
Chapter 9
Optimization with Fluid-structure Interactions

Many applications involve inverse problems. A typical optimization problem could
be the control of an inflow to reduce the vorticity or to stabilize the dynamics
of a fluid-structure interaction problem. A related problem is the identification of
parameters like Lamé coefficients by indirect measurements.

In this section, some basic principles for the optimization with partial differential
equations and the application to simple, stationary fluid-structure interaction prob-
lems will be collected. For an intensive introduction to optimization and parameter
identification with partial differential equations, we refer to the literature [191,
238, 325, 326]. On optimization with fluid-structure interactions, there is only
little literature [79, 80, 134, 286]. From the large variety of different optimization
techniques, we solely consider gradient based methods. The contents of this section
have mainly been taken from [286], a collaboration with Thomas Wick.

A first thorough analysis of optimization problems with fluid-structure interac-
tions is given by Failer [133, 134]. He also discusses the much more difficult and
relevant case of non-stationary problems.

For gradient based optimization of coupled problems, it is necessary to assemble
gradients of the fully coupledmodel. The adjoint solutions, based on these gradients,
are sensitivities that indicate the impact of the control on the target functional. In
partitioned methods, where the coupling is realized by an iterative algorithm only,
this is a very difficult step. The sensitivities of fluid and solid problems alone are
well studies. A proper inclusion of the coupling is a more difficult process. The
correct transportation of adjoint information across the interface however will be
essential.
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358 9 Optimization with Fluid-structure Interactions

9.1 The Optimization Problem

We consider optimization problems, where the optimal solution is constraint to a
stationary fluid-structure interaction problem. For simplicity, we will consider the
ALE formulation from Chap. 5 only, such that U 2 UD C X is constraint to

A.U/.˚/ D �
�f J

�rvF�1v
�

; �
�
F C �

J� fF�T ; r�
�
F � .J�f f; �/F

C �
JF�1 W rvT ; �

�
F C .F†s; r�/S ;

(9.1)

where UD is an extension of the Dirichlet data and where U D fv;u; pg is found in

X D H1
0.F I � D

f /d � H1
0.F [ I [ SI � D/d � L2

0.F/:

We consider the following setting: by K W X ! R we denote a given functional
of interest. One example could be the outflow rate at a boundary part � out

f

Kout.U/ D
Z

� out
f

.v � n/2 do; (9.2)

or a functional of pointwise tracking type measuring the deflection of the solid

KA.U/ D ju.A/ � uAj2; (9.3)

where A 2 NS is a point within the solid, uA 2 Rd a prescribed deflection. Regarding
the discussion in Sect. 8.1.1.1, such a functional of point-type must be regularized
to fit into the theoretical framework. In any case we assume that K.�/ is two times
Fréchet differentiable.

Furthermore, by q 2 Qd, we denote the control, coming from the control space
Qd. Typical examples of controls could be the Lamé coefficients q D .�s; �s/, a
two-dimensional control space Qd � R2, the inflow profile q D vin, where Qd D
H1=2.� in

f /, a mean inflow pressure q D Pin, whereQd D R. Often, such controls are
constrained, e.g. by allowing only for positive pressures up to a certain limit or by
requiring the Lamé coefficients to satisfy some physical relations, i.e.

Qd D f.�; �/ 2 R2; � > 0g:

In this study, we do not consider any control constraints.
The control q can enter the problem in various ways. We introduce the modified

variational formulation

U 2 UD C X W A.q;U/.˚/ WD A.U/.˚/ C B.q;U/.˚/ D F.˚/ 8˚ 2 X ;
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where by B.�; �/.�/ we denote the control form. We specify this control form for two
examples: First, we consider the case of controlling the average inflow pressure on
the boundary � in

f . We do not prescribe Dirichlet conditions for v on � IN
f and use the

trial space

v 2 vD C H1
0.F I � D

f n � in
f /d;

such that natural Neumann conditions act. Together with

B.q;U/.˚/ D �h�f �f JrvTF�TF�Tn; �i� in
f

� hqJF�Tn; �i� in
f

; (9.4)

integration by parts reveals on � in
f the condition

�f �f JF�1rvF�Tn � pJF�Tn D qJF�Tn;

which corresponds to an average inflow pressure of q, see Sect. 2.4.2. Second, we
consider the control of the parameter �s in the material law by introducing the
control form

B.q;U/.˚/ D .F†s.q/ � F†s.�
0
s /; r�/S ; (9.5)

where (for the St. Venant Kirchhoff material)

†s.q/ WD 2qEs C �s tr.Es/I; Es WD 1

2
.FTF � I/: (9.6)

By �0
s we denote an initial guess. The goal of our optimization problem is to

determine the optimal parameters q 2 Qd such that the functional of interest K.�/
gets minimal. This quantity of interest is completed by a regularization term of
Tikhonov type, which involves a regularization parameter ˛ > 0

K.q;U/ WD K.U/ C ˛

2
jjq � Nqjj2Q; (9.7)

with a reference control Nq 2 Qd and a suitable norm jj � jjQ in the control-space.
With these preparations we can formulate the constrained optimization problem:

Problem 9.1 (Constrained Optimization Problem) Find U 2 UD C X and q 2
Qd, such that

K.q;U/ ! min; where A.q;U/.˚/ D F.˚/ 8˚ 2 X :

Introducing the Lagrangian

L.q;U;Z/ D K.q;U/ C F.Z/ � A.q;U/.Z/;
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a minimum to Problem 9.1 must satisfy the first order optimality condition

L0.q;U;Z/.ıq; ıU; ıZ/ D 0 8ıq 2 Qd; 8ıU 2 X ; 8ıZ 2 X ;

which corresponds to the following system of equations, the Karush-Kuhn-Tucker
conditions (KKT):

A.q;U/.˚/ D F.˚/ 8˚ 2 X ;

A0
U.q;U/.˚;Z/ D K0

U.q;U/.˚/ 8˚ 2 X ;

A0
q.q;U/.	;Z/ D K0

q.q;U/.	/ 8	 2 Qd:

(9.8)

The first equation is called the state equation, second the adjoint equation and the
last one the gradient equation.

The adjoint equation is exactly the equation for the adjoint problem in the context
of the Dual Weighted Residual method that has been introduced in Sect. 8.1.1 and
which is detailed in (8.44). The specific form of the gradient equation strongly
depends on the way that the control enters the problem. In the case of pressure
control on the inflow boundary (9.4), this gradient equation reads

� 	hJF�Tn; zi� in
f

D 	˛.q � Nq/ 8	 2 R: (9.9)

This allows to express the control q in terms of the other variables

q D Nq � 1

˛
hJF�Tn; zi� in

f
; (9.10)

which reduces the KKT system (9.8) to a coupled system of the state and the adjoint
equation. Regarding the identification of the Lamé coefficient (9.5), the gradient
equation gets

	
�
2FEs; rz

�
S D 	˛.q � Nq/ 8	 2 R; (9.11)

where we directly computed the derivative of †s.q/ in direction of q, compare (9.6).
Again, we can explicitly compute the control q 2 R from this equation

q D Nq C 2

˛
.2FEs; rz/S : (9.12)

9.2 Reduced Formulation of the Optimization Problem

One possibility to solve the optimization problem is to approximate the KKT
system (9.8). This however is a very large coupled system of equations involving
prima problem, adjoint and control. Even if an explicit formula for the computation
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of the control q can be used, a coupled problem in fU;Zg 2 X � X remains to be
solved. In terms of fluid-structure interaction, this refers to a coupled system of 10
(in 2d) and 14 (in 3d) equations. Instead, we first introduce a reduced formulation
of the optimization, see problem [47, 191, 238, 325, 326] and [133, 134, 286] in the
context of fsi.

Problem 9.2 (Unconstrained Optimization Problem) Find q 2 Qd, such that

k.q/ WD K.q; S.q// ! min; (9.13)

where the solution operator S W Qd ! X is defined as

A.q; S.q//.˚/ D F.˚/ 8˚ 2 X :

The solution of this unconstrained optimization problem is characterized by the first
order necessary condition

k0.q/.	/ D 0 8	 2 Qd; (9.14)

a local minimum is guaranteed by the second-order optimality condition

k00.q/.	; 	/ � 0 8	 2 Qd:

To approximate the solutions of (9.14), we employ a Newton’s method. Starting
with q0 2 Qd (one possibility is q

0 D Nq) we iterate

k00.ql/.ıql; 	/ D �k0.ql/.	/ 8	 2 Qd; qlC1 D ql C !lıql;

where !l 2 R is a possible relaxation parameter. Every step of this Newton loop
requires the evaluation of the residual and the solution of the Hessian. As the
solution U D S.q/ is implicitly given, this involves some effort.

Lemma 9.3 (Residual of the Newton Iteration) Let ql 2 Q be given. Then, the
residual is given by

�k0.ql/.	/ WD �˛.ql � Nq; 	/ C A0
q.ql;Ul/.	;Zl/;

where the solution Ul 2 X and the adjoint solution Zl 2 X are given by

.1/ A.ql;Ul/.˚/ D F.˚/ 8˚ 2 X ;

.2/ A0
U.ql;Ul/.˚;Zl/ D K0

U.ql;Ul/.˚/ 8˚ 2 X :
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Proof LetUl D S.ql/ be the solution to (1) and Zl 2 X be the solution to (2). Then,
formal derivation of k.q/ yields

k0.ql/.	/ D K0
q.ql; S.ql// C K0

U.ql; S.ql//.S0.ql/	/:

Deriving the state equation to q gives a relation for S0.ql/	

A0
q.q

l; S.ql//.˚/ D �A0
U.ql; S.ql//.S0.ql/	; ˚/ 8˚ 2 X : (9.15)

Then, by using (9.7), the adjoint equation and this relation (9.15)

k0.ql/.	/ D ˛.q � Nq; 	/Q C A0
U.ql; S.ql//.S0.ql/	;Zl/

D ˛.q � Nq; 	/Q � A0
q.q

l; S.ql//.Zl/:

ut
For estimation of the residual, we must first solve the state equation, followed

by a solution of the adjoint equation. These equations can be solved independently.
Once the residual is given, the Hessian equation must be solved.

Lemma 9.4 (Hessian of the Newton Iteration) Let ql 2 Q be given, Ul and Zl be
the adjoint solutions defined in Lemma 9.3. Let f	1; : : : ; 	#qg be a basis ofQ. Then,
solve the #q tangent equations and adjoint for Hessian equations for Ul

1; : : : ;Ul
#q

and Zl
1; : : : ;Zl

#q

i D 1; : : : ; #q W
A0
U.ql;Ul/.Ul

i; ˚/ D �A0
q.q

l;Ul/.	i; ˚/ 8˚ 2 X
A0
U.ql;Ul/.˚;Zl

i/ D K00
UU.ql;Ul/.Ul

i; ˚/

� A00
qU.ql;Ul/.	i; ˚;Zl/

� A00
UU.ql;Ul/.Ul

i; ˚;Zl/ 8˚ 2 X :

(9.16)

Then, the Hessian (in the Basis f	ig) is given as

kij.ql/ WD ˛.	i; 	j/Q � A00
qq.q

l;Ul/.	i; 	j;Zl/

� A00
qU.ql;Ul/.	i;Ul

j;Z
l/ � A0

q.ql;Ul/.	i;Zl
j/:

Proof Derivation of the residual gives

k00.ql/.	; 
/ D ˛.	; 
/Q � A00
qq.ql;Ul/.	; 
;Zl/

� A00
qU.ql;Ul/.	; S0.ql/
;Zl/ � A0

q.q
l;Ul/.	;Z0.q/
/: (9.17)



9.3 Realization with Fluid-structure Interactions 363

The first two terms can be evaluated with the knowledge of ql;Ul and Zl. By
derivation of the state equation we obtain the tangent equation which we solve for
Ul


 WD S0.ql/


A0
U.ql;Ul/.Ul


 ; ˚/ D �A0
q.q

l;Ul/.
; ˚/ 8˚ 2 X :

This allows to evaluate the third term A00
qu in (9.17). For evaluation of the last term

we solve for Zl

 D Z0.ql/
 given by the derivative of the adjoint equation

A0
U.ql;Ul/.˚;Zl


 / D K00
UU.ql;Ul/.Ul


 ; ˚/

� A00
qU.ql;Ul/.
; ˚;Zl/ � A00

UU.ql;Ul/.Ul

 ; ˚;Zl/:

ut
Compared to the residual evaluation, the assembly of the Hessian calls for

the additional effort of solving #q tangent equations and #q adjoint for Hessian
equations. Each of these problems is linear and has the same dimension as the
adjoint problem. The overall effort appears to be rather large, by using the reduced
solution approach, one however circumvents the introduction of large systems,
where state and adjoint solution are coupled. For the discussed examples with a
one-dimensional control space Qd, one Newton iteration requires the solution of
the nonlinear state equation, the solution of one linear adjoint, one tangent and one
adjoint for Hessian equation.

9.3 Realization with Fluid-structure Interactions

The described Newton iteration for the optimization problem requires the evaluation
of several further derivatives of the variational formulation.We have already derived
the Jacobian in Sect. 5.2.2, which is the systemmatrix of the tangent equation (9.16).
Its inverse is the system matrix of the adjoint equation and further the system
matrix of the adjoint for Hessian equation, also shown in (9.16). All the remaining
derivatives are required for different right hand sides of the problems. Their
evaluation is partially simple, e.g. A0

q, K
00
UU or A00

qU. Only the second derivative of
A.�/.�/ with respect to the solution U will give rise to excessive terms due to the
ALE mapping. Here, given Ul

i we propose the approximation by finite differences

A00
UU.ql;Ul/.Ul

i; ˚;Zl/ � A0
U.ql;Ul C "Ul

i/.˚;Zl/ � A0
U.ql;Ul/.˚;Zl/

"
;

where " > 0 is a parameter that has to be carefully chosen, compare the discussion
in Sect. 5.2.3 and Fig. 5.8.
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9.4 Parameter Identification Test

Based on the benchmark problem fsi-1 by Hron and Turek [199], see also Sect. 6.6,
we formulate a parameter identification test case. According to [329, 330], the
geometry has been changed by slightly widening the beam to h D 0:04 instead
of h D 0:02 in the original problem, compare Fig. 9.1.

We initially “forget” the Lamé coefficient �s and try to reconstruct it based on
a measurement of the deformation of the beam in the point A D .0:6; 0:2/. We
introduce the regularized cost functional

K.q;U/ D juy.A/ � urefy j2 C ˛

2
jq � N�j2;

where N� 2 R is an initial guess and ˛ D 10�3 the Tikhonov parameter. The control
q 2 R enters in form of a material parameter, such that the control form is given
by (9.5).

The flow is driven by a parabolic inflow profile on �in with maximum velocity
Nvin D 1:5m/s and the remaining parameters used in this test case are given by

�f D �s D 103 kg

m3
; �f D 10�3m

2

s
; �s D 0:4:

On the outflow boundary � out
f we prescribe the do-nothing outflow condition, see

Sect. 2.4.2. All computations in this sections have been carried out by Thomas
Wick [286, 347] using the software library deal.II [24].

In Table 9.1 we determine the deformation uy.A/ in the tip of the beam
considering the Lamé coefficient �ref D 500;000 on a sequence of two meshes in
forward simulations. These values act as reference values urefy for each optimization
test case.

We start the actual optimization loop with the initial control q0 D 5000 far
away from the optimal state qopt D �opt D 500;000. In Table 9.2 we indicate
the results of the optimization algorithm on two meshes, using the corresponding
reference deformation urefy .A/ on each level. Here, it shows, that the presented

M = (0.2, 0.2)

(2.5, 0)

(2.5, 0.41)(0, 0.41)

(0, 0)

̂Ω

Γ̂wall

Γ̂wall

Γ̂in Γ̂out

A = (0.6, 0.2)

Γcircle Γbase Γflag

Fig. 9.1 Configuration of the parameter identification test case with the modified fsi-1 benchmark
configuration. The thickness of the beam is increased to 0:04 (from 0:02 in the standard fsi
benchmark problem)
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Table 9.1 Forward computation for obtaining reference values uref.A/ using the exact Lamé
coefficient �opt D 500;000 on two subsequent meshes

DoF �ref urefy

19;488 500,000 8:2747 � 10�4

76;672 500,000 8:2289 � 10�4

Table 9.2 Modified fsi-1 parameter estimation problem

Step � uy.A/ juy.A/ � urefy j Residual

(a) Results on a mesh with 19;488 unknowns, urefy D 0:00082747

1 5000 2:0118 � 10�3 1:18 � 10�3 1:00 � 10�0

2 188;133 1:1992 � 10�3 3:72 � 10�4 5:90 � 10�1

3 498;310 8:2884 � 10�4 1:37 � 10�6 2:76 � 10�3

4 499;767 8:2770 � 10�4 2:30 � 10�7 4:01 � 10�6

5 499;769 8:2768 � 10�4 2:10 � 10�7 6:58 � 10�9

(b) Results on a mesh with 76;672 unknowns, urefy D 0:00082289

1 5000 2:000 � 10�3 1:18 � 10�3 1:00 � 10�0

2 118;309 1:347 � 10�3 5:24 � 10�4 7:23 � 10�1

3 493;626 8:279 � 10�4 5:01 � 10�6 1:16 � 10�2

4 499;756 8:232 � 10�4 3:10 � 10�7 2:27 � 10�5

5 499;768 8:231 � 10�4 2:10 � 10�7 2:70 � 10�8

Results of the optimization loop for two different meshes, using the reference values as collected
in Table 9.1. Showing iteration, control ql D �l, deformation uy.A/, absolute error in deformation
and Newton residual

Fig. 9.2 Modified fsi-1 parameter estimation: x-velocity profile vx (top) and corresponding adjoint
solution zx (bottom)

Newton optimization scheme with the exactly derived adjoint problems for the
monolithic variational formulation yields a very efficient (quadratic) convergence
to the optimal state.

In Fig. 9.2, we show plots of x-velocity and the corresponding adjoint solution
component for the solution of this optimization problem.
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9.5 Optimal Control Test

As second problem we consider an optimal control test. Figure 9.3 shows the
configuration. By controlling the inflow pressure on � in

f by pinf 2 R D qf 2 R

we aim at maximizing the outflow at � out
f . An elastic obstacle S is embedded in the

flow domain. At increased velocities, this obstacle will be sucked to the top of the
domain and closes the channel, such that the flow rate will decrease again.

The problem is constructed such that the optimal solution can be easily verified
by forward simulations to offer an easy test case for the optimization routines and
in particular for the derivation of the adjoint formulations. Control is realized by the
pressure control form (9.4), the target function is given by

Kout.q;U/ D �
Z

� out
f

.n � v/2 ds C ˛

2
jq � Nqj2; (9.18)

where ˛ > 0 is the regularization parameter. We changed the sign to obtain a
minimization problem. The material parameters are chosen as

�f D �s D 103 kg � m�3; �f D 10�3 m2 � s�1; �s D 0:4; �s D 500 kg � m�1s�1:

Velocity and deformation as set to zero on all outer boundaries �wall.
Figure 9.4 shows results of forward simulation for different values of the control

q, i.e. the average inflow pressure on � in
f . Considering higher pressures, the beam

will narrow the channel and reduce the outflow rate; we refer the reader to Fig. 9.5
for snapshots of the solution for different inflow pressures q D pin. From the forward
simulation we estimate qopt 2 Œ0:23; 0:24�.

This test case is very challenging as control and target functional are both living
within the fluid. Without the interaction to the solid, no effect would take place.
This example asks for a careful analysis of the adjoint information transport from
the fluid to the solid and back to the fluid. In [286] we study this problem with an

.2
5

4.0

Ωf

Ωs
Γout

1
.5

1
.0

1.0 2.0

Γin

Γwall

.2
5

Fig. 9.3 Configuration of the optimal control test case. We control the inflow pressure on �in with
the goal to maximize the outflow rate on �out
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 0.05

 0.06
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Fig. 9.4 Forward simulations for varying inflow pressures q. In the upper plot we show the
outflow rate Kout.q;U.q//. In the lower plot we indicate the deformation of the tip of the beam
uy.A/. The outflow rate decreases for q > 0:25. We expect to find the optimal control close to this
point

approximated adjoint that neglects the coupling conditions. It is shown that such
an approximation does not carry sufficient information for efficiently solving the
optimization problem.

To approximate this problem, we use an updated Tikhonov parameterization,
where both the parameter ˛ and the parameter Nq in

K.q;U/ D Kout.U/ C ˛

2
jq � Nqj2;

are updated. We start with Nq0 D q0 D 0:1 and take the last available optimum
in each step. Furthermore, the parameter ˛ is reduced step by step. In Table 9.3,
we show the convergence of this iterated Tikhonov scheme, together with the
chosen values for ˛i and the obtained controls piopt. As expected by the forward
computation, the maximal flux is reached for popt � 0:23–0:24. Indeed, it can be
observed that the channel is narrowed in the maximized solution as illustrated in
Fig. 9.5. Here, in the unloaded reference configuration, the gap has a width of 0:125.
Using the initial control Np0

in D 0:1, the gap is narrowed to 0:115 and in the optimum
state, for popt � 0:24, the size of the gap is reduced to 0:095. This is an overall
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Fig. 9.5 Maximization of the outflow rate. At the top we show the velocity for the initial control
q0 D 0:1 and in the bottom we show the solution close to the optimal control qopt � 0:23

Table 9.3 Maximizing the outflow rate Kout.U/ by controlling the inflow pressure q D pin on
three globally refined meshes using an iterated Tikhonov regularization with Tikhonov parameter
˛ and reference control Npin
DoF Npin ˛ uy.A/ Kout.U/ popt
12,612 0:1000 1:0 � 10�5 0:97 � 10�2 3:87 � 10�5 0:1038

0:1038 7:5 � 10�6 1:02 � 10�5 4:04 � 10�5 0:1090

0:1090 5:0 � 10�6 1:11 � 10�5 4:29 � 10�5 0:1170

0:1170 2:5 � 10�6 1:30 � 10�5 4:78 � 10�5 0:1335

0:1335 1:0 � 10�6 1:85 � 10�5 5:87 � 10�5 0:1759

0:1759 7:5 � 10�7 2:43 � 10�5 6:53 � 10�5 0:2254

0:2254 5:0 � 10�7 2:72 � 10�5 6:67 � 10�5 0:2280

49,540 0:1759 1:0 � 10�6 2:46 � 10�5 6:52 � 10�5 0:2135

0:2135 7:5 � 10�7 2:84 � 10�5 6:70 � 10�5 0:2330

196,356 0:1759 1:0 � 10�6 2:42 � 10�5 6:50 � 10�5 0:2111

0:2111 7:5 � 10�7 2:92 � 10�5 6:71 � 10�5 0:2367
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Fig. 9.6 Maximization of the outflow rate. Adjoint solution with respect to the velocity (top),
displacement (middle) and pressure (bottom). All solutions are displaced in the undeformed
reference configuration in ALE coordinates

reduction of about 25%. Finally, Fig. 9.6 illustrates the three components zv; zp; zn
of the adjoint solution.

We finally note that we expect different results, if this problem would be treated
with a fully non-stationary approach. At very high pressures one has to expect
instabilities that will cause a flattering of the elastic obstacle and that might finally
prevent the full closure of the channel.
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