Modeling of Material Flow Problems

Simone Géttlich, Michael Herty, and Melanie Luckert

Abstract In this article we discuss the description of modern manufacturing or
production problems using continuous models. Instead of a detailed description
of the production process, a mathematical formulation is used based on transport
equations. The challenge is to derive novel and nonstandard approaches that allow
to incorporate detailed nonlinear dynamic behavior, which is currently not possible
with the widely applied linear or mixed integer linear approaches. Starting from
discrete event simulations as a basic description we explore the relation between the
product density and the flow of parts (also known as clearing function). Data-fitting
procedures help to identify the underlying parameters. We show the relationships
between discrete event simulations, queuing models and transport model-based
methods, and present several applications.

1 Introduction and Literature Overview

Manufacturing systems are studied in the literature on either a discrete level (using
time recursions) or on a macroscopic level (using a continuum description based on
differential equations for transport processes). In recent years, continuous or fluid-
like models have been particularly introduced to model high-volume production
[3-5, 10-13, 17, 21]. Those dynamics are often inspired by discrete event simu-
lations (DES), see [9]. In the current work we aim on bridging the discrete and
continuous level by presenting a suitable hierarchy of models with reasonable
transitions.
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An approach is proposed similar to gas dynamics. In physics, discrete events
and discrete parts are considered as fundamental units used to describe microscopic
phenomena. Those time-dependent individual dynamics are typically governed
by ordinary differential equations. They provide an accurate description of the
underlying process. At the same time, the system as a whole shows pattern formation
such as jams in traffic flow, flocking in swarming behavior or shock waves in
aerodynamics. A similar approach for production processes is considered. Here,
the detailed dynamic is the description of the production process of individual parts.
However, often there is only interest in the global phenomena of the system like
overloads, queuing or mean production rates. We may argue that there are different
scales also present in production. Therefore, a similar approach as in gas dynamics
is suitable in order to understand the pattern formation in production.

The individual dynamics are described by a discrete event simulation (DES)
in production processes. DES is a stochastic simulation tool for individual parts.
The corresponding continuous equations are fluid-like models. On a different scale
the latter describe production flow in an aggregate way leading to coarse-grained
models. Due to the reduced dimension they are expected to be computationally
efficient. Typically, there is only one conserved quantity in production being the
total number of produced items. Therefore, the proposed continuous models are
conservation laws for the product density p(x, 7) at production stage x € [0, 1] and
time ¢t > 0. Here, the flux function f is usually called clearing function. Starting with
Graves [19] and Karmarkar [23] monotone, concave clearing functions have been
proposed. They are now used in production engineering, see for example [7, 8, 25].
Other approaches to derive clearing functions are mean field limit considerations
[3, 5], comparisons with observed behavior [6] or queuing theory under steady-state
assumptions. Examples for all these possible options can be found in Sect. 2 (Fig. 1).

In the case of a single unlimited buffer, Poisson processes for the arrival of
products and a Poisson process for the production time lead to f = l’j_“;,, where

W = fol p(x, t)dx is the (total) Work in Progress (WIP), see for example [20],
and p is the maximal production rate. In queuing theory this is known as an
M/M/1 queue, see also the discussion in Sect. 2. We may use p and W equivalently
whenever p is constant in x due to a production stage of at most x = 1. In
[25] a clearing function for an M/G/1 queue (here service times obey general
distributions) is proposed including parameters that may adjusted to given data. The
resulting clearing function is again a steady-state consideration and in general for
models based on product flow no transient clearing function model has been derived
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Fig. 1 Different ways to derive a clearing function f
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yet [26]. It has been observed that in different production periods different clearing
functions may be suitable. We refer to [2, 13, 24] for an overview.

We also propose different approaches using (real) data to establish the clearing
function, i.e., the fundamental relation between f and p. We present new continuous
models based on realistic data in order to predict production behavior. As already
mentioned non-stationary queuing theory predicts that there is no fixed functional
relationship between product density and flux [26]. Therefore we are concerned
with the detailed data-fitted modeling of the flux function f and its application to
conservation laws of the form

dip(x, 1) + 9 f(p(x. 1)) = 0. (1)

The model (1) is based on the assumption that the amount of products and
the number of production stages justifies a continuous model. A prototype of a
production process consists of a machine with associate buffer and no limit on the
storage capacity. As we will see in Sect. 2 there are several ways to establish the
fundamental relation between p and f. Such a relation is required to obtain a closed
model by Eq. (1).

2 Data-Driven Differential Equations for Production

2.1 Mean Field Limit Approach

The following model was originally introduced by Armbruster et al. [5] in 2006. It
was the starting point for the description of a high-volume multi-stage production
line by partial differential equations. Detailed explanations and reasonable exten-
sions regarding this model can be found in [13, 16, 17]. The key modeling idea was
and is still today to use a discrete description, a so-called discrete event simulation
(DES), for the small scale effects and a continuous model to describe large scale
phenomena. It can be really shown that both approaches lead to the same results in
case of mass production. In the following we present the main ingredients of these
models since they are the basic framework for all further considerations.

Discrete event simulations models (DES) provide a powerful tool for an accurate
description of the underlying production process. The main idea of these models
is to track parts through the whole production process so that information on
all part arrival times is fully available. These times obey internal production and
order policies but can be given in the case of a first come-first serve policy in a
straightforward manner.

In the sequel, we assume that the amount of parts is conserved, i.e. no parts are
lost or gained during the production process. The parts have to undergo different
production steps where there is the possibility to store parts inbetween. For the first
consideration the inventories or buffers have infinite size. Parameters defined by
production are the processing velocity and a maximal capacity for each entity.
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Fig. 2 A serial production line

To derive a discrete model we consider the particular situation of a serial
production line consisting of Mp production units. The output of one unit is directly
fed into the next one, i.e. machine m ships all parts to the next machine m + 1 as in
Fig.2.

Every machine is characterized by the processing time 7'(m) and the maximal
capacity p(m) measured in parts per unit time. The processing time 7'(m) is the
time which is needed to finish a single production step. In this first attempt, the
production line should be reliable, i.e. sudden shut-downs of machines are ignored
for the moment. However, since machines have possibly different capacities, it may
happen that parts have to wait until the next operations can be performed. Therefore,
inventories or buffers are installed between production units.

The evolution of parts through the system is now determined by the computation
of arrival times. We define the arrival time of part n at the buffer of machine m
as a'. The total amount of parts in the system is denoted by Np. After successful
production, the leaving time €)' denotes when part n leaves machines m and arrives
at machine m + 1, see Fig. 2.

The computation of arrival times a) obviously depends on the current buffer load,
i.e. either the buffer is empty or filled. If the buffer is empty, part n is immediately
passed into production. Once the part is released for production, the leaving time e}
can be determined by adding the processing time 7'(m). In the other case the part has
to wait. If N parts arrive at the same time ¢ at the machine having an empty buffer,
the model (2) yields the departure time of the ith part as T(m) + (i — 1)/ u(m),
i =1,...,N. Hence, within a unit length of time the machine produces p(m) parts.
Therefore, a buffer will be build up if the inflow per unit time exceeds p(m). This
buffer may grow to infinity if the inflow to system exceeds p(m) for all times.

We end up with a time recursion for the computation of all arrival times:

1

+M(m)} m=0,1,..., n>1. 2

e = max {a) + T(m), €],

As evaluation measures for (2) we use curves of cumulative counts, so-called
Newell-curves, as already successfully applied in traffic engineering, see [27]. The
idea of Newell-curves U (m, ) is to count all parts that have been arrived at machine
m up to any fixed time

N
Um.ty=Y H(t—e)). m=0.....Mp, t>0, (3)

n=0
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where H(-) is the Heaviside function

0, ifr<ey
H(it—eé)) = .
1, ift>ey

Hence, the Newell-curve U(m, t) provides the total number of parts passing from
machine m — 1 to machine m up to time 7. The difference of two consecutive Newell-
curves is the number of parts actually processed in unit m including the parts in the
buffer as well. This difference is known as Work In Progress (WIP) and is denoted
by W(m,1):

W(m.t) = Um,t) —U(m + 1.£), m=0,....Mp—1. @)

Although DES models reflect the most accurate way of modeling a time-varying
production process, the computational complexity highly depends on the number
of parts being considered. An alternative simulation approach might be continu-
ous equations. These kind of equations arise whenever the relationship between
changing quantities (modeled by functions) and their rates of change (expressed as
derivatives) is known. For the special scenario depicted above, a continuous model
can be directly derived from the DES, see [5] for a detailed proof. The idea is to
investigate the continuum limit (Mp, Np — 00) and to analyze in which sense an
approximate density and flux satisfy a conservation law for the part density.

The continuous model describes the evolution of the part density p(x, ) at x in
time ¢. The space variable x can be interpreted as the degree of completion. For
instance, x € [0, 1] does not represent a physical position but rather the degree
of completion or stage of production. The manufacturing system has a prescribed
inflow A(¢) over time ¢ at x = 0 and an outflow at x = 1 of finished products. The
density p(x, t) is transported with velocity v(x) if the flow of parts is less than the
maximal capacity p(x), i.e., p satisfies the transport equation or mass conservation
law

0ip(x, 1) + 0 f(p(x, 1)) =0, p(x,0) = po(x), ®)

where the relation between flux and density is given by

f(p(x. 1)) = min{v(x)p(x, 1), pu(x)}, (6)

and po(x) describes the initial state of the line, see also Fig. 3. This relation is also
known as clearing function in the production literature.

Equation (5) is the continuous analogue to Eq. (4) and hence the Work In Progress
(WIP) the discrete representation of the part density p(x, ). The main difficulty
is that the flux function (6) can become discontinuous due to the assumption that
processors may have different maximal capacities. For instance, if machine x,, has
higher capacity than machine x,,41, i.e. w(x,) > pU(x,+1), 6-distributions occur



26 S. Gottlich et al.

Fig. 3 Example of a clearing AN
function given by Eq. (6) o

in the density at his point since mass has to be conserved. Obviously, the limiting
density will be a distribution and not a classical function. This corresponds to the
fact having buffers in front of machines.

Finally, we present computational results for the discrete (2) and the continuous
model (5). We consider a production line consisting of two processors, i.e. Mp = 2.
The capacities and processing times of the two machines are u; = 2,7 = 1 and
M2 = 1,T, = 1. The discrete model (2)—(4) can be straightforward implemented
using

1
A(t(0,n)) = 7(0,n + 1) — (0, n) (7)

t(m+ 1,0) = t(m,0) + T(m). (8)

as initial conditions. Here, the function A denotes the total inflow into the system,
see Fig. 4. Furthermore, we discretize the system (5) in space m and time i using an
Upwind-scheme for the conservation law:

At
PCm, tit1) = pQxm, ;) — Ax(f(xmﬂ, ) —fQm, 1)), m=0,1,2,

Flomt) = min{L (X)), V(xm) 0, )} m=1,2 o
At), m=0.

The time steps At are constant and satisfy the CFL condition Ar < Ax/v. We
assume an empty line in the beginning, i.e. p,, 0 = 0, and a randomly disturbed
initial profile A(¢) such that the maximum capacity of the machines is exceeded, see
upper part of Fig. 4. We compute the arrival times according to (7). Both machines
have length one and are divided into ten cells. We compare the WIP from the
recursion (2) and the discretized conservation law (9). Figure 4 also shows the
corresponding WIP of each machine in the production line. The red line is computed
from the time recursion for the transition times while the blue dots are computed
from the conservation law. The WIP of machine one is computed as fol p(x, 1) dx.
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Fig. 4 Inflow profile A(¢) prescribed as initial data (above) and work in progress versus part
density (below)

2.2 Observed Behavior and Phenomenological Approach

In this section we illustrate a phenomenological approach to modeling with
macroscopic equations. The goal is to derive equations based on observations of
DES simulations. This approach can be employed when the detailed description of
the DES equations and its setup is not available.

To exemplify, we consider experiments conducted by Gossens [15] using the
x (or Chi) language during her Master-Thesis at TU Eindhoven. The data for the
DES description was collected in semiconductor production with limited storage
capacity. From the DES simulation several interesting observations have been
obtained. A single production line with exponentially distributed interarrival times
for the inflow has been considered, cf. Fig. 2. It has been assumed that the processing
rate is pu(x) but with the crucial difference that the storage capacities buffers are
limited by a quantity pm,x > 0. The following scenario has been taken from the
semiconductor factory and analyzed numerically using a DES simulator. In above
case the y Simulator developed by Beek and Rooda at TU Eindhoven has been used.
The description of the experiments and simulations are summarized as follows:
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1. A production line of Mp = 100 stations and time horizon of T = 11,000 is
considered.
2. We start with an initially empty factory, where the arrival rate is

min A(f) < min .
1€[0.T] ® XG[O,IMP]M(X)

The inflow is ramped up until a steady state formation of the part density within
the factory is achieved.

3. After the system runs in steady state there is a shutdown w(Mp) = 0 of the last
machine immediately leading to a bottleneck situation. Buffers of downstream
machines are filled step by step since production is blocked by the unavailable
last machine. Due to the finite size of the buffers the production process stops at
some time f.

4. At time 7 the last machine is again operational at same capacity as before. The
production starts again. The congestion is slowly moving and buffer sizes are
reduced until the system approaches its steady state.

We are interested in a continuous equation having the same wave pattern as
observed in the DES simulation, see Fig. 7. A suggestion has been proposed in [6]
and [22]. In [6] a conservation law has been derived taking into account limited
capacities of buffers and non-homogeneous steady state behavior starting from
observations only. Since parts are still conserved during production a conservation
law similar to (5) has been proposed. However, the design of the clearing function
is more involved due to the maximum part density pmax characterizing the buffer
limits. The key difference to the previous model is that the production might be
interrupted and jams may occur. The latter move backwards within the production
line. In particular, the observation described in step 2 motivates therefore a non-
monotone and discontinuous clearing function. We introduce a discontinuity at pmax
such that information propagates extremely fast towards the downstream machines.
The final relation is given by Eq. (10)

wp
I+ptkp(1—x) TOT P < Pmax

f(p.x) = (10)

for p > pPmax

with k > 0 being the decay rate of the processing capacity along x. An example is
depicted in Fig. 6.

The discontinuous clearing function involves several numerical challenges due
to the high speed of wave propagation. The simplest remedy is to smooth the
function (10). Unfortunately, this implies severe restrictions to the time step size
At. An alternative is the embedding of the clearing function into a second order
model [18, 22].

For the experiments we parameterize the workstations by x € [0,1] and a
maximal density of p,,. = 1. The production capacity is constant p(x) = 2 for
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Fig. 5 Computational results for the discontinuous flux function from a y-simulation for A () <
(x), cf. Fig. 3.6 in [15]. We observe the following phenomena from left to the right: shutdown of
the last machine and congestion—release of production draining after the last machine has been
repaired. The figure shows snapshots of averaged WIP profiles

f(p)a

Pmax

Fig. 6 Example of a clearing function given by Eq. (10)

all x and £ = 0.7. We start with an empty factory at time + = 0 and a constant
arrival rate A(f) < u(x) atx = 0.

The computed results cover the essential scenarios ramp up, blocking and release
as described in Fig. 5. Apparently, the system behavior reproduced by a continuous
model is obtained at lower computational costs compared to the DES. We want to
stress that the model (10) is not derived in a rigorous way as done in Sect. 2.1, but is
solely based on observations. It is unclear for now if a rigorous derivation is possible
(Figs.6 and 7).
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Fig. 7 Computational results for the discontinuous clearing function (10) used for a comparison
with Fig. 6. The pictures are from reference [18]

2.3 Data-Fitted Simulated Clearing Functions

In this section we propose a general method to derive clearing functions based on
a DES simulation using real factory data. As discussed previously non-stationary
queuing theory predicts that there is no fixed functional relationship between
product density and flux [26]. However, transient clearing functions have been
proposed starting with the work of [1] and [28] to incorporate dynamic effects. We
proceed in this spirit in order to obtain a coarse-grained model of transport type (1).

To exemplify we use data from a mid-size German manufacturing company.
The available data are order and release data of the major single production step.
The layout is precisely as in a theoretical queuing model, i.e., we have a buffer
where parts arrive and a machine applying a manufacturing step. Available is
production data for 1 year (2012). Mathematically, a probability distribution for the
interarrival times is computed from the data. Further, a probability distribution for
the production times is computed from the data. Here, we use as sample interval
single days. The resulting probability distributions based only on the available
data are depicted in Fig. 8. We observe a strong possibly exponential decay of the
probability of high interarrival times. A similar observation is true for the production
times. The discrete probability distribution is interpolated. This allows to have an
arbitrary amount of data points available for later DES simulations. The sampled
data are indicated by black dots in Fig. 9.
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Fig. 8 Probability distribution of number of parts per day from a German manufacturing plant.
Left: inter-arrival times, right: production times

Theoretically, now different approaches are possible. On the one hand we may
fit an exponential probability distribution function ®,(x) = rexp(—rx)H(x) of
mean i to each discrete resampled probability distribution. This leads to a Poisson
distributed interarrival process of a certain (fitted) rate (called A) and a Poisson
distributed production process of a data fitted rate . Then, the setup is precisely as
in an M/M/1 queuing model with the well-established relation between WIP W and
flux f = A as

uw

F=1iw

This relation is obtained also when simulating a DES with interarrival process given
by @, and a production process described by ®,,. We have the advantage of deriving
a single explicit formula closing Eq. (1). However, the data-fitting happens prior to
simulating the dynamics.

In the second approach we reverse the procedure. We first apply a DES
simulation sampling from the interpolated probability distributions. Then, we record
the WIP and flux of several DES simulation. Note that for a DES simulation is
not required to have exponentially distributed times. However, we do not expect a
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Fig. 9 Probability distribution of number of parts resampled from real data depicted in Fig. 8. In
black are simulated points, in blue available data points. Left: interarrival times, right: production
times

closed formula since the probability distributions are not exponentially distributed
and therefore the process is not necessarily Poisson. The resulting WIP and flux
values for 2000 simulations of the interpolated data is shown in Fig. 10. Clearly,
we observe a spread of the data across the diagram related to the fact that the
underlying interarrival and production probabilities are obtained from interpolated
data. However, the data suggests an empirical clearing function f = f(W). Several
choices are possible. We depict in Fig. 11 a clearing function fitted to the mean
of the data for any fixed WIP. This relation can not be expressed explicitly in a
functional form. However, it also provides a closure relation for Eq. (1). In order
to use this relation in a predictive model we would need to table the fitted clearing
function. However, the computational effort is very small compared with a DES
simulation. For example, here we require to table 50 pairs of WIP and flux in order
to describe the closure relation. Within the second approach the averaging therefore
happens after the DES simulation leading to a more detailed WIP flux relation. It
is interesting to note that with the presented results the WIP flux relation would not
be monotone any more. This allows therefore to also obtain a more complex flow
pattern predicted by Eq. (1).
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We also mention a different approach presented in [14]. In Fig. 11 we observe
that the simulation averages (depicted as red dots) WIP flux relation resembles for
small values of the WIP a shape similar to

uw

T+w (i

S, W)

However, the value of u is not necessarily equal to the value obtained in the first
approach.

Furthermore, the simulation averages do not cover well the spread of the data.
In [14] we propose to combine Eq. (1) with Eq.(11). This leads to an additional
unknown p = p(x,1) in the system. We need to prescribe a model for this quantity
in order to close the system. To this end we note that u resembles a production rate.
This rate is supposedly known when parts arrive (stating a release date). However,
this rate might change for the new parts. Hence, it is reasonable to assume that
M is a quantity that is moved with the product flow. The equation describing this
observation is given by

O (x, 1) + v(x, )0, pu(x, 1) = 0. (12)
Herein, v is the velocity of the moving parts of density p which is given by

P V(. 1) = “f’f;’;’(’f;;) — Fue 1), plx. D). (13)

Summarizing, the full model proposed in [14] is given by Eqgs. (1), (12) and (13).
Among the properties of the system are hyperbolicity except at zero production
density. The eigenvalues are at most v(x, ). Therefore, there is only a finite speed
of propagation of information bounded by the speed of the produced parts. This
coincides with the expected behavior of a production line. The clearing functions of
the extended model form a family of functions of the type (11) for a fixed value of
(. This allows to capture the spread in the data more efficiently.

Summarizing, several possibilities to extend classical M/M/1 queuing theory
to time dynamic models of continuous type exist. Depending on the quality of
the available data as well as the possible spread in the resulting DES simulation
several approaches exit. We focus on the presentation of continuous models thereby
neglecting detailed dynamics.

3 Outlook

We have presented recent approaches on modeling production flows using contin-
uous partial differential equations. Compared with classical modeling approaches
as DES, queuing theory or mixed-integer modeling, the differential equations allow



Modeling of Material Flow Problems 35

for a reduced computational complexity as well as efficient and structure preserving
optimization and control approaches. However rigorous derivations of models based
on differential equations are only possible for simplistic models of production
scenarios. In case of more complex problems two other approaches have been
presented. The approach based on the observed behavior has so far been able to
capture the main effects of production lines with limited buffers. The approach
based on available data of interarrival and production times has led to a second-
order model. The theory of a rigorous justification based on the underlying product
dynamics is still its infancy for both cases. Future work may include progress in the
mean field limits, the extension of the models towards control and optimization
problems as well as the extension towards large scale production networks. In
all fields there are challenging mathematical as well as computational problems.
The derived equations resemble to some extended fluid dynamical equations and
one may adapt those methods here. However, hyperbolic transport properties are
fundamentally different from fluid dynamics and require adapted and different
theoretical and numerical treatment.
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