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2Sodium Disorders

Carole Ichai and Jean-Christophe Orban

2.1	 �Introduction

Dysnatremias are the most common electrolyte disorders, especially in critically ill 
and surgical patients. Brief notions of pathophysiology focused on the mechanisms 
and regulation of intracellular volume are needed to analyze dysnatremias. Such 
disorders may induce severe organ dysfunctions, especially cerebral dysfunction, 
and cause death. The practical diagnostic and therapeutic approach of hyponatre-
mias and hypernatremias must follow safety rules of management to prevent iatro-
genic complications. Because this book is dedicated to critically ill situations, we 
will focus essentially on acute and severe dysnatremias, especially for the 
treatment.

2.2	 �Pathophysiology Definitions

This paragraph is voluntary summarized because it is largely detailed in another 
chapter (see “Water and Sodium Balance” chapter).

2.2.1	 �Body Compartments

Total body water (TBW) is the most compound of total body weight in an adult 
(50–70%). TBW distributes for two-thirds in the intracellular volume (ICV), and 
the remaining one-third in the extracellular volume (ECV) [1–6]. ICV and ECV 
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are separated by cell membranes. ECV is divided into the plasma or the effective 
arterial blood volume (EABV) (25–30%) and the interstitial volume (70–75%). 
EABV is normally composed of 93% water that contains dissociated and non-
dissociated solutes. Seven percent of the plasma volume is occupied by non-
dissociated molecules (lipids and proteins) without water. As cell membranes are 
semipermeable, water crosses freely between the ICV and the ECV according to 
the osmotic transmembrane gradient [2, 7, 8]: water moves from the low to the 
high osmotic compartment until reaching the osmotic equilibrium. Therefore, 
ICV depends on the solute concentrations between both compartments. Only 
effective or impermeant solutes are able to create such an osmotic gradient across 
cell membranes, leading to water movements and changes in cell volume. Among 
them, sodium (Na+) is the major impermeant solute of the ECV and potassium 
(K+) of the ICV: thanks to the Na+-K+-ATPase pump located on cell membranes, 
Na+ is restricted to the ECV, whereas K+ is essentially located in the ICV. Therefore, 
total body sodium content (pool) is the major determinant of arterial pressure, 
while serum sodium concentration and its associated cations play a major role in 
determining plasma osmolality. Diffusive or ineffective solutes, i.e., urea and 
alcohols (ethanol, methanol, ethylene glycol), cross freely to the cell membrane 
and is distributed equally in the ICV and the ECV. Therefore, they are unable to 
create any change in cell volume. The osmotic effect of glucose depends on the 
nature of tissues: for non-insulin-mediated ones, glucose behaves as an ineffective 
solute; for insulin-mediated tissues in the presence of insulin, glucose remains a 
noneffective solute, but in case of insulinopenia or insulin resistance, glucose 
becomes an effective impermeant solute. At last, mannitol and glycerol, non-
physiological solutes, are also extracellular effective solutes. Based on its osmotic 
properties, mannitol is one of the most popular treatments of cerebral edema 
(osmotherapy).

2.2.2	 �Osmolarities and Plasma Tonicity

Total plasma osmolarity is defined as the concentration of all osmotic solutes in a 
liter of plasma (mosm/L). Plasma osmolality is also the concentration of all solutes 
but in a kilogram of plasma water (mosm/kg). In normal conditions, both are very 
close as water contributes to 93% of 1 liter of plasma, but in case of severe hyper-
lipidemia or hyperprotidemia, the amount of plasma water decreases leading to an 
artificial decreased serum sodium concentration (see chapter “Plasma Tonicity and 
Hyponatremia”). Plasma osmolarity can be approached in different ways [1–3, 7–
9]. The measured total plasma osmolality (mPosm [mosm/kg]), which is performed 
in the laboratory using the delta cryoscopic method, provides a global value of all 
osmoles present in the plasma, regardless of their normal or abnormal presence and 
their transmembrane diffusive properties. Posm can be easily calculated at bedside 
(cPosm [mosm/L]) considering the major electrolytes contained in plasma by the 
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following formula: cPosm [mosm/L]  =  ([Na+  ×  2]  +  glycemia + urea) 
(mmol/L)  =  280–295 mosm/L.  Because this calculation overrides abnormal (not 
usually measured) and minor plasma osmoles, mPosm is slightly higher than cPosm. 
The difference between these two parameters is known as the osmolar gap 
(OG = mPosm - cPosm), and its value is around 10 mosm/L. Plasma tonicity (or 
effective osmolarity) refers to only major effective osmoles and is calculated using 
the following formula: P tonicity =  [Na+ × 2) + glycemia] (mmol/L) = 270–285 
mosm/L. P tonicity is therefore the best practical parameter for evaluating accu-
rately the ICV [2, 4, 7, 8]: a hypotonic stress always indicates an increased ICV (cell 
edema), whereas a hypertonic stress is always associated with a decreased ICV (cell 
shrinkage).

2.2.3	 �Body Water Balance and Its Regulation

Briefly, in physiological conditions, water intake and output are closely equili-
brated, aiming to control TBW and consequently extracellular tonicity. This phe-
nomenon allows to maintain a stable ICV and to avoid any changes in cell volume. 
Preservation of cell volume is fundamental to maintain cell functions and avoid cell 
death. Due to its essential contribution in plasma tonicity, serum sodium concentra-
tion, i.e., natremia, is the major parameter participating in TBW and cell volume. 
On the other hand, because body sodium is mainly extracellular, total body sodium 
amount determines ECV regulation.

TBW is controlled by three neurohormonal mechanisms: vasopressin (VP) or 
antidiuretic hormone (ADH), thirst, and the capacity of the kidney to concentrate or 
dilute urines. In physiological situations, thanks to these mechanisms, plasma tonic-
ity remains stable despite wide daily variations in water intake or excretion [2–4, 8, 
10]. VP and thirst are mainly triggered via an osmotic stimulus [1, 10, 11]. VP is 
synthetized by nuclei of the anterior hypothalamus, stored and released by the pos-
terior pituitary. Tonicity is closely perceived by special neurons mainly located in 
the subfornical (SFO) and the organum vasculosum of the lamina terminalis (OVLT) 
of the circumventricular organs [3, 4, 6]. Such neurons are perfect osmoreceptors 
able to detect very low changes in plasma tonicity and cell volume. Modification in 
cell volume triggers the activation (cell shrinkage) or inhibition (cell edema) of 
some cationic protein channels, the transient receptor potential vanilloid (TRVP) of 
these osmoreceptors, leading finally to activate or inhibit VP release and thirst sen-
sation [12–14]. Because any modification in cell volume is poorly tolerated (espe-
cially for the brain), VP release is modified for tonicity changes as small as 1–2%. 
In humans, above a threshold around 280 mosm/kg, VP secretion increases linearly 
with an increasing osmolality (from 280 to 330 mosm/kg); under this threshold, VP 
concentration remains undetectable in plasma [2, 15]. The threshold of thirst seems 
to be very close from that of VP, and its upper limit is very high depending on the 
total osmoles to be excreted (up to 25  l of urine output is possible with normal 
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kidneys). VP release and thirst are also triggered by changes in arterial pressure and 
volemia via an activation of peripheral baro-/voloreceptors which are mainly located 
on the sino-aortic vascular walls [16, 17]. When both changes in osmolality and 
arterial pressure/volemia stimulate VP and thirst, there is an amplification of the 
phenomenon (e.g., hypotension and hyperosmolality). However, in case of opposite 
stimulus, the resulting effect depends on the severity of modification in volemia: 
only severe hypovolemia (of at least 5–10%) overrides the osmoregulation allowing 
extremely high VP concentrations [16, 17]. Other non-osmotic, non-volumic stim-
uli enable to activate VP release and thirst such as pain, morphinics, nausea, vomit-
ings, and hypoxia.

Renal water excretion is mainly controlled by VP which promotes water renal 
reabsorption in the collecting tube. VP binds to its V2 receptors (V2R) which are 
located on the basal cell membrane [18]. The complex VP-V2R triggers a cascade 
of reactions, resulting finally in the expression and activation of water channels, i.e., 
aquaporins [5, 11, 19–21]. Aquaporin-2 activation allows high volume of water 
reabsorption by kidneys. In the absence of VP, urine is diluted with a maximum 
decrease in urine osmolarity of 50–100 mosm/L. The linear increase in VP concen-
tration induces a linear increase in urine concentration with a maximal urine osmo-
larity of 1200 mosm/L. Above this value and despite a persistent increase in VP 
concentration, urine cannot concentrate more.

2.2.4	 �Cell Volume Regulation-Osmoregulation

Cell volume modifications are poorly tolerated and a constant cell volume is essen-
tial to prevent cell damages and dysfunction. Cell edema secondary to a hypotonic 
stress can cause cell rupture; hypertonicity induces cell shrinkage which can pro-
motes damages of the cytoskeleton, breaks in DNA, and apoptosis [13]. Because the 
brain is maintained in a non-extensible skull, brain swelling or shrinkage exposes to 
lethal brain injury, especially when changes in volume are rapid. Hypotonic-induced 

In summary: usually, thanks to VP and thirst mainly, TBW is maintained con-
stant allowing to control plasma tonicity and consequently cell volume. The 
kidney is the central organ which regulates urine concentration or dilution 
according to plasma VP concentration and water intake. Thirst is the second 
major mechanism which allows to prevent the development of severe hyper-
tonicity. Therefore, inappropriate secretion of ADH (SIADH) may be respon-
sible for inappropriate water reabsorption by the kidney, leading to hypotonic 
hyponatremia. On the other hand, because thirst has no real upper limit, 
hypertonicity is theoretically impossible, except in case of abnormal thirst 
behavior (elderly patients) or difficulties to drink (prolonged gastric suction-
ing, coma, etc.) [18, 22].
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cerebral edema can be complicated by refractory intracranial hypertension and ulti-
mately by brain death; hypertonic-induced brain shrinkage can cause intracerebral 
hemorrhage with poor neurological outcome or death too. This explains why clini-
cal manifestations of hyponatremia and hypernatremia are primarily neurologic and 
life-threatening but nonspecific.

Fortunately, all but almost cerebral cells are not really perfect osmometers 
(except those responsible for VP stimulation located in the circumventricular 
organs). Indeed, brain cells enable to limit their volume changes related to an 
osmotic stress. Such protective effects, i.e., cerebral osmoregulation, result from 
an adjustment of the intracellular solute content to the extracellular one [1–3, 10, 
13, 23]. This phenomenon aims to limit the development of a transmembrane 
osmotic gradient and consequently cell volume modifications. Cell volume regu-
lation consists in a regulatory volume decrease (RVD) in response to hypotonic-
induced cell swelling and of a regulatory volume increase (RVI) in response to 
hypertonic-induced cell shrinkage [24–30]. Two types of effective solutes, i.e., 
osmoprotective molecules, are implicated in this regulation: the inorganic are 
electrolytes (mainly Na, K, Cl), and the organic are idiogenic osmoles (or osmo-
lytes) and consist in amino acids, polyols, and triethylamines. Chloride via its 
voltage-dependent channels (ClC) and its sodium (NCC), potassium (KCC), 
sodium/potassium (NKCC) cotransporters is also essential for regulating brain 
volume [31, 32]. NCC and NKCC favor sodium, potassium, and chloride entry in 
the cell and are inhibited by an increased intracellular chloride concentration. 
Plasma hypotonicity activates KCC3 leading to extrude potassium and chloride 
from the cell and to attenuate cerebral edema (RVD). On contrary, plasma hyper-
tonicity activates NKCC1 which induces the entry of sodium, potassium, and 
chloride in the cell and finally decreases cell shrinkage (RVI). An acute hypoto-
nicity triggers quickly in some minutes to 2–4 h an extrusion of inorganic osmoles. 
This phenomenon protects rapidly but moderately and incompletely the brain cell 
from volume changes. Only prolonged (chronic on 24–48 h) hypotonicity enables 
to strongly blunt the osmotic gradient and avoid relevant cell volume changes, 
thanks to the excretion of osmolytes. This mechanism takes a longer time required 
to obtain synthesis or metabolism of these organic solutes by cells. In this situa-
tion, cerebral osmoregulation is delayed but is strongly efficient and complete and 
restores the brain volume (Fig. 2.1). Cerebral osmoregulation induced by a hyper-
tonic stress consists in opposite shifts of electrolytes and organic osmoles, leading 
also to control cerebral volume.

Aquaporin-4 channels (AQP4) are also largely involved in cerebral cell volume 
changes [25, 33, 34]. They are strongly present in the brain, located on glial cells 
which are close from arterial vessels and subarachnoid spaces, and in the supraoptic 
nucleus. Indeed, during hyponatremia, knockout animals for AQP4 show an intense 
reduction in cerebral edema and in mortality as compared with the control [35]. 
Hypertonic saline seems to induce its antiedematous effect, thanks to these perivas-
cular AQP4 [34]. However, AQP4 are also responsible for a reabsorption of water in 
vasogenic edema related to brain tumor [36].
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Non-osmotic stress as ischemia-reperfusion, hypothermia, or acidosis enables to 
trigger cell volume changes [29]. Chloride, potassium channels, and sodium-
potassium-chloride (NKCC) cotransporters seem to be involved in this phenomenon 
which is controlled by the intracrine renin-angiotensin system.
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Fig. 2.1  Mechanisms of brain volume regulation during plasma hypotonic stress (osmoregula-
tion). (a): Normal brain volume: water and effective osmole contents are 100% (b): Immediate 
plasma hypotonicity: plasma hypotonicity induces water extrusion from brain cells because the 
amount of intracellular effective osmoles cannot change immediately. The resulting high trans-
membrane osmotic gradient provokes brain edema. (c): Acute plasma hypotonicity: after 2–3 h of 
plasma hypotonicity, brain cells enable to reduce their amount of effective osmolytes by extruding 
electrolytes (inorganic osmoles including potassium and chloride essentially) and attenuate the 
transmembrane osmotic gradient. As a result moderate and incomplete brain edema develops. (d): 
Chronic plasma hypotonicity: after 24  h or more prolonged plasma hypotonicity, a substantial 
extrusion of organic effective osmoles (osmolytes such as polyols and amino acids) from brain 
cells blunts the transmembrane osmotic gradient. As a result, cerebral osmoregulation appears 
quasi-complete and the brain recovers a subnormal volume

In summary, the efficiency of cerebral osmoregulation depends strongly on 
the time of development and the duration of the osmotic disorder. Because 
of an incomplete cerebral osmoregulation, rapid dysnatremias are more 
often symptomatic and life-threatening and require an emergent aggressive 
treatment. Classically, longer development of hyponatremias, which is 
commonly associated with a quasi-complete cerebral volume regulation, is 
more usually asymptomatic or poorly symptomatic and thus does not 
require an emergent treatment. Moreover, due to a downregulation of trans-
porters, the recovery of modifications in brain osmoles takes a longer time 
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2.3	 �Epidemiology: Prognosis

Dysnatremias are the most common electrolyte disorders [39–43]. Most studies 
reported a frequency between 25 and 50%, depending on the patient’s conditions, 
the threshold of abnormal values, and on the delay of appearance of dysnatremia. 
Hoorn et al. [39] showed that 15–30% of hospitalized patients experienced moder-
ate (130–135 mmol/L) and 3% severe (<125 mmol/L) hyponatremia. Among the 
severe one, 36% were symptomatic and only 20% of them survived. Most frequent 
causes of hyponatremia are the syndrome of inappropriate secretion of antidiuretic 
hormone (SIADH), surgical patients (especially neurosurgical patients), and drug-
induced hyponatremia, while hypernatremia is frequently iatrogenic. Numerous 
studies found that dysnatremias, even moderate, are independently associated with 
an increased risk of in-hospital mortality [39, 41, 44]. A recent meta-analysis includ-
ing 81 studies found that 17.4% of patients (n = 147,948) experienced a moderate 
hyponatremia (125–135  mmol/L), which was significantly associated with an 
increased risk of overall mortality (RR = 2.6) and morbidity [41]. Moreover, mortal-
ity was inversely correlated with the depth of hyponatremia.

Several recent studies are focused on dysnatremias in critically ill patients [45–
49]. Most of them considered only dysnatremias at admission in intensive care unit 
(ICU) and showed that hyponatremia was more frequent than hypernatremia (11–
26% vs. 2.5–9%, respectively). In a retrospective study performed in 77 ICUs over 
a period of 10 years, Funk et al. [47] showed that 24% of patients presented dysna-
tremias at admission, 17.3% were hyponatremic and 6.9% were hypernatremic. 
According to the level of serum sodium concentration, patients were distributed as 
follows: slight, moderate, and severe hyponatremia in 13.8%, 2.7%, and 1.2%, 
respectively, and slight, moderate, and severe hypernatremia in 5.1%, 1.2% and 
0.6%, respectively. Hypo- and hypernatremia were independent risk factors of mor-
tality and poor outcome. The risk is raised with the importance of serum concentra-
tion abnormality (OR from 1.32 to 1.81 for hyponatremia and from 1.48 to 3.64 for 
hypernatremia). The global incidence of ICU-acquired dysnatremias varies from 30 
to 40% of patients, and hypernatremia seems to have twice the incidence of hypo-
natremia [46, 48]. Globally, hyponatremia developed and persisted within 1–3 days 
and hypernatremia within 1–5 days. The impact of ICU-acquired dysnatremias on 
morbi-mortality in critically ill patients remains controversial [45, 46, 48]. In a 

when cerebral osmoregulation is complete. Therefore, a rapid treatment 
becomes an osmolar stress which exposes to a risk of overcorrection with an 
inverse osmotic gradient. Such a risk is particularly well known in patients 
presenting chronic hyponatremia which expose to the risk of osmotic demy-
elination syndrome if natremia normalizes too rapidly. Efficiency of osmo-
regulation is also affected by hypoxia and sex, female being less protected 
than male [37, 38].
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recent large cohort prospective observational study, hyponatremia at admission in 
ICU was found in 34.3% of patients, and 36.2% of them were caused by a SIADH 
[50]. Patients were diagnosed as euvolemic in 58.9%, hypervolemic in 26.3%, and 
hypovolemic in 14.8% of cases. The authors confirmed that hyponatremia was an 
independent risk factor for an increased mortality (HR = 1.61) and morbidity (lon-
ger length of stay and mechanical ventilation).

Finally, none of these studies proves the causality between dysnatremias and the 
increased morbi-mortality. Indeed, in a retrospective observational study, Chawla 
et  al. [43] reported that more patients presenting a moderate hyponatremia 
(<120 mmol/L) died than those with severe hyponatremia (<110 mmol/L), with a 
peak of mortality between 120 to 124 mmol/L. The authors hypothesized that severe 
hyponatremias were essentially due to a drug-associated effect, while moderate 
ones were observed in patients with numerous comorbidities and severe illnesses. 
Therefore at this time, it is not possible to conclude if dysnatremia is a simple 
marker or the direct cause of death.

2.4	 �Hyponatremias

2.4.1	 �Hyponatremia and Plasma Tonicity

Hyponatremia not always reflects plasma hypotonicity with its related risk of brain 
edema. Therefore, the first step in the management of hyponatremia is to eliminate 
non-hypotonic hyponatremias [2, 9, 13, 23, 51, 52]:

–– Pseudohyponatremias occur in case of a marked increase in lipid or protein 
plasma concentration. Hyponatremia is the result of a laboratory artifact due to 
the high volume occupied by excessive lipids or proteins in plasma and to the 
sample dilution before measurements [53]. In this situation, the total number of 
solute particle in the water phase of plasma is unchanged. Therefore, the direct 
measurement of serum osmolality (mosm/kg), which is performed on undiluted 
sample, confirms that hyponatremia is isotonic (Fig. 2.2). As a practical conse-
quence, no shift of water occurs and there is no risk of brain edema.

–– False hyponatremias are caused by the abnormal accumulation of effective sol-
utes other than sodium in the ECV. The resulting plasma hyperosmolality causes 
an osmotic shift of water from the ICV to the ECV that induces in turn a dilu-
tional hyponatremia. This hyperosmolar hyponatremia can be isotonic or hyper-
tonic, depending on the severity of excessive effective osmoles and on the 
osmotic-induced polyuria. When associated with hypertonicity, hyponatremia 
conducts to cell shrinkage which requires rehydration, whereas isotonic hypo-
natremia has no impact on cell volume. The most common cause of hypertonic 
hyponatremia is hyperglycemia [1, 2, 9, 23, 30, 54, 55]. In this situation, calcu-
lation of plasma tonicity remains the easier and most accurate tool to estimate 
possible changes in ICV, regardless the actual serum sodium concentration. 
Alternatively, natremia can be corrected considering the glucose elevation. 
Corrected natremia [cNa+], which estimates what would be natremia with nor-

C. Ichai and J-C. Orban



41

moglycemia, can be calculated using the following formula: [cNa+]  =  (mea-
sured [Na+] +  [glycemia × 0.45 [mmol/L) (for every 5.5 mmol/L increase in 
glycemia, add 2.4 mmol/L to measured natremia) [54]. Other effective osmoles 
may accumulate in plasma and cause hypertonic hyponatremia: mannitol, glyc-
erol/glycine surgical irrigant solutions, hyperosmolar radiocontrast media, 
histidine-tryptophan-ketoglutarate, and maltose. Due to the context, such situa-
tions are usually easily recognized. If necessary, an elevated osmolar gap, which 
is calculated by the difference between the measured and the calculated plasma 
osmolarity, will confirm the presence of excessive abnormal plasma effective 
osmoles.

–– Hypotonic hyponatremias are those at risk of cerebral edema and require a spe-
cific treatment.

Normal fraction of solid and water plasma phase

Solid phase = 7%

Water phase = 1 kg
of plasma water 

Solid phase = 7%

Water phase = 93%

1 liter of plasma

Solid phase > 7%

Water phase = 1 kg
of plasma water 

 Abnormal increased fraction of solid plasma phase = Pseudohyponatremia

Solid phase > 7%

Water phase < 93%

1 liter of plasma

a

b

Fig. 2.2  Plasma sodium concentration in normal and increased fraction of solid plasma particles. 
(a): Normal repartition of solid and water plasma phases: 1 l of plasma distributes normally into 
7% of solid phase (lipids and proteins) and 93% of water phase (containing electrolytes, especially 
sodium). Therefore, 1 kg of plasma water is very close from 1  l of plasma and normal plasma 
sodium concentration per kg, or per liter of plasma is also very close (140  ±  2  mmol/L). (b): 
Increased solid plasma phase (hyperlipidemia or hyperprotidemia): the increase in solid phase 
decreases in proportion of plasma water phase, and 1 kg of water plasma differs from 1 l of plasma. 
Therefore, if ion measurements assumed a constant distribution between the water and solid phase, 
sodium concentration per liter of plasma will be underestimated (related to a dilution effect), while 
sodium concentration per kilogram of plasma water remains normal: this is the isotonic pseudohy-
ponatremia. Gray circles represent sodium particles
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The following paragraphs will be focused on the sole hypotonic hyponatremias. 
The confirmation of hypotonicity is a prerequisite and the first step of the diagnosis 
of hyponatremia [2, 9, 13, 23, 30]. Therefore, the European clinical practice guide-
lines (ECPG) [9] and the American guidelines [23] recommend firstly to exclude 
hyperglycemic hyponatremias by measuring serum glucose concentration. 
Hyponatremia associated with a low measured osmolality always reflects hypoto-
nicity. However, because it is not available everywhere and every time, such a 
measurement cannot be recommended. On the other hand, plasma tonicity which 
can be performed easily at bedside is accurate enough to diagnose hyponatremias 
at risk of brain edema and must be calculated in all situations associated with 
hyponatremia.

2.4.2	 �Definitions

Hyponatremia is consensually defined as a serum sodium concentration <135 
mmol/L. The management of hyponatremic patients depends on its severity. 
Consequently, it is essential to define “severe” hyponatremia. Unfortunately, 
many definitions are reported in the literature [9, 13, 23, 30, 56, 57]. Hyponatremia 
below 120–125  mmol/L is usually considered as severe [13, 23, 55, 56]. The 
speed of development of hyponatremia is also a classical parameter of severity. 
Acute hyponatremia is defined by a rate of development <48 hours and is consid-
ered as severe due to the risk of brain edema, by opposition with chronic hypona-
tremia developed in more than 48  h. This classification is consistent with the 
pathophysiology of brain regulation and consequently with therapeutic strategies: 
acute hyponatremia requires an aggressive immediate treatment to limit brain 
edema, while chronic hyponatremia needs a slow correction aiming to avoid 
osmotic demyelination. Unfortunately, the speed of development of hyponatremia 
is not often known, especially in critical situations. However, some conditions and 
drugs are particularly associated with an acute decrease in natremia [9, 13] 
(Table 2.1). Among them psychotic polydipsia, exercise-induced hyponatremia, 
postoperative period, and intracranial injuries are frequent. After eliminating 
these situations, hyponatremia should be presumed as chronic despite no precise 
speed of its development.

The depth of hyponatremia as well as its delay of development is not only 
responsible for the efficiency of cerebral osmoregulation. Indeed, sex, age, 
hypoxia, and individual variations contribute also to this regulation [57]. For 
this reason, the ECPG [9] decided to provide three definitions of hyponatremia 
based on the (1) biochemical severity, (2) time of development, (3) and symp-
toms and their severity which is the first parameter to consider for the treatment 
(Table 2.2). These definitions were elaborated to avoid usual confusion by phy-
sicians and to recommend hierarchical therapeutic guidelines with successive 
steps.
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2.4.3	 �Pathophysiology and Classification

Hyponatremia is primarily a disorder of water balance indicating a relative excess 
of body water to body solute (sodium): water intake (or infusion) exceeds kidney 
free water excretion. In most clinical situations, both mechanisms, i.e., excessive 
water intake and impaired and inappropriate urine dilution, are associated. 
Nevertheless, based on the major mechanism of development, hyponatremias are 
classified into three categories that are associated with three ECV status [2, 23, 30, 
56, 58–60]:

Table 2.1  Major drugs and conditions associated with acute hyponatremia (non-exhaustive list)

Drugs Conditions
 � –  Diuretics
 �     •  Thiazides
 �     •  Amiloride, indapamide
 �     •  Loop diuretics
 � –  Anticancer
 �     •  Vincristine, vinstatine
 �     •  Platinum agents
 �     •  Cyclophosphamide
 � –  Antidepressants
 �     •  Tricyclic antidepressants
 �     •  Selective serotonin reuptake inhibitors
 �     •  Monoamine oxidase inhibitors
 � –  Antihypertensive agents
 �     •  Angiotensin converting enzyme inhibitors
 �     •  Calcium antagonist agents
 � –  Antiepileptic agents
 �     •  Carbamazepine, sodium valproate
 � –  Antipsychotic agents
 �     •  Phenothiazine, butyrophenone
 � –  Proton pump inhibitors

 � –  Postoperative period
 � – � Polydipsia (psychotic 

potomania)
 � – � Exercise-associated 

hyponatremia
 � – � Post-resection of the 

prostate, post-resection of 
endoscopic uterine surgery, 
or arthroscopy

 � –  Colonoscopy preparation

Table 2.2  Classification of major symptoms caused by hyponatremia according to their severity 
(non-exhaustive list)

Symptoms Severity
 � – � Severe (highly 

life-threatening)
 � –  Moderately severe
 � – � Mild (not 

life-threatening)

 � •  Vomiting
 � •  Cardiorespiratory distress
 � •  Abnormal and deep somnolence
 � •  Seizures
 � •  Coma (Glasgow coma scale ≤ 8)
 � •  Confusion, delirium
 � •  Headache
 � •  Nausea without vomiting
 � •  Falls, gait instability
 � •  Falls-related fractures
 � •  Impaired attention, cognitive disturbances, cramps, fatigue
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–– Euvolemic hyponatremias are due to an absolute body water excess without 
change in total body amount. This is classically observed in case of inappropriate 
kidney water reabsorption (SIADH) or in case of excessive water intake (psy-
chotic polydipsia).

–– Hypovolemic hyponatremias are due to excessive sodium losses which cause 
volume depletion and in turn increase VP secretion creating ultimately water 
retention with hyponatremia despite plasma hypotonicity [58]. Such conditions 
may be provoked by gastrointestinal kidneys or skin disorders.

–– Hypervolemic hyponatremias are due to excessive renal sodium and water reab-
sorption. In these situations, the effective arterial blood volume (EABV) is usu-
ally low, while the interstitial one is increased (as expressed clinically by 
peripheral edema). Effective hypovolemia triggers both VP and renin-angiotensin 
secretions, leading to renal water and sodium reabsorption, respectively. In such 
patients, both body water and sodium amount are elevated as observed in various 
congestive conditions (heart and liver failures, nephrotic syndrome, kidney 
diseases).

Such a classification is conceptually useful to understand major mechanisms 
according to the underlying cause of hyponatremia and in turn to select most appro-
priate therapies according to the ECV presentation. But in clinical practice, ECV 
assessment at bedside remains very difficult (except the increased ECV expressed 
by edema). Moreover, such clinical differentiations are not so clear-cut and depend 
on kidney function, drugs, and patient’s conditions. For example, a patient with 
SIADH can be treated concomitantly with diuretics that cause effective hypovole-
mia. Nevertheless, causes of hyponatremia remain commonly classified considering 
the theoretical volume of the extracellular compartment (see paragraph “etiologic 
diagnosis”).

2.5	 �Diagnosis

2.5.1	 �Clinical Symptoms

Because hypotonicity can induce cerebral edema, most clinical signs of hyponatre-
mia are neurologic, but not specific [2, 10, 13, 23, 30, 56, 59]. The severity of hypo-
natremic encephalopathy depends on the importance of brain edema and its 
consequence, intracranial hypertension. Therefore, the severity of symptoms varies 
according to the efficiency of cerebral osmoregulation. Most symptoms are sum-
marized in Table 2.2. In acute hyponatremia, various parameters are associated with 
an increased risk of cerebral edema expressed by clinical signs of encephalopathy: 
female (risk multiplied by 28), children, old female treated with thiazides, psychiat-
ric polydipsia, and hypoxia [25, 26]. In all cases, the history and the context must be 
rigorously identified in order to confirm the causal relationship between clinical 
signs and hyponatremia. Complementary exams can be needed to eliminate other 
causes of encephalopathy (CT scan, EEG). Some studies reported that neurological 
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signs associated with hyponatremia might be related not only to brain edema but 
also to alterations in brain excitability induced by a hypotonic-related neurotrans-
mitter exocytosis (glutamate) [26].

For a long time, chronic hyponatremia has been thought to be asymptomatic and 
without any deleterious consequences. Since a decade, growing data show that 
mild chronic hyponatremia is an independent risk factor of various side effects 
including falls, gait instability, falls-related fractures, impaired attention, and 
death. These symptoms are independent from age and sex [61–65]. Kinsella et al. 
[63] found that the incidence of hyponatremia was higher in women presenting 
fractures than in those without fractures (8.7 vs. 3.2% or 2.25). Hoorn et al. [64] 
confirmed in elderly patients that chronic hyponatremia was an independent risk of 
fractures. Cognitive impairment may favor falls and fractures. Chronic hyponatre-
mia is also responsible for a direct alteration in bone density. Indeed, bone, carti-
lage, and connective tissues serve as a sodium reservoir. Chronic hyponatremia 
stimulates directly the osteoclast activity, leading to a decreased bone mineral 
activity [63, 65, 66]. Moreover, decreased bone density correlates closely with the 
depth of hyponatremia.

2.5.2	 �Etiologic Diagnosis

The determination of the underlying cause of hypotonic hyponatremia is crucial, but 
may be impossible at admission and should not delay the emergent treatment of 
acute hyponatremias. In practice, such a diagnosis can be performed concomitantly 
with the treatment. In chronic asymptomatic/mild symptomatic hyponatremia, the 
determination of the underlying cause is needed and precedes the specific treatment. 
Therefore, the first step in the management of symptomatic acute hypotonic hypo-
natremia consists in increasing urgently serum sodium concentration, while the 
determination of the underlying cause is needed before beginning any treatment of 
chronic hypotonic hyponatremia [9]. For practical reasons, we decided to detail the 
etiologic approach in a paragraph before treatment, even not the order advised in 
practical algorithms.

Questions focused on treatments and history of the patient are crucial to approach 
the underlying cause of hyponatremia. The most common etiologic categorization is 
still based on the pathogenetic modifications in the ECV. But, despite a thorough 

In summary: chronic hyponatremia is highly more frequent than the acute 
one, but the latter is usually associated with moderate or severe neurological 
symptoms which need an emergent aggressive treatment aiming to prevent or 
reduce brain edema by increasing rapidly natremia. Many data suggest nowa-
days that mild chronic hyponatremia is not totally asymptomatic and is asso-
ciated with cognitive impairment, falls, and fracture. This probably justifies to 
increase serum sodium levels to subnormal values, but always carefully at a 
slow rate to avoid osmotic demyelination syndrome (ODS).
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clinical examination, this strategy is not realistic in clinical practice. The assessment 
of ECV is critical and not accurate (low sensitivity and specificity) leading to mis-
classifications [67]. Regardless of the parameters used, the diagnosis performance is 
always better with an algorithm than without [44, 68]. Both urine osmolality (Uosm) 
and sodium concentration (UNa) are needed, but the place of these parameters in the 
etiologic algorithm varies according to recommendations (Fig. 2.3) [9, 23].

A Uosm ≤100 mosm/L clearly indicates an excessive water intake. UNa with a 
threshold of 30 mmol/L has a good sensitivity and specificity to distinguish hypo-
volemia from euvolemia and hypervolemia. However, diuretics are responsible for 
an elevated UNa regardless of the ECV status [44, 68–71]. For an accurate interpre-
tation, urine measurements must be performed as soon as possible (before any treat-
ment if possible) on a spot urine sample taken simultaneously with a blood sample. 
Despite such recommendations, Uosm and UNa are measured in only 10% and 
27%, respectively, leading to an absence of determination of the underlying cause 
of hyponatremia [44]. Other laboratory tests do not have to be performed systemati-
cally, but may be useful: serum copeptin, urea and acid uric concentrations, and 
fractional sodium and uric acid excretion [69, 72, 73]. Among them, fractional uric 
acid excretion <12% seems to be the most accurate to differentiate low effective 
arterial blood volume (EABV) from euvolemic hyponatremias. Fractional uric acid 
excretion might be used for ambiguous conditions such as diuretic treatments or 

Urine osmolality

Asymptomatic or mild symptomatic
chronic hypotonic hyponatremia 

≤ 100 mosm/kg

- Primary polydipsia

- Low solute intake

- Beer potomania
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= low effective

arterial blood volume 
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Fig. 2.3  Algorithm for determining the cause of hypotonic hyponatremia
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differential diagnosis between SIADH and cerebral salt wasting syndrome. Diuretic 
treatment does not exclude the contribution of other causes of hyponatremia, espe-
cially if hyponatremia persists despite stopping diuretics. For all these reasons, the 
ECPG [9] who wanted a very pragmatic approach, decided to propose an etiologic 
algorithm based on the determination of Uosm, followed by UNa on priority before 
the ECV assessment (Fig. 2.3).

2.5.2.1	 �Urine Osmolality ≤100 mosm/kg
These situations are due to excessive water intake and low solute intake. The ECV 
is normal and VP secretion absent as expressed by the low Uosm which is the 
marker of the appropriate response of kidney: maximal dilution of urines in response 
to excessive water intake. Hyponatremia develops only when the kidney reaches its 
maximal possibility for diluting urines. Thus, such conditions require very high 
volume and rapid water intake (20–30 l per day), usually associated with an impair-
ment in solutes and free water renal loss [9, 10, 49]. Most causes are psychotic 
polydipsia or self-water intoxication, beer potomania, and low solute intake. 
Polydipsia-related hyponatremia occurs in 60% of psychiatric patients.

2.5.2.2	 �Urine Osmolality >100 mosm/kg
Major causes of hyponatremias with a high urine osmolality are SIADH (30–40%) and 
diuretic treatments, especially thiazides (20%) [23, 44, 72, 74–77]. The determination 
of the underlying cause requires a further UNa determination which allows to distin-
guish situations with low UNa (≤30 mmolL) from those with high UNa (>30 mmol/L).

UNa ≤30 mmol/L
A low UNa strongly suggests a low EABV, even in patients on diuretics. Hypovolemic 
hyponatremia refers to patients with reduced global ECV. Clinical signs such as 
orthostatic hypotension, tachycardia, arterial hypotension, and dry mucus mem-
brane suggest hypovolemia. Biological parameters of functional acute kidney injury 
can be helpful, but are neither sensitive nor specific, and can be altered by other 
factors. Correction of low volemia with 0.9% NaCl will correct concomitantly 
hyponatremia by stopping VP non-osmotic vasopressin secretion:

–– Hyponatremia with low ECV (hypovolemic) can be caused by sodium losses 
issued from the gastrointestinal tract. In case of substantial vomitings, hypona-
tremia is classically accompanied by metabolic alkalosis (concomitant losses of 
chloride). By contrast, profuse diarrhea induces hyponatremia associated with 
metabolic acidosis. Large cutaneous sodium losses represent another cause of 
hypovolemic hyponatremia as observed in extensive burned patients. At least, 
hypovolemic hyponatremia can be caused by prolonged administration of diuret-
ics and an excessive water intake/infusion that is frequently associated and which 
contributes to worsen hyponatremia.

–– Hyponatremia with high ECV (hypervolemic) but low EABV is present in 25% of 
hyponatremic critically ill patients and is independently associated with an increased 
risk of morbi-mortality [78]. Modifications of ECV are complex, characterized by a 
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high global ECV related to the increased interstitial compartment while the EABV 
is reduced. Congestive heart failure and cirrhosis are classical causes of hypervol-
emic hyponatremia [49, 56, 60, 79–81]. In these conditions, the decrease in EABV 
is due to the reduction in cardiac output and vasoplegia. These modifications acti-
vate the sympathetic nervous system, the renin-angiotensin-aldosterone axis, and 
VP release, leading to sodium and water renal reabsorption and finally hyponatre-
mia. Therefore, patients present signs of volume overload: pulmonary edema, asci-
tes, and peripheral edema. The diagnosis is usually easy to make on the context. The 
reduced EABV is responsible for a secondary hyperaldosteronism with the low 
UNa, except for the frequent situation of patients receiving diuretics [49, 56, 60, 79]. 
In nephrotic syndrome, the reduction in EABV is usually attributed to hypoalbu-
minemia and the resulting low oncotic pressure and vasoplegia, leading to non-
osmotic VP release. Hypervolemic hyponatremia is commonly worsened by 
diuretics and fluid absorption and infusion.

UNa >30 mmol/L
When UNa is elevated, a very pragmatic approach is to confirm or eliminate a pos-
sible treatment by diuretics or kidney disease, both conditions that frequently affect 
natriuresis independently of ECV and may conduct to erroneous diagnosis [76, 82]. 
Moreover, both situations do not eliminate possible other causes of hyponatremia. 
On the other hand, UNa can also be reduced despite diuretics (especially with long-
term treatment) and kidney disease (Fig. 2.3). Therefore, regardless of diuretics or 
kidney disease, hyponatremia associated with a UNa >30 mmol/L can be classified 
according to the ECV which can be reduced or normal:

–– Hypovolemic hyponatremia can be caused by gastrointestinal or renal losses. 
Vomitings are usual causes. Renal losses can be due to various causes. Cerebral 
salt wasting syndrome (CSW) is well documented in patients with intracranial 
injury such as subarachnoid hemorrhage, traumatic brain injury, brain tumors or 
infections, and neurosurgical postoperative period [49, 83–85]. Abnormal salt 
wasting may be related to kidney dysfunction (renal wasting syndrome, RWS) 
[82]. For some authors, regardless of the primary organ dysfunction, i.e., the 
brain or kidney, this is a unique syndrome, and the distinction between CSW and 
RSW is a simple semantic differentiation of a similar disorder which occurs in 
two different contexts [85, 86]. Primary adrenal mineralocorticoid deficiency 
(Addison disease) can cause hypovolemic hyponatremia associated with hyper-
kalemia due to renal sodium losses and potassium reabsorption.

–– Euvolemic hyponatremia. The SIADH is the most frequent cause of euvolemic 
hyponatremia. The inappropriate antidiuresis may result from an inappropriate 
secretion of ADH from the pituitary gland or an ectopic site. It may also result from 
vasopressin receptors or aquaporin abnormalities (genetic or acquired mutations). 
Therefore, SIADH is one clinical setting of the large conditions of the syndrome of 
the inappropriate antidiuresis (SIAD) [23, 49, 72, 74, 87, 88]. ECV is usually nor-
mal because after an initial phase of increased total body water, renal sodium 
excretion is stimulated in response to natriuretic factors. Consequently, despite a 
persisting high plasma concentration in ADH, patients present hypotonic urines 
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related to a decreased number of V2R and of AQP2 expression on the collecting 
tube: this is the “vasopressin escape phenomenon.” Additional abnormalities of 
thirst sensation can contribute to worsen hyponatremia. The diagnosis of SIAD(H) 
is based on classical absolute (or essential) criteria that includes (1) hypotonic 
hyponatremia (plasma tonicity <275 mosm/kg), (2) urine osmolality >100 mosm/
kg despite a decreased plasma tonicity (abnormal antidiuresis), (3) clinical 
euvolemia, (4) urine sodium concentration > 30 mmol/L with normal sodium and 
water intake and no diuretics, and (5) absence of adrenal, thyroid, pituitary, and 
renal insufficiency (Table 2.3). Relative (or supplemental) criteria include (1) (par-
tial) correction of hyponatremia with fluid restriction, (2) failure to correct hypona-
tremia with 0.9% saline infusion, (3) serum uric acid <0.24 mmol/L, (4) serum 
urea <3.6 mmol/l, (5) fractional sodium excretion (FeNa) > 0.5%, (6) fractional 
urea excretion (Fe urea) >55%, and (7) fractional uric acid excretion(FeUA) > 12%. 
Calculation of fractional excretion is based on the following formula: Fe X 
(%) = (UX/PX) × (Pcreat/U creat) × 100, x being the substance and UX, PX, P 
creat, and Ucreat being the urine and plasma concentrations of X and creatinine, 
respectively. Plasma VP measurement does not frequently contribute to the diagno-
sis. Indeed, four situations have been observed in patients with SIADH receiving 
0.9% NaCl: (1) type A or “random” SIADH, present in 30 to 40% of patients, is 
characterized by a constant ectopic raised VP plasma concentration, regardless of 
plasma tonicity; (2) type B or “leak” SIADH found in 30% of patients is character-
ized by a raised basal VP concentration which increases normally with plasma 
hypertonicity; (3) type C or “reset osmostat,” also present in 30% of patients, is 
characterized by a decreased threshold of VP secretion leading to high VP plasma 
concentration despite low plasma tonicity; and (4) type D in 10% of patients is 
characterized by a normal VP secretion: this is the antidiuresis nephrotic syndrome 
which is observed in children and is due to abnormal activation of V2R (gene 
mutations) [17]. In clinical practice, because of difficulties to assess ECV and 
because SIADH and CSW appear in similar contexts, it is recommended to con-
sider additional biological parameters such as FeNa and FeUA to distinguish them 
(Table  2.4). In all cases, SIAD(H) remains a diagnosis of exclusion. There are 
numerous causes of SIAD(H) (Table 2.5), including essentially cancers (digestive 
and pulmonary), central nervous system disorders, and pulmonary diseases [9, 70, 

Table 2.3  Diagnostic criteria for the syndrome of inappropriate antidiuresis (SIAD) or secretion 
of antidiuretic hormone (SIADH)

Absolute criteria Relative criteria
 � –  Plasma hypotonicity (<275 mosm/kg)
 � – � Antidiuresis: urine osmolality > 100 mosm/

kg at some level of decreased plasma 
tonicity

 � –  Clinical euvolemia
 � – � Urine sodium concentration >30 mmol/L 

with normal salt and water intake
 � – � Absence of adrenal, thyroid, pituitary, or 

renal insufficiency
 � –  No recent treatment with diuretics

 � –  Serum urea < 3.6 mmol/L
 � –  Serum uric acid < 0.24 mmol/L
 � – � Failure to correct hyponatremia after 

0.9% saline infusion
 � – � Correction of hyponatremia with 

fluid restriction
 � – � Fractional sodium excretion > 0.5%
 � –  Fractional urea excretion > 55%
 � –  Fractional uric acid excretion > 12%
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Table 2.4  Criteria to differentiate the syndrome of inappropriate secretion of antidiuretic hor-
mone (SIADH) and cerebral salt wasting syndrome (CSW)

SIADH CSW
Clinical signs

 � –  Blood pressure
 � –  Cardiac frequency
 � –  Central venous pressure
 � –  Urine volume

 � –  Normal
 � –  Normal
 � –  Normal
 � –  Normal

 � – � Low/normal 
(orthostatic 
hypotension)

 � –  Normal/high
 � –  Low
 � –  High

Biological parameters
 � –  Serum urea
 � –  Serum uric acid
 � –  Fractional sodium excretion > 0.5%
 � –  Fractional urea excretion > 55%
 � –  Fractional uric acid excretion > 12%

 � –  Normal/low
 � –  Normal/low

 � –  Normal/high
 � –  Low

Table 2.5  Major causes of syndrome of inappropriate secretion of antidiuretic hormone (SIADH)

Disorders of the nervous central system
 � –  Infections (bacterial, viral, mycotic, tuberculosis): encephalitis, meningitis, abscess
 � – � Traumatic brain injury: Epidural and subdural hematoma, subarachnoid hemorrhage, 

brain edema
 � –  Primary and secondary brain tumors
 � –  Cavernous sinus thrombosis
 � –  Cerebral atrophy, hydrocephalus
 � –  Stroke, intracerebral hemorrhage, postanoxic encephalopathy
 � –  Peripheral neuropathy, Guillain-Barré syndrome
 � –  Acute intermittent porphyria, multiple sclerosis
 � –  Delirium tremens, acquired immunodeficiency syndrome (AIDS)
Pulmonary disorders
 � –  Small cell anaplastic cancer, mesotheliome
 � –  Infection (bacterial, viral, mycotic, tuberculosis)
 � –  Acute respiratory distress syndrome (ARDS)
 � –  Chronic obstructive pneumopathy, artificial ventilation with expiratory positive pressure
 � –  Asthma, cystic fibrosis
Malignant diseases
Carcinoma: lung, oropharynx, larynx, gastrointestinal tract, pancreas, stomach, genitourinary 
tract, bladder, prostate, thymoma, sarcoma
Other causes
 � – � Drugs: vasopressin analogues, antidepressants, antidiabetic drugs, anticonvulsivants, 

anticancer drugs, antimitotics, antipsychotics, ecstasy
 � –  Postoperative period, pain, nausea, vomitings, AIDS, idiopathic
 � –  Exercise-associated hyponatremia
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87, 88]. The perioperative period is considered to be at high risk of SIAD because 
VP secretion is triggered by several non-osmotic stimuli (nausea, vomitings, pain, 
hypoxia, morphinics, hypovolemia) (see paragraph “perioperative hyponatremia”). 
A lot of drugs enable to induce SIADH such as selective serotonin reuptake inhibi-
tors, antidiabetics, and thiazides which are responsible of SIADH in 10–30% of 
treated patients [75, 77, 89–91]. Table 2.5 summarizes most drugs at risk for devel-
oping hypotonic hyponatremia with SIADH.  Finally, the cause of SIAD(H) 
remains frequently unidentified [70].
•	 Endocrinological diseases: secondary adrenal insufficiency/glucocorticoid 

deficiency [49, 72, 87] because of low concentration of cortisol fails to sup-
press corticotrophin release factor leading to an increased release in ACTH 
and VP. Renal water excretion is also altered independently of VP [92]. Only 
severe hypothyroidism (myxedema) could cause hyponatremia because of a 
reduced cardiac output and glomerular filtration rate.

2.5.2.3	 �Special Conditions Associated with Hyponatremia
- Exercise-associated hyponatremia (EAH) [93–96]: EAH occurs in 5–28% of 
intense and prolonged physical activity (marathon). Risk factors involved in such 
disorder are combined: excessive water intake (hypotonic solutions) associated with 
a non-osmotic inappropriate secretion of ADH, long race duration (>4–6 h), and 
extreme temperatures. The production of IL6 (related to muscle glycogen deple-
tion), stress, and nausea with hypovolemia triggers ADH secretion. Hyponatremia 
can be hyper-, hypo-, and euvolemic. Clinical presentation has no specific aspect 
and appears as an acute moderately or severely symptomatic life-threatening 
condition:

–– Postoperative hyponatremia: it is the third cause of acute in-hospital acquired hypo-
natremia. It develops preferentially in children and women [39, 49, 84, 97]. 
Hyponatremia results from a non-osmotic stimulation of ADH and is precipitated 
by hypotonic fluid infusions and perioperative impairment in renal urine dilution 
[97–99]. Postoperative hyponatremia may reach 30% of patients in surgeries at risk 
such as neurosurgery and orthopedic and gynecologic surgeries. However, only 
1–2% of them are severe. The incidence of hyponatremia in neurosurgical patients 
is elevated, depending on the underlying cause: 10–20% in patients undergoing 
surgery for brain hematoma, hypophysectomy, intracranial tumors, and traumatic 
brain injury; it reaches 50% in subarachnoid hemorrhage [49, 83, 100, 101]. 
Hyponatremia develops acutely within the 2–4 days following surgery and is fre-
quently symptomatic. Clinical presentation may be amplified by a preexistent brain 
edema or injury. The mechanism of hyponatremia is complex, and the distinction 
between SIADH and CSW remains difficult [102, 103]. ACTH deficiency is an 
additional confusing factor. In this setting, the North American guidelines recom-
mend to treat hyponatremia as soon as its concentration is below 131 mmol/L [83].
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–– Transurethral resection of prostate (TURP) syndrome: the irrigating solution for 
endoscopic surgery can be responsible of acute hyponatremia [104–106]. Large 
volume of hypotonic glycocolle solutions may be absorbed directly intravascu-
larly or through the interstitial tissue. At the initial phase, hyponatremia is 
“translocational,” i.e., hypertonic (due to glycocolle), and is associated with a 
transitory hypervolemia which may cause arterial hypertension and cardiac fail-
ure. Hypotonic hyponatremia occurs later when glycocolle is metabolized lead-
ing to an excessive volume of free water in the vessels. Neurologic symptoms are 
related to brain edema but also to a direct cerebral toxicity of glycocolle metabo-
lites (ammoniac, glutamate, serine) [106, 107]. This syndrome was firstly 
described after prostatic surgery but can develop after endoscopic gynecologic or 
arthroscopic surgeries. The preventive strategy consists in accurate assessment 
of fluid volumes irrigated during the procedure, a close monitoring of sodium 
concentration within the intra- and postoperative period, and the use of 0.9% 
NaCl irrigating solutions with a bipolar electrode device [108].

–– Diuretic-induced hyponatremia: all diuretics may cause hypotonic hyponatre-
mia, but thiazides remain the most frequently implicated [75–77, 90, 91]. Leung 
et  al. [91] have shown that 30% of the exposed patients to thiazide diuretics 
develop hyponatremia and that thiazides multiply the risk of hyponatremia by 
five. Female, black, age >70 years increase this risk. Hyponatremia develops rap-
idly within the 10–14 days following the first prescription, but the risk persists 
within the ten following years. Hyponatremia is usually accompanied by a severe 
and reversible hypokalemia within 2–5 days after stopping thiazides.

2.6	 �Treatment

The optimal specific treatment of hypotonic hyponatremia is still debated because of 
the risk of life-threatening cerebral edema in case of undercorrection of hyponatremia 
balanced by the risk of osmotic demyelination syndrome (ODS) provoked by a too 
excessive and rapid treatment (overcorrection) (Table 2.6) [9, 13, 23, 51, 58, 60, 109]. 
Four expert guidelines published within the last 3 years are available in the literature: 
North America [23], Spain [110], Europe [9], and the United Kingdom [88].

Table 2.6  Complications and risk factors associated with an inappropriate treatment of 
hyponatremia

Complications Context Exacerbating factors
Brain edema caused by a 
delayed or insufficient 
correction of hyponatremia

Severe or moderate 
symptomatic and acute 
hyponatremia

 � •  Female, children
 � •  Postoperative period
 � •  Thiazide treatment
 � •  Psychotic polydipsia
 � •  Hypoxia

Osmotic demyelination 
syndrome caused by a too rapid 
or overcorrection of 
hyponatremia

Mild symptomatic or 
asymptomatic chronic 
hyponatremia

 � •  Chronic alcoholism
 � •  Hypokalemia
 � •  Burn
 � •  Malnutrition
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2.6.1	 �General Strategies

Major principles and strategies of treatment of hypotonic hyponatremia are consen-
sual. However, some conflicting recommendations exist among countries due to 
various reasons: methodology (interpretation of the evidence), nature of the expert 
group, few strong evidence, recent data on chronic hyponatremia, and development 
of vaptans (different approvals among countries).

The first principle of treatment is to distinguish situations requiring an immedi-
ate and aggressive treatment aiming a rapid raised in natremia from that needing a 
slow increased natremia and favoring the etiologic treatment. This strategy is 
strongly supported by the risk of fatal brain swelling caused by “severe” hyponatre-
mia, which overtakes on the induction of ODS.  Acute hyponatremia which is 
defined by a speed of development in less than 48 h is usually accepted as being 
severe [23, 87, 110], by opposition to chronic hyponatremia developed in more than 
48  h. However, from a practical point of view, the essential point is to identify 
patients with severe or moderate symptoms indicating brain edema, regardless 
whether hyponatremia is acute or chronic which is frequently difficult to determine 
[9, 23]. Moreover, it is helpful to know conditions that contribute to exacerbate 
cerebral edema [9, 10] (Table 2.6).

The second principle of treatment consists to identify patients at risk of 
ODS.  Usually asymptomatic patients or those with mild symptoms may develop 
ODS, especially in case of chronic hyponatremia. Contrary to the previous conditions, 
an overcorrection or too rapid correction of these hyponatremia must be avoided, and 
the treatment consists firstly to stop and treat the underlying cause of hyponatremia as 
soon as possible, and consider alternative treatments if not sufficient.

The third principle consists in determining the most efficient and safety 
rate of correction depending on the symptoms and the rate of development of 
hyponatremia. In all cases, guidelines must define targets which are the 
expected goals and limits which do not have to be exceeded (Fig. 2.4) [9, 13, 
51, 88].

Finally, the strategy can be elaborated considering (1) first the presence of 
symptoms and their severity and (2) second the acute or chronic development of 
hyponatremia. This leads to three situations: (1) hyponatremia with severe or 
moderate symptoms regardless of the speed of development of hyponatremia, (2) 
acute hyponatremia without severe or moderate symptoms, and (3) chronic 
hyponatremia.

2.6.2	 �Hyponatremia with Severe or Moderate Symptoms

The management of such patients requires an intensive care unit (ICU) or at least an 
environment where close biochemical and clinical monitoring can be provided. 
Regardless of whether hyponatremia is acute or chronic, the aim of the treatment is 
to raise rapidly serum sodium concentration by 4–6 mmol/L which is sufficient to 
reverse or avoid most serious complications (brain herniation). This can be achieved 
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with a 100–150 mL (2 ml/kg) intravenous (i.v.) bolus infusion of 3% hypertonic 
saline (or equivalent 3–4.5 g) over 15–20 min [9, 10, 13, 23, 111–113]. The next 
step of the treatment is guided by the evolution of the patient. If severe symptoms 
improve or natremia increases of 4–6 mmol/L within the following hours, it is rec-
ommended to infuse 0.9% saline (smallest volume) until the underlying cause treat-
ment is started. An additional 3% saline i.v. can be repeated two or three times if 
there is not enough or no improvement. In all cases, serum sodium concentration 
must be closely checked 15–20 min after each bolus and every 4–6 h daily after 
stopping hypertonic saline bolus and until natremia stabilized. The safe limit that 
does not have to be surpassed is a total increase in natremia of 6–10 mmol/L during 
the first 24 h and 8 mmol/L during every 24 h thereafter. As soon as serum sodium 
concentration reaches 130 mmol/L, stop hypertonic saline infusion.

While treating the patient, it is recommended to perform additional explorations 
to establish the underlying cause and administer its specific treatment. Guidelines 
do not recommend the use of any predictive formulas which overestimate the speed 
of correction [9, 13, 113]. Indeed, formulas are static and do not integrate the fact 
that kidney capacity of dilution and the possible avoidance of a specific cause may 
vary during time, leading to unpredictable modifications in natremia. The clinical 
judgment, the history of the patient, the context, and the follow-up remain essential 
parameters needed to guide the strategy after the initiation of the emergent admin-
istration of hypertonic saline. In this way, additional hypertonic saline boluses must 
be very carefully indicated in rapidly reversible acute hyponatremia when the cause 
is stopped, such as in self-induced water intoxication or in the postoperative period 
after stopping hypotonic fluid infusion, EAH [23].

. 150 mL 3% hypertonic saline i.v. over 15-20
min completed by 1 or 2 maximum additional
boluses if goals are not reached 

. Do not exceed an increase of 6-10 mmol/l in the
  first 24 hrs and 8 mmol/L every 24 hrs thereafter  

Principles . Immediate 3% hypertonic
saline 

. If possible stop the underlying cause,  threat the underlying cause

Goals

. Avoid and prevent brain edema

-Increase natremia by 4-6 mmol/L and
improve symptoms within 1-2 hrs 

Limits

Practical
management 

. No hypertonic saline

Severe/moderate symptomatic hyponatremia
(regardless acute or chronic) 

Mild symptomatic/asymptomatic chronic
hyponatremia  

. Avoid and prevent osmotic demyelination

. Always stop hypertonic saline when natremia
  reaches 130 mmol/L 

. Do not exceed an increase of 8-10 mmol/L in
the first 24 hrs and 8 mmol/L every 24 hrs
thereafter   

- Increase natremia by 4-6 mmol/L within 24
hrs in profound hyponatremia (<125 mmol/L) 

. Management in ICU or structure allowing
close clinical and biological monitoring  

. Establish the underlying
cause 

. Stop all factors that provoke or contribute to
hyponatremia, especially diuretics if possible 

. Give the cause-specific
treatment 
. Hypovolemic hyponatremia : give
fluid infusion  
. Hyper-and euvolemic hyponatremia : give fluid
restriction±loop diuretics or urea or vaptans 

. Consider relowering natremia if correction is
too rapid (DDAVP or hypotonic fluids) with an
expert  

Fig. 2.4  Major principles of the strategy for treating hypotonic hyponatremia
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2.6.3	 �Acute Hyponatremia Without Severe or Moderate 
Symptoms

The first step is to eliminate an error in serum sodium concentration measurement. 
After confirming hypotonic hyponatremia, the absence of severe or moderate symp-
toms allows to recommend firstly a cause-specific treatment and to stop all factors 
that contribute or provoke hyponatremia (hypotonic fluids, drugs). A bolus of 3% 
hypertonic saline can be suggested in case of profound acute decrease in natremia 
exceeding 10 mmol/L always associated with a close monitoring of natremia [9].

2.6.4	 �Chronic Hyponatremia Without Severe or Moderate 
Symptoms

2.6.4.1	 �Principles and Risks
Loss of organic osmolytes during chronic hyponatremia protects the brain from 
edema but exposes to osmotic demyelination lesions when the increase in serum 
sodium concentration is too rapid. Indeed, the recovery of osmolyte content is not 
immediate and takes several days. This explains why rapid correction of hyponatre-
mia behaves as a hypertonic stress leading to various injuries (apoptosis, blood-
brain barrier disruption, and demyelination). There is a consensus to recommend 
against the administration of hypertonic saline in these patients. The strategy con-
sists firstly to stop all factors (fluids, water intake, drugs) that contribute or provoke 
hyponatremia and to give a cause-specific treatment [9, 10, 13, 51, 87]. Aiming a 
raise in natremia is only recommended for profound (<125 mmol/L) or moderate 
(125–129 mmol/L) chronic hyponatremia [9]. The recommended goal is an increase 
of 4–6 mmol/24 h and an upper limit increase of <10 mmol/L during the first day 
and <8 mmol/L during the following day. Lower limits around 8 mmol/L can be 
advised in patients at risk of ODS (Table 2.6). ODS has been reported when speed 
correction of chronic hyponatremia exceeded 10–12 mmol/L per 24 h. At last, rais-
ing serum sodium concentration should not be aimed in mild chronic hyponatremia 
(<130 mmol/L).

Despite these recommendations, overcorrection commonly occurs and current 
guidelines recommend to relower serum sodium concentration if the limit is exceeded 
[114–117]. This goal can be reached using desmopressin (DDAVP) or electrolyte-
free water. Such a strategy may be performed as a curative or rescue therapy of 
excessive serum sodium correction by the administration of DDAVP alone or in asso-
ciation with glucose solutions or as preventive administration of DDAVP combined 
with hypertonic saline. The lack of strong evidence does not allow to recommend a 
unique preferred strategy. DDAVP is administered initially with a dose of 1–4 μg 
(intravenously or parenterally), followed by repeated boluses according to the 
response on neurological function, urine output, and serum sodium concentration 
change. The interval between two doses should not be less than 6–8 h. The adminis-
tration of hypotonic fluids is an alternative strategy which consists in a 3–10 mL/kg 
infusion [9, 23]. The preventive attitude is less consensual than the curative one, 
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because DDAVP seems to be unlogical and inefficient in patients presenting SIADH 
[58]. Moreover, a recent meta-analysis has shown that there is only limited data and 
low evidence concerning such a strategy [114]. At last, the optimal timing, dose, and 
duration of DDAVP administration remain to be determined. Therefore, considering 
the risk and the clinical experience to relower natremia, the ECPG group [9] recom-
mends to refer or consult an expert for this patient management.

ODS, also named central pontine myelinolysis (CPM), is characterized by a 
demyelination located on central pontine and extrapontine structures. For a long 
time, this syndrome has been attributed exclusively to a too rapid correction or over-
correction of chronic hyponatremia. However, other conditions have been reported 
to provoke or favor CPM: chronic alcoholism, malnutrition, hypokalemia, and burn 
patients [118–120]. Regardless of the cause, blood-brain barrier is altered and 
becomes permeable allowing an abnormal cerebral entry of cytokines and lympho-
cytes and finally demyelination. Clinically, the patient presents a classical biphasic 
evolution: the initial neurological improvement obtained with the correction of 
hyponatremia, is followed by a worsening neurological status within the following 
1–8 days. Manifestations consist in nonspecific signs of encephalopathy including 
behavioral abnormalities, seizures, pseudobulbar palsy, quadriparesis, locked-in 
syndrome, permanent disability, or death. Brain resonance magnetic imaging 
enables to confirm the diagnosis, thanks to the identification of demyelination injury 
after a delay of 1 or 2 weeks. Prevention of ODS is commonly based on the respect 
of speed correction of hyponatremia. Uremia has been reported to prevent demye-
lination by accelerating the recovery of cerebral amount of organic osmolytes [121]. 
Myoinositol and minocycline enabled to improve rat survival following rapid cor-
rection of chronic hyponatremia [122, 123].

2.6.4.2	 �Additional Specific Treatments According to the Underlying 
Cause

Additional non-emergent treatment depends on the underlying cause and on the 
ECV status.

Besides the specific cause therapy, the first-line treatment of chronic hypovole-
mic hyponatremia consists in restoring ECV with an i.v. infusion of crystalloids 
(0.9% saline or balanced solutions) at a rate of 0.5 to 1 mL/kg.

Despite limited data, fluid restriction (800–1200 mL) is suggested in moderate or 
profound hyper- and euvolemic chronic hyponatremia as a first-line therapy. This 
can be complemented by the administration of a loop diuretic (furosemide), espe-
cially when urines are concentrated [9, 74, 87, 124]. Both demeclocycline and lith-
ium may increase serum sodium concentration by inducing a nephrogenic insipidus 
diabetes [9, 74, 87, 124]. However, their beneficial effect is inconstant, unpredict-
able, and associated with important adverse effects (neurotoxicity, nephrotoxicity). 
Consequently, most experts do not recommend these drugs in SIADH.

Major conflicting recommendations refer to urea and vaptan therapies. Urea has 
been successfully administered in moderate and profound chronic hyponatremia 
without real side effects [107, 125, 126]. The ECPG suggests to administer a daily 
dose of 0.25–0.50 g/day urea as a second-line treatment (after fluid restriction) [9]. 
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But urea is not commercialized and requires a pharmaceutical preparation with 
sucrose and sparkling water to avoid the bitter taste. Vaptans are non-peptidic antag-
onists of vasopressin receptors [23, 109, 127]. While VP binds at a superficial site, 
vaptans penetrate deeply into the membrane. Their main effect consists in an 
increase in solute-free water excretion by kidneys. Regardless of their affinity on 
vasopressin receptors, they increase urine output. V2R antagonists exert only renal 
effects and are called “aquaretics.” V1a-V2R antagonists combine two properties, 
i.e., renal and vascular vasodilating effects. Currently, two molecules are commer-
cialized and available in most countries: tolvaptan (Samsca®) is a selective V2R 
antagonist and conivaptan (Vaprisol®) is a mixed V1a-V2R antagonist. 
Pharmacokinetic characteristics are similar for both: high level of protein bound, 
half-life of 6–10 h, and metabolization by the hepatic cytochrome P450. Conivaptan 
may be administered intravenously at a dose of 40  mg daily for a maximum of 
4  days because of its potential hepatotoxicity. Tolvaptan can only be prescribed 
orally at a dose of 15–60 mg daily. Indications of vaptans as a treatment of asymp-
tomatic or mild symptomatic chronic hyponatremia remain a source of debate. Such 
a conflicting strategy can be explained by the difference in vaptan approval by agen-
cies among countries, paucity of data with high level of proof, divergent interpreta-
tion of evidence-based medicine (efficiency vs. adverse events), expert’s disclosure, 
and industry sponsorship (editorial dependence) [128, 129]. The FDA and the 
Canadian agencies state that vaptans may be indicated as a first-line therapy for 
hyper- and euvolemic chronic hyponatremia. This strategy is based on several argu-
ments. There is no doubt that vaptans enable to increase natremia of 4–6 mmol/L in 
these patients [130–134]. These results have been confirmed in two recent meta-
analyses [133, 134]. Rozen-Zvi et al. [133] included 15 randomized controlled stud-
ies comparing vaptans vs. placebo or no treatment (± associated with fluid 
restriction). They found that vaptans increased serum sodium concentration by 
5.27 mmol/L early (after 1–7 days) and up to 1 month. Similar results from 11 ran-
domized controlled studies were reported in a second meta-analysis with an 
increased natremia of 5.7  mmol/L at day 5 of treatment [134]. More than 3000 
hyper- and euvolemic asymptomatic/mild symptomatic hyponatremic patients were 
collected in an international registry [135]. The authors confirmed that tolvaptan 
successfully increased natremia by a median of 4 mmol/L for up to 4 years. The last 
meta-analysis has been performed by the ECPG group including additional trials 
published between 2010 and 2013. The update data with 20 randomized controlled 
studies (2009 patients) also confirmed that vaptans enable to increase serum sodium 
concentration by 4.3 mmol/L within 3–7 days as compared with placebo [9]. No 
real difference in adverse or serious adverse events (CPM) related to a rapid increase 
in natremia has been reported [9, 133–135]. Moreover, fluid restriction which is still 
considered as the first-line alternative treatment can be ineffective and difficult to 
maintain in numerous patients [129]. Failure of fluid restriction to increase natremia 
commonly occurs in patients with high urine osmolality (>500 mosm/kg), low urine 
output (<1500  ml/day), and low increase in sodium after 2  days of treatment 
(<2 mmol/L). Because tolvaptan was recently reported to be associated with liver 
toxicity, the FDA recommends limiting its use to 30 days and not to use it in patients 
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with liver disease (hypervolemic hyponatremia) [136]. Tolvaptan is not indicated in 
hypovolemic chronic hyponatremia because of a high risk of worsening vasodilating-
related hypotension. Current recommendations in North America indicate that vap-
tans can be considered as an optional treatment in asymptomatic or mild symptomatic 
chronic non-hypovolemic hyponatremia, except for patients with liver disease 
[109]. Short-term indication is safe and simple in patients presenting hyponatremia 
<125 mmol/L, and as soon as natremia raises of 6–8 mmolL, water intake must be 
matched with urine output to prevent an excessive elevation in natremia. Vaptans 
may be indicated as a long-term optional strategy in patients with irreversible mild 
symptomatic euvolemic hyponatremia (<130  mmol/L) who fail or resist to fluid 
restriction. Tolvaptan must be initiated with low daily dose (15 mg) and progres-
sively increased (to 60  mg daily) until reaching serum sodium concentra-
tion ≥135 mmol/L within 1 week. Natremia must be checked at least once a week 
at the beginning and monthly thereafter. Tolvaptan requires regular liver enzyme 
monitoring and must be stopped in case of elevated values (except for patients wait-
ing for liver transplantation). European experts do not recommend the use of vap-
tans considering that the quality of the evidence is reduced due to the absence of 
comparative studies with alternative treatment and the absence of evaluation of 
major endpoints such as mortality or severe adverse events [9, 87]. Indeed, meta-
analysis does not report any beneficial effects of vaptans on long-term survival or 
quality of life [9]. Moreover, the risk for a rapid sodium concentration increase is 
present (RR = 1.61) and has been pointed by drug agencies [9, 137–139], especially 
when vaptans are combined with hypertonic saline administration. Despite no pub-
lished report of ODS, neurological injury has been indicated in patients receiving 
tolvaptan due to an excessive correction of hyponatremia [137]. Vaptans also enable 
to induce adverse events such as polyuria, thirst, mouth dryness, constipation, and 
hepatotoxicity [109, 140]. At last, patients presenting concentrated urines have a 
resistance to vaptans (as observed with fluid restriction): patients with high level of 
VP (some SIADH), with hypervolemic heart failure or cirrhosis because of the low 
EABV, excessive water intake related to “reset osmostat” SIADH, or nephrogenic 
syndrome of inappropriate antidiuresis. Therefore, the ECPG group considered that 
there is no proven beneficial effect of vaptans apart the increase in natremia while 
safety remains questioned [9]. This group recommended against vasopressin recep-
tor antagonists in treating hyper- and euvolemic chronic hyponatremic patients and 
recommends fluid restriction as a first-line strategy for these patients [9].

In summary: only severely and moderately symptomatic hyponatremic 
patients require an immediate and aggressive treatment with i.v. hypertonic 
saline, aiming to prevent or avoid urgently life-threatening cerebral edema. 
The first therapy recommended for treating mild symptomatic chronic hypo-
natremia is to stop drugs and reversible situations that provoke hyponatremia 
(thiazides, excessive water intake), before considering vaptans which require 
a long delay of action. For these latter patients, the cause-specific treatment 
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2.7	 �Hypernatremia

2.7.1	 �Definition: Pathophysiology

Hypernatremia is defined by a serum sodium concentration >145 mmol/L. 
Hypernatremia is always associated with plasma hypertonicity and consequently 
responsible for cell shrinkage (dehydration). Hypernatremias may be induced by 
three mechanisms which conduct to classify them according to the resulting changes 
in ECV (Fig. 2.5) [13, 141]:

–– Euvolemic hypernatremias are due to “pure water” losses. Total body sodium 
content remains unchanged and maintains a normal ECV.

–– Hypovolemic hypernatremias are due to hypotonic losses leading to a combina-
tion of cell shrinkage and a reduced ECV.

–– Hypervolemic hypernatremias are due to an absolute sodium retention in the 
ECV which conducts to combine cell shrinkage and hypervolemia.

is the most appropriate and increasing natremia should not be the sole goal. 
Hypovolemic hyponatremia requires volume expansion. Alternative treat-
ments of hyper- and euvolemic chronic hyponatremia remain controversial: 
fluid restriction firstly and no vaptans in Europe and vaptans firstly in North 
America. In case vaptans are indicated, an expert management is preferable 
with a regular monitoring of serum sodium concentration and liver enzyme 
levels because of both risks of overcorrection of natremia and hepatotoxicity. 
Vaptans and hypertonic saline should never be associated.

Hypernatremia

Normal ECV

Excessive intake of sodium
(iatrogenic or self-voluntary)

hypertonic saline, sodium
bicarbonate  

Low Uosm
= Central and nephrogenic

diabetes insipidus  

High Uosm
= Primary hypodipsia 

Inappropriate normal  Uosm
= Essential hypernatremia 

Increased ECV
Reduced ECV

Low Uosm
= renal losses

(osmotic
polyuria)   

High Uosm
= extrarenal losses 

. Digestive

. Cutaneous

. Pulmonary

Fig. 2.5  Algorithm for determining the cause of hypernatremia
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2.7.2	 �Diagnosis

2.7.2.1	 �Clinical Symptoms
Similarly with hyponatremia, severity of hypernatremia is essentially related to its 
impact on brain volume. Therefore, clinical manifestations are primarily neurologic 
but not specific, and their severity depends on the speed of development of the 
trouble. Acute hypertonic stress resulting from acute hypernatremia (<48 h) induces 
cerebral vascular injury and sudden brain shrinkage which induces intracranial 
hemorrhage, while symptoms are mild or absent in case of chronic hypernatremia. 
Severity of hypernatremia depends on the severity of neurological signs and on the 
presence of hypovolemia. The interpretation of symptoms must be integrated in the 
history, treatments of the patient, and the context which can be useful to distinguish 
acute symptomatic from chronic asymptomatic hypernatremia. Clinical signs are 
related to cell dehydration [13, 141]:

–– Neurological signs are those of nonspecific encephalopathy including conscious-
ness impairment, ataxia, nystagmus, hypertonia, stupor, seizures, profound 
coma, or those related to intracranial hemorrhage (hemiplegia) or thrombosis of 
dural sinus. Acute hypernatremia may lead finally to death.

–– Thirst may be absent in case of hypodipsia and consciousness alteration.
–– Reduced body weight allows to assess body water deficit, but it may remain sta-

ble or elevates when plasma hypertonicity is associated with an increased ECV.
–– Other signs are fever, dyspnea, and rhabdomyolysis. However, it is commonly 

difficult to prove the causal relationship between those signs and 
hypernatremia.

2.7.2.2	 �Etiologic Diagnosis (Fig. 2.5)
Euvolemic hypernatremia: They include three major causes:

•	 Diabetes insipidus [142]: this syndrome is characterized by a common poly-
uria and polydipsia. Urines are abnormally diluted. Central diabetes insipi-
dus is caused by a lack of ADH secretion which is due to central nervous 
system alterations. However, in most cases, this is also combined with an 
impairment in thirst sensation which results from alterations in receptors of 
thirst. Therefore, hypernatremia can develop only if both abnormalities are 
associated or in case of impossible water intake. Central and nephrogenic 
diabetes insipidus can be distinguished, thanks to an administration of des-
mopressin that will increase urine osmolality of 50% only in central diabetes 
insipidus. Numerous nervous central system lesions may induce central dia-

In summary, there is no specific clinical sign, and treatment is delayed, 
explaining the high rate of morbi- mortality during hypernatremia which is 
also frequently associated with severe underlying causes [141].
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betes insipidus (trauma, stroke, hemorrhage, tumors, neurosurgery, etc.). 
Nephrogenic diabetes insipidus may be due to gene mutations of V2R 
VP-receptors or of aquaporin-2. It may be caused by acquired troubles such 
as hypokalemia, hypercalcemia, or some drugs (lithium, antifungic mole-
cules, antibiotics, antiviral drugs, or antimitotics).

•	 Primary hypodipsia refers to an impairment in thirst behavioral while its stimu-
lation is normal. Urine osmolality and density are elevated showing an appropri-
ate response of kidneys to plasma hypertonicity.

•	 Essential hypernatremia is due to an abnormally elevated threshold of ADH and 
thirst secretion. Urine osmolality in relation with plasma hypertonicity is too low:
–– Hypovolemic hypernatremia: the diagnosis of the underlying cause is orien-

tated by the context, electrolyte blood measurements, and above all Uosm. A 
low Uosm indicates losses from the kidney which are caused by osmotic poly-
uria due to the presence of glucose or urea in urines or to diuretic administra-
tion. A high Uosm is present when losses are caused by gastrointestinal or 
cutaneous alterations.

–– Hypervolemic hypernatremia: they are usually due to therapeutic errors or 
voluntary self-poisoning. Most frequent causes are infusions of hypertonic 
saline or concentrated sodium bicarbonate infusions. The clinical presenta-
tion consists in severe signs of cell dehydration due the acute speed of devel-
opment of hypernatremia. The frequent pulmonary edema or congestive heart 
failure manifestations are related to the rapid extracellular fluid overload.

–– Perioperative hypernatremia: age, infection, and diuretics have a major role 
in the development of hypernatremia whatever the context and independently 
of the type of surgery. Indeed, the risk of perioperative hypernatremia strongly 
increased in elderly patients which present an impairment in thirst sensation 
and urine concentration capacity, frequently associated with severe comor-
bidities or dementia. Hypernatremia occurs in 22% of cases following neuro-
surgery and abdominal surgeries. In half of cases, it appears within the 5 days 
following surgery. Digestive surgery is at risk of excessive hypotonic losses 
from the gastrointestinal tract: preoperative digestive losses (vomitings, diar-
rhea), intraoperative water losses, and postoperative digestive losses (gastric 
aspiration, digestive fistulas) which are commonly insufficiently supple-
mented. About 18% of central diabetes insipidus are observed after neurosur-
gery or in traumatic brain injury and appear early within the 12 or 24 
postoperative hours and disappear after 5–7 days.

2.7.3	 �Treatment

Both preventive and curative including the underlying cause treatments are needed. 
As recommended for hyponatremia, the appropriate strategy for reducing hyperna-
tremia depends on the severity of symptoms, the ECV alteration, the speed of devel-
opment of hypernatremia, and the reversibility of the cause. Therefore, the therapy 
aims to:
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	1.	 Maintain or restore the ECV especially in case of hypovolemia to avoid shock or 
tissue hypoperfusion (crystalloids). This is the first priority that must be reached 
before any correction of natremia [13, 141].

	2.	 Correct plasma hypertonicity/hypernatremia with hypotonic solutions (5% dex-
trose or water when possible). In case of acute symptomatic hypernatremia, a 
rapid decrease in serum sodium concentration is needed to prevent or treat brain 
shrinkage and its consequences. This can be achieved with a rapid i.v. 5% dex-
trose infusion or renal removal therapy especially when patient presents kidney 
insufficiency. Oral water intake is insufficient and frequently impossible due to 
central nervous alteration. Despite the real proof of side effects of an excessive 
correction of hypernatremia, it is commonly advised to not exceed a reduction in 
plasma tonicity of 5 mosm/L/h or in natremia 2–2.5 mmol/L. Therefore, serum 
sodium levels must be closely and frequently (every 4–6 h) checked, and a clini-
cal monitoring is also required. Such a treatment is maintained until severe neu-
rological signs disappear and natremia is 145  mmol/L [13]. Asymptomatic 
chronic hypernatremia requires the replacement of water losses, the cause-
specific treatment, and if necessary, a reduction of natremia that will not exceed 
10 mmol/L per day. Oral water intake may be useful because it allows a safe 
regular and progressive decrease in serum sodium concentration, allowing to 
prevent overcorrection and the risk of brain edema. The speed of correction of 
hypernatremia must be lower in patients at risk such as elderly patients, children, 
and patients at risk of brain edema or intracranial hypertension.

�Conclusion
Cell volume depends on the transmembrane osmotic gradient, i.e., on plasma 
tonicity which is determined by the sole effective plasma osmoles. Plasma hyper-
tonicity always induces cell shrinkage and conversely plasma hypotonicity 
always induces cell edema. ADH and thirst are both major mechanisms that 
regulate closely plasma tonicity and consequently cell volume. Because of its 
location in the inextensible skull, modifications in brain volume caused by dys-
natremias are responsible for the common neurological signs. Therefore, dysna-
tremias must be considered when severe as life-threatening conditions.

Hyponatremia can be associated with plasma hypertonicity (in case of 
hyperglycemia) and isotonicity (pseudohyponatremia in case of hyperpro-
tidemia or hyperlipidemia), but only hypotonic hyponatremia can induce brain 
edema. Due to cerebral osmoregulation, the risk of hypotonic hyponatremia 
depends on the efficiency of this regulation. Therefore, the most pragmatic 
strategy to treat hypotonic hyponatremia is to consider the severity of neuro-
logical signs. Patients presenting severe neurological signs require an immedi-
ate and aggressive treatment aiming to increase rapidly natremia of 4–6 mmol/L 
using an i.v. infusion of 3% hypertonic saline and to prevent or reverse brain 
edema. Increasing serum sodium in asymptomatic or mild symptomatic chronic 
hyponatremic patients is not a real goal, and the treatment is essentially based 
on the cause-specific treatment. Besides such treatment, the raise of chronic 
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hyponatremia can be reached using fluid restriction and the use of vaptans 
remains controversial. Overcorrection of chronic hyponatremia exposes to the 
risk of osmotic demyelination.

Hypernatremia is always associated with plasma hypertonicity and conse-
quently with cell shrinkage. Therefore, hypernatremic patients commonly pres-
ent central nervous system impairments. Treatment of hypernatremia depends 
also on the severity of symptoms. Besides, the underlying cause treatment and 
severe symptomatic hypernatremic patients require a rapid decrease in serum 
sodium concentrations using i.v. hypotonic solutions, whereas asymptomatic 
patients can be treated using oral water intake aiming a slow and progressive 
reduction in natremia.
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