
Production Line Optimization with Model Based
Methods

T. Hajba, Z. Horváth, C. Kiss-Tóth, and J. Jósvai

Abstract In this paper we deal with different models of production lines of
factories and consider the makespan optimization problem based on these models.
We consider state-of-the-art and novel mathematical optimizers including exact
and heuristic methods. We apply these optimizers to both standard academic and
industrial data sets. We see that in a large rate of the considered cases the novel exact
optimizers converged to the optimum fast which is surprising being the problems
NP-hard and the problem sizes big. This shows the importance of exploiting the
structure present in the industrial data using standardized industrial data sets for
testing mathematical algorithms devoted to solve industrial problems and that some
provided exact mathematical optimizers are fast and perform accurately on the
considered industrial problems.

1 Introduction

One of the most important tasks at modern factories is the optimal scheduling of
the order of jobs on the production lines of the factory since this affects highly
the makespan of the set of jobs to be processed per day and thus determines the
total number of jobs that can be processed per day. Though experienced managers
can provide satisfactory schedules, with the components of the realization of the
Digital Factory concept schedules of higher quality can be achieved. Namely, the
Digital Factory concept (see [21]) can be regarded as mapping of the real physical
processes of the factory to tools of the information technology. The Digital Factory
methodology includes production simulation tools using real manufacturing data
(bill of materials, production plan, operation sequence, makespan, capacity usage,
lateness, etc.). In everydays environment where the production scheduling tasks
are situation driven - because of unreliable information, production line fall out,
material delivery failures, etc. - simulation based scheduling is asked. A production
system has many influential parameters, to optimize a set of jobs in a system
where there are conflicting goals, so the mathematical solving method can be very

T. Hajba • Z. Horváth (�) • C. Kiss-Tóth • J. Jósvai
Széchenyi István University, Győr, Hungary
e-mail: hajbat@sze.hu; horvathz@sze.hu; ktchris@sze.hu; josvai@sze.hu

© Springer International Publishing AG 2017
L. Ghezzi et al. (eds.), Math for the Digital Factory, Mathematics in Industry 27,
DOI 10.1007/978-3-319-63957-4_8

163

mailto:hajbat@sze.hu
mailto:horvathz@sze.hu
mailto:ktchris@sze.hu
mailto:josvai@sze.hu

164 T. Hajba et al.

complex. Therefore a combination of simulation tools and mathematical methods
can be an effective answer for this problem. Especially when we consider the
Industry4.0 vertical and horizontal integration process within the production system.
This integration and distributed decision making methodology need sophisticated
modeling, simulation and mathematical optimization methods and tools. These
aspects let us think about our research work, which combines modeling, simulation
and mathematical optimization of production lines, gives important results for the
next steps in the field of smart and networked digital factory. This allows automatic
construction of models and/or simulations for the examined production flow, in our
case the work on the production line, and poses the corresponding optimization
problems at model/simulation level. Then the inverse mapping of the optima of
the model or simulation based optimization problems gives a suggestion to the
production line managers for the actual scheduling.

We note that often a combination of models and simulations is advantageous.
Indeed, simulations validated at high accuracy are typically time consuming and
thus simulation based optimization takes often too long for using it in a daily
routine of a company. On the other hand, one objective evaluation at model based
optimization is typically much faster than that with simulation but the accuracy of
fast models is lower than that with an enhanced simulation. Thus a fast and reliable
optimization can consist of a model based hierarchic optimization that includes the
evaluation of the design elements with accurate simulation to check whether the
actually used model is accurate enough.

In this paper we deal with optimal scheduling of the production lines using
mathematical models and their optimization methods. Namely, we provide a review
of the models based on mathematical optimization methods and test results on
academic and industrial data. In Sect. 2 we define the considered models to the
production line: first the basic model, the Permutation Flow Shop Problem (PFSP),
which is studied thoroughly in the literature and then the recently introduced and
studied models that handle more features of real industrial production lines than
PFSP, the Permutation with Repetition Flow Shop Problem (R-PFSP) and the
Permutation with Repetition Flow Shop Problem with Buffers and Palettes (PB-
R-PFSP) (see [3]). Here repetition refers to the fact that in industrial situations there
exist several types of jobs and each schedule contains many jobs of the same type.
Then in Sect. 3 we define and discuss some frequently used heuristic optimization
methods for the PFSP models. In Sect. 4 first we present mixed integer linear
programming (MILP) formulations for the PFSP, which has been studied in several
papers, see [8, 9, 12, 16–19, 22, 23] and three new MILP models of [2]. According
to numerical experiments in papers [18, 19] the MILP formulations of the PFSP
models combined with exact solvers (e.g. those based on branch and bound) are
capable to solve only small sized PFSPs. However, applying our new MILP models
to R-PFSP and PB-R-PFSP we see in Sect. 5 that large scale industrial problems
arising from the automotive industry (see [5]) and their analogues become exactly
solvable. We close the chapter with drawing conclusions.

Production Line Optimization with Model Based Methods 165

2 Production Line Models: The PFSP and the PB-R-PFSP

In the regular permutation flow shop problem we are given a production system of
M machines and a set of N jobs. Every job has to be processed on every machine
in the same order, i.e. every job has to be processed first on the first machine then
on the second machine and so on. The processing times of the jobs at the machines
are known in advance and deterministic. The regular PFSP entails the following
assumptions which form the constraints of the optimization problem:

• Machines are continuously available from time 0.
• Every job is available for processing at time 0.
• Each job can be processed only on one machine at a time.
• Each machine can process at most one job at a time.
• The jobs must be processed on the machines without preemption.
• Setup times are included in the processing times, or ignored.
• Any number of jobs can wait between consecutive machines.

In this paper the objective of the optimization problem is the minimization of the
makespan, i.e. the minimization of the completion time of the last job of the order
on the last machine.

Many manufacturing problems have special features which are not included in
the regular PFSP. One such property is that in real-life problems we often have a lot
of jobs that have the same processing times on every machines (see [2]). It is said in
this case that these jobs have the same type. Taking this property into consideration
can drastically reduce the number of different permutations, i.e. the design space
for the PFSP. Namely, if there are T types and nt jobs of type t then the number of
permutation reduces form NŠ to NŠ

.n1/Š�.n2/Š:::.nt/Š
.

Another property of industrial situations is the presence of palette usage at lines.
Namely, jobs are often carried on palettes on the line and the number of palettes is
bounded from above, typically less than the number of jobs. This means that only a
limited number of jobs can be on the line at a time.

Moreover, since the palette size and the space between consecutive machines
are given, only a limited number of palettes (hence limited number of jobs) can
wait between consecutive machines which means that there are limited buffer sizes
between the consecutive machines.

These properties are summarized as follows:

• the number of different types of the jobs is less than the total number of the jobs;
• only a given number of palettes can be used to carry the jobs;
• the buffer sizes between consecutive machines are finite and given in advance;

We call a PFSP which contains repeated jobs, limited buffer sizes between
consecutive machines and bounded number of palettes Permutation with Repetition
Flow Shop Problem with Palettes and Buffer (PB-R-PFSP).

166 T. Hajba et al.

3 Heuristic Optimization Methods for the PFSP Model

During the last three decades many kind of heuristic approaches were published to
solve the PFSP problem. In this section we are going to give a review about some
of these algorithms we tested on our problem sets.

3.1 NEH Heuristic

One of the most famous constructive solution for the FPSP was proposed by Nawaz,
Enscore and Ham in 1983 [10]. Their algorithm is based on the assumption that jobs
with higher total processing time make bigger effect on the objective function, this
means we should give higher priority to them. NEH algorithm constructs a solution
by inserting the jobs into an empty permutation one by one. We are going to describe
the details below.

First of all we calculate the total processing times for all jobs, and after that
we choose two jobs with the highest value. We consider the two possible partial
schedules, and choose the better one. During the rest of the algorithm the relative
positions of these two jobs are fixed.

In the next step we pick up the job with the third highest total processing time,
and put it into the permutation to the proper place found by an exhaustive search
procedure. This means that we place the job to the first, the second and to the third
(last) place of the partial sequence, and keep the best solution we get. This process
is repeated until all the jobs are placed into the permutation. The pseudo-code of the
algorithm can be presented as follows (Fig. 1).

The major advantage of the NEH algorithm is that we are able to get a good
solution in a short time, since the total number of iterations (makespan evaluations
of partial solutions) is N.NC1/

2
. Although many algorithms can be found in the

literature, NEH is still a state of the art algorithm for the PFSP optimization and
also used for creating initial solutions for many other heuristic methods with higher
computational complexity such as in the following two heuristics described in the
next sections.

1: For each job i calculate Pri where Pri is the processing time of job i on machine r.

2: Arrange the job indices i into a list L in descending order of Ti.
3: Pick the first two jobs of the list L, and find the best permutation 2 of these two jobs by

calculating the makespan for the two possible partial solutions. Fix the relative positions of

these two jobs for the remaining steps. Set i 3.

4: Pick the job from the ith position of the list L and find the best sequence by inserting it at all

possible positions of i 1 (without changing the relative positions of the previous jobs).

5: If N i then STOP, otherwise set i i 1, and go to Step 4.

Fig. 1 Pseudo-code for the NEH algorithm

Production Line Optimization with Model Based Methods 167

3.2 Ant-Colony Algorithms

The name ant-colony algorithms (ACO) group a family of techniques to solve
combinatorial optimization problems. In the framework of these techniques the
motivation is to imitate the pheromone trail in the nature used by real ants for
communication and feedback. Basically, these techniques are population-based,
cooperative search procedures. During the optimization ant-colony algorithms use
simple agents (called ants) that iteratively construct permutations, and this solution
construction is guided by these artificial pheromone trails. The details how we
calculate these artificial trails is a problem-specific heuristic information. This
information has to be tuned for the problem we would like to solve.

To understand this optimization method we have to define the meaning of
solution components. Ants iteratively construct possible permutations from these
components, and leave pheromone. In this context pheromones indicate the intensity
of ant-trails with respect to solution components. These values are determined from
the influence of each solution component to the objective function. The trails also
form a kind of adaptive memory in this search procedure: we update the intensities
at the end of each iteration, the effect of the permutation created for the last is the
biggest. In this framework �ij denotes the trail intensity of setting job i in position
j of a sequence. Since every job can be placed at every place we have to store N2

intensity values.
In every iteration one single ant constructs a complete solution starting with an

empty permutation and iteratively adding components until a complete solution
is constructed. After the construction each ant gives feedback on the solution by
leaving pheromone (updating trail intensity) on each solution component.

After updating the intensities we apply a local search scheme for the created
permutation to find possibly the best solution in the neighborhood. Summarizingly
the general structure of ACO algorithms can be described in Fig. 2.

Since many kind of ACO algorithms were published for the PFSP problem, we
chose one, named PACO published by Rajendran and Ziegler in 2004 [13], supposed
to perform the best on the Talliard problem set. In the rest of this section we will
present the details of the PACO algorithm.

Fig. 2 General pseudo-code
for ACO algorithms

1: Initialize the pheromone trails and parameters.

2: While termination condition is not met do the following:

construct a solution;

improve the solution by local search;

update the pheromone trail intensities.

3: Return the best solution found.

168 T. Hajba et al.

3.2.1 Initialization

For initializing the trail intensities we need an initial solution. Usually we can use the
NEH heuristic to find an initial solution, in PACO we improve this by applying the
job-index-based local search three times. We denote the makespan of this solution
with Zbest. After this the initialization of the pheromone trails looks as follows:

�ik D

8
ˆ̂
<

ˆ̂
:

1
Zbest

if jposition of job i in the seed sequence � kj C 1 � n
4

1
2Zbest

if n
4

< jposition of job i in the seed sequence � kj C 1 � n
2

1
4Zbest

otherwise.

The idea behind this initialization is that we think the initial solution is good
enough, so putting a job on a place which is closer to his place in the initial solution
probably gives better result.

3.2.2 Construction of a New Solution

Every iteration of the PACO algorithm creates a new permutation iteratively. We
place an unscheduled job i for place k using the following scheme:

• Tik D Pk
qD1 �ik and sample a uniform random number u in range Œ0; 1�.

• If u 2 Œ0; 0:4�: choose the best unscheduled job in the best sequence obtained so
far.

• If u 2 .0:4; 0:8�: among the first five unscheduled jobs in the best sequence
choose the job with the maximum Tik value.

• If u 2 .0:8; 1�: among the set of the first five unscheduled jobs in the best
sequence select job i with the probability of TikP

l Tlk
.

If the number of the unscheduled jobs is less then five, then consider all of them.
After this procedure apply the job-index-based local search procedure three times,
and denote the makespan of this solution with Zcurrent.

3.2.3 Update of the Pheromone Intensities

Let h denote the position of job i in the resultant sequence. If the number of jobs is
less or equal to 40:

�new
ik D

(
% � �old

ik C 1
diff �Zcurrent if jh � kj � 1

% � �old
ik otherwise.

Production Line Optimization with Model Based Methods 169

If the number of jobs is greater than 40:

�new
ik D

(
% � �old

ik C 1
diff �Zcurrent if jh � kj � 2

% � �old
ik otherwise.

where diff D .jposition of job i in the best sequence obtained so far � kj C 1/
1
2 and

% is a constant, fixed as 0:75 during the algorithm.
We ran the PACO algorithm for 300 iterations.

3.3 Tabu Search Approaches

Tabu search (TS) is a general framework which can be used to find near-optimal
solutions of hard combinatorial optimization problems. Using a tabu search algo-
rithm first the neighborhood of a solution has to be defined. Then starting from an
initial solution, at each iteration the algorithm examines the neighborhood of the
actual solution and one of the neighbors (usually the best) is chosen to be the actual
solution in the next iteration. To avoid returning back to a previously used solution
tabu search algorithms use a so-called tabu list containing elements of forbidden
moves. The algorithm stops if a stopping criterion (for example the number of total
iterations) is reached.

Next we describe in more detail the TS heuristic for the PFSP of Nowicki and
Smutnicki [11].

3.3.1 Moves and Neighborhood

In the PFSP a solution is represented as a permutation. To be able to define the
neighborhood of a permutation we first introduce the concept of moves. Let � be
a permutation and a and b two positions. Removing the job from position a of the
permutation and putting it into position b of the permutation is called a move and
denoted with .a; b/. The neighborhood of � is the set of permutations that can be
reached from � with one move. Each job we remove can be placed to N � 1 places,
since the move .a; a/ does not change the permutation. Furthermore the moves .a�
1; a/ and .a; a�1/ yield the same permutation hence every permutation has .N�1/2

neighbors. Since searching in such a large neighborhood would be time-consuming
we will reduce the number of potential neighbors. In order to be able to do this we
will introduce the definition of blocks and critical path.

It is known, that the makespan of a permutation � can be written in the following
form:

Cmax.�/ D max
1Dj0� j1�:::� jM�1� jMDN

MX

iD1

jiX

jDji�1

Pi�. j/: (1)

170 T. Hajba et al.

Let us associate with each permutation � a directed grid graph G.�/ D .V;E/

with node weights:

V D f1; : : : ;Mg � f1; : : :Ng;

E D
M[

iD1

N�1[

jD1

f..i; j/; .i; j C 1//g [
M�1[

iD1

N[

jD1

f..i; j/; .i C 1; j//g:

where the node .i; j/ represents the ith machine and the jth job of the permutation
and the weight of node .i; j/ is Pi�. j/. Then formula (1) means that the makespan of
� is the weight of the critical (longest) path in this grid graph, from node .1; 1/ to
.M;N/.

Let us suppose that the critical path in G.�/ is .1; s0/; : : : ; .1; s1/; .2; s1/; : : : ;

.2; s2/ , : : : ; .M; sM�1/; : : : ; .M; SM/, where 1 D s0 � s1 � : : : � sM D n . Then
this path consists of the vertical edges ..i; si/; .i C 1; si/ for i D 1; 2; : : : ;M � 1

and horizontal subpaths .i; si�1/; : : : ; .i; si/ if si�1 < si. If for machine i condition
si�1 < si holds then the sequence of positions si�1; si�1 C 1; : : : ; si is called a block.
Each position can be contained in one or two blocks.

It can be proven that performing a move v D .a; b/ to permutation � for which
a and b are inside the same block gives us a solution � 0 for which Cmax.�

0/ �
Cmax.�/, which means we do not have to analyze such neighbors. Based on
their experiments Nowitzki and Smutnicki reduced further the neighborhood of a
permutation.

A move .a; b/ is called a right move, if a < b else the move is called a left move.
Tests showed that for position a if a is a beginning of the lth block or lies inside the
lth block then it is enough to examine right moves .a; b/ in which b lies in the first
few positions of the .l C 1/th block (the next block). Similarly if a is an end of the
lth block or lies inside the lth block then it is enough to examine left moves .a; b/ in
which b lies in the last few positions of the .l� 1/th block (the previous block). The
algorithm uses the parameter " which controls that for a exactly howmany positions
b from the next and previous blocks are considered for the right and left moves. The
value of " depends on theM and N, namely

" D

8
ˆ̂
<

ˆ̂
:

0 if N
M > 3

0:5 if 2 < N
M � 3

1 if N
M � 2

Denoting by ZRj.�; "/ the set of the above defined right moves of position j
and by ZLj.�; "/ the set of the above defined left moves for position j the set of
investigated moves:

Z.�; "/ D
N�1[

jD1

ZRj.�; "/ [
N[

jD2

ZLj.�; "/

Production Line Optimization with Model Based Methods 171

and the solutions we get after performing these moves are the neighbors of the
solution � . It is worth mentioning that if " D 0 then for every position j at most
one left and one right move is examined hence in this case the neighborhood of a
permutation contains at most 2n � 2 elements. As we mentioned earlier for every
permutation there are overall .n � 1/2 different moves which means that the above
procedure can drastically reduce the size of the neighborhood of a permutation
making the algorithm to be faster. After defining the moves we describe the tabu
list, the main idea of this heuristic approach.

3.3.2 Tabu List

Tabu list is a technique to prevent cycling during the search procedure. The TS
algorithm of Nowicki and Smutnicki uses a tabu list with fixed length (maxt) (i.e. the
list can containmaxt elements) which contains pair of jobs, initialized with elements
.0; 0/ at the beginning. If during the algorithm a move v D .a; b/ is performed, then
the first element of the list is deleted and the pair .�.a/; �.a C 1// if a < b and
.�.a � 1/; �.a// otherwise is added to the end of the list.

In the search procedure a move .a; b/ from permutation ˇ is „tabu” if at least one
pair .ˇ. j/; ˇ.a//, j D a C 1; : : : ; b is in the tabu list if a < b, and at least one pair
.ˇ.a/; ˇ. j//, j D b; : : : ; a � 1 is in the tabu list otherwise.

After we defined all components of the algorithm, we describe the searching
strategy.

3.3.3 Neighborhood Searching Strategy

At the first stage of the searching procedure from every set ZLj and ZRj we choose a
representativewith the smallest makespan. In this way we get a new set of neighbors
containing 2.n � 1/ elements independently from the value of " denoted with OZ.

At the second stage we classify these solutions into three categories: unforbidden
(UF), forbidden but profitable (FP) and forbidden and non-profitable (FN). A
forbidden move from � is profitable, if it leads to a solution whose makespan is
less then F.Cmax.�// where F is an aspiration function.

Finally we decide to perform the best move from the set of the UF and the FP
moves. If all moves are FN then we add .0; 0/ to the tabu list; this process is repeated
until an UF-move can be chosen (Fig. 3).

1: Find sets UF -moves X is not tabu and FP -moves Y
is tabu, Cmax F Cmax

2: If X Y then select X Y with the smallest makespan. Update the tabu list and Exit.
3: Add a zero element to the tabu list and go to Step 2.

Fig. 3 Pseudo-code for the neighborhood searching procedure

172 T. Hajba et al.

Fig. 4 Pseudo-code for the tabu search algorithm

After this we will show the tabu search algorithm proposed by Nowicki and
Smutnicki.

The algorithm can be launched from an arbitrary initial solution, but we start
our search procedure from the permutation � given by the NEH heuristics. We set
�� D � , and start with an empty tabu list. In each iteration we find the set of moves
Z and the representatives OZ. Applying the neighborhood searching procedure we
select a move v0 2 OZ, create a new tabu list and modify the aspiration function. If
the new solution is better then the best one found so far, we update C�.

If C� does not decrease during maxret iterations then we jump back to �� and
continue searching with the stored representatives and tabu list Z� and T�. We have
two stopping criteria: the maximum number of iterations (maxiter) performed, or
Z� is empty. We can summarize this algorithm into a pseudo-code in Fig. 4.

During the tests we used maxiter D 30; 000, maxt D 8, maxret D 500.

4 Exact Optimization for the PFSP and PB-R-PFSP Models

One possible method to get the optimal solution of a PFSP is to formulate the
PFSP as a mixed integer linear programming (MILP) problem and solve it by an
appropriate software (such as CPLEX, GUROBI, and so on). The advantage of this
approach compared to heuristic methods is that even if the software can not give
optimal solution during the prescribed time limit for the running time it always
gives a lower bound for the optimal value. This means that using MILP models we
always know how far the given solution is from the optimal one. Since the PFSP is
NP-hard for M � 3, the drawback of this approach is that only small or medium-
sized problems can be solved optimally this way. However, taking into account the
rapid growth of the performance of computers and softwares that can solve MILP
models, one can expect that larger and larger problems become solvable this way.

Production Line Optimization with Model Based Methods 173

4.1 MILP Models of the PFSP and R-PFSP

The MILP models of the PFSP [1, 8, 9, 12, 14–19, 22, 23] can be divided into two
parts. The models of the Wagner family describe a permutation by giving for each
position the job that is placed to this position. The models of the Manne family
describe a permutation by giving for each par a jobs i and j whether i precedes j
in the permutation or not. Empirical studies showed [18, 19] that the models of the
Wagner family are superior to the models of the Manne family with regard to the
required solution times. Therefore in [2, 3] based on MILP models of the Wagner
family for the PFSP 3 new MILP models for the R-PFSP and PB-R-PFSP were
introduced. In this section we first describe the R-TS2 model for the PFSP and then
the R-TS2 model for the R-PFSP and the PB-R-TS2 model for PB-R-PFSP are
introduced.

4.1.1 The TS2 Model for the PFSP

The TS2 model was presented in [19]. Let us denote by Cr;j the completion time of
the jth job of the order on machine r (so Cr;j is a continuous variable for all .r; j/
pairs (1 � r � M; 1 � j � N/. Let Zij be a binary variable for all .i; j/ indeces
.1 � i � N; 1 � j � N/. The value of Zij is equal to 1 if job i is placed to the
jth place of the order, otherwise Zij is equal to 0. The constraints of the TS2-model
imply that the following conditions are satisfied.

• Each job is assigned to exactly one place in the sequence.

NX

jD1

Zij D 1 1 � i � N (2)

• Each position in the sequence is filled with exactly one job

NX

iD1

Zij D 1 1 � j � N (3)

• The job in the . j C 1/th position of the sequence can not finish on any machine
until the job in the jth position of the sequence is finished on that machine and
job in the . j C 1/th position of the sequence is processed on that machine.

Crj C
NX

iD1

PriZi; jC1 � Cr; jC1; 1 � r � M; 1 � j � N � 1 (4)

174 T. Hajba et al.

• A job can not be finished on machine r C 1 until its finished on machine r and
processed on machine r C 1.

Crj C
NX

iD1

PrC1;iZij � CrC1; j; 1 � r � M � 1; 1 � j � N (5)

• The first job of the order can not finish earlier on machine 1 than its duration time
on machine 1.

NX

iD1

P1iZi1 � C11 (6)

• The makespan is the completion time of the last job of the sequence on the last
machine.

Cmax D CMN (7)

Hence the TS2 model can be summarized as

Minimize (7) Subject to: (2)–(6):

4.1.2 The R-TS2 Model for the R-PFSP

The Permutation with Repetition Flow Shop Problem (R-PFSP) is a special PFSP
which contains jobs that have equal processing times on everymachines.We say that
jobs i and j have the same type if they have equal processing times on each machine.
To describe a permutation in an R-PFSP it is enough to give for each position j of the
sequence the type of the job that is placed to that position. This means that the TS2
model for the PFSP can be simplified to model R-PFSP-s. The following R-version
of the TS2model, named R-TS2 were introduced by Hajba and Horváth in [2].

We will denote by T the number of different types and by nt the number of jobs
of type t (1 � t � T). Let us denote the processing time of a job of type i on machine
r by P0

ri and let Zij be a binary variable for all .i; j/ indeces .1 � i � T; 1 � j � N/.
The value of Zij is equal to 1 if a job of type i is placed to the jth place of the
order, otherwise Zij is equal to 0. The constraints of the R-TS2-model imply that the
following conditions are satisfied.

• There are ni jobs in the sequence that are of type i.

NX

jD1

Z0
ij D 1 1 � i � T (8)

Production Line Optimization with Model Based Methods 175

• Each position in the sequence is filled with exactly one type of job.

TX

iD1

Z0
ij D 1 1 � j � N (9)

• The job in the . j C 1/th position of the sequence can not finish on any machine
until the job in the jth position of the sequence is finished on that machine and
job in the . j C 1/th position of the sequence is processed on that machine.

Crj C
TX

iD1

P0
riZ

0
i; jC1 � Cr; jC1; 1 � r � M; 1 � j � N � 1 (10)

• A job can not be finished on machine r C 1 until its finished on machine r and
processed on machine r C 1.

Crj C
TX

iD1

P0
rC1;iZ

0
ij � CrC1; j; 1 � r � M � 1; 1 � j � N (11)

• The first job of the order can not finish earlier on machine 1 than its duration time
on machine 1.

TX

iD1

P0
1iZ

0
i1 � C11 (12)

• The makespan is the completion time of the last job of the sequence on the last
machine.

Cmax D CMN (13)

The R-TS2 can be formalized as follows below.

Minimize (13) subject to (8)–(12):

Size Complexity of the TS2 and R-TS2 Models

The size complexity of the TS2 and R-TS2 models are presented in Table 1. The
main difference is that the R-TS2 model contains much fewer binary variable than
the TS2 model. The reason for it is that in the R-TS2 model we only have to give
for each position the type of the job that is placed to that position (instead of giving
for each position the job that is placed to that position). Finally the R-TS2 model
contains less constraints than the TS2 model.

176 T. Hajba et al.

Table 1 Size complexity of the models

Model Binary variable Real variable Constraints

TS2 N2 MN C 1 2MN � M C N C 1

R-TS2 NT MN C 1 2MN � M C T C 1

Note that N D number of jobs, T D number of types, M D number of machines

4.1.3 The PB-R-TS2 Model of the PB-R-PFSP

A Permutation with Repetition Flow Shop Problem with Palettes and Buffer (PB-R-
PFSP) is a special R-PFSP in which only a limited number of jobs can wait between
consecutive machines and the jobs are carried on palettes through the line and the
number of palettes is bounded from above.We will denote by K the number palettes
and by bi the buffer size between machines i and i C 1.

The following PB-R-TS2 model was introduced in [3]. The model is the
extension of the R-TS2 model. The constraints of the PB-R-TS2 model of the PB-
R-PFSP ensure that the following two extra conditions hold.

• The number of the palettes is equal to K which implies that the jth job of the
sequence cannot start its processing on the first machine until the . j � K/th job
of the order is finished on the last machine.

CM; j�K C
TX

iD1

P0
1;iZ

0
ij � C1j K C 1 � j � N (14)

• At most br jobs can wait in the buffer between machines r and r C 1. This
condition is formulated as

CrC1; j�br�1 �
TX

iD1

P0
rC1;iZ

0
i; j�br�1 C

TX

iD1

P0
r;iZ

0
ij � Crj (15)

1 � r � M � 1; 2 C br � j � N

The PB-R-TS2 model can be formalized as follows below.

Minimize (13) subject to (8)–(12), (14) and (15):

4.2 Lower Bounds for the PFSP Model with Heuristic Methods

For the production line managers it is very helpful to get a guaranteed lower bound
to the optimum since it can be used to estimate how far the solution is from the
optimal solution. TheMILP solvers always provide the user with a guaranteed lower

Production Line Optimization with Model Based Methods 177

bound. However, for a high quality bound we need an excellent MILP solver which
could not be available for the users for several reasons.

In this subsection we provide a pretty simple heuristic method to get a lower
bound. To this aim we relax some of the assumptions of the problem such that
the relaxed problem should be easily solvable. Then the optimal makespan of the
relaxed problem is a valid lower bound for the original problem.

To get a lower bound we relax the constraints that every machine can process
at most one job at a time. This idea was introduced by Lageweg in [7]. Suppose
that Mk and Ml are different machines and relax the assumption that every other
machine can process at most one job at a time (i.e. the other machine can process
any number of jobs at a time). In the relaxed problem each job starts its processing
on the first machine at time 0 and job i is ready for processing on machine Mk

at time
Pk�1

rD1 Pri. Similarly, when job i is finished on machine Mk then it takes
Pl�1

rDkC1 Pri time for it to be ready for processing on machine Ml and moreover
after job i is finished on machine Ml then it takes

Pm
rDlC1 Pri time for it to process

on machines MlC1;MlC2; � � �Mm. This means that the resulting relaxed problem is
a two-machine permutation flow shop problem with release dates, time lags and
delivery times with objective function minimizing the makespan. This problem is
denoted by F2jrj; lj; qj; prmujCmax where for all job j the release date rj is given by

rj D
(Pk�1

iD1 Pij if k > 1

0 if k D 1;

the time lag lj is given by

lj D
(Pl�1

iDkC1 Pij if k < l � 1

0 if k D l � 1;

and the delivery time qj is given by

qj D
(Pm

iDlC1 Pij if l < m

0 if l D m:

Here the release date rj of job j means that we can not start processing job j on
the first machine earlier than rj. The time lag lj of job jmeans that after job j finishes
on the first machine it has to wait at least lj time before we can start its processing
on the second machine. The delivery time qj of job j can be thought as the time of
post processing j after it finishes on the second machine. Finally prmu states that
only permutation schedules are allowed.

Since this is still a hard problem to solve we have to relax this problem too. Fixing
the release dates and delivery times for every job j to minj2J rj and minj2J qj we get
a two-machine PFSP with time lags F2jlj; prmujCmax. It was shown by Rinnoy Kan

178 T. Hajba et al.

[6] that this problem can be solved in polynomial time by applying the Johnson’s
rule [4]. Hence for machine pairs .Mk;Ml/ a valid lower bound for the original
PFSP is

LBk;l D min
j2J rkj C Ckl

max C min
j2J qkj

where Ckl
max denotes the optimal makespan of the problem F2jlj; prmujCmax. By

running through all machine pairs a valid lower bound for the original PFSP is

LB D max
1�k<l

LBkl :

5 Numerical Experiments

5.1 Test Problems

To analyze the performance of the heuristics and the MILP models on academic
and industrial problems we generated two sets of test problems. The problems in
both sets can be described with three parameters: the number of jobs N, the number
of types T and the number of machines M. The number of machines was fixed
M D 50, and we generated problems for N D 100 and N D 200. The values of T
were 5; 10; 20; 50; 100 for N D 100, and 5; 10; 20; 50; 100; 200 for N D 200. For
every triple we generated 5 problems. This procedure gave us .5 C 6/ � 5 D 55

processing time matrices for both sets. The two sets differed in the distribution of
the values of the processing times.

In the first set we tried to create industrial problems. Hence we took a real
problem from the industry, containing 11 types and 50 machines, and for each
machine r we calculated the meanmr and the standard deviation �r of the processing
times on machine r. After that for each machine r the processing times on machine
r were random numbers drawn from the normal distribution with parameters mr

and �r .
In the second set we created academic type problems with the procedure

introduced by Taillard [20]. This means that the processing times were random
integers coming from a uniform distribution with range Œ0; 99�.

5.2 Results

Three heuristics (NEH, TABU SEARCH and PACO) and one MILP model (R-TS2
model) were applied to solve the test problems. The formulations of the TS2 model
were written in GAMS modeling language and solved by using CPLEX 12.3 on
an Intel Xeon E31225 3.1GHz personal computer equipped with 4GB RAM. The

Production Line Optimization with Model Based Methods 179

CPLEX options employed were mixed integer programming, parallel mode with
four threads and a time limit of 600 s.

The relative gap of a solution is calculated by the formula

relative gap D 100 � Cbest � LB

Cbest
(16)

where Cbest is the makespan of the solution, and if CPLEX optimally solved the TS2
model in 10min then LB is equal to the optimal makespan of the problem else LB
is the lower bound of the optimum calculated the way it was described in Sect. 4.2.
The average relative gaps are presented in Tables 2 and 3.

Table 2 Average relative
gaps (in percentage) in the
industrial problems

N T NEH Tabu Paco R-TS2

100 5 1:14 0:52 0:18 0

100 10 0:52 0:1 0 0

100 20 1:37 0:74 0:47 0.35

100 50 1:49 0:24 0:25 1.54

100 100 1:16 0:21 0:26 *

200 5 0:86 0:34 0:06 0.05

200 10 0:24 0:01 0:16 0.03

200 20 0:49 0:45 0:11 1

200 50 0:35 0:13 0:06 *

200 100 0:49 0:09 0:11 *

200 200 0:52 0:38 0:25 *

N D number of jobs, T D number of types,
number of machines M D 50

�At least in one instance no solution were
found in 10min

Table 3 Average relative
gaps (in percentage) in the
Talliard problems

N T NEH Tabu Paco R-TS2

100 5 7:59 5:88 3:55 8.83

100 10 13:80 8:74 6:81 *

100 20 12:79 8:68 8:78 *

100 50 15:88 12:26 12:78 *

100 100 18:05 14:94 15:30 *

200 5 3:62 2:68 0:92 6.07

200 10 7:62 3:95 1:68 *

200 20 8:73 4:74 4:00 *

200 50 11:64 8:55 8:07 *

200 100 12:90 10:21 9:85 *

200 200 13:96 11:86 11:85 *

N D number of jobs, T D number of types,
number of machines M D 50

�At least in one instance no solution were
found in 10min

180 T. Hajba et al.

In the industrial problems for problem sizes .N D 100; T D 5/ and .N D
100; T D 10/ the MILP model R-TS2 found the optimal solution in all five
instances while for problem sizes .N D 200; T D 5/ and .N D 200; T D 10/

the MILP model R-TS2 found the optimal solution in four of the five instances. For
larger problems ((N D 100; T D 100/; .N=200, T=50,100,200)) the R-TS2 model
did not even find an initial solution in the 10-min time limit. Overall the Tabu search
found the optimal solution in 18 of the 55 industrial problems while PACO found
the optimal solution in 23 of the 55 instances.

In contrast to the industrial problems in the Talliard-like problems none of the
four methods found the proven optimal solution in any of the 55 instances. It can be
seen in Table 3 that for problem sizes with more than five types the R-TS2 MILP
model did not even find an initial solution in any of the five instances. Furthermore
the NEH, Tabu search and Paco heuristics have much larger relative gaps in the
Taillard like problems than in the industrial like problems. The explanation of
this phenomenon is that the algorithm described in Sect. 4.2 gives much stronger
lower bounds in the industrial like problems than in the Taillard-like problems.
Table 4 contains the lower bounds and optimal value of the 10 instances of industrial
problems with problem size .N D 100; T D 5/ and .N D 100; T D 10/. It can
be seen that in 4 of the 10 instances the lower bound calculated by the algorithm of
Sect. 4.2 equals to the optimum of the problem.

5.2.1 Problems with Finite Buffer Sizes and Palettes

For the industrial problems with sizes .N D 100I T D 5/ and .N D 100I T D 10/

we solved the overall 10 instances with finite buffer sizes between the machines
and finite number of palettes using the PB-R-TS2 model. The buffer sizes were
chosen from real-world problems and the number of palettes was K D 55. We
compared the optimal values of these PB-R-PFSPs with the makespan given by the
Tabu search applied to the PFSP with infinite buffer sizes and infinite number of
palettes (which can be considered as the relaxation of the PB-R-PFSP). It turned

Table 4 Comparing the
lower bounds and the optimal
values in the industrial
problems

N T Lower bound Optimum

100 5 48,721 48,721

50,351 50,351

52,527 52,814

49,160 49,707

50,621 50,789

100 10 49,484 49,607

49,314 49,521

47,632 47,632

48,840 48,840

49,556 49,627

Production Line Optimization with Model Based Methods 181

out that in 9 of the 10 instances the solution given by Tabu search applied to the
PFSP (with infinite buffer sizes and infinite number of palettes) was optimal for the
PB-R-PFSP problem, too. In the remaining one case the Tabu search applied to the
PFSP gave a solution to the PB-R-PFSP with relative gap 0.51.

6 Conclusions

We can summaries the lessons learnt with the observations as follows.

• Large-scale R-PFSPs in which the number of types is small and the machines are
unbalanced can be solved efficiently by using MILP models and exact solvers.

• Both the Tabu Search and the PACO heuristics give good solutions (close to the
optimum) for large-scale PFSPs containing unbalanced machines.

• For PFSPs containing unbalanced machines the two-machine relaxation of the
problem gives lower bound close to the optimum.

• For industrial like PB-R-PFSPs (R-PFSPs with palettes and limited buffers) one
may compute a good (initial) solution of the problem by omitting the palettes
and the buffer sizes between the machines (i.e. setting the number of palettes and
buffer sizes between consecutive machines to infinite) and solving the relaxed
R-PFSP.

These scientific results can effectively be used in the digital factory environment.
We consider a production line with planning and shop floor software tools of
digital factory to collect, analyse and process real life manufacturing data. With
integration of the solving methods investigated by our work into the planning
and scheduling process of the digital factory, we can produce effective production
schedule supporting the end-to-end digital integration goal of the digital factory.
This integrated production schedule can be the one of the basics for the smart and
networked Industry4.0 production environment.

References

1. Baker, K.R.: Introduction to Sequencing and Scheduling. Wiley, New York (1974)
2. Hajba, T., Horváth, Z.: New effective MILP models for PFSPs arising from real applications.

Cent. J. Oper. Res. 21, 729–744 (2012)
3. Hajba, T., Horváth, Z.: MILP models for the optimization of real production lines. Cent. J.

Oper. Res. 23, 899–912 (2015)
4. Johnson, S.M., Optimal two -and three stage production schedules with setup times included.

Nav. Res. Logist. Q. 1(1), 61–68 (1954)
5. Jósvai, J.: Production process modeling and planning with simulation method, mounting

process optimisation. In: The International Conference on Modeling and Applied Simulation.
Universidad de La Laguna, 23–25 September 2009, pp. 240–245 (2009)

6. Kan, A.H.G.R.: Machine Scheduling Problems: Classifications, Complexity and Computation.
Nijhoff, The Hague (1976)

182 T. Hajba et al.

7. Lageweg, B.J., Lenstra, J.K., Kan, A.H.G.R.: A general bounding scheme for the permutation
flow-shop problem. Oper. Res. 26, 53–67 (1978)

8. Liao, C.L., You, C.T.: An improved formulation for the job-shop scheduling problem. J. Oper.
Res. Soc. 43, 1047–1054 (1992)

9. Manne, A.S.: On the job-shop scheduling problem. Oper. Res. 8, 219–223 (1960)
10. Nawaz, M., Enscore, E.E., Ham, I.: A heuristic algorithm for the m-machine n-job flow-shop

sequencing problem. Omega 11, 91–95 (1983)
11. Nowicki, E., Smutnicki, C.: A fast tabu search algorithm for the permutation flow-shop

problem. Eur. J. Oper. Res. 91, 160–175 (1996)
12. Pan, C.H.: A study of integer programming formulations for scheduling problems. Int. J. Sys.

Sci. 28, 33–41 (1997)
13. Rajendran, C., Ziegler, H.: Ant-colony algorithms for permutation flowshop scheduling to

minimize total makespan/total flowtime of jobs. Eur. J. Oper. Res. 155, 426–438 (2004)
14. Stafford, E.F.: On the development of a mixed-integer linear programming model for the

flowshop sequencing problem. J. Oper. Res. Soc. 39, 1163–1174 (1988)
15. Stafford, E.F., Tseng, F.T.: On the Strikar-Gosh MILP model for the N � M SDST flowshop

problem. Int. J. Prod. Res. 28, 1817–1830 (1990)
16. Stafford, E.F., Tseng, F.T.: Two models for a family of flowshop sequencing problems. Eur. J.

Opr. Res. 142, 282–293 (2002)
17. Stafford, E.F., Tseng, F.T.: New MILP models for the permutation flowshop problem. J. Oper.

Res. Soc. 59, 1373–1386 (2008)
18. Stafford, E.F., Tseng, F.T., Gupta, N.D.: An empirical anlysis of integer programming

formulations for the permutation flowshop. Omega 32, 285–293 (2004)
19. Stafford, E.F., Tseng, F.T., Gupta, N.D.: Comparative evaluation of the MILP Flowshop

models. J. Opr. Res. Soc. 56, 88–101 (2005)
20. Taillard, E.: Benchmarks for basic scheduling problems. Eur. J. Oper. Res. 64, 278–285 (1993)
21. VDI: Digital Factory Fundamentals. VDI 4499 Guideline, Düsseldorf (2008)
22. Wagner, H.M.: An integer linear-programming model for machine scheduling. Nav. Res. Log.

Q. 6, 131–140 (1959)
23. Wilson, J.M.: Alternative formulations of a flow-shop scheduling problem. J. Oper. Res. Soc.

40, 395–399 (1989)

	Production Line Optimization with Model Based Methods
	1 Introduction
	2 Production Line Models: The PFSP and the PB-R-PFSP
	3 Heuristic Optimization Methods for the PFSP Model
	3.1 NEH Heuristic
	3.2 Ant-Colony Algorithms
	3.2.1 Initialization
	3.2.2 Construction of a New Solution
	3.2.3 Update of the Pheromone Intensities

	3.3 Tabu Search Approaches
	3.3.1 Moves and Neighborhood
	3.3.2 Tabu List
	3.3.3 Neighborhood Searching Strategy

	4 Exact Optimization for the PFSP and PB-R-PFSP Models
	4.1 MILP Models of the PFSP and R-PFSP
	4.1.1 The TS2 Model for the PFSP
	4.1.2 The R-TS2 Model for the R-PFSP
	4.1.3 The PB-R-TS2 Model of the PB-R-PFSP

	4.2 Lower Bounds for the PFSP Model with Heuristic Methods

	5 Numerical Experiments
	5.1 Test Problems
	5.2 Results
	5.2.1 Problems with Finite Buffer Sizes and Palettes

	6 Conclusions
	References

