
Chapter 11
Non-stationary Dynamics and Coupled
Oscillations

Inspired by a presentation of Sanjay Mittal [245, 250, 260] and a discussion with
Paolo Galdi (private communication, 2016) we study the interaction of the von
Kármán vortex sheet with the oscillation of an elastic obstacle. The flow around a
blunt body develops self-excited oscillations. Elastic structures freely oscillate with
Eigenfrequencies. We want to study the interplay between these two effects on a
coupled elastic fluid-structure interaction problem.

Mittal and coworkers [260] studied the interaction of a freely oscillating rigid
body in a laminar flow. They considered obstacles with circular and elliptical cross
section that are freely suspended and attached to an (imaginary) spring. The solid
problem alone—without interaction to a surrounding fluid—will show periodic
oscillations of a fixed frequency and amplitude. The amplitude is related to the initial
excitation, while the frequency of the oscillation is related to the spring constant
and the mass of the obstacle. Second, the rigid obstacle is fixed and one studies the
flow of an incompressible fluid around this obstacle. The resulting fluid pattern will
strongly depend on key quantities like the Reynolds number

Re D NvD

�
;

where by Nv we denote the average velocity of the surrounding fluid, by D the
diameter of the obstacle and by � the viscosity of the fluid. Increasing the Reynolds
number results in the following observations

• In the subcritical regime Re < Resub, the flow has stationary limit with @tv D 0.
• In the laminar regime Resub < Re < Relam, the flow develops an oscillatory

pattern behind the obstacle, the so called von Kármán vortex street, see [333] or
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Fig. 11.3. The frequency f of the oscillation is connected to the Strouhal number
St, that is like the Reynolds number an non-dimensional measure

St D f D

Nv ;

where f is the frequency, D the diameter of the object and Nv the velocity of the
surrounding fluid. For a large range of Reynolds numbers (in the laminar regime),
it holds for the flow around circular objects

St � 0:2

�
1 � 20

Re

�
, f D 0:2

� Nv
D

� 20�

D2

�
; (11.1)

showing that the frequency will linearly increase with the velocity.
• In the transition regime Relam < Re < Retrans, the flow develops complex

patterns. The dominant oscillation of the vortex street is overlayed with more
and more overtones.

• Finally, the flow pattern completely changes in the turbulent regime for Re �
Retrans, where the motion appears chaotic.

In a series of papers, Mittal [244, 245, 260] analyzed the interaction of the
non-stationary vortex street of laminar flows with an rigid, but freely supported
obstacle: What is the resulting frequency and what is the resulting amplitude for
the dynamically coupled problem? Two of the findings are the following: First, the
coupled problem admits non-stationary periodic solutions at significantly reduced
Reynolds numbers (as compared to the pure fluid problem). Second, and this effect
is referred to as synchronization or lock-in, there is a region of Reynolds numbers,
where the frequency of the coupled system is stable and usually equal or a multiple
of the natural structure frequency [33, 297, 349].

Here, we aim at discussion this question for a fully coupled fluid-structure
interaction problem with an elastic obstacle. We consider the benchmark problem
that has already been introduced in many sections of this book. This situation is more
complex than the configuration studied by Mittal. A rigid mass that is supported
by an ideal spring and that is not subject to any damping shows only one single
oscillation frequency. Here we study the interaction to a two dimensional elastic
beam. This solid problem itself is more complex, the oscillation of the beam shows
several modes in horizontal and vertical direction. Considering the coupling to a
rigid body, the fluid forces act as averages on the center of mass and all possible
motions of the solid can be described by a two dimensional vector. The elastic case
asks for modeling of a distributed deformation vector in the two dimensional solid
domain. Fluid’s forces not necessarily cause a motion of the solid, they also give
rise to bending and compression.

In the following section we first describe the coupled fluid-structure interaction
test case. Then in Sect. 11.2, we discuss the solid problem without a surrounding
fluid. In Sect. 11.3 we consider the fluid flow around a rigid obstacle and finally in
Sect. 11.4 we analyze the coupling.
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11.1 Configuration of the Test Case

The configuration of the benchmark problem is shown in Fig. 11.1a. The original
fsi-3 benchmark problem published by Hron and Turek [200] used the average
inflow velocity Nv D 2m � s�1. This choice of parameters results in the Reynolds
number

Re D NvD

�
D 2 � 0:1

0:001
D 200;

where D D 0:1m is the diameter of the circle, the rigid part of the obstacle. The
attached elastic beam is not considered for computing the Reynolds number. In
Fig. 11.1bwe show the deflection in A D .0:6; 0:2/, a point in the tip of the beam, for
these settings. The coupled dynamics results in a periodic oscillation with dominant
frequency

fNvD2 � 1

0:184
� 5:435: (11.2)
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Fig. 11.1 We show the configuration of the benchmark problem as well as the dominant oscillation
in the beam’s tip. (a) Configuration of the fluid-structure interaction problemfsi-3. (b) Horizontal
and vertical deflection ux.A/, uy.A/ in the tip of the beam A D .0:6; 0:2/
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Considering the horizontal and vertical deflection of the tip of the beam, twice the
amplitude of the oscillation is given by

2ax
NvD2 � 0:00538; 2ay

NvD2 � 0:0701;

measures as the distance between maximal and minimal deflection. In Sect. 5.1.1
we have studied the discrete Fourier transform of the drag coefficient. Here we have
found high frequent oscillations that superimpose the dominant frequency. While
not visible at a first sight their numerical resolution is necessary to obtain the correct
dynamics of the coupled system.

11.2 Dynamics of the Elastic Solid

To identify the dynamics of the isolated elastic structure we run preliminary
tests without the fluid problem. These computations are comparable to the csm-3
benchmark case published by Hron and Turek [200]. We initially expose the beam
to a vertical force

fs.t/ D
�

0

�1

�
�
(

10�s t � 0:05 s

0 t > 0:05 s:

The resulting oscillation of the beam’s tip is shown in Fig. 11.2. The time interval
I D Œ8; 10� is chosen such that the dominant frequencies are visible. The beam
is not oscillating with one single frequency but it shows a superposition of many
different frequencies. We can however identify the dominant frequency (of the
vertical deflection) as

fs � 1

0:464
� 2:155;

which is about half of the fsi-3 frequency fNvD2 given in (11.2). Naturally, the
horizontal deflection shows twice of the frequency, as the tip is deformed to the
left two times in every cycle. The oscillations shown in Fig. 11.2a are far from a
sine wave. Therefore we show in the lower part of Fig. 11.2b the discrete Fourier
transformation of the periodic dynamics. First, one clearly identifies the dominant
frequencies of the horizontal and vertical deflections, where the horizontal one is
twice as large as the vertical one. In addition we observe oscillations at higher
frequencies that explain the complex structure of the periodic solution.

In contrast to the test case studied by Mittal [245, 250, 260], the situation is less
clear. If we want to show synchronization effects it is not obvious, if this will appear
at the most dominant frequency or at an overtone.
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Fig. 11.2 Dynamics of the solid problem. The dominant Eigenfrequency for the horizontal
deflection is f � 4:3 the vertical one is f � 2:15. (a) Deflection of the tip of the beam
A D .0:6; 0:2/ in the temporal interval I D Œ8; 10�. (b) Discrete Fourier components of the beam’s
deflection. We indicate the strength of the signal for the different frequencies
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11.3 Dynamics of the Flow Around a Fixed Obstacle

Next, we study the pure fluid-dynamics test case, where the obstacle is considered
to be rigid. Of coarse, there will be no deflection. Instead we measure the drag and
lift coefficient of the obstacles that should show a similar dynamic behavior.

For increasing average inflow velocity Nv (which corresponds to increasing
Reynolds numbers) we note the frequency of the vortex street. For easy mea-
surement, we consider the forces of the fluid on the obstacle in cross-direction,
measured as

Fy D �
Z
I

� fn � eydo;

where ey D .0; 1/T . Up to a scaling, this function corresponds to the lift coefficient.
We indicate frequency fy and amplitude ay for the functional in Table 11.1. The flow
develops a periodic oscillation at Re � 170. We once more note that we did not
include the beam into the definition of the Reynolds numbers. This is the reason for
the rather high value of Re � 170 for the transition to the laminar periodic state
in contrast to Re � 50 for the flow around a circular obstacle only. In Fig. 11.3 we
show the pressure profile for the flow at different Reynolds numbers.

Table 11.1 Frequency and amplitude of the vertical force on the obstacle (ball & fixed beam) for
increasing Reynolds numbers

Nv 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9

Re 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290

fy – – – 3.62 3.85 4.04 4.22 4.42 4.63 4.82 5.04 5.21 5.43 5.63 5.85 6.06

2ay – – – <1 9.88 111 154 197 240 283 323 371 420 469 521 565

Fig. 11.3 Pressure profile for the flow around a fixed obstacle at different Reynolds numbers.
From top to bottom: Re D 100; 200; 300
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Fig. 11.4 Frequency and amplitude of the von Kármán vortex street for the flow around a fixed
obstacle at different Reynolds numbers. The theoretical prediction for the frequency shows very
good agreement (up to a constant shift)

Next, we compare the theoretical model for the oscillation frequency (11.1)
with the numerical results. In Fig. 11.4, we show frequency and amplitude of the
oscillation for different Reynolds numbers. Equation (11.1) predicts the slope of the
frequency but gives a shifted curve. This is no contraction to theory, as our setting
includes the fixed beam and is therefore more complex. We see that amplitude and
frequency of the oscillation increase with the Reynolds number. For the frequency
we derive the relation

fy.Re/ � 0:02Re C 0:24: (11.3)

The amplitude also linearly depends on the Reynolds number and can be approxi-
mated as

2ay.Re/ � 4:5Re � 750: (11.4)

Both relations are good approximations for Re 2 Œ180; 300�.

11.4 Coupled Dynamics

Finally, we study the oscillation dynamics of the fully coupled fsi-3 fluid-structure
interaction problem for different Reynolds numbers. Here we are interested in the
interplay of von Kármán vortex sheet and structural oscillation. We start by showing
snapshots of the solution for different Reynolds numbers starting in the stationary
regime at Re D 100, see Fig. 11.5.

We also show the deformation of the beam. At low Reynolds numbers, the flow
is stationary. Transition to a non-stationary oscillatory flow with large amplitudes
is given for Re � 135 in contrast to Re � 170 for the pure fluid case. A closer
look at the results even shows transition to non-stationary pattern (although at low
amplitudes) for Reynolds numbers Re � 115.
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Fig. 11.5 Pressure profile for the flow and deformation jusj for the flow around an obstacle with
elastic beam at different Reynolds numbers ranging from Re D 100 (top) to Re D 200 (every 20)
and for Re D 210 (bottom)

In Table 11.2 we show the dominant frequency fy and twice the amplitude 2ay

of the vertical deflection of the beam. Comparing to Table 11.1 we identify various
differences. We also give a graphical representation of the findings in Fig. 11.6.

• A fully developed stable periodic solution is developed at Re � 115 compared
to Re � 170 in the case with a fixed obstacle. For 115 � Re � 130 there are
however no significant forces on the obstacle. The deformation of the beam is
very small such as the amplitude of the vertical force fy.
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Table 11.2 Frequency and amplitude of the vertical force for the coupled fluid-structure interac-
tion problem at different Reynolds numbers

Nv 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.25 2.3

Re 110 115 120 125 130 135 140 150 160 170 180 190 200 210 220 225 230

fy 4.82 4.97 5.10 5.19 5.40 5.52 4.09 4.34 4.57 4.79 5.00 5.26 5.48 5.71 5.95 14.8 14.9

2ay � 1 58 142 141 130 104 206 300 345 364 376 375 361 348 334 1020 1266
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Fig. 11.6 Frequency and amplitude for the coupled fluid-structure interaction problem
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Fig. 11.7 Comparison of frequencies and amplitude for the fluid problem and the coupled fsi
problem

• Starting with Re � 135 a stable periodic solution with significant amplitude and
large deformations of the beam develops. This regime is stable up to Re � 220.
For larger values of the Reynolds number the non-stationary dynamics are more
complex with dominant overtones and rapidly increasing amplitude.

• The frequency of the oscillation increases with the Reynolds number. There is
however a significant jump at Re � 130�135 where an oscillation with large
amplitude appears. The slope of the frequency development fy.Re/ is nearly the
same as in the fluid case given in (11.3). We show a direct comparison of the two
frequencies in Fig. 11.7.

• For the fluid problem the amplitude was linearly depending on the Reynolds
number (11.4). The coupling to the solid has a stabilizing effect on the amplitude.
For a large interval Re 2 .150; 220/ the amplitude takes values of 2ay � 375.
The direct comparison is given in Fig. 11.7.
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From this numerical study, we cannot derive any analytical relation between the
frequencies of the von Kármán vortex sheet, the Eigenfrequency of the solid and
the frequency of the coupled dynamics. It is obvious that the elastic solid has a
destabilizing effect. Relating to the discussion on the added mass effect given in
Sect. 3.3 we have to expect this effect. Non-stationarities appear at lower Reynolds
numbers.

As Mittal and coworkers [245] we could identify a sub-critical regime Re 2
.110; 170/ where the pure fluid problem is stationary but a coupling to an elastic
solid gives stable oscillatory solutions.

Mittal and coworkers [245, 260] found a synchronization regime for the fre-
quency of the vortex shedding and the frequency of the solid’s oscillation for a
large range of Reynolds numbers. We could not identify such a synchronization for
the elastic fluid-structure interaction problem in Fig. 11.6. No immediate relation
between the frequencies of the coupled fluid-structure interaction problem and the
structural frequency is observed. Instead, we get a linear dependency between
frequency and Reynolds number with exception of a jump at the critical value
Re � 130�135 where dynamics with a substantial amplitude developed.

However we see a strong stabilizing effect in the amplitude of the oscillation,
compare Fig. 11.7. For the complete range of Reynolds numbers Re 2 .130; 210/

we observe amplitudes 2ay � 375 that do not growwith increasing inflow velocities.
In Fig. 11.8 we show the oscillation of the vertical force plotted over time. We

always show a time interval (each of them has the length 2 s where the flow reached
a stable periodic state. We show the situation at Re � 110 � 120 where the
transition to an periodic oscillation with an amplitude of 2ay � 150 is initiated.
This regime is stable for Re 2 Œ120; 135�. Here, larger Reynolds numbers will
lead to higher frequencies but smaller amplitudes. Next, we show the transition
at Re � 135 � 140, where we experience the jump to a lower frequency, but
where the amplitude is increased to about 2ay � 300. This regime is stable for
Re 2 Œ140; 220� showing an increase in frequency andmore or less stable amplitudes
for larger Reynolds numbers. Only in the transition zone forRe � 140 the functional
pattern in Fig. 11.8b (right) shows a visible second mode. Finally we show the next
transition at Re � 220 � 225 to a more complex flow pattern. Both the frequency
and amplitude are strongly intensified. For even larger Reynolds numbers the com-
putations will break down due to very large oscillations and instabilities of the ALE
formulation.
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Fig. 11.8 Dynamics of the vertical force of the coupled fluid-structure interaction problem for
different Reynolds numbers. We show the formation of the stable oscillation with large frequency
and small amplitude at Re � 115 (a), the transition to a stable oscillation with smaller amplitude
Re � 135 (b) and the transition to an unstable oscillation at Re � 225 (c). Note the different
scaling on the vertical axis in the bottom row. On the horizontal axis we always show an interval
of 2 s. (a) Re D 115 and Re D 120, (b) Re D 135 and Re D 140, (c) Re D 220 and Re D 225


	11 Non-stationary Dynamics and Coupled Oscillations
	11.1 Configuration of the Test Case
	11.2 Dynamics of the Elastic Solid
	11.3 Dynamics of the Flow Around a Fixed Obstacle
	11.4 Coupled Dynamics


