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Foreword

Fluid-structure interactions are an emerging topic in applied mathematics. Although
computational methods have a long history in engineering applications, there is still
no comprehensive presentation from a mathematical point of view. The work on the
first manuscript on fluid-structure interactions started in the summer of 2010 along
with the design of a class on numerical methods for fluid-structure interactions at
the University of Heidelberg. A revision of this class in the winter of 2012 led to the
first presentable version of lecture notes on this topic. The extensive and positive
response to these notes was trigger and motivation for the much greater effort to
compile a complete book on models, analysis and finite elements for fluid-structure
interactions.

Research on fluid-structure interactions proceeds at an enormous pace that
exceeds the capacity for reading and writing. A fully comprehensive study on such
a topical subject will surely not be possible, but we believe that this book gives a
thorough background and survey as a start for further investigations.

Magdeburg, Germany Thomas Richter
June 2017
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Preface

Fluid-structure Interactions

Fluid-structure interactions (FSI) play an important role in different applications.
The classical aerodynamical problem of predicting the properties of a flying airplane
is a fluid-structure interaction problem, as the plane will deform under aeroelastic
forces and the deformation will alter the shape and hence the aeroelastic response of
the plane. The pulsating flow of blood in big vessels causes significant deformation
of the surrounding tissue with an extension of the vessel itself that will then alter the
flow domain and therefore the flow pattern.

These two examples are classical FSI problems with a two-way coupling
between the involved physical models: fluid flow and elastic material. Each of the
subproblems acts on the other. As this coupling is acting at the interface that is
the surface between the two subproblems fluid and solid, such problems are called
surface-coupled multiphysics problems.

Simulations involving fluid-structure interactions have a long history in technical
disciplines such as aeroelasticity or ship design. Computational methods for per-
forming such simulations are often ad hoc and based on the coupling of existing
simulation tools for the two subproblems. In fact, the state-of-the-art approach
for computational fluid-structure interactions in real-world applications consists
in the design of efficient coupling techniques that reuse available tools for the
fluid and the solid problem. A mathematical analysis of the coupled FSI-system
of equations describing the full fluid-structure interaction problem is still new. As
the two subproblems, which are the (incompressible) Navier-Stokes equations for
the fluid and an elastic solid equation for the solid, are big mathematical challenges
on their own, it is no surprise that results for the coupled problem are rarely spread.

vii



viii Preface

Scope of this Book

This book aims at giving a mathematical introduction to modeling, analysis and
simulation techniques for fluid-structure interactions. As the field of possible appli-
cations is huge and as different applications will bring along different challenges
that ask for adequate techniques each, we will focus our attention on problems
involving a very strong coupling between the two subproblems of fluid and solid. A
prototypical example is the flow of blood in blood vessels. Such problems call for
strongly coupled approaches for modeling and simulation.

The book is divided into three parts. In the first part, we will start by introducing
the basic models of continuum mechanics and give an overview of different material
laws used to describe solids and incompressible fluids. For these models and
equations, we will develop the fundamental mathematical theory that will give us
answers on the existence, uniqueness and regularity of solutions. Given enough
understanding of the two subproblems, we will be able to tackle coupled models
for fluid-structure interactions. Both problems are coupled by means of boundary
conditions on the common interface.

The first part of this book will also cover an introduction to the finite element
method and into method for temporal discretization of partial differential equations.
We start by gathering the essentials that are necessary to handle flow and structure
problem. Afterward, we turn the attention to the special needs of the coupled fluid-
structure interaction problem.

In the second part of the book, we describe two specific numerical models
for the realization of fluid-structure interaction problems. This part focuses on
monolithic formulations, where both subproblems are strongly linked and treated
as one single common set of equations. We will derive mathematical formulation
that will cover the fluid problem, the solid problem, and the interface conditions
in between. Two different approaches are considered: First, we describe the
Arbitrary Lagrangian-Eulerian approach, a well-established technique to model
fluid-structure interactions that allows for very accurate discretization schemes.
Second, we introduce the Fully Eulerian formulation of fluid-structure interactions,
a novel modeling approach that is able to cover a wide range of different application
problems. For these two approaches, we will introduce details on the discretization
in space and time. Further, we will describe advanced techniques for the solution of
the resulting algebraic systems. The complex structure of the coupled fluid-structure
interaction problem combines the difficulties of flow problems with those of elastic
structures. The resulting systems of equations are huge, lack desirable structure
(such as symmetry), and incorporate a very stiff coupling.

Finally, we will discuss some advanced topics regarding the efficient numerical
treatment of complex fluid-structure interaction problems. With the help of sensitiv-
ity analysis of the coupled problems, we will be able to design goal-oriented error
estimators that will help to significantly reduce the computational costs for large
simulations. Further, these techniques can be applied to solve simple optimization
problems with fluid-structure interactions.



Preface ix

In the last third part, we gather different applications involving fluid-structure
interactions. These applications are not necessarily real-world problems with an
engineering background, but they describe prototypical situations with special
challenges and difficulties. We start with an introduction to optimization and
parameter identification problems, where the state variable is subject to a fluid-
structure interaction problem. In this chapter we can make use of the sensitivity
analysis that has already been introduced in the concept of error estimation and
adaptivity. Next, we describe mechano chemical problems, where the fluid-structure
interaction problem is coupled to further chemical reaction problem. A prototypical
example for such problems is found in biomedical applications: the flow of blood
in vessels is a fluid-structure interaction problem, as the vessel wall is elastic. If we
consider pathological damages of the vessel tissue, we must incorporate chemical
reactions that will slowly cause an alteration of the mechanical system by material
change or material growth. This will affect the mechanics of the system and the
fluid-structure interaction problem. If we finally assume that the chemical species
that cause the reaction are transported within the blood, we are dealing with a three-
way coupled fluid-solid-chemistry problem. Finally, we will analyze fluid-structure
interaction problems with contact: if an elastic body—let it be a ball—touches
the boundary of the fluid domain, we have contact. The topology of the coupled
system changes, and we will observe that established techniques for fluid-structure
interaction problems will fail. In this last chapter, further insight is given to the Fully
Eulerian formulation.

Magdeburg, Germany Thomas Richter
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Part I
Fundamentals

In the first part of this book we will present the fundamental concepts for modeling
and simulation of fluid-structure interaction problems. Chapter 2 will present
fundamental models and equations of continuum mechanics. We will discuss
conservation laws as well as different material laws. Special focus is on the proper
handling of coordinate systems, as one of the characteristic challenges of fluid-
structure interaction problems is the motion of both subdomains of fluid and solid
problem and the different coordinate concepts Eulerian versus Lagrangian used for
their description.

The following chapter will then discuss the coupling of the two subproblems.
We analyze the physical conditions that are necessary to describe the coupling at
the common interface. Further, we analyze different techniques to overcome the
discrepancy between the different coordinate systems Eulerian and Lagrangian for
fluid and solid.

The fourth chapter in this first part recapitulates the necessary background in
discretization techniques. We will discuss discretization in time with traditional
time stepping schemes. Further we introduce temporal Galerkin schemes as modern
alternatives that allow for an easier analysis. Next, the spatial discretization with
the finite element method is introduced. We describe the special needs of saddle-
point systems that appear in all incompressible materials. Further, we gather some
facts on stabilization methods for transport dominant problems. Finally, we discuss
the discretization of interface problems, i.e. problems with an interior interface
where the equations changes is type or parameter. Here we already prepare the
discretization of fluid-structure interaction problems.



Chapter 1
Introduction

1.1 Applications for Fluid-structure Interactions

Many application problems involve the coupling of fluid-dynamics and solid-
dynamics. If a large aircraft is flying, the aerodynamical forces cause a substantial
bending of the wings. This deformation significantly alters the geometry of the
aircraft and affects its aerodynamical properties. Airborne, the tip of the wing will
be deflected upwards by up to 10 m compared to the runway position. A simulation
of the dynamics of flying planes must take this coupling into account.

If we consider the hemodynamical flow of blood in large vessels like the aorta or
the blood flow in the heart, the forces on the vessel walls will lead to a widening and
stretching of the tissue that again changes the overall geometry. Then, on the other
hand, the new geometry will call for a new flow-field.

The lubricant flow in ball-bearings takes place in a very narrow channel between
the balls and the surrounding ring. This gap can be as small as 100 nm. Enormous
pressures and forces act and will cause a deformation of the surrounding steel parts.
Steel of course is very stiff and deformation is small, but even a widening of the
channel of only 50 nm can completely change the flow channel. Under the extreme
conditions in the lubrication film, the oil reacts nonlinear on the forces, such that
non-Newtonian material laws must be considered.

These problems have different characteristics, leading to different dynamics of
the coupled system with different demands to the describing models and to the
computational approaches. First of all, aerodynamical problems are in the regime of
high Reynolds numbers with turbulent flow patterns and strictly three-dimensional
character. The two other problems take place in the laminar regime. Furthermore,
blood can be modeled as incompressible fluids, whereas air—at high velocity—or
oil—at extreme pressures—must be treated as compressible. Numerical approaches
for laminar and turbulent flows strictly differ. Here and in this context, we will deal
with laminar problems only.

© Springer International Publishing AG 2017
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4 1 Introduction

Another striking difference between these problems is the type of material in
the two phases, fluid and solid. The density of air is about �air � 1 kg � m�3, the
density of water, blood or oil approximately �water � 1000 kg � m�3. Aluminum,
as an important material in aircraft design has a density of 2700 kg � m�3, steel a
density of about 7850 kg � m�3 and biological tissue about �tissue � 1000 kg � m�3.
We will see that the ratio of the masses plays an important role in the dynamics of the
coupling between an elastic solid and an incompressible fluid. Approaches that may
work very efficiently for coupling the flow of air interacting with steel �air=�steal �
0:00013, may cease work, when used to describe a coupled configuration of blood
and biological tissue with �blood=�tissue � 1. This effect of instability is called added-
mass effect.

1.2 Dynamics of Fluid-structure Interactions

The dynamics of fluid-structure interactions are caused by the interplay of the two
different phases, fluid and structure. Physically, the coupling is usually realized by
three different principles. First, as a geometric condition, the common domain of
fluid and solid—we always call it ˝—is divided into the fluid part F and the solid
part S. These two domains do not overlap F \ S D ; and they are divided by
the interface I D @F \ @S, such that ˝ D F [ I [ S. The domains can change
over time ˝ 7! ˝.t/, F 7! F.t/ and S 7! S.t/, but the geometric condition will
always hold, e.g. S.t/ \ F.t/ D ; and ˝.t/ D F.t/ [ I.t/ [ S.t/, where I.t/ D
@F.t/ \ @S.t/. Usually, no holes will appear between fluid and structure. There are
of course models, e.g. cavitation, where exactly such a thing has to be considered.
The second coupling condition is the kinematic condition: the velocity of the fluid
at the interface I.t/ is the same, as the velocity of the solid at the interface. This
means that the fluid will stick to the boundary, which is the moving interface. This
model is similar to the no-slip condition in viscous fluid-dynamics. The fluid will
simply stick to the wall which now might move. Alternative conditions are possible.
In the inviscid regime, e.g. when considering problems of aeroelasticity, the no-
slip condition can be relaxed to a non-penetration condition that only prescribes the
motion in normal direction: the fluid will not enter the solid (and it will not move
apart to open holes). Finally, the third dynamic condition prescribes a balance of
normal stresses at the boundary in terms of actio et reactio.

These three conditions together mainly determine the dynamics of the coupled
problem. One of the big challenges connected to fluid-structure interactions is the
motion of the underlying domains. We have to deal with equations of fluid- and
solid-dynamics on moving domains. In structure mechanics, this is typical, as the
motion of the solid is exactly the unknown solution. In fluid-dynamics one usually
deals with fixed domains. Moving domains only play a role in certain applications,
like large scale ocean or atmospheric dynamics, where the rotation of the earth,
the underlying domain, has to be taken into account. Here, in addition to dealing
with moving domains, we need to face the fact that the motion is not pre-described,
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but unknown part of the coupled solution. Section 5.1.1 and Chap. 11 will focus on
an analysis of the nonlinear and non-stationary dynamics of coupled fluid-structure
interaction problems.

1.3 Mathematical Challenges

The mathematical challenges in the analysis of fluid-structure interactions are
manifold. Even for the governing equations of the two sub-systems, the Navier-
Stokes equations in fluid-dynamics and conservation equations for nonlinear hyper-
elastic materials, many theoretical questions are still not answered. We can show
existence and uniqueness of solutions only for regular data and only locally in time.
Without a full understanding of these subproblems, it is obvious that we cannot give
complete results for the coupled system of equations. It will show that the main
mathematical problem of coupled fluid-structure interactions will come from the
motion of the domains and from the realization of the coupling conditions. While
the (incompressible) Navier-Stokes equations are of parabolic type, the structural
equations are of hyperbolic type. We will see that the notation of the kinematic
coupling condition that glues velocities of fluid and solid together, is not well-posed.
Furthermore, by the motion of the fluid domain (which follows the deflection of
the structural domain) it is easily possible to lose regularity and smoothness of the
interface, where all the coupling takes place.

It is well beyond the scope of this book to give new results concerning the
mathematical theory of existence and uniqueness of the underlying equations.
Instead, we will provide the reader with an overview of topical results and research
that is currently under investigation.

1.4 Partitioned Approaches

Numerical simulations of fluid-structure interaction problems have a long history.
Early approaches are based on the independent experience with problems of fluid-
dynamics and structure-dynamics, which are well-understood. Existing simulation
tools for these two types of problems are well developed and very efficient. In
industrial applications they are established and used on a daily basis. It is not
astonishing that this long experience is also adapted to the coupled configuration.
This leads to the concept of partitioned approaches for fluid-structure interactions.
Existing methods for handling fluid- and structure-dynamical problems are coupled
by means of an outer control. This outer coupling is to be taken literally and extends
to the coupling of two completely different software-frameworks used for the two
subproblems: efficient finite volume schemes for fluid-dynamics and state of the
art finite element schemes in solid dynamics are connected by means of boundary
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condition and traction forces. Such an ad hoc approach will guarantee quick success
and allows to treat complex application problems.

The basic approach for coupling is build on temporal discretization of the two
problems by simple time stepping schemes. For approaching a new time step, one
has to solve both subproblems for fluid and solid and one has to take into account
the coupling conditions. These three tasks are fully coupled and each one has an
effect on the others: motion of the solid changes the geometry and therefore the
fluid-domain (geometric condition). Motion of the interface prescribes a motion of
the attached fluid (kinematic condition). Modification of the fluid-domain will alter
the flow field and hence generate new forces on the interface (dynamic condition).

Most basic partitioned methods for fluid-structure interactions can be regarded as
semi-implicit time stepping schemes. Instead of performing a coupled solution step
for fluid, structure and interface conditions, one first solves the one problem while
neglecting the other and then takes a step of the second problem. Let us assume that
f n and sn are the states for fluid and solid at time tn and that ˝n, Fn and Sn is the
domain partitioning. Then, a simple partitioned scheme could consist of performing
a step of the solid problem, driven by the fluid’s normal stresses at time tn

S. f n; sn;˝n/ 7! snC1: (1.1)

This new solid state snC1 includes a prediction for the deformation, i.e. the shape
of the domain ˝nC1, at time tnC1. Furthermore, by snC1 and sn we can estimate the
velocity of the interface. Using this interface velocity as boundary condition for the
fluid’s velocity, we can perform a step of the flow problem on the predicted domain
˝nC1

F. f n; sn; snC1;˝nC1/ 7! f nC1: (1.2)

Such weakly coupled partitioned schemes are very easy to implement, as they only
require the successive solution of the two different subproblems and the possibility
to modify the fluid-domain during the simulation. In particular in aeroelasticity,
partitioned schemes are widely used.

These simple schemes cannot guarantee a solution of the fully coupled problem.
In each of the two sub-steps, one focuses on one problem only and one takes
only parts of the coupling conditions into account. There will be a splitting error
in the interface condition which is at least as large as the time step size. For
many applications, this simple approach is furthermore not stable and may require
vanishing time step sizes to show convergence at all.
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A first step towards an accurate and controllable solution of the coupled problem
is to iteration the two solution steps (1.1) and (1.2) until convergence is reached.
Denoting the solution of (1.1) snC1;.0/ and the solution of (1.2) f nC1;.0/ we iterate for
i D 1; 2; : : :

S. f nC1;.i/; snC1;.i/; ˝nC1;.i// 7! snC1;.iC1/;˝nC1;.iC1/;

F. f nC1;.i/; snC1;.iC1/;˝nC1;.iC1// 7! f nC1;.iC1/;
i D 1; 2; : : :

This iteration is repeated, until convergence is reached. Strongly coupled partitioned
schemes solve the fully coupled fluid-structure interaction problem. For some
applications however—in particular if the added mass effect acts—many sub-
iterations of very small time steps can be required.

There exists vast literature on the development of acceleration schemes for
strongly coupled partitioned iterations and their analysis. Most real-world appli-
cations nowadays use partitioned solvers. This is partially due to the effect that
partitioned schemes allow for the use of highly tuned and efficiently implemented
software frameworks for the two subproblems. Partially the success of this approach
must be attributed to the necessity of reusing existing tools.

1.5 Monolithic Models and Finite Element Discretizations

From a mathematical viewpoint, partitioned approaches are not satisfying. First
and most important: there exists no complete description of the coupled problem
that includes fluid-problem, solid-problem and the interface conditions. Instead, the
coupled problem is replaced by an algorithm. Without a fully coupled formulation of
the complete problem it will never be possible to design discretization schemes that
are fully implicit. For reasons of stability and to be allowed to use large time steps,
this however is highly desirable. Having a fully coupled—we call it monolithic—
model for the whole problem, we can furthermore use strongly coupled solution
schemes like Newton linearization, multigrid or Krylov subspace methods for the
complete problem without the need to sub-iterate between fluid and solid.

The derivation of monolithic models will be the first important task of this
book. The main difficulty will be the realization of the coupling conditions and
in particular mastering the moving domains. Once we have derived monolithic
variational formulations of the coupled problem, we will be able to use all
the powerful techniques of Galerkin methods, like simple spatial and temporal
discretization, a priori and a posteriori error analysis and strongly coupled solution
methods for the discrete variational problems.

For deriving variational monolithic models, we must overcome the difficulty
of different coordinate frames usually used to describe the two subproblems. In
this book, we follow the concept of domain mappings to bring the two different
systems together. The Arbitrary Lagrangian Eulerian coordinate framework has
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been introduced in the seventies of the last century to work with flow problems on
moving domains [120, 192, 202]. It consists of defining a reference configuration OF
and a mapping Tf .t/ W OF ! F.t/ that captures the motion of the fluid-domain. The
reference domain OF is called arbitrary, as it does no necessarily (it usually does
not) have any physical meaning. Tf .t/ does not describe the mapping between the
Lagrangian system and the Eulerian current system. Instead, OF is a fixed domain that
is somewhere in between the Eulerian and the Lagrangian system. As an example,
one can consider the observation of a car that is driving next to the own car at same
speed. Viewing through the side window, the neighboring car appears fixed. This
viewpoint is neither the Eulerian, where the car would move, or the Lagrangian,
where we would follow the air-particles. If such a reference domain OF fits to
the Lagrangian reference system of the solid S (as it does for the car example)
and if the mapping Tf .t/ is such that it follows the motion of the interface, the
Arbitrary Lagrangian Eulerian (ALE) framework is a simple way to transform the
coupled fluid-structure interaction problem into a system that is fixed in space and
time. While S is—at all times—the Lagrangian framework, OF is without physical
meaning.

By the transformation onto the reference system, all problems can be formulated
on fixed domains. The interface between solid S and fluid OF in fixed reference state
will not move any more. This comes at the price of a transformation of the Navier-
Stokes equations. As the motion of the domain cannot simply disappear, it enters as
additional nonlinearity and as additional transport terms, comparable to the Coriolis
effect in large scale flows of the ocean on the rotating earth. In ocean simulations,
the computational domain is fixed and the rotation of the earth enters the equation
as a Coriolis term.

The ALE framework is widely used for fluid-structure interactions. Not only to
derive monolithic formulations, but also as a simple way to realize the coupling
conditions in partitioned approaches. The success of the ALE method strongly
depends on the quality, i.e. the regularity, of the mapping Tf .t/. If this mapping
loses its regularity, the problem of the transformed Navier-Stokes equations will not
longer be valid. ALE methods often fail, if the motion of the domains (in particular
of the fluid domain) gets very large or if it is very fast. This can easily be explained
using an extreme yet simple case: we want to describe the interaction of an elastic
(or rigid that does not matter for this discussion) ball with a surrounding fluid. The
ball is supposed to be more dense, such that it falls down. Realizing this problem in
ALE coordinates requires a reference system OF and the ALE map Tf .t/ W OF ! F.t/
mapping onto the current configuration. At some point, the ball will get close to the
bottom boundary of the fluid-domain and may even touch it. Then, the topology
of OF and F.t/ differs. While OF has a hole (the ball), the domain F.t/ at contact
is simply connected, as the ball is now longer a hole in the domain, if it touches
the exterior boundary. Such a mapping Tf between domains of different topology
cannot be differentiable, not even continuous and the ALE formulation will fail.

Hence, we will introduce a second monolithic model for fluid-structure inter-
action that goes the other way around: the fluid-problem will be untouched and
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reside in the Eulerian current system on the moving domain F.t/. Instead, we will
introduce a mapping Ts.t/ that maps the Lagrangian solid reference system to the
Eulerian current system Ts.t/ W S ! S.t/. The conceptual difference between the
ALE map Tf and the Lagrangian-Eulerian map Ts of the solid problem is its physical
background: Tf maps an artificial reference domain onto the current configuration.
Ts maps between the Lagrangian and the Eulerian configuration. Both of them
are physical and the elastic solid problem is well-posed in both configurations.
The Lagrangian framework is usually considered, as it is more convenient for
carrying out computations. The real world however is Eulerian. Regardless of the
deformation or motion of the solid, both frameworks will be equivalent and can
be used for describing the coupled problem. Coupling of fluid and solid will now
take place on the moving interface I.t/ D @F.t/ \ @S.t/. This concept of Fully
Eulerian Coordinates for fluid-structure interaction sounds strikingly simple and
convincing. However, there are reasons for its very late introduction by Dunne [126]
in 2005, as it allows for a simple mathematical description, but brings along plenty
of difficulties. Most important, it requires to deal with moving domains and with
a moving interface. While the interface location is fixed in the ALE method,
its location is not even a priori known—but it has to be captured—during the
simulation. Furthermore, convergence of all approximation techniques like finite
elements or finite differences worsens, if interfaces or boundaries are not correctly
approximated. The possibility to describe problems with arbitrarily large motions
and deformations in a variationally coupled monolithic formulation comes at a high
price.

Even if the focus of this book is on monolithic models, as they allow for
more rigorous analysis of discretization and solution techniques, we will frequently
discuss partitioned methods. An efficient numerical solver for a monolithic model
will often make use of partitioned techniques.

1.6 Outline

The book is divided into three parts. The first one, Fundamentals deals with the
basic models of fluid- and solid-mechanics, with the theory of coupling and with
basic discretization techniques. The second part, Realizations details two monolithic
models for fluid-structure interactions, the ALE approach and the Fully Eulerian
Formulation. Further, we specify discretization and solution techniques for these
two formulations. In the third part Applications we cover advanced topics as
contact problems, interaction to chemistry or optimization problems.

Chapter 2 gives an overview of the models for fluid- and structure-dynamics
that are involved in coupled fluid-structure interactions. We highlight the concept of
continuum mechanics in different coordinate frameworks and configurations. Where
it helps the understanding, we provide proofs for the fundamental theorems. Readers
familiar with these basics can directly jump to the following Chap. 3. This overview
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is too short for a comprehensive analysis, we however mention the main results and
note plenty of literature for further reading.

In Chap. 3 the coupling of the two subproblems is detailed. We describe the
different coupling conditions and their theoretical and practical implications. Here,
we also derive variational formulations for coupled fluid-structure interactions in
the two different coordinate frameworks: Arbitrary Lagrangian Eulerian and Fully
Eulerian.

We continue in Chap. 4 with introducing the finite element method and tech-
niques for discretization in time. After some basics on the discretization of elliptic
and parabolic problems, followed by a discussion of saddle-point problems like
the incompressible Navier-Stokes equations or conservation laws of incompressible
solids, we quickly proceed to the special efforts of fluid-structure interactions. Most
of this chapter is generic and does not only apply to fluid-structure interactions.

In Chaps. 5 and 6, we focus on the realization of the two monolithic models
considered in this book, fluid-structure interactions in Arbitrary Lagrangian Eulerian
and in Fully Eulerian coordinates. For both formulations we discuss details of the
numerical realization, discretization in space and time, questions of linearization
and discuss the solution of the resulting problems.

Chapter 7 is devoted to techniques for the solution of the very large linear systems
arising from discretization and linearization of the coupled fluid-structure interac-
tion problems. These large and complex problems lack any desirable structure like
symmetry or positivity and are very ill-conditioned. To derive efficient numerical
solvers, it will be necessary to abandon the strict monolithic character and to adapt
ideas from partitioned approaches.

Advanced techniques for local mesh refinement, as a mechanism for reducing the
dimension of the discretized problems are described in Chap. 8. In particular three
dimensional problems quickly get huge. By introducing a posteriori error estimators
for construction of efficient finite element meshes, we can strongly reduce the
dimension of the discrete problem thus the time to solution.

The third part comprises four chapters with different advanced techniques. We
call this part Applications, although we do not present industrial applications but
discuss relevant configurations, that go beyond the scope of standard approaches. In
Chap. 9 we start with optimization problems that involve fluid-structure interactions
as constraint. We describe gradient based methods that will require the assembly
of sensitivity information. Next, in Chap. 10 we tackle coupled mechano-chemical
fluid-structure interaction problems. Chemistry will enter as a third field. In a
prototypical problem we model the growth of plaques in blood vessels. In Chap. 11
we study the nonlinear dynamics of a fluid-structure interaction problem and will
discuss the special properties that arise from the coupling of the non-stationary
Navier-Stokes equations with the elastic solids. Finally, Chap. 12 will provide a
method for handling fluid-structure interaction problems that include contact. Here,
we make full use of the Fully Eulerian formulation. This last chapter is a guest article
of Stefan Frei [151], who contributed the essential analysis and derived efficient
numerical techniques for an accurate discretization of fluid-structure interactions in
the Fully Eulerian formulation.



Chapter 2
Models

2.1 ContinuumMechanics

In this chapter, we derive the equations that describe the dynamics of fluids and
solids. Matter is composed of molecules, atoms and smaller particles that all interact
with each other. A description of the dynamics of these micro-structure is possible
by fundamental physical laws. Such a particle centered view-point is however not
feasible, if large physical objects are considered that consist of many atoms. To
describe every particle in one liter of water, more than 1025 molecules must be
considered. A description of every single molecule–or even every atom or subatomic
particle–in a large scale hydrodynamical problem like the flow of water around a
ship is completely out of bounds.

Instead, we consider a continuum approach for the description of the large scale
dynamics. By a continuum, we denote a volume V.t/ � R3 of (different) particles.
Instead of describing every single particle, we only observe some few averaged
properties of the complete volume. These properties are all considered as local
density distributions. As example, we will denote by v.x; t/ the average velocity of
whatever particle may be in position x 2 V.t/ at a given time t. Usually we assume
that all physical quantities possess some smoothness. Depending on the situation,
we will ask for integrability, continuity or differentiability.

In the following we will derive fundamental equations that describe the interplay
of these averaged quantities. We will distinguish between basic physical principles,
the conservation principles and material laws. While the conservation principles are
based on first principles and we think of them as exact, material laws are usually
simplifications, idealizations and derived by observation and measurements.

© Springer International Publishing AG 2017
T. Richter, Fluid-structure Interactions, Lecture Notes in Computational
Science and Engineering 118, DOI 10.1007/978-3-319-63970-3_2
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2.1.1 Coordinate Systems

In the following, by V.t/ � R3 we denote a material volume. We assume that V.t/
is entirely occupied by some material. This material has physical properties like
density � W V.t/ ! R, velocity v W V.t/ ! R3, which is a three dimensional
vector field, temperature T W V.t/ ! R or pressure p W V.t/ ! R. We assume
that the volume is moving. By t0 2 R we denote the initial time and we observe
the volume for t � t0. By V0 WD V.t0/ we denote the reference configuration of the
volume. Often, t0 is set arbitrarily, but we usually think of a system that is at rest and
unstressed, e.g. a container filled with resting fluid or an elastic obstacle that is not
deformed and where no stresses act. At time t � t0, we denote by V.t/ the current
configuration.

The volume V.t/ consists of particles, and we call OV WD V0 the material domain.
For every particle Ox 2 OV , we denote by x.Ox; t/ 2 V.t/ the location of the particle at
time t � t0. We assume that the path fx.Ox; t/; t � t0g � R3 is continuous and that no
two different particles Ox; Ox0 2 OV have the same position at any time t � t0:

x.Ox; t/ D x.Ox0; t/ , Ox D Ox0:

The mapping OT.Ox; t/ WD x.Ox; t/ is therefore invertible and we define the inverse
mapping as OT�1.x; t/ WD Ox.x; t/. By Ox.x; t/ we denote that particle Ox 2 OV that at time
t � t0 takes position x 2 V.t/.

In a continuum, we assume that no particles are destroyed or created such that
the moving volume V.t/ is given by all coordinates x 2 R3 that are occupied by a
particle Ox 2 OV:

V.t/ D fx.Ox; t/ 2 R3; Ox 2 OVg:

Figure 2.1 shows this fundamental configuration.

V̂ = V (0) V (t2)V (t1)

x(x̂, t2)x̂
x(x̂, t1)

û(x̂, t1)

û(x̂, t2)

Fig. 2.1 The Lagrangian reference system. We describe the path of particles Ox 2 OV over time.
The reference volume OV takes different current configurations V.t/ at different times. The particles
within V.t1/ are the same particles as in V.t2/ or in OV D V.t0/
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We study the motion of volumes and the first fundamental property is the
deformation of a particle Ox 2 OV . We define the deformation Ou.Ox; t/ as

Ou.Ox; t/ D x.Ox; t/ � Ox; (2.1)

and its material velocity Ov.Ox; t/ as

Ov.Ox; t/ WD dtx.Ox; t/ D dt Ou.Ox; t/:

This particle system centered viewpoint for describing the dynamics of a continuum
V.t/ is denoted as Lagrangian coordinate system or Lagrangian framework. In the
Lagrangian system, we observe particles Ox 2 OV and follow their paths x.Ox; t/ D
Ox C Ou.Ox; t/ over time. A Lagrangian viewpoint is the natural approach for problems
in solid mechanics, where the particles in the reference system are closely linked to
each other and where forces are related to the relative deformation of particles to
each other (think of a spring). Considering the dynamics of elastic solids, a volume
comes back to the reference configuration, if the system is free of external forces

OV D V0
Ox D x.Ox; 0/

external forces act����������! V.t/
x.Ox; t/

absence of external forces��������������! V.t1/ D OV
Ox D x.Ox; t1/

Deformation and velocity can also be defined in the current configuration
V.t/. By

x D Ox C Ou.Ox; t/ , u.x; t/ WD Ou.Ox; t/ D x � Ox

we have an expression u.x; t/ for the deformation at the spatial location x 2 V.t/.
By u.x; t/ we describe the deformation of a particle in location x 2 R3 at time
t, we however do not know or determine which individual particle Ox we have in
mind. If we describe all quantities in the current configuration V.t/ and if we are not
interested in single particles at all we do not even need the concept of a reference
domain.

The difference between both approaches is the viewpoint: where Ou.Ox; t/ denotes
the deformation of the particle Ox at time t, by u.x; t/ we denote the deformation
of whatever particle Ox happens to be at location x at time t. If at time t it holds
x D x.Ox; t/, both concepts of deformation describe the same configuration. If we
base the description of the continuum on the spatial coordinates x 2 V.t/, we speak
of the Eulerian framework, where the focus is set on a spatial domain V � R3

and all points x 2 V , see Fig. 2.2. This viewpoint is natural for fluid-dynamical
problems. We consider the estimation of the drag-coefficient of a car. Here, the
attention is on the flow around the car and we measure forces on the surface of the
car, irrespective of the actual particle that at time t � 0 interacts with the car. In
fluid dynamics, we want to describe velocity and pressure at spatial points x 2 V .
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V (t)

V
x

u(x, t2)
u(x, t1)

x − u(x, t1) = x̂1x̂2 = x − u(x, t2)

Fig. 2.2 The Eulerian reference system. We observe spatial coordinates x 2 V, where V � R3

is a fixed view. Particles Ox may enter the domain V at a given time and leave it at another time.
We observe properties of particles at certain times and locations, we however do not describe and
follow the course of individual particles

Usually, we are not interested in what particle interacts with the car and where this
particle comes from. Fluids like air or water do not have a memory. They behave in
the same way regardless of their history. This of course is not true for all liquids.
Material like polymers or rubber (which can be described as a fluid, if it is hot)
actually do have a memory. Such viscoelastic fluids however are out of the scope of
this book.

The Eulerian velocity v.x; t/ is defined as the velocity in position x 2 R3 at time
t and given as

v.x; t/ D @tu.x; t/ D @t Ou.Ox; t/ D Ov.Ox; t/:

In the Eulerian viewpoint, we do not describe, which particle Ox takes this position.

2.1.2 Deformation Gradient

In continuum mechanics, we study the behavior of moving and deforming continua
V.t/ over time. In the following we describe the relative change of positions x.Ox; t/
and x.Oy; t/ of two particles Ox; Oy 2 OV in a moving continuum. Relative change of
location is called strain, and strain will show to be the most fundamental quantity
that causes stress within the material. By stress, we denote the internal forces
between the neighboring particles in a continuum.

Let Ox 2 OV and Oy 2 OV be two particles that are infinitesimally close to each
other, i.e. jOy � Oxj ! 0. Under deformation, these two particles have the position
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x̂
x

ŷ

y

V (t)

|a|
â = ŷ − x̂

V̂

û(ŷ, t)

|a| =
√

âTCâa = F̂â

û(x̂, t)

Fig. 2.3 Transformation of infinitesimal line segment Oa to a with jOaj ! 0. Deformation gradient
OF D I C Or Ou and squared length change jaj2 D OaT OCOa indicated by the right Cauchy-Green tensor
OC D OFT OF

x D Ox C Ou.Ox/ 2 V and y D Oy C Ou.Oy/ 2 V . We measure the change in position y �x in
V with respect to Oy � Ox in OV , see Fig. 2.3. By first order Taylor expansion we deduce

y � x D Oy C Ou.Oy/� Ox � Ou.Ox/

D Oy � Ox C
dX

iD1
O@iu.Ox/ � .Oy � Ox/C O.jOy � Oxj2/

D Oy � Ox C Or Ou.Ox/.Oy � Ox/C O.jOy � Oxj2/;

(2.2)

where by jOxj D
qPd

iD1 Ox2i we denote the Euclidean norm, by Ox � Oy D Pd
iD1 Oxi Oyi

the Euclidean scalar product and by O@i the partial derivative with respect to Oxi in the
Lagrangian coordinate system. Considering the relative change in position, it holds

y � x

jOy � Oxj D ŒI C Or Ou.Ox/� Oy � Ox
jOy � Oxj C O.jOy � Oxj/: (2.3)

We define

Definition 2.1 (Deformation Gradient) Let Ou be a differentiable deformation
field in the material volume OV . The deformation gradient

OF.Ox; t/ WD I C Or Ou.Ox; t/;

denotes the local change of relative position under deformation.
The deformation gradient is the fundamental measure in structure dynamics.

Lemma 2.2 (Determinant of the Deformation Gradient) Let OV be a reference
volume and Ou W OV ! Rd be a differentiable deformation field. The determinant of
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the deformation gradient OJ WD det. OF/ denotes the local change of volume:

jV.t/j D
Z

OV
OJ d x:

Proof It holds by the transformation theorem

jV.t/j D
Z

V.t/
1 d x D

Z

OV
det.I C Or Ou/ dOx D

Z

OV
OJ dOx:

ut
The deformation gradient OF applies to the Lagrangian viewpoint. For an Eulerian

description in V.t/, we can define the inverse deformation gradient F in a similar
way. For two spatial coordinates x; y 2 V belonging to particles Ox and Oy in OV it holds

Oy � Ox
jy � xj D F.x/

y � x

jy � xj C O.jy � xj/;

with the inverse deformation gradient F.x; t/ D I � ru.x; t/. It holds F D OF�1
.

Very often, it will be necessary to rapidly switch between different viewpoints
on the same physical problem. Sometimes, it is appropriate to consider the material
centered reference domain OV , while sometimes the Eulerian viewpoint of the
current configuration V.t/ is better suited. Usually, we denote all entities in the
material system with a hat “ O� ” and use the same notation without the hat for the
Eulerian notation. Every basic property like velocity and deformation has a Eulerian
counterpart, e.g. v.x; t/ D Ov.Ox; t/ and u.x; t/ D Ou.Ox; t/, where for Ox and x at a given
time t � t0 it always holds x D Ox C Ou.Ox; t/. When referring to derivatives of these
basic quantities, a simple “ru D Or Ou00 is usually wrong. Instead, we need to derive
rules to map between both coordinate frames:

Lemma 2.3 (Transformation Between the Reference and the Current Con-
figuration) Let I D Œ0;T� be a time interval, OV be a reference domain and
Ou 2 C1.I � OV/3. We assume that T WD id COu defines a C1-diffeomorphism between
OV and

V.t/ D fOx C Ou.Ox; t/; Ox 2 OVg:

Let Of 2 C1.I� OV/ and f .x; t/ D f .x.Ox; t/; t/ D Of .Ox; t/ be its counterpart in the current
configuration. It holds

OrOf D OFTrf (2.4)

and

dt f D dt Of ; @t f D @t Of � OF�T OrOf � Ov: (2.5)
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Let Ow 2 C1.I � OV/3 be given with counterpart w.x; t/ D Ow.Ox; t/. It holds

Or Ow D rw OF: (2.6)

Proof For the spatial derivative of f .x; t/ it holds with x.Ox; t/ D Ox C Ou.Ox; t/:

O@i Of .Ox; t/ D O@if .x.Ox; t/; t/ D
X

j

@jf .x; t/O@ix
j.Ox; t/ D

X

j

@jf .x; t/ OFji:

Hence

OrOf D OFTrf :

Then, for a vector field w D .wi/i it follows

. Or Ow/ij D O@j Owi D
X

k

@kwi
O@jx

k.x; t/ D .rw/ik OFkj D .rw OF/ij

For the total time derivative it holds with @tx.Ox; t/ D Ov.Ox/ D Ov.x/

dt f .x; t/ D @t f C rf � v: (2.7)

Then, with Ox D Ox.x; t/ D x � u.x; t/ and using (2.4):

dt Of .Ox; t/ D dt f .x.Ox; t/; t/ D @t f C rf � @tx.Ox; t/ D @t f C OF�T OrOf � Ov:

Finally, the last results follows with (2.7). ut

2.1.3 Strain

Strain is defined as the deformation within a body relative to a reference length.
Fixed body rotations or translation undergo no strain, as the relative positions of all
particles is kept constant. Strain will be the basic quantity used to describe stresses in
solid mechanics. A simple model is a spring, where change of length—the strain—
will be proportional to a force.

Let Oa D Oy � Ox be the vector of a line-segment between the two points Ox; Oy 2 OV .
Then, given a deformation field Ou W OV ! R3, let x D Ox C Ou.Ox/ and y D Oy C Ou.Oy/ and
set a WD y � x. It holds with (2.3) that

a D y � x D OF.Ox/Oa C O.jOaj2/;
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and the length of jaj is given as

jaj D
q
. OFOa; OFOa/C O.jOaj3/ D

q
.OaT ; OFT OFOa/C O.jOaj2/:

For an illustration, see Fig. 2.3. By OC D OFT OF we denote the right Cauchy-Green
tensor which is also denoted as the Green deformation tensor. This tensor is
symmetric and positive definite, as

. OCOa; Oa/ D . OFOa; OFOa/ D k OFOak2 > 0 8Ox ¤ 0;

and it describes the (squared) length scaling of a line-segment in direction Oa D Oy� Ox.
A further commonly used strain measure is the Green-Lagrange strain tensor OE WD
1
2
. OC� I/ D 1

2
. OFT OF� I/ that measures the (squared) length change of a line-segment

Oa D Oy � Ox under deformation a D y � x:

1

2

�jaj2 � jOaj2� D 1

2

�
OaT OCOa � OaT Oa

�
C O.jOaj3/

D OaT

�
1

2
. OFT OF � I/

�
Oa C O.jOaj3/:

(2.8)

The tensors OC D OFT OF and OE D 1
2
. OC � I/ are nonlinear functions in the

deformation Ou:

OC D I C Or Ou C Or OuT C Or OuT Or Ou; OE D 1

2

� Or Ou C Or OuT C Or OuT Or Ou
�
:

Given a very small variation in deformation, i.e. j Or Ouj � 1, one sometimes uses
linearization of the strain tensors as an approximation:

c D I C Or Ou C Or OuT
; " D 1

2

� Or Ou C Or OuT
�
:

These approximations can be good approximations under certain conditions. One
however has to be careful, as having a small deformation Ou is not a sufficient
condition for this linearization.

The tensors OF, OC, OE and the linearized strain tensor " all refer to the Lagrangian
material coordinate system. They are called material strain tensors. Sometimes, we
need to express strain in the spatial coordinate system, directly on the current frame
V.t/. Hence let x; y 2 V.t/ be two spatial coordinates at time t � t0, spanning the
line-segment a D y � x. By Ox; Oy 2 OV we denote the material points corresponding to
this line-segment. These span the material line-segment Oa D Oy � Ox. Similar to (2.3),
but using the Eulerian notation u.x; t/ D Ou.Ox; t/ we get

Oy � Ox D y � u. y/� .x � u.x// D ŒI � ru.x/�. y � x/C O.jy � xj2/:
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By F.x/ D I � ru.x/ we denote the inverse deformation tensor. It holds F.x/ D
OF.Ox/�1 for x D OxCOu.Ox/. F.x/ is the deformation gradient in the current configuration
and it acts on the spatial coordinate system. With help of F D I � ru we can
immediately analyze length changes in the spatial system. Let a D y � x and Oa D
Oy � Ox. It holds

jOaj2 D .Fa;Fa/C O.jaj3/ D aTFTFa C O.jaj3/ D aT OF�T OF�1
a C O.jaj3/:

The tensor b�1 WD OF�T OF�1 D FTF is the inverse of the left Cauchy-Green tensor b

b D OF OFT
:

As OC, b is symmetric positive definite. Finally, we can define the spatial Eulerian
counterpart e D 1

2
.I � F�TF�1/ to the Cauchy-Green strain tensor OE. By (2.8), it

holds

1

2

�jaj2 � jOaj2� D OaT OEOa C O.jOaj3/;

and with

OaT OEOa D aT OF�1 OE OF�T
a C O.jOaj3/;

we introduce

e WD 1

2

�
I � FFT

� D 1

2

�
I � OF�1 OF�T

�
D OF�1 OE OF�T

the symmetric Euler-Almansi strain tensor e that enables us to relate length changes
to the Eulerian line segment a:

1

2

�jaj2 � jOaj2� D aTea C O.jaj3/:

If for a body OV it holds OC D I it follows that OE D 0, and no relative changes in
the position of material points Ox and Oy occur. Lengths and angles are maintained. A
material body that can only undergo motion with OE D 0 is called a rigid body.

Remark 2.4 (Right Cauchy-Green or Green-Lagrange Strain Tensor) We have two
different strain measures at hand. The right Cauchy-Green strain tensor OC and the
Green-Lagrange strain tensor OE. Both are firmly linked and can be used to describe
strains caused by deformation. For describing material laws, we will derive models,
that characterize the materials reaction on strain. Most simple models will assume
a linear dependency between strain and stress: if no strain is given, no stress is
induced. Here, the Green-Lagrange strain tensor OE is the better basis, as OE D 0

denotes a no-strain condition and a linear function f . OE/ can be consulted to model
the strain-stress relationship.
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2.1.4 Rate of Deformation and Strain Rate

The strain tensor is a fundamental quantity in solid mechanics, where we assume
that a finite force will cause a finite deformation. An ideal spring will linearly
react on external forces by some finite extension, which directly refers to strain.
In fluid-mechanics however finite forces can lead to infinite deformation. A river,
which is driven by the constant gravity force causes infinite strain, although the
force is bounded. Here it is not the deformation and the deformation gradient that
is of interest; but it is its temporal variation that serves as key quantity to model
the internal forces (stresses) of the material. We already discussed that for fluid-
dynamical observations, the Eulerian viewpoint is more meaningful. Hence we will
derive a measure for the rate of strain in the current system V.t/.

By Ox; Oy 2 OV we denote two material points spanning the line-segment Oa D Oy � Ox.
We follow their positions x.t/ D Ox C Ou.Ox; t/ 2 V.t/, y.t/ D Oy C Ou.Oy; t/ 2 V.t/ and
the resulting line-segment a.t/ D y.t/ � x.t/ in the current configuration V.t/. With
a.t/ D OF.t/Oa it holds

@ta.t/ D @t OF.t/Oa; (2.9)

and for the deformation gradient OF.t/ D I C Or Ou.t/ we get

@t OF D @t Or Ou D Or Ov:

where we assumed sufficient regularity to change the order of derivatives. By Or Ov
we denote the material velocity gradient. The material velocity gradient Or Ov.Ox; t/
denotes the spatial change of the velocity as given in the Lagrangian material
system. The spatial velocity gradient rv.x; t/ refers to the spatial change of the
velocity of whatever particles are at location x at time t. For Ov.Ox/ D v.x/ with
x D x.Ox/ D Ox C Ou.Ox/ it further holds

@t OF D rv Orx D rv OF:
Then, to continue with (2.9)

@ta.t/ D rv OFOa D rva.t/;

and the rate of length change is given by

@tja.t/j2 D .rva.t/; a.t//C .a.t/;rva.t// D 2

�
1

2
.rv C rvT/a.t/; a.t/

�
:

Definition 2.5 (Strain Rate Tensor) By

P".x; t/ D 1

2

˚rv.x; t/C rv.x; t/T
�
:
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we denote the strain rate tensor or the rate of strain tensor. It denotes the local
change of velocity in the current system.

2.1.5 Stress

Deformation, strain and strain rate are kinematic properties. They simply describe
the relative motion of particles within a volume. As such, they are pure observations
of the situations and do not depend on the model under consideration. We assume
that a material will react on strain or the strain rate. For expanding a spring, a certain
force will be necessary.

By stress we denote the internal force that is acting on an imaginary surface
within the volume V.t/. The unit of stress is force per area.

In Fig. 2.4 we show a volume V.t/ that is cut at an inner surface S � V.t/. By
x 2 S � V.t/ we denote a point on this surface with normal n. The average forces
acting on a neighborhood of x 2 S is denoted by the Cauchy traction vector t.
The right sketch of the figure shows this setting in the reference system, where by
Ox 2 OS � OV we denote point, surface and volume in reference state. Here, the normal
vector is indicated by On and the resulting first Piola-Kirchhoff traction vector Ot:

t D t.x; t;n/; Ot D Ot.Ox; t; On/:

By ds we denote an infinitesimal neighborhood of x on the surface S � V.t/ and by
dOs the corresponding infinitesimal neighborhood of Ox on OS � OV . Then, it holds

tds D OtdOs;

such that both traction vectors refer to forces in the current configuration V.t/.
While t is a function in variables x and n of the current configuration, the first Piola-

n̂

t̂

x̂

Ŝ

V̂

n

t

x

S

V

ds
dŝ

Fig. 2.4 Traction vectors on a imaginary surface in the current system (left) and the reference
system (right). Cauchy’s stress theorem postulates a linear dependency of the traction vectors on
the normals t D �n and Ot D OPOn



22 2 Models

Kirchhoff traction vector is a function of Ox and On in the Lagrangian reference system.
Usually, it does not hold jtj D jOtj. The unit of stress is force by area and t refers to
the area of a domain surface ds while Ot refers to the area of the undeformed reference
surface dOs.

The traction vectors describe a surface tension. Such surface tensions arise from
friction or contact. Another example for a surface tension is the pressure in a liquid
or gas that pushes the particle to each other (or apart from each other).

The surface tensions depend on the normal vector n of the imaginary surface. It
holds

Theorem 2.6 (Cauchy’s Stress Theorem) There exist unique second order ten-
sors � and OP, such that

t.x; t;n/ D � .x; t/n; Ot.Ox; t; On/ D OP.Ox; t/ On:

The tensor � D � T is symmetric and called the Cauchy stress tensor, the tensor
field OP is called the first Piola-Kirchhoff stress tensor. OP is usually not symmetric.

Proof For the proof, we refer to the literature [150]. ut
One immediate consequence of Cauchy’s stress theorem is that traction vectors

for opposite normal vectors annihilate each other, Newton’s law of actio = reactio

t.x; t;�n/ D � .x; t/.�n/ D �� .x; t/n D �t.x; t;n/:

As the Cauchy stress tensor must be symmetric, it consists of six independent
components

� D
0

@
� 11 � 12 � 13

� 12 � 22 � 23

� 13 � 23 � 33

1

A :

The second order tensor OP is usually not symmetric and consists of nine independent
entries. For the relation of � and OP it holds

�nds D OP OndOs;

such that the two different traction vectors describe the transformation of a surface
integral. We will get back to this relation in Sect. 2.1.7.

The components of the stress tensor are best understood by a decomposition of
stresses into normal stress � 2 R and shear stress � 2 R. Let t be a stress vector
in x 2 V.t/ on a imaginary surface S with normal vector n. The normal-stress � is
defined as the projection of the traction vector in normal direction

� D tTn D .n; �n/;
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while the shear stress is defined as the tangential part of the stress

� D tT t1 D .t1; �n/;

where t1 is the tangential vector that arises from projection of t onto the surface

t1 D t � �n
kt � �nk :

Then, the stress vector can be decomposed into the normal stress � and shear stress
� by

t D .t;n/n C .t; t1/t1 D �n C �t1:

Here �; � 2 R are the lengths of the stress vectors in normal direction and tangential
direction. Given the Cauchy stress tensor � , it holds

� D .n; �n/; � D .t; �n/:

If for the normal stress it holds � < 0, the material undergoes a compression, while
for � > 0 an expansion is given. Further, it holds

j�nj2 D jtj2 D jn � � j2 D �2 C �2:

Next, let us assume that the imaginary surface has normal vector n D ei with .ei/j D
ıij. The normal stress is given

� D .ei; � ei/ D � ii;

by the diagonal entry of the Cauchy-stress tensor, while the shear stress in ek

direction for k ¤ i gets

� D .ek; � ei/ D � ki D � ki:

Hence the diagonal entries of � refer to the normal stresses, while all off-diagonals
refer to tangential shear stresses.

Remark 2.7 (Stress in the Reference System) Usually only static stresses act in the
initial reference state of a system at reference time t0. In case of a resting fluid,
this stress can be caused by the hydrostatic pressure. Sometimes however, initial
configurations cannot be considered to be stress-free. An example could be organic
material like wood, where the undeformed reference system may be subject to stress
caused by growth, see [209].
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2.1.6 Conservation Principles

The most important physical conservation principles in the context of fluid-
mechanics and structure-mechanics are conservation of mass, which says that

mass is neither created nor destroyed,

conservation of momentum that says that

the change in momentum is equivalent to the external forces

and conservation of angular momentum, saying that

the change in angular momentum is equal to the torque.

Using the notation derived in the previous section, conservation of mass reads

dtm.V.t// D 0; (2.10)

where the volume’s mass m.V.t// is given by

m.V.t// D
Z

V.t/
�.x; t/ d x;

with a density �. Conservation of momentum gets

dtI.V.t// D K.V.t//C K.@V.t//; (2.11)

with the momentum I.V.t//

I.V.t// D
Z

V.t/
�.x; t/v.x; t/; d x;

and volume and surface forces K.V.t// and K.@V.t// given by:

K.V.t// D
Z

V.t/
�.x; t/f.x; t/ d x; K.@V.t// D

Z

@V.t/
t ds:

Here, f is a prescribed volume force density and t denotes the surface stress in
direction n. As discussed, it holds by Cauchy’s Stress Theorem 2.6 that this surface
force linearly depends on the normal direction such that it can be expressed with
help of a stress tensor � 2 Rn�n as t D �n. The surface allows for a transformation
to a volume integral via the divergence theorem

K.@V.t// D
Z

@V.t/
n � � ds D

Z

V.t/
div .� / d x:

Finally, conservation of angular momentum is given by

dtL.V.t// D D.V.t//; (2.12)
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where the angular momentum L.V.t// with respect to the origin is given as

L.V.t// D
Z

V.t/
x � .�v/ d x;

and the torque D.V.t// is defined by

D.V.t// D
Z

V.t/
x � .�f/ d x C

Z

@V.t/
x � .n � � / ds:

Since the integration domain V.t/ in (2.10)–(2.12) depends on time t, evaluation of
derivatives like dtm.V.t// is not straightforward and will be accomplished with help
of the essential Reynolds’ Transport Theorem

Lemma 2.8 (Reynolds’ Transport Theorem) Let V.t/ � Rd be a material
volume. Further, let˚.x; t/ be a differentiable scalar function defined on V.t/. Then,
it holds

dt

Z

V.t/
˚.x; t/ d x D

Z

V.t/
.@t˚.x; t/C div .˚v// d x:

Proof The formula can be shown by elementary calculations using the transforma-
tion of T.t/ W OV ! V.t/ to a fixed reference domain and expressing the derivatives
of the functional determinant det. OrT.t// with respect to its entries Or OTij. See also
Lemma 2.60. ut

Applying this theorem to the scalar value ˚.x; t/ WD �.x; t/ we derive the Law of
Mass Conservation:

Z

V.t/
@t�C div.�v/ d x D 0:

This equation is valid for every volume V.t/. Assuming that the expression @t� C
div.�v/ is continuous (which is an assumption on the physical properties of the
material), the equation of mass-conservation holds in a point-wise manner

@t�C div.�v/ D 0: (2.13)

The second basic rule is conservation of momentum, derived by the scalar values
˚.x; t/ WD �.x; t/vi.x; t/ for every component of the velocity field. With a column-
wise representation of the stress-tensor � D .� 1; : : : ; � d/ Reynolds transport
theorem yields:

Z

V.t/
@t.�vi/C div.�viv/ d x D

Z

V.t/
�fi C div .� i/ d x; i D 1; : : : ; d:
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Given continuity of the integrand we can again deduce a point-wise equation

@t.�vi/C div.�viv/ D �fi C div.� i/; i D 1; : : : ; d:

By introducing the external product of two vectors

v ˝ w 2 Rd�d; .v ˝ w/ij WD viwj;

we can formulate the equation for the conservation of momentum in conservative
formulation

@t.�v/C div.�v ˝ v/ D �f C div.� /:

Combining this equation with the mass-conservation, we can further deduce the
equation for conservation of momentum in the non-conservative formulation

�@tv C �.v � r/v D �f C div.� /: (2.14)

The equation for the conservation of angular momentum is given by

dt

Z

V.t/
x � .�v/ d x D

Z

V.t/
x � .�f/ d x C

Z

@V.t/
x � .n � � / ds:

Applying Reynolds transport theorem we can deduce the following three equations

i D 1 � 23 � � 32 D 0

i D 2 � 13 � � 31 D 0

i D 3 � 12 � � 21 D 0;

that impose the symmetry of the Cauchy stress tensor

� D � T : (2.15)

Further conservation principles are important if physical properties like entropy,
energy and temperature are taken into consideration. Since we will deal with
isentropic materials only, where all dynamical processes will take place without
change of entropy, the three fundamental principles of mass-, momentum- and
angular momentum-conservation will be sufficient to describe all desired behavior.

It remains to describe the tensor of surface-forces � . This tensor will heavily
depend on the material under consideration, whether it is a fluid or a solid, whether
the fluid is water, air or blood, the solid may be elastic or plastic or have properties
of both. Here, physical modeling comes into place, exact laws for the dependence
of this tensor on quantities like velocity and density usually do not exist. Since we
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know that � is symmetric, six additional equations are required for its description.
Stress models will be discussed in Sect. 2.2.

2.1.7 Conservation Principles in Different Coordinate Systems

In this section, we discuss the transformation of the conservation equations, which
have been derived in the Eulerian framework, to different coordinate frameworks.
Introducing the basic concepts for solid mechanics we already argued that a
Lagrangian viewpoint is more natural.

Let V.t/ be the moving Eulerian framework and let OV be the Lagrangian reference
system. Further, by OW we denote an arbitrary second fixed reference system, see
Fig. 2.5. While the case OW D OV is possible, we will allow for arbitrary systems
without physical meaning. However, we assume that OW is fixed in time and that
there exists an invertible mapping OTW.t/ W OW ! V.t/ with gradient OFW WD Or OTW and
determinant OJW WD det . OFW/ > 0. If we talk about the gradient OFW we request that
the map OTW is differentiable with respect to the spatial variables. We further assume
that OTW is differentiable with respect to the temporal variable and that the inverse
of the mapping OT�1

W is also differentiable. In other words, OTW is assumed to be a
C1-diffeomorphism on I � OW .

By introducing an arbitrary reference systems OW we have to deal with three
different systems: the Lagrangian particles, Ox 2 OV , their Eulerian path x.Ox; t/ 2 V.t/
and further the arbitrary framework with OxW 2 OW with OTW.OxW ; t/ D x D OT.Ox; t/.
Note that it does not hold @t OTW D Ov, as we have to distinguish between the physical
velocity Ov of the particles and the velocity @t OTw of the arbitrary coordinate system
motion.

We start by describing basic properties used to map between the two systems OW
and V.t/. First, we introduce the inverse mapping TW.t/ W V.t/ 7! OW.

V (t)

Ŵ

x

x̂ x̂W

û(x̂, t)

T̂ T̂W

V̂

Fig. 2.5 Moving Eulerian volume V.t/ with Lagrangian reference OV and third arbitrary reference
volume OW
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Lemma 2.9 (Inverse Mapping) By TW.t/ W V.t/ ! OW we denote the inverse
mapping, by FW WD rTW its gradient and by JW WD det .FW/ its determinant. Given
sufficient regularity, It holds

FW D OF�1
W ; JW WD OJ�1

W ; @tTW D � OF�1
W @t OTW :

Proof It holds

TW ı OTW D bid ) FW OFW D I ) FW D OF�1
W :

By taking the determinant of both sides, we immediately get JW D OJ�1
W . Finally,

TW ı OTW D bid ) 0 D dtTW. OTW.Ox; t/; t/ D @tTW C rTW@t OTW :

Using rTW D FW D OF�1
W we obtain the relation @tTW D � OF�1

W @t OTW . ut
In Lemma 2.3 we already considered the transformation of spatial and temporal

derivatives between the Eulerian and the Lagrangian coordinate system. Similarly
it holds for a scalar function f W V.t/ ! R and a vector field w W V.t/ ! Rd with
counterparts Of and Ow on OW:

rf D OF�T

W
OrOf ; rw D Or Ow OF�1

W : (2.16)

For temporal derivatives transformed to general coordinate systems OW we must take
care of two different velocities: the particle velocity Ov and the domain velocity @t OTW ,
which do not coincide if OW ¤ OV:

Lemma 2.10 (Transformation of Temporal Derivatives) Let f W V.t/ ! R with
counterpart Of .OxW ; t/ D f .x; t/. Given sufficient regularity, it holds

@t f D @t Of � . OF�1
W @t OTW � Or/Of ; dt f D @t Of C . OF�1

W .Ov � @t OTW/ � Or/Of :

Proof With OxW D TW.x; t/ it holds

@t f .x; t/ D dt Of .OxW ; t/ D dt Of .TW.x; t/; t/ D @t Of C OrOf � @tTW :

The first result follows with help of Lemma 2.9. The relation for the material
derivative is given by

dt f .x; t/ D @t f .x; t/C rf � @tx:

Here, @tx D v D Ov refers to the trace of particles, where v D Ov is the velocity of
the particle and not the velocity of the mapping OTW . Together with (2.16) and the
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transformation of the partial time derivative we get

dt f D @t Of � . OF�1
W @t OTW � Or/Of C OF�T

W
OrOf � Ov:

ut
Remark 2.11 (Transformation Between Lagrangian and Eulerian Coordinates) If
OV D OW it holds OTW D OT as well as OFW D OF and OJW D OJ. The statements of
Lemma 2.10 simplify to

OW D OV ) @t f D @t Of � . OF�1 Ov � Or/Of ; dt f D @t Of :

This results explains, why the convective term .v �r/v will not appear in Lagrangian
coordinates. See also Lemma 2.3.

In the following we discuss the transformation of the conservation principles to
arbitrary coordinate reference systems OW. This transformation will be fundamental
for solid mechanics, where the natural view-point is the Lagrangian one with OW D
OV . Further, one of the standard approaches for coupling fluid-structure interactions
relies on the mapping of the fluid problem onto a fixed reference system. Since this
reference system will not be the Lagrangian one, we proceed without specifying the
connotation of OW. The equation for conservation of momentum (2.14) is given by

�@tv C �.v � r/v D �f C div .� / in V.t/;

with a density �, velocity v, volume force f and the Eulerian stress-tensor � . The
specific form of this stress-tensor will be discussed in later sections. Here, we
only assume that this stress tensor is symmetric � D � T . By Ov.OxW ; t/ D v.x; t/,
O�.OxW ; t/ D �.x; t/, Of.OxW ; t/ D f.x; t/ as well as O� .OxW ; t/ D � .x; t/ we denote the
counterparts of these quantities in the reference system OW . By (2.16) and 2.10 it
holds:

@tv D @t Ov � . OF�1
W @t OTW � Or/Ov;

.v � r/v D rvv D Or Ov OF�1
W Ov D . OF�1

W Ov � Or/Ov;

and combined, we get:

@tv C .v � r/v D @t Ov C . OF�1
W .Ov � @t OTW/ � Or/Ov: (2.17)

As discussed above, in the case of a mapping to the Lagrangian reference system,
the mapping’s temporal derivative is the velocity @t OT D Ov and the momentum terms
simplify to

OV D OW ) @tv C .v � r/v D @t Ov: (2.18)
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It remains to transform the divergence of the stresses to the reference domain. Here,
a simple transformation of div .� / to the reference system is not sufficient. We
need to keep the meaning of this stress-term in mind, indicating surface-forces in
normal-direction. The normal vectors are transformed, if the underlying domain
OV ! V.t/ is deformed. Therefore we must base the mapping process on the correct
representation of these surface forces. We need to find a representation of the first
Piola-Kirchhoff stress tensor OP in the reference system, such that it holds:

Z

@ OW
OP On dOs D

Z

@V.t/
�n ds:

OP will be called the Piola transformation of � . For the derivation of this transfor-
mation we first regard vector fields w W V.t/ ! Rd with reference counterpart
Ow W OW ! Rd.

Lemma 2.12 (Piola Transformation) Let w W V.t/ ! Rd be a differentiable
vector field and Ow its representation in the reference system OW. The Piola transfor-
mation of w is given by

OJW OF�1
W Ow:

On every volume V.t/ with corresponding reference volume OW it holds

Z

@V.t/
n � w ds

Z

@ OW
On � . OJW OF�1

W Ow/ dOs;
Z

V.t/
div .w/ d x D

Z

OW
cdiv . OJW OF�1

W Ow/ dOx:

Further, in a point-wise sense it holds

OJW div .w/ D cdiv .OJW OF�1
W Ow/:

Proof We use a variational argument. Let � be differentiable on V.t/ with reference
counterpart O� 2 OW, such that

Z

@V.t/
n � w� ds D

Z

V.t/
div .w�/ d x D

Z

OW
OJW div .w�/ dOx: (2.19)

Next, with (2.16) we get for O� D �:

Z

OW
OJW div .w�/ dOx D

Z

OW
OJW div .w/ O� dOx C

Z

OW
OJW Ow � OF�T

W
Or O� dOx: (2.20)
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With Green’s formula, the second integral is transformed to

Z

OW
OJW Ow � OF�T

W
Or O� dOx D

Z

OW
OJW OF�1

W Ow � Or O� dOx

D �
Z

OW
cdiv . OJW OF�1

W Ow/ O� dOx C
Z

@ OW
On � .OJW OF�1

W Ow/ O� dOs:
(2.21)

Combining (2.19)–(2.21) gives

Z

@V.t/
n � w � ds �

Z

OW
OJW div .w/ O� dOx

D �
Z

OW
cdiv . OJW OF�1

W Ow/ O� dOx C
Z

@ OW
On � . OJW OF�1

W Ow/ O� dOs:

By picking a Dirac sequence f O�y
"g">0 where O�y

" 2 C1
0 .

OW/ with

Z

OW
O�y
" .Ox/Of .Ox/ dOx ���!

"!0

Of .Oy/ 8Of 2 C. OW/;

we conclude for all inner points

OJW div .w/ D cdiv . OJW OF�1
W Ow/:

Hence
Z

V.t/
div .w/ d x D

Z

OW
OJW div . Ow/ dOx D

Z

OW
cdiv . OJW OF�1

W Ow/ dOx:

The relation for the surface integral follows by Gauss’ divergence theorem. ut
This important result is used to transform the surface forces to the reference

system. Let � D .� i/
d
iD1 be the row-vectors (or the column-vectors since � D � T

by the conservation of angular momentum). It holds:

Fi.@V.t// WD
Z

@V.t/
n � � i ds D

Z

V.t/
div .� i/ d x

and with the just proven lemma we conclude

Fi.@V.t// D
Z

OW
cdiv. OJW OF�1

W O� i/ dOx D
Z

@ OW
On � . OJW OF�1

W O� i/ dOs:
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Reassembling the stress-tensor O� D . O� i/ we get the reference presentation of the
surface forces:

F.@V.t// D
Z

@ OW
. OJW O� OF�T

W / On dOs D
Z

OW
cdiv . OJW O� OF�T

W / dOx:

We define

Definition 2.13 (Piola Kirchhoff Stress Tensors) The First Piola Kirchhoff stress
tensor given by

OP WD OJW O� OF�T

W :

It relates forces in the Eulerian coordinate framework with coordinates in a reference
framework OW. The Second Piola Kirchhoff stress tensor given by

Ȯ WD OF�1
W

OP D OJW OF�1
W O� OF�T

W :

Unlike the Eulerian stress tensor � , the 1st Piola Kirchhoff stress tensor OP is not
symmetric. The 2nd Piola Kirchhoff stress tensor is symmetric but it does not have
an immediate physical explanation.

Using the first Piola Kirchhoff stress tensor and Relation (2.17) the momentum
equation on arbitrary reference systems OW is given by:

OJW O��@t Ov C . OF�1
W .Ov � @t OTW/ � Or/Ov� D OJW O�Of C cdiv . OJW O� OF�T

W /: (2.22)

2.2 Material Laws

The basic concepts of continuum mechanics introduced in the previous section
are exact in a way that they are based on fundamental physical principles. The
conservation principles for mass, momentum and angular momentum constitute a
systems of four partial differential equations for ten unknowns: density �, velocity
field v and the six unknowns of the symmetric stress tensor � . This system is under-
determined. To close it, additional equations are required that connect the values
of the stress tensor to computable fundamental quantities like velocity, density or
deformation.

In the following sections, we will derive such material laws that describe the
properties of the stress tensors in the different formulations like � , Ȯ or OP. We
assume that these stress tensors will depend on strain or strain rate given as
deformation gradient OF, its inverse F, or tensors like OC, OE, b, e or P". We denote
this relation by tensor-valued functions

� D f . P"/; OP D Of . OF/; Ȯ D Of . OE/;
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or by similar expressions in OE or b. We assume that all materials are homogenous
and do not explicitly depend on the location x 2 V.t/.

We are not considering arbitrary material laws but postulate several assumption
on the material’s properties:

1. Objectivity: The material law is independent of the spectators viewpoint. This
property will hold for every physical material.

2. Homogeneity: We assume that the material is homogenous, i.e. the strain-stress
relation will not explicitly depend on the location x 2 V.t/.

3. Isentropic and isothermal processes: We assume that entropy and temperature
do not play a role. There is no conversion between heat and kinetic energy. The
temperature stays constant and does not affect the material law. This assumption
is a simplification, as most elastic materials and also some fluids show a strong
dependency on the temperature.

4. Isotropy: There is no distinct direction in the material. The response to strain
or strain rate is the same in all directions. This assumption rules out anisotropic
materials like fiber-reinforced composites or also biological tissue, where layers
are usually directed anisotropically. Most fluids however are isotropic.

These assumptions lead to a strong simplification of possible material laws.
The following Rivlin-Ericksen Theorem shows that all such possible material laws
depend on symmetric strain tensors C, E or P" only and that all material laws are
quadratic polynomials in the invariants of these tensors.

Theorem 2.14 (Rivlin-Ericksen Theorem) A stress response function Qf . OF/ is
isotropic and indifferent with respect to the coordinate system, if and only if it
depends on the symmetric strain tensors only

Qf . OF/ D Of . OFT OF/ D Of . OC/:

Further it is given as a quadratic polynomial

Of . OC/ D ˇ0.i. OC//I C ˇ1.i. OC// OC C ˇ2.i. OC// OC2; (2.23)

with scalar coefficients ˇi that depend on the invariants (under orthogonal transfor-
mation) of the symmetric tensors C:

I1.C/ D �1 C �2 C �3; I2.C/ D �1�2 C �2�3 C �1�3; I3.C/ D �1�2�3;

where �1; �2 and �3 are the three eigenvalues of C.

Proof For a proof, we refer to the original contribution by Rivlin and Ericksen [290]
or to a modern presentation by Turesdell and Noll [327]. ut
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As a symmetric positive definite tensor, C has three positive eigenvalues
�1; �2; �3 and a system of orthogonal eigenvectors. We know that eigenvalues are
invariant to orthogonal transformation. To derive these invariants, we further cite the
following Lemma:

Lemma 2.15 Given a tensor A 2 R3�3 it holds for every � 2 R

det.A � �I/ D ��3 C I1.A/�2 C I2.A/�C I3.A/;

with

I1.A/ D tr.A/; I2.A/ D 1

2

�
tr.A/2 � tr.A2/

�
; I3.A/ D det.A/:

If A is symmetric positive definite with eigenvalues �1; �2; �3, it further holds

I1.A/ D �1 C �2 C �3; I2.A/ D �1�2 C �2�3 C �1�3; I3.A/ D �1�2�3:

Proof See [195]. ut
The Rivlin-Ericksen Theorem 2.14 strongly limits possible material laws for

homogenous and isotropic materials. All material laws—including fluids and
solids—considered in the context of this book will fall under this theorem.

As every matrix satisfies its own characteristic polynomial, it holds for OC 2 R3�3
that

OC3 D I1. OC/ OC2 C I2. OC/ OC C I3. OC/: (2.24)

Using this relation, the material law (2.23) is equivalent to a second representation

Of . OC/ D 	0.i. OC//I C 	1.i. OC// OC C 	2.i. OC// OC�1
:

Remark 2.16 As the two tensors OE D 1
2
. OC � I/ are directly connected, every

material law in OC can also be expressed in OE, as

˛0I C ˛1 OC C ˛2 OC2 D .˛0 C ˛1 C ˛2/I C .2˛1 C 4˛2/ OE C 4˛2 OE2:

Further, for the eigenvalues of OE and OC there holds a linear relation

�iwi D OCwi D 2 OEwi C wi , 1

2
.�i � 1/wi D OEwi:
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2.2.1 Hyperelastic Materials

A solid is called hyperelastic if the relation between strain and stress comes from an
energy density function

Ȯ D @W. OE/
@ OE ;

or

OP D @W. OF/
@ OF :

This constitutes a relation between the second Piola-Kirchhoff stress tensor and
the strain or between the deformation gradient and the first Piola-Kirchhoff stress,
respectively. Many of the commonly used materials like the St. Venant Kirchhoff
model or the Mooney-Rivlin solid are of this type. Stress tensors for incompressible
materials can be derived by energy functions of the type

W D W.F/� p .det.F/� 1/

that penalize the change of volume J D det.F/.
As the derivation of the models is not in the focus of this book, we just refer to

the literature for more reading on this very important concept, see Holzapfel [195]
for a very comprehensive exposure.

2.2.2 Linearizations

For simplicity, we sometimes consider linear models. Two different types of
nonlinearities must be considered: first, the material nonlinearity which denotes a
nonlinear relation between stress and strain. Second, the geometric nonlinearity,
which comes from the discrepancy between reference coordinate system and current
system and which is expressed by the deformation gradient e D OFOe.

Regarding the Rivlin-Ericksen Theorem 2.14, linearity of a material means that
only the first invariant I1.E/ D tr.E/ may enter the law and that no higher order
terms may appear. Further, in geometrically linearized situations, the symmetric
strain tensor OE is approximated and linearized

OE D 1

2
.ru C ruT C ruTru/ � 1

2
.ru C ruT/ DW O";

assuming that jruj � 1 is small.
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Lemma 2.17 (Linear Material Law) A stress response function f .�/ for a linear,
homogenous and isotropic material depends on the linearized strain O" D Or OuC Or OuT

or on the strain rate tensor P" D rv C rvT and its first invariant only

Of . O"/ D ˇ0 tr. O"/I C ˇ1 O":

In fluid mechanics, the Navier-Stokes equations follow such a linear material
law and in structure mechanics, the Navier-Lamé problem considers these simpli-
fications. While in fluid mechanics a fully linear material law—the Navier-Stokes
model—is a very accurate model for many relevant fluids, linearization in solid
mechanics is usually not feasible. Here, linear models only apply to very small
deformations j Ouj � 1 and very small changes in deformation j Or Ouj � 1. In
particular, linearized solid models are no longer invariant with respect to fixed body
rotations. In the context of fluid-structure interactions, use of linear models can
significantly damp the dynamics.

2.2.3 Incompressible Materials

Some materials have an incompressible behavior which means that the volume

jV.t/j D
Z

V.t/
1 d x 	 “const”

does not change. For an incompressible material, there is no expansion or compres-
sion. Many fluids—like water—can be considered incompressible. Incompressibil-
ity further applies to many biological structures. We can describe change of volume
in the current system by Reynolds transport theorem

0 D dtjV.t/j D dt

Z

V.t/
1 d x D

Z

V.t/
r � v d x D

Z

@V.t/
n � v ds; (2.25)

but also in the reference configuration by transformation

0 D dtjV.t/j D dt

Z

V.t/
1 d x D

Z

OV
dt OJ dOx: (2.26)

For a fluid, modeled in the current configuration, (2.25) says that the flow is
“divergence-free” with div v D 0 and also that the total normal flow over the
volume’s boundary is zero. For a divergence free velocity field it holds

tr. P"/ D 0;
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and in light of Lemma 2.17, the material law is further simplified to

f . P"/ D ˇ1 P":

To cope with isotropic expansion and compression forces, we introduce a pressure
variable as part of the material law:

f . P"; p/ D �pI C ˇ1 P":

This pressure is required to enforce the incompressibility of the velocity field, see
also Sect. 2.3.

Considering solid’s, incompressibility in terms of (2.26) means that the determi-
nant of the deformation gradient will be constant dt OJ D 0. As OF D I in the reference
system, incompressibility simply says OJ D 1 for all times t � t0. Further, it then
holds that

det. OC/ D det. OF/2 D 1:

For the Green-Lagrange strain tensor OE it follows that third and second invariant fall
together, see Lemma 2.15 and Remark 2.16.

2.3 The Solid Problem

As discussed, we usually describe the dynamics of elastic structures in the
Lagrangian reference system. Hence considering the conservation law (2.22) we
choose OW D OV as reference system. In light of Remark 2.11, the momentum
equation is given by

OJ O�@tt Ou D OJ O�Of C cdiv. OF Ȯ /;

where we eliminated the velocity using @t Ou D Ov. Considering material laws as
introduced in the previous section, stresses will depend on strain, and hence on
the displacement Ou. The density is known at initial time �.x; 0/ D O�0.Ox/. For t � 0

conservation of mass yields

m. OV/ WD
Z

OV
O�0.Ox/ dOx ŠD

Z

V.t/
�.x; t/ d x D

Z

OV
OJ O�.Ox; t/ dOx DW m.V.t//:

At time t � 0, the relation

O�.Ox; t/ D OJ�1.Ox; t/ O�0.Ox/ (2.27)
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describes the density in every point Ox of the reference system. The full problem of
elastic structures formulated in the Lagrangian reference system OV is given by:

O�0@tt Ou � cdiv .F Ȯ / D O�0Of (2.28)

It remains to complete this partial differential equation by appropriate boundary
conditions and initial conditions. Let OS � Rd be the solid domain in reference
configuration. At time t D 0, we specify initial conditions for density, deformation
and velocity

O�.�; 0/ D O�0.�/; Ou.�; 0/ D Ou0.�/; @t Ou.�; 0/ D Ov0.�/; t D 0: (2.29)

For all times t � 0, by Of.Ox; t/ we denote the acting volume force field. Note that
this force field is directed in the Eulerian framework, such that for example the
gravity is given by f D �9:81e3kg � m � s�2, with e3 D .0; 0; 1/T , independent of the
reference framework. The boundary of the domain O
s WD @ OS is split into a Dirichlet
boundary part O
 D

s and into a Neumann part O
 N
s . On the Dirichlet boundary, we

specify boundary conditions for the deformation

Ou D OuD on O
 D
s � Œ0;T�: (2.30)

Note that by Ov D @t Ou we also uniquely define the velocity on the boundary. The
usual Neumann condition on 
 N

s specifies the boundary stresses by

n � OF Ȯ D n � OJ O� s OF�T D Og.On/s on O
 N
s � Œ0;T�: (2.31)

If the external forces f and the boundary data Og.On/s and OuD do not explicitly depend
on time, the solution can run into a stationary limit Ou.�; t/ ! Ou.�/ that does not
depend on time. In this case, it holds @t Ov D 0 and hence @tt Ou D 0. If such a stationary
solution exists, we can directly consider the stationary system of equations:

� cdiv . OF Ȯ / D O�0Of: (2.32)

Finally, it remains to provide material laws for specific solids. One of the most
simple model is the St. Venant Kirchhoff material that postulates a linear dependency
between strain tensor OE and stresses:

Definition 2.18 (St. Venant Kirchhoff Material) The St. Venant Kirchhoff
material follows the material law

Ȯ D 2�s OE C �s tr. OE/I;
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with the first �s and second �s Lamé parameters. (�s is also called the shear
modulus.) These two parameters are related to the Poisson ratio �s that describes
the compressibility and Young’s modulus Es that describes the stiffness:

�s D �s

2.�s C �s/
; Es D �s.3�s C 2�s/

�s C �s
:

The linear relation between strain and stress is called Hooke’s Law. The Poisson
ratio �s describes the compressibility of the system. It holds

�s D 1

2

 
1

1C �s
�s

!
<
1

2
:

The Poisson ratio �s D 1
2

refers to �s ! 1 hence to incompressible materials. The
Poisson ratio describes the reaction of the material on directional compression, see
Fig. 2.6. For a Poisson ratio �s D 1

2
, the volume will stay constant, for �s <

1
2

the
volume will decrease. There are some materials with negative Poisson ratio. Here,
the material will react to the compression in one direction with compression in the
orthogonal directions. Such materials play some role for computational means in
the context of fluid-structure interactions, see Sect. 3.5.1. The St. Venant Kirchhoff
model is a suitable approximation for metals at small deformations. Steel has a
Poisson ratio of about �s � 0:3 and a Young modulus Es � 200 � 109 kg � m�1 � s�2.

Hooke’s Law applied to an incompressible material leads to the incompressible
Neo Hookean material law.

Definition 2.19 (Incompressible Neo-Hookean Material) The incompressible
Neo-Hookean material law is given by

OP D OF Ȯ D �p OF�T C 2�s
OF�T OE;

with the shear modulus �s and the Poisson ratio �s D 1
2
. By p we denote the

undetermined pressure.

νs = 1
2 νs < 00 < νs < 1

2

V0 |V | = |V0| |V | < |V0|
|V | � |V0|

Fig. 2.6 Material behavior under compression for different Poisson ratios. Left: incompressible
material �s D 1

2
. Middle: compressible material 0 < �s <

1
2
. Right: auxetic material with �s < 0
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We conclude and formulate the following often used systems of equations

Problem 2.20 (Conservation Laws for a St. Venant Kirchhoff Material) Let
˝ � Rd be a domain with boundary 
 D @˝ with 
 D 
 D [ 
 N. Further, let
O�0 W ˝ ! RC be the materials density, Of 2 C.˝/d be a given right hand side,
OuD
; OvD 2 C.
 D/ be Dirichlet boundary data, Og.n/ 2 C.
 N/ be the Neumann data.

With initial deformation and velocity Ou0; Ov0 2 C.˝/d find deformation and velocity

Ou.t/ 2 C2.˝/d \ C.˝ [ 
 D/d [ C1.˝ [ 
 N/d;

such that

O�0@tt Ou �bdiv
� OF Ȯ � D O�0Of t � 0;

where

Ȯ D 2�s OE C �s tr. OE/I;

and

Ou.0/ D Ou0; dt Ou.0/ D Ov0 in ˝;

with the boundary conditions

Ou.t/ D OuD on 
 N ; OF Ȯ On D Og.n/:

and, for the incompressible materials we define:

Problem 2.21 (Conservation Laws for the Incompressible Neo-Hookean Mate-
rial) Let ˝ � Rd be a domain with boundary 
 D @˝ with 
 D 
 D [ 
 N.
Further, let O�0 W ˝ ! RC be the materials density, Of 2 C.˝/d be a given
right hand side, OuD

; OvD 2 C.
 D/ be Dirichlet boundary data, Og.n/ 2 C.
 N/

be the Neumann data. With initial deformation and velocity Ou0; Ov0 2 C.˝/d find
deformation, velocity and pressure

Ou.t/ 2 C2.˝/d \ C.˝ [ 
 D/d \ C1.˝ [ 
 N/d; Op.t/ 2 C1.˝/\ C.˝ [ 
 N/;

such that

OJ D 0; O�0@tt Ou �bdiv
� OF Ȯ � D O�0Of t � 0;

where

Ȯ D �Op OF�T C 2�s OF�T OE
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and

Ou.0/ D Ou0; dt Ou.0/ D Ov0 in ˝;

with the boundary conditions

Ou.t/ D OuD on 
 N ; OF Ȯ On D Og.n/:

2.3.1 The Navier-Lamé Equations

The model for an elastic solid governed by one of the material laws is a system of
nonlinear partial differential equations. Its analysis is difficult and theoretical results
exist for small deformation only. As a nonlinear set of equations, uniqueness cannot
be expected in the general case.

To get better insight into the problem, we will simplify the problem with the
following assumptions:

• The deformation gradient OF is so small that we can approximate OF D I and OJ D 1.
By this simplification, the concept of Eulerian and Lagrangian coordinates fall
together. We will therefore also skip all hat’s that indicate reference variables.

• Further the strains are so small that we can linearize the Green-Lagrange strain
tensor

OE D 1

2
. Oru C OruT C Or OuT Or Ou/ � 1

2
.ru C ru/ DW ":

This simplification not only rules out very large elastic deformations, it also
penalizes rigid body rotations.

• Just for simplicity (this will not change the character of the equation) we set
O�0 D 1.

Considering the linear St. Venant Kirchhoff material (with these simplifications) the
resulting set of equations are the

Problem 2.22 (Navier-Lamé Equations) Let˝ � R3 be a bounded domain with
a boundary split into Dirichlet- and Neumann-part @˝ D 
 D [ 
 N. On the time
interval I D Œ0;T� we search for solutions u W I �˝ ! R3 such that

@ttu � div � D f in I �˝
u D u0; dtu D v0 for f0g �˝

u D uD on I � 
 D

� n D u� on I � 
 N ;

(2.33)
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with the linearized material law

� D 2�" C � tr ."/I; " D 1

2

�ru C ruT
�
:

As a further simplification, we also consider the stationary limit of the Navier-Lamé
equations:

Problem 2.23 (Stationary Navier-Lamé Equations) Find u 2 C2.˝/3 \ C.˝ [

 D/3 \ C1.˝ [ 
 N/3 such that

� div � D f in ˝

u D uD on 
 D

� n D u� on 
 N ;

(2.34)

with the linearized material law

� D 2�" C � tr ."/I; " D 1

2

�ru C ruT
�
:

As usual, analysis of classical solutions is difficult. This is partly to the fact
that the solution u often exhibits singularities in boundary nodes at the transit
between Dirichlet and Neumann parts. The well known Theorem of Cosserat states
that classical solutions to the stationary problem, Problem 2.23, are unique if the
Dirichlet boundary 
 D contains at least three independent points and that—in the
general case—they can differ by a rigid body motion only

u1.x/ � u2.x/ D b C Bx;

where b 2 R3 is a translation vector and B 2 R3�3 is a skew-symmetric matrix, see
e.g. [97].

For the following, we will introduce a weak formulation of the Navier-Lamé
equations that will offer an easy access to show existence and uniqueness of
solutions:

Lemma 2.24 (Variational Formulation) Every classical solution to Prob-
lem 2.23 is also solution to the variational formulation

u 2 NuD C H1
0.˝I
 D/3

.� ;r/ D .f; /C hu� ; i
 N 8 2 H1
0.˝I
 D/3; (2.35)

where NuD 2 H1.˝/d is an extension of the Dirichlet data uD into the domain.
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Existence and uniqueness of solutions can be shown by standard arguments of
elliptic equations. The difficulty however is to show ellipticity, i.e.

�.ru C ruT ;ru/C �
�

tr .ru C ruT/I;ru
� � ckruk2;

as ru C ruT D 0 does not necessarily impose ru D 0. This is a consequence of
Korn’s inequality:

Theorem 2.25 (1st Korn’s Inequality) Let ˝ � R3 be a domain. Then, it holds

krvk 
 ckornk".v/k 8v 2 H1
0.˝/

3

with a constant ckorn > 0. This inequality corresponds to the case of Dirichlet
boundary values on the complete boundary 
 D D @˝ .

Korn’s first inequality deals with the case of homogenous Dirichlet conditions on
the complete boundary @˝ . In the context of structural mechanics, this limitation is
severe, as no free boundary motion and deformation would be allowed. The case
of general boundary conditions, with a Neumann part 
N � @˝ is less trivial and
handled by Korn’s second inequality:

Theorem 2.26 (2nd Korn’s Inequality) Let ˝ � R3 be a domain with Lipschitz-
boundary. Then, it holds

krvk 
 ckorn .k".v/k C kvk/ 8v 2 H1.˝/3:

with a constant ckorn > 0.

Proof The simple proof of 1st Korn’s inequality is based on integration by parts
and vanishing traces of v on the complete boundary @˝ . The proof of Korn’s 2nd
inequality is more involved and we refer to the literature, see e.g. [98, 196]. ut

Continuity and ellipticity of the bilinear form allows to apply the standard theory
for linear elliptic problems to the Navier-Lamé equations.

Lemma 2.27 (Existence of Unique Solutions) Let f 2 L2.˝/3, NuD 2 H1.˝/3 be
an extension of the Dirichlet data into the domain and u� 2 H1.@˝/3. There exists
a unique solution u 2 NuD C H1

0.˝I
 D/3 to the linear Navier-Lamé equations and
it holds

kukH1.˝/ 
 c
�kfkL2.˝/ C kuDkL2.
 D/ C ku� kH1.
 N /

�
;

with a constant c > 0.

Proof We must show that the variational formulation is bilinear, symmetric, contin-
uous and elliptic. Further, the right hand side is continuous, such that existence of a
unique solution follows by the Theorem of Lax-Milgram, see [293]. ut

Concerning the regularity of the solution, we cite the following lemma, see [97],
which gives conditions that lead to classical solutions.
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Lemma 2.28 (Strong Regularity of the Navier-Lamé Problem) Let ˝ � R3 be
a bounded domain of class C2C˛ for ˛ > 0. Given that the problem data has the
regularity

f 2 C˛. N̋ /3; Nu� 2 C1C˛.˝/3�3sym ; NuD 2 C2C˛. N̋ /3;

the weak solution u 2 H1
0.˝I
 D/3 of (2.35) is also a classical solution

u 2 C2.˝/3 \ C1.˝ [ 
 N/3 \ C.˝ [ 
 D/3:

A further regularity result with less strict assumption on the regularity of the
domain and the problem data is given by Shi and Wright [308]:

Lemma 2.29 (Weak Regularity of the Navier-Lamé Problem) Let ˝ � R3 be a
domain with W2;3 boundary. Further, let f 2 L2.˝/d. Then, for the solution of the
stationary Navier-Lamé problem with homogenous Dirichlet data uD D 0 it holds

kukH2.˝/3\H1
0.˝/

3 
 ckfkL2.˝/3 :

Regularity of solutions is usually restricted at points, where Neumann and
Dirichlet parts of the boundary come together. Here, we usually have singularities
in the gradient of the solution and the stress tensor.

2.3.1.1 The Incompressible Navier-Lamé Equations

For incompressible linear materials with � D 1
2
, the stress tensor is reduced to

� D �.ru C ruT/;

as tr ."/ D div u D 0. The material is no longer able to react on purely isotropic
stresses. To formulate the incompressible Navier-Lamé equations, we consider a
minimization problem in the space of divergence free functions

u 2 V0 W E.u/ 
 E.v/ D 1

2
a.v; v/� l.v/ 8v 2 V0;

where a.v; v/ WD .� ;rv/, l.v/ WD .f; v/ C hu� ; vi
 N and where V0 is the space of
weakly divergence free functions

V0 D f 2 H1
0.˝I
 D/3; .div ; �/ D 0 8� 2 L2.˝/g: (2.36)

The Hilbert space V0 is a closed subspace of H1
0.˝I
 D/3, such that the existence

of a unique solution follows as shown in Lemma 2.27. To derive a variational
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formulation, we use the Euler-Lagrange approach for constraint minimization
problems and define the Lagrange functional

L.u; p/ D 1

2
a.u;u/ � l.u/� . p; div u/;

with a Lagrange multiplier p 2 L2.˝/. A possible solution is given as stationary
point of L.u; p/:

duL.u; p/./ D a.u; / � l./ � . p; div /
ŠD 0 8 2 H1

0.˝I
 D/3

dpL.u; p/.�/ D �.�; div u/
ŠD 0 8� 2 L2.˝/:

We include the Lagrange multiplier into the stress tensor and define

� I.u; p/ D �pI C �.ru C ruT/;

where we identify p 2 L2.˝/ with a pressure function. This identification is
reasonable, as �pI acts as isotropic stress in all directions. The problem is now
to find fu; pg 2 H1

0.˝I
 D/3 � L2.˝/ such that

�
�.ru C ruT/� pI; "./

�C .div u; �/ D .f; /C hu� ; i
 N (2.37)

for all  2 H1
0.˝I
 D/3 and � 2 L2.˝/.

The incompressible Navier-Lamé equations, as a minimization problem with side
condition is a saddle-point system. Existence and uniqueness theory cannot be based
on ellipticity (in p). Instead, we split the proof for the existence of a well defined
solution in two parts. We start by finding a suitable deformation field. Therefore, we
restrict the space of admissible functions to those that already fulfill the divergence
condition in the space V0, see (2.36). Then, it holds

Lemma 2.30 (Incompressible Navier-Lamé—Existence of Unique Solutions
(Displacement)) Let f 2 L2.˝/3, NuD 2 H1.˝/3 be an extension of the
Dirichlet data into the domain and u� 2 H1.
 N/3. There exists a unique solution
u 2 NuD C H1

0.˝I
 D/d to the variational problem

.2�".u/; ".// D .f; /C hu� ; i
 N 8 2 H1
0.˝I
 D/3:

For this solution it holds

kukH1.˝/ 
 c
�kfkL2.˝/ C kuDkL2.
 D/ C ku� kH1.
 N /

�
:

Finally, u 2 V0 minimizes the energy function in the space V0

E.u/ 
 E.v/ 8v 2 V0:
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Proof The subspace V0 � H1
0.˝I
D/

3 is a Hilbert-space. The variational formu-
lation is V0-elliptic and the existence of a unique solution as well as the a priori
estimate follow in the same way as shown in Lemma 2.27. ut

Next, given a deformation field u 2 V0 we find a corresponding pressure by
analyzing the equation

p 2 L2.˝/ W
� . p;r/ D .f; /C hu� ; i
 N � .2�"./;r/ 8 2 H1

0.˝I
 D/3:

Existence of solutions to this problem cannot be shown by simple variational
arguments. Instead, we will define by

hgrad p; i WD �. p;r � / 8 2 H1
0.˝I
 D/3;

the weak gradient operator � grad D div� W L2.˝/ ! H�1.˝/ and show existence
by proving surjectivity of � grad in appropriate function spaces. We postpone this
discussion to Sect. 2.4.5, where we will come across the same pressure problem
concerning the incompressible Stokes equations.

2.3.1.2 The Non-stationary Navier-Lamé Equations

The non-stationary system of Navier-Lamé equations as given in Definition 2.22 is
a hyperbolic problem

@ttu � div .� / D 0; u.0/ D u0; @tu.0/ D v0:

For simplicity we will consider the case of homogenous Dirichlet data only and we
will further assume that f D 0. We multiply the differential equation by  D @tu
and integrate over the spatial domain to get

0 D .@ttu; @tu/C .� .u/; ".@tu// D d

dt

0

BB@
1

2
k@tuk2 C 1

2
.� .u/; "/

„ ƒ‚ …
DWE.t/

1

CCA ;

where by E.t/we denote the energy of the system. This energy does not change over
time (remember that we consider the homogenous problem only). Integration over
the temporal domain I D Œ0;T� yields the relation

E.t/ D E.0/ t � 0; E.0/ D 1

2
kv0k2 C 1

2

�
� .u0/; ".u0/

�
;
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with the initial velocity v0 D @tu0. Hence a solution must by unique and it is
bounded by the initial data.

Conservation of energy dtE.t/ D 0 shows the close relation to the wave equation.
Existence of solutions to this simple (linear, symmetric and positive) problem can
be shown by the Fourier approach. The operator

hLu; vi WD
�
2�".u/C � tr

�
".u/

�
; ".v/

�

is symmetric, positive definite, selfadjoint and a bijection. Its inverse is bound and
considered as operator L�1 W L2.˝/d ! L2.˝/d it is compact. Hence L has a
spectrum of positive eigenvalues, with no finite accumulation point. Further, an
orthonormal basis of eigenvectors exists. This allows to diagonalize the system of
equations, such that it decomposes into a sequence of scalar initial values problems
that have a solution that can be constructed by elementary principles. For the details
on this construction, we refer to the literature [268].

A recent result on the regularity of the non-stationary Navier-Lamé problem
with homogenous Dirichlet data is given by Mitrea and Monniaux [243]. They
basically show that given sufficient regularity of the domain’s boundary (Lipschitz),
the solution of the non-stationary Navier-Lamé problem with zero initial data
and zero Dirichlet data satisfies u 2 H1.II L2.˝/3/ for every right hand side
f 2 L2.II L2.˝/3/.

In the upcoming chapters, we will see that the coupling of the solid equation
to the fluid equations brings along further challenges for the analysis of the partial
differential equations. The kinematic coupling condition, see Sect. 3.1 will ask for
continuity of solid- and fluid-velocities on a common interface I.t/ D @S.t/\@F.t/

vf D vs on I.t/:

In the case of stationary problems, this kinematic coupling condition is just a usual
no-slip boundary condition vf D 0 for the fluid’s velocity. For fully non-stationary
problems, a real coupling between the two velocities is introduced. The solution of
the Navier-Stokes equations is well defined for velocities with traces in

vf

ˇ̌
ˇ
@F

2 H
1
2 .@F/;

which—as seen from the solid problem—will require

vf

ˇ̌
ˇ
I

D vs

ˇ̌
ˇ
I

) vs 2 H1.S/:

However, the previous analysis only gives

vs D @tus 2 L2.II L2.˝/3/:
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This is not sufficient to define a H1=2-trace on I. This problem has two possible
solutions. First—and this will be our usual procedure—we can simply assume
additional a priori knowledge on the regularity of us and therefore vs. This can
be guaranteed for small and regular problem data, if the boundaries of the coupled
problem have very high regularity. Coutand and Shkoller [106] show the existence
of solutions for the coupling of elastic solids with the Navier-Stokes equations,
if the solid with boundary of class H4 is completely embedded in a fluid-domain
with boundary of class H3, given sufficient regularity of the right hand side and the
boundary data, see [106]. A second approach to enforce sufficient regularity it to
add damping terms to the solid equation. Gazzola and Squassina show the following
result, see [162].

Theorem 2.31 (Damped Wave Equation) Let ˝ � Rd be a Lipschitz domain.
The strongly damped wave equation

@ttu ��u � !�@tu C �@tu D 0 in Œ0;T� �˝;

with initial values

u.0; �/ D u0 2 H1.˝/; @tu.0; �/ D u1 2 L2.˝/;

and homogenous Dirichlet values on @˝ and the damping parameters

! > 0; � > �!�1;

where �1 is the first eigenvalue of �� has a unique solution satisfying

u 2 L1.Œ0;T�;H1
0.˝//\ W1;1.Œ0;T�;L2.˝//; @tu 2 L2.Œ0;T�;H1

0 .˝//:

For the proof, see Gazolla and Squassina [162].
By adding strong damping terms, we are able to assure sufficient regularity to

realize the kinematic coupling condition between solid problem and fluid problem.

2.3.2 Theory of Nonlinear Hyper-Elastic Material

Tackling the existence and uniqueness problem of the full elastic structure equation
(using the St. Venant Kirchhoff material law) is complicated by the nonlinearity of
the problem. Here, we will not give details on the complex proofs, but will simply
cite some important results. A good overview on the theory of nonlinear elastic
materials is given in the textbook of Ciarlet [97].
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All approaches for the nonlinear problem will at some time use a linearization of
the problem and will consult the theory that has been derived for the linear Navier-
Lamé problem. Further, most approaches use variational techniques, such that the
starting point for every analysis is the following weak formulation of the problem:

Lemma 2.32 (Weak Formulation of the Hyper-Elastic Structures) Let NuD 2
H1. OS/d be an extension of the Dirichlet data on 
 D into the domain ˝ . If the
solution

Ouf 2 NuD
f C H1

0.
Ő I
 D/d

of the variational formulation

. OF Ȯ s; Or O/ OS D .�0s
Ofs; O/; 8 O 2 H1

0.
Ő I
 D/d; (2.38)

has sufficient regularity Ou 2 C2. Ő /\C. Ő [
 D/\C1. Ő [
 D/, it is also a solution
to the classical formulation of the elastic structure equations (2.32) with Dirichlet
data on 
 D

s .
Using the implicit function theorem, Ciarlet [97] proofs the following result for

weak solutions of the elastic structure equation governed by the St. Venant Kirchhoff
material:

Lemma 2.33 (Stationary St. Venant Kirchhoff Material) Let ˝ � R3 be a
domain with C2-boundary. Then, for every p > 3 there exists a constant ˛ such that
for every f 2 Lp.˝/d with kfkLp 
 ˛ there exists a unique solution u 2 W2;p.˝/

to the stationary elastic structure equation governed by the St. Venant Kirchhoff
material.
For the proof, we refer to the literature [97].

2.4 The Fluid Problem

In fluid-dynamics, we describe the flow of particles in the Eulerian framework.
Looking at a fixed coordinate x 2 Rd we observe a particle Ox.x; t/ that at time t
is in position x. The fate of a single particle is of no interest.

We will only consider incompressible fluids, i.e. a given moving volume V.t/
will not change its size under motion:

dtjV.t/j D 0; t � 0:

Applying Reynolds’ Transport theorem, Lemma 2.8 to the scalar ˚ 	 1 yields:

dtjV.t/j D dt

Z

V.t/
1 d x D

Z

V.t/
div v d x:
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Hence as V.t/ can be chosen arbitrarily, we deduce the point-wise equation for the
incompressibility of a fluid, see also Sect. 2.2.3:

div v D 0: (2.39)

Using this condition, conservation of mass (2.13) reduces to a transport equation for
the fluid’s density:

@t�f C .v � r/�f D 0: (2.40)

For further simplification, we will restrict all our considerations to homogenous
fluids, where the density at initial time t D 0 is constant in the complete volume
�f .x; 0/ D �0f .x/ 	 �f . Given (2.40) it hereby follows that the density is
homogenous at all times t � 0 and conservation of mass is reduced to the divergence
condition (2.39).

To close the system of equations for incompressible fluids we must introduce
material laws that model the dependency of the stress tensor � f on velocity and
pressure. We are considering Navier-Stokes fluids only that linearly depend on the
strain rate following Hooke’s law

� D 2�f P" C � tr. P"/I:

As for an incompressible fluid it holds div v D tr. P"/ D 0, the stress tensor
simplifies to

� D �pI C �f .rv C rvT/; (2.41)

where again by p we denote the undetermined pressure that will act as Lagrange
multiplier to ensure the divergence condition div v D 0. By �f D �f �f we denote
the dynamic viscosity of the fluid and by �f its kinematic viscosity. The complete
set of the Navier-Stokes equations is given by

�f .@tv C .v � r/v/� div � D �f f; div v D 0;

or, using the material law for a Navier-Stokes fluid

�f .@tv C .v � r/v/C rp � �f �f div .rv C rvT/ D �f f; div v D 0: (2.42)

Remark 2.34 (Symmetry of the Stress-Tensor) For an incompressible fluid, the
stress-tensor allows for a further simplification. It holds:

	
div

�rv C rvT
�


i
D
X

j

@j
�
@jvi C @ivj

� D �vi C @i div v„ƒ‚…
D0

; for i D 1; 2; 3;
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and Eq. (2.42) is equivalent to the reduced formulation

�f
�
@tvf C .v � r/v� � �f �f�v C rp D �f f; div v D 0:

Usually, this simplified set of equations is considered as the Navier-Stokes equa-
tions. However, while both equations yield the same solution .v; p/, the value of
boundary stresses is altered, if the reduced tensor Q� f D �f rv � pI would be
considered:

Q� f n ¤ � f n:

In the context of fluid-structure interactions, boundary stresses will be important to
couple flow and structure problem. Out of this reason, we will always consider the
full symmetric stress tensor � f . One of the coupling conditions will couple normal
stresses of the fluid problem and the solid problem

n � � f D n � � s;

where by � s we denote the Cauchy stress tensor of the solid, i.e.

� s D OJ�1F Ȯ s OFT
:

Here, it will matter, whether it holds

�pn C �f �fn � .rv C rvT/ D n� s;

or

�pn C �f �fn � rv D n� s;

as usually we have

n � rvT ¤ 0:

2.4.1 Boundary and Initial Conditions

The system of equations is completed by adequate boundary and initial conditions.
Let F � Rd be the fluid-domain. At time t D 0 we prescribe an initial condition for
the velocity

v.x; 0/ D v0.x/ x 2 F :
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As the density is constant �f .x; t/ 	 �f for all times (and homogenous in the
domain), we do not need an initial condition here, but simply consider �f 2 R

as a problem parameter. The boundary @F is split into a Dirichlet part 
 D
f and into

a Neumann part 
 N
f . On 
 D

f we prescribe Dirichlet conditions for the velocity

v.x; t/ D vD.x; t/ on 
 D
f � Œ0;T�:

In the case vD D 0, we denote this condition as the no-slip condition. Physical
observation tells us that viscosity will cause the fluid to stick to the boundary. This
condition holds for the flow of water over elastic material (at usual velocities). The
importance of viscous effects is lessened at high velocities, when e.g. considering
the aerodynamical flow of air around a plane. Here, one often refers to the slip
condition that only prescribes the flow in normal direction

n � v.x; t/ D 0 on 
 D
f � Œ0;T�:

The slip boundary condition prevents the flow from entering the boundary, it
however allows for tangential flow. All examples considered in this work will be
in the viscous regime where no-slip condition are usually well-placed. Boundaries
with non homogenous Dirichlet data are often inflow boundaries.

Neumann conditions model situations, where we do not know the velocity profile
at the boundary, but where assumptions on the boundary stress are given:

� f .x; t/n.x; t/ D g� .x; t/ on 
 N
f � Œ0;T�:

The typical application of Neumann conditions are outflow boundaries, where the
profile of the flow is not known and a Dirichlet condition cannot be prescribed. See
Fig. 2.7 for a typical configuration of a flow problem with different boundary parts.
We will come back to outflow boundary conditions in Sect. 2.4.2, as the exact form
will depend on the material law and the Cauchy stress tensor � f .

ΓN
f := Γout

f

Γin
f

Γwall
f

F
Γ

ΓD
f := Γin

f ∪ Γwall
f

Fig. 2.7 Typical configuration of a flow problem with Dirichlet inflow boundary 
 in
f and Dirichlet

no-slip boundary on the walls 
 wall
f as well as an outflow boundary 
 out

f of Neumann type
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If only no-slip and outflow boundary conditions are taken into account, the
complete set of incompressible flow equations on the (fixed) domain F � Rd is
given by

Problem 2.35 (Incompressible Navier-Stokes Equations) Velocity and pressure

v.t/ 2 C2.F/ \ C.F [ 
 D
f /\ C1.F [ 
 N

f /; p.t/ 2 C1.F/\ C.F [ 
 N
f /;

are given as solution of

div v D 0; �f .@tv C .v � r/v/ D �f f C div � f on F � Œ0;T�;
v.�; 0/ D v0.�/ on F ;

v D vD on 
 D
f � Œ0;T�;

� fn D g� on 
 N
f � Œ0;T�:

(2.43)

If boundary data vD and g� as well as volume force f do not explicitly depend on
time, the flow configurations can tend to a stationary limit, where it holds @tv D 0.
Stationary in the context of fluid dynamics stands for a flow that at all times looks
the same way, it does not imply that the fluid is at rest, which would mean v D 0.
If we know that the flow will reach a stationary limit, we can immediately consider
the set of stationary equations, given as a boundary value problem.

Problem 2.36 (Stationary Incompressible Navier-Stokes Equations) Velocity
and pressure

v 2 C2.F/ \ C.F [ 
 D
f /\ C1.F [ 
 N

f /; p 2 C1.F/\ C.F [ 
 N
f /;

are given as solution of

div v D 0; �f .v � r/v D �f f C div � f on F ;
v D vD on 
 D

f ;

� fn D g� on 
 N
f :

(2.44)

Not all autonomous flow problems have a stationary limit. This stems from the
nonlinearity of the Navier-Stokes equations and whether a flow is stationary or
instationary will depend on the problem data like density, viscosity, right hand side
f and inflow velocity vD.
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2.4.2 The “do-nothing” Outflow Condition

Many problem configurations feature boundaries, where the flow has mainly an
outflow-character. We will call this boundary 
 out

f . Here, the solution is not known
a priori and cannot be specified in terms of a Dirichlet condition. Any boundary
condition that is enforced, will be a model for the flow at the outflow boundary.
Hence a common practice is to not describe a condition at all, but simply use the
“natural” boundary condition, that arises from integration by parts. We consider the
stationary Stokes equations:

.� f ;r/F D �.div � f ; /F C h� fn; i
 out
f
;

from where we can deduce the “outflow-condition”

� fn D 0 on 
 out
f :

In Fig. 2.8, we show a solution to a “channel-flow” problem using this natural
outflow-condition. The domain is a channel with length L and height H

F D .0;L/ � .0;H/;

on the left boundary 
 in
f we impose a Dirichlet inflow profile

v D vD D 4Nv
H2

�
y.H � y/

0

�
on 
 in

f D 0 � .0;H/; (2.45)

where Nv is the peak velocity. On the horizontal lines 
 wall
f we impose homogenous

Dirichlet conditions

v D 0 on 
 wall
f D .0;L/ � 0 [ .0;L/ � H:

The outflow boundary is given as


 out
f D L � .0;H/:

Fig. 2.8 Channel flow with natural outflow condition � fn D 0. The velocity field gets deflected
and does not follow the Poiseuille flow
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In Fig. 2.8 we see that the velocity vectors get deflected and swing out of line.
Considering the outflow model � fn D 0, which simply states that no external
stresses act, this behavior can be interpreted as a duct that ends in an open space,
such that the fluid can expand in all directions.

Often, computational domains are chosen simply as a restriction of a larger
domain to an area where the interesting dynamics happen. Numerically, boundary
lines often must be drawn to scale the problem down to a reasonable size. In such
situations, a good outflow boundary should have as little influence on the solution as
possible. Regarding Fig. 2.8, the exact location of the outflow boundary should not
change the flow pattern inside the domain. The natural condition does not satisfy
this request.

One of the most simple analytical solutions to a channel problem is the Poiseuille
flow. An extension of the inflow data (2.45) into the domain

v.x; y/ D 4Nv
H2

�
y.H � y/

0

�
;

satisfies the Navier-Stokes equations in channels (without obstacle) together with
the pressure field

p.x; y/ D 8 Nv
H2

x C c;

for every c 2 R. In channel-like situations as shown in Fig. 2.8, an outflow condition
should allow for Poiseuille flows without deterioration.

By a small modification of this outflow condition, we allow the Poiseuille flow
to leave the domain without deflection. Using the reduced stress tensor introduced
in Remark 2.34

Q� f D �f �f rv � pI;

it holds for the Poiseuille flow that

Q� fn D .n � r/v � pn D 0 on 
 out
f :

This condition is called the do-nothing outflow condition, as it has as little impact
on the flow as possible (or as it is the natural boundary condition, that arises without
doing anything, when using the reduced tensor), see [188]. In Fig. 2.9, we show the
flow around a cylinder using this do-nothing condition. Here, he streamlines leave
the domain in a straight way. Compare Fig. 2.8.

Remark 2.37 (Outflow Conditions) We must stress that the do-nothing outflow
condition is not the better condition from a physical point of view. It is simply a
model that allows for some standard flow situations like Poiseuille flow or Couette
flow to reduce the sensitivity of the solution on the position of artificial boundaries.
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Fig. 2.9 Channel flow with the do-nothing outflow condition �f�f rvn � pI D 0 on 
 out
f . The

streamlines are not deflected on the right outflow boundary. Compare Fig. 2.8

From a good outflow condition we expect that it has as little influence on the flow
field as possible. If the outflow boundary is far away from a region of interest (e.g.
from an obstacle) we expect that the flow close to the obstacle is not influenced
by the position of the outflow boundary, if the outflow boundary condition does
a good job. The do-nothing condition works excellent in several configurations. It
does not only allow Poiseuille or Couette flows to leave the domain, it further allows
vortices to leave the domain and has very small influence on these vortices, if the
boundary is artificially cutting through them. However, many situations exist, where
the analysis of outflow conditions is still not sufficiently developed: whenever the
outflow boundary is not a single straight line normal to the main flow-direction,
it will cause a deflection of the flow field. Further, if one considers more general
material laws of non-Newtonian fluids, the do-nothing condition has an impact on
the flow-field, see [338].

The do-nothing boundary condition brings along a further “hidden” boundary
condition that normalizes the pressure. It can be shown [188] that on every straight
outflow boundary-line segment 
i � @F that is enclosed by no-slip Dirichlet
boundaries, it holds

Z


 out
i

p ds D 0;

on all outflow boundaries 
 out
i , such that the average outflow pressure is zero.

This condition has two implications: first, whenever an outflow boundary of do-
nothing type is given, no pressure-normalization has to be included in the trial
spaces. Second, the do-nothing condition can be used to prescribe pressure drops
on boundary segments in order to drive the flow:

Z


i

˚
�f �fn � rv � pn

�
ds D

Z


i

Pi ds; i D 1; : : : ;Nout; Pi 2 R:

This gets important, if the flow is driven by pressure differences and not by means
of Dirichlet conditions. A frequently considered situation arises in hemodynamical
simulations in which a flow in a part of the channel-system (i.e., the cardiovascular
system) is investigated. This small part of the overall problem can be coupled by
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prescribing pressure values, e.g. taken from the pressure profile as measured from
the heart-beat.

2.4.3 Reynolds Number

Simulations with the incompressible Navier-Stokes equations help to gain better
insight into flow configurations. They can be used to replace and complement
experiments. For a better comparison of similar flow-configurations that for instance
arise by scaling in wind tunnel experiments, we introduce a non-dimensional form
of the incompressible Navier-Stokes equations. First, let Lf be a unit length and NVf

be a unit velocity. We define the non-dimensional values (without physical units)

x� WD 1

Lf
x; v� WD 1

Vf
v; t� WD Vf

Lf
t; p� WD 1

V2
f �f

p: (2.46)

For these new values, it holds:

@v�

@t�
C .v� � r�/v� D Lf

V2
f

�
@v
@t

C .v � r/v
�
;

��v� D L2f
Vf
�v; r�p� D Lf

V2
f �f

rp;

and the Navier-Stokes equations in non-dimensional form (with homogenous right
hand side) reads

@v�

@t�
C .v� � r�/v� � �f

Vf Lf
div� ˚r�v� C .r�v�/T

� � r�p� D 0;

r� � v� D 0:

The quantity

Re WD Vf Lf

�f
D Vf Lf�f

�f
;

is called the Reynolds number. Scaled flow configurations with the same Reynolds
number are equivalent. If the flow is known in the non-dimensional unit-system, it
can be scaled to every equivalent configuration via (2.46). The Reynolds number is
a good measure to describe the dynamical behavior of a flow configuration. Flows
at low Reynolds number tend to have a stationary solution, while flows at higher
Reynolds numbers have non-stationary or even turbulent solutions. The definition
of the Reynolds number is somewhat arbitrary as fixing a reference velocity Vf and
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length Lf is usually not unique. The Reynolds number may therefore only by used to
compare different flow situations for one configuration, e.g. the flow around a ship
with length L D 100m compared to a down-scaled model of the same ship with
length 5m.

2.4.4 The Linear Stokes Equations

In flow situations where friction effects are very large compared to acceleration
terms, the Navier-Stokes equations can be simplified by neglecting the convective
term .v �r/v. This case is given, if the Reynolds number tends to zero Re ! 0. If the
right hand side of the equation as well as boundary data does not depend on time,
the flow field will be stationary and we end up with the stationary Stokes equations

��f �f�v C rp D �f f; div v D 0 in F ;

with the usual Dirichlet or Neumann boundary conditions on @F . By renormalizing
the pressure Np D .�f �f /

�1p and the volume force Nf D ��1
f f all physical parameters

can be omitted and we derive the equations in non-dimensionalized form.

Problem 2.38 (Stokes Equations) Velocity v 2 C2.F/ \ C. NF/ and pressure p 2
C1.F/ are given as solution of

��v C r Np D Nf; div v D 0 in F : (2.47)

Compared to the full incompressible Navier-Stokes equations, this equation is
rather simple looking. As a saddle-point system it however still obtains one of the
most important features of incompressible flows. While the physical relevance of
the Stokes equations is very limited, it serves as entry-point to the mathematical
analysis and the design of finite element discretizations for flow problems.

2.4.5 Theory of Incompressible Flows

If there exists a unique solution fv; pg to the incompressible Navier-Stokes equations
is still not known in all configuration. The stationary case is well understood,
if we only consider Dirichlet boundary conditions. Here, a solution exists for
small Reynolds numbers and it is unique, if the data is sufficiently small. When
we consider general outflow conditions, we have no possibility to control the
nonlinearity .v � r/v. In the instationary configuration there exists no proof for
the existence of a unique solution under reasonable data assumptions. In three
dimensions, the problem of proving the existence of a global smooth solution is
considered open and one of the Millenium Prize Problems, see [89].
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We start by deriving a weak formulation of the Navier-Stokes equations:

Lemma 2.39 (Weak Formulation of the Navier-Stokes Equations) Let NvD 2
H1.F/d be an extension of the Dirichlet data on 
 D

f into the domain F . If the
solution

v 2 NvD C Vf ; Vf WD H1
0.F I
 D

f /
d; p 2 Lf ; Lf WD L2.F/;

of the variational formulation

.�f .@tv C .v � r/v/; /F C .� f ;r/F
��f �f hn � rvT ; i
 out

f
D .�f f; /F 8 2 Vf ;

.div v; �/F D 0 8� 2 Lf ;

(2.48)

has sufficient regularity vf 2 C2.F/\C.F[
 D
f /\C1.F [
 out

f / and p 2 C1.F/, it
also solves the classical formulation of the Navier-Stokes equations, Problem 2.35
with Dirichlet data on 
 D

f and the do-nothing outflow condition on 
 out
f .

Proof This follows by integration by parts and with basic variational principles. The
boundary term on 
 out

f is required as we use the full symmetric stress-tensor such
that the solution of the variational formulation fulfills the do-nothing condition, see
Sect. 2.4.2. ut
Remark 2.40 (Uniqueness of the Pressure in Dirichlet Problem) If the configura-
tion has Dirichlet boundaries all around the boundary 
 D

f D @F , a solution cannot
be unique: let fv; pg 2 Vf �Lf be a solution. Then, it holds for fv; pCcg with c 2 R:

.� f ;r/F D �f �f .rv C rvT ;r/F � . pf C c;r � /F
D �f �f .rv C rvT ;r/F � . pf ;r � /F C . rc„ƒ‚…

D0
; /F � hcn; „ƒ‚…

D0
i@F :

If 
 D
f D @F the pressure can only be unique up to a constant. In this case, we

normalize the pressure-space

Lf D L2.F/ n R:

The Navier-Stokes equations brings along two characteristic difficulties for
theoretical analysis and numerical discretization, the nonlinearity .v � r/v and the
side-condition of divergence freeness div v D 0. We will first focus on this second
difficulty and consider the linear Stokes equations.
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2.4.5.1 Existence and Uniqueness of Solutions to the Stokes Equations

In the following, we consider the stationary Stokes equations

v; p 2 Vf � Lf ; Vf WD H1
0.F I @F/d; Lf WD L2.F/ n R W

.rv;r/F � . p;r � /F C .r � v; �/F D .f; /F 8f; �g 2 Vf � Lf :

Here, we assume homogenous Dirichlet conditions on the complete boundary @F
and further we consider the non-symmetric form of the stress tensor. Every solution
v 2 Vf will be weakly divergence free in the space

v 2 V0 WD f 2 Vf ; .div ; �/F D 0 8� 2 Lf g � Vf :

By restricting the Stokes equations to this space, it remains to find

v 2 V0 W .rv;r/F D .f; /F 8 2 V0: (2.49)

Lemma 2.41 (Stokes Velocity) For every f 2 H�1.F/d there exists a unique
velocity v 2 V0 � Vf as solution of the Stokes equations. Further, it holds

krvk 
 kfk�1:

Proof The space V0 � Vf is a Hilbert-space with the scalar product .r�;r�/.
Riesz representation theorem guarantees the existence of a unique solution v 2 V0
to (2.49) and further gives the error estimate. ut

2.4.5.2 Existence and Uniqueness of the Pressure

Now that we have shown the existence of a unique and divergence-free velocity field
v 2 V0 � Vf , the pressure is determined by the equation

p 2 Lf W . p;r � / D .f; / � .rv;r/ 8 2 Vf : (2.50)

As this equation is not elliptic, we cannot proof existence with Riesz representation
theorem or a generalization like Lax-Milgram. Instead, we reformulate this varia-
tional equation in operator notation as

� grad p D l; (2.51)

where �grad W Lf ! H�1 is the weak gradient

�hgrad p; i D . p;r � / 8 2 Vf ;
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and l 2 H�1 a linear functional defined by

l./ D .f; / � .rv;r/ 8 2 Vf :

Whether Eqs. (2.50) or (2.51) have a solution depends on the surjectivity of the weak
gradient operator. The difficulty of the analysis for this equation is the low regularity
of the problem. Two important results from the literature help up to answer the
questions of existence and uniqueness of solutions. It holds

Theorem 2.42 (de Rham) Let l 2 H�1. The equation

� grad p D l;

has a unique solution p 2 Lf , if and only if

l 2 Vı
0 ;

where by Vı
0 we denote the annihilator of V0 in H�1

Vı
0 WD f f 2 H�1; f ./ D 0 8 2 V0g � H�1:

And:

Theorem 2.43 Let F be a bounded domain with Lipschitz boundary and p 2 L2.F/
be such that grad p 2 H�1.F/. Then, it holds

	kpkL2.F/nR 
 k grad pk�1;

with a constant 	 D 	.F/ that depends on the domain only.

Proof For proofs of these essential theorems we refer to the literature. See
Teman [321], de Rham [112] and Nec̆as [251]. ut

We will quote yet another Theorem to show equivalence of Theorem 2.43 with
further conditions that will be handy in the context of the Stokes equations; both
for proofing existence and uniqueness of the pressure, as well as for numerical error
analysis.

Theorem 2.44 (Nec̆as) The following three properties are equivalent

(i) The weak gradient operator � grad W Lf ! Vı
0 is an isomorphism.

(ii) For every p 2 L2.F/ it holds

k grad pk�1 � 	kpk 8p 2 Lf ; (2.52)

where 	 > 0 is a constant. (This is exactly Theorem 2.43).
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(ii) The inf-sup condition holds

inf
�2Lf

sup
2Vf

.�;r � /
k�k krk � 	; (2.53)

with a constant 	 > 0.

Proof Again, we refer to the literature [251, 321]. ut
All these preparations allow us to show the existence of a unique solution to the

Stokes equations:

Lemma 2.45 (Stokes) Let F � Rd be a domain with Lipschitz boundary. The
Stokes equation has a unique solution v 2 Vf and p 2 Lf for every f 2 H�1. It holds

krvk C 	kpk 
 ckfk�1;

where c > 0 is a constant.

Proof The existence of a unique function v 2 V0 solving the velocity equation has
already been shown. The functional

l./ D .rv;r/� .f; /

is bound in H�1.F/ and further, it holds l 2 Vı
0 . Hence existence of a unique weak

pressure p 2 Lf solving � grad p D l follows by Lemma 2.44.
Finally, by using the inf-sup inequality we have

	kpk 
 sup
2Vf

. p;r � /
krk D sup

2Vf

.f; / � .rv;r/
krk


 kfk�1 C krvk 
 2kfk�1:

ut
During the proof of this Lemma, we have used the following useful inequality

for the divergence operator

k div vk 
 p
dkrvk 8v 2 H1.F/d; k div vk 
 krvk 8v 2 H1

0.F/d;
(2.54)

which follows with help of Young’s inequality in the general case and with help of
integration by parts of the mixed terms in the case of zero trace velocity fields.

Despite the special saddle-point character of the Stokes equations it shows that
we still get a unique solution that continuously depends on the right hand side f. We
only get L2-regularity for the pressure. The most important tool in the analysis of
incompressible flows is the inf-sup condition. If the right hand side f and the domain
is sufficiently regular, we will get higher regularity of the solution. Here, the same
rule of thump holds as for the Laplace equation:
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Lemma 2.46 (Regularity of the Stokes Equations) Let F be a convex polygonal
domain and f 2 L2.F/d. Then the solution of the Stokes equations is bounded

kr2vk C krpk 
 cskfk;

with a stability constant cs > 0.
If F � Rd is a domain with smooth CkC2-boundary for k � 0 and f 2 Hk.F/d it

holds

kvkHkC2.F/ C kpkHkC1.F/ 
 ckfkHk.F/:

Proof For a proof to these results, we refer to the literature [160, 321]. ut

2.4.5.3 The Stationary Navier-Stokes Equations

Next, we discuss the stationary Navier-Stokes equations including the nonlinearity

fv; pg 2 Vf � Lf ; Vf WD H1
0.F I @F/d; Lf WD L2.F/ n R W

1

Re
.rv;r/C .v � rv; /� . p;r � /C .r � v; �/ D .f; /

8f; �g 2 Vf � Lf ; (2.55)

again considering homogenous Dirichlet conditions v D 0 only. Here, this
restriction is essential not merely given for technical reasons, as the following
Lemma shows:

Lemma 2.47 (Nonlinearity of the Navier-Stokes Equations) For v;w 2 H1
0.F/d

with div v D 0 it holds:

.v � rw;w/ D 0: (2.56)

In the case of an outflow boundary 
 out
f � @F it holds for all v;w 2 H1

0.F I
 D
f /

d

with div v D 0

�
.v � r/w;w

�
D 1

2

Z


 out
f

n � vjwj2 ds: (2.57)
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Proof In the case of general boundary conditions it holds

�
.v � r/w;w

�

F
D
X

i;j

.vj@jwi;wi/F

D
X

i;j

n Z

@F
njwivjwi ds � .wi; @jvjwi/F � .wi; vj@jwi/F

o

D � .w; .div v/w/F„ ƒ‚ …
D0

�..v � r/w;w/F C
Z

@F
.n � v/jwj2 ds:

This shows the two assertions. ut
This special structure of the nonlinearity will be the key to theoretical analysis of

the incompressible Navier-Stokes equations.

Lemma 2.48 (Stability Estimate for the Velocity) Let v 2 V0 � H1
0.F/d be a

velocity field solving the Navier-Stokes equations. It holds for f 2 L2.F/d

krvk 
 ��1kfk�1:

Proof This results immediately follows with Lemma 2.47. ut
Remark 2.49 (Outflow Conditions and Stability Estimates) Lemma 2.47 shows that
the nonlinearity of the Navier-Stokes equations is only controllable, if Dirichlet or
at least no-penetration conditions

v � n D 0;

are given on all boundaries. For the do-nothing conditions but also for the no-stress
condition introduced in Sect. 2.4.2 a boundary term remains. The problem of this
remaining boundary term

1

2

Z


 out
f

n � njwj2 do;

is the unknown sign. If there would be only outflow, i.e. n�v � 0, we still get stability
in the sense of Lemma 2.48. In the general setting, the boundary term however can
be negative or positive. Braack and Mucha [61] introduced a modification of the
do-nothing condition, denoted the directional do-nothing condition that cancels the
negative part of the boundary term and results in

�pn C �f �fn � rv � 1

2
.v � n/�v D 0 on 
 out

f ;
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where by .v � n/� we denote

.v � n/� D
(
0 v � n � 0;

v � n v � n < 0:

This condition is easily realized by a modification of the variational formulation

.v � rv; /C .�f �f rv;r/� . p;r � /� 1

2

Z


 out
f

.v � n/�v �  do D .f; /:

Braack and Mucha can show existence and uniqueness of solutions (for small data).
Furthermore, they report better numerical stability when using this directional do-
nothing condition. Finally, this modified condition still allows for Poiseuille and
Couette flow as well as vortices to leave the domain with little impact. See [61] for
details.

Like for the Stokes equations, proofs for existence and uniqueness are split into
first finding the velocity (this is a nonlinear problem now) and second, finding
an appropriate pressure. While this second part is exactly as for the linear Stokes
problem, showing existence and uniqueness of a velocity requires careful treatment
of the nonlinearity.

�.rv;r/C ..v � r/v; / D .f; / 8 2 V0: (2.58)

Lemma 2.50 (Solutions for the Navier-Stokes Equations) Let F � Rd be a
domain with Lipschitz boundary. Further, let f 2 H�1.F/. There exists a solution
fv; pg 2 Vf � Lf to the Navier-Stokes equations (2.55) for every Reynolds number.
It holds

krvk C kpk 
 ckfk�1:

This solution is unique, if

c2��2kfk�1 
 1;

where c > 0 is a constant depending on the domain F .

Proof For the proof, we again refer to the literature [251, 321]. ut
The incompressible Navier-Stokes problem with homogenous Dirichlet values

has a solution fv; pg 2 Vf � Lf for all Reynolds numbers and all right hand sides
f 2 H�1.F/. This solution is unique only if the Reynolds number is very small:

Re 

s

1

c2kfk�1
:
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Most application problems however deal with high Reynolds numbers Re � 1000

and a unique solution cannot be guaranteed. As we know that flows at very high
Reynolds numbers get turbulent, we cannot expect a unique result for arbitrary
Reynolds numbers. The gap between theory and observation however is still very
large.

Nearly no theoretical results are known for different boundary conditions, in
particular for outflow conditions like the do-nothing condition. Here, it is even
unknown, whether the homogenous problem

� 1

Re
�v C .v � r/v C rp D 0; r � v D 0;

with homogenous boundary conditions

v D 0 on 
 D
f ;

1

Re
@nv � pn D 0 on 
 out

f

only has the trivial solution v D 0 and p D 0 or if other non-trivial solutions exist.
Finally, we cite a regularity result for the stationary Navier-Stokes equations

which is in agreement to the expectation:

Lemma 2.51 (Regularity of the Navier-Stokes Solution) Let F � Rd be a
convex polygonal or smooth domain of class C2;1. Further, let NvD 2 H2.F/d
be a smooth extension of the Dirichlet data vD on @F into the domain. Finally,
let f 2 L2.F/d. The solution to the Navier-Stokes equations has the regularity
v 2 H2.F/\ Vf and p 2 H1.F/\ Lf and it holds

kr2vk C krpk 
 csfkfk C kr2 NvDk�;
where the stability constant is related to the Reynolds number cs � Re.

Next, let F be a CkC2-domain and f 2 Hk.F/d. Then, every solution v 2 H1
0.F/d

and p 2 L2.F/ of the stationary Navier-Stokes equations has the regularity

kvkHkC2.F/ C kpkHkC1.F/ 
 ckfkHk.F/:

Proof For a proof of this result we refer to the literature, see Girault and
Raviart [165] or Sohr [312]. ut

2.4.5.4 The Non-stationary Navier-Stokes Equations

Finally, we discuss the non-stationary Navier-Stokes equations

v D vin t D 0;

.@tv; /C ..v � r/v; /C �.rv;r/ � . p;r � / D .f; / 8 2 Vf ;

.r � v; �/ D 0 8� 2 Lf :
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Like in the stationary case, we can restrict the problem to the space of divergence
free functions V0 � V . Integration of the variational formulation over the time-
interval I D Œ0;T� gives

Z

I
f.@tv; /C ..v � r/v; /C �.rv;r/g dt D

Z

I
.f; / dt:

To analyze this variational formulation, we must first specify suitable function
spaces. For the velocity part, natural choices for v and test function  are

v;  2 L2.IIV0/;

the space of square-integrable functions in time that map into V0. For the time-
derivative of the velocity, we further ask for

@tv 2 L2.II H�1.F//:

We denote this space by W.0;T/

W.0;T/ WD f 2 L2.IIV0/; @t 2 L2.II H�1.F//g: (2.59)

The spaces

V0 � H1
0.˝/

d � L2.˝/d Š ŒL2.˝/d�� � H�1.˝/

constitute a Gelfand triple and it holds (see [321])

W.0;T/ ,! C.NII L2.˝/d/:

Every function v 2 W.0;T/ is almost everywhere equal to a continuous function in
time that maps into L2.˝/d. It remains to discuss the nonlinearity: does for functions
v;  2 W.0;T/ hold that

Z

I
..v � r/v; / dt < 1‹

An answer is given by the following result:

Lemma 2.52 Let ˝ � Rd be an open set. For d D 2 it holds

kvkL4.˝/ 
 ckvk 1
2 krvk 1

2 :

In the case d D 3 it holds

kvkL4.˝/ 
 ckvk 1
2 krvk 3

2 :
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Proof A proof is given by Temam [321]. ut
We consider the two-dimensional case. By Hölder’s inequality (1 D 1

4
C 1

2
C 1

4
)

and this Lemma we get

..v � r/v; / 
 ckvkL4krvk kkL4 
 ckvk 1
2 krvk 3

2 kk 1
2 krk 1

2 :

Using the embedding W.0;T/ ,! C.NII L2.˝// it follows for the temporal integral
by using Hölder’s inequality (in time)

Z

I
..v � r/v; / dt


 ckk 1
2

C.NIIL2.˝//kvk 1
2

C.NIIL2.˝//

Z

I
krvk 3

2 krk 1
2 dt


 ckk 1
2

W.0;T/kvk 1
2

W.0;T/kvk 3
2

W.0;T/kk 1
2

W.0;T/


 ckvk2W.0;T/kkW.0;T/:

This is exactly the desired stability result for the variational formulation. The
nonlinearity is not bound in the three-dimensional case, if we ask for v;  2 W.0;T/.
We cite the following results that can be found in Temam [321]:

Lemma 2.53 (Instationary Navier-Stokes Equations) Let F � Rd be a Lipschitz
domain and

f 2 L2.II H�1.F//; v0 2 V0:

Then, the instationary Navier-Stokes equation has at least one solution for arbitrary
Reynolds numbers. This solution is unique in the two dimensional case (for arbitrary
Reynolds numbers) and it holds

v 2 L2.IIV0/; @tv 2 L2.II H�1.F//:

In the three-dimensional case, unity is usually not given, and the solution has the
reduced regularity

v 2 L
8
3 .II L4.˝//; @tv 2 L

4
3 .II H�1.˝//:

It is remarkable that the non-stationary solution is unique for all Reynolds
numbers, if we look at the two-dimensional problem. Working with the stationary
equation, uniqueness is only guaranteed for small data assumptions.

To prove existence of global solutions, uniqueness and regularity of the three
dimensional problem is one of big open problems in applied mathematics, see [89].
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2.5 Flow Problems on Moving Domains

In this section, we discuss models for flows on a moving domain F.t/ � Rd. Let
I D Œ0;T� be the temporal interval. Then, the space-time domain is given as

G D f.t;F.t// � I � Rdg � RdC1:

This setting is more complex then the tensor-product design of fixed domains I �
F � RdC1. In G it is difficult to formulate the proper function spaces like (2.59)
with a different regularity in time and space. We define

Problem 2.54 (Incompressible Navier-Stokes Equations on a Moving Domain)
Let G D f.t;F.t//; t 2 I D Œ0;T�g be the moving space time domain. Velocity and

pressure

v 2 L2.IIVf .t//; @tv 2 L2.IIVf .t/
�/; p 2 L2.II L2.F.t///;

are determined as solution to the incompressible Navier-Stokes equations on the
moving domain

.@tv C .v � r/v; /F.t/ C .� f ;r/F.t/ C .div v; �/F.t/ D .ff ; /F.t/

a.e. t 2 Œ0;T� (2.60)

for all  2 Vf .t/ and � 2 Lf .t/.
Mostly we will assume that the domain motion is given by a mapping from a

fixed reference domain OF � Rd

OT.t/ W OF 7! F.t/:

First we assume that this mapping is given as part of the problem data, such that
we can prescribe properties like invertibility, regularity. Later on, when analyzing
fluid-structure interactions, this mapping will be an unknown part of the solution.
This will strongly complicate the analysis, as regularity will no longer be part of the
problem description but must result from the system of equations.

For here and for simplicity, we assume that OF D F.0/, i.e., the reference domain
is the domain at initial time. The mapping is defined as Function from the fixed
space-time domain to Rd

OT W I � OF ! Rd:

We will specify further assumptions on this mapping at a later point. The time-
derivative of this mapping @t OT denotes a velocity. This velocity is not the physical
velocity of the fluid particles, but it is the domain velocity. In the general case it is
arbitrary and, in particular, it holds @t OT ¤ v.
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2.5.1 Eulerian Techniques for Flow Problems on Moving
Domains

Discretization of partial differential equations is difficult if the domain is in motion.
Usually, every discretization consists of first discretizing the domain F � Rd by a
mesh Fh. If F.t/ is moving the meshes Fh.t/ also cannot be fixed.

We consider time stepping methods, where the solution determined in discrete
time steps only

0 D t0 < t1 < � � � < tM D T:

By vm WD v.tm/ and by pm WD p.tm/ we denote velocity and pressure at time
tm. Then, in a discrete setting, approximations vm

kh and vm�1
kh will live on different

meshes—or in the context of finite elements—in different function spaces Vm
kh and

Vm�1
kh . Usual time-discretization schemes approximate the temporal derivative by

finite differences

@tvh.tm/ � vm
kh � vm�1

kh

tm � tm�1
:

Now we assume that vm
kh 2 Vm

kh and vm�1
kh 2 Vm�1

kh are element of different finite
element spaces. In this case, vm

kh � vm�1
kh will most likely neither belong to Vm

kh nor to
Vm�1

kh .
This problem gets even more severe, if we consider a spatial coordinate x 2

F.tm/ that is not part of the domain at the old time step x 62 F.tm�1/. Here, the
expression vm

kh.x/� vm�1
kh .x/ is not well defined at all.

Eulerian schemes for moving domain problems will require non-standard dis-
cretization techniques and a non-standard analysis. We will pick up this discussion
at a later point in Sect. 3.6 and Chaps. 6 and 12.

2.5.2 The Arbitrary Lagrangian Eulerian (ALE) Formulation
for Moving Domain Problems

Another possibility to deal with the motion of the fluid-domain is to introduce a
fixed reference domain OF � Rd and the mapping

OTf .t/ W OF ! F.t/:

We can use this mapping to transform the Navier-Stokes equations onto the
reference domain OF and to define velocity and pressure in the reference system

Ov.Ox; t/ WD v. OTf .Ox; t/; t/; Op.Ox; t/ WD p. OTf .Ox; t/; t/ 8Ox 2 OF : (2.61)
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The mapping OTf has to be invertible, such that at time t 2 I, every spatial point
x 2 F.t/ is uniquely given by one coordinate Ox 2 OF .

If the mapping OTf is a C1-diffeomorphism, it can be used to transform the Navier-
Stokes equations onto OF using Ov and Op as principle variables. All relations required
for this transformation have already been derived in Sect. 2.1.7. By (2.22) and with
Definition 2.13 it holds by (2.61)

�f
�
@tv C .v � r/v; �F.t/ D �f

� OJf .@t Ov C OF�1
f .Ov � @t OTf / � r Ov/; O� OF ;

�
� f ;r

�
F.t/ D � OJf O� f OF�T

f ; Or O� OF ;
�

div v; �
�
F.t/ D �

bdiv . OJf
OF�1

f Ov/; O�� OF :

(2.62)

The Cauchy stress tensor O� .Ox/ expressed in the reference system is derived with
help of (2.16)

O� f WD �OpI C �f �f . Or Ov OF�1
f C OF�T Or OvT

/: (2.63)

By these transformations we formulate the system of Navier-Stokes equations in
ALE coordinates.

Problem 2.55 (Incompressible Navier-Stokes Equations in ALE) Let OF be a
suitable reference domain, OTf a C1-diffeomorphism on I � OF with OTf .t/ W OF 7! F.t/.
Then, velocity and pressure

Ov 2 L2.II OVf /; @t Ov 2 L2.II OV�
f /; p 2 L2.II OLf /

are given as solution to

�f
� OJf .@t Ov C OF�1

f .Ov � @t OTf / � r Ov/; O� OF

C� OJf O� f OF�T

f ; Or O� OF D .�f OJf Off ; O/ OF
�
bdiv . OJf OF�1

f Ov/; O�� OF D 0;

(2.64)

for all O 2 Vf and O� 2 Lf .
The derivation of the system of equations is performed on a formal basis. We still
need to argue that the solutions to Problems 2.55 and 2.54 are in a meaningful way
equivalent.

Considering the strong formulation of the Navier-Stokes equations, equivalence
of a notation on the moving Eulerian domain F.t/ and the fixed reference domain OF
can be shown by classical arguments. If we assume that OTW is a C2-diffeomorphism
the equation can be transformed to an equivalent expression. In the variational
formulation, we must first discuss the question of equivalence of Sobolev spaces
under a mapping of the domain.
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Lemma 2.56 (Transformation of Sobolev-Spaces) Let˝ and Ő be two domains
in Rd and let OT 2 Ck;1. Ő /d be a diffeomorphism with OT. Ő / D ˝ and OT�1.˝/ D
Ő . Then, the composition operators

 WD O ı OT�1 8 O 2 HkC1. Ő / and O WD  ı OT 8 2 HkC1.˝/;

are continuous. Hence the Sobolev spaces HkC1.˝/ and HkC1. Ő / are equivalent

HkC1. Ő / Š HkC1.˝/;

such that there exist constants c1; c2 > 0 such that

c1k OvkHkC1. Ő / 
 kOv ı TkHkC1.˝/ 
 c2k OvkHkC1. Ő / 8Ov 2 HkC1. Ő /:

For the proof, we refer to the literature, Satz 4.1 - Transformationssatz, in [350].
Considering stationary problems the velocity is a H1 function, given in v 2

H1.F/d, the pressure is a L2 function, given in p 2 L2.F/. Hence for H1.F/ and
H1. OF/ to be equivalent, which is a necessary assumption for equivalent solution
concepts, the mapping OTW must be a C0;1-diffeomorphism in space. Equivalence of
Sobolev spaces on F and OF is important to have equivalent concepts of convergence
and variational formulations. The ALE transformation is a mapping in space and
time. Failer [133] showed the equivalence of the following spaces in space and time:

Lemma 2.57 (Transformation of Bochner-Spaces) Let Ő and ˝.t/ for t 2 I D
Œ0;T� be domains in Rd and let OT W I � Ő ! ˝.t/ with OT. Ő / D ˝.t/ be a

C.II C1. Ő // \ C1.II C.˝//

diffeomorphism. Then, the composition operators

 WD O ı OT�1 8 O 2 f O W O 2 L2.II H1. Ő //; @t O 2 L2.II L2. Ő //g
O WD  ı OT 8 2 f W  2 L2.II H1.˝.t///; @t 2 L2.II L2.˝.t///g

are continuous and the spaces

OW.I/ WD f O W O 2 L2.II H1. Ő //; @t O 2 L2.II L2. Ő //g
Š

W.I/ WD f W  2 L2.II H1.˝.t///; @t 2 L2.II L2.˝.t///g

are equivalent.
Using this result, we can claim equivalence of solutions of the Navier-Stokes
equations in ALE and in Eulerian coordinates, if the solution is found in W.I/, i.e.
with @tv 2 L2.II L2.F.t///.
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Lemma 2.58 (Navier-Stokes in ALE Coordinates) Let OF � Rd be a smooth
domain and OTf W OF ! F.t/ be a C.II C1. OF//\ C1.II C. OF//-diffeomorphism. Then,
for every solution .Ov; Op/ 2 OW.I/ � L2.II L2. OF// of (2.64) there exists a solution
.v; p/ 2 W.I/ � L2.II L2.F.t/// of (2.60) with Ov.Ox; t/ D v. OTf .Ox; t/; t/ and Op.Ox; t/ D
p. OTf .Ox; t/; t/ almost everywhere.

The equivalence of two different representations of the Navier-Stokes equations
in ALE and in Eulerian coordinates also states that both formulations allow for the
same solution concept. If the Eulerian formulation of the Navier-Stokes equations
has a unique solution .v.t/; p.t//, for suitable mappings OTf , the ALE formulation
will have a corresponding unique solution .Ov; Op/ and it holds

c. OTf .t//
�1˚krv.t/kF.t/ C kp.t/kF.t/

�


 k Or Ovk OF C kOpk OF 

c. OTf .t//

˚krv.t/kF.t/ C kp.t/kF.t/
�
: (2.65)

The constant c. OTf .t// will depend on the deformation and, if OTf looses its regularity,
c. OTf .t// ! 1 is possible.

The variational formulation (2.64) has the benefit, that the domain OF is fixed
and that the function spaces OVf and OLf do not change in time. A standard finite
element triangulation OFh of OF can be constructed and used for defining discrete
function spaces. The removal of the domain motion comes at the price of additional
nonlinearities introduced in the equation. These nonlinearities all depend on the
domain map OTf .

The equivalence of the Eulerian and the ALE formulation of the Navier-Stokes
equations strictly depends on the regularity of the mapping OTf . If this mapping looses
its regularity, the equivalence is also lost.

Remark 2.59 (Divergence in ALE Coordinates) On first sight, the divergence con-
dition in ALE coordinates

bdiv
�OJ OF�1 Ov

�
D 0;

calls for the evaluation of Ou’s second derivatives. It however turns out that all these
second derivatives cancel out, if Ou 2 C2. OF/d.
The following two technical lemma show this relation. First, we derive a rule for the
partial derivatives of a matrices inverse and for the determinant of a matrix:

Lemma 2.60 (Partial Derivatives of Inverse and Determinant) Let OF W Rn�n !
R be differentiable and invertible, OJ D det. OF/. By O@k

OF D .O@k
OFij/ij and O@k

OF�1 D
.O@k OF�1

ij /ij we denote matrices of partial derivatives of OF and its inverse. It holds

O@k OF�1 D � OF�1 O@k OF OF�1
; O@k OJ D OJ tr. OF�1 O@k OF/ (2.66)
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Proof

(i) By OF�1 OF D I we get for k D 1; : : : ; n

0 D
nX

lD1
O@k OF�1

il
OFlj C OF�1

il
O@k OFlj ) O@k OF�1 OF C OF�1 O@k OF D 0;

such that the first result follows by multiplication with OF�1
. Likewise, the

inverse relation holds

O@k OF D � OFO@k OF�1 OF: (2.67)

(ii) We denote by �ij the cofactor of OF

�ij WD .�1/iCj det. OFkl/k¤i;l¤j;

Then, the determinant j can be given as

ıik OJ D
nX

lD1
�il OFkl; i D 1; : : : ; n: (2.68)

Differentiation of this formula (k D i) w.r.t. the entries OFij gives

O@ OJ
O@ OFij

D
nX

lD1

O@�il

O@ OFij„ƒ‚…
D0

OFil C�il

O@ OFil

O@ OFij„ƒ‚…
Dılj

D �ij; (2.69)

as �il does not depend on OFij. Hereby, we get with (2.67) and (2.69) and (2.68)

O@k OJ D
X

ij

O@ OJ
OFij

O@k OFij D �
X

ij

�ij. OFO@k OF�1 OF/ij

D �
X

jrs

 
X

i

�ij OFir

!

„ ƒ‚ …
Dıjr OJ

O@k OF�1
rs

OFsj D �OJ
X

rs

O@k OF�1
rs

OFsr;



2.5 Flow Problems on Moving Domains 75

and hence using A W B D tr.ABT/:

O@k OJ D �OJ O@k OF�1 W OFT D OJ OF�1 O@k OF OF�1 W OFT

D OJ tr
� OF�1 O@k OF OF�1 OF

�
D OJ tr

� OF�1 O@k OF
�

ut
With help of these differentiation rules we can reformulate the divergence in ALE

coordinates

Lemma 2.61 (Divergence in ALE Coordinates) Let Ou 2 C2.˝/d, OF D I C Or Ou
be invertible and OJ D det. OF/. It holds

div
� OJ OF�1

v
�

D
X

kl

OJ OF�1
kl

O@kvl D OJ OF�1 W rvT D OJ tr. OF�1rv/:

Proof We start by component-wise differentiation

div
� OJ OF�1

v
�

D
X

k

O@k. OJ OF�1
v/k D

X

kl

nO@k OJ OF�1
kl vl C OJ O@k

OF�1
kl vl C OJ OF�1 O@kvl

o
:

While the third term already has the final form, we will show that the first two parts
cancel out. Using the two parts of Lemma 2.60, we get

div
� OJ OF�1

v
�

D OJ OF�1 W rvT C OJ
X

l

vl

 
X

k

�
tr. OF�1 O@k OF/ OF�1

kl � . OF�1 O@k OF OF�1
/kl

�!

D OJ
X

l

vl

X

kij

� OF�1
ij

O@k OFji OF�1
kl � OF�1

kj
O@k OFji OF�1

il

�

Next, we use the specific form OF D I C Or Ou and the symmetry of the second
derivatives O@ij Ou D O@ij Ou. Then,

div
� OJ OF�1

v
�

D OJ OF�1 W rvT C OJ
X

l

vl

X

kij

� OF�1
ij

O@i
OFjk

OF�1
kl � OF�1

kj
O@k

OFji
OF�1

il

�

D OJ
X

l

vl

X

kij

� OF�1
kj

O@k OFji OF�1
il � OF�1

kj
O@k OFji OF�1

il

�
D 0;

where we switched the indices i and k in the first part. ut
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The crucial inequality for the analysis of the Navier-Stokes and Stokes equations
is the inf-sup condition (2.53). We assume that on OF it holds:

inf
O�2L2. OF/

sup
O2H1

0.
OF/d

.cdiv O; O�/
k Or Ok OF kO�k OF

� O	 > 0:

For simplicity, OTf .t/ W OF ! F.t/ be a C2-diffeomorphism with OTf . OF ; 0/ D OF . In
light of Lemma 2.56, the Sobolev-spaces on F.t/ and OF are equivalent

H1.F.t// Š H1. OF/; L2.F.t// Š L2. OF/:

On F.t/ it holds

.div ; �/F.t/
k�kF.t/krkF.t/ D .cdiv . OJf OF�1

f
O/; O�/ OF

kOJ 1
2

f
O�k OFkOJ 1

2

f
Or O OF�T

f k OF
;

where

�. OTf .Ox; t// D O�.Ox/; . OTf .Ox; t// D O.Ox/:

We substitute

Q WD OJf OF�1
f

O ) O D OJ�1
f

OFf Q:

Due to the strong regularity of OTf 2 C2 it holds for every O 2 H1. OF/d

k Or Qk OF 
 kOJf OF�1
f kW1;1. OF/k OkH1. OF/;

that Q 2 H1. OF/. With Poincaré’s inequality we get the estimate

k Or Ok OF 
 kOJ�1
f

OFf kW1;1. OF/k QkH1. OF/ 
 cPkOJ�1
f

OFf kW1;1. OF/k Or Qk OF :

With these preparations, we can carry over the inf-sup condition from OF D F.0/ to
F.t/:

inf
�2L2.F.t//

sup
2H1.F.t//d

.div ; �/F.t/
k�kF.t/krkF.t/

D inf
O�2L2. OF/

sup
O2H1. OF/d

.cdiv . OJf OF�1
f

O/; O�/ OF
kOJ 1

2

f
O�k OFkOJ 1

2

f
OF�T

f
Or Ok OF
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D inf
O�2L2. OF/

sup
Q2H1. OF/d

.cdiv Q; O�/F.t/
kOJ 1

2

f
O�k OFkOJ 1

2

f
OF�T

f
Or. OJ�1

f
OFf Q/k OF

� c�1
P kOJ 1

2

f k�1
L1 kOJ 1

2

f
OF�T

f k�1
L1 kOJ�1

f
OFf k�1

W1;1 inf
O�2L2. OF/

sup
Q2H1. OF/d

.cdiv Q; O�/F.t/
kO�k OFk Or Qk OF

� c. OTf .t// O	 DW 	.t/ � 	0 > 0:

Depending on the regularity of the transformation OTf , the inf-sup constant 	.t/
can be significantly closer to zero than O	 . See [247] for a study on the stability of
the Stokes problem on moving and strongly deformed domains.

2.5.3 Definition of the ALE Map

The ALE formulation of the Navier-Stokes equations carries an arbitrariness, as for
a given moving domain F.t/ different reference domains OF and different mappings
OTf .t/ W OF ! F.t/ can be taken into account. While a straightforward choice for
the reference domain is OF D F.0/, other choices are still possible. However, even
for one reference domain, we can still choose between different mappings OTf .t/ W
OF ! F.t/. On complex domains these ALE-maps must be constructed with help

of auxiliary problems. Assuming that the motion of the boundary @F.t/ is known,
and that OF D F.0/, we can construct the mapping by

OTf .Ox; t/ WD Ox C Ouf .Ox; t/;

where by Ouf we denote a deformation of the fluid domain. The constraint @ OF !
@F.t/ can be used as boundary values for the fluid deformation Ouf . In the interior
of OF the deformation Ouf is constructed by solving a partial differential equation.
The most simple approach is to define Ouf as the harmonic extension of the boundary
values to the fluid domain

� O� Ouf D 0 in OF ; Ouf .t/ D OuD
f .t/ on @ OF ; (2.70)

where OuD
f .t/ is the deformation of the boundary points. The crucial point is the

regularity of this deformation uf that will define the regularity of the domain
mapping. We know that for strict equivalence between the ALE formulation and
the Eulerian formulation of the incompressible Navier-Stokes problem, very high
regularity is required. In the interior of the fluid domain OF , qualitative regularity
is given by the smoothing property of the Laplace-operator, as the right hand side
is zero in (2.70). At the boundaries however, the regularity of uf is limited by the
regularity of us and further by the shape of the boundary. If the solid domain imposes
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edges entering the fluid-domain, we must expect corner singularities. Even on
convex domains, we cannot expect more than Ouf 2 H2. OF/ and on concave domains
we even loose H2-regularity. Some remedy is given by choosing the biharmonic
operator for extending the deformation to the fluid-domain, e.g., by the equation

O�2 Ouf D 0 in OF ;

with the interface boundary conditions

Ouf D Ous and r Ouf D r Ous on OI:

The biharmonic operator has better regularity properties and yields a smooth
transition from fluid- to solid domain. Numerical experiments show that the case of
solid domains that enter the fluid domain with sharp edges imposes strong regularity
problems, if large deformation appears. To be precise, it is not a large bending of
the solid domain that causes problems, but a large deformation of the fluid domain
that can also be due to fixed body translation or rotation of the solid.

A drawback of the biharmonic extension is the large computational effort that is
necessary to discretize fourth order equations. One either has to use finite elements
with global differentiability or one has to use mixed methods that require the
introduction of artificial variables, blowing up the complexity of the overall system.
Yet another method for constructing the ALE map is by means of a pseudo-elasticity
problem, governed by the linear Navier-Lamé problem

�cdiv
�
�. Or Ouf C Or OuT

f /C �ecdiv Ouf I
�

D 0 in OF ; Ouf D Ous on OI:

The “material parameters” �e; �e can be chosen in such a way that a stiff mapping
with little deformation is constructed close to the interface.

In Sect. 5.3.5, we will discuss the quantitative regularity properties of different
extension techniques and analyze their performance on simple benchmark problems.



Chapter 3
Coupled Fluid-structure Interactions

In Fig. 3.1 we show a typical configuration of fluid-structure interactions. At time
t D 0 the domain ˝ � R2 is split into a fluid-part OF and a solid-part OS. This
configuration is called the reference configuration and we assume that the system is
at rest, i.e. vf D 0, pf D 0 and us D 0. The situation in Fig. 3.1 shows a case, where
an elastic obstacle is attached to the bottom of a flow container at 
 D

s . The flow is
driven by an inflow boundary data on 
 D

f and the fluid’s stresses on the obstacle
cause a deformation. Here we assume that the outer boundary of the computational
domain does not change in time. The interface boundary between fluid- and solid-
domain is denoted by I.t/ D @F.t/\@S.t/. Figure 3.2 shows a typical configuration
arising in hemodynamics. Here, the fluid flow is surrounded by elastic walls (e.g.
by blood vessels). The coupled dynamics may either be driven by the fluid or by
active contraction of the elastic walls (or by a combination of both). Here, the fluid-
structure interface I.t/ as well as the outer structure boundary 
s.t/ is subject to
motion. Whatever configuration is considered we assume that at all times t � 0 it
holds

˝.t/ D F.t/ [ I.t/ [ S.t/; F.t/ \ S.t/ D ;:

This condition will be called the geometric coupling condition. The two subdomains
for fluid F.t/ and solid S.t/ are governed by the incompressible Navier-Stokes
equations and by a hyper-elastic material law. The following sections are devoted to
details on the coupling of the two models. Finally, we will formulate a coupled
system of equations that describes the full process, fluid, solid and interface
conditions.

© Springer International Publishing AG 2017
T. Richter, Fluid-structure Interactions, Lecture Notes in Computational
Science and Engineering 118, DOI 10.1007/978-3-319-63970-3_3

79



80 3 Coupled Fluid-structure Interactions

I(t)
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fS(0) = Ŝ
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S(t)ΓD
f

I(0) = Î

Fig. 3.1 Typical configuration of a fluid-structure interaction problem. The domain is split into
fluid- and solid-domain ˝ D F.t/[ I.t/[ S.t/, divided by the interface. Here, we assume, that
the outer boundary of the domain is fixed. The left sketch shows the reference configuration at
t D 0, the right one the configuration after some time t > 0

I(0) = Î Γout
f

Γs(0) = Γ̂s

ΓD
f

(t)

S(t)

Γs(0) = Γ̂s S(0) = Ŝ

Γout
fI(t)

ΓD
f

(0) =

Fig. 3.2 Typical configuration for the flow of blood in a vessel. Here, the fluid is embedded in
elastic structures and the outer boundary is subject to motion

3.1 Coupling Conditions

Coupling of fluid- and solid-problem is achieved by boundary conditions on the
common interface I.t/ which all stem from simple physical principles:

1. Kinematic condition: The velocity of the fluid and the velocity of the solid
particles are continuous on the interface.

2. Dynamic condition: The normal stresses of fluid and solid are continuous on the
interface.
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3. Geometric condition: Fluid- and solid-domain always match, no holes appear at
the interface and the domains do not overlap.

These three coupling conditions describe the interaction between the fluid-phase and
the solid-problem. All of these conditions can be described as boundary conditions
for the subproblems. Hence, fluid-structure interaction is called a surface coupled
multiphysics problem, as opposed to volume coupled multiphysics problems, where
two (or more) subproblems all live in the same domain ˝ . A typical example for
such volume coupled problems would be given by chemically reactive flows, where
the chemical reaction interacts with a flow problem [64, 355].

In the following, we describe the three coupling conditions for fluid-structure
interactions in detail.

3.1.1 The Kinematic Condition

The kinematic coupling condition stems from the observation that a viscous fluid
will stick at the boundary. Continuity of the velocities on the (moving) interface
is simply an extension of the typical no-slip boundary condition known in fluid-
dynamics. Hence, on the interface it holds

vf .x; t/ D vs.x; t/ on I.t/:

This simple looking boundary condition reveals the great dilemma of fluid-structure
interactions, as we usually model both subsystems in different coordinate systems
and as the solid’s velocity is usually not available in the Eulerian configuration. We
must find a way to combine fluid’s velocity vf .xi; t/ in an interface point xi 2 I.t/
to the solid’s velocity Ovs.Oxi; t/ D dt Ous.Oxi; t/ in a corresponding interface material
point Oxi 2 OI . The relation between these two coordinates is given by the mapping
property of the solid’s deformation xi D OxiCOus.Oxi; t/ that defines a mapping between
the Lagrangian and the Eulerian coordinate framework. We denote this mapping
as OTs.Ox; t/ WD Ox C Ous.Ox; t/ and formulate the kinematic coupling condition in the
reference system

vf ı OTs D Ovs on OI;

as well as in the current configuration

vf D Ovs ı OT�1
s on I.t/: (3.1)

Hence, for every Oxi 2 OI , it must hold

vf .Oxi C Ous.Oxi; t/; t/ D Ovs.Oxi; t/:
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This notation reveals the nonlinear character of the kinematic coupling condition.
Even if we would consider the coupled dynamics of the linear Stokes equations
with the linear Navier-Lamé equations coupling on moving domains introduces a
nonlinearity.

If one considers the interaction between a non-viscid fluid with a solid, as
appropriate for some applications in aerodynamics, instead of enforcing strong
continuity at the interface, only a non-penetration condition is required

n � .vf ı OTs/ D n � Ovs on OI :

By n D J�1F On we denote the normal vector in current configuration. Continuity of
the velocities in normal direction prohibits one phase entering the other, it however
allows for free slipping of the fluid along the interface.

The kinematic coupling condition has the type of a Dirichlet boundary condition.
Usually, one ascribes this condition to the fluid-problem as a Dirichlet condition. If
the boundary of the fluid-domain is in motion, the fluid must move along.

3.1.2 The Dynamic Condition

The dynamic coupling condition relates to Newton’s third law of action and
reaction: the normal stresses, i.e. the forces per area acting on the interface are
balanced

nf � � f D �ns � � s on I.t/;

or, using either n WD nf or n WD ns

n � � f D n � � s on I.t/: (3.2)

Here, we noted this condition in the Eulerian coordinate framework. To realize
the dynamic condition, we must however consider the Lagrangian setting used to
formulate the structure system. With the Piola transformation, see Definition 2.13 it
holds

OF Ȯ s D OP D OJ O� s OF�T
;

such that (3.2) may be reformulated as

n � � f D n � .OJ�1 OF Ȯ
s
OFT
/ D n � .OJ�1 OPs

OFT
/;

using the Piola-Kirchhoff stress tensors.
If the kinematic condition is assigned to the fluid problem, the dynamic condition

may be added to the solid problem. The fluid’s forces act as Neumann condition
causing a deformation of the solid domain. Hence, we aim at reformulating the
dynamic condition in the Lagrangian reference framework. As already discussed, a
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Lagrangian reference system does not make sense for flow problems. Instead, we
will inherit the idea of an arbitrary reference system, as introduced in Sect. 2.5.2
for the modeling of flow problems on moving domains. Hence, let OF be a fixed
domain that shares the common interface with OS and let OTf .t/ W OF ! F.t/ be a
C1-diffeomorphism that satisfies

Oxi 2 OI OTf .Oxi; t/ D OTs.Oxi; t/ D Oxi C Ous.Oxi; t/ 2 I.t/:

The mapping of the fluid domain and the mapping for the solid domain coincide on
the common interface. In the inside of the fluid domain, the map OTf .t/ W OF ! F.t/
is arbitrary but sufficiently regular. Then, let

OFf WD Or OTf ; OJf WD det. OFf /:

Following Sect. 2.5.2 we can express the stresses in the reference framework

OPf WD OJf O� f OF�T

f

and base the dynamic coupling condition on the Piola-Kirchhoff traction

On � OF Ȯ s D On � .OJf O� f OF�T

f /: (3.3)

By O� f .Ox; t/ WD � f .x; t/ we denote the Lagrangian representation of the fluid’s
Cauchy stress tensor.

The dynamic coupling condition is a Neumann boundary condition and we
usually ascribe it to the solid-problem. There is no mathematical or modeling reason
for assigning the conditions to one of the two problems, they have to been seen as
integral part of the coupled fluid-structure interaction problem.

3.1.3 The Geometric Condition

The final coupling condition prevents the two subdomains to separate or overlap.
This condition describes the domain motion along the interface. It is a consequence
of the physical principle that the path of a particle x D x.Ox; t/ and its inverse Ox D
Ox.x; t/ are both continuous functions together with the condition, that the normal
velocities of fluid n � vf and solid n � vs are continuous along the common interface.

3.1.4 Interface Regularity and Boundary Conditions

The kinematic coupling condition (3.1) reveals a regularity problem. Considering
it as Dirichlet condition for the fluid’s velocity on I.t/, standard analysis asks for
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Dirichlet boundary data vD
f being the trace of an H1.F.t//3-function, e.g.

vD
f 2 H

1
2 .@F/3;

such that the trace inequality as well as the inverse inequality hold. Hence, for the
solid’s velocity we require the regularity

Ovs D dt Ous

ˇ̌
I.t/ 2 H

1
2 . OI/3;

which is given for velocities

Ovs D dt Ous 2 H1. OS/3:

In general, we can however only expect us 2 H1.S/3 and vs 2 L2.S/3 which is
not sufficient [243, 304]. If smoothing terms are added to the structure equations,
sufficient regularity will be given, see Theorem 2.31. Another possibility for getting
sufficient interface regularity is by means of adding stabilization terms in the
structure equation. Assuming that the hyperbolic equation is split into two first order
equations with help of the relation

Ovs D dt Ous;

a modification to

Ovs � ˛s O�Ovs D dt Ous

gives enough regularity. For ˛ small enough it can even been shown that the overall
accuracy does not suffer. We refer to Frei [151] for details. Finally, for theoretical
analysis, the kinematic interface condition can be integrated in time, such that

Ovf .Ox; t/ D Ovs.Ox; t/ )
Z t

0

Ovf .Ox; s/ ds D
Z t

0

Ovs.Ox; s/ ds D Ous.Ox; t/ � Ous.Ox; 0/:

This formulation gives a well-posed alternative for the kinematic interface con-
dition in a weaker sense. Based on this formulation, existence and uniqueness
results for a coupled system of the Stokes equations and linear elasticity can be
shown [124, 125].

For the following, we will always assume that sufficient interface regularity will
be given, e.g. by including strong smoothing of the solid problem, by stabilization
of the velocity-deformation relation or simply by sufficient regularity of the data.
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Further, the interface conditions (3.1) and (3.3) live in two different coordinate
frameworks and it will be required that the two trace-spaces

H
1
2 . OI/ Š H

1
2 .I.t//;

are equivalent, which is given, if in turn

H1. OS/ Š H1.S.t// and H1. OF/ Š H1.F.t//;

are equivalent, see Lemma 2.56. For this equivalence to hold, the transformation
OTs.t/ W OS ! S.t/ and its inverse must be Lipschitz. Usually, this high regularity (at
the interface) can only be guaranteed on very regular domains, and it is usually not
given for technical application problems.

3.1.5 Coupled Fluid-structure Interaction

In the following, we couple the incompressible Navier-Stokes equations (2.48) given
in Lemma 2.39 and the elastic structure equation (2.38), given in Lemma 2.32 with
the kinematic (3.1) and dynamic (3.3) interface condition.

Problem 3.1 (Coupled Fluid-structure Interaction) Find fluid’s velocity vf and
pressure pf , as well as the solid’s deformation Ous and velocity Ovs, such that

�f .@tvf C .vf � r/vf / � div � f D �f f;

div vf D 0 in F.t/;
O�0s@t Ovs �bdiv . OFs O� s/ D O�0s Ofs;

dt Ous D Ovs in OS;
vf D Ovs ı OT�1

s on I.t/;

On � .OJf O� f OF�T

f / D On � OF Ȯ s on OI:

(3.4)

Problem 3.1 is written in a monolithic coupled formulation. However, as fluid-
problem and solid-problem live in different coordinate frameworks, the interface
conditions somehow stand in between both subproblems, one of them being defined
in the Lagrangian framework, one in the Eulerian. Further we know that this
assignment is arbitrary as we could also state the coupling conditions in the other
frameworks.

This system of partial differential equations is not amenable for a standard
discretization in a straightforward way, as the motion of the fluid domain and the
transformation between both frameworks at the interface must be incorporated.
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The coupled fluid-structure interaction problem is a nonlinear system. By
coupling of the two subdomains a nonlinearity that acts non-locally is introduced,
as motion of the interface will influence the complete domain and hence also the
solution in parts distant to the interface. This nonlinearity is difficult to grab, as
it is only hidden in the definition of the domains. Even the coupling of fully
linear problems like the Stokes equations (2.47) with the linear Navier-Lamé
problem (2.33) results in a nonlinear coupled interaction problem.

3.2 Existence and Uniqueness Theory for Fluid-structure
Interactions

It is not surprising, that theoretical results for coupled fluid-structure interaction
problems are rarely spread. The fluid problem alone is difficult as the incompressible
Navier-Stokes equation does not bring along a fully developed theory that gives us
general results on existence and uniqueness in two and three dimensions in the non-
stationary case. Coupled fluid structure interactions bring along new difficulties.
The characteristic one is the motion of the domains F.t/ and S.t/. This domain
motion comes from the solution itself, as the interface I.t/ will move with the solid
deformation us. Low regularity of us will also reduce the regularity of the domains.
This in consequence will limit the regularities of the two subproblems.

To circumvent this domain regularity problem many authors study a linearized
fluid-structure interaction problem, the coupled dynamics of the linear Stokes
equations with the linear Navier-Lamé equations on fixed domains F and S.

�f @tvf � ��vf C rpf D �f ff

div vf D 0

)
in F

�s@tvs � �s�us D �sfs

@tus D vs

)
in S

�
�f �f rvf � pf I

�
nf C

�
�sr�s

�
ns D 0

vf D vs

9
=

; on I

(3.5)

Although linear and without motion of domains, this coupled problem has a similar
structure as the fully nonlinear fluid-structure interaction problem. The type of the
coupling condition is the same. We coupled the incompressible Stokes equations, an
equation of parabolic type with the Navier-Lamé equation of hyperbolic type. And
in particular the kinematic coupling condition vf D @tus gives rise the regularity
issues that already have been discussed.

Existence and regularity for the coupled problem has been investigated by Du et
al. [124, 125], Avalos et al. [13] and Avalos and Triggiani [10–12]. We cite one of
the main results from [124, 125].
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Theorem 3.2 (Linear Fluid-structure Interaction) Let the initial values u0;u1 2
H1
0.SI
 D

s /
d and v0 2 H1

0.F I
 D
f /

d (where 
 D
s and 
 D

f are the Dirichlet parts of the
domains) be given such that

�u0 2 L2.S/d; div v0 2 L2.F/d; v0
ˇ̌
I D u1

ˇ̌
I ;

and let p0 2 H1.F/ be given such that

�
p0 � �0rvT

0

�
nf

ˇ̌
ˇ
I

D �
�sruT

0ns
�ˇ̌
ˇ
I
:

Further, let the right hand sides be given as

ff 2 H1.II H�1.F//; fs 2 H1.II L2.S/d/:

Then, there exists a unique solution vf ;us; pf with

vf 2 H1.II H1
0.F I
 D

f /
d/ \ W1;1.II L2.F/d/;

us 2 W1;1.II H1
0.SI
 d

s /
d/\ W2;1.II L2.S/d/;

pf 2 L2.II L2.F//

satisfying the initial conditions vf .0/ D v0, us.0/ D u0 and vs.0/ D @tus.0/ D u1
in L2 and the coupling condition

vf

ˇ̌
ˇ
I

D @tus

ˇ̌
ˇ
I

in L2.II H1=2.I/d/:

The solution is bounded by the problem data.
The proof is given in [124, 125]. Similar results are found in [10–12]. These results
can be generalized to right hand sides with lower regularity.

Based on this linear fluid-structure interaction problem Failer [133] derived and
analyzed adjoint systems in the context of optimization problems.

While this linear system of differential equations is frequently studied and
well understood, the full nonlinear problem (3.4) does not allow for such general
results. A situation that is similar to the configuration often studied in this book,
the interaction of the incompressible Navier-Stokes equations with the St. Venant
material, is analyzed by Coutand and Shkoller [106, 107]. We cite the main theorem.

Theorem 3.3 (Theorem 1 of [107]) Let˝ � R3 be a bounded domain of class H4

and let S � ˝ be an open set of class H4, such that NS � ˝ and ˝ D NS [ F . Let

f 2 Hn.II H3�n.˝//; n D 0; 1; 2; 3

with

f .0/ 2 H4.˝/; @tf .0/ 2 H4.˝/:
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Assume, that the initial data satisfies

u0 D 0; v0 2 H1.˝/[ H6.F [ S/; div v0
ˇ̌
ˇ
F

D 0:

In addition compatibility conditions must hold (see [106, 107] for details).
Then, there exists a T 2 I depending on v0; f and F such that there exists a

unique velocity and pressure

v 2 L2.NII H1
0.˝/

3/; p 2 Hn.NII H3�n.F// .n D 0; 1; 2/

solving the nonlinear fluid-structure interaction problem on NI D .0; NT/. It holds

v
ˇ̌
F 2 Hn.NII H4�n.F/3/ .n D 0; : : : ; 4/;

Z t

0

v
ˇ̌
Sdt 2 Hn.NII H4�n.S// .n D 0; : : : ; 4/;

u 2 C0.NII H1.˝//

u
ˇ̌
F 2 C0.NII H4.F//

u
ˇ̌
S 2 C0.NII H4.S//;

where ujS is the ALE extension of the domain motion.
The theorem requests very high regularity of the initial data but in particular of

the domain˝ and the interface I D @F\@S. Only solids that are fully immersed in
the fluid can reach this regularity. Extensions to more general domains are currently
only available for the linear fluid-structure interaction problem. There exist however
generalizations of this result to lower regular initial data [205, 214].

The results cited to this point all consider the coupling of a d-dimensional
fluid with a d-dimensional elastic body. The coupling of a d-dimensional fluid to
a d � 1-dimensional solid, e.g. a plate model is investigated by Grandmont and
Hillairet [167–169].

3.3 The Added Mass Effect

A proper description of the dynamics that arise in the coupled fluid-structure inter-
action problem (3.4) is cumbersome. In the discussion on non-dimensionalization of
the Navier-Stokes equations in Sect. 2.4.3 we have identified the Reynolds number

Re D �f Lf Nvf

�f
;
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Fig. 3.3 Flow around an elastic obstacle. Top: rigid obstacle with stationary solution, bottom:
elastic obstacle with non-stationary solution. Both flows are at the same Reynolds number
Re D 140

as the key quantity to describe the property of a flow configuration. Here, by Lf we
denote a characteristic length and by Nvf a characteristic velocity, by �f D �f �f

the dynamic viscosity. Flows at low Reynolds numbers usually have stationary
solutions (if the problem data does not explicitly depend on time). In the context of
fluid-structure interactions, the overall dynamic can dramatically change. In Fig. 3.3
we show the configuration of the flow around an obstacle. In the left sketch, we
assume the obstacle to be rigid, where in the right sketch, the beam attached to
the rigid circle is considered to be elastic. In both situations, we consider a flow
at Reynolds number Re D 140. While the pure flow problem with a rigid fixed
beam shows a stationary solution, the elastic fluid-structure interaction problem
has a time-periodic non-stationary solution if the attached beam is considered to be
elastic. The Reynolds number alone is not sufficient to describe the dynamics of the
coupled problem, see also Sect. 5.1.1 and Chap. 11 for details on the non-stationary
dynamics of coupled fluid-structure interactions.

In the following, we will analyze the interaction of the coupled system at the
interface. For this analysis we closely follow the concepts given by Causin et
al. [93]. For the analysis we will strongly simplify Problem 3.1 by the following
assumptions:

1. The deformation is so small that fully linear models are considered. Eulerian and
Lagrangian coordinates coincide “S.t/ D OS” and a linear material law is taken
into account, � s D �srus.

2. We neglect convective terms in the fluid.
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3. We neglect viscous terms in the fluid, such that � f D �pI.
4. The deformation of the fluid domain is so small that it can be neglected F.t/D OF .

The remaining system of equation is given by

�f @tvf � rpf D gs.us/;

div vf D 0 in F
�s@ttus � ��us D gf .vf ; pf / in S:

The problem is coupled via boundary terms gs.us/ and gf .vf ; pf / coming from the
other equation each. In the equilibrium it will hold �sn � rus D �pfn on the
interface I. Further, it holds vf D @tus on I. We will formulate this system of
partial differential equations using an operator notation with mass M, gradient B,
divergence BT and diffusion K:

�fMv0
f C Bpf D gs; BTvf D 0; �sMu00

s C Kus D gf ;

where by gs � �sn � rus and gf � �pfn we denote the boundary stresses, with
gs D gf in equilibrium. Due to the various simplifications, all operators are linear
and by differentiation of the divergence equation dtBTvf D BTv0

f D 0 we can
reformulate the fluid problem as

0

@
�fMFF �fMF
 BF
�fM
F �fM
 
 B


BT
F BT


 0

1

A

0

@
v0
F
v0



pf

1

A D
0

@
0

gs

0

1

A :

Here, we have split the acceleration into inner v0
F and interface acceleration v0


 .
Next, we simplify this equation by lumping the zeroth order mass operators M �
IjF j such that no coupling between inner and interface acceleration appears. By
jF j we denote a fluid element’s mass:

0

@
�f jF j 0 BF
0 �f jF j B

BT
F BT


 0

1

A

0

@
v0
F
v0



pf

1

A D
0

@
0

gs

0

1

A : (3.6)

In the context of finite difference discretizations, the mass will always be diagonal,
in the context of spatial finite element discretization, this process is given by
integration of the mass-matrix with the trapezoidal rule. The solid problem is
reformulated in a similar way:

�sjSj
�I 0
0 I

��
u00
S

u00



�
C
�KSS KS

K
 S K
 


��
uS
u


�
D
�
0

gf

�
: (3.7)
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For the solution of (3.6) and (3.7) we consider a partitioned approach:

1. We assume that an interface acceleration v0

 is given and we solve the fluid

problem for v0
F and pf .

2. We use the resulting interface stresses gf .v0

 ; pf / to solve for the new deformation

u
 on the interface.

Given v0

 we can solve Eq. (3.6) for v0

F and pf . First, it holds

BT
FBFpf D ��f jF jBT

Fv
0
F D �f jF jBT


 v
0

 :

We assume that the operator BT
FBF is positive. This is equivalent to the condition

that the flow problem has a unique solution (see Sect. 2.4.5.1 addressing the inf-sup
condition). The pressure can be computed as

pf D �f jF j.BT
FBF /�1BT


 v
0

 ; (3.8)

and for the inner acceleration v0
F we get:

v0
F D � 1

�f jF jBFpf D �BF .BT
FBF /�1BT


 v
0

 : (3.9)

With help of relations (3.8) and (3.9) we can use the second line of (3.6) to express
the interface forces gs by:

gs D �f jF jv0

 C B
 pf

D �f jF jv0

 C �f jF jB
 .BT

FBF /�1BT

 v

0



D �f jF j
�
I C B
 .BT

FBF /�1BT



�

„ ƒ‚ …
DWMA

v0

 :

(3.10)

The operator MA is called the added mass operator. It is symmetric and positive
(if the flow problem has a unique solution). It maps a given interface acceleration
v0

 onto a force-vector gs at the interface. The eigenvalues of MA are all larger than

one. The new interface stress gs D gf goes as right hand side into the structure
problem (3.7):

�sjSj
�I 0
0 I

��
u00
S

u00



�
C
�KSS KS

K
 S K
 


��
uS
u


�
D
�

0

�f jF jMAv0



�
: (3.11)

We assume little impact of diffusion such that we get a diagonal relation for the
interface acceleration:

�sjSju00

 � �f jF jMAv0


 D �f jF jv0

 C �f jF jB
 .BT

FBF /�1BT

 v

0

 : (3.12)
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By identifying u00

 D v0


 we see that the added mass operator MA acts as an
additional mass on the common interface. This relation is typical for incompressible
flows. Due to incompressibility, the fluid has to move along with the solid. The
added mass operator is responsible for the special kind of coupling between the
structure equation with incompressible flows.

We proceed with the stability analysis by considering a simple time-
discretization of the interface Problem (3.12). By t0 < � � � < tN we denote an
equidistant partitioning of the time interval with k WD tnC1 � tn. The interface
velocity at time tn is denoted by vn


 . We approximate with backward differences

u00

 .tn/ D v0


 .tn/ � vn

 � vn�1




k
: (3.13)

We apply this difference approximation to (3.12) and assume that a predictor for
the interface velocity on the right hand side is given based on the old time step
v0

 .tn/. Then, the equation for approximating v0


 .tnC1/ is given by the difference
approximation

�sjSj
k
.vnC1

 � vn


 / D �f jF j
k

MA.vn

 � vn�1


 /:

As the operator MA is symmetric and positive, there exists an orthogonal system of
eigenvectors !i and eigenvalues �i (larger than one) such that

MA!i D �i!i; �i > 1; i D 0; 1; : : : :

We develop the unknown solution vn

 in the orthonormal eigenvector basis

vn

 D

X

i�0
vn

i !i; (3.14)

with coefficients vn
i 2 R. For each i � 0, the coefficient vn

i satisfies a scalar
difference equation:

.vnC1
i � vn

i / � �f jF j
�sjSj�i.v

n
i � vn�1

i / D 0; i D 0; 1; : : : (3.15)

To analyze the stability of the recurrence equation, we solve the difference
equation (3.15) using the approach vn

i D �n
i to find the fundamental solutions. We

get:

.�2i � �i/ � �f jF j
�sjSj �i.�i � 1/ D 0:
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This equation has a root at �i D 1 and is equivalent to

.�i � 1/
�
�i � �f jF j

�sjSj�i

�
D 0;

revealing a second root at

�i D �f jF j
�sjSj �i:

Every solution to the difference equation (3.15) is given by a combination of these
two roots

vn
i D ai C bi�

n
i ;

where by ai and bi we denote two constants.
Stability of the solution un


 represented in the eigenvalue basis (3.14) is given, if
the absolute values of all roots are bounded by one:

j�ij 
 1:

If this second root is larger than one, the solution is not stable. The added mass
analysis reveals an important stability condition for the coupling of fluid-structure
interactions:

�f jF j
�sjSj�i 
 1; where �i � 1: (3.16)

Remark 3.4 (Stability of the Solution) The simplified stability analysis of the cou-
pled fluid-structure interaction problem is based on a partitioned iteration scheme:
First we find the solution of the fluid problem; then, we use this solution to identify
the new interface stresses and finally take these interface stresses to solve for the new
deformation in the solid domain. Such a decoupled partitioned approach will only
be stable, if condition (3.16) is fulfilled. If the density ratio condition is violated, we
must use implicit solution approaches that take the full fluid-structure interaction
problem as one coupled unity, without partitioning. Such an approach is called
monolithic.

The density ratio (3.16) serves as a key quantity to describe the coupling behavior
of fluid-structure interactions. In aerodynamical applications, where we usually
couple the flow of air �f � 1 kg � m�3 with an elastic structure out of metal
�s � 5000 kg � m�3 the density ratio is very small and partitioned approaches are
well-suited for solving the coupled problem. In hemodynamics, both blood and
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surrounding tissue have similar densities �f � �s � 1 g � cm�3. Here, partitioned
approaches most often fail and implicit schemes with a monolithic view of the
coupled problems must be taken into consideration. For a discussion on different
solution procedures see Chap. 7.

3.4 Variational Coupling Techniques

Equation (3.4) describe the coupled dynamics of the incompressible fluids in F.t/
and the elastic structure in OS. The coupling is realized with help of boundary
conditions on the common interface I. As preparation for the finite element
discretization of the fluid-structure interaction problem, we will derive a monolithic
variational formulation of the coupled problem. The variational formulations of
the incompressible Navier-Stokes equation and of hyper-elastic structures are
given in Lemmas 2.39 and 2.32. Here, we shortly recapitulate the two variational
formulations written on the moving domain F.t/ and the fixed structural domain OS:

vf .t/ 2 Vf .t/; pf .t/ 2 Lf .t/ W
.�f .@tvf C .vf � r/vf /; f /F.t/ C .� f ;rf /F.t/ D .�f ff ; f /F.t/

.div vf ; �f /F.t/ D 0 (3.17)

for all f 2 V test
f ; �f 2 Lf , where the function spaces are defined as

Vf .t/ WD f 2 H1.F.t//d;  D vD
f .t/ on 
 D

f g;
Vf .t/

test WD H1
0.F.t/I
 D

f /
d;

Lf .t/ WD L2.F.t//;

and

Ous.t/ 2 bVs W
. O�0s@tt Ous; Os/ OS C . OFs Ȯ s; Or Os/ OS D . O�0s Ofs; Os/ OS 8 Os 2 bV test

s ; (3.18)

where test and trial spacebVs is given on the reference domain OS:

bV s D f 2 H1. OS/d;  D OuD
s on 
 D

s g;
bV test

s D H1
0.

OSI
 D
s /

d:

Both equations are given with Dirichlet values on 
 D
f and 
 D

s , respectively. Here,
we have embedded the Dirichlet data into the trial spaces.
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This approach for handling the Dirichlet data is the key for a realization of the
kinematic coupling condition Ovf D Ovs D dt Ous on OI. To implement this condition, we
must implicitly map between Eulerian and Lagrangian coordinates, as vf is given in
Eulerian and Ovs in the Lagrangian system. We modify the fluid’s trial space to

Vf .t; Ous.t/; dt Ous.t// WD f 2 Vf .t/; .Ox C Ous.Ox; t// D @t Ous.Ox; t/ on OIg: (3.19)

Then, it holds for every vf .t/ 2 Vf .t; Ous.t/; dt Ous.t// that vf D vs on I.t/. We
restrict possible solutions of the incompressible Navier-Stokes equations to those
that already satisfy the kinematic condition.

The dynamic coupling condition can be embedded into the test space V test
f .t/ in a

similar way by gluing the fluid’s and solid’s test functions f 2 V test
f and Os 2 OV test

s :

V test
f .t; Ous.t/; Os/ WD ff 2 Vf .t/; f .Ox C Ous.Ox; t// D Os.Ox/ on OIg (3.20)

The test spaces are not independent of each other, instead, the fluid’s test space
depends on both the solid’s deformation (required to cope with the domain motion)
and a solid’s test function Os to ensure continuity. By this restriction of test functions
it holds on the interface that

f .Ox C Ous.Ox; t// D Os.Ox/:
The dynamic coupling condition is recovered by variational principles using
integration by parts.

Problem 3.5 (Variational Formulation of the Fluid-structure Interaction Prob-
lem) Let

Ous.t/ 2 bVs; vf .t/ 2 Vf .t; Ous.t/; dt Ous.t//; pf .t/ 2 Lf .t/

be the solution of

.�f .@tvf C .vf � r/vf /; f /F.t/C.� f ;rf /F.t/

C. O�0s@tt Ous; Os/ OS C . OF Ȯ s; Or Os/ OS D .�f ff ; f /F.t/ C . O�0s Ofs; Os/ OS
.div vf ; �f /F.t/ D 0

(3.21)

for all test functions

ff ; Osg 2 V test
f .t; Ous.t/; Os/ � OV test

s ; 8�f 2 Lf .t/:

Lemma 3.6 (Variational Formulation of the Fluid-structure Interaction
Problem) Given sufficient regularity Ous.t/ 2 C2. OS/d \ C1.S/d, vf .t/ 2
C2.F.t//d \ C1.F.t//d and pf .t/ 2 C1.F.t//d \ C.F.t//d, the variational solution
to Problem 3.5 is also a classical solution to (3.4) and fulfills the strong interface
conditions.
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Proof Let Ous.t/ 2 bV s, vf .t/ 2 Vf .t; Ous.t/; dt Ous.t// and pf .t/ 2 Lf be solution to the
variational formulation. Let Os 2 bV test

s and f 2 V test
f .t; Ous.t/; Os/ be arbitrary. Given

sufficient regularity we can apply integration by parts to get

.�f ff ; f /F.t/ C . O�0s Ofs; Os/ OS
D .�f .@tvf C .vf � r/vf /; f /F.t/ C . O�0s@tt Ous; Os/ OS

� .div � f ; f /F.t/ � .bdiv . OFs Ȯ s/; Os/ OS C .div vf ; �f /F.t/

C
Z

I.t/
nf � � ff do C

Z

OI
Ons � . OFs Ȯ s/ Os dOo:

The classical solutions to fluid and solid problems are recovered by standard
variational principles using Dirac series as test functions in the interior of F.t/
and OS .

Using the Piola transformation, Lemma 2.12 and recalling Definition 2.13 for the
different forms of the stress tensors it holds

Z

OI
Ons � . OFs Ȯ s/ Os dOo D

Z

OI
Ons � .OJs O� s OF�T

s / Os dOo D
Z

I.t/
ns � � ss do:

On I.t/ the two test functions f and s are continuous .x/ WD f .x/ D s.x/.
Further, on I.t/ it holds nf D �ns and the dynamic coupling condition is recovered
by choosing an appropriate Dirac series on the interface I.t/. ut

This variational formulation is not standard in the following sense: test and
trial spaces of the velocity spaces depend on the solution itself, as a mapping of
coordinates on the interface is required

vf .Ox C Ous.Ox; t/; t/ D dt Ous.Ox; t/; f .Ox C Ous.Ox; t// D Os.Ox/ 8Ox 2 OI :
The dependency of the function spaces on the solution has big implications: if we
think of finite element discretizations, the first starting step, the creation of a finite
element mesh will fail, as the domain depends on the solution itself, which in turn
is to be computed on the mesh.

Remark 3.7 (Regularity of the Domain Motion) The motion of the domains must
be given in such a way that F.t/ and S.t/ still allow for the construction of well
defined Sobolev spaces like H1.S.t//. Figure 3.4 shows different deformations of
a reference domain Ő with C1 regularity (a circle) arising from three different
mappings OTi W Ő ! ˝i. First, we consider a mapping that is highly regular and
smooth, T1 2 C1. Ő /d, second, we choose a mapping that has lower regularity but
still is given in C0;1. Ő /. Here, the domain’s boundary will loose its regularity. The
cone-conditions however are still valid. Finally, we show a mapping T3 62 C0;1. Ő /.
This mapping yields a domain ˝3 that does not satisfy the cone-condition. Here,
some of the important theorems for Sobolev spaces like the trace theorem do not
hold any more.
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Ω1 = T̂1(Ω̂)Ω̂ Ω2 = T̂2(Ω̂) Ω3 = T̂3(Ω̂)

Fig. 3.4 Three different transformations of a smooth domain Ő . T1 2 C1, T2 2 C0;1 and
T3 62 C0;1

Î

ΓD
f ΓD

f

F(t)F̂

Ŝ S(t)
ΓD
s I(t)

Fig. 3.5 Contact of the elastic structure with the domain’s boundary. The fluid-area F.t/ is not
connected and hence no domain in the strict sense. Further, by contact the cone-condition or other
regularity conditions of the domain can be violated

Remark 3.8 (Contact) Contact and topology change is part of many application
problems, think of closing heart valves or of sedimenting solids. It will be important
to allow such contact scenarios. However, most theoretical results will ask for strong
assumptions on the domains: first as a domain it must be connected. This condition
is often violated in the case of contact, see Fig. 3.5. Second, many important
theorems from the theory of Sobolev spaces require all domains to fulfill the cone-
condition. If a circular obstacle will touch a wall, this condition will most likely
be hurt. Again, see Fig. 3.5. See also Remark 6.13 in Sect. 6.6.3 and in particular
Chap. 12.

3.5 Fluid-structure Interactions in ALE Coordinates

The variational coupling technique described in the last section still faces the
problem of moving domains and requires coordinate transformations between fluid-
and solid-problem. While the derived formulation can serve as basis for partitioned
solution algorithms that switch between the two subproblems, it cannot be used for
monolithic discretization and solution schemes in a strongly coupled way. To cope
with the two different coordinate systems and the domain motion, we will couple
the Lagrangian solid problem to the Navier-Stokes equations in ALE coordinates,
such that the ALE reference configuration OF will match the Lagrangian solid
configuration OS . For the following, we assume that by

OTf .t/ W OF ! F.t/
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a map between reference configuration OF and the current configuration F.t/ with
sufficient regularity (in space and time) is given.

The ALE formulation of the Navier-Stokes equations has been introduced in
Sect. 2.5.2, in particular, see Lemma 2.58. Coupling of test and trial spaces between
the ALE formulation of the fluid problem and the Lagrangian solid problem is
largely simplified compared to the Eulerian-Lagrangian coupling. Similar to (3.19)
and (3.20), we modify the ALE velocity test and trial spaces to

OVf .Odtus.t// D f O 2 OVf ; O D dt Ous on OIg;
OV test

f . Os/ D f O 2 OVf ; O D Os on OIg:

Function spaces on fluid and solid side are still coupled, but this coupling does not
require a coordinate system transformation any more. Here however, we must again
take notice of the regularity mismatch: while we require by vf 2 H

1
2 . OI/d a regular

trace on the interface, the solid’s velocity Ovs D dt Ous usually only has limited L2-
regularity in the domain and no H

1
2 -trace. We will not be able to close this gap

and will simply assume that every solution of the solid problem will always satisfy
the additional smoothness, such that we may define Ovs 2 H1. OS/d, e.g. by applying
strong damping, see Lemma 2.31.

Next, let OS and OF be such that trace inequality, and inverse trace inequality hold
with respect to OI .

Lemma 3.9 (Gluing of Function Spaces) Let ˝ be a domain of class C0;1, split
into ˝ D OF [ OI [ OS , two domains with C0;1-boundary and common C0;1-interface
OI D @ OF \ @ OS .
1. Let O 2 H1

0.
Ő /. For the restrictions of O to the subdomains it holds

Os WD O
ˇ̌
ˇ OS 2 Vs WD H1

0.
OSI @S n OI/;

Of WD O
ˇ̌
ˇ OF 2 Vf . Os/ WD f 2 H1

0.
OF I @ OF n OI/;  D Os on OIg:

2. For every Os 2 Vs and Of 2 Vf . Os/ it holds for the composed function

O WD

8
ˆ̂<

ˆ̂:

Os in OS;
Os on OI;
Of in OF ;

that  2 H1
0.˝/.
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Proof

1. directly follows from the usual results for the restriction of Sobolev spaces
Wk;p.˝/ to subdomain ˝ 0 � ˝ (see [350]) and as  2 H1

0.
Ő / has identical

traces in H
1
2 . OI/ on the interface.

2. follows, as Of and Os have the same trace on the common interface.

ut
This Lemma allows to further simplify the coupling in ALE coordinates. Instead

of searching for two velocities and using two different test functions, we simply
make the global approach

Ov 2 NvD C OV ; OV WD H1
0.

Ő I
 D/d; O 2 OV ;

where NvD 2 H1. Ő /d is a suitable extension of the Dirichlet data. Then, trial and test
functions on the two subdomains are given as restrictions

Ovf WD Ov
ˇ̌
ˇ OF ; Ovs WD Ov

ˇ̌
ˇ OS ;

Of WD O
ˇ̌
ˇ OF ;

Os WD O
ˇ̌
ˇ OS :

3.5.1 Definition of the ALE Map

Next we discuss how to define the ALE map OTf .t/ W OF ! F.t/. In the context of
fluid-structure interactions, this map is not given as part of the problem data, but it
depends implicitly on the solution.

The solid domain map OTs.t/ W OS ! S.t/ is defined as OTs.Ox; t/ D Ox C Ous.Ox; t/
and based on the solid’s deformation Ous. This map is physically motivated and
describes the transformation between Lagrangian and Eulerian coordinates. Usually,
such a map would not make sense for flow problems, as a Lagrangian reference
domain most often does not properly depict the configuration. We will introduce a
deformation Ouf of the fluid domain to define the ALE map

OTf .Ox; t/ WD Ox C Ouf .Ox; t/: (3.22)

We note that this deformation is not a physical deformation of the material following
particles. Usually, we have dt Ouf ¤ Ovf . Deformation Ouf and velocity Ovf have no
immediate relation.

Defining the ALE map via (3.22) has the benefit, that mapping, deformation
gradient OFf WD I C Or Ouf and its determinant OJf WD det. OFf / are described similar to
the solid notation. Further, as one of the requirements of OTf is a correct mapping of
interface points

Ox 2 OI ) OTf .Ox; t/ D OTs.Ox; t/ , Ox C Ouf .Ox; t/ D Ox C Ous.Ox; t/;
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we must enforce deformations that have a continuous transition to the solid’s
deformation Ouf D Ous on OI. On the outer boundaries of the domain (that does not
move) 
 D

f [ 
 out
f D @ OF n OI, the ALE map may exhibit deformation in tangential

direction, but no transformation in normal direction is allowed. Hence, Ouf must
satisfy the boundary conditions

Ouf D Ous on OI; On � Ouf D 0 on @ OF n OI : (3.23)

Lemma 2.58 requires high smoothness of the ALE map, such that solutions to
the ALE formulation of the Navier-Stokes equations correspond to the standard
weak solution of the Navier-Stokes equations. Namely, we require that OTf is a C1-
diffeomorphism. In light of (3.22) this calls for Ouf 2 C1 such that OxC Ouf is invertible,
e.g. OJf > 0. For Ouf 2 C1 embedding theorems require Ouf 2 H3.˝/.

We will define Ouf as an extension of Ous from the interface OI into the fluid domain
by using a differential operator L W OF ! Rd:

L. Ouf / D 0; Ouf D Ous on OI and On � Ouf D 0 on @ OF n OI :

Choosing L as the harmonic operator, the usual smoothing property will guarantee
sufficient regularity in the interior of OF (as the right hand side is zero). Close to the
boundaries @F however, the regularity will be restricted. This restriction is one by
means of the geometry, e.g. by edges of the domain, but also limited by the regularity
of the boundary data Ouf D Ous on the interface OI. In general, we cannot expect that the
extension procedure will give a fluid deformation field with satisfactory regularity.
In Sect. 5.3.5 we will see that regularity problems of this map are indeed a pitfall
in implementations of the ALE method. In particular reentrant edges pose severe
problems. Such edges appear, whenever the solid domain has sharp corners entering
the surrounding fluid domain.

Besides regularity considerations, the extension operator L should be such that
interior points Ox 2 OF are not mapped outside the fluid-domain Ox C Ouf .Ox; t/ 62 F.t/.
For this assumption to hold, the operator should for a start satisfy the maximum
principle. In addition, the deformation Ouf must fulfill a certain smallness of growth.
To illuminate this problem, we consider as example the one dimensional reference
domain OF D .0; 2/ and the Eulerian counterpart F D .0; 1/. The deformation

Ou.Ox/ D �1
2

Ox ) OTf .Ox/ D 1

2
Ox;

will perfectly serve as ALE map, as OTf W OF ! F . The map

Ou.Ox/ D �1
8

Ox4 ) OTf .Ox/ D Ox � 1

8
Ox4;
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however satisfies OTf .0/ D 0 and OTf .2/ D 1, but OTf W OF 6! F , as Tf .
3
2
/ � 1:18 62 F .

Even if Tf has sufficient regularity, the inverse T�1
f may not be well defined. The

gradient of ruf must be bounded to prevent maps, that point out of the domain. It
is difficult to guarantee this property by a priori limits, but we show in Sect. 5.3.5,
that such problems frequently appear, in particular if we deal with reentrant edges.

The simplest choice for defining the extension operatorL is a harmonic extension
of the solid deformation:

� O� Ouf D 0 in OF ; Ouf D Ous on OI and Ouf D 0 on O@F n OI;

or, as we have noted

On � Ouf D 0 on O@F n OI:

The drawback of such an harmonic extension is the limited regularity of the solution.
If the fluid domain has reentrant edges, e.g. a solid with sharp edges entering into the
fluid domain, it will usually just hold Ouf 2 H1. OF/d, but Ouf 62 H2. OF/. Furthermore,
even H2-regularity is not sufficient for the strict C1 assumption that is required to
give equivalence of the H1-spaces on F and OF .

Another possibility for the definition of the deformation Ouf is by means of
pseudo-elasticity problem

�bdiv
�
�e. Or Ouf C Or OuT

f /C �ecdiv Ouf

�
D 0;

Ouf D Ous on OI and On � Ouf D 0 on @ OF n OI:

Depending on the specific type of boundary conditions, the solution suffers from
similar regularity restrictions as the harmonic extension and we might again lose
Ouf 2 H2. OF/, if the fluid-domain has concave corners, see [292].

A further possibility for the definition of Ouf is a biharmonic extension of the
solid’s velocity:

�2uf D 0 in OF ;

that—as a fourth order operator—asks for two boundary conditions. First, for
satisfying the geometric coupling condition, we choose

Ouf D Ous on OI and On � Ouf D 0 on @ OF n OI:

Second, we can prescribe boundary conditions for the gradients or higher order
derivatives of the solution. The choice

On � Or Ouf D On � Or Ous on OI and O� Ouf D 0 on @ OF n OI;
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defines an extension of Ous that is not only continuous but that has continuous normal
derivatives. This construction will prevent rapid changes of Ouf close to the interface.
The biharmonic extension has better regularity at edges, see e.g. [53].

In Sect. 5.3.5 we demonstrate a numerical study showing the performance of the
different mesh motion models. We will see that the biharmonic extension gives us
the best quality for the ALE map. Numerical approximation of this fourth order
equation is however very costly, so that we usually try to avoid it.

3.5.2 Coupled ALE Formulation

By all these preparations, we can combine the variational coupling technique
indicated by Lemma 3.9 with the different technique for an implicit construction
of the ALE map. As fluid’s and solid’s deformation Ouf and Ous both have the same
H1-regularity and as they share a common trace on OI , coupling will also be realized
with help of Lemma 3.9. Instead of separating two deformations, we search for one
global field Ou 2 NuD

s C H1
0.˝I
 D/d.

Problem 3.10 (Variational Formulation of the Fluid-structure Interaction
Problem in ALE Coordinate) Let NuD

s .t/ 2 H1
0.

OSI OI/d and NvD.t/ 2 H1
0.

Ő I
 out
f /d

be extensions of the Dirichlet data. With

OW WD H1
0.

Ő /d; OV WD H1
0.

Ő I
 D/d; OLf WD L2. OF/;

we find

Ou.t/ 2 NuD
s C OW; Ov.t/ 2 NvD.t/C OV ; Opf .t/ 2 OLf ;

as solution to the coupled problem

�f
�OJf .@t Ov C . OF�1

f .Ov � @t Ou/ � r/Ov; O� OF C . O�0s@t Ov; O/ OS

C�OJf O� f OF�T

f ; Or O� OF C . OFs Ȯ s; Or O/ OS D .OJf O�f Off ; O/ OF C . O�0s Ofs; O/ OS
�
bdiv .OJf

OF�1
f Ov/; O�� OF D 0;

.@t Ou � Ov; O s/ OS D 0;

. Or Ou; Or O f / OF D 0;
(3.24)

for all test functions

O 2 OV; O s 2 OLs D L2. OS/d; O�f 2 OLf ; O f 2 H1
0.

OF/:
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Lemma 3.11 (Variational Formulation of the Fluid-structure Interaction Prob-
lem in ALE Coordinate) Given sufficient regularity of Ov; Ou; Opf , the variational
solution of Problem 3.10 is also a classical solution to (3.4) and fulfills the strong
interface conditions.

Proof Given sufficient regularity, the proof is an implication of Lemmas 2.58
and 3.6. Here, for simplicity we have considered an harmonic extension of the
deformation to the fluid domain. ut
Remark 3.12 (Test and Trial Spaces) The variational formulation given in
Lemma 3.11 uses different trial and test spaces, as the two equations for the
extension of the deformation and the relationship between solid’s deformation and
velocity do not interact.

It is not appropriate to combine O f and O s to one global function, e.g. O 2
H1. Ő /d. First, H1 is the wrong regularity to define the L2-projection @t Ou 7! Ov.
Second, glueing of the test spaces would result in an additional boundary condition
of the extension operator on the interface:

. Or Ou; Or O / OF D �. O� Ou; O / OF C hn � Or Ou; O i OI :

This second condition n � Or Ouf D 0, in addition to Or Ouf D Or Ous would lead to a
faulty feedback on the solid’s deformation. In numerical realization, it is sufficient
to correct the variational formulation and use

Aext. Ou; O / WD . Or Ou; Or O / OF � hOnf � Or Ou; O i OI

as extension operator. This modification allows to actually use one global test space.
Anyway, by defining

X WD OW � OV � OLf ; Y WD OV � OLf � OLs � H1
0.

OF/;

we can introduce a short notation and find OU WD fOu; Ov; Opf g given as

OU.t/ D NUD
.t/C X ;

such that

A. OU; Ô / D 0 8 Ô D f O; O�f ; O s; O f g 2 Y;

where the semilinear form A.�/.�/ is given in accordance to the variational formula-
tion (3.24).

Further, we point out that the spaces V and W differ by boundary data only. On a
fluid’s outflow boundary 
 out

f functions in V are free, where it holds O D 0 on 
 out
f

for all O 2 W .
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A formulation of the fluid-structure interaction problem in Arbitrary Lagrangian
Eulerian coordinates has the great advantage that the domain motion can be captured
in the deformation field Ou. The interface between fluid and solid will be fixed at all
times. Thinking of finite element discretizations it will be easy to construct meshes
OFh of the fluid domain OF and OSh of the solid domain OS and these meshes will

always resolve the interface. Such methods are called interface-tracking techniques.
The artificial fluid domain map OTf and the fluid domain’s deformation Ouf play
the most important role. If the regularity of Ox C Ouf is not sufficient, the ALE
formulation in Lemma 3.11 will not be equivalent to the coupled formulation in
physical coordinates. As the mapping OTf is not given by physical models, it will be
a purely numerical task to generate mapping of high regularity.

Further, as argued in Sect. 2.5, the regularity of the ALE map will also have
impact on the inf-sup constant. This enters stability estimates for the solution of the
Navier-Stokes equations and it will also be an important factor for error estimates
in the context of the finite element method.

Finally, the ALE method has limits, if the domain motion is such that a
differentiable and invertible mapping does not exist at all. This can happen, if
topology change occur due to contact of the structure with the domain’s boundary
or due to self-contact of the structure with other structural parts. Here, a fully
monolithic ALE technique will not be suitable. In Sect. 3.6, we will introduce an
alternative approach to derive a monolithic variationally coupled formulation for
fluid-structure interactions. This will be able to also consider problems with large
motion or contact, but it will not be of interface-tracking type.

The ALE method is perhaps one of the most reliable and efficient techniques, if it
comes to interaction problems with such a stiff coupling that monolithic approaches
must be considered. It is well suited to handle large deformations. As the domains
are fixed for all times, and as the interface is always properly defined, it is possible
to use standard discretization and solver techniques in approximate settings.

Finally, to better understand the limits of the ALE approach we consider a simple
configuration, where a solid structure S.t/ is moving within the fluid domain. Here,
we can assume that this structure is rigid and at time t D 0 resting in the center of
long channel, see Fig. 3.6. The fluid is falling down and getting close to the bottom.
We simply assume that the rigid body motion in vertical direction is given with a
constant speed Nv as

Ous.Ox/ D
�

0

�Nv � t

�
:

We want to model this problem in ALE coordinates, hence we must find a
deformation field Ouf that maps the reference state OF D F.0/ to the current
configuration F.t/. On the interface OI it must hold Ouf D Ous. Further, on the bottom
on top boundary, it must hold Ouf D 0, such that in between we can approximate the
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(mx(t), my(t)) = (m̂x, m̂y − ū(t))
L

(m̂x, m̂y)

T̂f (t)

x̂2 = 0

x̂2 = H x̂2 = H

x̂2 = 0

u(t)

Fig. 3.6 Flow around a rigid obstacle that is falling down

ALE map OTf .Ox; t/ D Ox C Ouf .Ox; t/ as (considering only the lower part of the domain)

OTf .Ox; t/ D
 Ox1

Ox2 � Ox2
Omy� L

2

Nv � t

!
; Ox2 2 Œ0; Omy � L

2
�;

with gradient

Or OTf .Ox; t/ �
 
1 0

0 1 � 1
Omy�L=2

Nv � t

!
; Ox2 2 Œ0; Omy � L

2
�;

with k Or OTf k ! 0 for t ! . Omy � L=2/= Nv. The ALE map will degenerate, if the rigid
obstacle gets close to the bottom of the domain. This simple example shows that
often it is the deformation of the fluid-domain that will cause a breakdown of ALE
techniques and not a large deformation of the solid.

Here, relief could be given by the following approach: if for some time t0 � 0

the derivatives of the mapping get too large, a new reference domain OF 0 together
with a new mapping OT 0

f is taken as basis of the ALE formulation. The solution Ovf .t0/
must then be mapped onto the new reference framework and the formulation can
be continued from here. In the context of discretized schemes, such an approach is
called remeshing or reinitialization. It is extensively discussed in literature and part
of most efficient implementations of the ALE technique [80, 318].

3.6 Fully Eulerian Formulation for the Fluid-structure
Interaction Problem

The success of the ALE formulation for fluid-structure interactions crucially
depends on the quality of the fluid domain map OTf . If this map looses its regularity
or invertibility, equivalence between the variational formulation of the coupled
problem in Eulerian/Lagrangian coordinate—Problem 3.5—and the variational for-
mulation of the coupled problem in ALE/Lagrangian coordinates—Problem 3.10—
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will not hold any more. Further, we have seen that bounds on Or OTf and r OT�1
f will

enter basic inequalities like the trace inequality, Poincaré inequality and also the inf-
sup inequality. Even if the derivatives of OTf and OT�1

f are bound, the constants that
will finally enter stability and error estimates can get very large.

In this section, we will introduce an alternative variational formulation for the
coupled fluid-structure interaction problem that takes the opposite way: Instead of
mapping the moving fluid domain onto a fixed reference domain OTf .t/ W OF ! F.t/
we use an inverse map to transform the Lagrangian solid reference domain onto
the Eulerian moving solid domain OTs.t/ W OS ! S.t/. Like the ALE map OTf , this
transformation is defined with help of the deformation Ous

OTs.Ox; t/ WD Ox C Ous.Ox; t/:

There is one fundamental difference between OTs and OTf . While the ALE map OTf is
based on the arbitrary deformation field Ouf , and OF does not play a physical role, the
solid domain map OTs is based on Ous, which is the physically relevant deformation
between Lagrangian and Eulerian system. Assuming that the material is continuous
that it is neither infinitely extended or compressed to a point, it must hold that

1. The mapping OTs is a bijection between OS and S.t/.
2. The mapping OTs and the inverse OT�1

s are differentiable.
3. The determinants OJs WD det. Or OTs/ and OJ�1

s D det.r OT�1
s / are bound away from

zero and infinity.

Both formulations, Eulerian and Lagrangian are well suited for describing elastic
material. The transition to the Lagrangian reference system is mainly for practical
reasons, as deformation stresses can be best modeled in a particle centered
viewpoint.

3.6.1 Elastic Structures in Eulerian Coordinates

In Sect. 2.1.6, we derived the basic conservation principles for moving volumes that
were based on conservation of mass, momentum and angular momentum. Here, we
will derive the Eulerian formulation for the structure problem in the moving solid
domain S.t/ that is given by the Lagrangian deformation of OS:

S.t/ D fx 2 Rd j x D Ox C Ous.Ox; t/ 8Ox 2 OSg:

By mass and momentum conservation, we derived the non-conservative formulation
of the momentum equation (2.14)

�s@tvs C �svs � rvs � r � � s D �sf in S.t/; (3.25)
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where �s.x; t/ is the Eulerian density of the solid at time t in a point x 2 S.t/,
vs.x; t/ is the Eulerian velocity and � s the Eulerian Cauchy-Stress tensor of the solid
problem. Here, it is necessary to remember that the transformation to the Lagrangian
or to an arbitrary reference system only concerns the definition area of functions
S.t/ and OS not the image. We do not transform unit vectors, such that it holds

vs.x; t/ D Ovs. OTs.Ox; t/; t/ D Ovs.Ox; t/

for every pair x and Ox with x D OTs.Ox; t/. For defining a Eulerian representation � s

of the Cauchy stress tensor, we must first introduce a Eulerian counterpart us of the
Lagrangian deformation Ous by the relation

x D Ox C Ous.Ox; t/ , Ox D x � us.x; t/;

such that it holds

us.x; t/ D us.Ox C Ous.Ox; t/; t/ D Ous.Ox; t/: (3.26)

By us.x; t/ we can define the inverse mapping Ts.t/ W S.t/ ! OS:

Ts.x; t/ WD x � us.x; t/: (3.27)

It holds

Lemma 3.13 (Inverse Mapping) Let Ous.Ox/ be a deformation field that defines a
C1-diffeomorphism OTs.Ox/ WD Ox C Ous.Ox/. Then, for the inverse mapping Ts.x/ WD
x � us.x/ with us.x/ WD Ous.Ox/ for x WD Ox C Ous.Ox/ it holds

Ts D OT�1
s :

The inverse mapping is also called backward characteristics [104, 105].

Proof By (3.26) and (3.27), it holds

x D OTs.Ts.x; t/; t/ D OTs.x � us.x; t/; t/ D OTs.Ox; t/ D Ox C Ous.Ox; t/;

as well as

Ts. OTs.Ox; t/; t/ D Ts.Ox C Ous.x; t/; t/ D Ts.x; t/ D x � us.x; t/ D Ox

ut
Further, considering Lemma 2.9, it holds

Ts ı OTs D id ) rTs DW Fs D OF�1
s D . Or OTs/

�1and Js D OJ�1
s : (3.28)
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With OTs WD id COus and Ts WD id �us it finally follows that

ŒI � rus� D ŒI C Or Ous�
�1 , rus D I � ŒI C Or Ous�

�1 D I � OF�1
s :

By these relations, we can define the Cauchy stresses for different material laws like
the St. Venant Kirchhoff model.

Lemma 3.14 (Cauchy Stress Tensor for the St. Venant Kirchhoff Material in
Eulerian Coordinates) The Eulerian Cauchy stress tensor � s of the St. Venant
Kirchhoff material is given by

� s D JsF�1
s .2�Es C �s tr.Es/I/F�T

s ; Es WD 1

2

�
F�T

s F�1
s � I

�
:

Proof The second Piola Kirchhoff stress tensor Ȯ s of the St. Venant Kirchhoff
material is given by (see Definition 2.18)

Ȯ s D 2�s OEs C �s tr. OEs/I;

with the Green-Lagrangian strain tensor

OEs WD 1

2
. OFT

s
OFs � I/:

Lemma 2.12 describes the Piola transformation as relation between the Cauchy
stress tensor and the 2nd Piola Kirchhoff stresses:

OFs Ȯ s D OJs O� s OF�T , O� s D OJ�1
s

OFs Ȯ s OFT

This gives us a Lagrangian description of the Cauchy stresses. Finally, by (3.28), we
can reformulate all quantities in the Eulerian system as

� s D JsF�1
s ˙ sF�T

s ;

with the 2nd Piola Kirchhoff tensor in Eulerian coordinates

˙ s D 2�sEs C �s tr.Es/I;

where

Es WD 1

2
.F�T

s F�1
s � I/:

ut
The derivation of the Cauchy stress tensor � s in Eulerian coordinates completes

the description of the momentum equation (3.25). It remains to derive a relation
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for the unknown Eulerian density �s.x; t/. By defining �s.x; t/ D O�s.Ox; t/ and by
using (2.27), it holds

�s.x; t/ D Js.x; t/ O�0s ;
where O�0s is the (in many cases homogenous) density of the solid at time t D 0.

Finally, for splitting the second order hyperbolic equation into a system of first
order equations, we must transform the relation dt Ous D Ovs to the Eulerian coordinate
framework. By Lemma 2.10 we have

dt Ous D @tus C vs � rus; dt Ovs D @tvs C vs � rvs:v

As outcome of the foregoing discussion it holds:

Problem 3.15 (Solid Problem in Eulerian Coordinates) Find elastic deforma-
tion us and velocity vs of a St. Venant Kirchhoff material in Eulerian coordinates as

Js O�0s .@tvs C vs � rvs/� r � � s D Js O�0s f;
@tus C vs � rus D vs;

in S.t/; (3.29)

with the Eulerian formulation of the Cauchy stress tensor

� s WD JsF�1
s .2�sEs C �s tr.Es/I/F�T

s ; Es WD 1

2

�
F�T

s F�1
s � I

�
;

and where the domain S.t/ is implicitly defined as

S.t/ WD fx 2 Rd j x D Ox C Ous.Ox; t/ 8Ox 2 OS D S.0/g: (3.30)

There are several implications involved in an Eulerian formulation of elastic
solids:

1. The problem is formulated on the moving domain S.t/ that is a priori unknown
and part of the solution. In (3.30) we have defined S.t/ based on the Lagrangian
version of the deformation Ous.Ox; t/. This however is not typical and available if
we consider the Eulerian point of view. Instead, we need to represent the moving
solid domain based on a fully Eulerian description. One possibility is to define
an implicit relation

S D fx.t/ 2 Rd W @tx.t/C .v � r/x.t/ D 0; 8x.0/ D Ox 2 OSg; (3.31)

where the domain is given as solution of a transport problem. Every realization
of an Eulerian formulation must keep track of the domain. We will get back to
this key point in Sect. 3.6.3.

2. By transformation to Eulerian coordinates, convective terms are introduced

dt Ov D @tv C .v � r/v; dt Ou D @tu C .v � r/u:
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A discretization of this convective term can cause numerical stability problems.
Numerical methods must either introduce artificial stabilization terms that will
cause loss of conservation principles or be based on non-standard techniques.

A variational formulation of problem (3.29) is derived in the standard way by
multiplication with test functions and integration over the (moving) domain S.t/.
Problem 3.16 (Variational Formulation of the Solid Problem in Eulerian Coor-
dinates) Let NuD

s .t/; NvD
s 2 H1.S.t//d be extensions of the Dirichlet data. Let

us.t/ 2 NuD
s .t/C H1

0.S.t//d; vs.t/ 2 NvD
s .t/C Vs.t/ 2 H1

0.S.t//d

be the solution of the variational problem

�
Js O�0s .@tvs C vs � rvs/; s

�
S.t/ C �

� s;rs
�
S.t/ D �

Js O�0s f; 
�
S.t/;

�
@tus C vs � rus � vs;  s

�
S.t/ D 0;

(3.32)

for all s 2 H1
0.S.t//d and  s 2 L2.S.t//d and where � is defined as shown in

Lemma 3.15.
Given sufficient additional regularity, every solution to Problem 3.16 is also a
solution of the classical Eulerian formulation given in Problem 3.15.

3.6.2 Fluid-structure Interaction in Eulerian Coordinates

Once the variational formulation of the structure problem in Eulerian coordinates
is given, coupling to the flow problem is straightforward. Again, we simply glue
the two velocities vf and vs together and use one common test function for the two
momentum equations, compare Lemma 3.9.

.�f .@tv C .v � r/v/; /F.t/ C .Js O�0s .@tv C .v � r/v/; /S.t/
.� f ;r/F.t/ C .� s;r/S.t/ D .�f f; f /F.t/ C .Js O�0s f; s/S.t/:

.r � vf ; �f /F.t/ D 0;

.@tus C .v � r/us � v;  s/S.t/ D 0:

(3.33)

The kinematic condition is embedded in the test space

v.t/ 2 vD.t/C H1
0.˝I
 D

f /
d;

and the dynamic condition is realized by coupling the test functions

 2 H1
0.˝I
 D

f /
d:
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Pressure and the solid’s deformation are found in

pf .t/ 2 L2.F.t//; us.t/ 2 NuD
s .t/C H1

0.S.t/I
 D
s /

d:

Test spaces for the divergence condition and the velocity deformation coupling are
simply

�f 2 L2.F.t//;  s 2 L2.S.t//d :

Apparently, the Eulerian formulation of the fluid-structure interaction problem
has a simpler structure than the ALE formulation. No mapping—at least no artificial
mapping—between domains is necessary. Hence, there is no obvious reason, while
the Eulerian formulation should show limits when treating problems with very large
deformation, motion or even contact. All this is true, the simplicity of the variational
formulation in (3.33) however conceals one essential vagueness: the domains F.t/
and S.t/ are given by the solution itself. For the solid domain, we have identified two
possible definitions, given in (3.30) and (3.31). Both of them however are not well
suited in a computational framework. In the following section, we will introduce a
technique to close this last gap.

3.6.3 The Initial Point Set Method

For realizing a computational method based on (3.33), we must be able to determine,
if a coordinate x 2 ˝.t/ at time t � t0 belongs to the solid domain x 2 S.t/ or to
the fluid domain x 2 F.t/. In contrast to the ALE realization, where we could deal
with fixed subdomains, this partitioning will move. We must correctly capture the
interface at all times. The Eulerian formulation belongs to the class of interface-
capturing techniques. One of the most prominent interface-capturing methods is
the Level-Set method, introduced and described by Sethian [307] as well as Osher
and Fedkiw [257]. Here, we introduce a scalar Level-Set function �0 W Ő ! R that
indicates the signed distance to the interface OI D I.0/, i.e.

�0.Ox/ WD
(

dist .Ox; OI/ Ox 2 OS;
� dist .Ox; OI/ Ox 2 OF ; :

It holds �.Ox/ D 0 for all Ox 2 OI on the interface. For a given point Ox 2 Ő , the sign
of �0.Ox/ can be used to determine the domain affiliation. Further, the normalization
with the distance can be used to express normal vectors of the interface. This is
a very important feature for multiphase flow problems, where the curvature has an
influence on the surface tension. Then, we simply use the velocity field v to transport
the Level-Set function over time

@t�C .v � r/� D 0:
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The sign of �.x; t/will at all times indicate whether a point x belongs to S.t/ orF.t/.
One immediate drawback of the Level-Set technique is the introduction of an

additional unknown that will increase the complexity of the formulation. A greater
challenge is the derivation of stable numerical routines to solve the transport equa-
tion. Usually, such a pure transport equation will call for stabilization techniques
like upwinding or artificial diffusion that will cause unphysical smoothing of the
interface. In the context of fluid-structure interactions, this could mean that points
of the fluid problem will by fault be accounted to the solid domain, and vice versa.
The Level-Set method is widely used and must be considered as standard method
for describing interface problems. There is extensive literature on the efficient
realization as well as on reinitialization techniques for maintaining the Level-Set
property.

Level-Set methods have also been used to formulate fluid-structure interactions
as interface problems [104, 105, 179, 222].

Here, as an alternative, we describe the Initial Point Set method for capturing the
interface between fluid- and solid-domain. This technique was first introduced by
Dunne [126].

To be precise: instead of capturing the interface location, we will capture the
complete reference coordinate system. The construction of the Initial Point Set is
based on the following observation: if we know that x 2 ˝.t/ at time t � 0 belongs
to the solid domain, i.e. x 2 S.t/, it holds

Ts.x; t/ D x � us.x; t/ 2 OS:

Coordinates x 2 S.t/ are deformed back to the Lagrangian system by the Eulerian
deformation us.x; t/. As the Lagrangian system is fixed and known, we could use
the deformation us to determine, if a point x 2 ˝.t/ is part of the solid domain.

The flaw of this construction is the absence of fluid domain’s deformation uf ,
as us is only defined in the solid domain. A computational method however can
easily be derived by an implicit extension of this deformation uf to the fluid domain.
Hence, for the following, we assume that uf W F.t/ ! Rd is given such that

uf .x; t/ D us.x; t/ 8x 2 I.t/ and x � uf .x; t/ 62 OS 8x 2 F.t/:

The extension should map every coordinate back to a coordinate at reference time.
We do not expect that

Tf .x; t/ WD x � uf .x; t/

defines a mapping to a reference fluid domain Tf .t/ W F.t/ ! OF . We are pleased, if

Tf .x; t/ D x � uf .x; t/ 62 OS

is not part of the solid’s reference domain. We will get back to this subtle (but
important) difference. As uf and us are continuous on the interface and by assuming
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that uf has sufficient regularity, we define a global deformation field u.t/ W ˝.t/ !
Rd and set

us.t/ WD u.t/
ˇ̌
ˇ
S.t/
; uf .t/ WD u.t/

ˇ̌
ˇ
F.t/

:

Based on this global deformation, we can finally define the Initial Point Set ˚IPS

as

˚IPS.x; t/ WD x � u.x; t/;

and can use it to determine the domain affiliation for all coordinates x 2 ˝.t/:

x 2 ˝.t/ ) x 2
(
S.t/; ˚IPS.x; t/ D x � u.x; t/ 2 OS;
F.t/; ˚IPS.x; t/ D x � u.x; t/ 62 OS :

The Initial Point Set allows to distinguish between the two subdomains.
We still have to provide a way to define suitable extensions uf in an implicit

way. In principle, we can utilize the same techniques that have been discussed in
the context of constructing the ALE-map in Sect. 3.5.1. This effort however is not
necessary, as the deformation uf will not be used to define a mapping between F.t/
and OF . We only require that Tf .x; t/ D x � uf .x; t/ points x to a coordinate outside
the solid domain. We do not need any regularity of uf nor do we need invertibility
of the map.

Definition 3.17 (Initial Point Set) A vector field ˚IPS W ˝.t/ ! Rd is called
Initial Point Set, if for x 2 ˝ and t � 0 it holds:

˚IPS.x; t/ D x � us.x; t/ x 2 NS.t/
˚IPS.x; t/ 62 OS x 2 F.t/

Finally, we can indicate some possibilities for the construction of uf . One simple
option is to choose the harmonic extension of us to the fluid domain:

��uf D 0 in F.t/; uf D us on I.t/; n � ruf D 0 on @F.t/ n I.t/:

Here, we have chosen homogenous Neumann boundary conditions on the outer
boundary of the fluid-domain. As uf ¤ on @F.t/ n I.t/, the map Tf .x; t/ WD
x � uf .x; t/ will not define a mapping back to a reference domain. The Neumann
condition will allow very large deformations, such that the solid domain S.t/ can get
arbitrarily close to the outer boundary. In Fig. 3.7 we show two situations of possible
extensions. In the upper sketch, we have chosen homogenous Dirichlet values on the
outer boundary, whereas the lower sketch is constructed with a Neumann condition.
The gradient rTf within the fluid domain is smaller in this case.
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I(0)
F(0)

S(0)

F(0)

uf (0) ≡ 0
uf (t1)

F(t1)
I(t1)

F(t1)

S(t1)

F(t2)

S(t2)

I(t2)
F(t2)

uf (t2)

F(t1)
I(t1)

F(t1)

S(t1)

I(0)
F(0)

S(0)

F(0)

uf (0) ≡ 0

F(t2)

S(t2)

I(t2)
F(t2)

uf (t2)

uf (t1)

Fig. 3.7 Examples for the Initial Point Set using homogenous Dirichlet conditions on @F.t/nI.t/
in the upper and Neumann conditions in the lower sketch. The Initial Point Set x � uf .x; t/ defined
in the lower sketch does not construct an ALE map. This however is not necessary in the context
of Fully Eulerian fluid-structure interactions

Finally, we can close the formulation of the coupled fluid-structure interaction
problem in Eulerian coordinate:

Problem 3.18 (Initial Point Set formulation of the Eulerian Fluid-structure
Interaction Problem) Let

u.t/ 2 NuD.t/C H1
0.˝.t/I
 D

s /
d;

v.t/ 2 NvD.t/C H1
0.˝.t/I
 D/d;

pf .t/ 2 L2.F.t//

be the solution of the variational problem

.�f .@tv C .v � r/v/; /F.t/ C .Js O�0s .@tv C .v � r/v/; /S.t/
C.� f ;r/F.t/ C .� s;r/S.t/ D .�f f; /F.t/ C .Js O�0s f; /S.t/

.r � v; �f /F.t/ D 0

.@tu C .v � r/u � v;  s/S.t/ D 0

.ru;r f /F.t/ D 0;

for all test functions

f 2 H1
0.˝.t/I
 D/d;

�f 2 L2.F.t//;
 s 2 L2.S.t//d;
 f 2 H1

0.F.t/I I.t//d :
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Given sufficient regularity, this solution also solves the fluid-structure interaction
problem in classical formulation presented in Problem 3.1.

Remark 3.19 (Similarity to Multiphase Flows) There are many similarities between
the Eulerian formulation of fluid-structure interactions and multiphase flows, where
two different fluids are coupled over a common (and moving) interface. To illustrate
this analogy we first introduce a global notation for the stress tensors and the
densities

� .x; t/ WD
(

� f .x; t/ x 2 F.t/;
� s.x; t/ x 2 S.t/;

�.x; t/ WD
(
�f x 2 F.t/;
Js O�0s x 2 S.t/:

With help of this notation we can shorten the formulation to

.�.@tv C .v � r/v/; /C .� ;r/ D .�f; /;

.r � v; �f /F.t/ D 0

.@tu C .v � r/u � v;  s/S.t/ D 0

.ru;r f /F.t/ D 0;

While the similarity of the Fully Eulerian formulation to multiphase flows is helpful
in the design of computational algorithms, the likeness should not be overly stressed.
Fluid-structure interaction is not a simple change of problem parameters along an
interface, instead. Instead the complete setup of the stress tensors change, as � f D
� f .v/ and � s D � s.u/ stand for a parabolic-type equation and one of hyperbolic
type.

The idea of the Initial Point Set is alike the idea of the backward characteristics
used to describe the Eulerian domain in the approach by Cottet et al. [105].



Chapter 4
Discretization

This chapter is devoted to discretization techniques. We start with basic methods
for the discretization in time. Besides simple time stepping schemes, we will
discuss Galerkin time discretization methods. They have a similar structure to the
finite element discretization used in space and they are well suited for adaptivity
and optimization problems. After an introduction to the fundamental schemes for
parabolic equations, we put the focus on the special needs of temporal discretization
methods in fluid mechanics. We continue with the introduction of the finite element
methods for spatial discretization. Again, we start by presenting the fundamentals
before putting spacial attention to saddle point problems and the nonlinear Navier-
Stokes equations. Finally, to prepare the necessary tools for an application to
fluid-structure interactions, we discuss interface problems, where the solution of
exhibits limited regularity along an internal interface boundary.

4.1 Time Discretization of Partial Differential Equations

In this section we discuss the time-discretization of parabolic differential equations
given in variational formulation

u.t/ 2 V W .@tu.t/; /C a.u.t/; / D . f .t/; / 8 2 V WD H1
0.˝/ (4.1)

almost everywhere for t 2 I WD Œ0;T�, where a.�; �/ is an elliptic operator and with
initial data

u.0/ D u0 in L2.˝/:

© Springer International Publishing AG 2017
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Three different approaches for the time-discretization of parabolic problems are
considered:

First space then time: This approach is called method of lines. By space discretiza-
tion, the parabolic equations is transformed into a system of ordinary
differential equations that then can be tackled with usual single or multistep-
methods.

First time then space: This approach is referred to as Rothe’s method. By dis-
cretization in time with a single-step method, the parabolic equation is
resolved into a sequence of quasi-stationary elliptic partial differential
equations that then can be discretized in space. The advantage of this
approach is the possible use of different discretizations (adaptive meshes)
in different time steps.

Simultaneously: This approach is called a space-time discretization. By using a
simultaneous Galerkin-discretization in space and time, the equation gets
accessible to strong analytical techniques. This approach allows for the easy
derivation of robust error estimators and adjoint optimization techniques.
The effort for solving a space-time coupled problem however is immense,
as the time acts as an additional dimension. Often space-time approaches are
only considered for analysis purposes and Rothe’s method or the method or
lines is used for solving.

It can be shown that the method of lines and Rothe’s method are equivalent, if
uniform discretizations are considered. Further, it is possible to design space-time
Galerkin methods that—at least for linear autonomous problems—correspond to
certain time stepping methods.

All time-discretizations are based on a subdivision of the time interval I D Œ0;T�
into discrete time steps

0 D t0 < t1 < � � � < tM D T; km WD tm � tm�1; k WD max
1�m�M

fkmg:

At every time step tm we denote by

um D u.tm/

the solution at time tm. One of the most basic time stepping schemes used in the
method of lines or Rothe’s method is the one-step �-scheme

m D 1; : : : ;M W .um; /C �kma.um; / D .um�1; /

� .1 � �/kma.um�1; /C �k. f m; /C .1 � �/k. f m�1; / 8 2 V : (4.2)

For � D 1, this is the implicit backward Euler method, for � D 0 the explicit
forward Euler and for � D 1

2
the Crank-Nicolson scheme. Both implicit and explicit

Euler method show first order convergence, while the Crank-Nicolson method
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is second order accurate. Higher order accuracy can be reached by referring to
Runge-Kutta methods or linear multistep schemes like the Backward Differentiation
Formulas (BDF), see [118].

By discretization with a single-step method, the parabolic equation decouples
into M pseudo-stationary problems of type (4.2) that can subsequently be discretized
in space by appropriate Finite Element methods. Usually, it shows that choosing
only first order accurate time stepping schemes, the resulting discretization error
is highly unbalanced and that very small time steps (compared to the spatial
discretization parameter h)

k � h

are required to yield an adequate overall error accuracy. As however very high
spatial approximation order is not easily obtained for complex problems like fluid-
structure interactions, choosing second order accurate time stepping schemes is a
good compromise between approximation property and numerical effort.

4.1.1 Numerical Stability

Numerical stability is—next to approximation accuracy—the most important qual-
ity measure for time discretization schemes. For stability analysis we consider the
scalar ordinary differential equations

u0.t/ D �u.t/; t � 0; u.0/ D 1; (4.3)

where � 2 C is a given complex parameter. The unique solution to this equation is

u.t/ D e�t

and it holds

ju.t/j 
 1 for Re.�/ 
 0

ju.t/j ! 1 for Re.�/ > 0
.t ! 1/

We define:

Definition 4.1 (Absolute Stability) A one-step method for the approximation
um � u.tm/ of (4.3) is absolutely stable for a given � 2 C and time step k > 0, if

jumj 
 1; m D 1; 2; : : : :
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A numerical scheme is usually stable for only some pairs of � 2 C and k 2 RC. We
consider the forward Euler method for approximating (4.3)

um D .1C �k/um�1

and we immediately get the relation:

jumj 
 j1C �kj jum�1j 
 � � � 
 j1C �kjmju0j D j1C �kjm:

Absolute stability is given, if

j1C �kj 
 1 , �k 2 NB1.�1/ WD fz 2 C W jz C 1j 
 1g:

We define:

Definition 4.2 (Region of Absolute Stability) The subset of the complex plane

Rs D fz D �k 2 C W method is absolute stable for � and kg;

is called the region of absolute stability of the single-step method. A method with a
stability region that contains the left complex half-plane is called A-stable

fz 2 C W Re.z/ 
 0g � Rs:

For the � time stepping method it holds:

Lemma 4.3 (Absolute Stability of the One-Step �-Method) The region of
stability for the implicit Euler scheme is given by

RIE
s D C n B1.1/;

for the explicitly Euler scheme by

REE
s D NB1.�1/;

and for the Crank-Nicolson scheme by

RCN
s D fz 2 Cj Re.z/ 
 0g:

For all � 2 Œ 1
2
; 1� it holds

R�� 1
2

s  fz 2 Cj Re.z/ 
 0g:

and for all � 2 Œ0; 1
2
/ it holds:

R�< 1
2

s \ fz 2 Cj Re.z/ 
 0g ¤ ;:
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Proof The �-scheme is written with help of the amplification factor:

um D R.k; �; �/um�1; R.k; �; �/ D 1C .1 � �/k�
1 � �k�

:

The region of stability is then calculated as the set of complex numbers z D k� that
satisfy jR.z; �/j 
 1. ut

If the region of absolute stability includes the left part of the complex plane

C� WD fz 2 Cj Re.z/ 
 0g � Rs;

the underlying method is stable for all combinations of � 2 C� and time steps
h > 0. There is no time step restriction.

Definition 4.4 (A-Stability) If the region of absolute stability includes the left part
of the complex plane C�, we call the method A-stable.
The Crank-Nicolson scheme and the � scheme for � � 1

2
are A-stable. A-stability

ensures boundedness of the numerical solution for all time steps.

Remark 4.5 (Amplification Factor) The amplification factors R.z/ D R.�k/ of
single-step methods for solving the model-problem (4.3) are approximations to the
complex exponential function

R.z/ � exp.z/:

For a single-step method with truncation error O.k˛/ it holds

jR.�k/� exp.�k/j D O.k˛C1/:

The amplification factor for implicit single-step methods is always a rational
approximation to the exponential function. The best rational approximations to
the exponential function are called Padé approximation. For increasing polynomial
degree of denominator r and numerator s, the Padé approximations can be given in
a Padé-table:

2

6666666664

snr 1 2 3 � � �
1 1

1
1Cz
1

1CzC 1
2 z2

1
� � �

2 1
1�z

1C 1
2 z

1� 1
2 z

1C 2
3 zC 1

6 z2

1� 1
3 z

3 1

1�zC 1
2 x2

1C 1
3 z

1� 2
3 zC 1

6 z2
1C 1

2 zC 1
12 z2

1� 1
2 zC 1

12 x2

: : :

:::
:::

: : :
: : :

3

7777777775

It can be shown that all diagonal Padé approximations correspond to A-stable time
stepping schemes, while all sub-diagonal Padé approximations correspond to a
strongly A-stable scheme [173, 289, 317].
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While A-stability ensures the boundedness of the numerical approximation for all
time steps

jumj 
 jR.�k/jkju0j;

higher stability requirements might be necessary, if truncation errors are considered.
Assume that an additional relative error 1C " is added in every step, i.e.

um D R.�k/um�1.1C "/ ) jumj D jR.�k/jmju0j j1C "jm � jR.�k/jmju0jm":

If R.�k/ ! 1 the overall error might still be unbounded.

Definition 4.6 (Strong A-Stability) An A-stable method is called strongly A-
stable, if it holds

lim sup
Re.�/!�1

jR.�/j 
 1 � ı < 1:

It is called globally A-stable , if it holds

lim sup
Re.�/!�1

jR.�h/j 
 1 � O.k/:

Strong A-stability gives a damping property of numerical methods. Numerical errors
by non-smooth boundary data, by incompletely solved linear and nonlinear systems
are damped. Global A-stability is a weaker (still stronger than A-stable) concept.
Usually, globally A-stable methods are sufficient to damp numerical truncation
errors. They might however not be sufficient to smooth out errors in the initial data.
We refer to [186, 230] for further reading.

A method lacking numerical stability usually asks for restrictive time step
conditions. The forward Euler scheme requires

�k 2 B1.�1/;

and considering � 2 R with � < 0 this refers to the condition:

0 
 kj�j 
 2 , k 
 2j�j�1:

For j�j large, this condition can be very restrictive. Next, we consider the heat-
equation in variational formulation

.@tu; /C .ru;r/ D 0

written in operator notation as

@tu C Au D 0;
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where A is the weak Laplace operator. We know that A is symmetric positive
definite with an orthonormal basis of eigenvectors fwigi�0 and corresponding
eigenvalues �i, where

0 < �1 
 �2 
 � � � ; �i ! 1 .i ! 1/:

Using the eigenvector representation

u.t/ D
X

i�0
ui.t/wi;

the heat-equation decomposes into a set of scalar equations

@tu
i.t/ D ��iu

i.t/;

each of the same type as the model problem (note the reversed sign). For numerical
stable time-discretization of the heat equation it has to hold for all eigenvectors that

��ik 2 Rs 8i � 0:

If a single-step method is strongly A-stable, it is unconditionally stable for
discretizing the heat-equation for all step-sizes k > 0. We define:

Definition 4.7 (Stiff System) A system of differential equations

u0.t/ D f .t; u.t//; t � 0

is called stiff, if the ratio

max j��. fu/j
min j��. fu/j � 1;

where by ��. fu/ we denote the Eigenvalues of

fu WD d

du
f .t; u/

with negative real part.
A scalar equation u0 D �u is never called stiff, even if Re.�/ � 0. Stiffness
describes that a small time step k is required for reasons of numerical stability, not
for reasons of accuracy. A vague, however perspicuous definition of a stiff problem
is that of a problem, where the implicit Euler method gives an acceptable solution,
while the explicit Euler method fails to give a good solution for the same time step
size.
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Example 4.8 (Stiff Problem) We consider the scalar model problem

u0.t/ D �200u.t/; t � 0; u.0/ D 1;

with a large Lipschitz-constant L D 200. The solution is given by u.t/ D
exp.�200t/. We discretize this problem by the forward and backward Euler method
and measure the error at time tn D 1

ku.tn/ � unk
ku.tn/k :

In Table 4.1 we gather the results using different time steps k.
Only very small time steps of k D 2�11 � 0:0005 give a relative error smaller

than 100% in both cases—for implicit and explicit Euler scheme. This small time
step is well below the time step condition k < 2L�1 � 0:01 of the explicit Euler
scheme arising from the stability analysis, see Lemma 4.3.

The necessity for this small time step is not by stability restrictions but simply
due to the large Lipschitz constant of the problems that enters all error estimates.
Next, we consider a system of initial value problems:

u0.t/ D Au.t/; A WD 1

3

��202 �398
�199 �401

�
u.t/; u.0/ D

�
11

�4
�

(4.4)

The matrix A has the two eigenvalues �1 D �200 and �2 D �1. With j�2j=j�1j D
200 this problem can be considered stiff. It holds

Q WD
�
1 �2
1 1

�
; Q�1AQ D D D

��200 0

0 �1
�

and we define the diagonalized system for Nu.t/ D Q�1u.t/

Nu0.t/ D DNu.t/; Nu.0/ D Q�1u0 D
�
1

�5
�
;

Table 4.1 Example 4.8.
Discretization of the scalar
model problem
u0.t/ D �200u.t/.
Discretization with the
explicit Euler (EE) and
implicit Euler method (IE) for
decreasing time step sizes k

k EE IE

2�6 1 46594

2�7 0:999 2419

2�8 0:996 74.76

2�9 0:927 8.907

2�10 0:717 2.262

2�11 0:462 0.823

2�12 0:265 0.354

2�13 0:142 0.164

We show the relative
error in t D 1
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Table 4.2 Example 4.8
Discretization of the system
of ode’s (4.4). Discretization
with the explicit Euler (EE)
and implicit Euler method
(IE) for decreasing time step
sizes k

k EE IE

2�4 1 0.0788

2�5 1 0.1403

2�6 1 0.2016

2�7 0:7781 0.1820

2�8 0.2400 0.1063

2�9 0.0868 0.0624

2�10 0.0394 0.0333

2�11 0.0188 0.0173

We show the relative error
at time t D 1

with the solution

Nu.t/ D
�

exp.�200t/
�5 exp.�t/

�
:

Table 4.2 shows the results for both implicit and explicit Euler scheme used for
discretization of this system of equations. Again, we measure the relative error
kNu.tn/� Nunk1=kNu.tn/k1 at time tn D 1.

Here, the explicit Euler method gives reasonable results starting from k D 2�7 �
0:008 < 0:01, where the time step first enters the region of absolute stability. The
implicit Euler method also gives reasonable results for larger time steps. If the time
step is small enough, both methods give results of similar accuracy.

This second problem is stiff, as it is characterized by two different solution
components with very different behavior. While one component quickly goes to
zero, the second component governed the absolute value of the solution. Combining
the solutions of the diagonalized system we can construct the original solution as

u.t/ D QNu.t/ D
�
10e�t C e�200t

�5e�t C e�200t

�
:

4.1.2 Numerical Dissipation and Further Stability Concepts

Every A-stable time discretization scheme is robust for the discretization of stiff
problems as solution components belonging to Eigenvalues with negative real part
are quickly damped. This behavior is important for parabolic partial differential
equations. Hyperbolic equations however have the property of energy conservation.
We consider the following ODE as simple model for the wave equation

v00.t/C v.t/ D 0; v.0/ D 1; v0.0/ D 0; (4.5)
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which has the solution

v.t/ D cos.t/:

We introduce the notation u1.t/ D v.t/ and u2.t/ D v0.t/ to reformulate (4.5) as a
system of first order equations

u0.t/ D
�
0 1

�1 0
�

u.t/; u.0/ D
�
1

0

�
:

The matrix has two complex eigenvalues� D ˙i. And for the vector-valued solution
u W I ! R2 it holds ju.t/j D 1.

In the following, we consider the model problem (4.3) with complex eigenvalues

u0.t/ D �iu.t/; u.0/ D 1;

with the solution

u.t/ D ei�t D cos.�t/C i sin.�t/:

It holds ju.t/j D 1 for all times t � 0 and the solution u.t/ has the frequency �=�.
The energy of the system is optimally conserved. We define

Definition 4.9 (Numerical Dissipation) A single-step method is said to have little
numerical dissipation, if

jR.i/j � 1:

For the �-scheme, it holds:

R.i; �/ D 1C .1 � �/i

1 � � i
D 1C i

1 � � i
:

While the backward Euler method � D 1 is highly damping

jR.i; 1/j D 1p
2

� 1;

the forward Euler method � D 0 is very unstable and amplifies waves:

jR.i; 0/j D p
2 � 1:

The Crank-Nicolson method has perfect energy conservation and no numerical
dissipation:

R

�
i;
1

2

�
D 1C 1

2
i

1� 1
2
i

D 1:
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The good stability (it is A-stable) and the excellent dissipation properties together
with second order accuracy makes the Crank-Nicolson method for a nearly optimal
discretization scheme for coupled problems like fluid-structure interactions that
involve both the very stiff system of flow equations and the elastic structure equation
of hyperbolic type that calls for good energy conservation. It shows however that A-
stability of the Crank-Nicolson method is just not enough to cope with numerical
truncation errors that are accumulated over time. Further, if the initial data for
the heat-equation only has minimal regularity u0 2 L2.˝/, which is enough to
guarantee a smooth solution, the numerical schemes may fail.

It hence remains to find a time stepping scheme that is at least second order
accurate, has little numerical dissipation and better stability properties.

4.1.2.1 Shifted Crank-Nicolson Methods

A popular discretization scheme with better stability properties as the Crank-
Nicolson scheme is derived by an implicit shift, using

� D 1

2
C O.k/:

The resulting scheme still is second order accurate but the stability region is slightly
larger.

Lemma 4.10 (Shifted Crank-Nicolson) The implicitly shifted Crank-Nicolson
scheme is globally A-stable:

lim sup
Re.�/!�1

jR�D 1
2CO.k/

s .�; k/j D 1 � O.k/

Proof It holds

jRsj D
ˇ̌
ˇ̌
ˇ
1C �

1 � 1
2

� O.k/
�
�k

1 � �
1
2

C O.k/
�
�k

ˇ̌
ˇ̌
ˇ D

ˇ̌
ˇ̌
ˇ
1C �

1
2

� O.k/
�
�k

1 � �
1
2

C O.k/
�
�k

ˇ̌
ˇ̌
ˇ

�����!
�!�1

ˇ̌
ˇ̌
ˇ

1
2

� O.k/
1
2

C O.k/

ˇ̌
ˇ̌
ˇ D 1 � O.k/:

ut
A globally A-stable scheme has stronger damping properties. When discretized

with a globally A-stable scheme, we can find global discrete solutions to parabolic
equations. An even stronger stability concept is given by

Lemma 4.11 (Implicitly �-Schemes) Given � 2 . 1
2
; 1�, the �-scheme is strongly

A-stable:

lim sup
Re.�/!�1

jR�> 1
2

s .�; k/j 
 1 � ı < 0:
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Proof It holds:

jRsj D
ˇ̌
ˇ̌1C .1� �/�k

1 � ��k

ˇ̌
ˇ̌ �����!
�!�1

ˇ̌
ˇ̌1 � �
�

ˇ̌
ˇ̌ D

ˇ̌
ˇ̌1 � 1

�

ˇ̌
ˇ̌ DW j1� ıj

For � > 1
2

it holds j1 � ıj < 1. ut
Methods with strong A-stability have damping properties for all time step sizes

and all eigenvalues. A time stepping method with strong A-stability applied to the
heat-equation will yield the full smoothing property of parabolic equations. Even
for irregular initial data u0 2 L2.˝/, optimal order of convergence can be obtained.
See [230, 266] for details on the analysis of smoothing properties of parabolic partial
differential equations.

4.1.2.2 The Fractional-Step �-Method

For � > 1
2

the �-scheme is strongly A-stable, it however lacks second order
accuracy. A simple idea to construct time stepping schemes with higher accuracy
and with strong A-stability is to combine multiple sub-steps of the �-scheme into
one new scheme. This idea goes back to Glowinski [166]. We perform three sub
steps

tm�1 ! tm�1C˛ ! tm�˛ ! tm; km WD tm � tm�1;

with step-sizes

˛1km; ˛2km; ˛3km;

where ˛i 2 .0; 1/ with ˛1 C ˛2 C ˛3 D 1. In each of these steps, we choose
different values for �i 2 Œ0; 1�. To reduce the number of free parameters, we choose
˛ WD ˛1 D ˛3 2 .0; 1=2/ and ˛2 D 1 � 2˛. Further we pick � WD �1 D �3 and
�2 D 1 � � . This results in the three-step method

.um�1C˛; /C ˛�kma.um�1C˛; / D .um�1; /� ˛.1� �/kma.um�1; /

.um�˛; /C .1 � 2˛/.1� �/kma.um�˛; / D .um�1C˛; /� .1� 2˛/�kma.um�1C˛; /

.um; /C ˛�kma.um; / D .um�˛; /� ˛.1� �/kma.um�˛; /:

(4.6)

Applied to the model-problem (4.3), the amplification factor of the fractional-step
�-method is given as a combination of three �-factors

Rfst.�; ˛; z/ D .1C ˛.1 � �/z/2.1C .1 � 2˛/�z/

.1 � ˛�z/2.1 � .1 � 2˛/.1 � �/z/
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For small z 2 C, this amplification factor is an approximation to the exponential
function and it holds:

jRfst.�; ˛; z/� ezj

D .1 � 2�/

�
˛ �

�
1C 1p

2

���
˛ �

�
1 � 1p

2

��
jzj2 C O.jzj3/:

Hence, for the choice a D 1� 1=
p
2 � 0:29289 the resulting method is second order

accurate for every � 2 .0; 1/. For z D �k it holds in the limit � ! �1

Rfst.�; ˛; k; �/ D
ˇ̌
ˇ̌ .1C ˛.1 � �/k�/2.1C .1� 2˛/�k�/

.1 � ˛�k�/2.1 � .1 � 2˛/.1 � �/k�/
ˇ̌
ˇ̌ �����!
�!�1

ˇ̌
ˇ̌1 � �

�

ˇ̌
ˇ̌ ;

and strong A-stability follows for every � 2 . 1
2
; 1�.

Remark 4.12 The parameter � can be chosen to satisfy ˛� D .1�2˛/.1��/, such
that each of the three steps has the same coefficient:

˛� D .1 � 2˛/.1 � �/ , � D 1 � 2˛

1 � ˛ D 2 � p
2 � 0:5858:

This choice has the advantage that application of (4.6) to a linear parabolic equation,
the same system matrix

M C ˛�kA 	 M C .1 � 2˛/.1 � �/kA

must be inverted in each of the three sub-steps. Regarding nonlinear problems with
nonlinear differential operators A.u/, this advantage is lost as a new system matrix
must be assembled anyway.

Finally, it remains to analyze the dissipative character of the fractional-step �-
method. For R.�h; �/, different � values give

jR.i; 1/j � 0:99687; jR.i; 2� p
2/j � 0:99970:

Being strongly A-stable and showing very little dissipation, the fractional step �-
scheme is one of the most-used time stepping methods for flow-problems. Second
order accuracy is usually considered to be reasonable and the combination of strong
A-stability with this nearly optimal dissipative character are well suited to represent
the dynamics of fluid problems.

Many variants of the fractional step �-scheme are possible, the choice of
parameters � 7! 1 � � 7! � as well as ˛k 7! .1 � 2˛/k 7! ˛k is due to
symmetry reasons but not strictly required. Glowinski et al. [328] introduced a
modified fractional step theta scheme that consists of only two implicit Euler like
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sub-steps and one purely explicit extrapolation step:

tm�1
�D1��!
˛k

tm�1C˛
linear extrapolation����������!

.1�2˛/k tm�˛
�D1��!
˛k

tm:

The choice ˛ D 1 � 1=
p
2 again results in a second order scheme. Like the

original fractional step �-scheme, this modification is strongly A-stable and has
good dissipation properties. It is slightly more damping than the original scheme,
but each time step now consists of only two implicit systems and one very cheap
extrapolation step. See [306] for a detailed discussion and comparison.

4.1.3 Galerkin Time Discretization Schemes

Single step methods for time stepping have the advantage of a very easy structure
that makes an efficient implementation possible. Based on finite different techniques
few analytical tools are available. Eriksson et al. [130, 131] as well as Thomée [323]
derived Galerkin formulations of parabolic partial differential equations that are in
some sense equivalent to the time stepping scheme. Having Galerkin formulations
at hand, error estimates can be established by standard residual techniques known
from the finite element analysis. Again, we consider a parabolic differential equation

@tu C Au D f in I �˝; (4.7)

where I D Œ0;T� and˝ � Rd. We have initial values for t D 0

u.0/ D u0;

and (homogenous) boundary data on I � @˝ . To derive a variational formulation in
space and time, we multiply (4.7) with a function  W I � ˝ ! R and integrate in
space and time

Z T

0

.@tu.t/; .t//dt C
Z T

0

a.u.t/; .t//dt D
Z T

0

. f .t/; .t//dt 8 2 X: (4.8)

We find the solution in the space

X WD W.I/ D f 2 L2.IIV/; @t 2 L2.II V�/g;

where V D H1
0.˝/, V� D H�1.˝/ and with W.I/ ,! C.II L2.˝//, see [109, 351].

Again, we start by a splitting of I D Œ0;T�, into M discrete time steps ti.

0 D t0 < t1 < � � � < Tm D T; km WD tm � tm�1; k WD max
1�m�M

km;
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and half-open intervals Im WD .tm�1; tm� to get

I D f0g [ I1 [ � � � [ Im:

Using these half-open intervals Im, we introduce the function spaces

Xr
k D fk 2 C.NII L2.˝// j k

ˇ̌
Im

2 Pr.ImIV/; m D 1; : : : ;Mg;
QXr

k D fk 2 L2.NII L2.˝// j k

ˇ̌
Im

2 Pr.ImIV/; m D 1; : : : ;M;

and vk.0/ 2 L2.˝/g:

By Pr.IIV/ we denote the space of polynomials in time to degree r with values in
V D H1

0.˝/. The space Xr
k consists of globally continuous (in time) functions that

are piecewise polynomials. The space QXr
k consists of globally L2-functions that are

piecewise polynomial. These functions might be discontinuous in the discrete points
in time tm. While it holds Xr

k � X D W.I/, it holds QXr
k 6� X. Although QXr

k 6� X, this
space is suitable as test space for (4.8) as no temporal regularity is required. For
(discontinuous) functions uk 2 QXr

k we define

uC
m WD lim

t&tm
um.t; �/ 2 V ;

u�
m WD lim

t%tm
um.t; �/ 2 V ;

Œu�m WD uC
m � u�

m 2 V :

4.1.3.1 Discontinuous Galerkin Methods

A conforming discontinuous Galerkin formulation of (4.8) is given by restricting
test and trial spaces to QXr

k and finding uk 2 QXr
k such that

MX

mD1

Z

Im

n
.u0

k.t/; k.t//˝ C a.uk.t/; k.t//
o

dt C .Œuk�m�1; C
m�1/˝

D
MX

mD1

Z

Im

. f .t/; k.t// dt 8k 2 QXr
k:

The additional jump terms .Œuk�m�1; C
m�1/ will guarantee continuity of u in the limit

k ! 0. Since solution uk 2 QXr
k and test function k 2 QXr

k are discontinuous at every
discrete time step tm, the equation decouples and can be written in form of a time
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stepping scheme. For m D 1; : : : ;M find uk 2 Pr.ImIV/ such that

Z

Im

n
.u0

k.t/; k.t//˝ C a.uk.t/; k.t//
o

dt C .Œuk�m�1; C
k;m�1/˝

D
Z

Im

. f .t/; k.t//˝ dt 8k 2 Pr.ImIV/: (4.9)

As example, we consider the most simple case of a dG(0)-discretization with
piecewise constant trial and test functions

uk

ˇ̌
ˇ
Im

DW um
k 2 V ; k

ˇ̌
ˇ
Im

DW m
k 2 V ;

where uk and k are piecewise constant such that it holds:

C
k;m�1 D m

k ; Œuk�m�1 D um
k � um�1

k :

The time derivative u0
k D 0 is zero on every interval Im, hence the Galerkin

formulation is simplified to finding um
k 2 V such that for m D 1; 2; : : : ;M it holds

.um
k � um�1

k ; m
k /˝ C kma.um

k ; 
m
k / D

Z

Im

. f .t/; m
k / dt 8m

k 2 V: (4.10)

Apart from the integral in the right hand side this is exactly the implicit Euler
scheme. By approximating the integral with the right-sided box scheme

Z

Im

. f .t/; m
k /˝ dt D km. f .tm/; 

m
k /˝ C O.k2m/;

we recover the implicit Euler method.

Remark 4.13 (Equivalence Between Galerkin and Time Stepping Methods) As
shown, the dG(0)-Galerkin method is equivalent to the backward Euler scheme,
if the equation, namely a.�; �/, is linear, and if the problem is autonomous without
explicit dependency on the time t. For nonlinear equations or with time-depending
right hand side f .t/ (or time-depending operator a.t/.�; �/) equivalency between the
Galerkin scheme and the time stepping scheme is only up to numerical quadrature
error. In the case of the implicit Euler method discussed above this quadrature error
has the same order as the method itself.

Remark 4.14 It can be shown that every dG(r) discretization of the model problem
corresponds to a sub-diagonal .r C 2; r C 1/ Padé approximation of the exponential
function, see [289]. Hence, we know that these approximations have optimal order:

jR.z/ � exp.z/j D O.k2rC2/:
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This relation shows the optimal super-convergence order 2r C 1 (in the discrete
points tm) of discontinuous Galerkin methods when applied to linear autonomous
problems. See [323] for the general proof of this super-convergence property.
Further, it is well known that for every sub diagonal .r; r C 1/ Padé approximation
there exists an implicit Runge-Kutta method with the same amplification factor. This
connection is guideline for a possible general procedure: The parabolic equation is
solved by using an efficient time stepping scheme (e.g. a Runge-Kutta method), the
error estimator is derived by using the correspondence to a Galerkin method that
allows for residual based techniques. If Galerkin method and time stepping scheme
differ by a numerical quadrature error, this additional error must taken into account.
See Sect. 8.1.2 for details.

The effort for approximating a parabolic equation with a discontinuous Galerkin
method is considerably larger than by using a single-step method. The local dG(r)
solution has r C 1 local degrees of freedom

uk.t/
ˇ̌
ˇ
Im

D
rX

sD0
us

kts

that all couple to each other within every time step. Considering parabolic equations
(and not simple initial value problems) the spatial discretization has to be taken into
account. r C 1 degrees of freedom in time must be multiplied with N WD div Vh

degrees of freedom in space coming from the finite element (or finite difference)
discretization. Where the implicit Euler or �-scheme asks for the solution of a N �
N linear system, the dG(r) method requires to solve a coupled .r C 1/N � .r C
1/N linear system of equations. This huge effort—in terms of computational time
as well as memory—is usually not feasible. In [289, 317], the authors describe an
approximation scheme for splitting the large linear system into a sequence of smaller
N by N systems.

4.1.3.2 Continuous Galerkin Methods

Continuous Galerkin methods find the solution uk in spaces of continuous functions:

Xr
k WD f 2 C.IIV/;  ˇ̌

Im
2 Pr.ImIV/g:

For uk 2 Xr
k it holds Œuk�m D 0. By choosing the discontinuous test space QXr�1

k ,
the discrete system decouples. Both spaces Xr

k and QXr�1
k have the same dimension,

as one unknown in Xr
k per interval is used to guarantee continuity. This coupled

Xr
k=

QXr�1
k approach will be called the cG(r)-discretization.

Due to global continuity of uk, the minimal polynomial degree is one, combined
with piecewise constant test functions. On Im, we write uk 2 Xr

k and k 2 QXr�1
k as:

uk

ˇ̌
ˇ
Im

D
�

tm � t

tm � tm�1

�
um�1

k C
�

t � tm�1
tm � tm�1

�
um

k ; k

ˇ̌
ˇ
Im

DW m
k 2 V ;
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where um
k 2 V . As the trial functions are piecewise linear, the time-derivative is

given by

Z

Im

.u0.t/; m
k /˝ dt D .um

k � um�1
k ; m

k /˝:

Further, it holds

Z

Im

�
tm � t

tm � tm�1

�
dt D

Z

Im

�
t � tm�1

tm � tm�1

�
dt D tm � tm�1

2
:

By these relations, the cG(1)-Version of (4.8) simplifies to solving

.um
k � um�1

k ; m
k /˝ C km

2

˚
a.um

k ; 
m
k /C a.um�1

k ; m
k /
� D

Z

Im

. f .t/; m
k /˝ dt

for m D 1; 2; : : :M and for all test function m
k 2 V . If the right hand side f .t/ is

piecewise constant, or if we approximate the integral on the right hand side by the
trapezoidal rule, we recover the Crank-Nicolson method for time stepping.

Remark 4.15 The amplification factor of the Crank-Nicolson method is the diag-
onal .2; 2/-Padé approximation of the exponential function. It can be shown
that every cG(r)-Galerkin formulation applied to a linear autonomous problem is
equivalent to a time stepping method with amplification factor that corresponds
to the .r C 1; r C 1/ Padé approximation. Hence, the nodal accuracy of the cG(r)
formulation is O.k2r/.

It is also possible to derive Galerkin-formulation of non-standard discretization
schemes, like the one-step � method or even the fractional step � scheme, see [239,
306]. Formally, the � scheme can be derived by combining piecewise linear and
continuous trial functions uk 2 X1I with discontinuous �-weighted test functions:

�k

ˇ̌
ˇ
Im

D 1C 6

km
.2� � 1/

�
t � tm�1 C tm

2

�
: (4.11)

For � D 1=2 it holds m
� 	 1 and we recover the Crank-Nicolson method. For

arbitrary � 2 Œ0; 1� it holds for uk 2 X1k :

Z

Im

u0
k.t/ � �k .t/ dt D um

k � um�1
k ;

Z

Im

uk.t/ � �k .t/ dt D �kmum
k C .1 � �/kmum�1

k :

This way, the � time stepping method can be reconstructed for linear autonomous
problems. For the general non-linear case we must again rely on numerical
quadrature. Here, the � time stepping method is obtained by approximating all
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integrals with the quadrature rule

Z

Im

f .t/�k .t/ dt D �kmf .tm/C .1� �/kmf .tm�1/C O.k3m/:

4.1.4 Time Discretization of the Stokes and Navier-Stokes
Equations

The incompressible Stokes and Navier-Stokes equations are of saddle-point type,
with a pressure variable p 2 L WD L2.˝/ n R that serves as Lagrange-multiplier to
guarantee the divergence condition. Given an initial value v.0; �/ D v0.�/, we find
fv; pg 2 V � L WD H1

0.˝/
d � fL2.˝/ n Rg such that

.@tv; /C .rv;r/ � . p;r � /C .r � v; �/ D .f; / 8f; �g 2 V � L:

Again, by 0 D t0 < � � � < tM D T we denote the discrete time steps. We aim at
deriving the Crank-Nicolson (or general �) method for this set of equations. The
first obvious choice for defining the time stepping method is to iterate:

.vm
k � vm�1

k ; /C km

2

˚
.rvm

k ;r/ � . pm
k ;r � /C .r � vm

k ; �/
�

C km

2

˚
.rvm�1

k ;r/� . pm�1
k ;r � /C .r � vm�1

k ; �/
�

D km

2
.f.tm�1/C f.tm/; /:

This formulation however does not properly reflect the role of the pressure as
Lagrange multiplier. As the old pressure pm�1 enters each time step, it will also
influence the new solution. Since the continuous pressure usually comes without
temporal regularity, such a relationship between old and new pressure could lead
to unphysical solutions. Further, by testing with � D r � vm

k � r � vm�1
k we get the

relation:

kr � vm
k k2 D kr � vm

k k2:

If the initial solution v0 is not strictly divergence-free, this defect will be conserved
for m ! 1. Further, since we must expect truncation errors, there is no corrective
that assures kr � vm

k k ! 0. A remedy to both problems is given by first restricting
the Stokes equations into the manifold of divergence free functions

V0 WD f 2 V ; div./ D 0g;
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and by applying the Crank-Nicolson (or �-scheme) on V0. Then, the pressure is
added as Lagrange multiplier in every discrete time step:

.vm
k � vm�1

k ; /C km

2
.rvm

k ;r/C km

2
.rvm�1

k ;r/

� . pm
k ;r � /C .r � vm

k ; �/ D km

2

˚
.fm�1; /C .fm; /

�
: (4.12)

In principle, all of the time-discretization schemes discussed in the previous section
are suitable for the incompressible Navier-Stokes equations. As the equation (of
nonlinear parabolic type) has a damping property [186] but also asks for the
conservation of energy in terms of vortices a good method should have good stability
properties while showing little dissipation. The fractional step �-scheme or the
implicitly shifted Crank-Nicolson method is a very good candidate.

It is not possible to find a Galerkin scheme that is equivalent to this time stepping
method. However, we get close to this formulation by using a mixed Galerkin
method with continuous piecewise linear velocities and a discontinuous, piecewise
constant pressure (of course without adding jump-terms to the discrete system).
This formulation will prevent the old pressure pm�1

k from entering the new time step
Im, it however still does not strictly enforce divergence freeness in every interval.
See [133, 134, 240] for details.

4.2 Spatial Discretization

In this section,we introduce the necessary concepts of the finite element method. We
start by describing finite elements for the Laplace equation

u 2 V D H1
0.˝/ W .ru;r/˝ D . f ; /˝ 8 2 V ;

for a given right hand side f 2 L2.˝/. The domain ˝ � Rd is two or three
dimensional. First, we partition this domain into a triangulation (or mesh) ˝h,
consisting of open elements K � Rd. These elements are simple geometric
structures like triangles, quadrilaterals or tetrahedra. The boundary of each element
K has a finite number of edges e 2 K and nodes x 2 K. The edges e 2 K are not
necessarily straight, see Fig. 4.1 for different triangulations. We define

Definition 4.16 (Structural Regularity) A triangulation ˝h D fK1; : : : ;KNg of
the domain˝ � Rd is called structural regular, if the elements cover the domain

N̋ D
N[

nD1
NKi;
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Fig. 4.1 Different triangulations ˝h for a domain ˝ � R2 . From left to right: structured
quadrilateral mesh, unstructured triangular mesh and structured quadrilateral mesh using curved
parametric elements

and if each two elements different are disjoint

Ki \ Kj D ; 8i ¤ j;

and if the intersection of the closure is either a common node, or a (complete)
common edge

NKi \ NKj D

8
ˆ̂<

ˆ̂:

; or,

e 2 Ki and e 2 Kj or,

x 2 Ki and x 2 Kj:

It is obvious that a curved domain˝ � Rd cannot be triangulated with geometric
structures like triangles. Instead we must use meshes with curved elements, as
shown in Fig. 4.1 (right). A common approach for curved finite element meshes
is to base every element K 2 ˝h on one common reference element OK.

Definition 4.17 (Parametric Triangulation) Let OK � Rd be the reference
element. Further, let

OP. OK/ � C. OK/d

be a function space mapping to Rd. A triangulation˝h is called parametric, if every
element K 2 ˝h arises from the mapping of the reference element

8K 2 ˝h there exists a TK 2 OP. OK/ such that K D TK. OK/:

Usually, for the reference element OK one chooses the unit triangle, the unit quad
or the unit hex. If the space OP. OK/ is the space of affine mappings, the parametric
triangulation ˝h will consist of standard elements with straight edges only. If we
consider mappings OP. OK/ of higher polynomial degree (or even rational functions),
we can generate curved elements that can be used to approximate domains with
curved boundaries. Next, we define conditions on the shape of each element.
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Definition 4.18 (Shape Regularity of TriangularMeshes) A family of triangular
meshes ˝h; .h > 0/ is called shape regular, if there exists a constant c > 0,
independent on h > 0, such that

max
K2˝h

hK

�K
� c;

where by hK WD diam.K/ we denote the diameter of K and by �K the radius of the
largest inscribed circle.
Shape regularity of a sequence of meshes describes that all triangles have approxi-
mately the same shape. It holds

Lemma 4.19 (Shape Regularity of Triangular Meshes) For a family of triangu-
lar meshes ˝h; .h > 0/ the following conditions are equivalent

1. The family of meshes is shape regular according to Definition 4.18.
2. (Minimum angle condition) There exists a constant c > 0 independent of h > 0,

such that all interior angles ˛ are bound away from zero ˛ � c.
3. (Maximum angle condition) There exists a constant c > 0 independent of h > 0,

such that all interior angles ˛ are bound away from � by ˛ 
 � � c.

Proof See [96]. ut
Describing suitable shape regularity conditions for other types of finite element

meshes is more complicated. Already for quadrilateral meshes one must combine
minimum and maximum angle conditions to prevent that quadrilaterals can degen-
erate to triangles. Instead we introduce a more general concept of shape regularity
that can be applied to all kinds of parametric meshes.

Definition 4.20 (Shape Regularity of Parametric Meshes) A family parametric
mesh ˝h, h > 0 with reference element OK is called shape regular, if there exists a
constant c > 0, such that it holds

krTKk k.rTK/
�1k 
 c 8K 2 ˝h;

where TK W OK ! K is the reference map for element K 2 ˝h and with a constant
c > 0 that does not depend on h > 0 or K 2 ˝h.
This definition of shape regularity is less obvious, it however is directly usable
for deriving interpolation estimates. These estimates are usually shown on fixed
reference elements OK and then carried over to a specific K 2 ˝h by using this
reference mapping. For triangular meshes, we can show that this general definition
is equivalent to those given in Lemma 4.19:

Lemma 4.21 Let ˝h be a triangular mesh. The condition of Definition 4.20 is
equivalent to those given in Lemma 4.19.

Proof Let OK D f.x; y/ 2 R2C; 0 < x C y < 1g be the reference triangle. Further,
Let TK be an element map, given as (neglecting rotation, translation and isotropic
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scaling, as all these operations do not effect the shape)

TK.x; y/ D
�
1 s
0 a

�
;

where 1 W a with a > 0 indicates the anisotropic aspect ratio and s refers to the
shearing. It holds

krTKk1 krTKk�1
1 D max

n
1; jsj C jaj

o
max

n
1;

jsj
jaj C 1

jaj
o
;

and for this expression to be bounded independent of h > 0, it must hold

jsj; jaj 
 c < 1; jaj � 1

c
:

By these limits, the three vertices of the reference triangle get mapped to

.0; 0/ 7! .0; 0/; .0; 1/ 7! .s; a/; .1; 0/ 7! .1; 0/; s 2 Œ�c; c�; a 2 Œc�1; c�;

such that the regularity conditions are fulfilled. ut
Remark 4.22 (Boundary Approximation) Most commonly, one considers polyno-
mial spaces for the element maps TK . Such a mapping allows for higher order
representation of curved boundaries, see Fig. 4.1. A more recent approach is the
Isogeometric Analysis: the geometrical domains in application problems are usually
designed with the help of CAD-programs. These programs use splines (NURBS) for
representing the domain. The Isogeometric Analysis uses these splines for defining
the finite element mesh and the discrete finite element spaces. By this construction,
every geometrical error is eliminated, see Bazilevs et al. [31].

The quality and the resolution of the finite element mesh will determine the
accuracy of the finite element approximation. Constructing a finite element mesh
of a domain˝ � Rd can be a very difficult task. In particular for complex technical
structures, a mesh can consist of millions of elements just for resolving the complex
geometry. Further, it is possible that this complex mesh will not have the proper
resolution at the correct spots to deliver good approximative solutions. In such
cases, a mesh must be refined. Refining a mesh is either done by remeshing and
constructing a completely new triangulation with better resolution in certain areas
or by mesh refinement. Here, elements of a mesh are split into smaller elements.
By mesh refinement, we usually must break the structural regularity assumption. In
Fig. 4.2, we show different procedures for mesh refinement. While the left sketch
shows a refinement that does not satisfy the structural-regularity condition, it is
simple as every triangle can be split in the same way. The right refinement type
yields shape regular meshes, different types of refinement must however be used
depending on the refinement topology of a triangle. If we consider quadrilateral
meshes one always uses a simple refinement model, where each quad is split into
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Fig. 4.2 Different types of mesh-refinement. Left: refinement of a triangle into three triangles
using hanging nodes. Right: using different refinement types such that no hanging nodes appear

four smaller quads. A shape-regular refinement is only possible, if quadrilateral
elements are coupled with triangular elements.

If refinement techniques are used that generate non shape regular meshes, nodes
on the middle of edges appear. These nodes will be called hanging nodes and must
be treated with special care when constructing finite element spaces. We will allow
for meshes with one hanging node on an edge only. A mesh without hanging nodes
and with element that all have approximately the same size is called a uniform mesh.
A mesh with areas of mesh refinement is called a locally refined mesh.

Locally refined meshes are unstructured meshes as apposed to structured meshes
like meshes of tensor product type with nodes

xk D .xr; ys; zt/ D h � .r; s; t/ 0 
 r; s; t 
 M:

For unstructured meshes, there is no uniform mesh topology. Each node can be
part of a different number of elements. Finite element libraries on unstructured
meshes call for a dynamic memory layout. Compared to structured finite element
approaches, this calls for a large computational overhead. Efficient use of mod-
ern hardware with efficient memory usage is troublesome. On the other hand,
unstructured meshes allow for a more efficient distribution of the unknowns. The
same approximation property can be reached with far smaller problem sizes. Often
there is a narrow balance between both approaches. The concept of mesh grading
sometimes allows for an efficient compromise between fully unstructured meshes
and structured meshes. Instead of changing the number of unknowns locally, one
only moves the nodal points attached to the degrees of freedom in order to reach
adequate local accuracy, see [8].

If the boundaries 
 of the domain ˝ � Rd are not polygonal, a triangulation
into simplices will not match the domain

˝ ¤
[

K2˝h

K

and a geometric error will occur. For better approximation of curved domains, the
element mapping TK must not be affine, but is allowed to have a higher degree.
Figure 4.1 (right) shows the approximation of a circular domain with a quadrilateral
mesh using affine mappings and a quadrilateral mesh using a piecewise biquadratic
mapping.
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4.2.1 Finite Elements

Finite element spaces Vh are defined locally on the elements K 2 ˝h of the mesh˝h.
The most basic finite element space on a triangular mesh is the space of piecewise
linear functions

Vh D f 2 C. N̋ / j  ˇ̌
K

2 spanf1; x; yg 8K 2 ˝hg:

On every triangle K 2 ˝h, the finite element space is locally constructed by three
basis-functions 1K ; 

2
K ; 

3
K such that for the three nodes x1K ; x

2
K ; x

3
K it holds  j

K.x
i
K/ D

ıij. These basis functions are glued together with the basis functions of neighboring
elements.

Such a local construction of finite element spaces is difficult on general elements
like quadrilaterals that arise from the transformation of a reference element. A more
general approach uses parametric finite elements, where the basis is defined on the
reference element OK. As reference elements, we consider the reference triangle or
quad in two dimensions and the reference tetrahedra or hex in three dimensions. Let

OPr WD span fx˛; 0 

X

i

˛i 
 r with 0 
 ˛i 
 rg;

OQr WD span fx˛; 0 
 ˛i 
 rg;
(4.13)

where ˛ 2 Nd is a multi-index. By f1; : : : ; ng we denote a basis of these
polynomial spaces. Besides the usual monomial basis functions ˛ D x˛ , we make
use of nodal basis functions: let Oxi 2 OK be uniformly distributed piecewise distinct
points in OK. Then, the nodal basis functions Oi 2 Pr (or Oi 2 Qr) are defined by the
property

Oi.Oxj/ D ıij; i; j D 1; : : : ; n:

By this notation, we can define the nodal basis functions i; i D 1; : : : ; n for every
mesh-element K 2 ˝h by using the domain-map

K
i WD Oi ı T�1

K ; i D 1; : : : ; n:

If the element map TK W OK ! K is affine, the resulting basis functions are
polynomials in the same space as the reference basis. For general polynomial
mapping however, the nodal basis usually consists of rational functions. In the mesh-
nodes xK

i WD TK.OxK
i / it holds K

i .xj/ D ıij. The global finite element space of order
r is then given by

Vr
h WD f 2 C0. N̋ / W  ˇ̌

K
ı TK 2 Pr (or Qr)g D spanfi; i D 1; : : : ;Ng;
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P1/Q1 P5-Argyris / Q3P3/Q3P2/Q2

Fig. 4.3 Some finite elements. The first three columns show the degrees of freedom in the classical
H1-conforming Lagrange elements. Node-values are equally distributed in the elements. The two
elements on the right are H2-conforming. Besides the node values we indicate the first derivative
r (two values each, small circle), the second derivatives r2 (three values each, big circles)
and the normal derivatives @n (one value each) in the edge midpoints. Altogether, we specify the
3 � .1C 2C 3/C 3 D 21 unknowns of the P5 and 4 � .1C 2/C 4 D 16 unknowns of Q3

where the basis functions i are given by gluing the local basis functions K
i

together. Finite element spaces with global continuity are H1-conforming Vh �
V D H1.˝/. For some applications, higher regularity is required. If Vh � C1.˝/,
the finite element space will be H2-conforming, i.e. Vh � H2.˝/.

In Fig. 4.3 we show typical distributions of the nodes for different reference
elements and indicate the corresponding polynomial space. The first three columns
show Lagrangian elements on triangles and quadrilaterals up to degree 3. The last
columns shows two H2-conforming elements, where node values and derivative
values are specified.

Sometimes, we do not require H1-conformity. Considering the Navier-Stokes
equations, the pressure must only be discretized with L2-conforming finite elements
that are not necessarily continuous. Here, we introduce discontinuous finite element
spaces:

Vr;dc
h WD f 2 L2.˝/ ! R W  ˇ̌

K
2 Pr (or Qr); 8K 2 ˝hg:

This space is not H1-conforming, but at least L2-conforming. Continuous finite
element spaces using the element mapping TK are called parametric finite elements.
If the element map is a polynomial from the same polynomial space ŒPr�

d or ŒQr�
d

as the finite element basis, the approach is called isoparametric.

4.2.1.1 Interpolation with Finite Elements

Interpolation operators Ih W V ! V are the most important tool for finite element
error analysis since due to their local construction they allow for a local analysis.
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The nodal interpolant Nh of a function u W K ! R is constructed by a simple point-
wise process on every element:

Nhu.x/ D
LX

iD1
u.xK

i /
K
i .x/

Nodal interpolants are completely local, only information on one element K 2 ˝h

is required. They are however only well-defined for functions u 2 C. NK/. This is not
the case for the Sobolev-space H1. Here, single point-values must not be finite. If
we require interpolants of functions with such minimal regularity, we must replace
the point-evaluation u.xK

i / by some kind of averages.

Lemma 4.23 (Nodal Interpolation on K 2 ˝h) Let K 2 ˝h and TK W OK ! K
and u 2 HrC1.K/. Then it holds for the nodal interpolation of polynomial degree r

krk.u � Nhu/kK 
 hrC1�kkrrC1ukK ; 0 
 k 
 r;

and, on the boundary of K it holds

ku � Nhuk@K 
 hrC 1
2 krrC1ukK :

Proof For the proof, we refer to the literature [7]. ut
The nodal interpolation operator u 7! Nhu is only well-defined, if u 2 C. N̋ /.

Point values of u must be well defined. For H1-functions, this regularity is not
necessarily given, such that a nodal interpolation can never by H1-stable. For
u 2 H1.˝/, interpolation operators must be defined in terms of averages. The most
famous H1-stable interpolation operator is the Clement-Interpolation:

Lemma 4.24 (Clement-Interpolation) Let u 2 H1.˝/ and Vh � H1.˝/ be a
Lagrangian finite element space with basis i.xj/ D ıij on the triangulation ˝h.
Then, the Clement-Interpolation Chu 2 Vh given as

Chu D
nX

iD1
�i.u/i; �i.u/ D 1

jPij
Z

Pi

udx;

with the patches Pi defined as unions of all elements that touch a node xi

Pi WD
[

K2˝h; xi2 NK
K

is H1-stable

krChuk 
 ckruk 8u 2 H1.˝/:
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It holds

krChukK 
 c1krukPK ; PK WD
[

L2˝h; NL\ NK¤;
L:

Proof The proof easily follows by showing stability of the node functionals �i.�/
and using Bramble-Hilbert Lemma. See [100]. ut
Remark 4.25 (Interpolation on Anisotropic Meshes) The Clement interpolation is a
H1-stable operator

krChukK 
 ckrukPK ;

with a constant c > 0 that does not depend on h > 0. The Clement operator however
fails, if the mesh-elements K 2 ˝h are anisotropic with hmin.K/ � hmax.K/. On
such elements, it only holds

krChukK 
 c
hmax.K/

hmin.K/
krukPK :

An H1-stable alternative to the Clement operator, which is also stable on anisotropic
meshes, is the Scott & Zhang operator. Here, the nodal values are also defined as
averages, but averaging is only applied over edges of elements. This helps to avoid
mixing of mesh-sizes in different directions. See [305] for basics on the Scott &
Zhang interpolation operator, and [7] for an analysis of interpolation operators on
anisotropic meshes.

4.2.2 Finite Element Analysis for Elliptic Problems

Let V D H1
0.˝/ and Vh � V be a finite element subspace. By a.�; �/ W V � V ! R

we denote an elliptic and continuous bilinear-form, such that there exist constants
c1; c2 > 0 such that

a.u; v/ 
 c1kruk˝ krvk˝; a.u; u/ � c2kruk2:

This bilinear-form defines a the energy norm.

Lemma 4.26 (Energy Norm) Let a.�; �/ be a V-elliptic and continuous bilinear
form. Then,

kuka WD p
a.u; u/;

defines a norm that is equivalent to the V-norm.
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For f 2 L2.˝/ we denote by u 2 V and uh 2 Vh solutions to

a.u; / D . f ; / 8 2 V ; a.uh; h/ D . f ; h/ 8h 2 Vh: (4.14)

It holds

Lemma 4.27 (Galerkin Orthogonality) For the solution u 2 V and the conform-
ing Galerkin-solution uh 2 Vh � V it holds

a.u � uh; h/ D 0 8h 2 Vh:

Proof This follows as Vh � V allows subtract the two equations in (4.14) and
choose  WD h 2 V . ut

Using Galerkin orthogonality we can directly show the following important
property:

Lemma 4.28 (Best Approximation, Cea’s Lemma) The conforming finite ele-
ment approximation is best approximation in the energy norm kuka WD p

a.u; u/

ku � uhka 
 c1 min
h2Vh

ku � hka

and it holds

kr.u � uh/k 
 c1
c2

min
h2Vh

kr.u � h/k:

Proof This follows with of Galerkin orthogonality

c2kr.u � uh/k2 
 ku � uhk2a D a.u � uh; u � uh/

D a.u � uh; u � h/ 
 c1ku � uhka ku � hk

ut
Using this best-approximation property, and choosing the interpolant h WD

Ihu 2 Vh we get a first error estimate.

Lemma 4.29 (Energy Norm A Priori Estimates) Let u 2 HrC1.˝/ \ V be the
solution to (4.14), and uh 2 Vr

h � V be the finite element solution. It holds:

kr.u � uh/k 
 chrkrrC1uk:

Proof This result follows by combining best approximation and interpolation
estimates. ut
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Lemma 4.30 (L2-Norm A Priori Error Estimate) Let u 2 HrC1.˝/ \ V and
uh 2 Vr

h be solutions to (4.14). Then, it holds

ku � uhk 
 chrC1krrC1uk:

Proof Let z 2 V be the solution to the adjoint problem

a.; z/ D . fz; / 8 2 V; fz WD u � uh

ku � uhg :

As the finite element space is conforming it holds that fz 2 V ,! L2.˝/. Hence
given sufficient solution of the domain elliptic regularity gives z 2 H2.˝/\ V and

kzkH2.˝/ 
 csk fzk D cs:

We choose  D u � uh to get by using Galerkin orthogonality:

ku � uhk D a.u � uh; z/ D a.u � uh; z � Ihz/


 ckr.u � uh/k kr.z � Ihz/k

 chrkrrC1uk cIhkr2zk

 chrC1krrC1uk:

ut
Here, we only report on the most basic a priori error estimates, namely the energy

norm error and the L2-error. Estimating the error in a pointwise sense, i.e. in the
norm ku � uhkL1.˝/ is more complex.

Lemma 4.31 (Maximum Norm Priori Estimates) Let u 2 C2. N̋ / \ V and uh 2
V1

h be solutions to (4.14). Then, it holds

max
˝

ju � uhj 
 ch2
˚j ln.h/C 1j�max

˝

jr2uj

Proofs are found in [269, 272, 301].
As j ln.h/j ! 1 for h ! 1, the convergence rate is slightly less than h2. The

logarithmic term is sharp and it is possible to construct meshes, where this result is
numerically validated. For higher order finite elements (starting with quadratic finite
elements) one observes (and one can proof) the full order of convergence

m � 2 W uh 2 Vm
h max

˝

ju � uhj 
 chmC1 max
˝

jrmC1uj:
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4.2.3 Finite Elements on Curved Domains

The standard finite element analysis is heavily depending on the conformity of the
Galerkin approach Vh � V which is essential for getting Galerkin-Orthogonality. If
the domain˝ is curved and cannot be matched by the finite element mesh˝h ¤ ˝ ,
the finite element space will not be conforming. In this section, we shortly discuss
the approximation of the Laplace problem

u 2 H1
0.˝/ W .ru;r/˝ D . f ; /˝ 8 2 H1

0.˝/; (4.15)

on a domain˝ � Rd that is curved and smooth, i.e., the boundary @˝ locally allows
for a CrC1-parameterization, with r 2 NC. Finite elements on curved domains must
deal with two difficulties:

1. A polygonal mesh will never exactly match the domain ˝ . Hence, the discrete
equation

uh 2 Vh W .ruh;rh/˝h D .Qf ; h/˝h 8h 2 Vh;

is given on a different domain. The right hand side f must not even be defined on
all of ˝h, which is the case, if the domain ˝ has concave boundary parts, where
˝h might reach out. For this reason, we denoted a modified (extended) right hand
side by Qf . For details, we refer to Remark 4.36.

2. The boundary conditions cannot be exactly satisfied. We consider homogenous
Dirichlet conditions only. While u 2 H1

0.˝/ is zero on all of @˝ , uh 2 Vh is zero
in the boundary nodes on @˝ but otherwise, it is zero on @˝h ¤ @˝ .

Finite element analysis on curved domains is discussed in literature [69]. General
proofs for isoparametric finite elements on curved domains, including optimal order
a priori error bounds for the energy error are given in [225]. We nevertheless give
details, as these techniques will be required for an analysis of interface problems as
the Fully Eulerian formulation, where the interior interface I cannot be resolved by
the mesh, see Sect. 4.5. Furthermore, we are not aware of a simple and general proof
for optimal error estimates of isoparametric elements.

To cope with the two problems mentioned above, we will start by stating some
definitions and lemma. Parts of the boundary can be convex or concave. We define
the remainders by

Sx
h D ˝ n˝h; Svh D ˝h n˝; Sh D Sx

h [ Svh : (4.16)

For a parametric triangulation˝h of ˝ , see Definition 4.17, it holds

Lemma 4.32 (Isoparametric Triangulation of Curved Domains) Let ˝ � Rd

be a domain with smooth boundary allowing for a CrC1-parameterization with r �
1. Let ˝h be an isoparametric mesh of ˝ with polynomial degree r. For the area of
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Γ

Sx
h

Sv
h

T T̃

Γh
e

Fig. 4.4 Left: geometric remainders for curved boundary approximation. Definition of the mesh
snippets Svh D ˝h n ˝ and Sx

h D ˝ n ˝h. Right: Definition of the curved extended element QT
fitting the domain ˝. Exemplarily for quadratic isoparametric elements

the mesh snippets Sx
h; S

v
h; Sh it holds

jSx
hj D jSvhj D jShj D O.hr/:

Proof This follows by simple geometrical arguments. Let T 2 ˝h be an element
at the boundary and S be that part of Sh which is connected to the element T, see
Fig. 4.4. Further, let e 2 @T be the (curved) edge at the boundary
h, which is a d�1-
dimensional manifold in Rd with area jej D O.hd�1/. Assume that  W e ! R is
the parameterization of @˝ over e (see again Fig. 4.4).  .s/ has r C 1 zero’s along
the edge in 2d. Hence,

max
Œ0;h�

j j 
 chrC1 max
Œ0;h�

j rC1j:

Therefore, as jej D O.hd�1/, it holds

jSj D O.hrCd/ ) jShj D O.hrC1/:

ut
The previous lemma shows that standard finite elements will always suffer from

a geometrical error. By the use of Isogeometric analysis [204] this error could be
completely avoided for domains that can be described by splines.

Another technical difficulty is given by the mismatch of ˝ and ˝h. Functions
u 2 H1

0.˝/ and uh 2 Vh are defined on different domains, such that the expression
u � uh must be discussed. The following lemma will show a way to give uh 2 Vh a
meaning both on ˝h and on ˝ .

Lemma 4.33 (Boundary Extension of Discrete Functions) Under the assump-
tions of Lemma 4.32, let h 
 h0 2 R and T 2 ˝h be an element at the boundary @˝
with boundary edge e 2 @T. By QT we denote the curved triangle fitting the domain’s
boundary, see Fig. 4.4. For uh 2 Vh we define by Quh

ˇ̌
T

the polynomial extension of
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uh

ˇ̌
T

to QT. It holds

c1kuhkHs.T/ 
 kQuhkHs.QT/ 
 c2kuhkHs.T/; s D 0; 1; 2;

with two constants c1; c2 > 0 that do not depend on T or h.

Proof This follows by considering equivalence of (discrete) norms and the negligi-
ble size of the remainders.

jTj D j QTj D O.hd/; j.T n QT/ [ . QT n T/j D O.hrCd/:

ut
In the following, we will always use the notation uh even on QT .
While uh 2 Vh is well-defined on ˝h (including Svh) and can be extended to

˝ including Sx
h, functions u 2 H1

0.˝/ are only well-defined on ˝ including Sx
h. An

extension to the concave part Svh might fail due to limited regularity. For the analysis,
we need one further—trace inequality-like—estimate:

Lemma 4.34 (Geometric Boundary Error) Let u 2 H1
0.˝/. There exists a

constant c > 0, such that for the convex remainder Sx
h, it holds

kukSx
h


 ch
rC1
2 kukH1.˝/:

Further, let uh 2 Vh. It holds

kuhkHs.Sh/ 
 ch
r
2 kuhkHs.˝/; s D 0; 1:

Proof For the proof, we refer to Fig. 4.5. Let T 2 ˝h be an element on the boundary,
eh 2 @T be the edge of the element, QT the extended element and e 2 QT be the edge
at the boundary @˝ . By S we denote the remainder between T and QT .

(i) Let x 2 S be given as x D .s; ˛/, where ˛ is the angle and s the radial
coordinate, see Fig. 4.5. The local coordinate system is such, that .0; ˛/ 2
eh � 
h is a point on the boundary of the (curved) triangle and .s.˛/; ˛/

Fig. 4.5 Local coordinate
system on curved elements.
Sketch for the proofs of
Lemmas 4.34 and 4.35. The
boundary 
 with segment
e � 
 is given as
parameterization of 
h with
segments eh, i.e. sT W eh ! e

x = (s, α)

Γ

T

α

e

eh

(0, α)

(s(α), α)
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is the corresponding point on the domain’s boundary part e � 
 . It holds
js.˛/j D O.hrC1/, compare Lemma 4.32. Let u 2 C1.NS/. It holds

u.s; ˛/ D u.0; ˛/C
Z s

0

@ru.t; ˛/ dt;

and hence

ju.s; ˛/j2 
 c

�
ju.0; ˛/j2 C jsj

Z s

0

j@ru.t; ˛/j2 dt

�
:

Integration over S (in s and ˛) and noting that jsj 
 js.˛/j 
 chrC1 gives

kuk2S 
 chrC1kuk2e C h2rC1kruk2S: (4.17)

(ii) To proof the first estimate, we continue with (4.17) by summing over all
boundary elements, using trace inequality and Poincaré and extending Sx

h to
˝

kukSh 
 ch
rC1
2 kruk˝:

(iii) For the second inequality, we apply the local trace inequality and extend from
S to T

kuhk2S 
 chrC1 �h�1kuhk2T C hkruhk2T
�C h2rC1kruhk2T :

Using the inverse inequality, we get

kuhk2S 
 chrkuhk2T ;

such that the result follows by summing over all boundary snippets. This
argumentation is also valid for ruh. ut

Discrete functions h 2 Vh are not zero on @˝ but zero on @˝h.

Lemma 4.35 (Curved Boundary Error) Let h 2 Vh be arbitrary. It holds

khk@˝ 
 chrC 1
2 krhk˝

Proof We again refer to Fig. 4.5. Let T 2 ˝h and .s.˛/; ˛/ 2 e be a point on the
boundary of @˝ . By .0; ˛/ 2 eh � @T we denote the corresponding point on the
boundary of the triangle. It holds for h 2 Vh

h.s.˛/; ˛/ D h.0; ˛/C
Z s.˛/

0

@rh.t; ˛/ dt;
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and hence by squaring and integrating over ˛ and by noting that js.˛/j D O.hrC1/
we get

khk2e 
 khk2eh
C chrC1krhk2S: (4.18)

With Lemma 4.34 and using h D 0 on eh, gives

khk2e 
 ch2rC1krhk2˝;

such that the result follows by summing over all boundary parts. ut
Remark 4.36 (Extension of the Right Hand Side at Concave Domain Boundaries)
As discussed in the beginning of this section, problems might already arise with the
definition of the right hand side f W ˝ ! R, which is not necessarily well-defined
on the discrete domain ˝h. This issue is easily handled by defining a projection or
interpolation fh 2 Vh to be used as discrete right hand side:

. fh; h/˝ D . f ; h/˝ 8h 2 Vh:

An additional error of type

. f � fh; /˝ 
 ck f � fhkH�1.˝/krk˝;

will arise. By exploiting the weak norm and orthogonality of f � fh such estimates
can be given with optimal order and without requiring additional regularity of f 2
Hr�1.˝/:

k f � fhkH�1.˝/ D sup
2H1

0.˝/

. f � fh; /˝
krk

D sup
2H1

0.˝/

. f � fh;  � N/˝
krk


 chrkrr�1f k˝:

To shorten the proof of the following lemma we will not give details on this issue
and just consider f as a well-defined right hand side function.

With these preparations, we can show the following essential theorem, that gives
the a priori error estimate for the Laplace equation on smooth and curved domains:

Theorem 4.37 (A Priori Error on Curved Domains) Let r 2 NC. Let ˝ be a
domain with boundary that allows for parametrization of degree r C 1. Let f 2
Hr�1.˝/ \ L2.˝/. Let uh 2 Vh be the isoparametric finite element solution of
degree r. It holds

ku � uhkH1.˝/ 
 chrk f kHr�1.˝/
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and

ku � uhk 
 chrC1k f kHr�1.˝/:

Proof

(i) We start with the H1 error estimate and derive a modified Galerkin orthogo-
nality. For h 2 Vh it holds (where we use the extension Qh Š h defined by
Lemma 4.33 without further notice)

.f ; h/˝ D .��u; h/˝ D .ru;rh/˝ � h@nu; hi@˝:

The discrete problem is defined on ˝h with ˝h D ˝ [ Svh n Sx
h. It holds

. f ; h/˝ C . f ; h/Svh � . f ; h/Sx
h

D .ruh;rh/˝ C .ruh;rh/Svh � .ruh;rh/Sx
h
:

Then, for the finite element error eh D u � uh, we get the following disturbed
Galerkin orthogonality:

.reh;rh/˝ D �.f ; h/Svh C .f ; h/Sx
h

C h@nu; hi@˝ C .ruh;rh/Svh � .ruh;rh/Sx
h
:

(4.19)

(ii) Now, we can estimate the energy error by picking h D Ihu � uh:

krehk2˝ 
 krehk˝kr.u � Ihu/k˝ C kf kSkIhu � uhkS

C kruhkSkr.Ihu � uh/kS C k@nuk@˝kIhu � uhk@˝; (4.20)

where we enlarged Sx
h and Svh to S. The single terms can be estimates with help

of Lemmas 4.34 and 4.35 and the standard interpolation estimate. Exemplarily
we discuss the boundary term. With Lemma 4.35

k@nuk@˝kIhu � uhk@˝ 
 ckukH2.˝/ch
rC1
2 kr.Ihu � uh/k˝

ckukH2.˝/h
rC1
2 .kr.u � Ihu/k˝ C kr.u � uh/k˝/ :

The remaining terms can be handled in a similar fashion, such that combination
with Young’s inequality gives the final estimate.

(iii) For estimating the L2-error, we define the adjoint problem:

��z D eh

kehk on ˝ with z D 0 on @˝;
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such that

kzkH2.˝/ 
 cs:

Multiplication with eh and integration over˝ yields

kehk˝ D .eh;��z/˝ D .reh;rz/˝ C huh; @nzi@˝;
as u D 0 on @˝ . Using (4.19) with h D Ihz, it follows

kehk 
 krehk˝kr.z � Ihz/k˝ C kuhk@˝k@nzk@˝ C k@nuk@˝kIhzk@˝
C k f kSkIhzkS C kruhkSkrIhzkS:

(4.21)
The first term can be estimated with help of the energy estimate and the interpo-
lation estimates, followed by the stability of the adjoint solution kzkH2.˝/ 
 cs.
For the second term, we first use (4.18) and get by introducing ˙u

kuhk@˝ 
 ch
rC1
2 kruhks 
 ch

rC1
2 .krehkS C krukS/


 ch
rC1
2 krehk C chrC1kukH2.˝/:

This procedure will also be used for the third term. The right hand side part in
the fourth term of (4.21) is estimated with Lemma 4.34

k f kS 
 ch
rC1
2 k f kH1.˝/:

For the interpolation part kIhzk we first use the intermediate result (4.17)
from the proof of Lemma 4.34 and introduce ˙z on the boundary to get with
interpolation estimates

kIhzkS 
 ch
rC1
2 kz � Ihzk@˝ C ch

rC1
2 kzk@˝„ƒ‚…

D0
CchrC 1

2 krIhzkS


 ch2C
r
2 kzkH2.˝/ C chrC 1

2 kzkH1.˝/:

Overall, the fourth term in (4.21) is estimated as

k f kSkIhzkS 
 chrC 3
2 k f kH1.˝/:

This trick is also used in the final term of (4.21). As .r C 1/=2 
 r C 1=2

krIhzkS 
 ch
rC1
2 krIhzk@˝ C chrC 1

2 kr2IhzkSh


 ch
rC1
2

�
kr.z � Ihz/k@˝ C kr2.z � Ihz/k˝ C kzkH2.˝/

�
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The same estimate is applied to ruh

kruhkS 
 ch
rC1
2

�
kr.u � uh/k@˝ C kr2.u � uh/k˝ C kukH2.˝/

�
:

Together with the stability estimates of the interpolation and higher order
estimates of the discrete solution (that can be shown by introducing ˙Ihu and
applying the inverse estimate to the discrete parts) we get

kruhkSkrIhzkS 
 chrC1k f kL2.˝/:

ut
Remark 4.38 (Further Estimates on Curved Boundaries) This type of estimate can
directly be extended to the Stokes equations or to equations of solid-dynamics.
Essential for all estimates are the lemmata given at the beginning of this section.

It is however not trivial to extend this general form of a priori estimates on curved
domains to the case of non-Dirichlet type boundary conditions. If we for example
consider the Stokes equations with slip boundary data,

n � v D 0 on @˝;

the proof cannot be extended in the same spirit. Reason for difficulties is the
Lemma 4.35. For the slip-condition, we can still show that

kn � vhk@˝ 
 chrC 1
2 krvk˝ C kn � vhk@˝h ;

we observe however that n � vh ¤ 0 on the discrete boundary @˝h (in the case of
polynomial degree r � 1). One possible loophole is to define the reference map
TT W OT ! T by means of the Piola transform, such that the basis functions on T are
given by

.x/ D 1

det.rTT/
rTT O.Ox/:

For a discussion, we refer to the literature [50, 271]

4.3 Finite Elements for Saddle-Point Problems

In this section, we discuss the finite element discretization for problems of saddle-
point type. We have come across such problems in the case of incompressible solids
and the incompressible Stokes or Navier-Stokes problem. Here, we will consider
the incompressible Stokes equations exemplarily for all saddle-point problems.
This saddle-point character causes various difficulties, like the need to satisfy the
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inf-sup condition, Lemma 2.44. For designing numerical algorithms this saddle-
point character must be taken into account. The Stokes equations on a domain
˝ � Rd are given by

fv; pg 2 V � L W .rv;r/� . p;r � /C .r � v; �/ D .f; /

8f; �g 2 V � L;

where for simplicity we consider problems with homogenous Dirichlet conditions
on the boundary @˝ only. Let Vh � V and Lh � L be two conforming finite
element spaces. Since L D L2.˝/, conformity regarding the pressure does not ask
for continuity. The discretized Stokes problem is equivalent to a linear system of
equations

�
Ah Bh

�BT
h 0

��
v
p

�
D
�
f
0

�
; (4.22)

where v and p are the coefficient vectors of the discrete solutions vh 2 Vh and
ph 2 Lh. The matrices are given by

.Ah/ij D .rj;ri/; .Bh/ij D �.�j;r � i/; �.Bh/
T
ij D .r � j; �i/;

where Vh D spanfi; i D 1; : : : ; #Vhg and Lh D spanf�i; i D 1 : : : ; #Lhg is a basis
of the finite element space. The matrix Ah is symmetric and positive definite. The
complete system matrix however reflects the saddle-point character of the Stokes
equations. It holds

Lemma 4.39 (Stokes Solution) Let Vh�Lh � V�L be a conforming discretization
of the incompressible Stokes equations. There exists a unique solution fvh; phg 2
Vh � Lh, if the discrete inf-sup condition holds

inf
�h2Lh

sup
h2Vh

.�h;r � h/

k�hk krhk � 	h � 	 > 0:

The solution fvh; phg satisfies the a priori estimate

krvhk C 	hkphk 
 ckfk:

Proof

(i) First, we define the subspace Wh � Vh of weakly divergence free functions:

Wh WD fh 2 Vh W .r � h; �h/ D 0 8�h 2 Lhg:
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We assume that Wh ¤ ; and find vh 2 Wh such that

.rvh;rh/ D .f; h/ 8h 2 Wh: (4.23)

The existence of a unique solution vh 2 Wh follows by linearity and ellipticity
of the scalar product .r�;r�/ in Wh � V D H1

0.˝/
d. Further, it holds with

Poincaré’s inequality

krvhk2 D .rvh;rvh/ D .f; vh/ 
 cpkfk krvhk (4.24)

This solution vh by construction fulfills the divergence condition.
(ii) Next, given vh 2 Wh � Vh we find a pressure ph 2 Lh as solution to

. ph;r � h/ D .rvh;rh/ � .f; h/ 8h 2 Vh:

This finite dimensional problem is equivalent to the linear system of equations

Bhp D f � Ahv: (4.25)

As this problem is finite dimensional, it holds

range.Bh/ D ker.BT
h /

?:

Hence, we find a solution, if the right hand side of (4.25) is orthogonal to the
kernel of BT

h , the discrete divergence operator

hAhv � f; zi D 0 8z 2 ker.BT
h /:

First, we characterize the kernel of BT
h . It holds

BT
h z D

0

@
#VhX

jD1
.� i

h;r �  j
h/zj

1

A
#Lh

iD1
D .r � zh; �

i
h/

#Lh
iD1;

and hence, ker.BT
h / D Wh. In (i), we determined vh 2 Wh as solution of (4.23):

.rvh;rh/ D .f; h/ 8h 2 Wh , hbh �Ahv; zi D 0 8z 2 ker.BT
h /:

At least one pressure ph 2 Lh exists.
(iii) The inf-sup condition is equivalent to the formulation

	hkphk 
 sup
h

. ph;r � h/

krhk 8ph 2 Lh:
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Let p1h and p2h be two solutions with corresponding velocity solution vh 2 Vh.
For qh WD p1h � p2h 2 Lh it holds

.rvh;rh/� . p1h;r � h/ D .f; h/

.rvh;rh/� . p2h;r � h/ D .f; h/
) .qh;r � h/ D 0 8h 2 Vh:

Using the inf-sup condition, it holds that qh D 0, as

	hkqhk 
 sup
h2Vh

.qh;r � h/

krhk D 0;

and it follows that the pressure is unique. The a priori estimate is given by
using (4.24) with help of the inf-sup condition:

	hkphk 
 sup
h2Vh

. ph;r � h/

krhk D sup
h2Vh

.f; h/� .rvh;rh/

krhk

 cpkfk C krvhk 
 ckfk:

ut
The inf-sup condition is required to get uniqueness of the pressure. Existence is

given for every pair Vh � Lh. At the beginning of the proof, we assumed that the
space

Wh D fh 2 Vh W .r � h; �h/ D 0 8�h 2 Lhg;

is big enough to yield good approximation properties for v 2 V . By construction,
the space Wh gets small, if Lh is large compared to Vh. For the most basic finite
element pair that consists of piecewise linear velocities and a piecewise constant
pressure, the space Wh empty.

4.3.1 Inf-Sup Stable Finite Element Pairs

Here, we discuss inf-sup stability for a given finite element pair Vh �Lh. Proving the
inf-sup condition is usually not easy and there exists not one approach that is usable
for all different finite element pair. For details see the comprehensive text-books by
Girault and Raviart [165] or Temam [321]. A conforming finite element space must
consist of velocities that are globally continuous, where the pressure space can be
discontinuous.

We denote a finite element pair by X � Y, where X and Y are the finite element
spaces used for velocity and pressure, respectively: by P2 � P1 we denote the
pair consisting of piecewise quadratic velocities and piecewise linear pressure on



158 4 Discretization

triangles. This space is called the Taylor-Hood element. By Q2 � P1;dc we denote
the space of piecewise quadratic velocities and discontinuous, piecewise linear
pressures on quadrilaterals. Spaces with discontinues pressures have the advantage
of local mass conservation. For the pair Q2 � P1;dc we can choose the test function
�K 2 Lh with �K 	 1 on one K 2 ˝h and �K D 0 for all K0 ¤ K. It holds:

.r � vh; �K/ D
Z

K
r � vh dx D

Z

@K
n � vhds D 0:

Some very simple finite element pairs are not stable (Fig. 4.6). The triangular
P1 � P0;dc element for instance is not usable, as Wh D 0, see [165]. Likewise, the
quadrilateral Q1 � P0;dc cannot be used, as the inf-sup condition is not fulfilled.
Solutions on regular meshes will feature the so-called checkerboard pattern with
oscillatory pressures.

After these negative results, we cite a Lemma that gives a simple criteria for
showing inf-sup stability in certain cases, see [71].

Lemma 4.40 (Fortin Criteria) Let Vh �Lh � V�L be a finite element pair. Given
a H1-stable projection operator �h W V ! Vh satisfying

kr�hk 
 c�krk 8 2 V ; .r � . � �h/; �h/ D 0 8�h 2 Lh;

it holds

inf
�h2Lh

sup
h2Vh

.�h;r � h/

krhk k�hk � 	h WD 	c�1
� ;

where 	 > 0 is the continuous inf-sup constant in V � L.

Proof Let ph 2 Lh � L. It holds with the continuous inf-sup condition

	kphk 
 sup
2V

. ph;r � /
krk D sup

2V
. ph;r � . � �h//

krk C sup
2V

. ph;r � �h/

krk :

x1,1

K1,1

x1,1 x1,2

x2,1

K1,1
K1,2 K1,2N

K1,2

x1,2

Fig. 4.6 Meshes of tensor-product type. Left triangular and right quadrilateral
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As the first part is zero due to the orthogonality of the projection�h it further follows
with the stability of the projection

	kphk 
 sup
2V

. ph;r � �h/

kr�hk sup
2V

kr�hk
krk 
 c� sup

h2Vh

. ph;r � h/

krhk ;

as �h 2 Vh. ut
For some elements this criteria helps to show inf-sup stability:

Lemma 4.41 (Modified Taylor-Hood Elements with Discontinuous Pressure)
The P2 � P0;dc and Q2 � P1;dc elements are inf-sup stable.

Proof See Fig. 4.7 for a sketch of these two element pairs. We construct a projection
operator �h W V ! Vh that has both properties, H1-stability and the required
orthogonality.

(i) The triangular element. We construct �h as �h WD Ch C Eh, where Ch W V !
V1

h is the Clement operator from Lemma 4.24 interpolating to the space of
piecewise linear functions. This space has three degrees of freedom (for every
velocity component) and fixes the three nodal points of a triangle. This operator
Ch satisfies

krChvkK 
 ckrvkP.K/;

where P.K/ is a patch of elements around K. See Lemma 4.24 for details.
It remains to fulfill the orthogonality condition. As the pressure space is
discontinuous, it holds on every K choosing by �h 	 1 on K and �h D 0

elsewhere:

.r � .v � �hv/; �h/ D
Z

K
r � .v � �hv/ dx D

Z

@K
n � .v � �hv/ do:

For �h WD Ch C Eh one condition is imposed on every edge e 2 @K:
Z

e
n � Ehv do D

Z

e
n � .v � Chv/ do:

This is easily established by the remaining degrees of freedom (two per edge).

Fig. 4.7 Modified Taylor-Hood elements P2 � P0;dc (left) and Q2 � P1;dc (right). Circles denote
(continuous) nodal values of the basis functions, crosses stand for monomial values of a
discontinuous approach
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(ii) The quadrilateral element. We define the projection as �h WD Ch C Eh C Bh,
where Ch again is a H1-stable Clement interpolation, Eh takes care of the edges
and Bh of the additional middle degree of freedom. For the orthogonality it
holds for �K 2 Lh with �K D 0 for all K0 ¤ K:

.r � .v � �hv/; �h/K D �.v � �hv;r�h/K C
Z

@K
n � .v � �hv/�h do:

As �h is piecewise linear, r�h 2 R2 is a constant vector on every element. The
two inner degrees of freedom are used to define the operator Bh via

Z

K
Bhvi dx D

Z

K
vi � �hvi dx; i D 1; 2:

Finally, �h 2 Lh is a linear function on every edge e 2 @K, and the two
remaining degrees of freedom are required for satisfying

Z

e
.n � Ehv/�h do D

Z

e
n � .v � �hv/�h do:

ut
The Q2 � P1;dc element is an excellent mixed finite element for the discretization

of incompressible flows. Quadratic velocities are a good compromise between high
accuracy at acceptable computational effort (as the effort is increasing in powers of
the polynomial degree). Discontinuous pressures give local conservation. Finally,
in the context of fluid-structure interactions, discontinuous pressures simplify the
coupling to a possibly incompressible solid that also has a pressure variable (the
coupling between two pressures at the interface is discontinuous). See [329, 330]
for applications.

One of the most-often used finite element pairs for the discretization of the
incompressible Stokes or Navier-Stokes equations is the Taylor-Hood element
P2 � P1. Here, the Fortin criteria cannot be applied as easily.

Lemma 4.42 (Inf-Sup Stable Finite Element Pairs) The finite element pairs of
Taylor Hood type Q2 � Q1 and P2 � P1 as well as the generalizations Qk � Qk�1
and Pk � Pk�2 for k � 3 are inf-sup stable. Further, the equal order spaces using a
pressure on a coarser mesh Qk

h � Qk
2h are inf-sup stable.

Proof Proofs for these and further element pairs are given in [71] and [165]. See
Fig. 4.8 for some inf-sup stable finite elements. ut

For inf-sup stable and conforming finite element pairs Vh � Lh � V � L, a
priori error analysis is possible by standard arguments. We start by showing a best-
approximation results:
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Fig. 4.8 Different inf-sup stable finite element pairs: The Q2 � Q1 Taylor Hood element, a higher
order Q3 � Q2 element, the classical P2 � P1 Taylor Hood element and a higher order P4 � P2

element. Again, the circles denote continuous degrees of freedom and crosses the discontinuous
ones

Lemma 4.43 (Stokes, Best Approximation) Let Vh � Lh � V � L be an inf-sup
stable finite element space. It holds:

kr.v � vh/k C kp � phk 
 c

 
min
h2Vh

kr.v � h/k C min
�h2Lh

kp � �hk
!
;

where the constant c > 0 depends on the inf-sup constant 	h. Further, on convex or
smooth domains, it holds

kv � vhk 
 ch

 
min
h2Vh

kr.v � h/k C min
�h2Lh

kp � �hk
!
;

with constant c D c.	h/.

Proof We define ev WD v � vh 2 V and ep WD p � ph 2 L. It holds by Galerkin
orthogonality

.rev;rh/ D .ep;r � h/ 8h 2 Vh;

.r � ev; �h/ D 0 8�h 2 Lh:
(4.26)

(i) First, we start with an estimate of the velocity error:

krevk2 D .rev;rev/� .ep;r � ev/C .ep;r � ev/:

By Galerkin orthogonality, we get for arbitrary h 2 Vh and �h 2 Lh

krevk2 D .rev;r.v � h// � .ep;r � .v � h//C .r � ev; p � �h/


 krevk kr.v � h/k C kepk kr.v � h/k C krevk kp � �hk:

By Young’s inequality, we get for " > 0:

krevk 
 .2C "�1/kr.v � h/k C 2kp � �hk C "kepk: (4.27)
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(ii) Next, we estimate the pressure error. Let �h 2 Lh be arbitrary

kp � phk 
 kp � �hk C kph � �hk: (4.28)

For ph � �h 2 Lh we use the discrete inf-sup inequality to get

	hkph � �hk 
 sup
h2Vh

. ph � �h;r � h/

krhk

D sup
h2Vh

. p � ph;r � h/

krhk C sup
h2Vh

. p � �h;r � h/

krhk
(4.29)

We use (4.26) on the first part to replace the pressure error ep by the velocity
error ev:

sup
h2Vh

.ep;r � h/

krhk D sup
h2Vh

.rev;rh/

krhk 
 krevk:

Together with the second part of (4.29) we get the estimate

	hkph � �hk 
 krevk C kp � �hk;

and finally, with (4.28) for kp � phk

kepk 
 .1C 	�1
h /kp � �hk C 	�1

h krevk: (4.30)

(iii) We insert this estimate into (4.27), using " D 	h=2:

krevk 
 c.	h/ .kr.v � h/k C kp � �hk/ :

Together with (4.30) we get the best-approximation property for the natural
energy norm.

(iv) To derive the L2-estimate we define the adjoint problem

.r;rz/� .�;r � z/C .r � ; q/ D kevk�1.ev; /:

As ev=kevk 2 L2 it holds by Lemma 2.46 (if the domain has a convex or
smooth boundary) that

kr2zk C krqk 
 cs


ev

kevk
 D cs:
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By diagonal testing and using Galerkin orthogonality to insert the interpolants
Ihz 2 Vh and Ihq 2 Lh it follows:

kevk D .rev;rz/ � .ep;r � z/C .r � ; q/
D .rev;r.z � h//� .ep;r � .z � h//C .r � ev; .q � �h//


 krevk kr.z � Ihz/k C krepk kr.z � Ihz/k C krevk kq � Ihqk
The result follows using the energy norm error estimate for krevk C kepk and
the interpolation estimate, Lemma 4.23:

kevk 
 cIh
�krevk C kepk� �kr2zk C krqk�


 c.	/cSh

 
min
h2Vh

kr.v � h/k C min
�h2Lh

kp � �hk
!
:

ut
The approximation order of the Stokes element finally depends on the polynomial

degree of the finite element pair:

Lemma 4.44 (Stokes, A Priori Estimate) Let Vh � Lh be an inf-sup stable finite
element pair of order k for the velocity and l for the pressure. Further, let v 2
HkC1.˝/d and p 2 HlC1.˝/ be the solution to the incompressible Stokes equations.
It holds

kr.v � vh/k C kp � phk 
 chmin{k,l+1}
�
krkC1vk C kr lpk

�
: (4.31)

Proof First, by Lemma 4.43 it holds

kr.v � vh/k C kp � phk 
 c.	�1
h / .kr.v � Ihv/k C kp � Ihpk/ ;

where Ihv 2 Vh and Ihp 2 Lh are the nodal interpolations. Given sufficient regularity
it holds by Lemma 4.23

kr.v � Ihv/k 
 cIh
kkrkC1vk; kp � Ihpk 
 cIh

lC1kr lC1pk:
This completes the estimate. ut

This lemma shows that the optimal degree for velocity and pressure space differs
by one. If l D k � 1, optimal order of convergence is given. Possible candidates for
such finite element pairs are the Taylor-Hood element P2 � P1 or Qk � Qk�1 or the
modified Taylor-Hood element with discontinuous pressure Q2�P1;dc. This element
has the further advantage of local mass conservation.

Remark 4.45 (Optimality of the A Priori Estimates) In terms of mesh parame-
ter h > 0, the estimates in Lemma 4.44 are optimal and represent the best-
approximation property. They however exhibit two shortcomings which are severe
under given circumstances.
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First, only coupled estimates for velocity and pressure are given. Assume that
the right hand side f is such that its divergence free part is zero with f D rq. Then,
the Stokes equations have the unique solution v D 0 and p D q. Equation (4.31)
gives an estimate for the velocity error depending on the pressure error. And indeed,
most standard approaches elements like Taylor-Hood or the Q2-P1;d element will
show exactly this unsatisfactory behavior with very large errors. So called gradient-
robust mixed methods are designed in such a way that the velocity approximation
is independent of the pressure. See [227] for details. In most applications, the right
hand side f itself is not critical, as it will be zero or a fixed gravity error. In large
scale deformations however, Coriolis terms may have the same effect. In terms of
fluid-structure interactions, the domain motion and the ALE map is a further source
of such problems.

The second issue in Lemma 4.44 is the negative dependence of the error constant
on the inf-sup constant. It is well known that the inf-sup constant depends on the
shape of the domain and that it goes to zero for strongly anisotropic domains,
see [119]. For very long channels, this would suggest large error constants. Here
however, numerical reality is in favor, such that usual finite element approaches do
not see this issue. The proof of Lemma 4.44 can be modified in such a way that
Fortin’s criteria is applied only locally, such that the bad behavior of the global
inf-sup constant does impact the result. See [228, 233] for details.

4.3.2 Stabilization Techniques for the Stokes Equations

The most easy finite element pairs using equal order finite elements for both velocity
and pressure do not satisfy the inf-sup condition. Hence, they cannot be used for a
robust discretization of saddle point problems like the Stokes equations. The use
of such equal order pairs is mainly attractive for implementation reasons. Further,
equal order finite elements simplify the design of robust iterative solvers for saddle
point problems. The proof of Fortin’s Lemma 4.40 gives the following estimate that
holds for every conforming finite element pair Vh �Lh � V �L, also for equal order
finite elements that are not inf-sup stable

	kphk 
 sup
2V

. ph;r � h/

krk C sup
2V

. ph;r � . � h//

krk 8ph 2 Lh; 8h 2 Vh:

(4.32)

We choose h WD Ch as the H1-stable Clement interpolation Ch W V ! Vh, see
Lemma 4.24. This interpolation does not satisfy any orthogonality condition like
the projection operator �h used in Fortin’s criteria. However it holds for all ph 2 Lh

with help of Lemma 4.24 for the two terms in (4.32)

sup
2V

. ph;r � Ch/

krChk 
 c sup
h2Vh

. ph;r � h/

krhk
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and

sup
2V

. ph;r � . � Ch//

krChk

D sup
2V

P
K2˝h

.phn;  � Ch/@K � .rph;  � Ch/K

krChk :

We assume that the pressure space Lh � C.˝/ is continuous such that the boundary
integral vanishes. Then, using the error estimate for the Clement interpolation it
follows that

sup
2V

. ph;r � . � Ch//

krChk 
 c sup
2V

X

K2˝h

hKkrphkK krkP.K/

krChk


 c0
0

@
X

K2˝h

h2Kkrphk2K

1

A

1
2

sup
2V

0

@
X

K2˝h

krk2P.K/
krk2P

1

A

1
2


 c00
0

@
X

K2˝h

h2Kkrphk2K

1

A :

Altogether, it holds

Lemma 4.46 (Modified Inf-Sup Condition) Let Vh � Lh � V � L be a finite
element pair with continuous pressure Lh � C.˝/. Then, the modified inf-sup
condition holds

	hkphk 
 sup
h2Vh

. ph;r � h/

krhk C
0

@
X

K2˝h

h2Kkrphk2K
1

A

1
2

8ph 2 Lh:

This modified inf-sup condition gives rise to an alternative discretization tech-
nique for the Stokes equations that is based on modifications of the variational
formulation. It holds

Lemma 4.47 (Pressure Stabilized Stokes Elements) Let Vh � Lh be the equal
order pair of continuous, piecewise linear pressures and velocities. Let f 2 L2.˝/d.
For the solution fvh; phg 2 Vh � Lh of

.rvh;rh/� . ph;rh/ D .f; h/ 8h 2 Vh;

.r � vh; �h/C
X

K2˝h

h2K.rph;r�h/ D 0 8�h 2 Lh;
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it holds

kr.v � vh/k C kp � phk C hkkr. p � ph/k 
 chkfk;

as well as the L2-estimate

kv � vhk 
 ch2kfk:

Proof The proof is a modification of Lemma 4.43, where we must use a modified
Galerkin Orthogonality in the divergence equation

.r � .v � vh/; �h/ D
X

K2˝h

h2K.rph;r�h/K ;

and finally by estimating

0

@
X

K2˝h

h2Kkrphk2K

1

A

1
2


 chkrpk˝:

ut
This first stabilized scheme for the Stokes equations has the disadvantage of a

very low approximation order. Higher order finite element approaches, e.g. Pr � Pr

elements still suffer from the low order due to the stabilization error hkrpk. Hughes
et al. [203] introduced a modification of this stabilization technique that can be
generalized to higher order finite elements and that will give optimal error estimates:

Lemma 4.48 (Galerkin Least Squares Stabilization (GLS)) Let Vh�Lh � V�L
be an equal order finite element pair with velocities and pressures of degree r. Let
˛ > 0. The stabilized formulation

.rvh;rh/� . ph;rh/C .r � vh; �h/

C
X

K2˝h

˛h2K.��vh C rph;��h C r�h/K

D .f; h/C
X

K2˝h

˛h2K.f;��h C r�h/K 8h 2 Vh; �h 2 Lh:

has a unique solution fvh; phg 2 Vh � Lh. It holds

kr.v � vh/k C kp � phk 
 chr
�
krrC1vk C krrpk

�

Proof See Hughes et al. [203]. The improvement in approximation quality is due to
the consistency of the stabilization scheme. For solutions fv; pg 2 H2.˝/d �H1.˝/
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it holds

��v C rp D f )
X

K2˝h

˛h2K.��v C rp;��h C r�h/�
X

K2˝h

˛h2K.f;��h C r�h/K D 0

for all h 2 Vh and �h 2 Lh. ut
Applied to linear finite elements it holds ��h D 0, such that this stabilization

scheme corresponds to the simple pressure stabilization.
This method is one of the most-used discretization schemes, which is not based

on inf-sup stable elements. It has the drawback of boundary layers in the pressure,
introduced by the strong non-physical control of the pressure’s gradient in the error
estimate. Approximation properties of this stabilized scheme can even be improved
by further modifications, see Droux and Hughes [123].

An alternative to the GLS formulation and related residual based schemes is the
Local Projection Stabilization method (LPS) that has been introduced by Becker
and Braack [37]. Here, stability is given by projection of the solution to an inf-sup
stable finite element space. It holds

Lemma 4.49 (Local Projection Stabilization (LPS)) Let Vh � Lh � V � L be
a conforming finite element space. Further, let Vh � QLh be an inf-sup stable finite
element pair with inf-sup constant Q	h. By �h W Lh ! QLh we denote a projection
operator and by s.�; �/ W Lh � Lh ! R a bilinear stabilization form. If it holds

k�hphk 
 c1kphk; kph � �hphk2 
 c2s. ph; ph/ 8ph 2 Lh:

the stabilized Stokes equations

.rvh;rh/� . ph;r � h/ D .f; h/ 8h 2 Vh;

.r � vh; �h/C s. ph; �h/ D 0 8�h 2 Lh

has a unique solution fvh; phg 2 Vh � Lh. Let Vh � Lh be an equal order space of
polynomial degree r and Vh � QLh be an inf-sup stable space of degree r � 1 in QLh.
Then, given sufficient regularity of fv; pg it holds

kr.v � vh/k C kp � phk 
 chr
�
kvkHrC1.˝/ C kpkHr.˝/

�
:

Proof See Becker and Braack [37]. ut
The Local Projection Stabilization method has the advantage of a very easy

implementation. Opposed to the GLS method, no second derivatives are necessary
in the variational formulations.
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As a symmetric method with s. ph; qh/ D s.qh; ph/ the discrete equations are
simply structured. Many different approaches exist. Based on the Taylor-Hood
elements Qk � Qk�1 stability for equal order pairs is given for the discrete
interpolation

Ik�1
h W Lh ! QLh; sh. ph; �h/ D

X

K2˝h

˛h2K
�
r. ph � Ik�1

h ph/;r.�h � Ik�1
h �h/

�

K
:

Another option for stable discretization is by projection to the space of equal order
on a coarse mesh

Ik
2h W Lh ! QLh WD L2h;

sh. ph; �h/ D
X

K2˝h

˛h2K
�
r. ph � Ik

2hph/;r.�h � Ik
2h�h/

�

K
:

Another noteworthy stabilization scheme is the continuous interior penalty
method, shortly denoted as edge stabilization, which is based on penalization of
interior gradient jumps, see [85]

sh. ph; �h/ D
X

K2˝h

X

e2@K

	h˛K

Z

e
Œn � rph� � Œn � r�h�ds;

where 	 > 0 is a coefficient, ˛ 2 f1; 2g an exponent and where we denote by
Œn � rph� the jumps of the normal derivative at an edge e 2 @K. This technique
has many similarities to the Local Projection Stabilization scheme. It is symmetric
and can be applied to all equal order elements. By proper control of 	 and ˛, weak
consistency is achieved to guarantee optimal order error estimates. We will revisit
this flexible stabilization scheme in Chap. 12 and also refer to the literature [84–86].

Research on stabilization schemes for saddle-point problems is still ongoing and
improved schemes are appearing [37, 62, 67, 72, 102, 203, 253, 256, 322].

4.4 Finite Elements for the Navier-Stokes Equations

The incompressible Navier-Stokes equations

.@tv C v � rv; /C 1

Re
.rv;r/ � . p;r � / D .f; / 8 2 Vf ;

.r � v; �/ D 0 8� 2 Lf ;
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differ from the Stokes equation by the nonlinearity only. We assume, that time-
discretization is done by Rothe’s method with a time stepping method, such that in
every time step tm�1 ! tm a quasi-stationary problem must be solved

.˛v C v � rv; /C 1

Re
.rv;r/ � . p;r � / D .g; / 8 2 Vf ;

.r � v; �/ D 0 8� 2 Lf ;

where ˛ � k�1. A direct discretization with an inf-sup stable finite element pair
Vh �Lh � Vf �Lf leads to a finite dimensional—but nonlinear—system of algebraic
equations

.˛vh C vh � rvh; h/C 1

Re
.rvh;rh/� . ph;r � h/ D .g; h/ 8h 2 Vh;

.r � vh; �h/ D 0 8�h 2 Lh;

that can be written in operator-form as

�
A.vh/ Bh

�BT
h 0

��
v
p

�
D
�
f
0

�
;

where

.Ah.vh//ij D .˛j; i/C 1

Re
.rj;ri/C .vh � rj; i/; i; j D 1; : : : ;N;

and where Bh is defined as in (4.22)

.Bh/ij D �.�j;r � i/; i D 1; : : : ;N; j D 1; : : : ;Np:

This discrete operator could further be written as a third order tensor A.3/h indepen-
dent of the transport direction vh

.A.3/h /ijk D .˛j; i/C 1

Re
.rj;ri/C .k � rj; i/; i; j; k D 1; : : : ;N:

The effort for assembling this tensor would however dominate the whole procedure
and storing such a third order tensor would require vast amounts of memory. Instead
of discretizing the nonlinear problem one usually first treats the nonlinearity by an
outer iteration. Here, we discuss two common approaches for linearization.
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4.4.1 Oseen Fixed Point Linearization

We iterate vl ! v 2 Vf by linearization of the nonlinearity at the old step vl�1.
Given vl�1 2 Vf find fvl; plg 2 Vf � Lf such that

.˛vl C vl�1 � rvl; /C 1

Re
.rvl;r/� . pl;r � / D .g; / 8 2 Vf ;

.r � vl; �/ D 0 8� 2 Lf :

In every step of this iteration a linear partial differential equation must be solved.
This linear problem is called the Oseen equation. The same linearization is used
for proving existence of a Navier-Stokes solution in Lemma 2.50. It shows that
this iteration converges for small Reynolds numbers. The convergence vl ! v 2 Vf

however is always only linear and the convergence rate will depend on Re. In Fig. 4.9
we show the convergence history of the Oseen fixed point iteration for different
Reynolds numbers.

In a further simplification of this linearization, we treat the nonlinearity com-
pletely explicitly and iterate vl�1 ! vl 2 V by solving

.˛vl; /C 1

Re
.rvl;r/� . pl;r � / D .g; /� .vl�1 � rvl�1; / 8 2 V ;

.r � vl; �/ D 0 8� 2 L:
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Fig. 4.9 Comparison of different linearization techniques. We show the residual over the iteration
count for Reynolds numbers 1; 8; 32 and 128
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Every step of this iteration consists of solving a generalized (for ˛ > 0) Stokes
equations. This Stokes Linearization can only be used for very small Reynolds
numbers and converges very slowly. Again, see Fig. 4.9 for the convergence
behavior of this iteration compared to the Stokes linearization. Both iterations
converge slowly. For Reynolds numbers Re > 50 both iterations can hardly be used.

4.4.2 Newton Iteration

The Newton method for solving nonlinear problems can also be defined in infinite
dimensional Banach spaces. For the following, we assume, that the nonlinear partial
differential equation is given in variational formulation by

u 2 V W A.u/./ D F./ 8 2 V ; (4.33)

where A.�/.�/ is a semi-linear form, which is linear in the second argument
and sufficiently differentiable. Here, by differentiability we consider the Gâteaux
derivative as a generalization of the directional derivative to mappings between
infinite dimensional spaces. By

A0.u/.w; / WD d

ds
A.u C sw/./

ˇ̌
ˇ
sD0;

we denote the derivative of A.�/.�/ at u 2 V in direction w 2 V . The Newton iteration
for solving (4.33) starts with an initial guess u0 2 V and iterates for l D 1; : : :

wl 2 V W A0.ul�1/.w; / D F./� A.ul�1/./ 8 2 V ;
ul WD ul�1 C wl: (4.34)

In every step of the Newton method a linear partial differential equation arises that
can be discretized with the finite element method. The Newton iteration is usually
considered in a defect correction way like (4.34). This allows for simple damping
strategies that are necessary for complicated problems if no good initial guess u0 2
V is known. As this is the usual case for complex problems arising in fluid-structure
interaction we shortly introduce a common damping strategy:

Definition 4.50 (Line Search) Start with u0 2 V and compute �0 WD kF � A.u0/k.
Iterate for l D 1; 2; : : :

1. Solve Newton update wl 2 V by

wl 2 V W A0.ul�1/.w; / D F./� A.ul�1/./ 8 2 V
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2. Set ! j D 1 and iterate j D 1; : : :

a. Update solution

ul;j WD ul�1 C !jwl:

b. Compute residual

�l;j WD kF � A.ul;j/k:

c. If �l;j < �l�1 set ul WD ul;j and continue with l C 1 at 1., otherwise set

!jC1 WD 	!j;

where 	 < 1 and continue with j C 1 at 2.a.

Details on the nonlinear partial differential equations and the application of
Newton’s method is found in the literature [116, 117].

For applying the Newton scheme to the Navier-Stokes equations we must
compute the Gatâux derivative of the variational formulation. For

A.v; p/.; �/ WD .˛v; /C .v � rv; /C 1

Re
.rv;r/� . p;r � /C .r � v; �/;

it holds for the search direction fw; qg 2 Vf � Lf :

A0.v; p/.w; q; ; �/ D .˛w; /C .v � rw C w � rv; /C 1

Re
.rw;r/

� .q;r � /C .r � w; �/;
Then, in every step of the Newton iteration a linear saddle-point problem must be
solved for the update wl 2 Vf of velocity and ql 2 Lf of pressure:

.˛wl; /C .vl�1 � rwl C wl � rvl�1; /C 1

Re
.rwl;r/ D .f; /

� .˛vl�1; / � .vl�1 � rvl�1; /� 1

Re
.rvl�1;r/ 8 2 Vf

.r � wl; �/ D �.r � vl�1; �/ 8� 2 Lf : (4.35)

Remark 4.51 (Linearization of the Navier-Stokes Equation by Newton’s Method)
In every step of the Newton method a linear saddle-point problem of Reaction-
Diffusion-Transport type must be solved. This linear problem is difficult to solve as
it is neither symmetric nor positive. The reaction part has the coefficient

.˛wl C wl � rvl�1; / D .Œ˛I C rvl�1�wl; /;
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which might be—depending on rvl�1—positive or negative definite or simply
indefinite.

The sequence of discretization and linearization can be swapped. For a con-
vergence analysis of the Newton iteration, one however usually treats the non-
discretized set of equations and discusses the Newton method in function spaces.
This approach allows to derive convergence estimates that are uniform in the mesh-
size h > 0 and hold under mesh convergence h ! 0. See Deuflhard [116], or
Rannacher [265, 267].

4.4.3 Discretization of Transport Dominant Flows

The Galerkin discretization of the Navier-Stokes equations sometimes shows
spurious oscillations if the Reynolds number is large. This numerical instability
arises if the convection term v � rv gets dominant over the viscous term ���v. In
Fig. 4.10 we show the flow in a branching channel for increasing Reynolds numbers.
In the top row of the figures we show the velocity profile of the fluid, in the bottom
row, we plot the value of the velocity at the center-line y D 0 of the domain, where
the fluid hits the branching. For increasing Reynolds numbers, the velocity profile
oscillates and does not look physical. The simulations in Fig. 4.10 have all been
carried out on a coarse mesh with mesh size h D 2�3 (the inflow part of the domain
has the width 1, consisting of 8 elements). In Fig. 4.11 we repeat these simulations
for Reynolds number Re D 2500 on a sequence of finer and finer meshes. We
observe that the oscillations disappear for h ! 0.

These kind of transport instabilities can be analyzed with help of a simple one-
dimensional model problem

� "u00 C u0 D 0; u.0/ D 1; u.1/ D 0; (4.36)

Fig. 4.10 Galerkin approximation of a branching flow for increasing Reynolds numbers Re D
100; Re D 500 and Re D 2500
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Fig. 4.11 Galerkin approximation of a branching flow Reynolds number Re D 2500 under mesh
refinement h D 2�3; h D 2�4 and h D 2�5

which has the exact solution

u.x/ D exp."�1/ � exp.x"�1/
exp."�1/� 1

;

and features a boundary layer of width O."/ at x D 1. For a Galerkin discretization
of this problem with piecewise linear finite elements—that corresponds to the
standard central difference discretization—one discovers that the system matrix
looses its diagonal dominance if h < 2", see e.g. Johnson [207]. To tackle this
problem, two different approaches are usually considered.

First, it is possible to use a Galerkin discretization with lesser smoothness
properties. By a discretization with discontinuous finite elements in space using
stabilizing fluxes one can avoid stability problems caused by transport. Again, see
Johnson [207] or Cockburn et al. [101]. The use of discontinuous finite elements
however brings along the disadvantage of a high computational effort, as the number
of degrees of freedom is substantially bigger compared to a continuous finite
element approach of the same order as the degrees of freedom on the element edges
are doubled.

The second approach consists in adding stability by modifying the variational
formulation of the problem in such a way that diffusion is added to the set of
equations. This modification must be so significant that it eliminates oscillations,
it however must be small enough to still give good approximation results for the
original problem. In particular, we expect that the additional stabilization must
vanish for h ! 0. The most simple approach, the artificial diffusion method
simply adds stability by increasing the viscosity in a h-depending way. The model
problem (4.36) stabilized with the artificial diffusion method gets

� Q".h/u00 C u0 D 0; u.0/ D 1; u.1/ D 0; Q".h/ WD "C 1

2
h: (4.37)
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Fig. 4.12 Artificial diffusion stabilization for a branching flow at Reynolds number Re D 2500

under mesh refinement h D 2�3; h D 2�4 and h D 2�5

As for Q" it holds h < 2 Q".h/ D 2"Ch for all h > 0, a standard discretization of (4.37)
will always by diagonally dominant and give monotone results. This simple artificial
diffusion technique however limits the approximation accuracy of the resulting
scheme to first order. In Fig. 4.12 we show the artificial diffusion stabilization for
the branching flow example at Reynolds number Re D 2500. The result is stable
and the velocity profile looks smooth. However, at Re D 2500 the solution is fully
governed by the artificial viscosity, not by � � Re�1. Comparing Figs. 4.11 (right)
and 4.12 a severe discrepancy between the stabilized and the physical profile gets
visible.

The Streamline Upwind Petrov Galerkin method (SUPG) is a stabilization
scheme that adds stability by introducing a Petrov Galerkin formulation of the model
problem. Modified test functions  C ıh

0 with ıh � h are used to get

.�"u00
h C u0

h; h C ıh
0
h/ D . f ; h C ıhh/ 8h 2 Vh

,
."u0

h; 
0
h/C .u0

h; h/C .ıhu0
h; 

0
h/C .ıh.�"u00

h � f /; 0
h/ D . f ; h/ 8h 2 Vh:

While the term .ıhu0
h; 

0
h/ adds diffusion to the equation and stabilizes the solution,

the further term .ıh.�"u00
h � f /; 0

h/ assures consistency of the solution. It holds

Lemma 4.52 (Streamline Upwind Petrov Galerkin) Let u 2 HrC1.I/ be the
solution to the model problem (4.36) and uh 2 Vr

h be the SUPG solution. It holds

ku � uhk C p
hku0 � u0

hk 
 chrC 1
2 kukrC1:

Proof See Johnson [207]. ut
The SUPG method can easily be applied to the Navier-Stokes equations. This

has first been done by Brooks and Hughes [75]. We modify the test space of the
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momentum equation to get

.@tv C v � rv; /C 1

Re
.rv;r/ � . p;r � /

C.@tv � Re�1�v C rp � f; ıhv � r/C .v � rv; ıhv � r/ D .f; /

.r � v; �/ D 0:

Again, stability is given by the term .v � rv; ıhv � r/, where the second additional
term stands for consistency only. The drawback of this technique is the introduction
of a second order coupling in the pressure .rp; ıhv � r/ and a third order term
regarding the velocity .��v; ıhv � r/. Both terms give rise to boundary layers.
Further, the SUPG technique couples the time derivative with spatial derivatives.
A correct discretization of this term .@tv; ıhv � r/ is difficult to implement.
For a discussion and analysis of the SUPG method applied to transient problems
we refer to [67, 81]. The SUPG method gives accurate and stable results for all
polynomial degrees and apart from the Laplacian and the time-derivative in the
consistency term, an implementation is straightforward. The SUPG stabilization can
easily be combined with the PSPG pressure stabilization technique as introduced in
Sect. 4.3.2. This combination of stabilization techniques is one of the most common
discretization approaches for the incompressible Navier-Stokes equations.

The drawback of these consistent residual based stabilization techniques is the
introduction of couplings between time-derivative, velocity and pressure. These
couplings are not physical. Further, the implementation of these couplings can be
complex and can have a negative impact on the behavior of iterative solvers. Another
stabilization technique for convective flows is based on a projection of the solution
to a subspace, similar to the Local Projection Stabilization for the inf-sup condition
introduced in Sect. 4.3.2. The SUPG method introduces the stabilization term

sSUPG.v; p/./ D .@tv � Re�1�v C rp � f C v � rv; /:

For the solution fv; pg it holds

�v � rv D @tv � Re�1�v C rp � f:

Hence, we can replace the right hand side of this relation by an approximation of
the left hand side, e.g. by a projection of v � rv into a coarser space. This is the idea
of the Local Projection Stabilization (LPS) for convective flows, as introduced by
Becker and Braack [39] and similarly by Codina [102]

sLPS.v/./ D .v � rv � v � rv; ıhv � r/:

Different variants of the LPS method are discussed in the literature. One of the
most simple variant uses a local projection to a mesh with double mesh-spacing
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�2h W Vh ! V2h:

.@tvh C vh � rvh; h/C 1

Re
.rvh;rh/� . ph;r � h/

C
�
vh � rvh � v2h � rv2h; ıh.vh � rh � v2h � r2h/

�
D .f; h/

.r � vh; �/ D 0;

where for abbreviation we used v2h WD �2hvh and 2h WD �2hh. In Fig. 4.13 we
present results for the Local Projection stabilization for the branching flow problem
at Reynolds number Re D 2500. The results have less smoothness as compared
to the artificial diffusion stabilization shown in Fig. 4.12. The boundary layers are
however more accurate and closer to the Galerkin discretization on fine meshes
as indicated in Fig. 4.11. The LPS method has the advantage that it is diagonal
in the following sense: No artificial couplings are introduced between velocity
and pressure. The LPS term for stabilizing convection involves the velocity only,
while the term for stabilizing the inf-sup condition requires only the pressure. This
diagonal setup will be of importance when considering complex coupled problems
like fluid-structure interactions.

For comparison of these stabilization techniques, for numerical analysis and
different variants see the overview articles by Braack et al. [67].

Remark 4.53 Flux-Correction A completely different approach for stabilizing
transport equations is the technique of algebraic flux correction. As the
name suggests, this method does not fall into the residual based Galerkin
approaches. Instead, the resulting system matrix is modified by means of algebraic
transformations with the goal to ensure the discrete maximum principle. This rather
new technique is very successful and provides excellent results. For an overview,
we refer to [216–218] or [55] in the context of ALE schemes for moving domains.

Fig. 4.13 Local Projection Stabilization for a branching flow at Reynolds number Re D 2500

under mesh refinement h D 2�3; h D 2�4 and h D 2�5
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4.5 Discretization of Interface-Problems

The Fully Eulerian formulation discussed in Sect. 3.6, Chaps. 6 and 12 is an
interface problem, as the equation undergoes changes across an internal interface
I � ˝ . The interface is exactly the coupling boundary between fluid-problem and
solid-problem, where the equation changes from the incompressible Navier-Stokes
equations to a solid equation. Physical reasoning tells us that deformation u and
velocity v (at least in normal direction) are continuous at this interface. We cannot
expect differentiability. In terms of regularity, it holds u; v 2 ŒH1.˝/�d, however
u; v 62 ŒH2.˝/�d. In both parts F and S we can expect this higher regularity. When
it comes to numerical approximation, convergence is assured by best approximation
and interpolation estimates. These require high regularity, see Sect. 4.2.1. If we are
able to resolve the internal interface with the finite element mesh, interface problems
do not pose an additional problem, as interpolation estimates only act locally and
will work, as long as no mesh-element is cut by the interface.

For the Fully Eulerian formulation however, it will in general not be possible to
choose a matching finite element mesh, as

• The location of the interface is a priori not known. Instead, it is implicitly given
by the solution itself.

• The interface is usually not a polygonal, such that an exact resolution will not be
possible.

• The interface is moving in time—if the problem is non-stationary—and new
finite element meshes would be necessary in each time step. This is in principle
possible, but would be very costly.

To explain efficient concepts of discretizing interface problems, we will focus on
a very simple interface problem, the Laplace equation with a coefficient that has a
jump within the domain˝ D ˝1 [ I [˝2

� r � .�iru/ D f on ˝i; i D 1; 2; Œu� D 0 D Œ�@nu� D 0 on I; (4.38)

and with u D 0 on the outer boundary @˝ . �1; �2 > 0 are diffusion parameters. By

Œu�.x/ WD lim
s#0

u.x C ns/� lim
s"0

u.x C ns/; x 2 I;

we denote the jump of u at the interface I with normal vector n on I. The variational
formulation of this interface problem is given by

u 2 H1
0.˝/ W a.u; / WD

2X

iD1
.�iru;r/ D . f ; / 8 2 H1

0.˝/:

Existence of solutions can be shown by standard arguments. We assume that the
partitioning of ˝ into ˝1 and ˝2 is non-overlapping ˝1 \ ˝2 D ; and that both
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subdomains ˝i (i D 1; 2) have a boundary with sufficient regularity such that for
smooth right hand sides it holds for the solution of (4.38) that

u 2 H1
0.˝/\ HrC1.˝1 [˝2/;

for a given r 2 N, with r � 1. See Babuška [14] for an early work on such an
interface problem.

Interface problems are elaborately discussed in literature. If the interface I
cannot be resolved by the mesh, the overall convergence for a standard finite element
ansatz will be reduced to

kr.u � uh/k˝ D O.h1=2/;

independent of the polynomial degree r of the finite element space. For an analysis,
see Babuška [14] or MacKinnon and Carey [232]. In Fig. 4.14, we show the H1 and
L2 errors for a simple interface problem with curved interface that is not resolved by
the finite element mesh. Both linear and quadratic finite elements only give O.h1=2/
accuracy in the H1-seminorm and O.h/ in the L2-norm. This is due to limited
regularity of the solution across the interface.

It has been shown that for interface problems with jumping coefficients causing
weak discontinuities, optimal convergence can be recovered by a harmonic aver-
aging of the diffusion constants [309, 324]. Such an averaging procedure has been
applied to multiphase flows, it is however not suitable for problems, where two
entirely different types of differential equations are coupled on the interface, as it is
the case for fluid-structure interactions.

Given a fitted finite element configuration, the optimal order of convergence
is guaranteed [14, 70, 137, 360]. If the interface is moving, curved or has small
scale features, the repeated generation of fitted finite element meshes can exceed
the feasible effort. Further developments are based on local modifications of the

quadratic elements
linear elements

mesh size h
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O(h
1
2 )

(u − uh)

u − uh

10.10.010.001
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−κiΔu = 1
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κ1 = 0.1, κ2 = 1

Fig. 4.14 L2- and H1-error for a standard finite element simulation for a diffusion problem with
a discontinuity in the diffusion coefficient. Configuration of the test problem in the right sketch.
Details on this problem are given in Sect. 4.5.3
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finite element mesh that only alter mesh elements close to the interface [56, 352].
By combining local mesh modifications close to the interface with an isoparametric
approximation of curved interfaces, even higher order approximation could be
shown [135].

An alternative approach is based on unfitted finite elements, where the mesh
is fixed and does not resolve the interface. Proper accuracy is gained by local
modifications or enrichment of the finite element basis. Prominent examples for
these methods are the the extended finite element method (XFEM) [246], the
generalized finite element method [20] or the unfitted Nitsche method by Hansbo
and Hansbo [174, 175], that casts the XFEM method into a new light. These
enrichment methods are well analyzed and show the correct order of convergence.
One drawback of all these methods is a complicated structure that requires local
modifications in the finite element spaces leading to a variation in the connectivity
of the system matrix and number of unknowns. In non-stationary computations,
these methods can call for a change of the memory pattern in every time step, a
potentially costly operation.

Here, we propose a finite element technique for interface problems that fits both
into the context of fitted methods and modified finite element schemes. Instead
of resolving the interface by a motion of mesh nodes, we locally adapt the finite
element in an implicit parametric way, such that the finite element bases can reflect
weak discontinuities at the interface. This scheme requires neither an enrichment of
the basis nor a modification of the mesh.

The original notion of this parametric finite element method [153] that has been
developed on quadrilateral meshes has already been adapted to triangles [161, 193].

4.5.1 Parametric Interface Finite Elements

Let ˝h be a form and shape-regular triangulation of the domain ˝ � R2 into
open quadrangles. The mesh ˝h does not necessarily resolve the partitioning
˝ D ˝1 [ I [˝2 and the interface I can cut the elements K 2 ˝h. For simplicity,
we assume that the outer boundary @˝ can be resolved by the mesh. Otherwise, the
approximation of the curved boundary must be considered, see Sect. 4.2.3.

Next, we assume that the mesh˝h has a patch-hierarchy in such a way that each
four adjacent quads arise from uniform refinement of one common father-element,
see Fig. 4.15. Such a mesh-hierarchy is naturally given for finite element methods
based on adaptive mesh refinement and also commonly used for error estimation
methods [41] or projection based stabilization schemes [37]. The interface I may
cut the patches in the following way:

1. Each (open) patch P 2 ˝h is either not cut P\I D ; or cut in exactly two points
on its boundary: P \ I ¤ ; and @P \ I D fxP

1 ; x
P
2 g.

2. If a patch is cut, the two cut-points xP
1 and xP

2 may not be inner points of the same
edge.
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x̂1 x̂2 x̂3

x̂4 x̂5 x̂6

x̂7 x̂8 x̂9

Ω1

Ω2

Ω

xP
1

P

xP
2

Γ

Fig. 4.15 Left: triangulation ˝h of a domain ˝ that split into ˝1 and ˝2 with interface I. The
elements in˝h are arranged in a patched way. Patch P is cut by I at xP

1 and xP
2 . Right: subdivision

of reference patches OP1; OP2; OP3; OP4 (top left to bottom right) into eight triangles each

In principle, these assumptions only rule out two possibilities: a patch may not be
cut multiple times and the interface may not enter and leave the patch at the same
edge. Both situations can be avoided by refinement of the underlying mesh. If the
interface is matched by an edge, the patch is not considered cut.

4.5.1.1 Modification of the Finite Element Space

We define the finite element trial space Vh � H1
0.˝/ as isoparametric space on the

triangulation˝h

Vh D
n
 2 C. N̋ /;  ı T�1

P

ˇ̌
ˇ
P

2 OQ for all patches P 2 ˝h

o
;

where TP 2 Œ OQ�2 is the mapping between the reference patch OP D .0; 1/2 and every
patch P 2 ˝h such that

TP.Oxi/ D xP
i ; i D 1; : : : ; 9

for the nine nodes xP
1 ; : : : ; x

P
9 in every patch, see Fig. 4.15 (left). The reference space

OQ is piecewise polynomial of degree 1 that will depend on whether a patch P is cut
by the interface or not. For patches P 2 ˝h that are not cut by the interface, we
choose the standard space of piecewise bilinear functions:

OQ D
�
 2 C. NP/; 

ˇ̌
ˇ
Ki

2 spanf1; x; y; xyg; K1; : : : ;K4 2 P

�
:
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If a patch P 2 ˝h is cut by the interface, we divide the reference patch into eight
triangles T1; : : : ;T8 and define

OQmod D
�
 2 C. NP/; 

ˇ̌
ˇ
Ti

2 spanf1; x; yg; T1; : : : ;T8 2 P

�
:

Depending on the position of the interface I in the patch P, three different reference
configurations are considered, see the right sketch in Fig. 4.15.

It is important to note that the functions in OQ and OQmod are all piecewise linear on
the edges @P, such that mixing different element types does not affect the continuity
of the global finite element space. We denote by f O1; : : : ; O9g the standard Lagrange
basis of OQ or OQmod with O i.xj/ D ıij. The transformation TP is given by

TP.x/ D
9X

iD1
xP

i
Oi.x/:

Next, we present the subdivision of interface patches P into eight triangles each.
We distinguish four different types of interface cuts, see Fig. 4.16:

Configuration A: The patch is cut at the interior of two opposite edges.
Configuration B: The patch is cut at the interior of two adjacent edges.
Configuration C: The patch is cut at the interior of one edge and in one node.
Configuration D: The patch is cut in two opposite nodes.

Configurations A and B are based on the reference patches OP2 and OP3, configurations
C and D use the reference patch OP4, see Fig. 4.15. By ei 2 R2, i D 1; 2; 3; 4

we denote the vertices on the edges, by xm 2 R2 the midpoint of the patch. The
parameters r; s 2 .0; 1/ describe the relative position of the intersection points with
the interface on the outer edges.

If an edge is intersected by the interface we move the corresponding point ei on
this edge to the point of intersection. The position of the midpoint xm depends on
the specific configuration, see [153] for details.

se3

r

xm

x1

x3x4

e1

x2

r

e4

s

e2

T8 T6

T5

T1

T7

T3

T2 T4
s

DCBA

Fig. 4.16 Different types of cut patches. The subdivision can be anisotropic with r; s 2 .0; 1/

arbitrary
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As the cut of the elements can be arbitrary with r; s ! 0 or r; s ! 1, the
triangle’s aspect ratio can be very large, considering h ! 0 it is not necessarily
bound. We can however guarantee that the maximum angles in all triangles will be
well bound away from 180ı.

Lemma 4.54 (Maximum Angle Condition) All interior angles of the triangles
shown in Fig. 4.16 are bound by 144ı independent of r; s 2 .0; 1/.
Proof The proof follows by basic geometrical considerations, see [153]. ut

This maximum angle conditions allows us to define robust Lagrangian interpola-
tion operators Ih W H2.T/ \ C.T/ ! Vh with accurate error estimates

krk.u � Ihu/kT 
 cih
2�k
T;maxkr2ukT ; k D 0; 1; (4.39)

where ci > 0 is a constant and hT;max is the maximum diameter of a triangle T 2 P,
see [7]. The interpolation error estimates are robust with respect to the maximum
diameter hT;max � hP that is of the same order as the diameter of the patches P.
We do not get (and will not depend on) an optimal interpolation result with respect
to the anisotropic triangles in terms of short edges hT;min � hT;max. This simplifies
the analysis compared to typical estimates for anisotropic finite elements. Again,
see [7].

In order to apply such an interpolation result at the interface, i.e. on triangles
T 2 ˝h that belong to patches cut by the interface, we must take care of the fact
that the partitioning of the mesh ˝h D ˝1;h [ Ih [˝2;h does not conform with the
partitioning of the domain ˝ D ˝1 [ I [˝2, i.e., ˝i;h does not necessarily cover
the same domain as ˝i. This is always the case, if the interface I is not a polygon.
Then, if T 2 ˝h;i is an element on the interface, i.e. I \ T ¤ ;, the solution v is not
smooth enough to locally apply the interpolation estimate (4.39).

The inverse trace inequality (see [350]) allows to extend ui 2 H2.˝i/ to Qui 2
H2.˝/ with

kQui � uikH2.˝i/ D 0; kQuikH2.˝/ 
 ckuikH2.˝i/; i D 1; 2; (4.40)

if the interface I is regular enough (having a C1;1 boundary). This construction
allows to use the interpolation estimates on triangles that are cut by the interface.

Let T 2 ˝h be such an triangle and let S � T be the small part, cut by the
interface. We show the Situation in Fig. 4.17. It holds jSj D O.h2/, see Lemma 4.32.
Let u 2 H1.˝/ \ H2.˝1 [ ˝2/ and Ihu 2 Vh be the interpolation. Further, let
Qu 2 H2.T/ be the extension of u

ˇ̌
TnS

to T. It holds

krk.u � Ihu/kT 
 krk.u � Qu/kT C krk.Qu � Ihu/kT

D krk.u � Qu/kS C krk.Qu � Ihu/kT :
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Fig. 4.17 The right patch is
cut by the interface I and
split into eight triangles. For a
triangle T we denote by S the
small part that enters the
other domain

T S

For the second part it holds Ihu D Ih Qu such that usual interpolation estimate can be
applied

kr.Qu � Ihu/kT D kr.Qu � Ih Qu/kT 
 chkr2 QukT 
 chkr2ukTnS;

while the first part can be estimated with Lemma 4.34:

kr.u � Qu/kS 
 chkukH2.T/:

Altogether, the interpolation error at the interface is estimated by

kr.u � Ihu/kT 
 chkukH2.T/: (4.41)

The parametric finite element approach is conforming, as uh 2 Vh � H1
0.˝/, it

is however not consistent, as the discrete solution uh has its jump at Ih and not at I.

Theorem 4.55 (A Priori Estimate) Let ˝ � R2 be a domain with convex
polygonal boundary, split into˝ D ˝1[I[˝2, where I is a smooth interface with
C2-parameterization. We assume that I divides ˝ in such a way that the solution
u 2 H1

0.˝/ satisfies the stability estimate

u 2 H1
0.˝/\ H2.˝1 [˝2/; kukH2.˝1[˝2/ 
 csk f k:

For the corresponding modified finite element solution uh 2 Vh it holds

kr.u � uh/k˝ 
 chk f k; ku � uhk˝ 
 ch2k f k

Proof We repeat the proof from [153], as the original paper suffers from a small
inaccuracy, evoked by neglecting that ˝i;h is not necessarily a triangulation of ˝i

for i D 1; 2. This directly touches the first step (i) of the proof.
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(i) Let eh D u � uh. It holds

.�reh;rh/˝ D
2X

iD1
.�ireh;rh/˝i

D
2X

iD1
.�iru;rh/˝i � .�iruh;rh/˝i;h C .ı�iruh;rh/˝in˝i;h

D
2X

iD1
.ı�iruh;rh/˝in˝i;h ;

where

ı�i D
(
�1 � �2 i D 1;

�2 � �1 i D 2:

Hence, by picking h D Ihu � uh, we get the following perturbed best-
approximation property:

krehk2 
 ckrehk kr.u � Ihu/k C
2X

iD1
kı�iruhk˝in˝i;hkr.Ihu � uh/k˝in˝i;h

For estimating these additional terms close to the interface, we use Lemma 4.34.
It holds

kı�iruhk˝in˝i;h 
 c.�/h
1
2 kruhk˝;

kr.Ihu � uh/k˝in˝i;h 
 ch
1
2 kr.Ihu � uh/k˝:

Together with the interpolation estimate (4.41), the energy estimate follows.
(ii) Let z 2 H1

0.˝/\ H2.˝1 [˝2/ be the solution of the adjoint problem

z 2 H1
0.˝/ W .�r;rz/˝ D .eh; /kehk�1 8 2 H1

0.˝/:

It holds z 2 H1
0.˝/\H2.˝1[˝2/with kzkH2.˝1[˝2/ 
 cs. Using the perturbed

Galerkin orthogonality, the L2-error can be represented in the following way:

ku � uhk D .reh;r.z � Ihz//C
2X

iD1
.ı�iruh;rIhz/˝in˝i;h :

Here, the argumentation for estimating the interface elements is more involved.
Similar to the discussion in Sect. 4.2.3, we need to insert the solutions ˙u and
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˙z to fully exploit the potential of Lemma 4.34. It holds

kruhk˝in˝i;h 
 kruk˝in˝i;h C kr.u � Ihu/k˝in˝i;h C kr.Ihu � uh/k˝in˝i;h


 chkukH2.˝/ C ch
1
2 kr.Ihu � uh/k˝:

By once more inserting ˙u, it follows that

kruhk˝in˝i;h 
 chk f k˝:

Similarly, it holds for the adjoint interpolation by inserting ˙z

krIhzk˝in˝i;h 
 krzk˝in˝i;h C kr.z � Ihz/k˝in˝i;h 
 chkzkH2.˝/;

which gives second order. ut

4.5.2 Condition Number Analysis

The modified finite element ansatz described above has one serious drawback. For
certain anisotropies (e.g. s; r ! 0 in Fig. 4.16) the condition number of the stiffness
matrix is not bounded. To illustrate this, we consider an interface problem where
˝1 is a circle inside the unit square ˝ (see the right sketch in Fig. 4.18). To study
the sensitivity with respect to anisotropies, we move the circle in vertical direction
by " 2 Œ0; 1�. We will give further details on this example in Sect. 4.5.3. In Fig. 4.18
(left sketch), we show how the condition number changes for different ". For " ! 0,
the condition number increases with order O.1="/.

In this section, we will present a scaled hierarchical finite element basis for the
space Vh that will yield system matrices Ah that satisfy the usual bound cond2.Ah/ D
O.h�2/ with a constant that does not depend on the position of the interface I
relative to the mesh elements.

cond2(Ah)

relative displacement ε of midpoint

10.80.60.40.20

1e+07

1e+06

100000

10000

1000

εh

Ω1

Ω2

−κiΔu = 1

u = 0 on ∂Ω

κ1 = 0.1, κ2 = 1

Fig. 4.18 Condition number of the system matrix cond2.Ah/ depending on the displacement of
the circle ˝1



4.5 Discretization of Interface-Problems 187

We split the finite element space Vh in a hierarchical manner

Vh D V2h C Vb; N WD dim.Vh/ D dim.V2h/C dim.Vb/ DW N2h C Nb:

The space V2h is the standard space of piecewise bilinear functions in uncut patches
and linear functions on cut patches (here we split the quadrilateral patch into two
triangles). On the patches P 2 ˝h it is equipped with the usual nodal Lagrange basis
V2h D spanf12h; : : : ; 

N2h
2h g.

The space Vb D Vh n V2h collects all functions that enrich V2h to Vh. These func-
tions are defined piecewise on T1; : : : ;T8 in the remaining five degrees of freedom,
see Fig. 4.19 for an example. The basis is denoted by Vb D spanf1b ; : : : ; Nb

b g. The
finite element space V2h is fully isotropic and standard analysis holds. Functions in
V2h do not resolve the interface, while the basis functions  i

b 2 Vb will depend on
the interface location if I � supp f i

bg. For a function vh 2 Vh we use the (unique)
splitting

vh D
X

i

vi
h

i
h D

N2hX

iD1
vi
2h

i
2h C

NbX

iD1
vi

b
i
b D v2h C vb 2 V2h C Vb;

and for this splitting it holds:

Lemma 4.56 (Hierarchical Finite Element Spaces) For every vh D v2h C vb 2
Vh it holds

.i/ krvhk2 
 2krv2hk2 C 2krvbk2;

and further

.ii/ krv2hk2 C krvbk2 
 Ckrvhk2;

with a constant C > 0.

Proof See [153]. ut

vb ∈ Vbv2h ∈ V2hvh ∈ Vh

Fig. 4.19 Example for a hierarchical splitting of a function vh 2 Vh into coarse mesh part v2h 2
V2h and fine mesh fluctuation vb 2 Vb
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Using this hierarchic splitting of the finite element space together with a diagonal
scaling of the system matrix, we can proof the following result:

Theorem 4.57 (Condition Number) For the hierarchic parameterized finite ele-
ment space Vh D V2h C Vb together with a diagonal scaling of the system matrix A,
it holds

cond2.A/ 
 Ch�2;

with a constant C > 0 not depending on the interface location.

Proof See [153]. ut

4.5.3 Numerical Examples

In this section, design three different test cases to validate the modified finite element
technique introduced in Sect. 4.5.1. We will include all different types of interface
cuts (configurations A to D) with arbitrary anisotropies including r; s ! 0 or 1 in
Fig. 4.16.

4.5.3.1 Example 1: Circular Interface

This first example has already been considered to discuss the interface approxima-
tion in Sect. 4.5.1 and the dependency of the condition number on the interface in
Sect. 4.5.2. See Fig. 4.14 for a sketch of the configuration. The square˝ D .�1; 1/2
is split into a ball ˝2 D BR.xm/ and remainder ˝1 D ˝ n N̋

2, where R D 0:5 and
xm D .0; "h/ for " 2 Œ0; 1�. As diffusion parameters we choose �1 D 0:1 in ˝1 and
�2 D 1 in ˝2. We choose the analytical solution

u.x/ D
(

��1kx � xmk2 C 1
4
�1 � 1

8
�2 x 2 ˝1;

�2�2kx � xmk4; x 2 ˝2;

to define both the right hand side fi WD ��i�u and the Dirichlet boundary data. After
some steps of global refinement this simple example includes configurations A to C.
In Fig. 4.20, we plot the H1- and L2-norm errors obtained on several levels of global
mesh refinement. According to Theorem 4.55, we observe linear convergence in
the H1-norm and quadratic convergence in the L2-norm. For comparison, Fig. 4.14
shows the corresponding results using standard non-fitted basis functions. A sketch
of the solution is given in the right side of Fig. 4.20.

Next, in Fig. 4.21, we show a study of the condition number’s dependency on the
parameter " 2 Œ0; 1� used to shift the midpoint of the circle xm D .0; "h/. The scaled
hierarchical ansatz space shows optimal behavior O.h�2/ with regard to mesh size
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modified finite elements

mesh size h

O(h2)

O(h)
(u − uh)

u − uh

10.10.010.001

10+0

10−1

10−2

10−3

10−4

10−5

Fig. 4.20 Example 1: H1- and L2-Error under mesh refinement. Right: sketch of the solution

Lagrange basis

scaled hierarchical basis

10.80.60.40.20

1e+07

1e+06

100000

10000

1000

Lagrange basis

scaled hierarchical basis

10.80.60.40.20

1e+07

1e+06

100000

10000

1000

Fig. 4.21 Example 1: condition number of the system matrix depending on the displacement of
the circle ˝1 by "h for " 2 Œ0; 1�. Standard Lagrange basis versus the scaled hierarchical basis
introduced in Sect. 4.5.2. Left h D 1=16, right h D 1=32

h and no dependency on the shift ", while the standard approach shows very large
conditions numbers with cond2.Ah/ ! 1 for " ! 0 and " ! 1.

4.5.3.2 Example 2: Horizontal Cuts

To study the different cuts of interface patches in more detail, let us next consider a
the ˝ D .�1; 1/2, cut horizontally into

˝1."/ D ˚
x 2 ˝ ˇ̌

x2 < "h
�
; ˝2."/ D ˚

x 2 ˝ ˇ̌
x2 > "h

�
:

By varying " 2 Œ0; 1� the interface patches of a Cartesian mesh will be split into
rectangular with vertical edge lengths "h and .1 � "/h, 0 < " < 1. We choose right
hand side f D ��i�u and Dirichlet data according to the solution

u.x/ D
(
�2
�1
.x2 � "/ � .x2 � "/2 x 2 ˝1

.x2 � "/C .x2 � "/2 x 2 ˝2:
(4.42)
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h = 1
32

h = 1
16

‖u − uh‖

offset x2 = εh

10.80.60.40.20

0.002

0.0015

0.001

0.0005

0

h = 1
32

h = 1
16

‖∇(u − uh)‖

offset x2 = εh

10.80.60.40.20

0.08

0.07

0.06

0.05

0.04

0.03

Fig. 4.22 Example 2: L2- and H1-norm error depending on a vertical offset x2 D "h of the
interface

In Fig. 4.22, we plot L2-norm and H1-norm error for 0 
 " 
 1 on meshes with
patch size h D 1=16 and h D 1=32. Both errors clearly depend on the position
" of the cut. As one would expect, we get the smallest errors for " D 0; " D 1

2

and " D 1, where the mesh is perfectly uniform and resolves the cut. The largest
error given for " ! 0 and " ! 1, where the anisotropy of the interface patches is
maximal. Nevertheless, we see that the error remains bounded for all " 2 Œ0; 1�. The
variations get smaller on the finer mesh.

These variations come from the approximation property of finite element spaces
on elements with different size. If a patch is cut into equally spaces elements, the
overall error is minimal. If some of the elements are larger, they will dominate the
overall error. The variation is however limited but the size of the patch and the
variations will get smaller with smaller mesh sizes. See [153] for an analysis that
explains this variations.

4.5.3.3 Example 3: Tilted Interface Line

Next, we consider two subdomains that are separated by a straight interface line
through the origin, which might be horizontal (˛ D 0), vertical (˛ D �=2) or
inclined (0 < ˛ < �=2 or �=2 < ˛ < �). The interface I is defined by the relation
cos.˛/x2 D sin.˛/x1 given the partitioning

˝˛
1 D ˚

x 2 ˝ ˇ̌
cos.˛/x2 < sin.˛/x1

�
;

˝˛
2 D ˚

x 2 ˝ ˇ̌
cos.˛/x2 > sin.˛/x1

�
:

We choose the right hand side f D ��i�u and the Dirichlet data according to the
given exact solution

u.x/ D
8
<

:
sin
�
�2
�1
.cos.˛/x2 � sin.˛/x1/

�
; x 2 ˝1

sin .cos.˛/x2 � sin.˛/x1/ x 2 ˝2:
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h = 1
32

h = 1
16

‖u − uh‖

angle α

ππ/20

0.0003

0.0002

0.0001

0

h = 1
32

h = 1
16

‖∇(u − uh)‖

angle α

ππ/20

0.015

0.01

0.005

Fig. 4.23 Example 3: L2- and H1-norm error for a line cutting at different angles ˛ 2 Œ0; ��

In Fig. 4.23 we plot the L2- and H1-norm error for angles ˛ 2 Œ0; �� and for two
different refinement levels (h D 1=16 and h D 1=32). In the case ˛ D �=2 all the
interface patches are of type D, while in the other cases types A to C appear with all
kinds of anisotropies inside. Again, we observe linear convergence for the H1-norm
error and quadratic convergence in the L2-norm. The error varies up to a factor of
approximately

p
2 in the case of the H1-norm and about 1:05 in the L2-norm which

can be explained similarly to the case of horizontal cuts. We emphasize that these
variations are again bounded for all ˛ 2 Œ0; ��.

4.6 Discretization of Moving Interfaces

The specific problem of fluid-structure interactions—as well as of multiphase
flows—is the motion of the interface and the motion of the complete domain. Two
general approaches exist for the handing of moving domains: first, the motion can
be tracked by means of a mapping as the ALE formulation. Then, instead of moving
domains, one has to deal with additional equations and possibly new nonlinearities.
The second approach is to capture the motion and formulate all equations on moving
domains. This is the approach for the Fully Eulerian model presented in Sect. 3.6
and Chaps. 6 and 12.

Moving domains add severe difficulties to the temporal discretization. The origin
is similar to the spatial case. If the solution u.x; t/ is—across the interface—
not differentiable in time, we cannot expect proper accuracy for the difference
approximation

@tu.x; t/ � u.x; t C k/ � u.x; t/

k
(4.43)

whenever the tuples .x; t/ and .x; tCk/ belong to different parts of the domain. Here,
we briefly comment on strategies for an accurate handling of moving interfaces. For
details, we refer to [151, 154, 284].
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y

x

Ω2(t)Ω1(t)

Ω1(0)
Ω2(0)

Γ(0)

Γ(t)

t Q1 Q2

Fig. 4.24 Space-time domain with a moving interface I.t/. Partitioning of Q � R � R2 into two
space-time domains Q1[G[Q2 . At each point in time t 2 I it holds˝.t/ D ˝1.t/[I.t/[˝2.t/.
The space-time interface is given by G WD f.t; I.t//; t 2 Ig

We give a sketch of the situation in Fig. 4.24. Here a space-time domain Q �
R � Rd (d D 2 in this case) is split into two space-time domains Q1;Q2 with
interface G

Q D Q1 [ G [ Q2; ˝.t/ D ˝1.t/ [ I.t/ [˝2.t/:

On such a domain partitioning we consider the parabolic problem

@tui � div .�irui/ D fi in Qi; i D 1; 2;

u1 D u2; n � �1ru1 D n � �2ru2 on I.t/;
u.�; 0/ D u0 on ˝.0/;

u.�; t/ D 0 on @˝.t/;

(4.44)

where by �1; �2 2 RC we denote two diffusion coefficients given in the two domains
Q1;Q2. For this problem we know that a unique solution exists, if the domain has
a smooth boundary and interface, if the initial solution satisfies the compatibility
conditions

��i�u0 � f 2 H1
0.˝i.0//; i D 1; 2; �1n � ru01 D �2n � ru02;
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and if the problem data f ; u0 is sufficiently smooth, see [129]. Under these
assumptions, it holds

2X

kD0
kukk;2.2�k/ 
 c

 
1X

kD0
k f kk;2.1�k/ C ku0kH4.˝1.0/[˝2.0//

!
: (4.45)

For the norms, we have used the short notation

kukk;l WD
�
kuk2Hk.I;Hl.˝1.t///

C kuk2Hk.I;Hl.˝2.t///

�1=2
;

of the Bochner spaces

Hk;l WD Hk.I;Hl.˝1.t/// \ Hk.I;Hl.˝2.t///

The aim of this section is to suggest a temporal discretization scheme that allows
for second order accuracy.

Regarding the temporal discretization we must deal with two significant prob-
lems. First, as already stated above in (4.43), finite differences will fail across the
interface. Another, even more fundamental problem appears, if the domain itself, i.e.
the outer boundary @˝.t/ is moving in time. Then, considering (4.43) once more,
it is possible that x 2 ˝.t/ but x 62 ˝.t C k/ such that a difference approximation
cannot even be well-defined. Considering variational formulations, which usually
include terms like

.um
k � um�1

k ; /˝;

reveals yet another problem. If ˝m ¤ ˝m�1, as domains a moving, the functions
um

k 2 Vm
k and um�1

k 2 Vm�1
k come from different function spaces, such that um

k �um�1
k

is not necessarily defined. Furthermore, what is the correct test space for  and what
is the domain of integration˝? Is it ˝m�1 or ˝m?

Recent advances have been made in literature for this problem. Fries and Zilian
[159] presented a time stepping scheme based on the backward Euler method
and a number of numerical tests that indicate first-order convergence order. A
complete error analysis for this approach has been presented by Zunino [363]. For
a corresponding Crank-Nicolson-like approach, Fries and Zilian found a reduced
convergence order of 1:5. To the best of our knowledge, there is, however, no
rigorous convergence analysis available yet. A second-order scheme based on a
space-time dG(1) approach has been presented by Lehrenfeld and Reusken [223]
including error analysis in space and time. Their approach can not be generalized to
a continuous Galerkin scheme, however, as the spatial number of unknowns varies
from time step to time step in their scheme. Numerical integration is defined in 1Cd
dimensions.
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Another approach to construct accurate time stepping schemes is to apply a
transformation to a fixed reference domain OQ WD I �f Ő

1[ OI [ Ő
2g. Let OT W OQ ! Q

be such a mapping. If OT is a C2-diffeomorphism, Problem (4.44) is equivalent to

det. Or OT/
�
@t Ou � @t OT � r Ou

�
� cdiv

�
det. Or OT/ O� Or OT�1 Or Ou Or OT�T

�

D det. Or OT/Of in OQ: (4.46)

This is the ALE-transform of the parabolic model problem (see e.g.[26]). Here, the
domain Ő allows a fixed partitioning Ő D Ő

1 [ OI [ Ő
2 that does not change in

time. Standard spatial and temporal discretization is possible. However, the ALE
approach only works, if a mapping OT W OQ ! Q with sufficient regularity can be
constructed.

The approach presented here was first published in [151, 284], where a modified
space-time Galerkin approach based on a cG(1) discretization is used. An appli-
cation to the Fully Eulerian method will be presented in Chap. 12. Basically, the
space-time domain Q is split into slices Qj

I D f0g [ I1 [ � � � [ IM; Ij D .tj�1; tj�; Qj WD f.t;˝.t//; t 2 Ijg;
and on every Qj we choose linear trial and constant test functions. The trial functions
however are designed in a mixed space-time way to be aligned with the interface,
see Fig. 4.25.

In a second step, we define slices of reference domains OQj WD Ő j � Ij and a
mapping

Tm W OQm ! Qm;

see Fig. 4.26. With these notations, we can specify an equivalent (given sufficient
regularity) formulation of the parabolic interface-problem (4.44). First, by multi-
plication with a test function and integration over the space-time domain, every
solution u to (4.44) is solution to the variational formulation

u 2 X WD W.0;T/ B.u; / D . f ; /Q C .u0; .0//˝.0/ 8; (4.47)

x

t

I

I

I

Tm

G

Fig. 4.25 Illustration of the modified Galerkin trial spaces X0k ;X
1
k . The functions vk 2 X0k ;X

1
k are

polynomial on trajectories that stay within each subdomain Qi, i D 1; 2
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Im+1

Im

Im−1

Ωm
2Ωm

1

Tm−1

Tm

Tm+1

Fig. 4.26 Piecewise definition of maps Tm. The reference domain (right sketch) corresponds to
the new domain ˝m and changes in each time step

where

W.0;T/ WD fv W Q ! R W v 2 L2.I;H1
0.˝.t///; @tv 2 L2.I;H�1.˝.t///g;

and

B.u; / D .u.0/; .0//˝.t/ C
MX

mD1
Bm.u; /;

Bm.u; / D .@tu; /Qm C .�ru;r/Qm :

(4.48)

If we allow for piece-wise discontinuous (in time at tm) test functions , formula-
tion (4.47) decouples into a Galerkin time stepping scheme

Bm.u; / D . f ; /Qm C .u.tm�1/�; .tm�1/C/˝.tm�1/;

where by C=�.tm�1/ we denote the limit of  at tm�1 from the left “-” or right “+”.
Formulation (4.48) is still given on slices Qm with moving boundaries that are not
necessarily adjacent to the temporal direction t, see Fig. 4.25, such that a modified
basis is required. We can define such a basis by using the mapping Tm W OQm ! Qm,
as on OQm a standard basis can be used

uk 2 X1k D
n
v 2 C.I;H1

0.˝//
ˇ̌
ˇ .v ı Tm/jIm 2 P1.Im;H

1
0.˝//;

and v.0/ 2 H1
0.˝/

o

k 2 X0k D
n
v 2 L2.I;H1

0.˝//
ˇ̌
ˇ .v ı Tm/jIm 2 P0.Im;H

1
0.˝//;

and v.0/ 2 H1
0.˝/

o
:

(4.49)

These spaces are such that the domain partitioning at the new time step tm serves
as reference configuration, e.g. Tm is the identity ˝.tm/ 7! ˝.tm/ at tm an it maps
˝.tm�1/ 7! ˝.tm/ at the left end of the sub interval Im. Using this mapping, we can



196 4 Discretization

derive a third equivalent formulation to (4.48) as

Bm.u; / D
�

Jm@t Ou � @tTm.JF/�T
m

Orm Ou; O
�

OQm

C
�

O�.JF/�T
m

Orm Ou;F�T
m

Orm O
�

OQm
: (4.50)

Here, by Fm D OrmTm we denote the gradient of the mapping in Im, where the
notation Orm denotes the gradient with respect to the coordinates Oxm on the reference
domain Ő m. By Jm D det.Fm/ we denote its determinant. On the reference domain,
we define Ou; O� and O as

O�.Ox; t/ D �.x; t/; Ou.Ox; t/ D u.x; t/; O.Ox; t/ D .x; t/ where x D Tm.Ox; t/:

Galerkin formulations (4.48) and (4.50) require costly numerical integration. To
avoid this effort and allow for an efficient realization, we apply numerical quadrature
to (4.50) (with the midpoint rule) and define a final, approximated formulation for
the discrete problem

Bm
k .u; / D

�
J@t Ou; O/

�
OQm

�
�
@tT JF

�T Or Ou; O
�

OQm

C
�

O�JF
�T Or Ou;F�T Or O

�
OQm
;

Bk.u; / D
MX

mD1
Bm

k .u; /C .u.0/; .0//˝.0/:

(4.51)

We use the notation

Jm D 1

2
.Jm.tm/C Jm.tm�1// ;

and analogously for JF
�T
m , F

�T
m and @tTm. For discrete functions uk 2 X1k and k 2

X0k , this formulation corresponds to

Bm
k .uk; k/ D 1

k

�
J
�Oum

k � Oum�1
k

�
; Om

k /
�

OQm

� 1

2

�
@tT JF

�T Or �Oum
k C Oum�1

k

�
; Om

k

�
OQm

C 1

2

�
O�JF

�T Or �Oum
k C Oum�1

k

�
;F

�T Or Om
k

�
OQm
:

(4.52)

Remark 4.58 (Realization) This approximated formulation can be realized as a
time stepping scheme Oum�1

k ! Oum
k . In the context of fluid-structure interactions,
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the mapping Tm is not a priori given, but it depends on the deformation itself. The
mapping is designed in such a way that it must be only applied at the old time step

and to evaluate the approximations Jm, JF
�T
m . In a numerical scheme, this can be

done in a semi-implicit way using extrapolations or within a Newton iteration.
An important component of the numerical algorithm is the choice of a projection

of the solution at the previous time step um�1
k from the old to the new reference

domain. Here, high accuracy is necessary to get optimal order of convergence.
Numerical quadrature should be done exactly on an intersection of old an new mesh.
Detail for a realization with the locally modified parametric finite element approach
presented in Sect. 4.5.1 are given in [151, 284].

Given sufficient regularity of the right hand side, the initial data, the domain’s
boundary and the interface and further, given a piece-wise defined mapping Tm with
sufficient regularity, we can show the following result:

Theorem 4.59 (Modified Galerkin-Time Stepping for Parabolic Interface
Problems) Let u be solution to (4.44) with regularity (4.45). Further, let the
domain and the domain-motion be smooth (see [284] for details). Further, let uk be
the discrete solution to (4.52). Then, it holds

ku � ukkQ C ku.T/ � uk.T/kL2.˝.T//


 ck2 exp.cT/
�ku0kH4.˝1.0/[˝2.0// C k f k0;2 C k f k1;0

�
: (4.53)

For a proof, we refer to [151, 284].
We conclude with a numerical example. Let ˝ D .�1:2; 1:2/2 be a square

domain and˝1.0/ an ellipsoid within,

˝1.0/ D f.x; y/ 2 ˝; 4x2 C 16y2 < 1g; ˝2.0/ D ˝ n˝2.t/;

see Fig. 4.27. We prescribe a rotational velocity field

v.x; y/ D 1

2

�
y

�x

�
;

Fig. 4.27 Rotating ellipsoid at different points in time, t D 1:5 s; 3 s; 4:5 s; 6 s. Subset of the
spatial discretization (h D 0:075) with the locally modified parametric finite element scheme.
We do not show the mesh, but the setup of the degrees of freedom
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to transport (rotate) the inner domain˝1.t/. For transporting the domain, we choose
the Initial Point Set as introduced in Sect. 3.6.3, i.e. we define a function � as

�.�; 0/ D id; @t� C v � r� D 0; t > 0:

Then, it holds

˝1.t/ D f.x; y/ 2 ˝; �.x; y; t/ 2 ˝1.0/g; ˝2.t/ D ˝ n˝1.t/:

Using the Initial Point Set it is straightforward to define the map Tm used in the
temporal discretization, e.g. to map˝1.tm/ to ˝1.t/

Tm.t/ D �.t/�1 ı ˚.tm/:

To determine the coordinate of a point xm�1 D Tm.xm/ 2 ˝.tm�1/ we invert

�.tm�1/.xm�1/ D �.tm/.x
m/;

with help of a Newton iteration. As the outer boundary is not rotating, we extend
the deformation Tm from˝1.t/ to ˝ by a linear interpolation between the interface
and the outer boundary

Tm.t/
ˇ̌
ˇ
˝2.t/

D g.x/Tm.t/C .1 � g.x// id;

where g.�/ is linear with g D 1 on I.tm/ and g D 0 on @˝ .
On this domain layout we solve the parabolic interface problem (4.44) with the

diffusion coefficients

�1 D 1; �2 D 0:1;

and the right hand side and initial data

f .t/ D
p
1C cos.5t/; u0 D 0:

Spatial discretization is accomplished with the locally modified finite element
scheme as introduced in Sect. 4.5.1. In Fig. 4.27 we show snapshots of the modified
discretization at different points in time.

In Table 4.3 we show numerical results of the newly introduced discretization
scheme, combining the locally modified spatial finite element scheme with the
modified Galerkin time stepping scheme. We use k D h to get full second order
convergence. For comparison, we also show the results for a simpler modified dG(0)
scheme in time, using piece-wise constant test and trial functions. The results in
the table show the expected order of convergence, linear in the case of dG(0) and
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Table 4.3 L2-norm of the
solution at final time
T D 15 s and L2-norm of the
complete space-time domain
for the rotating ellipsoid

kuk.T/k˝ kukkQ

k D h dG(0) cG(1) dG(0) cG(1)

0:15 � 2�0 0.619 0.5858 2.121 2.1286

0:15 � 2�1 0.605 0.5890 2.134 2.1423

0:15 � 2�2 0.598 0.5899 2.140 2.1456

0:15 � 2�3 0.594 0.5900 2.143 2.1463

Extrap. 0.589 0.5901 2.146 2.1466

Conv. 0.87 2.01 1.11 2.08

We further show the extrapolated reference value
and the numerically observed convergence order.
Spatial discretization with the locally modified
parametric finite element scheme and temporal
discretization with the modified Galerkin time
stepping scheme

O(k2)

O(k)

dG(0)

cG(1)

End time error

time step size k

10.10.01

0.1

0.01

0.001

0.0001

1e-05

O(k2)O(k)

dG(0)

cG(1)

Space-time error

time step size k

10.10.01

0.1

0.01

0.001

0.0001

Fig. 4.28 Error at final time T D 15 s and space-time error for the rotating ellipsoid test in the
case of modified dG(0) and cG(1) Galerkin time stepping. Spatial discretization with the locally
modified parametric finite element approach

quadratic for the interface-aligned cG(1) scheme. In Fig. 4.28 we show a graphical
representation of the convergence history.

Further details and an application of this advanced time discretization method to
fluid-structure interaction problems is given in Chap. 12.



Part II
Numerical Realization

The second part of this book is devoted to the practical realization of fluid-structure
interaction problems. We will combine the theoretical consideration on different
models and equations with the discretization techniques. In the beginning we present
to alternative monolithic models for coupled fluid-structure interaction problems.
In Chap. 5 we study the Arbitrary Lagrangian Eulerian formulation. This model
must be considered as the state of the art technique for strongly coupled fluid-
structure interaction problems. We give details on the construction of the ALE
map and the realization of efficient numerical simulation tools. Second, the Fully
Eulerian formulation is introduced in Chap. 6. This newer alternative approach is
well-suited for problems with very large deformation or motion of the solid. It is
also able to handle contact problems. Again, we present the necessary discretization
and simulation tools. Chapter 7 deals with tools for the solution of the algebraic
problems arising from the discretization of the ALE and Fully Eulerian formulation.
In both cases, we have to deal with very large, nonlinear and stiff problems. Finally,
Chap. 8 introduces the concept of adaptivity for dimension reduction of the discrete
spaces. Based on a posteriori error estimators we study adaptive finite element
schemes that will allow us to significantly reduce the complexity of the discretized
systems.



Chapter 5
ALE Formulation for Fluid-structure
Interactions

The following paragraphs will be devoted to the Arbitrary Lagrangian Eulerian
(ALE) method for modeling fluid-structure interactions. Based on the equations
derived in Sect. 3.5, we describe methods for discretization in time and space. The
basic techniques have already been introduced in Chap. 4, such that we can focus
on the special characteristics of the Arbitrary Lagrangian Eulerian formulation for
fluid-structure interaction problems.

In this chapter, we will focus on a strict interpretation of the ALE formulation
for the Navier-Stokes system

J�f

�
@tv C F�1.v � @tu/ � rv

�
� div

�
J� fF�T

�
D J�f f;

div
�

JF�1v
�

D 0;

9
>=

>;
in OF ;

where the set of equations is completely mapped onto the reference coordinate
system in OF , see [126, 199, 201, 285]. In literature an alternative formulation is
often discussed [48, 120, 140, 147, 181, 221]. The problem is there mapped back
into the Eulerian coordinate system and reads

�f

�
@tv C .v � @tu/ � rv

�
� div � f D �f f;

div v D 0:

9
=

; in F.t/:

The domain mapping only enters via the additional transport term. The benefit of
this presentation is the simplicity of formulation. After every time step, the mesh
must be updated. Considering time stepping schemes, where the solution and the
domain motion enters at two distinct points in time at once, the derivation of
accurate higher order schemes is less obvious using this second formulation. From a
theoretical point of view, both formulations are equivalent. Whether one uses a fixed
mesh and the reference formulation or a moving mesh and the Eulerian formulation,

© Springer International Publishing AG 2017
T. Richter, Fluid-structure Interactions, Lecture Notes in Computational
Science and Engineering 118, DOI 10.1007/978-3-319-63970-3_5
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both problems give the same result. Considering strictly monolithically coupled
schemes, the first ALE formulation is more natural, as it allows for a variational
coupling of the two different sub-systems, see Sect. 3.5.

5.1 Time-Discretization for the FSI Problem
in ALE-Formulation

Time discretization of fluid-structure interactions is mainly governed by two specific
complexities. First, the overall stiffness of the coupled problem is by far greater than
that of the two single subproblems. This is mainly due to the coupling of a parabolic
type fluid equations with the solid equations of hyperbolic type. Second the ALE
time derivative of the domain acts as transport direction for the fluid field. This
gives rise to nonlinear couplings of temporal and spatial derivatives, which is very
uncommon for most partial differential equations.

We start by repeating the coupled system of equations describing fluid-structure
interactions in Arbitrary Lagrangian coordinates. Compare to Problem 3.11:

�
J.@tv C .F�1.v � @tu/ � r/v; �F C �

J� fF�T ;r�F D .J�f f; /F
�
JF�1 W rvT ; �

�
F D 0

.�0s@tv; /S C .F˙ s;r/S D .�0s f; /S

.@tu � v;  s/S D 0

.ru;r s/F D 0;

(5.1)

where we have reformulated the divergence condition in the fluid equations by
means of Lemma 2.61 to ease implementation and to avoid the presence of second
derivatives. For construction of the ALE map, we consider a simple harmonic
extension, see Sect. 5.3.5 for variants. For simplicity of notation, we have skipped
all hats that usually indicate use of Lagrangian or ALE coordinates. Apart from
the strong nonlinearities, this equation has some special feature with respect to
the temporal derivatives. These are not isolated but appear in coupling to spatial
derivatives

�
J
�
@tv � .F�1@tu � r/v� ; �F C : : : (5.2)

A detailed analysis of fluid flows on moving domains has been performed by
Formaggia and Nobile [143, 144]. These studies already tackle several important
aspects such as stability and order of convergence. In fluid-structure interaction, the
fluid-domain movement is caused by the solid deformation. Hence, the analysis of
fully coupled fluid-structure interaction is similar but must also include a discussion
on the solid discretization.
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A := (0.6, 0.2)M := (0.2, 0.2)
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Fig. 5.1 Configuration of the two benchmark problems. The upper figure shows the cfd bench-
mark by Schäfer and Turek, the lower figure shows the layout of the fsi benchmark by Hron and
Turek

5.1.1 Non-stationary Dynamics of Fluid-structure Interactions

We start the discussion on time-discretizations of fluid-structure interaction with
a survey on results for two benchmark problems in fluid-dynamics and for fluid-
structure interactions: In 1995, Schäfer and Turek [299] presented a benchmark
configuration for incompressible laminar flows. In 2006, Hron and Turek [200]
published results for a two dimensional fluid-structure interaction benchmark that
has been constructed on top of the cfd benchmark problem. Both problems use the
geometric configuration shown in Fig. 5.1. The main difference is an elastic beam
that is attached to the rigid obstacle. Further, the domain of the fsi problem has been
lengthened to avoid spurious feedback of the outflow boundary to the dynamics of
the oscillation.

Both problems are driven by a prescribed inflow profile vD on 
in. The full set of
parameters for both problems is given by

�cfd
f D 1 kg � m�3; �fsi

f D 103 kg � m�3

�cfd/fsi
f D 10�3 m2 � s�1; vD.0; y/ D 1:5!.t/

y.H � y/

.H=2/2
Nv;

where !.t/ D .1 � cos.�t=2// for t < 2 s and !.t/ D 1 for t � 2 s is used for
regularizing the initial data. As average speed, we consider Nv D 2m � s�1. In the
original cfd benchmark problem, Nvcfd D 1m � s�1 was considered. With the radius
of the obstacle D D 0:1, the Reynolds number is given by

Re D NvD

�
D 200:
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The description of the problem is closed by providing the material parameters of the
elastic solid

�fsi
s D 103 kg � m�3; �s D 2 � 106 kg � m�1s�2; �s D 8 � 106 kg � m�1s�2:

As quantity of interest, we consider principal boundary stresses in x- and y-direction
on the obstacle with boundary 
obs

Jdrag.v; p/ D 2

Nv2�f L

Z


obs

� fnex do;

Jlift.v; p/ D 2

Nv2�f L

Z


obs

� fney do:

(5.3)

By 
obs we denote the boundary of the circle with diameter in the case of the
cfd-benchmark and the circle with attached beam in the case of the fsi-benchmark
problem. Efficient ways for evaluating these functionals are shown in [62, 282] as
well as in Sect. 8.3.2.

Figure 5.2 shows the drag-coefficient (5.3) as function over time I D Œ0; 5� for
the two benchmark problems. Both configurations show a similar behavior with a
transient initial phase leading to a periodic oscillation with dominant frequencies
fcfd D 13Hz for the cfd benchmark and ffsi � 11Hz for the fsi problem. The
first obvious difference is the longer transient phase for the fsi benchmark problem.
An insight look into the subinterval I0 D Œ2:5; 3� reveals high frequent oscillations
fhigh � 100Hz in the drag-coefficient with a small amplitude a � 10�4 that is not
visible on the large scale. These high frequent oscillations are no numerical artifacts
but remain stable under temporal and spatial mesh refinement. They are only present
in the coupled fsi system.

Reviewing the results published by many research groups in the two surveys on
the cfd benchmark problem [299] and the fsi benchmark [199, 201] a first surprising

Fig. 5.2 Comparison of the two benchmark problems cfd and fsi. We plot the drag coefficient
as function over time. For the fsi-problem we show a detailed view of the transient oscillations
revealing high frequent modes
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observation is the choice of discretization parameters that have been necessary to
obtain approximations with appropriate accuracy: even though more than a decade
lies between both benchmark problems, the dimension of the spatial discretization
is very similar. In both cases, about 300,000 spatial degrees of freedom are sufficient
to result in output values of about 1% accuracy. The increased difficulty of the fsi
benchmark problem has been accounted for by a general use of higher order finite
elements, where most contributors to the original cfd benchmark problem relied on
lowest order finite elements. However, observing the temporal discretization, it is
found that the fsi benchmark asks for significantly finer resolution in time. While
less than 10 time steps per period of the oscillation were sufficient in the cfd case,
accurate results to the fsi benchmark problem required up to 100 time steps per
period of oscillation resulting in time steps as small as 10�3. One explanation for this
difference in temporal discretization can be found in the high frequent oscillations
that are present with small amplitude, see Fig. 5.2.

Further insight is given by a discrete Fourier analysis of the output functional
Jdrag.t/ as function over time. We analyze few oscillation of the output functional
with a very fine temporal resolution (down to k � 10�5). Figure 5.3 reveals several
dominant frequencies, at about 100Hz (see also Fig. 5.2, 500Hz and 800Hz. These
modes are stable under mesh refinement and further downscaling of the time step.
The modes belonging to higher frequencies carry less energy. But even though the
high frequent contributions take place on a much smaller scale as the dominant
oscillation ffsi � 11Hz, they must be carefully resolved to capture the overall
dynamics of the coupled benchmark problem. The key question in this respect is
the origin of these micro-oscillations. They are not present in pure fluid-dynamical
simulations. A corresponding Fourier analysis of the fluid functions J.v; p/ does
not show any overtones. Further, they are no numerical artifact, but stable under
discretization of both spatial and temporal discretization. Instead they stem from
the coupling to the hyperbolic structure equations.

A further question to be investigated is the period of oscillations in coupled
fluid-structure interaction systems. Figure 3.3 in Sect. 3.3 showed that the non-
stationary dynamics of coupled fluid-structure systems can largely vary from
pure fluid flows. Two geometrically similar problems at Reynolds number Re D
140 show a stationary behavior for a fixed and rigid body, whereas instationary
oscillations appear for a flexible body. In laminar fluid-dynamics, the frequency
of the Kármán vortex street depends on the Reynolds number of the flow, hence
on the velocity. Structural systems have their own eigenmodes. Whether a coupled
system is oscillating and which frequency and amplitude is obtained is not fully
understood [250, 261]. We investigate this problem in Chap. 11.

5.1.2 Time Stepping Schemes for Fluid-structure Interactions

There is little theoretical background on monolithic time-discretizations of fluid-
structure interactions. The main difficulty stems from the motion of the subdomains
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Fig. 5.3 Discrete Fourier analysis of the output functional (drag) shows the dominant frequency
ffsi 	 11Hz and further important sub-frequencies at about f 	 100Hz and 500Hz as well as
800Hz. These modes are stable under temporal and spatial mesh refinement

that must either be modeled explicitly in partitioned approaches or that must be
taken care of by implicit transformations of either the fluid-domain or the solid-
domain. Concentrating first on pure fluid problems on moving domains, some
crucial aspects with respect to stability and order of convergence are already identi-
fied by Formaggia and Nobile [143, 144]. In addition Fernández and Gerbeau [140]
provide a stability analysis for fluid-structure interaction problems. Several studies
with qualitative comparisons of different time stepping schemes and their long-time
behavior have been reported in [342, 348]. In the primer study and additionally in
[347] a detailed discussion on the practical realization and implementation of time
stepping schemes for ALE fluid-structure interaction is given.
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In the following, we put the attention on the strict variant of the ALE method that
completely acts on the fixed reference domains F and S, and where the complete
set of equations is mapped.

Here, the domain motion is hidden in the ALE-map Tf .x; t/ and calls for the
discretization of non-standard space-time coupled terms like, see (5.1) and (5.2):

.J.u/rvF�1.u/@tu; /F : (5.4)

Most approaches for the temporal discretization of this term are ad hoc and based
on the experience with other types of equations as Navier-Stokes of multiphase
fluids, see [198].

5.1.2.1 Derivation of Second Order Time Stepping Schemes

The derivation of a second order stable time stepping scheme is not obvious.
Specifically, regarding (5.4), two immediate reasonable choices for are given by
the secant version

 "
J.um�1/rvm�1F�1.um�1/

2
C J.um/rvmF�1.um/

2

#
um � um�1

km
; 

!
;

and the midpoint-tangent version

�	
J. Nu/r NvF�1. Nu/
 u

m � um�1

km
; 

�
;

Nu WD um�1 C um

2
; Nv WD vm�1 C vm

2
;

of the trapezoidal rule. This idea is explored in [343, 348].
A third version of a time stepping scheme can be derived by using a tem-

poral cG.1/=dG.0/-Galerkin approach of (5.4) as described in Sect. 4.1.3. Using
piecewise linear continuous trial spaces for all deformation u and velocity v in
combination with piecewise constant globally discontinuous test spaces yields the
time derivative term

��
1

6
J.um�1/rvm�1F�1.um�1/C 2

3
J. Nu/r NvF�1. Nu/

C1

6
J.um/rvmF�1.um/

�
um � um�1

km
; 

�
;

where again by Nu and Nv we denote the average of old and new approximation. Such
a Galerkin-derivation is also possible for more advanced time stepping schemes like
the fractional step theta method, see [239, 240] and Sect. 4.1.2.



210 5 ALE Formulation for Fluid-structure Interactions

Simple truncation error analysis shows second order convergence for k ! 0 in
all three cases. The leading error constants slightly differ:

C1 � 11

8
; C2 � 3

8
; C3 � 3

4
:

In numerical experiments, it is found that all of these variants show very similar
performance. Significant differences in temporal accuracy could not be found.

Finally, we point out that the Crank-Nicolson scheme applied to the elas-
tic structure equation in mixed formulation is closely related to the Newmark
scheme [23], which is one of the most prominent time-discretization techniques
in solid mechanics.

5.1.2.2 Temporal Stability

Issues of numerical stability are of utter importance for fluid-structure interaction
problems, as they consist of the coupled consideration of two different types of
equations: the incompressible Navier-Stokes equations which is of parabolic type
and that comes with smoothing properties and the hyper-elastic solid equation of
hyperbolic type that calls for good conservation properties with very little numerical
dissipation. By these considerations, the Crank-Nicolson scheme and its variants
like shifted versions [230, 266] or the fractional step theta scheme [74, 328], appear
to be ideal candidates. Further, both are second order accurate.

Motivated Heywood and Rannacher [187] and Formaggia and Nobile [144] it
is reported in [140, 348] that the discretization of the domain-motion term (5.4)
introduces further stability issues. To investigate this stability problem, we again
consult the fsi benchmark problem introduced in the previous sections. Figure 5.4
shows the drag as functional over time for an unstable pair of spatial and temporal
discretization parameters. Further, we also show the stable simulation using a
damped version of the time stepping scheme.

In a first test, we aim at obtaining a stable solution up to T D 10. On a sequence
of uniform meshes, we identify the largest time step k that is suited to generate a
stable solution. The left part of Table 5.1 shows the results. Here, we see that on
the coarsest mesh, the large step size k D 0:02 is sufficient, while on finer meshes
k < 0:004 is required. We however cannot identify a direct relationship between
mesh size and time step if we go to even finer spatial mesh resolutions.

In a second test case, we consider the (relatively large) step size k D 0:005 and
k D 0:00N3 and determine the point in time Tmax, where the solution gets unstable.
Again, we carry out this test case on different meshes. At first glance, the results in
the right part of Table 5.1 for k D 0:005 suggest a stability relationship between time
step and mesh size. The results concerning the second configuration with k D 0:00N3
however does not confirm this conjecture. Here, we can even reach a larger final
point in time Tmax on finer meshes. Further, the simulations on the finest mesh do
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development of an instability
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Fig. 5.4 Simulation for k D 0:005. Top: undamped Crank-Nicolson scheme develops an
instability. Bottom: implicitly shifted scheme produces a stable solution on I D Œ0; 10�

Table 5.1 Long-term stability of the Crank-Nicolson scheme

Time step size

Mesh-Level 0:025 0:02 0:004 0:00N3
1 � p p p
2 � � � p
3 � � � p

Mesh-Level k D 0:005 0:00N3
1 
 10 
 10

2 8:48 10:82

3 6:04 12:54

4 3:84 3:84

Left: combination of time step k and mesh size h, such that the solution is stable in the interval I D
Œ0; 10�. We cannot find a strict time step relation k � h˛ . Right: maximum interval I D Œ0; Tmax�,
where a solution could be found for k D 0:005 and k D 0:00N3, depending on the mesh-size. Here,
we also cannot identify an obvious relationship

not cease due to stability problems but due to early failure of the Newton scheme.
Altogether, it is not possible to numerically certify a strict time step restriction.
Instead we find a general stability problem for long-term simulations if we consider
the Crank-Nicolson scheme.



212 5 ALE Formulation for Fluid-structure Interactions

5.1.2.3 Stable Time-Discretization and Damping

The analysis of the fsi benchmark problem shows that the restrictive time step
condition is by stability and not by accuracy requirements. We will therefore
discuss accurate time-discretization schemes with better stability properties. A
possibility is to either resort to A-stable time-discretization schemes, or to apply
modifications of the Crank-Nicolson schemes. Two possibilities are often discussed
in literature: by a slight implicit shifting of the discretization we recover global
stability, see [186, 187, 230] and also Sect. 4.1.2:

.um � um�1; /C
�
1

2
C O.k/

�
a.um; /C

�
1

2
� O.k/

�
a.um�1; / D 0

This is sufficient for damping of accumulated errors by truncation, quadrature or
inexact solution of the algebraic systems. If the shift depends on the time step
size, the resulting scheme is still second order accurate in time. Similar results are
recovered by applying some initial time steps with the A-stable backward Euler
method, see [266]. If these few (usually two are sufficient) backward Euler steps are
introduced after every fixed time-interval, e.g. at every t D j for j D 0; 1; : : : , we
also recover sufficient stability for long term calculations. This scheme, also referred
to as Rannacher time-marching, is second order accurate.

Higher stability that is also sufficient to cover non-smooth initial data is reached
by applying strongly A-stable time-integration techniques. Here, the fractional-step
theta method appears to be an optimal choice [74]. This time stepping scheme
consists of three sub-steps that combined results in a second order, strongly A-stable
scheme that further has very good dissipation properties. It is highly preferable
to flow problems [328] and also frequently used in the analysis of fluid-structure
interactions problems [198, 201, 287, 342].

In the following, we compare the three possibilities of a non-damped Crank-
Nicolson scheme, with an implicitly shifted version using � D 1

2
C k and the

Rannacher time-marching algorithm with two steps of the backward Euler method
at times t D 0, t D 1, t D 2 and so on. In Fig. 5.5 we compare these three damping
strategies. We show the drag-coefficient (see Figs. 5.2 or 5.4 for a global view)
in the sub-intervals t 2 Œ3:5; 4:2�, t 2 Œ7:95; 8:15� and t 2 Œ9:3; 9:6�. While all
three versions are stable at initial time, Rannacher time-marching develops a first
instability after two steps of backward Euler at time t D 4, see the upper sketch in
Fig. 5.5. This instability will remain during the simulation, but it will not be further
intensified, as can be seen in the middle and right sketch of the figure. The undamped
version of the Crank-Nicolson scheme delivers stable solutions up to a moderate
time of about t D 5 but develops a strong instability that will finally lead to a
breakdown of the scheme, as can be seen in the middle and lower sketch. Finally,
the implicitly shifted version of the Crank-Nicolson scheme gives stable and good
results globally in time.

A systematic way for deriving a time stepping scheme is the detour using a
Galerkin formulation. Here, we exemplarily derive the cG(1)-method that—for
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t ∈ [3.5, 4.2]

Rannacher-Timestepping

Shifted

Not damped
t ∈ [7.95, 8.15]

t ∈ [9.3, 9.6]

Fig. 5.5 Comparison of different damping strategies: undamped Crank-Nicolson, shifted version
1
2

C k and Rannacher time-marching with two backward Euler steps at every time-unit

parabolic autonomous systems—is equivalent to the Crank-Nicolson scheme. We
find uk; fk; gk 2 X1I in the space of piece-wise linear, globally continuous functions
and use X0;dc

I as test space. On an interval Im we write

fk
ˇ̌
Im

D f m�1
k  m�1 C f m

k  
m; gk

ˇ̌
Im

D gm�1
k  m�1 C gm

k  
m;
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where

 m�1.t/ D tm � t

tm � tm�1
;  m.t/ D t � tm�1

tm � tm�1
:

5.2 Linearizations of Fluid-structure Interactions in the ALE
Framework

Discretization in time results in a sequence of quasi-stationary systems of partial
differential equations. These are highly nonlinear. Nonlinearities arise from material
laws, convective terms and in the case of fluid-structure interactions due to the
motion of the domain. Considering the strict ALE formulation with mapping of
the complete variational system to a reference domain this domain nonlinearity
is represented by the domain map T, its gradient F and determinant J. In the
following paragraphs, we will discuss different ways to linearize these quasi-
stationary systems. First of all, a straightforward way to linearize the set of equations
would be the use of explicit time stepping schemes. This however is not feasible
due to several reasons: first of all, the incompressibility constraint of the Navier-
Stokes equations (or for incompressible solids) cannot be taken care of by explicit
methods. Application of projection schemes would allow for explicit discretization
of the momentum equations. We do not follow this approach, but refer to the
literature [139, 262]. Another drawback of explicit discretization schemes is the
limited stability that will call for very strict step-size conditions. The use of small
time steps is a contrast to the benefits of monolithic schemes that allow for implicit
discretizations with large time steps.

For the following we will consider implicit schemes only. Here we focus on
time-discretization with the backward Euler method. Adaption to other single-step
schemes is straightforward. Given velocity vold and deformation uold at previous
time step we find (see Lemma 3.11)

v 2 V ; u 2 W ; pf 2 Lf ;

such that
�
�f J

�
k�1.v � vold/C F�1.v � k�1.u � uold// � rv

�
; 
�
F

C�J� fF�T ;r�F D .J�f f; /F
�
JF�1 W rvT ; �

�
F D 0

.�0s k�1.v � vold/; /S C .F˙ s;r/S D .�0s f; /S

.k�1.u � uold/ � v;  s/S D 0

.ru;r f /F D 0;
(5.5)
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for all

 2 V ;  f 2 Wf ;  s 2 Ls; �f 2 Lf :

The fluid’s stress tensor �f in ALE coordinates and the 2nd Piola Kirchhoff stress
tensor of the St. Venant Kirchhoff material are given by

� f WD �pI C �f �f .rvF�1 C F�TrvT/

˙ s WD 2�sEs C �s tr .Es/ I;
(5.6)

where the Green-Lagrangian Strain tensor is defined as

Es WD 1

2
.FTF � I/:

Finally, we denote by �f ; �
0
s ; �f ; �s and �s the material parameters describing density

of fluid and solid, kinematic viscosity, shear modulus and Lamé coefficient.
We skipped all “hat’s” denoting the use of reference coordinates. By F

and S denote the fixed reference domains of fluid and solid. The function
spaces V and W are basically the space H1.˝/d differing only in the
type of boundary values. While W D H1

0.˝/
d has Dirichlet boundary

values all around @˝ , the velocity space V D H1
0.˝I
 D/d can have a

Neumann outflow boundary 
 out
f � @˝ . The pressure space Lf D L2.F/

is defined on the fluid-domain only. The test space Wf D H1
0.F/d for the

definition of the ALE-map has homogenous Dirichlet values all around the
fluid-domain. The test space of the deformation-velocity relation is Ls D
L2.S/d .

5.2.1 Linearization by Fixed Point-Iterations

A simple approach to linearization of (5.5) is to apply fixed point-iterations. Starting
with

v.0/ D vold; u.0/ D uold;

we search for approximations v.l/ and u.l/ that converge to v and u for l ! 1. We
define

F.l/ WD I C rv.l/; J.l/ WD det F.l/
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and solve the sequence of linearized systems

�
�f J

.l�1/ �k�1.v.l/ � vold/C
CF.l�1/�1 .v.l�1/ � k�1.u.l�1/ � uold// �rv.l/

�
; 
�
F

C�J.l�1/� f .v.l/; p.l//F.l�1/
�T
;r�F D .J.l�1/�f f; /F

�
J.l�1/F.l�1/�1 W rvT ; �

�
F D 0

.�0s k�1.v.l/ � vold/; /S C .F.l�1/˙ .l/
s ;r/S D .�0s f; /S

.k�1.u.l/ � uold/� v.l/;  s/S D 0

.ru.l/;r f /F D 0;

(5.7)

with an ad hoc linearization of the solid’s stress tensor (here, given for the St. Venant
Kirchhoff material)

˙ .l/
s WD 2�sE.l/s C �s tr.E.l/s /I;

E.l/s WD 1

2

�
ru.l/ C ru.l/

T C ru.l�1/ru.l/
T
�
:

Other choices are possible. This fixed-point linearization of the fsi system is similar
to the Oseen linearization of the Navier-Stokes system, see Sect. 4.4.1. A theoretical
analysis on the convergence of this fixed-point iteration is difficult, but we will add
numerical tests using the benchmark problem fsi-3 of Hron and Turek [199], see
Sect. 5.2.3.

5.2.2 Newton Linearization for Fluid-structure Interactions
in Arbitrary Lagrangian Eulerian Formulation

In Sect. 4.4, we have seen that general fixed-point iterations for the linearization
of the Navier-Stokes system usually show very slow convergence properties, see
Fig. 4.9. Only by using Newton scheme for approximation of the nonlinear systems,
we could establish a robust and very fast converging scheme. This section will now
describe Newton linearization for fluid-structure interactions in ALE formulation.
The main difficulty will again be the handling of the domain motion, hidden in
the ALE mapping T, its gradient F and determinant J. By consulting Sect. 4.4.2,
the general Newton method for a (quasi-)stationary system of partial differential
equations in variational formulation was given as (compare (4.34))

W 2 X W A0.U.l�1//.W.l/; ˚/ D F.˚/ � A.U.l�1//.˚/; 8˚ 2 Y; (5.8)
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with

U.l/ WD U.l�1/ C !.l/W.l/: (5.9)

In the context of fluid-structure interactions in ALE formulation (discretized in time
with the backward Euler method) the last known approximationU.l�1/ 2 X is given
by

U.l�1/ WD fv.l�1/;u.l�1/; p.l�1/f g 2 X D V � W � Lf :

We denote the unknown update by

W.l/ D fz;w; qf g 2 X D V � W � Lf :

Remark 5.1 (Initial Value) Newton convergence highly depends on a good choice
of an initial approximation U.0/. In the context of non-stationary problems, a good
choice is always to use the old solution at time tn�1, hence U.0/ D U.tn�1/ D Uold.
This initial choice could even be enhanced by using a linear extrapolation of the two
last approximations, by choosing

U.0/ D U.tn�1/C tn � tn�1
tn�1 � tn�2

.U.tn�1/� U.tn�2// :

Considering the backward Euler discretization, the semilinear form A.�/.�/ is
given by (compare 5.5)

A.U/.˚/ D �
�f J

�
k�1.v � vold/C rvF�1 �v � k�1.u � uold/

��
; 
�
F

C �
J� fF�T ;r�F � .J�f f; /F

C �
JF�1 W rvT ; �

�
F

C .�0s k�1v; /S C .F˙ s;r/S
C .k�1u � v;  s/S C .ru;r f /F

(5.10)

and the right hand side F.�/ by

F.˚/ D .�0s f; /S C .�0s k�1vold; /S C .k�1uold s/S : (5.11)

To simplify the representation of the derivatives of the convective term, we have—
in (5.10)—used the relation

�
.F�1v/ � r�w D rvF�1w:
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The data term .J�f f; /F must reside in the form A.�/.�/ as the deformation
determinant J depends on the unknown deformation u. The same applies to the
old solution vold appearing in the momentum equation of the fluid problem.

The derivative A0.U.l�1//.W.l/; ˚/ in (5.8) is the Gâteaux derivative of the
semilinear form A.�/.�/, which is the directional derivative at U.l�1/ in direction W.l/

tested with ˚ . It is defined as

A0.U/.W; ˚/ WD lim
s!0

d

ds
A.U C sW/.˚/

ˇ̌
ˇ
sD0: (5.12)

On a fixed domain, we can exchange the order of differentiation and integration,
such that it holds

d

ds

�Z

˝

f .u C sw/ dx

� ˇ̌
ˇ
sD0 D

Z

˝

d

ds
f .u C sw/

ˇ̌
ˇ
sD0 dx:

Hence,

d

ds
. f .u C sw/; /˝

ˇ̌
ˇ
sD0 D �

f 0.u/w; 
�
˝
:

In the case of fluid-structure interaction, this situation is more involved, as the
motion of the domain depends on the solution. Formally, variational formulations
of fluid-structure interactions are defined on domains that depend on the solution.
Here, differentiation and integration may not be exchanged

d

ds
. f .u C sw/; /˝.u/

ˇ̌
ˇ
sD0 ¤ �

f 0.u/w; 
�
˝.u/ :

Instead, the derivative with respect to the domain of integration must be considered.
A straightforward and simple way for computing the derivative A0.�/.�; �/ is by

means of finite differences:

A0.U/.W; ˚/ D "�1 .A.U C "W/.˚/ � A.U/.˚//C O."/; " > 0 (5.13)

This approach is widely used for complex simulations [170]. The main difficulty of
finite difference approximations is the choice of ". This parameter must be small
enough, such that the approximation accuracy of the Jacobian (5.13) is high. On the
other hand, a too small value of " may cause cancellation effects and will give rise
to a substantial truncation error. An optimal choice based on a priori information
is usually not possible, see [47] where the authors investigated finite difference
approximations in the context of gradient based optimization.

If the derivatives (5.12) are to be evaluated exactly, we need to manage
the domain deformation. It will turn out, that our strict form of the Arbitrary
Lagrangian Eulerian framework that works on a fixed reference system for the
complete variational form, see (5.10) and (5.11), helps to avoid all difficulties, as
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the computational domains are fixed. We can exchange orders of differentiation
and integration. Using the alternative formulation on updated meshes, motion of
the domains must be carefully included. Fernandez and Moubachir [141] use the
concept of shape derivatives to include the mesh motion. They derive the exact
analytical Jacobian for the fluid-structure interaction system in a very similar fashion
to the present approach. Van der Zee and co workers [358, 359] describe two
different approaches for differentiation of the variational formulation. The first
approach [358] is very similar to our strict interpretation of the ALE method: the
equations are mapped to the fixed reference domain, and all differentiation is carried
out here. The second approach [359] is based on the theory of shape calculus,
see [313, 362], where the derivative with respect to the domain motion is explicitly
computed: let T.t/ W ˝ ! ˝.t/ be a sufficiently regular domain map. Then, the
following fundamental formula holds:

d

ds

Z

˝.s/
f .x/dx D

Z

@˝.s/
hn � @sT.s/if .o/do;

where n is the outward facing unit normal at the boundary of ˝.s/. We will have
to get back to this approach, when dealing with the Fully Eulerian approach in
Sect. 6.4. Here, we can rely on the strict variant of the ALE method, where all
domains are fixed.

The following theorem gives the full Jacobian of the fluid-structure interaction
problem in ALE coordinates, discretized with the backward Euler equation.

Theorem 5.2 (Jacobian for Fluid-structure Interactions in Arbitrary
Lagrangian Eulerian Coordinates) Let U D fv;u; pf g 2 X , W D fz;w; qf g 2
X and ˚ D f; f ;  s; �f g 2 Y . For the directional derivative of (5.10) at U in
direction of W, it holds:

A0.U/.W ; ˚/ D
�
�f J

�
k�1z C rzF�1

�
v � u � uold

k

�
C rvF�1z

�
; 

�

F

C
�

J
d� f

dv
.W/F�T ;r

�

F
� �

JF�Tqf ;r
�
F

C �
.JF�1 W rzT ; �

�
F

C
�
�f J tr .F�1rw/

�
k�1.v � vold/C

rvF�1 �v � k�1.u � uold/
� �
; 
�

F

� ��f JrvF�1rwF�1 �v � k�1.u � uold/
�
; 
�
F

� ��f JrvF�1k�1w; 
�
F

C �
J tr .F�1rw/� fF�T ;r�F � �

J� fF�TrwTF�T ;r�F
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C
�

J
d� f

du
.W/F�T ;r

�

F

C�J.F�T W rw/.F�1 W rvT/; �
�
F � �

JF�1rwF�1 W rvT ; �
�
F

C �
�0s k�1z; 

�
S C

�
rw˙ s C F

d˙ s

du
.W/;r

�

S

�.z;  s/S C .k�1w;  s/S

C �rw;r f
�
F ; (5.14)

where the directional derivatives of the Navier-Stokes stress tensor are given by

d

dv
� f .U/.z/ D �f �f .rzfF�1 C F�TrzT

f /;

d

du
� f .U/.w/ D ��f �f

�rvF�1rwF�1 C F�TrwTF�TrvT
�
;

and where the directional derivatives of the St. Venant Kirchhoff material’s tensor
are given by

d˙ s

du
.U/.w/ D 2�s

dEs

du
.W/C �s tr

�
dEs

du
.W/

�
;

dEs

du
.W/ D 1

2
.rwTF C FTrw/

Proof The proof is split into different part by a partitioning of the semilinear
form (5.10) into subparts for Navier-Stokes momentum equation

Am;f .U/.˚/ D �
�f J

�
k�1.v � vold/C F�1.v � k�1.u � uold// � rv

�
; 
�
F

C �
J� fF�T ;r�F � .J�f f; /F ; (5.15)

the equation for divergence freeness

Adiv;f .U/.˚/ D �
JF�1 W rvT ; �f

�
F ; (5.16)

the momentum equation of the solid problem and the velocity deformation relation

Am;s.U/.˚/ D .�0s k�1v; /S C .F˙ s;r/S ;
Auv;s.U/.˚/ D .k�1u � v;  s/S ;

(5.17)
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and finally the (harmonic) extension of the deformation that defines the ALE
mapping

Aale;f .U/.˚/ D .ru;r f /F : (5.18)

The full variational form A.U/.˚/ is given as the sum of Am;f .U/.˚/ C
Adiv;f .U/.˚/C Am;s.U/.˚/C Auv;s.U/.˚/C Aale;f .U/.˚/.

Calculation of the different derivatives of these forms with respect to v, u and pf

is done in the following lemmas. First, in Lemma 5.3 we deal with the derivatives
of ANS.�/.�/ and Adiv.�/.�/ (the Navier-Stokes part). The Jacobian for the harmonic
ALE extension (a linear operator) is easily available. Then, Lemma 5.5 shows the
directional derivatives of the structure equation. And finally, Lemma 5.6 takes care
of the derivatives of the Navier-Stokes part with respect to the artificial domain
motion. This part only comes from the ALE formulation and would not be present
in Eulerian formulations of the Navier-Stokes problem. ut
Lemma 5.3 (Derivatives of the Navier-Stokes Equations with Respect to Veloc-
ity and Pressure) For the directional derivatives of Am;f and Adiv;f in direction of
velocity v and pressure pf it holds

Am;f
v .U/.W; ˚/ D �

�f Jk�1z; 
�
F

C
�
�f J

�
rzF�1

�
v � u � uold

k

�
C rvF�1z

�
; 

�

F

C
�

J
d� f

dv
.W/F�T ;r

�

F
;

Am;f
pf
.U/.W; ˚/ D � �JF�T qf ;r

�
F ;

Adiv;f
v .U/.W; ˚/ D �

JF�1 W rzT ; �f
�
F :

The derivative of the fluid’s stress tensor is given by

d� f

dv
.W/ D �f �f .rzfF�1 C FT rzT

f /:

Proof By the definition of the Gâteaux derivative (5.12), calculation of the deriva-
tives is given by standard scalar differentiation, as the order of integration and
differentiation can be exchanged. For the derivatives of the stress tensor, consult
its ALE form (5.6). For basics on the linearization of the Navier-Stokes equations,
see Sect. 4.4.2. ut

Before proceeding with the St. Venant Kirchhoff material and the derivatives
of the ALE formulation with respect to the deformation, we gather some useful
relations.
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Lemma 5.4 (Derivatives of the Deformation Gradient) Let F WD I C ru and
J WD det F its gradient. It holds

.i/
dF
du
.w/ D rw;

.ii/
dFT

du
.w/ D rwT ;

.iii/
dF�1

du
.w/ D �F�1rwF�1;

.iv/
dF�T

du
.w/ D �F�TrwTF�T ;

.v/
dJ

du
.w/ D JF�T W rw D J tr.F�1rw/

Proof Relations (i) and (ii) are directly available. For showing relation (iii) we
differentiate the identity F�1F D I and use (i) to obtain

d

du

�
F�1F

�
.w/ D d

du
I.w/ D 0 ) dF�1

du
.w/F C F�1 dF

du
.w/ D 0:

Multiplication with F�1 gives the result:

dF�1

du
.w/ D �F�1rwF�1:

(iv) is the transpose of (iii). Relation (v) can be shown by component-wise
calculation. ut
With Lemma 5.4, we can now compute the Jacobian of the elastic structure
equations with respect to velocity and deformation:

Lemma 5.5 (Derivative of the Structure Equation with Respect to Velocity and
Deformation) It holds for the derivatives of the elastic structure equation in
reference coordinates with respect to velocity and deformation:

Am;s
v .U/.W; ˚/ D �

�0s k�1z; 
�
S

Am;s
u .U/.W; ˚/ D

�
rw˙ s C F

d˙ s

du
.W/;r

�

S
;

Auv;s
v .U/.W; ˚/ D �.z;  s/S ;

Auv;s
u .U/.W; ˚/ D .k�1w;  s/S ;
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where the derivative of the 2nd Piola Kirchhoff stress tensor ˙ s (of the St. Venant
Kirchhoff material) is given by

d˙ s

du
.W/ D 2�s

dEs

du
.W/C �s tr

�
dEs

du
.W/

�
;

and the derivative of the Green-Lagrangian strain tensor Es by

dEs

du
.W/ D 1

2
.rwTF C FTrw/:

Proof These relations follow using (i) and (ii) of Lemma 5.4. ut.
Finally, it remains to gather all derivatives with respect to the ALE domain map-

ping. Omitting some of the derivatives (which here correspond to the dependency
of the domain motion) relates to a simplified Newton method, see Sect. 5.2.3 for a
numerical study.

Lemma 5.6 (Derivative of the Navier-Stokes Equations with Respect to the
Domain Motion) It holds for the derivatives of the Navier-Stokes equations in
ALE coordinates with respect to the domain motion u

Am;f
u .U/.W; ˚/ D �

�f tr .F�1rw/
�
k�1.v � vold/C

rvF�1 �v � k�1.u � uold/
��
; 
�
F

� �
�f JrvF�1rwF�1 �v � k�1.u � uold/

�
; 
�
F

� �
�f JrvF�1k�1w; 

�
F

C �
tr .F�1rw/� fF�T ;r�F � �

J� fF�T rwTF�T ;r�F
C
�

J
d� f

du
.W/F�T ;r

�

F
;

Adiv;f
u .U/.W; ˚/ D �

div
�
tr .F�1rw/F�1v

�
; �f
�
F

� �
div

�
JF�1rwF�1� ; �f

�
F :

where the derivative of the stress tensor with respect to the domain motion is given
by

d� f

du
.W/ D ��f �f

�rvF�1rwF�1 C F�TrwTF�TrvT
�

Proof Again, all these derivatives can be estimated by tedious calculations and
frequent use of Lemma 5.4. ut
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Further details on the computation of the Jacobian are given in [280], where the
derivatives of the stationary fluid-structure interaction system are derived.

With the Jacobian of the fluid-structure interaction system at hand, we can
formulate the linear systems of partial differential equations that define every step
of the Newton approximation

A0.U.l�1//.W.l/; ˚/ D F.˚/� A.U.l�1//.˚/ 8˚ 2 Y: (5.19)

The variational formulation defined by A0.�/.�; �/ given in Theorem 5.2 is complex, it
couples all different variables, but it is a linear problem. Finite element discretization
of this problem will be subject to the following section. Later on, in Chap. 7, we will
discuss the solution of the resulting (after discretization) linear systems of equations.

In every step of the Newton iteration, Eq. (5.19) is itself a coupled problem on
the two domains F and S. On the common interface, three coupling conditions
are given. First, continuity of the velocity variation z, second continuity of the
deformation’s variation w and finally, a Neumann condition that comes from the
linearization of the dynamic coupling condition. For deriving its exact formulation,
one would have to transform the Jacobian A0.U/.W; ˚/ back to the classical
formulation.

A modern alternative to the analytical computation of the Jacobian is given
by the idea of automatic differentiation, see Rall [264] and Griewank [171].
Automatic differentiation is an algorithmic approach that is based on the concept
that every computer implementation, e.g. the implementation of the semilinear
form A.�/.�/ will internally be split into a sequence of elementary mathematical
operations (like multiplications, roots, basis functions like sine or cosine etc.). These
elementary operations are then derived and set together using chain and product rule.
Dunne [127] presents and implementation of a Newton method for fluid-structure
interactions in ALE formulation based on automatic differentiation. In particular, if
different complex models are studied, automatic differentiation will help to compute
exact Jacobians in a fail-proof way. It will for instance be easy to implement
complex and changing material laws. The concept of automatic differentiation is
not to be confused with finite differences, where derivatives are only approximated.

Remark 5.7 (Inexact Newton Iteration) The assembly of the Jacobian is a very
costly step within the Newton iteration. Considering the necessity to solve linear
systems afterwards, a change of the Jacobian usually calls for additional work
regarding the preparation of preconditioners in Krylov-Subspace iterations or
smoothers in multigrid solvers, see Chap. 7. In the worst case, when direct solvers
must be used to approximate the linear systems, a modification of the Jacobian
also calls for a new decomposition of it. Hence, assembling the Jacobian must be
prevented, whenever the overall efficiency does not require it. As linear systems are
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usually only approximated up to a given tolerance, full quadratic convergence of the
Newton method itself cannot be expected. Therefore, we only update the Jacobian,
if the nonlinear convergence rate that can easily be measured as

�n D kF.�/� A.Un/.�/k1
kF.�/� A.U.n�1//.�/k1

; (5.20)

is above a given threshold 	nt. A good balance depends on the required tolerance
and the efficiency of the linear solver. Usually, 	nt � 0:01 � 0:1.

5.2.3 Numerical Study on Linearizations

We present a study on the linearization on the performance of different linearization
techniques applied to the non-stationary benchmark problem fsi-3 introduced by
Hron and Turek [200]. We have used this test case to study time discretizations
in Sect. 5.1. Here we analyze the performance of the different choices for a
linearization of the nonlinear problems. We investigate the time interval I D Œ5; 5:5�,
where the oscillation is fully developed, such that significant deformations appear.
This is important to account for the geometric nonlinearities that come from the
ALE mapping, see Fig. 5.6.

All numerical studies are carried out with the implicitly shifted Crank-Nicolson
scheme, see Sect. 4.1.2.1 with � chosen as

� D 1

2
C 2k;

time

vertical deflection

6543210

0.05
0.04
0.03
0.02
0.01

0
−0.01
−0.02
−0.03
−0.04
−0.05

Fig. 5.6 Benchmark problem fsi-3. Vertical deflection of the tip of the beam as functional over
time. We perform the numerical study on different linearization techniques in the sub-interval
I D Œ5; 5:5�, where the dynamics of the flow is fully developed
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where by k we denote the time step size. If not specified otherwise, we choose

k D 0:005;

such that a total of N D 100 steps is investigated and the effective parameter � D
0:51 is picked. For spatial discretization we choose equal-order biquadratic elements
on a mesh with about 4000 unknowns.

In every time step, the nonlinear problems are approximated such that the initial
residual is reduced by eight orders of magnitude

kF.�/� A.Un/.�/k1 
 tolkF.�/� A.U0/.�/k1; tol D 10�8:

The linear systems are solved by a direct method to prevent side-effects of not-
sufficient accuracy.

In a first study, we compare the effects of the parameter 	nt in (5.20), controlling
the limiting reduction rate, where a new Jacobian is assembled. We choose the
parameters

	nt 2 f0; 0:2; 0:5g;

where 	nt D 0 corresponds to the exact Newton method with a new Jacobian in
every step. Quadratic convergence should be reached.

In Fig. 5.7, we show the number of Newton steps required in every time step.
Furthermore, we show the assembly-count of the Jacobian. Finally, we indicate
the overall number of Jacobians and the overall computational time spend in the
complete cycle I D Œ5; 5:5�.

All computations in this section are carried out on a Intel Xeon X5650 cpu using
single core performance at 2:67GHz. It can be seen that the number of Newton
steps undergoes a certain periodicity. This is directly connected to the oscillation of
the solution itself, see Fig. 5.6. Given a large deformation u, the ALE-mapping has
a significant nonlinear impact.

We observe that the number of required Newton steps increases, if the threshold
	nt is enlarged. For the pure Newton scheme, a maximum of 7 steps is required,
whereas for 	nt D 1 a maximum of 15 steps is used. However, a smaller choice
of 	nt calls for a higher number of Jacobians to be assembled. For 	nt D 0, a new
Jacobian is assembled in every single step of the Newton iteration. Considering the
computational time, this is a severe drawback as can be seen in the bottom plot
of Fig. 5.7. Here, the cost for assembling matrix and setting up the decomposition
for the direct solver is so high that the overall computational time is best for the
choice 	nt D 0:5. In the table below Fig. 5.7 we indicate the accumulated time for
all time steps in the interval I D Œ5; 5:5�. Choosing 	nt D 0:2 saves about 22% of
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Number of Newton iterations

γnt = 0.5γnt = 0.05γnt = 016

14

12

10

8

6

4

2

Number of Jacobians assembled
8

7

6

5

4

3

2

1

0

Overall computational time

1009080706050403020100

55
50
45
40
35
30
25
20
15
10
5

Matrix assembly tolerance γnt 0.0 0.2 0.5

Total Newton steps 532 777 938
Jacobians assembled 532 304 280
Total time (seconds) 3 099 2 388 2 250

Fig. 5.7 Comparison of the Newton iteration for different values of 	nt, controlling the
convergence-rate threshold, where a new Jacobian is assembled. The table shows the accumulated
number of Newton steps, assemblies of the Jacobian and the total time (in seconds) for all 100 time
steps
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the computational time compared to 	nt D 0 which corresponds to the full Newton
method. The choice 	nt D 0:5 increases the savings to 27%. This result however
cannot be generalized, as a more efficient linear solver will have less overhead.
Furthermore, increasing the effect of the nonlinearity, a too large value of 	nt could
severely increase the iteration count.

Next, in Fig. 5.8, we show the results for an approximation of the Jacobian by
finite differences, i.e.

d

ds
A.U C sW/.˚/

ˇ̌
ˇ
sD0 D A.U C "W/.˚/� A.U/.˚/

"
C O."/:

Approximation of the Jacobian by finite differences calls for multiple evaluations of
the residual. First, we must compute

R0 D A.U/.˚/;

then, we compute the directional derivatives with respect to the different compo-
nents of velocity, deformation and pressure, i.e.

Rvi D A.U C "zi/.˚/; Rui D A.U C "wi/.˚/; Rp D A.U C "q/.˚/;

for i D 1; : : : ; d. Altogether, 6 residual evaluations are required in 2d and 9 in 3d.
By using a central difference approximation, this effort is even increased. The step
size has to be chosen with care. For " D 10�6 we get a Newton-convergence that
is comparable to the analytical evaluation of the Jacobian, see Fig. 5.8. However
both for larger and smaller values of ", the approximation quality worsens, such
that a significant overhead appears. For " D 10�9, the approximation is governed
by numerical cancellation effects. We have chosen 	nt D 0:2 in all three cases.
Comparing the summed values for the number of Newton steps and the number
of Jacobian assemblies we see that the choice " D 10�6 leads to similar results
compared to the table in Fig. 5.7 in the case 	nt D 0:2. However, it turns out that
using a finite difference approximation is more costly. Even if the Jacobian is so
accurate that the Newton convergence is the same as in the case of an analytical
Jacobian, the overall computational time is higher. If the finite difference parameter
" is not optimally chosen, the overall time can dramatically increase.

In Fig. 5.9 we directly compare the finite difference approximation to the analyti-
cal Jacobian. The number of Newton steps is about the same, the computational time
for the difference approximation however is larger. This is due to the increased cost
for the assembly of one single Jacobian. On a mesh with about 4000 unknowns,
it took an average of about tJ � 6:2 s to approximate the Jacobian with finite
differences versus only tJ � 1:5 s, if the analytic derivation of the derivatives is
used.
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Number of Newton iterations

ε = 10−9ε = 10−6ε = 10−330

25

20

15

10

5

Number of Jacobians assembled
30

25

20

15

10

5

0

Overall computational time

1009080706050403020100

350

300

250

200

150

100

50

0

Finite difference parameter ε 10−3 10−6 10−9

Total Newton steps 1 366 786 2 313
Jacobians assembled 525 307 2 121
Total time (seconds) 6 561 3 885 23 171

Fig. 5.8 Comparison of the Newton iteration with finite different approximation of the Jacobian
A0.U/.˚/ 	 "�1.A.U C "W/.˚/ � A.U/.˚//. Different values of the step-size ". The table
shows the accumulated number of Newton steps, assemblies of the Jacobian and the total time (in
seconds) for all 100 time steps
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Number of Newton iterations

Finite Difference Approximation
Analytical Jacobian16

14

12

10

8

6

4

2

Overall computational time

1009080706050403020100

65
60
55
50
45
40
35
30
25
20
15
10

Fig. 5.9 Comparison of the Newton iteration with analytical and finite difference approximation
of the Jacobian (using step-size " D 10�6)

We note that we used a direct solver for these calculations. On the present mesh,
the time for decomposing the matrix is about 5 s in both cases, analytic evaluation
and finite difference approximation.

Finally, we consider an inexact version of the Newton method, where the very
costly derivatives with respect to the ALE mapping are neglected. In Fig. 5.10
we compare the Newton iteration considering a full Jacobian with the Newton
iteration using the reduced Jacobian. We show the iteration count and the overall
time spent in every Newton iteration. We observe that the reduced Jacobian yields
a slightly larger iteration count. The overall time is reduced, as the assembly
of each Jacobian takes only 1:25 s instead of 1:5 s for the full variant. Again
we note that the effect would be stronger, if a more efficient linear solver is
used.
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Number of Newton iterations

Reduced JacobianFull Jacobian
14

12

10

8

6

4

Overall computational time

1009080706050403020100

70
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30

20

10

0

Jacobian approximation full approximated

Total Newton steps 777 902
Jacobians assembled 304 318
Total time (seconds) 2 388 1 937

Fig. 5.10 Comparison of the Newton iteration with full and reduced Jacobian. The table shows
the accumulated number of Newton steps and Jacobian assembles as well as the computational
time (in seconds) for all 100 time steps

5.3 Finite Elements for Fluid-structure Interactions in ALE
Formulation

Every step of the Newton iteration requires the solution of a linear system of partial
differential equations, compare (5.19)

W .l/ WD fz.l/;w.l/; q.l/f g 2 X WD V � W � Lf W
A0.U.l�1//.W.l/; ˚/ D G.˚/

8˚ WD f; f ;  s; �f g 2 V � Wf � Ls � Lf :
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In the context of the backward Euler discretization of fluid-structure interactions on
a fixed ALE domain, the bilinear-form A0.U/.�; �/ is given as in Theorem 5.2. The
right hand side is given by

G.˚/ WD F.˚/ � A.U.l�1//.˚/;

where U.l�1/ is the last Newton approximation and A.U.l�1//.˚/ and F.˚/ are
shown in (5.10) and (5.11). Trial spaces for velocity and deformation are defined
on the whole domain

V WD H1
0.˝I
 D/d; W WD H1

0.˝I @˝/d;

and differ in the choice of boundary values only. See Sect. 3.4 for a discussion.
The test function  2 V for both momentum equations is also defined on the

complete domain˝ . All further test functions are defined sub-domain wise

Lf WD L2.F/; Wf WD H1
0.F/d; Ls WD L2.S/d:

In the following, we will focus on the finite element discretization of these linear
systems

W 2 X W A.W; ˚/ D G.˚/ 8˚ 2 Y; (5.21)

where A.�; �/ is bilinear on X � Y . Discretization is accomplished by restricting
solution and test function to discrete spaces

Wh 2 Xh W A.Wh; ˚h/C Sh.Wh; ˚h/ D G.˚h/ 8˚ 2 Yh; (5.22)

where Sh.�; �/ defines some possible stabilization terms, see Sects. 4.3.2 and 4.4.3.

Remark 5.8 (Properties of Finite Element Spaces) For the choice of finite element
spaces Xh and Yh must consider the following properties

1. For a conforming (Petrov)-Galerkin formulation it must hold Xh � X and
Yh � Y .

2. The dimension of test and trial spaces must coincide

dim Xh D dim Yh:

3. The velocity- and pressure-coupling fvh; phg within the fluid-domain must satisfy
the inf-sup condition. Otherwise, the variational formulation has to be enriched
by stabilization terms Sh.�; �/, see Sect. 4.3.2.

4. For implementation reasons, it is preferable to consider finite element spaces for
velocity and deformation of the same type on F and S.
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5. As global velocity and deformation are continuous on the complete domain ˝ ,
but not differentiable across the interface I, it is preferable, if the interface
is resolved by the triangulation. Otherwise, the order of convergence will be
reduced, see Sect. 4.5, unless special manners are taken.

In the following we will discuss different choices of finite element triples for
velocity, deformation and pressure. Besides conforming finite element spaces
with continuous velocities and deformations the choice of discontinuous Galerkin
methods is possible and also applied in the context of fluid-structure interactions,
see Feistauer and coworkers [138].

5.3.1 Finite Element Triangulations for Fluid-structure
Interactions in ALE Formulation

The benefit of the formulation in Arbitrary Lagrangian Eulerian coordinates is the
fixation of the sub-domains F and S, separated by the interface I. We define:

Definition 5.9 (Matching Mesh) A triangulation ˝h of the domain ˝ is called a
matching mesh, if for every element K 2 ˝h it holds

�
K � S ^ K \ F D ;

�
_
�

K � F ^ K \ S D ;
�
:

For a matching triangulation, we define the sub-triangulations

˝h;f WD fK 2 ˝h j K � Fg; ˝h;s WD fK 2 ˝h j K � Sg:

This definition implies that a matching mesh always resolves the interface I
between fluid and solid by edges of elements, such that we can define

Ih WD fe 2 @K; K 2 ˝h; e 2 Ig;

and it holds

NI D
[

e2Ih

Ne:

This directly shows that matching meshes in this strict sense are only possible, if
the interface I (in reference coordinates) is a polygonal, or if the interface can be
described by low order polynomials, and if a parametric finite element triangulation
is considered, see Definition 4.17. Here, we will always assume that all finite
element meshes are matching.
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F FS S F
S

Fig. 5.11 Example of a matching mesh (left) and non-matching mesh (middle). The right sketch
shows a generalized matching mesh at a curved interface. See Remark 5.10

Remark 5.10 (Approximation of Curved Interfaces) If the interface between fluid
and solid is curved, such that it cannot be exactly resolved by the mesh, the strict
definition of matching meshes is not applicable and will be relaxed: we will call a
mesh matching, if all degrees of freedom used to define the parametric triangulation
(see Definition 4.17) are either all part of the solid-domain NS or all part of the fluid-
domain NF . See Fig. 5.11 for examples of matching and non-matching triangulations.

In the finite element error analysis, the consideration of curved interfaces that
cannot be resolved by the mesh (and hence not by the finite element spaces) is still
an open problem.

It is not strictly required that one uses matching meshes for discretizing fluid-
structure interactions. The use of matching meshes just simplifies the embedding
of the coupling conditions, as we can define global function spaces Vh and Wh for
velocity, deformation and the momentum equation’s test function and restrict these
global functions to the two sub-domains. By this approach, coupling will turn out to
be as simple as in the continuous case, see Sect. 3.4.

Lemma 5.11 (Finite Elements Spaces on Matching Meshes) Let ˝h be a
matching mesh of the domain ˝ and Vh the standard space of continuous elements
of degree r � 1 with Lagrangian basis Vh D spanf.i/h ; i D 1; : : : ;Ng, e.g.


.i/
h .xj/ D ıij; i; j 2 f1; : : : ;Ng:

See Sect. 4.2.1. The subspaces

Vh;f WD spanf.i/h 2 Vh; xi 2 NF n Ig;
Vh;s WD spanf.i/h 2 Vh; xi 2 NSg;

define a division of Vh,

Vh D Vh;f C Vh;s; dim Vh D dim Vh;f C dim Vh;s: (5.23)
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The space Vh;f is H1
0.F I I/ conforming, the space Vh;s is H1.S/-conforming.

Proof For .i/h with xi 2 NF , but xi 62 I, it holds on matching triangulations that

supp .i/h 2 F :

Hence, Vh;f � H1
0.F I I/. The relation Vh;s � H1.S/ directly follows due to the

continuity of Vh � C. N̋ /. Further, the dimension formula (5.23) follows, as the
partitioning of Lagrange points xi 2 ˝h to those on the interior of solid and fluid
and those on the interface is unique. ut

This lemma appears trivial, but it is essential for the following approach: if a
global finite element function vh 2 Vh is given, we can define restrictions vh;f 2 Vh;f

and vh;s 2 Vh;s in the two subspaces. This allows us to hide the coupling conditions
in global trial and test spaces.

5.3.2 Inf-Sup Stable FE-Spaces for Fluid-structure
Interactions in ALE Formulation

We will start by introducing some finite element triples (for velocity, deformation
and pressure) that fulfill as many of the desirable properties from Remark 5.8. Let
˝h be a matching triangulation. We will denote the velocity space by

vh 2 Vh;

and the global deformation space by

uh 2 Wh:

On the two sup-domains of the matching triangulation, we define the restrictions
vh;f ; vh;s and uh;f ;uh;s. We will denote the discrete pressure space by Lh;f .

As discussed in Sect. 4.3, the fluid’s finite element pair for velocity Vh;f and
pressure Lh;f must satisfy the inf-sup condition (in ALE coordinates):

inf
ph2Lh;f

sup
vh2Vh;f

. ph; div .JfF�1
f vh//F

kJ
1
2

f phkFkJ
1
2

f rvhF�T
f kF

� O	h: (5.24)

where Ff and J D det Ff come from the ALE-map. In terms of a computational
finite element approach, the ALE-map is not a continuous, regular function, but
itself defined by means of finite element functions

Fh WD I C ruh; Jh WD det Fh:
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In the following we will skip the index “h”. The discussion of Sect. 2.5.2 has shown
that the inf-sup condition in ALE formulation (5.24) is equivalent to the standard
version of the inf-sup condition on the reference domains,

inf
ph2Lh;f

sup
vh2Vh;f

. ph; div vh/F
kphkFkrvhkF � 	; (5.25)

if the domain mapping sufficiently regular. The two inf-sup constants however can
significantly differ,

0 < O	 � 	;

if the deformation of the domain is large. An analysis of the inf-sup condition on
transformed domains is given in [247]. By these considerations, we suggest the
following choices of finite element triples for velocity, deformation and pressure.
See also Fig. 5.12:

1. The generalized Taylor-Hood space

ŒQk�d � ŒQk�d � Qk�1; k � 2;

on quadrilateral meshes and

ŒP2�d � ŒP2�d � P1; ŒPk�d � ŒPk�d � Pk�2; k � 3;

on triangular meshes. These spaces are inf-sup stable. Further, they have the
simple property that deformation and velocity come from the same space. Finally,
velocity and deformation spaces are the same on both parts of the domain.

Fh

Sh Γ out
fΓ in

f

Fig. 5.12 The Q2�Q2�Q1 finite element triple for velocity, deformation and pressure. By a cross
symbol we denote pressure degrees of freedom and by filled dot degrees of freedom in velocity and
deformation. By a circled dot we denote velocity degrees of freedom on the outflow boundary,
where no deformation degree of freedom exists
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2. The generalized Taylor-Hood spaces with discontinuous pressure

ŒQk�d � ŒQk�d � Pk�1;dc; k � 2;

on quadrilateral meshes and the bulb-enriched space

ŒP2;bulb�d � ŒP2�d � P1;dc;

on triangular meshes. These two combinations have the same properties as the
Taylor-Hood elements. Applications usually shows better solution quality (in
particular on coarse meshes) due to local conservation properties that come from
the use of discontinuous pressures.

Another advantage comes to the fore, if incompressible materials are consid-
ered, see Sect. 2.2.3. These material laws require the introduction of a second
pressure variable ps 2 L2.S/. As there is no physical reason for continuity of the
two pressures pf and ps at the interface I, the two discrete variables must be sep-
arated. Using continuous finite elements, this would cause technical problems,
as there is only one Lagrange point on the interface. As the discontinuous space
Pk�1;dc is defined in an element-wise manner, implementation is simplified. We
can define one global pressure ph 2 Lh and define fluid- and solid-pressure as
restrictions:

ph;f D ph

ˇ̌
ˇ
F
; ph;s D ph

ˇ̌
ˇ
S
:

For the definition of the test spaces, we need to pay special attention to the
interface. While velocity and deformation are defined in a global way, only the test
space  2 V for the momentum equation is defined on the complete domain˝ . The
test functions for extension of the deformation f 2 Wf as well as the test space for
the deformation-velocity relation  s 2 Ls must be decoupled at the interface. Based
on the second (just as example) choices of finite element spaces, we define

Vh WD spanfh 2 C.˝/d; .i/h piece-wise quadratic; h D 0 on 
 Dg;
Wh WD spanfh 2 C.˝/d; .i/h piece-wise quadratic h D 0 on @˝g;
Lh;f WD spanf�h 2 L2.F/; �.i/h piece-wise linearg;

Wf ;h WD spanfh 2 C.F/d; .i/h piece-wise quadratich D 0 on @Fg
Ls;h WD spanfh 2 C.S/d; .i/h piece-wise quadraticg:

(5.26)

With this construction of finite element spaces, we can define a well-posed discrete
finite element approximation of the backward-Euler discretization for fluid-structure
interactions in Arbitrary Lagrangian Eulerian coordinates:
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Problem 5.12 (Finite Element Discretization of the fsi-System in ALE Formu-
lation) Let A.�; �/ be given by (5.10), F.�/ by (5.11). The Jacobian A.U/.�; �/ is given
by Theorem 5.2. Given the last discrete Newton approximation U.l�1/h 2 Xh, find

W.l/
h WD fvh;uh; pf ;hg 2 Xh WD Vh � Wh � Lh;f ;

such that

A0.U.l�1/h /.W.l/
h ; ˚h/ D F.˚h/� A.U.l�1/h /.˚h/ (5.27)

for all

˚h WD fh;  h;f ;  h;s; �h;f g 2 Yh WD Vh � Wh;f � Lh;s � Lh;f :

The Newton update problem in step (5.27) defines a linear system of equations.
Chapter 7 will be devoted to the solution of this linear problem. First we note that
for our choice of finite element spaces (5.26), the system of equations is quadratic,
i.e., the number of unknowns equals the number of equations.

5.3.3 Stabilized Finite Elements for Fluid-structure
Interactions

In Sect. 4.3.2, we have introduced concepts for stabilizing finite element pairs that
do not satisfy the inf-sup condition. Here, we want to shortly apply this concept
to the discretization of fluid-structure interactions. The basic idea was to either
modify the test space by a Petrov-Galerkin approach, or to modify the variational
formulation by adding stabilization terms Sh.�; �/. This latter approach is more
general and also covers Petrov-Galerkin discretizations. We shortly discuss the very
simple case of the non-conforming pressure stabilization used in Lemma 4.47. The
linearized discrete variational formulation is enriched by a pressure stabilization
term

A0
h.Uh/.Wh; ˚h/ WD A.Uh/.Wh; ˚h/C Sh.Wh; ˚h/:

For the proper definition of pressure stabilization in Arbitrary Lagrangian Eule-
rian formulation, we must transfer the standard method from Eulerian coordinates
to the fixed reference system. Hence, let—just for the following discussion— OF be
the reference fluid domain and F be the current Eulerian fluid-domain in the current
time step. Then, the pressure stabilization term in Eulerian coordinates on F was
defined as

Sh.Uh; ˚h/ WD .˛stabrph;r�h/F ; (5.28)
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with an element-wise defined stabilization parameter

˛stab

ˇ̌
ˇ
K

D ˛0

�
�f

h2K
C kvkL1.K/

hK

�
;

see Sect. 4.3.2. The mesh-size hK would be the mesh-size of a Eulerian mesh. The
first detail that has to be analyzed in the context of Arbitrary Lagrangian formula-
tions is the concept of the mesh-size hK . Usually, for shape-regular triangulations
(see Definition 4.18), we can define the mesh-size of the triangulation Ő h of the
reference domain OF as

OhK WD diam.K/: (5.29)

Another suitable definition is to define the mesh-size as an integral value

Oh0
K WD

�Z

K
1 dx

� 1
d

: (5.30)

On shape-regular triangulations, there exists a constant c > 0, such that

c�1h0
K 
 hK 
 ch0

K 8 OK 2 Ő h; .h ! 0/: (5.31)

In the following, we will use definition (5.30) by integration. Now, let T W OK ! K
be the ALE map and K WD T. OK/ be the Eulerian counterpart of OK 2 Ő h. It holds

hK WD
�Z

K
1 dx

� 1
d

D
�Z

OK
J dOx

� 1
d

;

and we can estimate

min
Ox2 OK

jJ.Ox/j 1d OhK 
 hk 
 max
OK

jJ.Ox/j 1d OhK: (5.32)

Using this relation between Eulerian and reference mesh size, the stabilization
term (5.28) can be transformed in ALE coordinates

Sh. OUh; O̊h/ D .˛stabJF�1F�Trph;r�h/ OF :

with a stabilization parameter ˛stab defined on OF as

˛stab D ˛0

 
�f J

2
d

Oh2K
C kOvkL2. OK/J

1
d

OhK

!�1
:
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If the deformation of the mesh is moderate, it holds J � 1 and F � I. Then we
can simply take the standard setting of the stabilization term (5.28) without any
mapping.

This construction is also applicable for the stabilization by means of Local
Projections as discussed in Lemma 4.49

Slps. OUh; O̊h/ D �
˛F�1F�T r.ph � �hph/;r.�h � �h�h/

�
OF ;

where �h W Qh ! QQh is the local coarse mesh projection operator. As in the Eulerian
setting, the LPS method will give optimal order of convergence, if the spaces QQh and
Qh are well chosen, as weak consistency holds

ph 2 QQh ) Slps. ph; �h/ D 0 8�h 2 Qh:

In the case of residual based stabilization techniques like PSPG (or SUPG),
the correct application to the Arbitrary Eulerian Lagrangian formulation is more
difficult. The success of these techniques is based on a consistent formulation. If
U 2 X is the solution, it should hold

SPSPG.U; ˚h/ D 0 8˚h 2 Xh:

This is realized by testing the complete momentum equation of the fluid system
(compare the Jacobian in Theorem 5.2) with the modified test function

Qh WD h C ˛r�h:

Such a combination gives rise to complex coupled terms including the complete
strong residual. For a discussion on a practical way of applying residual based sta-
bilization techniques to fsi-problems in Arbitrary Lagrangian Eulerian coordinates,
we refer to Wall [339].

Remark 5.13 (Stabilization for Large Deformations) As long as the deformation of
the domain is small and motion of the domains is slow, we can apply all stabilization
techniques without any modification and just omit the ALE mapping. This does not
hold true, if the deformation is very large, i.e., if J � 1 or J � 1 or if F significantly
differs from the identity I. As long as the ALE mapping is isotropic, we only need
to adjust the mesh size by means of relation (5.32). If the mapping however inhibits
very strong anisotropies, the concept of stabilization must be altered. In particular, it
will be necessary to separate directions. On a Eulerian, Cartesian anisotropic mesh,
the simple pressure stabilization term in the case of the linear Stokes equations must
be constructed as:

Sh;aniso.Uh; ˚h/ D .˛0h
2
x@xph; @x�h/F C .˛0h

2
y@yph; @y�h/F :
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For a detailed analysis of the Local Projection stabilization on anisotropic meshes,
we refer to the Literature [58, 62, 277, 278] and in particular Molnar [247] in the
case of fluid-structure interactions.

Besides stabilization of the pressure-velocity coupling, we need to take care of
problems with dominant convection that require stabilization of transport oscil-
lations. Here, we can follow the same procedure: starting with a stabilization
technique in Eulerian coordinate, we map the resulting stabilization terms back to
the reference framework. Again, all methods work very well without modifications,
if small deformations are considered. Only the case of very large deformation with
substantial anisotropies is still open. See [247, 339].

Apart from the natural convection, ALE formulations include the additional
transport term

�
�
�f JF�1@tuf � rv; 

�

F
;

coming from the ALE time derivative. This term may call for stabilization, if the
domain moves rapidly. Stabilization of this part can be handled like the natural
convection by simply considering a combined effective transport velocity

�
�f JF�1 �vf � @tuf

� � rv; 
�

F
;

5.3.4 Matrix Formulation of the Linear Systems

A finite element discretization of the linearized system to be solved in every step of
the Newton iteration

Wh 2 Xh A0.Uh/.Wh; ˚h/ D F.˚h/ � A.Uh/.˚h/ 8˚h 2 Yh (5.33)

gives rise to a large linear system of equations that can be compactly written in the
form

Ahxh D bh:

In this section, we will give details on the derivation and resulting structure of the
system matrix. The exact form of the matrix will depend on the choice of finite
element spaces. For the following discussion we make further assumptions on the
finite element spaces:

• First, we assume that the triangulation is matching the domain-partitioning.
• We assume that both fluid and solid problem are given with Dirichlet conditions

on the outer boundaries of the domain. In this case, it holds V D W and it will
also hold (in terms of (5.26)) that Vh D Wh.
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• We consider inf-sup stable finite elements, such that no pressure-stabilization is
required.

• We choose equal-order finite element spaces for velocity V and deformation W ,
as well as for the test function of momentum equations V , ALE extension Wf

and deformation-velocity relation Ls. All these discrete spaces are based on the
same set of matrix-functions.

By these assumptions, let Vh be the space of continuous finite elements on the
complete domain ˝h of degree r � 2 with strong Dirichlet-values on the complete
boundary @˝h. The Lagrangian nodal basis is given by

Vh WD spanf.i/h ; i D 1; : : : ;Ng:

Discrete velocity update and deformation update are given by

zh.x/ D
NX

iD1
zi

.i/
h .x/; wh.x/ D

NX

iD1
wi

.i/
h .x/:

We define the following subsets of indices that collect all basis functions with
support in the fluid, in the solid and those that touch the interface

If WD fi 2 f1; : : : ;Ng j supp..i/h / � Fg; Nf WD # If ;

Is WD fi 2 f1; : : : ;Ng j supp..i/h / � Sg; Ns WD # Is;

Ii WD f1; : : : ;Ng n .If [ Is/; Ni WD # Ii:

Then, the test space of the ALE-extension is given by

Wh;f WD spanf.i/h ; i 2 If g;

and the test space of the deformation-velocity coupling by

Wh;s WD spanf.i/h ; i 2 Is [ Iig:

Finally, the pressure-space Lh;f is given by

Lh;f D spanf�.i/h ; i D 1; : : : ;Npg:

By �.i/h a basis of either a lower-degree continuous space (e.g. r�1 on quadrilaterals),
or some discontinuous space can be given. The pressure update is given by

qh;f .x/ D
NpX

iD1
qi�

.i/
h .x/:
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By insertion of these basis representations in (5.33), we derive the matrix formula-
tion of the linear system. This matrix has a block-structure on multiple levels. First,
parts of the equation act on the fluid-domain, parts on the solid-domain. Second,
we get a natural block-structure due to the coupled equations: momentum equation
of Navier-Stokes (NS), divergence condition in the Navier-Stokes equations (div),
equation for the extension of the ALE map (ALE), momentum equation of the
elastic solid (ES) and finally, relation between deformation and velocity (uv). Each
of these equations appears in the Jacobian and may appear multiple times. The
momentum part of the Navier-Stokes equations (NS) has directional derivatives
with respect to the pressure, the velocity and the deformation. We will use this
terminology to denote the sub-matrices and explain this procedure based on
the Navier-Stokes momentum equations including the derivatives with respect to
pressure and velocity:

ŒFNS
p �ij D �

�
JF�T�

. j/
h;f ; 

.i/
h

�

F

8i 2 If [ Ii; 8j 2 f1; : : : ;Npg

ŒFNS
v �ij D

�
�f J

�
k�1 Q. j/

h;f C r Q. j/
h;f F

�1
�
v � u � uold

k

��
; 

.i/
h

�

F

C
�
�f JrvF�1 Q. j/

h;f ; 
.i/
h

�

F

C
�

J
d� f

dv
.W/F�T ;r

�

F
� �

JF�Tqf ;r
�
F

8i 2 If [ Ii; 8j 2 If [ Ii

All the remaining parts are obtained in a similar way. Altogether, we get the
following matrices for fluid- and solid-problem:

F D
0

@
0 Fdiv

v Fdiv
u

FNS
p FNS

v FNS
u

0 0 FALE
u

1

A ; S D
�

SES
v SES

u

Suv
v Suv

u

�
; (5.34)

with

F 2 R.NpC2Nf C2Ni/�.NpC2Nf C2Ni/; S 2 R.2NsC2Ni/�.2NsC2Ni/:

To assemble the coupled system matrix on the complete domain ˝ , we must
construct the sum of both parts. First, we define subsets of the coefficient
vectors

z D fzf ; zi; zsg; w D fwf ;wi;wsg;
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where zf , zi and zs denote only indices in If , Ii and Is, respectively. The same
splitting is applied to w and also to the test functions h and  h. By this
definition, we can give a more detailed version of the two sub-matrices that
distinguishes between degrees freedom within the domain and those on the
interface

Fh D

2
666664

�h;f

h;f

 h;f

h;i

 h;i

3
777775

0
BBBBB@

0 Fdiv
v Fdiv

u Fdiv
v Fdiv

u

FNS
p FNS

v FNS
u FNS

v FNS
u

0 0 FALE
u 0 FALE

u

FNS
p FNS

v FNS
u FNS

v FNS
u

0 0 0 0 0

1
CCCCCA

Sh D

2

664

h;i

 h;i

h;s

 h;s

3

775

0

BB@

SES
v SES

u SES
v SES

u

Suv
v Suv

u Suv
v Suv

u

SES
v SES

u SES
v SES

u

Suv
v Suv

u Suv
v Suv

u

1

CCA

We note that the off-diagonal blocks that indicate couplings between interface
degrees of freedom with those inside the fluid-domain are mainly zero, as
only very few basis functions h;i and h;f have an overlapping support. The
saddle-point structure of the Navier-Stokes equations is directly visible. Finally,
we note that the test space for the ALE extension Wh;f does not include test
functions that live on the interface. This is the correct choice, as the ALE
map is defined as an extension of the solid’s deformation by using Dirichlet
values. Nevertheless, this last row is included in Fh to yield a quadratic
matrix.

Given this detailed description of the sub-matrices, we can formulation the
coupled linear system of equations by the sum of the two sub-systems:

A D

0
BBBBBBBBBBBB@

Fdiv
p Fdiv

v Fdiv
u Fdiv

p Fdiv
v Fdiv

u 0 0

FNS
p FNS

v FNS
u FNS

p FNS
v FNS

u 0 0

0 0 FALE
u 0 0 FALE

u 0 0

Fdiv
p Fdiv

v Fdiv
u Fdiv

p Fdiv
v Fdiv

u 0 0

FNS
p FNS

v FNS
u FNS

p FNS
v C SES

v FNS
u C SES

u SES
v SES

u

0 0 0 0 Suv
v Suv

u Suv
v Suv

u

0 0 0 0 SES
v SES

u SES
v SES

u

0 0 0 0 Suv
v Suv

u Suv
v Suv

u

1
CCCCCCCCCCCCA

(5.35)

Again, we note that all the shaded matrix entries are very sparse. In every step of
the Newton method we have to find the coefficient vector

x D �
q; zf ; wf ; zi; wi; zs; ws

�T 2 RNpC2Nf C2NiC2Ns ;
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subject to the linear system of equations

Ahx D b;

where b is the discrete right hand side, coming from the discretization of

G.˚/ WD F.˚/ � A.U/.˚/:

The system matrix Ah lacks all desirable properties like symmetry, positivity or
diagonal dominance. Solution of these linear systems is a very difficult task.
Application of direct solvers is problematic due to the immense dimension of the
linear system. Furthermore, we will see in Chap. 7, that the condition number of the
coupled matrix can be so bad that even modern direct solvers can fail.

5.3.5 Construction of the ALE Map

In this section, we demonstrate different ways of extending the solid deformation
uh;s from the interface to the fluid domain uh;f . Such an extension is the typical way
for defining the ALE mapping by means of

Th;f .x; t/ WD x C uh;f .x; t/:

Here, we aim at a quantitative comparison of different mesh motion models. In
Sect. 3.5.1, we have already discussed qualitative regularity restrictions that arise
from different mesh motion models. Further computational overviews are given in
the literature [342, 357].

We will analyze a simple numerical test case that gives rise to large rotations of
an unsupported solid in a fluid domain. This rotation causes very large deformation
of the fluid domain an poses severe challenges to the construction of the ALE
map. We show the configuration of the geometry in Fig. 5.13a. We briefly detail
the configuration. The initial domain partitioning is given as

˝ D .�1; 1/2; OS D
�

�1
2
;
1

2

�
�
�

�1
8
;
1

8

�
; OF D ˝ n OS:

The boundary 
 D @˝ consists of two inflow parts of width 0:5, 
 in
1 in the upper

left corner and 
 in
2 in the lower right one. Here we prescribe a Dirichlet condition

for the velocity

vin
i .x; y; t/ D 4˛.t/.x � x0i /.x � x1i /ni on 
 in

i ;
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Ŝ
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Fig. 5.13 Description of the benchmark problem for testing the influence of the ALE map
definition. (a) Geometric configuration of the test case. The boundary consists of two inflow, two
outflow parts and a rigid wall. The solid OS is not supported. The domain ˝ is split into fluid OF
and solid OS ˝ D .�1; 1/2; OS D �� 1

2
; 1
2

� � �� 1
8
; 1
8

�
; OF D ˝ n OS: On the two inflow boundary

parts 
 in
i (i D 1; 2) we prescribe parabolic Dirichlet conditions for the velocity vf . (b) Rotation

J.uh;s.t// as function over time indicating the rigid body rotation of the solid. The points indicate
the final time, where mesh elements start to deteriorate. (c) Right: Solution at different times with
streamlines and deformation vector field. Bright colors indicate large pressure, dark colors indicate
small pressures
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where the xj
i are indicated in the sketch of the configuration and where ni is the

outward facing normal vector at 
 in
i . The function ˛.t/ is added for a smooth initial

transition

˛.t/ D
(
1
2
.1 � cos.�t=2// t 
 2 s;

1 t � 2 s
:

The solid is modeled as St. Venant-Kirchhof material. All parameters are given as

�f D 1 kg � m�3; �s D 1000 kg � m�3;

�s D 20 kg � m�1s�2; �s D 80 kg � m�1s�2; �f D 1m2 � s�1:

In the right plot of Fig. 5.13c, we show the solution at different points in time. Bright
values denote large pressures, dark colors small ones. Further, we plot streamlines
of the velocity field and the vector field of the solid deformation. The symmetric
flow causes a rotational movement of the solid. As quantity of interest, we measure
the average rotation

J.uh.t// D 1

j OSj
Z

OS
Ox � uh;s dOx: (5.36)

The value of J.uh.t// is shown in Fig. 5.13b. Due to very large deformation of the
fluid domain and a deterioration of the ALE map, all computations will break down
at some final time t0 > 0. These points in time are indicated in Fig. 5.13b. We will see
that depending on the type of extension operator, we achieve a substantial difference
in the final time.

5.3.5.1 Harmonic Extension

We start by defining the extension of the solid deformation uh;s from the interface OI
to the fluid-domain uh;f 2 V


h;f , by means of an harmonic extension, given as

.ruh;f ;r h;f /F D 0 8 h;f 2 W

h;f ; (5.37)

where h;f has trace zero on the complete boundary of F , that includes the interface.
Solution uh;f and test function h;f come from standard finite element space with the
boundary constraints

uh;f 2 V

h;f WD fh 2 Vh.F/; h D uh;s on I; h D 0 on @F n Ig

 h;f 2 W

h;f WD fh 2 Vh.F/; h D 0 on I; h D 0 on @F n Ig:

(5.38)
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Fig. 5.14 Extension with the harmonic operator. Left: t D 5 s. Right: t D 8:6 s close to breakdown
due to degeneration of map elements

We show results in Fig. 5.14 for two different points in time. While the ALE
mapping yields a nicely transformed mesh at time t D 5 s, some elements are close
to deterioration at time t D 8:6 s. This in particular happens at the edge of the solid.
Here, we also see a very strong (and non-physical) feedback from the deformation
to the elasticity problems. Bad approximation on strongly deformed meshes gives
rise to artificial forces bending the solid.

This extension operator can be relaxed by varying the boundary conditions on
the outer boundary


f WD @F n I:

Here, it is not strictly necessary for uh;f to guarantee a full homogenous Dirichlet
condition. If the deformation uh;f is allowed to move freely in tangential direction,
the resulting map Th;f will still map the reference domain to the fluid-domain.
Hence, we can alter the test space Wh;f in such a way that Dirichlet-conditions are
only imposed in normal direction, similar to the free-slip condition that is known
from fluid-dynamics

W

h;f WD f 2 C.F/d; h

ˇ̌
ˇ
K

2 Pr.K/; n � h D 0 on 
f ; 0 D 0 on Ig;

where Pr.K/ is the local finite element space. In Fig. 5.15 we show both different
choices of boundary values. Although we choose different boundary values only
on the outer boundary of the domain, we see a substantial improvement of mesh
quality at the interface. In particular, the solid’s shape is not deteriorated at the
edges. However, some mesh elements already start to lose regularity.
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Fig. 5.15 Extension with the harmonic operator. Comparison of different boundary values at the
outer boundary @F n I. Left: homogenous Dirichlet uh;f D 0. Right: n � uh;f D 0. Both at times
t D 8:6 s. In the bottom line we show the complete computational domain. Here, the effect of
sliding boundary conditions gets obvious

5.3.5.2 Harmonic Extension with Stiffening

The examples show that we have to expect difficulties close to the solid domain, in
particular close to edges. Here, stiffening of the extension can help to assure better
quality of the deformed meshes. We change the extension operator by introducing a
local parameter function ˛ W F ! RC:

.˛ruh;f ;rh;f /F D 0 8 h;f 2 W

h;f :

Given differentiability of ˛.x/, this weak formulation belongs to a transport-
diffusion problem

��uh;f � ˛�1r˛ � ruh;f D 0:
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If we can choose ˛ W F ! RC in such a way that the ratio

jr˛j
j˛j � 0 at I;

is large close to the interface, and if the transport direction points away from the
interface

�r˛ � ns at I;

where ns is the outward facing normal vector of S, the extension mainly behaves
like a simple transport-problem and the deformation uh;s on I is carried into the
fluid-domain with as little changes as possible. Further away from the interface, the
extension should take the role of a harmonic extension. The choice of ˛.x/ can be
based on the distance of x to the nearest interface point

dI.x/ WD min
y2I

kx � yk2:

A good choice of ˛ is

˛.x/ D 2:0 � erf .5dI.x// ;

where erf is the Gauss error function. For this choice of ˛ it holds

jr˛.x/j
j˛.x/j > 1 if dI.x/ <

1

4
and

jr˛.x/j
j˛.x/j � 1

100
if dI.x/ >

1

2
:

By a proper scaling of this function, the area of dominant transport can be adjusted
to the specific geometry. Figure 5.16 shows the results. First, we see a significant
improvement in mesh-quality. If we go on in time and rotation, we again see
deterioration of mesh elements and also a non-physical deformation of the solid.
We could already increase the final time, where the ALE formulation will loose its
regularity by about 20%.

5.3.5.3 Extension by Pseudo-Elasticity

Another possibility for defining the extension operator is by means of the Navier-
Lamé equation, see also [296]

�
�e.ruh;f C ruT

h;f /C �e div uh;f I;r h;f
�
F D 0 8 h;f 2 W


h;f :

The parameters �e and �e can again be chosen in such a way that the material
stiffens closer to the solid. Let Ee.x/ be the Young modulus, depending on the
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Harmonic extension with stiffening corre-
sponds to transport-diffusion operator

−Δuh,f − α−1∇α · ∇uh,f = 0.

Fig. 5.16 Upper row: extension with the harmonic operator using sliding boundary conditions
(left) and the harmonic operator with stiffening at the solid (right), both at time t D 8:6 s. Lower
row: harmonic extension with stiffening at time t D 11:6 s

distance, and �e a chosen Poisson ratio. We pick the two parameters as

�e.x/ D Ee.x/

2.1C �e/
; �e.x/ D �eEe.x/

.1C �e/.1 � 2�e/
:

The results at times t D 11:6 s and t D 14 s are shown in Fig. 5.17. At time 11:6 s we
get a very good mesh quality (compared to the harmonic operator with stiffening).
No artificial feedback to the solid problem is observed. The computations break
down around t D 14 s.

Using the pseudo-elasticity model, one can improve the results by using material
parameters in the auxetic range

�1 < �e < 0:

Here, we pick �e D �0:2. The results are shown in the lower right plot of
Fig. 5.17. A significant improvement in mesh quality is not visible, but using
material parameters in the auxetic range allows to reach a final time of t D 14:9 s.
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Fig. 5.17 Upper row: extension with the harmonic operator using stiffening (left) and using a
pseudo-elasticity model (right), both at time t D 11:6 s. Lower row: pseudo-elastic extension at
time t D 14 s (left) and pseudo-elasticity with an auxetic material behavior (right)

For a pseudo-elastic extension, it is possible to apply stiffening in a semi-
automatic way, by coupling the Young modulus to the deformation gradient’s
determinant

Je WD det.I C ruh/:

Ee is increased, if Je gets large or close to zero:

Ee WD Ee

�
Je C 1

Je

�
:

This technique is referred to as Jacobian-based stiffening, see [318].

5.3.5.4 Biharmonic Extension

Finally, we consider the biharmonic operator �2 for defining the extension of the
deformation, see also [182]. For realization, we choose a mixed formulation by
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introducing a secondary variable wf D ��uf :

.rwh;f ;r 1h;f /F C .ruh;f ;r 2h;f /F � .wh;f ;  
2
h;f /F D hn � ruh;s;  

2
h;f iI ;

where solution and test function come from the spaces
The biharmonic extension has the benefit that no configuration dependent

parameter-tuning is necessary. Due to the fourth order character, special care
has to be taken for discretization. Either, C1-conforming finite elements, or a
mixed formulation is required. For numerical benchmark problems, a very high
computational effort is reported [342], with computing times up to ten times higher
than for the simple harmonic extension. Hence, it is usually more advisable to
spend some effort on parameter tuning and a good parameter choice for one of the
previously discussed options.

5.3.5.5 Summary and Conclusion

In Table 5.2 we summarize the results from the previous section. The effect of
the different methods for extending the deformation to the fluid domain and for
generation of the ALE map are striking. Compared to the most simple harmonic
extension, advanced techniques that are based on pseudo-elasticity can give good
results for nearly twice as large deformations. Apart from the biharmonic operator
all of these techniques have a comparable computational effort. Even if nonlinear
models are used for stiffening, the effort for the solution of the extension problem
is still negligible compared to the fluid and the solid problem.

Remark 5.14 (Alternative Approaches for Defining the ALE Map) All methods
presented in this section have a similar type and based on the implicit inversion
of a differential operator. This approach is natural for monolithic models, where
fluid problem solid problem and mesh problem are formulated as one coupled
system. Using partitioned algorithms it is easier to utilize different processed for
designing the ALE map. Basting and co-workers [30] introduced the extended ALE
method that is based on a variational mesh optimization scheme [294] that generates

Table 5.2 Final time for the breakdown of the ALE scheme for different types of ALE extension

Mesh motion model Maximum time Maximum rotation J

Harmonic 8:6 s 0.035

Harmonic (sliding) 9:0 s 0.038

Harmonic (stiffening) 11:6 s 0.055

Pseudo-elastic 14:0 s 0.067

Auxetic material 14:9 s 0.071

We also indicate the maximum value that has been reached for the rotation functional 5.36
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distribution of the mesh nodes whenever the ALE map deteriorates. As an important
feature to allow for efficient simulations the mesh connectivity is always preserved.

Schäfer et al. [300] block structure the computational mesh to allow for different
mesh motion techniques in different parts depending on the distance to the elastic
obstacle and the expected deformation. Among the applied techniques they also
use linear interpolations to construct mesh distortions. In a monolithic setting
this approach would cause global couplings in the matrix. As part of partitioned
approaches this technique is very efficient.



Chapter 6
Fully Eulerian Formulation for Fluid-structure
Interactions

This chapter is devoted to an alternative monolithic formulation for fluid-structure
interactions. While the ALE scheme was based on a mapping of the Eulerian fluid
system F.t/ onto a fixed reference framework OF to be coupled with the Lagrangian
solid domain, the Fully Eulerian formulation goes the other way around. Both
problems, fluid as well as solid are modeled on the moving Eulerian domains
F.t/ and S.t/ connected by the moving interface I.t/. The general approach is
comparable. Both subproblems can be variationally coupled such that we arrive
at a monolithic global system. A conceptual difference is in the kind of interface
treatment. While the ALE interface OI is temporally fixed, the Eulerian interface
I.t/ is moving in time and depends on the solution. The domain motion is not
any longer hidden in the artificial deformation variable uf but must be separately
captured by the discretization. Here, we describe this rather new formulation that
has been introduced by Dunne in 2006 [126, 127]. A very similar approach has
been introduced by Cottet, Maitre and Milcent at about the same time [103–105].
Since then, similar approaches have been published [105, 179, 278, 282, 285, 345].
The underlying principle for all Eulerian formulations is to avoid the introduction
of artificial coordinate systems that can cause a break down of the coupled scheme.
In ALE formulations, the fluid’s reference domain does not have a physical
significance. As seen in Sect. 5.3.5 the construction of the ALE map is—up to
certain degree—arbitrary. Picking the wrong map can result in a loss of regularity
or invertibility and finally to a breakdown of the scheme. A Lagrangian-Eulerian
mapping of the solid problem however is completely physical. Both formulations
are equivalent, as long as material rupture or material overlapping is not allowed.
However large the deformation or motion of the solid is, the Eulerian system will
be well-posed.

Most of the recent progress that has been made with regard to the Fully Eulerian
formulation is due to the intense work of Frei [153, 158, 284]. A good overview is
found in [151, 154]. Finally, the last chapter of this book is a guest article by Stefan
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Frei and presents modern numerical techniques for simulations in the Fully Eulerian
formulation, see Chap. 12.

6.1 Eulerian Models for Fluid-structure Interactions

The success of the ALE formulation for fluid-structure interactions crucially
depends on the quality of the fluid domain map OTf . If this mapping looses its
regularity, equivalence between the variational ALE formulation in Lemma 3.11 and
the classical formulations of the fluid-structure interaction problem in equation (3.4)
will not hold any more. Further, we have seen that bounds on Or OTf and r OT�1

f will
enter basic inequalities like the trace inequality, Poincaré inequality and also the inf-
sup inequality. Even if the derivatives of OTf and OT�1

f are bound, the constants that
will finally enter stability and error estimates can be very large.

Some configurations will necessarily lead to a degeneration of the ALE mapping.
The most prominent example is given for contact problems, as a C1-diffeomorphism
between two domains with different topology cannot exist. In this section, we
will introduce an alternative variational formulation for the coupled fluid-structure
interaction problem that goes the opposite way: instead of mapping the moving fluid
domain onto a fixed reference domain OTf .t/ W OF ! F.t/ we use an inverse map to
transform the Lagrangian solid reference domain onto the Eulerian moving solid
domain OTs.t/ W OS ! S.t/. Like the ALE map OTf , this transformation is defined by
the deformation Ous

OTs.Ox; t/ WD Ox C Ous.Ox; t/:

There is one fundamental difference between OTs and OTf . While the ALE map OTf is
arbitrary and OF does not play a physical role, the solid domain map OTs is given by
physical principles. It maps between Lagrangian and Eulerian coordinates. If the
solid problem is well-posed, both formulations are valid and it holds that

1. the mapping OTs is a bijection between OS and S.t/,
2. mapping OTs and inverse OT�1

s are differentiable,
3. the determinants OJs WD det. Or OTs/ and OJ�1

s D det.r OT�1
s / satisfy

0 < c1 
 OJs 
 c2 < 1:

The well-posedness of an Eulerian formulation for fluid-structure interactions
is obvious, since the Eulerian coordinates are the physical coordinates where the
governing equations (the conservation laws) have been derived. The transition to
the Lagrangian reference system was mainly for practical reasons, as deformation
stresses can best be described in a particle centered framework. For structure
mechanics both viewpoints, the Lagrangian and the Eulerian are physically relevant
and the mapping between them is simply given by the deformation u.
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6.1.1 Elastic Structures in Eulerian Coordinates

In Sect. 2.1.6, we derived the basic conservation principles for moving volumes that
where based on conservation of mass, momentum and angular momentum. Here,
we will derive the Eulerian formulation for the structure problem on the moving
solid domain S.t/ that is given by the Lagrangian deformation of OS

S.t/ D fOx C Ous.Ox; t/; Ox 2 OSg:

By mass and momentum conservation, we derived the non-conservative formulation
of the momentum equation (2.14)

�s@tvs C �svs � rvs � r � � s D �sf in S.t/;

where �s.x; t/ is the Eulerian density of the solid at time t in point x 2 S.t/, vs.x; t/ is
the Eulerian velocity and � s the Eulerian Cauchy-Stress tensor of the solid problem,
also given in the Eulerian coordinate system. Here, it is necessary to remember
that the transformation to Lagrangian or to an arbitrary reference system in ALE
coordinates only touches the domain S.t/ and OS , not the image, e.g. it holds

v.x; t/ D Ov.Ox; t/;

for a pair x D OT.Ox; t/. For defining a Eulerian representation � s of the Cauchy stress
tensor, we must introduce a Eulerian counterpart us of the Lagrangian deformation
Ous. We define

us.x; t/ D Ous.Ox; t/;

for a point x D Ox C Ous.Ox; t/. Then, it holds

Ox D x � Ous.Ox; t/ D x � us.x; t/;

which defines the inverse mapping Ts.t/ W S.t/ ! OS

Ts.x; t/ WD x � us.x; t/; Ts D OT�1
s :

Further, considering Lemma 2.9 and (3.28), it holds

Ts ı OTs D id ) rTs DW Fs D OF�1
s D . Or OTs/

�1; Js D OJ�1
s : (6.1)

And with OTs WD Ox C Ous and Ts WD x � us it finally follows that

ŒI � rus� D ŒI C Or Ous�
�1 , rus D I � ŒI C Or Ous�

�1 D I � OF�1
s :
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Using these relations, we can transform the Cauchy stress tensor O� s from
Lagrangian to Eulerian coordinates.

Lemma 6.1 (Cauchy Stress Tensor for the St. Venant Kirchhoff Material in
Eulerian Coordinates) The Cauchy stress tensor of the St. Venant Kirchhoff
material in Eulerian coordinates is given by

� s D JsF�1
s .2�Es C �s tr.Es/I/F�T

s ; Es WD 1

2

�
F�T

s F�1
s � I

�
:

Proof The second Piola Kirchhoff stress tensor Ȯ s of the St. Venant Kirchhoff
material was introduced in Definition 2.18 as

Ȯ s D 2�s OEs C �s tr. OEs/I

with the Green-Lagrangian strain tensor

OEs WD 1

2
. OFT

s
OFs � I/:

The relation between Cauchy stress tensor and 2nd Piola Kirchhoff stress tensor is
given by the Piola transformation, see Definition 2.13:

O� s D OJ�1
s

OFs Ȯ s OFT

s

Then, by (6.1) we get the its Eulerian representation as

� s D JsF�1
s ˙ sF�T

s ;

with the 2nd Piola Kirchhoff tensor expressed in Eulerian coordinates

˙ s D 2�sEs C �s tr.Es/I:

The Eulerian Green-Lagrangian strain tensor is given by

Es WD 1

2
.F�T

s F�1
s � I/:

ut
The derivation of the Cauchy stress tensor � s in Eulerian coordinates completes

the description of the momentum equation. It remains to add an equation for the
unknown Eulerian density �s. By defining

�s.x; t/ D O�s.Ox; t/;
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and using (2.27), it holds

�s.x; t/ D Js O�0s .Ox/; (6.2)

where O�0s is the density of the solid at time t D 0 in the corresponding reference
coordinate. Usually one considers homogenous materials, such that relation (6.2)
simplifies to

�s.x; t/ D Js O�0s : (6.3)

In the Eulerian coordinate framework, we must also transform the relation between
deformation and velocity, compare Lemma 2.10:

dt Ous D @tus C vs � rus; dt Ovs D @tvs C vs � rvs:

Combining the foregoing discussion we define:

Problem 6.2 (Solid Problem in Eulerian Coordinates) The elastic deformation
of a St. Venant Kirchhoff material in Eulerian coordinates is given by

Js O�s.@tvs C vs � rvs/� r � � s D Js O�sf; @tus C vs � rus D vs;

with the Eulerian formulation of the Cauchy stress tensor

� s WD JsF�1
s .2�sEs C �s tr.Es/I/F�T

s ; Es WD 1

2

�
F�T

s F�1
s � I

�
;

and the Eulerian deformation gradient

Fs D I � rus:

In [151, 154] a derivation of the fluid-structure interaction problem in Eulerian
coordinates is given without prior introduction of the Lagrangian problems.

Apart from the complex nonlinear form of the stress tensor, the solid problem is
naturally given in Eulerian coordinates. The immediate drawback of this Eulerian
formulation is twofold:

• The problem is formulated on the moving domain S.t/ that is a priori unknown
and part of the solution. For defining a standard variational formulation of
the solid equation in Eulerian coordinates, all difficulties already discussed in
Sect. 2.5 must be tackled again.

• By transformation to Eulerian coordinate, convective terms are introduced:

dt Ov D @tv C v � rv; dt Ou D @tu C v � ru:
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A discretization of this convective term will cause numerical stability problems,
as known for the transport term in the Navier-Stokes equations. Numerical
methods must introduce artificial stabilization terms that will cause loss of
conservation principles.

Finally, we introduce a variational formulation of the structure problem in
Eulerian coordinates, derived by multiplication with suitable test functions. Find

fvs;usg 2 Vs.t/ � Ws.t/;

such that
�
Js O�s.@tvs C vs � rvs/; s

�
S.t/

C�� s;rs
�
S.t/ D �

Js O�0s f; 
�
S.t/ 8s 2 V test

s

�
@tus C vs � rus � vs;  s

�
S.t/ D 0 8 s 2 W test

s ;

(6.4)

While the Lagrangian velocity Ovs 2 L2. OS/d is defined as L2-projection the Eulerian
counterpart requires some control over the derivative in direction of vs.

6.1.2 Fluid-structure Interaction in Eulerian Coordinates

With the variational formulation of the Eulerian structure problem shown in (6.4)
it is straightforward to formulate the coupled fluid-structure interaction problem
in Eulerian coordinates. We simple combine (6.4) with the incompressible Navier-
Stokes equations (2.48) on the moving domain F.t/ by adding appropriate interface
conditions

. �f .@tvf C vf � rvf /; f /F.t/ C .� f ;rf /F.t/ D . �f f; f /F.t/

.r � vf ; �f /F.t/ D 0

.Js O�s.@tvs C vs � rvs/; s/S.t/ C .� s;rs/S.t/ D .Js O�0s f; /S.t/
.@tus C vs � rus � vs;  s/S.t/ D 0

vf D vs on I.t/;
� f n D � sn on I.t/

(6.5)

Variational coupling of these equations on F.t/ and S.t/ is easily possible following
the guidelines introduced in Sect. 3.4. As the two domain F.t/ and S.t/ match and
share a common interface I.t/ D @F.t/ \ @S.t/, we can combine the trial space to
embed continuity of velocities into the variational formulation

v 2 V D H1
0.˝/

d; vf D v
ˇ̌
F.t/; vs D v

ˇ̌
S.t/:
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For realizing the dynamic coupling condition, we combine the test spaces of the
momentum equations:

 2 V D H1
0.˝/

d; f D 
ˇ̌
F.t/; s D 

ˇ̌
S.t/:

We can define the variational formulation of the Fully Eulerian fluid-structure
interaction problem:

Problem 6.3 (Variational Formulation of the Eulerian Fluid-structure
Interaction Problem) Let

v 2 V D H1
0.˝/

d; pf 2 L2.F.t//; us 2 H1
0.˝/

d;

be the solution of the variational problem

. �f .@tvf C vf � rvf /; /F.t/ C .� f ;r/F.t/
C.Js O�s.@tvs C vs � rvs/; /S.t/ C .� s;r/S.t/ D . �f f; /F.t/

C .Js O�0s f; /S.t/
.r � vf ; �f /F.t/ D 0

.@tus C vs � rus � vs;  s/S.t/ D 0;

(6.6)

for all

 2 V ; �f 2 L2.F.t//;  s 2 L2.S.t//d :

Given sufficient regularity, a transformation of fv; pf ;usg to Lagrangian coordinates
(in the solid domain) also solves the fluid-structure interaction problem in classical
formulation (3.4).

Apparently, the Eulerian formulation of the fluid-structure interaction problem
has a simpler structure than the ALE formulation. No mapping, at least no artificial
mapping between domains is necessary. Hence, there is no obvious reason why
the Eulerian formulation should show limits when treating problems with very
large deformation, motion or even contact. All this is true, the simplicity of the
variational formulation in Problem 6.3 however hides one essential vagueness. The
deformation of the domains F.t/ and S.t/ is given by the solution, to be precise, by
the deformation of the solid domain

id C Ous W OS ! S.t/:

The formulation in Eulerian coordinates is based on the inverse of this relation:

id � us W S.t/ ! OS;
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the so-called backward characteristic. The complete derivation of the Eulerian
method hides out one dilemma, that is inherent to fluid-structure interaction
problems. The domains F.t/ and S.t/ are moving and depend on the solution.
However, for assembling the Eulerian formulation (6.6), we must—for every point
x 2 ˝—know its affiliation to the fluid-domain x 2 F.t/ � ˝ or solid domain
x 2 S.t/ � ˝ . This appears to be an irreconcilable barrier for implicit monolithic
formulations of the Eulerian model, as the domain affiliation is prerequisite for
setting up the equations, whose solution is required for defining the affiliation. The
next section will describe techniques for capturing the moving interface.

6.2 Interface Capturing and the Initial Point Set Method

To work around this dilemma, we need to enrich the system of equations by
variables used to capture the location of the two domains. Multi-phase methods
that live on a fixed background system and where the interface between the
phases in freely moving are called interface-capturing techniques. One of the most
prominent interface-capturing methods is the Level-Set method by Osher [257] and
Sethian [307].

Remark 6.4 (Level-Sets) Assume that F.0/[ I.0/[S.0/ is the initial partitioning
of the domain. We define a level-set function�.x; 0/ as the signed distance function
belonging to this partitioning

�.x; 0/ WD

8
ˆ̂<

ˆ̂:

dist.x; I.0// x 2 S.0/;
0 x 2 I.0/;
� dist.x; I.0// x 2 F.0/:

We assume that the domain-partitioning is moving with a velocity field v. Then, the
level-set function is advected with this field by

@�

@t
C v � r� D 0;

or, if motion is restricted to the normal direction by

@�

@t
C vnjr� j D 0;

where vn D v � n is the velocity in normal direction. This allows for a level set
representation of the interface

I.t/ D fx 2 Rd; �.x; t/ D 0g:
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Normal vectors and curvatures can be calculated based on the level set function.
Some problems of level set formulations is the need of reinitialization if distances
are to be discovered. An auxiliary equation is introduced at time t0 to normalize the
gradient r� to one, e.g. by

@�� C sgn.�.t0// .jr� j � 1/ D 0; � > 0:

Numerical schemes for the advection of the level set function will introduce diffu-
sion. This will cause a smearing of sharp corners, that cannot be well approximated
as zero lines of level sets. Nevertheless, level sets are one of the most established
methods for capturing interfaces in Eulerian based simulations, see [257, 307].

One of the disadvantages connected to the Level-Set method is a degeneration of
edges. Due to numerical dissipation and due to the reinitialization procedure, edges
will be smoothened. While this does not pose a major problem for multiphase flows,
where the interface usually does not show edges, the conservation of sharp edges
(e.g. of the solid subdomain) is crucial in fluid-structure interaction applications. He
and Qiao introduced a Eulerian formulation for fluid-structure interactions, where
the interface was captured with the help of three Level-Set functions [179].

Here, we describe the Initial Point Set method for capturing the interface between
fluid- and solid-domain. To be precise: instead of capturing the interface location,
we will capture the complete reference coordinate system. We know that at time
t � 0, a spatial coordinate x 2 ˝ belongs to the solid domain x 2 S.t/, if it holds

Ts.x; t/ D Ox � us.x; t/ 2 OS;

if the coordinate x 2 ˝ is the location of the particle Ox 2 OS at time t. This
construction will be transferred to the fluid-domain. Assume that uf .x; t/ is a vector
field, such that:

x � uf .x; t/ 2 OF , x 2 F.t/:

By uf we denote the Eulerian deformation of the fluid-domain. Similar to the fluid
domain map Ouf in the ALE formulation, this deformation uf does not describe the
physical motion of a particle. We use uf to define the inverse fluid-map Tf .x; t/ D
x � uf .x; t/. Next, we assume that there is a continuous transition from Tf to Ts on
the interface I.t/. Then, we can define one global inverse mapping

T.x; t/ WD

8
ˆ̂<

ˆ̂:

Ts.x; t/ x 2 S.t/
Ts.x; t/ D Tf .x; t/ x 2 I.t/
Tf .x; t/ x 2 F.t/:
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Based on this mapping, we can decide the domain affiliation for every spatial
coordinate x 2 ˝

x 2 S.t/ , T.x; t/ 2 OS;
x 2 F.t/ , T.x; t/ 2 OF :

This inverse map T.x; t/ is exactly the backward-characteristic Y.x; t/ used in the
formulations of Cottet, Milcent and Maitre [105, 242].

It remains to define the Eulerian fluid-domain deformation uf in an implicit way.
To derive a continuous transition between Tf and Ts, the deformations uf and us will
need to be continuous. We can define uf simply by an extension of us to F.t/.
Remark 6.5 (Initial Point Set) This construction looks very similar to the construc-
tion of the ALE-map in the context of the Arbitrary Lagrangian Eulerian model and
one could argue that the same difficulties are introduced. As we define an arbitrary
extension uf of the solid’s deformation us, numerical artifacts come into place.
There are however two fundamental differences: first, the inverse map T.x; t/ inside
the fluid domain is not used for any kind of mapping. We do not require its inverse
or its derivatives. Instead, it is for look-up purposes only. Second, we do not even
require that Tf .x; t/ 2 OF for x 2 FL.t/. It is completely sufficient that x 2 F.t/ is
mapped outside of the solid domain. Therefore, we can relax the definition of the
extension uf , i.e. by requiring Dirichlet values only on the interface and by relaxing
the look-up property. Instead of requiring T.x; t/ 2 OF for x 2 F.t/, we simply
demand T.x; t/ 62 OS for such fluid points.

Definition 6.6 (Initial Point Set) A vector field ˚IPS 2 C.II C.˝// is called Initial
Point Set, if for x 2 ˝ and t � 0 it holds

˚IPS.x; t/ D x � us.x; t/ 2 OS ) x 2 S.t/
˚IPS.x; t/ 62 OS ) x 2 F.t/

Within the solid domain, the vector field ˚IPS is called the backward characteris-
tic [105]. Finally, we can indicate possibilities for the construction of uf . One simple
option is to choose one more a harmonic extension of us

��uf D 0 in F.t/; uf D us on I.t/; @nuf D 0 on @˝f .t/ n I.t/:

Here, we have chosen homogenous Neumann boundary conditions on the outer
boundary of the fluid-domain. This deformation uf will not define a mapping back
to a reference domain, but as discussed, this property is not necessary. In Sect. 5.3.5
we have discussed techniques for defining the ALE map. Harmonic extension did
not perform well, mostly due to singularities at edges entering the fluid domain. In
the context of the Initial Point Set, this problem is smaller, as the extension must
not be inverted. Finally, we can close the formulation of the coupled fluid-structure
interaction problem in Eulerian coordinate.
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Problem 6.7 (Initial Point Set Formulation of the Eulerian Fluid-structure
Interaction Problem) Let

v 2 V D H1
0.˝/

d; pf 2 L2.F.t//; us 2 H1
0.˝/

d;

be the solution of the variational problem

. �f .@tv C v � rv/; /F.t/ C .� f ;r/F.t/
C.Js O�s.@tv C v � rv/; /S.t/ C .� s;r/S.t/ D . �f f; /F.t/ C .Js O�0s f; /S.t/

.r � v; �f /F.t/ D 0

.@tu C v � ru � v;  s/S.t/ D 0

.ru;r f /F.t/ D 0

for all

 2 V ; �f 2 L2.F.t//;  s 2 L2.S.t//d;  f 2 H1
0.F.t/I I/d :

Given sufficient regularity, a transformation of fv; pf ;usg to Lagrangian coordinates
(in the solid domain) also solves the fluid-structure interaction problem in classical
formulation (3.4).

Remark 6.8 (Eulerian FSI and Multiphase-Flows) The Fully Eulerian formulation
for fluid-structure interactions is closely related to Eulerian models for multiphase
flows, where one conservation law is given on a domain˝

�.@tv C v � rv/ � r � � D 0;

and where the material parameters, such as density or viscosity depend on the
location

�.x; t/ D
(
�1 x 2 F1.t/;
�2 x 2 F2.t/

:

The fundamental difference to fluid-structure interactions however is that only one
type of differential operator is defined. In fluid-structure interactions, we have a
transition from a hyperbolic equation in the solid domain to a parabolic equation in
the fluid domain. This brings along the already discussed regularity problems on the
interface. For multiphase flows, there exist approaches, that work with a smoothing
of the parameters (density and viscosity) at the interface, such that it does not need
to be sharply resolved.
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By introducing the characteristic functions with respect to fluid- and solid-
domain �f and �s

�s.x; t/ WD
(
1 x � u.x; t/ 2 OS;
0 x � u.x; t/ 62 OS ; �f .x; t/ WD 1 � �s.x; t/;

the coupled momentum equations is shortly written as

�
�.@tv C v � rv/; 

�
C
�
� ;r

�
D
�
�f; 

�
;

� D �f �f C �sJs O�s;

� D �f � f C �s� s:

(6.7)

The introduction of such a characteristic function simplifies the formulation. The
difficulties are however only hidden in a clever formulation.

6.3 Time-Discretization of the Fully Eulerian Framework

In the spirit of Sect. 4.6, the Fully Eulerian Formulation leads to an interface
problem with an interface that is moving in time. A straightforward discretization
of the Eulerian momentum equation (6.7) with the backward Euler method

�
�.k�1vn C vn � rvn/; 

�
C
�
� .vn; pn/;r

�
D
�
�k�1vn�1 C �fn; 

�
;

would result in a reduction of the convergence order, as the solution must not be
differentiable in time, i.e.

vn.x/� vn�1.x/
k

;

may refer to a point x 2 ˝ , which is solid x 2 S.tn�1/ at the old point in time and
fluid x 2 F.tn/ at the new one.

To derive a simple first order scheme, it is sufficient, to properly evaluate the
projection of the old time step to the new domain partitioning. Let

˝n D Fn [ In [ Sn;

and

Tn W ˝n�1 ! ˝n;
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be given by the deformation un

Tn.x/ WD x C un.x/� un�1.x/; T�1
n .x/ D x � un.x/C un�1.x/:

With help of this mapping, which is available by the Initial Point Set method, a
function vn�1 from time step tn�1 can be approximated on the partitioning˝n via

F./ D .�fn; /C �
.� ı T�1

n /.vn�1 ı T�1
n /; 

�
:

As Tn and so T�1
n implicitly depends on the new deformation un, which is unknown

in a fully coupled Eulerian fluid-structure interaction setting, the evaluation of this
right hand side is an implicit part of the equation.

The theoretical analysis of high order accurate time stepping methods for moving
interface problems, where the interface-motion comes from the solution itself is still
open. Transferring the parabolic setting from Sect. 4.6 to the Eulerian framework for
fluid-structure interactions experimentally gives the correct order, see [151].

All higher order accurate schemes will require an implicit iteration on the domain
partitioning, as ˝n D Fn [ In [ Sn is only available, when un itself is available.
In a Newton like procedure, this will call for derivatives with respect to the domain
motion, see the following Sect. 6.4.

To avoid such an effort, reduced order approximation could be used. In [282],
non-stationary problems in the Eulerian framework have been approximated by
a fully explicit treatment of the interface location, i.e. by decoupling the geom-
etry problem from the momentum equations. Better results can be expected by
using higher order extrapolations. If problems with possible contact are con-
sidered, explicit handling of the interface motion will result in restrictive time
step conditions—at least, if the interface is close to contact. Such situations can
efficiently be handled by means of adaptive time step control

In [284] a second order accurate time stepping scheme for parabolic interface
problems is presented. A priori estimates of optimal order are shown. This scheme
has been applied to the Eulerian formulation of fluid-structure interactions as
presented in [151, 154]. In Chap. 12 some details on the application of this advanced
time stepping schemes are presented.

6.4 Linearizations of the Fully Eulerian Coordinates

One of the benefits of an Eulerian formulation for fluid-structure interactions is the
ease of the variational setting, see Problem 6.7. The complete problem is given as

A.U/.˚/ D. �f .@tv C v � rv/; /F.t/ C .� f ;r/F.t/ C .r � v; �f /F.t/

C .Js O�s.@tv C v � rv/; /S.t/ C .� s;r/S.t/
C .@tu C v � ru � v;  s/S.t/ C .ru;r f /F.t/;

(6.8)
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with

� s D JsF�1
s .2�Es C �s tr .Es/I/F�T

s ; Es D 1

2

�
F�T

s F�1
s � I

�
:

Most of the terms appearing in this formulation are linear or have a quadratic
nonlinearity. Only the inverse deformation gradient’s determinant Js and the solid’s
stresses require closer attention. The characteristic difficulty will be the dependency
of the integrals on the domains F.t/ and S.t/, which are moving in time. Hence,
geometric derivatives must be considered. For the following derivation we closely
follow the approach in Sect. 5.2.2, in particular Theorem 5.2 and Lemma 5.4.

Lemma 6.9 (Derivatives of the Eulerian Deformation Gradient) Let F D I �
ru, J WD det.F/ and E WD 1

2
.F�TF�1 � I/

.i/
dF
du
.w/ D �rw;

.ii/
dFT

du
.w/ D �rwT ;

.iii/
dF�1

du
.w/ D F�1rwrF�1;

.iv/
dF�T

du
.w/ D F�T rwTrF�T ;

.v/
dJ.u/

du
.w/ D �JF�T W rw D �J tr .F�1rw/;

.vi/
dE.u/

du
.w/ D 1

2
F�T.rwTrF�T C F�1rw/F�1

Proof We note F D OF�1
and refer the reader to Lemma 5.4. ut

By these derivation rules most of the terms in the Jacobian of the Eulerian
formulation (6.8) can be expressed.

What remains, is the handling of the formulation’s dependency on the domain
motion. Here, the concept of geometric derivatives, shape calculus must be consid-
ered. It holds

Theorem 6.10 (Directional Shape Derivatives) Let Ő � Rd be a domain with
piece-wise C1 boundary, OT.Ox/ WD Ox C Ou be a smooth domain map OT W Ő ! ˝.u/,
such that OT 2 W1;1. Ő /. Further, let f 2 W1;1.˝.u//. It holds

d

ds

Z

˝.uCsw/
f dx

ˇ̌
ˇ
sD0 D

Z

@˝.u/
.n � w/f do; (6.9)

where n is the outward facing normal vector on @˝.u/.
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Proof Let u;w be given with Lagrangian counter-part Ou.Ox; t/ D u.x; t/ and
Ow.Ox; t/ D w.x; t/. It holds

d

ds

Z

˝.uCsw/
f dx D

Z

Ő
d

ds
OJ. Ou C s Ow/f .Ox C Ou C s Ow/ dOx (6.10)

where

OJ. Ou C s Ow/ D det
�

I C Or. Ou C s Ow/
�
: (6.11)

Then, by Lemma 5.4, it holds

d

ds
OJ. Ou C sw/f .Ox C Ou C s Ow/

ˇ̌
ˇ
sD0

D OJ. Ou/f .Ox C Ou/ OF�T
.u/ W Or Ow C OJ. Ou/rf .Ox C Ou/ � Ow:

Therefore, by mapping back to ˝.u/ and with help of integration by parts:

d

du

Z

˝.uCsw/
f dx

ˇ̌
ˇ
sD0 D

Z

˝.u/
fI W rw dx C

Z

˝.u/
rf � w dx

D
Z

@˝.u/
.n � w/f dx �

Z

˝.u/
div . fI/ � w dx C

Z

˝.u/
rf � w dx:

(6.12)

ut
This result is specially adapted to our requirements. For more general results and

an introduction to the area of shape calculus with application to partial differential
equations, we refer to Simon [311] or [114, 313].

This theorem can directly be applied to calculate the Jacobian of the variational
formulations. Equation (6.9) must be considered as a simple tool for evaluation of
the derivatives. This formula however requires high regularity of the function f at the
boundary. For example, we consider the variational formulation of Laplace equation

A.u/./ D
Z

˝

ru � r dx:

Now assume that˝ D ˝.u/ as stated in Theorem 6.10. The variational formulation
has a double dependency on u, appearing as trial function itself and by the domain’s
dependency. Formula (6.9) gives

A0.u/.w; / D
Z

˝

rw � r dx C
Z

@˝

.n � w/ru � r do:
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For this expression to be well-defined, we need traces of ru and r. For H1-
functions, this regularity is not given. The crucial step in Theorem 6.10 is hidden
in (6.12) using integration by parts. While the volume-formulation of the derivative
is well-defined, the boundary integral formally requires higher regularity. See [311]
for a discussion.

By the combination of Theorem 6.10 and Lemma 6.9, we can derive the complete
Jacobian of the Fully Eulerian fluid-structure interaction problem.

Theorem 6.11 (Jacobian of the Fully Eulerian Formulation of Fluid-structure
Interactions) For the directional derivative of formulation (6.8) in U D fv;u; pg
in direction of W D fz;w; qg it holds

A0.U/.W; ˚/ D
�
�f .@tz C z � rv C v � rz/; 

�

F.t/

C
�d� f

dv
.z/C d� f

dpf
.qf /;r

�

F.t/

C
�dJs

du
.w/ O�s.@tv C v � rv/C Js.@tz C z � rv C v � rz/; 

�

S.t/

C
�d� s

du
.w/;r

�

S.t/
C .r � z; �f /F.t/

C
�
@tw C v � w C z � u � z;  s

�

S.t/
C
�
rw;r f

�

F.t/

C h�f .@tvf C vf � rvf /; .wf � nf /iI.t/ C h� f ;r.wf � nf /iI.t/
C hr � vf ; �f .wf � nf /iI.t/ C hJs O�s.@tvs C vs � rvs/; .ws � ns/iI.t/
C h� s;rs.ws � ns/iI.t/ C h@tus C vs � rus � vs;  s.ws � ns/iI.t/
C hrwf ;r f .wf � nf /iI.t/;

where the directional derivatives of the deformation gradient, the stresses and the
strains are defined in Lemma 6.9.

For the computations of the boundary terms, it must be considered, that the
gradients of v and u are not continuous across I.t/. Therefore, we denote the correct
side by adding the subscripts “f” and “s” where necessary.

Remark 6.12 Including shape derivatives in the computation of the Jacobian sig-
nificantly complicates the implementation work. In [126, 127] it is noted that
computational approaches for linearization and also for sensitivity based opti-
mization work well, if these shape derivatives are neglected. At the latest when
optimization problems are considered, it will be necessary to include these terms, as
they will be crucial for the determination of the adjoint information transport across
the interface, see also Sect. 9.
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6.5 Finite Elements for the Fully Eulerian Framework

The Fully Eulerian framework for fluid-structure interactions leads to an interface
problem. The interface I.t/ must be captured and across this interface, the solution
fu; vg suffers from a lack of accuracy. As has been discussed in Sect. 4.5, we must
expect a breakdown in convergence rates, if we do not accurately treat the are around
this interface.

The parametric finite element scheme proposed in Sect. 4.5 can directly be
applied to this more complex coupled problem. As velocity and deformation are
globally defined as continuous functions, no special adjustments are necessary.
Only the coupling between velocity and pressure must be carefully considered.
In [151], Frei discusses several alternatives to stabilize the inf-sup condition on
meshes resulting from the parametric interface resolution. None of the techniques
however is fully satisfactory. Instead, the definition and implementation of an inf-
sup stable finite element pair remains an open topic.

Away from the moving interface I.t/, standard finite element pairs can be used
for the discretization of velocity, pressure and also for the deformation. To simplify
a direct variational coupling of velocities and deformations across the interface, and
to avoid local changes of basis functions, the same function spaces should be used
within the fluid and the solid domain. For details, we refer to Sects. 4.3 and 5.3.

For further reading, we refer to the literature [151, 154] and also to Chap. 12 of
this book.

6.6 Numerical Study

For validation of the Eulerian model, we first consider two simple fluid-structure
interaction benchmarks, the csm-1 problem and the fsi-1 problem as proposed by
Hron and Turek [199]. Both benchmark problems use the configuration as shown
in Fig. 6.1, where an incompressible fluid flows around a circular obstacle and
an elastic beam that is attached to this rigid obstacle. In the csm-1 benchmark
configuration the fluid is initially at rest and the beam undergoes a deformation
caused by a gravity force. In the fsi-1 benchmark problem no gravity force is

M = (0.2, 0.2)

Γin Γout

Γcircle
Ω

A = (0.6, 0.2) Γwall

I

Γbase

Fig. 6.1 Configuration of the csm-1 and fsi-1 benchmark problems as published by Hron and
Turek [199]
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acting, but the flow is driven by an inflow profile. Both problems have a stationary
solution and highly accurate results for different functional values are available in
literature [199, 201]. Finally, we describe a more challenging test case, where an
elastic ball falls in an container filled with an incompressible fluid. The ball touches
the bottom of the container and rebounces. Here we focus on modeling this collision
of elastic structure with the domain’s boundary.

6.6.1 Stationary Structure Benchmark Problem

In this first test case, a gravity force is acting on the elastic structure and causes
a deflection, see Fig. 6.1. In the original benchmark configuration [199] gs D 2

has been used, Wick [342] also published results for gs D 4 yielding a larger
deformation. To exploit the possibilities of very large deformation with the Eulerian
approach, we add a further test case using gs D 8. We measure the deformation us

in the tip of the beam A D .0:6; 0:2/ in the stationary limit. In Table 6.1 we present
the deflections in this measurement point on different meshes with decreasing mesh
sizes under three different gravity forces. For comparison, we indicate the reference
values are stated in [199, 201] and [342, 344]. The complete set of parameters used
in this configuration is:

�f D O�s D 103; �f D 10�3; �s D 5 � 105;
�2 D 2 � 106; fs D �gsJs O�s�s:

(6.13)

The Fully Eulerian method yields accurate values which are very close to the
reference values cited from the literature. Further, the Eulerian framework is able
to increase the gravity force up to a point (gs D 8) where the beam touches the
rigid bottom of the flow-channel, see Fig. 6.2. Here, no results for comparison are
available in the literature.

Table 6.1 Results for the CSM-1 benchmark problem using increasing volume forces

gs D 2 gs D 4 gs D 8

Mesh size ux.A/ uy.A/ ux.A/ uy.A/ ux.A/ uy.A/

hmin 	 0:008 6.372 61.84 21.22 114.54 59.846 189.74

hmin 	 0:004 7.116 64.70 25.02 121.25 65.760 192.03

hmin 	 0:002 7.149 66.07 25.10 122.16 66.857 192.35

Hron and Turek [199] 7.187 66.10 n/a n/a

Wick [342, 344] 7.150 64.90 25.33 122.30 n/a

Functional values on a sequence of meshes. Comparison to reference values taken from the
literature using the ALE framework
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Fig. 6.2 Configuration of the csm-1 benchmark problem and modifications with larger gravity
force. Left gs D �2, middle gs D �4 and right gs D �8

6.6.2 Stationary Fluid-structure Interaction Problem

As a second test case of the benchmark-suite published by Hron & Turek we refer to
the fsi-1 problem. The flow is driven by a parabolic inflow profile on the boundary

in:

vin D y.H � y/

4H2
vmax; H D 0:41; vmax D 0:3:

Due to a slight unbalance in the configuration (see Fig. 6.1) the elastic beam
undergoes a small deflection. Apart from this modification, the material constants
are taken as described in (6.13). Besides measuring the deflection of the beam, drag-
and lift-values of the obstacle (rigid circle & beam) where to be estimated. Let

obs WD I [ 
circle n 
base be the complete outer boundary of the obstacle. Here, we
consider the drag-value:

Jdrag D
Z


obs

nf � f ex ds:

Evaluation of these integrals is accomplished by rewriting the boundary integrals
over the moving interface I.t/ into integrals over the fixed boundary around the rigid
circle, followed by a reformulation into volume integrals. Finally, we can compute
the drag force as a residual evaluation. We first modify the functionals by using the
dynamic coupling condition and inserting zero:

Jdrag D
Z


circlen
base

nf � f ex ds C
Z

I

nf � f„ƒ‚…
D�ns� s

ex ds ˙
Z


base

ns� sex ds

D
Z


circlen
base

nf � f ex ds C
Z


base

ns� sex ds �
Z

@˝s

ns� sex ds:

In the stationary limit (and in the absence of external forces) it holds for the exact
solution

R
@˝s

n� ds D � R
˝s

div � s dx D 0 and hence:

Jdrag D
Z


circle

n� e1 ds;
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where by n we denote the outward facing normal vector (whether in ˝f or ˝s)
and by � the corresponding acting tensor. Evaluation of this boundary integral is
straightforward, since the boundary 
circle is fixed, even in the Eulerian setting. The
accuracy of this functional evaluation can be further enhanced by expressing it in
terms of variational residuals,the Babuška-Miller-Trick [16, 88, 280]. In Table 6.2
we gather the drag-value obtained with the Eulerian approach. For evaluation of the
functional we consider both the boundary integrals as well as the reformulation into
residual terms. A good reference value Jdrag D 14:2940˙ 10�5 is available in the
literature [201, 280]. In Fig. 6.3 we show the error slopes of the drag approximation.
Here we observe linear order of convergence (in the mesh-size h) for the boundary
integral and quadratic convergence for the residual reformulation. Using piecewise
linear finite elements one would expect (at least for a pure incompressible flow
problem) the double order of convergence. Order reduction will take place due
to the limited discretization accuracy close at the elements that are cut by the
moving interface. Remedy could be found by using local mesh adaptation close
to the interface or considering the extended finite element method [95] for better
accuracy in the interface region. See Chap. 8 for details on adaptivity and Sect. 4.5
for techniques to discretize interface problems. Frei [151] showed results for the

Table 6.2 fsi-1 benchmark
results

Mesh-size dof’s Boundary Variational

0.1 53;450 15.1052 14.9004

0.05 176;790 15.2333 14.5971

0.025 640;490 14.7836 14.4062

0.0125 2;466;390 14.5118 14.3280

Drag-coefficient Jdrag.Uh/ evaluates as boundary
integral and reformulated as residual expression.
The reference value taken from literature is given
by Jdrag D 14:2940˙ 10�5
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Fig. 6.3 Convergence of the drag-approximation with the Eulerian coordinate framework. Evalu-
ated as boundary integral (linear convergence) and as residual term (quadratic convergence)
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Fully Eulerian approach that do not suffer these order reductions, as accurate and
efficient numerical schemes are used. Once more, we also refer to Chap. 12.

For a study of the time-dependent version fsi-3 of the benchmark problem, we
refer to the results shown by Frei [151]. Given an adequate handling of the interface
discretization with the locally modified scheme presented in Sect. 4.5 and accurate
time stepping on moving interfaces as presented in Sect. 4.6, the Fully Eulerian
model is able to reproduce the reference results from [330].

6.6.3 Contact Problem

Finally, we model the “free fall” of an elastic ball ˝s with radius rball D 0:4 in a
container˝ D .�1; 1/2 filled with a viscous fluid˝f . The container is closed at the
bottom boundary 
bot D @˝yD�1 but open at the top and the sides. Here, by open
we refer to the “do-nothing” boundary condition

�@nv � pn D 0;

which allows free in- and outflow of the fluid, see [188].
Figure 6.4 shows the configuration of this test case. At time t D 0, the midpoint

of the ball is at x0 D .0; 0/. Since gravity is the only acting force on the solid, the
ball will accelerate and fall to the bottom


bot D f.x;�1/; x 2 .�1; 1/g:

At this rigid wall with homogenous Dirichlet condition vf D 0, the ball stops and
due to elasticity it will bounce off again. The parameters used for this test case are
given by

�f D 103; O�s D 103; �f D 10�2

�s D 104; �s D 4 � 104; f D �Js O�s�s:
(6.14)

To get a closer look at the processes during “contact”, we show in Fig. 6.5 a
zoom into the are close to the lower boundary. We note that these computations
have been done with a standard finite element basis, without using the parametric
approach described in Sect. 4.5. Figure 6.5 shows simulation results for the time,
where the structure enters the last layer of elements at the boundary, the time, where
the ball gets closest to the boundary (here, a significant deformation of the structure
is visible) and at a time, where the ball starts to release and finally, a snap-shot of the
simulation, where the ball is completely detached. The Fully Eulerian formulation
does not model real contact, as solid and boundary never touch.
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Fig. 6.4 Falling ball bouncing of the bottom wall. Snapshots of the solution at times t D 0,
t D 0:71, t D 0:96 (first contact), t D 1:035 (biggest deformation), t D 1:125 (breaking contact)
and t D 1:38 (highest bounce-off)

Fig. 6.5 Close ups of the contact problem. From top to bottom: simulation at times, where the ball
first gets into the last layer of elements at the contact boundary, shortest distance to the boundary,
beginning of release and full detachment

Remark 6.13 (Contact in Fluid-structure Interactions) It is a widely discussed
question if contact in the case of the coupled dynamics of the incompressible Navier-
Stokes equations and a solid body is possible at all. First of all, physical observation,
i.e. a steel ball touching the ground, tells us that contact is established. On the other
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hand, theoretical results, considering the fall of an rigid body with smooth boundary
in an incompressible fluid show that contact (in the usual variational sense) will not
be reached in finite time, see e.g. [115, 136, 189, 190, 241]. To the best knowledge
of the author, no theoretical analysis has been done for collision problems of elastic
structures in viscous fluids.

For the interaction of an elastic solid with smooth boundaries and a viscous
fluid, one hypothesis is that a finite layer of fluid will always remain. In numerical
simulations based on strong local adaptivity, this could however not be assured
(neither disproved) so far.

From a modeling point of view, the use of the incompressible Navier-Stokes
equations is questionable for such limiting applications. First of all, also water
will not behave strictly incompressible, if very large forces act on a very thin film.
Secondly, the continuum hypothesis must be queried in the transmission to contact.

To shed further light on the mechanism acting at “close contact”, we consider the
following functional outputs measuring stresses in fluid and solid: We measure the
wall stress acting on the lower boundary and the elastic stress stored in the solid:

Jfluid.U/ D
Z


bot

� fnf � nf do; Jsolid.U/ D
�Z

S.t/
� s W � s dx

� 1
2

: (6.15)

The results—together with the distance of the ball from the lower boundary—are
shown in Fig. 6.6. Forces are transmitted through the remaining small liquid film
and elastic energy is stored in the solid.
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Fig. 6.6 Wall stress on the lower boundary and stresses in the solid during “contact”
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Table 6.3 Error in mass
conservation for the falling
ball

h/k 0:0100 0:0050 0:0025

2�5 2:68 � 10�3 2:66 � 10�3 2:69 � 10�3

2�6 7:82 � 10�4 6:95 � 10�4 6:72 � 10�4

2�7 2:63 � 10�4 1:92 � 10�4 1:68 � 10�4
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Fig. 6.7 Falling ball: functionals as plot over time. Left: solid’s average velocity. Right: solid’s
relative volume. The two turning points of the velocity for contact (C) and maximum bounce-off
(B) are indicated in the middle plot

Finally, to measure the quality of the approximation we indicate some further
output functionals of the solution. First, as the Eulerian model does not have exact
conservation properties, we analyze the solid’s mass, measured as

Jmass.U/ D
Z

S.t/
Js O�0s dx:

In Table 6.3 we show the error in mass conservation

k jmass.t/ � O�s�r2ballkL2.Œ0;2�/;

depending on the accuracy of the spatial and temporal discretization. The time-
interval I D Œ0; 2� is so large that the ball hits the bottom boundary twice. We
observe O.h2/ convergence, even if we did not use the modified finite element
approach described in Sect. 4.5. The time-discretization parameter k appears to be
too small to have a substantial influence on the accuracy. strictly guarantee this
conservation.

In Fig. 6.7 we show two further output functionals measuring the average vertical
velocity of the ball and the volume of ball, both as functions over time:

Jv.t/ WD
Z

˝s.t/
vy

s.t/ dx; Jvol.t/ WD
Z

˝s.t/
1 dx: (6.16)
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Table 6.4 Left: maximum (negative) velocity reached in free fall. Right: maximum average
velocity after bounce-off

h/k 0.0100 0.0050 0.0025

2�5 �0:4977 �0:4990 �0:5006
2�6 �0:5248 �0:5286 �0:5298
2�7 �0:5402 �0:5311 �0:5315

h/k 0.0100 0.0050 0.0025

2�5 0.320 0.348 0.365

2�6 0.318 0.369 0.396

2�7 0.357 0.388 0.404

Calculations on three different spatial and temporal meshes

Note that mass should be conserved, the volume of the elastic obstacle however is
subject to change, as �s D 0:4, compare (6.14).

Figure 6.7 shows the progress of the functionals (6.16) as function over time. The
left sketch shows the average velocity. Here, acceleration by gravity and acceleration
due to bounce of are clearly visible. The boundary of height is smaller (due to
viscous damping). The right sketch shows the volume of the ball. Due to the
compression at impact-time, the volume gets reduced during the contact. Reduction
of volume is possible, since the flow-container is open on the upper, left and right
boundaries.

Finally, in Table 6.4 we indicate the maximum (negative) velocity that is reached
at the time of first contact tC � 0:952, as well as the maximum velocity that is
reached after the first bounce-off tB � 1:105, see Fig. 6.7. Computations are done
using three different temporal and spatial discretization parameters h and k. All
meshes are uniform in space and time. While the time step has only a very small
influence on the functional values we observe convergence under mesh-refinement.

The problem of an elastic ball, falling in a viscous fluid has been revisited by
Frei [151]. Here, detailed studies including contact modeling are given. In particular
it is found that for certain configurations, a minimal distance between ball and
bottom of the flow container can be identified in numerical simulation, such that
no real contact will take place at first touch-down. A numerical study with accurate
interface discretization techniques is found in the guest article of Frei, Chap. 12 of
this book.



Chapter 7
Linear Solvers for Fluid-structure Interactions

This chapter is devoted to different algebraic solution techniques for discretized
fluid-structure interaction problems. We will consider discretizations in time and
space as discussed in the previous chapters. The main focus will be put to fluid-
structure interactions in Arbitrary Lagrangian Eulerian coordinates, as described in
Chap. 5. Solution techniques for the alternative Eulerian approach from Chap. 6 will
be mentioned, where standard approaches fail.

From finite element discretization and discretization in time, we derived nonlin-
ear systems of algebraic equations. Find

Uh 2 Xh W Ah.Uh/.˚h/ D F.˚h/ 8˚h 2 Yh;

where Uh is the unknown solution, ˚h 2 Yh the finite element test function and F.�/
is the right hand side that depends—in the case of non-stationary problems—on
the old solution at the previous time step. In Sects. 5.2 and 6.4 we have discussed
the linearization of this system by fixed-point iterations or by means of the Newton
method. In any way linearization results in the necessity to solve linear systems of
equations of the type

Ahx D b:

These systems are huge, usually very ill-conditioned and without structure such
as symmetry or positivity. In the following sections, we will give an overview
over different solution techniques for these linear systems of equations arising
from the finite element discretization of fluid-structure interactions. The main focus
will be on solution techniques for fluid-structure interactions in Arbitrary Eulerian
Lagrangian coordinates.

© Springer International Publishing AG 2017
T. Richter, Fluid-structure Interactions, Lecture Notes in Computational
Science and Engineering 118, DOI 10.1007/978-3-319-63970-3_7
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7.1 Partitioned Solvers

The traditional approach for solving fluid-structure interactions is to choose a
partitioning, where the problem is split into the Navier-Stokes problem on the
fluid domain and into the elastic structure problem on the solid domain. Often this
partitioning is considered as a Dirichlet-Neumann coupling. Given the interface
deformation uI and velocity vI , the fluid problem and the domain extension can
be solved

F.uI ; vI/ 7! fvf ;uf ; pf g: (7.1)

Given the fluid’s normal stresses on the interface � fnI we can solve for the new
solid deformation and velocity

S.� fnI/ 7! fus; vsg: (7.2)

Both problems are solved separately and the coupling is realized by means of
boundary conditions. The system is not only partitioned for the solution of the
algebraic problems. Instead, one starts with two separated formulations. Strongly
implicit discretization techniques, like a backward Euler for the coupled problem
are not possible.

We assume that the interface values uI ; vI ; � fnI are exactly known. Then, the
solutions to (7.1) and (7.2) are the exact solutions to the coupled fluid-structure
interaction problem. Of course, this idealistic assumption is usually not true. Instead,
partitioned approaches employ outer loops to approximate the coupled solution by
solving the two subfield problems (7.1) and (7.2). Approximations to the interface
values uI ; vI ; � fnI can be obtained from the approximations to the fluid problem
vf ; pf ;uf and the solid problem us; vs

uI D us

ˇ̌
ˇ
I
; vI D vs

ˇ̌
ˇ
I
; � fnI D � f .vf ;uf ; pf /n

ˇ̌
ˇ
I
:

Fluid and solid problem can therefore be written as

fus; vsg F7! fvf ;uf ; pf g

fuf ;uf ; pf g S7! fus; vsg:
The most basic partitioned approach is the weakly coupled scheme. This method
can be regarded as a semi-explicit time stepping scheme. For solving the fluid and
solid problem we take the interface approximations from the last time step, e.g. we
perform simple subfield solutions of

fus.tn/; vs.tn/g F7! fvf .tnC1/;uf .tnC1/; pf .tnC1/g

fuf .tnC1/;uf .tnC1/; pf .tnC1/g S7! fus.tnC1/; vs.tnC1/g:
(7.3)
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This approach introduces a splitting error that is at least of order O.�t/, where �t
is the time step size. Even if implicit and A-stable time-discretization schemes are
considered for both of the subproblems, the semi-explicit character of the splitting
can cause stability problem. Indeed, this is the most often observed drawback of
simple weakly coupled approaches. In particular added mass instabilities will cause
problems, see Sect. 3.3 and [148].

An improvement of partitioned approaches is by adding an outer iteration to
approximate the solution of (7.3)

fu.i/s ; v
.i/
s g F7! fv.iC1/f ;u.iC1/f ; p.iC1/f g

fu.iC1/f ;u.iC1/f ; p.iC1/f g S7! fu.iC1/s ; v.iC1/s g;
(7.4)

with

u.0/s WD us.tn/; v.0/s WD vs.tn/:

Such an iteration can be run, until the coupling conditions are fulfilled, i.e.,

kv.iC1/f � v.iC1/s kI C k�
.iC1/
f n � � .iC1/s nkI < tol;

or until the interface increment is small enough

kv.iC1/s � v.i/s kI C ku.iC1/s � u.i/s kI < tol:

In principle, such strongly coupled partitioned approaches are able to really solve
the fluid-structure interaction problem. However added mass instabilities still give
rise to problems and may require many subiterations of (7.4), see [93, 181].

For accelerating and stabilizing iterations of type (7.4) proper relaxation strate-
gies are crucial. The interface update can be relaxed to

Qu.nC1/
s

ˇ̌
ˇ
I

D !u.nC1/
s

ˇ̌
ˇ
I

C .1 � !/u.n/s

ˇ̌
ˇ
I
:

A well-known strategy for controlling the relaxation parameter ! is by Aitken’s
relaxation, see [206]. The coupling iteration (7.4) can either be based on a simple
relaxed Richardson iteration or by means of more advanced techniques, such as an
Newton like scheme for the interface variables [113].

The major benefit of partitioned approaches is the efficiency of available tools
for the two subproblems fluid and solid. Partitioned approaches can be build around
these existing tools. If convergence in not too many iterations of (7.4) can be
reached, partitioned approaches are very successful.

A comprehensive survey on partitioned methods is out of the scope of this book.
Here, we focus on the monolithic approach, as it will allow us to design stable
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methods with good accuracy and robustness. This does not mean that we will not
use the idea of partitioning at all. In the following sections we will see that without
splitting of the systems into the two ingredients, coupled fluid-structure problems
often are too large and stiff to be solved in reasonable time.

For many applications like wind turbine simulation [32], where the added-mass
effect does not act strongly, partitioned approaches can be very efficient computa-
tional tools. Recent research often aims at increasing the stability and robustness of
strongly coupled partitioned approaches. For an overview on partitioned methods,
we refer to [22, 77, 79, 80, 82, 83, 142, 163, 181, 183, 184, 197, 213, 215, 229, 235,
236, 263, 332] and many more. For the case of lower-dimensional structures, e.g. the
description of the vessel wall as two dimensional boundary of the three dimensional
fluid-domain in blood flow simulations, very efficient partitioned schemes exist.
Here, by a proper decoupling and relaxation, the effect of the added mass instability
can be dealt with.

7.2 Direct Solution of Linear Systems

Let

Ahx D b; (7.5)

be the linear system arising from the discretization of a coupled fluid-structure
interaction problem. We assume that the matrix Ah 2 Rn�n with .Ah/i;j D aij is
very large n � 103 � 108 but sparse, i.e. for every row i 2 f1; : : : ; ng the set of
non-zero entries

Ai WD f j 2 f1; : : : ; ng; aij ¤ 0g

is small, #Ai D O.1/. Solution of linear systems is very sensitive to error
propagation from errors in the data Ah and b. The following (pessimistic) bound
holds for the propagation of errors

kx � Qxk
kxk 
 cond.Ah/

1 � cond2.Ah/
kıAhk
kAhk

�kıbk
kbk C kıAhk

kAk
�
;

if ıAh is a small perturbation of the system matrix Ah, ıb a perturbation of the right
hand side. By

cond.Ah/ WD kAhk kA�1
h k
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we denote the condition number of the matrix Ah. For discretizations of partial
differential equations, the condition number is usually very large. For elliptic
problems, it holds

cond.Ah/ D O
�
1

h2

�
;

such that we must expect a very strong error amplification. In Sect. 7.3.2, we
will see that the condition numbers of coupled fluid-structure interactions in ALE
coordinates is even far worse than that, of the single systems.

Without special knowledge and usage of the matrix structure, a direct solution of
the linear systems is always a possibility. For general matrices Ah 2 Rn�n, direct
solvers have a very great demand in computational time and also in memory use. The
numerical effort scales by O.nm2/, where m is the bandwidth of the sparsity pattern
of the matrix. The memory usage scales by O.nm/. Problem on two dimensional
meshes can usually be rearranged, such that m � n, making direct solvers a
good option, see [210]. For three dimensional problems however, the sparsity is so
excessive that the success of reordering is limited. See [110, 210, 219, 226] for an
overview of powerful packages for the direct solution of linear systems. Considering
three-dimensional problems, most direct solvers however lack efficiency. Finite
element discretization of three dimensional problems leads to matrices with sig-
nificantly more unknowns per matrix row, then their two dimensional counterparts.
Here, modern and problem-adapted iterative solvers are usually preferable.

In a study using the linear solver UMFPACK [110] we have found that the very
bad conditioning of coupled fluid-structure interactions can be so bad that the direct
solver is not able to give satisfactory error reduction, see [283]. Instead, the direct
solver had to be utilized in a defect-correction procedure with multiple steps. A
very similar study by Aulisa et al. [9] using the direct solver MUMPS [5, 6] found
comparable condition numbers but could not report on reduced convergence rates
of the direct solver.

7.3 Analysis of Benchmark-Problems

To start the discussion, we first present two different test problems to be used
throughout this article. First, we consider the non-stationary fsi-3 benchmark
problem of Hron and Turek [199], a 2d test case featuring large deformation and
stability problems caused by the added-mass effect. Second, we choose a three
dimensional test case [280, 283] with smaller deformation. This three dimensional
problem is also discussed in [9]. In the following, we describe the full configuration
including all problem parameters for both test cases.
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7.3.1 Configuration of the Benchmark Problems

Figure 7.1 shows a sketch of the geometry describing both benchmark problems.
The two configurations are driven by an inflow condition vf D vin for the velocity
on 
in:

v2d
in . y/ D y.H � y/

.H=2/2
� 3
2

Nv2d
mean; v3d

in . y; z/ D y.H � y/.H2 � z2/

.H=2/2H2
� 9
8

Nv3d
mean;

with average inflow velocities of Nv2d
mean D 2m/s and Nv3d

mean D 1m/s. Both profiles
are temporally smoothed to give a smooth transition from v D 0 at t D 0 to the
maximum velocity at time t D 2 s, by multiplying with ˛.t/ 2 R given by

˛.t/ D
(
1
2
.1 � cos.�t=2// t < 2

1 t � 2
:

On the outflow boundary 
out we prescribe the do-nothing condition

�f �fn � rvf � pfn D 0; (7.6)
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Fig. 7.1 Configuration of the two test cases
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Table 7.1 Description of the two benchmark problems

Problem configuration 2D 3D

Fluid density �f 103 kg � m�3 103 kg � m�3

Kinematic viscosity �f 10�3 m2 s�1 10�3 m2 s�1

Average inflow velocity Nvmean 2m s�1 1m s�1

Solid density �s 103 kg � m�3 103 kg � m�3

Shear modulus �s 2 � 106 kg � m�1s�2 5 � 105 kg � m�1s�2

Poisson ratio �s 0:4 0:4

Table 7.2 Number of unknowns, average convergence rates (see Remark 7.1), memory usage and
average computational time for linear solution with monolithic geometric multigrid solver using a
fully coupled block-wise incomplete decomposition as smoother

Mesh level (2d) 2 3 4 5 6 7

Unknowns 5260 20,640 80,960 320,640 1,276,160 5,091,840

Avg. conv. rate 0.14 0.29 >0:99 >0:99 >0:99 >0:99

Memory usage 19 MB 48 MB – – – –

Avg. time 0.12 s 0.72 s – – – –

Mesh level (3d) 2 3 4 5

Unknowns 18,711 131,495 983,367 7,600,775

Avg. conv. rate 0.086 0.067 0.094 0.33

Memory usage 156 MB 1.0 GB 7.8 GB 64 GB

Avg. time 1.23 s 10.17 s 120.15 s 2399 s

In the 2D case, there was no convergence starting from mesh-level 4

see [188], on the walls 
wall a no-slip condition vf D 0. In the case of the 3d-
configuration, we consider a symmetry condition at 
sym. In both cases, the solid
is firmly attached to the boundary at 
base by prescribing Dirichlet conditions for
velocity and deformation vs D us D 0. In Table 7.2, we collect all parameters that
completely describe the settings.

The 2d-case is challenging due large deformations that makes up about 50% of
the fluid domain. The 3d-case is less demanding in this respect, as deformations
are small. This reduces the effects of nonlinearities as well as the role of the ALE-
mapping of the fluid problem. We start by collecting convergence rates of a fully
monolithic multigrid solver in Table 7.1 for both problems.

Remark 7.1 (Estimation of Convergence Rate and Time, Computational Setup) As
the coupled fsi problem is highly nonlinear with time-dependent dynamics, we
always estimate convergence rates and computational time as averages over a
sequence of time steps. Furthermore, as the number of Newton steps may vary from
time step to time step, we fix the averaging by the following algorithm: in the case
of the 2d-problem, we compute averages over 100 time steps and we include 5
Newton steps per time step into the averaging. Furthermore, we use an approximate
Newton scheme by reusing the Jacobian: only every tenth time step, a new Jacobian
is assembled. In the case of the 3d-problem we choose the same procedure, but



288 7 Linear Solvers for Fluid-structure Interactions

averaging is limited to 20 time steps. To sum up: all results belonging to the 2d test
case contain averages over 500 steps of the linear solver, including 10 assemblies
of the system matrix. In the 3d test cases, we average over 100 runs of the linear
solver including 2 assemblies of the Jacobian (and the necessary preparation of the
smoother or preconditioner).

This fixation allows for a fair comparison scaling over the mesh levels. All
computations have been carried out on a Xeon E5-2690 cpu at 2.90 GHz with 256
GB of memory. Single core performance only is used for all computations.

The results in Table 7.2 present the performance of a standard geometric
multigrid solver, used as preconditioner in an outer GMRES iteration. Coarse mesh
problems are solved with help of a direct solver, and smoothing is done by a
blockwise incomplete decomposition of the coupled system matrix. This solver is
the standard technique in the software library GASCOIGNE 3D [43] and is highly
efficient for problem in fluid-dynamics (compressible and incompressible), solid
mechanics and various coupled multiphysics problems, see [211]. Here however, we
see that the convergence rates quickly deteriorate on fine meshes. Already starting
with about 81;000 unknowns, this solvers ceases to work in the (more difficult) 2d-
case. In terms of material parameters and deformation, the three dimensional test
case is easier. This explains the better convergence rates. Besides the computational
times, we see that memory consumption is a severe issue, in particular for the three
dimensional benchmark configuration. Although multigrid convergence rates are
worsening for large problem sizes, the robustness of this standard solver must be
highly appreciated.

A straight-ahead alternative to coupled multigrid solvers is the solution via
direct solvers. In Table 7.3 we give indications of the convergence rates, memory
usage and computational time for the two benchmark problems using the direct
solver UMFPACK [110]. Memory consumption quickly goes beyond feasible limits.
Computations on the finest meshes have not been possible. Furthermore, solution
times increase in a similar fashion, such that direct solution—in particular for 3d
problems—is no alternative. It is surprising that the direct solver (using double
precision arithmetic) shows very bad error reduction, giving only one or two digits
in every step. We will see that this behavior is due to the very bad conditioning of
the coupled matrix. A similar study in [9] using the direct solver MUMPS [5, 6] did

Table 7.3 Convergence rates, memory usage and average computation time for linear solution
with a monolithic direct solver

Mesh level (2d) 2 3 4 5 6 7

Avg. conv. rate 0.015 0.011 0.019 0.043 0.069 –

Memory usage 36 MB 135 MB 527 MB 2.9 GB 18.1 GB >256 GB

Avg. time 0.042 s 0.21 s 1.18 s 8.75 s 47.74 s –

Mesh level (3d) 2 3 4 5

Avg. conv. rate 0.084 0.048 0.14 –

Memory usage 307 MB 7.3 GB 132 GB >256 GB

Avg. time 0.92 s 36.25 s 2472 s –
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not show this defect. MUMPS was able to solve the two dimensional problem with
very good convergence rates. The setting and the finite element approach slightly
differs from our techniques. Therefore it is too early to attribute these differences to
the direct solver only.

7.3.2 Condition Number Analysis of the System Matrices

In this section, we will analyze the condition numbers of the Jacobian Ah and its
different sub-parts. For this analysis, we consider the two benchmark problems
introduced in Sect. 7.3. For a derivation of the system matrix, we refer to Sect. 5.3.4.
Here, we shortly repeat the notation. The coupled problem consists of two matrices,
F for the fluid-problem and S for the solid-problem that overlap on the interface
degrees of freedom. The two sub-matrices can be written as

F D

0

B@
Fdiv

p Fdiv
v Fdiv

u

FNS
p FNS

v FNS
u

0 0 FALE
u

1

CA ; S D
�

SES
v SES

u

Suv
v Suv

u

�
; (7.7)

the coupled system matrix is given by

Ah D

0

BBBBBBBBBBBB@

Fdiv
p Fdiv

v Fdiv
u Fdiv

p Fdiv
v Fdiv

u 0 0

FNS
p FNS

v FNS
u FNS

p FNS
v FNS

u 0 0

0 0 FALE
u 0 0 FALE

u 0 0

Fdiv
p Fdiv

v Fdiv
u Fdiv

p Fdiv
v Fdiv

u 0 0

FNS
p FNS

v FNS
u FNS

p FNS
v C SES

v FNS
u C SES

u SES
v SES

u

0 0 0 0 Suv
v Suv

u Suv
v Suv

u

0 0 0 0 SES
v SES

u SES
v SES

u

0 0 0 0 Suv
v Suv

u Suv
v Suv

u

1

CCCCCCCCCCCCA

(7.8)

compare also (5.35). This coupled matrix is given as the prolongation of the two
sub-matrices:

Ah D RT
f FRf C RT

s SRs:

The first lines of Table 7.4 show the condition number of the coupled matrix

cond.Ah/ D kAhk1kA�1
h k1;

in the 1-norm (maximum column sum). Furthermore, we indicate the condition
numbers for the solid matrix S in (7.7), the main part of the Navier-Stokes problem

FNS D
 

Fdiv
p Fdiv

v

FNS
p FNS

v

!
;
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Table 7.4 Condition numbers of the 2d (top) and 3d (bottom) benchmark problems for the full
system matrix A, the solid part S, the Navier-Stokes part FNS and the matrix of the ALE extension
FALE
u (considering harmonic extension)

Mesh level (2d) 1 2 3 4 5

cond.A/ 3:30 � 1012 9:85 � 1012 4:36 � 1013 1:76 � 1014 7:40 � 1014
cond.S/ 4:19 � 107 1:49 � 108 5:54 � 108 1:45 � 109 5:26 � 109
cond.FNS/ 3:12 � 108 5:78 � 108 1:15 � 109 2:27 � 109 4:34 � 109
cond.FALE

u / 1:85 � 103 7:67 � 103 2:95 � 104 1:16 � 105 4:59 � 105
Mesh level (3d) 1 2 3

cond.A/ 5:25 � 1012 3:52 � 1013 1:80 � 1014
cond.S/ 3:48 � 105 2:22 � 106 8:36 � 106
cond.FNS/ 1:43 � 107 3:25 � 107 5:39 � 107
cond.FALE

u / 7:74 � 101 2:86 � 102 1:62 � 103

and the ALE extension matrix FALE
u . The latter two matrices implement homogenous

Dirichlet values on the fluid-structure interface I. A separate discussion of FNS

and FALE
u is reasonable, as the system naturally decouples. All condition numbers

are approximated with Matlab [234]. To avoid scaling effects (from the size of
mesh elements or from problem parameters), we apply diagonal scaling before
computing the condition numbers. For both benchmark problems we show the
resulting condition numbers on a sequence of uniform meshes.

A first glance at the numbers in Table 7.4 reveals the expected results with a
proper scaling in terms of the mesh-size. This analysis however puts forward the
dramatic effect of the monolithic coupling on the conditioning of the coupled system
matrix Ah that finally causes standard coupled multigrid solvers (with coupled
multigrid smoothers) to cease work, see the introduction and Table 7.2. By a
decoupling, all condition numbers are within reasonable limits. This observation
will guide the design of the partitioned multigrid smoother in Sect. 7.5. A similar
study was performed by Aulisa et al. [9]. Here, similar values where identified by
using MATLAB. In addition, conditioning of the systems was also estimated using
the direct solver MUMPS [5, 6] that showed better values.

7.4 Krylov Space Solvers for Fluid-structure Interactions

Most of the versatile and efficient iterative solution methods are Krylov subspace
methods like the Conjugate Gradient (CG) or the Generalized Minimum Residual
Method (GMRES) or the Biconjugate Gradient Stabilized Method (BiCGStab).
See [295] for a general overview.

The basic idea of these methods is to approximate the solution of Ahx D b
rewritten as a minimization problem

kb � Ahx.l/k ! min;
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in the Krylov subspaces, given by

Kl.Ah; r/ D fr;Ahr; : : : ;Al�1
h rg; r D b � Ahx.0/:

Krylov subspace techniques can be very efficient. The minimization problems are
usually solved—or approximated—based on an orthogonalization of the Krylov
spaces. The convergence rate however strongly depends on the condition number
of the system matrix cond.Ah/. For acceleration, the concept of preconditioning is
applied. Instead of approximating Ahx D b, one tries to solve the problem

PhAhx D Phb;

where by Ph W Rn ! Rn we denote the preconditioner, an operator (most often a
matrix), which should be spectrally similar to A�1

h , such that

cond.PhAh/ � cond.Ah/:

There exist general purpose preconditioners like Jacobi, Gauss-Seidel or incomplete
decompositions of the system matrix Ah. All these techniques are not very success-
ful in the context of fluid-structure interactions. Table 7.2 in Sect. 7.3 shows results
for a geometric multigrid solver, smoothed by an incomplete decomposition. This
approach failed on fine meshes.

Regarding fluid-structure interactions, a preconditioner should consider the
structure of the problem. Assume that the general linear system of fluid-structure
interactions can be written in the compact form

�
F Cfs

Csf S

��
xf

xs

�
D
�
bf

bs

�
;

with a splitting into fluid-part, solid-part as well as the coupling parts. Then, be basic
idea of a preconditioner would be to neglect some of the off-diagonal coupling

P D
�

F 0

Csf S

��1
D
�

F�1 0

�S�1Cs;fF�1 S�1
�

Application of the preconditioner requires multiplication with the matrix P. This
itself requires the solution of linear systems coming from the solid-equation S and
the fluid-equationF. These again must be approximated with a suitable method. The
large benefit of this approach however is that smaller systems with a well known
character and better conditioning have to be approximated [148]. Furthermore, by
applying the partitioning in the preconditioner, it is possible to break the very bad
conditioning of the coupled system, see again Sect. 7.3.2.

Preconditioned Krylov subspace methods (usually it is GMRES) are among
the most powerful solution methods for monolithic fluid-structure interactions.
For increasing robustness and efficiency, a careful design of the preconditioner is
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crucial. The main guideline on how to setup the matrix P is given in the following
Sect. 7.5.2 where a similar concept is analyzed in the context of multigrid solvers.
Furthermore, we refer to the extensive literature on this topic [21, 27, 79, 80, 108,
180, 181, 249, 340, 353]. In [220] an overview on state of the art precondition
techniques for iterative fluid-structure interaction solvers is given.

7.5 Multigrid Solvers for the Arbitrary Lagrangian Eulerian
Formulation

Another class of very efficient solvers is the multigrid method. Classic geometric
multigrid methods [172, 341] are based on an approximation of the linear system on
a hierarchy of levels, coming from the finite element discretization of the differential
equation on a hierarchical sequence of meshes

˝0;˝1; : : : ;˝L D ˝h;

with its own hierarchical sequence of finite element spaces

V0 � V1 � � � � � VL D Vh:

Geometric multigrid solvers are based on the observation that typical iterative
methods like Jacobi or Gauss-Seidel do a very bad job in solving the problem,
they however are very efficient and quick in removing all high frequent error
contributions. Hence, instead of “solving” the problem on the finest mesh level
˝L D ˝h, only high frequent error parts are removed in very few iterations of a
simple iterative algorithm. The remaining error (i.e. the residual) is then restricted
to the next coarse mesh level˝L�1, where this strategy is repeated. Finally, arriving
at the coarsest mesh level, the remaining problem is that small that it can efficiently
be solved with help of a direct solver or a standard Krylov subspace method. So
far the theory—which is the reality for simple elliptic problems. In the practical
application to complex multiphysics problems, several challenges appear.

1. Very often a hierarchy of meshes is not available. It is never difficult to get finer
meshes (simply by refinement), if however the only mesh at hand is already very
complex, e.g. coming from a mesh generator, and no coarse mesh is available,
the idea of geometric multigrid fails. There are strategies of generating coarse
meshes, this however is not standard.

2. Simple iterations like Gauss-Seidel or Jacobi fail to work as smoother for prob-
lems without an elliptic character. There are robust options like iterations based
on incomplete decompositions [35, 46, 211]. These however are costly and may
fail for problems such as fluid-structure interactions, see Sect. 7.3. For saddle-
point problems, the class of Vanka smoothers [198, 199, 275, 334, 357], based
on solving local subproblems is very successful. Hron, Turek and coworkers
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used Vanka-based smoothers in a geometric multigrid iteration with good success
for 2d fluid-structure interactions [198, 275], considering 3d problems however,
efficiency was reported to be lost (Hron, personal communication, 2014).

Very often, multigrid iterations are not directly used as solvers, instead, they
serve as preconditioners in outer Krylov subspace methods. This approach is
promising, as multigrid iterations—due to the hierarchical setup—allow to lessen
the effect of small mesh sizes on the conditioning of the system matrix, see [172].
This is also the approach that we follow in this section. We develop a multigrid
iteration for fluid-structure interactions in ALE coordinates, this iteration however
will only be used as preconditioner in a Krylov subspace method as introduced in
Sect. 7.4. A very similar approach has recently be presented for non-stationary fluid-
structure interactions [9].

Remark 7.2 (Algebraic Multigrid) A possible solution for the first issue is the
concept of algebraic multigrid methods, where the hierarchy of problems is
generated on the algebraic level by agglomeration of matrix entries [320]. In theory,
these new methods are very robust and versatile and could serve as black-box
solvers. For complex applications however, specially adapted smoothers and also
agglomeration techniques must be developed.

Gee et al. [163] presented a monolithic algebraic multigrid as preconditioner
for Krylov subspace iterations. Here, Gauss-Seidel splitting is applied as smoother
and not for preconditioning. This change of order can help to get access to the
full power of linear multigrid convergency. Yang and Zulehner [353] derived a
nonlinear iteration on the interface unknowns. In every step of a Newton approach
decoupled linear problems in the fluid and solid domain must be solved. These are
approximated with an algebraic multigrid solver.

This section will be devoted to the derivation of an efficient multigrid method
for the preconditioning of the linear systems that arise from the finite element dis-
cretization of fluid-structure interaction problems in Arbitrary Lagrangian Eulerian
coordinates. Here, we have the setting of Chap. 5 in mind and in particular, the linear
systems of equations described in Sect. 5.3.4.

The main focus will be on the design of a robust smoother that takes the special
structure of fluid-structure interactions into account.

Brummelen et al. [76] analyzed a simplified problem with potential flow and a
lower dimensional solid. The authors argued that a monolithically coupled multigrid
iteration with a decoupling within the multigrid smoother would serve as an optimal
solver (convergence rates going to zero for increasing mesh-levels), if the two
subproblems in the smoother are solved exactly. In the following we want to extend
this approach.
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7.5.1 GMRES Multigrid Iteration

In this section, we present the general layout of a multigrid preconditioned GMRES
iteration for the coupled system

Ahx D b;

where x D .v;u;p/ with v;u 2 R2dN and p 2 RNf CNi is the vector of solution
coefficients. By vf ;uf 2 R2d.Nf CNi/ and vs;us 2 R2d.NiCNs/ we denote the
overlapping (on the interface) restrictions of these vectors to the fluid- and solid
degrees of freedom. Ah is the coupled system matrix (Sect. 7.8). The philosophy
of the linear solver is to treat the coupled problem in a monolithic manner as
long as possible. The analysis in Sect. 7.3.2 shows that the condition number
cond.Ah/ is very large. This large condition number not only stems from the second
order character of the partial differential equations, but also from the different
numerical scales acting in fluid- and solid-problem. Just to highlight one example:
the viscosity of water is about 10�3 Pa � s, the Young’s modulus of steel is 2 �1011 Pa.
At the interface degrees of freedom, both equations are coupled in Ah. Diagonal
preconditioning does not significantly help to improve the condition number, see
Sect. 7.3.2. Hence, whenever it is necessary to compute the inverse of Ah, we will
apply a splitting into fluid- and solid-part. The general outline of the solver is as
follows.

1. As outer iteration to solve Ahx D b we employ a monolithic GMRES iteration,
see Sect. 7.4.

2. The GMRES solver is preconditioned by a geometric monolithic multigrid
solver.

3. The multigrid smoother is constructed as a domain decomposition iteration with
a Dirichlet-Neumann coupling on the interface into solid-problem governed by S
and fluid-problem governed by F (formulated as Dirichlet problem).

4. Each of these subproblems is smoothed with some steps of a simple iteration, e.g.
Richardson or BiCGStab [295] preconditioned with solvers of Vanka type [275,
334], or of block-ILU type [46, 211].

5. The coarse-mesh problem will be treated by a direct solution of the monolithic
coupled system.

The reason for applying the partitioning in the multigrid smoother and not as
outer preconditioner is motivated by two arguments: first, it has been shown by
Brummelen and coworkers [76] that a partitioned smoother with exact solution
of the two subproblems is a perfect smoother for a certain class of fluid-structure
interactions. Perfect here implies that the convergence rate will go to zero for
increasing number of mesh-levels. Second, it is the simple observation that the role
of the multigrid smoother is not that of finding a global solution, but its only intend is
to locally smooth high frequent error contributions. Here, global coupling conditions
must not be resolved.
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We assume that a hierarchy of finite element meshes˝l and finite element spaces
Xl is given. The classical multigrid iteration is given in a recursive fashion. The
iteration itself is used to approximate the coarse mesh problems.

Definition 7.3 (Geometric Multigrid Algorithm) By ˝l and Xl for l D 1; : : : ;L
we denote a hierarchy of multigrid meshes and finite element spaces, by Al the
hierarchy of system matrices. Let x.0/ be the initial guess and b be the right hand
side. Iterate for i D 1; 2; : : :

x.i/ D MG.L; x.i�1//;

where the multigrid iteration on level l is given by

y D MG.l;Al;bl; xl/ W
1. Pre-Smooth sl D S.Al;bl; xl; �

1/;

2. Residual rl D bl � Alsl;

3. Restrict rl�1 D R.l; rl/;

4. Coarse-Mesh cl�1 D MG.l � 1;Al�1; rl�1; 0/

5. Prolongate x0
l D sl C P.l; cl�1/

6. Post-Smooth s0
l D S.Al;bl; x0; �2/;

7. return s0
l

The coarse mesh problem for l D 0 is solved exactly

MG.0;A0;b0; x0/ WD A�1
0 b0:

Remark 7.4 (Multigrid Variants) The multigrid algorithm shows the so called V-
cycle, where the multigrid iteration in step .4/ is called only once to approximate
the coarse mesh problem. Variants are the W-cycle, where two calls are applied or
the F-cycle, see [172] or [341].

Further, regarding locally refined meshes, different concepts of generating the
multigrid hierarchy exist. In order to obtain an algorithm with optimal linear run-
time, is common to start the mesh-hierarchy in a bottom-up way: while the coarsest
level ˝0 covers the complete domain, finer mesh levels ˝l only cover those parts,
where local refinement is added. The advantage of this procedure is the reduced
complexity on every mesh level. As the single mesh-levels do not cover the complete
domain, it is not easily possible to treat the intermediate levels as approximations to
the full problem. Furthermore, it is not trivial to realize global constraints (such as
a pressure with average zero), see [35]. As an alternative, meshes can be generated
in a top-down procedure, where˝L, the fines level is the actual finite element mesh
of˝ , and where the coarser levels˝l are generated by coarsening. Apart from very
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localized refinements, this procedure is able to give optimal runtimes. As every mesh
level can be considered as an approximation to the global problem, implementation
and analysis is strongly simplified [35, 211, 277].

Remark 7.5 (Mesh Transfer) The mesh prolongation and restriction operators in
steps 3. and 5. are defined as the L2-projections of the solution onto the next
mesh level. In terms of the prolongation, this is simply the embedding and can be
computed by local algebraic modifications of the coefficient vectors.

For the following, we discuss the restriction of the residual rl ! rl�1. An
efficient method can be derived by using the interplay of finite element functions
rl 2 Vl and rl�1 2 Vl�1 and integrated coefficients rl 2 RNl and rl�1 2 RNl�1 . On
the fine mesh, the residual vector is defined as

.rl/i WD . f ;  i
l /� a.xl; 

i
l / 8 i

l 2 Vl: (7.9)

The restriction is defined as L2-projection of rl 2 Vl to rl�1 2 Vl�1

.rl�1; l�1/ D .rl; l�1/ 8l�1 2 Vl�1: (7.10)

The restricted residual serves as right hand side to the coarse mesh problem. We
do not need the finite element representation rl�1 2 Vl�1 but only the integrated
residual vector rl�1 given as

.rl�1/i D .rl�1;  i
l�1/:

Using the definition of the L2-projection (7.10), the definition of the residual (7.9)
and using the nested construction of the spaces Vl�1 � Vl we write

.rl�1/i D .rl�1;  i
l�1/ D .rl; 

i
l�1/ D . f ;  i

l�1/� a.xl; 
i
l�1/: (7.11)

As  i
l�1 2 Vl�1 � Vl it can be presented as linear combination of different test

functions  j
l in Vl, e.g.

 i
l�1 D

X

j2N i
l�1

˛j
j
l ;

with given coefficients ˛j 2 R. Then, the residual restriction can be performed as
linear combination in terms of

.rl�1/i D . f ;  i
l�1/� a.xl; 

i
l�1/

D
X

j2N i
l�1

˛j

�
. f ;  i

l�1/� a.xl; 
i
l�1/

�
D

X

j2N i
l�1

˛j.rl/j
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7.5.2 Partitioned Multigrid Smoother

Every smoothing step of the multigrid algorithm requires the approximation of the
system

Alxl D bl:

For the following, we can skip the level index, as all levels cover the complete
domain and can be treated in the same way. We consider a smoothing operator

x.i/ D S .x.i�1/;b/; i D 1; : : : ; �;

which is realized as a preconditioned iteration with Gauss-Seidel coupling. This
procedure is comparable to preconditioners for Krylov solvers, see [220].

Definition 7.6 (Geometric Multigrid Smoother) Given approximation x0 WD
x.n�1/ iterate for i D 1; : : : ; �

1. Residual of solid r.i/s D Rs.b � Ax.i�1//

2. Solve solid Sw.i/s D r.i/s

3. Update solid x.i�
1
2 / D x.i�1/ C RT

s w
.i/
s

4. Residual of fluid r.i/f D Rf .b � Ax.i� 1
2 //

5. Solve fluid NFw.i/f D Nr.i/f

6. Update fluid x.i/ D x.i�
1
2 / C RT

f w
.i/
f

The two subproblems for solid and fluid are treated by a Dirichlet-Neumann
coupling with homogenous Dirichlet values realized for velocity and deformation
on the interface I in the fluid matrix NF and the right hand side Nr.i/f (indicated by
the bar). This corresponds to assigning the kinematic coupling condition to the fluid
problem and the dynamic condition to the solid problem. An alternative would be to
treat the interface in a balanced way with a Robin condition for both subproblems.
Matrix entries belonging to the interface variables would be mixed, see (7.8).

We continue by describing the single fields. In a first step, we assume, that the
local subproblems are solved exactly with help of a direct solver. By this intermedi-
ate construction, we will validate the smoothing property of the partitioning.

7.5.2.1 The Solid Problem

The solid part in the smoothing operation asks for an approximation of the system

Sw D r ,
�

SES
v SES

u

Suv
v Suv

u

��
vsCi

usCi

�
D rs WD Rs

�
b � Axold

�
; (7.12)
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where xold is the last approximation. We start by analyzing the effect of this solid
problem on the interface condition. Acting on the interface unknowns vi and ui only,
the solid problem relates to (omitting the right hand side b)

SES
v .vi C vold

i„ ƒ‚ …
vnew

i

/C SES
u .ui C uold

i„ ƒ‚ …
unew

i

/ D FNS
p pold

i � FNS
v vold

i � FNS
u uold

i :

The dynamic condition constitutes itself as boundary terms in SES
u , FNS

v and FNS
p .

Hence, this iteration corresponds to the dynamic coupling condition

� s.unew/ns C � f .vold; pold/nf D 0:

Alternative approaches are possible. By adding fluid-interface parts to the solid-
matrix SES

v , the dynamic condition would include an intermediate fluid-velocity. Gee
et al. [163] shift the complete interface treatment to the fluid-subproblem. Here, we
strictly decouple both problems in a Dirichlet-Neumann sense in order to separate
different parameter scales.

Problem (7.12) can be decoupled, as both SES
v and Suv

v correspond to the mass
matrix, see Sect. 5.3.4. It holds

aES
v .w; / D k�1.�0sw; /;

auv
v .w;  s/ D �.w;  s/

)
) SES

v D ��0s k�1Suv
v :

Hence, instead of solving (7.12) as one coupled system, we can approximate the
solution in two sub-steps:

	
�0s k�1Suv

u C SES
u



usCi D rs;v C �0s k�1rs;u;

SES
v vsCi D rs;v � SES

u usCi:
(7.13)

In Sect. 7.5.3 we describe, how these problems can be approximated by an iterative
scheme.

7.5.2.2 The Fluid Problem

The fluid problem

NFw D r ,

0

B@
Fdiv

p
NFdiv
v

NFdiv
uNFNS

p
NFNS
v

NFNS
u

0 0 NFALE
u

1

CA

0

@
pf Ci

vf Ci

uf Ci

1

A D Nrf WD NRf .b � Axold/;
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is modified to carry homogenous Dirichlet values for velocity and deformation on
all interface nodes. This problem decouples into the ALE extension part

NFALE
u uf Ci D Nrf ;u; (7.14)

followed by the Navier-Stokes part

 
Fdiv

p
NFdiv
vNFNS

p
NFNS
v

!�
pf Ci

vf Ci

�
D
�
rf ;p � NFdiv

u uf Ci

rf ;v � NFNS
u uf Ci

�
: (7.15)

Again, we first assume that these two problems (7.14) and (7.15) are inverted with
help of a direct solver. An approximative approach is described in Sect. 7.5.3.

7.5.2.3 Numerical Validation of the Partitioned Smoother with Exact
Subproblems

Before presenting the final multigrid solver that avoids all direct matrix inversions,
we show in Table 7.5 convergence rates, memory usage and computational times
for the multigrid iteration with a partitioned smoother. On every mesh level
we use one single smoothing step of the iteration given in Definition 7.6. The
different subproblems (7.13)–(7.15), are solved with help of the direct solver
UMFPACK [110]. Comparing to the results given in Table 7.3 that correspond to
a monolithic direct solver for the coupled problem, we first observe that only about
half of the memory is used. Further on, the average convergence rates of the linear
solver are even better than those obtained with a monolithic direct solver. This is due
to the very bad conditioning that causes significant loss of digits in applying direct
inversion. Actually, we observe better convergence rates on finer meshes. This result
is in accordance to the theoretical observations of Brummelen and coworkers [76].

In Table 7.5 we collect the results for the two benchmark problems. It is well
seen that the convergence rates are stable under mesh-refinement. Furthermore,
convergence is very fast, in particular compared to the rates of the monolithic

Table 7.5 Convergence rates, memory usage and average computation time for linear solution
with splitting smoother and exact subproblems

Mesh level (2d) 2 3 4 5 6 7

Avg. conv. rate 0.049 0.034 0.018 0.016 0.019 0.014

Memory usage 21 MB 71 MB 292 MB 1.2 GB 5.2 GB 49 GB

Avg. time 0.07 s 0.27 s 1.18 s 5.90 s 35.93 s 345 s

Mesh level (3d) 2 3 4 5

Avg. conv. rate <0:01 <0:01 <0:01 –

Memory usage 194 MB 2.1 GB 44 GB >256 GB

Avg. time 2.51 s 37.03 s 1217 s –
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multigrid smoother given in Table 7.2. However we note that the separate problems
within the smoother are solved with a direct solver. Nevertheless, compared to a
direct solution of the monolithic problem, we could already substantially reduce
the effort, as (in 3d) separate and smaller systems with three unknowns (extension)
and four unknowns (Navier-Stokes and elasticity) are solved instead of one global
system with seven unknowns.

7.5.3 Approximation of the Subproblems

The different sub-steps described in the previous section ask for the approximation
(smoothing) of subproblems for the structure (7.13), the ALE extension (7.14) and
the Navier-Stokes equations in ALE formulation (7.15). For all of these problems
of type Ax � b, we choose a simple preconditioned Richardson iteration

xk D xk�1 C P.A�1/.b � Axk�1/; k D 1; 2; : : : ;K;

with x0 D 0. Usually K D 4 is a good choice. As preconditioner we
choose a stabilized incomplete lower-upper decomposition of the Matrix A. This
decomposition is performed in a block-wise sense. All degrees of freedom coupling
in one node are strongly coupled. For the Navier-Stokes part (in three dimensions),
this corresponds to small 4 � 4 blocks coupling pressure and the three velocities.
For stabilization, we strengthen the diagonal by adding the weighted sum of
all off-diagonals. This approximation is well suited as smoothing operation for
various complex problems. In literature [36, 45, 46, 64, 211] descriptions of this
smoother for various applications is found. It is possible to use stronger iterations
for enhancing the smoothing process.

The idea of this smoother can be seen as a mixture of Vanka-smoother and
ILU-smoother. It is stronger than a Vanka-smoother with Jacobi- or Gauss-Seidel
coupling, as the inversion of the local blocks is embedded into an incomplete
decomposition of the matrix. On the other hand, we use smaller block-sizes coupling
only the degrees of freedom in single nodes (and not even those of one element). It
will be worthwhile to analyze different smoothers for the subproblems, as standard
Vanka-smoothers will be better suited for parallelization [275, 310].

In [9] the authors describe a smoother of domain decomposition type. This can
also be regarded as generalization of the Vanka idea.

In Table 7.6, we report on the performance of the multigrid solver with split
smoothing and approximate solution of the subproblems as described in Sect. 7.5.3.
The first glance shows three desired effects: the convergence rates are nearly
robust with respect to the mesh size, memory usage is optimal (linear) and the
computational time is nearly linear. Comparing the results of Table 7.6 with those
for the standard multigrid solver in Table 7.2 or those using the direct solver in
Table 7.3, we see a substantial improvement in both memory consumption and
computational costs.
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Table 7.6 Convergence rates, memory usage and average computation time for linear solution
with splitting smoother and iterative smoother in subproblems

Mesh level (2d) 2 3 4 5 6 7

Avg. conv. rate 0.078 0.042 0.043 0.040 0.048 0.054

Memory usage 17 MB 42 MB 142 MB 540 GB 2.1 GB 8.8 GB

Avg. time 0.10 s 0.43 s 1.89 s 8.47 s 38.22 s 171.92 s

Mesh Level (3d) 2 3 4 5

Avg. conv. rate 0.049 0.052 0.059 0.068

Memory usage 115 MB 510 MB 4.5 GB 27 GB

Avg. time 0.48 s 4.10 s 42.90 s 401.2 s
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Fig. 7.2 Memory usage in Gigabyte for the different solvers. 2D problem in left column and 3D
problem in right one. The final multigrid solver shows linear memory consumption of about 1:8 kB
per unknown for the 2d-problem and 4 kB per unknown in the 3d-case

In Fig. 7.2 we show a comparison of the memory performance of the different
approaches. Here, we observe a great benefit of the splitting approach within
the smoother and the avoidance of direct solvers that always bring along fill-
ins. Regarding the 3d problems, we observe a substantial improvement of the
final multigrid solver with regard to the standard multigrid solver of GASCOIGNE

3D [43, 211]. This stems from the reduction of the overall matrix size: instead of
one global 7 � 7 matrix, we only deal with smaller sub-matrices on either the fluid-
or the solid-domain. The memory savings compared to direct solvers are dramatic,
both for 2d and 3d problems.

Figure 7.3 shows a similar comparison regarding the average computational
time required for solving the linear systems. The very similar performance of all
methods in case of the 2d problem is a striking result (and a disappointment in terms
of heavy implementation work attached to iterative techniques). In particular the
excellent performance of the direct solver UMFPACK [110] must be appreciated.
This result is even more surprising, as Fig. 7.2 does show a significant and non-
optimal increase of memory usage. Regarding the 3d test case, there is a substantial
discrepancy between the different solver’s performance. Direct inversion of the
global matrix or use of direct solvers within the smoother process immediately
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Fig. 7.3 Computational time in seconds (lower row) for the different solvers. 2D problem in left
column and 3D problem in right one. Nearly linear run-time for the final multigrid solver in 3D. In
2d, similar performance of all solvers

ruins the performance. The standard multigrid solver of GASCOIGNE 3D [43, 211]
shows a good performance, that is however sub-optimal, as the convergence rates
deteriorates on fine meshes, see Table 7.2. Only the final multigrid solver based on
partitioned smoothing operations shows a nearly optimal (linear) scaling.

In Fig. 7.4 we show a detailed analysis on the number of Newton- and GMRES-
steps required in every time step for two different meshes. Both iteration counts do
not depend on the mesh-level. In most of the iterations, exactly four Newton-steps
are required. About 6 GMRES iterations are needed in every cycle of the Newton
method, such that we totally use about 25 step of the linear solver in every time step.

To conclude we summerize the total finding from this study in Table 7.7.
We show the relative computational time and the relative memory consumption
of the geometric multigrid solver vs. the monolithic direct solver. In particular
the 3d problem can be substantially accelerated by using a multigrid solver as
preconditioner. Due to the linear scaling of the multigrid solver the effect gets larger
on finer meshes. The memory savings are essential in 2d and in 3d.

Remark 7.7 (Numerical Studies in the Literature) The two dimensional example
discussed by Gee, Küttler and Wall in Sect. 8.2 of [163] is comparable to the
2d-benchmark problem. Both configurations describe the self-excited motion of a
flexible beam in a laminar flow. The authors [163] used a discretization with about
80;000 degrees of freedom, similar to mesh-level 4, see Table 7.2. On this mesh, the
geometric multigrid solver with partitioned smoother requires an average of 1:89 s in
every time step. An average of 5 Newton steps in every time steps results in 9:5 s per
time step compared to an average of 7 s taken from [163]. In Fig. 7.4, we show the
number of Newton steps and GMRES iterations required in each time step. Here, we
show the results belonging to the discretization with 80;960 and the discretization
with 320;640 degrees of freedom. A direct comparison is difficult, as the authors
of [163] used a Newton tolerance of 10�4 vs. 10�8 in my work. Furthermore, the
results in [163] have been obtained by a parallel solver on four cores, whereas the
present results use single core performance only.



7.5 Multigrid Solvers for the Arbitrary Lagrangian Eulerian Formulation 303

Newton steps

14

12

10

8

6

4

2

0

GMRES steps

1009080706050403020100

40

35

30

25

20

15

10

5

Newton steps

14

12

10

8

6

4

2

0

GMRES steps

1009080706050403020100

40

35

30

25

20

15

10

5

Fig. 7.4 Number of GMRES (left) and Newton (right) iterations in every time step. Upper figure:
problem with 80;960 unknowns on mesh level 4. Lower figure: problem with 320;640 unknowns
on mesh level 5

Table 7.7 Savings in computational time and memory consumption in relation to a monolithic
direct solver

2d benchmark 3d benchmark

Unknowns 80,960 320,640 1,276,160 131,495 984,367

Avg. time (%) 160 97 80 11.3 1.7

Memory (%) 27 19 12 7 3.4

We indicate values on meshes, where the available memory was sufficient for both the geometric
multigrid solver and the direct solver UMFPACK [110]

In [249, Sect. 4.3.1] the authors investigate a partitioned scheme as precondi-
tioned for a monolithic GMRES iteration. Comparable to Sect. 7.5.2.3, the authors
investigate the performance of their solver, if all subproblems are solved by direct
inversion. They show nearly robust and good convergence rates. However, in
contrast to the results shown in Table 7.5, convergence does not improve on finer
meshes. This supports the assumption that a multigrid solver with a partitioned
smoother (with exact solution of the subproblem) shows better robustness as
preconditioner to a GMRES iteration, than a preconditioner that is based on a
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partitioned iteration. Again, we refer to [76], where exactly this relation was shown
for a linear model problem.

A work similar to our approach was recently published by Aulisa et al. [9].
They use a geometric multigrid solver with a domain decomposition smoother for
stationary and non-stationary fluid-structure interaction problems in 2d and in 3d
with incompressible fluids and solids. In their study the authors come to similar
conclusions with respect to the conditioning of the systems and the need for a
partitioning in the multigrid smoother. For comparison they use the direct solver
MUMPS [4] which appears to have more success in dealing with the coupled fluid-
structure interaction problem. In particular for 3d problems they also demonstrate
substantial savings in terms of memory consumption and computational time. The
approach presented by Aulisa et al. [9] is able to efficiently compute direct-to-
steady-state solution.

7.5.4 Robustness Versus Problem Parameters

Next, we have a look at the robustness of the partitioned smoother with regard
to different problem parameters. For example variations in the density ratio �f =�s

could lead to instabilities due to the added-mass effect [93, 331, 332]. In Table 7.8,
we modify different parameters in separate computations. All remaining settings
are kept as in the standard configuration, see Table 7.1. All computations are carried
out on mesh-level three with 131;495 unknowns. We indicate the average linear
convergence rate over a total of 20 time steps. The results collected in Table 7.8 show
good robustness of the multigrid smoother. It is able to handle large variations of the
density ratio as well as variations in the fluid velocity (that will lead to variation
of the Reynolds number). Further, we are able to cover nearly incompressible
materials without breakdown of the smoother. This will stem from the fact that the
partitioned smoother operation is based on incomplete block-wise decomposition
of the matrices that initially was designed for incompressible flows, see [36, 211].
A dramatic effect on the convergence rate is only found for the very small shear

Table 7.8 Convergence rate of the multigrid solver with partitioned smoother depending on
variation of different problem parameters

Fluid density �f 0.001 0.01 0.1 1

Convergence rate 0.047 0.050 0.046 0.047

Average inflow velocity Nvin 1 m/s 2 m/s 4 m/s 8 m/s

Convergence rate 0.047 0.045 0.045 0.046

Shear modulus �s 2 � 105 2 � 106 2 � 107 2 � 108
Convergence rate 0.092 0.047 0.045 0.045

Poisson’s ratio �s 0:1 0:2 0:4 0:49

Convergence rate 0.048 0.049 0.047 0.046

3d-benchmark problem on a mesh with 131;495 unknowns
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Table 7.9 3d-benchmark
problem on a mesh with
131;495 unknowns

Pre–post 0 1 2

0 – 0.047 0.048

1 0.052 0.039 0.023

2 0.050 0.022 0.031

Convergence rates of the multigrid
solver depending on the number of
pre- and post-smoothing steps

modulus �s D 1:4 � 105 that belongs to a very soft material. This choice results in
very large deformation at the base 
base, where the elastic obstacle is attached to the
fluid domain, see Fig. 7.1.

Finally, we show in Table 7.9 the sensitivity of the multigrid solver to different
numbers of pre- and post-smoothing steps in the multigrid iteration. Here, this
corresponds to the number of Gauss-Seidel iterations described in Sect. 7.5.2. The
effect of increasing the number of iterations in the smoother is very little. This
result corresponds to the findings of Brummelen and coworkers [76] and the results
presented in Sect. 7.5.2.3, dealing with the partitioned smoother based on exact
solution of the subproblems: if these are approximated with sufficient accuracy,
one step of post-smoothing is sufficient to yield good and robust convergence, see
Table 7.5.



Chapter 8
Error Estimation and Adaptivity

This chapter is devoted to a posteriori error estimation and adaptivity. Error
estimators can help to control the quality of simulation results and serve as stopping
criteria for our algorithms. In the following section we will start by gathering the
basics of a posteriori error estimation in the finite element method. As we aim
at the application to complex problems like fluid-structure interactions, the main
target will be efficiency and ease of realization. Error estimation will be based
on the Dual Weighted Residual Method, that has been developed by Becker and
Rannacher [40, 41] as a very flexible tool to estimate errors in goal functionals of
the solution that can be any kind of output values, such as the deformation of a
solid-point, the wall stress on an elastic obstacle or the vorticity in a flow field.

We do not discuss other techniques for error estimation. They are of no lesser
importance but we focus on the dual weighted residual method due to its simplicity
in application to complex coupled problems.

What follows in Sect. 8.2 is an overview of methods that can used to control
the quality of the spatial discretization. In the finite element method, this refers to
the refinement (or the coarsening) of the underlying triangulation. Control of the
temporal discretization, i.e. the choice of optimal time step sizes is the topic of
Sect. 8.1.2. Finally, in Sect. 8.3, we describe the application of all these methods to
coupled fluid-structure interaction problems.

8.1 A Posteriori Error Estimation

We start by discussing estimators for the discretization error u � uh of finite element
solution. Such error estimators are important to guarantee that a computed solution
uh 2 Xh satisfies a required error bound, e.g. a relative error of 1%

ku � uhk
kuk 
 1%:

© Springer International Publishing AG 2017
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The a priori estimators derived in Sect. 4.2.2 or 4.3 have the drawback of involving
constants from interpolation estimates, trace inequality or inverse inequalities. Exact
values are usually not known. If an error bound of 1% is to be reached, it will make
a considerable difference, if such a constant is 10 or 0:1.

The aim of a posteriori error estimates is to derive error bounds that involve as
few unknown quantities as possible. Instead, a posteriori estimates make use of the
already computed discrete approximation uh 2 Vh.

A posteriori error estimation in the context of finite elements has a long history.
At the beginning, mostly the Laplace equation

��u D f in ˝; u D 0 on 
 D @˝;

has been studied, which allows direct access to estimating the error in the energy
norm with help of the residual

kr.u � uh/k D sup
2H1

0.˝/

R.uh/./

krk ;

R.uh/./ WD . f ; /� .ruh; /:

Using this error representation, the following simple residual based energy norm
estimator can be derived

kr.u � uh/k 
 ci

0

@
X

K2˝h

h2Kk f C�uhk2K C hK

4
kŒn � ruh�k2@K

1

A

1
2

; (8.1)

where by hK we denote the diameter of the element K 2 ˝h and by Œn � ruh�e
the jump of the (discontinuous) normal derivative n � ruh across the elements edge
e � @K. The constant c > 0 mainly depends on the constant of the interpolation
operator and the topological layout of the finite element mesh. This estimator is
proven to be robust which means that the estimator

�h.uh/ WD
0

@
X

K2˝h

h2Kk f C�uhk2K C hK

4
kŒn � ruh�k2@K

1

A

1
2

;

really bounds the error (up to the constant c)

kr.u � uh/k 
 c�h.uh/:
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Furthermore, it is sharp up to higher order oscillations in the data

�h.uh/ 
 ckr.u � uh/k C c

0

@
X

K2˝h

h2Kk f � fKk2K
1

A

1
2

;

fK
ˇ̌
ˇ
K

WD 1

jKj
Z

K
f .x/ dx:

By fK 2 R we denote a piece-wise constant approximation to f . This data oscillation
term is of higher order. If f 2 H1.˝/, we can expect k f � fKk2 
 ch2. For details
on residual based error estimators for elliptic problems, we refer to the literature [1,
15, 19, 336].

Estimators of residual type have been extended to different problems including
transport, flow problems [2] to general conservation laws [208], to Eigenvalue
problems [254], to elasto-plasticity [274] and many more.

Classical residual estimators are based on the estimation in the energy norm. By
means on duality, the Aubin Nitsche Trick, an estimation in the L2-norm is at hand

��z D u � uh

ku � uhk ) ku � uhk D R.uh/.z/;

where by R.uh/.z/we again denote the residual. This approach has been carried over
to a more general setting by Estep [132]. Adjoint solutions, which are introduced to
express the error in different functionals j W H1.˝/ ! R

��z D j;

are further on estimated to achieve computable error bounds. Becker and Ran-
nacher [40, 41] then advanced this technique to a computational method, where
adjoint solutions to arbitrary functionals are not analytically estimated, but approx-
imated by means of finite element discretizations and enter the error estimate as
weights, such that the computable estimator for a functional error takes the form

jJ.u � uh/j 
 c�h.uh; zh/:

In the following, we will outline this error estimation technique, that is very versatile
and has found much attention in literature [2, 42, 44, 164, 177, 231, 273, 335] and
many more.

In the following, we shortly recapitulate the idea behind the Dual Weighted
Residual Method (DWR) for error estimation. We start by discussing the linear case
and quickly proceed to general nonlinear problems.
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8.1.1 The Dual Weighted Residual Method

Considering linear problems, the dual weighted residual method (DWR) for error
estimation is a direct application of the Aubin Nitsche Trick to general linear error
functional on the right hand side of the adjoint problem. The nonlinear theory that
gives us an error approximation for nonlinear problems and nonlinear functions is
based on an optimization approach. We start with the linear case.

8.1.1.1 Linear Problems

For the beginning, we consider an elliptic diffusion-reaction-transport equation
given by the variational formulation

u 2 V WD H1
0.˝/ W A.u; / D F./ 8 2 V ; (8.2)

where

A.u; / D .ru;r/C .ˇ � ru; /C .˛u; /; F./ D . f ; /; (8.3)

with a constant ˛ � 0 and a differentiable transport field ˇ 2 C1.˝/d that satisfies

k div ˇkL1.˝/ 
 2˛: (8.4)

For every f 2 H�1.˝/ this equation has a unique solution, that satisfies kruk 

ck f k�1. Higher regularity of f , the domain ˝ and the transport field ˇ carries over
to higher regularity in the solution. We aim at estimating the error u �uh in different
functionals of the solution. Possibilities are the error in a single point of interest

Ja.u � uh/ D u.a/� uh.a/; a 2 ˝; (8.5)

the average error in the complete domain

J˝.u � uh/ D
Z

˝

u.x/� uh.x/ dx; (8.6)

or the average over a subdomain˝1 � ˝

J˝1.u � uh/ D
Z

˝1

u.x/� uh.x/ dx; (8.7)

or many more. Such error functionals can be very general, they should however
be well-defined on the solution space V D H1

0.˝/, i.e., the functional should
be an element of the dual space J 2 V� D H�1.˝/. In two or more spatial
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dimensions, point-values are note well-defined, such that a functional like (8.5) has
to be regularized

Ja;".u � uh/ D 1

�"2

Z

B".a/
u.x/� uh.x/ dx;

B".a/ D fx 2 ˝; jx � aj < "g:
(8.8)

Remark 8.1 (Point Errors) From an analytical point of view, point functionals are
not well-posed in an H1-sense and should be regularized in terms of (8.8). In
practical realizations however, the evaluation of such an integral for small " > 0

is cumbersome. Hence, usual implementations simply evaluate in the single point.
Given sufficient regularity of the data, e.g. f 2 H1.˝/, solutions to elliptic problems
will have sufficient regularity (away from the boundary), such that point values are
well defined.

Lemma 8.2 (Adjoint Problem) Let J 2 H�1.˝/. The adjoint problem

z 2 V W A.; z/ D J./ 8 2 V ; (8.9)

where A.�; �/ is given as in (8.3), (8.4) has a unique solution z 2 V with

krzk 
 ckJkH�1.˝/:

Given sufficient regularity z 2 V \ H2.˝/ and J 2 L2.˝/�, the adjoint solution is
given by the classical formulation

��z � ˇ � rz C .˛ � div ˇ/z D j;

where j 2 L2.˝/ is defined as

. j; / D J./ 8 2 L2.˝/:

Proof As z 2 H1
0.˝/ has homogenous Dirichlet values, it holds with  WD z

A.z; z/ D krzk2 C
�
˛ � div ˇ

2

�
kzk2 � ckrzk2;

where we could use the identity .ˇ �rz; z/ D �.ˇ �rz; z/�..div ˇ/z; z/ as boundary
terms are zero. Together with the continuity of the form A.�; �/ we get existence of
unique solutions with Lax Milgram. Integration by parts gives

A.; z/ D �
;��z � ˇ � rz C .˛ � div ˇ/z

�

the classical formulation. ut
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The regularity of the adjoint solution z depends on the regularity of the domain
˝ , the problem data, here ˛ and ˇ, and the regularity of the right hand side j, or J.
We have already discussed that for the point error it holds Ja 62 H�1.˝/. For the
regularized point error with " > 0 fixed and for the subdomain functional, we can
write

J./ D 1

�"2

Z

B".a/
.x/ dx D 1

�"2

Z

˝

�B".a/.x/.x/ dx;

where by j D �˝1 we denote the characteristic function with respect to a subdomain

�˝1.x/ D
(
1 x 2 ˝1

0 x 62 ˝1

:

Given sufficient regularity of ˝1’s boundary, e.g. being Lipschitz, it holds �˝1 2
L2.˝/. If ˝1 ¤ ˝ we do not have more regularity. Hence, for subdomain-type
functionals, we can conclude

J˝1 ; Ja;" 2 L2.˝/�; j˝1; ja;" 2 L2.˝/:

With sufficient regularity of the domain, ˛ and ˇ, we can expect

z 2 H2.˝/; kzkH2.˝/ 
 csk jkL2.˝/: (8.10)

For the subdomain- or the point-functional it holds

k ja;"kL2.˝/ D 1p
�"
; k j˝1kL2.˝/ D

p
j˝1j: (8.11)

The global average corresponds to the adjoint right hand side j˝ D 1 with j˝ 2
C1.˝/. Given sufficient regularity of the domain ˝ we get high regularity of the
adjoint z

kzkHkC2.˝/ 
 csk j˝kHk.˝/ D cs

p
j˝j: (8.12)

Following [40, 41] the following simple error identities for the functional error
hold:

Theorem 8.3 (Dual Weighted Residual Method for Linear Problems) Let J 2
H�1.˝/ be a given error functional. Let u 2 V and uh 2 Vh be solutions to

A.u; / D F./ 8 2 V ;
A.uh; h/ D F.h/ 8h 2 Vh;
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and z 2 V and zh 2 Vh be the adjoint solutions

A.; z/ D J./ 8 2 V ;
A.h; zh/ D J.h/ 8h 2 Vh:

The following error identities hold for arbitrary h 2 Vh:

J.u � uh/ D F.z � h/� A.uh; z � h/;

J.u � uh/ D J.u � h/ � A.u � h; zh/:
(8.13)

Proof We test (8.9) with the error  WD u � uh to get with Galerkin orthogonality
and using (8.3)

J.u � uh/ D A.u � uh; z/ D A.u � uh; z � h/

D F.z � h/ � A.uh; z � h/:

The second estimate follows, by using Galerkin orthogonality of the adjoint
problem:

A.u � uh; z/ D A.u � uh; z � zh/ D A.u � h; z � zh/

D J.u � h/� A.u � h; zh/:

ut
If we know analytical stability estimates of the adjoint solution, com-

pare (8.10), (8.11) or (8.12), we can estimate the error identity

J.u � uh/ D A.u � uh; z � ihz/ 
 cAkr.u � uh/kkr.z � ihz/k

 cAhrk f kHr�1.˝/chkkzkHkC1.˝/;

where cA > 0 is the constant of the continuity estimate, r the degree of the finite
element approach (assuming maximum regularity of u) and where k depends on the
regularity of the adjoint solution. For the cases discussed above, we get

jJ˝1.u � uh/j 
 c.˝1/h
rC1k f kHr�1.˝/

jJ˝.u � uh/j 
 ch2rk f kHr�1.˝/:

These estimates do not consider the local structure of the adjoint solution. In
case of (regularized) point errors, the estimate would result in jJ.u � uh/j ! 1 for
" ! 1 (which in most cases is wrong). In other cases, where an a priori estimate
of the adjoint solution is not easily possible, one can only approximate the estimator
weight by computing a numerical approximation to the adjoint solution Qzh.
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In the following we discuss different ways for numerical approximations of the
adjoint solution z and the adjoint interpolation error z � ihz. Considering the error
representation in Theorem 8.3, direct use of the primal finite element space zh 2 Vh

is no option, as orthogonality would give

J.u � uh/ D F.z � h/ � A.uh; z � h/

� F.zh � h/� A.uh; zh � h/ D 0:

In literature [41, 277, 288] various approaches for the approximation of the weights
z � h are discussed. One straightforward and often used possibility is to compute
the discrete adjoint solution in a finer finite element space, e.g.

Qzh D z.2/h 2 V.2/
h or Qzh D zh=2 2 Vh=2;

the spaces of double polynomial degree or the same-degree space on a finer mesh. In
both cases the approximation z�h � Qzh � ihQzh, where ih is the interpolation into Vh

gives very satisfactory results and leads to the fully computable error approximation

J.u � uh/ � �h.uh; Qzh/ WD F.Qzh � ihQzh/� A.uh; Qzh � ihQzh/:

The DWR method is not an error estimator, but it must be regarded as an error
approximation. We cannot guarantee jJ.u � uh/j 
 cj�hj. Furthermore—which is
unusual for error estimates—the DWR method estimates the sign of the error. To
measure the quality of the DWR estimator, we introduce the effectivity index effh as
the ratio between error estimate and error

effh.uh; zh/ WD �h

J.u � uh/
: (8.14)

In the limit h ! 0, a good error approximation should give effh.uh; zh/ ! 1. For
any approximation Qzh to z, we get the estimate

effh.uh; zh/ D �h

J.u � uh/
D 1C �h � J.u � uh/

J.u � uh/

D 1C F.z � Qzh/� A.uh/.z � Qzh/

F.z � zh/� A.uh/.z � Qzh/
;

and the effectivity will depend on the ratio

kr.z � Qzh/k
kr.z � zh/k D O.h˛/:

If we could show convergence with an order ˛ > 0, the estimator would be
asymptotically exact.
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Example 8.4 (DWR Method for Elliptic Problems) We consider the diffusion
transport equation

u 2 H1
0.˝/ .ru;r/C .ˇ � ru; / D . f ; / 8 2 H1

0.˝/;

on the unit square˝ D .0; 1/2 with a constant transport field

ˇ D
�
2

1

�
;

and the right hand side f 	 1. By Vh � H1
0.˝/ we denote the space of linear finite

element on a uniform mesh with mesh size h and by uh 2 Vh the discrete solution.
As error quantity we consider the average of the solution on a subdomain˝0 � ˝

J./ D
Z

˝0

 dx; ˝0 D
�
.x; y/ 2 ˝; ˇ̌x � 1

2

ˇ̌
<
1

8
;

ˇ̌
y � 1

4

ˇ̌
<
1

8

�

The adjoint problem is given by

z 2 H1
0.˝/ .r;rz/C .ˇ � r; z/ D J./ 8 2 H1

0.˝/;

and it corresponds to the diffusion transport problem with opposite transport
direction

z 2 H1
0.˝/ W .rz;r/ � .ˇ � rz; / D J./ 8 2 H1

0.˝/:

By z.2/h 2 V.2/
h we denote the Galerkin solution of the adjoint problem with

polynomials of degree two. In Fig. 8.1, we show both the solution uh and adjoint
solution z.2/h of this problem. Further, we show the values of the real error J.u � uh/,

the estimated error �h.uh; z
.2/
h / and effectivity index effh.uh; zh/. It can be well seen

that the error estimator is highly accurate.
The estimator shows very accuracy. However, the effort for evaluation of the error

estimator is higher than the effort for solving the problem itself. If one solves the
adjoint problem with double polynomial degree, this high accuracy is also desirable
for the primal solution uh itself. Then however, we would need an even higher order
in the adjoint problem to get good estimator accuracy.

An alternative scheme for getting higher order approximation of z 2 V is by
solving local subproblems. Let zh 2 Vh be the adjoint solution in the primal space
Vh. Then, we define local subproblems on small parts of the mesh as

zi
h 2 V�

h .Pi/ a. i
h; zh C zi

h/ D J. i
h/ 8 i

h 2 V�
h .Pi/;

where Pi is a set of some mesh elements Pi D fK1
i ; : : : ;K

m
i g of the mesh ˝h.

One possibility for choosing these patches is to combine all elements that have one
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β =
(

2
1

)

J(u)

h J(u − uh) ηh(uh, zh) effh

2−1 −3.92 · 10−2 4.52 · 10−2 −1.15
2−2 4.40 · 10−4 5.08 · 10−3 11.53
2−3 4.57 · 10−4 5.47 · 10−4 1.20
2−4 1.17 · 10−4 1.22 · 10−4 1.04
2−5 2.94 · 10−5 2.96 · 10−5 1.01
2−6 7.37 · 10−6 7.38 · 10−6 1.00
2−7 1.84 · 10−6 1.84 · 10−6 1.00

Error and estimator

mesh size h

0.10.01

0.001

0.0001

1e-05

1e-06

Fig. 8.1 Configuration and results for Example 8.4. Upper row: configuration (left), primal
solution uh (middle) and adjoint solution zh (right). Lower row: error, estimator values and
effectivity index on a sequence of meshes

common node xi 2 ˝h in common. On the outer boundary of Pi the subproblem
can be solved with either homogenous Neumann or Dirichlet boundary conditions
for the enrichment zi

h. For details, we refer to the literature [185]. One benefit of
this local approach is that the small subproblems can be solved in parallel, and that
high order polynomials can be considered without large additional costs. As for
h WD Ihz the weights can be regarded as interpolation errors z � Ihz, which are local
error quantities only, a local enrichment by small subproblems is well justified.

A third possibility for approximating z�Ihz frequently used in literature [59, 280]
is by a local reconstruction procedure (Fig. 8.2). First, the discrete adjoint problem
is solved in the primal trial space zh 2 Vh. Then, mesh-elements of˝h are combined
to larger patches, e.g. 2� 2 elements K 2 ˝h form one patch P 2 ˝2h. The discrete
adjoint solution zh is reinterpreted as a higher order solution z.2/2h 2 V2h on a coarser
mesh ˝2h. If the mesh already features this patch-structure, see e.g. Fig. 8.3, this
reconstruction is simply done by a local replacement of the basis functions

zh.x/ D
NX

iD1
zi

i
h.x/

z
.2/
2h DI

.2/
2h zh������! z.2/2h .x/ D

NX

iD1
zi

.2/;i
2h .x/:

In Fig. 8.2 we show this construction. A theoretical justification of this recon-
struction process is by super-approximation only. Given a mesh with an—at
least—locally uniform structure, we can expect higher order accuracy in the mesh-
nodes that then can be used for reconstructing a higher order solution, see [52, 54]
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i
(2)
2h zh − zhzh i

(2)
2h zh

Fig. 8.2 Approximation of the weights z � ihz 	 Qzh � ihQzh by a higher order reconstruction
of the adjoint solution zh 2 Vh be means of interpolation into a higher-order coarse-mesh space
i.2/2h W Vh ! V.2/

2h . From left to right: adjoint solution, higher order reconstruction and reconstruction
error

Fig. 8.3 Mesh with a patch-structure: four adjacent elements each arise from uniform refinement
of one father-element

for details. Extensive studies in the literature have shown that this higher order
reconstruction operator I.2/2h is highly accurate for a large class of problems [42, 280].
Even if the mesh is completely unstructured and lacks such a patch structure, a
higher order reconstruction can be undertaken, see [90].

The DWR method estimates the error in arbitrary functionals. This concepts
brings along a number of possible pitfalls. First, a functional error J.u � uh/ has a
sign. It can hold J.u�uh/ > 0 or J.u�uh/ < 0 and very often the sign changes under
mesh-refinement. When such a zero-crossing happens, the absolute error jJ.u �uh/j
can be very small, whereas the discretization error (measured in a norm) would still
be very large. Then, going to even finer meshes, the absolute error will increase
again. The table in Fig. 8.1 shows such an example. The sign of the error changes
from first to second mesh. On the next two meshes, the absolute error even increases.
While the estimator shows second order convergence from the beginning, the real
error J.u � uh/ does not depict such a monotonic character.

As the functional error can change the sign and as convergence must not be
monotone, the dual weighted residual estimator is not well suited for the concept
of convergent finite element schemes, where error estimation and adaptivity is
combined in such a way that strict convergence of the solution (with fixed rates)
can be certified [91, 121, 248, 319]. First attempts to showing efficiency for goal
oriented error estimators are found in literature [3, 178].
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One approach for getting a bound of the functional error is to combination of
primal and adjoint energy error. Considering the error identity, we have

J.u � uh/ D A.u � uh/.z/ D A.u � uh/.z � zh/


 cAkr.u � uh/k kr.z � zh/k:
(8.15)

In [194], the authors use this bound to combine convergence results for both error
contributions. In [252], the authors combine the DWR method with robust energy
norm estimators to derive a safeguarded DWR estimator that is robust even if the
effectivity index is very bad on coarse meshes.

8.1.1.2 Nonlinear Problems

The theory presented in the last section is based on a simple duality argument linking
error functional to the variational formulation. Here, we will consider general
nonlinear equations described by the form A W V � V ! R, which is supposed
to be linear in the second argument and three times differentiable in the first. By
J W V ! R we denote the error functional, will now also can be nonlinear and which
is supposed to be three times differentiable. We present the theory as introduced by
Becker and Rannacher [41]. Examples for nonlinear functionals are the vorticity of
a velocity field

J�.v/ D
Z

˝

jx � vj2 dx; (8.16)

the wall stress induced by nonlinear material laws

J˙.u/ D
Z




F.u/†.u/n � e dx;

and many other quantities. In the following, the solution u 2 V is given by the
nonlinear variational formulation

u 2 V A.u/./ D F./ 8 2 V ; (8.17)

where F 2 V� is the right hand side functional. For a finite element discretization
Vh � V we define the discrete solution as

uh 2 Vh A.uh/.h/ D F.h/ 8 2 Vh: (8.18)

Following the approach by Becker and Rannacher [41], we define the Lagrange
functional

L.u; z/ D J.u/C F.z/� A.u/.z/: (8.19)
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If u 2 V is the solution to (8.17) and uh 2 Vh solution to (8.18) it holds

J.u/� J.uh/ D L.u; z/ � L.uh; zh/

for all z 2 V and zh 2 Vh. Note that the functional error is given by J.u/ � J.uh/

and not by J.u�uh/. These two expressions coincide for linear functionals only. We
state the main theorem

Theorem 8.5 (Dual Weighted Residual Method for Nonlinear Problems) Let
u 2 V and uh 2 Vh be the solutions to

A.u/./ D F./ 8 2 V
A.uh/.h/ D F.h/ 8h 2 Vh

and z 2 V and zh 2 Vh be the adjoint solutions to

A0.u/.; z/ D J0.u/./ 8 2 V ;
A0.uh/.h; zh/ D J0.uh/.h/ 8h 2 Vh;

where by A0.�/.�; �/ and J0.�/.�/ we denote the Gâteaux derivatives

A0.u/.; z/ D d

ds
A.u C s/.z/

ˇ̌
ˇ
sD0;

J0.u/./ D d

ds
J.u C s/

ˇ̌
ˇ
sD0:

For the functional error it holds

J.u/� J.uh/ D 1

2

n
. f ; z � Ihz/ � A.uh/.z � Ihz/

o

C 1

2

n
J0.uh/.u � Ihu/� A0.uh/.u � Ihu; zh/

o
C R.3/;

with a remainder R.3/ of third order in the error eh D fu � uh; z � zhg and where
Ih W V ! Vh is an arbitrary interpolation operator.

Proof For simplicity, we introduce the notation x WD .u; z/ 2 V � V and xh WD
.uh; zh/ 2 Vh � Vh. It holds:

J.u/� J.uh/ D L.x/ � L.xh/ D
Z 1

0

d

ds
L.x C s.x � xh// ds:

We approximate this integral be the trapezoidal rule to get

J.u/� J.uh/ D 1

2
L0.x/.x � xh/C 1

2
L0.xh/.x � xh/C R.3/;
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where the remainder R.3/ is given by

R.3/ D
Z 1

0

s.1 � s/L000.x C s.x � xh//.x � xh; x � xh; x � xh/ ds:

As our Galerkin approach is conforming, it holds L0.x/.x � xh/ D 0. Further we
introduce the interpolation error and get

J.u/� J.uh/ D 1

2
L0.xh/.x � Ihx/C R.3/:

The final estimate follows by using the definition of L.�/.�/, see (8.19) and its
derivatives

L0
z.u; z/./ D F./� A.u/./;

L0
u.u; z/./ D J0.u/./� A0.u/.; z/:

ut
The DWR method is a very general concept. It can be applied to spacial finite

element discretizations but also to time Galerkin discretizations as introduced in
Sect. 4.1.3. The remainder R.3/ comes from the application of the trapezoidal rule.
If we consider linear problems only, the estimator of Theorem 8.5 is equivalent to
the estimators of Theorem 8.3. The error approximation depends on the unknown
weights z � ihz and also the primal weight u � ihu. For approximation of z 2 V and
u 2 V , the same procedures are in the preceding section can be utilized.

Example 8.6 (Adjoint Solution to the Navier-Stokes Equations) To discuss the
linearized adjoint used for the nonlinear DWR method, we consider the Navier-
Stokes equations, given by

U 2 X WD V � L A.U/.˚/ D F.˚/ 8˚ 2 X ;

where V D H1
0.˝/

d, L D L2.˝/ n R and

A.U/.˚/ WD .�f v � rv; /C .�f �f rv;r/ � . p;r � /C .div v; �/

F.˚/ WD .f; /

The Gâteaux derivative at U 2 X in direction Z D fz; qg 2 X is given as

A0.U/.Z; ˚/ D
�
�f .v � rz C z � rv/; 

�
C .�f �f rz;r/ � .q; div /

C .div z; �/
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The adjoint solution is determined by the linearized adjoint form A0.U/.˚;Z/

A0.U/.˚;Z/ D
�
�f .v � r C  � rv/; z

�
C .�f �f r;rz/C .div ; q/

� .�; div z/ (8.20)

As functional of interest, we consider the vorticity (8.16). Its derivative is given by

J0.U/.˚/ D 2

Z

˝

.x � v/ � .x � / dx:

This right hand side, together with the adjoint variational formulation corresponds
to the classical formulation of the adjoint Navier-Stokes system

�f

�
rvTz � v � rz

�
C rq D j.v/; div z D 0:

The transport direction is switched and an additional reaction term appears.
Furthermore, the new “pressure variable” q 2 L appears with a positive sign. The
appearance of the reaction term can lead to stability problems, as its sign cannot be
controlled.

Theorem 8.5 covers the case of conforming and consistent finite element
schemes. It can directly be applied to many different configurations and equations.
We simply need a Galerkin structure in such a way that a solution u 2 X is given by

A.u/./ D F./  2 X ;

and an approximation in a subspace Xh � X that defines uh 2 Xh such that

A.uh/.h/ D F.h/ 8h 2 Xh:

Finally, we present a modification of this theorem that can be applied to non-
conforming discretizations, i.e. problems, where the discrete solution uh 2 Xh is
defined as

Ah.uh/.h/ D Fh.h/;

where Ah and Fh are modifications of A and F, respectively.
A common situation is the use of stabilization techniques. In the context of equal

order discretizations of the Navier-Stokes equations we add a term to stabilize the
velocity pressure coupling

Ah.Uh/.˚h/ WD A.Uh/.˚h/C Sh.Uh/.˚h/;

where Uh D fvh; phg and where A.�/.�/ is given as in Example 8.6. Considering the
simple pressure stabilization as introduced in Sect. 4.3.2 and artificial diffusion like
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discussed in Sect. 4.4.3, this stabilization term is given as

Sh.Uh/.˚h/ D .˛rph;r�h/C .ırvh;rh/: (8.21)

Theorem 8.7 (DWR Method for Non-conforming Discretizations) Let u 2 V
and uh 2 Vh be the solutions to

A.u/./ D F./ 8 2 V ; Ah.uh/.h/ D F.h/ 8h 2 Vh;

and z 2 V and zh 2 Vh be solutions to

A0.u/.; z/ D J0.u/./ 8 2 V ;
A0

h.uh/.h; zh/ D J0.uh/.h/ 8h 2 Vh:

Then, it holds

J.u/� J.uh/ D 1

2

n
F.z � Ihz/ � Ah.uh/.z � Ihz/

o

C 1

2

n
J0.uh/.u � Ihu/� A0

h.uh/.u � Ihu; zh/
o

C Sh.uh/.z/C S0
h.uh/.u � uh; zh/C R.3/ (8.22)

Proof First, we define Lh.uh; zh/ D J.uh/C F.zh/� Ah.uh/.zh/. It holds

Lh.uh; zh/ D L.uh; zh/ � Sh.uh/.zh/:

Using x WD .u; z/ and xh WD .uh; zh/ the error is given as

J.u/� J.uh/ D L.x/ � Lh.xh/ D L.x/ � L.xh/C Sh.uh/.zh/:

Again, by using an integral representation and approximation with the trapezoidal
rule it holds

J.u/� J.uh/ D 1

2
L0.x/.x � xh/C 1

2
L0.xh/.x � xh/C Sh.uh/.zh/C R.3/;

where, L0.x/.x � xh/ D 0. We cannot immediately use Galerkin orthogonality in the
second part. Instead,

J.u/� J.uh/ D S.uh; zh/

C 1

2

n
F.z � Ihz/� A.uh/.z � Ihz/ � Sh.uh/.z � Ihz/

o
C S.uh/.z � zh/
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C 1

2

n
J0.uh/.u � Ihu/� A0.uh/.u � Ihu; zh/ � S0

h.uh/.u � Ihu; zh/
o

C S0
h.uh/.u � uh; zh/C R.3/

ut
To evaluate this error estimator we must approximate the remainders given by

the stabilization term. This will depend on the specific type of stabilization scheme.
As example, we consider a simple stabilization of the Stokes equations

Example 8.8 (DWR for the Stokes Equations with Pressure Stabilization) Let ˝ D
.0; 1/2 and fv; pg 2 V � L WD H1

0.˝/
2 � L2.˝/ n R be the solution to the Stokes

equations

.rv;r/� . p;r � / D .f; / 8 2 V
.div v; �/ D 0 8� 2 L:

The finite element solution fvh; phg 2 Vh � Qh is given using the simple pressure
stabilizations scheme, see Lemma 4.47:

.rvh;rh/� . ph;r � h/ D .f; / 8h 2 Vh;

.div vh; �/C
X

K

h2K.rph;r�h/ D 0 8�h 2 Lh:

Here, the stabilization is linear, symmetric and takes the form

Sh. p/.�/ D
X

K

h2K.rp;r�/:

The discrete adjoint solution fzh; qhg 2 Vh � Qh is given as

.rzh;rh/C .qh;r � h/ D J0
v.vh; ph/.h/ 8h 2 Vh;

�.div zh; �h/C
X

K

h2K.rqh;r�h/ D J0
p.vh; ph/.�h/ 8�h 2 Lh:

Then, the exact form of the estimator in (8.22) gets

J.v/� J.vh/ D 1

2

n
. f ; z � Ihz/� .rvh;r.z � Ihz//

C . ph;r � .z � Ihz//� .r � vh; q � Ihq/� Sh. ph/.q � Ihq/
o

C 1

2

n
J0.vh/.v � Ihv; p � Ihp/� .rzh;r.v � Ihv//
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� .qh;r � .v � Ihv//C .r � zh; q � Ihq/� Sh. p � Ihp/.qh/
o

� Sh. p � ph/.q � qh/C Sh. p/.q/

For evaluation, the term Sh. p � ph/.q � qh/ is of higher order and can be neglected.
The second stabilization term can be approximated as

Sh. p/.q/ � S.I.2/2h ph; I
.2/
2h qh/;

using the higher order interpolation operator.
The DWR method has been applied to a large variety of equations and coupled

systems of equations ranging from reactive flows [64, 66], general conservation
laws [176], plasticity [273] to applications like model error analysis [59, 255] or
optimization and parameter identification problems [42, 337]. We will continue with
the extension of the DWR method to time-dependent problems.

8.1.2 The DWR Method for Galerkin Time Stepping Schemes

Traditional techniques for estimating the error due to time-discretization are usually
based on an estimation of the truncation error. Here, we shortly want to present a
technique to apply the Dual Weighted Residual method to error control in time. We
loosely follow the extensive studies by Schmich, Vexler, Rannacher [51, 302, 303].

In Sect. 4.1.3, we have presented Galerkin methods for time-discretization, where
the following variational formulation for the heat equation was derived

u 2 X1I
MX

mD1

Z

Im

n
.u0.t/; .t//˝ C A.u.t//..t//

o
dt C .Œu�m�1; .tm�1/C/

D
MX

mD1

Z

Im

. f .t/; .t// dt 8 2 X0I :

By X1I we denote the space of piecewise linear (on Im D Œtm�1; tm�), globally (on I D
Œ0;T�) continuous functions and by X0I the space of piecewise constant functions. For
linear and autonomous problems this cG.1/-Formulation is equivalent to the Crank-
Nicolson scheme. In the general setting however, the Galerkin approach must be
considered as a new time-discretization scheme that differs from the Crank-Nicolson
method by an error of order O.k2/, where k D maxm jtm � tm�1j is the step-size.
This is exactly the same convergence order as the order of the Crank-Nicolson’s
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truncation error itself. We define

AI.u/./ D
MX

mD1

n Z

Im

.u0.t/; .t//˝ C A.u.t//..t// dt C .Œu�m�1; .tm�1/C/
o
:

The solution u 2 W.I/ with

W.I/ D f 2 L2.II H1.˝//; @t 2 L2.II H�1.˝//g

is given as

AI.u/./ D F./ 8 2 W.I/: (8.23)

Given discrete trial and test spaces XI and YI , the discrete solution is defined as

uk 2 XI AI.uk/.k/ D F.k/ 8k 2 YI : (8.24)

We assume that YI is globally discontinuous. Then, the Galerkin formulation
decouples to a time stepping scheme for m D 1; : : : ;M

Z

Im

.@tuk; k/˝ C A.uk/.k/ dt C .uC
k .tm�1/; C

k .tm�1//˝

D .u0; �
k .t0//C .u�

k .tm�1/; C
k .tm�1//˝ C

Z

Im

. f ; k/ dt;

where u�
k .t0/ D u0 and �

k .t0/ is introduced to include the initial value. As error
functional we consider values at final time T and distributed values

J.u/ D JT.u.T//C
Z

I
JI.t; u.t// dt; (8.25)

where JT 2 H�1.˝/ and JI 2 L2.II H�1.˝//.
With these preparations, we can define the adjoint non-stationary solution z 2

W.I/ as

A0
I.u/.; z/ D J0.u/./ 8 2 W.I/; (8.26)

and the discrete counterpart zk 2 YI by

A0
I.uk/.k; zk/ D J0.uk/.k/ 8k 2 XI; (8.27)
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where the role of trial and test spaces are switched. The adjoint solution runs
backward in time, as switching test and trial functions with integration by parts
gives

Z

I
.@t; z/ dt D

Z

I
.;�@tz/ dt C .T/�z.T/� � .0/Cz.0/C: (8.28)

Right hand side of the adjoint problem, as well as initial data at time t D T are given
by the functional (8.25). The integrated part JI defined the adjoint right hand side,
the part JT defines the adjoint initial at time t D T, as combination with (8.28) gives

..T/�; z.t/�/ D J0
T.u.T//..T/

�/:

Lemma 8.9 The discrete adjoint problem decouples to a time stepping method
running backward in time.

Proof It holds with integration by parts and reordering

A0
I.u/.; z/ D

MX

iD1

Z

Im

˚
.0.t/; z.t//C A0.u.t//..t/; z.t//

�
dt

C
MX

iD1
..tm�1/C; z.tm�1/C/ �

MX

iD2
..tm�1/�; z.tm�1/C/

D
MX

iD1

Z

Im

˚
.�z0.t/; .t//C A0.u.t//..t/; z.t//

�
dt

C
MX

iD1
.z.tm/

�; .tm/�/� .z.tm�1/C; .tm�1/C/

C
MX

iD1
..tm�1/C; z.tm�1/C/ �

MX

iD2
..tm�1/�; z.tm�1/C/

D
MX

iD1

Z

Im

˚
.�z0.t/; .t//C A0.u.t//..t/; z.t//

�
dt

C .z.tM/
�; .tM/�/C

M�1X

iD1
.z.tm/

� � z.tm/
C; .tm/�/

Coupling takes place via the jump-terms only. For the Crank-Nicolson scheme
with a continuous and piecewise linear primal space and a piecewise constant
discontinuous dual space coupling takes place by

zk.tm/
� ¤ zk.tm/

C:
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For the adjoint problem, the first and the last step then takes a different form. On
IM D ŒtM�1; tM� it holds

.zk.T/
�; .T/�/C

Z

IM

.�z0
k.t/; k.t//C A0

I.uk.t//.k.t/; zk.t// dt

D J0
T.u.T//..T//C

Z

IM

J0
I.t; u.t//..t// dt:

For m D M � 1; : : : ; 1 we have

.zk.tm/
�; .tm/�/C

Z

Im

.�z0
k.t/; k.t//C A0

I.uk.t//.k.t/; zk.t// dt

D .zk.tm/
C; .tm/�/C

Z

Im

J0
I.t; u.t//..t// dt:

ut
Theorem 8.10 (DWR Method for Temporal Galerkin Methods) Let u 2 W.I/
be solution to (8.23), uk 2 XI � W.I/ solution to (8.24). Let J be an error functional
in the sense of (8.25). Let zk 2 YI be the adjoint solution to (8.27), z 2 W.I/ the
continuous counterpart given by (8.26). Then, it holds

J.u � uk/ D 1

2

n
F.z � i�k z/ � AI.uk/.z � i�k z/

o

C 1

2

n
J0.uk/.u � iku/� A0

I.uk/.u � iku; zk/
o

C R3.u � uk; z � zk/;

where R3 is the third order remainder and ik W W.I/ ! XI and i�k W W.I/ ! YI are
projection operators in time.

Proof The proof directly follows by applying Theorem 8.5 to the Galerkin-in-time
setting. ut
Remark 8.11 (Galerkin Time-Integration) There are various realizations of the
Dual Weighted Residual method for error estimation in space and time based on
Galerkin approximations of the time-dependent problem [51, 302]. The benefit
of Galerkin time-discretization is that the non-stationary problem is cast into a
variational setting that allows for the application of analytical tools known from
the finite element method. The method is universal and various continuous or
discontinuous trial and test spaces can be combined.

It is well known that the dG.0/-method corresponds to the backward Euler and
the cG.1/-discretization (that is cG.1/ for XI and dG.0/ for YI) to the Crank-
Nicolson method. But what exactly is the meaning of “corresponds”? For linear
autonomous problems, the two methods are exactly equivalent. For all other
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problems the time stepping method can be derived by numerical quadrature from
the Galerkin method. However, this quadrature error is usually not of higher order,
but of the same order as the Galerkin method’s approximation order. Hence, we
must distinguish between two separate methods.

One big problem of Galerkin time-discretizations is the higher effort. For setting
up the system matrix, the term

Z

Im

A0
I.uk/.wk; k/ dt;

must be evaluated. For an accurate (higher order) approximation of the integral,
Gauss quadrature rules must be considered. This quickly doubles the usual effort
for assembling the matrix. Considering coupled problems like fluid-structure inter-
actions, such an effort is impractical. If even higher order time-discretizations are
used, e.g. a dG.1/-method, each time step couples two separate states. This increases
the size of the system-matrix (and the effort) by a factor of 4. Nevertheless, Galerkin
methods are often used, whenever the Galerkin structure is of importance, as it is in
the context of gradient based optimization [47, 289, 317].

Finally, we shortly want to address the question of error control for efficient time
stepping methods like the shifted Crank-Nicolson scheme or the Fractional-Step
Theta method. These methods cannot be exactly written as Galerkin formulations.
Instead, error estimation is based on the following principle

1. Solve the forward problem uk by time stepping, e.g. with the Crank-Nicolson
method

2. Split the error

ju � ukj 
 ju � uG
k j C juG

k � ukj

in a Galerkin error u � uG
k and into a quadrature error uG

k � uk that measures the
difference between Galerkin scheme and time stepping scheme. The Galerkin
solution uG

k will not be numerically computed. It only serves as a tool of the error
estimator.

We give details for the application to the Crank-Nicolson scheme.

Example 8.12 (DWR Method for the Crank-Nicolson Time Stepping Method) Let
t0 < t1 < � � � < tM D T be a subdivision of I D Œ0;T� into M equidistant parts
Im D .tm�tm�1/. By u 2 W.I/we define the variational solution of the heat equation
given by

A.u/./ D F./ 8 2 W.I/; (8.29)
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where

A.u; / D
MX

mD1

Z

Im

.u0.t/; .t//˝ C .ru.t/;r.t//˝dt C .Œu�m�1; .tm�1/C/˝

F./ D
MX

mD1

Z

Im

. f .t/; .t//˝dt:

(8.30)

By uk D fu1k ; : : : ; u
M
k g 2 VM (with V D H1

0.˝/) we denote the Crank-Nicolson
semidiscretization of the heat equation given by the bilinear form

Ak.uk; k/ D Fk.k/ 8k 2 XM ; (8.31)

where

Ak.uk; k/ D
MX

mD1
k�1.um

k � um�1
k ; m

k /˝ C 1

2
.rum

k C rum�1
k ;rm

k /˝

Fk.k/ D
MX

mD1

1

2
. f .tm�1/C f .tm/; 

m
k /˝:

(8.32)

This is exactly the Crank-Nicolson time stepping scheme that is basis of an efficient
numerical simulation. We will identify uk with a piecewise linear function Ouk

Ouk.t/
ˇ̌
ˇ
Im

D tm � t

tm � tm�1
um�1

k C t � tm�1
tm � tm�1

um
k :

Further, let Quk 2 XI be the Crank-Nicolson Galerkin approximation given by

A.Quk; Qk/ D F. Qk/ 8 Qk 2 YI;

where XI � W.I/ is the space of piecewise linear (in time) and continuous
functions and YI the space of piecewise constant (in time) globally discontinuous
test functions. We will never compute Quk but use it in the process of error estimation
only. By z 2 W.I/, zk 2 VM and Qzk 2 YI we define the adjoint solutions. We define
to Lagrange functionals

L.u; z/ D J.u/CF.z/�A.u; z/; Lk.uk; zk/ D J.uk/CFk.zk/�Ak.uk; zk/; (8.33)

where J.�/ is supposed to be a linear error functional that measures the error at final
time, e.g.

J.u/ D j.u.T//:
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For the functional error between continuous solution u 2 W.I/ and Crank-Nicolson
solution uk 2 XI it holds

J.u/� J.uk/ D L.u; z/� J.uk/

D L.u; z/� L.Ouk; Ozk/„ ƒ‚ …
D�I

C L.Ouk; Ozk/ � J.uk/„ ƒ‚ …
D�II

: (8.34)

The first part �I will be considered as the Galerkin error and it can be estimated
with help of the DWR method. The second part indicates the difference between
Galerkin scheme and Crank-Nicolson method. Using (8.33) it holds

�II D L.Ouk; Ozk/� J.uk/ D J.Ouk/� J.uk/„ ƒ‚ …
D0

CF.Ozk/� A.Ouk; Ozk/ (8.35)

Evaluation of this term requires knowledge of uk and zk (that can be computed)
and the effort of one residual evaluation of the Galerkin scheme given in (8.29)
and (8.30).

We continue with �I in (8.34). The usual DWR theory of Theorem 8.10 cannot
be directly applied, as we have no Galerkin orthogonality with respect to the Crank-
Nicolson solution Ouk. We get an approximation

�I � L0.Ouk; Ozk/.u � Ouk; z � Ozk/

up to a third order remainder. Instead of using Galerkin orthogonality we simply
introduce the interpolations to achieve

�I � L0.Ouk; Ozk/.u � iku; z � i�k zk/„ ƒ‚ …
�1I

C L0.Ouk; Ozk/.iku � Ouk; i
�
k z � Ozk/„ ƒ‚ …

�2I

:

For the first part we obtain

�1I D 1

2

n
F.z � i�k z/ � A.Ouk; z � i�k z/

o
C 1

2

n
J.u � iku/� A.u � iku; Ozk/

o
(8.36)

which we approximate with the usual reconstruction techniques for u � iku and
z � i�k z.

Using iku � Ouk D ik.u � Ouk/ and i�k z � Ozk D i�k .z � Ozk/ we write the final part as

�2I D 1

2

n
F.i�k .z � Ozk// � A.Ouk; i

�
k .z � Ozk//

o
C 1

2

n
J.ik.u � Ouk// � A.ik.u � Ouk/; Ozk/

o
:

This term is a residual evaluation with a discrete projection of the approximation
errors. It can be shown to be of higher order (it is actually of third order in the errors
as the DWR remainder), see [239].
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To conclude we summarize the necessary steps.

1. Given a temporal mesh t0 < t1 < � � � < tM D T compute the Crank-Nicolson
solution uk and the adjoint Crank-Nicolson solution zk by means of (8.29)
and (8.30).

2. Estimate the error as

J.u/� J.uk/ � �1I C �II ;

where �1I is given by (8.36) and �II by (8.34).
3. If necessary refine the mesh and iterate.

Details on how to extend this method to the shifted versions of the Crank-Nicolson
scheme and to the fractional step theta method are found in [239, 240, 306].

8.2 Adaptivity

The approximation error u � uk;h is determined by the mesh size h and the time step
size k. For k ! 0 and h ! 0 we expect that the discretization error will converge to
zero. The efficiency of a discretization can be measured in error versus effort, where
the effort depends on the discrete problem size. In the context of finite elements, we
can measure the problem size in N � M, where N D dim.Vh/ is the dimension of the
discrete function space and M D T=k is the number of time steps. Given an optimal
algorithm, where all parts have a linear run-time, the effort is proportional to N � M.

Often it is not appropriate to use uniform meshes in space and time. Instead,
different spatial and temporal regions may ask for a different resolution of the
discretization. The general problem of adaptivity is to find the optimal distribution
of spatial and temporal mesh points which gives the smallest error. We first consider
spatial adaptivity only and formulate two optimization problems

min jJ.u/� J.uh/j for all uh 2 Vh with dim.Vh/ D N0;

i.e., to find the optimal discretization with N0 unknowns, such that the resulting error
is smallest. A second viewpoint is to optimize

min j dim.Vh/j such that jJ.u/� J.uh/j < TOL;

i.e., to find the smallest mesh, such that the error is below a given bound. Both
settings are important for application. The second optimization problem aims at
satisfying a guaranteed error bound, while the first problem tries to get the best
possible result for given resources, e.g. the available memory. See [57].

The construction of new meshes ˝h and finite element spaces Vh can either be
done by refinement of existing elements K 2 ˝h into smaller ones, by a complete
remeshing of ˝h to a new mesh ˝ 0

h or by mesh grading where the location of the
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Fig. 8.4 Different refinement ways for splitting mesh-elements. Both rows: uniform refinement,
local refinement with hanging nodes and local refinement using temporary elements for assuring
structural regularity

unknowns are adapted, the mesh topology however is not changed. Remeshing gives
greatest flexibility, as the mesh elements can be distributed arbitrarily in the domain,
it however brings along the drawback of having no relationship between two finite
element spaces Vh and V 0

h. If the new mesh ˝ 0
h is constructed by mesh refinement,

every mesh element K 2 ˝ 0
h is either element of the preceding mesh K 2 ˝h or

it results from refinement of a father-element P 2 ˝h. In Fig. 8.4 we show typical
refinements used for the splitting of elements. If only parts of the mesh are refined,
it is necessary to assure the structural regularity of the mesh. This is needed to
allow for conformity Vh � H1.˝/. Basically, two different options exist. First, one
can introduce temporary elements (the right sketches in Fig. 8.4). This are simply
introduced to ensure structural regularity. Using such elements usually demands for
meshes with mixed element types, i.e. mixing quadrilaterals with triangles. This
additional effort can be circumvented by the concept of hanging nodes. These are
nodes that belong to a refined element, but not to the adjacent coarse element. In
these nodes, no real degrees of freedom exist. Instead, the values at such nodes are
replaced by an interpolation between to neighboring nodes, see [25, 277].

Another advantage of refinement based adaptivity is the availability of a natural
hierarchy of meshes and function spaces. Starting on a coarse mesh ˝0

˝0 ! ˝1 ! � � � ! ˝l;
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we construct a sequence of hierarchical finite element spaces

V0 � V1 � � � � � Vl:

This sequence of spaces is a natural starting point for hierarchical multigrid
solvers. The usually very difficult step of creating a coarse mesh hierarchy is easily
established based on the already existing history, see [29, 36, 172].

For both refinement and remeshing, local error contributions must be available.
The error estimators presented in the preceding section give global error measures

J.u/� J.uh/ � �h.uh; zh/:

To use such quantities for mesh refinement, we need a splitting into local contribu-
tions

�h.uh; zh/ D
X

i

�i.uh; zh/:

How to derive such localizations is topic of the following section.

8.2.1 Localization of A Posteriori Error Estimators

The decision whether to refine a mesh element K 2 ˝h or not will be based on local
error indicators that measure the error contribution of a small area. In the following
we will discuss different alternatives for localizing the dual weighted residual error

J.u/� J.uh/ �
X

i

�i;

where the sum is usually a sum over the elements of the mesh (then, �i is an element-
wise error contribution) or a sum over the mesh nodes (then, �i is a node-wise error
contribution). Then, elements (or the elements at a node) a picked for refinement,
if the local indicator j�ij is large compared to the other indicators. Techniques for
picking elements for refinement are presented in the next section, Sect. 8.2.2.

In the following, we only discuss discretizations of the Laplace equation

A.u/./ WD .ru;r/ D F./ WD . f ; / 8 2 V D H1
0.˝/:

For a reliable refinement based on the local indicators �i, we will ask for robustness
and effectivity of the indicators, e.g. for the existence of constants c1; c2 > 0

jJ.u � uh/j 
 c1
X

i

j�ij;
X

i

j�ij 
 c2jJ.u � uh/j:
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We have already discussed that the second inequality cannot hold for general
functionals J.�/, as the functional error can be very small or zero even for substantial
discretization errors. Hence, we weaken the effectivity assumption to

X

i

j�ij 
 c2kr.u � uh/k kr.z � zh/k;

such that the error indicators are bound by the product of the energy errors that
themselves are a bound for the functional error jJ.u � uh/j. For measuring the
effectivity of error indicators, we define the indicator index

indh.uh; zh/ WD
P

i j�ij
j�hj

as the fraction of absolute indicator values by the error estimator. This definition is
very similar to that of the effectivity index (8.14). In the following, we will describe
and shortly analyze different localization techniques for the DWR error identities
given in Theorems 8.3 and 8.5. For details on the analysis and further possibilities
for localization we refer to [288].

8.2.1.1 Localization by Restriction to Elements

The most simple approach for a localization would be the restriction of the weak
residual to the mesh elements

�K D . f ; z � ihz/K � .ruh;r.z � ihz//K :

This simple approach fails with

X

K2˝h

j�K j � j�h.uh; zh/j;

as the local restriction to K shows the wrong order

�K D . f C�uh; z � ihz/K �
Z

@K
@nuh � .z � ihz/ ds:

While the volume term itself yields optimal order

j. f C�uh; z � ihz/K j 
 k�.u � uh/kK kz � ihzkK ;
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the boundary term lacks the sufficient approximation order as can be seen using
interpolation estimates and the trace inequality:

ˇ̌
ˇ̌
Z

@K
@nuh � .z � ihz/ ds

ˇ̌
ˇ̌ 
 ctrh

�1
K

�kruhkK C hKkr2uhkK
�

.kz � ihzkK C hKkr.z � ihz/kK/ :

While the adjoint solution enters the estimate with the proper local order, the
boundary term does show convergence with respect to the primal residual. This
result is well-known in literature, and the typical remedy is given by balancing
boundary terms with adjacent finite elements, as shown in the following paragraph.

8.2.1.2 Localization Based on the Classical (Strong) Formulation

The typical localization procedure for residual based error estimators is based on the
classical formulation of residual estimators [336]. For the functional error it holds
(considering linear problems)

J.u � uh/ D
X

K2˝h

1

2

n
. f ; z � ihz/K � .ruh;r.z � ihz//K

o

C
X

K2˝h

1

2

n
. j; u � ihu/K � .r.u � ihu/;rzh/˝

o

D
X

K2˝h

1

2

n
. f C�uh; z � ihz/K � h@nuh; z � ihzi@K

o

C
X

K2˝h

1

2

n
. j C�uh/K � h@nzh; u � ihui@K

o

D
X

K2˝h

1

2

n
. f C�uh; z � ihz/K � 1

2
� hŒ@nuh�; z � ihzi@K

o

C
X

K2˝h

1

2

n
. j C�uh/K � 1

2
hŒ@nzh�; u � ihui@K

o
;

(8.37)

where by Œ � �we denote the jump of the (discontinuous) normal derivative @uh across
the edge e � @K

Œ@nuh�.x/
ˇ̌
ˇ
e

WD lim
h#0

@nuh.x C hn/ � lim
h#0

@nuh.x � hn/;
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with a normal vector n facing outward of K. Now, (8.37) can be estimated to

jJ.u � uh/j 

X

K2˝h

�K.uh/!K.zh/C ��
K.zh/!

�
K.uk/; (8.38)

with the residuals and weights

�K.uh/ D k f C�uhkK C 1

2
h

� 1
2

K k@nuhk@K

��
K.zh/ D k j C�zhkK C 1

2
h

� 1
2

K k@nzhk@K

!K.zh/ D kz � ihzkK C h
1
2

Kkz � ihzk@K

!�
K.uh/ D ku � ihukK C h

1
2

Kku � ihuk@K :

(8.39)

Half a power of hK was introduced, such that edge and volume residuals and
weights, respectively, have the same order. The benefit of this estimation is that
positive local error quantities are directly available

�h D
X

K2˝h

�K ; �K D �K!K C ��
K!

�
K :

Based on �K , refinement or remeshing can be pursued. By using Cauchy Schwarz
estimate, possible orthogonality is lost. As this estimate is used locally, we still get
good effectivity of the indicators.

Lemma 8.13 (Effectivity of the Localization Based on the Classical Residual)
Let u; z 2 V be the solution and adjoint solution to the Laplace equation with
sufficient regularity. For the primal error estimator

jJ.u � uh/j 

X

K

2�K.uh/!K.zh/;

where �K and !K are defined in (8.39) it holds

X

K2˝K

2�K!K 
 jjju � ihujjjhjjjz � ihzjjjh;

where—given sufficient regularity—the norm jjj�jjjh is equivalent to energy norm

jjjujjjh
2
h D kr.u � uh/k2 C

X

K2˝h

h2Kkr2.u � uh/k2K C h�2
K ku � uhk2K : (8.40)

Proof See [288]. ut
This localization technique is often used and well documented in literature. It has

two severe drawbacks: as it is based on Cauchy-Schwarz estimates in an early stage,
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orthogonality effects are lost. Considering general differential operators L.u/ D f ,
the strong residuals f �L.u/ and j�L0.u/.z/must be available. Such a computation
can be very costly as we will discuss in Sect. 8.3 for fluid-structure interactions.
Finally, the classical estimator requires the evaluation of jump-terms at the element
edges, which is possibly costly. In an early application of the dual weighted residual
method to the incompressible Navier-Stokes equations Becker [34] derived the goal
oriented error estimator with three different residual terms and three different adjoint
weights.

8.2.1.3 Localizations Based on the Variational Formulation

We can circumvent both problems, the strong residual as well as edge jump terms,
if we base the localization on the variational formulation. Braack and Ern [60]
introduced a localization of the DWR method based on a patch-wise filtering
approach. Very good effectivities are obtained at the little cost of additional patch-
structures in the mesh, see Fig. 8.3. Let Vh be the finite element space with V2h � Vh

being the coarse space on the patches. By �2h W Vh ! V2h we denote the embedding
into this coarse space. By i.2/2h W Vh ! V.2/

2h we denote the higher order reconstruction
introduced in Sect. 8.1.1, see Fig. 8.2. We can write for

zh.x/ D
NX

iD1
zi

.i/
h .x/

the interpolations into the same-degree coarse-space V2h and the higher-degree
space V.2/

2h by using the same nodal degrees:

i2hzh.x/ D
NX

iD1
zii2h

.i/
h .x/; i.2/2h zh.x/ D

NX

iD1
zii
.2/
2h 

.i/
h .x/;

and approximate the error identity as

J.u � uh/ D F.z � ihz/ � A.uh/.z � ihz/

D F.z � ihz � �2h.z � ihz// � A.uh/.z � ihz � �2h.z � ihz//

� F
�

i.2/2h .zh � i2hzh/ � .zh � i2hzh/
�

�A.uh/
�

i.2/2h .zh � i2hzh/ � .zh � i2hzh/
�

D
NX

iD1

�
f .i.2/2h 

.i/
h � .i/h /� A.uh/.i

.2/
2h 

.i/
h � .i/h /

��
zi � .i2hzh/i

�

DW
NX

iD1
�i:
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By this localization, a node-wise indicator is derived. Due to the filtering
zh � i2hzh, the error indicators are zero on all coarse mesh-nodes causing a strong
oscillation of the indicators, see [288]. For this local values, we can also show
effectivity

NX

iD1
j�ij 
 cjjju � uhjjjhjjjz � ihzjjjh:

Finally, we introduce a new localization approach based on the variational
formulation that combines the simplicity of the filtering approach—as it will be
given in terms of variational residuals—with an easy interpretation possibility, as
the local estimators �i can be regarded as coefficient of a discrete error function. Let
f i 2 V; i D 1; : : : ;Ng be a partition of unity (POU) with

P
i  1 	 1, where we

usually consider  i WD i the basis functions of the finite element space Vh. Then,
it holds

J.u � uh/ D F.z � ihz/ � A.uh/.z � ihz/

D
NX

iD1
F..z � ihz/ i/� A.uh/..z � ihz/ i/

�
NX

iD1
F..i.2/2h zh � zh/ i/� A.uh/..i

.2/
2h zh � zh/ i/ DW

NX

iD1
�i: (8.41)

Again, we derived node-wise indicators for the local error. The partition of unity  i

is independent of the finite element space Vh. It is however reasonable to choose the
standard space of piece-wise linear finite elements to define  i.

Lemma 8.14 (Effectivity of the POU Localization) Let u 2 V be the solution
to the Laplace equation, z 2 V be the adjoint solution. uh; zh 2 Vh their discrete
counter-part. Further, let

P
 i be a POU with kr ik1 D O.h�1/. The error

indicators given by (8.41) are effective, i.e.,

NX

iD1
j�P

i j 
 ckr.u � uh/k jjjz � ihzjjjh:

Proof See [288]. ut
The advantage of variational localizations will be striking, if we consider the

coupled FSI problem in Sect. 8.3. We simply do not know the classical residual
of the adjoint problem including all edge terms. Furthermore, the evaluation of
a strong residual for second order equations with many nonlinear coupling is
computationally very demanding.
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8.2.2 Techniques for Spatial Mesh Refinement

We assume that a reliable and effective localization of the error estimator is given

c1
X

K

j�K j 
 j�hj 
 c2
X

K

j�K j:

For simplicity, we assume that this localization is element-wise. Node-wise values
can easily be averaged to element-wise contributions. Our goal is to pick a subset
of elements fK1; : : : ;Kmg � ˝h for refinement. Most strategies for DWR-type
refinement are highly heuristically and based on assumptions that can only be
proven under restrictive regularity assumptions, see e.g. [41, 57, 336]:

1. The most efficient discretizations have balanced error indicators

�K � �K0 8K;K0 2 ˝h:

2. Once all error indicators are balanced, it is optimal to perform uniform steps of
mesh-refinement.

3. It is always best to refine elements with largest indicator value.

The third assumption is the basic guideline for designing refinement strategies, and
the most common used are:

1. Fixed-number: Refine the p% elements with the largest error

refine fK1; : : : ;Kp�#˝h g; for �K1 � �K2 � � � � �K#˝h

2. Fixed-fraction: Refine those elements with largest error, that sum up to p% of the
overall error

refine fK1; : : : ;Klg; for min argl

lX

iD1
j�Ki j � p

#˝hX

iD1
j�Ki j:

3. Equilibration: Refine all element with error indicator larger than ˛-times the
average

refine K; if j�K j � ˛

#˝h

X

K

j�K j:

All three strategies require a parameter p, or ˛ that control the amount of refinement
done in every step. The two first techniques will never satisfy assumption 2., as even
for completely balanced error indicators, only of subset of some p% elements will
be refined. The equilibration strategy does satisfy all three assumptions, if ˛ 
 1.
Such a small value of ˛ however can lead to very excessive over-refinement.
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In practical applications, most refinement strategies will give similar results.
Further, the parameters p and ˛ must often be tuned to specific problem sets, and it
is not possible to pick one optimal strategy. For more insight to refinement strategies
and theoretical analysis of the three assumptions, see [57, 276].

8.3 Application to Fluid-structure Interactions in ALE
Formulation

In Sects. 8.1 and 8.2 we have introduced a general framework for a posteriori
error estimation and mesh adaptivity. Here, we apply this concept to fluid-structure
interaction problems given in ALE coordinates. Again, we want to allow for error
estimation with respect to general functionals depending on the solution of the
coupled problem. Error estimator and adaptive mesh refinement are driven by
the general nonlinear DWR formulation, see Sect. 8.1.1.2. We start with the fully
stationary case and closely follow [280]. The variational formulation of the FSI
system in ALE coordinates is given by

A.U/.˚/ D �
J.F�1v � r/v; �F C �

J� fF�T ;r�F C �
JF�1 W rvT ; �

�
F

C .F†s;r/S C .ru;r s/F ;
(8.42)

where (taking vjS D 0 into account)

U D fv;u; pg 2 X D H1
0.F/d � H1

0.F [ I [ S/d � L20.F/:

We recapitulate the notation of the stresses � f and †s of the St. Venant Kirchhoff
material

†s WD 2�sEs C � tr.Es/; F WD I C ru; Es WD 1

2

�
FTF � I

�
;

� f D �f �f .rvF�1 C F�TrvT/� pI:

(8.43)

The most important step for estimating goal oriented errors is the computation of
an adjoint solution with respect to a given error functional J.�/. In fluid-structure
interactions, these sensitivities must properly include the correct adjoint coupling
conditions between the fluid-problem and the solid problem. It is not sufficient to
compute sensitivities for each fluid- and solid-problem and neglect the coupling.
Such a strategy is only possible for problems with very weak coupling, see [49].
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8.3.1 Sensitivities for Stationary Fluid-structure Interactions
in ALE Coordinates

Given a differentiable error functional J W X ! R, the adjoint problem is defined as

Z 2 X W A0.U/.˚;Z/ D J0.U/.˚/ 8˚ 2 X ;

where A0.U/.˚;Z/ is the adjoint of the directional Gâteaux derivative, the Jacobian,
which is defined by

A0.U/.W; ˚/ WD d

ds
A.U C sW/.˚/

ˇ̌
ˇ
sD0:

This Jacobian has already derived in Sect. 5.2.2 for the ALE formulation and in
Sect. 6.4 for the Fully Eulerian model. Here, we only need to transpose the resulting
matrix for obtaining the coupled system matrix of the adjoint problem.

For denoting solution U 2 X , direction W 2 X and test function˚ 2 X , we use

U WD
0

@
vf

u
pf

1

A ; W WD
0

@
zf

w
qf

1

A ; ˚ WD
0

@
 f



�f

1

A

In Sect. 5.2.2 we have derived the Jacobian of the fluid-structure interaction problem
in ALE coordinates (5.14). Here, we copy the stationary parts neglecting the time-
derivatives @tvf , @tvs and @tuf . Furthermore we use vs D 0 in the fluid domain:

A0.U/.W; ˚/ D �
�f J

�rzF�1v C rvF�1z
�
; 
�
F

C
�

J
d� f

dv
.W/F�T ;r

�

F
� �

JF�Tqf ;r
�
F

C �
.JF�1 W rzT ; �

�
F

C
�
�f J tr .F�1rw/

�
rvF�1v

�
; 
�

F
� �
�f JrvF�1rwF�1v; 

�
F

C �
J tr .F�1rw/� fF�T ;r�F � �

J� fF�TrwTF�T ;r�F
C
�

J
d� f

du
.W/F�T ;r

�

F

C �
J.F�T W rw/.F�1 W rvT/; �

�
F � �

JF�1rwF�1 W rvT ; �
�
F

C
�

rw†s C F
d†s

du
.W/;r

�

S

C �rw;r f
�
F
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The adjoint system is given by the transposed of this bilinear form, which means
that we have to switch the role of test function W $ ˚ and trial function ˚ , Z.

Lemma 8.15 (Adjoint Problem for Fluid-structure Interactions) Let U 2 X .
The linearized adjoint problem is given as to find Z D fzf ;w; qf g 2 Y , such that

A0.U/.˚;Z/ D J0.U/.˚/ 8˚ D f ; ; �g 2 X ;

where

A0.U/.˚;Z/ D �
�f J

�r F�1v C rvF�1 
�
;w
�
F

C
�

J
d� f

dv
.˚/F�T ;rw

�

F
� �

JF�T�f ;rw
�
F

C �
.JF�1 W r T ; qf

�
F

C
�
�f J tr .F�1r/

�
rvF�1v

�
;w
�

F
� �
�f JrvF�1rF�1v;w

�
F

C �
J tr .F�1r/� fF�T ;rw

�
F � �

J� fF�TrTF�T ;rw
�
F

C
�

J
d� f

du
.˚/F�T ;rw

�

F

C �
J.F�T W r/.F�1 W rvT/; qf

�
F � �

JF�1rF�1 W rvT ; qf
�
F

C
�

r†s C F
d†s

du
.˚/;rw

�

S

C �r;rzf
�
F ;

(8.44)
This adjoint problem is linear in Z 2 Y and ˚ 2 X . The assembly of the adjoint

system matrix is computationally intense. If the nonlinear fluid-structure interaction
problem will be solved by a Newton’s method, see Sect. 5.2.2 and the Jacobian is
required in every step of the Newton iteration. Then, solving the adjoint problem
simply corresponds to the effort required for transposing the matrix and performing
one additional Newton-like step.

Remark 8.16 (Adjoint Problem) The variational formulation of the adjoint problem
can be used to compute the sensitivities for the error estimator and it will also
serve as adjoint solution in optimization problems, see Chap. 9. The variational
formulation is not sufficient to understand the coupling character of the adjoint
problem: what are the interface conditions of the adjoint solution Z at I? It would
be necessary to migrate to the classical formulation using integration by parts to free
the test functions from all derivatives. Considering a term in (8.44) like

�
�f J tr.F�1r/rvF�1;w

�

F
;
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reveals the complexity of this task. This example shows the value of localizations of
error estimators that do not require knowledge of the classical residual and the edge
jumps. see Sect. 8.2.1.3.

8.3.2 Numerical Examples: Error Estimation and Adaptivity

In this section, we study two problems and show the efficiency of the dual weighted
residual method. First we consider the stationary fsi-1 benchmark as proposed by
Hron et al. in [201]. In this two-dimensional problem, a laminar flow around a
circular obstacle with an attached elastic beam is considered, see Fig. 8.5. Quantity
of interest is the drag coefficient of the obstacle as well as the deformation of the tip
of the beam.

Secondly, as a three-dimensional benchmark problem, the laminar flow over an
elastic obstacle mounted on the wall is considered. As quantities of interest we
again evaluate the deformation in a point within the elastic structure and the drag
coefficient of the obstacle.

8.3.2.1 The fsi-1 Benchmark Problem

First, we consider the stationary benchmark problem fsi-1 [79, 80]. Here, the laminar
flow around a cylinder, with an attached elastic beam is simulated. Figure 8.5 shows
a sketch of the configuration.

Three benchmark problems have been proposed by Hron and Turek [201]. We
limit the considerations to the stationary fsi-1 test case. The flow is laminar with
Reynolds-number Re D 20 and driven by a parabolic inflow profile with average
velocity Nvf D 0:2. For the structural problem, the St. Venant-Kirchhoff material law
is used in a slightly compressible setting with Poisson ratio �s D 0:4

�f D �s D 1000; �f D 10�3; �s D 5 � 105; �s D 2 � 106; Nvf D 0:2:

As quantities of interest, we measure the horizontal and vertical deflection of the
structure in the point A D .0:6; 0:2/ on the tip of the beam, as well as the drag- and

Fig. 8.5 Flow around
cylinder with elastic beam
with circle-center
M D .0:2; 0:2/ and radius
r D 0:05

(2.5, 0.41)(0, 0.41)

̂Ω

Γ̂wall

Γ̂in Γ̂out

A = (0.6, 0.2)

Γcircle Γbase Γflag

M = (0.2, 0.2)

(2.5, 0)(0, 0) Γ̂wall
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lift- coefficient of the complete obstacle (including rigid circle and the elastic beam)

Jdrag.U/ WD R

S
.J� fF�T/nf � e1 ds; Jlift.U/ WD R

S
.J� fF�T/nf � e2 ds;

Jx.U/ WD u1.A/; Jy.U/ WD u2.A/;

where ei WD .ıi1; ıi2/ are the Cartesian unit vectors and S WD 
flag [ .
circle n 
base/.

Remark 8.17 (Evaluation of the Surface Integral) For easier evaluation, we modify
the functional expression. Let 
circle be the boundary, 
base � 
circle that part of the
circle, where the solid domain S is attached. Then, by using the dynamic coupling
condition on 
i it holds:

Jdrag.U/ D
Z


circlen
base

.J� fF�T/nf � e1 ds �
Z


i

.J� sF�T /ns � e1 ds

Further, using div.J� sF�T/ D 0 since no right hand side is given in this benchmark
configuration, the surface integral can be transformed into an integral over the
complete circle 
circle:

Jdrag.U/ D
Z


circlen
base

.J� fF�T/nf � e1 ds C
Z


base

.J� sF�T/ns � e1 ds

An evaluation of this surface integral with higher accuracy is possible by expressing
it in terms of residuals (the Babuška-Miller-Trick) [16–18, 63, 88] tested with a non-

conforming test function OZdrag 62 X

Jdrag.U/ D A.U/. OZdrag
/; OZdrag WD f0; 0; O�ug; (8.45)

where

O�u
y WD 0; O�u

x WD
�

1 W x 2 
circle

extended to 0 W x 62 
circle [ 
base
:

Given sufficient regularity, the evaluation of the drag- and lift-coefficients using this
technique yields a higher order of convergence [63], namely second order for linear
finite elements. In the case of the lift-coefficients, the components O�u

y and O�u
x must

be switched.
This benchmark problem is well analyzed in the collections [79, 80]. In Table 8.1

we collect reference values for all four functionals used in this work. These results
are obtained by reviewing the cited references and extrapolating results using higher
order finite elements on uniform meshes. The values are in very good agreement
with those identified by Turek and coworkers [329].
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Table 8.1 Reference values
for the fsi-1 benchmark

Functional Reference value Accuracy

Drag 14:294 ˙5 � 10�4

Lift 0:7648 ˙5 � 10�5

x-deformation 2:268 � 10�5 ˙5 � 10�9

y-deformation 8:190 � 10�4 ˙5 � 10�7

Error Estimation and Results on Locally Refined Meshes

For error estimation with the dual weighted residual method we need to approximate
the adjoint problems:

Zh 2 Xh W A0
h.Uh/.˚h;Zh/ D J0.Uh/.˚h/ 8˚h 2 Xh:

Details on the adjoint bilinear-form are given in the previous section. For the two
deflection functionals Jx and Jy the right hand side of the adjoint problems is a Dirac
and lacks the necessary regularity J0

x; J
0
y 62 H�1.˝/. Hence, these functionals should

be regularized with a small parameter " > 0:

Jx=y.U/ D 1

jB".A/j
Z

B".A/
ux=y dx; B".A/ WD fx 2 ˝ W jx � Aj < "g: (8.46)

In the case of the drag- and lift-coefficients, the right hand side of the adjoint

problems is defined by using OZdrag
from (8.45)

J0
drag.U/.˚/ D A0.U/.˚; OZdrag

/:

Since OZdrag
is a extension of (non-conforming) Dirichlet-values into the domain,

this problem is related to solving a problem with homogenous right hand side and
non-homogenous Dirichlet values on 
circle

OZh 2 OZdrag C Xh W A0
h.Uh/.˚h; OZh/ D 0 8˚h 2 Xh:

In Fig. 8.6, we compare the convergence history of all four error-functionals. In
each sketch we compare the relative errors using uniform mesh refinement with
those obtained on locally refined meshes using the dual weighted residual method.
Further, on both sequences of meshes we plot the values of the error estimator.
Finally, for comparison we give sketches of the error slopes corresponds to linear
convergence h � N� 1

2 and quadratic convergence h2 � N�1. The apparent
loss of convergency on fine meshes (in particular for the lift-coefficient and the
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Fig. 8.6 Error and estimator for the different functionals on uniform meshes and locally refined
meshes. Top left to bottom right: Error in horizontal and vertical deflection, drag- and lift-
coefficient. For comparison: Slopes with linear and quadratic convergence
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Fig. 8.7 Effectivity of the dual weighted residual method on uniform meshes. Left: effectivities
for all four functional values on uniform meshes. Right: composition of the estimator into primal
residual, adjoint residual and stabilization part for the drag coefficient w.r.t the exact error

displacement functionals) is due to an inexact knowledge of the reference values
J.U/, see Table 8.1.

Next, in the left plot in Fig. 8.7 we show the effectivities of the error estimator

effh WD �h.Uh;Zh/

J.U/ � J.Uh/
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on a sequence of uniform meshes for all four error functionals. A value of one
indicates error estimation with optimal accuracy. Apart from the vertical deflection
Jy.U/ the effectivities of the estimator are very good and converging to one on fine
meshes. The error in the vertical deflection is underestimated. This may be due to the
limited regularity of the functional, as these computations have been done without
a regularization of the right hand side as discussed in (8.46).

In the right plot of Fig. 8.7 we show the composition of the error estimator of the
drag evaluation split into the primal residual, adjoint residual and stabilization part

�P.Uh;Zh/ D F.Z � ihZ/� Ah.Uh/.Z � ihZ/;

�A.Uh;Zh/ D J0.Uh/.U � ihU/ � A0
h.Uh/.U � ihU;Zh/;

�S.Uh;Zh/ D Sh.Uh/.Zh/:

This splitting has been described in Theorem 8.7 of Sect. 8.1.1.2. The example
shows that all parts are essential. Here, the stabilization part has a different sign,
such that neglecting it would result in an overestimation of the error.

In Fig. 8.8 we show the adjoint solutions with regard to the drag-evaluation. In
the top-row the two components of the adjoint variable wf 2 Vf (which is only
defined in the fluid domain F ) and in the bottom-row the two components of the
variable u 2 V are shown. In the lower left plot, the x-component of the adjoint
deformation one can identify the adjoint Dirichlet value z D 1 on the obstacle
used to evaluate the residual functional Jdrag by means of the Babuška-Miller-Trick),
compare Remark 8.17.

We start by discussing the results obtained on uniform meshes. Using piecewise
linear finite elements, all four functionals should converge with second order (in the
mesh size), given sufficient regularity of the solution. Figure 8.6 however depicts
linear convergence only. This order reduction is due to limited regularity induced

Fig. 8.8 Adjoint solution with regard to the drag-coefficient. Top row: Adjoint velocity wf in x-
and y-direction. Bottom row, Adjoint deformation z in x- and y-direction
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by the reentrant edges at the interface 
i as seen from the fluid domain. Similar
results are observed for pure fluid dynamics benchmark problems [63, 299]. When
comparing the estimator value with the real error in Figs. 8.6 and 8.7, one observes
very good effectivities

effh.Uh;Zh/ ���!
h!0

1

for the drag- and lift-coefficient (even if the regularity of the problem is not sufficient
to guarantee higher order convergence of the remainders R.3/.U � Uh;Z � Zh/).
In the case of the two deflection functionals—and in particular for the vertical
deflection functional Jy—the quality of the estimator is less. This is explained by
additional regularity limitations due to the Dirac structure of the functionals Jx and
Jy, as we do not work with a regularization as shown in (8.46).

The right sketch in Fig. 8.7 shows that all three parts of the error estimator are
essential. It is well known [41] that for linear problems primal and adjoint parts
in the error estimator coincide (in the limit h ! 0). For nonlinear problems all
parts must be taken into account. Further, we see that the stabilization part cannot
be neglected. In Fig. 8.9 we show two meshes with local mesh refinement obtained
during the simulation with the drag functional.

Fig. 8.9 Cut-out of locally refined meshes used to approximate the drag-coefficient (top) and the
horizontal displacement functional (bottom)
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8.3.2.2 3D Fluid-structure Interaction

Second, we present numerical simulations of a three dimensional test case that—
in similar configuration—has already been used to test the performance of linear
solvers in Sect. 7.5. In the domain ˝ WD .0; 1:5/ � .0; 0:4/ � .�0:4; 0:4/ an
elastic structure S WD .0:4; 0:5/ � .0; 0:2/ � .�0:2; 0:2/ is inscribed, see Fig. 8.10.
The problem is considered to be symmetric in the x=y-plane. Hence, we run the
simulation only in one half of the domain. On the inflow boundary 
in D .0; 0:4/�
.�0:4; 0:4/, a parabolic velocity profile is given as Dirichlet condition with peak
velocity vmax D 0:3m � s�1. On the inner symmetry plane, we prescribe vf � n D 0

as Dirichlet condition, on the outflow boundary 
out the do-nothing condition for
velocity and pressure. The no-slip condition is used on the remaining boundaries

wall. The solid is fixed by a homogenous Dirichlet condition us D 0 on the bottom

base. Deformation in normal-direction is prohibited us � n D 0 on the symmetry-
plane 
sym. On the remaining boundaries 
wall; 
out and 
in the fluid’s deformation
is extended with homogenous Dirichlet values uf D 0.

The fluid is incompressible with �f D 103 kg � m�3 and �f D 10�3 m2 � s�1. The
solid’s density is �s D 103 kg � m�3, its Poisson ratio �s D 0:4 with a shear modulus
of �s D 5 � 105 kg � m�1s�2. With an average inflow velocity of Nvin � 0:15m � s�1,
and an obstacle of size 0:2m, the Reynolds number is Re � 25 and the flow is in
the laminar regime. For the LPS stabilization, we use the parameter ı0 D 0:25.

As quantities of interest, we measure the x-deflection of the obstacle at the
coordinate A D .0:45; 0:15; 0:15/ close to the outer corner of the structure, as well

(0, 0, 0)
x

y

z

0.4

0.4

1.5

0.1

0.2

0.2

A := (0.45, 0.15, 0.15)

Γi

Γout

Γsym

Γwall

Γbase

Γin

Fig. 8.10 Configuration of the three-dimensional test case. Domain and solution are symmetric
in z-direction
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as the force of the fluid on the structure in the dominant flow direction

Jx.U/ WD e1 � u.A/; Jdrag.U/ WD
Z


i

.J� fF�T/nf � e1 ds:

Like in the two-dimensional case, the surface integral is first transformed using the

structure equation and then expressed as a residual term Jdrag.U/ D A.U/. OZdrag
/

using a function OZdrag 62 X with non-conforming boundary values at 
base,
compare (8.45).

For obtaining reference values we estimate the two error quantities on a
sequence of meshes using uniform refinement. Table 8.2 we collect the results. By
extrapolation, using the values on the finest three meshes, we define reference values
in Table 8.3. We believe these values to be exact to a relative error of about 1%.

In Fig. 8.11 we plot the convergence history on uniform and locally refined
meshes, both for the drag-coefficient and the horizontal displacement functional.

Table 8.2 Convergence history of the three dimensional fsi test case using piece-wise linear finite
elements

dof’s Jdrag.Uh/ Error (abs) Jx.Uh/ Error (abs)

2975 1.5249 1:98 � 10�1 4:9337 � 10�5 9:90 � 10�6

18,711 1.4763 1:49 � 10�1 5:5686 � 10�5 3:55 � 10�6

131,495 1.4038 7:68 � 10�2 5:8529 � 10�5 7:11 � 10�7

983,367 1.3563 2:93 � 10�2 5:9075 � 10�5 1:65 � 10�7

7,600,775 1.3380 1:10 � 10�2 5:9202 � 10�5 3:80 � 10�8

The bold values indicate that an error below 1% has been reached

Table 8.3 Reference values
for the three dimensional
benchmark problem

Functional Reference value Accuracy

Drag 1:33 1%

x-deflection 5:95 � 10�5 1%
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Fig. 8.11 Error history for the drag-coefficient (left) and horizontal displacement (right) on
uniform and adaptively refined meshes. Linear and quadratic error slopes for comparison
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Fig. 8.12 Sketch of the numerical solution on locally refined meshes. The domain is cut at the
symmetry plane 
sym in the front. For visualization, the deformation has been strengthened by the
factor 100

This three dimensional test case has the same regularity limitations as the fsi-
1 benchmark problem. The elastic obstacle induces corner singularities in the
solution and the horizontal deflection functional Jx lacks regularity. In both cases,
the computational effort necessary to reach a certain error tolerance is reduced
significantly by using adaptive finite elements. Considering the complexity of
three dimensional simulations these savings are substantial. In order to resolve
the singularities caused by the reentrant corners of the embedded structure, it was
essential to run the adaptation process very gently by choosing ˛ D 8 in the
equilibration procedure described in Sect. 8.2.2.

Finally, Fig. 8.12 shows a visualization of a numerical solution. Here, adaptation
is driven in order to optimize the functional value Jx.Uh/. Deformation of the
structure is scaled by 100 for better visualization.

8.4 Further Concepts of Adaptivity

Most fluid-structure interaction problems are non-stationary. Fully space-time
adaptivity using dynamic meshes that change from time step to time step require
the solution of adjoint solutions that run backward in time. The effort is substantial.
To assemble the adjoint system, i.e. to assemble the linearized adjoint we must store
the forward problem Uh.tn/ in all time steps. We have seen in Sect. 5.1.1 that very
small time steps may be required. If this effort is considered, space-time adaptivity
with the dual weighted residual method can be carried out as demonstrated by
Meidner [238], Besier (né Schmich), Rannacher and Vexler [51, 302, 303]. In the
context of fluid-structure interactions Failer [133] computed non-stationary adjoints
for solving optimization problems. See also [134] for a linearized fluid-structure
interaction system.
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The computational effort (in terms of memory and time) for solving fluid-
structure interactions is very large. Due to the very complex structure and as
domains and functionals will often feature limited regularity, good efficiency can
only be expected for simplified model problems. A promising alternative to fully
resolved non-stationary error estimation is by means of averaging, where functionals
of the type

J.U/ D
Z T

0

j.U.t//dt

are considered. Braack, Burman and Taschenberger [65, 68] showed that the adjoint
problem for such functionals can be approximated by a stationary system. This
approach will not give temporally distributed error estimates that can be used to
control dynamic meshes. It is however an efficient technique for designing optimal
averaged meshes.

The efficiency of the adaptive finite element method can be further increased by
considering anisotropic refinements, see Apel [7] for an introduction and overview.
In terms of adaptive mesh refinement anisotropy offers the possibility to split
elements only along single sides, see Fig. 8.13 for a sketch.

The use of anisotropic finite elements requires complex mesh structures. At least
for quadrilateral and hexahedral meshes, the use of this concept is therefore rather
rare. If the finite element framework will allow for such refinement types, the main
difficulty is the identification of the dominant error directions. In addition to a
localization of the error estimator we need the extract the anisotropic directions.
The classical approach is based on a study of the solution’s Hessian

r2u D
�
@xxu @xyu
@xyu @yyu

�
D XT

�
@��u 0

0 @��u

�
X

by means of a singular value decomposition. The eigenvectors constituting the
matrix X will indicate the major directions, the eigenvalues @��u and @��u indicate
the strength of anisotropy. This approach is well established and successfully used
in many applications, see [28, 92, 111, 258, 361]. A combination with goal oriented
error estimation using the DWR method is possible by using the DWR approach to
choose the elements to be refined and use the Hessian to determine the refinement

x−refinement z−refinement x/y−refinement x/y/z−refinement

Fig. 8.13 Different possibilities for an anisotropic refinement of a hexahedra
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direction, see [90, 145, 146, 224, 335]. Although very successful, these approaches
have two shortcomings: which Hessian is to be used? The primal one r2u or
the adjoint one r2z. Anisotropic influences may origin from the solution itself or
from the adjoint solution given by the functional. A proper balancing is not in all
cases possible, as shown in [279]. Second, the Hessian is mostly relevant for linear
finite element approaches. Using higher order finite elements, the Hessian does not
carry any information on the error, as curvature is resolved exactly by second order
approaches.

In [279] we have extended the DWR method, such that it is directly able to
estimate directional errors. This allows the correct balancing of primal and adjoint
residual information. In [281] we have applied this concept to the fsi-1 benchmark
problem. In Fig. 8.14 we show a snapshot of an anisotropically refined adaptive
mesh. Here, the maximum aspect ratio (shortest vs. longest edge in the elements)
reaches 1 W 50. By use of anisotropic adaptivity we can significantly reduce the error
constant.
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Fig. 8.14 Anisotropic simulation of the fsi-1 benchmark problem for identifying the drag
coefficient. Bottom: Convergence history for the drag-coefficient on uniform meshes, isotropic
adaptive meshes and anisotropic adaptive meshes. Top: Cut-out of the finite element mesh used for
calculating the drag-coefficient. The maximum aspect ratio reaches 1 W 50



Part III
Applications

In this last part, we will present different applications of fluid-structure interactions.
Common to all these problems is the demand for a strong coupling, for monolithic
formulations and implicit discretizations and solvers. Among the vast diversity of
applications this presentation is only an very small subset with a focus on large
deformation, laminar flows and a very strong coupling between the phases. We refer
to the literature such as the monograph [32] with many advanced and challenging
applications ranging from aeroelasticity, hemodynamics over wind turbines to
parachute simulations.

Four different application problems will be discussed. In Chap. 9 we start with
optimization and parameter identification problems that are subject to fluid-structure
interactions as constraint. Typical applications for such problems are found in
aeroelasticity: What is the optimal shape of a flying aircraft? This problem must
be investigated as a dynamic fluid-structure interaction problem, as deformations
are significant.

Next Chap. 10 deals with bio/chemical-fluid-structure interaction problems. We
introduce systems of equations that describe the coupling of the mechanical fluid-
structure problem with systems of reaction-diffusion problems, that can describe
biological or chemical reactions. Such problems are typical in hemodynamics,
where the walls of the blood vessels must be considered as active materials,
with material parameters, size and volume depending on biological and chemical
influences. Emphasis of this chapter is in the modeling of such active materials.

In Chap. 11 we investigate the vibration dynamics of coupled fluid-structure
interaction problems. The question is easily described as follows: Elastic solids
feature eigenfrequencies of oscillations that are intensified when stimulated. Fluid
problems feature oscillations like the von Kármán vortex sheet with a frequency
that depends on the Reynolds number. What will be the dominant frequency of the
coupled problem?

Finally, Chap. 12 is a guest article by Stefan Frei [151]. He gives a modern
and comprehensive analysis of fluid-structure interactions featuring the contact of
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the solid with the boundary of the domain. Such problems cannot be modeled in
standard monolithic ALE approaches. Frei presents an application of the Fully
Eulerian formulation using efficient and accurate discretization techniques as
described in Sects. 4.5 and 4.6.



Chapter 9
Optimization with Fluid-structure Interactions

Many applications involve inverse problems. A typical optimization problem could
be the control of an inflow to reduce the vorticity or to stabilize the dynamics
of a fluid-structure interaction problem. A related problem is the identification of
parameters like Lamé coefficients by indirect measurements.

In this section, some basic principles for the optimization with partial differential
equations and the application to simple, stationary fluid-structure interaction prob-
lems will be collected. For an intensive introduction to optimization and parameter
identification with partial differential equations, we refer to the literature [191,
238, 325, 326]. On optimization with fluid-structure interactions, there is only
little literature [79, 80, 134, 286]. From the large variety of different optimization
techniques, we solely consider gradient based methods. The contents of this section
have mainly been taken from [286], a collaboration with Thomas Wick.

A first thorough analysis of optimization problems with fluid-structure interac-
tions is given by Failer [133, 134]. He also discusses the much more difficult and
relevant case of non-stationary problems.

For gradient based optimization of coupled problems, it is necessary to assemble
gradients of the fully coupled model. The adjoint solutions, based on these gradients,
are sensitivities that indicate the impact of the control on the target functional. In
partitioned methods, where the coupling is realized by an iterative algorithm only,
this is a very difficult step. The sensitivities of fluid and solid problems alone are
well studies. A proper inclusion of the coupling is a more difficult process. The
correct transportation of adjoint information across the interface however will be
essential.

© Springer International Publishing AG 2017
T. Richter, Fluid-structure Interactions, Lecture Notes in Computational
Science and Engineering 118, DOI 10.1007/978-3-319-63970-3_9
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9.1 The Optimization Problem

We consider optimization problems, where the optimal solution is constraint to a
stationary fluid-structure interaction problem. For simplicity, we will consider the
ALE formulation from Chap. 5 only, such that U 2 UD C X is constraint to

A.U/.˚/ D �
�f J

�rvF�1v
�
; 
�
F C �

J� fF�T ;r�F � .J�f f; /F

C �
JF�1 W rvT ; �

�
F C .F†s;r/S ;

(9.1)

where UD is an extension of the Dirichlet data and where U D fv;u; pg is found in

X D H1
0.F I
 D

f /
d � H1

0.F [ I [ SI
 D/d � L20.F/:

We consider the following setting: by K W X ! R we denote a given functional
of interest. One example could be the outflow rate at a boundary part 
 out

f

Kout.U/ D
Z


 out
f

.v � n/2 do; (9.2)

or a functional of pointwise tracking type measuring the deflection of the solid

KA.U/ D ju.A/� uAj2; (9.3)

where A 2 NS is a point within the solid, uA 2 Rd a prescribed deflection. Regarding
the discussion in Sect. 8.1.1.1, such a functional of point-type must be regularized
to fit into the theoretical framework. In any case we assume that K.�/ is two times
Fréchet differentiable.

Furthermore, by q 2 Qd, we denote the control, coming from the control space
Qd. Typical examples of controls could be the Lamé coefficients q D .�s; �s/, a
two-dimensional control space Qd � R2, the inflow profile q D vin, where Qd D
H1=2.
 in

f /, a mean inflow pressure q D Pin, where Qd D R. Often, such controls are
constrained, e.g. by allowing only for positive pressures up to a certain limit or by
requiring the Lamé coefficients to satisfy some physical relations, i.e.

Qd D f.�; �/ 2 R2; � > 0g:

In this study, we do not consider any control constraints.
The control q can enter the problem in various ways. We introduce the modified

variational formulation

U 2 UD C X W A.q;U/.˚/ WD A.U/.˚/C B.q;U/.˚/ D F.˚/ 8˚ 2 X ;
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where by B.�; �/.�/ we denote the control form. We specify this control form for two
examples: First, we consider the case of controlling the average inflow pressure on
the boundary 
 in

f . We do not prescribe Dirichlet conditions for v on 
 IN
f and use the

trial space

v 2 vD C H1
0.F I
 D

f n 
 in
f /

d;

such that natural Neumann conditions act. Together with

B.q;U/.˚/ D �h�f �f JrvTF�TF�Tn; i
 in
f

� hqJF�Tn; i
 in
f
; (9.4)

integration by parts reveals on 
 in
f the condition

�f �f JF�1rvF�Tn � pJF�Tn D qJF�Tn;

which corresponds to an average inflow pressure of q, see Sect. 2.4.2. Second, we
consider the control of the parameter �s in the material law by introducing the
control form

B.q;U/.˚/ D .F†s.q/� F†s.�
0
s /;r/S ; (9.5)

where (for the St. Venant Kirchhoff material)

†s.q/ WD 2qEs C �s tr.Es/I; Es WD 1

2
.FTF � I/: (9.6)

By �0s we denote an initial guess. The goal of our optimization problem is to
determine the optimal parameters q 2 Qd such that the functional of interest K.�/
gets minimal. This quantity of interest is completed by a regularization term of
Tikhonov type, which involves a regularization parameter ˛ > 0

K.q;U/ WD K.U/C ˛

2
jjq � Nqjj2Q; (9.7)

with a reference control Nq 2 Qd and a suitable norm jj � jjQ in the control-space.
With these preparations we can formulate the constrained optimization problem:

Problem 9.1 (Constrained Optimization Problem) Find U 2 UD C X and q 2
Qd, such that

K.q;U/ ! min; where A.q;U/.˚/ D F.˚/ 8˚ 2 X :

Introducing the Lagrangian

L.q;U;Z/ D K.q;U/C F.Z/ � A.q;U/.Z/;



360 9 Optimization with Fluid-structure Interactions

a minimum to Problem 9.1 must satisfy the first order optimality condition

L0.q;U;Z/.ıq; ıU; ıZ/ D 0 8ıq 2 Qd; 8ıU 2 X ; 8ıZ 2 X ;

which corresponds to the following system of equations, the Karush-Kuhn-Tucker
conditions (KKT):

A.q;U/.˚/ D F.˚/ 8˚ 2 X ;
A0
U.q;U/.˚;Z/ D K0

U.q;U/.˚/ 8˚ 2 X ;
A0
q.q;U/.�;Z/ D K0

q.q;U/.�/ 8� 2 Qd:

(9.8)

The first equation is called the state equation, second the adjoint equation and the
last one the gradient equation.

The adjoint equation is exactly the equation for the adjoint problem in the context
of the Dual Weighted Residual method that has been introduced in Sect. 8.1.1 and
which is detailed in (8.44). The specific form of the gradient equation strongly
depends on the way that the control enters the problem. In the case of pressure
control on the inflow boundary (9.4), this gradient equation reads

� �hJF�Tn; zi
 in
f

D �˛.q � Nq/ 8� 2 R: (9.9)

This allows to express the control q in terms of the other variables

q D Nq � 1

˛
hJF�Tn; zi
 in

f
; (9.10)

which reduces the KKT system (9.8) to a coupled system of the state and the adjoint
equation. Regarding the identification of the Lamé coefficient (9.5), the gradient
equation gets

�
�
2FEs;rz

�
S D �˛.q � Nq/ 8� 2 R; (9.11)

where we directly computed the derivative of †s.q/ in direction of q, compare (9.6).
Again, we can explicitly compute the control q 2 R from this equation

q D Nq C 2

˛
.2FEs;rz/S : (9.12)

9.2 Reduced Formulation of the Optimization Problem

One possibility to solve the optimization problem is to approximate the KKT
system (9.8). This however is a very large coupled system of equations involving
prima problem, adjoint and control. Even if an explicit formula for the computation
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of the control q can be used, a coupled problem in fU;Zg 2 X � X remains to be
solved. In terms of fluid-structure interaction, this refers to a coupled system of 10
(in 2d) and 14 (in 3d) equations. Instead, we first introduce a reduced formulation
of the optimization, see problem [47, 191, 238, 325, 326] and [133, 134, 286] in the
context of fsi.

Problem 9.2 (Unconstrained Optimization Problem) Find q 2 Qd, such that

k.q/ WD K.q; S.q// ! min; (9.13)

where the solution operator S W Qd ! X is defined as

A.q; S.q//.˚/ D F.˚/ 8˚ 2 X :

The solution of this unconstrained optimization problem is characterized by the first
order necessary condition

k0.q/.�/ D 0 8� 2 Qd; (9.14)

a local minimum is guaranteed by the second-order optimality condition

k00.q/.�; �/ � 0 8� 2 Qd:

To approximate the solutions of (9.14), we employ a Newton’s method. Starting
with q0 2 Qd (one possibility is q0 D Nq) we iterate

k00.ql/.ıql; �/ D �k0.ql/.�/ 8� 2 Qd; qlC1 D ql C !lıql;

where !l 2 R is a possible relaxation parameter. Every step of this Newton loop
requires the evaluation of the residual and the solution of the Hessian. As the
solution U D S.q/ is implicitly given, this involves some effort.

Lemma 9.3 (Residual of the Newton Iteration) Let ql 2 Q be given. Then, the
residual is given by

�k0.ql/.�/ WD �˛.ql � Nq; �/C A0
q.q

l;Ul/.�;Zl/;

where the solution Ul 2 X and the adjoint solution Zl 2 X are given by

.1/ A.ql;Ul/.˚/ D F.˚/ 8˚ 2 X ;

.2/ A0
U.q

l;Ul/.˚;Zl/ D K0
U.q

l;Ul/.˚/ 8˚ 2 X :
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Proof Let Ul D S.ql/ be the solution to (1) and Zl 2 X be the solution to (2). Then,
formal derivation of k.q/ yields

k0.ql/.�/ D K0
q.q

l; S.ql//C K0
U.q

l; S.ql//.S0.ql/�/:

Deriving the state equation to q gives a relation for S0.ql/�

A0
q.q

l; S.ql//.˚/ D �A0
U.q

l; S.ql//.S0.ql/�;˚/ 8˚ 2 X : (9.15)

Then, by using (9.7), the adjoint equation and this relation (9.15)

k0.ql/.�/ D ˛.q � Nq; �/Q C A0
U.q

l; S.ql//.S0.ql/�;Zl/

D ˛.q � Nq; �/Q � A0
q.q

l; S.ql//.Zl/:

ut
For estimation of the residual, we must first solve the state equation, followed

by a solution of the adjoint equation. These equations can be solved independently.
Once the residual is given, the Hessian equation must be solved.

Lemma 9.4 (Hessian of the Newton Iteration) Let ql 2 Q be given, Ul and Zl be
the adjoint solutions defined in Lemma 9.3. Let f�1; : : : ; �#qg be a basis of Q. Then,
solve the #q tangent equations and adjoint for Hessian equations for Ul

1; : : : ;U
l
#q

and Zl
1; : : : ;Z

l
#q

i D 1; : : : ; #q W
A0
U.q

l;Ul/.Ul
i; ˚/ D �A0

q.q
l;Ul/.�i; ˚/ 8˚ 2 X

A0
U.q

l;Ul/.˚;Zl
i/ D K00

UU.q
l;Ul/.Ul

i; ˚/

� A00
qU.q

l;Ul/.�i; ˚;Zl/

� A00
UU.q

l;Ul/.Ul
i; ˚;Z

l/ 8˚ 2 X :

(9.16)

Then, the Hessian (in the Basis f�ig) is given as

kij.ql/ WD ˛.�i; �j/Q � A00
qq.q

l;Ul/.�i; �j;Zl/

� A00
qU.q

l;Ul/.�i;Ul
j;Z

l/� A0
q.q

l;Ul/.�i;Zl
j/:

Proof Derivation of the residual gives

k00.ql/.�; �/ D ˛.�; �/Q � A00
qq.q

l;Ul/.�; �;Zl/

� A00
qU.q

l;Ul/.�; S0.ql/�;Zl/� A0
q.q

l;Ul/.�;Z0.q/�/: (9.17)
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The first two terms can be evaluated with the knowledge of ql;Ul and Zl. By
derivation of the state equation we obtain the tangent equation which we solve for
Ul
� WD S0.ql/�

A0
U.q

l;Ul/.Ul
� ; ˚/ D �A0

q.q
l;Ul/.�; ˚/ 8˚ 2 X :

This allows to evaluate the third term A00
qu in (9.17). For evaluation of the last term

we solve for Zl
� D Z0.ql/� given by the derivative of the adjoint equation

A0
U.q

l;Ul/.˚;Zl
� / D K00

UU.q
l;Ul/.Ul

� ; ˚/

� A00
qU.q

l;Ul/.�; ˚;Zl/ � A00
UU.q

l;Ul/.Ul
� ; ˚;Z

l/:

ut
Compared to the residual evaluation, the assembly of the Hessian calls for

the additional effort of solving #q tangent equations and #q adjoint for Hessian
equations. Each of these problems is linear and has the same dimension as the
adjoint problem. The overall effort appears to be rather large, by using the reduced
solution approach, one however circumvents the introduction of large systems,
where state and adjoint solution are coupled. For the discussed examples with a
one-dimensional control space Qd, one Newton iteration requires the solution of
the nonlinear state equation, the solution of one linear adjoint, one tangent and one
adjoint for Hessian equation.

9.3 Realization with Fluid-structure Interactions

The described Newton iteration for the optimization problem requires the evaluation
of several further derivatives of the variational formulation. We have already derived
the Jacobian in Sect. 5.2.2, which is the system matrix of the tangent equation (9.16).
Its inverse is the system matrix of the adjoint equation and further the system
matrix of the adjoint for Hessian equation, also shown in (9.16). All the remaining
derivatives are required for different right hand sides of the problems. Their
evaluation is partially simple, e.g. A0

q, K00
UU or A00

qU. Only the second derivative of
A.�/.�/ with respect to the solution U will give rise to excessive terms due to the
ALE mapping. Here, given Ul

i we propose the approximation by finite differences

A00
UU.q

l;Ul/.Ul
i; ˚;Z

l/ � A0
U.q

l;Ul C "Ul
i/.˚;Z

l/� A0
U.q

l;Ul/.˚;Zl/

"
;

where " > 0 is a parameter that has to be carefully chosen, compare the discussion
in Sect. 5.2.3 and Fig. 5.8.
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9.4 Parameter Identification Test

Based on the benchmark problem fsi-1 by Hron and Turek [199], see also Sect. 6.6,
we formulate a parameter identification test case. According to [329, 330], the
geometry has been changed by slightly widening the beam to h D 0:04 instead
of h D 0:02 in the original problem, compare Fig. 9.1.

We initially “forget” the Lamé coefficient �s and try to reconstruct it based on
a measurement of the deformation of the beam in the point A D .0:6; 0:2/. We
introduce the regularized cost functional

K.q;U/ D juy.A/ � uref
y j2 C ˛

2
jq � N�j2;

where N� 2 R is an initial guess and ˛ D 10�3 the Tikhonov parameter. The control
q 2 R enters in form of a material parameter, such that the control form is given
by (9.5).

The flow is driven by a parabolic inflow profile on 
in with maximum velocity
Nvin D 1:5m/s and the remaining parameters used in this test case are given by

�f D �s D 103
kg

m3
; �f D 10�3m2

s
; �s D 0:4:

On the outflow boundary 
 out
f we prescribe the do-nothing outflow condition, see

Sect. 2.4.2. All computations in this sections have been carried out by Thomas
Wick [286, 347] using the software library deal.II [24].

In Table 9.1 we determine the deformation uy.A/ in the tip of the beam
considering the Lamé coefficient �ref D 500;000 on a sequence of two meshes in
forward simulations. These values act as reference values uref

y for each optimization
test case.

We start the actual optimization loop with the initial control q0 D 5000 far
away from the optimal state qopt D �opt D 500;000. In Table 9.2 we indicate
the results of the optimization algorithm on two meshes, using the corresponding
reference deformation uref

y .A/ on each level. Here, it shows, that the presented

M = (0.2, 0.2)

(2.5, 0)

(2.5, 0.41)(0, 0.41)

(0, 0)

̂Ω

Γ̂wall

Γ̂wall

Γ̂in Γ̂out

A = (0.6, 0.2)

Γcircle Γbase Γflag

Fig. 9.1 Configuration of the parameter identification test case with the modified fsi-1 benchmark
configuration. The thickness of the beam is increased to 0:04 (from 0:02 in the standard fsi
benchmark problem)
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Table 9.1 Forward computation for obtaining reference values uref.A/ using the exact Lamé
coefficient �opt D 500;000 on two subsequent meshes

DoF �ref uref
y

19;488 500,000 8:2747 � 10�4

76;672 500,000 8:2289 � 10�4

Table 9.2 Modified fsi-1 parameter estimation problem

Step � uy.A/ juy.A/� uref
y j Residual

(a) Results on a mesh with 19;488 unknowns, uref
y D 0:00082747

1 5000 2:0118 � 10�3 1:18 � 10�3 1:00 � 10�0

2 188;133 1:1992 � 10�3 3:72 � 10�4 5:90 � 10�1

3 498;310 8:2884 � 10�4 1:37 � 10�6 2:76 � 10�3

4 499;767 8:2770 � 10�4 2:30 � 10�7 4:01 � 10�6

5 499;769 8:2768 � 10�4 2:10 � 10�7 6:58 � 10�9

(b) Results on a mesh with 76;672 unknowns, uref
y D 0:00082289

1 5000 2:000 � 10�3 1:18 � 10�3 1:00 � 10�0

2 118;309 1:347 � 10�3 5:24 � 10�4 7:23 � 10�1

3 493;626 8:279 � 10�4 5:01 � 10�6 1:16 � 10�2

4 499;756 8:232 � 10�4 3:10 � 10�7 2:27 � 10�5

5 499;768 8:231 � 10�4 2:10 � 10�7 2:70 � 10�8

Results of the optimization loop for two different meshes, using the reference values as collected
in Table 9.1. Showing iteration, control ql D �l, deformation uy.A/, absolute error in deformation
and Newton residual

Fig. 9.2 Modified fsi-1 parameter estimation: x-velocity profile vx (top) and corresponding adjoint
solution zx (bottom)

Newton optimization scheme with the exactly derived adjoint problems for the
monolithic variational formulation yields a very efficient (quadratic) convergence
to the optimal state.

In Fig. 9.2, we show plots of x-velocity and the corresponding adjoint solution
component for the solution of this optimization problem.
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9.5 Optimal Control Test

As second problem we consider an optimal control test. Figure 9.3 shows the
configuration. By controlling the inflow pressure on 
 in

f by pin
f 2 R D qf 2 R

we aim at maximizing the outflow at 
 out
f . An elastic obstacle S is embedded in the

flow domain. At increased velocities, this obstacle will be sucked to the top of the
domain and closes the channel, such that the flow rate will decrease again.

The problem is constructed such that the optimal solution can be easily verified
by forward simulations to offer an easy test case for the optimization routines and
in particular for the derivation of the adjoint formulations. Control is realized by the
pressure control form (9.4), the target function is given by

Kout.q;U/ D �
Z


 out
f

.n � v/2 ds C ˛

2
jq � Nqj2; (9.18)

where ˛ > 0 is the regularization parameter. We changed the sign to obtain a
minimization problem. The material parameters are chosen as

�f D �s D 103 kg � m�3; �f D 10�3 m2 � s�1; �s D 0:4; �s D 500 kg � m�1s�1:

Velocity and deformation as set to zero on all outer boundaries 
wall.
Figure 9.4 shows results of forward simulation for different values of the control

q, i.e. the average inflow pressure on 
 in
f . Considering higher pressures, the beam

will narrow the channel and reduce the outflow rate; we refer the reader to Fig. 9.5
for snapshots of the solution for different inflow pressures q D pin. From the forward
simulation we estimate qopt 2 Œ0:23; 0:24�.

This test case is very challenging as control and target functional are both living
within the fluid. Without the interaction to the solid, no effect would take place.
This example asks for a careful analysis of the adjoint information transport from
the fluid to the solid and back to the fluid. In [286] we study this problem with an

.2
5

4.0

Ωf

Ωs
Γout

1
.5

1
.0

1.0 2.0

Γin

Γwall

.2
5

Fig. 9.3 Configuration of the optimal control test case. We control the inflow pressure on 
in with
the goal to maximize the outflow rate on 
out
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Fig. 9.4 Forward simulations for varying inflow pressures q. In the upper plot we show the
outflow rate Kout.q;U.q//. In the lower plot we indicate the deformation of the tip of the beam
uy.A/. The outflow rate decreases for q > 0:25. We expect to find the optimal control close to this
point

approximated adjoint that neglects the coupling conditions. It is shown that such
an approximation does not carry sufficient information for efficiently solving the
optimization problem.

To approximate this problem, we use an updated Tikhonov parameterization,
where both the parameter ˛ and the parameter Nq in

K.q;U/ D Kout.U/C ˛

2
jq � Nqj2;

are updated. We start with Nq0 D q0 D 0:1 and take the last available optimum
in each step. Furthermore, the parameter ˛ is reduced step by step. In Table 9.3,
we show the convergence of this iterated Tikhonov scheme, together with the
chosen values for ˛i and the obtained controls pi

opt. As expected by the forward
computation, the maximal flux is reached for popt � 0:23–0:24. Indeed, it can be
observed that the channel is narrowed in the maximized solution as illustrated in
Fig. 9.5. Here, in the unloaded reference configuration, the gap has a width of 0:125.
Using the initial control Np0in D 0:1, the gap is narrowed to 0:115 and in the optimum
state, for popt � 0:24, the size of the gap is reduced to 0:095. This is an overall
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Fig. 9.5 Maximization of the outflow rate. At the top we show the velocity for the initial control
q0 D 0:1 and in the bottom we show the solution close to the optimal control qopt 	 0:23

Table 9.3 Maximizing the outflow rate Kout.U/ by controlling the inflow pressure q D pin on
three globally refined meshes using an iterated Tikhonov regularization with Tikhonov parameter
˛ and reference control Npin

DoF Npin ˛ uy.A/ Kout.U/ popt

12,612 0:1000 1:0 � 10�5 0:97 � 10�2 3:87 � 10�5 0:1038

0:1038 7:5 � 10�6 1:02 � 10�5 4:04 � 10�5 0:1090

0:1090 5:0 � 10�6 1:11 � 10�5 4:29 � 10�5 0:1170

0:1170 2:5 � 10�6 1:30 � 10�5 4:78 � 10�5 0:1335

0:1335 1:0 � 10�6 1:85 � 10�5 5:87 � 10�5 0:1759

0:1759 7:5 � 10�7 2:43 � 10�5 6:53 � 10�5 0:2254

0:2254 5:0 � 10�7 2:72 � 10�5 6:67 � 10�5 0:2280

49,540 0:1759 1:0 � 10�6 2:46 � 10�5 6:52 � 10�5 0:2135

0:2135 7:5 � 10�7 2:84 � 10�5 6:70 � 10�5 0:2330

196,356 0:1759 1:0 � 10�6 2:42 � 10�5 6:50 � 10�5 0:2111

0:2111 7:5 � 10�7 2:92 � 10�5 6:71 � 10�5 0:2367
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Fig. 9.6 Maximization of the outflow rate. Adjoint solution with respect to the velocity (top),
displacement (middle) and pressure (bottom). All solutions are displaced in the undeformed
reference configuration in ALE coordinates

reduction of about 25%. Finally, Fig. 9.6 illustrates the three components zv; zp; zn

of the adjoint solution.
We finally note that we expect different results, if this problem would be treated

with a fully non-stationary approach. At very high pressures one has to expect
instabilities that will cause a flattering of the elastic obstacle and that might finally
prevent the full closure of the channel.



Chapter 10
Mechano-Chemical Fluid-structure Interactions
and Active Materials

Many aspects in solid dynamics cannot be explained by an elastic response of
the material. In some applications, the material undergoes active changes, e.g. by
growth, swelling or generation of material, by chemically induced contractions or
bending. In other situations, the reference state is not stress-free. If a log of wood is
cut in two pieces, these will afterwards deform and spread.

One model for the realization of active material modification is the introduction
of an intermediate material configuration, the grown configuration, that is assumed
to include the active growth or change of material, a configuration that is stress-
free but non-physical, see Rodriguez et al. [291] and Jones and Chapman [209]
for further examples. We call this configuration OSa, the active one and introduce a
mapping that describes only this growth process

OTa.t/ W OS ! OSa.t/

and that maps the Lagrangian reference state to the grown one. In Fig. 10.1 we
show two possible models for active material growth, isotropic growth of control
volumes and a volume-conserving constriction of control volumes. The grown state
is understood to be stress-free but non-physical, as control volumes might overlap.

In a second step, the solid elastically reacts to this intermediate configuration.
We denote by

OTe.t/ W OSa.t/ ! S.t/

the mapping of this elastic response. The overall material deformation is given by

OT.t/ W OS ! S.t/; OT.t/ D OTe.t/ ı OTa.t/: (10.1)

© Springer International Publishing AG 2017
T. Richter, Fluid-structure Interactions, Lecture Notes in Computational
Science and Engineering 118, DOI 10.1007/978-3-319-63970-3_10
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Ta

Ta

Te

Te

Fig. 10.1 Two different kinds of active material deformation. Top row: isotropic growth. Bottom:
Constriction of volume elements. The intermediate configuration is grown and stress-free but not
physical

The complete deformation OS ! OS.t/ is still described by Ou including growth and
elasticity, such that

OT.Ox; t/ D Ox C Ou.Ox; t/:

As usual, we introduce the deformation gradient and its determinant

OF WD Or OT; OJ WD det OF: (10.2)

The splitting into growth and elastic response is done on the level of the deformation
gradient, see Fig. 10.2. We introduce

OFa WD Or OTa; OJa WD det OFa; (10.3)

and

OFe WD Or OTe; OJe WD det OFe; (10.4)

By means of (10.1) it holds

OF D OFe OFa; OJ D OJe OJa:
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F̂ = I + ∇̂ûs

V̂
VV̂aF̂a F̂e

Fig. 10.2 Multiplicative decomposition of the deformation gradient into active part Fa and elastic
response Fe

If we assume that OTa is given by an external mechanism we can compute the elastic
deformation gradient based on the deformation u and this growing part

OFe D OF OF�1
a D .I C Or Ou/ OF�1

a :

Now, stresses will depend solely on this elastic part. In terms of Definition 2.18, the
first Piola Kirchhoff stress tensor of the St. Venant Kirchhoff material is given by

OPe D OFe O†e D 2�s OFe OEe C �s tr. OEe/ OFe; OEe WD 1

2
. OFT

e
OFT

e � I/: (10.5)

The tensor OPe is formulated on the intermediate configuration OSa.t/. The equations
of conservation are however given on the non-strained, non-grown reference
configuration OS . Therefore, in a last step we must pull back this tensor to OS . We
refer to [73]

O† D OJa OF�1
a

O†e OF�T

a : (10.6)

10.1 Growth Models

Growth can come in various forms. It is possible that new material is added. Then,
material can simply swell while conserving its mass. Growth can also be the change
of configuration without change of volume or mass, e.g. shearing or rotation.

We first consider the case, where the same type of material is locally added in an
isotropic fashion. Let OV be a control volume and Ox0 2 OV be a reference point. We
assume that this control volume isotropically growing

OV ! Va.t/; Va.t/ WD fOx0 C ˛t.Ox � Ox0/; Ox 2 OVg;
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where by ˛ 2 R we denote the growth rate, see Fig. 10.1. By

OTa.Ox; t/ D Ox C ˛t.Ox � Ox0/; OFa D Or OTa D .1C ˛t/I; OJa D .1C ˛t/d (10.7)

we can express the active mapping and deformation gradient, where d > 0 is the
spatial dimension. We assume that the new material has the same density O�0, such
that mass is added (or decreased for ˛ < 0)

m.Va.t// D
Z

Va.t/
�0 dx D

Z

OV
OJa�

0 dOx DW
Z

OV
O�a dOx:

By

O�a WD OJa O�0 D .1C ˛t/d O�0; (10.8)

we denote the grown density in the reference configuration.
Second, we consider the swelling of material, an isotropic growth without

addition or removal of mass. The growth map is given as in (10.1), the mass however
is conserved from OV to Va.t/

m. OV/ D
Z

OV
O�0 dOx ŠD

Z

Va.t/
�a dx D

Z

OV
OJa O�a dOx D

Z

OV
.1C ˛t/d O�a dOx;

such that

O�a D .1C ˛t/�d O�0:

Third, we consider the case of a constriction, where both mass and volume of
the control volumes stays the same, see the bottom row of Fig. 10.1. Let OV be a
reference volume and Ox0 2 V be its center of mass. In two spatial dimensions, the
active map is given by

OTa.Ox; t/ D
�Ox01 C .Ox1 � Ox10/.1C ˛t.Ox2 � Ox02//

Ox2
�
;

with deformation gradient and determinant

OFa.Ox; t/ D
�
1C ˛t.Ox2 � Ox02/ .Ox1 � Ox01/˛t

0 1

�
; OJa D 1C ˛t.Ox2 � Ox02/:
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10.2 Model Case: Formation and Growth of Atherosclerotic
Plaques

We consider the coupled dynamics of an incompressible fluid with an elastic
structure that undergoes active growth and deformation by bio/chemical processes.
The mechanical fluid-structure interaction problem is coupled to the dynamics of
chemical species that are transported that react and diffuse and that finally will cause
solid growth. This model is a generalization of a detailed model for the dynamics
of the formation and growth of plaques in blood vessels that has been discussed
in [354–356].

We introduce a simplified model that describes the formation and growth of
plaques in large blood vessels. For simplicity, we denote by ˝.t/ � R2 a two-
dimensional domain, split into the vessel wall S.t/ � R2 and the fluid domain
F.t/ � R2, which is occupied by blood. The interface between fluid and solid is
denoted by I.t/, see Fig. 10.3. We model blood as an incompressible Newtonian and
homogenous fluid. The vessel wall is described by the St. Venant Kirchhoff material
as stated above.

Our model for the fluid-solid interaction problem between blood and the vessel
is overly simplified. The mechanical properties of vessels are complex with multi-
layered anisotropic structures. We refer to the literature for advanced models and
also for numerical approaches to deal with them [87, 147, 149, 195].

In short, the biological mechanism is evolving as follows (compare Fig. 10.3):
First, monocytes (concentration called cf ) are transported by an advection-diffusion
process within the blood flow. Second, they penetrate damaged parts of the vessel
wall (in damaged areas) where they are transformed to macrophages (called
cs). The migration rate depends on the difference of monocyte and macrophage
concentration .cf � cs/ on the interface, on the wall stress and the damage condition
of the wall. Thirdly, within the vessel wall, the macrophages are again transported by
an advection-diffusion process and transformed into foam cells (called c�

s ). Finally,
accumulation of foam cells leads to plaque growth.

This problem is coupled to the dynamics of the fluid-structure interaction
problem. Due to hemodynamical forces driven by the pulsating flow, the geometry
deforms substantially. Furthermore, the formation of plaques significantly changes

ω(t)

ŜÎ

Ŝ

F̂Transport of Monocytes

Transendothelial migration
and differentiation

Formation of foam cells
ˆ (t) (t)

S(t)

F(t)

Plaque
Growth

I(t)

A(t)

Fig. 10.3 Configuration of the domain and mechanism of plaque formation. Left: Domain in
reference configuration split into fluid part OF and solid OS divided by the interface OI. Right: Domain
in the current (Eulerian) description with plaque formation and narrowing of vessel
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the domains. Finally, the hemodynamical forces influence the penetration of
monocytes into the vessel wall and therefore a two-way coupled problem must be
considered. The complete set of equations is given by

�f .@tvf C vf � rvf / � div � f D 0

div vf D 0

@tcf C vf � rcf � Df�cf D 0

9
>>=

>>;
in F.t/

�s.@tvs C vs � rvs/� div � s D 0

@tcs C vs � rcs � Ds�cs D �ˇcs

@tc
�
s C vs � rc�

s D ˇcs

9
>>=

>>;
in S.t/

� fnf C � sns D 0

vf D vs

Df rcfnf C Dsrcsns D 0

Dsrcsns D �.cf � cs/

9
>>>>>=

>>>>>;

on I.t/

(10.9)

Here, vf and vs stand for the fluid and solid velocity. By �f and �s we denote the
densities of blood and vessel wall and by nf and ns the outer normals of the fluid and
solid domain, respectively. Df and Ds are diffusion coefficients for monocytes and
macrophages. In particular Ds depends on the concentration of foam cells c�

s [355].
The coefficient � describes the migration of monocytes through the vessel wall. This
parameter will depend on the hemodynamical stress � D �.� fn/. The parameter ˇ,
usually depending on the concentration of foam cells, controls the transformation of
macrophages to foam cells.

One of the major challenges in plaque modeling is the huge variety of temporal
scales: While the heart beats once in about every 1 s, plaque growth takes place
in a time span of months, i.e. T � 1;000;000 s. Although all scales have a
significant influence on the coupled dynamics, a numerical simulation will not be
able to resolve each detail while following the long-term process. Instead, we—as
most approaches—consider an averaged flow problem and focus on the long-
scale dynamics. Effective model parameters controlling the migration of monocytes
through the vessel walls will be obtained by local (in time) small-scale simulations.
The analysis of temporal multiscale problems with partial differential equations is
still an open problem. Also we do not know efficient numerical multiscale methods
for the approximation of such problems. We refer to the forthcoming dissertation of
Sonner [315] for first steps in this direction.

Rather than developing a quantitative model, we concentrate in this paper
on a robust numerical framework for the coupled long-term dynamics of fluid-
structure interaction with active growth processes and large deformation. Hence, the
approximation of the chemical dynamics plays a minor role. We therefore strongly
simplify Model (10.9) and replace the complete chemical dynamics by a simple ode
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modeling the total concentration of foam cells

@tc
�
s .t/ D 	.� WS; t/; c�

s .0/ D 0; (10.10)

where the function 	 specifies the rate of foam cell accumulation. Here, this function
depends on the wall stress in main stream direction � WS

	.� WS; t/ D 	0

�
1C � WS.t/

�

��1
; � D 50

g

cm � s2
; 	0 D 5 � 10�7: (10.11)

For details on models of the dependency of the monocyte migration rate on the
wall stress we refer to [78]. The exact role and influence of the wall stress on the
migration rate is not yet completely understood. For further discussion, we refer
to [99]. The scalar concentration c�

s W Œ0;T� ! RC will directly determine the
active growth. Growth will take part in the middle parts of the vessel walls, see
Fig. 10.3.

Accurate handling of the different time-scales is an open problem. Most
approaches use an averaging in time and focus on the long-scale dynamics
only [94, 355]. A two-scale approach has been suggested in [158]. Here, we
simply consider an averaged long-scale model. We neglect the pulsating flow and
instead choose one constant inflow-rate. We fully acknowledge that this approach
will result in enormous modeling errors and refer to [158] for a detailed discussion.

Problem 10.1 (Long-Scale Growth) In I D Œ0;T�, find fluid-velocity vf , pressure
pf , solid deformation us and foam cell concentration c�

s , given by

�f vf � rvf � div � f D 0; div vf D 0 in F.t/
� div � s.c

�
s .t// D 0 in S.t/

vf D 0; � fnf C � s.c
�
s .t//ns D 0 on I.t/

@tc
�
s .t/ D 	.� WS/; c�

s .0/ D 0 in S.t/:

(10.12)

The boundary data is described by

vf .t/ D Nvin.t/ on 
 in
f ;

�f �fn � rvf � pn D 0 on 
 out
f ;

us D 0 on 
s;

(10.13)

where n is the outward facing normal vector and Nvin is an averaged inflow profile
that depends on the width of the blood vessel.
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10.3 Monolithic Schemes for the Coupled Problem

In this section, we derive monolithic variational formulations for Problem 10.1 in
ALE and in Fully Eulerian coordinates. Growth can lead to substantial deformations
of the solid up to a full closure of the vessel. Together with the stiff coupling between
blood and tissue, this is a prototypical application for the Eulerian framework
introduced in Chap. 6.

Problem 10.2 (Long-Scale Problem in ALE Formulation) Find the fluid veloc-
ity Ovf 2 Nvin.t/C Vf , deformation Ou 2 W and the pressure Opf 2 Lf , such that

� O�f OJf Ovf � OF�1
f

Or Ovf ; Of
�

OF C �OJf O� f
OF�T

; Or O� OF C � OF O†; Or O� OS D 0 8 O 2 W ;

�
bdiv .OJ OF�1 Ovf /; O�f

�
OF D 0 8O� 2 Lf ;

with † as given in (10.6) and where the extension Ouf is defined as

. Or Ouf ; Or O f / OF D 0 8 O f 2 Wf ;

in the case of the harmonic extension. For the biharmonic extension we use

. Owf ; O�f / OF � . Oruf ; Or O�f / OF C . Or Owf ; Or O f / OF D 0 8f O f ; O�f g 2 QWf � Wf

The elastic deformation gradient is defined in (10.4) depending on the concentration
of foam cells. The latter one is defined by the ode

@tc
�
s D 	.� WS; t/; c�

s .0/ D 0:

The function spaces are given by

Vf D ŒH1
0.

OF I OI [ O
 in
f /�

2; Lf D L2. OF/;
W D ŒH1

0.
Ő I O
 in

f [ O
s/�
2; Wf D ŒH1

0.
OF/�2; QWf D ŒH1. OF/�2:

Remark 10.3 (Biharmonic Mesh Model) We have chosen a mixed formulation for
the biharmonic extension, such that an efficient discretization with simple C0-
conforming finite elements is possible.

To express the coupled model including growth in Fully Eulerian coordinates,
we must carry over the decomposition of the deformation gradients into the current
system. We denote the inverse mappings of OTa and OTe by Ta D OT�1

a and Te D OT�1
e

and their gradients by Fa D rTa and Fe D rTe respectively. Using F D OF�1
, we

have

F D OF�1 D OF�1
a

OF�1
e DW FaFe: (10.14)
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Although a direct modeling in Eulerian coordinates is possible, we derive the
Eulerian solid model by a mapping of the Lagrangian formulation to the Eulerian
system

Js O�0s .@tvs C vs � rvs/ � div
�
J†F�T

� D 0

@tus C vs � rus D vs

in S.t/; (10.15)

where † is given in (10.6) with an Eulerian description

† D J�1
a Fa†eFT

a ;

†e D 2�Ee C �s tr.Ee/I; Ee D 1

2
.F�T

e F�1
e � I/:

(10.16)

Frei [151] gives details on the transformation of the stresses of an active material to
the Eulerian coordinate framework.

10.3.1 Solid Growth in Eulerian Coordinates

Next, we carry over the growth model to the Eulerian representation. We will use
again the simple isotropic growth model

OFa D OgI (10.17)

and define the Eulerian growth function g by setting g.x; t/ D Og.Ox; t/. By the relation
OFa D F�1

a , it holds that

Fa D g�1I: (10.18)

By the decomposition (10.14) it follows that

Fe D F�1
a F D gF; Je D g2Js: (10.19)

The complete Eulerian stresses are given by

Ja� eF�T
a D JsF�1

e †eF�T D g�1JsF�1.2�sEe C �s tr.Ee/I/F�T ; (10.20)

with the Eulerian elastic strain tensor

Ee D 1

2
.g�2F�TF�1 � I/: (10.21)

Finally, we derive the equation of mass conservation in Eulerian coordinates. We
assume that homogenous material with the same parameters is added, such that the
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density is constant O�a D O�s. Hence, if m. OV/ is the mass of the reference state, m. OVa/

is the mass of the grown material, which is conserved in the current configuration V

m. OV/ D
Z

OV
O�0s dOx; m. OVa/ D

Z

OVa

O�a dOxg D O�0s
Z

OV
OJa dOx D O�0s

Z

V

OJaJs dx;

(10.22)

where OJa WD det. OFa/ D Og2 is the determinant of the growth part, such that for the
density � of the current configuration it holds

� D O� D g2 O�0s Js: (10.23)

Problem 10.4 (Long-Scale Problem in Fully Eulerian Coordinates) Find veloc-
ity vf .t/ 2 Nvin C Vf , deformation u 2 W and pressure pf 2 Lf , such that

�
�f vf � rvf ; f

�
F.t/ C �

� f ;r
�
F.t/ C �

Ja� eF�T
a ;r�S.t/ D 0 8 2 W

�
div vf ; �f

�
F.t/ D 0 8�f 2 Lf ;

�ruf ;r f
�
F.t/ D 0 8 f 2 Wf :

The elastic deformation gradient is defined in (10.19). Accumulation of foam cells
is described by the ode

@tc
�
s D 	.� WS; t/:

The function spaces are defined as

Vf D H1
0.F.t/I I.t/ [ 
 in

f /
2; Lf D L2.F.t//;

W D H1
0.˝.t/I
 in

f [ 
s/
2; Wf D H1

0.F.t//2:

10.4 Numerical Tests

Studying different test cases we compare the performance of two different formula-
tions of the fluid-structure interaction problem, the Arbitrary Lagrangian Eulerian
formulation from Chap. 5 and the Fully Eulerian formulation detailed in Chap. 6.
We give further tests and an elaborate discussion in [158].

10.4.1 Problem Setting

As geometry we use a channel with length 10 cm and an initial width !.0/ (of
the fluid part) of 2 cm as illustrated in Fig. 10.3. The solid parts on the top and
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bottom have an initial thickness of 1 cm each. Fluid density and viscosity are given
by �f D 1 g � cm�3 and �f D 0:3 cm2 � s�1. The solid parameters are given by
�s D 1 g � cm�3 and the Lamé parameters �s D 104 and �s D 4 � 104 dyn � cm�2. We
prescribe a pulsating velocity inflow profile on 
 in

f given by

vin.t; x; y/ D 3

2

�
vin.t/.1 � y2/

0

�
;

vin.t/ D �
"! C 5!.t/

�
.1C sin.2�t//cm � s�1;

(10.24)

depending on the width of the channel!.t/ (see Fig. 10.3). The parameter "! is used
to control the minimum flow rate and will be specified below. These parameters are
similar to a real plaque growth configuration. The remaining boundary conditions
are specified in (10.13). For the growth, we specify a function that depends on the
concentration of the foam cells c�

s that is defined by the ode (10.11). Growth is
centered around the middle part of the vessel

Og.Ox; Oy; t/ D 1C c�
s .t/ exp

��Ox2� .2 � jOyj/; OFg.Ox; Oy; t/ WD Og.Ox; Oy; t/ I: (10.25)

Growth Og and inflow rate vin.t/ implicitly depend on the solution. As the config-
uration is symmetric in the vertical direction, we consider the lower half of the
geometry for the simulation only.

The problem is driven by a parabolic inflow profile with an average inflow rate
Nvin.t/. We use the averaged inflow profile of (10.24)

Nvin.t/ D �
"! C 5!.t/

�
cm � s�1 (10.26)

The dynamic configuration using the pulsating inflow field (10.24) is discussed in
[158]. We discretize the coupled problem by a splitting in time and approximate by
the following iteration.

Definition 10.5 (Mechano-Chemical Iteration) Initialize v0 D 0, u0 D 0, g0 D 0

and the vessel-width !0 D 2. Set time step kl D 0:1 days D 8 640 s. Iterate for
n D 1; 2; : : : .

1. Solve (10.1) fc�;n�1
s ;!n�1g 7! fvn;un; png

2. Compute wall stress � n
WS D

Z

I
j� f .vn; pn/n � e1j do

3. Update foam cells c�;n
s D c�;n�1

s C kl	0
�
1C � n

WS=�
��1

4. Compute vessel width !n D 2 � 2un
2.A.tn/; tn/

First, we choose a minimum inflow velocity of "! D 0:1 cm=s. In Fig. 10.4, the
streamlines of the fluid and the deformed vessel walls at times t D 10 days and
t D 50 days are shown.
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Fig. 10.4 Solution after 10 days (top) and 50 days (bottom). Streamlines of the fluid and the
deformation of the vessel wall are shown

In Fig. 10.5 we show the course of different output functionals over time: the wall
stress in main stream direction on the vessel wall I that is computed in step 2. of
the iteration, the channel width !.t/ D 2�2u2.A.tn// in the middle point A.tn/ (see
Fig. 10.3), the vorticity of the solution in the L2-norm and the outflow at the right
boundary defined by

Jvort.v/ D
Z

F.t/

�
@yv1 � @xv2

�2
dx; Jout.v/ D

Z


f ;out

v � n: (10.27)

The functional values for the Arbitrary Lagrangian Eulerian method (harmonic
and biharmonic extension) and the Fully Eulerian approach show very good
agreement. Using the harmonic extension, the ALE method broke down at t D
63:2 days due to degeneration of mesh cells, with the biharmonic extension, we
were able to get results up to t D 109:3 days.

The fully Eulerian method, on the other hand, was able to yield reliable results
until the channel was almost closed. As the inflow velocity is bounded from below
by "! D 0:1 cm � s�1 and as the fluid is incompressible, a passage must always
remain. As higher wall stresses slow down plaque growth, see (10.11), the vertical
displacement approaches a limit. However, increasing fluid-dynamical forces cause
strong horizontal deflections that finally result in a breakdown of the simulation.
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Fig. 10.5 Course of different output functionals over time during closing of channel. For small
deformations, the three different modeling approaches give similar results. Once the deformation
gets larger, the two ALE approaches with harmonic and biharmonic extensions will fail
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As the results for the ALE method with harmonic and biharmonic extension are
nearly identical until time t D 63:1 days, we will not show the harmonic variant
anymore in the following tests.

In Fig. 10.6, we present the deformed meshes at time t D 109:3 days for the ALE
approach with biharmonic mesh deformation and the fully Eulerian approach. In the
case of the biharmonic ALE approach, this was the last mesh before the calculation
broke down.

Next, we study the convergence with respect to the spatial grid size h > 0 for
both the fully Eulerian and the ALE technique. The results are shown in Table 10.1.
For the fully Eulerian approach, we use Q1 � Q1 equal-order elements and meshes
with 256, 1024 and 4096 patch elements. For the ALE approach we use Q2 � P1;dc

elements as introduced in Sect. 4.3.1. We choose slightly coarser meshes for a fair
comparison.

Fig. 10.6 Top: Biharmonic deformation close to breakdown at t D 109:3 days and zoom-in
(right). Bottom: Corresponding results using the Fully Eulerian approach on fixed meshes

Table 10.1 Convergence of
functional values at t D 50

days on three different grids
for the fully Eulerian and the
ALE approach

#patches Wall stress Width Vorticity Outflow

Euler 256 1:033 � 102 1.092 3:408 � 103 9.251

1024 1:050 � 102 1.064 3:457 � 103 9.547

4096 1:060 � 102 1.052 3:472 � 103 9.648

Extrapol. 1:074 � 102 1.047 3:479 � 103 9.700

Conv. 0.77 1.81 1.71 1.55

ALE 160 1:087 � 102 1.033 3:527 � 103 9.892

640 1:076 � 102 1.037 3:515 � 103 9.849

2560 1:073 � 102 1.038 3:510 � 103 9.834

Extrapol. 1:072 � 102 1.039 3:506 � 103 9.826

Conv. 1.87 1.49 1.26 1.52

We indicate estimated convergence rates and extrapolated
limits
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We evaluate the functionals at t D 50 days. The functional values for the ALE
and the fully Eulerian approach converge roughly against the same values. Small
differences are due to time discretization (the time step has been chosen as 0:1 days).
Further, the implementation of the Fully Eulerian model is only semi-implicit, as the
domain layout during the time step tn ! tnC1 is fixed to Fn and Sn.

Furthermore, we estimated the convergence order for all functionals, see
Table 10.1. Besides the wall stress, all estimated convergence orders lie between
linear and quadratic convergence order and the ALE and the fully Eulerian
approach converge similarly. The ALE approach, however, seems to yield better
values already on very coarse grids. Furthermore, the ALE approach shows faster
convergence in the wall stress functional. The reason for this better performance is
the use of inf-sup stable Q2 elements in the case of ALE, which is not yet possible
with the parametric interface approximation scheme described in Sect. 4.5, where
stabilized Q1 � Q1 elements are utilized.

An interesting aspect from a modeling point of view is the question if the channel
closes completely or if there will remain a small layer of fluid between the vessel
walls. As discussed before, a complete closure of the channel is not possible as long
as the inflow rate "! is positive.

To study closure, we decrease the minimal inflow velocity "! from 0.1 to 0 and
the velocity inflow by a factor of 10 to

vin
1 D 0:15 � .5!.t//.1 � y2/ cm=s: (10.28)

This means that the flow through the narrow part of the channel will decrease
considerably when the channel is almost closed. This has two important effects:
First, the fluid forces acting against the growth of the solid are much smaller.
Secondly, the wall stress becomes smaller which has a strengthening impact on
the solid growth in our model. Altogether, this has the effect that in our simulation
the channel closes completely at time t D 55:8 days. Of course full closure is only
possible by using the Fully Eulerian formulation.

In Fig. 10.7, we show plots of the channel width and the vorticity over time.
In contrast to the larger inflow velocity studied above, the fluid forces (e.g. the
vorticity) decrease after t � 40 days which makes the closure of the channel
possible. In Fig. 10.8, we show the last mesh obtained with the fully Eulerian
approach (t D 55:8 days) where the channel is completely closed. The ALE
calculation (with biharmonic extension) broke down at time t D 40:6 days.

These simplified simulations consider an averaged inflow velocity only. The main
mechanical forcing however is due to the pulsating blood flow. In [158] a two-
scale approach has been suggested, where effective parameters for the wall stress
are computed from isolated short-scale simulations that resolve the pulsation. It is
shown that substantial variations in plaque growth up to 20% exist.
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Fig. 10.7 Channel width and vorticity for a long-scale simulation with reduced inflow velocity.
The inflow velocity goes to zero when the channel closes. This makes the complete closure of the
channel possible

Fig. 10.8 Second test case. Fully Eulerian deformation at complete closure t D 55:8 days



Chapter 11
Non-stationary Dynamics and Coupled
Oscillations

Inspired by a presentation of Sanjay Mittal [245, 250, 260] and a discussion with
Paolo Galdi (private communication, 2016) we study the interaction of the von
Kármán vortex sheet with the oscillation of an elastic obstacle. The flow around a
blunt body develops self-excited oscillations. Elastic structures freely oscillate with
Eigenfrequencies. We want to study the interplay between these two effects on a
coupled elastic fluid-structure interaction problem.

Mittal and coworkers [260] studied the interaction of a freely oscillating rigid
body in a laminar flow. They considered obstacles with circular and elliptical cross
section that are freely suspended and attached to an (imaginary) spring. The solid
problem alone—without interaction to a surrounding fluid—will show periodic
oscillations of a fixed frequency and amplitude. The amplitude is related to the initial
excitation, while the frequency of the oscillation is related to the spring constant
and the mass of the obstacle. Second, the rigid obstacle is fixed and one studies the
flow of an incompressible fluid around this obstacle. The resulting fluid pattern will
strongly depend on key quantities like the Reynolds number

Re D NvD

�
;

where by Nv we denote the average velocity of the surrounding fluid, by D the
diameter of the obstacle and by � the viscosity of the fluid. Increasing the Reynolds
number results in the following observations

• In the subcritical regime Re < Resub, the flow has stationary limit with @tv D 0.
• In the laminar regime Resub < Re < Relam, the flow develops an oscillatory

pattern behind the obstacle, the so called von Kármán vortex street, see [333] or

© Springer International Publishing AG 2017
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Fig. 11.3. The frequency f of the oscillation is connected to the Strouhal number
St, that is like the Reynolds number an non-dimensional measure

St D f D

Nv ;

where f is the frequency, D the diameter of the object and Nv the velocity of the
surrounding fluid. For a large range of Reynolds numbers (in the laminar regime),
it holds for the flow around circular objects

St � 0:2

�
1 � 20

Re

�
, f D 0:2

� Nv
D

� 20�

D2

�
; (11.1)

showing that the frequency will linearly increase with the velocity.
• In the transition regime Relam < Re < Retrans, the flow develops complex

patterns. The dominant oscillation of the vortex street is overlayed with more
and more overtones.

• Finally, the flow pattern completely changes in the turbulent regime for Re �
Retrans, where the motion appears chaotic.

In a series of papers, Mittal [244, 245, 260] analyzed the interaction of the
non-stationary vortex street of laminar flows with an rigid, but freely supported
obstacle: What is the resulting frequency and what is the resulting amplitude for
the dynamically coupled problem? Two of the findings are the following: First, the
coupled problem admits non-stationary periodic solutions at significantly reduced
Reynolds numbers (as compared to the pure fluid problem). Second, and this effect
is referred to as synchronization or lock-in, there is a region of Reynolds numbers,
where the frequency of the coupled system is stable and usually equal or a multiple
of the natural structure frequency [33, 297, 349].

Here, we aim at discussion this question for a fully coupled fluid-structure
interaction problem with an elastic obstacle. We consider the benchmark problem
that has already been introduced in many sections of this book. This situation is more
complex than the configuration studied by Mittal. A rigid mass that is supported
by an ideal spring and that is not subject to any damping shows only one single
oscillation frequency. Here we study the interaction to a two dimensional elastic
beam. This solid problem itself is more complex, the oscillation of the beam shows
several modes in horizontal and vertical direction. Considering the coupling to a
rigid body, the fluid forces act as averages on the center of mass and all possible
motions of the solid can be described by a two dimensional vector. The elastic case
asks for modeling of a distributed deformation vector in the two dimensional solid
domain. Fluid’s forces not necessarily cause a motion of the solid, they also give
rise to bending and compression.

In the following section we first describe the coupled fluid-structure interaction
test case. Then in Sect. 11.2, we discuss the solid problem without a surrounding
fluid. In Sect. 11.3 we consider the fluid flow around a rigid obstacle and finally in
Sect. 11.4 we analyze the coupling.



11.1 Configuration of the Test Case 389

11.1 Configuration of the Test Case

The configuration of the benchmark problem is shown in Fig. 11.1a. The original
fsi-3 benchmark problem published by Hron and Turek [200] used the average
inflow velocity Nv D 2m � s�1. This choice of parameters results in the Reynolds
number

Re D NvD

�
D 2 � 0:1
0:001

D 200;

where D D 0:1m is the diameter of the circle, the rigid part of the obstacle. The
attached elastic beam is not considered for computing the Reynolds number. In
Fig. 11.1b we show the deflection in A D .0:6; 0:2/, a point in the tip of the beam, for
these settings. The coupled dynamics results in a periodic oscillation with dominant
frequency

fNvD2 � 1

0:184
� 5:435: (11.2)

2.5

Γwall

A := (0.6, 0.2)M := (0.2, 0.2)

0.1

0.02

ρf = ρs = 1 000kg m−3

μs = 2 · 106kg m−1s−2

λs = 8 · 106kg m−1s−2

νf = 0.001m2 s−1

vin(y) = 6 y(H−y)
H2 v̄

H = 0.41

Γin
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(a)
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0.05
0.04
0.03
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0
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109.89.69.49.29

0.001

0
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Fig. 11.1 We show the configuration of the benchmark problem as well as the dominant oscillation
in the beam’s tip. (a) Configuration of the fluid-structure interaction problemfsi-3. (b) Horizontal
and vertical deflection ux.A/, uy.A/ in the tip of the beam A D .0:6; 0:2/
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Considering the horizontal and vertical deflection of the tip of the beam, twice the
amplitude of the oscillation is given by

2ax
NvD2 � 0:00538; 2ay

NvD2 � 0:0701;

measures as the distance between maximal and minimal deflection. In Sect. 5.1.1
we have studied the discrete Fourier transform of the drag coefficient. Here we have
found high frequent oscillations that superimpose the dominant frequency. While
not visible at a first sight their numerical resolution is necessary to obtain the correct
dynamics of the coupled system.

11.2 Dynamics of the Elastic Solid

To identify the dynamics of the isolated elastic structure we run preliminary
tests without the fluid problem. These computations are comparable to the csm-3
benchmark case published by Hron and Turek [200]. We initially expose the beam
to a vertical force

fs.t/ D
�
0

�1
�

�
(
10�s t 
 0:05 s

0 t > 0:05 s:

The resulting oscillation of the beam’s tip is shown in Fig. 11.2. The time interval
I D Œ8; 10� is chosen such that the dominant frequencies are visible. The beam
is not oscillating with one single frequency but it shows a superposition of many
different frequencies. We can however identify the dominant frequency (of the
vertical deflection) as

fs � 1

0:464
� 2:155;

which is about half of the fsi-3 frequency fNvD2 given in (11.2). Naturally, the
horizontal deflection shows twice of the frequency, as the tip is deformed to the
left two times in every cycle. The oscillations shown in Fig. 11.2a are far from a
sine wave. Therefore we show in the lower part of Fig. 11.2b the discrete Fourier
transformation of the periodic dynamics. First, one clearly identifies the dominant
frequencies of the horizontal and vertical deflections, where the horizontal one is
twice as large as the vertical one. In addition we observe oscillations at higher
frequencies that explain the complex structure of the periodic solution.

In contrast to the test case studied by Mittal [245, 250, 260], the situation is less
clear. If we want to show synchronization effects it is not obvious, if this will appear
at the most dominant frequency or at an overtone.
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Fig. 11.2 Dynamics of the solid problem. The dominant Eigenfrequency for the horizontal
deflection is f 	 4:3 the vertical one is f 	 2:15. (a) Deflection of the tip of the beam
A D .0:6; 0:2/ in the temporal interval I D Œ8; 10�. (b) Discrete Fourier components of the beam’s
deflection. We indicate the strength of the signal for the different frequencies
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11.3 Dynamics of the Flow Around a Fixed Obstacle

Next, we study the pure fluid-dynamics test case, where the obstacle is considered
to be rigid. Of coarse, there will be no deflection. Instead we measure the drag and
lift coefficient of the obstacles that should show a similar dynamic behavior.

For increasing average inflow velocity Nv (which corresponds to increasing
Reynolds numbers) we note the frequency of the vortex street. For easy mea-
surement, we consider the forces of the fluid on the obstacle in cross-direction,
measured as

Fy D �
Z

I
� fn � eydo;

where ey D .0; 1/T . Up to a scaling, this function corresponds to the lift coefficient.
We indicate frequency fy and amplitude ay for the functional in Table 11.1. The flow
develops a periodic oscillation at Re � 170. We once more note that we did not
include the beam into the definition of the Reynolds numbers. This is the reason for
the rather high value of Re � 170 for the transition to the laminar periodic state
in contrast to Re � 50 for the flow around a circular obstacle only. In Fig. 11.3 we
show the pressure profile for the flow at different Reynolds numbers.

Table 11.1 Frequency and amplitude of the vertical force on the obstacle (ball & fixed beam) for
increasing Reynolds numbers

Nv 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9

Re 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290

fy – – – 3.62 3.85 4.04 4.22 4.42 4.63 4.82 5.04 5.21 5.43 5.63 5.85 6.06

2ay – – – <1 9.88 111 154 197 240 283 323 371 420 469 521 565

Fig. 11.3 Pressure profile for the flow around a fixed obstacle at different Reynolds numbers.
From top to bottom: Re D 100; 200; 300
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Fig. 11.4 Frequency and amplitude of the von Kármán vortex street for the flow around a fixed
obstacle at different Reynolds numbers. The theoretical prediction for the frequency shows very
good agreement (up to a constant shift)

Next, we compare the theoretical model for the oscillation frequency (11.1)
with the numerical results. In Fig. 11.4, we show frequency and amplitude of the
oscillation for different Reynolds numbers. Equation (11.1) predicts the slope of the
frequency but gives a shifted curve. This is no contraction to theory, as our setting
includes the fixed beam and is therefore more complex. We see that amplitude and
frequency of the oscillation increase with the Reynolds number. For the frequency
we derive the relation

fy.Re/ � 0:02Re C 0:24: (11.3)

The amplitude also linearly depends on the Reynolds number and can be approxi-
mated as

2ay.Re/ � 4:5Re � 750: (11.4)

Both relations are good approximations for Re 2 Œ180; 300�.

11.4 Coupled Dynamics

Finally, we study the oscillation dynamics of the fully coupled fsi-3 fluid-structure
interaction problem for different Reynolds numbers. Here we are interested in the
interplay of von Kármán vortex sheet and structural oscillation. We start by showing
snapshots of the solution for different Reynolds numbers starting in the stationary
regime at Re D 100, see Fig. 11.5.

We also show the deformation of the beam. At low Reynolds numbers, the flow
is stationary. Transition to a non-stationary oscillatory flow with large amplitudes
is given for Re � 135 in contrast to Re � 170 for the pure fluid case. A closer
look at the results even shows transition to non-stationary pattern (although at low
amplitudes) for Reynolds numbers Re � 115.
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Fig. 11.5 Pressure profile for the flow and deformation jusj for the flow around an obstacle with
elastic beam at different Reynolds numbers ranging from Re D 100 (top) to Re D 200 (every 20)
and for Re D 210 (bottom)

In Table 11.2 we show the dominant frequency fy and twice the amplitude 2ay

of the vertical deflection of the beam. Comparing to Table 11.1 we identify various
differences. We also give a graphical representation of the findings in Fig. 11.6.

• A fully developed stable periodic solution is developed at Re � 115 compared
to Re � 170 in the case with a fixed obstacle. For 115 
 Re 
 130 there are
however no significant forces on the obstacle. The deformation of the beam is
very small such as the amplitude of the vertical force fy.
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Table 11.2 Frequency and amplitude of the vertical force for the coupled fluid-structure interac-
tion problem at different Reynolds numbers

Nv 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.25 2.3

Re 110 115 120 125 130 135 140 150 160 170 180 190 200 210 220 225 230

fy 4.82 4.97 5.10 5.19 5.40 5.52 4.09 4.34 4.57 4.79 5.00 5.26 5.48 5.71 5.95 14.8 14.9

2ay � 1 58 142 141 130 104 206 300 345 364 376 375 361 348 334 1020 1266

Amplitude ayFrequency fy
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Fig. 11.6 Frequency and amplitude for the coupled fluid-structure interaction problem
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Fig. 11.7 Comparison of frequencies and amplitude for the fluid problem and the coupled fsi
problem

• Starting with Re � 135 a stable periodic solution with significant amplitude and
large deformations of the beam develops. This regime is stable up to Re � 220.
For larger values of the Reynolds number the non-stationary dynamics are more
complex with dominant overtones and rapidly increasing amplitude.

• The frequency of the oscillation increases with the Reynolds number. There is
however a significant jump at Re � 130�135 where an oscillation with large
amplitude appears. The slope of the frequency development fy.Re/ is nearly the
same as in the fluid case given in (11.3). We show a direct comparison of the two
frequencies in Fig. 11.7.

• For the fluid problem the amplitude was linearly depending on the Reynolds
number (11.4). The coupling to the solid has a stabilizing effect on the amplitude.
For a large interval Re 2 .150; 220/ the amplitude takes values of 2ay � 375.
The direct comparison is given in Fig. 11.7.
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From this numerical study, we cannot derive any analytical relation between the
frequencies of the von Kármán vortex sheet, the Eigenfrequency of the solid and
the frequency of the coupled dynamics. It is obvious that the elastic solid has a
destabilizing effect. Relating to the discussion on the added mass effect given in
Sect. 3.3 we have to expect this effect. Non-stationarities appear at lower Reynolds
numbers.

As Mittal and coworkers [245] we could identify a sub-critical regime Re 2
.110; 170/ where the pure fluid problem is stationary but a coupling to an elastic
solid gives stable oscillatory solutions.

Mittal and coworkers [245, 260] found a synchronization regime for the fre-
quency of the vortex shedding and the frequency of the solid’s oscillation for a
large range of Reynolds numbers. We could not identify such a synchronization for
the elastic fluid-structure interaction problem in Fig. 11.6. No immediate relation
between the frequencies of the coupled fluid-structure interaction problem and the
structural frequency is observed. Instead, we get a linear dependency between
frequency and Reynolds number with exception of a jump at the critical value
Re � 130�135 where dynamics with a substantial amplitude developed.

However we see a strong stabilizing effect in the amplitude of the oscillation,
compare Fig. 11.7. For the complete range of Reynolds numbers Re 2 .130; 210/

we observe amplitudes 2ay � 375 that do not grow with increasing inflow velocities.
In Fig. 11.8 we show the oscillation of the vertical force plotted over time. We

always show a time interval (each of them has the length 2 s where the flow reached
a stable periodic state. We show the situation at Re � 110 � 120 where the
transition to an periodic oscillation with an amplitude of 2ay � 150 is initiated.
This regime is stable for Re 2 Œ120; 135�. Here, larger Reynolds numbers will
lead to higher frequencies but smaller amplitudes. Next, we show the transition
at Re � 135 � 140, where we experience the jump to a lower frequency, but
where the amplitude is increased to about 2ay � 300. This regime is stable for
Re 2 Œ140; 220� showing an increase in frequency and more or less stable amplitudes
for larger Reynolds numbers. Only in the transition zone for Re � 140 the functional
pattern in Fig. 11.8b (right) shows a visible second mode. Finally we show the next
transition at Re � 220 � 225 to a more complex flow pattern. Both the frequency
and amplitude are strongly intensified. For even larger Reynolds numbers the com-
putations will break down due to very large oscillations and instabilities of the ALE
formulation.
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Fig. 11.8 Dynamics of the vertical force of the coupled fluid-structure interaction problem for
different Reynolds numbers. We show the formation of the stable oscillation with large frequency
and small amplitude at Re 	 115 (a), the transition to a stable oscillation with smaller amplitude
Re 	 135 (b) and the transition to an unstable oscillation at Re 	 225 (c). Note the different
scaling on the vertical axis in the bottom row. On the horizontal axis we always show an interval
of 2 s. (a) Re D 115 and Re D 120, (b) Re D 135 and Re D 140, (c) Re D 220 and Re D 225
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In this chapter, we revisit the problem of an elastic ball falling down towards
the ground by gravity within a viscous fluid, that was already briefly discussed
in Sect. 6.6.3. To deal with the topology change at contact time, we use a Fully
Eulerian approach as introduced in Sect. 3.6 and detailed in Chap. 6.

An accurate study of the contact dynamics requires discretization techniques in
space and time that take into account the interface movement. Here, we will use the
locally modified finite element technique introduced in Sect. 4.5 for accurate space
discretization and the modified Galerkin approach as described in Sect. 4.6 for time
discretization.

We will be especially interested in the question of whether it comes to contact
between ball and ground, or whether a thin fluid layer remains in between them.
From the point of view of analysis, this is an open problem if the ball is considered
elastic, cf. Remark 6.13. Physical experiments indicate that it comes to real contact
in many situations, consider e.g. the fall of a steel ball towards the ground within air.
In this case, some of the assumptions made in the derivation of the incompressible
Navier-Stokes equations will not be valid anymore (e.g. the continuum assumption,
a linear stress-strain-relationship and incompressibility). Due to the lack of a
validated model for the fluid for the case of contact, however, we stick here to the
incompressible Navier-Stokes equations, expecting that the small time slot around
the contact interval, where they are not an appropriate model, does not influence the
dynamics too much.

If it comes to contact, we have to deal with variational inequalities. Here, we use
a simple contact algorithm based on a penalty formulation, motivated by a work of
Sathe and Tezduyar [298].

© Springer International Publishing AG 2017
T. Richter, Fluid-structure Interactions, Lecture Notes in Computational
Science and Engineering 118, DOI 10.1007/978-3-319-63970-3_12
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12.1 Problem Setting and Equations

We begin with a simple model problem, see Fig. 12.1, where an elastic ball falls
down towards the planar ground 
w D f.x; y/ 2 R

2 j y D �1g by a gravity
force. We consider a ball of radius r D 0:4 whose midpoint is initially located
at the origin. As boundary condition, we impose a homogeneous velocity on 
w. In
combination with the kinematic condition and the velocity—displacement relation
dtus D vs this ensures that the ball cannot pass “through the ground”. We assume
that the simulation domain˝ D .�1; 1/� .�1; 0:5/ is open on the lateral and upper
boundaries and use the do-nothing outflow condition there.

The corresponding variational formulation in fully Eulerian coordinates reads
(cf. Problem (6.6)):

Find the global velocity v 2 vD C V , the solid displacement us 2 uD
s C Ws, and

the fluid pressure pf 2 Lf such that

.�.@tv C v � rv/; /˝

C.� ;r/˝ � h�f �f rvTnf ; i
f n
 d
f

D .�f; /˝ 8 2 V ;
.@tus C v � rus � v;  s/S.t/ D 0 8 s 2 Ws;

.div v; �f /F.t/ D 0 8�f 2 Lf :

(12.1)

Here we have used the abbreviations �jS D �s D J�0s and �jF D �f . Furthermore,
we have defined � jF D � f and � jS D � s and analogously for the right-hand side f.
The function spaces are given by

V D H1
0.˝I
 d

f [ 
 d
s /

2; Ws WD H1
0.S.t/I
 d

s /
2; Lf WD L2.F.t//:

Fig. 12.1 Sketch of the
configuration of the first test
case

S

(0, 0)

I

fs

Γw

F
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The fluid boundary term on the left-hand side stems from the fact that the full
symmetric stress tensor

� f D �f �f .rv C rvT/ � pf I

enters the fluid equations, while the do-nothing condition on 
f n 
 d
f includes the

reduced stress tensor � red
f D �f �f rvf � pf I. For the solid, we use a St.Venant

Kirchhoff material law

� s D JsF�1
s .2�sEs C �str.Es//F�T

s : (12.2)

with the Green-Lagrange strain Es D 1
2
.F�T

s F�1
s � I/.

To capture the moving interface, we use the initial point set method, as described
in Sect. 6.2. The system is supplemented with the initial conditions

v.x; 0/ D v0.x/ in ˝; u.x; 0/ D u0.x/ in S.0/:

12.2 Space Discretization and Pressure Stabilization

For spatial discretization, we use equal-order locally modified finite elements (cf.
Sect. 4.5) for all the components of the solution. For ease of implementation, we use
the global space Vh on the whole domain ˝ for all the variables and use artificial
extensions of the fluid pressure pf and the solid displacement us to the complete
domain˝ .

This choice for velocity and pressure violates the inf-sup condition in the fluid
problem that is necessary to ensure the well-posedness of the discrete system of
equations, cf. Sect. 4.3.2. To cope with this, we will add stabilization terms to the
discrete variational formulation.

The challenge for pressure stabilization within the locally modified finite element
method lies in the anisotropies that are present in the interface region including
abrupt changes of anisotropy between neighboring cells, see Fig. 12.2 for an
example. Typically, the stabilization methods used on anisotropic meshes require
an assumption on the change of anisotropy between neighboring cells that can not
be guaranteed here (see e.g. Braack and Richter [62]).

To deal with this, we will use a variant of the Continuous Interior Penalty (CIP)
stabilization technique introduced by Burman and Hansbo [84–86]. We denote the

set of cells of the fluid domain by ˝ f
h and the set of edges by Eh. The original CIP

technique is based on penalizing jumps of the gradient over element edges

S. ph; �h/ WD 	hs
X

e2Eh

Z

e
Œrph�e � Œr�h�e do;
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Fig. 12.2 Sketch of four
patches in the interface
region. The cell sizes in
normal direction h1n and h2n for
e 2 E i

h vary significantly
S

e ∈ E0
h

e ∈ Ei
h

h1
n

hP

h2
n

F

with s D 2 or s D 3. This does not guarantee stability in the case of abrupt changes
of anisotropy, however, as the cell sizes of the two neighboring cells in direction
normal to the edge can be very different. Hence, we have to modify this technique in
the interface patches. Here, we will use a weighted average of the pressure gradient
instead of the jump terms.

To define a variant suitable for anisotropic meshes, we split the set of edges
into two parts: By E0h , we denote all edges that lie between two quadrilateral cells
K1;K2 � ˝

f
h. By E i

h we denote the edges that are edges of at least one triangular
element K � ˝

f
h, see Fig. 12.2. In other words, this means that E i

h contains all edges
that are part of patches cut by the interface.

We define the stabilization term by

Saniso. ph; �h/ WD 	h2P
X

e2E i
h

Z

e
fhnrph � r�hge do

C 	h2P
X

e2E0h

Z

e
hnŒrph�e � Œr�h�e do;

where 	 > 0 is a constant, hP is the size of the patch, hn is the cell size in the
direction normal to e, Œ��e denotes the jump term across the edge e and

fvhge WD 1

2

�
vhjK1 C vhjK2

�
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is the mean value of the two cells K1;K2 sharing the edge e. In the case that one of
the cells K1;K2 does not lie in ˝ f

h, we set the respective contribution to zero. This
term is then added to the divergence equation

.div vh; �h/F.t/ C Saniso. ph; �h/ D 0 8�h 2 V f
h:

In contrast to the original CIP technique this stabilization is not consistent
anymore, in the sense that the continuous solution fulfills the discrete, stabilized
system. However, it can been shown [151] that the inconsistency is sufficiently
small, such that the stabilized, discrete solution is of second-order, as is the
discretization error of the locally modified finite element scheme of order one.

12.3 Time Discretization

For time discretization, we use the dG(0) variant of the modified time stepping
scheme presented in Sect. 4.6. In this section, we will give practical details on how to
compute a suitable mapping Tm W ˝m � Im ! Qm for a time interval m D 1; : : : ;M.

To simplify the implementation, we use the old deformation um�1 to define the
subdomains Fm and Sm and the interface Im explicitly. Note that a fully implicit
integration of the domain affiliation within a Newton-type algorithm would require
the calculation of shape derivatives, compare Sect. 6.4.

Then, we use the new domain˝m as reference domain for the time interval Im D
Œtm�1; tm� and define a map Tm W ˝m � Im ! Qm which is linear in time. We define

Tm.x; t/ D tm � t

tm � tm�1
Tm.x; tm�1/C t � tm�1

tm � tm�1
x: (12.3)

This implies in particular Tm.x; tm/ D x. It remains to specify the mapping Tm at
time tm�1 in such a way that points x lying on the interface I.tm/ at time tm are
mapped to points on the interface I.tm�1/ at time tm�1. We have already seen in the
numerical example in Sect. 4.6 that this requirement is fulfilled by the function

QTm.tm�1/ D .�IPS.tm�1//�1 ı �IPS.tm/

where �IPS.tk/ denotes the Initial Point Set function at time tk that has been
introduced in Sect. 6.2. In practice, we calculate xm�1 WD QTm.xm; tm�1/ in a point
xm 2 ˝m by applying Newton’s method to

�IPS.tm�1/.xm�1/ D �IPS.tm/.x
m/;

i.e.

xm�1 � um�2.xm�1/ D xm � um�1.xm/: (12.4)
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It is sufficient to use this mapping QTm in the interface region. Far away from the
interface, we define Tm as the identity. In between, we define a smooth transition by
using a function g depending on the distance to the interface with g D 1 in a point
x 2 ˝m�1 with distI.tm�1/.x/ < " and g D 0 if distI.tm�1/.x/ > ı for ı > " > 0. We
set

Tm.t; x/ D g.x/ QTm.t; x/C .1 � g.x// id:

The modified dG.0/ time stepping scheme for the fluid-structure interaction
problem (12.1) reads: Find v 2 .vD CVm/, us 2 .uD

s CWm
s /, and pf 2 Lm

f such that

.�.vm � vm�1/; /˝m C k.�.vm � @tTm/rvm; /˝m C k.� ;r/˝m

�kh�f �f rTvm
f n; i
f n
 D

f
D k.fm;/˝m ;

.um � um�1 � kvm;  s/Sm C k..vm � @tTm/rum;  s/Sm D 0;

.div vm; �f /F.t/ C S. pm; �f / D 0

for all  2 Vm,  s 2 Wm
s and for all �f 2 Lm

f .
The only quantity related to the transformation to be calculated is @tT. Therefore,

we first compute the point xm�1 D Tm.xm; tm�1/ by (12.4). Now, differentiat-
ing (12.3) yields

@tT.x
m; tm/ D xm � xm�1

tm � tm�1
:

With this time stepping scheme, we can get arbitrarily close to contact. Real
contact is not possible, however, as this would destroy the local regularity of the
mapping Tm. To cope with this, we modify the scheme in the contact region when
the ball comes close to the ground by choosing Tm D id there.

12.4 Stabilization of the Solid Equations

The full fluid-structure interaction problem (12.1) contains a regularity problem
at the interface I.t/, as described in Sect. 3.1.4. The natural trial space for the
solid velocity in the variational formulation is L2.S.t//2, which means that a trace
on the interface I.t/ is not well-defined. The trace is however needed for the
kinematic interface condition vf D @tus on I.t/. Furthermore, numerical tests show
that the solid velocity is sensitive to stability problems caused by perturbations or
discretization errors, especially in the interface region (see Chap. 4 in [151]).

To analyze this problem, we will first of all focus on the simplest form of a solid
equation, a linear wave equation on a fixed domain S, and study different techniques
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to handle the aforementioned problems. In mixed variational formulation, the
system of equations is given by: Find u 2 W ; v 2 V such that

.@tv; /S C �.ru;r/S D 0 8 2 W ;

.@tu;  /S � .v;  /S D 0 8 2 V ;
(12.5)

with a positive parameter � > 0. Testing with  D @tu and  D @tv and integrating
by parts in time, we see that the homogeneous wave equation is energy-conserving
in the following sense for t > 0

�kru.t/k2S C kv.t/k2S D �kru.0/k2S C kv.0/k2S : (12.6)

Hence, any kind of perturbations will not be damped, but it is conserved and may
accumulate over time. Furthermore, (12.6) gives neither control over derivatives of
v nor over the trace of v on the boundary of S.

To increase the stability, we use a simple, stabilization technique: Find uh 2
Wh; vh 2 Vh such that

.@tvh; h/S C �.ruh;rh/S D 0 8h 2 Wh;

.@tuh;  h/S � .vh;  h/S � ˛hs.rvh;r h/S D 0 8 h 2 Vh:
(12.7)

The exponent s is typically chosen in the interval s 2 Œ1; 2�, see [151]. For this
formulation, the energy conservation reads

�kruh.t/k2S C kvh.t/k2S C ˛hskrvh.t/k2S
D �kruh.0/k2S C kvh.0/k2S C ˛hskrvh.0/k2S :

(12.8)

We conclude that this formulation gives us control over the derivatives of vh and
thus (by the trace lemma) over the trace of the velocity on @S.

To further motivate, why this formulation increases stability, we consider a
standard time discretization with the backward Euler method and multiply the
second equation by �1. Problem (12.7) reads in matrix form

�
�Ah

1
k Mh

� 1
k Mh Mh C ˛hsAh

��
umC1

h

vmC1
h

�
D
�

1
kv

m
h

� 1
ku

m
h

�
; (12.9)

where Mh is the discrete mass matrix and Ah the discrete Laplacian. We see that the
stabilization term increases the diagonal part of the matrix significantly, especially
for s 
 2. It can be interpreted as adding artificial diffusion to the diagonal part of
the system matrix. For the derivation of a priori error estimates depending on s for
the stabilized, discrete formulation, we refer to [151, 152].
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12.5 Treatment of Contact

In the cases where no fluid layer remains between the ball and the ground, we
have to apply a contact algorithm to simulate the bounce-off of the ball. A simple
contact algorithm has been used by Sathe and Tezduyar [298]. The idea is to add
an artificial contact force gc on the interface to the balance of momentum if the
ball comes very close to the ground. The force depends on the distance to the
ground and goes to infinity as the distance tends to zero. Hence, contact becomes
in principle impossible. In this way, the modeling issues connected to the Navier-
Stokes equations and contact that were mentioned at the beginning of this chapter
are to a certain degree circumvented. We will see below, however, that numerical
contact might still happen, at least unless the time step size is chosen sufficiently
small.

The modified interface condition reads

.� f � gcI/nf D � snf ;

where the contact force is defined by

gc.x/ D
(
0 dist.x; 
w/ � dist0;

	c
dist.x;
w/�dist0

dist.x;
w/
dist.x; 
w/ < dist0;

on I with a contact parameter 	c and a reference distance dist0.
More involved contact strategies are based on variational inequalities (see e.g.

Diniz dos Santos et al. [122], Mayer et al. [237], Pironneau [259]) imposing the
constraint

dist.x; 
w/ � 0 on I:

To ensure the well-posedness of the system of equations, a Lagrange multiplier is
added to the balance of momentum that acts similar to the contact force gc when the
constraint is active. Due to the additional computational complexity of numerical
algorithms for variational inequalities, we stick here to the prior simple contact
algorithm. For further studies we refer to the literature [155].

12.6 Numerical Examples

12.6.1 Example 1: Configuration Without Contact

For the first test, we use the Lamé parameters �s D 2 � 105 kg � m�1s�2 and
�s D 8 � 105 kg � m�1s�2 and the fluid viscosity �f D 10�3 m2 � s�1. The fluid and
solid density are �s D �f D 103 kg � m�3. In this example, we do not apply the



12.6 Numerical Examples 407

Fig. 12.3 Illustration of the free fall of an elastic ball, its contact with the ground and the
subsequent rebound at six different times. The color illustrates the vertical velocity vy and the
black contour line is the discrete interface

contact force introduced in Sect. 12.5, as it turns out that for this specific choice of
parameters, a small fluid layer remains between ball and bottom anyway.

In Fig. 12.3, we show the falling ball at six different instances of time. First, the
ball is accelerated by gravity and falls down. At time t � 1:6 s, the bottom is almost
reached and the ball slows down due to a high fluid pressure. It comes closest to the
ground at time t � 1:8 s, where the minimal distance is d � 1:2 � 10�3 m. At this
time the ball is significantly compressed at its bottom.
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The discretization at this point is illustrated in Fig. 12.4 (top) for the coarsest
mesh we used. The interface shows a domed shape due to a high fluid pressure in
the middle (see Fig. 12.5) and the minimal distance is not attained in the center but
left and right of it. In this configuration, there is no real contact but a small layer of
fluid remains between ball and ground. Nevertheless, here and in the following we
will call this period the “contact time” or “contact interval“ for simplicity.

Then, due to the compression at the bottom the ball is accelerated upwards. The
ball reaches its highest elevation at a maximum distance d � 8:3 � 10�2 m from the
ground at time t � 2:4 s and falls down again. After a smaller second bounce with
distance d � 4:6 � 10�3 m, it comes to rest, being in real contact with the ground at

Fig. 12.4 Illustration of a coarse mesh during the first rebound (top sketch) and at the end time
when the ball is at rest (lower sketch). During the first rebound, a small layer of fluid remains
between ball and ground

Fig. 12.5 Pressure peak during the contact between ball and ground. (a) Pressure value along the
boundary line 
w D f.x;�1/; 0 < x < 1g. (b) Pressure close to contact. Inside the ball we show
the harmonic extension of the pressure (without a physical connotation). The white contour line
shows the boundary of the elastic ball
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Fig. 12.6 Distance of the ball from the bottom and width of the ball. Top: Minimal distance
between ball and ground over time and a zoom-in at the interval of contact and rebound. Right:
Size of the ball (distance between top and bottom)

time t � 4:4 s, see Fig. 12.4 (bottom) for an illustration of the mesh at the time of
real contact.

In Fig. 12.6, we plot the minimal distance between the ball and the ground includ-
ing a zoom-in of the contact and rebound interval in the upper row. Furthermore, we
show the distance between the top and the bottom of the ball and an averaged vertical
velocity of the solid in the lower row.

In the lower left plot, we observe that the distance between the top and the bottom
of the ball attains minima at the two contact times due to the compression. After
the rebounds, we observe oscillations that get smaller over time. These oscillations
are physical: First, the ball is maximally compressed at the bottom at the contact
time. Once the ball bounces off again, the deformation is relaxed. The ball is
even overstretched at some point and starts to oscillate between an expanded and
a compressed state periodically.

12.6.2 Convergence Studies

We study the test configuration on different grids and for different time step sizes.
The finite element meshes, we use are highly refined in the contact region. The
coarsest mesh consists of patches of size of size 2:5 � 10�2 m � 3:1 � 10�3 m in the
contact region and 0:1m�0:15m in the upper right and upper left part. Furthermore,



410 12 Fluid-structure Interaction with Contact

Table 12.1 Top: Minimal distance between ball and ground during the first contact interval and
maximal distance after the first rebound

First contact: minimum distance First bounce: maximum distance

#nodes n k 2 � 10�3 1 � 10�3 5 � 10�4 2 � 10�3 1 � 10�3 5 � 10�4

4225 6:38 � 10�4 6:49 � 10�4 6:26 � 10�4 4:71 � 10�2 5:19 � 10�2 5:20 � 10�2

16641 1:22 � 10�3 1:24 � 10�3 1:24 � 10�3 7:41 � 10�2 8:29 � 10�2 8:49 � 10�2

66049 – 1:27 � 10�3 1:27 � 10�3 – 8:71 � 10�2 8:96 � 10�2

Relative mass conservation error

#nodes n k 2 � 10�3 1 � 10�3 5 � 10�4

4225 8:96 � 10�3 8:94 � 10�3 8:94 � 10�3

16641 2:54 � 10�3 2:36 � 10�3 2:31 � 10�3

66049 – 5:07 � 10�4 5:05 � 10�4

Bottom: Relative error in mass conservation at time t D 3 s. The three functionals are calculated
for three different time step sizes and on three different meshes

we show the results on two finer meshes that are obtained from this coarse mesh by
global refinement.

In the upper part of Table 12.1, we show the minimal distance during the first
contact and the maximum elevation after the first rebound and the error in mass
conservation on these meshes for three different time step sizes. We observe that
both the minimal distance during the contact and the maximal distance after the
rebound are significantly smaller on the coarsest mesh. On the other hand, the results
on the finer meshes show good agreement. While on the finest mesh, the minimum
distance, i.e. the minimum height of the fluid layer, is a little less then two patches,
on the coarsest patch only about a quarter of a patch remains on the fluid side at the
narrowest point. We conclude that the resolution of the contact region on the coarse
mesh was not fine enough to resolve the contact dynamics appropriately.

In the lower part of Table 12.1, we show the relative error in mass conservation
is defined by

jmass D
ˇ̌
ˇ̌�r2�0s � R

S J�0s dx

�r2�0s

ˇ̌
ˇ̌

for different spatial and temporal discretization parameters. We observe a good
convergence behavior in both space and time, even on the coarsest mesh. The spatial
discretization error is dominating and decreases with orderO.h2P/. This convergence
behavior was expected, as it is the approximation error of the interface, see Sect. 4.5.
Furthermore, this result indicates that the Eulerian approach in combination with the
described discretization techniques, shows very good mass conservation properties.
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Fig. 12.7 Distance between ball and ground over time for different solid parameters �s during the
contact and rebound interval. The first Lamé parameter is chosen as �s D 4�s. The rebound height
is higher for softer solids

12.6.3 Influence of Material Parameters

Next, we want to address the question of whether a small layer of fluid is maintained
between ball also for different parameters. Therefore, we increase and decrease the
solid Lamé parameters, keeping the ratio between the Lamé parameters �s and �s

constant, �s D 4�s (which corresponds to a Poisson ration of �s D 0:4).
For a set of parameters ranging from �s D 5 � 104 kg � m�1s�2 to 3:2 �

106 kg � m�1s�2, we plot the distances between ball and ground over time in
Fig. 12.7. For the stiffest material (�s D 3:2 � 106 kg � m�1s�2) no fluid layer
remains during the first contact interval. Ball and ground are in real contact.
Once the ball is in contact with the ground, the no-slip condition on 
w used
here, prevents it from bouncing. The same happens for the second stiffest material
(�s D 1:6 � 106 kg � m�1s�2) at the second contact time. It is, however, questionable,
whether this corresponds to the physical situation. Instead, the contact might be
caused by numerical errors due to a too large time step or an insufficient grid
resolution in the contact region. We will use the configuration with the largest Lamé
parameters below to study the proposed contact algorithm.

For the remaining parameters, the solid bounces twice. Due to a higher com-
pression during the contact, the first and the second rebound heights are bigger, the
softer the solid is.

12.6.4 Contact Algorithm

As the simple contact algorithm used is not physically motivated, but is based on an
artificial force gd, we have to analyze its effect on the contact dynamics. Therefore,
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Fig. 12.8 Influence of different contact parameters 	c and dist0 for the Lamé parameters �s D
3:2 � 106 kg � m�1s�2, �s D 1:28 � 107 kg � m�1s�2. The contact force with parameters 	c D 800

and dist0 D 5 � 10�3 m as well as for 	c � 400 or dist0 � 10�3 m was not large enough to prevent
the contact

we consider the situation from above with the stiffest material parameters �s D
3:2 � 106 kg � m�1s�2 and �s D 1:28 � 107 kg � m�1s�2 where a contact algorithm is
necessary. We use dist0 D 10�3 m, 5 �10�3 m and 10�2 m and the contact parameters
	c D 800 and 1600.

For the smallest contact distance dist0 D 10�3 m, contact could not be prevented
with the chosen time step and grid size. The same occurred for dist0 D 5 � 10�3 m
and the smaller parameter 	c D 800. We plot the distances to the ground over time
in Fig. 12.8 for the calculations with dist0 � 5 � 10�3 m. The plot shows significant
differences. For example, for the largest parameters dist0 D 10�2 m and 	c D 1600,
the rebound height is 35% bigger than for the same reference distance with 	c D
800.

Furthermore, the ball stays at rest at a distance of 3:18 � 10�3 m from the ground
which is rather large compared to drest � 1:77 � 10�3 m for 	c D 800 and drest �
1:21 � 10�3 m for dist0 D 5 � 10�3 m. Here it is obvious that this distance depends
more on the artificial contact force than on physical effects.

We conclude that the contact parameters have to be chosen carefully and their
influence must be taken into account when interpreting the results. The investigation
of more sophisticated contact algorithms is subject to ongoing research.

12.6.5 Example 2: Bouncing Down the Stairs

Finally, we will study a more complex numerical example, i.e. an elastic ball
bouncing down some stairs. We give a sketch of the geometry under consideration in
Fig. 12.9. In order to get the desired direction, we let the ball bounce on an inclined
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Fig. 12.9 Sketch of the configuration of the second example and the initial mesh. To simulate the
contact dynamics accurately, fine mesh cells are used in the contact regions

plane first. Afterwards, it bounces down three stairs. Depending on the material
parameters it can bounce once or several times on a stair or just roll over it. We
consider the lower, left and right walls as rigid and impose a homogeneous Dirichlet
condition for the velocity there. On the top 
top, we use again a do-nothing boundary
condition. We use the same material parameters as in Sect. 12.6.1 and vary only the
fluid density to �f D 100 kg � m�3, 150 kg � m�3, 300 kg � m�3 and 1000 kg � m�3.

We show snapshots of the horizontal velocity at twelve different times in
Fig. 12.10 for �f D 300 kg � m�3. The ball drops onto the inclined plane and bounces
to the right. The next contact is on the right part of the first stair. Afterwards, we
observe three bounces on the second stair and two on the third one, before the ball
comes to rest.

In Fig. 12.11, we show contours of the ball for calculations with �f D
100 kg � m�3, 150 kg � m�3, 300 kg � m�3 and 1000 kg � m�3. For the two larger
density values, we use a contact force with parameters 	c D 5 � 103 and
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Fig. 12.10 Ball bouncing down three stairs for �f D 300 kg � m�3 at twelve different times. The
color illustrates the horizontal velocity vx, the black contour line is the discrete interface. First
row: Free fall, contact with the inclined plane and rebound. Second row: Contact with the first stair
and rebound. Third row: First contact with the second stair, small bounce and second contact. Last
row: Third contact with the second stair, fall and position at rest
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Fig. 12.11 Contour plots of the interface at several times. Top left: �f D 1000 kg � m�3, top right:
�f D 300 kg � m�3, bottom left: �f D 150 kg � m�3, bottom right: �f D 100. While for �f D
1000 kg � m�3 the ball rolls over the stairs, the ball bounces exactly once on each stair for �f D
150 kg � m�3. For �f D 100 kg � m�3, the ball jumps and skips the second stair

dist0 D 10�2 m. For �f 
 150 kg � m�3 this force was not large enough to prevent
the contact (see the contact parameter studies below). Here, we use 	c D 104.

The rebounds are higher, the smaller the fluid density is. For �f D 100 kg � m�3

the rebound at the first stair is so high that the ball jumps over the second stair and
has its next contact on the third one. On the third stair we obtain six small bounces
before the ball comes to rest.

For �f D 150 kg � m�3, the ball bounces exactly once on the first and second
stair. Before dropping onto the last stair, the ball gets quite close to the right wall
with a minimal distance of approximately 2 � 10�2 m. However, it is slowed down
by fluid forces before the contact force corresponding to the right wall would get
active. For �f D 300 kg � m�3, the rebounds are already significantly smaller and
for �f D 1000 kg � m�3, the ball bounces once on each stair and continues rolling to
the right.
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Fig. 12.12 Left: Position of the bottom of the ball. Right: Averaged vertical velocity over time
for �f D 150 kg � m�3 and different values of the contact force. For 	c D 5 � 103 the contact could
not be prevented at the contact time with the second stair

Finally, we study the influence of the contact force. In Fig. 12.12 (left sketch),
we plot the trajectories of the lower bottom of the ball for �f D 150 kg � m�3 and
three different contact force parameters 	c. On the right, we plot an averaged vertical
velocity vy over time.

The contact force with parameter 	c D 5 �103 prevents the contact on the inclined
plane and on the first stair, but it fails on the second one. Moreover, we observe that
for larger contact parameters the velocity of the ball is slightly higher, and the ball
bounces earlier on each stair. As a consequence, the ball almost touches the right
wall for 	c D 104 when it falls down towards the third stair, while it remains at a
significantly larger distance of around 6 � 10�2 m for 	c D 2 � 104. The averaged
velocities show good agreement before the bounce on the second stair and differ
slightly afterwards due to the different trajectories.

We conclude that in this final example the influence of the contact force was
relatively small. However, some quantities of interest, e.g. the contact distance (if
there is any) or the distance at rest, cannot be determined with this approach and
require more sophisticated contact algorithms.
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decomposition, 372
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direct solvers, 284
dissipation, 126
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Fluid-Structure Interactions
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Korn’s inequality, 43
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locally modified finite elements, 399
LPS, see Local Projection Stabilization, 240

matching mesh, 233
material velocity, 13
material law, 11, 32
material velocity gradient, 20
mesh
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mesh grading, 331
method of lines, 118
monolithic, 93
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ALE, 292
algebraic, 293
partitioned smoother, 297

Navier-Lamé Equations, 41
Navier-Stokes, 36
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moving domain, 69
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Newton
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inexact, 224

normal stress, 22

optimization, 357

reduced formulation, 361
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Oseen equation, 170

parameter identification, 357
parametric triangulation, 137
partitioned approach, 5, 282
patch-mesh, 337
Piola Kirchhoff stress tensor

1st, 32
2nd, 32

Piola transformation, 30, 30, 96, 108
Poiseuille flow, 55
preconditioning, 291
pressure, 45
pressure stabilization, 239

rate of strain tensor, 21
reconstruction, 337
reference configuration, 12
refinement strategies, 339
Region of absolute stability, 120
remeshing, 331
residual error estimator, 308
Reynolds number, 57, 387
Reynolds’ Transport Theorem, 25
right Cauchy-Green tensor, 18
rigid body, 19
robust estimator, 308
Rothe’s method, 118

saddle-point, 45
Saddle-Point problems, 154
Scott and Zhang interpolation, 144
shape regularity, 138
shape calculus, 219, 268
shear stress, 22
shear modulus, 39
space-time discretization, 118
spatial velocity gradient, 20
St. Venant Kirchhoff, 38
Stokes Equations

Existence, 62
Finite Elements, 154
Regularity, 63

strain rate tensor, 20, 21
Streamline Upwind Petrov Galerkin, 175
Stress, 21
stress tensor

1st Piola Kirchhoff, 32
2nd Piola Kirchhoff, 32
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Strouhal number, 388
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surface tension, 22
surface coupled problem, 81
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tensor

Euler-Almansi strain, 19
Green deformation, 18
Green-Lagrange strain, 18
left Cauchy-Green, 19
rate of strain, 21

right Cauchy-Green, 18
Tikhonov regularization, 359
time stepping, 207

Vanka smoother, 292, 300
variational coupling, 94
velocity, 13
volume coupled problem, 81
von Kármám vortex, 387

weakly coupled approach, 282
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