satisfying P).

3.13 The Process Calculi

The objectives of the process calculi [19] are to provide mathematical models which
provide insight into the diverse issues involved in the specification, design and
implementation of computer systems which continuously act and interact with their
environment. These systems may be decomposed into subsystems that interact with
each other and their environment.

The basic building block is the process, which is a mathematical abstraction of
the interactions between a system and its environment. A process that lasts indef-
initely may be specified recursively. Processes may be assembled into systems; they

56 3 Overview of Formal Methods

may execute concurrently or communicate with each other. Process communication
may be synchronized, and this takes the form of one process outputting a message
simultaneously to another process inputting a message. Resources may be shared
among several processes. Process calculi such as CSP [19] and CCS [20] have been
developed, they enrich the understanding of communication and concurrency and
they obey several mathematical laws.

The expression (a ? P) in CSP describes a process which first engages in event
a and then behaves as process P. A recursive definition is written as (lX) � F(X), and
an example of a simple chocolate vending machine is:

VMS = lX: coin, chocf g � coin ? choc ? Xð Þð Þ:

The simple vending machine has an alphabet of two symbols, namely coin and
choc. The behaviour of the machine is that a coin is entered into the machine, and
then a chocolate selected and provided, and the machine is ready for further use.
CSP processes use channels to communicate values with their environment, and
input on channel c is denoted by (c?.x Px). This describes a process that accepts any
value x on channel c and then behaves as process Px. In contrast, (c!e P) defines a
process which outputs the expression e on channel c and then behaves as process P.

The p-calculus is a process calculus based on names. Communication between
processes takes place between known channels, and the name of a channel may be
passed over a channel. There is no distinction between channel names and data
values in the p-calculus. The output of a value v on channel a is given by āv; that is
output is a negative prefix. Input on a channel a is given by a(x) and is a positive
prefix. Private links or restrictions are denoted by (x)P.

3.14 Finite-State Machines

Warren McCulloch and Walter Pitts published early work on finite-state automata
in 1943. They were interested in modelling the thought process for humans and
machines. Moore and Mealy developed this work further, and these machines are
referred to as the “Moore machine” and the “Mealy machine”. The Mealy machine
determines its outputs through the current state and the input, whereas the output of
Moore’s machine is based upon the current state alone.

Definition 3.2 (Finite-State Machine)
A finite state machine (FSM) is an abstract mathematical machine that consists

of a finite number of states. It includes a start state q0 in which the machine is in
initially; a finite set of states Q; an input alphabet R; a state transition function d;
and a set of final accepting states F (where F � Q).

The state transition function takes the current state and an input and returns the
next state. That is, the transition function is of the form:

3.13 The Process Calculi 57

d : Q� R ! Q.

The transition function provides rules that define the action of the machine for
each input, and it may be extended to provide output as well as a state transition.
State diagrams are used to represent finite-state machines, and each state accepts a
finite number of inputs. A finite-state machine may be deterministic or
non-deterministic, and a deterministic machine (Fig. 3.1) changes to exactly one
state for each input transition, whereas a non-deterministic machine may have a
choice of states to move to for a particular input.

Finite-state automata can compute only very primitive functions and are not an
adequate model for computing. There are more powerful automata such as the
Turing machine that is essentially a finite automaton with an infinite storage
(memory). Anything that is computable is computable by a Turing Machine.

The memory of the Turing machine is a tape that consists of a potentially infinite
number of one-dimensional cells. The Turing machine provides a mathematical
abstraction of computer execution and storage, as well as providing a mathematical
definition of an algorithm. Automata are discussed in more detail in Chap. 13.

3.15 The Parnas Way

Parnas has been influential in the computing field, and his ideas on the specification,
design, implementation, maintenance and documentation of computer software
remain important. He advocates a solid engineering approach and argues that the
role of the engineer is to apply scientific principles and mathematics to design and
develop products. He argues that computer scientists need to be educated as
engineers to ensure that they have the appropriate background to build software
correctly.

His tabular expressions were used for the specification of the requirements of the
A-7 aircraft for the US Navy, and his mathematical inspections were used to verify
the correctness of the shutdown software at the Darlington nuclear power plant in
Canada. Some of his contributions to software engineering are listed in (Table 3.2).

A B C

0 0

1 1

Fig. 3.1 Deterministic finite-state machine

58 3 Overview of Formal Methods

3.16 Model Checking

Model checking is an automated technique such that given a finite-state model of a
system and a formal property, (expressed in temporal logic) then it systematically
checks whether the property is true or false in a given state in the model. It is an
effective technique to identify potential design errors, and it increases the confi-
dence in the correctness of the system design. Model checking is a highly effective
verification technology and is widely used in the hardware and software fields. It
has been employed in the verification of microprocessors; in security protocols; in
the transportation sector (trains); and in the verification of software in the space
sector.

Model checking is a formal verification technique based on graph algorithms and
formal logic. It allows the desired behaviour (specification) of a system to be
verified, and its approach is to employ a suitable model of the system, and to carry
out a systematic and exhaustive inspection of all states of the model to verify that
the desired properties are satisfied. These properties are generally safety properties
such as the absence of deadlock, request-response properties and invariants. Its
systematic search determines whether a given system model truly satisfies a par-
ticular property or not. Model checking is discussed in more detail in Chap. 14.

Table 3.2 Parnas’s contributions to software engineering

Area Contribution

Tabular expressions These are mathematical tables for specifying requirements and enable
complex predicate logic expressions to be represented in a simpler
form

Mathematical
documentation

He advocates the use of precise mathematical documentation for
requirements and design

Requirements
specification

He advocates the use of mathematical relations to specify the
requirements precisely

Software design He developed information hiding that is used in object-oriented
designa and allows software to be designed for change. Every
information-hiding module has an interface that provides the only
means to access the services provided by the modules. The interface
hides the module’s implementation

Software inspections His approach requires the reviewers to take an active part in the
inspection. They are provided with a list of questions by the author,
and their analysis involves the production of mathematical table to
justify the answers

Predicate logic He developed an extension of the predicate calculus to deal with
partial functions, and it preserves the classical two-valued logic when
dealing with undefined values

aIt is surprising that many in the object-oriented world seem unaware that information hiding goes
back to the early 1970s and many have never heard of Parnas

3.16 Model Checking 59

3.17 Usability of Formal Methods

There are practical difficulties associated with the industrial use of formal methods.
It seems to be assumed that programmers and customers are willing to become
familiar with the mathematics used in formal methods, but this is true in only some
domains.11 It is usually possible to get a developer to learn a formal method, as a
programmer has some experience of mathematics and logic. However, it is more
difficult to get a customer to learn a formal method, and this makes it more difficult
to perform a rigorous validation of the formal specification.

This often means that often a formal specification of the requirements and an
informal definition of the requirements using a natural language are maintained. It is
essential that both of these are consistent and that there is a rigorous validation of
the formal specification. Otherwise, if the programmer proves the correctness of the
code with respect to the formal specification, and the formal specification is
incorrect, then the formal development of the software is incorrect. There are
several techniques to validate a formal specification including:

– Proof that the formal specification satisfies key properties;
– Software inspections to compare formal specification and informal set of

requirements;
– Specification animation to validate the formal specification.

Formal methods are perceived as being difficult to use, and of providing limited
value in mainstream software engineering. Programmers receive education in
mathematics as part of their studies, but many never use formal methods again once
they take an industrial position. Some of the reasons for this are:

– The notation is not intuitive.
– It is difficult to write a formal specification.
– Validation of a formal specification is difficult.
– Refinement and proof are difficult.
– Limited tool support.

It is important to investigate ways by which formal methods can be made more
usable to software engineers, and technology transfer of formal methods to industry
is discussed in Chap. 18. This may involve designing more usable notations and
better tools to support the process. Practical training and coaching to employees can
help. Some of the characteristics of a usable formal method are:

– A formal method should be intuitive.

11The domain in which the software is being used will influence the willingness or otherwise of the
customers to become familiar with the mathematics required. There appears to be little interest in
mainstream software engineering, and their perception is that formal methods are unusable.
However, there is a greater interest in the mathematical approach in the safety critical field.

60 3 Overview of Formal Methods

– It should have tool support.
– A formal method should be teachable.
– It should be able to adapt to change.
– The technology transfer path should be defined.
– A formal method should be cost effective.

3.18 Review Questions

1. What are formal methods and describe their potential benefits? How
essential is tool support?

2. What is stepwise refinement and how realistic is it in mainstream soft-
ware engineering?

3. Discuss Parnas’s criticisms of formal methods and discuss whether his
views are valid.

4. Discuss the industrial applications of formal methods and which areas
have benefited most from their use? What problems have arisen?

5. Describe a technology transfer path for the deployment of formal methods
in an organization.

6. Explain the difference between the model-oriented approach and the
axiomatic approach.

7. Discuss the nature of proof in formal methods and tools to support proof.
8. Discuss the Vienna Development Method and explain the difference

between standard VDM and VDM♣.
9. Discuss Z and B. Describe the tools in the B-Toolkit.

10. Discuss process calculi such as CSP, CCS or p–calculus.

3.19 Summary

This chapter discussed formal methods that offer a mathematical approach to the
development of high-quality software. Formal methods employ mathematical
techniques for the specification and development of software, and are useful in the
safety critical field. They consist of a formal specification language; a methodology
for formal software development; and a set of tools to support the syntax checking
of the specification, as well as the proof of properties of the specification.

3.17 Usability of Formal Methods 61

Formal methods may be model-oriented or axiomatic-oriented. The
model-oriented approach includes formal methods such as VDM, Z and B. The
axiomatic approach includes the process calculi such as CSP, CCS and the p
calculus. VDM was developed at the IBM laboratory in Vienna, and has been used
in academia and industry. CSP was developed by C.A.R Hoare and CCS by Robin
Milner.

Formal methods allow questions to be asked and answered about what the
system does independently of the implementation. They offer a way to debug the
requirements and to show that certain desirable properties are true of the specifi-
cation, whereas certain undesirable properties are absent.

The use of formal methods generally leads to more robust software and to
increased confidence in its correctness. There are challenges involved in the
deployment of formal methods, as the use of these mathematical techniques may be
a culture shock to many staff.

The usability of existing formal methods was considered, and reasons for their
perceived difficulty were considered. The characteristics of a usable formal method
were explored.

There are various tools to support formal methods including syntax checkers;
specialized editors; tools to support refinement; automated code generators that
generate a high-level language corresponding to the specification; theorem provers;
and specification animation tools where the execution of the specification can be
simulated.

References

1. J.M. Spivey, in The Z Notation. A Reference Manual. International Series in Computer
Science (Prentice Hall, Englewood Cliffs, 1992)

2. M.J.D Brown, Rational for the development of the U.K. Defence Standards for Safety Critical
software, in Compass Conference (1990)

3. M. Hinchey, J. Bowen (eds.), in Applications of Formal Methods. Prentice Hall International
Series in Computer Science (1995)

4. UK Ministry of Defence, The Procurement of Safety Critical Software in Defence Equipment.
Part 1: Requirements. Interim Defence Standard -55 (Part 1)/Issue 1 (1991a)

5. UK Ministry of Defence, The Procurement of Safety Critical Software in Defence Equipment.
Part 2: Guidance. Interim Defence Standard -55 (Part 2)/Issue 1 (1991b)

6. M. Tierney, The Evolution of Def Stan -55 and -56. An intensification of the formal methods
debate in the UK. Research Centre for Social Sciences, University of Edinburgh (1991)

7. S. Gerhart, D. Craighen, T. Ralston, Experience with formal methods in critical systems.
IEEE Softw. (January 1994)

8. J. Woodcock, P.G. Larsen, J. Bicarregui, J. Fitzgerald, Formal methods: practice and
experience. ACM Comput. Surv. 29

9. T. Kuhn, The Structure of Scientific Revolutions (University of Chicago Press, Chicago, 1970)
10. D. Bjørner, C. Jones, in The Vienna Development Method. The Meta language. Lecture Notes

in Computer Science, vol 61 (Springer, Berlin, 1978)
11. D. Bjørner, C. Jones, in Formal Specification and Software Development. Prentice Hall

International Series in Computer Science (1982)

62 3 Overview of Formal Methods

12. M. Mac An Airchinnigh, Computation Models and Computing, Ph.D. Thesis, Department of
Computer Science, Trinity College Dublin

13. G. Polya, How to Solve It. A New Aspect of Mathematical Method (Princeton University
Press, Princeton, 1957)

14. I. Lakatos, Proof and Refutations. The Logic of Mathematical Discovery (Cambridge
University Press, Cambridge, 1976)

15. E. McDonnell, M.Sc. Thesis. Department of Computer Science, Trinity College Dublin
16. J.P. Hoare, Application of the B method to CICS, in Applications of Formal Methods.

Prentice Hall International Series in Computer Science (1995)
17. D. Gries, The Science of Programming (Springer, Berlin, 1981)
18. G. O’ Regan, Mathematical Approaches to Software Quality, vol 26 (Springer, London)
19. C.A.R. Hoare, in Communicating Sequential Processes. Prentice Hall International Series in

Computer Science (1985)
20. R. Milner et al., in A Calculus of Mobile Processes. Part 1. LFCS Report Series.

ECS-LFCS-89-85. Department of Computer Science, University of Edinburgh

References 63

4Sets, Relations and Functions

Key Topics

Sets
Set operations
Russell’s paradox
Computer representation of sets
Relations
Composition of relations
Reflexive, symmetric and transitive relations
Relational Database Management System
Functions
Partial and total functions
Injective, surjective and transitive functions
Functional programming

4.1 Introduction

This chapter provides an introduction to fundamental building blocks in mathe-
matics such as sets, relations and functions. Sets are collections of well-defined
objects; relations indicate relationships between members of two sets A and B; and
functions are a special type of relation where there is exactly (or at most)1 one
relationship for each element a eA with an element in B.

1We distinguish between total and partial functions. A total function f :A ! B is defined for every
element in A, whereas a partial function may be undefined for one or more values in A.

© Springer International Publishing AG 2017
G. O’Regan, Concise Guide to Formal Methods, Undergraduate Topics
in Computer Science, DOI 10.1007/978-3-319-64021-1_4

65

A set is a collection of well-defined objects that contains no duplicates. The term
“well defined” means that for a given value it is possible to determine whether or
not it is a member of the set. There are many examples of sets such as the set of
natural numbers ℕ, the set of integer numbers ℤ and the set of rational numbers ℚ.
The natural numbers ℕ are an infinite set consisting of the numbers {1, 2, …}.
Venn diagrams may be used to represent sets pictorially.

A binary relation R (A, B) where A and B are sets is a subset of the Cartesian
product (A � B) of A and B. The domain of the relation is A, and the co-domain of
the relation is B. The notation aRb signifies that there is a relation between a and
b and that (a, b) ε R. An n-ary relation R (A1, A2, … An) is a subset of (A1 � A2 � ���
� An). However, an n-ary relation may also be regarded as a binary relation R(A,
B) with A = A1 � A2 � ��� � An−1 and B = An.

Functions may be total or partial. A total function f: A ! B is a special relation
such that for each element a ε A there is exactly one element b ε B. This is written
as f(a) = b. A partial function differs from a total function in that the function may
be undefined for one or more values of A. The domain of a function (denoted by
dom f) is the set of values in A for which the partial function is defined. The domain
of the function is A provided that f is a total function. The co-domain of the function
is B.

4.2 Set Theory

A set is a fundamental building block in mathematics, and it is defined as a col-
lection of well-defined objects. The elements in a set are of the same kind, and they
are distinct with no repetition of the same element in the set.2 Most sets encountered
in computer science are finite, as computers can only deal with finite entities. Venn
diagrams3 are often employed to give a pictorial representation of a set, and they
may be used to illustrate various set operations such as set union, intersection and
set difference.

There are many well-known examples of sets including the set of natural
numbers denoted by ℕ; the set of integers denoted by ℤ; the set of rational numbers
is denoted by ℚ; the set of real numbers denoted by ℝ; and the set of complex
numbers denoted by ℂ.

Example 4.1 The following are examples of sets.

– The books on the shelves in a library;
– The books those are currently overdue from the library;

2There are mathematical objects known as multi-sets or bags that allow duplication of elements.
For example, a bag of marbles may contain three green marbles, two blue and one red marble.
3The British logician, John Venn, invented the Venn diagram. It provides a visual representation of
a set and the various set theoretical operations. Their use is limited to the representation of two or
three sets as they become cumbersome with a larger number of sets.

66 4 Overview of Formal Methods

– The customers of a bank
– The bank accounts in a bank;
– The set of natural numbers ℕ = {1, 2, 3, …};
– The integer numbers ℤ = {…, −3, −2, −1, 0, 1, 2, 3, …};
– The non-negative integers ℤ+ = {0, 1, 2, 3, …};
– The set of prime numbers = {2, 3, 5, 7, 11, 13, 17, …};
– The rational numbers are the set of quotients of integers.

Q ¼ fp=q : p; q 2 Z and q 6¼ 0g:

A finite set may be defined by listing all of its elements. For example, the set
A = {2, 4, 6, 8, 10} is the set of all even natural numbers less than or equal to 10.
The order in which the elements are listed is not relevant; that is, the set {2, 4, 6, 8,
10} is the same as the set {8, 4, 2, 10, 6}.

a
b

A

Sets may be defined by using a predicate to constrain set membership. For
example, the set S = {n : ℕ : n � 10 ^ n mod 2 = 0} also represents the set {2, 4,
6, 8, 10}. That is, the use of a predicate allows a new set to be created from an
existing set by using the predicate to restrict membership of the set. The set of even
natural numbers may be defined by a predicate over the set of natural numbers that
restricts membership to the even numbers. It is defined by:

Evens ¼ fxj x 2 N ^ even xð Þg:

In this example, even(x) is a predicate that is true if x is even and false otherwise.
In general, A = {x e E | P(x)} denotes a set A formed from a set E using the
predicate P to restrict membership of A to those elements of E for which the
predicate is true.

The elements of a finite set S are denoted by {x1, x2, … xn}. The expression x ε
S denotes that the element x is a member of the set S, whereas the expression x 62
S indicates that x is not a member of the set S.

A set S is a subset of a set T (denoted S � T) if whenever s ε S then s ε T, and in
this case the set T is said to be a superset of S (denoted T � S). Two sets S and T are
said to be equal if they contain identical elements; that is, S = T if and only if
S � T and T � S. A set S is a proper subset of a set T (denoted S � T) if S � T and
S 6¼ T. That is, every element of S is an element of T, and there is at least one
element in T that is not an element of S. In this case, T is a proper superset of
S (denoted T � S).

4.2 Set Theory 67

T

S

The empty set (denoted by ∅ or {}) represents the set that has no elements.
Clearly,∅ is a subset of every set. The singleton set containing just one element x is
denoted by {x}, and clearly x ε {x} and x 6¼ {x}. Clearly, y ε {x} if and only if
x = y.

Example 4.2

(i) {1, 2} � {1, 2, 3};
(ii) ∅ � ℕ � ℤ � ℚ � ℝ � ℂ;

The cardinality (or size) of a finite set S defines the number of elements present
in the set. It is denoted by |S|. The cardinality of an infinite4 set S is written as |
S| = ∞.

Example 4.3

(i) Given A = {2, 4, 5, 8, 10}, then |A| = 5.
(ii) Given A = {x ε ℤ : x 2 = 9}, then |A| = 2.
(iii) Given A = {x ε ℤ : x 2 = −9}, then |A| = 0.

4.2.1 Set Theoretical Operations

Several set theoretical operations are considered in this section. These include the
Cartesian product operation; the power set of a set; the set union operation; the set
intersection operation; the set difference operation; and the symmetric difference
operation.

Cartesian Product
The Cartesian product allows a new set to be created from existing sets. The
Cartesian5 product of two sets S and T (denoted S � T) is the set of ordered pairs
{(s, t) | s ε S, t ε T}. Clearly, S � T 6¼ T � S and so the Cartesian product of two sets
is not commutative. Two ordered pairs (s1, t1) and (s2, t2) are considered equal if
and only if s1 = s2 and t1 = t2.

4The natural numbers, integers and rational numbers are countable sets, whereas the real and
complex numbers are uncountable sets.
5Cartesian product is named after René Descartes who was a famous seventeenth French
mathematician and philosopher. He invented the Cartesian coordinates system that links geometry
and algebra, and allows geometric shapes to be defined by algebraic equations.

68 4 Overview of Formal Methods

The Cartesian product may be extended to that of n sets S1, S2, …, Sn. The
Cartesian product S1 � S2 � ��� � Sn is the set of ordered tuples {(s1, s2,…, sn) | s1 ε
S1, s2 ε S2, …, sn ε Sn}. Two ordered n-tuples (s1, s2, …, sn) and (s1′, s2′, …, sn′) are
considered equal if and only if s1 = s1′, s2 = s2′, …, sn = sn′.

The Cartesian product may also be applied to a single set S to create ordered n-
tuples of S; that is, Sn = S � S � ��� � S (n times).

Power Set
The power set of a set A (denoted ℙA) denotes the set of subsets of A. For example,
the power set of the set A = {1, 2, 3} has eight elements and is given by:

PA ¼ f£; 1f g; 2f g; 3f g; 1; 2f g; 1; 3f g; 2; 3f g; 1; 2; 3f gg:

There are 23 = 8 elements in the power set of A = {1, 2, 3}, and the cardinality
of A is 3. In general, there are 2|A| elements in the power set of A.

Theorem 4.1 (Cardinality of Power Set of A)
There are 2|A| elements in the power set of A.

Proof Let |A| = n, then the cardinality of the subsets of A is subsets of size 0, 1,…,

n. There are
n
k

� �
subsets of A of size k.6 Therefore, the total number of subsets of

A is the total number of subsets of size 0, 1, 2, … up to n. That is,

PAj j ¼
Xn
k¼0

n
k

� �
:

The binomial theorem states that:

ð1þ xÞn ¼
Xn
k¼0

n
k

� �
xk:

Therefore, putting x = 1 we get that

2n ¼ ð1þ 1Þn ¼
Xn
k¼0

n
k

� �
1k ¼ PAj j:

6We discuss permutations and combinations in Chap. 5.

4.2 Set Theory 69

Unionand IntersectionOperations The union of two sets A and B is denoted by A [
B. It results in a set that contains all of the members of A and of B and is defined by:

A[B ¼ frj r 2 A or r 2 Bg:

For example, suppose A = {1, 2, 3} and B = {2, 3, 4}, then A [B = {1, 2, 3,
4}. Set union is a commutative operation; that is, A [B = B [A. Venn diagrams
are used to illustrate these operations pictorially.

A B A B

A ∪ B A ∩ B

The intersection of two sets A and B is denoted by A \ B. It results in a set
containing the elements that A and B have in common and is defined by:

A\B ¼ frj r 2 A and r 2 Bg:

Suppose A = {1, 2, 3} and B = {2, 3, 4}, then A \ B = {2, 3}. Set intersection
is a commutative operation; that is, A \ B = B \ A.

Union and intersection are binary operations but may be extended to more
generalized union and intersection operations. For example:

[n
i¼1Ai denotes the union of n sets:

\ n
i¼1Ai denotes the intersection of n sets:

Set Difference Operations
The set difference operation A\B yields the elements in A that are not in B. It is
defined by

AnB ¼ faj a 2 A and a 62 Bg:

For A and B defined as A = {1, 2} and B = {2, 3}, we have A\B = {1} and B
\A = {3}. Clearly, set difference is not commutative; that is, A\B 6¼ B\A. Clearly, A
\A = ∅ and A\∅ = A.

The symmetric difference of two sets A and B is denoted by A Δ B and is given
by: ADB ¼ AnB[BnA:

The symmetric difference operation is commutative; that is, A Δ B = B Δ
A. Venn diagrams are used to illustrate these operations pictorially.

70 4 Overview of Formal Methods

A B A B A B

A \ B B \ A A ∆ B

The complement of a set A (with respect to the universal set U) is the elements in
the universal set that are not in A. It is denoted by Ac (or A′) and is defined as:

Ac ¼ fuju 2 U and u 62 Ag ¼ UnA:

A Ac

U

The complement of the set A is illustrated by the shaded area above.

4.2.2 Properties of Set Theoretical Operations

The set union and set intersection properties are commutative and associative. Their
properties are listed in Table 4.1.

These properties may be seen to be true with Venn diagrams, and we give a
proof of the distributive property (this proof uses logic which is discussed in
Chaps. 5–7).

Proof of Properties (Distributive Property) To show A \ (B [C) = (A \ B) [
(A \ C).

Suppose x ε A \ (B [C), then

x 2 A ^ x 2 ðB[CÞ

) x 2 A ^ ðx 2 B _ x 2 CÞ

) ðx 2 A ^ x 2 BÞ _ ðx 2 A ^ x 2 CÞ
) x 2 ðA\BÞ _ x 2 ðA\CÞ
) x 2 ðA\BÞ [ðA\CÞ

:

Therefore; A\ ðB[CÞ�ðA\BÞ [ðA\CÞ:

4.2 Set Theory 71

Similarly ðA\BÞ [ðA\CÞ�A\ ðB[CÞ:

Therefore, A\ ðB[CÞ ¼ ðA\BÞ [ðA\CÞ:

4.2.3 Russell’s Paradox

Bertrand Russell (Fig. 4.1) was a famous British logician, mathematician and
philosopher. He was the co-author with Alfred Whitehead of Principia Mathe-
matica, which aimed to derive all of the truths of mathematics from logic. Russell’s
paradox was discovered by Bertrand Russell in 1901, and showed that the system of
logicism being proposed by Frege (discussed in Chap. 5) contained a contradiction.

Question (Posed by Russell to Frege)
Is the set of all sets that do not contain themselves as members a set?

Russell’s Paradox
Let A = {S a set and S 62 S}. Is A � A? Then, A 2 A) A 62 A and vice versa.
Therefore, a contradiction arises in either case, and there is no such set A.

Two ways of avoiding the paradox were developed in 1908, and these were
Russell’s theory of types and Zermelo set theory. Russell’s theory of types was a

Table 4.1 Properties of set operations

Property Description

Commutative Union and intersection operations are commutative; that is,
S[T ¼ T [S

S[T ¼ T \ S

Associative Union and intersection operations are associative; that is,
R[ðS[TÞ ¼ ðR[SÞ [T

R\ ðS\ TÞ ¼ ðR\ SÞ \ T

Identity The identity under set union is the empty set ∅, and the identity under
intersection is the universal set U
S[; ¼ ;[S ¼ S

S\U ¼ U \ S ¼ S

Distributive The union operator distributes over the intersection operator and vice versa
R\ ðS[TÞ ¼ ðR\ SÞ [ðR\ TÞ
R[ðS\ TÞ ¼ ðR[SÞ \ ðR[TÞ

De Morgan’sa

law
The complement of S [T is given by:
ðS[TÞc ¼ Sc \ Tc

The complement of S \ T is given by:
ðS\ TÞc ¼ Sc [Tc

aDe Morgan’s law is named after Augustus De Morgan, a nineteenth-century English
mathematician who was a contemporary of George Boole

72 4 Overview of Formal Methods

response to the paradox by arguing that the set of all sets is ill formed. Russell
developed a hierarchy with individual elements the lowest level; sets of elements at
the next level; sets of elements at the next level; and so on. It is then prohibited for a
set to contain members of different types.

A set of elements has a different type from its elements, and one cannot speak of
the set of all sets that do not contain themselves as members as these are of different
types. The other way of avoiding the paradox was Zermelo’s axiomatization of set
theory (the eight Zermelo-Franklin (ZF) axioms are the most common axiomati-
zation of set theory).

Remark Russell’s paradox may also be illustrated by the story of a town that has
exactly one barber who is male. The barber shaves all and only those men in town
who do not shave themselves. The question is who shaves the barber.

If the barber does not shave himself, then according to the rule he is shaved by
the barber (i.e. himself). If he shaves himself, then according to the rule he is not
shaved by the barber (i.e. himself).

The paradox occurs due to self-reference in the statement, and a logical exam-
ination shows that the statement is a contradiction.

4.2.4 Computer Representation of Sets

Sets are fundamental building blocks in mathematics, and so the question arises as
to how a set is stored and manipulated in a computer. The representation of a set
M on a computer requires a change from the normal view that the order of the

Fig. 4.1 Bertrand Russell

4.2 Set Theory 73

elements of the set is irrelevant, and we will need to assume a definite order in the
underlying universal set ℳ from which the set M is defined.

That is, a set is always defined in a computer program with respect to an
underlying universal set, and the elements in the universal set are listed in a definite
order. Any set M arising in the program that is defined with respect to this universal
set ℳ is a subset of ℳ. Next, we show how the set M is stored internally on the
computer.

The set M is represented in a computer as a string of binary digits b1b2 … bn
where n is the cardinality of the universal set ℳ. The bits bi (where i ranges over
the values 1, 2, … n) are determined according to the rule:

bi = 1 if ith element of ℳ is in M.
bi = 0 if ith element of ℳ is not in M.

For example, if ℳ = {1, 2, … 10}, then the representation of M = {1, 2, 5, 8}
is given by the bit string 1100100100 where this is given by looking at each
element of ℳ in turn and writing down 1 if it is in M and 0 otherwise.

Similarly, the bit string 0100101100 represents the set M = {2, 5, 7, 8}, and this
is determined by writing down the corresponding element in ℳ that corresponds
to a 1 in the bit string.

Clearly, there is a one-to-one correspondence between the subsets of ℳ and all
possible n-bit strings. Further, the set theoretical operations of set union, intersec-
tion and complement can be carried out directly with the bit strings (provided that
the sets involved are defined with respect to the same universal set). This involves a
bitwise “or” operation for set union; a bitwise “and” operation for set intersection;
and a bitwise “not” operation for the set complement operation.

4.3 Relations

A binary relation R(A, B) where A and B are sets is a subset of A � B; that is,
R � A � B. The domain of the relation is A, and the co-domain of the relation is
B. The notation aRb signifies that (a, b) ε R.

A binary relation R(A, A) is a relation between A and A. This type of relation
may always be composed with itself, and its inverse is also a binary relation on A.
The identity relation on A is defined by a iAa for all a ε A.

Example 4.4 There are many examples of relations:

(i) The relation on a set of students in a class where (a, b) ε R if the height of a is
greater than the height of b;

(ii) The relation between A and B where A = {0, 1, 2} and B = {3, 4, 5} with
R given by:

74 4 Overview of Formal Methods

R ¼ 0; 3ð Þ; 0; 4ð Þ; 1; 4ð Þf g

(iii) The relation less than (<) between and ℝ and ℝ is given by:

f x; yð Þ 2 R2 : x\yg

(iv) A bank may represent the relationship between the set of accounts and the set
of customers by a relation. The implementation of a bank account will often
be a positive integer with at most eight decimal digits.

The relationship between accounts and customers may be done with a relation
R � A � B, with the set A chosen to be the set of natural numbers, and the set
B chosen to be the set of all human beings alive or dead. The set

A could also be chosen to be A = {n ε ℕ: n < 108}.

A relation R(A, B) may be represented pictorially. This is referred to as the graph
of the relation, and it is illustrated in the diagram below. An arrow from x to y is
drawn if (x, y) is in the relation. Thus, for the height relation R given by {(a, p), (a,
r), (b, q)}, an arrow is drawn from a to p, from a to r and from b to q to indicate that
(a, p), (a, r) and (b, q) are in the relation R.

a
b

p
q
r

A B

The pictorial representation of the relation makes it easy to see that the height of
a is greater than the height of p and r; and that the height of b is greater than the
height of q.

An n-ary relation R (A1, A2,… An) is a subset of (A1 � A2 � ��� � An). However,
an n-ary relation may also be regarded as a binary relation R(A, B) with A = A1 �
A2 � ��� � An−1 and B = An.

4.3.1 Reflexive, Symmetric and Transitive Relations

There are various types of relations including reflexive, symmetric and transitive
relations.

(i) A relation on a set A is reflexive if (a, a) ε R for all a ε A.
(ii) A relation R is symmetric if whenever (a, b) ε R, then (b, a) ε R.
(iii) A relation is transitive if whenever (a, b) ε R and (b, c) ε R, then (a, c) ε R.

4.3 Relations 75

A relation that is reflexive, symmetric and transitive is termed an equivalence
relation.

Example 4.5 (Reflexive Relation) A relation is reflexive if each element possesses
an edge looping around on itself. The relation in Fig. 4.2 is reflexive.

Example 4.6 (Symmetric Relation) The graph of a symmetric relation will show for
every arrow from a to b an opposite arrow from b to a. The relation in Fig. 4.3 is
symmetric; that is, whenever (a, b) ε R, then (b, a) ε R.

Example 4.7 (Transitive Relation) The graph of a transitive relation will show that
whenever there is an arrow from a to b and an arrow from b to c that there is an
arrow from a to c. The relation in Fig. 4.4 is transitive; that is, whenever (a, b) ε
R and (b, c) ε R, then (a, c) ε R.

Example 4.8 (Equivalence Relation) The relation on the set of integers ℤ defined
by (a, b) ε R if a – b = 2 k for some k ε ℤ is an equivalence relation, and it partitions
the set of integers into two equivalence classes, i.e. the even and odd integers.

c

a

b

Fig. 4.2 Reflexive relation

a

c d

b

Fig. 4.3 Symmetric relation

a

b c

Fig. 4.4 Transitive relation

76 4 Overview of Formal Methods

Domain and Range of Relation
The domain of a relation R (A, B) is given by {a ε A | 9b ε B and (a, b) ε R}. It is
denoted by dom R. The domain of the relation R = {(a, p), (a, r), (b, q)} is {a, b}.

The range of a relation R (A, B) is given by {b ε B | 9a ε A and (a, b) ε R}. It is
denoted by rng R. The range of the relation R = {(a, p), (a, r), (b, q)} is {p, q, r}.

Inverse of a Relation Suppose R � A � B is a relation between A and B, then the
inverse relation R−1 � B � A is defined as the relation between B and A and is
given by:

b R	1 a if and only if aR b:

That is,

R	1 ¼ f b; að Þ 2 B� A : a; bð Þ 2 Rg:

Example 4.9 Let R be the relation between ℤ and ℤ+ defined by mRn if and only if
m2 = n. Then, R = {(m, n) ε ℤ� ℤ+: m2 = n} and R−1 = {(n, m) ε ℤ+� ℤ: m2 = n}.

For example, −3 R 9, −4 R 16, 0 R 0, 16 R−1 −4, 9 R−1 −3, etc.

Partitions and Equivalence Relations
An equivalence relation on A leads to a partition of A, and vice versa for every
partition of A there is a corresponding equivalence relation.

Let A be a finite set and let A1, A2,…, An be subsets of A such Ai 6¼ ∅ for all i, Ai

\ Aj = ∅ if i 6¼ j and A = [i
n Ai = A1 [A2 [… [An.

The sets Ai partition the set A, and these sets are called the classes of the partition
(Fig. 4.5).

Theorem 4.2 (Equivalence Relation and Partitions)
An equivalence relation on A gives rise to a partition of A where the equivalence

classes are given by Class(a) = {x | x � A and (a, x) � R}. Similarly, a partition
gives rise to an equivalence relation R, where (a, b) � R if and only if a and b are in
the same partition.

A1

A7

A2

A3

A4

A5

A6

Fig. 4.5 Partitions of A

4.3 Relations 77

Proof Clearly, a ε Class(a) since R is reflexive and clearly the union of the
equivalence classes is A. Next, we show that two equivalence classes are either
equal or disjoint.

Suppose Class(a) \ Class(b) 6¼ ∅. Let x ε Class(a) \ Class(b) and so (a,
x) and (b, x) ε R. By the symmetric property (x, b) ε R and since R is transitive from
(a, x) and (x, b) in R, we deduce that (a, b) ε R. Therefore, b ε Class(a). Suppose y is
an arbitrary member of Class (b), then (b, y) ε R; therefore, from (a, b) and (b, y) in
R, we deduce that (a, y) is in R. Therefore, since y was an arbitrary member of Class
(b), we deduce that Class(b) � Class(a). Similarly, Class(a) � Class(b) and so
Class(a) = Class(b).

This proves the first part of the theorem, and for the second part we define a
relation R such that (a, b) ε R if a and b are in the same partition. It is clear that this
is an equivalence relation.

4.3.2 Composition of Relations

The composition of two relations R1(A, B) and R2(B, C) is given by R2 ∘ R1 where
(a, c) ε R2 ∘ R1 if and only there exists b ε B such that (a, b) εR1 and (b, c) ε R2. The
composition of relations is associative; that is,

R3
 R2ð Þ
 R1 ¼ R3
 R2
 R1ð Þ:

Example 4.10 (Composition of Relations) Consider a library that maintains two
files. The first file maintains the serial number s of each book as well as the details
of the author a of the book. This may be represented by the relation R1 = sR1a. The
second file maintains the library card number c of its borrowers and the serial
number s of any books that they have borrowed. This may be represented by the
relation R2 = c R2s.

The library wishes to issue a reminder to its borrowers of the authors of all books
currently on loan to them. This may be determined by the composition of R1 ∘ R2,
i.e. c R1 ∘ R2 a if there is book with serial number s such that c R2 s and s R1 a.

Example 4.11 (Composition of Relations) Consider sets A = {a, b, c}, B = {d, e,
f}, C = {g, h, i} and relations R(A, B) = {(a, d), (a, f), (b, d), (c, e)} and S(B,
C) = {(d, h), (d, i), (e, g), (e, h)}. Then, we graph these relations and show how to
determine the composition pictorially.

S ∘ R is determined by choosing x ε A and y ε C and checking if there is a route
from x to y in the graph (Fig. 4.6). If so, we join x to y in S ∘ R. For example, if we
consider a and h we see that there is a path from a to d and from d to h and therefore
(a, h) is in the composition of S and R.

78 4 Overview of Formal Methods

The union of two relations R1(A, B) and R2(A, B) is meaningful (as these are both
subsets of A � B). The union R1 [R2 is defined as (a, b) ε R1 [R2 if and only if
(a, b) ε R1 or (a, b) ε R2.

a

b
c

g

h
i

A C

SoR

Similarly, the intersection of R1 and R2 (R1 \ R2) is meaningful and is defined
as (a, b) ε R1 \ R2 if and only if (a, b) ε R1 and (a, b) ε R2. The relation R1 is a
subset of R2 (R1 � R2) if whenever (a, b) ε R1, then (a, b) ε R2.

The inverse of the relation R was discussed earlier and is given by the relation
R−1 where R−1 = {(b, a) | (a, b) ε R}.

The composition of R and R−1 yields: R−1 ∘ R = {(a, a) | a ε dom R} = iA and R
o R−1 = {(b, b) | b ε dom R−1 } = iB.

4.3.3 Binary Relations

A binary relation R on A is a relation between A and A, and a binary relation can
always be composed with itself. Its inverse is a binary relation on the same set. The
following are all relations on A:

R2 ¼ R
 R
R3 ¼ R
 Rð Þ
 R
R0 ¼ iA identity relationð Þ
R	2 ¼ R	1
 R	1:

Example 4.12 Let R be the binary relation on the set of all people P such that (a,
b) ε R if a is a parent of b. Then, the relation Rn is interpreted as:

R is the parent relationship.
R2 is the grandparent relationship.

a

b

c

d

e

f

g

h

i

A B C

R(A,B) S(B,C)

Fig. 4.6 Composition of relations

4.3 Relations 79

R3 is the great-grandparent relationship.
R−1 is the child relationship.
R−2 is the grandchild relationship.
R−3 is the great-grandchild relationship.

This can be generalized to a relation Rn on A where Rn = R ∘ R ∘ ��� ∘ R (n times).
The transitive closure of the relation R on A is given by:

R� ¼ [1
i¼0R

i ¼ R0 [R1 [R2 [. . .Rn [::

where R0 is the reflexive relation containing only each element in the domain of R;
that is, R0 = iA = {(a, a) | a ε dom R}.

The positive transitive closure is similar to the transitive closure except that it
does not contain R0. It is given by:

Rþ ¼ [1
i¼1R

i ¼ R1 [R2 [. . .[Rn [. . .

a R+ b if and only if a R n b for some n > 0; that is, there exists c1, c2 … cn ε
A such that

aRc1; c1Rc2; . . .; cnRb:

Parnas7 introduced the concept of the limited domain relation (LD relation), and
a LD relation L consists of an ordered pair (RL, CL) where RL is a relation and CL is
a subset of dom RL. The relation RL is on a set U, and CL is termed the competence
set of the LD relation L. A description of LD relations and a discussion of their
properties are in Chap. 2 of [1].

The importance of LD relations is that they may be used to describe program
execution. The relation component of the LD relation L describes a set of states
such that if execution starts in state x it may terminate in state y. The set U is the set
of states. The competence set of L is such that if execution starts in a state that is in
the competence set CL, then it is guaranteed to terminate.

4.3.4 Applications of Relations

A Relational Database Management System (RDBMS) is a system that manages
data using the relational model, and examples of such systems include RDMS
developed at MIT in the 1970s; Ingres developed at the University of California,
Berkeley in the mid-1970s; Oracle developed in the late 1970s; DB2; Informix; and
Microsoft SQL Server.

7Parnas made important contributions to software engineering in the 1970s. He invented
information hiding which is used in object-oriented design.

80 4 Overview of Formal Methods

A relation is defined as a set of tuples and is usually represented by a table.
A table is data organized in rows and columns, with the data in each column of the
table of the same data type. Constraints may be employed to provide restrictions on
the kinds of data that may be stored in the relations. Constraints are Boolean
expressions which indicate whether the constraint holds or not, and are a way of
implementing business rules in the database.

Relations have one or more keys associated with them, and the key uniquely
identifies the row of the table. An index is a way of providing fast access to the data
in a relational database, as it allows the tuple in a relation to be looked up directly
(using the index) rather than checking all of the tuples in the relation.

The Structured Query Language (SQL) is a computer language that tells the
relational database what to retrieve and how to display it. A stored procedure is
executable code that is associated with the database, and it is used to perform
common operations on the database.

The concept of a relational database was first described in a paper “A Relational
Model of Data for Large Shared Data Banks” by Codd [2]. A relational database is
a database that conforms to the relational model, and it may be defined as a set of
relations (or tables).

Codd (Fig. 4.7) developed the relational database model in the late 1960s, and
this is the standard way that information is organized and retrieved from computers.
Relational databases are at the heart of systems from hospitals’ patient records to
airline flight and schedule information.

A binary relation R(A, B) where A and B are sets is a subset of the Cartesian
product (A � B) of A and B. The domain of the relation is A, and the co-domain of
the relation is B. The notation aRb signifies that there is a relation between a and
b and that (a, b) ε R. An n-ary relation R (A1, A2,… An) is a subset of the Cartesian

Fig. 4.7 Edgar Codd

4.3 Relations 81

product of the n sets. However, an n-ary may also be regarded as a binary relation R
(A, B) with A = A1 � A2 � ��� � An−1 and B = An.

The data in the relational model is represented as a mathematical n-ary relation.
In other words, a relation is defined as a set of n-tuples, and is usually represented
by a table which is a visual representation of the relation, with the data organized in
rows and columns.

The basic relational building block is the domain or data type (often called just
type). Each row of the table represents one n-tuple (one tuple) of the relation, and
the number of tuples in the relation is its cardinality. Consider the PART relation
taken from [3], where this relation consists of a heading and the body. There are
five data types representing part numbers, part names, part colours, part weights and
locations in which the parts are stored. The body consists of a set of n-tuples, and
the PART relation given in Fig. 4.8 is of cardinality six.

For more information on the relational model and databases, see [4].

4.4 Functions

A function f: A ! B is a special relation such that for each element a ε A there is
exactly (or at most)8 one element b ε B. This is written as f(a) = b.

a

b
c

p

q
r

A B

f

A function is a relation but not every relation is a function. For example, the
relation in the diagram below is not a function since there are two arrows from the
element a ε A.

P# PName Colour Weight City
P1
P2
P3
P4
P5
P6

Nut
Bolt
Screw
Screw
Cam
Cog

Red
Green
Blue
Red
Blue
Red

12
17
17
14
12
19

London
Paris
Rome
London
Paris
London

Fig. 4.8 PART relation

8We distinguish between total and partial functions. A total function is defined for all elements in
the domain, whereas a partial function may be undefined for one or more elements in the domain.

82 4 Overview of Formal Methods

a

b
c

p

q
r

A B

R

The domain of the function (denoted by dom f) is the set of values in A for
which the function is defined. The domain of the function is A provided that f is a
total function. The co-domain of the function is B. The range of the function
(denoted rng f) is a subset of the co-domain and consists of:

rng f ¼ frj r 2 B such that f að Þ ¼ r for some a 2 Ag:

Functions may be partial or total. A partial function (or partial mapping) may be
undefined for some values of A, and partial functions arise regularly in the com-
puting field (Fig. 4.9). Total functions are defined for every value in A, and many
functions encountered in mathematics are total.

Example 4.13 (Functions) Functions are an essential part of mathematics and
computer science, and there are many well-known functions such as the trigono-
metric functions sin(x), cos(x), and tan(x); the logarithmic function ln(x); the
exponential functions ex; and polynomial functions.

(i) Consider the partial function f : ℝ ! ℝ where

f xð Þ ¼ 1
x

ðwhere x 6¼ 0Þ:

dom rng

A B

Fig. 4.9 Domain and range of a partial function

4.4 Functions 83

This partial function is defined everywhere except for x = 0.
(ii) Consider the function f : ℝ ! ℝ where

f xð Þ ¼ x2:

Then, this function is defined for all x ε ℝ.

Partial functions often arise in computing as a program may be undefined or fail
to terminate for several values of its arguments (e.g. infinite loops). Care is required
to ensure that the partial function is defined for the argument to which it is to be
applied.

Consider a program P that has one natural number as its input and which fails to
terminate for some input values. It prints a single real result and halts when it
terminates. Then, P can be regarded as a partial mapping from ℕ to ℝ.

P : N ! R:

Example 4.14 How many total functions f: A ! B are there from A to B (where
A and B are finite sets)?

Each element of A maps to any element of B; that is, there are |B| choices for
each element a ε A. Since there are |A| elements in A, the number of total functions
is given by:

Bj j Bj j . . . Bj j Aj j timesð Þ
¼ Bj jAj total functions between A and B:

Example 4.15 How many partial functions f: A ! B are there from A to B (where
A and B are finite sets)?

Each element of A may map to any element of B or to no element of B (as it may
be undefined for that element of A). In other words, there are |B| + 1 choices for
each element of A. As there are |A| elements in A, the number of distinct partial
functions between A and B is given by:

Bj j þ 1ð Þ Bj j þ 1ð Þ . . . Bj j þ 1ð Þ Aj j timesð Þ
¼ Bj j þ 1ð ÞAj:

Two partial functions f and g are equal if:

1. dom f = dom g;
2. f(a) = g(a) for all a ε dom f.

84 4 Overview of Formal Methods

A function f is less defined than a function g (f � g) if the domain of f is a subset
of the domain of g, and the functions agree for every value on the domain:

1. dom f � dom g;
2. f(a) = g(a) for all a ε dom f.

The composition of functions is similar to the composition of relations. Suppose
f: A ! B and g: B ! C, then g o f : A ! C is a function, and this is written as g o f
(x) or g(f(x)) for x ε A.

The composition of functions is not commutative, and this can be seen by an
example. Consider the function f : ℝ ! ℝ such that f(x) = x2 and the function g:
ℝ ! ℝ such that g(x) = x + 2. Then,

g
 f xð Þ ¼ g x2ð Þ ¼ x2 þ 2:
f
 g xð Þ ¼ f xþ 2ð Þ ¼ xþ 2ð Þ2¼ x2 þ 4xþ 4:

Clearly, g ∘ f(x) 6¼ f ∘ g(x) and so composition of functions is not commutative.
The composition of functions is associative, as the composition of relations is
associative and every function is a relation. For f: A! B, g: B ! C, and h: C! D,
we have:

h
 g
 fð Þ ¼ h
 gð Þ
 f :

A function f: A !B is injective (one to one) if

f a1ð Þ ¼ f a2ð Þ) a1 ¼ a2:

For example, consider the function f: ℝ ! ℝ with f (x) = x2. Then,
f (3) = f (−3) = 9 and so this function is not one to one.

A function f: A ! B is surjective (onto) if given any b ε B there exists an a ε A
such that f(a) = b (Fig. 4.10). Consider the function f: ℝ ! ℝ with f(x) = x + 1.
Clearly, given any r ε ℝ, then f (r − 1) = r and so f is onto.

A B A B

1-1, Not Onto Onto, Not 1-1

a

b

p

q

r

a

b

c

p

q

Fig. 4.10 Injective and surjective functions

4.4 Functions 85

A function is bijective if it is one to one and onto (Fig. 4.11). That is, there is a
one-to-one correspondence between the elements in A and B; for each b ε B, there
is a unique a ε A such that f(a) = b.

The inverse of a relation was discussed earlier, and the relational inverse of a
function f: A !B clearly exists. The relational inverse of the function may or may
not be a function.

However, if the relational inverse is a function, it is denoted by f−1 : B ! A.
A total function has an inverse (that is a total function) if and only if it is bijective,
whereas a partial function has an inverse if and only if it is injective.

The identity function 1A : A ! A is a function such that 1A(a) = a for all a ε A.
Clearly, when the inverse of the function exists, then we have that f−1 ∘ f = 1A and
f− o f−1 = 1B.

Theorem 4.3 (Inverse of Function)
A total function has an inverse if and only if it is bijective.

Proof Suppose f : A ! B has an inverse f−1, then we show that f is bijective.

We first show that f is one to one.
Suppose f(x1) = f(x2), then

f	1ðf ðx1ÞÞ ¼ f	1ðf ðx2ÞÞ
) f	1
 f ðx1Þ ¼ f	1
 f ðx2Þ
) 1Aðx1Þ ¼ 1Aðx2Þ
) x1 ¼ x2:

Next, we first show that f is onto. Let
b ε B and let a = f−1 (b), then

f að Þ ¼ f ðf	1ðbÞÞ ¼ b and so f is surjective:

The second part of the proof is concerned with showing that if f : A ! B is
bijective, then it has an inverse f−1. Clearly, since f is bijective, we have that for
each a ε A there exists a unique b ε B such that f (a) = b.

Fig. 4.11 Bijective function (one to one and onto)

86 4 Overview of Formal Methods

Define g : B ! A by letting g(b) be the unique a in A such that f(a) = b. Then,
we have that:

g
 f að Þ ¼ g bð Þ ¼ a and f
 g bð Þ ¼ f að Þ ¼ b:

Therefore, g is the inverse of f.

4.5 Application of Functions

In this section, we discuss the applications of functions to functional programming,
which is quite distinct from the imperative programming languages. Functional
programming involves the evaluation of mathematical functions, whereas impera-
tive programming involves the execution of sequential (or iterative) commands that
change the state. For example, the assignment statement alters the value of a
variable, and so the value of a given variable x may change during program
execution.

There are no changes of state for functional programs, and the fact that the value
of x will always be the same makes it easier to reason about functional programs
than imperative programs. Functional programming languages provide referential
transparency; that is, equals may be substituted for equals, and if two expressions
have equal values, then one can be substituted for the other in any larger expression
without affecting the result of the computation.

Functional programming languages use higher-order functions,9 recursion, lazy
and eager evaluation, monads10 and Hindley-Milner type inference systems.11

These languages are mainly been used in academia, but there has been some
industrial use, including the use of Erlang for concurrent applications in industry.
Alonzo Church developed lambda calculus in the 1930s, and it provides an abstract
framework for describing mathematical functions and their evaluation. It provides
the foundation for functional programming languages. Church employed lambda
calculus to prove that there is no solution to the decision problem for first-order
arithmetic in 1936 (see Chap. 13 of [5]).

Lambda calculus uses transformation rules, and one of these rules is variable
substitution. The original calculus developed by Church was untyped, but typed
lambda calculi have since been developed. Any computable function can be
expressed and evaluated using lambda calculus, but there is no general algorithm to
determine whether two arbitrary lambda calculus expressions are equivalent.

9Higher-order functions are functions that take functions as arguments or return a function as a
result. They are known as operators (or functionals) in mathematics, and one example is the
derivative function dy/dx that takes a function as an argument and returns a function as a result.
10Monads are used in functional programming to express input and output operations without
introducing side effects. The Haskell functional programming language makes use of this feature.
11This is the most common algorithm used to perform type inference. Type inference is concerned
with determining the type of the value derived from the eventual evaluation of an expression.

4.4 Functions 87

Lambda calculus influenced functional programming languages such as Lisp, ML
and Haskell.

Functional programming uses the notion of higher-order functions. Higher-order
takes other functions as arguments and may return functions as results. The
derivative function d/dx f(x) = f′(x) is a higher-order function. It takes a function as
an argument and returns a function as a result. For example, the derivative of the
function sin(x) is given by cos(x). Higher-order functions allow currying which is a
technique developed by Schönfinkel. It allows a function with several arguments to
be applied to each of its arguments one at a time, with each application returning a
new (higher-order) function that accepts the next argument. This allows a function
of n-arguments to be treated as n applications of a function with 1-argument.

John McCarthy developed Lisp at MIT in the late 1950s, and this language
includes many of the features found in modern functional programming lan-
guages.12 Scheme built upon the ideas in Lisp and was developed at MIT in the
early 1970s. Kenneth Iverson developed APL13 in the early 1960s, and this lan-
guage influenced Backus’s FP programming language. Robin Milner designed the
ML programming language in the early 1970s. David Turner developed Miranda in
the mid-1980s. The Haskell programming language was released in the late 1980s.

4.5.1 Miranda Functional Programming Language

Miranda was developed by David Turner at the University of Kent in the mid-1980s
[6]. It is a non-strict functional programming language; that is, the arguments to a
function are not evaluated until they are actually required within the function being
called. This is also known as lazy evaluation, and one of its main advantages is that
it allows an infinite data structures to be passed as an argument to a function.
Miranda is a pure functional language in that there are no side-effect features in the
language. The language has been used for:

– Rapid prototyping;
– Specification language;
– Teaching language.

A Miranda program is a collection of equations that define various functions and
data structures. It is a strongly typed language with a terse notation.

12Lisp is a multi-paradigm language rather than a functional programming language.
13Iverson received the Turing Award in 1979 for his contributions to programming language and
mathematical notation. The title of his Turing Award paper was “Notation as a tool of thought”.

88 4 Overview of Formal Methods

z ¼ sqr p = sqr q
sqr k ¼ k � k
p ¼ aþ b
q ¼ a	 b
a ¼ 10
b ¼ 5:

The scope of a formal parameter (e.g. the parameter k above in the function sqr)
is limited to the definition of the function in which it occurs.

One of the most common data structures used in Miranda is the list. The empty
list is denoted by [], and an example of a list of integers is given by [1, 3, 4, 8]. Lists
may be appended to by using the “++” operator. For example:

1; 3; 5½ � þ þ 2; 4½ � ¼ 1; 3; 5; 2; 4½ �:

The length of a list is given by the “#” operator:

1; 3½ � ¼ 2:

The infix operator “:” is employed to prefix an element to the front of a list. For
example:

5 : 2; 4; 6½ � is equal to 5; 2; 4; 6½ �:

The subscript operator “!” is employed for subscripting. For example:

Nums ¼ 5; 2; 4; 6½ � then Nums!0 is 5:

The elements of a list are required to be of the same type. A sequence of
elements that contains mixed types is called a tuple. A tuple is written as follows:

Employee ¼ 00Holmes00; 00 221B Baker St: London00; 50; 00 Detective00ð Þ:

A tuple is similar to a record in Pascal, whereas lists are similar to arrays. Tuples
cannot be subscripted but their elements may be extracted by pattern matching.
Pattern matching is illustrated by the well-known example of the factorial function:

fac 0 ¼ 1
fac nþ 1ð Þ ¼ nþ 1ð Þ � fac n:

The definition of the factorial function uses two equations, distinguished by the
use of different patterns in the formal parameters. Another example of pattern
matching is the reverse function on lists:

4.5 Application of Functions 89

reverse ½ � ¼ ½ �
reverse a : xð Þ ¼ reverse x þ þ a½ �:

Miranda is a higher-order language, and it allows functions to be passed as
parameters and returned as results. Currying is allowed, and this allows a function
of n-arguments to be treated as n applications of a function with 1-argument.
Function application is left associative; that is, f x y means (f x) y. That is, the result
of applying the function f to x is a function, and this function is then applied to
y. Every function with two or more arguments in Miranda is a higher-order
function.

4.6 Review Questions

1. What is a set? A relation? A function?
2. Explain the difference between a partial and a total function.
3. Explain the difference between a relation and a function.
4. Determine A � B where A = {a, b, c, d} and B = {1, 2, 3}.
5. Determine the symmetric difference A D B where A = {a, b, c, d} and

B = {c, d, e}.
6. What is the graph of the relation � on the set A = {2, 3, 4}?
7. What is the composition of S and R (i.e. S o R), where R is a relation

between A and B, and S is a relation between B and C? The sets A, B, C
are defined as A = {a, b, c, d}, B = {e, f, g}, C = {h, i, j, k} and R = {(a,
e), (b, e), (b, g), (c, e), (d, f)} with S = {(e, h), (e, k), (f, j), (f, k), (g, h)}

8. What is the domain and range of the relation R where R = {(a, p), (a, r),
(b, q)}?

9. Determine the inverse relation R−1 where R = {(a,2), (a,5), (b,3), (b,4),
(c,1)}.

10. Determine the inverse of the function f: ℝ x ℝ ! ℝ defined by

f xð Þ ¼ x	 2
x	 3

x 6¼ 3ð Þ and f 3ð Þ ¼ 1:

11. Give examples of injective, surjective and bijective functions.
12. Let n 2 be a fixed integer. Consider the relation � defined by{(p, q) :

p, q εℤ, n | (q – p)}.

90 4 Overview of Formal Methods

(a) Show � is an equivalence relation.
(b) What are the equivalence classes of this relation?

13. Describe the differences between imperative programming languages and
functional programming languages.

4.7 Summary

This chapter provided an introduction to set theory, relations and functions. Sets are
collections of well-defined objects; a relation between A and B indicates relation-
ships between members of the sets A and B; and functions are a special type of
relation where there is at most one relationship for each element a εA with an
element in B.

A set is a collection of well-defined objects that contains no duplicates. There are
many examples of sets such as the set of natural numbers ℕ, the integer numbers ℤ
and so on.

The Cartesian product allows a new set to be created from existing sets.
The Cartesian product of two sets S and T (denoted S � T) is the set of ordered pairs
{(s, t) | s ε S, t ε T}.

A binary relation R (A, B) is a subset of the Cartesian product (A � B) of A and
B where A and B are sets. The domain of the relation is A, and the co-domain of the
relation is B. The notation aRb signifies that there is a relation between a and b and
that (a, b) ε R. An n-ary relation R (A1, A2, … An) is a subset of (A1 � A2 � ��� �
An).

A total function f: A ! B is a special relation such that for each element a ε

A there is exactly one element b εB. This is written as f(a) = b. A function is a
relation but not every relation is a function.

The domain of the function (denoted by dom f) is the set of values in A for which
the function is defined. The domain of the function is A provided that f is a total
function. The co-domain of the function is B.

Functional programming is quite distinct from imperative programming in that
there is no change of state, and the value of the variable x remains the same during
program execution. This makes functional programs easier to reason about than
imperative programs.

4.6 Review Questions 91

References

1. D. Hoffman, D.L. Parnas, in Software Fundamentals, ed. by D. Weiss. Collected Papers by D.
L. Parnas (Addison Wesley, Reading, 21)

2. E.F. Codd, A relational model of data for large shared data banks. Commun. ACM 13(6),
377–387 (1970)

3. C.J. Date, in An Introduction to Database Systems. 3rd edn. The Systems Programming Series
(1981)

4. G. O’ Regan, Introduction to the History of Computing (Springer, Switzerland, 2016a)
5. G. O’ Regan, Guide to Discrete Mathematics (Springer, Switzerland, 2016b)
6. D. Turner, Miranda, in Proceedings IFIP Conference, Nancy France, Springer LNCS

(201) (September 1985)

92 4 Overview of Formal Methods

5A Short History of Logic

Key Topics

Syllogistic logic
Fallacies
Paradoxes
Stoic logic
Boole’s symbolic logic
Digital computing
Propositional logic
Predicate logic
Universal and existential quantifiers

5.1 Introduction

Logic is concerned with reasoning and with establishing the validity of arguments.
It allows conclusions to be deduced from premises according to logical rules, and
the logical argument establishes the truth of the conclusion provided that the pre-
mises are true.

The origins of logic are with the Greeks who were interested in the nature of
truth. The sophists (e.g. Protagoras and Gorgias) were teachers of rhetoric, who
taught their pupils techniques in winning an argument and convincing an audience.
Plato explores the nature of truth in some of his dialogues, and he is critical of the
position of the sophists who argue that there is no absolute truth, and that truth
instead is always relative to some frame of reference. The classic sophist position is
stated by Protagoras “Man is the measure of all things: of things which are, that

© Springer International Publishing AG 2017
G. O’Regan, Concise Guide to Formal Methods, Undergraduate Topics
in Computer Science, DOI 10.1007/978-3-319-64021-1_5

93

they are, and of things which are not, that they are not”. In other words, what is true
for you is true for you, and what is true for me is true for me.

Socrates had a reputation for demolishing an opponent’s position, and the
Socratic enquiry consisted of questions and answers in which the opponent would
be led to a conclusion incompatible with his original position. The approach was
similar to a reductio ad absurdum argument, although Socrates was a moral
philosopher who did no theoretical work on logic.

Aristotle did important work on logic, and he developed a system of logic,
syllogistic logic, that remained in use up to the nineteenth century. Syllogistic logic
is a “term-logic”, with letters used to stand for the individual terms. A syllogism
consists of two premises and a conclusion, where the conclusion is a valid
deduction from the two premises. Aristotle also did some early work on modal logic
and was the founder of the field.

The Stoics developed an early form of propositional logic, where the assertibles
(propositions) have a truth-value such that at any time they are either true or false.
The assertibles may be simple or non-simple, and various connectives such as
conjunctions, disjunctions and implication are used in forming more complex
assertibles.

George Boole developed his symbolic logic in the mid-1800s, and it later formed
the foundation for digital computing. Boole argued that logic should be considered
as a separate branch of mathematics, rather than a part of philosophy. He argued
that there are mathematical laws to express the operation of reasoning in the human
mind, and he showed how Aristotle’s syllogistic logic could be reduced to a set of
algebraic equations.

Logic plays a key role in reasoning and deduction in mathematics, but it is
considered a separate discipline to mathematics. There were attempts in the early
twentieth century to show that all mathematics can be derived from formal logic,
and that the formal system of mathematics would be complete, with all the truths of
mathematics provable in the system (see Chap. 13 of [1]). However, this program
failed when the Austrian logician, Kurt Gödel, showed that that there are truths in
the formal system of arithmetic that cannot be proved within the system (i.e.
first-order arithmetic is incomplete).

5.2 Syllogistic Logic

Early work on logic was done by Aristotle in the fourth century B.C. in the
Organon [2]. Aristotle regarded logic as a useful tool of enquiry into any subject,
and he developed syllogistic logic. This is a form of reasoning in which a con-
clusion is drawn from two premises, where each premise is in a subject–predicate
form. A common or middle term is present in each of the two premises but not in
the conclusion. For example:

94 5 A Short History of Logic

All Greeks are mortal

Socrates is a Greek

���������
Therefore Socrates is mortal

The common (or middle) term in this example is “Greek”. It occurs in both
premises but not in the conclusion. The above argument is valid, and Aristotle
studied and classified the various types of syllogistic arguments to determine those
that were valid or invalid. Each premise contains a subject and a predicate, and the
middle term may act as subject or a predicate. Each premise is a positive or negative
affirmation, and an affirmation may be universal or particular. The universal and
particular affirmations and negatives are described in Table 5.1.

This leads to four basic forms of syllogistic arguments (Table 5.2) where the
middle is the subject of both premises; the predicate of both premises; and the
subject of one premise and the predicate of the other premise.

There are four types of premises (A, E, I, O) and therefore sixteen sets of
premise pairs for each of the forms above. However, only some of these premise
pairs will yield a valid conclusion. Aristotle went through every possible premise
pair to determine whether a valid argument may be derived. The syllogistic argu-
ment above is of form (iv) and is valid:

GAM

S IG

���
S IM

Table 5.1 Types of
syllogistic premises

Type Symbol Example

Universal
affirmative

G A M All Greeks are mortal

Universal negative G E M No Greek is mortal

Particular
affirmative

G I M Some Greek is mortal

Particular negative G O M Some Greek is not mortal

Table 5.2 Forms of
syllogistic premises

Form
(i)

Form
(ii)

Form
(iii)

Form
(iv)

Premise 1 M P P M P M M P

Premise 2 M S S M M S S M

Conclusion S P S P S P S P

5.2 Syllogistic Logic 95

Syllogistic logic is a “term-logic” with letters used to stand for the individual
terms. Syllogistic logic was the first attempt at a science of logic, and it remained in
use up to the nineteenth century. There are many limitations to what it may express,
and on its suitability as a representation of how the mind works.

5.3 Paradoxes and Fallacies

A paradox is a statement that apparently contradicts itself, and it presents a situation
that appears to defy logic. Some logical paradoxes have a solution, whereas others
are contradictions or invalid arguments. There are many examples of paradoxes,
and they often arise due to self-reference in which one or more statements refer to
each other. We discuss several paradoxes such as the liar paradox and the sorites
paradox, which were invented by Eubulides of Miletus, and the barber paradox,
which was introduced by Russell to explain the contradictions in naïve set theory.

An example of the liar paradox is the statement “Everything that I say is false”,
which is made by the liar. This looks like a normal sentence, but it is also saying
something about itself as a sentence. If the statement is true, then the statementmust be
false, since the meaning of the sentence is that every statement (including the current
statement) made by the liar is false. If the current statement is false, then the statement
that everything that I say is false is false, and so this must be a true statement.

The Epimenides paradox is a variant of the liar paradox. Epimenides was a
Cretan who allegedly stated “All Cretans are liars”. If the statement is true, then
since Epimenides is Cretan, he must be a liar, and so the statement is false and we
have a contradiction. However, if we assume that the statement is false and that
Epimenides is lying about all Cretan being liars, then we may deduce (without
contradiction) that there is at least one Cretan who is truthful. So in this case, the
paradox can be avoided.

The sorites paradox (paradox of the heap) involves a heap of sand in which
grains are individually removed. It is assumed that removing a single grain of sand
does not turn a heap into a non-heap, and the paradox is to consider what happens
after when the process is repeated often enough. Is a single remaining grain a heap?
When does it change from being a heap to a non-heap? This paradox may be
avoided by specifying a fixed boundary of the number of grains of sand required to
form a heap, or to define a heap as a collection of multiple grains (� 2 grains).
Then, any collection of grains of sand less than this boundary is not a heap.

The barber paradox is a variant of Russell’s paradox (a contradiction in naïve
set theory), which was discussed in Chap. 4. In a village, there is a barber who
shaves everyone who does not shave himself, and no one else. Who shaves the
barber? The answer to this question results in a contradiction, as the barber cannot
shave himself, since he shaves only those who do not shave themselves. Further, as
the barber does not shave himself then he falls into the group of people who would
be shaved by the barber (himself). Therefore, we conclude that there is no such
barber.

96 5 A Short History of Logic

The purpose of a debate is to convince an audience of the correctness of your
position and to challenge and undermine your opponent’s position. Often, the
arguments made are factual, but occasionally individuals skilled in rhetoric and
persuasion will introduce bad arguments as a way to persuade the audience.
Aristotle studied and classified bad arguments (known as fallacies), and these
include fallacies such as the ad hominem argument; the appeal to authority argu-
ment; and the straw man argument. The fallacies are described in more detail in
Table 5.3.

Table 5.3 Fallacies in arguments

Fallacy Description/Example

Hasty/Accident
generalization

This is a bad argument that involves a generalization that
disregards exceptions

Slippery slope This argument outlines a chain reaction leading to a highly
undesirable situation that will occur if a certain situation is allowed.
The claim is that even if one step is taken onto the slippery slope,
then we will fall all the way down to the bottom

Against the person
Ad Hominem

The focus of this argument is to attack the person rather than the
argument that the person has made

Appeal to people
Ad Populum

This argument involves an appeal to popular belief to support an
argument, with a claim that the majority of the population supports
this argument. However, popular opinion is not always correct

Appeal to authority (Ad
Verecundiam)

This argument is when an appeal is made to an authoritative figure
to support an argument, and where the authority is not an expert in
this area

Appeal to pity (Ad
Misericordiam)

This is where the arguer tries to get people to accept a conclusion
by making them feel sorry for someone

Appeal to ignorance The arguer makes the case that there is no conclusive evidence on
the issue at hand and that therefore his conclusion should be
accepted

Straw man argument The arguer sets up a version of an opponent’s position of his
argument and defeats this watered down version of his opponent’s
position

Begging the question This is a circular argument where the arguer relies on a premise that
says the same thing as the conclusion and without providing any
real evidence for the conclusion

Red herring The arguer goes off on a tangent that has nothing to do with the
argument in question

False dichotomy The arguer presents the case that there are only two possible
outcomes (often there are more). One of the possible outcomes is
then eliminated leading to the desired outcome. The argument
suggests that there is only one outcome

5.3 Paradoxes and Fallacies 97

5.4 Stoic Logic

The Stoic school1 was founded in the Hellenistic period by Zeno of Citium (in
Cyprus) in the late fourth/early third century B.C. (Fig. 5.1). The school presented
its philosophy as a way of life, and it emphasized ethics as the main focus of human
knowledge. The Stoics stressed the importance of living a good life in harmony
with nature.

The Stoics recognized the importance of reason and logic, and Chrysippus, the
head of the Stoics in the third century B.C., developed an early version of
propositional logic. This was a system of deduction in which the smallest unana-
lyzed expressions are assertibles (Stoic equivalent of propositions). The assertibles
have a truth-value such that at any moment of time they are either true or false. True
assertibles are viewed as facts in the Stoic system of logic, and false assertibles are
defined as the contradictories of true ones.

Truth is temporal, and assertions may change their truth-value over time. The
assertibles may be simple or non-simple (more than one assertible), and there may
be present tense, past tense and future tense assertibles. Chrysippus distinguished
between simple and compound propositions, and he introduced a set of logical
connectives for conjunction, disjunction and implication that are used to form
non-simple assertibles from existing assertibles.

The conjunction connective is of the form “both .. and ..”, and it has two
conjuncts. The disjunction connective is of the form “either .. or .. or ..”, and it
consists of two or more disjuncts. Conditionals are formed from the connective “if
.., ..”, and they consist of an antecedent and a consequence.

His deductive system included various logical argument forms such as modus
ponens and modus tollens. His propositional logic differed from syllogistic logic, in
that the Stoic logic was based on propositions (or statements) as distinct from
Aristotle’s term-logic. However, he could express the universal affirmation in
syllogistic logic (e.g. All As are B) by rephrasing it as a conditional statement that if
something is A then it is B.

Chrysippus’s propositional logic did not replace Aristotle’s syllogistic logic, and
syllogistic logic remained in use up to the mid-nineteenth century. George Boole
developed his symbolic logic in the mid-1800s, and his logic later formed the
foundation for digital computing. Boole’s symbolic logic is discussed in the next
section.

1The origin of the word Stoic is from the Stoa Poikile (Rsoa Poikijη), which was a covered
walkway in the Agora of Athens. Zeno taught his philosophy in a public space at this location, and
his followers became known as Stoics.

98 5 A Short History of Logic

5.5 Boole’s Symbolic Logic

George Boole (Fig. 5.2) was born in Lincoln, England, in 1815. His father (a
cobbler who was interested in mathematics and optical instruments) taught him
mathematics and showed him how to make optical instruments. Boole inherited his
father’s interest in knowledge, and he was self-taught in mathematics and Greek.
He taught at various schools near Lincoln, and he developed his mathematical
knowledge by working his way through Newton’s Principia, as well as applying
himself to the work of mathematicians such as Laplace and Lagrange.

He published regular papers from his early twenties, and these included con-
tributions to probability theory, differential equations and finite differences. He
developed his symbolic algebra, which is the foundation for modern computing,
and he is considered (along with Babbage) to be one of the grandfathers of com-
puting. His work was theoretical, and he never actually built a computer or cal-
culating machine. However, Boole’s symbolic logic was the perfect mathematical
model for switching theory, and for the design of digital circuits.

Boole became interested in formulating a calculus of reasoning, and he pub-
lished a pamphlet titled “Mathematical Analysis of Logic” in 1847 [3]. This short
book developed novel ideas on a logical method, and he argued that logic should be

Fig. 5.1 Zeno of Citium

5.5 Boole’s Symbolic Logic 99

considered as a separate branch of mathematics, rather than a part of philosophy. He
argued that there are mathematical laws to express the operation of reasoning in the
human mind, and he showed how Aristotle’s syllogistic logic could be reduced to a
set of algebraic equations. He corresponded regularly on logic with Augustus De
Morgan.2

He introduced two quantities “0” and “1” with the quantity 1 used to represent
the universe of thinkable objects (i.e. the universal set), and the quantity 0 repre-
sents the absence of any objects (i.e. the empty set). He then employed symbols
such as x, y, z, to represent collections or classes of objects given by the meaning
attached to adjectives and nouns. Next, he introduced three operators (+, − and �)
that combined classes of objects.

The expression xy (i.e. x multiplied by y or x � y) combines the two classes x,
y to form the new class xy (i.e. the class whose objects satisfy the two meanings
represented by the classes x and y). Similarly, the expression x + y combines the
two classes x, y to form the new class x + y (that satisfies either the meaning
represented by class x or class y). The expression x − y combines the two classes x,
y to form the new class x − y. This represents the class (that satisfies the meaning
represented by class x but not class y). The expression (1 − x) represents objects
that do not have the attribute that represents class x.

Thus, if x = black and y = sheep, then xy represents the class of black
sheep. Similarly, (1 − x) would represent the class obtained by the operation of
selecting all things in the world except black things; x (1 − y) represents the class of
all things that are black but not sheep; and (1 − x) (1 − y) would give us all things
that are neither sheep nor black.

Fig. 5.2 George Boole

2De Morgan was a nineteenth British mathematician based at University College London. De
Morgan’s laws in Set Theory and Logic state that: (A [B)c = Ac \ Bc and
¬ (A _ B) � ¬A ^ ¬ B.

100 5 A Short History of Logic

He showed that these symbols obeyed a rich collection of algebraic laws and
could be added, multiplied, etc., in a manner that is similar to real numbers. These
symbols may be used to reduce propositions to equations, and algebraic rules may
be employed to solve the equations. The rules include:

1. x + 0 = x (Additive Identity)

2. x + (y + z) = (x + y) + z (Associative)

3. x + y = y + x (Commutative)

4. x + (1 − x) = 1

5. x 1 = x (Multiplicative identity)

6. x 0 = 0

7. x + 1 = 1

8. xy = yx (Commutative)

9. x(yz) = (xy)z (Associative)

10. x(y + z) = xy + xz (Distributive)

11. x(y − z) = xy – xz (Distributive)

12. x2 = x (Idempotent)

These operations are similar to the modern laws of set theory with the set union
operation represented by “+”, and the set intersection operation is represented by
multiplication. The universal set is represented by “1” and the empty by “0”. The
associative and distributive laws hold. Finally, the set complement operation is
given by (1 − x).

Boole applied the symbols to encode Aristotle’s syllogistic logic, and he showed
how the syllogisms could be reduced to equations. This allowed conclusions to be
derived from premises by eliminating the middle term in the syllogism. He refined
his ideas on logic further in his book “An Investigation of the Laws of Thought” [4].
This book aimed to identify the fundamental laws underlying reasoning in the
human mind and to give expression to these laws in the symbolic language of a
calculus.

He considered the equation x2 = x to be a fundamental laws of thought. It allows
the principle of contradiction to be expressed (i.e. for an entity to possess an
attribute and at the same time not to possess it):

x2 ¼ x

) x�x2 ¼ 0

) x 1�xð Þ ¼ 0

For example, if x represents the class of horses, then (1 − x) represents the class
of “not-horses”. The product of two classes represents a class whose members are
common to both classes. Hence, x (1 − x) represents the class whose members are

5.5 Boole’s Symbolic Logic 101

at once both horses and “not-horses”, and the equation x (1 − x) = 0 expresses that
fact that there is no such class. That is, it is the empty set.

Boole contributed to other areas in mathematics including differential equations,
finite differences3 and to the development of probability theory. Des McHale has
written an interesting biography of Boole [5]. Boole’s logic appeared to have no
practical use, but this changed with Claude Shannon’s 1937 Master’s Thesis, which
showed its applicability to switching theory and to the design of digital circuits.

5.5.1 Switching Circuits and Boolean Algebra

Claude Shannon showed in his famous Master’s Thesis that Boole’s symbolic
algebra provided the perfect mathematical model for switching theory and for the
design of digital circuits. It may be employed to optimize the design of systems of
electromechanical relays, and circuits with relays solve Boolean algebra problems.
The use of the properties of electrical switches to process logic is the basic concept
that underlies all modern electronic digital computers.

Modern electronic computers use millions (billions) of transistors that act as
switches and can change state rapidly. The use of switches to represent binary
values is the foundation of modern computing. Digital computers use the binary
digits 0 and 1, and a high voltage represents the binary value 1 with a low voltage
representing the binary value 0.

A silicon chip may contain billions of tiny electronic switches arranged into
logical gates. The basic logic gates are AND, OR and NOT, and these gates may be
combined in various ways to perform more complex tasks such as binary arith-
metic. Each logic gate has binary value inputs and produces binary value outputs.
Boolean logical operations may be implemented by electronic AND, OR and NOT
gates, and more complex circuits may be designed from these fundamental building
blocks.

The example in Fig. 5.3 is that of an “AND” gate which produces the binary
value 1 as output only if both inputs are 1. Otherwise, the result will be the binary
value 0. Figure 5.4 is an “OR” gate which produces the binary value 1 as output if
any of its inputs is 1. Otherwise, it will produce the binary value 0.

Finally, a NOT gate (Fig. 5.5) accepts only a single input which it reverses. That
is, if the input is “1”, then value “0” is produced and vice versa.

The logic gates may be combined to form more complex circuits. The example
in Fig. 5.6 is that of a half-adder of 1 + 0. The inputs to the top OR gate are 1 and 0
which yields the result of 1. The inputs to the bottom AND gate are 1 and 0 which
yields the result 0, which is then inverted through the NOT gate to yield binary 1.
Finally, the last AND gate receives two 1’s as input, and the binary value 1 is the
result of the addition.

3Finite differences are a numerical method used in solving differential equations.

102 5 A Short History of Logic

1

0

1

0

0

1

1

0

0

Fig. 5.3 Binary AND
operation

1

1

1OR

1

0

1OR

0

0

0OR

Fig. 5.4 Binary OR
operation

1 0
Fig. 5.5 NOT operation

AND

OR1

0

AND

1
Fig. 5.6 Half-adder

5.5 Boole’s Symbolic Logic 103

The half-adder computes the addition of two arbitrary binary digits, but it does
not calculate the carry. It may be extended to a full-adder that provides a carry for
addition.

5.6 Application of Symbolic Logic to Digital Computing

Claude Shannon (Fig. 5.7) was an American mathematician and engineer who
made fundamental contributions to computing. He was the first person4 to see the
applicability of Boolean algebra to simplify the design of circuits and telephone
routing switches. He showed that Boole’s symbolic logic developed in the nine-
teenth century provided the perfect mathematical model for switching theory and
for the subsequent design of digital circuits and computers.

Vannevar Bush [6] was Shannon’s supervisor at MIT, and Shannon’s initial
work was to improve Bush’s mechanical computing device known as the Differ-
ential Analyser. This machine had a complicated control circuit that was composed
of one hundred switches that could be automatically opened and closed by an
electromagnet. Shannon’s insight was his realization that an electronic circuit is
similar to Boole’s symbolic algebra, and he showed how Boolean algebra could be
employed to optimize the design of systems of electromechanical relays used in the
analog computer. He also realized that circuits with relays could solve Boolean
algebra problems.

Shannon’s influential Master’s Thesis is a key milestone in computing, and it
shows how to lay out circuits according to Boolean principles. It provides the
theoretical foundation of switching circuits, and his insight of using the properties
of electrical switches to do Boolean logic is the basic concept that underlies all
electronic digital computers.

Shannon realized that you could combine switches in circuits in such a manner
as to carry out symbolic logic operations. This allowed binary arithmetic and more
complex mathematical operations to be performed by relay circuits. He designed a
circuit, which could add binary numbers, and he later designed circuits that could
make comparisons and thus is capable of performing a conditional statement. This
was the birth of digital logic and the digital computing age.

He showed in his Master’s thesis “A Symbolic Analysis of Relay and Switching
Circuits” [7] that the binary digits (i.e. 0 and 1) can be represented by electrical
switches. The implications of true and false being denoted by the binary digits one
and zero were enormous, since it allowed binary arithmetic and more complex
mathematical operations to be performed by relay circuits. This provided elec-
tronics engineers with the mathematical tool they needed to design digital electronic
circuits and provided the foundation of digital electronic design.

4Victor Shestakov at Moscow State University also proposed a theory of electric switches based on
Boolean algebra around the same time as Shannon. However, his results were published in Russian
in 1941, whereas Shannon’s were published in 1937.

104 5 A Short History of Logic

The design of circuits and telephone routing switches could be simplified with
Boole’s symbolic algebra. Shannon showed how to lay out circuitry according to
Boolean principles, and his Master’s thesis became the foundation for the practical
design of digital circuits. These circuits are fundamental to the operation of modern
computers and telecommunication systems, and his insight of using the properties
of electrical switches to do Boolean logic is the basic concept that underlies all
electronic digital computers.

5.7 Frege

Gottlob Frege (Fig. 5.8) was a German mathematician and logician who is con-
sidered (along with Boole) to be one of the founders of modern logic. He also made
important contributions to the foundations of mathematics, and he attempted to
show that all of the basic truths of mathematics (or at least of arithmetic) could be
derived from a limited set of logical axioms (this approach is known as logicism).

He invented predicate logic and the universal and existential quantifiers, and
predicate logic was a significant advance on Aristotle’s syllogistic logic. Predicate
logic is described in more detail in Chap. 6.

Frege’s first logical system, the 1879 Begriffsschrift, contained nine axioms and
one rule of inference. It was the axiomatization of logic, and it was complete in its
treatment of propositional logic and first-order predicate logic. He published several
important books on logic, including Begriffsschrift, in 1879; Die Grundlagen der
Arithmetik (The Foundations of Arithmetic) in 1884; and the two-volume work

Fig. 5.7 Claude Shannon

5.6 Application of Symbolic Logic to Digital Computing 105

Grundgesetze der Arithmetik (Basic Laws of Arithmetic), which were published in
1893 and 1903. These books described his invention of axiomatic predicate logic;
the use of quantified variables; and the application of his logic to the foundations of
arithmetic.

Frege presented his predicate logic in his books, and he began to use it to define
the natural numbers and their properties. He had intended producing three volumes
of the Basic Laws of Arithmetic, with the later volumes dealing with the real
numbers and their properties. However, Bertrand Russell discovered a contradiction
in Frege’s system (see Russell’s paradox in Chap. 4), which he communicated to
Frege shortly before the publication of the second volume. Frege was astounded by
the contradiction and he struggled to find a satisfactory solution, and Russell later
introduced the theory of types in the Principia Mathematica as a solution.

Fig. 5.8 Gottlob Frege

106 5 A Short History of Logic

5.8 Review Questions

1. What is logic?
2. What is a fallacy?
3. Give examples of fallacies in arguments in natural language (e.g. in pol-

itics, marketing, debates)
4. Investigate some of the early paradoxes (e.g. the Tortoise and Achilles

paradox or the arrow in flight paradox) and give your interpretation of the
paradox.

5. What is syllogistic logic and explain its relevance.
6. What is stoic logic and explain its relevance.
7. Explain the significance of the equation x2 = x in Boole’s symbolic logic.
8. Describe how Boole’s symbolic logic provided the foundation for digital

computing.
9. Describe Frege’s contributions to logic.

5.9 Summary

This chapter gave a short introduction to logic, and logic is concerned with rea-
soning and with establishing the validity of arguments. It allows conclusions to be
deduced from premises according to logical rules, and the logical argument
establishes the truth of the conclusion provided that the premises are true.

The origins of logic are with the Greeks who were interested in the nature of
truth. Socrates had a reputation for demolishing an opponent’s position (it meant
that he did not win any friends with in debate), and the Socratean enquiry consisted
of questions and answers in which the opponent would be led to a conclusion
incompatible with his original position. His approach was similar to a reductio ad
absurdum argument, and its effect was to show that his opponent’s position was
incoherent and untenable.

Aristotle did important work on logic, and he developed a system of logic,
syllogistic logic, that remained in use up to the nineteenth century. Syllogistic logic
is a “term-logic”, with letters used to stand for the individual terms. A syllogism
consists of two premises and a conclusion, where the conclusion is a valid
deduction from the two premises. The Stoics developed an early form of propo-
sitional logic, where the assertibles (propositions) have a truth-value such that at
any time they are either true or false.

5.7 Frege 107

George Boole developed his symbolic logic in the mid-1800s, and it later formed
the foundation for digital computing. Boole argued that logic should be considered
as a separate branch of mathematics, rather than a part of philosophy. He argued
that there are mathematical laws to express the operation of reasoning in the human
mind, and he showed how Aristotle’s syllogistic logic could be reduced to a set of
algebraic equations.

Gottlob Frege made important contributions to logic and to the foundations of
mathematics. He attempted to show that all of the basic truths of mathematics (or at
least of arithmetic) could be derived from a limited set of logical axioms (this
approach is known as logicism). He invented predicate logic and the universal and
existential quantifiers, and predicate logic was a significant advance on Aristotle’s
syllogistic logic.

References

1. G. O’Regan, Guide to Discrete Mathematics. (Springer, 2016)
2. J.L. Ackrill, Aristotle the Philosopher. (Clarendon Press Oxford, 1994)
3. G. Boole, The calculus of logic. Cambridge and Dublin Math. J. III(1848), 183–198 (1848)
4. G. Boole, An Investigation into the Laws of Thought. Dover Publications. 1958.(First

published in 1854)
5. D. McHale, Boole. (Cork University Press, 1985)
6. G. O’ Regan, Giants of Computing. (Springer, 2013)
7. C. Shannon, A Symbolic Analysis of Relay and Switching Circuits. Masters Thesis,

Massachusetts Institute of Technology, (1937)

108 5 A Short History of Logic

6Propositional and Predicate Logic

Key Topics

Propositions
Truth tables
Semantic tableaux
Natural deduction
Proof
Predicates
Universal quantifiers
Existential quantifiers

6.1 Introduction

Logic is the study of reasoning and the validity of arguments, and it is concerned
with the truth of statements (propositions) and the nature of truth. Formal logic is
concerned with the form of arguments and the principles of valid inference. Valid
arguments are truth preserving, and for a valid deductive argument the conclusion
will always be true if the premises are true.

Propositional logic is the study of propositions, where a proposition is a state-
ment that is either true or false. Propositions may be combined with other propo-
sitions (with a logical connective) to form compound propositions. Truth tables are
used to give operational definitions of the most important logical connectives, and
they provide a mechanism to determine the truth-values of more complicated
logical expressions.

© Springer International Publishing AG 2017
G. O’Regan, Concise Guide to Formal Methods, Undergraduate Topics
in Computer Science, DOI 10.1007/978-3-319-64021-1_6

109

Propositional logic may be used to encode simple arguments that are expressed
in natural language, and to determine their validity. The validity of an argument
may be determined from truth tables, or using the inference rules such as modus
ponens to establish the conclusion via deductive steps.

Predicate logic allows complex facts about the world to be represented, and new
facts may be determined via deductive reasoning. Predicate calculus includes
predicates, variables and quantifiers, and a predicate is a characteristic or property
that the subject of a statement can have. A predicate may include variables, and
statements with variables become propositions once the variables are assigned
values.

The universal quantifier is used to express a statement such as that all members
of the domain of discourse have property P. This is written as (8x) P(x), and it
expresses the statement that the property P(x) is true for all x.

The existential quantifier states that there is at least one member of the domain of
discourse that has property P. This is written as (9x)P(x).

6.2 Propositional Logic

Propositional logic is the study of propositions where a proposition is a statement
that is either true or false. There are many examples of propositions such as “1 + 1 =
2” which is a true proposition, and the statement that “Today is Wednesday” which
is true if today is Wednesday and false otherwise. The statement x > 0 is not a
proposition as it contains a variable x, and it is only meaningful to consider its truth
or falsity only when a value is assigned to x. Once the variable x is assigned a value,
it becomes a proposition. The statement “This sentence is false” is not a proposition
as it contains a self-reference that contradicts itself. Clearly, if the statement is true
it is false, and if is false it is true.

A propositional variable may be used to stand for a proposition (e.g. let the
variable P stand for the proposition “2 + 2 = 4” which is a true proposition).
A propositional variable takes the value or false. The negation of a proposition
P (denoted ¬P) is the proposition that is true if and only if P is false, and is false if
and only if P is true.

A well-formed formula (WFF) in propositional logic is a syntactically correct
formula created according to the syntactic rules of the underlying calculus.
A well-formed formula is built up from variables, constants, terms and logical
connectives such as conjunction (and), disjunction (or), implication (if … then …),
equivalence (if and only if) and negation. A distinguished subset of these
well-formed formulae are the axioms of the calculus, and there are rules of infer-
ence that allow the truth of new formulae to be derived from the axioms and from
formulae that have already demonstrated to be true in the calculus.

A formula in propositional calculus may contain several propositional variables,
and the truth or falsity of the individual variables needs to be known prior to
determining the truth or falsity of the logical formula.

110 6 Overview of Formal Methods

Each propositional variable has two possible values, and a formula with n-
propositional variables has 2n values associated with the n-propositional variables.
The set of values associated with the n variables may be used to derive a truth table
with 2n rows and n + 1 columns. Each row gives each of the 2n truth-values that the
n variables may take, and column n + 1 gives the result of the logical expression for
that set of values of the propositional variables. For example, the propositional
formula W defined in the truth table above (Table 6.1) has two propositional
variables A and B, with 22 = 4 rows for each of the values that the two propositional
variables may take. There are 2 + 1 = 3 columns with W defined in the third
column.

A rich set of connectives is employed in the calculus to combine propositions
and to build up the well-formed formulae. This includes the conjunction of two
propositions (A ^ B); the disjunction of two propositions (A _ B); and the impli-
cation of two propositions (A ! B). These connectives allow compound proposi-
tions to be formed, and the truth of the compound propositions is determined from
the truth-values of its constituent propositions and the rules associated with the
logical connectives. The meaning of the logical connectives is given by truth
tables.1

Mathematical logic is concerned with inference, and it involves proceeding in a
methodical way from the axioms and using the rules of inference to derive further
truths.

The rules of inference allow new propositions to be deduced from an existing set
of propositions. A valid argument (or deduction) is truth preserving; that is, for a
valid logical argument, if the set of premises is true, then the conclusion (i.e. the
deduced proposition) will also be true. The rules of inference include rules such as
modus ponens, and this rule states that given the truths of the proposition A, and the
proposition A ! B, then the truth of proposition B may be deduced.

The propositional calculus is employed in reasoning about propositions, and it
may be applied to formalize arguments in natural language. Boolean algebra is
used in computer science, and it is named after George Boole, who was the first
professor of mathematics at Queens College, Cork.2 His symbolic logic (discussed
in Chap. 5) is the foundation for modern computing.

Table 6.1 Truth table for
formula W

A B W (A, B)

T T T

T F F

F T F

F F T

1Basic truth tables were first used by Frege and developed further by Post and Wittgenstein.
2This institution is now known as University College Cork and has approximately 20,000 students.

6.2 Propositional Logic 111

6.2.1 Truth Tables

Truth tables give operational definitions of the most important logical connectives,
and they provide a mechanism to determine the truth-values of more complicated
compound expressions. Compound expressions are formed from propositions and
connectives, and the truth-values of a compound expression containing several
propositional variables are determined from the underlying propositional variables
and the logical connectives.

The conjunction of A and B (denoted A ^ B) is true if and only if both A and
B are true, and is false in all other cases (Table 6.2). The disjunction of two
propositions A and B (denoted A _ B) is true if at least one of A and B are true, and
false in all other cases (Table 6.3). The disjunction operator is known as the “in-
clusive or” operator as it is also true when both A and B are true; there is also an
exclusive or operator that is true exactly when one of A or B is true, and is false
otherwise.

Example 6.1 Consider proposition A given by “An orange is a fruit” and the
proposition B given by “2 + 2 = 5”, then A is true and B is false. Therefore,

(i) A ^ B (i.e. An orange is a fruit and 2 + 2 = 5) is false.
(ii) A _ B (i.e. An orange is a fruit or 2 + 2 = 5) is true.

The implication operation (A ! B) is true if whenever A is true means that B is
also true and also whenever A is false (Table 6.4). It is equivalent (as shown by a
truth table) to ¬A _ B. The equivalence operation (A $ B) is true whenever both
A and B are true, or whenever both A and B are false (Table 6.5).

The not operator (¬) is a unary operator (i.e. it has one argument) and is such that
¬A is true when A is false, and is false when A is true (Table 6.6).

Example 6.2 Consider proposition A given by “Jaffa cakes are biscuits” and the
proposition B given by “2 + 2 = 5”, then A is true and B is false. Therefore,

Table 6.2 Conjunction A B A ^ B

T T T

T F F

F T F

F F F

Table 6.3 Disjunction A B A _ B

T T T

T F T

F T T

F F F

112 6 Overview of Formal Methods

(i) A ! B (i.e. Jaffa cakes are biscuits implies 2 + 2 = 5) is false.
(ii) A $ B (i.e. Jaffa cakes are biscuits is equivalent to 2 + 2 = 5) is false.
(iii) ¬B (i.e. 2 + 2 6¼ 5) is true.

Creating a Truth Table
The truth table for a well-formed formula W(P1, P2, …, Pn) is a table with 2n rows
and n + 1 columns. Each row lists a different combination of truth-values of the
propositions P1, P2, …, Pn followed by the corresponding truth-value of W.

The example above (Table 6.7) gives the truth table for a formula W with three
propositional variables (meaning that there are 23 = 8 rows in the truth table).

Table 6.4 Implication A B A ! B

T T T

T F F

F T T

F F T

Table 6.5 Equivalence A B A $ B

T T T

T F F

F T F

F F T

Table 6.6 NOT operation A ¬A

T F

F T

Table 6.7 Truth table for W
(P, Q, R)

P Q R W(P, Q, R)

T T T F

T T F F

T F T F

T F F T

F T T T

F T F F

F F T F

F F F F

6.2 Propositional Logic 113

6.2.2 Properties of Propositional Calculus

There are many well-known properties of the propositional calculus such as the
commutative, associative and distributive properties. These ease the evaluation of
complex expressions and allow logical expressions to be simplified.

The commutative property holds for the conjunction and disjunction operators,
and it states that the order of evaluation of the two propositions may be reversed
without affecting the resulting truth-value, i.e.

A ^ B ¼ B ^ A

A _ B ¼ B _ A

The associative property holds for the conjunction and disjunction operators.
This means that order of evaluation of a subexpression does not affect the resulting
truth-value, i.e.

ðA ^ BÞ ^ C ¼ A ^ ðB ^ CÞ
ðA _ BÞ _ C ¼ A _ ðB _ CÞ

The conjunction operator distributes over the disjunction operator and vice
versa.

A ^ ðB _ CÞ ¼ ðA ^ BÞ _ ðA ^ CÞ
A _ ðB ^ CÞ ¼ ðA _ BÞ ^ ðA _ CÞ

The result of the logical conjunction of two propositions is false if one of the
propositions is false (irrespective of the value of the other proposition).

A ^ F ¼ F ^ A ¼ F

The result of the logical disjunction of two propositions is true if one of the
propositions is true (irrespective of the value of the other proposition).

A _ T ¼ T _ A ¼ T

The result of the logical disjunction of two propositions, where one of the
propositions is known to be false, is given by the truth-value of the other propo-
sition. That is, the Boolean value “F” acts as the identity for the disjunction
operation.

A _ F ¼ A ¼ F _ A

The result of the logical conjunction of two propositions, where one of the
propositions is known to be true, is given by the truth-value of the other

114 6 Overview of Formal Methods

proposition. That is, the Boolean value “T” acts as the identity for the conjunction
operation.

A ^ T ¼ A ¼ T ^ A

The ^ and _ operators are idempotent. That is, when the arguments of the
conjunction or disjunction operator are the same proposition A, the result is A. The
idempotent property allows expressions to be simplified.

A ^ A ¼ A

A _ A ¼ A

The law of the excluded middle is a fundamental property of the propositional
calculus. It states that a proposition A is either true or false; that is, there is no third
logical value.

A _ :A

We mentioned earlier that A ! B is logically equivalent to ¬A _ B (same truth
table), and clearly ¬A _ B is equivalent to ¬A _ ¬ ¬B, which is equivalent to ¬ ¬B _
¬A which is logically equivalent to ¬B ! ¬A. In other words, A ! B is logically
equivalent to ¬B ! ¬A, and this is known as the contrapositive.

De Morgan was a contemporary of Boole in the nineteenth century, and the
following law is known as De Morgan’s law.

:ðA _ BÞ � :A _ :B
:ðA ^ BÞ � :A ^ :B

Certain well-formed formulae are true for all values of their constituent vari-
ables. This can be seen from the truth table when the last column of the truth table
consists entirely of true values.

A proposition that is true for all values of its constituent propositional variables
is known as a tautology. An example of a tautology is the proposition A _ ¬A
(Table 6.8)

A proposition that is false for all values of its constituent propositional variables
is known as a contradiction. An example of a contradiction is the proposition A ^
¬A.

Table 6.8 Tautology B _
¬B

B ¬B B _ ¬B

T F T

F T T

6.2 Propositional Logic 115

6.2.3 Proof in Propositional Calculus

Logic enables further truths to be derived from existing truths by rules of inference
that are truth preserving. Propositional calculus is both complete and consistent.
The completeness property means that all true propositions are deducible in the
calculus, and the consistency property means that there is no formula A such that
both A and ¬A are deducible in the calculus.

An argument in propositional logic consists of a sequence of formulae that are
the premises of the argument and a further formula that is the conclusion of the
argument. One elementary way to see if the argument is valid is to produce a truth
table to determine if the conclusion is true whenever all of the premises are true.

Consider a set of premises P1, P2, … Pn and conclusion Q. Then, to determine if
the argument is valid using a truth table involves adding a column in the truth table
for each premise P1, P2, … Pn, and then to identify the rows in the truth table for
which these premises are all true. The truth-value of the conclusion Q is examined
in each of these rows, and if Q is true for each case for which P1, P2, … Pn are all
true, then the argument is valid. This is equivalent to P1 ^ P2 ^ … ^ Pn ! Q is a
tautology.

An alternate approach to proof with truth tables is to assume the negation of the
desired conclusion (i.e. ¬Q) and to show that the premises and the negation of the
conclusion result in a contradiction (i.e. P1 ^ P2 ^ … ^ Pn ^ ¬Q) is a
contradiction.

The use of truth tables becomes cumbersome when there are a large number of
variables involved, as there are 2n truth table entries for n-propositional variables.

Procedure for Proof by Truth Table

(i) Consider argument P1, P2, …, Pn with conclusion Q.
(ii) Draw truth table with column in truth table for each premise P1, P2, …, Pn.
(iii) Identify rows in truth table for when these premises are all true.
(iv) Examine truth-value of Q for these rows.
(v) If Q is true for each case that P1, P2, … Pn are true, then the argument is

valid.
(vi) That is P1 ^ P2 ^ … ^ Pn ! Q is a tautology.

Example 6.3 (Truth Tables) Consider the argument adapted from [1] and determine
if it is valid.

If the pianist plays the concerto, then crowds will come if the prices are not too
high.
If the pianist plays the concerto, then the prices will not be too high.
Therefore, if the pianist plays the concerto, then crowds will come.

116 6 Overview of Formal Methods

Solution
We will adopt a common proof technique that involves showing that the negation of
the conclusion is incompatible (inconsistent) with the premises, and from this we
deduce that the conclusion must be true. First, we encode the argument in propo-
sitional logic:

Let P stand for “The pianist plays the concerto”; C stands for “Crowds will
come”; and H stands for “Prices are too high”. Then, the argument may be
expressed in propositional logic as:

P ! ð:H ! CÞ Premise 1ð Þ
P ! :H Premise 2ð Þ
. . .
P ! C Conclusionð Þ

Then, we negate the conclusion P ! C and check the consistency of P !
(¬H ! C) ^ (P ! ¬H) ^ ¬ (P ! C)* using a truth table (Table 6.9).

It can be seen from the last column in the truth table that the negation of the
conclusion is incompatible with the premises, and therefore it cannot be the case
that the premises are true and the conclusion is false. Therefore, the conclusion
must be true whenever the premises are true, and we conclude that the argument is
valid.

Logical Equivalence and Logical Implication
The laws of mathematical reasoning are truth preserving and are concerned with
deriving further truths from existing truths. Logical reasoning is concerned with
moving from one line in mathematical argument to another and involves deducing
the truth of another statement Q from the truth of P.

The statement Q may be in some sense be logically equivalent to P, and this
allows the truth of Q to be immediately deduced. In other cases, the truth of P is
sufficiently strong to deduce the truth of Q; in other words, P logically implies

Table 6.9 Proof of argument with a truth table

P C H ¬H ¬H !
C

P ! (¬H !
C)

P !
¬H

P !
C

¬(P !
C)

*

T T T F T T F T F F

T T F T T T T T F F

T F T F T T F F T F

T F F T F F T F T F

F T T F T T T T F F

F T F T T T T T F F

F F T F T T T T F F

F F F T F T T T F F

6.2 Propositional Logic 117

Q. This leads naturally to a discussion of the concepts of logical equivalence (W1 �
W2) and logical implication (W1 ├ W2).

Logical Equivalence
Two well-formed formulae W1 and W2 with the same propositional variables (P, Q,
R …) are logically equivalent (W1 � W2) if they are always simultaneously true or
false for any given truth-values of the propositional variables.

If two well-formed formulae are logically equivalent, then it does not matter
which of W1 and W2 is used, and W1 $ W2 is a tautology. In Table 6.10, we see
that P ^ Q is logically equivalent to ¬(¬P _ ¬Q).

Logical Implication
For two well-formed formulae W1 and W2 with the same propositional variables (P,
Q, R…),W1 logically impliesW2 (W1 ├W2) if any assignment to the propositional
variables which makes W1 true also makes W2 true (Table 6.11). That is, W1 ! W2

is a tautology.

Example 6.4 Show by truth tables that (P ^ Q) _ (Q ^ ¬R)├ (Q _ R).
The formula (P ^ Q) _ (Q ^ ¬R) is true on rows 1, 2 and 6, and formula (Q _

R) is also true on these rows. Therefore, (P ^ Q) _ (Q ^ ¬R) ├ (Q _ R).

6.2.4 Semantic Tableaux in Propositional Logic

We showed in Example 6.3 how truth tables may be used to demonstrate the
validity of a logical argument. However, the problem with truth tables is that they
can get extremely large very quickly (as the size of the table is 2n where n is the

Table 6.10 Logical
equivalence of two WFFs

P Q P ʌ Q ¬P ¬Q ¬P _ ¬Q ¬(¬P _ ¬Q)

T T T F F F T

T F F F T T F

F T F T F T F

F F F T T T F

Table 6.11 Logical
implication of two WFFs

PQP (P ^ Q) _ (Q ^ ¬R) Q _ R

TTT T T

TTF T T

TFT F T

TFF F F

FTT F T

FTF T T

FFT F T

FFF F F

Show by truth tables that (P ^ Q) _ (Q ^ ¬R) ├ (Q _ R)

118 6 Overview of Formal Methods

number of propositional variables), and so in this section we will consider an
alternate approach known as semantic tableaux.

The basic idea of semantic tableaux is to determine if it is possible for a con-
clusion to be false when all of the premises are true. If this is not possible, then the
conclusion must be true when the premises are true, and so the conclusion is
semantically entailed by the premises. The method of semantic tableaux was
developed by the Dutch logician, Evert Willem Beth, and the technique exposes
inconsistencies in a set of logical formulae by identifying conflicting logical
expressions.

We present a short summary of the rules of semantic tableaux in Table 6.12, and
we then proceed to provide a proof for Example 6.3 using semantic tableaux instead
of a truth table.

Table 6.12 Rules of semantic tableaux

Rule
No.

Definition Description

1 A ^ B
A
B

If A ^ B is true, then both A and B are true and may be added to the
branch containing A ^ B

2. If A _ B is true, then either A or B is true, and we add two new
branches to the tableaux, one containing A and one containing B

3. If A ! B is true, then either ¬A or B is true, and we add two new
branches to the tableaux, one containing ¬A and one containing B

4. If A $ B is true, then either A ^ B or ¬A ^ ¬B is true, and we add
two new branches, one containing A ^ B and one containing ¬A ^
¬B

5. ¬¬A
A

If ¬¬A is true, then A may be added to the branch containing ¬¬A

6. If ¬(A ^ B) is true, then either ¬A _ ¬B is true, and we add two new
branches to the tableaux, one containing ¬A and one containing ¬B

7. ¬(A _ B)
¬A
¬B

If ¬(A _ B) is true, then both ¬A ^ ¬B are true and may be added to
the branch containing ¬(A _ B)

8. ¬(A ! B)
A
¬B

If ¬(A ! B) is true, then both A ^ ¬B are true and may be added to
the branch containing ¬(A ! B)

6.2 Propositional Logic 119

Whenever a logical expression A and its negation ¬A appear in a branch of the
tableau, then an inconsistency has been identified in that branch, and the branch is
said to be closed. If all of the branches of the semantic tableaux are closed, then the
logical propositions from which the tableau was formed are mutually inconsistent
and cannot be true together.

The method of proof is to negate the conclusion, and to show that all branches in
the semantic tableau are closed and that therefore it is not possible for the premises
of the argument to be true and for the conclusion to be false. Therefore, the
argument is valid and the conclusion follows from the premises.

Example 6.5 (Semantic Tableaux) Perform the proof for Example 6.3 using
semantic tableaux.

Solution
We formalized the argument previously as

Premise 1ð Þ P ! ð:H ! CÞ
Premise 2ð Þ P ! :H
Conclusionð Þ P ! C

We negate the conclusion to get ¬(P ! C), and we show that all branches in the
semantic tableau are closed and that therefore it is not possible for the premises of
the argument to be true and for the conclusion to be false. Therefore, the argument
is valid, and the truth of the conclusion follows from the truth of the premises.

We have showed that all branches in the semantic tableau are closed and that
therefore it is not possible for the premises of the argument to be true and for the
conclusion to be false. Therefore, the argument is valid as required.

120 6 Overview of Formal Methods

6.2.5 Natural Deduction

The German mathematician, Gerhard Gentzen (Fig. 6.1), developed a method for
logical deduction known as “Natural Deduction”, and his formal approach to
natural deduction aimed to be as close as possible to natural reasoning. Gentzen
worked as an assistant to David Hilbert at the University of Göttingen, and he died
of malnutrition in Prague towards the end of the Second World War.

Natural deduction includes rules for ^, _, ! introduction and elimination and
also for reductio ad adsurdum. There are ten inference rules in the natural
deduction system, and they include two inference rules for each of the five logical
operators ^, _, ¬, ! and $ (an introduction rule and an elimination rule), and the
rules are defined in Table 6.13:

Natural deduction may be employed in logical reasoning and is described in
detail in [1, 2].

6.2.6 Sketch of Formalization of Propositional Calculus

Truth tables provide an informal approach to proof, and the proof is provided in
terms of the truth-values of the propositions and the meaning of the logical con-
nectives. The formalization of propositional logic includes the definition of an
alphabet of symbols and well-formed formulae of the calculus, the axioms of the
calculus and rules of inference for logical deduction.

The deduction of a new formulae Q is via a sequence of well-formed formulae
P1, P2, … Pn (where Pn = Q) such that each Pi is either an axiom, a hypothesis, or
deducible from an earlier pair of formula Pj, Pk, (where Pk is of the form Pj ! Pi)

Fig. 6.1 Gerhard Gentzen

6.2 Propositional Logic 121

and modus ponens. Modus ponens is a rule of inference that states that given
propositions A, and A ! B, then proposition B may be deduced. The deduction of a
formula Q from a set of hypothesis H is denoted by H ├ Q, and where Q is
deducible from the axioms alone this is denoted by ├ Q.

The deduction theorem of propositional logic states that if H [{P} ├ Q, then
H ├ P ! Q, and the converse of the theorem is also true; that is, if H ├ P ! Q,
then H [{P} ├ Q. Formalism (this approach was developed by the German
mathematician, David Hilbert) allows reasoning about symbols according to rules,
and to derive theorems from formulae irrespective of the meanings of the symbols
and formulae.

Propositional calculus is sound (i.e. any theorem derived using the Hilbert
approach is true). Further, the calculus is also complete, and every tautology has a
proof (i.e. it is a theorem in the formal system). The propositional calculus is
consistent (i.e. it is not possible that both the well-formed formula A and ¬A are
deducible in the calculus).

Table 6.13 Natural deduction rules

Rule Definition Description

^ I P1 ;P2 ;...Pn

P1^P2^...^Pn

Given the truth of propositions P1, P2, … Pn, then the truth
of the conjunction P1 ^ P2 ^ …^ Pn follows. This rule
shows how conjunction can be introduced

^ E P1^ P2^...^Pn

Pi

where i 2{1,…,n}

Given the truth the conjunction P1 ^ P2 ^ … ^ Pn, then the
truth of proposition Pi follows. This rule shows how a
conjunction can be eliminated

_ I Pi

P1_ P2_..._Pn

Given the truth of propositions Pi, then the truth of the
disjunction P1 _ P2 _ …_ Pn follows. This rule shows how
a disjunction can be introduced

_ E P1_..._Pn ;P1!E;...Pn!E
E

Given the truth of the disjunction P1 _ P2 _ …_ Pn and that
each disjunct implies E, then the truth of E follows. This rule
shows how a disjunction can be eliminated

! I FromP1 ; P2 ; ...Pn inferP
ðP1^ P2^ ...^PnÞ!P

This rule states that if we have a theorem that allows P to be
inferred from the truth of premises P1, P2, … Pn (or
previously proved), then we can deduce (P1 ^ P2 ^ …^ Pn)
! P. This is known as the deduction theorem

! E Pi!Pj ;Pi

Pj

This rule is known as modus ponens. The consequence of an
implication follows if the antecedent is true (or has been
previously proved)

� I Pi!Pj ;Pj!Pi

Pi$Pj

If proposition Pi implies proposition Pj and vice versa, then
they are equivalent (i.e. Pi $ Pj)

� E Pi$Pj

Pi!Pj ;Pj!Pi

If proposition Pi is equivalent to proposition Pj, then
proposition Pi implies proposition Pj and vice versa

¬ I FromP inferP1^:P1

:P
If the proposition P allows a contradiction to be derived,
then ¬P is deduced. This is an example of a proof by
contradiction

¬ E From:P inferP1^:P1

P
If the proposition ¬P allows a contradiction to be derived,
then P is deduced. This is an example of a proof by
contradiction

122 6 Overview of Formal Methods

Propositional calculus is decidable; that is, there is an algorithm (e.g. a truth
table) to determine for any well-formed formula A whether A is a theorem of the
formal system. The Hilbert style system is slightly cumbersome in conducting proof
and is quite different from the normal use of logic in mathematical deduction.

6.2.7 Applications of Propositional Calculus

Propositional calculus may be employed in reasoning with arguments in natural
language. First, the premises and conclusion of the argument are identified and
formalized into propositions. Propositional logic is then employed to determine if
the conclusion is a valid deduction from the premises.

Consider, for example, the following argument that aims to prove that Superman
does not exist.

If Superman were able and willing to prevent evil, he would do so. If Superman were
unable to prevent evil he would be impotent; if he were unwilling to prevent evil he would
be malevolent; Superman does not prevent evil. If superman exists he is neither malevolent
nor impotent; therefore Superman does not exist.

First, letters are employed to represent the propositions as follows:

a Superman is able to prevent evil
w Superman is willing to prevent evil
i Superman is impotent
m Superman is malevolent
p Superman prevents evil
e Superman exists

Then, the argument above is formalized in propositional logic as follows:

Premises

P1 ða ^ wÞ ! p

P2 ð:a ! iÞ ^ ð:w ! mÞ
P3 :p
P4 e ! :i ^ :m

- -

Conclusion :e ðP1 ^ P2 ^ P3 ^ P4 ‘:eÞ

Proof that Superman does not exist

1. a ^ w ! p Premise 1

2. (¬ a ! i) ^ (¬ w !m) Premise 2

3. ¬p Premise 3
(continued)

6.2 Propositional Logic 123

4. e! (¬ i ^ ¬ m) Premise 4

5. ¬p ! ¬(a ^ w 1, Contrapositive

6. ¬(a ^ w) 3,5 Modus Ponens

7. ¬a _ ¬w 6, De Morgan’s law

8. ¬ (¬ i ^ ¬ m) ! ¬e 4, Contrapositive

9. i _ m ! ¬e 8, De Morgan’s law

10. (¬ a ! i) 2, ^ Elimination

11. (¬ w ! m) 2, ^ Elimination

12. ¬ ¬a _ i 10, A ! B equivalent to ¬A _ B

13. ¬ ¬a _ i _ m 11, _ Introduction

14. ¬ ¬a _ (i _ m)

15. ¬a ! (i _ m) 14, A ! B equivalent to ¬A _ B

16. ¬ ¬w _ m 11, A ! B equivalent to ¬A _ B

17. ¬ ¬w _ (i _ m)

18. ¬w ! (i _ m) 17, A ! B equivalent to ¬A _ B

19. (i _ m) 7, 15, 18 _Elimination
20. ¬e 9, 19 Modus Ponens

Second Proof

1. ¬p P3

2. ¬(a ^w) _ p P1 (A ! B � ¬A _ B)

3. ¬(a ^w) 1,2 A _ B, ¬B ├ A

4. ¬a _ ¬w 3, De Morgan’s law

5. (¬a ! i) P2 (^-Elimination)

6. ¬a ! i _ m 5, x ! y ├ x ! y _ z

7. (¬w ! m) P2 (^-Elimination)

8. ¬w ! i _ m 7, x ! y ├ x ! y _ z

9. (¬a _ ¬w) ! (i _ m) 8, x ! z, y! z ├ x _ y ! z

10. (i _ m) 4,9 Modus Ponens

11. e ! ¬(i _ m) P4 (De Morgan’s law)

12. ¬e _ ¬ (i _ m) 11, (A ! B � ¬A _ B)

13. ¬e 10, 12 A _ B, ¬B ├ A

Therefore, the conclusion that Superman does not exist is a valid deduction from
the given premises.

124 6 Overview of Formal Methods

6.2.8 Limitations of Propositional Calculus

The propositional calculus deals with propositions only. It is incapable of dealing
with the syllogism “All Greeks are mortal; Socrates is a Greek; therefore Socrates is
mortal”. This would be expressed in propositional calculus as three propositions A,
B and therefore C, where A stands for “All Greeks are mortal”, B stands for
“Socrates is a Greek” and C stands for “Socrates is mortal”. Propositional logic
does not allow the conclusion that all Greeks are mortal to be derived from the two
premises.

Predicate calculus deals with these limitations by employing variables and terms,
and using universal and existential quantification to express that a particular
property is true of all (or at least one) values of a variable. Predicate calculus is
discussed in the next section.

6.3 Predicate Calculus

Predicate logic is a richer system than propositional logic, and it allows complex
facts about the world to be represented. It allows new facts about the world to be
derived in a way that guarantees that if the initial premises are true, then the
conclusions are true. Predicate calculus consists of predicates, variables, constants
and quantifiers.

A predicate is a characteristic or property that an object can have, and we are
predicating some property of the object. For example, “Socrates is a Greek” could
be expressed as G(s), with capital letters standing for predicates and small letters
standing for objects. A predicate may include variables, and a statement with a
variable becomes a proposition once the variables are assigned values. For example,
G(x) states that the variable x is a Greek, whereas G(s) is an assignment of values to
x. The set of values that the variables may take is termed the universe of discourse,
and the variables take values from this set.

Predicate calculus employs quantifiers to express properties such as all members
of the domain have a particular property: e.g. (8x)P(x), or that there is at least one
member that has a particular property: e.g. (9x)P(x). These are referred to as the
universal and existential quantifiers.

The syllogism “All Greeks are mortal; Socrates is a Greek; therefore Socrates is
mortal” may be easily expressed in predicate calculus by:

ð8xÞ G xð Þ ! M xð Þð Þ
G sð Þ
- - - - - - - - - - - - - - - -
M sð Þ

6.2 Propositional Logic 125

In this example, the predicate G(x) stands for x is a Greek and the predicate M
(x) stands for x is mortal. The formula G(x) ! M(x) states that if x is a Greek, then
x is mortal, and the formula (8x)(G(x)! M(x)) states for any x that if x is a Greek,
then x is mortal. The formula G(s) states that Socrates is a Greek, and the formula M
(s) states that Socrates is mortal.

Example 6.6 (Predicates) Apredicate may have one or more variables. A predicate
that has only one variable (i.e. a unary or one-place predicate) is often related to
sets; a predicate with two variables (a two-place predicate) is a relation; and a
predicate with n variables (a n-place predicate) is a n-ary relation. Propositions do
not contain variables, and so they are zero-place predicates. The following are
examples of predicates:

(i) The predicate Prime(x) states that x is a prime number (with the natural
numbers being the universe of discourse).
(ii) Lawyer(a) may stand for a is a lawyer.
(iii) Mean(m, x, y) states that m is the mean of x and y: i.e., m = ½(x+y).
(iv) LT(x, 6) states that x is less than 6.
(v) GT(x, p) states that x is greater than p (where p is the constant 3.14159).
(vi) GT(x, y) states that x is greater than y.
(vii) EQ(x, y) states that x is equal to y.
(viii) LE(x, y) states that x is less than or equal to y.
(ix) Real(x) states that x is a real number.
(x) Father(x, y) states that x is the father of y.
(xi) ¬(9x)(Prime(x) ^ BE(x, 32, 36)) states that there is no prime number
between 32 and 36.

Universal and Existential Quantification
The universal quantifier is used to express a statement such as that all members of
the domain have property P. This is written as (8x)P(x) and expresses the statement
that the property P(x) is true for all x. Similarly, (8x1, x2, …, xn) P(x1, x2, …, xn)
states that property P(x1, x2, …, xn) is true for all x1, x2, …, xn. Clearly, the predicate
(8x) P(a, b) is identical to P(a, b) since it contains no variables, and the predicate
(8y 2 ℕ) (x � y) is true if x = 1 and false otherwise.

The existential quantifier states that there is at least one member in the domain of
discourse that has property P. This is written as (9x)P(x), and the predicate (9x1, x2,
…, xn) P(x1, x2, …, xn) states that there is at least one value of (x1, x2, …, xn) such
that P(x1, x2, …, xn) is true.

Example 6.7 (Quantifiers)

(i) ð9pÞ ðPrime pð Þ ^ p[1; 000; 000Þ is true
It expresses the fact that there is at least one prime number greater than a
million, which is true as there are an infinite number of primes.

126 6 Overview of Formal Methods

(ii) ð8xÞ ð9yÞ x\y is true
This predicate expresses the fact that given any number x, we can always find
a larger number: e.g. take y = x + 1.

(iii) ð9yÞð8xÞ x\y is false
This predicate expresses the statement that there is a natural number y such
that all natural numbers are less than y. Clearly, this statement is false since
there is no largest natural number, and so the predicate (9 y) (8x) x < y is
false.

Comment 6.1 It is important to be careful with the order in which quantifiers are
written, as the meaning of a statement may be completely changed by the simple
transposition of two quantifiers.

The well-formed formulae in the predicate calculus are built from terms and
predicates, and the rules for building the formulae are sketched in Sect. 6.3.1.
Examples of well-formed formulae include:

ð8xÞ x[2ð Þ
ð9xÞx2 ¼ 2
ð8xÞ ðx[2 ^ x\10Þ
ð8xÞð9yÞx2 ¼ y
ð8xÞð9yÞLove y; xð Þ everyone is loved by some oneð Þ
ð9yÞð8xÞLove y; xð Þ some one loves every oneð Þ

The formula (8x)(x > 2) states that every x is greater than the constant 2; (9x) x2
= 2 states that there is an x that is the square root of 2; (8x) (9y) x2 = y states that for
every x, there is a y such that the square of x is y.

6.3.1 Sketch of Formalization of Predicate Calculus

The formalization of predicate calculus includes the definition of an alphabet of
symbols (including constants and variables), the definition of function and predicate
letters, logical connectives and quantifiers. This leads to the definitions of the terms
and well-formed formulae of the calculus.

The predicate calculus is built from an alphabet of constants, variables, function
letters, predicate letters and logical connectives (including the logical connectives
discussed in propositional logic, and the universal and existential quantifiers).

The definition of terms and well-formed formulae specifies the syntax of the
predicate calculus, and the set of well-formed formulae gives the language of the
calculus. The terms and well-formed formulae are built from the symbols, and these
symbols are not given meaning in the formal definition of the syntax.

The language defined by the calculus needs to be given an interpretation in order
to give meaning to the terms and formulae of the calculus. The interpretation needs

6.3 Predicate Calculus 127

to define the domain of values of the constants and variables, and provide meaning
to the function letters, the predicate letters and the logical connectives.

Terms are built from constants, variables and function letters. A constant or
variable is a term, and if t1, t2,…, tk are terms, then fi

k(t1, t2,…, tk) is a term (where fi
k

is a k-ary function letter). Examples of terms include:

x2 where x is a variable and square is a 1-ary function letter
x2+y2 where x2 + y2 is shorthand for the function add(square(x), square(y)) where

add is a 2-ary function letter and square is a 1-ary function letter.

The well-formed formulae are built from terms as follows. If Pi
k is a k-ary

predicate letter, t1, t2,…, tk are terms, then Pi
k (t1, t2,…, tk) is a well-formed formula.

If A and B are well-formed formulae, then so are ¬A, A ^ B, A _ B, A ! B, A $ B,
(8x)A and (9x)A.

There is a set of axioms for predicate calculus and two rules of inference used for
the deduction of new formulae from the existing axioms and previously deduced
formulae. The deduction of a new formula Q is via a sequence of well-formed
formulae P1, P2, … Pn (where Pn = Q) such that each Pi is either an axiom, a
hypothesis, or deducible from one or more of the earlier formulae in the sequence.

The two rules of inference are modus ponens and generalization. Modus ponens
is a rule of inference that states that given predicate formulae A, and A ! B, then
the predicate formula B may be deduced. Generalization is a rule of inference that
states that given predicate formula A, then the formula (8x)A may be deduced
where x is any variable.

The deduction of a formula Q from a set of hypothesis H is denoted by H ├ Q,
and where Q is deducible from the axioms alone this is denoted by ├ Q. The
deduction theorem states that if H [{P}├ Q, then H├ P! Q3 and the converse
of the theorem is also true; that is, if H ├ P ! Q, then H [{P} ├ Q.

The approach allows reasoning about symbols according to rules, and to derive
theorems from formulae irrespective of the meanings of the symbols and formulae.
Predicate calculus is sound; that is, any theorem derived using the approach is true,
and the calculus is also complete.

Scope of Quantifiers
The scope of the quantifier (8x) in the well-formed formula (8x)A is A. Similarly,
the scope of the quantifier (9x) in the well-formed formula (9x)B is B. The variable
x that occurs within the scope of the quantifier is said to be a bound variable. If a
variable is not within the scope of a quantifier, it is free.

Example 6.8 (Scope of Quantifiers)

(i) x is free in the well-formed formula 8y (x2 + y > 5).
(ii) x is bound in the well-formed formula 8x (x2 > 2).

3This is stated more formally that if H [{P} ├ Q by a deduction containing no application of
generalization to a variable that occurs free in P, then H ├ P ! Q.

128 6 Overview of Formal Methods

A well-formed formula is closed if it has no free variables. The substitution of a
term t for x in A can only take place only when no free variable in t will become
bound by a quantifier in A through the substitution. Otherwise, the interpretation of
A would be altered by the substitution.

A term t is free for x in A if no free occurrence of x occurs within the scope of a
quantifier (8y) or (9y) where y is free in t. This means that the term t may be
substituted for x without altering the interpretation of the well-formed formula A.

For example, suppose A is 8y (x2 + y2 > 2) and the term t is y, then t is not free
for x in A as the substitution of t for x in A will cause the free variable y in t to
become bound by the quantifier 8y in A, thereby altering the meaning of the formula
to8y (y2 + y2 > 2).

6.3.2 Interpretation and Valuation Functions

An interpretation gives meaning to a formula, and it consists of a domain of
discourse and a valuation function. If the formula is a sentence (i.e. it does not
contain any free variables), then the given interpretation of the formula is either true
or false. If a formula has free variables, then the truth or falsity of the formula
depends on the values given to the free variables. A formula with free variables
essentially describes a relation say, R(x1, x2,… xn) such that R(x1, x2,… xn) is true if
(x1, x2, … xn) is in relation R. If the formula is true irrespective of the values given
to the free variables, then the formula is true in the interpretation.

A valuation (meaning) function gives meaning to the logical symbols and
connectives. Thus associated with each constant c is a constant cR in some universe
of values R; with each function symbol f of arity k, we have a function symbol fR in
R and fR : Rk ! R; and for each predicate symbol P of arity k, we have a relation PR

� R k. The valuation function, in effect, gives the semantics of the language of the
predicate calculus L.

The truth of a predicate P is then defined in terms of the meanings of the terms,
the meanings of the functions, predicate symbols and the normal meanings of the
connectives.

Mendelson [3] provides a technical definition of truth in terms of satisfaction
(with respect to an interpretation M). Intuitively, a formula F is satisfiable if it is
true (in the intuitive sense) for some assignment of the free variables in the formula
F. If a formula F is satisfied for every possible assignment to the free variables in F,
then it is true (in the technical sense) for the interpretation M. An analogous
definition is provided for false in the interpretation M.

A formula is valid if it is true in every interpretation; however, as there may be
an uncountable number of interpretations, it may not be possible to check this
requirement in practice. M is said to be a model for a set of formulae if and only if
every formula is true in M.

6.3 Predicate Calculus 129

There is a distinction between proof theoretic and model theoretic approaches in
predicate calculus. Proof theoretic is essentially syntactic, and there is a list of
axioms with rules of inference. The theorems of the calculus are logically derived
(i.e. ├ A), and the logical truths are as a result of the syntax or form of the
formulae, rather than the meaning of the formulae. Model theoretic, in contrast, is
essentially semantic. The truth derives from the meaning of the symbols and
connectives, rather than the logical structure of the formulae (written as ├ M A).

A calculus is sound if all of the logically valid theorems are true in the inter-
pretation, i.e. proof theoretic) model theoretic. A calculus is complete if all the
truths in an interpretation are provable in the calculus, i.e. model theoretic) proof
theoretic. A calculus is consistent if there is no formula A such that ├ A and ├ ¬A.

The predicate calculus is sound, complete and consistent. Predicate calculus is
not decidable; that is, there is no algorithm to determine for any well-formed
formula A whether A is a theorem of the formal system. The undecidability of the
predicate calculus may be demonstrated by showing that if the predicate calculus is
decidable, then the halting problem (of Turing machines) is solvable. The halting
problem is discussed in Chap. 13 of [4].

6.3.3 Properties of Predicate Calculus

The following are properties of the predicate calculus

(i) ð8xÞP xð Þ � ð8yÞP yð Þ
(ii) ð8xÞP xð Þ � :ð9xÞ:P xð Þ
(iii) ð9xÞP xð Þ � :ð8xÞ:P xð Þ
(iv) ð9xÞP xð Þ � ð9yÞP yð Þ
(v) ð8xÞð8yÞP x; yð Þ � ð8yÞð8xÞP x; yð Þ
(vi) ð9xÞðP xð Þ _ Q xð ÞÞ � ð9xÞP xð Þ _ ð9yÞQ yð Þ
(vii) ð8xÞðP xð Þ ^ Q xð ÞÞ � ð8xÞP xð Þ ^ ð8yÞQ yð Þ

6.3.4 Applications of Predicate Calculus

The predicate calculus is may be employed to formally state the system require-
ments of a proposed system. It may be used to conduct formal proof to verify the
presence or absence of certain properties in a specification.

It may also be employed to define piecewise defined functions such as f(x,
y) where f(x, y) is defined by:

130 6 Overview of Formal Methods

f ðx; yÞ ¼ x2 � y2 where x� 0 ^ y\0;
f ðx; yÞ ¼ x2 þ y2 where x[0 ^ y\0;
f ðx; yÞ ¼ xþ y where x� 0 ^ y ¼ 0;
f ðx; yÞ ¼ x� y where x\0 ^ y ¼ 0;
f ðx; yÞ ¼ xþ y where x� 0 ^ y[0;
f ðx; yÞ ¼ x2 þ y2 where x[0 ^ y[0:

The predicate calculus may be employed for program verification, and to show
that a code fragment satisfies its specification. The statement that a program F is
correct with respect to its precondition P and postcondition Q is written as P{F}
Q. The objective of program verification is to show that if the precondition is true
before execution of the code fragment, then this implies that the postcondition is
true after execution of the code fragment.

A program fragment a is partially correct for precondition P and postcondition
Q if and only if whenever a is executed in any state in which P is satisfied and
execution terminates, then the resulting state satisfies Q. Partial correctness is
denoted by P{F}Q, and Hoare’s axiomatic semantics is based on partial correct-
ness. It requires proof that the postcondition is satisfied if the program terminates.

A program fragment a is totally correct for precondition P and postcondition Q,
if and only if whenever a is executed in any state in which P is satisfied, then the
execution terminates and the resulting state satisfies Q. It is denoted by {P}F{Q},
and Dijkstra’s calculus of weakest preconditions is based on total correctness [5]. It
is required to prove that if the precondition is satisfied, then the program terminates
and the postcondition is satisfied.

6.3.5 Semantic Tableaux in Predicate Calculus

We discussed the use of semantic tableaux in determining the validity of arguments
in propositional logic in Sect. 6.2.4, and its approach is to negate the conclusion of
an argument and to show that this results in inconsistency with the premises of the
argument.

The use of semantic tableaux is similar with predicate logic, except that there are
some additional rules to consider. As before, the approach is to negate the con-
clusion and to show that this results in all branches of the semantic tableau being
closed, and from this we deduce that the conclusion must be true.

The rules of semantic tableaux for propositional logic were presented in
Table 6.12, and the additional rules specific to predicate logic are detailed in
Table 6.14.

Example 6.9 (Semantic Tableaux) Show that the syllogism “All Greeks are mortal;
Socrates is a Greek; therefore Socrates is mortal” is a valid argument in predicate
calculus.

6.3 Predicate Calculus 131

Solution
We expressed this argument previously as (8x)(G(x) ! M(x)); G(s); M(s). There-
fore, we negate the conclusion (i.e. ¬M(s)) and try to construct a closed tableau.

Therefore, as the tableau is closed, we deduce that the negation of the conclusion
is inconsistent with the premises and that therefore the conclusion follows from the
premises.

Example 6.10 (Semantic Tableaux) Determine whether the following argument is
valid.

All lecturers are motivated.
Anyone who is motivated and clever will teach well.
Joanne is a clever lecturer.
Therefore, Joanne will teach well.

Solution
We encode the argument as follows

L(x) stands for “x is a lecturer”.
M(x) stands for “x is motivated”.

Table 6.14 Extra rules of semantic tableaux (for predicate calculus)

Rule
No.

Definition Description

1 (8x) A(x)
A(t) where t is a term

Universal instantiation

2. (9x) A(x)
A(t) where t is a term that has not been
used in the derivation so far.

Rule of existential instantiation. The
term “t” is often a constant “a”.

3. ¬(8x) A(x)
(9x) ¬A(x)

4. ¬(9x) A(x)
(8x)¬A(x)

132 6 Overview of Formal Methods

C(x) stands for “x is clever”.
W(x) stands for “x will teach well”.

We therefore wish to show that

ð8xÞðL xð Þ ! M xð ÞÞ ^ ð8xÞððM xð Þ ^ C xð ÞÞ
! W xð ÞÞ ^ L joanneð Þ ^ C joanneð Þ�W joanneð Þ

Therefore, we negate the conclusion (i.e. ¬W(joanne)) and try to construct a
closed tableau.

1. ð8xÞðL xð Þ ! M xð ÞÞ
2. ð8xÞððM xð Þ^C xð ÞÞ ! W xð ÞÞ
3. L joanneð Þ
4. C joanneð Þ
5. :W joanneð Þ
6. L joanneð Þ ! M joanneð Þ Universal Instantiation line 1ð Þ
7.

8.

9.

10.

Therefore, since the tableau is closed, we deduce that the argument is valid.

6.3 Predicate Calculus 133

6.4 Review Questions

1. Draw a truth table to show that ¬ (P ! Q) � P ^ ¬Q.
2. Translate the sentence “Execution of program P begun with x < 0 will not

terminate” into propositional form.
3. Prove the following theorems using the inference rules of natural

deduction.

(a) From b infer b _ ¬c.
(b) From b) (c ^ d), b infer d.

4. Explain the difference between the universal and the existential
quantifiers.

5. Express the following statements in the predicate calculus:

(a) All natural numbers are greater than 10.
(b) There is at least one natural number between 5 and 10.
(c) There is a prime number between 100 and 200.

6. Which of the following predicates are true?

(a) 8i 2{10, …,50}. i2 < 2000 ^ i < 100
(b) 9 i 2 ℕ. i > 5 ^ i2 = 25
(c) 9 i 2 ℕ. i2 = 25

7. Use semantic tableaux to show that (A ! A) _ (B ^ ¬B) is true.
8. Determine if the following argument is valid.

If Pilar lives in Cork, she lives in Ireland. Pilar lives in Cork. Therefore,
Pilar lives in Ireland.

6.5 Summary

This chapter considered propositional and predicate calculus. Propositional logic is
the study of propositions, and a proposition is a statement that is either true or false.
A formula in propositional calculus may contain several variables, and the truth or

134 6 Overview of Formal Methods

falsity of the individual variables, and the meanings of the logical connectives
determines the truth or falsity of the logical formula.

A rich set of connectives is employed in propositional calculus to combine
propositions and to build up the well-formed formulae of the calculus. This includes
the conjunction of two propositions (A ^ B), the disjunction of two propositions
(A _ B) and the implication of two propositions (A) B). These connectives allow
compound propositions to be formed, and the truth of the compound propositions is
determined from the truth-values of the constituent propositions and the rules
associated with the logical connectives. The meaning of the logical connectives is
given by truth tables.

Propositional calculus is both complete and consistent with all true propositions
deducible in the calculus, and there is no formula A such that both A and ¬A are
deducible in the calculus.

An argument in propositional logic consists of a sequence of formulae that are
the premises of the argument and a further formula that is the conclusion of the
argument. One elementary way to see if the argument is valid is to produce a truth
table to determine if the conclusion is true whenever all of the premises are true.
Other ways are to use semantic tableaux or natural deduction.

Predicates are statements involving variables, and these statements become
propositions once the variables are assigned values. Predicate calculus allows
expressions such as all members of the domain have a particular property to be
expressed formally: e.g. (8x)Px, or that there is at least one member that has a
particular property: e.g. (9x)Px.

Predicate calculus may be employed to specify the requirements for a proposed
system and to give the definition of a piecewise defined function. Semantic tableaux
may be used for determining the validity of arguments in propositional or predicate
logic, and its approach is to negate the conclusion of an argument and to show that
this results in inconsistency with the premises of the argument.

References

1. J. Kelly, The Essence of Logic (Prentice Hall, Englewood Cliffs NJ, 1997)
2. D. Gries, The Science of Programming (Springer, Berlin, 1981)
3. E. Mendelson, Introduction to Mathematical Logic (Wadsworth and Cole/Brook, Advanced

Books & Software, 1987)
4. G. O’ Regan, Guide to Discrete Mathematics (Springer, Switzerland, 2016b)
5. E.W. Dijkstra, A Disciple of Programming (Prentice Hall, Englewood Cliffs, NJ, 1976)

6.5 Summary 135

7Advanced Topics in Logic

Key Topics

Fuzzy logic
Intuitionist logic
Temporal logic
Undefined values
Theorem provers
Logic of partial functions
Logic and AI

7.1 Introduction

In this chapter, we consider some advanced topics in logic including fuzzy logic,
temporal logic, intuitionist logic, undefined values, logic and AI and theorem
provers. Fuzzy logic is an extension of classical logic that acts as a mathematical
model for vagueness, and it handles the concept of partial truth where truth-values
lie between completely true and completely false. Temporal logic is concerned with
the expression of properties that have time dependencies, and it allows temporal
properties about the past, present and future to be expressed.

Brouwer and others developed intuitionist logic as the logical foundation for
intuitionism. This was a controversial theory on the foundations of mathematics,
and it was based on a rejection of the law of the excluded middle, and an insistence
that an existence proof must be constructive yielding the desired entity. Martin Löf
successfully applied intuitionism to type theory in the 1970s.

© Springer International Publishing AG 2017
G. O’Regan, Concise Guide to Formal Methods, Undergraduate Topics
in Computer Science, DOI 10.1007/978-3-319-64021-1_7

137

Partial functions arise naturally in computer science, and such functions may fail
to be defined for one or more values in their domain. One approach to dealing with
partial functions is to employ a precondition, which restricts the application of the
function to values where it is defined. We consider three approaches to deal with
undefined values, including the logic of partial functions; Dijkstra’s approach with
his cand and cor operators; and Parnas’s approach which preserves a classical
two-valued logic.

We examine the contribution of logic to the AI field and give a brief introduction
to work done by theorem provers in supporting proof.

7.2 Fuzzy Logic

Fuzzy logic is a branch of many-valued logic that allows inferences to be made
when dealing with vagueness, and it can handle problems with imprecise or
incomplete data. It differs from classical two-valued propositional logic, in that it is
based on degrees of truth, rather than on the standard binary truth-values of “true or
false” (1 or 0) of propositional logic. That is, while statements made in proposi-
tional logic are either true or false (1 or 0), the truth-value of a statement made in
fuzzy logic is a value between 0 and 1. Its value expresses the extent to which the
statement is true, with a value of 1 expressing absolute truth, and a value of 0
expressing absolute falsity.

Fuzzy logic uses degrees of truth as a mathematical model for vagueness, and
this is useful since statements made in natural language are often vague and have a
certain (rather than an absolute) degree of truth. It is an extension of classical logic
to handle the concept of partial truth, where the truth-value lies between completely
true and completely false. Lofti Zadeh developed fuzzy logic at Berkley in the
1960s, and it has been successfully applied to expert systems and other areas of
Artificial Intelligence.

For example, consider the statement “John is tall”. If John is 6 ft, 4 in., then we
would say that this is a true statement (with a truth-value of 1) since John is well
above average height. However, if John is 5 feet, 9 in. tall (around average height),
then this statement has a degree of truth, and this could be indicated by a fuzzy
truth-valued of 0.6. Similarly, the statement that today is sunny may be assigned a
truth-value of 1 if there are no clouds, 0.8 if there are a small number of clouds and
0 if it is raining all day.

Propositions in fuzzy logic may be combined together to form compound
propositions. Suppose X and Y are propositions in fuzzy logic, then compound
propositions may be formed from the conjunction, disjunction and implication
operators. The usual definition in fuzzy logic of the truth-values of the compound
propositions formed from X and Y is given by:

138 7 Overview of Formal Methods

Truth ð:XÞ ¼ 1�Truth Xð Þ
Truth X and Yð Þ ¼ min Truth Xð Þ;Truth Yð Þð Þ
Truth X or Yð Þ ¼ max Truth Xð Þ;Truth Yð Þð Þ
Truth ðX ! YÞ ¼ Truthð:X or YÞÞ

There is another way in which the operators may be defined in terms of
multiplication:

Truth X and Yð Þ ¼ Truth Xð Þ � Truth Yð Þ
Truth X or Yð Þ ¼ 1� 1� Truth Xð Þð Þ � 1� Truth Yð Þð Þ
TruthðX ! YÞ ¼ maxfzjTruth Xð Þ � z�Truth Yð Þg where 0� z� 1

Under these definitions, fuzzy logic is an extension of classical two-valued logic,
which preserves the usual meaning of the logical connectives of propositional logic
when the fuzzy values are just {0,1}.

Fuzzy logic has been very useful in expert system and Artificial Intelligence
applications. The first fuzzy logic controller was developed in England in the
mid-1970s. It has been applied to the aerospace and automotive sectors, and also to
the medical, robotics and transport sectors.

7.3 Temporal Logic

Temporal logic is concerned with the expression of properties that have time
dependencies, and the various temporal logics express facts about the past, present
and future. Temporal logic has been applied to specify temporal properties of
natural language, Artificial Intelligence and the specification and verification of
program and system behaviour. It provides a language to encode temporal
knowledge in Artificial Intelligence applications, and it plays a useful role in the
formal specification and verification of temporal properties (e.g. liveness and
fairness) in safety critical systems.

The statements made in temporal logic can have a truth-value that varies over
time. In other words, sometimes the statement is true and sometimes it is false, but it
is never true or false at the same time. The two main types of temporal logics are
linear time logics (reason about a single timeline) and branching time logics (reason
about multiple timelines).

The roots of temporal logic lie in work done by Aristotle in the forth century B.
C., when he considered whether a truth-value should be given to a statement about a
future event that may or may not occur. For example, what truth-value (if any)
should be given to the statement that “There will be a sea battle tomorrow”.
Aristotle argued against assigning a truth-value to such statements in the present
time.

7.2 Fuzzy Logic 139

Newtonian mechanics assumes an absolute concept of time independent of
space, and this viewpoint remained dominant until the development of the theory of
relativity in the early twentieth century (when space–time became the dominant
paradigm).

Arthur Prior began analysing and formalizing the truth-values of statements
concerning future events in the 1950s, and he introduced tense logic (a temporal
logic) in the early 1960s. Tense logic contains four modal operators (strong and
weak) that express events in the future or in the past:

– P (It has at some time been the case that)
– F (It will be at some time be the case that)
– H (It has always been the case that)
– G (It will always be the case that)

The P and F operators are known as weak tense operators, while the H and
G operators known as strong tense operators. The two pairs of operators are
interdefinable via the equivalences:

P/ ffi :H:/

H/;ffi :P:/

F/ ffi :G:/

G/ ffi :F:/

The set of formulae in Prior’s temporal logic may be defined recursively, and
they include the connectives used in classical logic (e.g. ¬, ^, _, !, $). We can
express a property / that is always true as A/ ≅ H/ ^ / ^ G/ and a property that
is sometimes true as E/ ≅ P/ _ / _ F/. Various extensions of Prior’s tense logic
have been proposed to enhance its expressiveness. These include the binary since
temporal operator “S”, and the binary until temporal operator “U”. For example, the
meaning of /Sw is that / has been true since a time when w was true.

Temporal logics are applicable to the specification of computer systems, as a
specification may require safety, fairness and liveness properties to be expressed.
For example, a fairness property may state that it will always be the case that a
certain property will hold sometime in the future. The specification of temporal
properties often involves the use of special temporal operators.

We discuss common temporal operators that are used, including an operator to
express properties that will always be true; properties that will eventually be true;
and a property that will be true in the next time instance. For example:

⃞ P P is always true
⋄P P will be true sometime in the future
○ P P is true in the next time instant (discrete time)

140 7 Overview of Formal Methods

Linear temporal logic (LTL) was introduced by Pnueli in the late 1970s. This
linear time logic is useful in expressing safety and liveness properties. Branching
time logics assume a non-deterministic branching future for time (with a deter-
ministic, linear past). Computation tree logic (CTL and CTL*) were introduced in
the early 1980s by Clarke and Emerson [1].

It is also possible to express temporal operations directly in classical mathe-
matics, and the well-known computer scientist, Parnas, prefers this approach. He is
critical of computer scientists for introducing unnecessary formalisms when clas-
sical mathematics already possesses the ability to do this. For example, the value of
a function f at a time instance prior to the current time t is defined as:

Prior f ; tð Þ ¼ lim
e!0

f t � eð Þ

Temporal logic will be discussed again later in this book as part of model
checking (in Chap. 14). For more detailed information on temporal logic, the reader
is referred to the excellent article on temporal logic in [2].

7.4 Intuitionist Logic

The controversial school of intuitionist mathematics was founded by the Dutch
mathematician, L.E.J. Brouwer, who was a famous topologist, and well known for
his fixed point theorem in topology. This constructive approach to mathematics
proved to be highly controversial, as its acceptance as a foundation of mathematics
would have led to the rejection of many accepted theorems in classical mathematics
(including his own fixed point theorem).

Brouwer was deeply interested in the foundations of mathematics, and the
problems arising from the paradoxes of set theory. He was determined to provide a
secure foundation for mathematics, and his view was that an existence theorem in
mathematics has no validity, unless it is constructive and accompanied by a pro-
cedure to construct the object. He therefore rejected indirect proof and the law of
the excluded middle (P _ ¬P) or equivalently (¬¬P ! P), and he insisted on an
explicit construction of the mathematical object.

The problem with the law of the excluded middle (LEM) arises in dealing with
properties of infinite sets. For finite sets, one can decide if all elements of the set
possess a certain property P by testing each one. However, this procedure is no
longer possible for infinite sets. We may know that a certain element of the infinite
set does not possess the property, or it may be the actual method of construction of
the set allows us to prove that every element has the property. However, the
application of the law of the excluded middle is invalid for infinite sets, as we
cannot conclude from the situation where not all elements of an infinite set possess
a property P that there exists at least one element which does not have the property

7.3 Temporal Logic 141

P. In other words, the law of the excluded middle may only be applied in cases
where the conclusion can be reached in a finite number of steps.

Consequently, if the Brouwer view of the world was accepted, then many of the
classical theorems of mathematics (including his own well-known results in
topology) could no longer be said to be true. His approach to the foundations of
mathematics hardly made him popular with other contemporary mathematicians
(the differences were so fundamental that it was more like a war between them), and
intuitionism never became mainstream in mathematics. It led to deep and bitter
divisions between Hilbert and Brouwer, with Hilbert accusing Brouwer (and Weyl)
of trying to overthrow everything that did not suit them in mathematics and that
intuitionism was treason to science. Hilbert argued that a suitable foundation for
mathematics should aim to preserve most of mathematics. Brouwer described
Hilbert’s formalist program as a false theory that would produce nothing of
mathematical value. For Brouwer, “to exist” is synonymous with “constructive
existence”, and constructive mathematics is relevant to computer science, as a
program may be viewed as the result obtained from a constructive proof of its
specification.

Brouwer developed one of the more unusual logics that have been invented
(intuitionist logic), in which many of the results of classical mathematics were no
longer true. Intuitionist logic may be considered the logical basis of constructive
mathematics, and formal systems for intuitionist propositional and predicate logic
were developed by Heyting and others [3].

Consider a hypothetical mathematical property P(x) of which there is no known
proof (i.e. it is unknown whether P(x) is true or false for arbitrary x where x ranges
over the natural numbers). Therefore, the statement 8x (P(x) _ ¬ P(x)) cannot be
asserted with the present state of knowledge, as neither P(x) or ¬P(x) has been
proved. That is, unproved statements in intuitionist logic are not given an inter-
mediate truth-value, and they remain of an unknown truth-value until they have
been either proved or disproved.

The intuitionist interpretation of the logical connectives is different from clas-
sical propositional logic. A sentence of the form A _ B asserts that either a proof of
A or a proof of B has been constructed, and A _ B is not equivalent to ¬ (¬A ^ ¬B).
Similarly, a proof of A ^ B is a pair whose first component is a proof of A, and
whose second component is a proof of B. The statement 8x ¬P(x) is not equivalent
to 9x P(x) in intuitionist logic.

Intuitionist logic was applied to type theory by Martin Löf in the 1970s [4].
Intuitionist type theory is based on an analogy between propositions and types,
where A ^ B is identified with A � B, the Cartesian product of A and B. The
elements in the set A � B are of the form (a, b) where a 2 A and b 2 B. The
expression A _ B is identified with A + B, the disjoint union of A and B. The
elements in the set A + B are got from tagging elements from A and B, and they are
of the form inl(a) for a 2 A, and inr(b) for b 2 B. The left and right injections are
denoted by inl and inr.

142 7 Overview of Formal Methods

7.5 Undefined Values

Total functions f : X ! Y are functions that are defined for every element in their
domain, and total functions are widely used in mathematics. However, there are
functions that are undefined for one or more elements in their domain, and one
example is the function y = 1/x which is undefined at x = 0.

Partial functions arise naturally in computer science, and such functions may fail
to be defined for one or more values in their domain. One approach to dealing with
partial functions is to employ a precondition, which restricts the application of the
function to where it is defined. This makes it possible to define a new set (a proper
subset of the domain of the function) for which the function is total over the new
set.

Undefined terms often arise1 and need to be dealt with. Consider, the example of
the square root function √x taken from [5]. The domain of this function is the
positive real numbers, and the following expression is undefined:

ð x[0ð Þ ^ ðy ¼ p
xÞÞ _ ððx� 0Þ ^ ðy ¼ p � xÞÞ

The reason this expression is undefined is since the usual rules for evaluating
such an expression involve evaluating each subexpression, and then performing the
Boolean operations. However, when x < 0, the subexpression y = √x is undefined,
whereas when x > 0 the subexpression y = √−x is undefined. Clearly, it is desirable
that such expressions be handled and that for the example above, the expression
would evaluate to be true.

Classical two-valued logic does not handle this situation adequately, and there
have been several proposals to deal with undefined values. Dijkstra’s approach is to
use the cand and cor operators in which the value of the left-hand operand
determines whether the right-hand operand expression is evaluated or not. Jones’s
logic of partial functions [6] uses a three-valued logic2, and Parnas’s3 approach is
an extension to the predicate calculus to deal with partial functions that preserve the
two-valued logic.

7.5.1 Logic of Partial Functions

Jones [6] has proposed the logic of partial functions (LPFs) as an approach to deal
with terms that may be undefined. This is a three-valued logic, and a logical term
may be true, false, or undefined (denoted ⊥). The definition of the truth functional
operators used in classical two-valued logic is extended to three-valued logic. The
truth tables for conjunction and disjunction are defined in Fig. 7.1.

1It is best to avoid undefinedness by taking care with the definitions of terms and expressions.
2The above expression would evaluate to true under Jones three-valued logic of partial functions.
3The above expression evaluates to true for Parnas logic (a two-valued logic).

7.5 Undefined Values 143

The conjunction of P and Q is true when both P and Q are true; false if one of
P or Q is false; and undefined, otherwise. The operation is commutative. The
disjunction of P and Q (P _ Q) is true if one of P or Q is true; false if both P and
Q are false; and undefined, otherwise. The implication operation (P ! Q) is true
when P is false or when Q is true; false when P is true and Q is false; and undefined,
otherwise. The equivalence operation (P $ Q) is true when both P and Q are true
or false; it is false when P is true and Q is false (and vice versa); and it is undefined,
otherwise (Fig. 7.2).

The not operator (¬) is a unary operator such ¬A is true when A is false, false
when A is true, and undefined when A is undefined (Fig. 7.3).

The result of an operation may be known immediately after knowing the value of
one of the operands (e.g. disjunction is true if P is true irrespective of the value of
Q). The law of the excluded middle; that is, A _ ¬A does not hold in the
three-valued logic, and Jones [6] argues that this is reasonable as one would not
expect the following to be true:

1=0 ¼ 1
� � _ ð1=0 6¼ 1Þ

There are other well-known laws that fail to hold such as:

Fig. 7.1 Conjunction and disjunction operators for LPF

Fig. 7.2 Implication and equivalence operators for LPF

Fig. 7.3 Negation for LPF

144 7 Overview of Formal Methods

(i) E) E.
(ii) Deduction theorem E1 ├ E2 does not justify├ E1)E2 unless it is known that

E1 is defined.

Many of the tautologies of standard logic also fail to hold.

7.5.2 Parnas Logic

Parnas’s approach to logic is based on classical two-valued logic, and his philos-
ophy is that truth-values should be true or false only4 and that there is no third
logical value. It is an extension to predicate calculus to deal with partial functions.
The evaluation of a logical expression yields the value “true” or “false” irrespective
of the assignment of values to the variables in the expression. This allows the
expression: (y = √x)) _ (y = √−x) that is undefined in classical logic to yield the
value true.

The advantages of his approach are those no new symbols are introduced into
the logic, and the logical connectives retain their traditional meaning. This makes it
easier for engineers and computer scientists to understand, as it is closer to their
intuitive understanding of logic.

The meaning of predicate expressions is given by first defining the meaning of
the primitive expressions. These are then used as the building blocks for predicate
expressions. The evaluation of a primitive expression Rj(V) (where V is a comma
separated set of terms with some elements of V involving the application of partial
functions) is false if the value of an argument of a function used in one of the terms
of V is not in the domain of that function.5 The following examples (Tables 7.1 and
7.2) should make this clearer.

These primitive expressions are used to build the predicate expressions, and the
standard logical connectives are used to yield truth-values for the predicate
expression. Parnas logic is defined in detail in [5].

Parnas logic may be seen more clearly by considering a tabular expressions
example from [5]. Figure 7.4 specifies the behaviour of a program that searches the
array B for the value x. It describes the properties of the values of j′ and present′.
There are two cases to consider:

1. There is an element in the array with the value of x.
2. There is no such element in the array with the value of x.

Table 7.1 Examples of
Parnas evaluation of
undefinedness

Expression x < 0 x � 0

y = √x
y = 1/0
y = x2 + √x

False
False
False

True if y = √x, False otherwise
False
True if y = x2 + √x, False otherwise

4It seems strange to assign the value false to the primitive predicate calculus expression y = 1/0.
5The approach avoids the undefined logical value (⊥) and preserves the two-valued logic.

7.5 Undefined Values 145

Clearly, from the example above the predicate expressions 9i, B[i] = x and ¬(9 i,
B[i] = x) are defined. One disadvantage of the Parnas’s approach is that some
common relational operators (e.g. >, � , � and <) are not primitive in the logic.
However, these relational operators are then constructed from primitive operators.
Further, the axiom of reflection does not hold in the logic.

7.5.3 Dijkstra and Undefinedness

The cand and cor operators were introduced by Dijkstra to deal with undefined
values. They are non-commutative operators and allow the evaluation of predicates
that contain undefined values. Consider the following expression:

y ¼ 0 _ x=y ¼ 2
� �

Then, this expression is undefined when y = 0 as x/y is undefined, since the
logical disjunction operation is not defined when one of its operands is undefined.
However, there is a case for giving meaning to such an expression when y = 0, since
in that case the first operand of the logical or operation is true. Further, the logical
disjunction operation is defined to be true if either of its operands is true. This
motivates the introduction of the cand and cor operators. These operators are
associative, and their truth tables are defined in Tables 7.3 and 7.4:

The order of the evaluation of the operands for the cand operation is to evaluate
the first operand; if the first operand is true, then the result of the operation is the
second operand; otherwise, the result is false. The expression a cand b is equivalent
to:

a cand b ffi if a then b else F

The order of the evaluation of the operands for the cor operation is to evaluate
the first operand. If the first operand is true, then the result of the operation is true;

Table 7.2 Example of undefinedness in array

Expression i 2 {1 … N} i 62 {1 … N}

B[i] = x
9i, B[i] = x

True if B[i] = x
True if B[i] = x for some i, False otherwise

False
False

Fig. 7.4 Finding index in array

146 7 Overview of Formal Methods

otherwise, the result of the operation is the second operand. The expression a cor
b is equivalent to:

a cor b ffi if a then T else b

The cand and cor operators satisfy the following laws:

• Associativity

The cand and cor operators are associative.

A candBð Þ candC ¼ A cand B candCð Þ
A corBð Þ corC ¼ A cor B corCð Þ

Table 7.3 a cand b a b a cand b

T T T

T F F

T U U

F T F

F F F

F U F

U T U

U F U

U U U

Table 7.4 a cor b a b a cor b

T T T

T F T

T U T

F T T

F F F

F U U

U T U

U F U

U U U

7.5 Undefined Values 147

• Distributivity

The cand operator distributes over the cor operator and vice versa.

A cand B cor Cð Þ ¼ A cand Bð Þ cor A cand Cð Þ
A cor ðB ^ CÞ ¼ A cor Bð Þ cand A cor Cð Þ

De Morgan’s law enables logical expressions to be simplified.

: A candBð Þ ¼ :A cor:B
: A corBð Þ ¼ :A cand:B

7.6 Logic and AI

The long-term goal of Artificial Intelligence is to create a thinking machine that is
intelligent, has consciousness, has the ability to learn, has free will and is ethical.
Artificial Intelligence is a young field, and John McCarthy and others coined the
term in 1956. Alan Turing devised the Turing Test in the early 1950s as a way to
determine whether a machine was conscious and intelligent. Turing believed that
machines would eventually be developed that would stand a good chance of passing
the “Turing Test”.

There are deep philosophical problems in Artificial Intelligence, and some
researchers believe that its goals are impossible or incoherent. Even if Artificial
Intelligence is possible, there are moral issues to consider such as the exploitation of
artificial machines by humans and whether it is ethical to do this. Weizenbaum
argues that AI is a threat to human dignity and that AI should not replace humans in
positions that require respect and care.

John McCarthy (Fig. 7.5) has long advocated the use of logic in AI, and
mathematical logic has been used in the AI field to formalize knowledge, and in
guiding the design of mechanized reasoning systems. Logic has been used as an
analytic tool, as a knowledge representation formalism and as a programming
language.

McCarthy’s long-term goal was to formalize common-sense reasoning, i.e. the
normal reasoning that is employed in problem solving and dealing with normal
events in the real world. McCarthy [7] argues that it is reasonable for logic to play a
key role in the formalization of common-sense knowledge, and this includes the
formalization of basic facts about actions and their effects; facts about beliefs and
desires; and facts about knowledge and how it is obtained. His approach allows
common-sense problems to be solved by logical reasoning.

Its formalization requires sufficient understanding of the common-sense world,
and often the relevant facts to solve a particular problem are unknown. It may be
that knowledge thought relevant may be irrelevant and vice versa. A computer may

148 7 Overview of Formal Methods

have millions of facts stored in its memory, and the (challenging) problem is how to
determine which of these should be chosen from its memory to serve as premises in
logical deduction.

McCarthy’s influential 1959 paper discusses various common-sense problems
such as getting home from the airport. Mathematical logic is the standard approach
to express premises, and it includes rules of inferences those are used to deduce
valid conclusions from a set of premises. Its rigorous deductive reasoning shows
how new formulae may be logically deduced from a set or premises.

McCarthy’s approach to programs with common sense has been criticized by
Bar-Hillel and others on the grounds that common sense is fairly elusive, and the
difficulty that a machine would have in determining which facts are relevant to a
particular deduction from its known set of facts. However, McCarthy’s approach
has showed how logical techniques can contribute to the solution of specific AI
problems.

Logic-programming languages describe what is to be done, rather than how it
should be done. These languages are concerned with the statement of the problem
to be solved, rather than how the problem will be solved. Mathematical logic is
used as a tool in the statement of the problem definition, and logic is useful in
developing a body of knowledge (or theory). Further, it allows rigorous mathe-
matical deduction of further truths from the existing set of truths. The theory is built
up from a small set of axioms or postulates, and the rules of inference are used to
derive further truths logically.

The objective of logic programming is to employ mathematical logic to assist
with computer programming. Many problems are naturally expressed as a theory,
and the statement of a problem to be solved is often equivalent to determining if a

Fig. 7.5 John McCarthy.
Courtesy of John McCarthy

7.6 Logic and AI 149

new hypothesis is consistent with an existing theory. Logic provides a rigorous way
to determine this, as it includes a rigorous process for conducting proof.

Computation in logic programming is essentially logical deduction, and
logic-programming languages use first-order6 predicate calculus. Theorem proving
is employed to derive a desired truth from an initial set of axioms. These proofs are
constructive7 in that an actual object that satisfies the constraints is produced rather
than a pure existence theorem. Logic programming specifies the objects, the rela-
tionships between them and the constraints that must be satisfied for the problem.

– The set of objects involved in the computation;
– The relationships that hold between the objects;
– The constraints of the particular problem.

The language interpreter decides how to satisfy the particular constraints. Arti-
ficial Intelligence influenced the development of logic programming, and John
McCarthy8 demonstrated that mathematical logic could be used for expressing
knowledge. The first logic-programming language was Planner developed by Carl
Hewitt at MIT in 1969. It uses a procedural approach for knowledge representation
rather than McCarthy’s declarative approach.

The best-known logic-programming language is Prolog, which was developed in
the early 1970s by Alain Colmerauer and Robert Kowalski. It stands for
programming in logic. It is a goal-oriented language that is based on predicate
logic. Prolog became an ISO standard in 1995. The language attempts to solve a
goal by tackling the subgoals that the goal consists of:

goal : � subgoal1;. . .; subgoaln:

That is, in order to prove a particular goal, it is sufficient to prove subgoal1
through subgoaln. Each line of a Prolog program consists of a rule or a fact, and the
language specifies what exists rather than how. The following program fragment
has one rule and two facts:

grandmother G; Sð Þ : � parentðP; SÞ;motherðG; PÞ:
motherðsarah; isaacÞ:
parentðisaac; jacobÞ:

6First-order logic allows quantification over objects but not functions or relations. Higher-order
logics allow quantification of functions and relations.
7For example, the statement 9x such that x = √4 states that there is an x such that x is the square root
of 4, and the constructive existence yields that the answer is that x = 2 or x = −2 i.e. constructive
existence provides more the truth of the statement of existence, and an actual object satisfying the
existence criteria is explicitly produced.
8John McCarthy received the Turing Award in 1971 for his contributions to Artificial Intelligence.
He also developed the programming language LISP.

150 7 Overview of Formal Methods

The first line in the program fragment is a rule that states that G is the grand-
mother of S if there is a parent P of S and G is the mother of P. The next two
statements are facts stating that isaac is a parent of jacob and that sarah is the
mother of isaac. A particular goal clause is true if all of its subclauses are true:

goalclause Vg

� �
: � clause1ðV1Þ; . . .; clausem Vmð Þ

A Horn clause consists of a goal clause and a set of clauses that must be proven
separately. Prolog finds solutions by unification, i.e. by binding a variable to a
value. For an implication to succeed, all goal variables Vg on the left side of :- must
find a solution by binding variables from the clauses which are activated on the
right side. When all clauses are examined and all variables in Vg are bound, the goal
succeeds. But if a variable cannot be bound for a given clause, then that clause fails.
Following the failure, Prolog backtracks, and this involves going back to the left to
previous clauses to continue trying to unify with alternative bindings. Backtracking
gives Prolog the ability to find multiple solutions to a given query or goal.

Logic-programming languages generally use a simple searching strategy to
consider alternatives:

– If a goal succeeds and there are more goals to achieve, then remember any
untried alternatives and go on to the next goal.

– If a goal is achieved and there are no more goals to achieve, then stop with
success.

– If a goal fails and there are alternative ways to solve it, then try the next one.
– If a goal fails and there are no alternate ways to solve it, and there is a previous

goal, then go back to the previous goal.
– If a goal fails and there are no alternate ways to solve it, and no previous goal,

then stop with failure.

Constraint programming is a programming paradigm where relations between
variables can be stated in the form of constraints. Constraints specify the properties
of the solution and differ from the imperative programming languages in that they
do not specify the sequence of steps to execute.

7.7 Theorem Provers for Logic

The word “proof” is generally interpreted as facts or evidence that support a par-
ticular proposition or belief, and such proofs are conducted in natural language. The
proof of a theorem in mathematics requires additional rigour, and such proofs
consist of a mixture of natural language and mathematical argument. It is common
to skip over the trivial steps in a mathematical proof, and independent mathe-
maticians conduct peer reviews to provide additional confidence in the correctness
of the proof, and to ensure that no unwarranted assumptions or errors in reasoning

7.6 Logic and AI 151

have been made. Proofs conducted in logic are extremely rigorous with every step
in the proof explicit.9

Herbert Simon and Alan Newell developed the first theorem prover with their
work on a program called “Logic Theorist” or “LT” [8]. This program could
independently provide proofs of various theorems in Russell’s and Whitehead’s
Principia Mathematica10[9]. Russell and Whitehead had attempted to derive all
mathematics from axioms and the inference rules of logic, and the LT program
conducted proof from a small set of propositional axioms and deduction rules.
The LT program succeeded in proving 38 of the 52 theorems in Chap. 2 of Principia
Mathematica. Its approach was to start with the theorem to be proved, and to then
search for relevant axioms and operators to prove the theorem.

LT was demonstrated at the Dartmouth conference in 1956 (the conference that
led to the birth of the Artificial Intelligence field), and it showed that computers had
the ability to encode knowledge and information, and to perform intelligent oper-
ations such as solving theorems in mathematics. The heuristic approach of the LT
program tried to emulate human mathematicians, but could not guarantee that a
proof could be found for every valid theorem.

The proof of theorems in formal verification of computer system often involves
several million formulae, and manual proof is error prone. There are several tools
available to support theorem proving, and these include the Boyer-Moore theorem
prover (also known as NQTHM); the Isabelle theorem prover; and the HOL system.

B.S. Boyer and J.S. Moore developed the Boyer-Moore theorem prover in the
early 1970s [10]. It has been improved since then, and it is currently known as
NQTHM (it has been superseded by ACL2 available from the University of Texas).
It has been effective in proving well-known theorems such as Gödel’s incom-
pleteness theorem, the insolvability of the Halting problem, a formalization of the
Motorola MC 68020 Microprocessor and many more.

Computational Logic Inc. was a company founded by Boyer and Moore in 1983 to
share the benefits of a formal approach to software development with the wider com-
puting community. It was based in Austin, Texas, and provided services in the math-
ematical modelling of hardware and software systems. This involved the use of
mathematics and logic to formally specify microprocessors and other systems. The use
of its theorem prover was to formally verify that the implementation meets its specifi-
cation, i.e. to prove that the microprocessor or other system satisfies its specification.

Isabelle is a theorem-proving environment developed at Cambridge University
by Larry Paulson and Tobias Nipkow of the Technical University of Munich. It
allows mathematical formulae to be expressed in a formal language and provides
tools for proving those formulae. The main application is the formalization of
mathematical proofs, and proving the correctness of computer hardware or software

9Perhaps a good analogy might be that a mathematical proof is like a program written in a
high-level language such as C, whereas a formal proof in logic is like a program written in
assembly language.
10Russell is said to have remarked that he was delighted to see that the Principia Mathematica
could be done by machine and that if he and Whitehead had known this in advance that they would
not have wasted 10 years doing this work by hand in the early twentieth century.

152 7 Overview of Formal Methods

with respect to its specification, and proving properties of computer languages and
protocols.

Isabelle is a generic theorem prover in the sense that it has the capacity to accept
a variety of formal calculi, whereas most other theorem provers are specific to a
specific formal calculus. Isabelle is available under an open-source licence.

The HOL system is an environment for interactive theorem proving in a
higher-order logic. The HOL system has been applied to the formalization of
mathematics and the verification of hardware. It was originally developed at
Cambridge University in the UK, in the early 1980s, and HOL 4 is the latest version
and is an open-source project. It is used by academia and industry.

There is a steep learning curve with theorem provers above, and it generally
takes a couple of months for users to become familiar with them. However,
automated theorem proving has become a useful tool in the verification of inte-
grated circuit design. Several semiconductor companies use automated theorem
proving to demonstrate the correctness of division and other operators on their
processors. The nature of proof and theorem provers is discussed in Chap. 15.

7.8 Review Questions

1. What is fuzzy logic?
2. What is intuitionist logic and how is it different from classical logic?
3. Discuss the problem of undefinedness and the advantages and disadvan-

tages of three-valued logics. Describe the approaches of Parnas, Dijkstra
and Jones.

4. What is temporal logic?
5. Show how temporal operators may be expressed in classical mathematics.
6. Investigate the Isabelle (or another) theorem-proving environment and

determine the extent to which it may assist with proof.
7. Discuss the applications of logic to AI.

7.9 Summary

We discussed some advanced topics in logic in this chapter, including fuzzy logic,
temporal logic, intuitionist logic, undefined values, logic and AI and theorem
provers. Fuzzy logic is an extension of classical logic that acts as a mathematical

7.7 Theorem Provers for Logic 153

model for vagueness, whereas temporal logic is concerned with the expression of
properties that have time dependencies

Intuitionism was a controversial school of mathematics that aimed to provide a
solid foundation for mathematics. Its adherents rejected the law of the excluded
middle and insisted that for an entity to exist that there must be a constructive proof
of its existence. Martin Löf applied intuitionistic logic to type theory in the 1970s.

Partial functions arise naturally in computer science, and such functions may fail
to be defined for one or more values in their domain. There are a number of
approaches to deal with undefined values, including Jones’s logic of partial func-
tions; Dijkstra’s approach with his cand and cor operators; and Parnas’s approach
which preserves a classical two-valued logic.

We discussed temporal logic and its applications to the safety critical field,
including the specification of properties with time dependencies. We discussed the
application of logic to the AI field, and logic has been used to formalize knowledge
in an AI systems. Finally, we discussed some of the existing theorem provers, and
their applications in providing a rigorous proof of a theorem, and in avoiding errors
or jumps in reasoning.

References

1. E.M. Clarke, E.A. Emerson, Design and synthesis of synchronization skeletons using
branching time temporal logic, in Logic of Programs: Work-shop, Yorktown Heights, NY,
May 1981, volume 131 of LNCS (Springer, Berlin, 1981)

2. Stanford Enclyopedia of Philosophy, Temporal logic. http://plato.stanford.edu/entries/logic-
temporal/

3. A. Heyting, Intuitionist Logic. An Introduction (North-Holland Publishing, 1966)
4. P. Martin Löf, Intuitionist Type Theory. Notes by Giovanni Savin of lectures given in Padua,

June, 1980. Bibliopolis. Napoli (1984)
5. D.L. Parnas, Predicate calculus for software engineering. IEEE Trans. Softw. Eng. 19(9)

(1993)
6. C. Jones, Systematic Software Development using VDM (Prentice Hall International, 1986)
7. J. McCarthy, Programs with common sense, in Proceedings of the Teddington Conference on

the Mechanization of Thought Processes (1959)
8. A. Newell, H. Simon, The logic theory machine. IRE Trans. Inf. Theory 2, 61–79 (1956)
9. B. Russell, A.N. Whitehead, Principia Mathematica (Cambridge University Press, Cam-

bridge, 1910)
10. R. Boyer, J.S. Moore, A Computational Logic. The Boyer Moore Theorem Prover (Academic

Press, New York, 1979)

154 7 Overview of Formal Methods

http://plato.stanford.edu/entries/logic-temporal/
http://plato.stanford.edu/entries/logic-temporal/

8Z Formal Specification Language

Key Topics

Sets, relations and functions
Bags and sequences
Data reification
Refinement
Schema calculus
Proof in Z

8.1 Introduction

Z is a formal specification language based on Zermelo set theory. It was developed
at the Programming Research Group at Oxford University in the early 1980s [1] and
became an ISO standard in 2002. Z specifications are mathematical and employ a
classical two-valued logic. The use of mathematics ensures precision and allows
inconsistencies and gaps in the specification to be identified. Theorem provers may
be employed to demonstrate that the software implementation meets its
specification.

Z is a “model-oriented” approach with an explicit model of the state of an
abstract machine given, and operations are defined in terms of this state. Its
mathematical notation is used for formal specification, and the schema calculus is
used to structure the specifications. The schema calculus is visually striking, and
consists essentially of boxes, with these boxes or schemas used to describe oper-
ations and states. The schemas may be used as building blocks and combined with
other schemas. The simple schema (Fig. 8.1) is the specification of the positive
square root of a real number.

© Springer International Publishing AG 2017
G. O’Regan, Concise Guide to Formal Methods, Undergraduate Topics
in Computer Science, DOI 10.1007/978-3-319-64021-1_8

155

The schema calculus is a powerful means of decomposing a specification into
smaller pieces or schemas. This helps to make Z specifications highly readable, as
each individual schema is small in size and self-contained. Exception handling is
addressed by defining schemas for the exception cases. These are then combined
with the original operation schema. Mathematical data types are used to model the
data in a system, and these data types obey mathematical laws. These laws enable
simplification of expressions and are useful with proofs.

Operations are defined in a precondition/postcondition style. A precondition
must be true before the operation is executed, and the postcondition must be true
after the operation has executed. The precondition is implicitly defined within the
operation. Each operation has an associated proof obligation to ensure that if the
precondition is true, then the operation preserves the system invariant. The system
invariant is a property of the system that must be true at all times. The initial state
itself is, of course, required to satisfy the system invariant.

The precondition for the specification of the square root function above is that
num? � 0; i.e. the function SqRoot may be applied to positive real numbers only.
The postcondition for the square root function is root!2 = num? and root! � 0.
That is, the square root of a number is positive and its square gives the number.
Postconditions employ a logical predicate which relates the prestate to the poststate,
with the poststate of a variable being distinguished by priming the variable, e.g. vʹ.

Z is a typed language and whenever a variable is introduced its type must be
given. A type is simply a collection of objects, and there are several standard types
in Z. These include the natural numbers ℕ, the integers ℤ and the real numbers ℝ.
The declaration of a variable x of type X is written x: X. It is also possible to create
your own types in Z.

Various conventions are employed within Z specification, for example v? indi-
cates that v is an input variable; v! indicates that v is an output variable. The variable
num? is an input variable and root! is an output variable for the square root example
above. The notation N in a schema indicates that the operation Op does not affect
the state, whereas the notation Δ in the schema indicates that Op is an operation that
affects the state.

Many of the data types employed in Z have no counterpart in standard pro-
gramming languages. It is therefore important to identify and describe the concrete
data structures that ultimately will represent the abstract mathematical structures. As
the concrete structures may differ from the abstract, the operations on the abstract
data structures may need to be refined to yield operations on the concrete data that

Fig. 8.1 Specification of positive square root

156 8 Z Formal Specification Language

yield equivalent results. For simple systems, direct refinement (i.e. one step from
abstract specification to implementation) may be possible; in more complex sys-
tems, deferred refinement1 is employed, where a sequence of increasingly concrete
specifications are produced to yield the executable specification. There is a calculus
for combining schemas to make larger specifications, and this is discussed later in
the chapter.

Example 8.1 The following is a Z specification to borrow a book from a library
system. The library is made up of books that are on the shelf; books that are
borrowed and books that are missing (Fig. 8.2). The specification models a library
with sets representing books on the shelf, on loan or missing. These are three
mutually disjoint subsets of the set of books Bkd-Id.

The system state is defined in the Library schema below, and operations such as
Borrow and Return affect the state. The Borrow operation is specified (Fig. 8.3).

The notation ℙBkd-Id is used to represent the power set of Bkd-Id (i.e. the set of
all subsets of Bkd-Id). The disjointness condition for the library is expressed by the
requirement that the pair-wise intersection of the subsets on-shelf, borrowed,
missing is the empty set.

The precondition for the Borrow operation is that the book must be available on
the shelf to borrow. The postcondition is that the borrowed book is added to the set
of borrowed books and is removed from the books on the shelf.

Fig. 8.2 Specification of a library system

Fig. 8.3 Specification of borrow operation

1Step-wise refinement involves producing a sequence of increasingly more concrete specifications
until eventually the executable code is produced. Each refinement step has associated proof
obligations to prove that it is valid.

8.1 Introduction 157

Z has been successfully applied in industry including the CICS project at IBM
Hursley in the UK.2 Next, we describe key parts of Z including sets, relations,
functions, sequences and bags.

8.2 Sets

Sets were discussed in Chap. 4 and this section focuses on their use in Z. Sets may
be enumerated by listing all of their elements. Thus, the set of all even natural
numbers less than or equal to 10 is:

2; 4; 6; 8; 10f g:

Sets may be created from other sets using set comprehension, i.e. stating the
properties that its members must satisfy. For example, the set of even natural
numbers less than 10 is given by set comprehension as:

fn : Njn 6¼ 0 ^ n\10 ^ n mod 2 ¼ 0 � ng

There are three main parts to the set comprehension above. The first part is the
signature of the set and this is given by n: ℕ above. The first part is separated from
the second part by a vertical line. The second part is given by a predicate, and for
this example the predicate is n 6¼ 0 ^ n < 10 ^ n mod 2 = 0. The second part is
separated from the third part by a bullet. The third part is a term, and for this
example it is simply n. The term is often a more complex expression: e.g. log(n2).

In mathematics, there is just one empty set. However, since Z is a typed set
theory, there is an empty set for each type of set. Hence, there are an infinite number
of empty sets in Z. The empty set is written as ∅ [X] where X is the type of the
empty set. In practice, X is omitted when the type is clear.

Various operations on sets such as union, intersection, set difference and sym-
metric difference are employed in Z. The power set of a set X is the set of all subsets
of X and is denoted by ℙX. The set of non-empty subsets of X is denoted by ℙ1X
where

P1X ¼¼ fU : PX jU 6¼ ; X½ �g:

A finite set of elements of type X (denoted by F X) is a subset of X that cannot
be put into a one to one correspondence with a proper subset of itself. This is
defined formally as:

F X == {U : ℙ X | ¬∃V: ℙ U • V≠ U ∧ (∃f:V U)}

2This project claimed a 9% increase in productivity attributed to the use of formal methods.

158 8 Z Formal Specification Language

The expression
f:V U

denotes that f is a bijection from U to V and injective, surjective and bijective
functions were discussed in Chap. 4.

The fact that Z is a typed language means that whenever a variable is introduced
(e.g. in quantification with 8 and 9) it is first declared. For example, 8j:J • P) Q.
There is also the unique existential quantifier 91 j:J | P which states that there is
exactly one j of type J that has property P.

8.3 Relations

Relations are used extensively in Z and were discussed in Chap. 4. A relation R
between X and Y is any subset of the Cartesian product of X and Y; i.e. R �
(X � Y), and a relation in Z is denoted by R: X $ Y. The notation x ↦ y indi-
cates that the pair (x, y) 2 R.

Consider, the relation home_owner: Person $ Home that exists between people
and their homes. An entry daphne ↦ mandalay 2 home_owner if daphne is the
owner of mandalay. It is possible for a person to own more than one home:

rebecca 7! nirvana 2 home owner

rebecca 7! tivoli 2 home owner:

It is possible for two people to share ownership of a home:

rebecca 7! nirvana 2 home owner

lawrence 7! nirvana 2 home owner:

There may be some people who do not own a home, and there is no entry for
these people in the relation home_owner. The type Person includes every possible
person, and the type Home includes every possible home. The domain of the
relation home_owner is given by:

x 2 dom home owner , 9h : Home � x 7! h 2 home owner:

The range of the relation home_owner is given by:

h 2 ran home owner , 9x : Person � x 7! h 2 home owner:

8.2 Sets 159

The composition of two relations home_owner: Person $ Home and home_-
value: Home $ Value yields the relation owner_wealth: Person $ Value and is
given by the relational composition home_owner; home_value where:

p 7! v 2 home owner; home value ,
ð9h : Home � p 7! h 2 home owner ^ h 7! v 2 home valueÞ:

The relational composition may also be expressed as:

owner wealth ¼ home value o home owner:

The union of two relations often arises in practice. Suppose a new entry ais-
ling ↦ muckross is to be added. Then this is given by

home owner0 ¼ home owner [faisling 7!muckrossg:

Suppose that we are interested in knowing all females who are house owners.
Then we restrict the relation home_owner so that the first element of all ordered
pairs has to be female. Consider female: ℙ Person with {aisling,
rebecca} � female.

home owner ¼ faisling 7!muckross; rebecca 7! nirvana; lawrence 7! nirvanag
female / home owner ¼ faisling 7!muckross; rebecca 7! nirvanag:

That is, female ⊲ home_owner is a relation that is a subset of home_owner, and
the first element of each ordered pair in the relation is female. The operation ⊲ is
termed domain restriction and its fundamental property is:

x 7! y 2 U / R , ðx 2 U ^ x 7! y 2 Rg;

where R: X $ Y and U: ℙ X.
There is also a domain anti-restriction (subtraction) operation and its funda-

mental property is:

x 7! y 2 UC�R , ðx 62 U ^ x 7! y 2 Rg

where R:X $ YandU : PX:
There are also range restriction (the ⊳ operator) and the range anti-restriction

operator (the B� operator). These are discussed in [1].

160 8 Z Formal Specification Language

8.4 Functions

A function [1] is an association between objects of some type X and objects of
another type Y such that given an object of type X, there exists only one object in
Y associated with that object. A function is a set of ordered pairs where the first
element of the ordered pair has at most one element associated with it. A function is
therefore a special type of relation, and a function may be total or partial.

A total function has exactly one element in Y associated with each element of X,
whereas a partial function has at most one element of Y associated with each
element of X (there may be elements of X that have no element of Y associated with
them).

A partial function from X to Y (f: X 9 Y) is a relation f: X $ Y such that:

8x : X; y; z : Y � ðx 7! y 2 f ^ x 7! z 2 f) y ¼ zÞ:

The association between x and y is denoted by f(x) = y, and this indicates that the
value of the partial function f at x is y. A total function from X to Y (denoted f:
X ! Y) is a partial function such that every element in X is associated with some
value of Y.

f : X ! Y , f : X9Y ^ dom f ¼ X:

Clearly, every total function is a partial function but not vice versa.
One operation that arises quite frequently in specifications is the function

override operation. Consider the following specification of a temperature map:

F X == {U : ℙ X | ¬∃V: ℙ U • V≠ U ∧ (∃f:V U)}

Suppose the temperature map is given by temp = {Cork ↦ 17, Dublin ↦ 19,
London ↦ 15}. Then consider the problem of updating the temperature map if a
new temperature reading is made in Cork: e.g. {Cork ↦ 18}. Then the new
temperature chart is obtained from the old temperature chart by function override to
yield {Cork ↦ 18, Dublin ↦ 19, London ↦ 15}. This is written as:

temp0 ¼ temp�fCork 7! 18g:

The function override operation combines two functions of the same type to give
a new function of the same type. The effect of the override operation is that the
entry {Cork ↦ 17} is removed from the temperature chart and replaced with the
entry {Cork ↦ 18}.

Suppose f, g: X 9 Y are partial functions then f ⊕ g is defined and indicates that
f is overridden by g. It is defined as follows:

8.4 Functions 161

ðf � gÞ xð Þ ¼ g xð Þ where x 2 dom g
ðf � gÞ xð Þ ¼ f xð Þ where x 62 dom g ^ x 2 dom f :

This may also be expressed (using domain anti-restriction) as:

f � g ¼ ððdom gÞC� f Þ [g

There is notation in Z for injective, surjective and bijective functions. An
injective function is one to one, i.e.

f xð Þ ¼ f yð Þ) x ¼ y:

A surjective function is onto, i.e.

Given y 2 Y; 9x 2 X such that f xð Þ ¼ y:

A bijective function is one to one and onto, and it indicates that the sets X and
Y can be put into one to one correspondence with one another. Z includes lambda
calculus notation to define functions (k-calculus is discussed in more detail in
Chap. 12 of [2]). For example, the function cube == kx:N • x * x * x. Function
composition f; g is similar to relational composition.

8.5 Sequences

The type of all sequences of elements drawn from a set X is denoted by seq
X. Sequences are written as x1; x2; . . .xnh i, and the empty sequence is denoted by hi.
Sequences may be used to specify the changing state of a variable over time, with
each element of the sequence representing the value of the variable at a discrete
time instance.

Sequences are functions and a sequence of elements drawn from a set X is a
finite function from the set of natural numbers to X. A partial finite function f from
X to Y is denoted by f : X ` Y . A finite sequence of elements of X is given by a
finite function f : N X , and the domain of the function consists of all numbers
between 1 and # f (where #f is the cardinality of f). It is defined formally as:

seq X == {f : N X | dom f = 1 . .#f • f }

The sequence x1; x2; . . .xnh i above is given by:

f1 7! x1; 2 7! x2;n 7! xng:

162 8 Z Formal Specification Language

There are various functions to manipulate sequences. These include the sequence
concatenation operation. Suppose r ¼ x1; x2; . . .xnh i and s ¼ y1; y2; . . .ymh i then:

r \ s ¼ x1; x2; . . .xn; y1; y2; . . .ymh i:

The head of a non-empty sequence gives the first element of the sequence.

headr ¼ head x1; x2; . . .xnh i ¼ x1:

The tail of a non-empty sequence is the same sequence except that the first
element of the sequence is removed.

tailr ¼ tail x1; x2; . . .xnh i ¼ x2; . . .xnh i:

Suppose f: X ! Y and a sequence r: seq X then the function map applies f to
each element of r:

map fr ¼ map f x1; x2; . . .xnh i ¼ f x1ð Þ; f x2ð Þ; . . .f xnð Þh i:

The map function may also be expressed via function composition as:

map fr ¼ r; f :

The reverse order of a sequence is given by the rev function:

revr ¼ rev x1; x2; . . .xnh i ¼ xn; . . .x2; x1h i:

8.6 Bags

A bag is similar to a set except that there may be multiple occurrences of each
element in the bag. A bag of elements of type X is defined as a partial function from
the type of the elements of the bag to positive whole numbers. The definition of a
bag of type X is:

bagX ¼¼ X9N1:

For example, a bag of marbles may contain 3 blue marbles, 2 red marbles and 1
green marble. This is denoted by B = |[b,b,b,g,r,r] . The bag of marbles is thus
denoted by:

bagMarble ¼¼ Marble9N1:

8.5 Sequences 163

The function count determines the number of occurrences of an element in a bag.
For the example above, count Marble b = 3, and countMarble y = 0 since there are
no yellow marbles in the bag. This is defined formally as:

count bagX y ¼ 0 y 62 bagX
count bagX y ¼ bagXð Þ yð Þ y 2 bag X:

An element y is in bag X if and only if y is in the domain of bag X.

y in bagX , y 2 dom bagXð Þ:

The union of two bags of marbles B1 = [b,b,b,g,r,r]׀ and B2 = [b,g,r,y]׀ is given
by B1 ⊎ B2 = .[b,b,b,b,g,g,r,r,r,y]׀ It is defined formally as:

ðB1]B2Þ yð Þ ¼ B2 yð Þ y 62 domB1 ^ y 2 domB2

ðB1]B2Þ yð Þ ¼ B1 yð Þ y 2 domB1 ^ y 62 domB2

ðB1]B2Þ yð Þ ¼ B1 yð ÞþB2 yð Þ y 2 domB1 ^ y 2 domB2:

A bag may be used to record the number of occurrences of each product in a
warehouse as part of an inventory system. It may model the number of items
remaining for each product in a vending machine (Fig. 8.4).

The operation of a vending machine would require other operations such as
identifying the set of acceptable coins, checking that the customer has entered
sufficient coins to cover the cost of the good, returning change to the customer and
updating the quantity on hand of each good after a purchase. A more detailed
examination is in [1].

8.7 Schemas and Schema Composition

The schemas in Z are visually striking and the specification is presented in
two-dimensional graphic boxes. Schemas are used for specifying states and state
transitions, and they employ notation to represent the before and after state (e.g.
s and s′ where s′ represents the after state of s). The schemas group all relevant
information that belongs to a state description.

Fig. 8.4 Specification of vending machine using bags

164 8 Z Formal Specification Language

There are a number of useful schema operations such as schema inclusion,
schema composition and the use of propositional connectives to link schemas
together. The Δ convention indicates that the operation affects the state, whereas the
N convention indicates that the state is not affected. These operations and con-
ventions allow complex operations to be specified concisely and assist with the
readability of the specification. Schema composition is analogous to relational
composition and allows new schemas to be derived from existing schemas.

A schema name S1 may be included in the declaration part of another schema S2.
The effect of the inclusion is that the declarations in S1 are now part of S2, and the
predicates of S1 are S2 are joined together by conjunction. If the same variable is
defined in both S1 and S2, then it must be of the same type in both schemas.

│-- S1---------- │-- S2----------
│x,y : ℕ │ S1 ; z : ℕ
│--------- │---------
│x + y > 2 │z = x + y
│------------ │------------

The result is that S2 includes the declarations and predicates of S1 (Fig. 8.5):
Two schemas may be linked by propositional connectives such as S1 ^ S2,

S1 _ S2, S1 ! S2 and S1 $ S2. The schema S1 _ S2 is formed by merging the
declaration parts of S1 and S2 and then combining their predicates by the logical _
operator. For example, S = S1 _ S2 yields (Fig. 8.6):

Schema inclusion and the linking of schemas use normalization to convert
subtypes to maximal types, and predicates are employed to restrict the maximal
type to the subtype. This involves replacing declarations of variables (e.g. u: 1…35
with u: Z, and adding the predicate u > 0 and u < 36 to the predicate part of the
schema).

Fig. 8.5 Schema inclusion

Fig. 8.6 Merging schemas (S1 _ S2)

8.7 Schemas and Schema Composition 165

The Δ and N conventions are used extensively, and the notation Δ TempMap is
used in the specification of schemas that involve a change of state. The notation Δ
TempMap represents:

DTempMap ¼ TempMap ^ TempMap0:

The longer form of Δ TempMap is written as:

│--∆TempMap-----------------
│CityList, CityList’ : ℙ City
│ temp, temp’ : City↛Z
│---------
│dom temp = CityList
│dom temp’ = CityList’
│------------------------------------

The notation N TempMap is used in the specification of operations that do not
involve a change to the state.

│--Ξ TempMap-----------------
│∆TempMap
│------------
│CityList = CityList’
│ temp = temp’
│------------------------------------

Schema composition is analogous to relational composition, and it allows new
specifications to be built from existing ones. It allows the after state variables of one
schema to be related with the before variables of another schema. The composition
of two schemas S and T (S; T) is described in detail in [1] and involves four steps
(Table 8.1).

Table 8.1 Schema composition

Step Procedure

1. Rename all after state variables in S to something new:
S sþ =s0j j

2. Rename all before state variables in T to the same new thing, i.e.
T sþ =sj j

3. Form the conjunction of the two new schemas:
S sþ =s0½ � ^ T sþ =s½ �

4. Hide the variable introduced in step 1 and 2.
S;T ¼ ðS sþ =s0½ � ^ T sþ =s½ �Þn sþð Þ

166 8 Z Formal Specification Language

The example below should make schema composition clearer. Consider the
composition of S and T where S and T are defined as follows:

│-- S---------- │-- T----------
│x,x’,y? : ℕ │x,x’ : ℕ
│--------- │---------
│x’ = y? – 2 │x’ = x + 1
│------------ │------------

│-- S1---------- │-- T1----------
│x,x+,y? : ℕ │x+,x’ : ℕ
│--------- │---------
│ x+ = y? – 2 │x’ = x+ + 1
│------------ │------------

S1 and T1 represent the results of step 1 and step 2, with xʹ renamed to x+ in S,
and x renamed to x+ in T. Step 3 and step 4 yield (Fig. 8.7):

Schema composition is useful as it allows new specifications to be created from
existing ones.

8.8 Reification and Decomposition

A Z specification involves defining the state of the system and then specifying the
required operations. The Z specification language employs many constructs that are
not part of conventional programming languages, and a Z specification is therefore
not directly executable on a computer. A programmer implements the formal
specification, and mathematical proof may be employed to prove that a program
meets its specification.

Often, there is a need to write an intermediate specification that is between the
original Z specification and the eventual program code. This intermediate specifi-
cation is more algorithmic and uses less abstract data types than the Z specification.
The intermediate specification is termed the design and the design needs to be
correct with respect to the specification, and the program needs to be correct with
respect to the design. The design is a refinement (reification) of the state of the
specification, and the operations of the specification have been decomposed into
those of the design.

Fig. 8.7 Schema composition

8.7 Schemas and Schema Composition 167

The representation of an abstract data type such as a set by a sequence is termed
data reification, and data reification is concerned with the process of transforming
an abstract data type into a concrete data type. The abstract and concrete data types
are related by the retrieve function, and the retrieve function maps the concrete data
type to the abstract data type. There are typically several possible concrete data
types for a particular abstract data type (i.e. refinement is a relation), whereas there
is one abstract data type for a concrete data type (i.e. retrieval is a function). For
example, sets are often reified to unique sequences; and clearly more than one
unique sequence can represent a set, whereas a unique sequence represents exactly
one set.

The operations defined on the concrete data type are related to the operations
defined on the abstract data type. That is, the commuting diagram property is
required to hold (Fig. 8.8). That is, for an operation ⊡ on the concrete data type to
correctly model the operation ʘ on the abstract data type the following diagram
must commute, and the commuting diagram property requires proof. That is, it is
required to prove that:

retðr� sÞ ¼ ðretrÞ 	 ðret sÞ

In Z, the refinement and decomposition is done with schemas. It is required to
prove that the concrete schema is a valid refinement of the abstract schema, and this
gives rise to a number of proof obligations. It needs to be proved that the initial
states correspond to one another, and that each operation in the concrete schema is
correct with respect to the operation in the abstract schema, and also that it is
applicable (i.e. whenever the abstract operation may be performed the concrete
operation may also be performed).

8.9 Proof in Z

Mathematicians perform rigorous proof of theorems using technical and natural
language. Logicians employ formal proofs to prove theorems using propositional
and predicate calculus. Formal proofs generally involve a long chain of reasoning
with every step of the proof justified. Rigorous proofs involve precise reasoning

Fig. 8.8 Refinement commuting diagram

168 8 Z Formal Specification Language

using a mixture of natural and mathematical language. Rigorous proofs [1] have
been described as being analogous to high-level programming languages, whereas
formal proofs are analogous to machine language.

A mathematical proof includes natural language and mathematical symbols, and
often many of the tedious details of the proof are omitted. Many proofs in formal
methods such as Z are concerned with crosschecking on the details of the speci-
fication, or on the validity of the refinement step, or proofs that certain properties
are satisfied by the specification. There are often many tedious lemmas to be
proved, and tool support is essential as proof by hand often contain errors or jumps
in reasoning. Machine proofs are lengthy and largely unreadable; however, they
provide extra confidence as every step in the proof is justified.

The proof of various properties about the programs increases confidence in its
correctness.

8.10 Industrial Applications of Z

The Z specification language is one of the more popular formal methods, and it has
been employed for the formal specification and verification of safety critical soft-
ware. IBM piloted the Z formal specification language on the CICS (Customer
Information Control System) project at its plant in Hursley, England.

Rolls Royce and Associates (RRA) developed a lifecycle suitable for the
development of safety critical software, and the safety-critical lifecycle used Z for
the formal specification and the CADiZ tool provided support for specification, and
Ada was the target implementation language.

Logica employed Z for the formal verification of a smart card-based electronic
cash system (the Mondex smart card) in the early 1990s. The smart card had an
8-bit microprocessor, and the objective was to formally specify both the high-level
abstract security policy model and the lower-level concrete architectural design in
Z, and to provide a formal proof of correspondence between the two.

Computer Management Group (CMG) employed Z for modelling data and
operations as part of the formal specification of a movable barrier (the Maeslan-
tkering), which is used to protect the port of Rotterdam from flooding. The deci-
sions on opening and closing of the barrier are based on meteorological data
provided by the computer system, and the focus of the application of formal
methods was to the decision-making subsystem and its interfaces to the
environment.

8.9 Proof in Z 169

8.11 Review Questions

1. Describe the main features of the Z specification language.
2. Explain the difference between ℙ1 X, ℙ X and FX.
3. Give an example of a set derived from another set using set compre-

hension. Explain the three main parts of set comprehension in Z.
4. Discuss the applications of Z and which areas have benefited most from

their use? What problems have arisen?
5. Give examples to illustrate the use of domain and range restriction

operators and domain and range anti-restriction operators with relations
in Z.

6. Give examples to illustrate relational composition.
7. Explain the difference between a partial and total function, and give

examples to illustrate function override.
8. Give examples to illustrate the various operations on sequences including

concatenation, head, tail, map and reverse operations.
9. Give examples to illustrate the various operations on bags.

10. Discuss the nature of proof in Z and tools to support proof.
11. Explain the process of refining an abstract schema to a more concrete

representation, the proof obligations that are generated, and the com-
muting diagram property.

8.12 Summary

Z is a formal specification language that was developed in the early 1980s at Oxford
University in England. It has been employed in both industry and academia, and it
was used successfully on the IBM’s CICS project. Its specifications are mathe-
matical, and this leads to more rigorous software development. Its mathematical
approach allows properties to be proved about the specification, and any gaps or
inconsistencies in the specification may be identified.

Z is a model-oriented approach and an explicit model of the state of an abstract
machine is given, and the operations are defined in terms of their effect on the state.
Its main features include a mathematical notation that is similar to VDM and the
schema calculus. The latter consists essentially of boxes and is used to describe
operations and states.

170 8 Z Formal Specification Language

The schema calculus enables schemas to be used as building blocks to form
larger specifications. It is a powerful means of decomposing a specification into
smaller pieces, and helps with the readability of Z specifications, as each schema is
small in size and self-contained.

Z is a highly expressive specification language, and it includes notation for sets,
functions, relations, bags, sequences, predicate calculus and schema calculus.
Z specifications are not directly executable as many of its data types and constructs
are not part of modern programming languages. Therefore, there is a need to refine
the Z specification into a more concrete representation and prove that the refinement
is valid.

References

1. A. Diller, Z. An Introduction to Formal Methods (Wiley, England, 1990)
2. G. O’ Regan, Guide to Discrete Mathematics (Springer, Switzerland, 2016b)

8.12 Summary 171

9Vienna Development Method

Key Topics

Sets and maps
Sequences
Logic of partial functions
Specification
Modules
Refinement
Retrieval functions
Proof in VDM

9.1 Introduction

VDM dates from work done by the IBM research laboratory in Vienna in the late
1960s. Their aim was to specify the semantics of the PL/1 programming language.
This was achieved by employing the Vienna Definition Language (VDL), taking an
operational semantic approach; that is, the semantics of a language are determined
in terms of a hypothetical machine which interprets the programs of that language
[1]. Later work led to the Vienna Development Method (VDM) with its specifi-
cation language, Meta IV.1 This concerned itself with the denotational semantics of
programming languages; that is, a mathematical object (set, function, etc.) is
associated with each phrase of the language [1]. The mathematical object is the
denotation of the phrase. The initial application of VDM was to program language

1Meta IV was a pun on metaphor.

© Springer International Publishing AG 2017
G. O’Regan, Concise Guide to Formal Methods, Undergraduate Topics
in Computer Science, DOI 10.1007/978-3-319-64021-1_9

173

semantics, whereas today, VDM is mainly employed to formally specify software,
and it includes a rigorous method for software specification and development.

The IBM Vienna group was broken up in the mid-1970s, and this led to a
diaspora of the project team, and it led to the formation of different schools of the
VDM in multiple locations. These include the “Danish school” led by Dines
Bjorner; the English school led by Cliff Jones; and the Polish school led by Andrez
Blikle as described in [2]. Further work on VDM and Meta IV continued in the
1980s, and standards for VDM (VDM-SL) appeared in the 1990s.

VDM is a “model-oriented approach”, and this means that an explicit model of
the state of an abstract machine is given, and operations are defined in terms of this
state. Operations may act on the system state, taking inputs and producing outputs
and a new system state. Operations are defined in a precondition and postcondition
style. Each operation has an associated proof obligation to ensure that if the pre-
condition is true, then the operation preserves the system invariant. The initial state
itself is, of course, required to satisfy the system invariant.

VDM uses keywords to distinguish different parts of the specification; for
example, preconditions and postconditions are introduced by the keywords pre and
post, respectively. In keeping with the philosophy that formal methods specifies
what a system does as distinct from how, VDM employs postconditions to stipulate
the effect of the operation on the state. The previous state is then distinguished by
employing hooked variables; for example, v(and the postcondition specify the
new state (defined by a logical predicate relating the prestate to the poststate) from
the previous state.

VDM is more than its specification language Meta IV (called VDM-SL in the
standardization of VDM), and it is, in fact, a development method, with rules to
verify the steps of development. The rules enable the executable specification, i.e.
the detailed code, to be obtained from the initial specification via refinement steps.
In another words, we have a sequence S ¼ S0; S1; . . .; Sn ¼ E of specifications,
where S is the initial specification, and E is the final (executable) specification.

S ¼ S0 Y S1 Y S2 Y � � � Y Sn ¼ E

Retrieval functions enable a return from a more concrete specification, to the
more abstract specification. The initial specification consists of an initial state, a
system state and a set of operations. The system state is a particular domain, where
a domain is built out of primitive domains such as the set of natural numbers, or
constructed from primitive domains using domain constructors such as Cartesian
product, disjoint union. A domain-invariant predicate may further constrain the
domain, and a type in VDM reflects a domain obtained in this way. Thus, a type in
VDM is more specific than the signature of the type and thus represents values in
the domain defined by the signature, which satisfy the domain invariant. In view of
this approach to types, it is clear that VDM types may not be “statically typed
checked”.

174 9 Vienna Development Method

VDM specifications are structured into modules, with a module containing the
module name, parameters, types, operations etc. Partial functions arise naturally in
computer science. The problem is that many functions, especially recursively
defined functions can be undefined, or fail to terminate for some arguments in their
domain. VDM addresses partial functions by employing non-standard logical
operators, namely the logic of partial functions (LPFs) which can deal with
undefined operands. This was developed by Cliff Jones and is discussed later in the
chapter.

The Boolean expression T _ ⊥ = ⊥ _ T = true; that is, the truth-value of a
logical or operation is true if at least one of the logical operands is true, and the
undefined term is treated as a do not care value. The similarities and differences
between Z and VDM (the two most widely used formal methods) are summarized
in Table 9.1.

Example 9.1 The following is a very simple example of a VDM specification and is
adapted from [3]. It is a simple library system that allows borrowing and returning
of books. The data types for the library system are first defined, and the operation to
borrow a book is then defined. It is assumed that the state is made up of three sets,
and these are the set of books on the shelf, the set of books which are borrowed, and
the set of missing books. These sets are mutually disjoint.

The effect of the operation to borrow a book is to remove the book from the set
of books on the shelf and to add it to the set of borrowed books. The reader is
referred to [3] for a detailed explanation.

types

Bks = Bkd-id set

state Library of

On-shelf : Bks
Missing : Bks
Borrowed : Bks

Table 9.1 Similarities and
differences between VDM
and Z

VDM is a development method including a specification
language, whereas Z is a specification language only

Constraints may be placed on types in VDM specifications but
not in Z specifications

Z is structured into schemas and VDM into modules

The schema calculus is part of Z

Relations are part of Z but not of VDM

VPreconditions are not separated out in Z specifications

DM employs the logic of partial functions (3-valued logic),
whereas Z is a classical 2-valued logic

9.1 Introduction 175

inv mk-Library (os, mb, bb) D is-disj({os,mb,bb})
end
borrow (b:Bkd-id)
ex wr on-shelf, borrowed : Bks
pre b 2 on-shelf
post on-shelf = on-shelf (- {b} ^

borrowed = borrowed([{b}

A VDM specification consists of

• Type definitions
• State Definitions
• Invariant for the system
• Definition of the operations of the system

The notation Bkd-id set specifies that Bks is a set of Bkd-ids, e.g. Bks = {b1, b2,
… bn}. The invariant specifies the property that must remain true for the library
system. The borrow operation is defined using preconditions and postconditions.
The notation “ext wr” indicates that the borrow operation affects the state, whereas
the notation “ext rd” indicates an operation that does not affect the state.

VDM is a widely used formal method and has been used in industrial strength
projects as well as by the academic community. These include security-critical
systems and safety critical sectors such as the railway industry. There is tool support
available, for example, the IFAD VDM-SL toolbox2 and the open-source Over-
ture IDE tool. There are several variants of VDM, including VDM++, an
object-oriented extension of VDM and the Irish school of the VDM, which is
discussed in the next chapter.

9.2 Sets

Sets are a key building block of VDM specifications. A set is a collection of objects
that contain no duplicates. The set of all even natural numbers less than or equal to
10 is given by:

S ¼ 2; 4; 6; 8; 10f g

There are a number of in-built sets that are part of VDM including (Table 9.2).

2The IFAD Toolbox has been renamed to VDMTools (as IFAD sold the VDM Tools to CSK in
Japan).

176 9 Vienna Development Method

The empty set is a set with no members and is denoted by { }. The membership
of a set S is denoted by x 2 S. A set S is a subset of a set T if whenever x 2 S, then
x 2 T. This is written as S � T. The union of two sets S and T is given by
S [T. The intersection of two sets S and T is given by S \ T.

Sets may be specified by enumeration (as in S = {2, 4, 6, 8, 10}). However, set
enumeration is impractical for large sets. The more general form of specification of
sets is termed set comprehension and is of the form:

set membership j predicatef g

For example, the specification of the set T = {x 2 {2, 4, 6, 8, 10} | x > 5}
denotes the set T = {6, 8, 10}. The set Q = {x 2 ℕ | x > 5 ^ x < 8} denotes the set
Q = {6, 7}.

The set of all finite subsets of a set S = {1, 2} is given by:

FS ¼ ff g; f1g; f2g; f1; 2gg

The notation S : set A denotes that S is a set, with each element in S drawn from
A. For example, for A = {1, 2}, the valid values of S are S = { }, S = {1}, S = {2},
or S = {1, 2}.

The set difference of two sets S and T is given by S − T where:

S� T ¼ fx 2 S j x 2 S ^ x 62 Tg

Given S = {2, 4, 6, 8, 10} and T = {4, 8, 12} then S − T = {2, 6, 10}.
Finally, the distributed union and intersection operators are considered. These

operators are applied to a set of sets.

\ S1; S2; . . .Snf g ¼ S1 \ S2 \ � � � \ Sn
[S1; S2; . . .Snf g ¼ S1 [S2 [� � � [Sn

The cardinality of a set S is given by card S. This gives the number of elements
in the set; for example, card {1, 3} = 2. The notation Bks = Bkd-id-set in Exam-
ple 9.1 above specifies that Bks is a set of Bkd-ids, i.e. Bks = {b1, b2, … bn}.

Table 9.2 Built-in types in
VDM

Set Name Elements

B Boolean {true, false}

ℕ Naturals {0, 1, …}

ℕ1 Naturals (excluding 0) {1, 2, …}

ℤ Integers {…−1, 0, 1, …}

ℚ Rational numbers {p/q : p, q 2 ℤ q 6¼ 0}

ℝ Real numbers

9.2 Sets 177

9.3 Sequences

Sequences are used frequently in VDM specifications (e.g. in the modelling of
stacks). A sequence is a collection of items that are ordered in a particular way.
Duplicate items are allowed for sequences, whereas duplicate elements are not
meaningful for sets (unless we are dealing with multi-sets or bags). A set may be
refined to a sequence of unique elements.

A sequence of elements x1, x2, … xn is denoted by [x1, x2, … xn], and the empty
sequence is denoted by []. Given a set S, then S* denotes the set of all finite
sequences constructed from the elements of S.

The length of a sequence is given by the len operator and

len ½ � ¼ 0
len 1; 2; 6½ � ¼ 3

The hd operation gives the first element of the sequence. It is applied to
non-empty sequences only:

hd x½ � ¼ x
hd x; y; z½ � ¼ x

The tl operation gives the remainder of a sequence after the first element of the
sequence has been removed. It is applied to non-empty sequences only:

tl x½ � ¼ ½ �
tl x; y; z½ � ¼ y; z½ �

The elems operation gives the elements of a sequence. It is applied to both
empty and non-empty sequences:

elems ½ � ¼ f g
elems x; y; z½ � ¼ x; y; zf g

The idx operation is applied to both empty and non-empty sequences. It returns
the set {1, 2, … n} where n is the number of elements in the sequence.

inds ½ � ¼ f g
inds x; y; z½ � ¼ 1; 2; 3f g
inds s ¼ f1; :: len sg

Two sequences may be joined together by the concatenation operator:

½ �y ½ � ¼ ½ �
x; y; z½ �y a; b½ � ¼ x; y; z; a; b½ �
x; y½ �y ½ � ¼ x; y½ �

178 9 Vienna Development Method

Two sequences s1 and s2 are equal if:

s1 ¼ s2 , ðlen s1 ¼ len s2Þ ^ ð8i 2 inds s1Þ s1 ið Þ ¼ s2 ið Þð Þ

Sequences may be employed to specify a stack. For example, a stack of (up to
100) integers is specified as (Table 9.3):

The push operation is then specified in terms of preconditions/postconditions as
follows.

push ðz : ZÞ
pre len stk\100

post stk ¼ z½ �y stk(

9.4 Maps

Maps (also called partial functions) are frequently employed for modelling and
specifications in VDM. A map is used to relate the members of two sets X and
Y such that an element from the first set X is associated with (at most) one element
in the second set Y. The map from X to Y is denoted by:

f : T ¼ X !m Y

The domain of the map f is a subset of X and the range is a subset of Y. An
example of a map declaration is:

f : fNames !m AccountNmrg

The map f may take on the values:

f ¼ fg
f ¼ feithne 7! 231; fred 7! 315g

The domain and range of f are given by:

Table 9.3 Specification of a
stack of integers

state Z-stack of

stk : ℤ*

inv-Z-stack : ℤ* ! B
inv-Z-stack (stk) Δ len stk � 100

init-mk-Z-stack (stk) Δ

stk = []

end

9.3 Sequences 179

dom f ¼ eithne; fredf g
rng f ¼ 231; 315f g

The map overwrites operator f † g gives a map that contains all the maplets in the
second operand together with the maplets in the first operand that are not in the
domain of the second operand.3

For g ¼ feithne 7! 412; aisling 7! 294g then
f y g ¼ feithne 7! 412; aisling 7! 294; fred 7! 315g

The map restriction operator has two operands: the first operator is a set, whereas
the second operand is a map. It forms the map by extracting those maplets that have
the first element equal to a member of the set. For example,

eithnef g / feithne 7! 412; aisling 7! 294; fred 7! 315g ¼ feithne 7! 412g

The map deletion operator has two operands: the first operator is a set, whereas
the second operand is a map. It forms the map by deleting those maplets that have
the first element equal to a member of the set. For example,

eithne; fredf gC�feithne 7! 412; aisling 7! 294; fred 7! 315g ¼ faisling 7! 294g

Total maps are termed functions, and a total function f from a set X to a set Y is
denoted by:

f : X ! Y

A partial function (map) f : X !m Y arises frequently in specifications and may
be undefined for some values in X.

9.5 Logic of Partial Functions in VDM

We discussed the logic of partial functions (LPFs) in Chap. 7, which is used to deal
with terms that may be undefined. LPF is a three-valued logic that was developed
by Jones [4], and a logical term may be true, false or undefined.

The conjunction of P and Q (P ^ Q) is true when both P and Q are true; false if
one of P or Q is false and undefined otherwise. The disjunction of P and Q (P _ Q)
is true if one of P or Q is true; false if both P and Q are false and undefined
otherwise. The implication operation (P ! Q) is true when P is false or when Q is
true; it is false when P is true and Q is false and undefined otherwise.4

3f † g is the VDM notation for function override. The notation f ⊕ g is employed in Z.
4The problem with 3-valued logic is that they are less intuitive than classical 2-valued logic.

180 9 Vienna Development Method

The equivalence operation (P $ Q) is true when both P and Q are true or false;
it is false when P is true and Q is false (or vice versa); it is undefined otherwise. The
not operator (¬) is a unary operator such ¬A is true when A is false, false when A is
true and undefined when A is undefined.

It is clear from the truth table definitions in Chap. 7 that the result of the
operation may be known immediately after knowing the value of one of the
operands (e.g. disjunction is true if P is true irrespective of the value of Q). The law
of the excluded middle, i.e. A _ ¬A = true, does not hold in the 3-valued logic of
partial functions.

9.6 Data Types and Data Invariants

Larger specifications often require more complex data types. The VDM specifi-
cation language allows composite data types to be created from their underlying
component data types. For example, [3] the composite data type Date is defined as
follows (Table 9.4).

A make function is employed to construct a date from the components of the
date; that is, the mk-Date function takes three numbers as arguments and constructs
a date from them.

mk�Date : 2000; . . .; 3000f g � 1; . . .; 12f g � 1; . . .; 31f g ! Date

For example, the date of 5 August 2004 is constructed as follows:

mk�Date 2004; 8; 5ð Þ

Selectors are employed to take a complex data type apart into its components.
The selectors employed for date are day, month and year. Hence, the selection of
the year component in the date of 5 August 2004 is:

mk�Date : 2004; 8; 5ð Þ:year ¼ 2004

The reader will note that the definition of the Date data type above allows invalid
dates to be present, e.g. 29 February 2001 and 31 November 2004. Hence, what is
required is a predicate to restrict elements of the data type to be valid dates. This is
achieved by a data invariant (Table 9.5).

Table 9.4 Composite data
types in VDM

Date = compose Date of

year : {2000, …, 3000}

month :{1, …, 12}

day : {1, …, 31}

end

9.5 Logic of Partial Functions in VDM 181

Any operation that affects the date will need to preserve the data invariant. This
gives rise to a proof obligation for each operation that affects the date.

9.7 Specification in VDM

An abstract machine (sometimes called object) consists of the specification of a data
type together with the operations on the data type. The production of a large
specification involves [3]:

1. Identifying and specifying the abstract machines.
2. Defining how these machines fit together and are controlled to provide the

required functionality.

The abstract machines may be identified using design tools such as data flow
diagrams and object-oriented design. Once the abstract machines have been iden-
tified, there are then two further problems to be addressed.

1. How are the abstract machines to be used (e.g. users or other programs).
2. How are the abstract machines to be implemented in code.

VDM-SL specifications are like programs except that they are not executable.
However, one important difference is that there are no side effects in VDM-SL
expressions as in imperative programs. The VDM specification is structured into
type definitions, state definitions, an invariant for the system, the initial state and the
definition of the operations of the system (Table 9.6).

The whole of the development process is based on the formal specification, and
it is therefore essential that the specification is correct. A description of the
development of the specification of the library system is presented in [3].

Table 9.5 Composite data
invariant for composite date
datatype

Inv-Date : Date ! B
Inv-Date (dt) Δ

let mk-Date (yr, md, dy) = dt in

(md 2 {1, 3, 5, 7, 8, 10, 12} ^ dy 2 {1, …, 31})

_ (md 2 {4, 6, 9, 11} ^ dy 2 {1, …, 30})

_ (md = 2 ^ isleapyear(yr) ^ dy 2 {1, …, 29})

_ (md = 2 ^ ¬isleapyear(yr) ^ dy 2 {1, …, 28})

182 9 Vienna Development Method

9.8 Refinement in VDM

The development of executable code from a VDM specification involves breaking
down the specification into smaller specifications (each smaller specification defines
an easier problem) [3]. Each smaller specification is then tackled (this may involve
even smaller subspecifications) until eventually the implementation of the code that
satisfies each smaller specification is trivial (as well as the corresponding proofs of
correctness). The code fragments are then glued together using the programming
language constructs of the semicolon, the conditional statement and the while loop.

At each step of the process, a proof of correctness is conducted to ensure that the
refinement is valid. The approach allows a large specification to be broken down to
a smaller set of specifications that can be translated into code. It involves deriving
equivalent specifications to existing specifications, where a specification OP′ is
equivalent to a specification OP if any program that satisfies OP′ also satisfies
OP. The formal definition of equivalence is:

1. 8i 2 State . pre-Op(i)) pre-OP′(i)
2. 8i,o 2 State . pre-Op(i) ^ post-Op′(i,o)) post-OP(i,o)

The idea of a program satisfying its specification can be expanded to a speci-
fication satisfying a specification as follows:

OP′ sat OP if

1. 8i 2 State . pre-Op(i)) pre-OP′(i)
2. 8i,o 2 State . pre-Op(i) ^ post-Op′(i,o)) post-OP(i,o)
3. 8i 2 State . pre-Op′(i)) 9o 2 State . post-OP′(i,o)

Table 9.6 Structure of VDM specification

Name Description

Type definitions The type definitions specify the data types employed. These include
the built-in sets, or sets constructed from existing sets.
A domain-invariant predicate may further constrain the definition.
A type in VDM is more specific than the signature of the type and
represents values in the domain defined by the signature, which satisfy
the domain invariant

State definitions This is the definition of the collection of stored data. The operations
access/modify the data

(Data-) invariant for
the system

This describes a condition that must be true for the state throughout the
execution of the system

Initial value of the
state

This specifies the initial value of the state

Definition of
operations

The operations on the state are defined. These are defined in terms of
preconditions and postconditions. The keywords “rd” and “wr”
indicate whether the operation changes the state

9.8 Refinement in VDM 183

The formal definition requires that whenever an input satisfies the precondition
of OP, then it must also satisfy the precondition of OP′. Further, the two specifi-
cations must agree on an answer for any input state variables that satisfy the
precondition for OP. Finally, the third part expresses the idea of a specification
terminating (similar to a program terminating). It expresses the requirement that the
specification is implementable.

The production of a working program that satisfies the specification is evidence
that a specification is satisfiable. There is a danger that the miracle program could
be introduced while carrying out a program refinement. The miracle program is a
program that has no implementable specification:

miracle
pre true
post false

Clearly, an executable version of miracle is not possible as the miracle program
must be willing to accept any input and produce no output. Refinement is a weaker
form of satisfaction (and allows the miracle program). It is denoted by the ⊑
operator.

A sat B) BYA

AYB and B is implementable) B sat A

SYR1 YR2 Y � � � YRn Y p ^ p is executable) p sat S

9.9 Industrial Applications of VDM

VDM is one of the oldest formal methods, and it was developed by IBM at its
research laboratory in Vienna. The VDM specification language was initially used
to specify the semantics of the PL/1 programming language, and it was later applied
to the formal specification and verification of software systems.

VDM++ (the object-oriented version of VDM) has been applied to the formal
specification of a real-time information system for tracking and tracing rail traffic
(the CombiCom project provided a real-time information system for the Rotterdam,
Cologne, Verona rail freight corridor). VDM++ was used for the formal specifi-
cation and Ada for the implementation.

VDM++ was employed for the formal specification of a new generation of IC
chip developed by FeliCa Networks in Japan. A large number VDM++ test cases
were generated and executed using the VDM Tools Interpreter (formerly the IFAD
Tools). The VDM Tools also provided test coverage information (82% of VDM++
model covered) after the execution of the test cases, and the remaining parts of the
model were manually inspected.

184 9 Vienna Development Method

VDM-SL has been employed in domains that are unrelated to computer science,
and one interesting application is its application to the formal specification of the
single transferable vote (STV) algorithm for the Church of England [5].

9.10 Review Questions

1. Describe the main features of VDM.
2. Explain the difference between a partial and a total function in VDM and

give examples of each.
3. Explain the difference between a set and a sequence in VDM.
4. Discuss the applications of VDM to industry.
5. Explain the map restriction and deletion operators in VDM and give

examples of them.
6. Explain how an invariant may be used in VDM to restrict the values in a

data type.
7. Describe the process of specification and development with VDM.
8. Give examples to illustrate the various operations on sequences in VDM.
9. Discuss the nature of proof in VDM and the tools available to support

proof.
10. Explain the process of refinement VDM, the proof obligations that are

generated and the commuting diagram property.

9.11 Summary

VDM dates from work done by the IBM research laboratory in Vienna in the late
1960s. It includes a formal specification language (originally called Meta IV) and a
method to develop high-quality software. The Vienna group was broken up in the
mid-1970s, and this led to the formation of different schools of the VDM in various
locations. Further work on VDM and Meta IV continued in the 1980s and standards
for VDM (VDM-SL) appeared in the 1990s.

VDM is a “model-oriented approach”, and this means that an explicit model of
the state of an abstract machine is given, and operations are defined in terms of this
state. Operations are defined in a precondition and postcondition style. Each
operation has an associated proof obligation to ensure that if the precondition is
true, then the operation preserves the system invariant. VDM employs

9.9 Industrial Applications of VDM 185

postconditions to stipulate the effect of the operation on the state. The postcondition
specifies the new state using a predicate that relates the prestate to the poststate.

VDM is both a specification language and a development method. Its method
provides rules to verify the steps of development and enable the executable spec-
ification, i.e. the detailed code, to be obtained from the initial specification via
refinement steps.

S ¼ S0 Y S1 Y S2 Y � � � Y Sn ¼ E

Retrieval functions enable a return from a more concrete specification, to the
more abstract specification. The initial specification consists of an initial state, a
system state and a set of operations.

VDM specifications are structured into modules, with a module containing the
module name, parameters, types and operations. VDM employs the logic of partial
functions (LPFs) to deal with undefined operands.

VDM has been used in industrial strength projects as well as by the academic
community. There is tool support available, for example, the IFAD VDM-SL
toolbox and the open-source Overture IDE tool. There are several variants of VDM,
including VDM++, an object-oriented extension of VDM and the Irish school of the
VDM, which is discussed in the next chapter.

References

1. D. Bjørner, C. Jones, Formal Specification and Software Development. Prentice Hall
International Series in Computer Science (1982)

2. M.M.A. Airchinnigh, Computation Models and Computing. Ph.D. thesis, Dept. of Computer
Science. Trinity College Dublin

3. D. Andrews, D. Ince, Practical Formal Methods with VDM (McGraw Hill International, 1991)
4. C. Jones, Systematic Software Development Using VDM (Prentice Hall International, 1986)
5. M. Hinchey, J. Bowen (ed.), Applications of Formal Methods (Prentice Hall International

Series in Computer Science, 1995)

186 9 Vienna Development Method

10Irish School of VDM

Key Topics

Monoids
Sets and sequences
Functions and relations
Models
Indexed structures
Refinement
Constructive proofs
Commuting diagrams

10.1 Introduction

The Irish School of VDM is a variant of standard VDM and is characterized by [1]
its constructive approach, classical mathematical style and its terse notation. In
particular, this method combines the what and how of formal methods in that its
terse specification style stipulates in concise form what the system should do, and
furthermore, the fact that its specifications are constructive (or functional) means
that that the how is included with the what. However, it is important to qualify this
by stating that the how as presented by VDM♣ is not directly executable, as several
of its mathematical data types have no corresponding structure in high-level pro-
gramming languages or functional programming languages. Thus, a conversion or
reification of the specification into a functional or higher-level language must take
place to ensure a successful execution. It should be noted that the fact that a
specification is constructive is no guarantee that it is a good implementation

© Springer International Publishing AG 2017
G. O’Regan, Concise Guide to Formal Methods, Undergraduate Topics
in Computer Science, DOI 10.1007/978-3-319-64021-1_10

187

strategy, if the construction itself is naive. This issue is considered in [1] (pp. 135–
7), and the example considered is the construction of the Fibonacci series.

The Irish school follows a similar development methodology as in standard
VDM and is a model-oriented approach. The initial specification is presented, with
initial state and operations defined. The operations are presented with precondi-
tions; however, no postcondition is necessary as the operation is “functionally”, i.e.,
explicitly constructed. Each operation has an associated proof obligation: if the
precondition for the operation is true and the operation is performed, then the
system invariant remains true after the operation. The proof of invariant preser-
vation normally takes the form of constructive proofs. This is especially the case for
existence proofs in that the philosophy of the school is to go further than to provide
a theoretical proof of existence, rather the aim is to demonstrate existence
constructively.

The emphasis is on constructive existence and the school avoids the existential
quantifier of predicate calculus. In fact, reliance on logic in proof is kept to a
minimum, and emphasis instead is placed on equational reasoning rather than on
applying the rules of predicate calculus. Special emphasis is placed on studying
algebraic structures and their morphisms, and structures with nice algebraic prop-
erties are sought. One such structure is the monoid, which has closure, associativity
and a unit element. The monoid is a very common structure in computer science,
and thus, it is appropriate to study and understand it. The concept of isomorphism is
powerful, reflecting that two structures are essentially identical, and thus, we may
choose to work with either, depending on which is more convenient for the task in
hand.

The school has been influenced by the work of Polya and Lakatos. The former
[2] advocated a style of problem solving characterized by solving a complex
problem by first considering an easier subproblem, and considering several
examples, which generally leads to a clearer insight into solving the main problem.
Lakatos’s approach to mathematical discovery [3] is characterized by heuristic
methods. A primitive conjecture is proposed and if global counter-examples to the
statement of the conjecture are discovered, then the corresponding “hidden lemma”
for which this global counter-example is a local counter-example is identified and
added to the statement of the primitive conjecture. The process repeats, until no
more global counter-examples are found. A sceptical view of absolute truth or
certainty is inherent in this.

Partial functions are the norm in VDM♣, and as in standard VDM, the problem
is that recursively defined functions may be undefined, or fail to terminate for
several of the arguments in their domain. The logic of partial functions (LPFs) is
avoided, and instead, care is taken with recursive definitions to ensure termination
is achieved for each argument. This is achieved by ensuring that the recursive
argument is strictly decreasing in each recursive invocation. The ⊥ symbol is
typically used in the Irish school to represent undefined or unavailable or do not
care. Academic and industrial projects have been conducted using the method of
the Irish school, but tool support is limited.

188 10 Irish School of VDM

Example The following is the equivalent VDM♣ specification of the earlier
example of a simple library presented in standard VDM.

Bks ¼ PBkd-id

Library ¼ ðBks� Bks� BksÞ

Os;Ms;Bw 2 Bks
inv-Library ðOs;Ms;BwÞ DOs\Ms ¼ £

^Os\Bw ¼ £
^Bw\Ms ¼ £

Bor : Bkd-id ! ðBks� BksÞ ! ðBks� BksÞ
Bor j½bj� ðOs;BwÞD ðC�j½bj�Os;Bw[fbgÞ

pre-Bor : Bkd-id ! ðBks� BksÞ ! B

pre-Bor j½bj� ðOs;BwÞD v j½bj�Os

There is, of course, a proof obligation to prove that the Bor operation preserves
the invariant; that is, the three sets of borrowed, missing or on the shelf remain
disjoint after the execution of the operation. Proof obligations require a mathe-
matical proof by hand or a machine-assisted proof to verify that the invariant
remains satisfied after the operation.

pre-Bor j½bj� ðOs;BwÞ ^ ððOs0;Bw0Þ ¼ Bor j½bj� ðOs;BwÞÞ
) inv-Library ðOs0;Ms0;Bw0Þ

We will discuss the notation used in VDM♣ in later sections.

10.2 Mathematical Structures and Their Morphisms

The Irish school of VDM uses mathematical structures for the modelling of systems
and to conduct proofs. There is an emphasis on identifying useful structures that
will assist modelling and constructing new structures from existing ones. Some
well-known structures used in VDM♣ include:

• Semi-groups
• Monoids

A semi-group is a structure A with a binary operation * such that the closure and
associativity properties hold:

10.1 Introduction 189

a � b 2 A 8 a; b 2 A
ða � bÞ � c ¼ a � ðb � cÞ 8 a; b; c 2 A

Examples of semi-groups include the natural numbers under addition,
non-empty sets under the set union operation and non-empty sequences under
concatenation. A semi-group is commutative if:

a � b ¼ b � a 8a; b 2 A:

A monoid M is a semi-group that has the additional property that there is an
identity element u 2 M such that:

a � b 2 M 8 a; b 2 M
ða � bÞ � c ¼ a � ðb � cÞ 8 a; b; c 2 M
a � u ¼ a ¼ u � a 8 a 2 M

Examples of monoids include the Integers under addition, sets under the set
union operation and non-empty sequences under concatenation. The identity ele-
ment is 0 for the integers, the empty set ∅ for set union and the empty sequence K
for sequence concatenation. A monoid is commutative if a * b = b * a 8 a, b 2
M. A monoid is denoted by (M, *, u).

A function h : (M, ⊕, u) ! (N, ⊗, v) is structure preserving (morphism)
between two monoids (M, ⊕, u) and (N, ⊗, v) if the same result is obtained by
either:

1. Evaluating the expression in M and then applying h to the result.
2. Applying h to each element of M and evaluating the result under ⊗.

A monoid homomorphism h : (M, ⊕, u) ! (N, ⊗, v) is expressed in the
commuting diagram below. It requires that the commuting diagram property holds
and that the image of the identity of M is the identity of N (Fig. 10.1).

hðm1 � m2Þ ¼ h m1ð Þ � h m2ð Þ 8m1;m2 2 M

h uð Þ ¼ v

A morphism from h : (M, ⊕, u) ! (M, ⊕, u) is termed an endomorphism.

Examples Consider the monoid of sequences (R*, \ , K)1 and the monoid of natural
numbers (ℕ, +, 0). Then, the function len that gives the length of a sequence is a
monoid homomorphism from (R*, \ , K) to (ℕ, +, 0). Clearly, len(K) = 0 and the
commuting diagram property hold (Fig. 10.2):

1One striking feature of the Irish VDM notation is its use of the Greek alphabet, and R* defines the
monoid of sequences over the alphabet R. The concatenation operator is denoted by \ and the
empty sequence is denoted by K.

190 10 Irish School of VDM

The second example considered is from the monoid of sequences to the monoid
of sets under set union. Then, the function elems gives the elements of a sequence is
a monoid homomorphism from (R*, \ , K) to (ℙR, [, ∅). Clearly, elems(K) = ∅
and the commuting diagram property holds.

Consider the set removal operation C�j½Sj� on the monoid of sets under set union.
Then, the removal operation is a monoid endomorphism from (ℙR, [, ∅) to (ℙR,
[, ∅) (Fig. 10.3).

C�j½Sj� ðS1 [S2Þ ¼ C�j½Sj� S1ð Þ [C�j½Sj� S2ð Þ
C�j½Sj� ð£Þ ¼ £

Set restriction ð/½jSj�Þ is also an endomorphism on (ℙR, [, ∅).

Comment Monoids and their morphisms are useful and are widely used in VDM♣.
They are well-behaved structures and allow compact definitions of functions and
also simplify proof. The use of monoids and morphisms helps to produce compact
models and proofs.

10.3 Models and Modelling

A model is a mathematical representation of the physical world, and as it is a
simplification of the reality, it does not include all aspects of the world. However, it
is important that the model includes all essential aspects of the world.

h(m1),
h(m2)

h(m1 ⊕ m2)

(m1 ⊕ m2)

h(m1) ⊗ h(m2)

Fig. 10.1 Monoid homomorphism

len(σ),
len(τ)

len (σ ∩τ)

(σ ∩τ)

len(σ) + len(τ)

Fig. 10.2 Len homomorphism

10.2 Mathematical Structures and Their Morphisms 191

The adequacy of a model is a key concern, and model exploration is a way to
determine its adequacy. The model of the Tacoma Narrows Bridge2 did not include
aerodynamic forces, and this was a major factor in the eventual collapse of the
bridge. Occasionally, there may be more than one model to explain the reality, and
the decision then is to choose the “best” model. For example, Newtonian physics
and the Theory of Relativity are both models of the physical world, and the latter is
the appropriate model when dealing with velocities approaching the speed of light.

Occam’s Razor (or the “Principle of Parsimony”) is a key principle underlying
modelling. It states “Entia non sunt multiplicanda praeter necessitatem”, which
means that the number of entities required to explain anything should be kept to a
minimum. That is, the modeller should seek the simplest model with the least
number of assumptions, and all superfluous concepts that are not needed to explain
the phenomena should be removed. The net result is a crisp and simpler model that
captures the essence of the reality. The principle is attributed to the medieval
philosopher William of Ockham.

The model is an abstraction or simplification of reality and serves as a way of
testing hypotheses or ideas about some aspects of the world. This involves the
formulation of questions which are then answered in terms of the model. Next, we
consider sets, sequences, relations and functions.

10.4 Sets

Sets were discussed in Chap. 4, and this section focuses on their use in VDM♣.
A set is a collection of objects all drawn from the same domain. Sets may be
enumerated by listing all of their elements. Thus, the set of all even natural numbers
less than or equal to 10 is:

f2; 4; 6; 8; 10g

⊳ [׀S ׀] (S1 ∪ S2) = ⊳ [׀ S ׀] (S1) ∪ ⊳ [׀ S ׀] (S2)
⊳ [׀S ׀] (∅) = ∅

⊳ [׀S ׀] (S1)
⊳ [׀S ׀] (S2)

⊳ [׀S ׀] (S1 ∪ S2)

(S1 ∪ S2)

⊳ [׀S ׀] (S1) ∪ ⊳ [׀S ׀] (S2)

Fig. 10.3 Set removal
endomorphism

2The Tacoma Narrows bridge (known as Galloping Gertie) collapsed in 1940 due to a design flaw.
Further details are in [4].

192 10 Irish School of VDM

The membership of a set S is denoted by x 2 S. There is also another notation for
set membership used in VDM♣ based on the characteristic function.

v : R ! PR ! B

vj½xj� SD x 2 S

The empty set is denoted by ∅. Various operations on sets such as union,
intersection, difference and symmetric difference are employed. The union of two
sets S and T is given by S [T and their intersection by S \ T. The set restriction
operation for S on T restricts T to its elements that are in S and is given by:

/½jSj�T ¼ S\ T

This is also written in infix form as:

S / T ¼ S\ T

The set difference (or set removal operation) of two sets S, T is given by SnT . It
is also written as:

C�j½T j� S ¼ SnT

or in infix form as:

T C� S ¼ SnT

The symmetric difference operation is given by

SD T D ðS[TÞnðS\ TÞ

The number of elements in a set S is given by the cardinality function card(S).

cardðSÞ ¼ #S ¼ Sj j

The powerset of a set X is the set of all subsets of X. It is denoted by ℙX, and it
includes the empty set. The notation ℙ′ Y denotes the set of non-empty subsets of Y,
i.e. C�j½£j�PY .

The set S is said to be a subset of T (S � T) if whenever s 2 S then s 2 T. The
distributed union of set of sets is defined as:

[= S1; S2; . . .Snf g ¼ S1 [S2 [� � � [Sn

10.4 Sets 193

10.5 Relations and Functions

There is no specific notation for relations in VDM♣. Instead, relations from a set X
to a set Y are modelled by either:

• R � ℙ (X � Y)
• A partial functions q of the form q: X ! ℙ′ Y.

An element x is related to y if:

• (x, y) 2 R
or

• vj½xj� q ^ y 2 qðxÞ

The structure (X ! ℙ′ Y) is isomorphic to ℙ (X � Y).
The functional view of relations uses the indexed monoid (X ! ℙ′ Y,ⓤ, h), and

this allows the familiar relational operations, such as relational inverse, relational
composition, to be expressed functionally. For example, the inverse of a relation q:
(X ! ℙ′ Y) is of the form q−1: (Y ! ℙ′ X). The definition of the relational inverse
is constructive.

A function takes values from one domain and returns values in another domain.
The map l : X ! Y denotes a partial function from the set X to the set Y. The result
of the function for a particular value x in the domain of l is given by l(x). The
empty map from X to Y is denoted by h.

The domain of a map l is given by dom l, and it gives the elements of X for
which the map l is defined. The notation x 2 dom l indicates that the element x is
in the domain of l. This is often written with a slight abuse of notation as x 2 l.
Clearly, dom h = ∅ and dom {x ! y} = {x}. The domain of l is X if l is total.

New maps may be constructed from existing maps using function override. The
function override operator was defined in Z, and the operator combines two
functions of the same type to give a new function of the same type. The effect of the
override operation (l † m) is that an entry {x ↦ y} is removed from the map l and
replaced with the entry {x ↦ z} in m. The notation (l † m) is employed for function
override in VDM♣.

ðl y mÞ ðxÞ ¼ m ðxÞ where x 2 dom m

ðl y mÞ ðxÞ ¼ lðxÞ where x 62 dom m ^ x 2 dom l

Maps under override form a monoid (X ! Y, †, h) with the empty map h the
identity of the monoid. The domain (dom) operator is a monoid homomorphism.
The domain homomorphism is of the form:

dom : ðX ! Y ; y; hÞ ! ðPX; [;£Þ:
dom fx 7! yg ¼ fxg

194 10 Irish School of VDM

Domain removal and domain restriction operators were discussed for sets in the
previous section. The domain removal operator ðC�j½Sj�Þ and the domain restriction
operator ð/½jSj�Þ are endomorphisms of (X ! Y, †, h).

The domain removal operator ðC�j½Sj�Þ is defined as follows:

C�j½Sj� : ðX ! Y; y; hÞ ! ðX ! Y; y; hÞ
C�jSj�fx 7! ygD h ðx 2 SÞ
C�j½Sj� fx 7! ygD fx 7! yg ðx 62 SÞ

The domain restriction operator ðC�j½Sj�Þ is defined as follows:

/ ½jSj� : ðX ! Y ; y; hÞ ! ðX ! Y ; y; hÞ
/½jSj� fx 7! ygD fx 7! yg ðx 2 SÞ
/½jSj� fx 7! ygD h ðx 62 SÞ

The restrict and removal operators are extended to restriction/removal from
another map by abuse of notation:

/ ½jlj�m ¼ /½jdom lj�m
C�j½lj�m ¼ C�j½dom lj�m

Given an injective total function f : (X ! W) and a total function g : (Y ! Z)
then the map functor (f ! g) is a homomorphism of

ðf ! gÞ : ðX ! Y; y; hÞ ! ðW ! Z; y; hÞ
ðf ! gÞ fx 7! yg ¼ ff ðxÞ 7! gðyÞg

Currying (named after the logician Haskell Curry) involves replacing a function
of n arguments by the application of n functions of 1-argument. It is used exten-
sively in VDM♣.

Consider the function f : X � Y ! Z. Then, the usual function application is:

f ðx; yÞ ¼ z:

The curried form of the above is application is:

f : X ! Y ! Z

f j½xj�Þ is a function: Y ! Z, and its application to y yields z : f j½xj�y ¼ z.

10.5 Relations and Functions 195

10.6 Sequences

Sequences are ordered lists of zero or more elements from the same set. The set of
sequences from the set R is denoted by R*, and the set of non-empty sequences is
denoted by R+. Two sequences r and s are combined by sequence concatenation to
give r \ s. The structure (R*, \ , K) is a monoid under sequence concatenation,
and the identity of the monoid is the empty sequence K.

The sequence constructor operator “:” takes an element x from the set R and a
sequence r from R*, and produces a new sequence r′ that consists of the element
x as the first element of r′ and the remainder of the sequence given by r.

r0 ¼ x : r

The most basic sequence is given by:

r ¼ x : K

A sequence constructed of n elements x1, x2, … xn−1, xn (in that order) is given
by:

x1 : ðx2 : . . . : ðxn�1 : ðxn : KÞÞ. . .Þ

This is also written as:

x1; x2; . . .xn�1; xnh i

The head of a non-empty sequence is given by:

hd : Rþ ! R

hd ðx : rÞ ¼ x

The tail of a non-empty sequence is given by:

tl : Rþ ! R�

tl ðx : rÞ ¼ r

Clearly, for a non-empty sequence r it follows that:

hd ðrÞ : tl ðrÞ ¼ r

The function len gives the length of a sequence (i.e. the number of elements in
the sequence), and it is a monoid homomorphism from (R*, \ , K) to (ℕ, +, 0). The
length of the empty sequence is clearly 0, i.e. len(K) = 0. The length of a sequence
is also denoted by |r| or #r.

196 10 Irish School of VDM

The elements of a sequence are given by the function elems. This is a monoid
homomorphism from (R*, \ , K) to (ℙR, [, ∅).

elems : R� ! PR

elems ðKÞ ¼ £

elems ðx : rÞ ¼ fxg[elems ðrÞ

The elements of the empty sequence is the empty set ∅. The elems homo-
morphism loses information (e.g. the number of occurrences of each element in the
sequence and the order in which the elements appear in the sequence). There is
another operator (items) that determines the number of occurrences of each element
in the sequence. The operator items generate a bag of elements from the sequence:

items : R� ! ðR ! N1Þ:

The concatenation of two sequences is defined formally as:

-\ - : R� � R� ! R�

K\r ¼ r

ðx : rÞ\ s ¼ x : ðr\ sÞ

The jth element in a sequence r is given by r[i] where 1 	 i 	 len(r). The
reversal of a sequence r is given by rev r.

10.7 Indexed Structures

An indexed monoid (X ! M, ⊛, h) is created from an underlying base monoid (M,
*, u) and an index set X. It is defined as follows:

~ : ðX ! M0Þ � ðX ! M0Þ ! ðX ! M0Þ
l~ h Dl

l~ ðfx 7!mg t mÞ D ðl t fx 7!mgÞ~ m x 62 l

ðl y fx 7! lðxÞ � mgÞ~ m x 2 l ^ lðxÞ � m 6¼ u

l~ m x 2 l ^ lðxÞ � m ¼ u

Indexing generates a higher monoid from the underlying base monoid, and this
allows a chain (tower) of monoids to be built, with each new monoid built from the
one directly underneath it in the chain. The power of the indexed monoid theorem is
that it allows new structures to be built from existing structures, and the indexed
structures inherit the properties of the underlying base structure.

10.6 Sequences 197

A simple example of an indexed structure is a bag of elements from the set X.
The indexed monoid is (X ! ℕ1, ⊕, h), and the underlying base monoid is (ℕ, +,
0). Other indexed structures have also been considered in the Irish school of VDM.

10.8 Specifications and Proofs

Consider the specification of a simple dictionary in [5], where a dictionary is
considered to be a set of words, and the dictionary is initially empty. There is an
operation to insert a word into the dictionary, an operation to lookup a word in the
dictionary, and an operation to delete a word from the dictionary.

w 2 Word

d : Dict ¼ PWord

d0 : Dict

d0 D£

The invariant is a condition (predicate expression) that is always true of the
specification. The operations are required to preserve the invariant whenever the
preconditions for the operations are true, and the initial system is required to satisfy
the invariant. This gives rise to various proof obligations for the system.

The simple dictionary above is too simple for an invariant, but in order to
illustrate the concepts involved, an artificial invariant that stipulates that all words in
the dictionary are “British” English is considered part of the system.

isBritEng : Word ! B

inv-Dict : Dict ! B

inv-Dict dD 8j½isBritEngj�d

The signature of 8 is (X ! B) ! ℙ X ! B, and it is being used slightly dif-
ferently from the predicate calculus. There is a proof obligation to show that the
initial state of the dictionary (i.e., d0) satisfies the invariant. That is, it is required to
show that inv-Dict d0 = TRUE. However, this is clearly true since the dictionary is
empty in the initial state.

The first operation considered is the operation to insert a word into the dic-
tionary. The precondition to the operation is that the word is not currently in the
dictionary and that the word is “British” English.

Ins : Word ! Dict ! Dict

Insj½wj�dD d[fwg

198 10 Irish School of VDM

pre-Ins : Word ! Dict ! B

pre-Insj½wj� dD isBritEngðwÞ ^ w 62 d

There is a proof obligation associated with the Ins operation. It states that if the
invariant is true, and the precondition for the Ins operation is true, then the invariant
is true following the Ins operation.

inv-Dict d ^ pre-Insj½wj�d) inv-DictðInsj½wj� dÞ

Comment One important difference between the Irish school of VDM and other
methods such as classical VDM or Z is that postconditions are not employed in
VDM♣. Instead, the operation is explicitly constructed.

Theorem

inv-Dict d ^ pre-Insj½wj� d) inv-DictðInsj½wj� dÞ

Proof

inv�Dict d ^ pre-Ins j½wj� d
) 8j½isBritEngj� d ^ isBritEng wð Þ ^ w 62 d

) ð8wd 2 d isBritEng ðwdÞÞ ^ isBritEng wð Þ ^ w 62 d

) 8wd 2 ðd[fwgÞ isBritEng ðwdÞÞ
) 8j½isBritEngj� ðd[fwgÞ
) inv�Dict ðInsj½wj� dÞ

The next operation considered is a word lookup operation, and this operation
returns true if the word is present in the dictionary and false otherwise. It is given
by:

Lkp : Word ! Dict ! B

Lkp j½wj� dD v j½wj� d

The final operation considered is a word removal operation. This operation
removes a particular word from the dictionary and is given by3:

Rem : Word ! Dict ! Dict

Remj½wj� dDC�j½wj� d

3Notation is often abused and this should strictly be written as C� j½fwgj� d.

10.8 Specifications and Proofs 199

There is a proof obligation associated with the Rem operation. It states that if the
invariant is true, and the precondition for the Rem operation is true, then the
invariant is true following the Rem operation.

inv-Dict d ^ pre-Remj½wj� d) inv-DictðRemj½wj� dÞ

10.9 Refinement in Irish VDM

A specification in the Irish school of VDM involves defining the state of the system
and then specifying various operations. The formal specification is implemented by
a programmer, and mathematical proof is employed to provide confidence that the
program meets its specification. VDM♣ employs many constructs that are not part
of conventional programming languages, and hence, there is a need to write an
intermediate specification that is between the original specification and the eventual
program code. The intermediate specification needs to be correct with respect to the
specification, and the program needs to be correct with respect to the intermediate
specification. This requires mathematical proof.

The representation of an abstract data type like a set by a sequence is termed data
reification, and data reification is concerned with the process of transforming an
abstract data type into a concrete data type. The abstract and concrete data types are
related by the retrieve function, which maps the concrete data type to the abstract
data type. There are typically several possible concrete data types for a particular
abstract data type (i.e. refinement is a relation), whereas there is one abstract data
type for a concrete data type (i.e. retrieval is a function). For example, sets are often
reified to unique sequences, where several unique sequences can represent a set,
whereas a unique sequence represents exactly one set.

The operations defined on the concrete data type need to be related to the
operations defined on the abstract data type. The commuting diagram property is
required to hold; that is, for an operation ⊡ on the concrete data type to correctly
refine the operation ʘ on the abstract data type, the following diagram must
commute and the commuting diagram property (Fig. 10.4) requires proof. That is, it
is required to prove that:

Fig. 10.4 Commuting
diagram property

200 10 Irish School of VDM

retðr� sÞ ¼ ðretrÞ
 ðret sÞ

It needs to be proved that the initial states correspond to one another, and that
each operation in the concrete state is correct with respect to the operation in the
abstract state, and also that it is applicable (i.e. whenever the abstract operation may
be performed, then the concrete operation may be performed also).

The process of refinement of the dictionary from a set to a sequence of words is
considered. This involves defining the concrete state and the operations on the state,
and proving that the refinement is valid. The retrieve function derives the abstract
state from the concrete state and is given by the elems operator for the set to
sequence refinement of the dictionary. The following is adapted from [5]:

r 2 DSeq ¼ Word�

r0 : Dseq

r0 DK

inv-DseqD8 j½isBritEngj�r

retr-Dict : DSeq ! Dict

retr-DictrD elemsr

Here, 8 has signature (X ! B) ! X* ! B.
The first operation considered on the concrete state is the operation to insert a

word into the dictionary.

Ins1 : Word ! DSeq ! DSeq

Ins1j½wj�rDw : r

pre-Ins1 : Word ! DSeq ! B

pre-Ins1j½wj�rD isBritEng ðwÞ ^ w 62 elems ðrÞ

There is a proof obligation associated with the Ins1 operation.

inv-DSeqr ^ pre-Ins1j½wj�r) inv-DSeqðIns1j½wj�rÞ

The proof is similar to that considered earlier on the abstract state. Next, we
show that Ins1 is a valid refinement of Ins. This requires that the commuting
diagram property holds (Fig. 10.5):

pre-Ins1j½wj� r) retr-DictðIns1j½wj�rÞ ¼ Insj½wj� ðretr-Dict rÞ

10.9 Refinement in Irish VDM 201

Proof

pre-Ins1j½wj�r
) isBritEng ðwÞ ^ w 62 elems ðrÞ

retr-DictðIns1j½wj�rÞ
¼ retr-Dict ðw : rÞ
¼ elems ðw : rÞ
¼ fwg[elems ðrÞ
¼ fwg[retr-DictðrÞ
¼ Ins j½wj� ðretr-DictrÞ

There are other operations for the concrete representation of the dictionary, and
these are discussed in [5].

10.10 Review Questions

1. Describe how the Irish school of VDM differs from standard VDM.
2. Describe the various algebraic structures and their morphisms that are

used in VDM♣.
3. What is a model and explain the characteristics of a good model?
4. Explain the difference between a set and a sequence in VDM♣.

retr-Dict σ retr-Dict
(Ins1 [w׀ [׀ σ)

Ins1 [w׀ σ[׀

Ins [׀ w [׀ (retr -Dict σ)
Fig. 10.5 Commuting
diagram for dictionary
refinement

202 10 Irish School of VDM

5. Explain how relations are represented in the Irish school of VDM.
6. Describe the process of specification and refinement in VDM♣.
7. Discuss the nature of proof in VDM♣.

10.11 Summary

The Irish School of VDM is a variant of standard VDM and is characterized by its
constructive approach, classical mathematical style and its terse notation. The
method combines the “what” and “how” of formal methods in that its terse spec-
ification style stipulates in concise form what the system should do, and further-
more, the fact that its specifications are constructive (or functional) means that that
the “how” is included with the “what”.

VDM♣ follows a similar development methodology as in standard VDM and is
a model-oriented approach. The initial specification is presented, with initial state
and operations defined. The operations are presented with preconditions, and the
operation is functionally constructed. Each operation has an associated proof
obligation; if the precondition for the operation is true and the operation is per-
formed, then the system invariant remains true after the operation.

The school has been influenced by the work of Polya and Lakatos. Polya has
recommended problem solving by first tackling easier subproblems, whereas
Lakatos adopted a heuristic approach to mathematical discovery based on
proposing theorems and discovering hidden lemmas.

There is a rich operator calculus in the Irish school of VDM, and new operators
and structures that are useful for specification and proof are sought. A special
emphasis placed on the identification of useful structures and their morphisms that
provide compact specifications and proof.

Partial functions are employed, and care is taken to ensure that the function is
defined and will terminate prior to function application. The logic of partial func-
tions (LPFs) is avoided, and care is taken to ensure that the recursive argument is
strictly decreasing in each recursive invocation. The ⊥ symbol is typically used in
the Irish school to represent undefined or unavailable or do not care. Academic and
industrial projects have been conducted using VDM♣, but at this stage, tool support
is limited.

The formal methods group at Trinity College, Dublin (www.cs.tcd.ie/fmg), is
active in promoting the philosophy and method of the Irish school of VDM.

10.10 Review Questions 203

http://www.cs.tcd.ie/fmg

References

1. M.M.A. Airchinnigh, Computation Models and Computing. Ph.D. thesis, Dept. of Computer
Science. Trinity College Dublin

2. G. Polya, How to Solve It. A New Aspect of Mathematical Method (Princeton University Press,
1957)

3. I. Lakatos, Proof and Refutations. The Logic of Mathematical Discovery (Cambridge
University Press, 1976)

4. G. O’Regan, A Practical Approach to Software Quality (Springer Verlag, New York, 2002)
5. A. Butterfield, VDM♣ Mathematical Structures for Formal Methods (Foundations and ethods

Group, Trinity College, Dublin, 19th May 2000)

204 10 Irish School of VDM

11Unified Modelling Language

Key Topics

Use case diagrams
Classes and objects
Sequence diagrams
Activity diagrams
State diagrams
Collaboration diagrams
Rational Unified Process

11.1 Introduction

The unified modelling language (UML) is a visual modelling language for software
systems. It was developed by Jim Rumbaugh, Grady Booch and Ivar Jacobson [1]
at Rational Corporation (now part of IBM), as a notation for modelling
object-oriented systems. It provides a visual means of specifying, constructing and
documenting object-oriented systems, and it facilitates the understanding of the
architecture of the system, and managing the complexity of a large system.

The language was strongly influenced by three existing methods: the Object
Modelling Technique (OMT) developed by Rumbaugh; the Booch Method devel-
oped by Booch and Object-Oriented Software Engineering (OOSE) developed by
Jacobson. UML unifies and improves upon these methods, and it has become a
popular formal approach to modelling software systems.

Models provide a better understanding of the system to be developed, and a
UML model allows the system to be visualized prior to its implementation. Large
complex systems are difficult to understand in their entirety, and the use of a UML

© Springer International Publishing AG 2017
G. O’Regan, Concise Guide to Formal Methods, Undergraduate Topics
in Computer Science, DOI 10.1007/978-3-319-64021-1_11

205

model is a way to simplify the underlying reality and to deal with complexity. The
choice of the model is fundamental, and a good model will provide a good insight
into the system. Models need to be explored and tested to ensure their adequacy as a
representation of the system. Models simplify the reality, but it is important to
ensure that the simplification does not exclude any important details. The chosen
model affects the view of the system, and different roles require different viewpoints
of the proposed system.

An architect will design a house prior to its construction, and the blueprints will
contain details of the plan of each room, as well as plans for electricity and
plumbing. That is, the plans for a house include floor plans, electrical plans and
plumping plans. These plans provide different viewpoints of the house to be con-
structed and are used to provide estimates of the time and materials required to
construct it.

A database developer will often focus on entity-relationship models, whereas a
systems analyst may often focus on algorithmic models. An object-oriented
developer will focus on classes and on the interactions of classes. Often, there is a
need to view the system at different levels of detail, and no single model in itself is
sufficient for this. This leads to the development of a small number of interrelated
models.

UML provides a formal model the system, and it allows the same information to
be presented in several ways, and at different levels of detail. The requirements of
the system are expressed in terms of use cases; the design view captures the
problem space and solution space; the process view models the systems processes;
the implementation view addresses the implementation of the system and the
deployment view models the physical deployment of the system.

There are several UML diagrams providing different viewpoints of the system,
and these provide the blueprint of the software. Next, we provide an overview of
UML.

11.2 Overview of UML

UML is an expressive graphical modelling language for visualizing, specifying,
constructing and documenting a software system. It provides several views of the
software’s architecture, and it has a clearly defined syntax and semantics. Each
stakeholder (e.g. project manager, developers and testers) has a different perspec-
tive, and looks at the system in different ways at different times during the project.
UML is a way to model the software system before implementing it in a pro-
gramming language.

A UML specification consists of precise, complete and unambiguous models.
The models may be employed to generate code in a programming language such as
Java or C++. The reverse is also possible, and so it is possible to work with either
the graphical notation of UML, or the textual notation of a programming language.
UML expresses things that are best expressed graphically, whereas a programming

206 11 Unified Modelling Language

language expresses things that are best expressed textually, and tools are employed
to keep both views consistent. UML may be employed to document the software
system, and it has been employed in several domains including the banking sector,
defence and telecommunications.

The use of UML requires an understanding of its basic building blocks, the rules
for combining the building blocks and the common mechanisms that apply
throughout the language. There are three kinds of building blocks employed:

• Things;
• Relationships;
• Diagrams.

Things are the object-oriented building blocks of the UML. They include
structural things, behavioural things, grouping things and annotational things
(Table 11.1). Structural things are the nouns of the UML models; behavioural
things are the dynamic parts and represent behaviour and their interactions over
time; grouping things are the organization parts of UML and annotation things are
the explanatory parts. Things, relationships and diagrams are all described graph-
ically as discussed in [1].

Table 11.1 Classification of UML things

Thing Kind Description

Structural Class A class is a description of a set of objects that share the same
attributes and operations

Interface An interface is a collection of operations that specify a
service of a class or component. It specifies the externally
visible behaviour

Collaboration A collaboration defines an interaction between software
objects

Use case A use case is a set of actions that define the interaction
between an actor and the system to achieve a particular goal

Active class An active class is used to describe concurrent behaviour of a
system

Component A component is used to represent any part of a system for
which UML diagrams are made

Node A node is used to represent a physical part of the system (e.g.
server, network, etc.)

Behavioural Interaction These comprise interactions (message exchange between
components) expressed as sequence diagrams or
collaboration diagrams

State
machine

A state machine is used to describe different states of system
components

Grouping Packages These are the organization parts of UML models. A package
organizes elements into groups and is a way to organize a
UML model

Annotation These are the explanatory parts (notes) of UML

11.2 Overview of UML 207

There are four kinds of relationship in UML:

• Dependency;
• Association;
• Generalization;
• Extensibility.

Dependency is used to represent a relationship between two elements of a sys-
tem, in which a change to one thing affects the other thing (dependent thing).
Association describes how elements in the UML diagram are associated and
describes a set of connections among elements in a system. Aggregation is an
association that represents a structural relationship between a whole and its parts.
A generalization is a parent/child relationship in which the objects of the special-
ized element (child) are substituted for objects of the generalized element (the
parent). Extensibility refers to a mechanism to extend the power of the language to
represent extra behaviour of the system. Next, we describe the key UML diagrams.

11.3 UML Diagrams

The various UML diagrams provide a graphical visualization of the system from
different viewpoints, and we present several key UML diagrams in Table 11.2.

Table 11.2 UML diagrams

Diagram Description

Class A class is a key building block of any objected-oriented system. The class
diagram shows the classes, their attributes and operations, and the
relationships between them

Object This shows a set of objects and their relationships. An object diagram is an
instance of a class diagram

Use case These show the actors in the system, and the different functions that they
require from the system

Sequence These diagrams show how objects interact with each other and the order in
which the interactions occur

Collaboration This is an interaction diagram that emphasizes the structural organization of
objects that send and receive messages

State chart These describe the behaviour of objects that act differently according to the
state that they are in

Activity This diagram is used to illustrate the flow of control in a system (it is similar
to a flowchart)

Component This diagram shows the structural relationship of components of a software
system and their relationships/interfaces

Deployment This diagram is used for visualizing the deployment view of a system and
shows the hardware of the system and the software on the hardware

208 11 Unified Modelling Language

The concept of class and objects are taken from object-oriented design, and
classes are the most important building block of any object-oriented system. A class
is a set of objects that share the same attributes, operations, relationships and
semantics [1]. Classes may represent software things and hardware things. For
example, walls, doors, and windows are all classes, whereas individual doors and
windows are objects. A class represents a set of objects rather than an individual
object.

Automated bank teller machines (ATMs) include two key classes: customers and
accounts. The class definition includes both the data structure for customers and
accounts, and the operations on customers and accounts. These include operations
to add or remove a customer, operations to debit or credit an account or to transfer
from one account to another. There are several instances of customers and accounts,
and these are the actual customers of the bank and their accounts.

Every class has a name (e.g. Customer and Account) to distinguish it from other
classes (Table 11.3). There will generally be several objects associated with the
class. The class diagram describes the name of the class, its attributes and its
operations. An attribute represents some property of the class that is shared by all
objects; for example, the attributes of the class “Customer” are name and address.
Attributes are listed below the class name, and the operations are listed below the
attributes. The operations may be applied to any object in the class. The respon-
sibilities of a class may also be included in the definition.

Class diagrams typically include various relationships between classes. In
practice, very few classes are stand alone, and most collaborate with others in
various ways. The relationship between classes needs to be considered, and these
provide different ways of combining classes to form new classes. The relationships
include dependencies (a change to one thing affects the dependent thing); gener-
alizations (these link generalized classes to their specializations in a
subclass/superclass relationship); and associations (these represent structural rela-
tionships among objects).

A dependency is a relationship that states that a change in the specification of
one thing affects the dependent thing. It is indicated by a dashed line (—>).
Generalizations allow a child class to be created from one or more parent classes
(single or multiple inheritance). A class that has no parents is termed a base class
(e.g. consider the base class Shape with three children: Rectangle, Circle and
Polygon, and where Rectangle has one child namely Square). Generalization is
indicated by a solid directed line that points to the parent (—►). Association is a

Table 11.3 Simple class
diagram

Customer Account

Name: String
Address: String

Balance: Real
Type: String

Add()
Remove()

Debit()
Credit()
CheckBal()
Transfer()

11.3 UML Diagrams 209

structural relationship that specifies that objects of one thing are connected to
objects of another thing. It is indicated by a solid line connecting the same or
different classes.

The object diagram (Fig. 11.1) shows a set of objects and their relationships at a
point of time. It is related to the class diagram in that the object is an instance of the
class. The ATM example above has two classes (customers and accounts), and the
objects of these classes are the actual customers and their corresponding accounts.
Each customer may have several accounts, and the names and addresses of the
customers are detailed as well as the corresponding balance in the customer’s
accounts. There is one instance of the customer class and two instances of the
account class in this example.

An object has a state that has a given value at each time instance. Operations on
the object will typically (with the exception of query operations) change its state.
An object diagram contains objects and links to other objects and gives a snapshot
of the system at a particular moment of time.

A use case diagram models the dynamic aspects of the system, and it shows a set
of use cases and actors and their relationships. It describes scenarios (or sequences
of actions) in the system from the user’s viewpoint (actor) and shows how the actor
interacts with the system. An actor represents the set of roles that a user can play,
and the actor may be human or an automated system. Actors are connected to use
cases by association, and they may communicate by sending and receiving
messages.

A use case diagram shows a set of use cases, with each use case representing a
functional requirement. Use cases are employed to model the visible services that
the system provides within the context of its environment, and for specifying the
requirements of the system as a black box. Each use case carries out some work that
is of value to the actor, and the behaviour of the use case is described by the flow of
events in text. The description includes the main flow of events for the use case and
the exceptional flow of events. These flows may also be represented graphically.
There may also be alternate flows as well as the main flow of the use case. Each
sequence is termed a scenario, and a scenario is one instance of a use case.

Customer (J.Bloggs)

Name = “J.Bloggs”
Address= “Mallow”

Customer (J.Bloggs)

Name = “J.Bloggs”
Address= “Mallow”

Customer (J.Bloggs)Customer (J.Bloggs)Customer (J.Bloggs)

Name = “J.Bloggs”
Address= “Mallow”

Name = “J.Bloggs”
Address= “Mallow”

Name = “J.Bloggs”
Address= “Mallow”

Account (J.Bloggs
personal account)

Account (J.Bloggs
personal account)

Balance=1,000
Type= “Saving”

Balance=500
Type= “Current”

Account (J.Bloggs
personal account)

Account (J.Bloggs
personal account)

Balance=1,000
Type= “Saving”

Balance=500
Type= “Current”

Account (J.Bloggs
personal account)

Account (J.Bloggs
personal account)

Account (J.Bloggs
personal account)

Account (J.Bloggs
personal account)

Account (J.Bloggs
personal account)

Account (J.Bloggs
personal account)

Balance=1,000
Type= “Saving”
Balance=1,000
Type= “Saving”
Balance=1,000
Type= “Saving”

Balance=500
Type= “Current”
Balance=500
Type= “Current”
Balance=500
Type= “Current”

Fig. 11.1 Simple object diagram

210 11 Unified Modelling Language

Use cases provide a way for the end users and developers to share a common
understanding of the system. They may be applied to all or part of the system
(subsystem), and the use cases are the basis for development and testing. A use case
is represented graphically by an ellipse. The benefits of use cases include:

• Enables the stakeholders (e.g. domain experts, developers, testers and end users)
to share a common understanding of the functional requirements.

• Models the requirements (specifies what the system should do).
• Models the context of a system (identifies actors and their roles).
• May be used for development and testing.

Figure 11.2 presents a simple example of the definition of the use cases for an
ATM application. The typical user operations at an ATM machine include the
balance inquiry operation, cash withdrawal and the transfer of funds from one
account to another. The actors for the system include “customer” and “admin”, and
these actors have different needs and expectations of the system.

The behaviour from the user’s viewpoint is described, and the use cases include
“withdraw cash”, “balance enquiry”, “transfer” and “maintain/reports”. The use
case view includes the actors who are performing the sequence of actions.

The next UML diagram considered is the sequence diagram which models the
dynamic aspects of the system and shows the interaction between objects/classes in
the system for each use case. The interactions model the flow of control that
characterizes the behaviour of the system, and the objects that play a role in the
interaction are identified. A sequence diagram emphasizes the time ordering of
messages, and the interactions may include messages that are dispatched from
object to object, with the messages ordered in sequence by time.

The example in Fig. 11.3 considers the sequences of interactions between
objects for the “Balance Enquiry” use case. This sequence diagram is specific to the
case of a valid balance enquiry, and a sequence diagram is needed to handle the
exception cases as well.

Fig. 11.2 Use case diagram
of ATM machine

11.3 UML Diagrams 211

The behaviour of the “balance enquiry” operation is evident from the diagram.
The customer inserts the card into the ATM machine, and the PIN number is
requested by the ATM. The customer then enters the number, and the ATM
machine contacts the bank for verification of the number. The bank confirms the
validity of the number and the customer then selects the balance enquiry operation.
The ATM contacts the bank to request the balance of the particular account, and the
bank sends the details to the ATM machine. The balance is displayed on the screen
of the ATM machine. The customer then withdraws the card. The actual sequence
of interactions is evident from the sequence diagram.

The example above has four objects (Customer, ATM, Bank and Account) and
these are laid out from left to right at the top of the sequence diagram. Collaboration
diagrams are interaction diagrams that consist of objects and their relationships.
However, while sequence diagrams emphasize the time ordering of messages, a
collaboration diagram emphasizes the structural organization of the objects that
send and receive messages. Sequence diagrams and collaboration diagrams may be
converted to the other without loss of information. Collaboration diagrams are
described in more detail in [1].

The activity diagram is considered in Fig. 11.4, and this is essentially a flowchart
showing the flow of control from one activity to another. It is used to model the
dynamic aspects of a system, and this involves modelling the sequential and pos-
sibly concurrent steps in a computational process. It is different from a sequence
diagram in that it shows the flow from activity to activity, whereas a sequence
diagram shows the flow from object to object.

State diagrams (also known as state machine diagrams or state charts) show the
dynamic behaviour of a class, and how an object behaves differently depending on
the state that it is in. There is an initial state and a final state, and the operation
generally results in a change of state, with different states being entered and exited

Fig. 11.3 UML sequence diagram for balance enquiry

212 11 Unified Modelling Language

(Fig. 11.5). A state diagram is an enhanced version of a finite state machine (as
discussed in Chap. 13).

There are several other UML diagrams including component and deployment
diagrams. The reader is referred to [1].

Fig. 11.4 UML activity diagram

Insert

Welcome Validatio Display

Error

valid

invalid balance

withdraw

Display

Process

Return card

end

end

Card removed

Fig. 11.5 UML state diagram

11.3 UML Diagrams 213

Advantages of UML
UML offers a rich notation to model software systems and to understand the pro-
posed system from different viewpoints. Its main advantages are (Table 11.4).

11.4 Object Constraint Language

The object constraint language (OCL) is a declarative language that provides a
precise way of describing rules (or expressing constraints) on the UML models.
OCL was originally developed as a business modelling language by Jos Warmer at
IBM, and it was developed further by the Object Management Group (OMG), as
part of a formal specification language extension to UML. It was mainly used
initially as part of UML, but it is now used independently of UML.

OCL is a pure expression language; i.e. there are no side effects as in imperative
programming languages, and expressions can be used in various places in a UML
model including:

• Specify the initial value of an attribute.
• Specify the body of an operation.
• Specify a condition.

There are several types of OCL constraints including (Table 11.5).
There are various tools available to support OCL, and these include OCL

compilers (or checkers) that provide syntax and consistency checking of the OCL
constraints, and the USE specification environment is based on UML/OCL.

Table 11.4 Advantages of
UML

Advantages of UML

Visual modelling language with a rich expressive notation

Mechanism to manage complexity of a large system
Enables the proposed system to be studied before
implementation

Visualization of architecture design of the system

It provides different views of the system

Visualization of system from different viewpoints

Use cases allow the description of typical user behaviour
Better understanding of implications of user behaviour

Use cases provide a mechanism to communicate the proposed
behaviour of the software system
Use cases are the basis of development and testing

214 11 Unified Modelling Language

11.5 Industrial Tools for UML

Table 11.6 presents a small selection of the available tools that support UML. Tools
to support formal methods are discussed in Chap. 17.

11.6 Rational Unified Process

Software projects need a well-structured development process to achieve their
objectives. The Rational Unified Development Software Process (RUP) [2] has
become important, and RUP and UML are often used together. RUP is

• Use case driven;
• Architecture centric;
• Iterative and incremental.

Table 11.6 UML Tools

Tool Description

Requisite Pro Requirements and use case management tool. It provides
requirements management and traceability

Rational Software
Modeler (RSM)

Visual modelling and design tool that is used by systems
architects/systems analysts to communicate processes, flows, and
designs

Rational Software
Architect (RSA)

RSA is a tool that enables good architectures to be created

Clearcase/Clearquest These are configuration management/change control tools that are
used to manage change in the project

Table 11.5 OCL constraints

OCL
constraint

Description

Invariant A condition that must always be true. An invariant may be placed on an
attribute in a class, and this has the effect of restricting the value of the
attribute. All instances of the class are required to satisfy the invariant. An
invariant is a predicate and is introduced after the keyword inv

Precondition A condition that must be true before the operation is executed. A precondition
is a predicate and is introduced after the keyword pre

Postcondition A condition that must be true when the operation has just completed
execution. A postcondition is a predicate and is introduced after the keyword
post

Guard A condition that must be true before the state transition occurs

11.4 Object Constraint Language 215

It includes iterations, phases, workflows, risk mitigation, quality control, project
management and configuration control. Software projects may be complex, and
there are risks that requirements may be missed in the process, or that the inter-
pretation of a requirement may differ between the customer and developer. RUP
gathers requirements as use cases, which describe the functional requirements from
the point of view of the users of the system.

The use case model describes what the system will do at a high-level, and there
is user focus in defining the scope the project. Use cases drive the development
process, and the developers create a series of design and implementation models
that realize the use cases. The developers review each successive model for con-
formance to the use case model, and testing verifies that the implementation model
correctly implements the use cases.

The software architecture concept embodies the most significant static and
dynamic aspects of the system. The architecture grows out of the use cases and
factors such as the platform that the software is to run on, deployment considera-
tions, legacy systems and non-functional requirements.

A commercial software product is a large undertaking and the work is decomposed
into smaller slices or mini-projects, where each mini-project is a manageable chunk.
Eachmini-project is an iteration that results in an increment to the product (Fig. 11.6).

Iterations refer to the steps in the workflow, and an increment leads to the growth
of the product. If the developers need to repeat the iteration, then the organization
loses only the misdirected effort of a single iteration, rather than the entire product.
Therefore, the unified process is a way to reduce risk in software engineering. The
early iterations implement the areas of greatest risk to the project.

RUP consists of four phases, and these are inception, elaboration, construction
and transition (Fig. 11.7). Each phase consists of one or more iterations, and each
iteration consists of several workflows. The workflows may be requirements,
analysis, design, implementation and test. Each phase terminates in a milestone
with one or more project deliverables.

Fig. 11.6 Iteration in
Rational Unified Process

216 11 Unified Modelling Language

The inception identifies and prioritizes the most important project risks, and it is
concerned with initial project planning, cost estimation and early work on the
architecture and functional requirements for the product. The elaboration phase
specifies most of the use cases in detail. The construction phase is concerned with
building the product and implements all agreed use cases. The transition phase
covers the period during which the product moves into the customer site and
includes activities such as training customer personnel, providing help-line assis-
tance and correcting defects found after delivery.

The waterfall lifecycle has the disadvantage that the risk is greater towards the
end of the project, where it is costly to undo mistakes from earlier phases. The
iterative process develops an increment (i.e. a subset of the system functionality
with the waterfall steps applied in the iteration), then another, and so on, and avoids
developing the whole system in one step as in the waterfall methodology.

11.7 Review Questions

1. What is UML? Explain its main features.
2. Explain the difference between an object and a class.
3. Describe the various UML diagrams.
4. What are the advantages and disadvantages of UML?

Fig. 11.7 Phases and workflows in Rational Unified Process

11.6 Rational Unified Process 217

5. What is the Rational Unified Process?
6. Describe the workflows in a typical iteration.
7. Describe the phases in the Rational Unified Process.

11.8 Summary

The unified modelling language is a visual modelling language for software sys-
tems, and it facilitates the understanding of the architecture, and management of the
complexity of large systems. It was developed by Rumbaugh, Booch and Jacobson
as a notation for modelling object-oriented systems, and it provides a visual means
of specifying, constructing and documenting such systems. It facilitates the
understanding of the architecture of the system and in managing its complexity.

UML allows the same information to be presented in several different ways and
at different levels of detail. The requirements of the system are expressed in use
cases; and other views include the design view that captures the problem space and
solution space; the process view which models the systems processes; the imple-
mentation view and the deployment view.

The UML diagrams provide different viewpoints of the system, and provide the
blueprint of the software. These include class and object diagrams, use case dia-
grams, sequence diagrams, collaboration diagrams, activity diagrams, state charts,
collaboration diagrams and deployment diagrams.

RUP consists of four phases, and these are inception, elaboration, construction
and transition. Each phase consists of one or more iterations, and the iteration
consists of several workflows. The workflows may be requirements, analysis,
design, implementation and test. Each phase terminates in a milestone with one or
more project deliverables.

References

1. I. Jacobson, G. Booch, J. Rumbaugh, The Unified Software Modeling Language User Guide
(Addison-Wesley, Reading, 1999)

2. I. Jacobson, G. Booch, J. Rumbaugh, The Unified Software Development Process
(Addison-Wesley, Reading, 1999)

218 11 Unified Modelling Language

12Dijkstra, Hoare and Parnas

Key Topics

Algol 60
Axiomatic semantics
Calculus of weakest preconditions
Communicating sequential processes
Graph algorithms
Operating systems
Predicate calculus
Tabular expressions
Normal table

12.1 Introduction

Edsger W. Dijkstra, C.A.R. Hoare and David Parnas are famous names in computer
science, and they have received numerous awards for their contribution to the dis-
cipline. Their work has provided a scientific basis for computer software develop-
ment and a rigorous approach to the development of software. We present a selection
of their contributions in this chapter, including Dijkstra’s calculus of weakest pre-
conditions; Hoare’s axiomatic semantics and Parnas’s tabular expressions. There is
more detailed information on the contributions of these pioneers in [1].

Mathematics and Computer Science were regarded as two completely separate
disciplines in the 1960s, and software development was based on the assumption
that the completed code would always contain defects. It was therefore better and
more productive to write the code as quickly as possible and to then perform
debugging to find the defects. Programmers then corrected the defects, made

© Springer International Publishing AG 2017
G. O’Regan, Concise Guide to Formal Methods, Undergraduate Topics
in Computer Science, DOI 10.1007/978-3-319-64021-1_12

219

patches and retested and found more defects. This continued until they could no
longer find defects. Of course, there was always the danger that defects remained in
the code that could give rise to software failures.

John McCarthy argued at the IFIP congress in 1962 that the focus should instead
be to prove that the programs have the desired properties, rather than testing the
program ad nauseum. Robert Floyd believed that there was a way to construct a
rigorous proof of the correctness of the programs using mathematics, and he
demonstrated techniques (based on assertions) in a famous paper in 1967 that
mathematics could be used for program verification. The NATO conference on
software engineering in 1968 highlighted the extent of the problems that existed
with software, and the term “software crisis” was coined to describe this. The
problems included cost and schedule overruns and problems with the reliability of
the software.

Dijkstra (Fig. 12.1) was born in Rotterdam in Holland, and he studied mathe-
matics and physics at the University of Leyden. He obtained a PhD in Computer
Science from the University of Amsterdam in 1959. He decided not to become a
theoretical physicist, as he believed that programming offered a greater intellectual
challenge.

Fig. 12.1 Edsger Dijkstra.
Courtesy of Brian Randell

220 12 Overview of Formal Methods

He commenced his programming career at the Mathematics Centre in Amster-
dam in the early 1950s, and he invented the shortest path algorithm in the
mid-1950s. He contributed to the definition of Algol 60, and he designed and coded
the first Algol 60 compiler.

Dijkstra has made many contributions to computer science, including contri-
butions to language development, operating systems, formal program development
and to the vocabulary of Computer Science. He received the Turing award in 1972,
and some of his achievements are listed in Table 12.1.

Dijkstra advocated simplicity, precision and mathematical integrity in his formal
approach to program development. He insisted that programs should be composed
correctly using mathematical techniques and not debugged into correctness. He
considered testing to be an inappropriate means of building quality into software,
and his statement on software testing is well known:

Testing a program shows that it contains errors never that it is correct.1

Dijkstra corresponded with other academics through an informal distribution
network known as the EWD series. These contain his various personal papers
including trip reports and technical papers.

Table 12.1 Dijkstra’s achievements

Area Description

Go to statement Dijkstra argued against the use of the goto statement in
programming. This eventually led to its abolition in
programming

Graph algorithms Dijkstra developed several efficient graph algorithms to
determine the shortest or longest paths from a vertex u to
vertex v in a graph

Operating systems Dijkstra introduced ideas such as semaphores and deadly
embrace, and that operating systems can be built as
synchronized sequential processes

Algol 60 Dijkstra contributed to the definition of the language, and he
designed and coded the first Algol 60 compiler

Formal program development
(guarded commands and
predicate transformers)

Dijkstra introduced guarded commands and predicate
transformers as a means of defining the semantics of a
programming language. He showed how weakest
preconditions can be used as a calculus (wp-calculus) to
develop reliable programs. This led to a science of
programming using mathematical logic as a methodology for
formal program construction
His approach involves the development of programs from
mathematical axioms

1Software testing is an essential part of the software process, and various types of testing are
described in [2]. Modern software testing is quite rigorous and can provide a high degree of
confidence that the software is fit for use. It cannot, of course, build quality in; rather, it can
provide confidence that quality has been built in. The analysis of the defects identified during
testing may be useful in improving the software development process.

12.1 Introduction 221

Charles Anthony Richard (C.A.R or Tony) Hoare studied philosophy (including
Latin and Greek) at Oxford University (Fig. 12.2). He studied Russian at the Royal
Navy during his National Service in the late 1950s. He then studied statistics and
went to Moscow University as a graduate student to study machine translation of
languages and probability theory. He discovered the well-known sorting algorithm
“Quicksort”, while investigating efficient ways to look up words in a dictionary.

He returned to England in 1960 and worked as a programmer for Elliot Brothers
(a company that manufactured scientific computers). He led a team to produce the
first commercial compiler for Algol 60, and it was a very successful project. He
then led a team to implement an operating system, and the project was a disaster. He
managed a recovery from the disaster and then moved into the research division of
the company.

He took a position at Queens University in Belfast in 1968, and his research
goals included examining techniques to assist with the implementation of operating
systems, especially to see if advances in programming methodologies could assist
with the problems of concurrency. He also published material on the use of
assertions to prove program correctness.

He moved to Oxford University in 1977 following the death of Christopher
Strachey (well known for his work in denotational semantics) and built up the
programming research group. This group later developed the Z specification lan-
guage and CSP, and Hoare received the ACM Turing award in 1980. Following his

Fig. 12.2 C.A.R Hoare

222 12 Overview of Formal Methods

retirement from Oxford, he took up a position as senior researcher at Microsoft
Research in the UK.

Hoare has made many contributions to computer science and these include the
quicksort algorithm, the axiomatic approach to program semantics, and program-
ming constructs for concurrency (Table 12.2). He remarked on the direction of the
Algol programming language:

Algol 60 was a great achievement in that it was a significant advance over most of its
successors.

Hoare has made fundamental contributions to programming languages, and his
1980 ACM Lecture on the “Emperors Old Clothes” is well known. He stresses the
importance of communicating ideas (as well as having ideas) and enjoys writing
(and rewriting).

David L. Parnas (Fig. 12.3) has been influential in the computing field, and his
ideas on the specification, design, implementation remain important. He has won
numerous awards (including ACM best paper award in 1979); influential paper
awards from ICSE; the ACM SigSoft outstanding researcher award and honorary
doctorates for his contribution to Computer Science.

He studied at Carnegie Mellon University and was awarded B.S., M.S., and PhD
degrees in Electrical Engineering by the university. He has worked in both industry
and academia, and his approach aims to achieve a middle way between theory and
practice. His research has focused on real industrial problems that engineers face
and on finding solutions to these practical problems. Several organizations such as
Phillips in the Netherlands; the Naval Research Laboratory (NRL) in Washing-
ton; IBM Federal Systems Division and the Atomic Energy Board of Canada have
benefited from his advice and expertise.

He advocates a solid engineering approach to the development of high-quality
software and argues that software engineers2 today do not have the right engi-
neering education to perform their roles effectively. The role of engineers is to

Table 12.2 Hoare’s achievements

Area Description

Quicksort Quicksort is a highly efficient sorting algorithm

Axiomatic semantics Hoare defined a small programming language in terms of
axioms and logical inference rules for proving partial
correctness of programs

Communicating Sequential
Processes (CSP)

CSP is a mathematical approach to the study of
communication and concurrency. It is applicable to the
specification and design of computer systems that
continuously interact with their environment

2Parnas argues that the term engineer’ should be used only in its classical sense as a person who is
qualified and educated in science and mathematics to design and inspect products. The evolution
of language that has led to a debasement of the term ‘engineer’ with various groups who do not
have the appropriate background to be considered ‘engineers’ in the classical sense applying this
title.

12.1 Introduction 223

apply scientific principles and mathematics to design and develop useful products.
He argues that the level of mathematics taught in most Computer Science courses is
significantly less than that taught to traditional engineers. In fact, computer science
graduates often enter the work place with knowledge of the latest popular tech-
nologies, but with only a limited knowledge of the foundations needed to be
successful in producing safe and useful products. Consequently, he argues that it
should not be surprising that the quality of software produced today falls below the
desired standard, as the current approach to software development is informal and
based on intuition rather than sound engineering principles. He argues that com-
puter scientists should be educated as engineers and provided with the right sci-
entific and mathematical background to do their work effectively.

Parnas has made a strong contribution to software engineering, including con-
tributions to requirements specification, software design, software inspections,
testing, tabular expressions, predicate logic and ethics for software engineers
(Table 12.3). His reflections on software engineering remain valuable and contain
the insight gained over a long career.

12.2 Calculus of Weakest Preconditions

The weakest precondition calculus was developed by Dijkstra [4] and applied to the
formal development of programs. This section is based on material from [5], and a
programming notation is introduced and defined in terms of the weakest precon-
dition. The weakest precondition wp(S, R) is a predicate that describes a set of

Fig. 12.3 David Parnas

224 12 Overview of Formal Methods

states, and it is a function with two arguments that results in a predicate. The
function has two arguments (a command and a predicate), where the predicate
argument describes the set of states satisfying R after the execution of the com-
mand. It is defined as follows:

Table 12.3 Parnas’s achievements

Area Description

Tabular expressions Tabular expressions are mathematical tables that are employed for
specifying requirements. They enable complex predicate logic
expressions to be represented in a simpler form

Mathematical
documentation

He advocates the use of mathematical documents for software
engineering that are precise and complete. These documents are for
system requirements, system design, software requirements, module
interface specification and module internal design

Requirements
specification

His approach to requirements specification (developed with Kathryn
Heninger and others) involves the use of mathematical relations to
specify the requirements precisely

Software design His contribution to software design was revolutionary. A module is
characterized by its knowledge of a design decision (secret) that it
hides from all others. This is known as the information hiding
principle, and it allows software to be designed for changeability.
Every information-hiding module has an interface that provides the
only means to access the services provided by the modules. The
interface hides the module’s implementation. Information hiding is
used in object-oriented programming

Software inspections His approach to software inspections is quite distinct from the
well-known Fagan inspection methodology. The reviewers are
required to take an active part in the inspection and are provided with
a list of questions by the author. The reviewers are required to provide
documentation of their analysis to justify the answers to the individual
questions. This involves the production of mathematical tables

Predicate logic He introduced a novel approach to deal with undefined valuesa in
predicate logic expressions which preserves the two-valued logic. His
approach is quite distinct from the logic of partial functions developed
by Cliff Jones [3]

Industry
contributions

His industrial contribution is impressive including work on defining
the requirements of the A7 aircraft and the inspection of safety critical
software for the automated shutdown of the nuclear power plant at
Darlington

Ethics for software
engineers

He has argued that software engineers have a professional
responsibility to build safe products, to accept individual
responsibility for their design decisions, and to be honest about current
software engineering capabilities. He applied these principles in
arguing against the strategic defence initiative (SDI) of the Reagan
administration in the mid 1980s

aHis approach allows undefinedness to be addressed in predicate calculus while maintaining the
two-valued logic. A primitive predicate logic expression that contains an undefined term is
considered false in the calculus, and this avoids the three-valued logics developed by Jones and
Dijkstra

12.2 Calculus of Weakest Preconditions 225

Definition (Weakest Precondition)
The predicate wp(S, R) represents the set of all states such that, if execution of

S commences in any one of them, then it is guaranteed to terminate in a state
satisfying R.

Let S be the assignment command i : = i + 5, and let R be i � 3 then

wpði :¼ iþ 5; i� 3Þ ¼ ði � � 2Þ

The weakest precondition wp(S, T) represents the set of all states such that if
execution of S commences in any one of them, then it is guaranteed to terminate.

wp i :¼ iþ 5; Tð Þ ¼ T

The weakest precondition wp(S, R) is a precondition of S with respect to R, and it
is also the weakest such precondition. Given another precondition P of S with
respect to R, then P) wp(S, R).

For a fixed command S then wp(S, R) can be written as a function of one
argument: wpS(R), and the function wpS transforms the predicate R to another
predicate wpS(R). In other words, the function wpS acts as a predicate transformer.

An imperative program may be regarded as a predicate transformer. This is since
a predicate P characterizes the set of states in which the predicate P is true, and an
imperative program may be regarded as a binary relation on states, leading to the
Hoare triple P{F}Q. That is, the program F acts as a predicate transformer. The
predicate P may be regarded as an input assertion, i.e. a predicate that must be true
before the program F is executed. The predicate Q is the output assertion, and is
true if the program F terminates, having commenced in a state satisfying P.

12.2.1 Properties of WP

The weakest precondition wp(S, R) has several well-behaved properties as descri-
bed in Table 12.4.

12.2.2 WP of Commands

The weakest precondition can be used to provide the definition of commands in a
programming language. The commands considered are taken from [5].

• Skip Command

wp skip; Rð Þ ¼ R

226 12 Overview of Formal Methods

The skip command does nothing and is used to explicitly say that nothing should
be done. The predicate transformer wpskip is the identity function.

• Abort Command

wp abort; Rð Þ ¼ F

The abort command is executed in a state satisfying false (i.e. no state). This
command should never be executed. If program execution reaches a point where
abort is to be executed then the program is in error and abortion is called for.

• Sequential Composition

wp S1; S2;Rð Þ ¼ wp S1;wp S2;Rð Þð Þ

The sequential composition command composes two commands S1 and S2 by
first executing S1 and then executing S2. Sequential composition is expressed
by S1; S2.

Table 12.4 Properties of WP

Property Description

Law of the excluded
miracle
wp(S, F) = F

This describes the set of states such that if execution commences
in one of them, then it is guaranteed to terminate in a state
satisfying false. However, no state ever satisfies false, and
therefore wp(S, F) = F. The name of this law derives from the
fact that it would be a miracle if execution could terminate in no
state

Distributivity of
conjunction
wp(S, Q) ^ wp(S, R) = wp
(S, Q^R)

This property stipulates that the set of states such that if execution
commences in one of them, then it is guaranteed to terminate in a
state satisfying Q^R is precisely the set of states such that if
execution commences in one of them then execution terminates
with both Q and R satisfied

Law of monotonicity
Q) R then wp(S, Q))
wp(S, R)

This property states that if a postcondition Q is stronger than a
postcondition R, then the weakest precondition of S with respect
to Q is stronger than the weakest precondition of S with respect to
R

Distributivity of
disjunction
wp(S, Q) _ wp(S, R))
wp(S, Q _ R)

This property states that the set of states corresponding to the
weakest precondition of S with respect to Q or the set of states
corresponding to the weakest precondition of S with respect to
R is stronger than the weakest precondition of S with respect to
Q _ R
Equality holds for distributivity of disjunction only when the
execution of the command is deterministic

12.2 Calculus of Weakest Preconditions 227

Sequential composition is associative:

wp S1; S2; S3ð Þ;Rð Þ ¼ wp S1; S2ð Þ; S3;Rð Þ

• Simple Assignment Command

wp x :¼ e;Rð Þ ¼ dom eð Þ cand Rx
e

The execution of the assignment command consists of evaluating the value of
the expression e and storing its value in the variable x. However, the command may
be executed only in a state where e may be evaluated.

The expression Re
x denotes the expression obtained by substituting e for all free

occurrences of x in R. For example,

xþ y[2ð Þxv¼ vþ y[2

The cand operator is used to deal with undefined values, and it was discussed in
Chap. 7. It is a non-commutative operator and the expression a cand b is equivalent
to:

a cand b ffi if a then b elseF

The explanation of the definition of the weakest precondition of the assignment
statement wp(x : = e, R) is that R will be true after execution if and only if the
predicate R with the value of x replaced by e is true before execution (since x will
contain the value of e after execution).

Often, the domain predicate dom(e) that describes the set of states that e may be
evaluated is omitted as assignments are usually written in a context in which the
expressions are defined.

wp x :¼ e;Rð Þ ¼ Rx
e

The simple assignment can be extended to a multiple assignment to simple
variables. The assignment is of the form x1,x2,..xn : = e1,e2,..en and is described in
[5].

• Assignment to Array Element Command

wp b i½ � :¼ e; Rð Þ ¼ inrange b; ið Þ cand dom eð Þ candRb
ðb;i:eÞ

228 12 Overview of Formal Methods

The execution of the assignment to an array element command consists of
evaluating the expression e and storing its value in the array element subscripted by
i. The inrange (b, i) and dom(e) are usually omitted in practice as assignments are
usually written in a context in which the expressions are defined and the subscripts
are in range. Therefore, the weakest precondition is given by:

wp b i½ � :¼ e; Rð Þ ¼ Rb
ðb;i:eÞ

The notation (b;i:e) denotes an array identical to array b except that the array
element subscripted by i contains the value e. The explanation of the definition of
the weakest precondition of the assignment statement to an array element (wp(b
[i] : = e, R) is that R will be true after execution if and only if the value of
b replaced by (b;i:e) is true before execution (since b will become (b;i:e) after
execution).

• Alternate Command

wp IF; Rð Þ ¼ domðB1 _ B2 _ :: _ BnÞ ^ ðB1 _ B2 _ . . . _ BnÞ
^ ðB1) wp S1;Rð ÞÞ ^ ðB2) wp S2; Rð ÞÞ ^ . . . ^ ðBn) wp Sn;Rð ÞÞ

The alternate command is the familiar if statement of programming languages.
The general form of the alternate command is:

If B1 ! S1
h B2 ! S2

. . .
h Bn ! Sn
fi

Each Bi !Si is a guarded command (Si is any command). The guards must be
well defined in the state where execution begins, and at least one of the guards must
be true or execution aborts. If at least one guard is true, then one guarded command
Bi !Si with true guard Bi is chosen and Si is executed.

For example, in the if statement below, the statement z: = x + 1 is executed if
x > 2, and the statement z: = x + 2 is executed if x < 2. For x = 2 either (but not
both) statements are executed. This is an example of non-determinism.

if x� 2 ! z :¼ xþ 1
h x� 2 ! z :¼ xþ 2
fi

12.2 Calculus of Weakest Preconditions 229

• Iterative Command

The iterate command is the familiar while loop statement of programming
languages. The general form of the iterate command is:

do B1 ! S1
h B1 ! S1

. . .
h Bn ! Sn
od

The meaning of the iterate command is that a guard Bi is chosen that is true, and
the corresponding command Si is executed. The process is repeated until there are
no more true guards. Each choice of a guard and execution of the corresponding
statement is an iteration of the loop. On termination of the iteration command all of
the guards are false.

The meaning of the DO command wp(DO, R) is the set of states in which
execution of DO terminates in a bounded number of iterations with R true.

wp DO; Rð Þ ¼ 9k : 0� k : Hk Rð Þð Þ

where Hk(R) is defined as:

Hk Rð Þ ¼ H0 Rð Þ _ wp IF; Hk�1 Rð Þð Þ

A more detailed explanation of loops is in [5]. The definition of procedure call
may be given in weakest preconditions also.

12.2.3 Formal Program Development with WP

The use of weakest preconditions for formal program development is described in
[5]. The approach is a radical departure from current software engineering, and it
involves developing the program and a formal proof of its correctness together.
A program P is correct with respect to a precondition Q and a postcondition R if
{Q}P{R}, and the idea is that the program and its proof should be developed
together. The proof involves weakest preconditions and uses the formal definition
of the programming constructs (e.g. assignment and iteration) as discussed earlier.

Programming is viewed as a goal-oriented activity in that the desired result (i.e.
the postcondition R) plays a more important role in the development of the program
than the precondition Q. Programming is employed to solve a problem, and the
problem needs to be clearly stated with precise preconditions and postconditions.

230 12 Overview of Formal Methods

The example of a program3 P to determine the maximum of two integers x and
y is discussed in [5]. A program P is required that satisfies:

Tf gP R : z ¼ max x; yð Þf g

The postcondition R is then refined by replacing max with its definition:

fR : ðz� x ^ z� yÞ ^ ðz ¼ x _ z ¼ yÞg

The next step is to identify a command that could be executed in order to
establish the postcondition R. One possibility is z : = x and the conditions under
which this assignment establishes R is given by:

wp z :¼ x; Rð Þ ¼ x� x ^ x� y ^ ðx ¼ x _ x ¼ yÞ
¼ x� y

Another possibility is z: = y and the conditions under which this assignment
establishes R is given by:

wp z :¼ yRð Þ ¼ y� x

The desired program is then given by:

if x� y ! z :¼ x
h y� x ! z :¼ y
fi

There are many more examples of formal program development in [5].

12.3 Axiomatic Definition of Programming Languages

An assertion is a property of the program’s objects: e.g. the assertion (x − y > 5) is
an assertion that may or may not be satisfied by a state of the program during
execution. For example, the state in which the values of the variables x and y are 7
and 1, respectively, satisfies the assertion; whereas a state in which x and y have
values 4 and 2, respectively, does not.

Robert Floyd (Fig. 12.4) did pioneering work on software engineering from the
1960s, including important contributions to the theory of parsing; the semantics of
programming languages and methodologies for the creation of efficient and reliable
software.

3Many of these examples are considered “toy programs” when compared to real-world industrial
software development, but they illustrate the concepts involved in developing software rigorously
using the weakest precondition calculus.

12.2 Calculus of Weakest Preconditions 231

Floyd believed that there was a way to construct a rigorous proof of the cor-
rectness of the programs using mathematics. He showed that mathematics could be
used for program verification, and he introduced the concept of assertions that
provided a way to verify the correctness of programs. His first article on program
proving techniques based on assertions was in 1967 [6].

Floyd’s 1967 paper was concerned with assigning meaning to programs, and he
also introduced the idea of a loop invariant. His approach was based on programs
expressed by flowcharts, and an assertion was attached to the edge of the flowchart.
The meaning was that the assertion would be true during execution of the corre-
sponding program whenever execution reached that edge. For a loop, Floyd placed
an assertion P on a fixed position of the cycle, and proved that if execution com-
menced at the fixed position with P true, and reached the fixed position again, then
P would still be true.

Flowcharts were employed in the 1960s to explain the sequence of basic steps
for computer programs. Floyd’s insight was to build upon flowcharts and to apply
an invariant assertion to each branch in the flowchart. These assertions state the
essential relations that exist between the variables at that point in the flowchart. An
example relation is “R = Z > 0, X = 1, Y = 0”. He devised a general flowchart
language to apply his method to programming languages. The language essentially
contains boxes linked by flow of control arrows.

Fig. 12.4 Robert Floyd

232 12 Overview of Formal Methods

Consider the assertion Q that is true on entry to a branch where the condition at
the branch is P. Then, the assertion on exit from the branch is Q ^ ¬P if P is false
and Q ^ P otherwise (Fig. 12.5).

The use of assertions may be employed in an assignment statement. Suppose
x represents a variable and v represents a vector consisting of all the variables in the
program. Suppose f(x, v) represents a function or expression of x and the other
program variables represented by the vector v. Suppose the assertion S(f(x, v), v) is
true before the assignment x = f(x, v). Then the assertion S(x, v) is true after the
assignment (Fig. 12.6). This is given by:

Floyd used flowchart symbols to represent entry and exit to the flowchart. This
included entry and exit assertions to describe the program’s entry and exit
conditions.

Floyd’s technique showed how a computer program is a sequence of logical
assertions. Each assertion is true whenever control passes to it, and statements
appear between the assertions. The initial assertion states the conditions that must
be true for execution of the program to take place, and the exit assertion essentially
describes what must be true when the program terminates.

He recognized that if it can be shown that the assertion immediately following
each step is a consequence of the assertion immediately preceding it, then the
assertion at the end of the program will be true, provided the appropriate assertion
was true at the beginning of the program.

His influential 1967 paper, “Assigning Meanings to Programs” influenced
Hoare’s work on preconditions and postconditions leading to Hoare logic [7].
Hoare recognized that Floyd’s approach provided an effective method for proving
the correctness of programs, and he built upon Floyd’s work to cover the familiar

P
N Y

Q ∧ ¬ P

Q

Q ∧ P

P
N Y

∧ ¬ Q ∧ P

Fig. 12.5 Branch assertions
in flowcharts

S(f (x , v), v)

x = f (x , v)

S(x , v)

Fig. 12.6 Assignment assertions in flowcharts

12.3 Axiomatic Definition of Programming Languages 233

constructs of high-level programming languages. Floyd’s paper also presented a
formal grammar for flowcharts, together with rigorous methods for verifying the
effects of basic actions like assignments.

Hoare logic is a formal system of logic for programming semantics and program
verification, and it was originally published in Hoare’s 1969 paper “An axiomatic
basis for computer programming” [7]. Hoare and others have subsequently refined
it, and it provides a logical methodology for precise reasoning about the correctness
of computer programs. The well-formed formulae of the logical system are of the
form:

P af gQ

where P is the precondition; a is the program fragment and Q is the postcondition.
The precondition P is a predicate (or input assertion), and the postcondition R is a
predicate (output assertion). The braces separate the assertions from the program
fragment. The well-formed formula P{a}Q is itself a predicate that is either true or
false. This notation expresses the partial correctness of a with respect to P and Q,
where partial correctness and total correctness are defined as follows:

Definition (Partial Correctness)
A program fragment a is partially correct for precondition P and postcondition

Q if and only if whenever a is executed in any state in which P is satisfied and the
execution terminates, then the resulting state satisfies Q.

The proof of partial correctness requires proof that the postcondition Q is sat-
isfied if the program terminates. Partial correctness is a useless property unless
termination is proved, as any non-terminating program is partially correct with
respect to any specification.

Definition (Total Correctness)
A program fragment a is totally correct for precondition P and postcondition Q if

and only if whenever a is executed in any state in which P is satisfied then
execution terminates and the resulting state satisfies Q.

The proof of total correctness requires proof that the postcondition Q is satisfied
and that the program terminates. Total correctness is expressed by {P} a {Q}. The
calculus of weakest preconditions developed by Dijkstra (discussed in the previous
section) is based on total correctness, whereas Hoare’s approach is based on partial
correctness.

Hoare’s axiomatic theory of programming languages consists of axioms and
rules of inference to derive certain pre-post formulae. The meaning of several
constructs in programming languages is presented here in terms of pre-post
semantics.

234 12 Overview of Formal Methods

• Skip

The meaning of the skip command is:

P skipf gP

Skip does nothing and it’s this instruction guarantees that whatever condition is
true on entry to the command is true on exit from the command.

• Assignment

The meaning of the assignment statement is given by the axiom:

Px
e x :¼ ef gP

The notation Px
e has been discussed previously and denotes the expression

obtained by substituting e for all free occurrences of x in P.
The meaning of the assignment statement is that P will be true after execution if

and only if the predicate Px
e with the value of x replaced by e in P is true before

execution (since x will contain the value of e after execution).

• Compound

The meaning of the conditional command is:

P S1f gQ; Q S2f gR
P S1; S2f gR

The execution of the compound statement involves the execution of S1 followed
by S2. The correctness of the compound statement with respect to P and R is
established by proving that the correctness of S1 with respect to P and Q, and the
correctness of S2 with respect to Q and R.

• Conditional

The meaning of the conditional command is:

P ^ B S1f gQ; P ^ :B S2f gQ
Pfif B then S1 else S2gQ

The execution of the if statement involves the execution of S1 or S2. The exe-
cution of S1 takes place only when B is true, and the execution of S2 takes place
only when ¬B is true. The correctness of the if statement with respect to P and Q is
established by proving that S1 and S2 are correct with respect to P and Q.

12.3 Axiomatic Definition of Programming Languages 235

However, S1 is executed only when B is true, and therefore it is required to prove
the correctness of S1 with respect to P ^ B and Q, and the correctness of S2 with
respect to P ^ ¬B and Q.

• While Loop

The meaning of the while loop is given by:

P ^ B Sf gP
P whileBdo Sf gP ^ :B

The property P is termed the loop invariant as it remains true throughout the
execution of the loop. The invariant is satisfied before the loop begins and each
iterations of the loop preserves the invariant.

The execution of the while loop is such that if the truth of P is maintained by one
execution of S, then it is maintained by any number of executions of S. The exe-
cution of S takes place only when B is true, and upon termination of the loop P ^
¬B is true.

Loops may fail to terminate and therefore there is a need to prove termination.
The loop invariant needs to be determined for formal program development.

12.4 Tabular Expressions

Tables of constants have used for millennia to define mathematical functions. The
tables allow the data to be presented in an organized form that is easy to reference
and use. The data presented in tables is well-organized and provides an explicit
definition of a mathematical function. This allows the computation of the function
for a particular value to be easily done. The use of tables is prevalent in schools
where primary school children are taught multiplication tables and high school
students refer to sine or cosine tables. The invention of electronic calculators may
lead to a reduction in the use of tables as students may compute the values of
functions immediately.

Tabular expressions are a generalization of tables in which constants may be
replaced by more general mathematical expressions. Conventional mathematical
expressions are a special case of tabular expressions. In fact, everything that can be
expressed as a tabular expression can be represented by a conventional expression.
Tabular expressions can represent sets, relations, functions and predicates and
conventional expressions. A tabular expression may be represented by a conven-
tional expression, but its advantage is that the tabular expression is easier to read
and use, since a complex conventional expression is replaced by a set of simpler
expressions.

236 12 Overview of Formal Methods

Tabular expressions are invaluable in defining a piecewise continuous function,
as it is relatively easy to demonstrate that all cases have been considered in the
definition. It is easy to miss a case or to give an inconsistent definition in the
conventional definition of a piecewise continuous function. The evaluation of a
tabular expression is easy once the type of tabular expression is known. Tabular
expressions have been applied to practical problems including the precise docu-
mentation of the system requirements of the A7 aircraft [8].

Tabular expressions have been applied to precisely document the system
requirements and to solve practical industrial problems. A collection of tabular
expressions are employed to document the system requirements. The meaning of
these tabular expressions in terms of their component expressions was done by
Parnas [9]. He identified several types of tabular expressions and provided a formal
meaning for each type. A more general model of tabular expressions was proposed
by Janicki [10], although this approach was based on diagrams using an
artificial cell connection graph to explain the meaning of the tabular expressions.
Parnas and others have proposed a general mathematical foundation for tabular
expressions.

The function f(x, y) is defined in the tabular expression below. The tabular
expressions consist of headers and a main grid. The headers define the domain of
the function and the main grid gives the definition. It is easy to see that the function
is defined for all values on its domain as the headers are complete. It is also easy to
see that the definition is consistent as the headers partition the domain of the
function.

The evaluation of the function for a particular value (x, y) involves determining
the appropriate row and column from the headers of the table and computing the
grid element for that row and column (Fig. 12.7).

For example, the evaluation of f(2, 3) involves the selection of row 1 of the grid
(as x = 2 � 0 in H1) and the selection of column 3 (as y = 3 < 5 in H2). Hence, the
value of f(2, 3) is given by the expression in row 1 and column 3 of the grid, i.e.−y2

evaluated with y = 3 resulting in −9. The table simplifies the definition of the
function. Tabular expressions have several applications (Table 12.5).

Examples of Tabular Expressions
The objective of this section is to illustrate the power of tabular expressions by
considering a number of examples. The more general definition of tabular
expressions allows for multidimensional tables, including multiple headers, and
supports rectangular and non-rectangular tables. However, the examples presented
here will be limited to two-dimensional rectangular tables, and will usually include
two headers and one grid, with the meaning of the tables given informally.

Fig. 12.7 Tabular expressions (normal table)

12.4 Tabular Expressions 237

The role of the headers and grid will become clearer in the examples, and
usually, the headers contain predicate expressions, whereas the grid usually con-
tains terms. However, the role of the grid and the headers change depending on the
type of table being considered.

Normal Function Table
The first table that we discuss is termed the normal function table, and this table
consists of two headers (H1 and H2) and one grid G. The headers are predicate
expressions that partition the domain of the function; header H1 partitions the
domain of y, whereas header H2 partitions the domain of x. The grid consists of
terms. The function f(x, y) is defined by the following table (Fig. 12.8):

The evaluation of the function f(x, y) for a particular value of x, y is given by:

1. Determine the row i in header H1 that is true.
2. Determine the column j in header H2 that is true.
3. The evaluation of f(x, y) is given by G(i, j).

For example, the evaluation of f(−2, 5) involves row 3 of H1 as y is 5 (>0) and
column 1 of header H2 as x is −2 (<0). Hence, the element in row 3 and column 1 of
the grid is selected (i.e. the element x + y). The evaluation of f(−2, 5) is −2 + 5 = 3.

The usual definition of the function f(x, y) defined piecewise is:

f x; yð Þ ¼ x2 � y2 where x� 0 ^ y\0;
f x; yð Þ ¼ x2 þ y2 where x[0 ^ y\0;
f x; yð Þ ¼ xþ y where x� 0 ^ y ¼ 0;
f x; yð Þ ¼ x� y where x\0 ^ y ¼ 0;
f x; yð Þ ¼ xþ y where x� 0 ^ y[0;
f x; yð Þ ¼ x2 þ y2 where x[0 ^ y[0;

Table 12.5 Applications of
tabular expressions

Applications of tabular expressions

Specify requirements

Specify module interface design

Description of implementation of module

Mathematical software inspections

x < 0 x = 0 x > 0
y < 0 x2-y2 x2-y2 x2+y2

y = 0 x-y x+y x+y
y > 0 x+y x+y x2+y2

H2

H1

G

Fig. 12.8 Normal table

238 12 Overview of Formal Methods

The danger with the usual definition of the piecewise function is that it is more
difficult to be sure that every case has been considered, as it is easy to miss a case or
for the cases to be overlap. Care needs to be taken with the value of the function on
the boundary, as it is easy to introduce inconsistencies. It is straightforward to check
that the tabular expression has covered all cases, and that there are no overlapping
cases. This is done by examination of the headers to check for consistency and
completeness. The headers for the tabular representation of f(x, y) must partition the
values that x and y may take, and this is clear from an examination of the headers.

Normal relation tables and predicate expression tables are interpreted similarly to
normal function tables except that the grid entries are predicate expressions rather
than terms as in the normal function table. The result of the evaluation of a predicate
expression table is a Boolean value of true or false, whereas the result of the
evaluation of the normal relation table is a relation. A characteristic predicate table
is similar except that it is interpreted as a relation whose domain and range consist
of tuples of fixed length. Each element of the tuple is a variable and the tuples are of
the form ((‘x1,’x2,….’xn), (x1’,x2’,….xn’)).

Inverted Function Table
The inverted function table is different from the normal table in that the grid
contains predicates, and the header H2 contains terms. The function f(x, y) is defined
by the following inverted table (Fig. 12.9):

The evaluation of the function f(x, y) for a particular value of x, y is given by:

1. Determine the row i in header H1 that is true.
2. Select row i of the grid and determine the column j of row i that is true.
3. The evaluation of f(x, y) is given by H2(j).

For example, the evaluation of f(−2,5) involves the selection of row 3 of H1 as
y is 5 (>0). This means that row 3 of the grid is then examined and as x is −2 (<0)
column 2 of the grid is selected. Hence, the element in column 2 of H2 is selected as
the evaluation of f(x, y) (i.e. the element x − y). The evaluation of f(−2, 5) is
therefore −2 − 5 = −7.

x +y x –y xy
y < 0 x < 0 x = 0 x > 0
y = 0 x > 0 x < 0 x = 0
y > 0 x = 0 x < 0 x > 0

H2

H1 G

Fig. 12.9 Inverted table

12.4 Tabular Expressions 239

The usual definition of the function f(x, y) defined piecewise is:

f x; yð Þ ¼ xþ y where x\0 ^ y\0;
f x; yð Þ ¼ x� y where x ¼ 0 ^ y\0;
f x; yð Þ ¼ xy where x[0 ^ y\0;
f x; yð Þ ¼ xþ y where x[0 ^ y ¼ 0;
f x; yð Þ ¼ x� y where x\0 ^ y ¼ 0;
f x; yð Þ ¼ xy where x ¼ 0 ^ y ¼ 0;
f x; yð Þ ¼ xþ y where x ¼ 0 ^ y[0;
f x; yð Þ ¼ x� y where x\0 ^ y[0;
f x; yð Þ ¼ xy where x[0 ^ y[0;

Clearly, the tabular expression provides a more concise representation of the
function. The inverted table arises naturallywhen there aremany cases to consider, but
only a fewdistinct values of the function. The function f(x, y) can also be represented in
an equivalent normal function table. In fact, any function that can be represented by an
inverted function table may be represented in a normal function table and vice versa.

Inverted predicate expression tables and inverted relation tables are interpreted
similarly to inverted function tables except that the header H1 consists of predicate
expressions rather than terms. The result of the evaluation of an inverted predicate
expression table is the Boolean value true or false, whereas the evaluation of an
inverted relation table is a relation.

There ismore detailed information onParnas’s contributions to software engineering,
including software requirements, software design and software inspections in [8].

12.5 Review Questions

1. What are Dijkstra’s main achievements in computer science?
2. Describe Dijkstra’s weakest precondition calculus and its application to

formal program development.
3. What are Hoare’s main achievements in computer science?
4. Describe Hoare’s axiomatic semantics and its application to the correct-

ness of computer programs.
5. What are Parnas’s main achievements in computer science?

240 12 Overview of Formal Methods

6. Describe tabular expressions and their applications.
7. What is a normal function table? What is an inverted function table?
8. Investigate Floyd’s contributions to the computing field.

12.6 Summary

Dijkstra, Hoare and Parnas have made important contributions to computer science,
and they have received numerous awards in recognition of their achievements.
Their work has provided a scientific basis for computer software development, and
we presented a selection of their contributions in this chapter.

Dijkstra has made contributions to language development, operating systems,
formal program development and to the vocabulary of Computer Science. His
calculus of weakest preconditions is used for the formal development of computer
programs, where a program and its proof of correctness are developed together.

Hoare has developed the quicksort algorithm, the axiomatic approach to program
semantics, and programming constructs for concurrency. He was responsible for
producing the first commercial compiler for Algol 60 at Elliot Brothers.

Parnas has made a strong contribution to software engineering, including con-
tributions to requirements specification, software design, software inspections,
testing, tabular expressions, predicate logic and ethics for software engineers. His
reflections on software engineering remain valuable and contain the insight gained
over a long career. His tabular expressions are useful in defining piecewise con-
tinuous functions, where tabular expressions are a generalization of tables in which
constants can be replaced by more general mathematical expressions.

Reference

1. G. O’Regan, Mathematical Approaches to Software Quality, vol 26 (Springer, London)
2. G. O’Regan, A Practical Approach to Software Quality (Springer Verlag, New York, 2002)
3. C. Jones, Systematic Software Development using VDM (Prentice Hall International, 1986)
4. E.W. Dijkstra, A Disciple of Programming (Prentice Hall, Englewood Cliffs, NJ, 1976)
5. D. Gries, The Science of Programming (Springer, Berlin, 1981)
6. R. Floyd, Assigning Meanings to Programs, in Proc. Symp. Appl. Math. (19), 19–32 (1967)
7. C.A.R. Hoare, An axiomatic basis for computer programming. Commun. ACM 12(10), 576–

585 (1969)
8. D. Hoffman, D.L. Parnas, in Software Fundamentals, ed. by D. Weiss. Collected Papers by

D.L. Parnas (Addison Wesley, Reading, 21)
9. D.L. Parnas, Tabular Representation of Relations. CRL Report 260.McMaster University,

Canada (1992)
10. R. Janicki, On a Formal Semantics of Tabular Expressions. Technical Report CRL 355.

Communications Research Laboratory, McMaster University, Ontario (1997)

12.5 Review Questions 241

13Automata Theory

Key Topics

Finite-state automata
State transition table
Deterministic FSA
Non-deterministic FSA
Pushdown automata
Turing machine

13.1 Introduction

Automata theory is the branch of computer science that is concerned with the study
of abstract machines and automata. These include finite-state machines, pushdown
automata and Turing machines. Finite-state machines are abstract machines that
may be in one of a finite number of states. These machines are in only one state at a
time (current state), and the input symbol causes a transition from the current state
to the next state. Finite-state machines have limited computational power due to
memory and state constraints, but they have been applied to a number of fields
including communication protocols, neurological systems and linguistics.

Pushdown automata have greater computational power than finite-state machi-
nes, and they contain extra memory in the form of a stack from which symbols may
be pushed or popped. The state transition is determined from the current state of the
machine, the input symbol and the element on the top of the stack. The action may
be to change the state and/or push/pop an element from the stack.

© Springer International Publishing AG 2017
G. O’Regan, Concise Guide to Formal Methods, Undergraduate Topics
in Computer Science, DOI 10.1007/978-3-319-64021-1_13

243

The Turing machine is the most powerful model for computation, and this
theoretical machine is equivalent to an actual computer in the sense that it can
compute exactly the same set of functions. The memory of the Turing machine is a
tape that consists of a potentially infinite number of one-dimensional cells. It
provides a mathematical abstraction of computer execution and storage, as well as
providing a mathematical definition of an algorithm. However, Turing machines are
not suitable for programming, and therefore they do not provide a good basis for
studying programming and programming languages.

13.2 Finite-State Machines

Warren McCulloch and Walter Pitts (two neurophysiologists) published early work
on finite-state automata in 1943. They were interested in modelling the thought
process for humans and machines. Moore and Mealy developed this work further in
the mid-1950s, and their finite-state machines are referred to as the “Mealy
machine” and the “Moore machine”. The Mealy machine determines its outputs
from the current state and the input, whereas the output of Moore’s machine is
based upon the current state alone.

Definition 13.1 (Finite-State Machine)
A finite-state machine (FSM) is an abstract mathematical machine that consists

of a finite number of states. It includes a start state q0 in which the machine is in
initially; a finite set of states Q; an input alphabet R; a state transition function d and
a set of final accepting states F (where F � Q).

The state transition function d takes the current state and an input symbol and
returns the next state. That is, the transition function is of the form:

d : Q� R ! Q

The transition function provides rules that define the action of the machine for
each input symbol, and its definition may be extended to provide output as well as a
transition of the state. State diagrams are used to represent finite-state machines, and
each state accepts a finite number of inputs. A finite-state machine (Fig. 13.1) may
be deterministic or non-deterministic, and a deterministic machine changes to
exactly (or at most)1 one state for each input transition, whereas a non-deterministic
machine may have a choice of states to move to for a particular input symbol.

Finite-state automata can compute only very primitive functions, and so they are
not adequate as a model for computing. There are more powerful automata such as
the Turing machine that is essentially a finite automaton with a potentially infinite
storage (memory). Anything that is computable is computable by a Turing machine.

1The transition function may be undefined for a particular input symbol and state.

244 13 Automata Theory

A finite-state machine can model a system that has a finite number of states, and
a finite number of inputs/events that trigger transitions between states. The beha-
viour of the system at a point in time is determined from its current state and input,
with behaviour defined for the possible input to that state. The system starts in an
initial state.

A finite-state machine (also known as finite-state automata) is a quintuple (R, Q,
d, q0, F). The alphabet of the FSM is given by R; the set of states is given by Q; the
transition function is defined by d : Q � R ! Q; the initial state is given by q0 and
the set of accepting states is given by F (where F is a subset of Q). A string is given
by a sequence of alphabet symbols; that is, s 2 R*, and the transition function d can
be extended to d* : Q � R* ! Q.

A string s 2 R* is accepted by the finite-state machine if d*(q0, s) = qf where qf
2 F, and the set of all strings accepted by a finite-state machine is the language
generated by the machine. A finite-state machine is termed deterministic (Fig. 13.2)
if the transition function d is a function,2 otherwise (where it is a relation) it is said
to be non-deterministic. A non-deterministic automaton is one for which the next
state is not uniquely determined from the present state and input symbol, and the
transition may be to a set of states rather than to a single state.

For the example above, the input alphabet is given by R = {0, 1}; the set of
states by {A, B, C}; the start state by A; the accepting states by {C} and the
transition function is given by the state transition table below (Table 13.1). The
language accepted by the automata is the set of all binary strings that end with a one
that contains exactly two ones.

S0 / 0 S1 / 0 S2 / 1

0
0

0

1

1
1S0 / 0 S1 / 0 S2 / 1

0
0

0

1

1
1

Fig. 13.1 Finite-state machine with output

A B C

0 0

1 1

Fig. 13.2 Deterministic FSM

2It may be a total or a partial function (as discussed in Chap. 4).

13.2 Finite-State Machines 245

A non-deterministic automaton (NFA) or non-deterministic finite-state machine
is a finite-state machine where from each state of the machine and any given input,
the machine may go to several possible next states. However, a non-deterministic
automaton (Fig. 13.3) is equivalent to a deterministic automaton, in that they both
recognize the same formal language (i.e. regular languages as defined in Chomsky’s
classification). For any non-deterministic automaton, it is possible to construct the
equivalent deterministic automaton using power set construction.

NFAs were introduced by Scott and Rabin in 1959, and a NFA is defined
formally as a 5-tuple (Q, R, d, qo, F) as in the definition of a deterministic
automaton, and the only difference is in the transition function d.

d : Q� R ! PQ

The non-deterministic finite-state machine M1 = (Q, R, d, qo, F) may be con-
verted to the equivalent deterministic machine M2 = (Q′, R, d′, qo′, F′) where:

Q′ = ℙQ (the set of all subsets of Q)
qo′ = {qo}
F′ = {q 2Q′and q \ F 6¼ ∅}
d′ (q, r) = [p2q d(p, r) for each state q 2Q′ and r2R.

The set of strings (or language) accepted by an automaton M is denoted L(M).
That is, L(M) = {s: | d*(q0, s) = qf for some qf 2 F}. A language is termed regular if
it is accepted by some finite-state machine. Regular sets are closed under union,
intersection, concatenation, complement and transitive closure. That is, for regular
sets A, B � R* then:

Table 13.1 State transition table

State 0 1

A A B

B B C

C – –

Fig. 13.3 Non-deterministic finite-state machine

246 13 Automata Theory

• A [B and A \ B are regular.
• R*\ A (i.e. Ac) is regular.
• AB and A* is regular.

The proof of these properties is demonstrated by constructing finite-state
machines to accept these languages. The proof for A \ B is to construct a machine
MA\ B that mimics the execution of MA and MB and is in a final state if and only if
both MA and MB are in a final state. Finite-state machines are useful in designing
systems that process sequences of data.

13.3 Pushdown Automata

A pushdown automaton (PDA) is essentially a finite-state machine with a stack, and
its three components (Fig. 13.4) are an input tape; a control unit and a potentially
infinite stack. The stack head scans the top symbol of the stack, and two operations
(push or pop) may be performed on the stack. The push operation adds a new
symbol to the top of the stack, whereas the pop operation reads and removes an
element from the top of the stack.

A pushdown automaton may remember a potentially infinite amount of infor-
mation, whereas a finite-state automaton remembers only a finite amount of
information. A PDA also differs from a FSM in that it may use the top of the stack
to decide on which transition to take, and it may manipulate the stack as part of
performing a transition. The input and current state determine the transition of a
finite-state machine, and the FSM has no stack to work with.

A pushdown automaton is defined formally as a 7-tuple (R, Q, C, d, q0, Z, F).
The set R is a finite set which is called the input alphabet; the set Q is a finite set of
states; C is the set of stack symbols; d is the transition function which maps
Q � {R [{e}}3 � C into finite subsets of Q � C*4; q0 is the initial state; Z is the
initial stack top symbol on the stack (i.e. Z 2 C) and F is the set of accepting states
(i.e. F � Q).

Figure 13.5 shows a transition from state q1 to q2, which is labelled as a, b !
c. This means that if the input symbol a occurs in state q1, and the symbol on the
top of the stack is b, then b is popped from the stack and c is pushed onto the stack.
The new state is then q2.

In general, a pushdown automaton has several transitions for a given input
symbol, and so pushdown automata are mainly non-deterministic. If a pushdown
automaton has at most one transition for the same combination of state, input
symbol, and top of stack symbol, it is said to be a deterministic PDA (DPDA). The
set of strings (or language) accepted by a pushdown automaton M is denoted L(M).

3The use of {R [{e}} is to formalize that the PDA can either read a letter from the input, or
proceed leaving the input untouched.
4This could also be written as d :Q � {R [{e}} � C!ℙ(Q � C*). It may also be described as a
transition relation.

13.2 Finite-State Machines 247

The class of languages accepted by pushdown automata is the context-free
languages, and every context-free grammar can be transformed into an equivalent
non-deterministic pushdown automaton. There is more detailed information on the
classification of languages in Chap. 12 of [1].

Example (Pushdown Automata) Construct a non-deterministic pushdown
automaton which recognizes the language {0n1n | n � 0}.

Solution We construct a pushdown automaton M = (R, Q, C, d, q0, Z, F) where
R = {0, 1}; Q = {q0, q1, qf}; C = {A, Z}; q0 is the start state; the start stack symbol
is Z and the set of accepting states is given by {qf}:. The transition function
(relation) d is defined by

1. (q0, 0, Z) ! (q0, AZ)
2. (q0, 0, A) ! (q0, AA)
3. (q0, e, Z) ! (q1, Z)
4. (q0, e, A) ! (q1, A)
5. (q1, 1, A) ! (q1, e)
6. (q1, e, Z) ! (qf, Z)

The transition function (Fig. 13.6) essentially says that whenever the value 0
occurs in state q0, then A is pushed onto the stack. Parts (3) and (4) of the transition
function essentially state that the automaton may move from state q0 to state q1 at

q1 q2

a, b → c

Input symbol
Top stack
symbol Push symbol

Fig. 13.5 Transition in pushdown automata

Stack

Stack head

Finite
Control
Unit

Takes input

Input Tape

Push/pop

Fig. 13.4 Components of pushdown automata

248 13 Automata Theory

any moment. Part (5) states when the input symbol is 1 in state q1, then one symbol
A is popped from the stack. Finally, part (6) states the automaton may move from
state q1 to the accepting state qf only when the stack consists of the single stack
symbol Z.

For example, it is easy to see that the string 0011 is accepted by the automaton,
and the sequence of transitions is given by:

ðq0; 0011; ZÞ ‘ ðq0; 011; AZÞ ‘ ðq0; 11; AAZÞ ‘ ðq1; 11; AAZÞ
‘ ðq1; 1; AZÞ ‘ ðq1; e; ZÞ ‘ ðqf ; ZÞ:

13.4 Turing Machines

Turing introduced the theoretical Turing machine in 1936, and this abstract
mathematical machine consists of a head and a potentially infinite tape that is
divided into frames (Fig. 13.7). Each frame may be either blank or printed with a
symbol from a finite alphabet of symbols. The input tape may initially be blank or
have a finite number of frames containing symbols. At any step, the head can read
the contents of a frame; the head may erase a symbol on the tape, leave it
unchanged or replace it with another symbol. It may then move one position to the
right, one position to the left or not at all. If the frame is blank, the head can either
leave the frame blank or print one of the symbols.

q0
q1

ε;Z/Zε
qf

0;Z/AZ
0;A/AA 1;A/ε

Fig. 13.6 Transition function for pushdown automata M

Tape Head (move left or right)

Control
Unit

Potentially Infinite Tape

Transition Function
Finite Set of States

Fig. 13.7 Turing machine

13.3 Pushdown Automata 249

Turing believed that a human with finite equipment and with an unlimited
supply of paper to write on could do every calculation. The unlimited supply of
paper is formalized in the Turing machine by a paper tape marked off in squares,
and the tape is potentially infinite in both directions. The tape may be used for
intermediate calculations as well as input and output. The finite number of con-
figurations of the Turing machine was intended to represent the finite states of mind
of a human calculator.

The transition function determines for each state and the tape symbol what the
next state to move to and what should be written on the tape, and where to move the
tape head. The Turing machine is defined formally as follows:

Definition 13.2 (Turing Machine)
A Turing machine M = (Q, C, b, R, d, q0, F) is a 7-tuple is defined as follows in

[2]:

• Q is a finite set of states.
• C is a finite set of the tape alphabet/symbols.
• b 2 C is the blank symbol (This is the only symbol that is allowed to occur

infinitely often on the tape during each step of the computation).
• R is the set of input symbols and is a subset of C (i.e. C = R [{b}).
• d : Q � C ! Q � C � {L, R}5 is the transition function. This is a partial

function where L is left shift and R is right shift.
• q0 2 Q is the initial state.
• F � Q is the set of final or accepting states.

The Turing machine is a simple machine that is equivalent to an actual physical
computer in the sense that it can compute exactly the same set of functions. It is
much easier to analyse and prove things about than a real computer, but it is not
suitable for programming and therefore does not provide a good basis for studying
programming and programming languages.

Figure 13.8 illustrates the behaviour when the machine is in state q1 and the
symbol under the tape head is a, where b is written to the tape and the tape head
moves to the left and the state changes to q2.

A Turing machine is essentially a finite-state machine (FSM) with an unbounded
tape. The tape is potentially infinite and unbounded, whereas real computers have a
large but finite store. The machine may read from and write to the tape. The FSM is
essentially the control unit of the machine, and the tape is essentially the store.
However, the storage in a real computer may be extended with backing tapes and
disks and in a sense may be regarded as unbounded. However, the maximum
amount of tape that may be read or written within n steps is n.

5We may also allow no movement of the tape head to be represented by adding the symbol “N” to
the set.

250 13 Automata Theory

A Turing machine has an associated set of rules that defines its behaviour. Its
actions are defined by the transition function. It may be programmed to solve any
problem for which there is an algorithm. However, if the problem is unsolvable,
then the machine will either stop or compute forever. The solvability of a problem
may not be determined beforehand. There is, of course, some answer (i.e. either the
machine halts or it computes forever). The applications of the Turing machine to
computability and decidability are discussed in Chap. 13 of [1].

Turing also introduced the concept of a Universal Turing Machine, and this
machine is able to simulate any other Turing machine. For more detailed infor-
mation on automata theory, see [2].

13.5 Review Questions

1. What is a finite-state machine?
2. Explain the difference between a deterministic and non-deterministic

finite-state machine.
3. Show how to convert the non-deterministic finite-state automaton in

Fig. 7.3 to a deterministic automaton.
4. What is a pushdown automaton?
5. What is a Turing machine?
6. Explain what is meant by the language accepted by an automaton.
7. Give an example of a language accepted by a pushdown automaton but

not by a finite-state machine.
8. Describe the applications of the Turing machine to computability and

decidability.

13.6 Summary

Automata theory is concerned with the study of abstract machines and automata.
These include finite-state machines, pushdown automata and Turing machines.
Finite-state machines are abstract machines that may be in one of a finite number of

q1 q2

a / b L

Fig. 13.8 Transition on Turing machine

13.4 Turing Machines 251

states. These machines are in only one state at a time (current state), and the state
transition function determines the new state from the current state and the input
symbol. Finite-state machines have limited computational power due to memory
and state constraints, but they have been applied to a number of fields including
communication protocols and linguistics.

Pushdown automata have greater computational power than finite-state machi-
nes, and they contain extra memory in the form of a stack from which symbols may
be pushed or popped. The state transition is determined from the current state of the
machine, the input symbol and the element on the top of the stack. The action may
be to change the state and/or push/pop an element from the stack.

The Turing machine is the most powerful model for computation, and it is
equivalent to an actual computer in the sense that it can compute exactly the same
set of functions. The Turing machine provides a mathematical abstraction of
computer execution and storage, as well as providing a mathematical definition of
an algorithm.

References

1. G. O’Regan, Guide to Discrete Mathematics (Springer, Switzerland, 2016)
2. J.E. Hopcroft, J.D. Ullman, Introduction to Automata Theory, Languages and Computation

(Addison-Wesley, Boston (1979)

252 13 Automata Theory

14Model Checking

Key Topics

Concurrent systems
Temporal logic
State explosion
Safety and liveness properties
Fairness properties
Linear temporal logic
Computational tree logic

14.1 Introduction

Model checking is an automated technique such that given a finite state model of a
system and a formal property (expressed in temporal logic), then it systematically
checks whether the property is true of false in a given state in the model. It is an
effective technique to identify potential design errors, and it increases the confi-
dence in the correctness of the system design. Model checking is a highly effective
verification technology and is widely used in the hardware and software fields. It
has been employed in the verification of microprocessors; in security protocols; in
the transportation sector (trains); and in the verification of software in the space
sector.

Early work on model checking commenced in the early 1980s (especially in
checking the presence of properties such as mutual exclusion and the absence of
deadlocks), and the term “model checking” was coined by Clarke and Emerson [1]
who combined the state exploration approach and temporal logic in an efficient

© Springer International Publishing AG 2017
G. O’Regan, Concise Guide to Formal Methods, Undergraduate Topics
in Computer Science, DOI 10.1007/978-3-319-64021-1_14

253

manner. Clarke and Emerson received the ACM Turing Award in 2007 for their
role in developing model checking into a highly effective verification technology.

Model checking is a formal verification technique based on graph algorithms and
formal logic. It allows the desired behaviour (specification) of a system to be
verified, and its approach is to employ a suitable model of the system, and to carry
out a systematic and exhaustive inspection of all states of the model to verify that
the desired properties are satisfied. These properties are generally safety properties
such as the absence of deadlock, request–response properties and invariants. The
systematic search shows whether a given system model truly satisfies a particular
property or not.

The phases in the model checking process include the modelling, running and
analysis phases (Table 14.1).

The model-based techniques use mathematical models to describe the required
system behaviour in precise mathematical language, and the system models have
associated algorithms that allow all states of the model to be systematically
explored. Model checking is used for formally verifying finite state concurrent
systems (typically modelled by automata), where the specification of the system is
expressed in temporal logic, and efficient algorithms are used to traverse the model
defined by the system (in its entirety) to check whether the specification holds or
not. Of course, any verification using model-based techniques is only as good as the
underlying model of the system.

Model checking is an automated technique such that given a finite state model of
a system and a formal property, then a systematic search may be conducted to
determine whether the property holds for a given state in the model. The set of all
possible states is called the model’s state space, and when a system has a finite state
space, it is then feasible to apply model checking algorithms to automate the
demonstration of properties, with a counter-example exhibited if the property is not
valid.

The properties to be validated are generally obtained from the system specifi-
cation, and they may be quite elementary; for example, a deadlock scenario should
never arise (i.e. the system should never be able to reach a situation where no
further progress is possible). The formal specification describes what the system
should do, whereas the model description (often automatically generated) is an

Table 14.1 Model checking process

Phase Description

Modelling
phase

Model the system under consideration
Formalize the property to be checked

Running phase Run the model checker to determine the validity of the property in the
model

Analysis phase Is the property satisfied? If applicable, check next property
If the property is violated then

1. Analyse generated counter-example
2. Refine model, design or property

If out of space try alternative approach (e.g. abstraction of system model)

254 14 Model Checking

accurate and unambiguous description of how the system actually behaves. The
model is often expressed in a finite state machine consisting of a finite set of states
and a finite set of transitions.

Figure 14.1 shows the structure of a typical model checking system where a
preprocessor extracts a state transition graph from a program or circuit. The model
checking engine then takes the state transition graph and a temporal formula P and
determines whether the formula is true or not in the model.

The properties need to be expressed precisely and unambiguously (usually in
temporal logic) to enable rigorous verification to take place. Model checking
extracts a finite model from a system and then checks some property of that model.
The model checker performs an exhaustive state search, which involves checking
all system states to determine whether they satisfy the desired property or not
(Fig. 14.2).

If a state that violates the desired property is determined (i.e. a defect has been
found once it is shown that the system does not fulfil one of its specified properties),
then the model checker provides a counter-example indicating how the model can
reach this undesired state. The system is considered to be correct if it satisfies all of
the specified properties. In the cases of where the model is too large to fit within the
physical memory of the computer (state explosion problem), then other approaches
such as abstraction of the system model or probabilistic verification may be
employed.

There may be several causes of a state violating the desired property. It may be
due to a modelling error (i.e. the model does not reflect the design of the system,
and the model may need to be corrected and the model checking restarted).
Alternatively, it may be due to a design error with improvements needed to the
design, or it may be due to an error in the statement of the property with a
modification to the property required and the model checking needs to be restarted.

Model checking is expressed formally by showing that a desired property
P (expressed as a temporal logic formula) and a model M with initial state s, that
P is always true in any state derivable from s (i.e. M, s ⊨ P). We discussed
temporal logic briefly in Chap. 7, and model checking is concerned with verifying
that linear time properties such as safety, liveness and fairness properties are always
satisfied, and it employs linear temporal logic and branching temporal logic.
Computational tree logic is a branching temporal logic where the model of time is a

Preprocessor Model Checker

Program /
Circuit

True /
False

Formula P

Fig. 14.1 Concept of model checking

14.1 Introduction 255

tree-like structure, with many different paths in the future, one of which might be an
actual path which is realized.

One problem with model checking is the state space explosion problem, where
the transition graph grows exponentially on the size of the system, which makes the
exploration of the state space difficult or impractical. Abstraction is one technique
that aims to deal with the state explosion problem, and it involves creating a
simplified version of the model (the abstract model). The abstract model may be
explored in a reasonable period of time, and the abstract model must respect the
original model with respect to key properties such that if the property is valid in the
abstract model it is valid in the original model.

Model checking has been applied to areas such as the verification of hardware
designs, embedded systems, protocol verification and software engineering. Its
algorithms have improved over the years, and today model checking is a mature
technology for verification and debugging with many successful industrial
applications.

The advantages of model theory include the fact that the user of the model
checker does not need to construct a correctness proof (as in automated Theo-
rem Proving or proof checking). Essentially, all the user needs to do is to input a
description of the program or circuit to be verified and the specification to be
checked, and to then press the return key. The checking process is then automatic
and fast, and it provides a counter-example if the specification is not satisfied. One
weakness of model checking is that it verifies an actual model rather than the actual
system, and so its results are only as good as the underlying model. Model checking
is described in detail in [2].

Requirements

Formal
Specification

Actual System

System
Model

modellingformalizing

Model
Checking

satisfied counter example

Fig. 14.2 Model checking

256 14 Model Checking

14.2 Modelling Concurrent Systems

Concurrency is a form of computing in which multiple computations (processes)
are executed during the same period of time. Parallel computing allows execution
to occur in the same time instant (on separate processors of a multiprocessor
machine), whereas concurrent computing consists of process lifetimes overlapping
and where execution need not happen at the same time instant.

Concurrency employs interleaving where the execution steps of each process
employ time-sharing slices so that only one process runs at a time, and if it does not
complete within its time slice it is paused; another process begins or resumes; and
then later the original process is resumed. In other words, only one process is
running at a given time instant, whereas multiple processes are part of the way
through execution.

It is important to identify concurrency-specific errors such as deadlock and
livelock. A deadlock is a situation in which the system has reached a state in which
no further progress can be made, and at least one process needs to complete its
tasks. Livelock refers to a situation where the processes in a system are stuck in a
repetitive task and are making no progress towards their functional goals.

It is essential that safety properties such as mutual exclusion (at most one process
is in its critical section at any given time) are not violated. In other words, some-
thing bad (e.g. a deadlock situation) should never happen; liveness properties
(a desired event or something good eventually happens) are satisfied; and invariants
(properties that are true all the time) are never violated. These behaviour errors may
be mechanically detected if the systems are properly modelled and analysed.

Transition systems (Fig. 14.3) are often used as models to describe the beha-
viour of systems, and these are directed graphs with nodes representing states and
edges that represent state transitions. A state describes information about a system
at a certain moment of time. For example, the state of a sequential computer
consists of the values of all program variables and the current value of the program
counter (pointer to next program instruction to be executed).

A transition describes the conditions under which a system moves from one state
to another. Transition systems are expressive in that programs are transition sys-
tems; communicating processes are transition systems; and hardware circuits are
transition systems,

Pay

SelectCoke

Get Coke Insert coin

Choc

Get Choc

ττττττττ

Fig. 14.3 Simple transition system

14.2 Modelling Concurrent Systems 257

The transitions are associated with action labels that indicate the actions that
cause the transition. For example, in Fig. 14.3, the Insert coin is a user action,
whereas the Get coke and Get choc are actions that are performed by the machine.
The activity s represents an internal activity of the vending machine that is not of
interest to the modeller. Formally, a transition system TS is a tuple (S, Act,!, I, AP,
L) such that:

S is the set of states
Act is the set of actions
! S � Act � S is the transition relation (source state, action and

target state)
I � S is the set of initial states
AP is a set of atomic propositions
L: S ! ℙ AP (power set of AP)is a labelling function

The transition (s, a, s′) is written as s!
a

s0

L(s) are the atomic propositions in AP that are satisfied in state s.
A concurrent system consists of multiple processes executing concurrently. If a

concurrent system consists of n processes where each process proci is modelled by a
transition system TSi, then the concurrent system may be modelled by a transition
system (|| is the parallel composition operator):

TS ¼ TS1jjTS2jj. . .jjTSn
There are various operators used in modelling concurrency with transition sys-

tems, including operators for interleaving, communication via shared variables,
handshaking and channel systems.

14.3 Linear Temporal Logic

Temporal logic was discussed in Chap. 7 and is concerned with the expression of
properties that have time dependencies. The existing temporal logics allow facts
about the past, present and future to be expressed. Temporal logic has been applied
to specify temporal properties of natural language, as well as the specification and
verification of program and system behaviour. It provides a language to encode
temporal knowledge in Artificial Intelligence applications, and it plays a useful role
in the formal specification and verification of temporal properties (e.g. liveness and
fairness) in safety critical systems.

The statements made in temporal logic can have a truth-value that varies over
time. In other words, sometimes the statement is true and sometimes it is false, but it
is never true or false at the same time. The two main types of temporal logics are
linear time logics (reason about a single time line) and branching time logics
(reason about multiple timelines).

258 14 Model Checking

Linear temporal logic (LTL) is a modal temporal logic that can encode formulae
about the future of paths (e.g. a condition that will eventually be true). The basic
linear temporal operators that are often employed (p is an atomic proposition below)
are listed in Table 14.2 and illustrated in Fig. 14.4.

For example, consider how the sentence “This microwave does not heat up until
the door is closed” is expressed in temporal logic. This is naturally expressed with
the until operator p [q as follows:

:HeatupUDoorClosed

14.4 Computational Tree Logic

In linear logic, we look at the execution paths individually, whereas in branching
time logics, we view the computation as a tree. Computational tree logic (CTL) is a
branching time logic, which means that its model of time is a tree-like structure in
which the future is not determined, and so there are many paths in the future such
that any of them could be an actual path that is realized. CTL was first proposed by
Clark and Emerson in the early 1980s.

Computational tree logic can express many properties of finite state concurrent
systems.Eachoperatorof the logic has twoparts, namely thepathquantifier (A—“every
path”, E—“there exists a path”) and the state quantifier (F, P, X, U as explained in
Table 14.3). The operators in CTL logic are given by:

For example, the following is a valid CTL formula that states that it is always
possible to get to the restart state from any state:

Table 14.2 Basic temporal
operators

Operator Description

Fp p holds sometime in the future

Gp p holds globally in the future

Xp p holds in next time instant

p [q p holds until q is true

ppppp p
. . .

p
. . .

qppp p
. . .

G p

F p

p U q

Fig. 14.4 LTL operators

14.3 Linear Temporal Logic 259

AG EF restartð Þ

14.5 Tools for Model Checking

There are various tools for model checking including Spin, Bandera, SMV and
UppAal. These tools perform a systematic check on property P in all states and are
applicable if the system generates a finite behavioural model. Model checking tools
use a model-based approach rather than a proof-rule-based approach, and the goal is
to determine whether the concurrent program satisfies a given logical property.

Spin is a popular open-source tool that is used for the verification of distributed
software systems (especially concurrent protocols), and it checks finite state sys-
tems with properties specified by linear temporal logic. It generates a
counter-example trace if it determines that a property is violated.

Spin has its own input specification language (PROMELA), and so the system to
be verified needs to be translated to the language of the model checker. The
properties are specified using LTL.

Bandera is a tool for model checking Java source code, and it automates the
extraction of a finite state model from the Java source code. It then translates into an
existing model checker’s input language. The properties to be verified are specified
in the Bandera Specification Language (BSL), which supports precondition and
postcondition and temporal properties.

14.6 Industrial Applications of Model Checking

There are many applications of model checking in the hardware and software fields,
including the verification of microprocessors and security protocols, as well as
applications in the transportation sector (trains) and in the space sector.

Table 14.3 CTL temporal operators

Operator Description

Au (all) u holds on all paths starting from the current state

Eu (exists) u holds on at least one path starting from the current state

Xu (next) u holds in the next state

Gu (global) u has to hold on the entire subsequent path

Fu (finally) u eventually has to hold (somewhere on the subsequent path)

u [w (until) u has to hold until at some position w holds

uWw (weak until) u has to hold until w holds (no guarantee w will ever hold)

260 14 Model Checking

The Mars Science Laboratory (MSL) mission used model checking as part of the
verification of the critical software for the landing of Curiosity (a large rover) in its
mission to Mars. The hardware and software of a spacecraft must be designed for a
high degree of reliability, as an error can lead to a loss of the mission. The Spin model
checker was employed for the model verification, and the rover landed safely on 5
August 2012.

CMG employed formal methods as part of the specification and verification of
the software for a movable flood barrier, which is used to protect the port of
Rotterdam from flooding. Z was employed for modelling data, and operations and
Spin/Promela were used for model checking.

Lucent’s Pathstar Access Server was developed in the late 1990s, and this
system is capable of sending voice and data over the Internet. Formal methods are
often employed in the telecommunications sector in dealing with the feature
interaction problem. The automated verification techniques applied to Pathstar
consist of generating an abstract model from the implemented C code, and then
defining the formal requirements that the application is satisfy. Finally, the model
checker is employed to perform the verification.

14.7 Review Questions

1. What is model checking?
2. Explain the state explosion problem.
3. Explain the difference between parallel processing and concurrency.
4. Describe the basic temporal operators.
5. Describe the temporal operators in CTL.
6. Explain the difference between liveness and fairness properties.
7. What is a transition system?
8. Explain the difference between linear temporal logic and branching tem-

poral logic.
9. Investigate tools to support model checking.

14.8 Summary

Model checking is a formal verification technique which allows the desired beha-
viours of a system to be verified. Its approach is to employ a suitable model of the
system and to carry out a systematic inspection of all states of the model to verify

14.6 Industrial Applications of Model Checking 261

the properties. The properties to be validated are generally obtained from the system
specification, a defect is found once it is shown that the system does not fulfil one of
its specified properties, and the system is considered to be correct if it satisfies all of
the specified properties.

It allows the desired behaviour (specification) of a system to be verified, and its
approach is to employ a suitable model of the system and to carry out a systematic
and exhaustive inspection of all states of the model to verify that the desired
properties are satisfied. These properties are generally properties such as the
absence of deadlock and invariants. The systematic search shows whether a given
system model truly satisfies a particular property or not.

The model-based techniques use mathematical models to describe the required
system behaviour in precise mathematical language, and the system models have
associated algorithms that allow all states of the model to be systematically
explored. The specification of the system is expressed in temporal logic, and effi-
cient algorithms are used to traverse the model defined by the system (in its
entirety) to check whether the specification holds or not. Model-based techniques
are only as good as the underlying model of the system.

References

1. E.M. Clarke, E.A. Emerson, Design and synthesis of synchronizationskeletons using branching
time temporal logic, in Logic of Programs: Work-Shop, Yorktown Heights, NY, May 1981, vol.
131 of LNCS (Springer, 1981)

2. C. Baier, J. Pieter Katoen, Principles of Model Checking (MIT Press, Cambridge, 2008)

262 14 Model Checking

15The Nature of Theorem Proving

Key Topics

Mathematical proof
Formal proof
Automated theorem prover
Interactive theorem prover
Logic theorist
Resolution
Proof checker

15.1 Introduction

The word proof is generally interpreted as arguments in natural language that
presents facts or evidence to establish a particular conclusion. Several premises
(which are already established) are presented, and from these premises (via
deductive or inductive reasoning), further propositions are established, until finally
the conclusion is established.

A mathematical proof typically includes natural language and mathematical
symbols, and often, many of the tedious details of the proof are omitted. Mathe-
matical proof dates back to the Greeks, and most students are familiar with Euclid’s
work (The Elements) in geometry, where from a small set of axioms and postulates
and definitions he derived many of the well-known theorems of geometry. Euclid
was a Hellenistic mathematician based in Alexandria around 300BC, and his style
of proof was mainly constructive; that is, in addition to the proof of the existence of
an object, he actually constructed the object in the proof. Euclidean geometry
remained unchallenged for over 2000 years, until the development of the

© Springer International Publishing AG 2017
G. O’Regan, Concise Guide to Formal Methods, Undergraduate Topics
in Computer Science, DOI 10.1007/978-3-319-64021-1_15

263

non-Euclidean geometries in the nineteenth century, and these geometries were
based on a rejection of Euclid’s controversial 5th postulate (the parallels postulate).

Mathematical proof may employ a “divide and conquer” technique, i.e.,
breaking the conjecture down into subgoals and then attempting to prove each of
the subgoals. Another common proof technique is indirect proof where we assume
the opposite of what we wish to prove, and we show that this results in a contra-
diction (e.g. consider the proof that there are an infinite number of primes or the
proof that there is no rational number whose square is 2). Other proof techniques
used are the method of mathematical induction, where involves a proof of the base
case and inductive step.

Aristotle developed syllogistic logic in the fourth-century BC, and the rules of
reasoning with valid syllogisms remained dominant in logic up to the nineteenth
century. Boole develops his mathematical logic in the mid-nineteenth century, and
he aimed to develop a calculus of reasoning to verify the correctness of arguments
using logical connectives. Predicate logic (including universal and existential
quantifiers) was introduced by Frege in the late nineteenth century as part of his
efforts to derive mathematics from purely logical principles. Russell and Whitehead
continued this attempt in Principia Mathematica, and Russell introduced the theory
of types to deal with the paradoxes in set theory, which he identified in Frege’s
system.

The formalists introduced extensive axioms in addition to logical principles, and
Hilbert’s program led to the definition of a formal mathematical proof as a sequence
of formulae, where each element is either an axiom or derived from a previous
element in the series by applying a fixed set of mechanical rules (e.g. modus
ponens). The last line in the proof is the theorem to be proved, and the formal proof
is essentially syntactic following rules with the formulae simply a string of symbols
and the meaning of the symbols is unimportant.

The formalists later ran into problems in trying to prove that a formal system
powerful enough to include arithmetic was both complete and consistent, and the
results of Gödel showed that such a system would be incomplete (and one of the
propositions without a proof is that of its own consistency). Turing later showed
(with his Turing machine) that mathematics is undecidable; that is, there is no
algorithm or mechanical procedure that may be applied in a finite number of steps
to determine whether an arbitrary mathematical proposition is true or false.

The proofs employed in mathematics are rarely formal (in the sense of Hilbert’s
program), and whereas they involve deductions from a set of axioms, these
deductions are rarely expressed as the application of individual rules of logical
inference. Many proofs in formal methods are concerned with cross-checking the
details of the specification, or checking the validity of the refinement steps, or
checking that certain properties are satisfied by the specification. There are often
many tedious lemmas to be proved, and theorem provers1 are essential in dealing
with these. Machine proof is explicit, and reliance on some brilliant insight is

1Most existing theorem provers are difficult to use and are for specialist use only. There is a need to
improve the usability of theorem provers.

264 15 The Nature of Theorem Proving

avoided. Proofs by hand in formal methods are notorious for containing errors or
jumps in reasoning, whereas machine proofs are explicit but are often extremely
lengthy and essentially unreadable.

The application of formal methods in an industrial environment requires the use
of machine-assisted proof, since thousands of proof obligations arise from a formal
specification, and theorem provers are essential in resolving these efficiently.
Automated theorem proving (ATP) is difficult, as often mathematicians prove a
theorem with an initial intuitive feeling that the theorem is true. Human intervention
to provide guidance or intuition improves the effectiveness of the theorem prover.

The proof of various properties about a program increases confidence in its
correctness. However, an absolute proof of correctness2 is unlikely except for the
most trivial of programs. A program may consist of legacy software that is assumed
to work; a compiler that is assumed to work correctly creates it. Theorem provers
are programs that are assumed to function correctly. The best that formal methods
can claim is increased confidence in correctness of the software, rather than an
absolute proof of correctness.

15.2 Early Automation of Proof

Early work on the automation of proof began in the 1950s with the beginning of
work in the Artificial Intelligence field, where the early AI practitioners were trying
to develop a “thinking machine”. One of the earliest programs developed was the
Logic Theorist, which was presented at the Dartmouth conference on Artificial
Intelligence in 1956 [1].

It was developed by Allen Newell and Herbert Simon, and it could prove 38 of
the first 52 theorems from Russell and Whitehead’s Principia Mathematica.3 The
Logic Theorist proved theorems in the propositional calculus (see Chap.6), but did
not support predicate calculus. It used the five basic axioms of propositional logic
and three rules of inference from the Principii to prove theorems. It was pro-
grammed to start with the theorem to be proved and to then search for a proof of it
(Fig. 15.1).4

2This position is controversial with others arguing that if correctness is defined mathematically,
then the mathematical definition (i.e. formal specification) is a theorem, and the task is to prove
that the program satisfies the theorem. They argue that the proofs for non-trivial programs exist
and that the reason why there are not many examples of such proofs is due to a lack of
mathematical specifications.
3Russell is said to have remarked that he was delighted to see that the Principia Mathematica could
be done by machine and that if he and Whitehead had known this in advance that they would not
have wasted 10 years doing this work by hand in the early twentieth century.
4Another possibility (though an inefficient and poor simulation of human intelligence) would be to
start with the five axioms of the Principia and to apply the three rules of inference to logically
derive all possible sequences of valid deductions. This is known as the British Museum algorithm
(as sensible as putting monkeys in front of typewriters to reproduce all of the books of the British
Museum).

15.1 Introduction 265

If no immediate one-step proof could be found, then a set of subgoals was
generated (these are formulae from which the theorem may be proved in one step)
and proofs of these were then searched for, and so on. The program could use
previously proved theorems in the course of developing a proof of a new theorem.
Newell and Simon were hoping that the Logic Theorist would do more than just
prove theorems in logic, and their goal was that it would attempt to prove theorems
in a human-like way and especially with a selective search.

However, in practice, the Logic Theorist search was not very selective in its
approach, and the subproblems were considered in the order in which they were
generated, and so there was no actual heuristic procedure (as in human
problem-solving) to guess at which subproblem was most likely to yield an actual
proof. This meant that the Logic Theorist could, in practice, find only very short
proofs, since as the number of steps in the proof increased, the amount of search
required to find the proof exploded.

The Geometry Machine was developed by Herbert Gelernter at the IBM
Research Center in New York in the late 1950s, with the goal of developing
intelligent behaviour in machines. It differed from the Logic Theorist in that it
selected only the valid subgoals (i.e. it ignored the invalid ones) and attempted to
find a proof of these. The Geometry Machine was successful in finding the solution
to a large number of geometry problems taken from high-school textbooks in plane
geometry.

The logicians Hao Wang and Evert Beth (the inventor of semantic tableaux
which was discussed in Chap. 6) were critical of the approaches of the AI pioneers
and believed that mathematical logic could do a lot more. Wang and others
developed a theorem prover for first-order predicate calculus in 1960, but it had
serious limitations due to the combinatorial explosion.

Alan Robinson’s work on theorem provers in the early 1960s led to a proof
procedure termed “resolution”, which appeared to provide a breakthrough in the
automation of predicate calculus theorem provers. A resolution theorem prover is
essentially provided with the axioms of the field of mathematics in question and the
negation of the conjecture whose proof is sought. It then proceeds until a

Problem /
Axioms

Proof

Yes

No Timeout

ATP (Automated
Theorem Prover)

Fig. 15.1 Idea of automated
theorem proving

266 15 The Nature of Theorem Proving

contradiction is reached, where there is no possible way for the axioms to be true
and for the conjecture to be false.

The initial success of resolution led to excitement in the AI field where pioneers
such as John McCarthy (see Chap. 7) believed that human knowledge could be
expressed in predicate calculus5 and that therefore if resolution was indeed suc-
cessful for efficient automated theorem provers, then the general problem of Arti-
ficial Intelligence was well on the way to a solution. However, while resolution led
to improvements with the state explosion problem, it did not eliminate the problem.

This led to a fall off in research into resolution-based approaches to theorem
proving, and other heuristic-based techniques were investigated by Bledsoe in the
late 1970s. The field of logic programming began in the early 1970s with the
development of the Prolog programming language. Prolog is in a sense an appli-
cation of automated theorem proving, where problems are stated in the form of
goals (or theorems) in which the system tries to prove using a resolution theorem
prover. The theorem prover generally does not need to be very powerful as many
Prolog programs require only a very limited search, and a depth-first search from
the goal backwards to the hypotheses is conducted.

The Argonne Laboratory developed the Aura System in the early 1980s (it was
later replaced by Otter), as an improved resolution-based automated theorem pro-
ver, and this led to renewed interest in resolution-based approaches to theorem
proving. There is a more detailed account of the nature of proof and theorem
proving in [1].

15.3 Interactive Theorem Provers

The challenges in developing efficient automated theorem provers led researchers to
question whether an effective fully automated theorem prover was possible, and
whether it made more sense to develop a theorem prover that could be guided by a
human in its search for a proof. This led to the concept of interactive theorem
proving (ITP) which involves developing formal proofs by man–machine collab-
oration and is (in a sense) a new way of doing mathematics in front of a computer.

Such a system is potentially useful in mathematical research in formalizing and
checking proofs, and it allows the user to concentrate on the creative parts of the
proof and relieves the user of the need of carrying out the trivial steps in the proof.
It is also a useful way of verifying the correctness of published mathematical proofs

5McCarthy’s viewpoint that predicate logic was the solution for the AI field was disputed by
Minsksy and others (resulting in a civil war between the logistics and the proceduralists). The
proceduralists argued that formal logic was an inadequate representation of knowledge for AI and
that predicate calculus was an overly rigid and inadequate framework. They argued that an
alternative approach such as the procedural representation of knowledge was required.

15.2 Early Automation of Proof 267

by acting as a proof checker, where the ITP is provided with a formal proof
constructed by a human, which may then be checked for correctness.6 Such a
system is important in program verification in showing that the program satisfies its
specification, especially in the safety/security critical fields.

A group at Princeton developed a series of systems called semi-automated
mathematics (SAM) in the late 1960s, which combined logic routines with human
guidance and control. Their approach placed the mathematician at the heart of the
theorem proving, and it was a departure from the existing theorem proving
approaches where the computer attempted to find proofs unaided. SAM provided a
proof of an unproven conjecture in lattice theory (SAM’s lemma), and this is
regarded as the first contribution of automated reasoning systems to mathematics [1].

De Bruijn and others at the Technics Hogeschool in Eindhoven in the Nether-
lands commenced development of the Automath system in the late 1960s. This was
a large-scale project for the automated verification of mathematics, and it was tested
by treating a full textbook. Automath systematically checked the proofs from
Landau’s text Grundlagen der Analysis (this foundation of analysis text was first
published in 1930).

The typical components of an interactive theorem prover include an interactive
proof editor to allow editing of proofs, formulae and terms in a formal theory of
mathematics, and a large library of results which is essential for achieving complex
results.

The Gypsy verification environment and its associated theorem prover was
developed at the University of Texas in the 1980s, and it achieved early success in
program verification with its verification of the encrypted packet interface program
(a 4200 line program). It supports the development of software systems and formal
mathematical proof of their behaviour.

The Boyer-Moore theorem prover (NQTHM) was developed in the 1970/1980s
at the University of Texas. It supports mathematical induction as a rule of inference,
and induction is a useful technique in proving properties of programs. The axioms
of Peano arithmetic are built into the theorem prover, and new axioms added to the
system need to pass a “correctness test” to prevent the introduction of inconsis-
tencies. It is far more automated than many other interactive theorem provers, but it
requires detailed human guidance (with suggested lemmas) for difficult proofs. The
user therefore needs to understand the proof being sought and the internals of the
theorem prover. Many mathematical theorems have been proved including Gödel’s
incompleteness theorem.

The HOL system was developed at the University of Cambridge, and it is an
environment for interactive theorem proving in a higher-order logic. It requires
skilled human guidance and has been used for the verification of microprocessor
design. It is one of the most widely used theorem provers.

6A formal mathematical proof (of a normal proof) is difficult to write down and can be lengthy.
Mathematicians were not really interested in these proof checkers.

268 15 The Nature of Theorem Proving

15.4 A Selection of Theorem Provers

Table 15.1 presents a small selection of the available automated and interactive
theorem provers.

15.5 Review Questions

Review Questions

1. What is a mathematical proof ?
2. What is a formal mathematical proof ?
3. What approaches are used to prove a theorem?
4. What is a theorem prover?
5. What role can theorem provers play in software development?
6. What is the difference between an automated theorem prover and an

interactive theorem prover?
7. Investigate and give a detailed description of one of the theorem provers

in Table 15.1.

15.6 Summary

A mathematical proof typically includes natural language and mathematical sym-
bols, and often many of the tedious details of the proof are omitted. The proofs
employed in mathematics are rarely formal as such, and many proofs in formal
methods are concerned with cross-checking the details of the specification, or
checking the validity of the refinement steps, or checking that certain properties are
satisfied by the specification. There are often many tedious lemmas to be proved,
and theorem provers are essential in dealing with these. Machine proof is explicit,
and reliance on some brilliant insight is avoided. Proofs by hand often contain
errors or jumps in reasoning, while machine proofs are often extremely lengthy and
unreadable.

The application of formal methods in an industrial environment requires the use
of machine-assisted proof, since thousands of proof obligations arise from a formal
specification, and theorem provers are essential in resolving these efficiently.
Automated theorem proving is difficult, as often mathematicians prove a theorem

15.3 Interactive Theorem Provers 269

with an initial intuitive feeling that the theorem is true. Human intervention to
provide guidance or intuition improves the effectiveness of the theorem prover.

The proof of various properties about a program increases confidence in its
correctness. However, an absolute proof of correctness is unlikely except for the
most trivial of programs. The best that formal methods can claim is increased
confidence in correctness of the software, rather than an absolute proof of
correctness.

Early work on the automation of proof began in the 1950s with the beginning of
work in the Artificial Intelligence field, and one of the earliest programs developed
was the Logic Theorist, which was presented at the Dartmouth conference on
Artificial Intelligence in 1956.

Table 15.1 Selection of theorem provers

Theorem prover Description

ACL2 A Computational Logic for Applicative Common Lisp (ACL2) is part
of the Boyer-Moore family of theorem provers. It is a software system
consisting of a programming language (LISP) and an interactive
theorem prover. It was developed in the mid-1990s as an industrial
strength successor to the Boyer-Moore theorem prover (NQTHM). It
is used in the verification of safety-critical hardware and software and
in industrial applications such as the verification of the floating point
module of a microprocessor

OTTER OTTER is a resolution-style theorem prover for first-order logic
developed at the Argonne Laboratory at the University of Chicago (it
was the successor to Aura). It has been mainly applied to abstract
algebra and formal logic

PVS The Prototype Verification System (PVS) is a mechanized
environment for formal specification and verification. It includes a
specification language integrated with support tools and an interactive
theorem prover. It was developed by SRI in California. The
specification language is based on higher-order logic, and the theorem
prover is guided by the user in conducting proof. It has been applied to
the verification of hardware and software

Theorem Proving
System (TPS)

TPS is an automated theorem prover for first-order logic and
higher-order logic (it can also prove theorems interactively). It was
developed at Carnegie Mellon University and is used for hardware and
software verification

HOL and Isabelle HOL and Isabelle were developed by the Automated Reasoning Group
at the University of Cambridge. The HOL system is an environment
for interactive theorem proving in a higher-order logic, and it has been
applied to hardware verification. Isabelle is a generic proof assistant
which allows mathematical formulae to be expressed in a formal
language, and it provides tools for proving those formulae in a logical
calculus

Boyer-Moore The Boyer-Moore theorem prover (NQTHM) was developed at the
University of Texas in the 1970s with the goal of checking the
correctness of computer systems. It has been used to verify the
correctness of microprocessors, and it has been superseded by ACL2

270 15 The Nature of Theorem Proving

The challenges in developing effective automated theorem provers led
researchers to investigate whether it made more sense to develop a theorem prover
that could be guided by a human in its search for a proof. This led to the devel-
opment of interactive theorem proving which involved developing formal proofs by
man–machine collaboration.

The typical components of an interactive theorem prover include an interactive
proof editor to allow editing of proofs, formulae and terms in a formal theory of
mathematics, and a large library of results which is essential for achieving complex
results.

An interactive theorem prover allows the user to concentrate on the creative parts
of the proof and relieves the user of the need to carry out and verify the trivial steps
in the proof. It is also a useful way of verifying the correctness of published
mathematical proofs by acting as a proof checker and is also useful in program
verification in showing that the program satisfies its specification, especially in the
safety/security critical fields.

Reference

1. D. MacKensie, The automation of proof. IEEE a historical and sociological exploration. Ann.
Hist. Comput. 17(3) (1995)

15.6 Summary 271

16Probability and Statistics

Key Topics

Sample spaces
Random variables
Mean, mode and median
Variance
Normal distributions
Histograms
Hypothesis testing
Software reliability models

16.1 Introduction

Statistics is an empirical science that is concerned with the collection, organization,
analysis, interpretation and presentation of data. The data collection needs to be
planned, and this may include surveys and experiments. Statistics is widely used by
government and industrial organizations, and they may be employed for forecasting
as well as for presenting trends. They allow the behaviour of a population to be
studied and inferences to be made about the population. These inferences may be
tested (hypothesis testing) to ensure their validity.

The analysis of statistical data allows an organization to understand its perfor-
mance in key areas, and to identify problematic areas. Organizations will often
examine performance trends over time, and will devise appropriate plans and
actions to address problematic areas. The effectiveness of the actions taken will be
judged by improvements in performance trends over time.

© Springer International Publishing AG 2017
G. O’Regan, Concise Guide to Formal Methods, Undergraduate Topics
in Computer Science, DOI 10.1007/978-3-319-64021-1_16

273

It is often not possible to study the entire population, and instead a representative
subset or sample of the population is chosen. This random sample is used to make
inferences regarding the entire population, and it is essential that the sample chosen
is indeed random and representative of the entire population. Otherwise, the
inferences made regarding the entire population will be invalid.1

A statistical experiment is a causality study that aims to draw a conclusion
regarding values of a predictor variable(s) on a response variable(s). For example,
a statistical experiment in the medical field may be conducted to determine if there
is a causal relationship between the use of a particular drug and the treatment of a
medical condition such as lowering of cholesterol in the population. A statistical
experiment involves:

• Planning the research;
• Designing the experiment;
• Performing the experiment;
• Analysing the results;
• Presenting the results.

Probability is a way of expressing the likelihood of a particular event occurring.
It is normal to distinguish between the frequency interpretation and the subjective
interpretation of probability [2]. For example, if a geologist sates that “there is a
70% chance of finding gas in a certain region”, then this statement is usually
interpreted in two ways:

– The geologist is of the view that over the long run 70% of the regions whose
environment conditions are very similar to the region under consideration have
gas [frequency interpretation].

– The geologist is of the view that it is likely that the region contains gas, and that
0.7 is a measure of the geologist’s belief in this hypothesis [personal
interpretation].

However, the mathematics of probability is the same for both the frequency and
personal interpretation.

16.2 Probability Theory

Probability theory provides a mathematical indication of the likelihood of an event
occurring, and the probability of an event is a numerical value between 0 and 1.
A probability of 0 indicates that the event cannot occur, whereas a probability of 1

1The random sample leads to predictions for the entire population that may be inaccurate. For
example, consider the opinion polls on the 2016 British Referendum on EU membership and the
2016 Presidential Election in the USA.

274 16 Probability and Statistics

indicates that the event is guaranteed to occur. If the probability of an event is
greater than 0.5, then this indicates that the event is more likely to occur than not to
occur.

A sample space is the set of all possible outcomes of an experiment, and an event
E is a subset of the sample space. For example, the sample space for the experiment
of tossing a coin is the set of all possible outcomes of this experiment, i.e. head or
tails. The event that the toss results a tail is a subset of the sample space.

S ¼ h; tf g E ¼ tf g:

Similarly, the sample space for the gender of a newborn baby is the set of
outcomes; i.e. the newborn baby is a boy or a girl. The event that the baby is a girl
is a subset of the sample space.

S ¼ b; gf g E ¼ gf g:

For any two events E and F of a sample space S, we can also consider the union
and intersection of these events. That is,

– E [F consists of all outcomes that are in E or F or both.
– E \ F (normally written as EF) consists of all outcomes that are in both E and

F.
– Ec denotes the complement of E with respect to S and represents the outcomes

of S that are not in E (i.e. S\E).

If EF = ∅, then there are no outcomes in both E and F, and so the two events E
and F are mutually exclusive. The union and intersection of two events can be
extended to the union and intersection of a family of events E1, E2,…, En

(i.e. [i=1
n Ei and \ i=1

n Ei).

16.2.1 Laws of Probability

The laws of probability essentially state that the probability of an event is between 0
and 1, and that the probability of the union of a mutually disjoint set of events is the
sum of their individual probabilities.

(i) P(S) = 1
(ii) P(∅) = 0
(iii) 0 � P(E) � 1
(iv) For any sequence of mutually exclusive events E1, E2,…, En. (i.e. Ei Ej = ∅,

where i 6¼ j), then the probability of the union of these events is the sum of
their individual probabilities; i.e.

16.2 Probability Theory 275

P [n
i¼1Ei

� � ¼ Rn
i�1P Eið Þ:

The probability of the union of two events (not necessarily disjoint) is given by:

PðE[FÞ ¼ P Eð Þþ P Fð Þ � P EFð Þ:

The probability of an event E not occurring is denoted by Ec and is given by
1 − P(E). The probability of an event E occurring given that an event F has
occurred is termed the conditional probability (denoted by P(E|F)) and is given by:

P EjFð Þ ¼ P EFð Þ
P Fð Þ whereP Fð Þ[0:

This formula allows us to deduce that:

P EFð Þ ¼ P EjFð ÞP Fð Þ:

Bayes’ formula enables the probability of an event E to be determined by a
weighted average of the conditional probability of E given that the event F occurred
and the conditional probability of E given that F has not occurred:

E ¼ E\S ¼ E\ ðF[FcÞ
= EF[EFc

PðEÞ ¼ P EFð Þþ P(EFcÞ ðsince EF\EFc ¼ ;Þ
¼ P EjFð ÞP Fð Þþ P EjFcð ÞP Fcð Þ
¼ P EjFð ÞP Fð Þþ P EjFcð Þ 1�P Fð Þð Þ:

Two events E, F are independent if knowledge that F has occurred does not
change the probability that E has occurred. That is, P(E|F) = P(E), and since P(E|
F) = P(EF)/P(F), we have that two events E, F are independent if:

P EFð Þ ¼ P Eð ÞP Fð Þ:

Two events E and F that are not independent are said to be dependent.

16.2.2 Random Variables

Often, some numerical quantity determined by the result of the experiment is of
interest rather than the result of the experiment itself. These numerical quantities are
termed random variables. A random variable is termed discrete if it can take on a
finite or countable number of values; otherwise, it is termed continuous.

276 16 Probability and Statistics

The distribution function of a random variable is the probability that the random
variable X takes on a value less than or equal to x. It is given by:

F xð Þ ¼ PfX� xg:

All probability questions about X can be answered in terms of its distribution
function F. For example, the computation of P {a < X < b} is given by:

F að Þ ¼
X
8x� a

p xð Þ

The probability mass function for a discrete random variable X (denoted by p(a))
is the probability that it is a certain value. It is given by:

p að Þ ¼ P X ¼ af g:

Further, F(a) can also be expressed in terms of the probability mass function

F að Þ ¼ Rp xð Þ
8x � a

We may also define a probability density function and a probability distribution
function for a continuous random variable X [1], and all probability statements
about X can be answered in terms of its density function f(x), and the derivative of
the probability distribution function yields the probability density function.

The expected value (i.e. the mean) of a discrete random variable X (denoted E
[X]) is given by the weighted average of the possible values of X, and the expected
value of a function of a random variable is given by E[g(X)]. These are defined as:

E X½ � ¼
X
i

xiP X ¼ xif g

E g Xð Þ½ � ¼
X
i

g xið ÞP X ¼ xif g:

The variance of a random variable is a measure of the spread of values from the
mean, and is defined by:

Var Xð Þ ¼ E X2
� �� E X½ �ð Þ2:

The standard deviation r is given by the square root of the variance. That is,

r ¼ p
Var Xð Þ:

16.2 Probability Theory 277

The covariance of two random variables is a measure of the relationship
between two random variables X and Y, and indicates the extent to which they both
change (in either similar or opposite ways) together. It is defined by:

Cov X;Yð Þ ¼ E XY½ � � E X½ �E Y½ �:

It follows from the definition that the covariance of two independent random
variables is zero (and this would be expected as a change in one variable would not
affect the other). Variance is a special case of covariance (when the two random
variables are identical). This follows since Cov(X, X) = E[X.X] − (E[X])(E
[X]) = E[X2] − (E[X])2 = Var(X).

A positive covariance (Cov(X, Y) � 0) indicates that Y tends to increase as X
does, whereas a negative covariance indicates that Y tends to decrease as X
increases. The correlation of two random variables is an indication of the rela-
tionship between two variables X and Y. If the correlation is negative, then Y tends
to decrease as X increases, and if it is positive number, then Y tends to increase as
X increases. The correlation coefficient is a value that is between ±1, and it is
defined by:

CorrðX; YÞ ¼ CovðX; YÞffi
VarðXÞVarðYÞp :

Once the correlation between two variables has been calculated, the probability
that the observed correlation was due to chance can be computed. This is to ensure
that the observed correlation is a real one and not due to a chance occurrence.

There are a number of special random variables, and these include the Bernoulli
trial, where there are just two possible outcomes of an experiment, i.e. success or
failure. The probability of success and failure is given by:

P X ¼ 0f g ¼ 1� p

P X ¼ 1f g ¼ p

The mean of the Bernoulli distribution is given by p and the variance by p(1−p).
The binomial distribution involves n Bernoulli trials, each of which results in
success or failure. The probability of i successes from n trials is then given by:

P X ¼ if g ¼ n
i

� �
pi 1� pð Þn�i:

where the mean of the binomial distribution is given by np, and the variance is
given by np(1−p).

The Poisson distribution may be used as an approximation to the binomial
distribution when n is large and p is small. The probability of i successes is given
by:

278 16 Probability and Statistics

P X ¼ if g ¼ e�kki=i!

and the mean and variance of the Poisson distribution is given by k.
There are many other well-known distributions such as the hypergeometric

distribution that describes the probability of i successes in n draws from a finite
population without replacement; the uniform distribution; the exponential distri-
bution; the normal distribution and the gamma distribution. Table 16.1 presents
several important probability distributions including their mean and variance:

The reader is referred to [2] for a more detailed account of probability theory.

16.3 Statistics

The field of statistics is concerned with summarizing, digesting and extracting
information from large quantities of data. Statistics provides a collection of methods
for planning and conducting an experiment, and analysing the data to draw accurate
conclusions. We distinguish between descriptive statistics and inferential statistics:

Descriptive Statistics
This is concerned with describing the information in a set of data elements in

graphical format, or by describing its distribution.
Inferential Statistics
This is concerned with making inferences with respect to the population by using

information gathered in the sample.

Table 16.1 Probability distributions

Distribution
name

Density function Mean/variance

Binomial P{X = i} = (i
n)pi(1−p)n- np, np(1 − p)

Poisson P{X = i} = e−kki/i! k, k

Hypergeometric P X ¼ if g ¼ N
i

� �
M
n�i

� �
= N þM

n

� �
nN/N + M, np(1 − p)[1 – (n − 1)/
N + M – 1]

Uniform f(x) = 1/(b − a) a � x � b,
0

(a + b)/2, (b − a)2/12

Exponential f(x) = ke−kx 1/k, 1/k2

Normal f ðxÞ ¼ 1p
2pr

e�ðx�lÞ2=2r2 l, r2

Gamma f(x) = ke−kx (kx)a−1/C(a)
(x � 0).

a/k, a/k2

16.2 Probability Theory 279

16.3.1 Abuse of Statistics

Statistics is extremely useful in drawing conclusions about a population. However,
it is essential that the random sample is valid, and that the experiment is properly
conducted to enable valid conclusions to be inferred. Further, the presentation of the
statistics should not be misleading. Some examples of the abuse of statistics
include:

– The sample size may be too small to draw conclusions.
– It may not be a genuine random sample of the population.
– Graphs may be drawn to exaggerate small differences.
– Area may be misused in representing proportions.
– Misleading percentages may be used.

The quantitative data used in statistics may be discrete or continuous. Discrete
data is numerical data that has a finite number of possible values, and continuous
data is numerical data that has an infinite number of possible values.

16.3.2 Statistical Sampling

Statistical sampling is concerned with the methodology of choosing a random
sample of a population, and the systematic study of the sample with the goal of
drawing valid conclusions about the entire population.

The assumption is that if a genuine representative sample of the population is
chosen, then the detailed study of the sample will provide insight into the whole
population. This helps to avoid a lengthy expensive (and potentially infeasible)
study of the entire population.

The sample chosen must be random (this can be difficult to achieve), and the
sample size is sufficiently large to enable valid conclusions to be made for the entire
population.

Random Sample
A random sample is a sample of the population such that each member of the
population has an equal chance of being chosen.

There are various ways of generating a random sample from the population
including (Table 16.2):

Once the random sample group has been chosen, the next step is to obtain the
required information from the sample. This may be done by interviewing each
member in the sample; phoning each member; conducting a mail survey and so on
(Table 16.3).

280 16 Probability and Statistics

16.3.3 Averages in a Sample

The term “average” generally refers to the arithmetic mean of a sample, but it could
also refer to the mode or median of the sample. These terms are defined below:

Mean
The arithmetic mean of a set of n numbers is defined to be the sum of the numbers
divided by n. That is, the arithmetic mean for a sample of size n is given by:

�x ¼
Pn

i¼1 xi
n

:

The actual �x mean of the population is denoted by l, and it may differ from the
sample mean.

Table 16.2 Sampling techniques

Sampling
techniques

Description

Systematic
sampling

Every kth member of the population is sampled

Stratified
sampling

The population is divided into two or more strata, and each subpopulation
(stratum) is then sampled. Each element in the subpopulation shares the
same characteristics (e.g. age groups, gender)

Cluster sampling A population is divided into clusters, and a few of these clusters are
exhaustively sampled (i.e. every element in the cluster is considered)

Convenience
sampling

Sampling is done as convenient and often allows the element to choose
whether or not it is sampled

Table 16.3 Types of survey

Survey type Description

Direct
measurement

This may involve the direct measurement of all entities in the sample (e.g.
the height of students in a class)

Mail survey This involves sending a mail survey to the sample. This may have a lower
response rate and may thereby invalidate the findings

Phone survey This is a reasonably efficient and cost-effective way to gather data.
However, refusals or hang-ups may affect the outcome

Personal
interview

This tends to be expensive and time-consuming, but it allows detailed
information to be collected

Observational
study

An observational study allows individuals to be studied, and the variables of
interest to be measured

Experiment An experiment imposes some treatment on individuals in order to study the
response

16.3 Statistics 281

Mode
The mode is the data element that occurs most frequently in the sample. It is
possible that two elements occur with the same frequency, and if this is the case,
then we are dealing with a bi-modal or possibly a multi-modal sample.

Median
The median is the middle element when the data set is arranged in increasing order
of magnitude.

If there are an odd number of elements in the sample, the median is the middle
element. Otherwise, the median is the arithmetic mean of the two middle elements.

Mid-Range
The mid-range is the arithmetic mean of the highest and lowest data elements in the
sample. That is, (xmax + xmin)/2.

The arithmetic mean is the most widely used average in statistics.

16.3.4 Variance and Standard Deviation

An important characteristic of a sample is its distribution, and the spread of each
element from some measure of central tendency (e.g. the mean). One elementary
measure of dispersion is that of the sample range, and it is defined to be the
difference between the maximum and minimum value in the sample. That is, the
sample range is defined to be:

range ¼ xmax � xmin:

The sample range is not a reliable measure of dispersion as only two elements in
the sample are used, and extreme values in the sample can distort the range to be
very large even if most of the elements are quite close to one another.

The standard deviation is the most common way to measure dispersion, and it
gives the average distance of each element in the sample from the mean. The
sample standard deviation is denoted by s and is defined by:

s ¼
ffiP ðxi � �xÞ2

n� 1

s

The population standard deviation is denoted by r and is defined by:

r ¼
ffiP ðxi � lÞ2

N

s

Variance is another measure of dispersion, and it is defined as the square of the
standard deviation. The sample variance is given by:

282 16 Probability and Statistics

s2 ¼
P ðxi � �xÞ2

n� 1

The population variance is given by:

r2 ¼
P ðxi � lÞ2

N

16.3.5 Bell-Shaped (Normal) Distribution

The German mathematician Gauss (Fig. 16.1) originally studied the normal dis-
tribution, and it is also known as the Gaussian distribution. It is shaped like a bell
and so is popularly known as the bell-shaped distribution. The empirical fre-
quencies of many natural populations exhibit a bell-shaped (normal) curve.

The normal distribution N has mean l and standard deviation r. Its density
function f(x) where (where −∞ < x < ∞) is given by:

f ðxÞ ¼ 1p
2pr

e�ðx�lÞ2=2r2 :

The unit (or standard) normal distribution Z(0, 1) has mean 0 and standard
deviation of 1 (Fig. 16.2). Every normal distribution may be converted to the unit
normal distribution by Z = (X – l)/r, and every probability statement about X has

Fig. 16.1 Carl Friedrich
Gauss

16.3 Statistics 283

an equivalent probability statement about Z. The unit normal density function is
given by:

f ðyÞ ¼ 1p
2p

e�y2=2:

For a normal distribution, 68.2% of the data elements lie within one standard
deviation of the mean; 95.4% of the population lies within two standard deviations
of the mean; and 99.7% of the data lies within three standard deviations of the
mean. For example, the shaded area under the curve within two standard deviations
of the mean represents 95% of the population.

A fundamental result in probability theory is the central limit theorem, and this
theorem essentially states that the sum of a large number of independent and
identically distributed random variables has a distribution that is approximately
normal. That is, suppose X1, X2, …, Xn is a sequence of independent random
variables each with mean l and variance r2. Then, for large n, the distribution of

X1 þX2 þ � � � þXn � nl
r
p
n

is approximately that of a unit normal variable Z. One application of the central
limit theorem is in relation to the binomial random variables, where a binomial
random variable with parameters (n, p) represents the number of successes of
n independent trials, where each trial has a probability of p of success. This may be
expressed as:

X ¼ X1 þX2 þ � � � :þ Xn;

where Xi = 1 if the ith trial is a success and is 0 otherwise. E(Xi) = p and Var
(Xi) = p(1 − p), and then by applying the central limit theorem, it follows that for
large n,

Fig. 16.2 Standard unit
normal bell curve (Gaussian
distribution)

284 16 Probability and Statistics

X � npffi
npð1� pÞp

will be approximately a unit normal variable (which becomes more normal as
n becomes larger).

The sum of independent normal random variables is normally distributed, and it
can be shown that the sample average of X1, X2, …, Xn is normal, with a mean
equal to the population mean but with a variance reduced by a factor of 1/n.

Eð�XÞ ¼
Xn
i¼1

EðXiÞ
n

¼ l

varð�XÞ ¼ 1
n2

Xn
i¼1

VarðXiÞ ¼ r
n

2

It follows that from this that the following is a unit normal random variable.

p
n
ðX � lÞ

r
:

The term six-sigma (6r) is a methodology concerned with continuous process
improvement and aims for very high quality (close to perfection). A 6r process is
one in which 99.9996% of the products are expected to be free from defects (3.4
defects per million).

16.3.6 Frequency Tables, Histograms and Pie Charts

A frequency table is used to present or summarize data (Tables 16.4 and 16.5). It
lists the data classes (or categories) in one column and the frequency of the category
in another column.

A histogram is a way to represent data in bar chart format (Fig. 16.3). The data is
divided into intervals, where an interval is a certain range of values. The horizontal
axis of the histogram contains the intervals (also known as buckets), and the vertical
axis shows the frequency (or relative frequency) of each interval. The bars represent
the frequency, and there is no space between the bars.

A histogram has an associated shape. For example, it may resemble a normal
distribution, a bi-modal or multi-modal distribution. It may be positively or nega-
tively skewed. The construction of a histogram first involves the construction of a
frequency table, where the data is divided into disjoint classes and the frequency of
each class is determined.

A pie chart (Fig. 16.4) offers an alternate way to histograms in the presentation
of data. A frequency table is first constructed, and the pie chart presents a visual
representation of the percentage in each data class.

16.3 Statistics 285

Table 16.4 Frequency table—Salary

Profession Salary Frequency

Project manager 65,000 3

Architect 65,000 1

Programmer 50,000 8

Tester 45,000 2

Director 90,000 1

Table 16.5 Frequency table—Test results

Mark Frequency

0–24 3

25–49 10

50–74 15

75–100 2

Histogram for Class Marks

0
2
4
6
8

10
12
14
16

0-24 25-49 50-74 75-100
Marks

N
um

be
r

Class Marks

Fig. 16.3 Histogram test results

Histogram for Class Marks

0-24
25-49
50-74
75-100

Fig. 16.4 Pie chart test results

286 16 Probability and Statistics

16.3.7 Hypothesis Testing

The basic concept of inferential statistics is hypothesis testing, where a hypothesis is
a statement about a particular population whose truth or falsity is unknown.
Hypothesis testing is concerned with determining whether the values of the random
sample from the population are consistent with the hypothesis. There are two
mutually exclusive hypotheses: one of these is the null hypothesis H0 and the other
is the alternate research hypothesis H1. The null hypothesis H0 is what the
researcher is hoping to reject, and the research hypothesis H1 is what the researcher
is hoping to accept.

Statistical testing is then employed to test the hypothesis, and the result of the
test is that we either reject the null hypothesis (and therefore accept the alternative
hypothesis), or that we fail to reject (i.e. we accept) the null hypothesis. The
rejection of the null hypothesis means that the null hypothesis is highly unlikely to
be true, and that the research hypothesis should be accepted.

Statistical testing is conducted at a certain level of significance, with the prob-
ability of the null hypothesis H0 being rejected when it is true never greater than a.
The value a is called the level of significance of the test, with a usually being 0.1,
0.05, 0.005. A significance level b may also be applied to with respect to accepting
the null hypothesis H0 when H0 is false.

The objective of a statistical test is not to determine whether or not H0 is actually
true, but rather to determine whether its validity is consistent with the observed
data. That is, H0 should only be rejected if the resultant data is very unlikely if H0 is
true.

The errors that can occur with hypothesis testing include type 1 and type 2
errors. Type 1 errors occur when we reject the null hypothesis when the null
hypothesis is actually true. Type 2 errors occur when we accept the null hypothesis
when the null hypothesis is false (Table 16.6).

For example, an example of a false positive is where the results of a blood test
come back positive to indicate that a person has a particular disease when in fact the
person does not have the disease. Similarly, an example of a false negative is where
a blood test is negative indicating that a person does not have a particular disease
when in fact the person does. Both errors can potentially be very serious.

The terms a and b represent the level of significance that will be accepted, and
normally, a = b. In other words, a is the probability that we will reject the null
hypothesis when the null hypothesis is true, and b is the probability that we will
accept the null hypothesis when the null hypothesis is false.

Table 16.6 Hypothesis testing

Action H0 true, H1 false H0 false, H1 true

Reject H1 Correct False positive—Type 2 error
P(Accept H0| H0 false) = b

Reject H0 False negative—Type 1 error
P(Reject H0| H0 true) = a

Correct

16.3 Statistics 287

Testing a hypothesis at the a = 0.05 level is equivalent to establishing a 95%
confidence interval. For 99% confidence, a will be 0.01, and for 99.999% confi-
dence, then a will be 0.00001.

The hypothesis may be concerned with testing a specific statement about the
value of an unknown parameter h of the population. This test is to be done at a
certain level of significance, and the unknown parameter may, for example, be the
mean or variance of the population. An estimator for the unknown parameter is
determined, and the hypothesis that this is an accurate estimate is rejected if the
random sample is not consistent with it. Otherwise, it is accepted.

The steps involved in hypothesis testing include:

1. Establish the null and alternative hypothesis.
2. Establish error levels (significance).
3. Compute the test statistics (often a t-test).
4. Decide on whether to accept or reject the null hypothesis.

The difference between the observed and expected test statistic, and whether the
difference could be accounted for by normal sampling fluctuations is the key to the
acceptance or rejection of the null hypothesis.

16.4 Review Questions

1. What is probability? What is statistics? Explain the difference between
them.

2. Explain the laws of probability.
3. What is a sample space? What is an event?
4. Prove Boole’s inequality Pð [n

i¼1EiÞ�Rn
i¼1P Eið Þ; where the Ei are not

necessarily disjoint.
5. A couple has two children. What is the probability that both are girls if

the eldest is a girl?
6. What is a random variable?
7. Explain the difference between the probability density function and the

probability distribution function.
8. Explain expectation, variance, covariance and correlation.
9. Describe how statistics may be abused.

10. What is a random sample? Describe methods available to generate a
random sample from a population. How may information be gained from
a sample?

288 16 Probability and Statistics

11. Explain how the average of a sample may be determined, and discuss the
mean, mode and median of a sample.

12. Explain sample variance and sample standard deviation.
13. Describe the normal distribution and the central limit theorem.
14. Explain hypothesis testing and acceptance or rejection of the null

hypothesis.

16.5 Summary

Statistics is an empirical science that is concerned with the collection, organization,
analysis and interpretation and presentation of data. The data collection needs to be
planned, and this may include surveys and experiments. Statistics is widely used by
government and industrial organizations, and they may be used for forecasting as
well as for presenting trends. Statistical sampling allows the behaviour of a random
sample to be studied and inferences to be made about the population.

Probability theory provides a mathematical indication of the likelihood of an
event occurring, and the probability is a numerical value between 0 and 1.
A probability of 0 indicates that the event cannot occur, whereas a probability of 1
indicates that the event is guaranteed to occur. If the probability of an event is
greater than 0.5, then this indicates that the event is more likely to occur than not to
occur.

Statistical sampling is concerned with the methodology of choosing a random
sample of a population, and the systematic study of the sample with the goal of
drawing valid conclusions about the entire population.

Hypothesis testing is concerned with determining whether the values from a
random sample from the population are consistent with a particular hypothesis.
There are two mutually exclusive hypotheses: one of these is the null hypothesis H0

and the other is the alternate research hypothesis H1. The null hypothesis H0 is what
the researcher is hoping to reject, and the research hypothesis H1 is what the
researcher is hoping to accept.

References

1. G. O’Regan, Mathematics in Computing, Second edn. (Springer, 2012)
2. S.M. Ross, Introduction to Probability and Statistics for Engineers and Scientists. (Wiley

Publications, New York, 1987)

16.4 Review Questions 289

17Industrial Tools for Formal Methods

Key Topics

VDM Tools
Overture IDE
Z/EVES
B-Toolkit
IBM rational software modeler
Sparx enterprise architect
PVS

17.1 Introduction

Formal methods have been criticized for the limited availability of tools to support
the software engineer in writing the formal specification and in conducting proof.
Many of the early tools were criticized as not being of industrial strength. However,
in recent years more advanced tools have become available to support the software
engineer’s work in formal specification and conducting proof, and this is likely to
continue in the coming years.

The goal of this chapter is to give a flavour of a selection of tools1 that are
available to support the formal methodist in the performance of the various activ-
ities. Tools for VDM, Z, B, UML, model checking, and so on are considered. The

1The list of tools discussed in this chapter is intended to give a flavour of what tools are available,
and the inclusion of a particular tool is not intended as a recommendation of that tool. Similarly,
the omission of a particular tool should not be interpreted as disapproval of that tool.

© Springer International Publishing AG 2017
G. O’Regan, Concise Guide to Formal Methods, Undergraduate Topics
in Computer Science, DOI 10.1007/978-3-319-64021-1_17

291

approach is generally to choose tools to support the process, rather than choosing a
process to support the tool.2

Mature organizations will generally employ a structured approach to the intro-
duction of new tools. First, the requirements for a new tool are specified, and the
options to satisfy the requirements are considered. These may include developing a
tool internally; outsourcing the development of a tool, or purchasing a tool off the
shelf. Finally, the users are trained on the tool, appropriate vendor support is
provided, and the tool is rolled out throughout the organization. The vendor may
need to provide dedicated support for a period of time postdeployment.

The tools include syntax checkers to determine whether the specification is
syntactically correct; specialized editors which ensure that the written specification
is syntactically correct; tools to support refinement; automated code generators that
generate a high-level language corresponding to the specification; theorem provers
to demonstrate the correctness of the refinement steps and to identify and resolve
proof obligations, as well proving the presence or absence of key properties; and
specification animation tools where the execution of the specification can be
simulated.

17.2 Tools for Z

Z is a widely used formal specification language, and it is based on Zermelo set
theory. It uses a mathematical notation that is similar to VDM and the visually
striking schema calculus. Z is used for the formal specification of software systems,
and it was published as an ISO standard in 2002. We discussed Z in more detail in
Chap. 8.

There are several tools available to support the engineer in writing Z specifi-
cations and in carrying out proof. This includes tools that provide parsing and type
checking of the specification, as well as tools that provide support for conducting
proof. There is a wide selection of tools available including CadiZ, Z/EVES and
ZTC. The Community of Z Users (CZT) is an open-source project that has
developed a suite of Z tools including parsers and type checkers.

CadiZ is a set of free software tools that checks the syntactic and type correctness
of Z specifications. It supports the interactive proofs of conjectures. Z/EVES has a
graphical user interface (Fig. 17.1) that allows Z specifications to be entered, edited
and analysed in their typeset form, and it supports the analysis of specifications. Its
theorem prover provides automated support with user support to direct the prover.
Z/EVES supports almost the entire Z notation, and interaction with the tool is via its
GUI. It runs on Linux and Windows and is used for commercial, academic and
education purposes.

2That is, the process normally comes first then the tool rather than the other way around.

292 17 Industrial Tools for Formal Methods

17.3 Tools for VDM

The IFAD Toolbox is a support tool for the VDM-SL specification language, and it
provides support for syntax and type checking, an interpreter and debugger to
execute and debug the specification, and a code generator to convert from VDM-SL
to C++. It was originally developed by IFAD in Denmark, but they later sold the
toolbox to CSK in Japan, and it was later renamed to VDMTools.

The Overture Integrated Development Environment (IDE) is an open-source tool
for formal modelling and analysis of VDM-SL specifications (Fig. 17.2). It covers
three dialects of VDM (VDM-SL, VDM++ and VDM-RT) [1], and it was devel-
oped by a community of volunteers on the Eclipse platform. The tool is intended to
be industrial strength supporting practitioners in describing abstract models in
software development, as well as supporting researchers in the formal methods
community.

The tool may be downloaded from http://overturetool.org. It includes a large
library of VDM-SL models that may be imported directly into the Overture tool.
Overture can also work with the VDMTools as well as being a new open-source
VDM tool set.

The tool provides functionality for syntax checking; an editor with syntax
highlighting; proof obligation generator; interactive and automated proof support;
model checking support; test generation support; code generation in C++ and Java;
reverse engineering support; and UML visualization support.

Fig. 17.1 Z/EVES specification window

17.3 Tools for VDM 293

http://overturetool.org

17.4 Tools for B

There are a number of tools to support the B-Method including the B-Toolkit,
Atelier B and the Rodin tool (for Event B). The B-Toolkit (from B-Core) is an
integrated set of tools that supports the B-Method. It provides functionality for
syntax and type checking, specification animation, proof obligation generator, an
auto-prover, a proof assistor and code generation. This, in theory, allows the
complete formal development from the initial specification to the final implemen-
tation, with every proof obligation justified, leading to a provably correct program.

The abstract machine notation (AMN) is a state-based formal specification
language (similar to Z or VDM), where an abstract machine consists of a state and
operations on the state. The state is modelled by sets, relations and functions and
the operations by pre- and postconditions using AMN notation.

Specification animation of the AMN specification is possible with the B-Toolkit,
and this enables typical usage scenarios to be explored for requirements validation.
This is, in effect, an early form of testing, and it may be used to demonstrate the
presence or absence of desirable or undesirable behaviour. Verification takes the
form of a proof to demonstrate that the invariant is preserved when the operation is
executed within its precondition, and this is performed on the AMN specification
with the B-Toolkit.

Fig. 17.2 Overture editor view

294 17 Industrial Tools for Formal Methods

The B-Method and toolkit have been successfully applied in industrial appli-
cations, including the CICS project at IBM Hursley in the UK [2]. The automated
support provided has been cited as a major benefit of the application of the
B-Method and the B-Toolkit. The B-Toolkit source code is now available.

The Atelier B tool supports formal specification and development in B, and it
was developed by Clearsys (a French company that specializes in the development
of safety critical software). There is a commercial version of the tool (the Main-
tenance Edition), as well as a freely available version (the Community Edition).

17.5 Tools for UML

There are many available tools for UML including IBM Rational Software
Modeler® (RSM), which is a UML-based visual modelling and design tool
(Fig. 17.3). It promotes communication and collaboration during design and
development, and allows information about development projects to be specified
and communicated from several perspectives. It is used for model-driven devel-
opment and aligns the business needs with the product.

It gives the organization control over the evolving architecture and provides an
integrated analysis and design platform. Abstract UML specifications may be built
with traceability and impact analysis shown.

Fig. 17.3 IBM rational software modeler

17.4 Tools for B 295

It has an intuitive user interface and a diagram editor to create expressive and
interactive diagrams. The tool may be integrated with other IBM Rational tools
such as Clearcase, Clearquest and Requisite Pro.

IBM Rational Rhapsody® is a visual development environment used in real-time
or embedded systems. It helps teams collaborate to understand and elaborate
requirements; abstract complexity using modelling languages such as UML; vali-
date functionality early in development; and automate code generation to speed up
the development process.

Sparx Enterprise Architect is a UML analysis and design tool used for modelling
business and IT systems. It covers the full product development lifecycle and
supports automated document generation, code generation and reverse engineering
of source code. Its reverse engineering feature allows a visual representation of the
software application to be provided.

It can model, manage and trace requirements to the design, test cases and
deployment, and it can trace the implementation of the system requirements to
model elements. It can search and report on requirements and perform an impact
analysis on proposed changes to the requirements.

17.6 Tools for Model Checking

Model checking extracts a finite model from a system and then checks some
property of that model. The model checker performs an exhaustive state search (i.e.
it checks all system states to determine whether they satisfy the desired property or
not). If a state that violates the desired property is determined (i.e. a defect has been
found once it is shown that the system does not fulfil one of its specified properties),
then the model checker provides a counter-example indicating how the model can
reach this undesired state. The system is considered to be correct if it satisfies all of
the specified properties.

There are various tools for model checking including Spin, Bandera, SMV and
UppAal. The Spin tool was developed at Bell Labs in the early 1980s, and it checks
finite-state systems with properties specified by linear temporal logic (LTL) to
determine if the property is always satisfied. It generates a counter-example trace if
determines that a property is violated.

Bandera is a tool for model checking Java source code, and it automates the
extraction of a finite-state model from the Java source code. It then translates into an
existing model checker’s input language. The properties to be verified are specified
in the Bandera Specification Language (BSL).

296 17 Industrial Tools for Formal Methods

17.7 Tools for Theorem Provers

There are many automated and interactive theorem provers including the
Boyer-Moore theorem prover, ACL2, Otter, PVS, Theorem Proving System and
HOL. We discussed a sample of these tools in Chap. 15, and in this section, we
focus on PVS and HOL. PVS was developed at the computer laboratory at SRI in
the USA, and HOL was developed at Cambridge University in the UK.

The Prototype Verification System (PVS) is a mechanized environment for
formal specification and verification. It includes a specification language integrated
with support tools and an interactive theorem prover. The specification language is
based on higher-order logic, and the theorem prover is interactive and guided by
the user in conducting proof. PVS has been applied to the verification of hardware
and software and has been used by NASA as part of the Space Shuttle flight control
requirements specification.

PVS (Fig. 17.4) is implemented in Common Lisp and is available under the
GNU General Public License. It is a large and complex system and requires sig-
nificant investment in time to become a moderately skilled user.

The PVS language is close to “normal” notation, and the language includes
types, type checking, recursion, lambda notation and abstract data types. There are
essentially two languages in PVS: a language to write definitions (definition lan-
guage), and a language to prove theorems (proof language). The PVS theorem
prover has a built-in model checker.

The HOL system was developed at Cambridge University, and it is an envi-
ronment for interactive theorem proving in higher-order logic. It requires skilled
human guidance and has been used for the verification of microprocessor design. It
is a widely used theorem prover.

PVS File

Proof construction

Interaction with the theorem
prover

System

Proofs

Properties

Conversion of system and
properties into PVS file
(automated or manual)

Fig. 17.4 PVS system

17.7 Tools for Theorem Provers 297

17.8 Review Questions

1. What is the purpose of tool support for formal methods?
2. What tools can support Z? Compare and contrast.
3. What tools can support VDM? Compare and contrast.
4. What tools can support UML? Compare and contrast.
5. What tools can support B? Compare and contrast.
6. What tools can support automated and interactive theorem provers?
7. What tools can support model checkers? Compare and contrast.

17.9 Summary

The goal of this chapter was to give a flavour of a selection of tools that are
available to support the formal methodist in the performance of the various activ-
ities. Tools for VDM, Z, B, UML, theorem provers and model checking were
considered. Many of the early tools to support formal methods were criticized as not
being of industrial strength. However, in recent years more advanced tools have
become available to support the software engineer’s work in formal specification
and formal proof, and this will continue in the coming years.

We discussed the Z/EVES tool which allows Z specifications to be entered,
edited and analysed in their typeset form. It supports the analysis of specifications,
and its theorem prover provides automated support with user guidance employed to
direct the prover.

We discussed the Overture Integrated Development Environment, which is an
open-source tool for formal modelling and analysis of VDM-SL specifications. It
was developed by a community of volunteers on the Eclipse platform, and the tool
is intended to be of industrial strength in supporting practitioners in describing
abstract models in software development.

We discussed the B-Toolkit (from B-Core) which is an integrated set of tools
that supports the B-Method. It provides functionality for syntax and type checking,
specification animation, proof obligation generator, an auto-prover, a proof assistor
and code generation. This, in theory, allows the complete formal development from
the initial specification to the final implementation, with every proof obligation
justified, leading to a provably correct program.

298 17 Industrial Tools for Formal Methods

References

1. J. Fitzgerald, P.G. Larsen, Modelling Systems—Practical Tools and Techniques in Software
Development (Cambridge University Press, 2009)

2. J.P. Hoare, Application of the B method to CICS, in Applications of Formal Methods. Prentice
Hall International Series in Computer Science (1995)

17.9 Summary 299

18Technology Transfer to Industry

Key Topics

Pilots of formal methods
Organization culture
Standards for safety-critical software
Usability of formal methods
Usable formal method
Technology transfer

18.1 Introduction

Technology transfer is concerned with the practical exploitation of new technology
developed by an academic or industrial research group, and the objective is to
facilitate the use of the technology in an industrial environment. The transfer of new
technology and leading edge methods to an industrial environment needs to take
place in a controlled manner. It cannot be assumed that a new technology or method
will necessarily suit an organization, and the initial focus is concerned with piloting
the new technology, and measuring the benefits gained from its use.

The pilot(s) will provide insight into the effectiveness of the new technology, as
well as identifying areas that require further improvement prior to general
deployment. Feedback from the pilot is provided to the research groups, and further
improvements and pilots may take place as appropriate. In some instances, it may
be that commercial exploitation is inappropriate. This may be due to immaturity of
the technology, the fact that it does not suit the culture of the company, or the fact
that the evaluation of the technology did not achieve the required criteria, and is not
expected to in the near future.

© Springer International Publishing AG 2017
G. O’Regan, Concise Guide to Formal Methods, Undergraduate Topics
in Computer Science, DOI 10.1007/978-3-319-64021-1_18

301

A pilot of new technology is an experiment to determine its effectiveness and to
enable an informed decision to be made on the benefits of transferring the new
technology throughout the company. The pilot needs to be planned and this
includes deciding which people will participate, the provision of training for the
participants and the identification of objective criteria to evaluate the new tech-
nology. The objective criteria are identified prior to the commencement of the pilot,
and the results of the pilot are then compared to the evaluation criteria. Further
analysis of the evaluation results then takes place, and this allows an informed
decision to be made as to whether it is appropriate to deploy the technology
throughout the company.

Organization culture needs to be considered for effective technology transfer.
Every organization has a distinct culture and this is reflected in the way that people
work, and in the way in which things are done. Organization culture includes the
ethos and core values of the organization, its commitment or resistance to change,
and so on. The transfer of new technologies will be easier in cultures where there
are an openness and willingness to change. However, in other cultures the
deployment of new technology may be difficult due to resistance to change within
the organization.

18.2 Formal Methods and Industry

The formal methods community have developed many elegant formalisms to assist
the development of high-quality software. However, in practice many software
developers find formal methods difficult to use, whereas the formal methods
community seem unable to understand why software developers find their notation
and methods difficult. The chasm between the formal methods community and
industrial programmers has been considered in [1], and various characteristics of a
good formal method considered.

It is not, of course, the role of the formal methods community to sell formal
methods to industry: rather, their role is to develop notations and methods that are
useful and usable; provide education on applying formal methods to students and
interested industrialists and to provide expert support during pilots of formal
methods in an industrial environment. However, in order to develop a usable formal
method, it is essential that the formal methods community has a better under-
standing of the needs of industry and the commercial constraints of industrial
companies and projects.

An industrial project consists of a project team, and each team member has
various responsibilities in the software development process (e.g. requirements,
definition, design, implementation, software testing, configuration management,
project management). A project is subjected to strict budget, timeliness and quality
constraints, and the project manager is responsible for delivering a high-quality
product on time and budget to the customer. An industrial project follows a defined

302 18 Technology Transfer to Industry

software process, and there is a need to define the process to be followed when
formal methods are to be part of the process.

Formal methods need to be piloted prior to their general deployment in an
organization to ensure that there are real benefits gained in higher quality software
from their use, and that the commercial constraints (e.g. budget, timeliness and
quality) are addressed. Late projects can cause the loss of a market opportunity or
cause major customer dissatisfaction and a loss of credibility. Budget overruns and
quality problems can lead to financial loss to the company.

Industry is generally concerned with finding the most cost-effective solution to
delivering high-quality software on time and within budget. The natural question
[2] is “Under what circumstances does formal methods provide the most cost
effective solution to an industrial problem”.1 Any selling of formal methods to
industry must be realistic, as an overselling of the benefits of formal methods has
led to a negative perception of the technology. This is since industrialists have
experienced difficulties in working with the immaturity of formal methods, and in
practice formal methods have not been used extensively due to problems with their
usability. One infamous overselling of formal methods was the verification of the
VIPER microprocessor, with RSRE and Charter overselling VIPER as a chip
design that conforms to its formal specification [3].

The development of standards such as 00-55 (British Defense Standard for the
procurement of safety critical software), DO-178B (US standard for certification of
safety critical avionics software) and IEC 61509 (international standard for critical
systems) all mention formal methods as a way to assure high-quality software. The
00-55 Defense Standard initially mandated the use of formal methods for formal
code verification and specification animation.

The safety critical field is one area where the use of formal methods has shown
good benefits, and where the verification of correctness is essential. Quality and
safety cannot be comprised in safety critical systems, and the regulated sector has
provided some good case studies in the application of formal methods. These
include the Darlington Nuclear Generation Station in Canada, where formal
methods were used to certify the shutdown software of the plant. Other applications
include the use of formal methods to certify the correctness of safety critical soft-
ware is the Paris metro signaling system. The regulatory sector is concerned with
certification of the code with respect to the requirements, and timeliness is less
important than the actual certification. Regulatory systems are generally expensive

1The answer at this time is that the applications of formal methods to the regulated sector bring
benefits, as this sector requires certification that the code meets stringent safety critical and security
critical requirements. The cost of certification in the regulated sector is high, but formal methods
can be employed to demonstrate to regulators that the code conforms to the requirements. The
benefit gained is the extra quality assurance gained from the use of formal methods. The reliability
requirements in the regulated sector are much higher than for conventional systems, and the cost of
testing may make it infeasible to verify that these reliability requirements have been achieved. This
makes the use of formal methods a cost-effective solution in this domain. The demonstration
includes mathematical proof and testing. As the maturity of formal methods evolves there may be
other circumstances in which formal methods provide the most cost-effective solution.

18.2 Formal Methods and Industry 303

as often there are several organizations and products involved, and the verification
of the correctness of these products is time consuming.

The application of formal methods to mainstream software engineering has been
less successful. Mainstream software engineering is subjected to stringent com-
mercial constraints, and the experience to date is that the use of formal methods
does not provide any appreciable gain in quality, timeliness or productivity.2 Time
to market is often a key commercial driver in mainstream software engineering.

18.3 Usability of Formal Methods

There are practical difficulties associated with the usability of formal methods. It
seems to be assumed that programmers and even customers are willing to become
familiar with the mathematics used in formal methods. There is little evidence to
suggest that customers in mainstream software engineering would be prepared to
use formal methods.3 Customers are concerned with their own domain and speak
the technical language of that domain.4 Often, the use of mathematics is an alien
activity that bears little resemblance to their normal practical work. Programmers
are interested in programming rather than in mathematics and generally have no
interest in becoming mathematicians.5

However, the mathematics involved in most formal methods is reasonably ele-
mentary, and, in theory, if both customers and programmers are willing to learn the
formal mathematical notation, then a rigorous validation of the formal specification
can take place to verify its correctness. Both parties can review the formal speci-
fication to verify its correctness, and the code can be verified to be correct with
respect to the formal specification. It is usually possible to get a developer to learn a
formal method, as a programmer has some experience of mathematics and logic;
however, in practice, it is more difficult to get a customer to learn a formal method.

2The CICS project at IBM claimed a 9% increase in productivity. However, the late Peter Lupton
of IBM outlined difficulties that the engineers had with formal specification in Z at the FME’93
conference. Care needs to be taken with measurements in software engineering as some software
metrics are unsound. For example, it is easy to increase the productivity of an organization
(income per employee) with a redundancy program. Programmer productivity in terms of lines of
code per week is also unsound as a measure of productivity as the quality of the code also needs to
be considered.
3The domain in which the software is being used will influence the willingness or otherwise of the
customers to become familiar with the mathematics required. Certainly, in mainstream software
engineering there is little interest from customers, and the perception is that formal methods are
unusable. However, in some domains such as the regulated sector there is a greater willingness of
customers to become familiar with the mathematical notation.
4Most customers have a very limited interest and even less willingness to use mathematics
(exception to this are the regulated sector).
5Mathematics that is potentially useful to software engineers is discussed in [4, 5].

304 18 Technology Transfer to Industry

This means that often a formal specification of the requirements and an informal
definition of the requirements using a natural language are maintained. It is essential
that both of these documents are consistent and that there is a rigorous validation of
the formal specification. Otherwise, if the programmer proves the correctness of the
code with respect to the formal specification, and the formal specification is
incorrect, then the formal development of the software is incorrect. There are
several techniques to validate a formal specification (Table 18.1), and these are
described in more detail in [2].

18.3.1 Why Are Formal Methods Difficult?

Formal methods are perceived as being difficult to use and of offering limited value
in mainstream software engineering. Programmers receive some training in math-
ematics as part of their education. However, in practice, most programmers who
learn formal methods at university never use formal methods again once they take
an industrial position.

It may well be that the very nature of formal methods is such that it is suited only
for specialists with a strong background in mathematics. Some of the reasons why
formal methods are perceived as being difficult are listed in Table 18.2.

18.3.2 Characteristics of a Usable Formal Method

It is important to investigate ways by which formal methods can be made more
usable to software engineers. This may involve designing more usable notations
and better tools to support the process. Education and training is important, and
bringing in an expert formal methods consultant to act as a mentor to the team can
be beneficial. The consultant can educate the team on reading and writing formal
specifications, as well as providing mentoring support. The consultant can give

Table 18.1 Techniques for validation of formal specification

Technique Description

Proof This involves demonstrating that the formal specification adheres to key
properties of the requirements. The implementation will need to preserve
these properties also

Software
inspections

This involves a Fagan like inspection (discussed in Chap. 1) to perform the
validation. It may involve comparing an informal set of requirements
(unless the customer has learned the formal method) with the formal
specification

Specification
animation

This involves program (or specification) execution as a way to validate the
formal specification. It is similar to testing

Tools Tools provide some limited support in validating a formal specification

18.3 Usability of Formal Methods 305

practical advice on choosing the formal specification language (e.g. VDM, Z, B,
etc.), appropriate tool support including theorem provers, and to develop knowl-
edge of formal specification and verification in the company. Some of the char-
acteristics of a usable formal method are suggested in Table 18.3.

Table 18.2 Factors in difficulty of formal methods

Factor Description

Notation/intuition The notation employed differs from that employed in classical
mathematics. Intuition varies from person to person, but many
programmers find the notation in formal methods to be unintuitive

Formal specification It is easier to read a formal specification than to write one

Validation of formal
specification

The validation of a formal specification using proof techniques or a
Fagan like inspection is difficult

Refinementa The refinement of a formal specification into more concrete
specifications, with the proof of validity of each refinement step is
difficult and time consuming

Proof Proof can be difficult and time consuming

Tool support Many of the existing tools are difficult to use
aThe author doubts that refinement is cost effective for mainstream software engineering. However,
it may be useful in the regulated environment

Table 18.3 Characteristics of a usable formal method

Characteristic Description

Intuitive A good intuitive notation has potential as a usable formal method. Intuition
varies among people

Teachable A formal method needs to be teachable to the average software engineer.
The training should include (at least) writing practical formal specifications

Tool support Usable tools to support formal specification, validation, refinement and
proof are required

Adaptable to
change

Change is common in a software engineering environment. A usable
formal method should be adaptable to change

Technology
transfer path

The process for software development needs to be defined to include
formal methods. The migration to formal methods needs to be managed

Costa The use of formal methods should be a cost effective (timeliness, quality
and productivity). There should be a return on investment from the use of
formal methods

aA commercial company will expect a return on investment from the use of a new technology. This
may be reduced software development costs, improved quality, improved timeliness of projects or
improvements in productivity. A company does not go to the trouble of deploying a new
technology just to satisfy academic interest

306 18 Technology Transfer to Industry

18.4 Pilot of Formal Methods

The transfer of new technology to the organization involves a structured pilot of the
new technology using objective evaluation criteria. A decision is made following
the pilot to either conduct further pilots, abandon the technology or to transfer the
technology within the company. The steps for a pilot of formal methods are listed in
Table 18.4.

18.4.1 Technology Transfer of Formal Methods

The transfer of new technology to an organization needs to be done in a controlled
manner. The steps in the technology transfer are shown in Table 18.5.

Table 18.4 Steps for pilot of formal methods

Step Description

Overview of
technology

This provides the motivation for the pilot of the technology. An
organization (or group) receives an overview of a new technology that
offers potential. For example. this may be an approach such as Z or VDM

Select pilot project The technology may be sufficiently promising for the organization to
consider a pilot. This involves identifying a suitable project for the pilot
and selecting the project participants

Process for pilot Define the project’s software process to be followed for the pilot. The
process will detail where formal methods will be used in the lifecycle

Training Provide training on the new technology (formal method) and the process
for the pilot. The training will require the students to write formal
specifications

Evaluation criteria
(Pilot)

Define objective criteria to judge the effectiveness of the new technology.
This includes gathering data for:
• Productivity Measurements
• Quality Measurements
• Timeliness Measurements

Support (Pilot) Provide on-site support to assist the developers in preparing formal
specifications. This may require consultants

Conduct pilot The pilot is conducted and the coordinator for the pilot will work to
address any issues that arise. Data is gathered to enable objective
evaluation to take place

Post-mortema A post-mortem is conducted after the pilot to consider what went well and
what went poorly. The evaluation criteria are compared against the
gathered data and recommendations are made to either conduct further
pilots, abandon the technology or to institutionalize the new technology

aIt may well be that the result of a pilot of formal methods results in a decision that the
methodology is inappropriate for the company at this time. The bottom line is whether formal
methods provide a more cost-effective solution to software engineering problems that other
engineering approaches. Further pilots may be required before a final decision can be made

18.4 Pilot of Formal Methods 307

18.5 Review Questions

1. Why are formal methods perceived as being difficult by many
industrialists?

2. What is the purpose of a pilot of formal methods? Describe the steps
involved.

3. What are the characteristics of a usable formal method?
4. What are the steps involved in technology transfer of formal methods to an

organization?
5. What techniques are employed to validate a formal specification?

18.6 Summary

Technology transfer is the disciplined transfer of new technology to a company and
is concerned with the practical exploitation of the new technology. It cannot be
assumed that a new technology or method will necessarily benefit an organization,
and the initial focus is concerned with piloting the new technology and measuring
the benefits gained from its use.

The pilot(s) will provide insight into the effectiveness of the new technology, as
well as identifying areas that require further improvement prior to general
deployment of the technology throughout the company.

Table 18.5 Steps for technology transfer of formal methods

Step Description

Decision to deploy A decision is made to transfer the new technology throughout the
organization. The results of the pilot justify the decision

Software
development process

Update the software development process to define how formal
methods are used as part of the development process

Training Provide practical training to all affected staff in the company. The
training will include writing formal specifications

Audits Verify that the new process is being followed and that it is effective
by conducting audits. The results of the audits are reported in
management

Improvements Potential improvements to the technology or process are identified
and acted upon

308 18 Technology Transfer to Industry

The pilot is generally limited to one part of the company or to one specific
project in the company. A pilot needs to be planned and this includes deciding who
will participate, the provision of training for the participants and the identification
of criteria to evaluate the new technology.

The results of the pilot are then compared to the evaluation criteria and further
analysis and a post-mortem take place. This allows an informed decision to be made
as to whether the deployment of the new technology throughout the entire company
is appropriate.

References

1. D. Weber-Wulff, Selling formal methods to Industry, in FME’93. LNCS, vol. 670 (1993)
2. B.A. Wichmann, A Personal View of Formal Methods (National Physical Laboratory, Mar

2000)
3. M. Tierney, The Evolution of Def Stan 00-55 and 00-56. An intensification of the formal

methods debate in the UK. Research Centre for Social Sciences (University of Edinburgh,
1991)

4. G. O’Regan, Mathematics in Computing, 2nd edn. (Springer, 2012)
5. G. O’Regan, Guide to Discrete Mathematics (Springer, 2016)

18.6 Summary 309

19Epilogue

We embarked on a long journey in this book and set ourselves the objective of
providing a concise introduction to the formal methods field to students and
practitioners. The goal was to cover both theory and practice, and to give the reader
a grasp of the fundamentals of the formal methods field, as well as guidance on how
to apply the theory in an industrial environment.

We noted that companies today need to focus on customer satisfaction and on
software quality, and need to ensure that the desired quality is built into the soft-
ware product. Customers today have very high expectations on quality, and expect
high-quality software products to be consistently delivered on time. The focus on
quality requires that the organization defines a sound software development
infrastructure to enable quality software to be consistently produced.

Quality improvement also requires that the organization be actively aware of
industrial best practice, as well as emerging technologies from various research
programs. Piloting or technology transfer of innovative technology is an important
part of continuous improvement. Formal methods are one innovative technology
that may be employed to provide additional confidence in the correctness of the
software, and it has a role to play in software engineering (especially in the safety
and security critical fields).

We started our journey with a discussion of approaches used in current software
engineering to build quality into software. We discussed software project man-
agement; software processes and software life cycles; software inspections and
testing; and the Agile methodology. We discussed software process improvement
using the CMMI, and we noted that it provides a framework to assess the current
capability or maturity of selected software processes and to prioritize
improvements.

We then discussed software reliability and dependability, and covered topics
such as software reliability and software reliability models; the Cleanroom
methodology, system availability, safety and security critical systems, and depen-
dency engineering.

© Springer International Publishing AG 2017
G. O’Regan, Concise Guide to Formal Methods, Undergraduate Topics
in Computer Science, DOI 10.1007/978-3-319-64021-1_19

311

We discussed formal methods, which consist of a set of mathematic techniques
that provide an extra level of confidence in the correctness of the software. They
may be employed to formally state the requirements of the proposed system, and to
derive a program from its mathematical specification. They may be employed to
provide a rigorous proof that the implemented program satisfies its specification.
They have been mainly applied to the safety critical field.

We then provided an introduction to fundamental building blocks in discrete
mathematics including sets, relations and functions. A set is a collection of
well-defined objects, and it may be finite or infinite. A relation between two sets A
and B indicates a relationship between members of the two sets, and is a subset of
the Cartesian product of the two sets. A function is a special type of relation such
that for each element in A there is at most one element in the co-domain B.
Functions may be partial or total and injective, surjective or bijective.

We then presented a short history of logic, and we discussed Greek contributions
to syllogistic logic, stoic logic, fallacies and paradoxes. Boole’s symbolic logic and
its application to digital computing were discussed, and we considered Frege’s
work on predicate logic.

We then provided an introduction to propositional and predicate logic. Propo-
sitional logic may be used to encode simple arguments that are expressed in natural
language, and to determine their validity. The nature of mathematical proof was
discussed, and we presented proof by truth tables, semantic tableaux and natural
deduction. Predicate logic allows complex facts about the world to be represented,
and new facts may be determined via deductive reasoning. Predicate calculus
includes predicates, variables and quantifiers, and a predicate is a characteristic or
property that the subject of a statement can have.

We then presented some advanced topics in logic including fuzzy logic, tem-
poral logic, intuitionistic logic, dealing with undefined values, theorem provers and
the applications of logic to AI. Fuzzy logic is an extension of classical logic that
acts as a mathematical model for vagueness. Temporal logic is concerned with the
expression of properties that have time dependencies, and it allows properties about
the past, present and future to be expressed. Intuitionism was a controversial theory
on the foundations of mathematics based on a rejection of the law of the excluded
middle, and an insistence on constructive existence. We discussed three approaches
to deal with undefined values, including the logic of partial functions; Dijkstra’s
approach with his cand and cor operators; and Parnas’s approach which preserves a
classical two-valued logic.

We discussed the Z specification language, which is one of the more popular
formal methods. It was developed at the Programming Research Group at Oxford
University in the early 1980s. Z specifications are mathematical, and the use of
mathematics ensures precision, and allows inconsistencies and gaps in the speci-
fication to be identified. Theorem provers may be employed to demonstrate that the
software implementation meets its specification.

We presented the Vienna Development Method, which is one of the more
popular formal specification languages. We described the history of its development
at IBM in Vienna, the main features of the language and its development method.

312 19 Epilogue

We discussed a variant termed the Irish school of VDM (VDM♣) and explained
how it differs from standard VDM.

We then discussed the unified modelling language (UML), which is a visual
modelling language for software systems, and used to present several views of the
system architecture. It was developed at Rational Corporation as a notation for
modelling object-oriented systems. We presented various UML diagrams such as
use case diagrams, sequence diagrams and activity diagrams.

We then considered the approach of Dijkstra, Hoare and Parnas. We discussed
the calculus of weakest preconditions developed by Dijkstra and the axiomatic
semantics of programming languages developed by Hoare. We then discussed the
classical engineering approach of Parnas.

We discussed automata theory, including finite-state machines, pushdown
automata and Turing machines. Finite-state machines are abstract machines that are
in only one state at a time, and the input symbol causes a transition from the current
state to the next state. Pushdown automata have greater computational power, and
they contain extra memory in the form of a stack from which symbols may be
pushed or popped. The Turing machine is the most powerful model for computa-
tion, and is equivalent to an actual computer in the sense that it can compute exactly
the same set of functions.

We then discussed model checking which is an automated technique such that
given a finite-state model of a system and a formal property, then it systematically
checks whether the property is true of false in a given state in the model. It is an
effective technique to identify potential design errors, and it increases the confi-
dence in the correctness of the system design.

We then discussed the nature of proof and theorem provers including automated
and interactive theorem provers. We discussed the nature of a mathematical proof
and a formal mathematical proof.

We discussed probability and statistics including a discussion on discrete ran-
dom variables; probability distributions; sample spaces; sampling; the abuse of
statistics; variance and standard deviation; and hypothesis testing.

We then discussed a selection of tools that are available to support the formal
methodist in the performance of the various activities. Tools for VDM, Z, B, UML,
theorem provers and model checking were considered.

Finally, we discussed technology transfer which is concerned with the practical
exploitation of new technology developed by an academic or industrial research
group, and the objective is to facilitate the use of the technology in an industrial
environment.

19 Epilogue 313

19.1 The Future of Formal Methods

Quality is fundamental to the success of a company, and there will be a continued
focus on quality (e.g. approved quality systems such as ISO 9001, or achieving a
specific CMMI maturity level). Customer expectations are increasing all the time
and expect a high-quality product to be consistently delivered.

The safety and security critical fields will continue to demand extra assurance of
the quality and reliability of software, and formal methods will continue to play a
key role. Software components and the verification of software components may
become increasingly important, as companies will wish to speed up development to
shorten the time to market. Formal methods may play a role in the verification of
software components.

The debate in relation to the use of mathematics in software engineering is
ongoing. Many practitioners are against their use and employ methodologies such
as software inspections and testing to build quality into the software. They argue
that the use of mathematical techniques would seriously impact the market
opportunity. Industrialists often need to balance conflicting needs such as quality,
cost and delivering on time. They argue that the commercial realities require
methodologies and techniques that allow them to achieve their business goals
effectively.

The other camp argues that the use of mathematics is essential in the delivery of
high-quality and reliable software, and that if a company does not place sufficient
emphasis on quality, it will pay the price in terms of poor quality and loss of
reputation.

It is generally accepted that mathematics and formal methods must play a role in
the safety critical and security critical fields. Apart from that, the extent of its use
remains a hotly disputed topic. It is unrealistic to expect companies to deploy
formal methods unless they have evidence that it will support the delivery of
high-quality products to the market place ahead of their competitors. Formal
methods need to prove that it can do this if it wishes to be taken seriously in
mainstream software engineering.

Formal specification languages will continue to evolve and become more usable.
There will be more usable theorem provers and tools to support the formal
methodist in delivering high-quality software.

314 19 Epilogue

Erratum to: Concise Guide to Formal
Methods

Gerard O’Regan

Erratum to:
G. O’Regan, Concise Guide to Formal Methods,
Undergraduate Topics in Computer Science,
DOI 10.1007/978-3-319-64021-1

The original version of this book unfortunately contained several mistakes and has
been corrected.

The glossary had been incorrectly placed as “Abbreviations” and has been
corrected to “Glossary”.

The List of Figures had not been included in the original version and has been
inserted into the updated version.

The Chapter Key Topics had not been included in the original version and have
been inserted into the updated version.

The References have been included in the chapter backmatter in the updated
version.

The updated original online version of this book can be found at
http://dx.doi.org/10.1007/978-3-319-64021-1

© Springer International Publishing AG 2017
G. O’Regan, Concise Guide to Formal Methods, Undergraduate Topics
in Computer Science, DOI 10.1007/978-3-319-64021-1_20

E1

http://dx.doi.org/10.1007/978-3-319-64021-1
http://dx.doi.org/10.1007/978-3-319-64021-1

Glossary

ACL2 A Computational Logic for Applicative Common Lisp

ACM Association for Computing Machinery

AI Artificial Intelligence

AMN Abstract machine notation

APL A programming language

ATM Automated teller machine

ATP Automated theorem prover

BCS British Computer Society

CCS Calculus communicating systems

BSL Bandera Specification Language

CICS Customer Information Control System

CMG Computer Management Group

CMM Capability Maturity Model

CMMI® Capability Maturity Model Integration

COPQ Cost of poor quality

COTS Customized off the shelf

CSP Communicating Sequential Processes

CTL Computational tree logic

CZT Community of Z Tools

DPDA Deterministic pushdown automata

DSDM Dynamic System Development Method

ESA European Space Agency

© Springer International Publishing AG 2017
G. O’Regan, Concise Guide to Formal Methods, Undergraduate Topics
in Computer Science, DOI 10.1007/978-3-319-64021-1

315

FSM Finite-state machine

GNU GNU’s Not Unix

GUI Graphical user interface

HOL Higher-order logic

IBM International Business Machines

IDE Integrated Development Environment

IEC International Electrotechnical Commission

IEEE Institute of Electrical and Electronics Engineers

IFIP International Federation for Information Processing

ISEB Information System Examination Board

ISO International Standards Organization

ITP Interactive theorem prover

JAD Joint Application Development

KLOC Thousand lines of code

LD Limited domain

LEM Law of the excluded middle

LISP List processing

LPF Logic of partial functions

LT Logic Theorist

LTL Linear temporal logic

MIT Massachusetts Institute of Technology

MSL Mars Science Laboratory

MTBF Mean time between failure

MTTF Mean time to failure

MOD Ministry of Defence

NATO North Atlantic Treaty Organization

NFA Non-deterministic finite-state automaton

NQTHM New Quantified THeoreM prover

NRL Naval Research Laboratory

OCL Object constraint language

316 Glossary

OMT Object Modelling Technique

OTTER Organized Techniques for Theorem-proving and Effective Research

PIN Personal identity number

PL/1 Programming Language 1

PDA Pushdown automata

PVS Prototype Verification System

RAD Rapid Application Development

RDBMS Relational Database Management System

RSA Rational Software Architect

RSM Rational Software Modeler

RSRE Royal Signals and Radar Establishment

RUP Rational Unified Process

SAM Semi-automated mathematics

SCAMPI Standard CMMI Appraisal Method for Process Improvement

SDI Strategic Defence Initiative

SEI Software Engineering Institute

SPICE Software Process Improvement Capability dEtermination

SQL Structured Query Language

SRI Stanford Research Institute

TDD Test-driven development

TPS Theorem Proving System

UAT User acceptance testing

UML Unified modelling language

VDM Vienna Development Method

VDM♣ Irish School of VDM

VDM-SL VDM specification language

WFF Well-formed formula

Y2K Year 2000

Glossary 317

Index

A
Abuse of statistics, 280
Agile development, 12
Algol 60, 241
Alonzo Church, 87
Application of functions, 87
Applications of relations, 80
Ariane 5 disaster, 7
Artificial intelligence, 148
Atelier B tool, 295
Automata theory, 243
Automath system, 268
Axiomatic approach, 49

B
Bags, 163
Bandera, 260
Bijective, 86
Binary relation, 65, 66, 74, 81, 91
Binomial distribution, 278
Booch method, 205
Boole, 99
Boole’s symbolic logic, 99
Boyer-Moore theorem prover, 268
Brouwer, L. E. J., 141
B-Toolkit, 294

C
CadiZ, 292
Capability Maturity Model Integration, 6, 22,

311
CCS, 57
Central limit theorem, 284
CICS, 45, 169
Class diagrams, 209
Claude Shannon, 102
Cleanroom, 28
Cleanroom methodology, 31
Codd, Edgar, 81

Commuting diagram property, 168
Competence set, 80
Computable function, 87
Computational tree logic, 259
Computer Representation of Sets, 73
Computer security, 37
Concurrency, 257
Conditional probability, 276
Correlation, 278
Covariance, 278
CSP, 57, 222

D
Darlington nuclear power plant, 45
Data reification, 168
Decomposition, 167
Deduction theorem, 122
Def Stan 00-55, 45
Dependability engineering, 35
Dijkstra, 146, 220

E
Endomorphism, 190
Enterprise Architect, 296
Equivalence relation, 77
European Space Agency, 8
Evaluation criteria, 307
Existential quantifier, 109, 110, 126

F
Fagan inspections, 5, 21
Finite-state machines, 57, 244, 245
Flowcharts, 232
Floyd, 231
Formal methods, 23
Formal methods and industry, 302
Formal specification, 41
Frege, Gottlob, 105
Frequency table, 285

© Springer International Publishing AG 2017
G. O’Regan, Concise Guide to Formal Methods, Undergraduate Topics
in Computer Science, DOI 10.1007/978-3-319-64021-1

319

Functional programming, 87
Functional programming languages, 87
Functions, 82
Fuzzy Logic, 138

G
Gaussian distribution, 283
Geometry Machine, 266

H
Hackers, 37
Halting problem, 130
Histogram, 285
Hoare, 222
Hoare logic, 234
HOL system, 153, 268
Homomorphism, 190
Hypothesis testing, 287

I
IEEE standards, 10
Indexed structures, 197
Industrial applications of model checking, 260
Industrial applications of VDM, 184
Industrial applications of Z, 169
Industrial tools for UML, 215
Information hiding, 59, 225
Injective, 85
Input assertion, 234
Interactive theorem provers, 267
Interpretation, 129
Intuitionist logic, 141
Irish school of VDM, 187
Isabelle, 152

L
Laws of probability, 275
Limited domain relation, 80
Linear temporal logic, 259
Logic and AI, 148
Logic of partial functions, 143, 175, 180
Logic programming languages, 149
Logic Theorist, 152, 265
Loop invariant, 232

M
Maintenance, 20
Mathematical proof, 49, 169, 263, 269, 313
Miracle, 227
Miranda, 88
Model, 9, 191
Model checking, 59, 254
Model-oriented approach, 48
Models and modelling, 191

Mongolian Hordes Approach, 1
Monoid, 190

N
Natural deduction, 121
Normal distribution, 283

O
Object constraint language, 214
Object diagram, 210
Object modeling technique, 205
Object-Oriented Software Engineering, 205
Occam’s Razor, 192
Output assertion, 234
Overture Integrated Development

Environment, 47, 293, 298

P
Paradoxes and Fallacies, 96
Parnas, 5, 17, 58, 224
Parnas logic, 145
Partial correctness, 56, 234
Partial function, 84, 161
Performance testing, 19
Pilot, 302
Poisson distribution, 279
Postcondition, 54, 234
Precondition, 54, 56, 234
Predicate, 126
Predicate logic, 109, 110, 125, 312
Predicate transformer, 56
Prince 2, 5, 20
Probability mass function, 277
Probability theory, 274, 289
Process calculi, 56
Process maturity models, 22
Professional Engineering Association, 2
Professional engineers, 6
Project management, 21
Prolog, 150
Proof in propositional calculus, 116
Proof in Z, 168
Propositional logic, 109, 110, 312
Prototyping, 15
Pushdown automata, 247
PVS, 297

Q
Quicksort, 222

R
Random sample, 274, 280, 288
Random variable, 276, 277
Rational software modeler, 295

320 Index

Rational Unified Process, 9, 11, 215, 216
Refinement, 42
Refinement in Irish VDM, 200
Refinement in VDM, 183
Reflexive, 75
Reification, 167
Relational database management system, 80
Relations, 74
Requirements validation, 42
Russell’s paradox, 72

S
Safety critical system, 36, 38
Schema calculus, 54
Schema composition, 164, 167
Schema inclusion, 165
Schemas, 164
Scientific revolutions, 48
Semantics, 173
Semantic tableaux, 118, 131
Semi-group, 189
Sequence diagram, 211, 212
Sequences, 162
Set Theory, 66
Six sigma, 20
Software availability, 36
software crisis, 2, 24
software engineering, 2, 6
software failures, 7
Software reliability, 27, 30
Software Reliability and Defects, 29
Software reliability models, 32
Software reuse, 17
Software testing, 18
Specification in VDM, 182
Specifications and proofs, 198
Spin, 260
Spiral model, 10
Sprint planning, 13
Standard deviation, 277, 282
Standish group, 3, 24
State diagrams, 212
Statistical sampling, 280
Statistical usage testing, 32
Statistics, 279
Stoic Logic, 98
Story, 13
Strategic defence initiative, 225
Structured query language, 81
Surjective, 85
Syllogistic logic, 94, 96
Symmetric, 75

System availability, 38
System testing, 18

T
Tabular expressions, 224, 236, 241
Tautology, 122
Technology transfer of formal methods, 307
Temporal logic, 139, 258
Test driven development, 18
Theorem provers, 151
Tools for B, 294
Tools for model checking, 296
Tools for theorem provers, 297
Tools for UML, 295
Tools for VDM, 293
Tools for Z, 292
Total correctness, 234
Traceability, 16
Transition function, 245
Transitive, 76
Truth table, 111, 112
Turing award, 222
Turing machine, 249

U
UAT testing, 19
UML activity diagram, 213
UML diagrams, 208
Undefined values, 143
Unified modeling language, 205, 218
Unit testing, 18
Universal quantifier, 109, 110, 126
Use-case diagram, 211

V
Valuation functions, 129
Vannevar Bush, 104
Variance, 277, 282
VDM, 43, 51, 174, 185
VDM♣, 53, 188
VDMTools, 293
Vienna development method, 51, 173, 312
VIPER, 50

W
Waterfall model, 9
Weakest precondition, 56
Weakest precondition calculus, 224

Y
Y2K, 3, 7
Y2K bug, 7

Index 321

Z
Z, 43
Zermelo set theory, 55
Z/EVES, 292

Z formal specification
language, 155, 169

Z specification, 54, 156
Z specification language, 54, 222

322 Index

	Preface
	Contents
	List of Figures
	List of Tables
	1 Software Engineering
	1.1 Introduction
	1.2 What Is Software Engineering?
	1.3 Challenges in Software Engineering
	1.4 Software Processes and Life cycles
	1.4.1 Waterfall Life cycle
	1.4.2 Spiral Life cycles
	1.4.3 Rational Unified Process
	1.4.4 Agile Development

	1.5 Activities in Waterfall Life cycle
	1.5.1 Business Requirements Definition
	1.5.2 Specification of System Requirements
	1.5.3 Design
	1.5.4 Implementation
	1.5.5 Software Testing
	1.5.6 Support and Maintenance

	1.6 Software Inspections
	1.7 Software Project Management
	1.8 CMMI Maturity Model
	1.9 Formal Methods
	1.10 Review Questions
	1.11 Summary
	References

	2 Software Reliability and Dependability
	2.1 Introduction
	2.2 Software Reliability
	2.2.1 Software Reliability and Defects
	2.2.2 Cleanroom Methodology
	2.2.3 Software Reliability Models

	2.3 Dependability
	2.4 Computer Security
	2.5 System Availability
	2.6 Safety Critical Systems
	2.7 Review Questions
	2.8 Summary
	References

	3 Overview of Formal Methods
	3.1 Introduction
	3.2 Why Should We Use Formal Methods?
	3.3 Industrial Applications of Formal Methods
	3.4 Industrial Tools for Formal Methods
	3.5 Approaches to Formal Methods
	3.5.1 Model-Oriented Approach
	3.5.2 Axiomatic Approach

	3.6 Proof and Formal Methods
	3.7 Mathematics in Software Engineering
	3.8 The Vienna Development Method
	3.9 VDM♣, the Irish School of VDM
	3.10 The Z Specification Language
	3.11 The B-Method
	3.12 Predicate Transformers and Weakest Preconditions
	3.13 The Process Calculi
	3.14 Finite-State Machines
	3.15 The Parnas Way
	3.16 Model Checking
	3.17 Usability of Formal Methods
	3.18 Review Questions
	3.19 Summary
	References

	4 Sets, Relations and Functions
	4.1 Introduction
	4.2 Set Theory
	4.2.1 Set Theoretical Operations
	4.2.2 Properties of Set Theoretical Operations
	4.2.3 Russell’s Paradox
	4.2.4 Computer Representation of Sets

	4.3 Relations
	4.3.1 Reflexive, Symmetric and Transitive Relations
	4.3.2 Composition of Relations
	4.3.3 Binary Relations
	4.3.4 Applications of Relations

	4.4 Functions
	4.5 Application of Functions
	4.5.1 Miranda Functional Programming Language

	4.6 Review Questions
	4.7 Summary
	References

	5 A Short History of Logic
	5.1 Introduction
	5.2 Syllogistic Logic
	5.3 Paradoxes and Fallacies
	5.4 Stoic Logic
	5.5 Boole’s Symbolic Logic
	5.5.1 Switching Circuits and Boolean Algebra

	5.6 Application of Symbolic Logic to Digital Computing
	5.7 Frege
	5.8 Review Questions
	5.9 Summary
	References

	6 Propositional and Predicate Logic
	6.1 Introduction
	6.2 Propositional Logic
	6.2.1 Truth Tables
	6.2.2 Properties of Propositional Calculus
	6.2.3 Proof in Propositional Calculus
	6.2.4 Semantic Tableaux in Propositional Logic
	6.2.5 Natural Deduction
	6.2.6 Sketch of Formalization of Propositional Calculus
	6.2.7 Applications of Propositional Calculus
	6.2.8 Limitations of Propositional Calculus

	6.3 Predicate Calculus
	6.3.1 Sketch of Formalization of Predicate Calculus
	6.3.2 Interpretation and Valuation Functions
	6.3.3 Properties of Predicate Calculus
	6.3.4 Applications of Predicate Calculus
	6.3.5 Semantic Tableaux in Predicate Calculus

	6.4 Review Questions
	6.5 Summary
	References

	7 Advanced Topics in Logic
	7.1 Introduction
	7.2 Fuzzy Logic
	7.3 Temporal Logic
	7.4 Intuitionist Logic
	7.5 Undefined Values
	7.5.1 Logic of Partial Functions
	7.5.2 Parnas Logic
	7.5.3 Dijkstra and Undefinedness

	7.6 Logic and AI
	7.7 Theorem Provers for Logic
	7.8 Review Questions
	7.9 Summary
	References

	8 Z Formal Specification Language
	8.1 Introduction
	8.2 Sets
	8.3 Relations
	8.4 Functions
	8.5 Sequences
	8.6 Bags
	8.7 Schemas and Schema Composition
	8.8 Reification and Decomposition
	8.9 Proof in Z
	8.10 Industrial Applications of Z
	8.11 Review Questions
	8.12 Summary
	References

	9 Vienna Development Method
	9.1 Introduction
	9.2 Sets
	9.3 Sequences
	9.4 Maps
	9.5 Logic of Partial Functions in VDM
	9.6 Data Types and Data Invariants
	9.7 Specification in VDM
	9.8 Refinement in VDM
	9.9 Industrial Applications of VDM
	9.10 Review Questions
	9.11 Summary
	References

	10 Irish School of VDM
	10.1 Introduction
	10.2 Mathematical Structures and Their Morphisms
	10.3 Models and Modelling
	10.4 Sets
	10.5 Relations and Functions
	10.6 Sequences
	10.7 Indexed Structures
	10.8 Specifications and Proofs
	10.9 Refinement in Irish VDM
	10.10 Review Questions
	10.11 Summary
	References

	11 Unified Modelling Language
	11.1 Introduction
	11.2 Overview of UML
	11.3 UML Diagrams
	11.4 Object Constraint Language
	11.5 Industrial Tools for UML
	11.6 Rational Unified Process
	11.7 Review Questions
	11.8 Summary
	References

	12 Dijkstra, Hoare and Parnas
	12.1 Introduction
	12.2 Calculus of Weakest Preconditions
	12.2.1 Properties of WP
	12.2.2 WP of Commands
	12.2.3 Formal Program Development with WP

	12.3 Axiomatic Definition of Programming Languages
	12.4 Tabular Expressions
	12.5 Review Questions
	12.6 Summary
	Reference

	13 Automata Theory
	13.1 Introduction
	13.2 Finite-State Machines
	13.3 Pushdown Automata
	13.4 Turing Machines
	13.5 Review Questions
	13.6 Summary
	References

	14 Model Checking
	14.1 Introduction
	14.2 Modelling Concurrent Systems
	14.3 Linear Temporal Logic
	14.4 Computational Tree Logic
	14.5 Tools for Model Checking
	14.6 Industrial Applications of Model Checking
	14.7 Review Questions
	14.8 Summary
	References

	15 The Nature of Theorem Proving
	15.1 Introduction
	15.2 Early Automation of Proof
	15.3 Interactive Theorem Provers
	15.4 A Selection of Theorem Provers
	15.5 Review Questions
	15.6 Summary
	Reference

	16 Probability and Statistics
	16.1 Introduction
	16.2 Probability Theory
	16.2.1 Laws of Probability
	16.2.2 Random Variables

	16.3 Statistics
	16.3.1 Abuse of Statistics
	16.3.2 Statistical Sampling
	16.3.3 Averages in a Sample
	16.3.4 Variance and Standard Deviation
	16.3.5 Bell-Shaped (Normal) Distribution
	16.3.6 Frequency Tables, Histograms and Pie Charts
	16.3.7 Hypothesis Testing

	16.4 Review Questions
	16.5 Summary
	References

	17 Industrial Tools for Formal Methods
	17.1 Introduction
	17.2 Tools for Z
	17.3 Tools for VDM
	17.4 Tools for B
	17.5 Tools for UML
	17.6 Tools for Model Checking
	17.7 Tools for Theorem Provers
	17.8 Review Questions
	17.9 Summary
	References

	18 Technology Transfer to Industry
	18.1 Introduction
	18.2 Formal Methods and Industry
	18.3 Usability of Formal Methods
	18.3.1 Why Are Formal Methods Difficult?
	18.3.2 Characteristics of a Usable Formal Method

	18.4 Pilot of Formal Methods
	18.4.1 Technology Transfer of Formal Methods

	18.5 Review Questions
	18.6 Summary
	References

	19 Epilogue
	19.1 The Future of Formal Methods

	20 Erratum to: Concise Guide to Formal Methods
	Erratum to:G. O’Regan, Concise Guide to Formal Methods, Undergraduate Topics in Computer Science,DOI 10.1007/978-3-319-64021-1

	Glossary
	Index

