
Chapter 5
ALE Formulation for Fluid-structure
Interactions

The following paragraphs will be devoted to the Arbitrary Lagrangian Eulerian
(ALE) method for modeling fluid-structure interactions. Based on the equations
derived in Sect. 3.5, we describe methods for discretization in time and space. The
basic techniques have already been introduced in Chap. 4, such that we can focus
on the special characteristics of the Arbitrary Lagrangian Eulerian formulation for
fluid-structure interaction problems.

In this chapter, we will focus on a strict interpretation of the ALE formulation
for the Navier-Stokes system

J�f
�
@tv C F�1.v � @tu/ � rv

�
� div

�
J� fF�T

�
D J�f f;

div
�
JF�1v

�
D 0;

9
>=
>;

in OF ;

where the set of equations is completely mapped onto the reference coordinate
system in OF , see [126, 199, 201, 285]. In literature an alternative formulation is
often discussed [48, 120, 140, 147, 181, 221]. The problem is there mapped back
into the Eulerian coordinate system and reads

�f

�
@tv C .v � @tu/ � rv

�
� div � f D �f f;

div v D 0:

9
=
; in F.t/:

The domain mapping only enters via the additional transport term. The benefit of
this presentation is the simplicity of formulation. After every time step, the mesh
must be updated. Considering time stepping schemes, where the solution and the
domain motion enters at two distinct points in time at once, the derivation of
accurate higher order schemes is less obvious using this second formulation. From a
theoretical point of view, both formulations are equivalent.Whether one uses a fixed
mesh and the reference formulation or a moving mesh and the Eulerian formulation,
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204 5 ALE Formulation for Fluid-structure Interactions

both problems give the same result. Considering strictly monolithically coupled
schemes, the first ALE formulation is more natural, as it allows for a variational
coupling of the two different sub-systems, see Sect. 3.5.

5.1 Time-Discretization for the FSI Problem
in ALE-Formulation

Time discretization of fluid-structure interactions is mainly governed by two specific
complexities. First, the overall stiffness of the coupled problem is by far greater than
that of the two single subproblems. This is mainly due to the coupling of a parabolic
type fluid equations with the solid equations of hyperbolic type. Second the ALE
time derivative of the domain acts as transport direction for the fluid field. This
gives rise to nonlinear couplings of temporal and spatial derivatives, which is very
uncommon for most partial differential equations.

We start by repeating the coupled system of equations describing fluid-structure
interactions in Arbitrary Lagrangian coordinates. Compare to Problem 3.11:

�
J.@tv C .F�1.v � @tu/ � r/v; ��F C �

J� fF�T ;r��F D .J�f f; �/F
�
JF�1 W rvT ; �

�
F D 0

.�0s@tv; �/S C .F˙ s;r�/S D .�0s f; �/S

.@tu � v;  s/S D 0

.ru;r s/F D 0;

(5.1)

where we have reformulated the divergence condition in the fluid equations by
means of Lemma 2.61 to ease implementation and to avoid the presence of second
derivatives. For construction of the ALE map, we consider a simple harmonic
extension, see Sect. 5.3.5 for variants. For simplicity of notation, we have skipped
all hats that usually indicate use of Lagrangian or ALE coordinates. Apart from
the strong nonlinearities, this equation has some special feature with respect to
the temporal derivatives. These are not isolated but appear in coupling to spatial
derivatives

�
J
�
@tv � .F�1@tu � r/v� ; ��F C : : : (5.2)

A detailed analysis of fluid flows on moving domains has been performed by
Formaggia and Nobile [143, 144]. These studies already tackle several important
aspects such as stability and order of convergence. In fluid-structure interaction, the
fluid-domain movement is caused by the solid deformation. Hence, the analysis of
fully coupled fluid-structure interaction is similar but must also include a discussion
on the solid discretization.
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Fig. 5.1 Configuration of the two benchmark problems. The upper figure shows the cfd bench-
mark by Schäfer and Turek, the lower figure shows the layout of the fsi benchmark by Hron and
Turek

5.1.1 Non-stationary Dynamics of Fluid-structure Interactions

We start the discussion on time-discretizations of fluid-structure interaction with
a survey on results for two benchmark problems in fluid-dynamics and for fluid-
structure interactions: In 1995, Schäfer and Turek [299] presented a benchmark
configuration for incompressible laminar flows. In 2006, Hron and Turek [200]
published results for a two dimensional fluid-structure interaction benchmark that
has been constructed on top of the cfd benchmark problem. Both problems use the
geometric configuration shown in Fig. 5.1. The main difference is an elastic beam
that is attached to the rigid obstacle. Further, the domain of the fsi problem has been
lengthened to avoid spurious feedback of the outflow boundary to the dynamics of
the oscillation.

Both problems are driven by a prescribed inflow profile vD on �in. The full set of
parameters for both problems is given by

�cfdf D 1 kg � m�3; �fsif D 103 kg � m�3

�cfd/fsif D 10�3m2 � s�1; vD.0; y/ D 1:5!.t/
y.H � y/

.H=2/2
Nv;

where !.t/ D .1 � cos.�t=2// for t < 2 s and !.t/ D 1 for t � 2 s is used for
regularizing the initial data. As average speed, we consider Nv D 2m � s�1. In the
original cfd benchmark problem, Nvcfd D 1m � s�1 was considered. With the radius
of the obstacle D D 0:1, the Reynolds number is given by

Re D NvD
�

D 200:
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The description of the problem is closed by providing the material parameters of the
elastic solid

�fsis D 103 kg � m�3; �s D 2 � 106 kg � m�1s�2; 	s D 8 � 106 kg � m�1s�2:

As quantity of interest, we consider principal boundary stresses in x- and y-direction
on the obstacle with boundary �obs

Jdrag.v; p/ D 2

Nv2�f L
Z

�obs

� fnex do;

Jlift.v; p/ D 2

Nv2�f L
Z

�obs

� fney do:

(5.3)

By �obs we denote the boundary of the circle with diameter in the case of the
cfd-benchmark and the circle with attached beam in the case of the fsi-benchmark
problem. Efficient ways for evaluating these functionals are shown in [62, 282] as
well as in Sect. 8.3.2.

Figure 5.2 shows the drag-coefficient (5.3) as function over time I D Œ0; 5
 for
the two benchmark problems. Both configurations show a similar behavior with a
transient initial phase leading to a periodic oscillation with dominant frequencies
fcfd D 13Hz for the cfd benchmark and ffsi � 11Hz for the fsi problem. The
first obvious difference is the longer transient phase for the fsi benchmark problem.
An insight look into the subinterval I0 D Œ2:5; 3
 reveals high frequent oscillations
fhigh � 100Hz in the drag-coefficient with a small amplitude a � 10�4 that is not
visible on the large scale. These high frequent oscillations are no numerical artifacts
but remain stable under temporal and spatial mesh refinement. They are only present
in the coupled fsi system.

Reviewing the results published by many research groups in the two surveys on
the cfd benchmark problem [299] and the fsi benchmark [199, 201] a first surprising

Fig. 5.2 Comparison of the two benchmark problems cfd and fsi. We plot the drag coefficient
as function over time. For the fsi-problem we show a detailed view of the transient oscillations
revealing high frequent modes
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observation is the choice of discretization parameters that have been necessary to
obtain approximations with appropriate accuracy: even though more than a decade
lies between both benchmark problems, the dimension of the spatial discretization
is very similar. In both cases, about 300,000 spatial degrees of freedom are sufficient
to result in output values of about 1% accuracy. The increased difficulty of the fsi
benchmark problem has been accounted for by a general use of higher order finite
elements, where most contributors to the original cfd benchmark problem relied on
lowest order finite elements. However, observing the temporal discretization, it is
found that the fsi benchmark asks for significantly finer resolution in time. While
less than 10 time steps per period of the oscillation were sufficient in the cfd case,
accurate results to the fsi benchmark problem required up to 100 time steps per
period of oscillation resulting in time steps as small as 10�3. One explanation for this
difference in temporal discretization can be found in the high frequent oscillations
that are present with small amplitude, see Fig. 5.2.

Further insight is given by a discrete Fourier analysis of the output functional
Jdrag.t/ as function over time. We analyze few oscillation of the output functional
with a very fine temporal resolution (down to k � 10�5). Figure 5.3 reveals several
dominant frequencies, at about 100Hz (see also Fig. 5.2, 500Hz and 800Hz. These
modes are stable under mesh refinement and further downscaling of the time step.
The modes belonging to higher frequencies carry less energy. But even though the
high frequent contributions take place on a much smaller scale as the dominant
oscillation ffsi � 11Hz, they must be carefully resolved to capture the overall
dynamics of the coupled benchmark problem. The key question in this respect is
the origin of these micro-oscillations. They are not present in pure fluid-dynamical
simulations. A corresponding Fourier analysis of the fluid functions J.v; p/ does
not show any overtones. Further, they are no numerical artifact, but stable under
discretization of both spatial and temporal discretization. Instead they stem from
the coupling to the hyperbolic structure equations.

A further question to be investigated is the period of oscillations in coupled
fluid-structure interaction systems. Figure 3.3 in Sect. 3.3 showed that the non-
stationary dynamics of coupled fluid-structure systems can largely vary from
pure fluid flows. Two geometrically similar problems at Reynolds number Re D
140 show a stationary behavior for a fixed and rigid body, whereas instationary
oscillations appear for a flexible body. In laminar fluid-dynamics, the frequency
of the Kármán vortex street depends on the Reynolds number of the flow, hence
on the velocity. Structural systems have their own eigenmodes. Whether a coupled
system is oscillating and which frequency and amplitude is obtained is not fully
understood [250, 261]. We investigate this problem in Chap. 11.

5.1.2 Time Stepping Schemes for Fluid-structure Interactions

There is little theoretical background on monolithic time-discretizations of fluid-
structure interactions. The main difficulty stems from the motion of the subdomains
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Fig. 5.3 Discrete Fourier analysis of the output functional (drag) shows the dominant frequency
ffsi � 11Hz and further important sub-frequencies at about f � 100Hz and 500Hz as well as
800Hz. These modes are stable under temporal and spatial mesh refinement

that must either be modeled explicitly in partitioned approaches or that must be
taken care of by implicit transformations of either the fluid-domain or the solid-
domain. Concentrating first on pure fluid problems on moving domains, some
crucial aspects with respect to stability and order of convergence are already identi-
fied by Formaggia and Nobile [143, 144]. In addition Fernández and Gerbeau [140]
provide a stability analysis for fluid-structure interaction problems. Several studies
with qualitative comparisons of different time stepping schemes and their long-time
behavior have been reported in [342, 348]. In the primer study and additionally in
[347] a detailed discussion on the practical realization and implementation of time
stepping schemes for ALE fluid-structure interaction is given.



5.1 Time-Discretization for the FSI Problem in ALE-Formulation 209

In the following, we put the attention on the strict variant of the ALE method that
completely acts on the fixed reference domains F and S, and where the complete
set of equations is mapped.

Here, the domain motion is hidden in the ALE-map Tf .x; t/ and calls for the
discretization of non-standard space-time coupled terms like, see (5.1) and (5.2):

.J.u/rvF�1.u/@tu; �/F : (5.4)

Most approaches for the temporal discretization of this term are ad hoc and based
on the experience with other types of equations as Navier-Stokes of multiphase
fluids, see [198].

5.1.2.1 Derivation of Second Order Time Stepping Schemes

The derivation of a second order stable time stepping scheme is not obvious.
Specifically, regarding (5.4), two immediate reasonable choices for are given by
the secant version

 "
J.um�1/rvm�1F�1.um�1/

2
C J.um/rvmF�1.um/

2

#
um � um�1

km
; �

!
;

and the midpoint-tangent version

��
J. Nu/r NvF�1. Nu/� u

m � um�1

km
; �

	
;

Nu WD um�1 C um

2
; Nv WD vm�1 C vm

2
;

of the trapezoidal rule. This idea is explored in [343, 348].
A third version of a time stepping scheme can be derived by using a tem-

poral cG.1/=dG.0/-Galerkin approach of (5.4) as described in Sect. 4.1.3. Using
piecewise linear continuous trial spaces for all deformation u and velocity v in
combination with piecewise constant globally discontinuous test spaces yields the
time derivative term

�

1

6
J.um�1/rvm�1F�1.um�1/C 2

3
J. Nu/r NvF�1. Nu/

C1

6
J.um/rvmF�1.um/

�
um � um�1

km
; �

	
;

where again by Nu and Nv we denote the average of old and new approximation. Such
a Galerkin-derivation is also possible for more advanced time stepping schemes like
the fractional step theta method, see [239, 240] and Sect. 4.1.2.
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Simple truncation error analysis shows second order convergence for k ! 0 in
all three cases. The leading error constants slightly differ:

C1 � 11

8
; C2 � 3

8
; C3 � 3

4
:

In numerical experiments, it is found that all of these variants show very similar
performance. Significant differences in temporal accuracy could not be found.

Finally, we point out that the Crank-Nicolson scheme applied to the elas-
tic structure equation in mixed formulation is closely related to the Newmark
scheme [23], which is one of the most prominent time-discretization techniques
in solid mechanics.

5.1.2.2 Temporal Stability

Issues of numerical stability are of utter importance for fluid-structure interaction
problems, as they consist of the coupled consideration of two different types of
equations: the incompressible Navier-Stokes equations which is of parabolic type
and that comes with smoothing properties and the hyper-elastic solid equation of
hyperbolic type that calls for good conservation properties with very little numerical
dissipation. By these considerations, the Crank-Nicolson scheme and its variants
like shifted versions [230, 266] or the fractional step theta scheme [74, 328], appear
to be ideal candidates. Further, both are second order accurate.

Motivated Heywood and Rannacher [187] and Formaggia and Nobile [144] it
is reported in [140, 348] that the discretization of the domain-motion term (5.4)
introduces further stability issues. To investigate this stability problem, we again
consult the fsi benchmark problem introduced in the previous sections. Figure 5.4
shows the drag as functional over time for an unstable pair of spatial and temporal
discretization parameters. Further, we also show the stable simulation using a
damped version of the time stepping scheme.

In a first test, we aim at obtaining a stable solution up to T D 10. On a sequence
of uniform meshes, we identify the largest time step k that is suited to generate a
stable solution. The left part of Table 5.1 shows the results. Here, we see that on
the coarsest mesh, the large step size k D 0:02 is sufficient, while on finer meshes
k < 0:004 is required. We however cannot identify a direct relationship between
mesh size and time step if we go to even finer spatial mesh resolutions.

In a second test case, we consider the (relatively large) step size k D 0:005 and
k D 0:00N3 and determine the point in time Tmax, where the solution gets unstable.
Again, we carry out this test case on different meshes. At first glance, the results in
the right part of Table 5.1 for k D 0:005 suggest a stability relationship between time
step and mesh size. The results concerning the second configuration with k D 0:00N3
however does not confirm this conjecture. Here, we can even reach a larger final
point in time Tmax on finer meshes. Further, the simulations on the finest mesh do
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Fig. 5.4 Simulation for k D 0:005. Top: undamped Crank-Nicolson scheme develops an
instability. Bottom: implicitly shifted scheme produces a stable solution on I D Œ0; 10


Table 5.1 Long-term stability of the Crank-Nicolson scheme

Time step size

Mesh-Level 0:025 0:02 0:004 0:00N3
1 � p p p
2 � � � p
3 � � � p

Mesh-Level k D 0:005 0:00N3
1 � 10 � 10

2 8:48 10:82

3 6:04 12:54

4 3:84 3:84

Left: combination of time step k and mesh size h, such that the solution is stable in the interval I D
Œ0; 10
. We cannot find a strict time step relation k � h˛ . Right: maximum interval I D Œ0; Tmax
,
where a solution could be found for k D 0:005 and k D 0:00N3, depending on the mesh-size. Here,
we also cannot identify an obvious relationship

not cease due to stability problems but due to early failure of the Newton scheme.
Altogether, it is not possible to numerically certify a strict time step restriction.
Instead we find a general stability problem for long-term simulations if we consider
the Crank-Nicolson scheme.
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5.1.2.3 Stable Time-Discretization and Damping

The analysis of the fsi benchmark problem shows that the restrictive time step
condition is by stability and not by accuracy requirements. We will therefore
discuss accurate time-discretization schemes with better stability properties. A
possibility is to either resort to A-stable time-discretization schemes, or to apply
modifications of the Crank-Nicolson schemes. Two possibilities are often discussed
in literature: by a slight implicit shifting of the discretization we recover global
stability, see [186, 187, 230] and also Sect. 4.1.2:

.um � um�1; �/C
�
1

2
C O.k/

	
a.um; �/C

�
1

2
� O.k/

	
a.um�1; �/ D 0

This is sufficient for damping of accumulated errors by truncation, quadrature or
inexact solution of the algebraic systems. If the shift depends on the time step
size, the resulting scheme is still second order accurate in time. Similar results are
recovered by applying some initial time steps with the A-stable backward Euler
method, see [266]. If these few (usually two are sufficient) backward Euler steps are
introduced after every fixed time-interval, e.g. at every t D j for j D 0; 1; : : : , we
also recover sufficient stability for long term calculations. This scheme, also referred
to as Rannacher time-marching, is second order accurate.

Higher stability that is also sufficient to cover non-smooth initial data is reached
by applying strongly A-stable time-integration techniques. Here, the fractional-step
theta method appears to be an optimal choice [74]. This time stepping scheme
consists of three sub-steps that combined results in a second order, strongly A-stable
scheme that further has very good dissipation properties. It is highly preferable
to flow problems [328] and also frequently used in the analysis of fluid-structure
interactions problems [198, 201, 287, 342].

In the following, we compare the three possibilities of a non-damped Crank-
Nicolson scheme, with an implicitly shifted version using � D 1

2
C k and the

Rannacher time-marching algorithm with two steps of the backward Euler method
at times t D 0, t D 1, t D 2 and so on. In Fig. 5.5 we compare these three damping
strategies. We show the drag-coefficient (see Figs. 5.2 or 5.4 for a global view)
in the sub-intervals t 2 Œ3:5; 4:2
, t 2 Œ7:95; 8:15
 and t 2 Œ9:3; 9:6
. While all
three versions are stable at initial time, Rannacher time-marching develops a first
instability after two steps of backward Euler at time t D 4, see the upper sketch in
Fig. 5.5. This instability will remain during the simulation, but it will not be further
intensified, as can be seen in the middle and right sketch of the figure. The undamped
version of the Crank-Nicolson scheme delivers stable solutions up to a moderate
time of about t D 5 but develops a strong instability that will finally lead to a
breakdown of the scheme, as can be seen in the middle and lower sketch. Finally,
the implicitly shifted version of the Crank-Nicolson scheme gives stable and good
results globally in time.

A systematic way for deriving a time stepping scheme is the detour using a
Galerkin formulation. Here, we exemplarily derive the cG(1)-method that—for
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Fig. 5.5 Comparison of different damping strategies: undamped Crank-Nicolson, shifted version
1
2

C k and Rannacher time-marching with two backward Euler steps at every time-unit

parabolic autonomous systems—is equivalent to the Crank-Nicolson scheme. We
find uk; fk; gk 2 X1I in the space of piece-wise linear, globally continuous functions
and use X0;dcI as test space. On an interval Im we write

fk
ˇ̌
Im

D f m�1
k  m�1 C f mk  

m; gk
ˇ̌
Im

D gm�1
k  m�1 C gmk  

m;
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where

 m�1.t/ D tm � t

tm � tm�1
;  m.t/ D t � tm�1

tm � tm�1
:

5.2 Linearizations of Fluid-structure Interactions in the ALE
Framework

Discretization in time results in a sequence of quasi-stationary systems of partial
differential equations. These are highly nonlinear. Nonlinearities arise frommaterial
laws, convective terms and in the case of fluid-structure interactions due to the
motion of the domain. Considering the strict ALE formulation with mapping of
the complete variational system to a reference domain this domain nonlinearity
is represented by the domain map T, its gradient F and determinant J. In the
following paragraphs, we will discuss different ways to linearize these quasi-
stationary systems. First of all, a straightforwardway to linearize the set of equations
would be the use of explicit time stepping schemes. This however is not feasible
due to several reasons: first of all, the incompressibility constraint of the Navier-
Stokes equations (or for incompressible solids) cannot be taken care of by explicit
methods. Application of projection schemes would allow for explicit discretization
of the momentum equations. We do not follow this approach, but refer to the
literature [139, 262]. Another drawback of explicit discretization schemes is the
limited stability that will call for very strict step-size conditions. The use of small
time steps is a contrast to the benefits of monolithic schemes that allow for implicit
discretizations with large time steps.

For the following we will consider implicit schemes only. Here we focus on
time-discretization with the backward Euler method. Adaption to other single-step
schemes is straightforward. Given velocity vold and deformation uold at previous
time step we find (see Lemma 3.11)

v 2 V ; u 2 W ; pf 2 Lf ;

such that
�
�f J

�
k�1.v � vold/C F�1.v � k�1.u � uold// � rv

�
; �
�
F

C�J� fF�T ;r��F D .J�f f; �/F
�
JF�1 W rvT ; �

�
F D 0

.�0s k
�1.v � vold/; �/S C .F˙ s;r�/S D .�0s f; �/S

.k�1.u � uold/ � v;  s/S D 0

.ru;r f /F D 0;
(5.5)
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for all

� 2 V ;  f 2 Wf ;  s 2 Ls; �f 2 Lf :

The fluid’s stress tensor �f in ALE coordinates and the 2nd Piola Kirchhoff stress
tensor of the St. Venant Kirchhoff material are given by

� f WD �pI C �f �f .rvF�1 C F�TrvT/

˙ s WD 2�sEs C 	s tr .Es/ I;
(5.6)

where the Green-Lagrangian Strain tensor is defined as

Es WD 1

2
.FTF � I/:

Finally, we denote by �f ; �0s ; �f ; �s and 	s the material parameters describing density
of fluid and solid, kinematic viscosity, shear modulus and Lamé coefficient.

We skipped all “hat’s” denoting the use of reference coordinates. By F
and S denote the fixed reference domains of fluid and solid. The function
spaces V and W are basically the space H1.˝/d differing only in the
type of boundary values. While W D H1

0.˝/
d has Dirichlet boundary

values all around @˝ , the velocity space V D H1
0.˝I� D/d can have a

Neumann outflow boundary � out
f � @˝ . The pressure space Lf D L2.F/

is defined on the fluid-domain only. The test space Wf D H1
0.F/d for the

definition of the ALE-map has homogenous Dirichlet values all around the
fluid-domain. The test space of the deformation-velocity relation is Ls D
L2.S/d .

5.2.1 Linearization by Fixed Point-Iterations

A simple approach to linearization of (5.5) is to apply fixed point-iterations. Starting
with

v.0/ D vold; u.0/ D uold;

we search for approximations v.l/ and u.l/ that converge to v and u for l ! 1. We
define

F.l/ WD I C rv.l/; J.l/ WD det F.l/
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and solve the sequence of linearized systems

�
�f J

.l�1/ �k�1.v.l/ � vold/C
CF.l�1/�1 .v.l�1/ � k�1.u.l�1/ � uold// �rv.l/

�
; �
�
F

C�J.l�1/� f .v.l/; p.l//F.l�1/
�T
;r��F D .J.l�1/�f f; �/F

�
J.l�1/F.l�1/�1 W rvT ; �

�
F D 0

.�0s k
�1.v.l/ � vold/; �/S C .F.l�1/˙ .l/

s ;r�/S D .�0s f; �/S

.k�1.u.l/ � uold/� v.l/;  s/S D 0

.ru.l/;r f /F D 0;

(5.7)

with an ad hoc linearization of the solid’s stress tensor (here, given for the St. Venant
Kirchhoff material)

˙ .l/
s WD 2�sE.l/s C 	s tr.E.l/s /I;

E.l/s WD 1

2

�
ru.l/ C ru.l/

T C ru.l�1/ru.l/
T
�
:

Other choices are possible. This fixed-point linearization of the fsi system is similar
to the Oseen linearization of the Navier-Stokes system, see Sect. 4.4.1. A theoretical
analysis on the convergence of this fixed-point iteration is difficult, but we will add
numerical tests using the benchmark problem fsi-3 of Hron and Turek [199], see
Sect. 5.2.3.

5.2.2 Newton Linearization for Fluid-structure Interactions
in Arbitrary Lagrangian Eulerian Formulation

In Sect. 4.4, we have seen that general fixed-point iterations for the linearization
of the Navier-Stokes system usually show very slow convergence properties, see
Fig. 4.9. Only by using Newton scheme for approximation of the nonlinear systems,
we could establish a robust and very fast converging scheme. This section will now
describe Newton linearization for fluid-structure interactions in ALE formulation.
The main difficulty will again be the handling of the domain motion, hidden in
the ALE mapping T, its gradient F and determinant J. By consulting Sect. 4.4.2,
the general Newton method for a (quasi-)stationary system of partial differential
equations in variational formulation was given as (compare (4.34))

W 2 X W A0.U.l�1//.W.l/; ˚/ D F.˚/ � A.U.l�1//.˚/; 8˚ 2 Y; (5.8)
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with

U.l/ WD U.l�1/ C !.l/W.l/: (5.9)

In the context of fluid-structure interactions in ALE formulation (discretized in time
with the backward Euler method) the last known approximationU.l�1/ 2 X is given
by

U.l�1/ WD fv.l�1/;u.l�1/; p.l�1/f g 2 X D V � W � Lf :

We denote the unknown update by

W.l/ D fz;w; qf g 2 X D V � W � Lf :

Remark 5.1 (Initial Value) Newton convergence highly depends on a good choice
of an initial approximation U.0/. In the context of non-stationary problems, a good
choice is always to use the old solution at time tn�1, hence U.0/ D U.tn�1/ D Uold.
This initial choice could even be enhanced by using a linear extrapolation of the two
last approximations, by choosing

U.0/ D U.tn�1/C tn � tn�1
tn�1 � tn�2

.U.tn�1/� U.tn�2// :

Considering the backward Euler discretization, the semilinear form A.�/.�/ is
given by (compare 5.5)

A.U/.˚/ D �
�f J

�
k�1.v � vold/C rvF�1 �v � k�1.u � uold/

��
; �
�
F

C �
J� fF�T ;r��F � .J�f f; �/F

C �
JF�1 W rvT ; �

�
F

C .�0s k
�1v; �/S C .F˙ s;r�/S

C .k�1u � v;  s/S C .ru;r f /F

(5.10)

and the right hand side F.�/ by

F.˚/ D .�0s f; �/S C .�0s k
�1vold; �/S C .k�1uold s/S : (5.11)

To simplify the representation of the derivatives of the convective term, we have—
in (5.10)—used the relation

�
.F�1v/ � r�w D rvF�1w:
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The data term .J�f f; �/F must reside in the form A.�/.�/ as the deformation
determinant J depends on the unknown deformation u. The same applies to the
old solution vold appearing in the momentum equation of the fluid problem.

The derivative A0.U.l�1//.W.l/; ˚/ in (5.8) is the Gâteaux derivative of the
semilinear form A.�/.�/, which is the directional derivative atU.l�1/ in directionW.l/

tested with ˚ . It is defined as

A0.U/.W; ˚/ WD lim
s!0

d

ds
A.U C sW/.˚/

ˇ̌
ˇ
sD0: (5.12)

On a fixed domain, we can exchange the order of differentiation and integration,
such that it holds

d

ds

�Z

˝

f .u C sw/� dx

	 ˇ̌
ˇ
sD0 D

Z

˝

d

ds
f .u C sw/

ˇ̌
ˇ
sD0� dx:

Hence,

d

ds
. f .u C sw/; �/˝

ˇ̌
ˇ
sD0 D �

f 0.u/w; �
�
˝
:

In the case of fluid-structure interaction, this situation is more involved, as the
motion of the domain depends on the solution. Formally, variational formulations
of fluid-structure interactions are defined on domains that depend on the solution.
Here, differentiation and integration may not be exchanged

d

ds
. f .u C sw/; �/˝.u/

ˇ̌
ˇ
sD0 ¤ �

f 0.u/w; �
�
˝.u/ :

Instead, the derivative with respect to the domain of integration must be considered.
A straightforward and simple way for computing the derivative A0.�/.�; �/ is by

means of finite differences:

A0.U/.W; ˚/ D "�1 .A.U C "W/.˚/ � A.U/.˚//C O."/; " > 0 (5.13)

This approach is widely used for complex simulations [170]. The main difficulty of
finite difference approximations is the choice of ". This parameter must be small
enough, such that the approximation accuracy of the Jacobian (5.13) is high. On the
other hand, a too small value of " may cause cancellation effects and will give rise
to a substantial truncation error. An optimal choice based on a priori information
is usually not possible, see [47] where the authors investigated finite difference
approximations in the context of gradient based optimization.

If the derivatives (5.12) are to be evaluated exactly, we need to manage
the domain deformation. It will turn out, that our strict form of the Arbitrary
Lagrangian Eulerian framework that works on a fixed reference system for the
complete variational form, see (5.10) and (5.11), helps to avoid all difficulties, as
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the computational domains are fixed. We can exchange orders of differentiation
and integration. Using the alternative formulation on updated meshes, motion of
the domains must be carefully included. Fernandez and Moubachir [141] use the
concept of shape derivatives to include the mesh motion. They derive the exact
analytical Jacobian for the fluid-structure interaction system in a very similar fashion
to the present approach. Van der Zee and co workers [358, 359] describe two
different approaches for differentiation of the variational formulation. The first
approach [358] is very similar to our strict interpretation of the ALE method: the
equations are mapped to the fixed reference domain, and all differentiation is carried
out here. The second approach [359] is based on the theory of shape calculus,
see [313, 362], where the derivative with respect to the domain motion is explicitly
computed: let T.t/ W ˝ ! ˝.t/ be a sufficiently regular domain map. Then, the
following fundamental formula holds:

d

ds

Z

˝.s/
f .x/dx D

Z

@˝.s/
hn � @sT.s/if .o/do;

where n is the outward facing unit normal at the boundary of ˝.s/. We will have
to get back to this approach, when dealing with the Fully Eulerian approach in
Sect. 6.4. Here, we can rely on the strict variant of the ALE method, where all
domains are fixed.

The following theorem gives the full Jacobian of the fluid-structure interaction
problem in ALE coordinates, discretized with the backward Euler equation.

Theorem 5.2 (Jacobian for Fluid-structure Interactions in Arbitrary
Lagrangian Eulerian Coordinates) Let U D fv;u; pf g 2 X , W D fz;w; qf g 2
X and ˚ D f�; f ;  s; �f g 2 Y . For the directional derivative of (5.10) at U in
direction of W, it holds:

A0.U/.W ; ˚/ D
�
�f J

�
k�1z C rzF�1

�
v � u � uold

k

	
C rvF�1z

	
; �

	

F

C
�
J
d� f

dv
.W/F�T ;r�

	

F
� �

JF�Tqf ;r�
�
F

C �
.JF�1 W rzT ; �

�
F

C
�
�f J tr .F�1rw/

�
k�1.v � vold/C

rvF�1 �v � k�1.u � uold/
� �
; �
�
F

� ��f JrvF�1rwF�1 �v � k�1.u � uold/
�
; �
�
F

� ��f JrvF�1k�1w; �
�
F

C �
J tr .F�1rw/� fF�T ;r��F � �

J� fF�TrwTF�T ;r��F
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C
�
J
d� f

du
.W/F�T ;r�

	

F

C�J.F�T W rw/.F�1 W rvT/; �
�
F � �

JF�1rwF�1 W rvT ; �
�
F

C �
�0s k

�1z; �
�
S C

�
rw˙ s C F

d˙ s

du
.W/;r�

	

S

�.z;  s/S C .k�1w;  s/S

C �rw;r f
�
F ; (5.14)

where the directional derivatives of the Navier-Stokes stress tensor are given by

d

dv
� f .U/.z/ D �f �f .rzfF�1 C F�TrzTf /;

d

du
� f .U/.w/ D ��f �f

�rvF�1rwF�1 C F�TrwTF�TrvT
�
;

and where the directional derivatives of the St. Venant Kirchhoff material’s tensor
are given by

d˙ s

du
.U/.w/ D 2�s

dEs

du
.W/C 	s tr

�
dEs

du
.W/

	
;

dEs

du
.W/ D 1

2
.rwTF C FTrw/

Proof The proof is split into different part by a partitioning of the semilinear
form (5.10) into subparts for Navier-Stokes momentum equation

Am;f .U/.˚/ D �
�f J

�
k�1.v � vold/C F�1.v � k�1.u � uold// � rv

�
; �
�
F

C �
J� fF�T ;r��F � .J�f f; �/F ; (5.15)

the equation for divergence freeness

Adiv;f .U/.˚/ D �
JF�1 W rvT ; �f

�
F ; (5.16)

the momentum equation of the solid problem and the velocity deformation relation

Am;s.U/.˚/ D .�0s k
�1v; �/S C .F˙ s;r�/S ;

Auv;s.U/.˚/ D .k�1u � v;  s/S ;
(5.17)
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and finally the (harmonic) extension of the deformation that defines the ALE
mapping

Aale;f .U/.˚/ D .ru;r f /F : (5.18)

The full variational form A.U/.˚/ is given as the sum of Am;f .U/.˚/ C
Adiv;f .U/.˚/C Am;s.U/.˚/C Auv;s.U/.˚/C Aale;f .U/.˚/.

Calculation of the different derivatives of these forms with respect to v, u and pf
is done in the following lemmas. First, in Lemma 5.3 we deal with the derivatives
of ANS.�/.�/ and Adiv.�/.�/ (the Navier-Stokes part). The Jacobian for the harmonic
ALE extension (a linear operator) is easily available. Then, Lemma 5.5 shows the
directional derivatives of the structure equation. And finally, Lemma 5.6 takes care
of the derivatives of the Navier-Stokes part with respect to the artificial domain
motion. This part only comes from the ALE formulation and would not be present
in Eulerian formulations of the Navier-Stokes problem. ut
Lemma 5.3 (Derivatives of the Navier-Stokes Equations with Respect to Veloc-
ity and Pressure) For the directional derivatives of Am;f and Adiv;f in direction of
velocity v and pressure pf it holds

Am;f
v .U/.W; ˚/ D �

�f Jk
�1z; �

�
F

C
�
�f J

�
rzF�1

�
v � u � uold

k

	
C rvF�1z

	
; �

	

F

C
�
J
d� f

dv
.W/F�T ;r�

	

F
;

Am;f
pf
.U/.W; ˚/ D � �JF�Tqf ;r�

�
F ;

Adiv;f
v .U/.W; ˚/ D �

JF�1 W rzT ; �f
�
F :

The derivative of the fluid’s stress tensor is given by

d� f

dv
.W/ D �f �f .rzfF�1 C FT rzTf /:

Proof By the definition of the Gâteaux derivative (5.12), calculation of the deriva-
tives is given by standard scalar differentiation, as the order of integration and
differentiation can be exchanged. For the derivatives of the stress tensor, consult
its ALE form (5.6). For basics on the linearization of the Navier-Stokes equations,
see Sect. 4.4.2. ut

Before proceeding with the St. Venant Kirchhoff material and the derivatives
of the ALE formulation with respect to the deformation, we gather some useful
relations.
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Lemma 5.4 (Derivatives of the Deformation Gradient) Let F WD I C ru and
J WD det F its gradient. It holds

.i/
dF
du
.w/ D rw;

.ii/
dFT

du
.w/ D rwT ;

.iii/
dF�1

du
.w/ D �F�1rwF�1;

.iv/
dF�T

du
.w/ D �F�TrwTF�T ;

.v/
dJ

du
.w/ D JF�T W rw D J tr.F�1rw/

Proof Relations (i) and (ii) are directly available. For showing relation (iii) we
differentiate the identity F�1F D I and use (i) to obtain

d

du

�
F�1F

�
.w/ D d

du
I.w/ D 0 ) dF�1

du
.w/F C F�1 dF

du
.w/ D 0:

Multiplication with F�1 gives the result:

dF�1

du
.w/ D �F�1rwF�1:

(iv) is the transpose of (iii). Relation (v) can be shown by component-wise
calculation. ut
With Lemma 5.4, we can now compute the Jacobian of the elastic structure
equations with respect to velocity and deformation:

Lemma 5.5 (Derivative of the Structure Equation with Respect to Velocity and
Deformation) It holds for the derivatives of the elastic structure equation in
reference coordinates with respect to velocity and deformation:

Am;s
v .U/.W; ˚/ D �

�0s k
�1z; �

�
S

Am;s
u .U/.W; ˚/ D

�
rw˙ s C F

d˙ s

du
.W/;r�

	

S
;

Auv;s
v .U/.W; ˚/ D �.z;  s/S ;

Auv;s
u .U/.W; ˚/ D .k�1w;  s/S ;
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where the derivative of the 2nd Piola Kirchhoff stress tensor ˙ s (of the St. Venant
Kirchhoff material) is given by

d˙ s

du
.W/ D 2�s

dEs

du
.W/C 	s tr

�
dEs

du
.W/

	
;

and the derivative of the Green-Lagrangian strain tensor Es by

dEs

du
.W/ D 1

2
.rwTF C FTrw/:

Proof These relations follow using (i) and (ii) of Lemma 5.4. ut.
Finally, it remains to gather all derivatives with respect to the ALE domain map-

ping. Omitting some of the derivatives (which here correspond to the dependency
of the domain motion) relates to a simplified Newton method, see Sect. 5.2.3 for a
numerical study.

Lemma 5.6 (Derivative of the Navier-Stokes Equations with Respect to the
Domain Motion) It holds for the derivatives of the Navier-Stokes equations in
ALE coordinates with respect to the domain motion u

Am;f
u .U/.W; ˚/ D �

�f tr .F�1rw/
�
k�1.v � vold/C

rvF�1 �v � k�1.u � uold/
��
; �
�
F

� �
�f JrvF�1rwF�1 �v � k�1.u � uold/

�
; �
�
F

� �
�f JrvF�1k�1w; �

�
F

C �
tr .F�1rw/� fF�T ;r��F � �

J� fF�TrwTF�T ;r��F
C
�
J
d� f

du
.W/F�T ;r�

	

F
;

Adiv;f
u .U/.W; ˚/ D �

div
�
tr .F�1rw/F�1v

�
; �f
�
F

� �
div

�
JF�1rwF�1� ; �f

�
F :

where the derivative of the stress tensor with respect to the domain motion is given
by

d� f

du
.W/ D ��f �f

�rvF�1rwF�1 C F�TrwTF�TrvT
�

Proof Again, all these derivatives can be estimated by tedious calculations and
frequent use of Lemma 5.4. ut
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Further details on the computation of the Jacobian are given in [280], where the
derivatives of the stationary fluid-structure interaction system are derived.

With the Jacobian of the fluid-structure interaction system at hand, we can
formulate the linear systems of partial differential equations that define every step
of the Newton approximation

A0.U.l�1//.W.l/; ˚/ D F.˚/� A.U.l�1//.˚/ 8˚ 2 Y: (5.19)

The variational formulation defined by A0.�/.�; �/ given in Theorem 5.2 is complex, it
couples all different variables, but it is a linear problem. Finite element discretization
of this problem will be subject to the following section. Later on, in Chap. 7, we will
discuss the solution of the resulting (after discretization) linear systems of equations.

In every step of the Newton iteration, Eq. (5.19) is itself a coupled problem on
the two domains F and S. On the common interface, three coupling conditions
are given. First, continuity of the velocity variation z, second continuity of the
deformation’s variation w and finally, a Neumann condition that comes from the
linearization of the dynamic coupling condition. For deriving its exact formulation,
one would have to transform the Jacobian A0.U/.W; ˚/ back to the classical
formulation.

A modern alternative to the analytical computation of the Jacobian is given
by the idea of automatic differentiation, see Rall [264] and Griewank [171].
Automatic differentiation is an algorithmic approach that is based on the concept
that every computer implementation, e.g. the implementation of the semilinear
form A.�/.�/ will internally be split into a sequence of elementary mathematical
operations (like multiplications, roots, basis functions like sine or cosine etc.). These
elementary operations are then derived and set together using chain and product rule.
Dunne [127] presents and implementation of a Newton method for fluid-structure
interactions in ALE formulation based on automatic differentiation. In particular, if
different complexmodels are studied, automatic differentiationwill help to compute
exact Jacobians in a fail-proof way. It will for instance be easy to implement
complex and changing material laws. The concept of automatic differentiation is
not to be confused with finite differences, where derivatives are only approximated.

Remark 5.7 (Inexact Newton Iteration) The assembly of the Jacobian is a very
costly step within the Newton iteration. Considering the necessity to solve linear
systems afterwards, a change of the Jacobian usually calls for additional work
regarding the preparation of preconditioners in Krylov-Subspace iterations or
smoothers in multigrid solvers, see Chap. 7. In the worst case, when direct solvers
must be used to approximate the linear systems, a modification of the Jacobian
also calls for a new decomposition of it. Hence, assembling the Jacobian must be
prevented, whenever the overall efficiency does not require it. As linear systems are
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usually only approximated up to a given tolerance, full quadratic convergence of the
Newton method itself cannot be expected. Therefore, we only update the Jacobian,
if the nonlinear convergence rate that can easily be measured as

�n D kF.�/� A.Un/.�/k1
kF.�/� A.U.n�1//.�/k1

; (5.20)

is above a given threshold 
nt. A good balance depends on the required tolerance
and the efficiency of the linear solver. Usually, 
nt � 0:01 � 0:1.

5.2.3 Numerical Study on Linearizations

We present a study on the linearization on the performance of different linearization
techniques applied to the non-stationary benchmark problem fsi-3 introduced by
Hron and Turek [200]. We have used this test case to study time discretizations
in Sect. 5.1. Here we analyze the performance of the different choices for a
linearization of the nonlinear problems.We investigate the time interval I D Œ5; 5:5
,
where the oscillation is fully developed, such that significant deformations appear.
This is important to account for the geometric nonlinearities that come from the
ALE mapping, see Fig. 5.6.

All numerical studies are carried out with the implicitly shifted Crank-Nicolson
scheme, see Sect. 4.1.2.1 with � chosen as

� D 1

2
C 2k;

time

vertical deflection

6543210

0.05
0.04
0.03
0.02
0.01

0
−0.01
−0.02
−0.03
−0.04
−0.05

Fig. 5.6 Benchmark problem fsi-3. Vertical deflection of the tip of the beam as functional over
time. We perform the numerical study on different linearization techniques in the sub-interval
I D Œ5; 5:5
, where the dynamics of the flow is fully developed
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where by k we denote the time step size. If not specified otherwise, we choose

k D 0:005;

such that a total of N D 100 steps is investigated and the effective parameter � D
0:51 is picked. For spatial discretization we choose equal-order biquadratic elements
on a mesh with about 4000 unknowns.

In every time step, the nonlinear problems are approximated such that the initial
residual is reduced by eight orders of magnitude

kF.�/� A.Un/.�/k1 	 tolkF.�/� A.U0/.�/k1; tol D 10�8:

The linear systems are solved by a direct method to prevent side-effects of not-
sufficient accuracy.

In a first study, we compare the effects of the parameter 
nt in (5.20), controlling
the limiting reduction rate, where a new Jacobian is assembled. We choose the
parameters


nt 2 f0; 0:2; 0:5g;

where 
nt D 0 corresponds to the exact Newton method with a new Jacobian in
every step. Quadratic convergence should be reached.

In Fig. 5.7, we show the number of Newton steps required in every time step.
Furthermore, we show the assembly-count of the Jacobian. Finally, we indicate
the overall number of Jacobians and the overall computational time spend in the
complete cycle I D Œ5; 5:5
.

All computations in this section are carried out on a Intel Xeon X5650 cpu using
single core performance at 2:67GHz. It can be seen that the number of Newton
steps undergoes a certain periodicity. This is directly connected to the oscillation of
the solution itself, see Fig. 5.6. Given a large deformation u, the ALE-mapping has
a significant nonlinear impact.

We observe that the number of required Newton steps increases, if the threshold

nt is enlarged. For the pure Newton scheme, a maximum of 7 steps is required,
whereas for 
nt D 1 a maximum of 15 steps is used. However, a smaller choice
of 
nt calls for a higher number of Jacobians to be assembled. For 
nt D 0, a new
Jacobian is assembled in every single step of the Newton iteration. Considering the
computational time, this is a severe drawback as can be seen in the bottom plot
of Fig. 5.7. Here, the cost for assembling matrix and setting up the decomposition
for the direct solver is so high that the overall computational time is best for the
choice 
nt D 0:5. In the table below Fig. 5.7 we indicate the accumulated time for
all time steps in the interval I D Œ5; 5:5
. Choosing 
nt D 0:2 saves about 22% of
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Number of Newton iterations

γnt = 0.5γnt = 0.05γnt = 016

14

12

10

8

6

4

2

Number of Jacobians assembled
8

7

6

5

4

3

2

1

0

Overall computational time

1009080706050403020100

55
50
45
40
35
30
25
20
15
10
5

Matrix assembly tolerance γnt 0.0 0.2 0.5

Total Newton steps 532 777 938
Jacobians assembled 532 304 280
Total time (seconds) 3 099 2 388 2 250

Fig. 5.7 Comparison of the Newton iteration for different values of 
nt, controlling the
convergence-rate threshold, where a new Jacobian is assembled. The table shows the accumulated
number of Newton steps, assemblies of the Jacobian and the total time (in seconds) for all 100 time
steps



228 5 ALE Formulation for Fluid-structure Interactions

the computational time compared to 
nt D 0 which corresponds to the full Newton
method. The choice 
nt D 0:5 increases the savings to 27%. This result however
cannot be generalized, as a more efficient linear solver will have less overhead.
Furthermore, increasing the effect of the nonlinearity, a too large value of 
nt could
severely increase the iteration count.

Next, in Fig. 5.8, we show the results for an approximation of the Jacobian by
finite differences, i.e.

d

ds
A.U C sW/.˚/

ˇ̌
ˇ
sD0 D A.U C "W/.˚/� A.U/.˚/

"
C O."/:

Approximation of the Jacobian by finite differences calls for multiple evaluations of
the residual. First, we must compute

R0 D A.U/.˚/;

then, we compute the directional derivatives with respect to the different compo-
nents of velocity, deformation and pressure, i.e.

Rvi D A.U C "zi/.˚/; Rui D A.U C "wi/.˚/; Rp D A.U C "q/.˚/;

for i D 1; : : : ; d. Altogether, 6 residual evaluations are required in 2d and 9 in 3d.
By using a central difference approximation, this effort is even increased. The step
size has to be chosen with care. For " D 10�6 we get a Newton-convergence that
is comparable to the analytical evaluation of the Jacobian, see Fig. 5.8. However
both for larger and smaller values of ", the approximation quality worsens, such
that a significant overhead appears. For " D 10�9, the approximation is governed
by numerical cancellation effects. We have chosen 
nt D 0:2 in all three cases.
Comparing the summed values for the number of Newton steps and the number
of Jacobian assemblies we see that the choice " D 10�6 leads to similar results
compared to the table in Fig. 5.7 in the case 
nt D 0:2. However, it turns out that
using a finite difference approximation is more costly. Even if the Jacobian is so
accurate that the Newton convergence is the same as in the case of an analytical
Jacobian, the overall computational time is higher. If the finite difference parameter
" is not optimally chosen, the overall time can dramatically increase.

In Fig. 5.9 we directly compare the finite difference approximation to the analyti-
cal Jacobian. The number of Newton steps is about the same, the computational time
for the difference approximation however is larger. This is due to the increased cost
for the assembly of one single Jacobian. On a mesh with about 4000 unknowns,
it took an average of about tJ � 6:2 s to approximate the Jacobian with finite
differences versus only tJ � 1:5 s, if the analytic derivation of the derivatives is
used.
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Number of Newton iterations

ε = 10−9ε = 10−6ε = 10−330

25

20

15

10

5

Number of Jacobians assembled
30
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15

10

5

0

Overall computational time

1009080706050403020100

350

300

250

200

150

100

50

0

Finite difference parameter ε 10−3 10−6 10−9

Total Newton steps 1 366 786 2 313
Jacobians assembled 525 307 2 121
Total time (seconds) 6 561 3 885 23 171

Fig. 5.8 Comparison of the Newton iteration with finite different approximation of the Jacobian
A0.U/.˚/ � "�1.A.U C "W/.˚/ � A.U/.˚//. Different values of the step-size ". The table
shows the accumulated number of Newton steps, assemblies of the Jacobian and the total time (in
seconds) for all 100 time steps
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Number of Newton iterations

Finite Difference Approximation
Analytical Jacobian16

14

12

10

8

6

4

2

Overall computational time

1009080706050403020100

65
60
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50
45
40
35
30
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15
10

Fig. 5.9 Comparison of the Newton iteration with analytical and finite difference approximation
of the Jacobian (using step-size " D 10�6)

We note that we used a direct solver for these calculations. On the present mesh,
the time for decomposing the matrix is about 5 s in both cases, analytic evaluation
and finite difference approximation.

Finally, we consider an inexact version of the Newton method, where the very
costly derivatives with respect to the ALE mapping are neglected. In Fig. 5.10
we compare the Newton iteration considering a full Jacobian with the Newton
iteration using the reduced Jacobian. We show the iteration count and the overall
time spent in every Newton iteration. We observe that the reduced Jacobian yields
a slightly larger iteration count. The overall time is reduced, as the assembly
of each Jacobian takes only 1:25 s instead of 1:5 s for the full variant. Again
we note that the effect would be stronger, if a more efficient linear solver is
used.
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Number of Newton iterations

Reduced JacobianFull Jacobian
14

12

10

8

6

4

Overall computational time

1009080706050403020100

70

60

50

40

30

20

10

0

Jacobian approximation full approximated

Total Newton steps 777 902
Jacobians assembled 304 318
Total time (seconds) 2 388 1 937

Fig. 5.10 Comparison of the Newton iteration with full and reduced Jacobian. The table shows
the accumulated number of Newton steps and Jacobian assembles as well as the computational
time (in seconds) for all 100 time steps

5.3 Finite Elements for Fluid-structure Interactions in ALE
Formulation

Every step of the Newton iteration requires the solution of a linear system of partial
differential equations, compare (5.19)

W .l/ WD fz.l/;w.l/; q.l/f g 2 X WD V � W � Lf W
A0.U.l�1//.W.l/; ˚/ D G.˚/

8˚ WD f�; f ;  s; �f g 2 V � Wf � Ls � Lf :
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In the context of the backward Euler discretization of fluid-structure interactions on
a fixed ALE domain, the bilinear-form A0.U/.�; �/ is given as in Theorem 5.2. The
right hand side is given by

G.˚/ WD F.˚/ � A.U.l�1//.˚/;

where U.l�1/ is the last Newton approximation and A.U.l�1//.˚/ and F.˚/ are
shown in (5.10) and (5.11). Trial spaces for velocity and deformation are defined
on the whole domain

V WD H1
0.˝I� D/d; W WD H1

0.˝I @˝/d;

and differ in the choice of boundary values only. See Sect. 3.4 for a discussion.
The test function � 2 V for both momentum equations is also defined on the

complete domain˝ . All further test functions are defined sub-domain wise

Lf WD L2.F/; Wf WD H1
0.F/d; Ls WD L2.S/d:

In the following, we will focus on the finite element discretization of these linear
systems

W 2 X W A.W; ˚/ D G.˚/ 8˚ 2 Y; (5.21)

where A.�; �/ is bilinear on X � Y . Discretization is accomplished by restricting
solution and test function to discrete spaces

Wh 2 Xh W A.Wh; ˚h/C Sh.Wh; ˚h/ D G.˚h/ 8˚ 2 Yh; (5.22)

where Sh.�; �/ defines some possible stabilization terms, see Sects. 4.3.2 and 4.4.3.

Remark 5.8 (Properties of Finite Element Spaces) For the choice of finite element
spaces Xh and Yh must consider the following properties

1. For a conforming (Petrov)-Galerkin formulation it must hold Xh � X and
Yh � Y .

2. The dimension of test and trial spaces must coincide

dim Xh D dim Yh:

3. The velocity- and pressure-coupling fvh; phg within the fluid-domainmust satisfy
the inf-sup condition. Otherwise, the variational formulation has to be enriched
by stabilization terms Sh.�; �/, see Sect. 4.3.2.

4. For implementation reasons, it is preferable to consider finite element spaces for
velocity and deformation of the same type on F and S.
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5. As global velocity and deformation are continuous on the complete domain ˝ ,
but not differentiable across the interface I, it is preferable, if the interface
is resolved by the triangulation. Otherwise, the order of convergence will be
reduced, see Sect. 4.5, unless special manners are taken.

In the following we will discuss different choices of finite element triples for
velocity, deformation and pressure. Besides conforming finite element spaces
with continuous velocities and deformations the choice of discontinuous Galerkin
methods is possible and also applied in the context of fluid-structure interactions,
see Feistauer and coworkers [138].

5.3.1 Finite Element Triangulations for Fluid-structure
Interactions in ALE Formulation

The benefit of the formulation in Arbitrary Lagrangian Eulerian coordinates is the
fixation of the sub-domainsF and S, separated by the interface I. We define:

Definition 5.9 (Matching Mesh) A triangulation ˝h of the domain ˝ is called a
matching mesh, if for every element K 2 ˝h it holds

�
K � S ^ K \ F D ;

�
_
�
K � F ^ K \ S D ;

�
:

For a matching triangulation, we define the sub-triangulations

˝h;f WD fK 2 ˝h j K � Fg; ˝h;s WD fK 2 ˝h j K � Sg:

This definition implies that a matching mesh always resolves the interface I
between fluid and solid by edges of elements, such that we can define

Ih WD fe 2 @K; K 2 ˝h; e 2 Ig;

and it holds

NI D
[
e2Ih

Ne:

This directly shows that matching meshes in this strict sense are only possible, if
the interface I (in reference coordinates) is a polygonal, or if the interface can be
described by low order polynomials, and if a parametric finite element triangulation
is considered, see Definition 4.17. Here, we will always assume that all finite
element meshes are matching.
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F FS S F
S

Fig. 5.11 Example of a matching mesh (left) and non-matching mesh (middle). The right sketch
shows a generalized matching mesh at a curved interface. See Remark 5.10

Remark 5.10 (Approximation of Curved Interfaces) If the interface between fluid
and solid is curved, such that it cannot be exactly resolved by the mesh, the strict
definition of matching meshes is not applicable and will be relaxed: we will call a
mesh matching, if all degrees of freedom used to define the parametric triangulation
(see Definition 4.17) are either all part of the solid-domain NS or all part of the fluid-
domain NF . See Fig. 5.11 for examples of matching and non-matching triangulations.

In the finite element error analysis, the consideration of curved interfaces that
cannot be resolved by the mesh (and hence not by the finite element spaces) is still
an open problem.

It is not strictly required that one uses matching meshes for discretizing fluid-
structure interactions. The use of matching meshes just simplifies the embedding
of the coupling conditions, as we can define global function spaces Vh and Wh for
velocity, deformation and the momentum equation’s test function and restrict these
global functions to the two sub-domains. By this approach, coupling will turn out to
be as simple as in the continuous case, see Sect. 3.4.

Lemma 5.11 (Finite Elements Spaces on Matching Meshes) Let ˝h be a
matching mesh of the domain˝ and Vh the standard space of continuous elements
of degree r � 1 with Lagrangian basis Vh D spanf�.i/h ; i D 1; : : : ;Ng, e.g.

�
.i/
h .xj/ D ıij; i; j 2 f1; : : : ;Ng:

See Sect. 4.2.1. The subspaces

Vh;f WD spanf�.i/h 2 Vh; xi 2 NF n Ig;
Vh;s WD spanf�.i/h 2 Vh; xi 2 NSg;

define a division of Vh,

Vh D Vh;f C Vh;s; dim Vh D dim Vh;f C dim Vh;s: (5.23)
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The space Vh;f is H1
0.F I I/ conforming, the space Vh;s is H1.S/-conforming.

Proof For �.i/h with xi 2 NF , but xi 62 I, it holds on matching triangulations that

supp �.i/h 2 F :

Hence, Vh;f � H1
0.F I I/. The relation Vh;s � H1.S/ directly follows due to the

continuity of Vh � C. N̋ /. Further, the dimension formula (5.23) follows, as the
partitioning of Lagrange points xi 2 ˝h to those on the interior of solid and fluid
and those on the interface is unique. ut

This lemma appears trivial, but it is essential for the following approach: if a
global finite element function vh 2 Vh is given, we can define restrictions vh;f 2 Vh;f

and vh;s 2 Vh;s in the two subspaces. This allows us to hide the coupling conditions
in global trial and test spaces.

5.3.2 Inf-Sup Stable FE-Spaces for Fluid-structure
Interactions in ALE Formulation

We will start by introducing some finite element triples (for velocity, deformation
and pressure) that fulfill as many of the desirable properties from Remark 5.8. Let
˝h be a matching triangulation. We will denote the velocity space by

vh 2 Vh;

and the global deformation space by

uh 2 Wh:

On the two sup-domains of the matching triangulation, we define the restrictions
vh;f ; vh;s and uh;f ;uh;s. We will denote the discrete pressure space by Lh;f .

As discussed in Sect. 4.3, the fluid’s finite element pair for velocity Vh;f and
pressure Lh;f must satisfy the inf-sup condition (in ALE coordinates):

inf
ph2Lh;f

sup
vh2Vh;f

. ph; div .JfF�1
f vh//F

kJ 1
2

f phkFkJ 1
2

f rvhF�T
f kF

� O
h: (5.24)

where Ff and J D det Ff come from the ALE-map. In terms of a computational
finite element approach, the ALE-map is not a continuous, regular function, but
itself defined by means of finite element functions

Fh WD I C ruh; Jh WD det Fh:
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In the following we will skip the index “h”. The discussion of Sect. 2.5.2 has shown
that the inf-sup condition in ALE formulation (5.24) is equivalent to the standard
version of the inf-sup condition on the reference domains,

inf
ph2Lh;f

sup
vh2Vh;f

. ph; div vh/F
kphkFkrvhkF � 
; (5.25)

if the domain mapping sufficiently regular. The two inf-sup constants however can
significantly differ,

0 < O
 
 
;

if the deformation of the domain is large. An analysis of the inf-sup condition on
transformed domains is given in [247]. By these considerations, we suggest the
following choices of finite element triples for velocity, deformation and pressure.
See also Fig. 5.12:

1. The generalized Taylor-Hood space

ŒQk
d � ŒQk
d � Qk�1; k � 2;

on quadrilateral meshes and

ŒP2
d � ŒP2
d � P1; ŒPk
d � ŒPk
d � Pk�2; k � 3;

on triangular meshes. These spaces are inf-sup stable. Further, they have the
simple property that deformation and velocity come from the same space. Finally,
velocity and deformation spaces are the same on both parts of the domain.

Fh

Sh Γ out
fΓ in

f

Fig. 5.12 TheQ2�Q2�Q1 finite element triple for velocity, deformation and pressure. By a cross
symbol we denote pressure degrees of freedom and by filled dot degrees of freedom in velocity and
deformation. By a circled dot we denote velocity degrees of freedom on the outflow boundary,
where no deformation degree of freedom exists
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2. The generalized Taylor-Hood spaces with discontinuous pressure

ŒQk
d � ŒQk
d � Pk�1;dc; k � 2;

on quadrilateral meshes and the bulb-enriched space

ŒP2;bulb
d � ŒP2
d � P1;dc;

on triangular meshes. These two combinations have the same properties as the
Taylor-Hood elements. Applications usually shows better solution quality (in
particular on coarse meshes) due to local conservation properties that come from
the use of discontinuous pressures.

Another advantage comes to the fore, if incompressible materials are consid-
ered, see Sect. 2.2.3. These material laws require the introduction of a second
pressure variable ps 2 L2.S/. As there is no physical reason for continuity of the
two pressures pf and ps at the interface I, the two discrete variables must be sep-
arated. Using continuous finite elements, this would cause technical problems,
as there is only one Lagrange point on the interface. As the discontinuous space
Pk�1;dc is defined in an element-wise manner, implementation is simplified. We
can define one global pressure ph 2 Lh and define fluid- and solid-pressure as
restrictions:

ph;f D ph
ˇ̌
ˇ
F
; ph;s D ph

ˇ̌
ˇ
S
:

For the definition of the test spaces, we need to pay special attention to the
interface. While velocity and deformation are defined in a global way, only the test
space � 2 V for the momentum equation is defined on the complete domain˝ . The
test functions for extension of the deformation f 2 Wf as well as the test space for
the deformation-velocity relation  s 2 Ls must be decoupled at the interface. Based
on the second (just as example) choices of finite element spaces, we define

Vh WD spanf�h 2 C.˝/d; �.i/h piece-wise quadratic; �h D 0 on � Dg;
Wh WD spanf�h 2 C.˝/d; �.i/h piece-wise quadratic �h D 0 on @˝g;
Lh;f WD spanf�h 2 L2.F/; �.i/h piece-wise linearg;
Wf ;h WD spanf�h 2 C.F/d; �.i/h piece-wise quadratic�h D 0 on @Fg
Ls;h WD spanf�h 2 C.S/d; �.i/h piece-wise quadraticg:

(5.26)

With this construction of finite element spaces, we can define a well-posed discrete
finite element approximation of the backward-Euler discretization for fluid-structure
interactions in Arbitrary Lagrangian Eulerian coordinates:
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Problem 5.12 (Finite Element Discretization of the fsi-System in ALE Formu-
lation) Let A.�; �/ be given by (5.10), F.�/ by (5.11). The Jacobian A.U/.�; �/ is given
by Theorem 5.2. Given the last discrete Newton approximation U.l�1/h 2 Xh, find

W.l/
h WD fvh;uh; pf ;hg 2 Xh WD Vh � Wh � Lh;f ;

such that

A0.U.l�1/h /.W.l/
h ; ˚h/ D F.˚h/� A.U.l�1/h /.˚h/ (5.27)

for all

˚h WD f�h;  h;f ;  h;s; �h;f g 2 Yh WD Vh � Wh;f � Lh;s � Lh;f :

The Newton update problem in step (5.27) defines a linear system of equations.
Chapter 7 will be devoted to the solution of this linear problem. First we note that
for our choice of finite element spaces (5.26), the system of equations is quadratic,
i.e., the number of unknowns equals the number of equations.

5.3.3 Stabilized Finite Elements for Fluid-structure
Interactions

In Sect. 4.3.2, we have introduced concepts for stabilizing finite element pairs that
do not satisfy the inf-sup condition. Here, we want to shortly apply this concept
to the discretization of fluid-structure interactions. The basic idea was to either
modify the test space by a Petrov-Galerkin approach, or to modify the variational
formulation by adding stabilization terms Sh.�; �/. This latter approach is more
general and also covers Petrov-Galerkin discretizations. We shortly discuss the very
simple case of the non-conforming pressure stabilization used in Lemma 4.47. The
linearized discrete variational formulation is enriched by a pressure stabilization
term

A0
h.Uh/.Wh; ˚h/ WD A.Uh/.Wh; ˚h/C Sh.Wh; ˚h/:

For the proper definition of pressure stabilization in Arbitrary Lagrangian Eule-
rian formulation, we must transfer the standard method from Eulerian coordinates
to the fixed reference system. Hence, let—just for the following discussion— OF be
the reference fluid domain andF be the current Eulerian fluid-domain in the current
time step. Then, the pressure stabilization term in Eulerian coordinates on F was
defined as

Sh.Uh; ˚h/ WD .˛stabrph;r�h/F ; (5.28)
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with an element-wise defined stabilization parameter

˛stab

ˇ̌
ˇ
K

D ˛0

�
�f

h2K
C kvkL1.K/

hK

	
;

see Sect. 4.3.2. The mesh-size hK would be the mesh-size of a Eulerian mesh. The
first detail that has to be analyzed in the context of Arbitrary Lagrangian formula-
tions is the concept of the mesh-size hK . Usually, for shape-regular triangulations
(see Definition 4.18), we can define the mesh-size of the triangulation Ő h of the
reference domain OF as

OhK WD diam.K/: (5.29)

Another suitable definition is to define the mesh-size as an integral value

Oh0
K WD

�Z

K
1 dx

	 1
d

: (5.30)

On shape-regular triangulations, there exists a constant c > 0, such that

c�1h0
K 	 hK 	 ch0

K 8 OK 2 Ő h; .h ! 0/: (5.31)

In the following, we will use definition (5.30) by integration. Now, let T W OK ! K
be the ALE map and K WD T. OK/ be the Eulerian counterpart of OK 2 Ő h. It holds

hK WD
�Z

K
1 dx

	 1
d

D
�Z

OK
J dOx

	 1
d

;

and we can estimate

min
Ox2 OK

jJ.Ox/j 1d OhK 	 hk 	 max
OK

jJ.Ox/j 1d OhK: (5.32)

Using this relation between Eulerian and reference mesh size, the stabilization
term (5.28) can be transformed in ALE coordinates

Sh. OUh; O̊h/ D .˛stabJF�1F�Trph;r�h/ OF :

with a stabilization parameter ˛stab defined on OF as

˛stab D ˛0

 
�f J

2
d

Oh2K
C kOvkL2. OK/J

1
d

OhK

!�1
:
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If the deformation of the mesh is moderate, it holds J � 1 and F � I. Then we
can simply take the standard setting of the stabilization term (5.28) without any
mapping.

This construction is also applicable for the stabilization by means of Local
Projections as discussed in Lemma 4.49

Slps. OUh; O̊h/ D �
˛F�1F�Tr.ph � �hph/;r.�h � �h�h/

�
OF ;

where �h W Qh ! QQh is the local coarse mesh projection operator. As in the Eulerian
setting, the LPS method will give optimal order of convergence, if the spaces QQh and
Qh are well chosen, as weak consistency holds

ph 2 QQh ) Slps. ph; �h/ D 0 8�h 2 Qh:

In the case of residual based stabilization techniques like PSPG (or SUPG),
the correct application to the Arbitrary Eulerian Lagrangian formulation is more
difficult. The success of these techniques is based on a consistent formulation. If
U 2 X is the solution, it should hold

SPSPG.U; ˚h/ D 0 8˚h 2 Xh:

This is realized by testing the complete momentum equation of the fluid system
(compare the Jacobian in Theorem 5.2) with the modified test function

Q�h WD �h C ˛r�h:

Such a combination gives rise to complex coupled terms including the complete
strong residual. For a discussion on a practical way of applying residual based sta-
bilization techniques to fsi-problems in Arbitrary Lagrangian Eulerian coordinates,
we refer to Wall [339].

Remark 5.13 (Stabilization for Large Deformations) As long as the deformation of
the domain is small and motion of the domains is slow, we can apply all stabilization
techniques without any modification and just omit the ALE mapping. This does not
hold true, if the deformation is very large, i.e., if J 
 1 or J � 1 or if F significantly
differs from the identity I. As long as the ALE mapping is isotropic, we only need
to adjust the mesh size by means of relation (5.32). If the mapping however inhibits
very strong anisotropies, the concept of stabilization must be altered. In particular, it
will be necessary to separate directions. On a Eulerian, Cartesian anisotropic mesh,
the simple pressure stabilization term in the case of the linear Stokes equations must
be constructed as:

Sh;aniso.Uh; ˚h/ D .˛0h
2
x@xph; @x�h/F C .˛0h

2
y@yph; @y�h/F :
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For a detailed analysis of the Local Projection stabilization on anisotropic meshes,
we refer to the Literature [58, 62, 277, 278] and in particular Molnar [247] in the
case of fluid-structure interactions.

Besides stabilization of the pressure-velocity coupling, we need to take care of
problems with dominant convection that require stabilization of transport oscil-
lations. Here, we can follow the same procedure: starting with a stabilization
technique in Eulerian coordinate, we map the resulting stabilization terms back to
the reference framework. Again, all methods work very well without modifications,
if small deformations are considered. Only the case of very large deformation with
substantial anisotropies is still open. See [247, 339].

Apart from the natural convection, ALE formulations include the additional
transport term

�
�
�f JF�1@tuf � rv; �

�
F
;

coming from the ALE time derivative. This term may call for stabilization, if the
domain moves rapidly. Stabilization of this part can be handled like the natural
convection by simply considering a combined effective transport velocity

�
�f JF�1 �vf � @tuf

� � rv; �
�
F
;

5.3.4 Matrix Formulation of the Linear Systems

A finite element discretization of the linearized system to be solved in every step of
the Newton iteration

Wh 2 Xh A0.Uh/.Wh; ˚h/ D F.˚h/ � A.Uh/.˚h/ 8˚h 2 Yh (5.33)

gives rise to a large linear system of equations that can be compactly written in the
form

Ahxh D bh:

In this section, we will give details on the derivation and resulting structure of the
system matrix. The exact form of the matrix will depend on the choice of finite
element spaces. For the following discussion we make further assumptions on the
finite element spaces:

• First, we assume that the triangulation is matching the domain-partitioning.
• We assume that both fluid and solid problem are given with Dirichlet conditions

on the outer boundaries of the domain. In this case, it holds V D W and it will
also hold (in terms of (5.26)) that Vh D Wh.
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• We consider inf-sup stable finite elements, such that no pressure-stabilization is
required.

• We choose equal-order finite element spaces for velocity V and deformationW ,
as well as for the test function of momentum equations V , ALE extension Wf

and deformation-velocity relation Ls. All these discrete spaces are based on the
same set of matrix-functions.

By these assumptions, let Vh be the space of continuous finite elements on the
complete domain ˝h of degree r � 2 with strong Dirichlet-values on the complete
boundary @˝h. The Lagrangian nodal basis is given by

Vh WD spanf�.i/h ; i D 1; : : : ;Ng:

Discrete velocity update and deformation update are given by

zh.x/ D
NX
iD1

zi�
.i/
h .x/; wh.x/ D

NX
iD1

wi�
.i/
h .x/:

We define the following subsets of indices that collect all basis functions with
support in the fluid, in the solid and those that touch the interface

If WD fi 2 f1; : : : ;Ng j supp.�.i/h / � Fg; Nf WD # If ;

Is WD fi 2 f1; : : : ;Ng j supp.�.i/h / � Sg; Ns WD # Is;

Ii WD f1; : : : ;Ng n .If [ Is/; Ni WD # Ii:

Then, the test space of the ALE-extension is given by

Wh;f WD spanf�.i/h ; i 2 If g;

and the test space of the deformation-velocity coupling by

Wh;s WD spanf�.i/h ; i 2 Is [ Iig:

Finally, the pressure-space Lh;f is given by

Lh;f D spanf�.i/h ; i D 1; : : : ;Npg:

By �.i/h a basis of either a lower-degree continuous space (e.g. r�1 on quadrilaterals),
or some discontinuous space can be given. The pressure update is given by

qh;f .x/ D
NpX
iD1

qi�
.i/
h .x/:
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By insertion of these basis representations in (5.33), we derive the matrix formula-
tion of the linear system. This matrix has a block-structure on multiple levels. First,
parts of the equation act on the fluid-domain, parts on the solid-domain. Second,
we get a natural block-structure due to the coupled equations: momentum equation
of Navier-Stokes (NS), divergence condition in the Navier-Stokes equations (div),
equation for the extension of the ALE map (ALE), momentum equation of the
elastic solid (ES) and finally, relation between deformation and velocity (uv). Each
of these equations appears in the Jacobian and may appear multiple times. The
momentum part of the Navier-Stokes equations (NS) has directional derivatives
with respect to the pressure, the velocity and the deformation. We will use this
terminology to denote the sub-matrices and explain this procedure based on
the Navier-Stokes momentum equations including the derivatives with respect to
pressure and velocity:

ŒFNS
p 
ij D �

�
JF�T�

. j/
h;f ; �

.i/
h

�
F

8i 2 If [ Ii; 8j 2 f1; : : : ;Npg

ŒFNS
v 
ij D

�
�f J

�
k�1 Q�. j/h;f C r Q�. j/h;f F

�1
�
v � u � uold

k

		
; �

.i/
h

	

F

C
�
�f JrvF�1 Q�. j/h;f ; �

.i/
h

�
F

C
�
J
d� f

dv
.W/F�T ;r�

	

F
� �

JF�Tqf ;r�
�
F

8i 2 If [ Ii; 8j 2 If [ Ii

All the remaining parts are obtained in a similar way. Altogether, we get the
following matrices for fluid- and solid-problem:

F D
0
@
0 Fdiv

v Fdiv
u

FNS
p FNS

v FNS
u

0 0 FALE
u

1
A ; S D

�
SESv SESu
Suvv Suvu

	
; (5.34)

with

F 2 R.NpC2Nf C2Ni/�.NpC2Nf C2Ni/; S 2 R.2NsC2Ni/�.2NsC2Ni/:

To assemble the coupled system matrix on the complete domain ˝ , we must
construct the sum of both parts. First, we define subsets of the coefficient
vectors

z D fzf ; zi; zsg; w D fwf ;wi;wsg;
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where zf , zi and zs denote only indices in If , Ii and Is, respectively. The same
splitting is applied to w and also to the test functions �h and  h. By this
definition, we can give a more detailed version of the two sub-matrices that
distinguishes between degrees freedom within the domain and those on the
interface

Fh D

2
666664

�h;f

�h;f
 h;f

�h;i
 h;i

3
777775

0
BBBBB@

0 Fdiv
v Fdiv

u Fdiv
v Fdiv

u

FNS
p FNS

v FNS
u FNS

v FNS
u

0 0 FALE
u 0 FALE

u

FNS
p FNS

v FNS
u FNS

v FNS
u
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1
CCCCCA

Sh D

2
664

�h;i
 h;i

�h;s
 h;s

3
775

0
BB@

SESv SESu SESv SESu
Suvv Suvu Suvv Suvu
SESv SESu SESv SESu
Suvv Suvu Suvv Suvu

1
CCA

We note that the off-diagonal blocks that indicate couplings between interface
degrees of freedom with those inside the fluid-domain are mainly zero, as
only very few basis functions �h;i and �h;f have an overlapping support. The
saddle-point structure of the Navier-Stokes equations is directly visible. Finally,
we note that the test space for the ALE extension Wh;f does not include test
functions that live on the interface. This is the correct choice, as the ALE
map is defined as an extension of the solid’s deformation by using Dirichlet
values. Nevertheless, this last row is included in Fh to yield a quadratic
matrix.

Given this detailed description of the sub-matrices, we can formulation the
coupled linear system of equations by the sum of the two sub-systems:

A D

0
BBBBBBBBBBBB@

Fdiv
p Fdiv

v Fdiv
u Fdiv

p Fdiv
v Fdiv

u 0 0

FNS
p FNS

v FNS
u FNS

p FNS
v FNS

u 0 0

0 0 FALE
u 0 0 FALE

u 0 0

Fdiv
p Fdiv

v Fdiv
u Fdiv

p Fdiv
v Fdiv

u 0 0

FNS
p FNS

v FNS
u FNS

p FNS
v C SESv FNS

u C SESu SESv SESu
0 0 0 0 Suvv Suvu Suvv Suvu
0 0 0 0 SESv SESu SESv SESu
0 0 0 0 Suvv Suvu Suvv Suvu

1
CCCCCCCCCCCCA

(5.35)

Again, we note that all the shaded matrix entries are very sparse. In every step of
the Newton method we have to find the coefficient vector

x D �
q; zf ; wf ; zi; wi; zs; ws

�T 2 RNpC2Nf C2NiC2Ns ;



5.3 Finite Elements for Fluid-structure Interactions in ALE Formulation 245

subject to the linear system of equations

Ahx D b;

where b is the discrete right hand side, coming from the discretization of

G.˚/ WD F.˚/ � A.U/.˚/:

The system matrix Ah lacks all desirable properties like symmetry, positivity or
diagonal dominance. Solution of these linear systems is a very difficult task.
Application of direct solvers is problematic due to the immense dimension of the
linear system. Furthermore, we will see in Chap. 7, that the condition number of the
coupled matrix can be so bad that even modern direct solvers can fail.

5.3.5 Construction of the ALE Map

In this section, we demonstrate different ways of extending the solid deformation
uh;s from the interface to the fluid domain uh;f . Such an extension is the typical way
for defining the ALE mapping by means of

Th;f .x; t/ WD x C uh;f .x; t/:

Here, we aim at a quantitative comparison of different mesh motion models. In
Sect. 3.5.1, we have already discussed qualitative regularity restrictions that arise
from different mesh motion models. Further computational overviews are given in
the literature [342, 357].

We will analyze a simple numerical test case that gives rise to large rotations of
an unsupported solid in a fluid domain. This rotation causes very large deformation
of the fluid domain an poses severe challenges to the construction of the ALE
map. We show the configuration of the geometry in Fig. 5.13a. We briefly detail
the configuration. The initial domain partitioning is given as

˝ D .�1; 1/2; OS D
�

�1
2
;
1

2

	
�
�

�1
8
;
1

8

	
; OF D ˝ n OS:

The boundary � D @˝ consists of two inflow parts of width 0:5, � in
1 in the upper

left corner and � in
2 in the lower right one. Here we prescribe a Dirichlet condition

for the velocity

vini .x; y; t/ D 4˛.t/.x � x0i /.x � x1i /ni on �
in
i ;



246 5 ALE Formulation for Fluid-structure Interactions

Ŝ
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Fig. 5.13 Description of the benchmark problem for testing the influence of the ALE map
definition. (a) Geometric configuration of the test case. The boundary consists of two inflow, two
outflow parts and a rigid wall. The solid OS is not supported. The domain ˝ is split into fluid OF
and solid OS ˝ D .�1; 1/2; OS D �� 1

2
; 1
2

� � �� 1
8
; 1
8

�
; OF D ˝ n OS: On the two inflow boundary

parts � in
i (i D 1; 2) we prescribe parabolic Dirichlet conditions for the velocity vf . (b) Rotation

J.uh;s.t// as function over time indicating the rigid body rotation of the solid. The points indicate
the final time, where mesh elements start to deteriorate. (c) Right: Solution at different times with
streamlines and deformation vector field. Bright colors indicate large pressure, dark colors indicate
small pressures
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where the xji are indicated in the sketch of the configuration and where ni is the
outward facing normal vector at � in

i . The function ˛.t/ is added for a smooth initial
transition

˛.t/ D
(
1
2
.1 � cos.�t=2// t 	 2 s;

1 t � 2 s
:

The solid is modeled as St. Venant-Kirchhof material. All parameters are given as

�f D 1 kg � m�3; �s D 1000 kg � m�3;

�s D 20 kg � m�1s�2; 	s D 80 kg � m�1s�2; �f D 1m2 � s�1:

In the right plot of Fig. 5.13c, we show the solution at different points in time. Bright
values denote large pressures, dark colors small ones. Further, we plot streamlines
of the velocity field and the vector field of the solid deformation. The symmetric
flow causes a rotational movement of the solid. As quantity of interest, we measure
the average rotation

J.uh.t// D 1

j OSj
Z

OS
Ox � uh;s dOx: (5.36)

The value of J.uh.t// is shown in Fig. 5.13b. Due to very large deformation of the
fluid domain and a deterioration of the ALE map, all computations will break down
at some final time t0 > 0. These points in time are indicated in Fig. 5.13b.We will see
that depending on the type of extension operator, we achieve a substantial difference
in the final time.

5.3.5.1 Harmonic Extension

We start by defining the extension of the solid deformation uh;s from the interface OI
to the fluid-domain uh;f 2 V�h;f , by means of an harmonic extension, given as

.ruh;f ;r h;f /F D 0 8 h;f 2 W�
h;f ; (5.37)

where h;f has trace zero on the complete boundary ofF , that includes the interface.
Solution uh;f and test function h;f come from standard finite element space with the
boundary constraints

uh;f 2 V�h;f WD f�h 2 Vh.F/; �h D uh;s on I; �h D 0 on @F n Ig
 h;f 2 W�

h;f WD f�h 2 Vh.F/; �h D 0 on I; �h D 0 on @F n Ig:
(5.38)
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Fig. 5.14 Extension with the harmonic operator. Left: t D 5 s. Right: t D 8:6 s close to breakdown
due to degeneration of map elements

We show results in Fig. 5.14 for two different points in time. While the ALE
mapping yields a nicely transformed mesh at time t D 5 s, some elements are close
to deterioration at time t D 8:6 s. This in particular happens at the edge of the solid.
Here, we also see a very strong (and non-physical) feedback from the deformation
to the elasticity problems. Bad approximation on strongly deformed meshes gives
rise to artificial forces bending the solid.

This extension operator can be relaxed by varying the boundary conditions on
the outer boundary

�f WD @F n I:

Here, it is not strictly necessary for uh;f to guarantee a full homogenous Dirichlet
condition. If the deformation uh;f is allowed to move freely in tangential direction,
the resulting map Th;f will still map the reference domain to the fluid-domain.
Hence, we can alter the test space Wh;f in such a way that Dirichlet-conditions are
only imposed in normal direction, similar to the free-slip condition that is known
from fluid-dynamics

W�
h;f WD f� 2 C.F/d; �h

ˇ̌
ˇ
K

2 Pr.K/; n � �h D 0 on �f ; �0 D 0 on Ig;

where Pr.K/ is the local finite element space. In Fig. 5.15 we show both different
choices of boundary values. Although we choose different boundary values only
on the outer boundary of the domain, we see a substantial improvement of mesh
quality at the interface. In particular, the solid’s shape is not deteriorated at the
edges. However, some mesh elements already start to lose regularity.
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Fig. 5.15 Extension with the harmonic operator. Comparison of different boundary values at the
outer boundary @F n I. Left: homogenous Dirichlet uh;f D 0. Right: n � uh;f D 0. Both at times
t D 8:6 s. In the bottom line we show the complete computational domain. Here, the effect of
sliding boundary conditions gets obvious

5.3.5.2 Harmonic Extension with Stiffening

The examples show that we have to expect difficulties close to the solid domain, in
particular close to edges. Here, stiffening of the extension can help to assure better
quality of the deformed meshes. We change the extension operator by introducing a
local parameter function ˛ W F ! RC:

.˛ruh;f ;r�h;f /F D 0 8 h;f 2 W�
h;f :

Given differentiability of ˛.x/, this weak formulation belongs to a transport-
diffusion problem

��uh;f � ˛�1r˛ � ruh;f D 0:
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If we can choose ˛ W F ! RC in such a way that the ratio

jr˛j
j˛j � 0 at I;

is large close to the interface, and if the transport direction points away from the
interface

�r˛ � ns at I;

where ns is the outward facing normal vector of S, the extension mainly behaves
like a simple transport-problem and the deformation uh;s on I is carried into the
fluid-domain with as little changes as possible. Further away from the interface, the
extension should take the role of a harmonic extension. The choice of ˛.x/ can be
based on the distance of x to the nearest interface point

dI.x/ WD min
y2I

kx � yk2:

A good choice of ˛ is

˛.x/ D 2:0 � erf .5dI.x// ;

where erf is the Gauss error function. For this choice of ˛ it holds

jr˛.x/j
j˛.x/j > 1 if dI.x/ <

1

4
and

jr˛.x/j
j˛.x/j 
 1

100
if dI.x/ >

1

2
:

By a proper scaling of this function, the area of dominant transport can be adjusted
to the specific geometry. Figure 5.16 shows the results. First, we see a significant
improvement in mesh-quality. If we go on in time and rotation, we again see
deterioration of mesh elements and also a non-physical deformation of the solid.
We could already increase the final time, where the ALE formulation will loose its
regularity by about 20%.

5.3.5.3 Extension by Pseudo-Elasticity

Another possibility for defining the extension operator is by means of the Navier-
Lamé equation, see also [296]

�
�e.ruh;f C ruTh;f /C 	e div uh;f I;r h;f

�
F D 0 8 h;f 2 W�

h;f :

The parameters �e and 	e can again be chosen in such a way that the material
stiffens closer to the solid. Let Ee.x/ be the Young modulus, depending on the
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Harmonic extension with stiffening corre-
sponds to transport-diffusion operator

−Δuh,f − α−1∇α · ∇uh,f = 0.

Fig. 5.16 Upper row: extension with the harmonic operator using sliding boundary conditions
(left) and the harmonic operator with stiffening at the solid (right), both at time t D 8:6 s. Lower
row: harmonic extension with stiffening at time t D 11:6 s

distance, and �e a chosen Poisson ratio. We pick the two parameters as

�e.x/ D Ee.x/

2.1C �e/
; 	e.x/ D �eEe.x/

.1C �e/.1 � 2�e/ :

The results at times t D 11:6 s and t D 14 s are shown in Fig. 5.17. At time 11:6 s we
get a very good mesh quality (compared to the harmonic operator with stiffening).
No artificial feedback to the solid problem is observed. The computations break
down around t D 14 s.

Using the pseudo-elasticity model, one can improve the results by using material
parameters in the auxetic range

�1 < �e < 0:

Here, we pick �e D �0:2. The results are shown in the lower right plot of
Fig. 5.17. A significant improvement in mesh quality is not visible, but using
material parameters in the auxetic range allows to reach a final time of t D 14:9 s.
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Fig. 5.17 Upper row: extension with the harmonic operator using stiffening (left) and using a
pseudo-elasticity model (right), both at time t D 11:6 s. Lower row: pseudo-elastic extension at
time t D 14 s (left) and pseudo-elasticity with an auxetic material behavior (right)

For a pseudo-elastic extension, it is possible to apply stiffening in a semi-
automatic way, by coupling the Young modulus to the deformation gradient’s
determinant

Je WD det.I C ruh/:

Ee is increased, if Je gets large or close to zero:

Ee WD Ee

�
Je C 1

Je

	
:

This technique is referred to as Jacobian-based stiffening, see [318].

5.3.5.4 Biharmonic Extension

Finally, we consider the biharmonic operator �2 for defining the extension of the
deformation, see also [182]. For realization, we choose a mixed formulation by



5.3 Finite Elements for Fluid-structure Interactions in ALE Formulation 253

introducing a secondary variable wf D ��uf :

.rwh;f ;r 1h;f /F C .ruh;f ;r 2h;f /F � .wh;f ;  
2
h;f /F D hn � ruh;s;  2h;f iI ;

where solution and test function come from the spaces
The biharmonic extension has the benefit that no configuration dependent

parameter-tuning is necessary. Due to the fourth order character, special care
has to be taken for discretization. Either, C1-conforming finite elements, or a
mixed formulation is required. For numerical benchmark problems, a very high
computational effort is reported [342], with computing times up to ten times higher
than for the simple harmonic extension. Hence, it is usually more advisable to
spend some effort on parameter tuning and a good parameter choice for one of the
previously discussed options.

5.3.5.5 Summary and Conclusion

In Table 5.2 we summarize the results from the previous section. The effect of
the different methods for extending the deformation to the fluid domain and for
generation of the ALE map are striking. Compared to the most simple harmonic
extension, advanced techniques that are based on pseudo-elasticity can give good
results for nearly twice as large deformations. Apart from the biharmonic operator
all of these techniques have a comparable computational effort. Even if nonlinear
models are used for stiffening, the effort for the solution of the extension problem
is still negligible compared to the fluid and the solid problem.

Remark 5.14 (Alternative Approaches for Defining the ALE Map) All methods
presented in this section have a similar type and based on the implicit inversion
of a differential operator. This approach is natural for monolithic models, where
fluid problem solid problem and mesh problem are formulated as one coupled
system. Using partitioned algorithms it is easier to utilize different processed for
designing the ALE map. Basting and co-workers [30] introduced the extended ALE
method that is based on a variational mesh optimization scheme [294] that generates

Table 5.2 Final time for the breakdown of the ALE scheme for different types of ALE extension

Mesh motion model Maximum time Maximum rotation J

Harmonic 8:6 s 0.035

Harmonic (sliding) 9:0 s 0.038

Harmonic (stiffening) 11:6 s 0.055

Pseudo-elastic 14:0 s 0.067

Auxetic material 14:9 s 0.071

We also indicate the maximum value that has been reached for the rotation functional 5.36
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distribution of the mesh nodes whenever the ALE map deteriorates. As an important
feature to allow for efficient simulations the mesh connectivity is always preserved.

Schäfer et al. [300] block structure the computational mesh to allow for different
mesh motion techniques in different parts depending on the distance to the elastic
obstacle and the expected deformation. Among the applied techniques they also
use linear interpolations to construct mesh distortions. In a monolithic setting
this approach would cause global couplings in the matrix. As part of partitioned
approaches this technique is very efficient.
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