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In this chapter, we revisit the problem of an elastic ball falling down towards
the ground by gravity within a viscous fluid, that was already briefly discussed
in Sect. 6.6.3. To deal with the topology change at contact time, we use a Fully
Eulerian approach as introduced in Sect. 3.6 and detailed in Chap. 6.

An accurate study of the contact dynamics requires discretization techniques in
space and time that take into account the interface movement. Here, we will use the
locally modified finite element technique introduced in Sect. 4.5 for accurate space
discretization and the modified Galerkin approach as described in Sect. 4.6 for time
discretization.

We will be especially interested in the question of whether it comes to contact
between ball and ground, or whether a thin fluid layer remains in between them.
From the point of view of analysis, this is an open problem if the ball is considered
elastic, cf. Remark 6.13. Physical experiments indicate that it comes to real contact
in many situations, consider e.g. the fall of a steel ball towards the ground within air.
In this case, some of the assumptions made in the derivation of the incompressible
Navier-Stokes equations will not be valid anymore (e.g. the continuum assumption,
a linear stress-strain-relationship and incompressibility). Due to the lack of a
validated model for the fluid for the case of contact, however, we stick here to the
incompressible Navier-Stokes equations, expecting that the small time slot around
the contact interval, where they are not an appropriate model, does not influence the
dynamics too much.

If it comes to contact, we have to deal with variational inequalities. Here, we use
a simple contact algorithm based on a penalty formulation, motivated by a work of
Sathe and Tezduyar [298].
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400 12 Fluid-structure Interaction with Contact

12.1 Problem Setting and Equations

We begin with a simple model problem, see Fig. 12.1, where an elastic ball falls
down towards the planar ground �w D f.x; y/ 2 R

2 j y D �1g by a gravity
force. We consider a ball of radius r D 0:4 whose midpoint is initially located
at the origin. As boundary condition, we impose a homogeneous velocity on �w. In
combination with the kinematic condition and the velocity—displacement relation
dtus D vs this ensures that the ball cannot pass “through the ground”. We assume
that the simulation domain˝ D .�1; 1/� .�1; 0:5/ is open on the lateral and upper
boundaries and use the do-nothing outflow condition there.

The corresponding variational formulation in fully Eulerian coordinates reads
(cf. Problem (6.6)):

Find the global velocity v 2 vD C V , the solid displacement us 2 uD
s C Ws, and

the fluid pressure pf 2 Lf such that

.�.@tv C v � rv/; �/˝

C.� ;r�/˝ � h�f �frvTnf ; �i�f n� d
f

D .�f; �/˝ 8� 2 V ;
.@tus C v � rus � v;  s/S.t/ D 0 8 s 2 Ws;

.div v; �f /F.t/ D 0 8�f 2 Lf :

(12.1)

Here we have used the abbreviations �jS D �s D J�0s and �jF D �f . Furthermore,
we have defined � jF D � f and � jS D � s and analogously for the right-hand side f.
The function spaces are given by

V D H1
0.˝I� d

f [ � d
s /

2; Ws WD H1
0.S.t/I� d

s /
2; Lf WD L2.F.t//:

Fig. 12.1 Sketch of the
configuration of the first test
case
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The fluid boundary term on the left-hand side stems from the fact that the full
symmetric stress tensor

� f D �f �f .rv C rvT/ � pf I

enters the fluid equations, while the do-nothing condition on �f n � d
f includes the

reduced stress tensor � red
f D �f �frvf � pf I. For the solid, we use a St.Venant

Kirchhoff material law

� s D JsF�1
s .2�sEs C �str.Es//F�T

s : (12.2)

with the Green-Lagrange strain Es D 1
2
.F�T

s F�1
s � I/.

To capture the moving interface, we use the initial point set method, as described
in Sect. 6.2. The system is supplemented with the initial conditions

v.x; 0/ D v0.x/ in ˝; u.x; 0/ D u0.x/ in S.0/:

12.2 Space Discretization and Pressure Stabilization

For spatial discretization, we use equal-order locally modified finite elements (cf.
Sect. 4.5) for all the components of the solution. For ease of implementation, we use
the global space Vh on the whole domain ˝ for all the variables and use artificial
extensions of the fluid pressure pf and the solid displacement us to the complete
domain˝ .

This choice for velocity and pressure violates the inf-sup condition in the fluid
problem that is necessary to ensure the well-posedness of the discrete system of
equations, cf. Sect. 4.3.2. To cope with this, we will add stabilization terms to the
discrete variational formulation.

The challenge for pressure stabilization within the locally modified finite element
method lies in the anisotropies that are present in the interface region including
abrupt changes of anisotropy between neighboring cells, see Fig. 12.2 for an
example. Typically, the stabilization methods used on anisotropic meshes require
an assumption on the change of anisotropy between neighboring cells that can not
be guaranteed here (see e.g. Braack and Richter [62]).

To deal with this, we will use a variant of the Continuous Interior Penalty (CIP)
stabilization technique introduced by Burman and Hansbo [84–86]. We denote the

set of cells of the fluid domain by ˝ f
h and the set of edges by Eh. The original CIP

technique is based on penalizing jumps of the gradient over element edges

S. ph; �h/ WD 	hs
X

e2Eh

Z

e
Œrph
e � Œr�h
e do;
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Fig. 12.2 Sketch of four
patches in the interface
region. The cell sizes in
normal direction h1n and h2n for
e 2 E i

h vary significantly
S
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h
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h
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with s D 2 or s D 3. This does not guarantee stability in the case of abrupt changes
of anisotropy, however, as the cell sizes of the two neighboring cells in direction
normal to the edge can be very different. Hence, we have to modify this technique in
the interface patches. Here, we will use a weighted average of the pressure gradient
instead of the jump terms.

To define a variant suitable for anisotropic meshes, we split the set of edges
into two parts: By E0h , we denote all edges that lie between two quadrilateral cells
K1;K2 � ˝

f
h. By E i

h we denote the edges that are edges of at least one triangular
element K � ˝

f
h, see Fig. 12.2. In other words, this means that E i

h contains all edges
that are part of patches cut by the interface.

We define the stabilization term by

Saniso. ph; �h/ WD 	h2P
X

e2E i
h

Z

e
fhnrph � r�hge do

C 	h2P
X

e2E0h

Z

e
hnŒrph
e � Œr�h
e do;

where 	 > 0 is a constant, hP is the size of the patch, hn is the cell size in the
direction normal to e, Œ�
e denotes the jump term across the edge e and

fvhge WD 1

2

�
vhjK1 C vhjK2

�
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is the mean value of the two cells K1;K2 sharing the edge e. In the case that one of
the cells K1;K2 does not lie in ˝ f

h, we set the respective contribution to zero. This
term is then added to the divergence equation

.div vh; �h/F.t/ C Saniso. ph; �h/ D 0 8�h 2 V f
h:

In contrast to the original CIP technique this stabilization is not consistent
anymore, in the sense that the continuous solution fulfills the discrete, stabilized
system. However, it can been shown [151] that the inconsistency is sufficiently
small, such that the stabilized, discrete solution is of second-order, as is the
discretization error of the locally modified finite element scheme of order one.

12.3 Time Discretization

For time discretization, we use the dG(0) variant of the modified time stepping
scheme presented in Sect. 4.6. In this section, we will give practical details on how to
compute a suitable mapping Tm W ˝m � Im ! Qm for a time interval m D 1; : : : ;M.

To simplify the implementation, we use the old deformation um�1 to define the
subdomains Fm and Sm and the interface Im explicitly. Note that a fully implicit
integration of the domain affiliation within a Newton-type algorithm would require
the calculation of shape derivatives, compare Sect. 6.4.

Then, we use the new domain˝m as reference domain for the time interval Im D
Œtm�1; tm
 and define a map Tm W ˝m � Im ! Qm which is linear in time. We define

Tm.x; t/ D tm � t

tm � tm�1
Tm.x; tm�1/C t � tm�1

tm � tm�1
x: (12.3)

This implies in particular Tm.x; tm/ D x. It remains to specify the mapping Tm at
time tm�1 in such a way that points x lying on the interface I.tm/ at time tm are
mapped to points on the interface I.tm�1/ at time tm�1. We have already seen in the
numerical example in Sect. 4.6 that this requirement is fulfilled by the function

QTm.tm�1/ D .�IPS.tm�1//�1 ı �IPS.tm/

where �IPS.tk/ denotes the Initial Point Set function at time tk that has been
introduced in Sect. 6.2. In practice, we calculate xm�1 WD QTm.xm; tm�1/ in a point
xm 2 ˝m by applying Newton’s method to

�IPS.tm�1/.xm�1/ D �IPS.tm/.x
m/;

i.e.

xm�1 � um�2.xm�1/ D xm � um�1.xm/: (12.4)
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It is sufficient to use this mapping QTm in the interface region. Far away from the
interface, we define Tm as the identity. In between, we define a smooth transition by
using a function g depending on the distance to the interface with g D 1 in a point
x 2 ˝m�1 with distI.tm�1/.x/ < " and g D 0 if distI.tm�1/.x/ > ı for ı > " > 0. We
set

Tm.t; x/ D g.x/ QTm.t; x/C .1 � g.x// id:

The modified dG.0/ time stepping scheme for the fluid-structure interaction
problem (12.1) reads: Find v 2 .vD CVm/, us 2 .uDs CWm

s /, and pf 2 Lm
f such that

.�.vm � vm�1/; �/˝m C k.�.vm � @tTm/rvm; �/˝m C k.� ;r�/˝m

�kh�f �frTvmf n; �i�f n� D
f

D k.fm;�/˝m ;

.um � um�1 � kvm;  s/Sm C k..vm � @tTm/rum;  s/Sm D 0;

.div vm; �f /F.t/ C S. pm; �f / D 0

for all � 2 Vm,  s 2 Wm
s and for all �f 2 Lm

f .
The only quantity related to the transformation to be calculated is @tT. Therefore,

we first compute the point xm�1 D Tm.xm; tm�1/ by (12.4). Now, differentiat-
ing (12.3) yields

@tT.x
m; tm/ D xm � xm�1

tm � tm�1
:

With this time stepping scheme, we can get arbitrarily close to contact. Real
contact is not possible, however, as this would destroy the local regularity of the
mapping Tm. To cope with this, we modify the scheme in the contact region when
the ball comes close to the ground by choosing Tm D id there.

12.4 Stabilization of the Solid Equations

The full fluid-structure interaction problem (12.1) contains a regularity problem
at the interface I.t/, as described in Sect. 3.1.4. The natural trial space for the
solid velocity in the variational formulation is L2.S.t//2, which means that a trace
on the interface I.t/ is not well-defined. The trace is however needed for the
kinematic interface condition vf D @tus on I.t/. Furthermore, numerical tests show
that the solid velocity is sensitive to stability problems caused by perturbations or
discretization errors, especially in the interface region (see Chap. 4 in [151]).

To analyze this problem, we will first of all focus on the simplest form of a solid
equation, a linear wave equation on a fixed domain S, and study different techniques
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to handle the aforementioned problems. In mixed variational formulation, the
system of equations is given by: Find u 2 W ; v 2 V such that

.@tv; �/S C �.ru;r�/S D 0 8� 2 W ;

.@tu;  /S � .v;  /S D 0 8 2 V ;
(12.5)

with a positive parameter � > 0. Testing with � D @tu and  D @tv and integrating
by parts in time, we see that the homogeneous wave equation is energy-conserving
in the following sense for t > 0

�kru.t/k2S C kv.t/k2S D �kru.0/k2S C kv.0/k2S : (12.6)

Hence, any kind of perturbations will not be damped, but it is conserved and may
accumulate over time. Furthermore, (12.6) gives neither control over derivatives of
v nor over the trace of v on the boundary of S.

To increase the stability, we use a simple, stabilization technique: Find uh 2
Wh; vh 2 Vh such that

.@tvh; �h/S C �.ruh;r�h/S D 0 8�h 2 Wh;

.@tuh;  h/S � .vh;  h/S � ˛hs.rvh;r h/S D 0 8 h 2 Vh:
(12.7)

The exponent s is typically chosen in the interval s 2 Œ1; 2
, see [151]. For this
formulation, the energy conservation reads

�kruh.t/k2S C kvh.t/k2S C ˛hskrvh.t/k2S
D �kruh.0/k2S C kvh.0/k2S C ˛hskrvh.0/k2S :

(12.8)

We conclude that this formulation gives us control over the derivatives of vh and
thus (by the trace lemma) over the trace of the velocity on @S.

To further motivate, why this formulation increases stability, we consider a
standard time discretization with the backward Euler method and multiply the
second equation by �1. Problem (12.7) reads in matrix form

�
�Ah

1
kMh

� 1
kMh Mh C ˛hsAh

� �
umC1
h

vmC1
h

�
D

�
1
kv

m
h

� 1
ku

m
h

�
; (12.9)

where Mh is the discrete mass matrix and Ah the discrete Laplacian. We see that the
stabilization term increases the diagonal part of the matrix significantly, especially
for s � 2. It can be interpreted as adding artificial diffusion to the diagonal part of
the system matrix. For the derivation of a priori error estimates depending on s for
the stabilized, discrete formulation, we refer to [151, 152].
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12.5 Treatment of Contact

In the cases where no fluid layer remains between the ball and the ground, we
have to apply a contact algorithm to simulate the bounce-off of the ball. A simple
contact algorithm has been used by Sathe and Tezduyar [298]. The idea is to add
an artificial contact force gc on the interface to the balance of momentum if the
ball comes very close to the ground. The force depends on the distance to the
ground and goes to infinity as the distance tends to zero. Hence, contact becomes
in principle impossible. In this way, the modeling issues connected to the Navier-
Stokes equations and contact that were mentioned at the beginning of this chapter
are to a certain degree circumvented. We will see below, however, that numerical
contact might still happen, at least unless the time step size is chosen sufficiently
small.

The modified interface condition reads

.� f � gcI/nf D � snf ;

where the contact force is defined by

gc.x/ D
(
0 dist.x; �w/ � dist0;

	c
dist.x;�w/�dist0

dist.x;�w/
dist.x; �w/ < dist0;

on I with a contact parameter 	c and a reference distance dist0.
More involved contact strategies are based on variational inequalities (see e.g.

Diniz dos Santos et al. [122], Mayer et al. [237], Pironneau [259]) imposing the
constraint

dist.x; �w/ � 0 on I:

To ensure the well-posedness of the system of equations, a Lagrange multiplier is
added to the balance of momentum that acts similar to the contact force gc when the
constraint is active. Due to the additional computational complexity of numerical
algorithms for variational inequalities, we stick here to the prior simple contact
algorithm. For further studies we refer to the literature [155].

12.6 Numerical Examples

12.6.1 Example 1: Configuration Without Contact

For the first test, we use the Lamé parameters �s D 2 � 105 kg � m�1s�2 and
�s D 8 � 105 kg � m�1s�2 and the fluid viscosity �f D 10�3 m2 � s�1. The fluid and
solid density are �s D �f D 103 kg � m�3. In this example, we do not apply the
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Fig. 12.3 Illustration of the free fall of an elastic ball, its contact with the ground and the
subsequent rebound at six different times. The color illustrates the vertical velocity vy and the
black contour line is the discrete interface

contact force introduced in Sect. 12.5, as it turns out that for this specific choice of
parameters, a small fluid layer remains between ball and bottom anyway.

In Fig. 12.3, we show the falling ball at six different instances of time. First, the
ball is accelerated by gravity and falls down. At time t � 1:6 s, the bottom is almost
reached and the ball slows down due to a high fluid pressure. It comes closest to the
ground at time t � 1:8 s, where the minimal distance is d � 1:2 � 10�3 m. At this
time the ball is significantly compressed at its bottom.
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The discretization at this point is illustrated in Fig. 12.4 (top) for the coarsest
mesh we used. The interface shows a domed shape due to a high fluid pressure in
the middle (see Fig. 12.5) and the minimal distance is not attained in the center but
left and right of it. In this configuration, there is no real contact but a small layer of
fluid remains between ball and ground. Nevertheless, here and in the following we
will call this period the “contact time” or “contact interval“ for simplicity.

Then, due to the compression at the bottom the ball is accelerated upwards. The
ball reaches its highest elevation at a maximum distance d � 8:3 � 10�2 m from the
ground at time t � 2:4 s and falls down again. After a smaller second bounce with
distance d � 4:6 � 10�3 m, it comes to rest, being in real contact with the ground at

Fig. 12.4 Illustration of a coarse mesh during the first rebound (top sketch) and at the end time
when the ball is at rest (lower sketch). During the first rebound, a small layer of fluid remains
between ball and ground

Fig. 12.5 Pressure peak during the contact between ball and ground. (a) Pressure value along the
boundary line �w D f.x;�1/; 0 < x < 1g. (b) Pressure close to contact. Inside the ball we show
the harmonic extension of the pressure (without a physical connotation). The white contour line
shows the boundary of the elastic ball
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Fig. 12.6 Distance of the ball from the bottom and width of the ball. Top: Minimal distance
between ball and ground over time and a zoom-in at the interval of contact and rebound. Right:
Size of the ball (distance between top and bottom)

time t � 4:4 s, see Fig. 12.4 (bottom) for an illustration of the mesh at the time of
real contact.

In Fig. 12.6, we plot the minimal distance between the ball and the ground includ-
ing a zoom-in of the contact and rebound interval in the upper row. Furthermore, we
show the distance between the top and the bottom of the ball and an averaged vertical
velocity of the solid in the lower row.

In the lower left plot, we observe that the distance between the top and the bottom
of the ball attains minima at the two contact times due to the compression. After
the rebounds, we observe oscillations that get smaller over time. These oscillations
are physical: First, the ball is maximally compressed at the bottom at the contact
time. Once the ball bounces off again, the deformation is relaxed. The ball is
even overstretched at some point and starts to oscillate between an expanded and
a compressed state periodically.

12.6.2 Convergence Studies

We study the test configuration on different grids and for different time step sizes.
The finite element meshes, we use are highly refined in the contact region. The
coarsest mesh consists of patches of size of size 2:5 � 10�2 m � 3:1 � 10�3 m in the
contact region and 0:1m�0:15m in the upper right and upper left part. Furthermore,
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Table 12.1 Top: Minimal distance between ball and ground during the first contact interval and
maximal distance after the first rebound

First contact: minimum distance First bounce: maximum distance

#nodes n k 2 � 10�3 1 � 10�3 5 � 10�4 2 � 10�3 1 � 10�3 5 � 10�4

4225 6:38 � 10�4 6:49 � 10�4 6:26 � 10�4 4:71 � 10�2 5:19 � 10�2 5:20 � 10�2

16641 1:22 � 10�3 1:24 � 10�3 1:24 � 10�3 7:41 � 10�2 8:29 � 10�2 8:49 � 10�2

66049 – 1:27 � 10�3 1:27 � 10�3 – 8:71 � 10�2 8:96 � 10�2

Relative mass conservation error

#nodes n k 2 � 10�3 1 � 10�3 5 � 10�4

4225 8:96 � 10�3 8:94 � 10�3 8:94 � 10�3

16641 2:54 � 10�3 2:36 � 10�3 2:31 � 10�3

66049 – 5:07 � 10�4 5:05 � 10�4

Bottom: Relative error in mass conservation at time t D 3 s. The three functionals are calculated
for three different time step sizes and on three different meshes

we show the results on two finer meshes that are obtained from this coarse mesh by
global refinement.

In the upper part of Table 12.1, we show the minimal distance during the first
contact and the maximum elevation after the first rebound and the error in mass
conservation on these meshes for three different time step sizes. We observe that
both the minimal distance during the contact and the maximal distance after the
rebound are significantly smaller on the coarsest mesh. On the other hand, the results
on the finer meshes show good agreement. While on the finest mesh, the minimum
distance, i.e. the minimum height of the fluid layer, is a little less then two patches,
on the coarsest patch only about a quarter of a patch remains on the fluid side at the
narrowest point. We conclude that the resolution of the contact region on the coarse
mesh was not fine enough to resolve the contact dynamics appropriately.

In the lower part of Table 12.1, we show the relative error in mass conservation
is defined by

jmass D
ˇ̌
ˇ̌�r

2�0s � R
S J�0s dx

�r2�0s

ˇ̌
ˇ̌

for different spatial and temporal discretization parameters. We observe a good
convergence behavior in both space and time, even on the coarsest mesh. The spatial
discretization error is dominating and decreases with orderO.h2P/. This convergence
behavior was expected, as it is the approximation error of the interface, see Sect. 4.5.
Furthermore, this result indicates that the Eulerian approach in combination with the
described discretization techniques, shows very good mass conservation properties.
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Fig. 12.7 Distance between ball and ground over time for different solid parameters �s during the
contact and rebound interval. The first Lamé parameter is chosen as �s D 4�s. The rebound height
is higher for softer solids

12.6.3 Influence of Material Parameters

Next, we want to address the question of whether a small layer of fluid is maintained
between ball also for different parameters. Therefore, we increase and decrease the
solid Lamé parameters, keeping the ratio between the Lamé parameters �s and �s
constant, �s D 4�s (which corresponds to a Poisson ration of �s D 0:4).

For a set of parameters ranging from �s D 5 � 104 kg � m�1s�2 to 3:2 �
106 kg � m�1s�2, we plot the distances between ball and ground over time in
Fig. 12.7. For the stiffest material (�s D 3:2 � 106 kg � m�1s�2) no fluid layer
remains during the first contact interval. Ball and ground are in real contact.
Once the ball is in contact with the ground, the no-slip condition on �w used
here, prevents it from bouncing. The same happens for the second stiffest material
(�s D 1:6 � 106 kg � m�1s�2) at the second contact time. It is, however, questionable,
whether this corresponds to the physical situation. Instead, the contact might be
caused by numerical errors due to a too large time step or an insufficient grid
resolution in the contact region. We will use the configuration with the largest Lamé
parameters below to study the proposed contact algorithm.

For the remaining parameters, the solid bounces twice. Due to a higher com-
pression during the contact, the first and the second rebound heights are bigger, the
softer the solid is.

12.6.4 Contact Algorithm

As the simple contact algorithm used is not physically motivated, but is based on an
artificial force gd, we have to analyze its effect on the contact dynamics. Therefore,
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dist0 = 5 · 10−3, γc = 800
dist0 = 1 · 10−2, γc = 800
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dist0 = 1 · 10−2, γc = 1600
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Fig. 12.8 Influence of different contact parameters 	c and dist0 for the Lamé parameters �s D
3:2 � 106 kg � m�1s�2, �s D 1:28 � 107 kg � m�1s�2. The contact force with parameters 	c D 800

and dist0 D 5 � 10�3 m as well as for 	c � 400 or dist0 � 10�3 m was not large enough to prevent
the contact

we consider the situation from above with the stiffest material parameters �s D
3:2 � 106 kg � m�1s�2 and �s D 1:28 � 107 kg � m�1s�2 where a contact algorithm is
necessary. We use dist0 D 10�3 m, 5 �10�3 m and 10�2 m and the contact parameters
	c D 800 and 1600.

For the smallest contact distance dist0 D 10�3 m, contact could not be prevented
with the chosen time step and grid size. The same occurred for dist0 D 5 � 10�3 m
and the smaller parameter 	c D 800. We plot the distances to the ground over time
in Fig. 12.8 for the calculations with dist0 � 5 � 10�3 m. The plot shows significant
differences. For example, for the largest parameters dist0 D 10�2 m and 	c D 1600,
the rebound height is 35% bigger than for the same reference distance with 	c D
800.

Furthermore, the ball stays at rest at a distance of 3:18 � 10�3 m from the ground
which is rather large compared to drest � 1:77 � 10�3 m for 	c D 800 and drest �
1:21 � 10�3 m for dist0 D 5 � 10�3 m. Here it is obvious that this distance depends
more on the artificial contact force than on physical effects.

We conclude that the contact parameters have to be chosen carefully and their
influence must be taken into account when interpreting the results. The investigation
of more sophisticated contact algorithms is subject to ongoing research.

12.6.5 Example 2: Bouncing Down the Stairs

Finally, we will study a more complex numerical example, i.e. an elastic ball
bouncing down some stairs. We give a sketch of the geometry under consideration in
Fig. 12.9. In order to get the desired direction, we let the ball bounce on an inclined
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Fig. 12.9 Sketch of the configuration of the second example and the initial mesh. To simulate the
contact dynamics accurately, fine mesh cells are used in the contact regions

plane first. Afterwards, it bounces down three stairs. Depending on the material
parameters it can bounce once or several times on a stair or just roll over it. We
consider the lower, left and right walls as rigid and impose a homogeneous Dirichlet
condition for the velocity there. On the top �top, we use again a do-nothing boundary
condition. We use the same material parameters as in Sect. 12.6.1 and vary only the
fluid density to �f D 100 kg � m�3, 150 kg � m�3, 300 kg � m�3 and 1000 kg � m�3.

We show snapshots of the horizontal velocity at twelve different times in
Fig. 12.10 for �f D 300 kg � m�3. The ball drops onto the inclined plane and bounces
to the right. The next contact is on the right part of the first stair. Afterwards, we
observe three bounces on the second stair and two on the third one, before the ball
comes to rest.

In Fig. 12.11, we show contours of the ball for calculations with �f D
100 kg � m�3, 150 kg � m�3, 300 kg � m�3 and 1000 kg � m�3. For the two larger
density values, we use a contact force with parameters 	c D 5 � 103 and
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Fig. 12.10 Ball bouncing down three stairs for �f D 300 kg � m�3 at twelve different times. The
color illustrates the horizontal velocity vx, the black contour line is the discrete interface. First
row: Free fall, contact with the inclined plane and rebound. Second row: Contact with the first stair
and rebound. Third row: First contact with the second stair, small bounce and second contact. Last
row: Third contact with the second stair, fall and position at rest
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Fig. 12.11 Contour plots of the interface at several times. Top left: �f D 1000 kg � m�3, top right:
�f D 300 kg � m�3, bottom left: �f D 150 kg � m�3, bottom right: �f D 100. While for �f D
1000 kg � m�3 the ball rolls over the stairs, the ball bounces exactly once on each stair for �f D
150 kg � m�3. For �f D 100 kg � m�3, the ball jumps and skips the second stair

dist0 D 10�2 m. For �f � 150 kg � m�3 this force was not large enough to prevent
the contact (see the contact parameter studies below). Here, we use 	c D 104.

The rebounds are higher, the smaller the fluid density is. For �f D 100 kg � m�3

the rebound at the first stair is so high that the ball jumps over the second stair and
has its next contact on the third one. On the third stair we obtain six small bounces
before the ball comes to rest.

For �f D 150 kg � m�3, the ball bounces exactly once on the first and second
stair. Before dropping onto the last stair, the ball gets quite close to the right wall
with a minimal distance of approximately 2 � 10�2 m. However, it is slowed down
by fluid forces before the contact force corresponding to the right wall would get
active. For �f D 300 kg � m�3, the rebounds are already significantly smaller and
for �f D 1000 kg � m�3, the ball bounces once on each stair and continues rolling to
the right.
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Fig. 12.12 Left: Position of the bottom of the ball. Right: Averaged vertical velocity over time
for �f D 150 kg � m�3 and different values of the contact force. For 	c D 5 � 103 the contact could
not be prevented at the contact time with the second stair

Finally, we study the influence of the contact force. In Fig. 12.12 (left sketch),
we plot the trajectories of the lower bottom of the ball for �f D 150 kg � m�3 and
three different contact force parameters 	c. On the right, we plot an averaged vertical
velocity vy over time.

The contact force with parameter 	c D 5 �103 prevents the contact on the inclined
plane and on the first stair, but it fails on the second one. Moreover, we observe that
for larger contact parameters the velocity of the ball is slightly higher, and the ball
bounces earlier on each stair. As a consequence, the ball almost touches the right
wall for 	c D 104 when it falls down towards the third stair, while it remains at a
significantly larger distance of around 6 � 10�2 m for 	c D 2 � 104. The averaged
velocities show good agreement before the bounce on the second stair and differ
slightly afterwards due to the different trajectories.

We conclude that in this final example the influence of the contact force was
relatively small. However, some quantities of interest, e.g. the contact distance (if
there is any) or the distance at rest, cannot be determined with this approach and
require more sophisticated contact algorithms.
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