Stochastic Optimal Sizing of a Warehouse

Luca Ghezzi

Abstract The problem is considered of determining how many pieces to stock
in a warehouse, for a multitude of stockable goods and accounting for random
market demand and supply lead time. Classical reorder point theory is revisited,
the underlying model is no longer linearized and the involved stochastic variables
need not be normally distributed but, rather, are empirically deduced from historical
data. Uncertainty propagation is carried out either by Monte Carlo method or by a
Polynomial Chaos Expansion. A Quadratic Programming procedure is proposed to
regularize data by filtering rare events out. Performance vs. cost curves are obtained
and the global problem of choosing optimal points over them, subject to a global cost
budget constraint, is set as a combinatorial, constrained optimization. The solution
of a simplified version is attained by Linear Programming, while the full problem is
addressed by Mixed Integer Linear Programming.

1 Introduction

Storage of physical goods is a practically unavoidable need in industry and
commerce, common to most market sectors. As well-known, inventories allow
decoupling raw materials and sub-components supply chain from production, as
well as the latter from the commercial distribution of final products. Moreover,
large factories employ internal sub-component warehouses (i.e., the make-to-
stock manufacturing policy) in order to ease industrial operations by decoupling
successive, serial phases, as well as to allow, if applicable, the assemble-to-order
manufacturing policy at the very last segment of the productive chain. Similarly,
commercial as well as service organizations are usually hierarchically structured,
with tiers decoupled by warehouses. On the one side, stocked volumes allow for
strategic, massive purchase deals, simpler factory management policies as well as
high service levels in deliveries to final customers. Drawbacks include the high cost
of stocked capital, the risk for stocked product obsolescence, as well as the operative
cost for running the inventory.
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The impact of inventories over operations or overall company’s costs is clearly
business-dependent; nonetheless, strong cost reduction initiatives pertaining to
suitably sizing the inventories have been observed in last decades. A first trend
is toward reducing stocks and increasing their rotations. A second trend is fore-
casting expected needs, to be scheduled so to have materials available only when
necessary, and using stocks to cover deviations from forecasts. A third trend is
shifting inventories upstream, possibly to suppliers (a fact clearly not without
impact when negotiating supply conditions). A complex and multi-disciplinary
scenario emerges, encompassing sales, planning, production, and logistic, where
the functional relationship between warehouse benefits and costs is emphasized in
order to quantitatively evaluate alternatives and draw conclusions. Clearly, such a
central and transversal topic in factory dynamics may strongly benefit from the use
of Mathematics to model its behavior and allow its suitable dimensioning.

1.1 Goals and Results

Modeling and predictive approaches thus find a sound economic motivation.
Particularly, it is here of interest to address the problems of’:

(A) Devising a performance vs. cost relationship for any stockable good, depending
on the quantity being stocked;

(B) Determining the optimal quantities to stock for all stockable goods, given
an overall budget constraint and an overall weighted average performance
indicator, possibly lower bounded (dubbed optimal budget expenditure problem
in what follows).

The kind of results obtained by solving problem (A) is exemplified by Fig. 6,
showing the performance vs. cost curve for a sample stockable good, as obtained by
the proposed approach and opposed to the one deduced by traditional approaches.
The kind of results obtained by solving problem (B) is reported in Fig. 8, showing
the fundamental Pareto front for the inventory, that is, the overall performance vs.
cost curve. Thanks to the latter, the decision maker may define the global working
point. Mathematics connect the latter to relevant working points for all stockable
goods, that is, the positioning along individual performance vs. cost curves like
Fig. 6. The combination of the two problems is relevant to global warehouse design
as well as local warehouse revisions, and needs being solved periodically (say,
quarterly) to keep the warehouse up to date with the current market scenario.

Inventories are a crucial ingredient of the “digital factory”, because only their
appropriate sizing allows a profitable and timely production flow. This means that,
on the one hand, oversized stocks are completely inadmissible in a modern, lean
production system and, on the other side, the large number of products, most
of which with low volumes, make the traditional, deterministic or oversimplified
stochastic approaches no longer adequate. It is precisely the stochastic nature of the
problem which demands for a finer mathematical treatment than traditional variance
propagation approaches.
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1.2 A Historical Perspective

The basic theory dates back to 1913, with the first simple models to connect
production to inventories; see [8]. The reorder point (ROP) is a rule-based inventory
control method consisting of issuing a supply reorder up to the feeder factory
(more generally, upstream) any time the stock level falls below a predetermined
threshold, the ROP itself. The threshold must be high enough to prevent from
stock-out while the supply order is being worked out and products are asked for
from the market (more generally, downstream). Assuming constant and predictable
market demand and supply lead time, a deterministic contribution is first found.
Then, a safety stock margin is supplemented, to cope with stochastic factors. The
safety stock is computed by means of uncertainty propagation: the ROP formula
is linearized, variance is propagated over the linear approximation and finally a
normal distribution is assumed to introduce a confidence level in safety assessment.
Such procedure ultimately leads to Hadley-Whitin formula (1963), very popular
among logistic professionals; see [7]. The higher the quantity being ordered, the
longer the time in between two consecutive reorders, the lower the number of
reorders to be issued in a given time horizon, and the higher the average stock
level, market demand and all other features being the same. Accounting for fixed
reorder costs (monotonically decreasing with the reordered quantity) and stock
costs (monotonically increasing with the reordered quantity), the Economic Order
Quantity (EOQ) is determined as the global cost minimizer. As an alternative
to ROP-EOQ, the reorder time (ROT) method compares the stock level with a
reference level every fixed period of time, issuing an upstream supply order to fill
the possible gap.

Most of later literature is about inventory dynamics and control. Standard
approaches are known for inventory management, addressing the problem of when
to issue replenishing orders and how large such orders need to be, for a warehouse
with prescribed sizing; see, e.g., [18] and references therein for a comprehensive
exposition of the state of the art.

Most notably, in 1964 Orlicky introduced Material Requirement Planning (MRP)
as an inventory management strategy, coordinated with production planning, that
quickly became an indispensable tool in industry; see [13]. With reference to
purchase orders received from the market and estimated, and the level of all involved
inventories, the MRP takes care of scheduling production, back-propagating suitable
production or purchase orders upstream. O. Wright introduced in 1983 the Manu-
facturing Resource Planning (MRP II), significantly improving the MRP by, among
other things, accounting for rough-cut production capacity; see [17]. Latest trends
attempt to include market demand prediction by time series modeling. See [14]
for a modern, retrospective review, along with the significant improvements and
advanced features added in recent times and collected under the denomination of
Demand Driven MRP (DDMRP).

Since the 1980s, the pull logic (i.e., supply orders are issued downstream
to upstream, only when supply is needed) has been widely adopted, whenever
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applicable for the specific business. In 1981, Kimura et al. modeled a celebrated,
self-regulated implementation with the so-called Just in Time (JIT) paradigm; see
[9]. Particularly, very small production lots are handled at all productive levels, with
production order cards (termed kanban, in Japanese language) traveling upstream,
whenever the representative lot is exhausted, and back, together with a new lot
to be stocked. Frequent and small supply actions, resembling a continuous flux,
characterize this scenario. Still, the need arises to determine the required stock
levels, that is, equivalently, the number of lots, or of kanban cards.

MRP, or DDMREP, or also JIT, allow remarkably reducing the stock levels needed
to run the business. As a limit condition, goods should simply transit in the suitable
quantities and at the suitable times throughout logistic hubs (for the sake of transport
and distribution chain optimization), and without being stocked for longer times
than those strictly needed for their handling. Anyway, some residual inventory
quota is still needed, along with classic theories like ROP or ROT modeling their
dynamics. This is basically to ensure a short term market coverage, so to cope with:
Discrepancies between forecast and current demand; Client orders’ withdrawal,
or postponement, or expediting; Deviations from planned delivery dates along
the productive chain (late, missed or erroneous deliveries, unforeseen production
downs or transport problems, and the like); Fluctuations in production capacity,
discrepancy between reference (usually estimated considering runner codes) and
actual (on a code-by-code basis) production capacity, when rough-cut over infinite
capacity is carried out; Discrepancy between estimated and actual defective product
rates, and other possible mishaps.

Dynamics based approaches could be useful to address problems (A) and (B),
by checking a posteriori, typically by means of Discrete Event Simulation (DES),
the adequacy of a given, prescribed inventory sizing and then moving towards a
(usually pseudo-) optimal sizing or, more frequently, simply towards a better-than-
actual sizing by means of: Either scenario analysis (that is, by partial enumeration
of possible alternatives); Or some improving strategy, consisting of either down-hill
moves (derivative free optimization, surrogate modeling, etc.) or some heuristics
(genetic algorithms, particle swarms, etc.). Drawbacks of such approaches include
being time consuming and being strongly dependent on a multitude of system
describing input data of difficult availability and sometimes questionable reliability.
Moreover, accounting for the stochastic nature of the problem is possible but
emphasizes the above mentioned limits; see, e.g., [11] for a comparison between
DES and classic inventory modeling.

In order to avoid the mentioned drawbacks, we propose, in problem (A), to
prescind from simulating the inventory evolution by means of some time-marching
scheme but, rather, to focus onto the stochastic variable concept. Any artificial
requirement of normally distributed probabilities is dropped. As an output, we get
the performance vs. cost curves for all stockable goods. Secondly, by means of
Mathematical Programming (MP) approaches, we deal with problem (B) as the
combinatorial, constrained, optimization problem of finding the optimal positioning
along the above mentioned curves for all stockable goods, possibly including the
Boolean decision variable whether or not to stock some goods.
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Fig. 1 Traditional warehouse sizing approach workflow

1.3 Traditional vs. Proposed Approach and Workflow

For the sake of a better comprehension, we provide a comparison between the
traditional (see Fig. 1) and the proposed approach (see Fig.2) to stock sizing. In
both approaches, for each stockable good the required input data are the historical
market demand and supply lead time time-series; see Sect. 2.2.

In the traditional approach to stock sizing, historical data are processed according
to well-known statistical techniques, in order to obtain their mean value and
standard deviation; see Sect.2.2. Based on any applicable warehouse model (see,
e.g., Sect.2.1, or consider other models), the mean value and standard deviation
for the required stock size are deduced, possibly analytically and usually with an
underlying, implicit model linearization; see Sect. 2.3. Then, it is implicitly assumed
that the required stock size be normally distributed, which needs not being the case,
so to have available a probability density function (PDF), as well as a cumulated
probability function (CDF). The latter represents the relationship between the stock
size and the probability not to stock out. By converting the stock size into the
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corresponding cost, a performance vs. cost curve is obtained for the stockable
good at hand; see Sect.4.1. Then, after a prescribed performance level has been
selected, either arbitrarily or according to some suitable argument, from inverting
the performance vs. cost curve the corresponding cost is found. Finally, the global
inventory cost is obtained from the summation over all stockable goods.

The normality assumption is proven false by the finer approach proposed
hereafter. This introduces both a theoretical and practical bias in the performance
vs. cost curves, as well as in the computations following downstream. Moreover,
there is no guarantee, a priori, that the global inventory cost be less than the available
budget. In case not, the performance levels need being lowered, usually according to
some trial-and-error scheme. Similarly, no guarantee is provided for optimal budget
expenditure, meaning that if the global inventory cost is lower than the available
budget, then the prescribed performance levels have to increased (and also in this
case there is no direct indication on how much) so to spend the additional available
resources.

In the proposed approach to stock sizing, historical data are processed according
to well-known statistical techniques, in order to obtain their probability density
function (PDF), not just their mean value and standard deviation; see Sect.2.2.
Then, either with Monte Carlo (MC) method (see Sect.2.4) or with Polynomial
Chaos (PC) expansion method (see Sect.2.5), the probability density function
for the required stock size is deduced numerically, in both cases by means of a
number of runs of a suitable warehouse model (see, e.g., Sect. 2.1, or consider other
models). Then, a Quadratic Programming (QP) based, mathematical regularization
technique is strongly advised, in order to clean the PDF from rare events and
outliers; see Sect.3.2. By PDF integration, the relevant CDF is obtained for the
stock size. The regularization attempts to (and usually manages to) produce a
concave CDF. The latter represents the relationship between the stock size and the
probability not to stock out. By converting the stock size into the corresponding
cost, a performance vs. cost curve is obtained for the stockable good at hand; see
Sect. 4.1.

We stress that, contrarily to the traditional approach, the performance vs. cost
curve is not the outcome of a forced, and usually false, normality distribution
assumption, neither for input data (market demand and supply lead time) nor for
the output data (required stock size). Rather, all PDFs and CDFs are now either
empirically deduced or produced throughout a mathematical model that attempts
to describe the real course of events. The finer the model, the more reliable the
probability distributions. The fallacies introduced by the traditional approach may
be observed in Fig. 6, in the case of the same warehouse model (ROP).

Also the problem of optimal resource allocation, that is, optimal budget expendi-
ture, is now addressed in a radically different and mathematically structured manner.
After all stockable goods have been dealt with as above, a first global inventory
budget is considered, for instance the actually available one. Depending on whether
all stockable good performance vs. cost curves be concave or not, the optimal
budget expenditure problem is addressed by either Linear Programming (LP; see
Sect. 4.2) or Mixed Integer Linear Programming (MILP; see Sect. 4.3), respectively.
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In both cases, the optimal cost and service level for each stockable goods is obtained,
along with the overall weighted inventory performance and overall cost. Differently
from the traditional approach, now the overall inventory cost is guaranteed to
exactly equal the available budget (in case of feasible problems, for, otherwise, side
constraints need being relaxed, as shown in Sect. 4).

A yet further advantage of the proposed approach is that the optimal budget
expenditure problem is suggested to be solved for other, different budget values,
in such a way to deduce, pointwise, an overall performance vs. cost curve for
the whole inventory. This allows gaining a measure of the robustness of the
problem (see whether or not little budget perturbations result into little performance
perturbations). Robustness analysis then plays a key role in the strategic choice of
global inventory budget allocation, because the collocation in a sharp bending point
of the performance vs. cost curve may be very alluring.

It is important to notice that the particular choice of the warehouse model
is largely immaterial for the proposed approach to stock sizing, meaning that
the latter is general and may embed any other model with the same output.
Also the case of different input data (number and kind) may be handled with
straightforward modifications of inessential aspects. We mentioned the two simplest
models historically and commonly used in engineering practice, developed the
exemplification with reference to the one currently adopted in the industrial ABB
case at hand, and finally proposed a simple extension that may apply to both, in
order to address the MRP management policy. This has been done both for the sake
of simplicity and in order to more strictly adhere to the traditional approach in all
inessential aspects.

1.4 Chapter Outline

The approach proposed in this chapter may be outlined as follows. In Sect.2
we address problem (A). First, in Sect.2.1, basic ROP theory is recalled and
given a formal dress compatible with standard probability theory. An additional
contribution is considered that accounts for time discrete inventory control or, which
is equivalent, for large market requests. Then, in Sect.2.2, input data probability
distributions are estimated, mainly based on historical data. Three alternative
approaches are discussed to propagate uncertainty through ROP model and deduce
the probability not to stock-out, namely: The traditional variance propagation
approach, in Sect.2.3; Monte Carlo (MC) method, in Sect. 2.4; Polynomial Chaos
Expansion (PCE, or PC), in Sect.2.5. In Sect. 3, the output from problem (A),
that is, performance vs. cost curves, are improved before being used as input
to problem (B). A suitable, Quadratic Programming (QP) based regularization
technique is introduced, aimed at enforcing concavity in the performance vs. cost
curves portion of interest. In Sect.4 we address problem (B) as a combinato-
rial, constrained optimization problem. Two alternative approaches are discussed,
namely: A simplified, and computationally very slim, Linear Programming (LP)
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based optimization, in Sect.4.2; A more refined and versatile, but computationally
more challenging, Mixed Integer Linear Programming (LP) based optimization, in
Sect. 4.3. The application of the procedure to the industrial case of ABB, the results
obtained, the possible extension of the very same machinery to other contexts of
industrial operations, including but not limited to production management, as well
as possibilities for further research are finally discussed, in Sect. 5.

2 The Local Stochastic Problem

In this section we deduce, for each single good, the stochastic relationship, i.e., a
probability density function (PDF), relating the probability not to stock-out with the
amount of items to be stocked; see Sect. 1, problem (A). Item amounts are large
when mass produced goods are at hand, allowing for real numbers to describe what
would rigorously require integer numbers.

2.1 Reorder Point and Other Models

A classical inventory management policy for make-to-stock (MTS) goods is the
so-called reorder point method, modeling stock level dynamics according to a saw-
tooth behavior; see Fig. 3. Starting from an arbitrary, high value, the stock level for
a given item is progressively lowered by market demand D, until a reorder point
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threshold S is reached. A supply order is then issued upstream, and ordered goods
eventually enter the warehouse after a supply lead time L during which time the
stock level continues to go down below the reorder point, due to the last market
requests received. Stock levels and reorders are dealt with at discrete time, i.e., they
are spaced by a prescribed period of time At (a day, or an hour, etc., depending
on the inventory type and dynamics). If Atz is non negligible compared to L, or
equivalently, if market orders size may be large compared to S, then the last ordered
quantity Q = DAt may result into a non negligible portion RQ below the safety
stock, where R € [0, 1] is a proportionality coefficient. Elementary geometrical
considerations (see Fig. 3, where the safety stock has to be initially neglected; as the
name suggests, this additional quota is later introduced in order to raise the reorder
point and cope with the stochastic nature of the problem) relate the reorder point to
its contributors, reading

S = DL+ RO = D(L + RA?). (1)

In a deterministic frame, inventory dynamics would be known and repeatable,
leading to the determination of the “exact”, sharp reorder point S directly by
plugging sharp D, L and R values into (1). Actually, all involved quantities are
beyond our full control and may be considered stochastic variables. Market demand
may be associated (written D ~ ¢P(£P)) to a probability density function (PDF)
¢P(EP), where £P is any admissible value for D, while ¢”(£P) is the probability

density associated with such value. Let @P(£P) = f_slo)o ¢ (&) d¢ be the probability to
draw values of D up to £7, so that the relevant function is the cumulated density
function (CDF). Similarly, L ~ ¢X(£L), R ~ ¢pR(£R) and S ~ ¢5(£5), with relevant
CDFs. As a final result, the quantity S to be stocked is to be estimated as the value
£5 such that

®5(E5) = / Ot =1-a, @)

that is, such that the reorder point S will be sufficient to cope with inventory
dynamics with confidence level 1 — «. Equivalently, the probability to stock-out
will be no higher than « € [0, 1] (typically, « is a number of the order of 5-10%, or
even less). In what follows, a mathematical method is proposed to derive the actual
expression of (2), in the case above as well as in the similar conditions introduced
hereafter.

Generalizations or other, different models are also available. It is similarly
deduced that, for goods that follow the ROT policy,

S=D(L+T+ RA), 3)
where T is the (prescribed) reorder time, i.e., the fixed period of time after which

the current stock level is compared with the reference value S and a reorder quantity
is possibly requested upstream, so to restore level S. Most goods are nowadays
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handled by MRP. To estimate the residual safety inventory quota that is practically
still needed, we propose to use the model

S = max{0, (D — E[D])(L + RAD)} 4)
or
S = max{0, (D — E[D])(L + T + RA®)} 5)

instead of (1) or (3), resp., with market demand netted of its expected value E[D]
(i.e., its mean value). Netting demand D with E[D], rather than with a different
quantity, is an arbitrary but reasonable choice in absence of more precise informa-
tion and in order to express any deviation from the reference scenario, for which
nothing more than average values is accessible in practice. Since negative reorder
point values would make no sense, the max operator is used as a lower cut-off with
zero. For the sake of simplicity, we shall develop the following with reference to (1).
It remains understood that methods and conclusions are to be rewritten, with suitable
modifications, with reference to (3), (4) or (5) in relevant cases.

2.2 Input Probability Densities

Stock sizing is generally accounted for in a stochastic frame, to a different extent
of mathematical subtlety and reliability, as later discussed. In any case, knowledge
is needed about input variables probability distributions. The estimation of PDFs is
generally not easy and requires care. As for R, owing to the random time sequencing
of market purchase orders as long as the reorder point threshold is randomly crossed,
there is no conceptual reason to privilege some values compared to others and one
may assume a uniform distribution for ¢ over the interval [0, 1].

Supply lead time PDF ¢* could be estimated either by means of some suitable
model describing its internal dynamics and policies (not covered here), or phe-
nomenologically by counting the frequencies of supply within the terms of multiples
of a suitably defined time unit like, e.g., days (or half days, or even less, depending
on the reactivity of the supply structure). For instance, if the time unit is fixed to be
the single day, then one may consider a sufficiently long historical series, covering,
say, 6 months or a whole year, and then count how many times the supply lead time
did not exceed 1 day, how many times it was in between 1 and 2 days, how many
times in between 2 and 3 days, and the like.

In absence of more refined information, market demand PDF ¢ may be deduced
from a rich enough historical data base of purchase orders received. A possible,
proposed approach consists of considering three different time scales. First, we
define a long enough period of time compared to inventory dynamics time constant
like, e.g., 1 year or more (long time scale). It could be not advisable to consider
longer durations, because markets are mutable and one wants to focus on present
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Fig. 4 Probability distributions for a sample product code in ABB inventory test case. Left
Demand D, PDF ¢ (bold) and CDF &P (lite), as empirically deduced from historical data records.
Right Reorder point S, PDF ¢° (bold) and CDF ®° (lite), as computed by means of PC and fast
MC on polynomial surrogate model. A remarkable difference is observed from the traditionally
adopted Gaussian assumption: the actual PDF is single tailed and starts high-valued on the left side

trends. Second, the long period is subdivided into time buckets like, e.g., months,
or weeks, or the like, so that their number is large enough to allow for a reasonable
PDF resolution, as later discussed, and so that each is not too short to contain just a
few orders (middle time scale). Finally, the third time scale is the time constant
of the inventory dynamics like, e.g., the day or the like (short time scale). The
latter can be the time scale with time constant A¢, and must be definitely smaller
than the middle time scale. Market demand PDF ¢” requires cumulating all orders
received over any single time bucket of the middle time scale and then counting
the recurrence frequencies of ordered quantities, i.e., how many times the whole
market required a quantity of pieces lying in any bin. See Fig.4 (left) for the
illustration of a sample product code in later discussed ABB inventory test case.

In all cases, histograms are obtained and PDFs are readily produced by normal-
ization. Standard techniques must be applied in bin sizing, possibly considering
variable and adaptive bin sizing, in order to guarantee statistical soundness. The
approach above is admittedly poor, and more refined statistical methods could be
conceived to enhance PDFs’ quality. It must be anyway remembered that many other
uncertainties and approximations affect the problem, so that extreme accuracy could
be unmotivated and practically unattainable.

Large purchase orders, like, e.g., periodic and contract negotiated wholesalers’
refills, need being detected and translated into the stemming multitude of smaller
order actions spread over a long time horizon, as usually dealt with by logistic
planning. Actually, since the latter actions are planned and thus known in advance,
they should be handled in a deterministic way and removed from the stochastic
sizing of the safety stock.

Some items may have such a rare and/or volatile demand, that the concept
itself of probability density in the above sense would not properly hold. Such
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and similar cases should not be considered in this modeling frame, nor stocked
according to the logics of recurrent and abundant production and resell, i.e., they
should not enter inventories. Rather, such special items should be more profitably
supplied to the market according to suitably defined policies, and with terms and
conditions negotiated with clients, like, e.g., assemble-to-order (ATO) or make-to-
order (MTO).

2.3 Output Probabilities: Traditional Approach

The traditional approach for safety stock stochastic estimation is based on the
linearization S = (E[L] + At/2)D + E[D]L + E[D|RAt — E[D|(E[L] + At/2)
of (1), obtained after straightforward simplifications from the relevant Taylor series
expansion truncated to degree 1 terms and centered on point (E[D], E[L], E[R] =
1/2), corresponding to the mean values of D, L and R. After the linearization, the
mean value follows with a standard change of variables and reads

ElS] = /R £545(6%) &5 = E[D|(ELL] + A1/2). ©)

Variance follows similarly, yielding the well-known variance propagation formula
that in the specific case reads

o2 = / (65 — E[S)?¢5 (%) dt’
® 7

= (E[L] + At/2)*0} + E[D)?0? + (E[D]At)%03,

where D, L and R have been assumed to be mutually uncorrelated and op, o7, and
og =1/ V12, resp., are their standard deviations. When At — 0 (i.e., At is small
compared to L), the term RDA¢ is frequently neglected compared to the term DL
in (1). Under such assumption, the mean value (6) reduces to E[S] = E[D]E[L]
while variance reduces to 0f = E[L]*0} + E[D]*07. This latter expression is
to be compared with 02 = E[LJo} + E[D]*0}, as deduced by Hadley-Whitin
[7]. When supply from the feeder factory is governed by reliable policies such as
prescribed and easily attainable delivery dates, then supply lead time is considered
deterministic and known equal to a fixed value L (here intended as a deterministic
variable, no longer as a stochastic variable), furtherly simplifying the mean to
E[S] = LE[D] and variance to 67 = L?0}, or to 02 = Lo} in the Hadley-Whitin
form.
In the traditional approaches discussed above, the reorder point is estimated as

S = E[S] + c(a)os, (8)



74 L. Ghezzi

where c(«) is a suitable multiplicator of standard deviation oy, corresponding to
confidence level 1 — «. The E[S] contribution may be considered as a sort of
theoretical deterministic prediction, conservatively supplemented by the c(a)os
contribution that accounts for stochastic uncertainties. The latter contribution is
frequently termed safety stock.

The actual probability distribution ¢S of S is never introduced nor used. If, on
the one hand, this makes the mathematical developments extremely simple, on the
other hand c¢(«) is questionably computed by implicitly assuming that S be normally
distributed. There is no theoretical reason leading to Gaussian ¢5 (actually, theory
clearly tells this cannot be the case, because ¢° must be boundedly supported on
the left, i.e., it cannot have a left tail, in order to exclude logically inconsistent
negative reorder point values). Evidence from the application of the more reliable
and logically consistent methods discussed in next sections clearly shows that § is
not normally distributed, and that the actual PDF may be remarkably different; see
also Fig. 6 for a visual comparison.

2.4 OQutput Probabilities: Monte Carlo

We are interested in adopting (2) instead of (8) in order to estimate the quantity to
be stocked. Consequently, ¢° is required. One way is the well-known Monte Carlo
(MC) method. MC basically amounts to repeatedly evaluating the deterministic
model (1), with input values D, L, R randomly extracted from relevant PDFs. The
correspondingly many random output S values are then used as samples to produce
¢5. On the one hand, MC method is conceptually simple, easy to implement and
non-intrusive, in the sense that the deterministic model (1) is used as a black-box.
An additional benefit, by far the most important, is that the convergence rate does
not depend on the number of stochastic variables (which does not mean that the
number of necessary runs does not depend on the number—and type—of stochastic
variables).

On the other hand, the convergence rate is extremely slow, so that the number
of deterministic model runs is usually very high, thus requiring long computational
times, unless the deterministic model is extremely fast. Additionally, the successive
moments of the sought for PDF converge progressively slower, let alone particular
cases enjoying special properties, such as odd/even parity, and the like. As a
consequence, the correct shape of ¢S may be very slow to converge.

2.5 Output Probabilities: Polynomial Chaos

An alternative way to obtain ¢ is based on the so-called (non-intrusive) Polynomial
Chaos (PC) method, for which we need a digression into orthogonal polynomials. It
is well-known that a general probability density distribution ¢*(§) associated with a



Stochastic Optimal Sizing of a Warehouse 75

stochastic variable x satisfies the hypotheses of a measure. Thus it naturally induces
the inner product (-,-), : L>(R) x L*(R) — R such that

(M@w@»g=£&@w@mwsﬁ. ©)

Scalar product (9) naturally induces the norm | - ||, : L*(R) — R, such that
lu®)? = @), u(®)),. Let L*(R;$") be the set of bounded functions with
reference to norm || ||. One can use scalar product (9) in the frame of Gram-Schmidt

process applied to the sequence {Ek},j:g = {1,£ &% ... £ ...}. The outcome

is an orthogonal polynomial sequence (OPS), that is, a sequence {1//,?(5)},;;08 of
polynomials which are mutually orthogonal with reference to (9). Therefore, by
construction, (Y%, ¥)x = |[¥{1128jx Vj. k € Zo, where 8 is Kronecker symbol.
If desired, the OPS could be made orthonormal, to simplify notation and without
modifying the essence of the problem. The above mentioned polynomials are readily
seen to be linearly independent by a standard degree argument, leading to the
conclusion that they form a basis for L?(R; ¢*); see, e.g., [3] for the easy details.
Superscript x in ¥} explicitly shows the descendence of the OPS from stochastic
variable x, to which it is linked and specific. It can be shown that some of the most
common PDFs, continuous or discrete, induce celebrated OPSs; see, e.g., [10, p. 37].
For instance, uniform PDF ¢® induces correspondingly an OPS which coincides
with the family of Legendre polynomials. Considering reorder point theory, three
stochastic input variables are involved, each leading to its own OPS. Another OPS
is obtained from the three above mentioned OPS by tensorization, as follows. A
vector & := (£P, €L, €R) is defined to collect 3-ples of values from the three input
variables. A multi-index k := (kD KL, kR) is introduced to collect the degrees of
polynomials from the three OPS. Then, the OPS { (E)}\tfio is defined such that

Vi) == ¥ EOVLEVEED) = [Ty @), (10)

where x € {D, L, R} in the products here and below and where |Kk| := kP + k" + iR is
the degree of each polynomial resulting from the tensorization. A new inner product
(.+) : L*(R?) x L*(R?) — R is naturally induced which, in turn, naturally induces
the norm || - || : L?>(R?*) — R, such that ||u(§)||*> = (u(£),u(£)). Orthogonality is
inherited from orthogonality of the three OPS, so that

W = [ TTIvFEWEEw €] = s, D

where Jjx generalizes Kronecker symbol to the present context, differing from 0
iff multi-indices j and k are equal in all of their portions. In (11) and in similar
expressions, [ [, ¢*(§*) =: ¢ (&) represents the joint probability density distribution
of the three stochastic variables, in the hypothesis of independence. The extension
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to the general, dependent case follows on the formal side by simply replacing
the multiplicative distribution with the true joint PDF. Needless to say, practical
difficulties would arise in both the theoretical and the empirical determination of
the latter distribution.

A basis for L*(R; ¢”) ® L*(R; ¢*) ® L*(R; ¢F) is now available. We look for
the closest approximation in this function space to function (1) expressing the
dependance of stochastic variable S from stochastic variables D, L, R. Then, one may
expand S in a (generalized) Fourier series according to the basis of polynomials (10)
as the polynomial chaos expansion (PCE)

+o0 P
SE) = ) scvn(® = Y scvn(®), (12)
[k|=0 [k|=0

where p > 0 determines a practically unavoidable truncation. The choice of p may
be deduced a priori in simple cases like the one at hand (viz., p = 2 to get the
exact expansion) or induced experimentally in more difficult ones, for instance by
progressively increasing p until the marginal accuracy in the final results becomes
negligible. Care must be taken, because some important modeling feature may
require some high order term after a possibly long sequence of null lower order
terms. A sound theoretical analysis of the kind of expected functional dependence
is very important in order to deal with complex cases, and comparison with MC
method in a simple and inexpensive test case may help solve the question.

After the expansion, the information content expressed by S resides in the
sequence of coefficients sk, which, owing to orthogonality (11) of the basis, may
be individually computed by orthogonal projection of S over each basis element.
Precisely, scalarly multiplying both sides of (12) by ¥ and recalling (11), one gets

— (S s wk)
lIvcl?
The scalar product in (13) requires numerically evaluating a multiple integral,

a task that can be accomplished by means of a suitably defined Gauss quadrature
formula; see [16]. One gets

Sk (13)

N
(S, Y1) = /R SEUEPE) A = Y wSENGENIE).  (19)
j=1

where N is the number of Gauss points while w; and )‘;'j are, resp., the jth Gauss
point and weight, j € {1, ..., N}. In simple cases like the one at hand, the necessary
number of Gauss points allowing exact integration may be found a priori. In more
difficult cases one may try heuristically, experimenting by progressively increasing
N until the marginal accuracy increment becomes negligible. Each Gauss point
requires a function evaluation

S(E) = SE. & .8 = £ + £ An). (15)
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Owing to the tensor nature of the approach, the number of model evaluations grows
rapidly with the number of input stochastic variables. This problem prevents the
method from being applied in cases with large numbers of input stochastic variables.
Reduced schemes could be pursued, alternative to the full factorial scheme discussed
above, that help mitigating the computational burden without excessively sacrificing
accuracy. Still, the issue remains for large enough number of variables.

As soon as coefficients sk have been computed, a basic, standard change of
variable and orthogonality (11) easily lead (see, e.g., [10, p. 39]) to the analytical
deduction of the expected value (i.e., the mean)

Els] = /R E5¢5(E%) dE5 = sollyall? (16)
and of the variance
+o00 P
ot = [ - BV EE = 3 alnlP = Y w7
R k|=1 k|=1

Notice that the actual expression of ¢5(£%) is not required in order to compute
mean and variance: (16) and (17) immediately allow removing the linearization
drawback from traditional approaches to ROP; see Sect.2.3. More elaborated
expressions may be deduced for higher order moments. If, like in the case at hand,
¢5(£5) becomes necessary for the following developments, it can be computed by,
e.g., “fast” MC simulation adopting the last term of (12) as a surrogate model for
the real S(&) functional dependence (1). The CDF (2) is finally computed in a
straightforward manner. See Fig.4 (right) for the illustration of a sample product
code in later discussed ABB inventory test case.

Clearly, the basic reorder point model (1) at hand, of natively polynomial kind,
is so simple that, on the one hand, well suits the explanatory goal but, on the other
hand, PCE (eventually requiring a “fast” MC) is not advantageous over a direct
MC. Nonetheless, as soon as additional features are introduced into the model, thus
complicating its analytical expression and possibly requiring the solution of ODE,
or PDE, or even possibly resulting into a very complicated black box, like in the
case of DES or other dynamics based inventory models, then PCE may outscore
direct MC in terms of required model runs, with a remarkable computational gain.

3 Local Data Regularization via QP

The CDF (2) is potentially affected by artifacts deriving from the empirical sampling
of the input data that lead to its deduction. Typically, spurious spikes in the
originating PDFs may appear, due to rare events, i.e., with a recurrence period
greater than the long time scale, but that nonetheless happened to manifest therein
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by mere chance. If not suitably dealt with, that is, if data are kept as they are
after sampling (resp., if they are removed), then rare event recurrence frequency
would result artificially and misleadingly increased (resp., decreased). Owing to
a reasonable underlying regularity assumption, the presence of such anomalies is
easily spotted in PDFs by inspection.

Since spikes in PDFs result into concavity changes in CDFs, a mathematical
regularization technique based on concavity healing is here proposed to remove or
reduce the above mentioned artifacts, thus improving the quality of (2). We shall
see, when dealing with the final global optimization problem, that the proposed
regularization is also beneficial in reducing the computational effort; see Sect. 4. For
this reason we privilege this approach compared to other possible ways of filtering.
See Fig.5 for an applicative example based on later discussed ABB inventory
analysis.
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Fig. 5 Effects of QP regularization procedure over one product code in ABB inventory test case
(downsampled curves are shown, for clarity). Left If PDF ¢° and CDF &9 are generated from a 107
runs MC analysis (extremely poor and inadequate) some differences can be noted between original
(dots) and regularized (circles) PDFs, while the effect over CDFs (solid) is barely noticeable. Right
With 10% runs MC originated curves, differences become barely noticeable also in PDFs. CDFs are
already concave in the region of interest with 10* runs MC or higher, so that no regularization is
needed. In ABB inventory test case, 10° runs MC are used
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3.1 Concave CDFs

A general real function y = f(x) of real variable x is convex over a (possibly
unbounded) connex interval U C D, where D is its domain, iff f(tx; + (1 — f)xy) <
tf(x1) + (1 —=0)f (x2), Vx1,x2 € U, Vt € [0, 1], i.e., if the graph of function f over the
interval between any two points x; and x; in U does not lie “above” the line segment
from (x1,f(x1)) to (x2,f(x2)). A function f is concave over U if —f is convex over
U, i.e., if the graph does not lie “below” such segment. Linear and affine functions
are immediately seen to be both convex and concave. A straightforward link with
calculus shows that, in case of piece-wise twice differentiable functions, concavity
coincides with non-positive second derivative. In other words, the first derivative
needs being monotonically non-increasing over U in order f to be concave over U.
See, e.g., [15] for in-depth discussion. As a consequence, when f = @* is a CDF,
concavity over U means that the relevant PDF ¢* = (®*)’ be non-increasing over U.

In the context of ROP estimation, for a given stockable item the relevant PDF
¢5(£5) is typically single tailed on its “right” portion, witnessing the increasing
unlikeliness of extreme events. Along the tail, ¢° is non-increasing, by the definition
of tail, so that @5 needs being concave over a suitable set U contained in
the tail. Nonetheless, spurious and unphysical spikes may propagate through the
computations above from empirical PDFs ¢ and ¢* to computed PDF ¢°5. Spikes
alter the natural non-increasing nature of ¢5, thus spoiling the concavity of @5 in
its rightmost portion. In most cases, one could always envisage rare enough events
that require a correspondingly longer historical data series than what experimentally
available. As a consequence, spikes should be deemed a negative noise affecting
data, to be removed for the sake of accuracy, and data regularization must be a due
diligence before attacking the problem.

3.2 Concavity Enforcement

In the general case of a PDF ¢ (£) which is expected to be right-tailed, an a posteriori
method is proposed to remove possible spikes by finding the right-tailed, spikeless,
non-increasing PDF ¢’ (€) preserving mean value and minimizing a natural distance
from the original one. After this found, the relevant CDF is immediately found by
integration as ®'(§) = f_goo ¢'(¢) d¢. Application to ¢S5 and @5 will constitute a
special case. According to the preceding developments, we may assume without
loss of generality to deal with a general, compactly supported, piece-wise constant
(PWC) function reading

n—1

$E) =D b 40, (18)

J=1
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where the convex support U has been partitioned into n — 1 intervals [§;, §41], for
J €L, ....,n—1},s0that y g (§) is the characteristic function of [§;, §11], equal
to 1 if & belongs to such interval and null otherwise, while ¢; is the value constantly
taken by ¢ (€) over such interval. An analogous expression holds for ¢’ (£).

As a result of integration, the CDF @(§) = f_soo ¢ (&) d¢ is continuous and
piece-wise linear (PWL). As such, it is characterized by the sequence of n vertices
{(&, Q?i)}]'.‘zl, where @; = @(§)), so that ¢; = (Pjr1 — D))/ (§j+1 —§) > 0, the latter
sign constraint holding because PDFs are non-negative by definition. Let us collect
known values ¢;, for j € {1,...,n — 1}, into vector ¢ € R"~!, where R, denotes
the non-negative real half line. Similarly, let us collect the sought for values ¢>jf into
vector ¢’ € R

For the application at hand, only the final tail of the PDF is potentially affected
by spikes. Therefore, an initial CDF part, up to a given number of points m < n,
may be preserved as is. For any given m, the unknown vector ¢’ is found by solving
the quadratic programming (QP) problem

¢?1?1g(¢)_2¢/2_22¢/

subject to

n—1
Db =5 =1
QP,, : 1 i=1 (19)

Z¢>(,+1 s)—2¢,(,+1 )

¢j/:¢/’ Vje{l,,m—l}

¢ <o/ Vie{m,...,n—1},

now described in detail.

One obvious goal is not to excessively perturbate the basic PDF structure, that
is, to aim at minimizing some reasonably defined distance between the original
and regularized PDFs. A straightforward goal function is thus (the square of) the
Euclidean distance f(¢") := |¢ — ¢'[|3 = Z;:ll (¢ — ¢;)2, to be minimized. The
minimization problem is equivalently set with reference to goal function

n—1 n—1 n—1
2@ =F@) =D ¢7 =D ¢ -2 tp) =9 1¢' —2¢"¢.  (20)

j=1 J=1 j=1
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differing from f(¢’) by an inessential additive constant and being homogeneous

in ¢'. The quadratic form (20) is convex because the identity matrix I is positive

definite. As a PDF mandatory requirement, q&]f must be non-negative, j € {1,...,

n — 1}. This is explicitly enforced by searching for a minimizer ¢’ in R"!, i.e., the

space obtained by the tensorization of n — 1 copies of the non-negative half line.
The Oth moment (i.e., the area) of the sought for PWC PDF ¢’ reads

n—1 n—1 E_/ 1 n—1
/R Y W@ dE =Y ¢ L Y=Y @En-5. @
j=1 j=1 J j=1

Therefore, the first constraint in QP,, (19) traduces a linear (and thus convex) PDF
normalization condition.
The first moment (i.e., the mean value) of the sought for PWC PDF ¢’ reads

n—1 n—1 g:jJrl n—1 ‘2+1 _ gz
ASZ¢;X[sj,sj+l](S)ds=Z¢;/g EdE =) "¢]" , @
j=1 j=1 ' J=1

]

Doing similarly with known PWC PDF ¢ and neglecting an inessential factor 1/2
in both terms, the second constraint in QP,, (19) is obtained, traducing a linear (and
thus convex) mean preserving condition.

Initial PDF portion preservation is easily enforced into problem QP,, as ¢j’ = ¢,
je{l,...,m—1}, meaning that m—1 variables are immediately resolved. If desired,
such equalities may be used to a priori resolve up to m — 1 variables and later deal
with a reduced problem. The last part of the sought for PDF ¢’ is required to be
monotonically non-increasing, which implies that CDF @’ be concave over the
range of interest. The requirement is immediately enforced in problem QP,, (19)
as the linear inequality constraints ¢j’ < ¢j’_1, Vj € {m,...,n— 1}. Clearly, other
ranges than j € {m, ..., n — 1} could be considered in different contexts, depending
on the specific nature of the application at hand, without requiring conceptual
modifications to the proposed technique. This completes the deduction of (19).

The constrained optimization problem QP,, (19) may be attacked as follows. As
noted above, the goal function and all constraints are convex. It is well-known that
a convex minimization problem either has a unique minimum (not necessarily a
unique minimizer), or it is infeasible (empty admissible region). An initial guess
m = my value is chosen small enough so to cover a correspondingly large enough
interval U. Even though, for a given m, there is no mathematical guarantee that the
admissible region be non-empty, nonetheless it is clear that a non-increasing PDF
with suitable mean value exists if m = 0, i.e., if any ¢f is free to take a different value
from the corresponding ¢;. Therefore, starting from m = my, if m is progressively
decreased, so that a progressively larger number of degrees of freedom is introduced
into the problem, then a feasible QP,, is eventually attained. The solution to problem
QP,, corresponding to the first (i.e., largest) m for which this happens is retained as
the final solution to the problem. In the unlikely event that, in order to find a feasible
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QP,,, m needs being reduced excessively (say, below a given and reasonably defined
threshold m’), then the decision may be drawn to abandon the iterative procedure
earlier and to keep a non completely concave CDF. Under this latter respect, large

possibilities exist for heuristic criteria.
A pseudo-code description of the proposed, iterative method reads

m=m0; while (QPm is not feasible AND m>m’), m=m-1; end
if (QPm is feasible) then
solve QPm; substitute original PDF and CDF;
else
keep original PDF and CDF;
end

where both feasibility detection and QP solution are addressed by standard, state of
the art Mathematical Programming techniques; see [1, 4-6].

4 Global Warehouse Optimal Sizing via MP

Given a collection of curves expressing the relationship between ROP and confi-
dence level not to stock-out, obtained according to the above developments, the final
step consists in assigning suitable and reasonably different ROPs to all involved
goods in stock (typically hundreds of goods, considering single product families
individually), and consequently choosing suitable service levels for all items, so
that the global (and suitably weighted) service level be maximized and under the
constraint that the global cost comply with a global budget; see Sect. 1, problem (B).

4.1 Pareto Fronts

Let us consider the ith stockable item. A key performance indicator (KPI), or service
level, is naturally expressed by the probability not to stock-out

ES
PAES) = B5(E) = /_ $5(0) dz. 23)

The cost of stock may be estimated based on the average stock level over time;
see Fig. 3. Within the assumptions of the model adopted, as soon as the reordered
quantity O; > E[D;](E[L;] + E[R] At) enters the stock, a level S; — D;(L; + RAt) + O;
is attained, eventually decreasing linearly down to a level S; — D;(L; + RAf®) just
before receiving the next reordered quantity. Such saw-tooth behavior is repeated
indefinitely. Adopting average values for other variables than the reorder point S;
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and recalling that E[R] = 1/2, the average stock level' for the ith good is related to
£5 as

0,‘ At
Si=§&+ ) —EID] (E[Li] + ) : (24)
Stock costs can then be expressed as

Ci(£%) = C* + CiS; = C) + CgS, (25)

where CY > 0 is an activation cost, i.e., independent of the stocked quantity, while
C! > 01is a unit cost, so that C}'S; is a cost proportional to the average stock level
S; and, finally, C, = C* + C“(0;/2 — E[D,J(E[Li] + At/2)) is a fixed cost with
reference to variable £°. The unit cost C¥ is intrinsically non-null, for otherwise
the stock problem for the relevant good would be trivially solved by assigning an
arbitrarily large reorder point, a meaningless case in the applicative context. Indeed,
C! # 0 implies that map (25) be bijective and thus invertible. Moreover, the inverse
map C;! is still affine and such that £ = (C; — C)/C¥.
According to the commutative diagram
¢!

i

C[G R— R 9%‘5

1
\ i oS
Fr=(C7)* (@f)=aFoC}!

[O,]] BPI‘

it is possible to translate (23) and (25) into a parametric description of the
P; = F;(C;) curve (performance vs. cost curve; see, e.g., Fig.6), where F; :=
(CTH*(@F) = @5 o C7! is the pullback of ®?. Notice that concavity (as well
as convexity) is invariant under composition with affine maps, that is, if g = f o [,
where f is concave and / is affine, then

(foD(txy + (1 = x2) = f(U(tx1 + (1 — 1)x2))

= f(tl(x1) + (1 — Dl(x2))
#f(U(x1)) + (1 = )f (I(x2))
1(foDx)+ (1 —0(foD(x),

v

so that also g is concave. Therefore, since both C; and its inverse Ci_l are affine,
concavity of F; is equivalent to concavity of @?. Concavity in case of performance
vs. cost curves is reasonably justified empirically: Saturation frequently occurs in

'Tn case of models (3)~(5), similar considerations lead to S; = £¥ — E[D,J(E[L:] + At/2 + T/2),
S; =& + 0;/2and S; = £, resp.
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Fig. 6 Performance vs. cost curve for a sample product code, computed according to the proposed
method, i.e., by means of a nonlinear model and without any normality assumption (solid). Also
shown are the curves computed according to the traditional normality assumption and with standard
deviation computed by means of variance propagation, i.e., with model linearization, (dash—dot)
or with Hadley-Whitin formula (dashed); non negligible deviations from the correct behavior are
observed in the latter two curves

many economical systems, so that the same marginal cost increment results into
progressively smaller marginal performance increments as the performance level
increases. The performance vs. cost curve for a sample product code is shown in
Fig. 6, where the discrepancy between proposed and traditional approach can be
appreciated.

Performance vs. cost curves satisfy Pareto front requirements. Precisely, any
given point (C;, P;) on the curve is optimal in the sense that with a given cost C;
it is not possible to obtain a better performance than P; = F;(C;), whereas lower
performances than P; are unjustified, since the system has the capability to behave
better. Dually, to attain a given performance P; it is not possible to spend less than
C;, whereas to spend more is economically unjustified. In conclusion, points above
the front are infeasible and those below are uneconomical; see Fig. 8, where the
same considerations are illustrated for the whole inventory Pareto front, to be later
deduced.

We consider now the problem of choosing a suitable positioning somewhere
along the front. This amounts to solving a global optimization problem over a collec-
tion {(G;, w;)}'_, of N stockable goods G;, each one with a relevant performance vs.
cost curve and additionally provided with a global weight w; € [0, 1], characterized
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in that vazl w; = 1 and expressing the good’s relevance in the frame of the global
weighted average performance

N
P = Z w;P;. (26)
i=1

Weights are possibly chosen equal to 1/N for all goods, whenever no distinction has
to be made.

4.2 Problem Formulation: LP

Let us first assume that all P; = F;(C;) curves are concave, i € {1,...,N}. Local
data regularization via QP may be used to force non concave cases to the assumption
at hand; see Sect.3. Let us collect costs C; and performances P; into vectors ¢
and p, resp. Then, the unknown vectors ¢ and p are found by solving the linear
programming (LP) problem

N
}11a>5v Z W,’P,’
LP : (27)

aiji-l—aijifbi,j, Vie{1,...,N},\7’j€{1,...,n—1}

cl<C<cC', Vie{l.....N}

Pl<P,<P', Vief{l,...,N},

now described in details.

The linear goal function is the weighted average performance (26), to be
maximized. A (possibly null) minimal admissible global performance P’ is enforced
by the first constraint in problem LP (27). A global budget constraint is expressed
by the second constraint in problem LP (27), where B is a given global cost budget.
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Notice that, owing to the joint constraining action of the two inequalities above, the
problem is either infeasible or a performance non worse than P’ is obtained. In the
former case, a problem revision is needed in order to make the problem feasible, and
either the minimal performance P! is reduced or the maximal budget B is increased.

The actual shapes of performance vs. cost curves have to be enforced. Since we
deal with PWL curves, the information relevant to the ith such curve is expressed
by the collection of n vertices {(Ci;, Pi;j)}i_; the Pareto front consists of (notice
that index i runs over goods while index j runs over the curve vertices for the ith
good). The equation of the line through any two consecutive vertices (C; ;, P; ;) and
(Ci j+1, Pij+1) along the ith front is of the kind

ai;Ci+al Pi=bij jef{l.....n—1}, (28)

where lej = P,'!j — Pi,j+l’ lej = CGij+1 — C,'J' and b,"j = ,'!j+1P,"j — C,"jP,"j+1.
Since the ith front is concave by assumption, the plane portion “below” the front is
the locus of points (C;, P;) “below” the plurality of all lines (28), as expressed by
the third collection of inequality constraints found in problem LP (27); see Fig. 7.
The mathematical characterization of the Pareto front, as discussed in Sect. 4.1, will
force (C;, P;) to adhere to the front for, otherwise, a more economical solution and
with same performance could be found (or, dually, a better performing solution and
with the same cost). Finally, lower bounds C! (resp., P!) and upper bounds C* (resp.,
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Fig. 7 PWL performance vs. cost curves (pareto fronts) for two sample stockable goods (first
and last moving in the inventory), as rendered by means of a system of linear inequalities in LP
problem (27); minimally and maximally acceptable service levels are also shown as horizontal
lines defining the front portion of interest (bold) along which the optimal point is restrained to
reside
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P}) could be imposed onto C; (resp., P;), as expressed by the remaining constraints
in problem LP (27).

Different inventory management policies may modify the restraint set, retaining
only part of the above. The LP problem is solved with standard, state of the
art Mathematical Programming techniques, such as the well-known and efficient
simplex method; see, e.g., [2].

4.3 Problem Formulation: MILP

As an extension of Sect.4.2, let us now address the general case in which some
or all performance vs. cost curves are non concave. Unfortunately, this case is
mathematically way harder than the concave case. To understand why, one must
recall that each pair (C;, P;) of variables in LP problem (27) belongs to the region
below the corresponding concave performance vs. cost curve, including the latter
curve as part of the boundary. (In the optimal solution, the variables do belong,
pairwise, to such boundary curves.) Now, since the performance vs. cost curve is
concave, the feasible region for each pair of variables is convex. Additionally, as
detailed above, the feasible region is described by a collection of linear inequalities.

Both of these advantages are lost in the general, non-concave case. Since the
intersection of convex regions is convex and since half planes delimited by lines
are convex regions, if one should now try to describe the region below a non-concave
performance vs. cost curve by means of linear inequalities, a convex region would be
obtained, which is not the case by assumption. Nonetheless, the attack strategy here
proposed consists of partitioning each generally non-convex feasible region into
convex parts. Then, the optimal solution must reside in one, and only one, of such
parts. This fact may be handled by introducing a potential pair of variables for each
part, along with Boolean, disjunctive variables. The latter are used to express the
constraint that one, and only one, of such potential pairs of variables be active, all the
others being “phantoms”. The contributions of phantoms must be suitably removed,
since such fictitious points are only introduced for the sake of convenience, but they
are not “real”. It is easily understood that the disjunctive nature of the variables
and constraint make the problem combinatorial. The mathematical tool of integer
programming is then required, with a remarkable increase of both the theoretical
complexity and, above all, of the computational burden.

We now show the proposed approach in details. Due to its PWL nature, it
is always possible, without loss of generality, to assume that the generic ith
performance vs. cost curve consist of K; concave portions. If such curve is originally
concave, then K; = 1. As an extreme case, K; = n—1 and concave portions coincide
with the linear spans of the PWL function. With reference to the ith performance
vs. cost curve, let us introduce a collection {(Cy, Pik)}fi:l of the sought for points,
the kth of which belonging to the kth concave portion. Vectors ¢ and p need being
suitably enlarged so to host all of the so introduced unknown variables for all curves,
foratotal of K = vaz | K; entries. Let us also assume that the kth portion of the ith



88 L. Ghezzi

curve extend over the [C}, C%) interval, so that the “right”-most extreme coincide
with the “left”-most extreme of the next interval.

Additionally, Boolean decision variables are introduced, so that z; € Z, = {0, 1}
be associated with the kth concave portion of ith stockable item performance vs.
cost curve. The z;’s are collected into vector z € ZX, where the latter space Z§
is the lattice of multidimensional points obtained by tensorization of K copies of
Zy,. The basic idea is that, if zz = 1, then the point on the ith Pareto front lies on
its kth concave portion (the active portion), and z; = 0 for all other k’s. For the
sake of convenience, the points (Cy, Pj) relevant to unused concave portions are
still formally present, and they are conventionally located at the “left”-most point
of such portion, i.e., (C}, Fi(CL)). Suitable terms will consequently arise in the
mathematical description, so to compensate the presence of such “phantom” points.

The unknown vectors ¢, p and z are found by solving the mixed integer linear
programming (MILP) problem

N K; N K;

max Z Z wiPy — Z Z wiFi(Ch) (1 — z)

epeRl zeZy T D i=1 k=1
subject to

Ci — (C4 — Cl)zix < Clp.
Vie{l,... N}, Vke{l,.. . K}

K; N K

wiPi — Z ZWiFi(ka)(l —zx) > P!

Mz

i=1 k=1 i=1 k=1
up - 1 L& K (29)
‘ Z Cik — Z Z(l —z)Cy < B
i=1 k=1 i=1 k=1
ijCLk +al Pk = bir,j,

Vie{l,....N},.Vje{l,....n—1},Vke {1,....K;}
ZkKi=11ik =1, Vi€ F,
YK <l Vi¢ I

Cl < Cy < C%, Vie{l,..., N, Vke{l,... K}

Pl <Py <P, Vie{l,...,N},Vke{l,... K},

now described in details.
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The basic structure of problem MP (29) is clearly inherited from problem
LP (27). Notice that the maximizer is sought for in a multidimensional space,
obtained by tensorization, where ¢ and p are both in RX and thus the relevant
entries must be non-negative, while z is in 7K and thus the relevant entries are
only allowed to take either value 1 or 0.

The penultimate collection of constraints forces Cy to belong to the relevant
concave portion. Let us consider the first collection of constraints. In case the
kth is the ith good active portion, then zz = 1 and the constraint reduces to
Cix < Cj, that is, a redundancy. Otherwise, zx = 0 and the constraint reduces to
Cy < Cf.k. The only possibility is thus Cy = ka, so that phantom points are forced
to coincide with the “left”-most point of the relevant concave portion. The goal
function is still the weighted average global performance (26), with the additional
summation compensating phantom points. As a matter of fact, the active portions do
not contribute to such additional summation (1 —z = 0), whereas all other potions
remove a w;F, ,-(ka) contribution from the global performance (P = F ,-(Cf.k) for
phantom points).

The same reasoning applies to the minimal performance P’ constraint and to
the maximal budget B constraint (Cyy = Cl’.k for phantom points). As a matter of
fact, also in this problem a (possibly null) minimal admissible global performance
P! is enforced by the second constraint in problem MP (29), and a global budget
constraint is expressed by the third constraint in problem MP (29), where B is a
given global cost budget. Notice that, exactly like in problem LP (27) and owing
to the joint constraining action of the two inequalities above, the problem is either
infeasible or a performance non worse than P! is obtained. In the former case, a
problem revision is needed in order to make the problem feasible, and either the
minimal performance P! is reduced or the maximal budget B is increased.

Since discrete decision variables have to be introduced in order to handle the non-
concave case, it is worth taking advantage of their modeling power and introduce the
possibility to decide whether to stock or not some goods, based on global optimality
considerations. Precisely, let us introduce an index set .%,;, of must-have goods,
necessarily to be stocked for any relevant strategic reason. Obviously, the subset
i, can possibly coincide with the universe of stockable goods, if desired. All other
goods are subject to possibly being excluded from the MTS inventory management
policy, depending on the solution of problem MP (29). Must-have goods (i € -Z,,;)
are characterized in that exactly one concave portion is active (i.e., exactly one
zix = 1, all others being null), while all other goods (i ¢ .%,,,) are characterized in
that at most one concave portion is active (i.e., possibly one z; = 1 and not more,
all others—possibly all—being null). Such conditions are mathematically enforced
by means of the fourth last and third last constraints, resp.

The resulting problem, especially after the data regularization procedure dis-
cussed in Sect.3, is usually lean enough to be readily handled with standard
branch-and-bound techniques on standard computers; see, e.g., [12].
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5 Conclusions, Extensions and Future Research

The proposed approach to stochastic optimal sizing of inventories is the result of
activities that the present author has undertaken in order to support the rationaliza-
tion of ABB Low Voltage Products Division warehouse located in Vercelli, Italy,
and serving the local national market from ABB factories located nationwide and
abroad. Global optimization according to Sect. 4 leads to a global Pareto front, at
inventory level, obtained pointwise by varying the global cost budget B in (27)
or (29); see Fig. 8.

As for problem (A), i.e., reorder point based performance vs. cost curve
determination, the proposed approach goes beyond ABB’s state of the art (i.e.,
Hadley-Whitin formula) in that the stochastic problem is not forcedly linearized
and in that the assumption that involved probability density functions be Gaussian
is relaxed to handling generic, experimental distributions, deduced on a sampling
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Fig. 8 Global Pareto front (solid) for a portion of ABB Italy—Low Voltage Products Division
warehouse, relating global costs (sum over 176 different products) and overall weighted service
level; points above the front are infeasible, while points below are uneconomical, because others
may be found on the front with same performance and cheaper or, dually, with same cost and better
performing. In case no global optimization is carried out but, rather, the same prescribed service
level is assigned to all goods, then, by varying the prescribed service level, a remarkably lower
curve is obtained (dashed), inside the uneconomical region. As expected, the optimal and non-
optimal curve converge at the lowest admissible (90%) and highest possible (100%) service level,
where exactly the same quantities are stocked for all goods, while inoptimality is greater elsewhere
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basis. A posteriori, it is found that involved distributions are actually very far away
from being Gaussian.

As for the global optimization problem (B) of locating working points for all
involved goods along relevant performance vs. cost curves, a very fast approach
is here proposed, based on forced regularization of non concave curves and LP,
along with an alternative, more refined, but also potentially more cumbersome
approach based on MILP. ABB priorly followed a rule-based approach following an
ABC categorization of goods, intrinsically “local” and with no guarantee for global
optimality.

The whole mathematical machinery has been condensed into a Matlab package
currently available to ABB professionals operating in Logistics. This application
reads suitably formatted data extracted from the Company’s ERP (basically, the
last 12 months movements, on a rolling basis), processes them, and finally delivers
suggested reorder points, along with graphical indication of performance vs. cost
curves, on a good-by-good basis.

The proposed methodology for the global optimization of systems consisting of
a collection of performance vs. cost curves (see Sect.4) could be extended to other
systems than just inventories, by abstracting from what “performance” and “cost”
actually represent. Examples in the world of industrial operations include finding
the optimal strategy for running a multi-commodity productive system, where the
performance may be the volumes of each commodity produced, and the cost may
be some suitable measure of allocated resources, such as, e.g., manpower, worked
hours, externally outsourced work, and the like, each one being usually restrained
to a globally available budget. Many other interesting applicative fields could be
easily spotted, with different interpretation of involved quantities but with the same
or similar mathematical structure.

Performance vs. cost curves may also have a different origin than the one
discussed above for inventories, including empirical curves. Concavity driven data
regularization (see Sect.3), may still be adopted in order to simplify the global
optimization problem.

Applications may be envisaged requiring large and thus challenging instances
of the MILP problem to be solved. Therefore, devising highly efficient and robust
approaches to problem MP (29) could find sound motivation. Future research may
go beyond general purpose branch-and-bound and seek for an attacking strategy
possibly exploiting the specific mathematical structure of the problem. Cumulating
a plurality of additional constraints than those examined here may also be an
interesting and motivated future research effort. Last, but not least, a deeper
statistical analysis and handling of input data could be highly beneficial. The method
hereby proposed could easily be adapted in order to be compatible with other than
PWC PDFs.
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