
Chapter 10
Mechano-Chemical Fluid-structure Interactions
and Active Materials

Many aspects in solid dynamics cannot be explained by an elastic response of
the material. In some applications, the material undergoes active changes, e.g. by
growth, swelling or generation of material, by chemically induced contractions or
bending. In other situations, the reference state is not stress-free. If a log of wood is
cut in two pieces, these will afterwards deform and spread.

One model for the realization of active material modification is the introduction
of an intermediate material configuration, the grown configuration, that is assumed
to include the active growth or change of material, a configuration that is stress-
free but non-physical, see Rodriguez et al. [291] and Jones and Chapman [209]
for further examples. We call this configuration OSa, the active one and introduce a
mapping that describes only this growth process

OTa.t/ W OS ! OSa.t/

and that maps the Lagrangian reference state to the grown one. In Fig. 10.1 we
show two possible models for active material growth, isotropic growth of control
volumes and a volume-conserving constriction of control volumes. The grown state
is understood to be stress-free but non-physical, as control volumes might overlap.

In a second step, the solid elastically reacts to this intermediate configuration.
We denote by

OTe.t/ W OSa.t/ ! S.t/

the mapping of this elastic response. The overall material deformation is given by

OT.t/ W OS ! S.t/; OT.t/ D OTe.t/ ı OTa.t/: (10.1)
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Fig. 10.1 Two different kinds of active material deformation. Top row: isotropic growth. Bottom:
Constriction of volume elements. The intermediate configuration is grown and stress-free but not
physical

The complete deformation OS ! OS.t/ is still described by Ou including growth and
elasticity, such that

OT.Ox; t/ D Ox C Ou.Ox; t/:

As usual, we introduce the deformation gradient and its determinant

OF WD Or OT; OJ WD det OF: (10.2)

The splitting into growth and elastic response is done on the level of the deformation
gradient, see Fig. 10.2. We introduce

OFa WD Or OTa; OJa WD det OFa; (10.3)

and

OFe WD Or OTe; OJe WD det OFe; (10.4)

By means of (10.1) it holds

OF D OFe OFa; OJ D OJe OJa:
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Fig. 10.2 Multiplicative decomposition of the deformation gradient into active part Fa and elastic
response Fe

If we assume that OTa is given by an external mechanism we can compute the elastic
deformation gradient based on the deformation u and this growing part

OFe D OF OF�1
a D .I C Or Ou/ OF�1

a :

Now, stresses will depend solely on this elastic part. In terms of Definition 2.18, the
first Piola Kirchhoff stress tensor of the St. Venant Kirchhoff material is given by

OPe D OFe O†e D 2�s OFe OEe C �s tr. OEe/ OFe; OEe WD 1

2
. OFT

e
OFT

e � I/: (10.5)

The tensor OPe is formulated on the intermediate configuration OSa.t/. The equations
of conservation are however given on the non-strained, non-grown reference
configuration OS . Therefore, in a last step we must pull back this tensor to OS . We
refer to [73]

O† D OJa OF�1
a

O†e OF�T

a : (10.6)

10.1 Growth Models

Growth can come in various forms. It is possible that new material is added. Then,
material can simply swell while conserving its mass. Growth can also be the change
of configuration without change of volume or mass, e.g. shearing or rotation.

We first consider the case, where the same type of material is locally added in an
isotropic fashion. Let OV be a control volume and Ox0 2 OV be a reference point. We
assume that this control volume isotropically growing

OV ! Va.t/; Va.t/ WD fOx0 C ˛t.Ox � Ox0/; Ox 2 OVg;
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where by ˛ 2 R we denote the growth rate, see Fig. 10.1. By

OTa.Ox; t/ D Ox C ˛t.Ox � Ox0/; OFa D Or OTa D .1C ˛t/I; OJa D .1C ˛t/d (10.7)

we can express the active mapping and deformation gradient, where d > 0 is the
spatial dimension. We assume that the new material has the same density O�0, such
that mass is added (or decreased for ˛ < 0)

m.Va.t// D
Z
Va.t/

�0 dx D
Z

OV
OJa�0 dOx DW

Z
OV

O�a dOx:

By

O�a WD OJa O�0 D .1C ˛t/d O�0; (10.8)

we denote the grown density in the reference configuration.
Second, we consider the swelling of material, an isotropic growth without

addition or removal of mass. The growthmap is given as in (10.1), the mass however
is conserved from OV to Va.t/

m. OV/ D
Z

OV
O�0 dOx ŠD

Z
Va.t/

�a dx D
Z

OV
OJa O�a dOx D

Z
OV
.1C ˛t/d O�a dOx;

such that

O�a D .1C ˛t/�d O�0:

Third, we consider the case of a constriction, where both mass and volume of
the control volumes stays the same, see the bottom row of Fig. 10.1. Let OV be a
reference volume and Ox0 2 V be its center of mass. In two spatial dimensions, the
active map is given by

OTa.Ox; t/ D
�Ox01 C .Ox1 � Ox10/.1C ˛t.Ox2 � Ox02//

Ox2
�
;

with deformation gradient and determinant

OFa.Ox; t/ D
�
1C ˛t.Ox2 � Ox02/ .Ox1 � Ox01/˛t

0 1

�
; OJa D 1C ˛t.Ox2 � Ox02/:
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10.2 Model Case: Formation and Growth of Atherosclerotic
Plaques

We consider the coupled dynamics of an incompressible fluid with an elastic
structure that undergoes active growth and deformation by bio/chemical processes.
The mechanical fluid-structure interaction problem is coupled to the dynamics of
chemical species that are transported that react and diffuse and that finally will cause
solid growth. This model is a generalization of a detailed model for the dynamics
of the formation and growth of plaques in blood vessels that has been discussed
in [354–356].

We introduce a simplified model that describes the formation and growth of
plaques in large blood vessels. For simplicity, we denote by ˝.t/ � R2 a two-
dimensional domain, split into the vessel wall S.t/ � R2 and the fluid domain
F.t/ � R2, which is occupied by blood. The interface between fluid and solid is
denoted by I.t/, see Fig. 10.3.We model blood as an incompressible Newtonian and
homogenous fluid. The vessel wall is described by the St. Venant Kirchhoff material
as stated above.

Our model for the fluid-solid interaction problem between blood and the vessel
is overly simplified. The mechanical properties of vessels are complex with multi-
layered anisotropic structures. We refer to the literature for advanced models and
also for numerical approaches to deal with them [87, 147, 149, 195].

In short, the biological mechanism is evolving as follows (compare Fig. 10.3):
First, monocytes (concentration called cf ) are transported by an advection-diffusion
process within the blood flow. Second, they penetrate damaged parts of the vessel
wall (in damaged areas) where they are transformed to macrophages (called
cs). The migration rate depends on the difference of monocyte and macrophage
concentration .cf � cs/ on the interface, on the wall stress and the damage condition
of the wall. Thirdly, within the vessel wall, the macrophages are again transported by
an advection-diffusion process and transformed into foam cells (called c�

s ). Finally,
accumulation of foam cells leads to plaque growth.

This problem is coupled to the dynamics of the fluid-structure interaction
problem. Due to hemodynamical forces driven by the pulsating flow, the geometry
deforms substantially. Furthermore, the formation of plaques significantly changes

ω(t)

ŜÎ

Ŝ

F̂Transport of Monocytes

Transendothelial migration
and differentiation

Formation of foam cells
ˆ (t) (t)

S(t)

F(t)

Plaque
Growth

I(t)

A(t)

Fig. 10.3 Configuration of the domain and mechanism of plaque formation. Left: Domain in
reference configuration split into fluid part OF and solid OS divided by the interface OI. Right: Domain
in the current (Eulerian) description with plaque formation and narrowing of vessel
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the domains. Finally, the hemodynamical forces influence the penetration of
monocytes into the vessel wall and therefore a two-way coupled problem must be
considered. The complete set of equations is given by

�f .@tvf C vf � rvf / � div � f D 0

div vf D 0

@tcf C vf � rcf � Df�cf D 0

9>>=
>>;

in F.t/

�s.@tvs C vs � rvs/� div � s D 0

@tcs C vs � rcs � Ds�cs D �ˇcs
@tc

�
s C vs � rc�

s D ˇcs

9>>=
>>;

in S.t/

� fnf C � sns D 0

vf D vs

Dfrcfnf C Dsrcsns D 0

Dsrcsns D �.cf � cs/

9>>>>>=
>>>>>;

on I.t/

(10.9)

Here, vf and vs stand for the fluid and solid velocity. By �f and �s we denote the
densities of blood and vessel wall and by nf and ns the outer normals of the fluid and
solid domain, respectively. Df and Ds are diffusion coefficients for monocytes and
macrophages. In particular Ds depends on the concentration of foam cells c�

s [355].
The coefficient � describes the migration of monocytes through the vessel wall. This
parameter will depend on the hemodynamical stress � D �.� fn/. The parameter ˇ,
usually depending on the concentration of foam cells, controls the transformation of
macrophages to foam cells.

One of the major challenges in plaque modeling is the huge variety of temporal
scales: While the heart beats once in about every 1 s, plaque growth takes place
in a time span of months, i.e. T � 1;000;000 s. Although all scales have a
significant influence on the coupled dynamics, a numerical simulation will not be
able to resolve each detail while following the long-term process. Instead, we—as
most approaches—consider an averaged flow problem and focus on the long-
scale dynamics. Effective model parameters controlling the migration of monocytes
through the vessel walls will be obtained by local (in time) small-scale simulations.
The analysis of temporal multiscale problems with partial differential equations is
still an open problem. Also we do not know efficient numerical multiscale methods
for the approximation of such problems. We refer to the forthcoming dissertation of
Sonner [315] for first steps in this direction.

Rather than developing a quantitative model, we concentrate in this paper
on a robust numerical framework for the coupled long-term dynamics of fluid-
structure interaction with active growth processes and large deformation. Hence, the
approximation of the chemical dynamics plays a minor role. We therefore strongly
simplify Model (10.9) and replace the complete chemical dynamics by a simple ode
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modeling the total concentration of foam cells

@tc
�
s .t/ D �.�WS; t/; c�

s .0/ D 0; (10.10)

where the function � specifies the rate of foam cell accumulation. Here, this function
depends on the wall stress in main stream direction �WS

�.�WS; t/ D �0

�
1C �WS.t/

�

��1
; � D 50

g

cm � s2 ; �0 D 5 � 10�7: (10.11)

For details on models of the dependency of the monocyte migration rate on the
wall stress we refer to [78]. The exact role and influence of the wall stress on the
migration rate is not yet completely understood. For further discussion, we refer
to [99]. The scalar concentration c�

s W Œ0;T� ! RC will directly determine the
active growth. Growth will take part in the middle parts of the vessel walls, see
Fig. 10.3.

Accurate handling of the different time-scales is an open problem. Most
approaches use an averaging in time and focus on the long-scale dynamics
only [94, 355]. A two-scale approach has been suggested in [158]. Here, we
simply consider an averaged long-scale model. We neglect the pulsating flow and
instead choose one constant inflow-rate. We fully acknowledge that this approach
will result in enormous modeling errors and refer to [158] for a detailed discussion.

Problem 10.1 (Long-Scale Growth) In I D Œ0;T�, find fluid-velocity vf , pressure
pf , solid deformation us and foam cell concentration c�

s , given by

�f vf � rvf � div � f D 0; div vf D 0 in F.t/
� div � s.c

�
s .t// D 0 in S.t/

vf D 0; � fnf C � s.c
�
s .t//ns D 0 on I.t/

@tc
�
s .t/ D �.�WS/; c�

s .0/ D 0 in S.t/:

(10.12)

The boundary data is described by

vf .t/ D Nvin.t/ on 	 in
f ;

�f 
fn � rvf � pn D 0 on 	 out
f ;

us D 0 on 	s;

(10.13)

where n is the outward facing normal vector and Nvin is an averaged inflow profile
that depends on the width of the blood vessel.
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10.3 Monolithic Schemes for the Coupled Problem

In this section, we derive monolithic variational formulations for Problem 10.1 in
ALE and in Fully Eulerian coordinates. Growth can lead to substantial deformations
of the solid up to a full closure of the vessel. Together with the stiff coupling between
blood and tissue, this is a prototypical application for the Eulerian framework
introduced in Chap. 6.

Problem 10.2 (Long-Scale Problem in ALE Formulation) Find the fluid veloc-
ity Ovf 2 Nvin.t/C Vf , deformation Ou 2 W and the pressure Opf 2 Lf , such that

� O�f OJf Ovf � OF�1
f

Or Ovf ; O�f
�

OF C �OJf O� f
OF�T

; Or O��
OF C � OF O†; Or O��

OS D 0 8 O� 2 W ;

�
bdiv .OJ OF�1 Ovf /; O�f

�
OF D 0 8O� 2 Lf ;

with † as given in (10.6) and where the extension Ouf is defined as

. Or Ouf ; Or O f / OF D 0 8 O f 2 Wf ;

in the case of the harmonic extension. For the biharmonic extension we use

. Owf ; O
f / OF � . Oruf ; Or O
f / OF C . Or Owf ; Or O f / OF D 0 8f O f ; O
f g 2 QWf � Wf

The elastic deformation gradient is defined in (10.4) depending on the concentration
of foam cells. The latter one is defined by the ode

@tc
�
s D �.�WS; t/; c�

s .0/ D 0:

The function spaces are given by

Vf D ŒH1
0.

OF I OI [ O	 in
f /�

2; Lf D L2. OF/;
W D ŒH1

0.
Ő I O	 in

f [ O	s/�
2; Wf D ŒH1

0.
OF/�2; QWf D ŒH1. OF/�2:

Remark 10.3 (Biharmonic Mesh Model) We have chosen a mixed formulation for
the biharmonic extension, such that an efficient discretization with simple C0-
conforming finite elements is possible.

To express the coupled model including growth in Fully Eulerian coordinates,
we must carry over the decomposition of the deformation gradients into the current
system. We denote the inverse mappings of OTa and OTe by Ta D OT�1

a and Te D OT�1
e

and their gradients by Fa D rTa and Fe D rTe respectively. Using F D OF�1
, we

have

F D OF�1 D OF�1
a

OF�1
e DW FaFe: (10.14)



10.3 Monolithic Schemes for the Coupled Problem 379

Although a direct modeling in Eulerian coordinates is possible, we derive the
Eulerian solid model by a mapping of the Lagrangian formulation to the Eulerian
system

Js O�0s .@tvs C vs � rvs/ � div
�
J†F�T

� D 0

@tus C vs � rus D vs
in S.t/; (10.15)

where † is given in (10.6) with an Eulerian description

† D J�1
a Fa†eFT

a ;

†e D 2�Ee C �s tr.Ee/I; Ee D 1

2
.F�T

e F�1
e � I/:

(10.16)

Frei [151] gives details on the transformation of the stresses of an active material to
the Eulerian coordinate framework.

10.3.1 Solid Growth in Eulerian Coordinates

Next, we carry over the growth model to the Eulerian representation. We will use
again the simple isotropic growth model

OFa D OgI (10.17)

and define the Eulerian growth function g by setting g.x; t/ D Og.Ox; t/. By the relation
OFa D F�1

a , it holds that

Fa D g�1I: (10.18)

By the decomposition (10.14) it follows that

Fe D F�1
a F D gF; Je D g2Js: (10.19)

The complete Eulerian stresses are given by

Ja� eF�T
a D JsF�1

e †eF�T D g�1JsF�1.2�sEe C �s tr.Ee/I/F�T ; (10.20)

with the Eulerian elastic strain tensor

Ee D 1

2
.g�2F�TF�1 � I/: (10.21)

Finally, we derive the equation of mass conservation in Eulerian coordinates. We
assume that homogenous material with the same parameters is added, such that the
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density is constant O�a D O�s. Hence, if m. OV/ is the mass of the reference state, m. OVa/

is the mass of the grown material, which is conserved in the current configuration V

m. OV/ D
Z

OV
O�0s dOx; m. OVa/ D

Z
OVa

O�a dOxg D O�0s
Z

OV
OJa dOx D O�0s

Z
V

OJaJs dx;
(10.22)

where OJa WD det. OFa/ D Og2 is the determinant of the growth part, such that for the
density � of the current configuration it holds

� D O� D g2 O�0s Js: (10.23)

Problem 10.4 (Long-Scale Problem in Fully Eulerian Coordinates) Find veloc-
ity vf .t/ 2 Nvin C Vf , deformation u 2 W and pressure pf 2 Lf , such that

�
�f vf � rvf ; �f

�
F.t/ C �

� f ;r�
�
F.t/ C �

Ja� eF�T
a ;r��

S.t/ D 0 8� 2 W
�
div vf ; �f

�
F.t/ D 0 8�f 2 Lf ;

�ruf ;r f
�
F.t/ D 0 8 f 2 Wf :

The elastic deformation gradient is defined in (10.19). Accumulation of foam cells
is described by the ode

@tc
�
s D �.�WS; t/:

The function spaces are defined as

Vf D H1
0.F.t/I I.t/ [ 	 in

f /
2; Lf D L2.F.t//;

W D H1
0.˝.t/I	 in

f [ 	s/
2; Wf D H1

0.F.t//2:

10.4 Numerical Tests

Studying different test cases we compare the performance of two different formula-
tions of the fluid-structure interaction problem, the Arbitrary Lagrangian Eulerian
formulation from Chap. 5 and the Fully Eulerian formulation detailed in Chap. 6.
We give further tests and an elaborate discussion in [158].

10.4.1 Problem Setting

As geometry we use a channel with length 10 cm and an initial width !.0/ (of
the fluid part) of 2 cm as illustrated in Fig. 10.3. The solid parts on the top and
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bottom have an initial thickness of 1 cm each. Fluid density and viscosity are given
by �f D 1 g � cm�3 and 
f D 0:3 cm2 � s�1. The solid parameters are given by
�s D 1 g � cm�3 and the Lamé parameters 
s D 104 and �s D 4 � 104 dyn � cm�2. We
prescribe a pulsating velocity inflow profile on 	 in

f given by

vin.t; x; y/ D 3

2

�
vin.t/.1 � y2/

0

�
;

vin.t/ D �
"! C 5!.t/

�
.1C sin.2�t//cm � s�1;

(10.24)

depending on the width of the channel!.t/ (see Fig. 10.3). The parameter "! is used
to control the minimum flow rate and will be specified below. These parameters are
similar to a real plaque growth configuration. The remaining boundary conditions
are specified in (10.13). For the growth, we specify a function that depends on the
concentration of the foam cells c�

s that is defined by the ode (10.11). Growth is
centered around the middle part of the vessel

Og.Ox; Oy; t/ D 1C c�
s .t/ exp

��Ox2� .2 � jOyj/; OFg.Ox; Oy; t/ WD Og.Ox; Oy; t/ I: (10.25)

Growth Og and inflow rate vin.t/ implicitly depend on the solution. As the config-
uration is symmetric in the vertical direction, we consider the lower half of the
geometry for the simulation only.

The problem is driven by a parabolic inflow profile with an average inflow rate
Nvin.t/. We use the averaged inflow profile of (10.24)

Nvin.t/ D �
"! C 5!.t/

�
cm � s�1 (10.26)

The dynamic configuration using the pulsating inflow field (10.24) is discussed in
[158]. We discretize the coupled problem by a splitting in time and approximate by
the following iteration.

Definition 10.5 (Mechano-Chemical Iteration) Initialize v0 D 0, u0 D 0, g0 D 0

and the vessel-width !0 D 2. Set time step kl D 0:1 days D 8 640 s. Iterate for
n D 1; 2; : : : .

1. Solve (10.1) fc�;n�1
s ;!n�1g 7! fvn;un; png

2. Compute wall stress � n
WS D

Z
I

j� f .vn; pn/n � e1j do

3. Update foam cells c�;n
s D c�;n�1

s C kl�0
�
1C � n

WS=�
��1

4. Compute vessel width !n D 2 � 2un2.A.tn/; tn/

First, we choose a minimum inflow velocity of "! D 0:1 cm=s. In Fig. 10.4, the
streamlines of the fluid and the deformed vessel walls at times t D 10 days and
t D 50 days are shown.



382 10 Mechano-Chemical Fluid-structure Interactions and Active Materials

Fig. 10.4 Solution after 10 days (top) and 50 days (bottom). Streamlines of the fluid and the
deformation of the vessel wall are shown

In Fig. 10.5 we show the course of different output functionals over time: the wall
stress in main stream direction on the vessel wall I that is computed in step 2. of
the iteration, the channel width !.t/ D 2�2u2.A.tn// in the middle point A.tn/ (see
Fig. 10.3), the vorticity of the solution in the L2-norm and the outflow at the right
boundary defined by

Jvort.v/ D
Z
F.t/

�
@yv1 � @xv2

�2
dx; Jout.v/ D

Z
	f ;out

v � n: (10.27)

The functional values for the Arbitrary Lagrangian Eulerian method (harmonic
and biharmonic extension) and the Fully Eulerian approach show very good
agreement. Using the harmonic extension, the ALE method broke down at t D
63:2 days due to degeneration of mesh cells, with the biharmonic extension, we
were able to get results up to t D 109:3 days.

The fully Eulerian method, on the other hand, was able to yield reliable results
until the channel was almost closed. As the inflow velocity is bounded from below
by "! D 0:1 cm � s�1 and as the fluid is incompressible, a passage must always
remain. As higher wall stresses slow down plaque growth, see (10.11), the vertical
displacement approaches a limit. However, increasing fluid-dynamical forces cause
strong horizontal deflections that finally result in a breakdown of the simulation.
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Fig. 10.5 Course of different output functionals over time during closing of channel. For small
deformations, the three different modeling approaches give similar results. Once the deformation
gets larger, the two ALE approaches with harmonic and biharmonic extensions will fail
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As the results for the ALE method with harmonic and biharmonic extension are
nearly identical until time t D 63:1 days, we will not show the harmonic variant
anymore in the following tests.

In Fig. 10.6, we present the deformed meshes at time t D 109:3 days for the ALE
approach with biharmonic mesh deformation and the fully Eulerian approach. In the
case of the biharmonic ALE approach, this was the last mesh before the calculation
broke down.

Next, we study the convergence with respect to the spatial grid size h > 0 for
both the fully Eulerian and the ALE technique. The results are shown in Table 10.1.
For the fully Eulerian approach, we use Q1 � Q1 equal-order elements and meshes
with 256, 1024 and 4096 patch elements. For the ALE approach we use Q2 � P1;dc

elements as introduced in Sect. 4.3.1. We choose slightly coarser meshes for a fair
comparison.

Fig. 10.6 Top: Biharmonic deformation close to breakdown at t D 109:3 days and zoom-in
(right). Bottom: Corresponding results using the Fully Eulerian approach on fixed meshes

Table 10.1 Convergence of
functional values at t D 50

days on three different grids
for the fully Eulerian and the
ALE approach

#patches Wall stress Width Vorticity Outflow

Euler 256 1:033 � 102 1.092 3:408 � 103 9.251

1024 1:050 � 102 1.064 3:457 � 103 9.547

4096 1:060 � 102 1.052 3:472 � 103 9.648

Extrapol. 1:074 � 102 1.047 3:479 � 103 9.700

Conv. 0.77 1.81 1.71 1.55

ALE 160 1:087 � 102 1.033 3:527 � 103 9.892

640 1:076 � 102 1.037 3:515 � 103 9.849

2560 1:073 � 102 1.038 3:510 � 103 9.834

Extrapol. 1:072 � 102 1.039 3:506 � 103 9.826

Conv. 1.87 1.49 1.26 1.52

We indicate estimated convergence rates and extrapolated
limits



10.4 Numerical Tests 385

We evaluate the functionals at t D 50 days. The functional values for the ALE
and the fully Eulerian approach converge roughly against the same values. Small
differences are due to time discretization (the time step has been chosen as 0:1 days).
Further, the implementation of the Fully Eulerianmodel is only semi-implicit, as the
domain layout during the time step tn ! tnC1 is fixed to Fn and Sn.

Furthermore, we estimated the convergence order for all functionals, see
Table 10.1. Besides the wall stress, all estimated convergence orders lie between
linear and quadratic convergence order and the ALE and the fully Eulerian
approach converge similarly. The ALE approach, however, seems to yield better
values already on very coarse grids. Furthermore, the ALE approach shows faster
convergence in the wall stress functional. The reason for this better performance is
the use of inf-sup stable Q2 elements in the case of ALE, which is not yet possible
with the parametric interface approximation scheme described in Sect. 4.5, where
stabilized Q1 � Q1 elements are utilized.

An interesting aspect from a modeling point of view is the question if the channel
closes completely or if there will remain a small layer of fluid between the vessel
walls. As discussed before, a complete closure of the channel is not possible as long
as the inflow rate "! is positive.

To study closure, we decrease the minimal inflow velocity "! from 0.1 to 0 and
the velocity inflow by a factor of 10 to

vin1 D 0:15 � .5!.t//.1 � y2/ cm=s: (10.28)

This means that the flow through the narrow part of the channel will decrease
considerably when the channel is almost closed. This has two important effects:
First, the fluid forces acting against the growth of the solid are much smaller.
Secondly, the wall stress becomes smaller which has a strengthening impact on
the solid growth in our model. Altogether, this has the effect that in our simulation
the channel closes completely at time t D 55:8 days. Of course full closure is only
possible by using the Fully Eulerian formulation.

In Fig. 10.7, we show plots of the channel width and the vorticity over time.
In contrast to the larger inflow velocity studied above, the fluid forces (e.g. the
vorticity) decrease after t � 40 days which makes the closure of the channel
possible. In Fig. 10.8, we show the last mesh obtained with the fully Eulerian
approach (t D 55:8 days) where the channel is completely closed. The ALE
calculation (with biharmonic extension) broke down at time t D 40:6 days.

These simplified simulations consider an averaged inflow velocity only. The main
mechanical forcing however is due to the pulsating blood flow. In [158] a two-
scale approach has been suggested, where effective parameters for the wall stress
are computed from isolated short-scale simulations that resolve the pulsation. It is
shown that substantial variations in plaque growth up to 20% exist.
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Fig. 10.7 Channel width and vorticity for a long-scale simulation with reduced inflow velocity.
The inflow velocity goes to zero when the channel closes. This makes the complete closure of the
channel possible

Fig. 10.8 Second test case. Fully Eulerian deformation at complete closure t D 55:8 days
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