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Abstract For software tools currently used in industry for computer aided design
(CAD), digital mock-up and virtual assembly there is an increasing demand to
handle not only rigid geometries, but to provide also capabilities for realistic
simulations of large deformations of slender flexible structures in real time (i.e.: at
interactive rates). The theory of Cosserat rods provides a framework to perform
physically correct simulations of arbitrarily large spatial deformations of such
structures by stretching, bending and twisting. The kinematics of Cosserat rods is
described by the differential geometry of framed curves, with the differential invari-
ants of rod configurations corresponding to the strain measures of the mechanical
theory. We utilize ideas from the discrete differential geometry of framed curves in
combination with the variational framework of Lagrangian mechanics to construct
discrete Cosserat rod models that behave qualitatively correct for rather coarse
discretizations, provide a fast computational performance at moderate accuracy,
and thus are suitable for interactive simulations. This geometry based discretization
approach for flexible 1D structures has industrial applications in design and digital
validation. We illustrate this with some application examples from automotive
industry.

1 Introduction

Standard software tools currently used in industry for CAD, digital mock-up and
virtual assembly can only handle rigid geometries. However, there is an increasing
demand for a realistic, yet easy-to-use simulation of large deformations of slender
flexible structures, preferably in real time (i.e.: at interactive rates). Typical
examples of such structures from automotive industry are tubes, hoses, single cables,
or wiring harnesses collecting many cables within a compound structure (see Fig. 1).
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Fig. 1 Overview of the system of cables installed in a car (left), and simulation model of a wiring
harness in the IPS Cable Simulation software (right)

The theory of Cosserat rods [1, 26, 29] provides a framework for structural
models that are suitable for physically correct simulations of deformations of
slender flexible objects by stretching, bending and twisting. Due to the slenderness
of the geometry—i.e.: typical cross section diameters d are small relative to typical
lengths L of the considered structures, such that d=L � 1 holds—such deformations
may possibly imply large spatial displacements and rotations, while the local strains
always remain small. Cosserat rod models, also denoted as geometrically exact
models due to the possibility of a kinematically exact treatment of large rigid body
motions, are particularly well suited to handle such large deformations.

In computational mechanics, such models are usually discretized via nonlinear
finite elements [13]. This approach is taylored to provide very accurate simulation
results. However, due to their algorithmic and algebraic complexity, discrete
models constructed via nonlinear FE are technically complicated and in general
computationally far too demanding for doing fast simulations compatible with
rendering at 25Hz (at least), simultaneous to an interactive modification of the
boundary conditions by the user, either via the graphical user interface of a desktop
computer, or via a data glove (or similar devices) within an augmented reality (AR)
environment, unless such simulations are executed on highly performant computer
hardware, using many processors with multiple cores, and highly parallelized
algorithms. Therefore, if one aims at interactive simulations on ordinary desktop
computers available to a broader range of users, the development of a different
approach is required.

The kinematics of Cosserat rods is closely related to the differential geometry
of framed curves [3, 7], with the differential invariants of rod configurations
corresponding to the strain measures of the mechanical theory [1]. We propose to
utilize ideas from the discrete differential geometry of framed curves [2, 5, 27, 30] to
construct the discrete kinematics of Cosserat rod models in a way that preserves the
essential geometric properties independent of the coarseness of the discretization.

Different from a nonlinear FE approach aiming at weak solutions of the
mechanical equilibrium equations [34], we consider Cosserat rod models within
the variational framework of Lagrangian mechanics in terms of the kinetic and
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elastic energy of the rod [16, 20, 21]. In particular, as the elastic energy density of
a rod is given as a quadratic form in the strain measures, we obtain the discrete
elastic energy by an approach which we denote as geometric finite differences,
providing a discretization of the strain measures that preserves their essential
geometric properties, in combination with simple quadrature rule to approximate
the integrated energy density. Due to the geometric discretization of the strains,
discrete rod models constructed according to our discrete Lagrangian mechanics
approach behave qualitatively correct even for very coarse discretizations, provide
an ultrafast computational performance at moderate accuracy, and thus are suitable
for interactive simulations.

In our article, we introduce the basic ideas of our geometry based discretization
approach for flexible slender structures as sketched above. The mathematical
backbone of our construction of discrete Cosserat rod models is provided by the
difference geometry of framed curves in the spirit of Sauer’s approach [27] to
discrete Frénet curve theory. We present an extension of Sauer’s ideas to construct
the basic constituents of the discrete geometry of Cosserat curves in Euclidian
space, including proper definitions of discrete curvatures, discrete generalized
Frénet equations with geometrically exact solutions in terms of finite rotations, all
summarized in the formulation of a principal theorem of discrete Cosserat curve
theory. On this basis, the construction of discrete Cosserat rod models formulated
in terms of discrete elastic energy functions, defined as quadratic forms of the
invariants of discrete Cosserat curves, can be obtained in a straightforward manner.

Our discrete formulation of geometrically exact rods turns out to be partic-
ularly useful for a seamless integration into a CAE software environment as
IPS Cable Simulation. As the models and algorithms are formulated in terms of
elementary concepts of computational geometry, one can achieve the computational
performance necessary for a true interaction of the user with the software in real
time, which is a key feature in practical applications. We illustrate this aspect by
presenting some typical application examples of assembly simulations of cables
performed in automotive industry for design and digital validation purposes.

2 Notational Conventions

In this section we collect a few facts of linear algebra to introduce some notational
conventions inspired by the ones given in [1, 14, 25].

2.1 Euclidian Point Space E 3 and Its Vector Space E3

We denote three-dimensional Euclidian point space by E 3, its associated Euclidian
vector space by E

3 and use bracket notation h�; �i to denote its scalar product. All
vectors w 2 E

3 are written in boldface roman letters. By definition, they provide
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parallel displacements q D p C w of points p; q 2 E 3. This explains the operation
C W E 3 � E

3 ! E 3 on Euclidian space
�
E 3;E3;C�

in a memnonic way, and
likewise introduces the difference q � p D w of points as a proper operation. The
distance of points in E 3 is measured by the length kwk D phw;wi DW kq � pk
of their displacement vectors. A fixed cartesian coordinate frame of E3 is defined
by choosing a fixed origin O D 0 and a fixed right-handed orthonormal triple
.e1; e2; e3/ of basis vectors. Any vector quantity may be decomposed with respect
to the fixed basis fekgkD1;2;3 in the form w D P3

kD1 wkek, where the real numbers
wk D hw; eki denote the cartesian components of w 2 E

3. The position vector
x. p/ of a point p 2 E 3 is given by p D O C x. p/, with its cartesian components
xk. p/ D hx. p/; eki.

2.2 Linear Mappings in E
3

We denote linear mappings A W E3 ! E
3 within Euclidian vector space by upper

case upright serifless letters and use dot notation w 7! A � w to indicate their
operation on vectors. The composition .A � B/ � w D A � .B � w/ of linear mappings
is written in the same style. The identity I maps all vectors onto themselves.

A linear mapping is completely determined by its values vk D A � ek on the fixed
basis and may be written in invariant form as a sum1 A D P3

kD1 vk˝ek � vk˝ek of
tensor products defined as .a˝b/ �w D hb;wi a. The corresponding representation
of the identity in terms of the fixed basis is given by I D ek ˝ ek. Occasionally we
use the notation A D .v1; v2; v3/, which identifies the linear mapping A with the
triple of vectors obtained as images of the fixed basis.

The determinant det.A/ of a linear mapping is an invariant and equals the deter-
minant of its representing matrix w.r.t. an arbitrary basis. The cross product u� v
of vectors may be defined invariantly via the identity hu � v;wi D det..u; v;w// D
Œu; v;w� which is required to hold for arbitrary vectors, and likewise explains their
scalar valued triple product. The identity Qu � v D u � v establishes the one-to-
one correspondence between vectors u and skew-symmetric mappings Qu D �QuT ,
represented by tilde notation.

2.3 Orthogonal Mappings

Linear mappings that preserve length are denoted as orthogonal: for orthogonal
mappings R the identity kwk D kR � wk must holds for all vectors w 2 E

3. This
implies the orthonormality hai; aji D ıij of the column vectors ak D R � ek of an

1We make frequent use of Einstein’s summation convention, with Latin indices i; j; k; : : : running
from 1 to 3, and Greek indices ˛; ˇ; : : : from 1 to 2.
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orthogonal mapping. This characteristic property may be equivalently formulated in
a more compact form by the identitiesRT D R�1 orRT �R D I D R �RT which hold
by definition for any orthogonal mapping. Orthogonal mappingsR that preserve the
orientation of the fixed basis are characterized by det.R/ D 1 and denoted as proper
orthogonal. The orthogonal and proper orthogonal linear mappings on E3 form Lie
groupsO.3/ and SO.3/ respectively. Their Lie algebra is the set so.3/ ' R

3 ' E
3

of skew-symmetric linear mappings.

2.4 Quaternions

Following ch. 7 of [11], we denote Hamilton’s algebra of quaternions by H. We
identify the orthonormal basis fi; j;kg of =H ' E

3 with the fixed basis fe1; e2; e3g
of E3. Denoting the base vector of <H ' R as e0 D 1, we may represent arbitrary
quaternions invariantly as2 q D q C q, with scalar part q D <.q/ 2 E

1 ' R

and vector part q D =.q/ 2 E
3 ' R

3. The product of two arbitrary quaternions
p and q is given by the formula: p ı q D pq � hp;qi C pq C qp C p � q. Using
the notation q� D q � q for conjugate quaternions, the scalar product h ; iH of
H ' E

4 may be obtained by hp;qiH D 1
2
.p ı q� C q ı p�/ D pq C hp;qi, such

that jqj D p
q� ı q D p

q2 C q2 yields the modulus of a quaternion. All non-
zero quaternions have a unique inverse q�1 D q�=jqj2, such that q ı q�1 D 1 D
q�1 ı q holds. Quaternions q D q with a scalar part <.q/ D 0 are called pure
(or vector) quaternions and identified with vectors in E

3. As the product of two
vector quaternions is given by the simplified formula p ı q D �hp;qi Cp�q, their
scalar and cross products in E

3 may be written in terms of quaternion products as:
hp;qi D � 1

2
.p ı q C q ı p/, and p � q D 1

2
.p ı q � q ı p/.

Proper rotations R 2 SO.3/ may be represented by unimodular (or rotational)
quaternions Oq D q C q, satisfying j Oqj2 D q2 C q2 D 1 and therefore located on
the unit sphere S3 � E

4, by means of the Euler map Oq 7! R D E. Oq/ implicitly
defined via its operation on vectors v 2 E

3 ' =H as: R. Oq/ � v D Oq ı v ı Oq�.
Thus, the pair ˙Oq represents the same proper rotation R. Oq/ D R.�Oq/, consistent
with the fact that S3 ' SU.2/ yields a double covering of SO.3/. The definition of
E. Oq/ implies the formulas R. Op/ � R. Oq/ D R. Op ı Oq/ for the composition of rotations
and R. Oq/T D R. Oq�/ for the inverse rotation, as R.1/ D I holds. According to Euler,
each proper rotationmay be represented asR D exp.# Qu/, i.e.: a rotation by an angle
# around an axis determined by the unit vector Ou, with uniquely determined # 2
.0; 2�/ and Ou 2 S2 for R ¤ I. The corresponding rotational quaternion is given by
Oq D exp.#=2 Ou/ D cos.#=2/C sin.#=2/ Ou, such that exp.# Qu/ D E.˙ exp.#=2 Ou//
holds identically.

2It is always clear from the context whether a term q C q refers to the addition of the real and
imaginary parts of a quaternion or the parallel displacement of a point in E 3 by a vector.
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2.5 Geometric Curves in Euclidian Space

We regard geometric curves as simple arcs [30] corresponding to smooth, one-
dimensional connected submanifolds.3 Thus, the mapping C 3 p 7! �. p/ 2 R

of the points p on a geometric curve C � E 3 to their real coordinates � is (at least
once) differentiable and invertible, and the inverse mapping � 7! p.�/ from open
intervals in R into E 3 provides a local parametrization of the curve. By joining
the open intervals of local parametrizations, we obtain a larger one .a; b/ � R

corresponding to a global parametrization � W Œa; b� ! C of the geometric curve,
such that .a; b/ 3 � 7! p D �.�/ yields all interior points of C , and the two
boundary points of C are given by �.a/ and �.b/. The position vectors x. p/ 2 E

3

of curve points are then given by a parameter curve � 7! r.�/ WD x.�.�// in E3.

3 Framed Curves and Cosserat Rods

The theory of Continuum Mechanics of solid bodies [14, 31] provides proper
physicalmodels to simulate deformations of flexible parts. A continuum-mechanical
model of a material body consists of three main constituents: kinematics, equilib-
rium equations and constitutive laws. Summarized briefly, the general programme
of continuum mechanics aims at determining equilibrium configurations of a body
subject to certain boundary conditions, such that all external forces acting on the
body are in equilibrium with the internal ones (resulting from deformations of its
shape) and inertial effects, making use of constitutive laws that relate local changes
of shape, measured in terms of strains, to stresses that encode information on the
corresponding local forces.

The theoretical framework provided by ContinuumMechanics as sketched above
is a rather complex one, in particular if one is interested to model large (finite)
deformations of parts w.r.t. their shape in an undeformed state, in contrast to
infinitesimally small ones that can be treated by the well known standard models
and numerical methods of Linear Elasticity. This seems to be discouraging in view
of our goal to simulate large deformations of cables and tube-like parts fast enough
to permit interactive action for the users with the simulation model. Fortunately
the slender geometry of the parts considered provides the possibility to reduce the
continuum model analytically to an object which is well known (and likewise well
understood) in classical differential geometry, namely: a framed curve.

3One-dimensional connected (sub)manifolds are either simple arcs diffeomorphic to an interval, or
simple loops diffeomorphic to a circle (see the appendix of Milnor’s booklet [24] for a proof).
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3.1 Basic Differential Geometry of Framed Parameter Curves

More precisely, we consider so called Cosserat curves, consisting of [1]

• a space curve r.s/ corresponding to the centerline of the rod, and
• a moving frame R.s/ D a. j/.s/˝ ej of orthonormal directors,

where the pair fa.1/.s/; a.2/.s/g spans the local cross section of the rod at the position
r.s/, such that a.3/ D a.1/ � a.2/ equals the unit length cross section normal vector,
as sketched in Fig. 2.

As r.s/ 2 E
3 and R.s/ 2 SO.3/, a Cosserat curve may be interpreted as

a parameter curve in the manifold E
3 � SO.3/ of rigid body configurations in

Euclidian space. The curve parameter s is usually assumed to correspond to the
arc length of r.s/, such that the tangent vector t.s/ D r0.s/ has unit length. The
frame R.s/ is called adapted to the curve if a.3/.s/ D t.s/ holds. While in the
setting of classical differential geometry of framed curves mainly adapted frames
are considered, non-adapted frames are of primary interest in the kinematical
theory of geometrically exact rods, where adapted frames merely occur as a special
case, recoverable from a kinematically more general Cosserat curve by the Euler–
Bernoulli constraint r0.s/ D a.3/.s/, enforcing cross sections to remain orthogonal
to the tangent vector of an inextensible centerline curve.

(1)a

(2)a
(3)a

1e
3e

2e

r

1ξ

2ξ

Fig. 2 Centerline curve r.s/ and attached moving frame R.s/ D a.k/.s/˝ ek of a Cosserat curve,
describing the geometry of the configurations of a prismatic rod in Euclidian space. The volumetric
geometry is generated by sliding the cross section spanned by the frame directors fa.1/; a.2/g along
the centerline. The position vectors of the material points in the rod volume are parametrized by:
x D r.s/C �˛ a.˛/.s/
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3.1.1 Frénet Curves and Ribbons

The most well known adapted frame in elementary differential geometry of space
curves is the Frénet frame .a.1/; a.2/; a.3// D .n;b; t/, consisting of the principal
normal and binormal vectors defined as n.s/ WD t0.s/=�.s/ and b.s/ WD t.s/ � n.s/
on intervals of non-zero Frénet curvature �.s/ WD kt0.s/k. More general, one may
consider parameter curves on oriented surfaces patches, with the (likewise adapted)
Darboux frame of the curve defined by the curve tangent t and the unit length normal
vector field N of the surface at the curve points. This leads to the notion of a ribbon
(or surface strip), defined as a surface patch of infinitesimally small width around
a curve r.s/, oriented by a unit vector N.s/ orthogonal to the tangent vector t.s/ of
the curve, with an adapted frame given by: .a.1/; a.2/; a.3// D .N; t � N; t/.

From a slightly different point of view, one may consider an arbitrary frame field
R.s/, given as a parameter curve in SO.3/, and recover its corresponding space
curve by integration: r0.s/ D a.3/.s/ , r.s/ D r0 C R s

0
a.3/.�/ d�. The evolution

of the adapted frame of a ribbon along its curve is determined by the generalized
Frénet equations @sa.k/.s/ D ���.s/� a.k/.s/. The curvatures ~.k/.s/ are defined as the
components of the Darboux vector ��� D ~. j/ a. j/ D 1

2
a. j/ � @sa. j/ D � b C ~.3/ t

w.r.t. the directors of the moving frame. If they are given as continuous functions of
arc length, they provide a complete set of differential invariants that determine the
geometry of a ribbon up to a global rigid body motion.

3.1.2 Cosserat Curves and Quaternion Frames

Cosserat curves may be considered as natural generalizations of ribbons by omitting
the requirement of an adaption of the frame to the curve. In the context of the
kinematics of geometrically exact rods one proceeds even one step further by
considering regular curves that are not necessarily parametrized by arc length:
If one resolves the tangent vector r0.�/ w.r.t. the directors of the moving frame
R.�/ D a.k/.�/˝ ek, then the components � .k/.�/ WD ha.k/.�/; r0.�/i of the tangent
vector, together with the curvatures K.k/.�/, which are implicitly given by the frame
equations @�a.k/ D ��� � a.k/ and associated Darboux vector ���.�/ D K. j/.�/ a. j/.�/,
provide a complete set of differential invariants that determine a Cosserat curve up
to a global rigid body motion.

The proof of this statement, which constitutes the principal theorem of the
differential geometry of Cosserat curves, may be obtained by a straightforward
adaption of the corresponding one for ribbons (see [1]): For given curvature
functionsK. j/.�/, the frame equations become a system of linear ODEs for the frame
directors that can be integrated for an arbitrary initial value R0 2 SO.3/ according
to the theory of ordinary differential equations. Due to the special algebraic structure
of the frame equations, the scalar products of the frame directors are conserved
(i.e.: ha.i/.�/; a. j/.�/i D ıij), such that the solution R.�/ D a. j/.�/ ˝ ej always
remains in SO.3/. For given ��� .�/ WD � . j/.�/ ej and known R.�/, the tangent
vector r0.�/ D � . j/.�/ a. j/.�/ D R.�/ � ��� .�/ can then be considered as a known
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function that can subsequently be integrated, which finally yields the space curve
r.�/ D r0 C R �

0
R.�/ ���� .�/ d� for an arbitrarily chosen initial value r0.

Note that as kr0.�/k D k��� .�/k holds, the differential of arc length is given by
ds D k��� .�/k d�, such that one may always reparametrize a regular Cosserat curve
by its arc length function s.�/, with a corresponding rescaling of the curvatures
according to: ~.k/.s/ D K.k/.�/=k��� .�/k. For curves parametrized by arc length
� .k/.s/ D ha.k/.s/; t.s/i are the direction cosines of the tangent vector w.r.t. the
local frame axes. Ribbons consisting of regular curves parametrized by arc length
with adapted frames correspond to the special case of constant ��� 0 D .0; 0; 1/T �
e3. Frénet curves may in turn be considered as special cases of ribbons, with their
Darboux vector given by ��� D � b C 	 t.

The formulation of Cosserat rod models as presented in [20] is based on quater-
nionic Cosserat curves, where the moving frame R.s/ is represented equivalently
by a moving unimodular (rotational) quaternion field Oq.s/, characterized by the
identity R.s/ � v D Oq.s/ ı v ı Oq�.s/ holding for arbitrary vectors v 2 E

3 ' =H.
The generalized Frénet equations can be written equivalently in terms of a derivative
equationR0.s/ D R.s/ � QK.s/ for the moving frame, using the skew matrix QK 2 so.3/
associated to the material Darboux vector K.s/ D K. j/.s/ ej D RT.s/ � ���.s/.

The corresponding derivative equation for the equivalent quaternion frame is then
given by Oq0.s/ D 1

2
���.s/ ı Oq.s/ D 1

2
Oq.s/ ı K.s/. As <.K/ D 0 D <.���/, any solution

of this ODE has constant modulus. In particular j Oq.s/j � 1 holds for any solution of
the frame equation starting from an initial value Oq0 2 S3. The recovery formula for
the centerline by integration in terms of a solution Oq.s/ of the quaternionic frame
equation—determined by the given curvature vector K.s/ and initial value Oq0—
and given ��� .s/ may then be reformulated in terms of quaternionic quantities as:
r.s/ D r0CR s

0
Oq.�/ı��� .�/ı Oq�.�/ d�. This implies an equivalent formulation of the

principal theorem for quaternionic Cosserat curves, which are likewise determined
by given functionsK.s/ and ��� .s/ up to a global rigid body motion.

3.2 Elastic Energy of a Cosserat Rod

Static equilibria of deformed elastic structures can be computed as minima of
their elastic energy, subject to the assumed boundary conditions. As we intend
to model slender flexible structures as elastic Cosserat rods, we need to specify
a corresponding elastic energy function. For linear elastic material behaviour, the
elastic (stored) energy function of a 3D body is a quadratic form of its Green–
Lagrange strain tensor E D 1

2
.FT � F � I/, where F D d˚.X/ is the deformation

gradient computed as the derivative of the positions x D ˚.X/ of the material points
in the deformed body volume w.r.t. their positions X in the undeformed body (see
[14] for details).

If one computes the deformation gradient and Green–Lagrange strain tensors
for the deformed configurations x D r.s/ C �˛ a.˛/.s/ of a Cosserat rod w.r.t. its
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undeformed reference configuration X D r0.s/ C �˛ a
.˛/
0 .s/ given by a smooth

regular curve r0.s/ parametrized by arc length and its adapted frame R0.s/ D
a.k/0 .s/˝ ek with r0

0.s/ D a.k/0 .s/, one obtains [22] an exact closed form expression
for E which depends on the differences K.s/ � K0.s/ and ��� .s/ � ��� 0 (with ��� 0 D
.0; 0; 1/T) of the invariants of the framed curve in their deformed and undeformed
configurations.

For slender rod geometries, one may always assume that the local strains remain
small, although the deformations of the rod configuration correspond to large (finite)
rotations and displacements in space. In this case one may approximate the exact
expression for E by taking only the leading order terms in the differences of the
invariants into account. The resulting approximated energy density can then be
integrated analytically over the cross section coordinates .�1; �2/ in closed form,
which finally yields [22] the elastic energy Wel of a Cosserat rod as a quadratic
functional in the differencesK�K0 and��� ���� 0 of the invariants, given by the sum
Wel D Wes C Wbt of the two integrals

Wes D 1

2

Z L

0

ds ŒEA�
�
� .3/.s/ � 1�2 C ŒGA˛� �

.˛/.s/2 ; (1)

Wbt D 1

2

Z L

0

ds ŒEI˛�
�
K.˛/.s/ � K.˛/0 .s/

�2 C ŒGJ�
�
K.3/.s/ � K.3/0 .s/

�2
: (2)

The first term (1) represents the elastic energy related to rod deformations by
longitudinal extension combined with transverse shearing, the second term (2)
accounts for the elastic energy stored in bending and torsional deformations of the
rod.

The parameters ŒEA�; ŒGA˛�; ŒEI˛� and ŒGJ� quantify the effective stiffness proper-
ties of the local cross section of the rod related to the respective deformation mode.
They may be constants, or vary along the rod as functions of s. In the simple case of
a homogeneous and isotropic material characterized by the elastic moduli E and G,
they are given as products of the moduli and geometric quantities (i.e.: area A, area
moments I˛, polar moment J) of the cross section.

To discretize the energy integrals (1) and (2) we need a discrete model of framed
curves with discrete versions of their invariantsK and ��� .

4 The Difference Geometry of Framed Curves

In this section we inductively develop our approach to construct the discrete
kinematics of geometrically exact rod models by “geometric finite differences”.
We use concepts and results of the differential geometry of framed curves in
three-dimensional Euclidian space, and introduce ideas from Discrete Differential



Discrete Cosserat Rod Models Based on the Difference Geometry of Framed Curves . . . 299

Geometry (DDG)4 to construct their discrete counterparts in a particular way, such
that essential properties of the continuum theory are preserved in the discrete setting.

Below we consider basic concepts of the elementary differential geometry of
parameter curves in Euclidian space, as presented in standard texts (e.g. do Carmo’s
book [9]), from the geometric viewpoint emphasized throughout Blaschke’s books
[3, 4], and outline some essential ideas how to transfer the continuous concepts to
the discrete setting, following and extending ideas of Sauer [27].

4.1 Discrete Arc Length and Edge Tangent Vectors

The mutual distance of points on a smooth curve can be measured by unbending the
curve to a straight line, such that the distance of the same points on the straightened
curve equals their Euclidian distance in space.

This procedure of continuously “unrolling” a smooth curve to the real axis can
be understood most easily for the simplified case of a discrete approximation of the
curve by a polygonal arc, given by a sequence of curve points pj D �.�j/ obtained
from a given discretization a DW �0 < �1 < : : : < �n WD b of the parameter interval
with position vectors rj WD r.�j/ � x. pj/. The corresponding polygonal arc is the
piecewise linear curve in E 3 defined as the unionPnŒ p0; : : : ; pn� WD [n

jD1Œ pj�1; pj�
of edges Œ pj�1; pj� WD fp 2 E 3jp D pj�1 C 
. pj � pj�1/; 0 � 
 � 1g that are
spanned by pairs of adjacent points (vertices) pj�1 and pj D pj�1 C lj� 1

2
, linked by

edge vectors lj� 1
2

WD pj � pj�1 D rj � rj�1 of length `j� 1
2

WD klj� 1
2
k D krj � rj�1k.

Then, the distance of any pair . pk; pl/ of vertices (with k < l), measured
along the path of the polygonal arc Pn, is given by the sum

Pl
jDkC1 `j� 1

2
of

edge lengths in between, which equals the Euclidian distance of . pk; pl/ if the
polygonal arc is straightened out to a line. If the discretization is refined, the
polygonal arc Pn approximates the curve C with increasing accuracy, provided
the curve is sufficiently smooth (i.e.: at least Lipschitz continuous). According to
the (approximate) identity

lX

jDkC1
`j� 1

2
D

lX

jDkC1

�
�
�
�
rj � rj�1
�j � �j�1

�
�
�
� .�j � �j�1/ 	

lX

jDkC1

�
�r0.�j�1=2/

�
� .�j � �j�1/ ;

the sum of edge lengths may be interpreted as a discrete approximation of the

continuous integral
R �l
�k

kr0.�/k d� D Pl
jDkC1

R �j
�j�1

kr0.�/k d� by evaluating the
integral over the intervals Œ�j�1; �j� of length hj�1=2 WD �j � �j�1 approximately by

4DDG is an interdisciplinary field in applied mathematics which emerged rather recently at the
borderline of differential geometry and discrete computational geometry, with the majority of
applications in computer graphics. For a survey, we refer to the articles collected in the book [6].
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Fig. 3 Polygonal arc PnŒ p0; : : : ; pn� approximating a smooth regular geometric curve C : The
vertices pj 2 C define the edges Œ pj�1; pj� of length `j�1=2 > 0, with unit length tangent vectors
tj�1=2 D . pj � pj�1/=`j�1=2 located at edge centers Npj�1=2

the midpoint rule according to
R �j
�j�1

kr0.�/k d� 	 kr0.�j�1=2/k hj�1=2 C O.h3j�1=2/,
and approximating the derivative r0.�/ at the midpoints �j�1=2 WD 1

2
.�j�1 C �j/ by a

central finite difference as r0.�j�1=2/ 	 .rj � rj�1/=hj�1=2 C O.h2j�1=2/.
Likewise, the position vector rj�1=2 WD 1

2
.rj�1 C rj/ � x.Npj�1=2/ of the edge

center approximates the position vector r.�j�1=2/ at the midpoint of the parameter
interval with second order accuracy. Thus, considering the polygonal approximation
of a curve naturally leads to the concept of edge based tangent vectors lj�1=2=hj�1=2,
with unit length edge tangent vectors given by tj�1=2 WD lj�1=2=`j�1=2, both located
at edge centers. Requiring that consecutive vertices pj and pjC1 must not coincide,
which in turn implies non–zero edge vectors (i.e.: kljC1=2k > 0 , pj ¤ pjC1) and
unit vectors tj�1=2 well defined for all edges, corresponds to the definition of discrete
regularity of a polygonal arc (see Fig. 3).

While the mapping k 7! pk of integer indices to vertex points in Euclidian
space may be interpreted as a discrete geometric curve that induces a corresponding
mapping k 7! rk � x. pk/ of indices to position vectors, a discrete parameter curve
is defined by the mapping �k 7! r.�k/ induced by a discretization of the domain
of a smooth parameter curve. Therefore, the discrete counterpart of arc length
parametrisation corresponds to the case hk�1=2 D `k�1=2 of grid constants equal to
edge lengths, with discrete arc length parameters defined as &k WD &0CPk

jD1 `j�1=2,
marking the vertex positions of the polygonal arc straightened out parallel to the real
axis. The main concepts introduced in this section may be summarized as follows:

A discrete geometric curve is a mappingZ 3 j 7! pj 2 E 3 of integer indices to
points in Euclidian space. The discrete curve is regular iff pj ¤ pj�1 holds for
all vertex pairs . pj�1; pj/. A discrete regular geometric curve has well defined
unit tangent vectors tj�1=2 D . pj � pj�1/=`j�1=2 on all edges (see Fig. 3).
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Fig. 4 Polygonal arc PnŒ p0; : : : ; pn� and edge based quaternionic frames Oqj�1=2 � Rj�1=2 D
E.Oqj�1=2/ of a discrete Cosserat curve. In general, the frames are not adapted to the edges of Pn,

i.e.: a.3/j�1=2 ¤ tj�1=2. A discrete ribbon is a special case of a discrete Cosserat curve with adapted
frames

4.2 The Difference Geometry of Discrete Cosserat Curves

Our discussion of discrete regular geometric curves with edge centered unit tangent
vectors indicates the path to introduce Cosserat curves in the discrete setting:

A discrete Cosserat curve is defined as a polygonal arc PnŒ p0; : : : ; pn�
corresponding to a regular discrete geometric curve, augmented by a set
fRj�1=2gjD1;:::;n of orthonormal frames SO.3/ 3 Rj�1=2 D a.k/j�1=2 ˝ ek located
at edge centers Npj�1=2. The frames are represented by rotational quaternions
as Rj�1=2 D E. Oqj�1=2/ in terms of the Euler map E W S3 ! SO.3/ implicitly
defined via its operation E. Oq/v D Oq ı v ı Oq� on vectors, with frame directors
given by: a.k/j�1=2 D Rj�1=2 � ek D Oqj�1=2 ı ek ı Oq�

j�1=2 (see Fig. 4).

4.2.1 Curvature Angles and Discrete Curvatures

For each pair of frames Rj˙1=2, there is a unique spatial difference rotation5

connecting these frames as RjC1=2 D wj �Rj�1=2. According to Euler’s theorem, this
rotation wj D RjC1=2 � RT

j�1=2 can be written as wj D exp.#j Quj/, i.e.: a rotation by
an angle #j around the axis given by the unit vector Ouj. The corresponding rotational
quaternion connects the quaternion frames via OqjC1=2 D Owj ı Oqj�1=2 and is given by:

OqjC1=2 ı Oq�
j�1=2 DW Owj D cos.#j=2/C sin.#j=2/ Ouj D exp.#j=2 Ouj/ :

5As the group operation on SO.3/ is a product, the terminology quotient rotation would be more
appropriate. However, we prefer the term difference rotation to emphasize the analogy to FD
discretization of vectors in Euclidian space.



302 J. Linn and K. Dreßler

The material difference rotation given by Wj WD RT
j�1=2 � RjC1=2 may be obtained

from the spatial one by a pull back rotation with either of the frames Rj˙1=2, i.e.:
Wj D RT

j˙1=2 � wj � Rj˙1=2, and can be written as a rotation Wj D exp.#j QUj/ by

the angle #j about the back rotated axis6 OUj WD RT
j˙1=2 � Ouj. In terms of rotational

quaternions, the equivalent relations for OWj D Oq�
j˙1=2 ı Owj ı Oqj˙1=2 read:

Oq�
j�1=2 ı OqjC1=2 DW OWj D cos.#j=2/C sin.#j=2/ OUj D exp.#j=2 OUj/ :

Extraction of the material rotation vector #j OUj D 2 log. OWj/ from the quaternionic
difference rotation OWj then leads to the following definition of curvature angles:

 
.k/
j WD hek; 2 log. OWj/i D #j hek; OUji , #j OUj D  

.k/
j ek : (3)

As OUj WD RT
j˙1=2 � Ouj and a.k/j˙1=2 D Rj˙1=2 � ek hold, one obtains the angles

 
.k/
j equivalently by decomposing #j Ouj D 2 log. Owj/ w.r.t. the frame directors,

i.e.:  .k/j D ha.k/j˙1=2; 2 log. Owj/i D #jha.k/j˙1=2; Ouji. The set f#j OUjgjD1;:::;n of material

rotation vectors (or equivalently: the set f .k/j gkD1;2;3jD1;:::;n of curvature angles) corre-
sponds to the discrete data of the set of quaternion frames f Oqj�1=2gjD1;:::;n of a
discrete Cosserat curve. The frames can be reconstructed iteratively by the material
difference rotations as Oqj�1=2 7! OqjC1=2 D Oqj�1=2 ı exp.#j=2 OUj/, or likewise
equivalently by spatial ones according to the algorithm

Oqj�1=2 ! Owj D Oqj�1=2 ı exp.#j=2 OUj/ ı Oq�
j�1=2 ! OqjC1=2 D Owj ı Oqj�1=2 ; (4)

for j D 1; : : : ; n�1, starting at Oq1=2 chosen as initial value, and proceeding edgewise
in ascending order.

Discrete material curvatures K.k/j can then be defined by dividing the curvature
angles by the discrete arc length distance �&j between the edge centers Npj˙1=2:

K.k/j WD  
.k/
j

�&j
D �&�1

j hek; 2 log. OWj/i D #j

�&j
hek; OUji : (5)

If the discrete Cosserat curve approximates a smooth one, the vector Kj D K.k/j ek
of discrete material curvatures converges to the material Darboux vector K. pj/ in
the limit�&j ! 0. In this case, the curvature angles can be interpreted as integrated

values, approximating the integrals
R pjC1=2

pj�1=2
hek; 2 Oq� ı d Oqpi 	  

.k/
j of the curvature

6Note that the vectors Ouj and OUj are eigenvectors of the difference rotations wj and Wj with

eigenvalue 1, which implies the identities RT
j�1=2 � Ouj D RT

jC1=2 � Ouj and Rj�1=2 � OUj D RjC1=2 � OUj.
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1–form t. p/ 7! 2 Oq�. p/ ı d Oqp.t. p// D K. p/, and the discrete curvatures K.k/j D
 
.k/
j =�&j with �&j 	 R pjC1=2

pj�1=2
ds correspond to approximate integral averages.

Alternative discrete curvature expressions that approximateK. pj/ 	 Kj accord-
ing to the relations #j 	 2 sin.#j=2/ 	 2 tan.#j=2/ valid for small angles can be
obtained directly from the imaginary and real parts =. OWj/ D sin.#j=2/ OUj and
<. OWj/ D cos.#j=2/ of the material difference rotation. The simplest examples
are: �&jKj 	 2=. OWj/ D 2 sin.#j=2/ OUj and �&jKj 	 2=. OWj/=<. OWj/ D
2 tan.#j=2/ OUj. A particularly interesting variant, which appears within the deriva-
tion of discrete derivative equations for quaternionic frames, is given by:

�&j Kj 	 4=. OWj/ = .1C <. OWj// D 4 tan.#j=4/ OUj : (6)

4.2.2 Material Edge Components, Edge Tangent Cosines and Shear
Angles

The second set of data of a discrete Cosserat curve is given by the components

`
.k/
j�1=2 WD ha.k/j�1=2; lj�1=2i D `j�1=2 ha.k/j�1=2; tj�1=2i (7)

of the edge vectors lj�1=2 D `j�1=2 tj�1=2 w.r.t. the local frame, which we denote as
material edge components. The squared edge lengths can be obtained as the sum
`2j�1=2 D P3

kD1.`
.k/
j�1=2/2 of the squared material edges components. Considering

f`.k/j�1=2gkD1;2;3jD1;:::;n as given data, the edge lengths `j�1=2 and the discrete arc length

parameters &k D &0 C Pk
jD1 `j�1=2 can be computed from these.

According to (7) the components `.k/j�1=2 are given as products of the edge lengths
and the edge tangent cosines

�
.k/
j�1=2 WD `

.k/
j�1=2
`j�1=2

D ha.k/j�1=2; tj�1=2i D hek; Oq�
j�1=2 ı tj�1=2 ı Oqj�1=2i : (8)

The shear angles �.k/j�1=2 D arccos.� .k/
j�1=2/ measure the angles enclosed by the edge

vector and the frame axes. The edge tangent cosines (8) converge to the direction
cosines ha.k/. p/; t. p/i of the unit tangent vector t. p/ w.r.t. the frame directors
a.k/. p/ at p D pj�1=2 in the limit `j�1=2 ! 0.

The set f pjgjD0;:::;n of vertices of the polygonal arc P can be obtained by
summation of the edge vectors lj�1=2 according to pj D p0 C Pj

iD1 li�1=2, starting
from an arbitrarily chosen initial value p0 2 E 3. As lj�1=2 D ha.k/j�1=2; lj�1=2i a.k/j�1=2 D
`
.k/
j�1=2 a

.k/
j�1=2 and a.k/j�1=2 D Oqj�1=2 ı ek ı Oq�

j�1=2, the sum for the computation of the
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vertices from edge vectors may be rewritten in the form

pj � p0 D
jX

iD1
`i�1=2 ti�1=2 D

jX

iD1
`
.k/
i�1=2 Oqi�1=2 ı ek ı Oq�

i�1=2 (9)

as an expression in terms of known quantities.
The sum (9) yields a discrete approximation of the integral pj � p0 D R pj

p0
dp with

dp D t. p/ ds, which can be rewritten equivalently as
R pj
p0

Oqı��� ı Oq� ds in terms of the

quaternion frame Oq. p/ and��� . p/ D RT. p/ � t. p/ D Oq�. p/ı t. p/ı Oq. p/. The second
sum term in (9) corresponds to an approximation of the integrals

R pi
pi�1

Oq ı��� ı Oq� ds
by the midpoint rule as `i�1=2 Oqi�1=2ı��� i�1=2ı Oq�

i�1=2, with��� i�1=2 WD �
.k/
i�1=2 ek. The

discrete integration formula provided by (9) is equivalent to the difference equation

. pj � pj�1/=`j�1=2 D Oqj�1=2 ı��� j�1=2 ı Oq�
j�1=2 (10)

discretizing the derivative equation dp D Oq ı��� ı Oq� ds.

4.2.3 Discrete Generalized Frénet Equations

The directors a.k/j˙1=2 of adjacent frames Rj˙1=2 D a.k/j˙1=2 ˝ ek are connected by
spatial difference rotations wj D exp .#j Quj/ D cay.tan.#j=2/ Quj/ and satisfy the

equations a.k/jC1=2 D wj � a.k/j�1=2, which may be rewritten equivalently as:

a.k/jC1=2 � a.k/j�1=2 D 2 tan.#j=2/ Ouj � 1

2
.a.k/j�1=2 C a.k/jC1=2/ : (11)

Divided by �&j, this coupled system of difference equations corresponds to a

geometric FD discretization of the generalized Frénet equations da.k/p D ��� � a.k/

satisfied by the frame directors of a Cosserat curve.
According to (5) the FD approximation of the material Darboux vector at pj is

given by Kj D .#j=�&j/ OUj 	 K. pj/. The corresponding spatial Darboux vector
then results from a forward rotation according to ��� j D Rj˙1=2 � Kj and is therefore
given by: ��� j D .#j=�&j/ Ouj 	 ���. pj/. The discrete spatial Darboux vector identified
from (11) equals�&�1

j 2 tan.#j=2/ Ouj 	 ��� j, which provides an alternative consistent
FD approximation of ���. pj/ that coincides with ��� j in the limit �&j ! 0.

Averaged Frame Director Expansion of the Discrete Spatial Darboux Vector

For Rj˙1=2 2 SO.3/ the matrix Rj�1=2 C RjC1=2 D Rj�1=2 � .I C Wj/ is regular if
the eigenvalues ofWj are different from �1, which is always the case for curvature
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angles j .k/j j < � . Then the averaged frame directors Na.k/j WD 1
2
.a.k/j�1=2 C a.k/jC1=2/

associated to vertex pj, which appear on the r.h.s. of (11), are linearly independent
and form a basis of E3. Although they do not form an orthonormal frame, they
become orthonormal in the limit �&j ! 0, as lim�&j!0 Na.k/j D a.k/. pj/ holds.
The discrete generalized Frénet equations (11) can be rewritten with greater formal
similarity to their continuous counterpart by expanding the spatial Darboux vector

��� j 
 Ouj w.r.t. the dual basis vectors Nb.k/j implicitly defined as h Nb.k/j ; Na.l/j i D ıkl and

explicitly given by Nb.k/j D .Na.l/j � Na.m/j /=hNa.1/j � Na.2/j ; Na.3/j i for cyclic permutations

.klm/ of .123/. By construction lim�&j!0
Nb.k/j D a.k/. pj/ holds. The representation

���. pj/ 	 �&�1
j 2 tan.#j=2/ h Nb.k/j ; Ouji Na.k/j of the discrete spatial Darboux vector

is obtained by using the identity Ouj D hNb.k/j ; Ouji Na.k/j and implies the corresponding

approximation K.k/. pj/ 	 �&�1
j 2 tan.#j=2/ h Nb.k/j ; Ouji of the material curvatures at

the vertices. Inserting this expansion into (11) leads to the equivalent reformulation

a.k/jC1=2 � a.k/j�1=2 D 2 tan.#j=2/
h
h Nb.m/j ; Ouji Na.m/j � hNb.l/j ; Ouji Na.l/j

i

of these equations for cyclic permutations .klm/ of .123/, as the Darboux vector
component 
 Na.k/j is canceled due to the cross product. Dividing both sides of this

FD equation for a.k/j˙1=2 by �&j and taking the limit �&j ! 0 yields the well known

form da.k/p D ��� � a.k/ D K.m/a.m/ � K.l/a.l/ of the generalized Frénet equations of
the continuum theory of framed curves.

Discrete Derivative Equations for Quaternion Frames

An analogous discretisation of the derivative equation d Oqp D 1
2
��� ı Oq for the

quaternion frames can be obtained from the Cayley transform7 and its inverse

q 7! Op D cay.q/ D 1C q
1� q

; Op 7! q D cay�1. Op/ D Op � 1
Op C 1

mapping vectors to rotational quaternions and vice versa. For Op D cos.˛/ C
sin.˛/ Oe D exp.˛ Oe/ one obtains q D cay�1. Op/ D tan.˛=2/ Oe, such that exp.˛ Oe/ D
cay.tan.˛=2/ Oe/ holds. Applied to the rotation Owj D exp.#j=2 Ouj/ D OqjC1=2 ı Oq�

j�1=2

7The notation .1C q/=.1� q/ captures the fact that .1C q/ ı .1� q/�1 D .1� q/�1 ı .1C q/
holds for all q 2 E

3. Likewise the identity .Op � 1/ ı .Op C 1/�1 D .Op C 1/�1 ı .Op � 1/ valid for
all �1 ¤ Op 2 S3 is abbreviated by .Op � 1/=.Op C 1/.
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connecting adjacent quaternions frames this yields the desired result:

OqjC1=2 � Oqj�1=2 D 1

2

�
4 tan

�
#j

4

	
Ouj



ı 1

2
. Oqj�1=2 C OqjC1=2/ : (12)

Starting from OqjC1=2 D Oqj�1=2 ı OWj with OWj D exp.#j=2 OUj/ one obtains the
equivalent difference equation

2 . OqjC1=2 � Oqj�1=2/ D 1

2
. Oqj�1=2 C OqjC1=2/ ı

�
4 tan

�
#j

4

	
OUj



; (13)

which provides a geometric FD discretization of the equivalent form d Oqp D 1
2

Oq ı K
of the derivative equation for the quaternion frames in terms of the material Darboux
vectorK D Oq� ı��� ı Oq. The FD approximation of the material Darboux vectorK. pj/
implied in (13) is the one already mentioned in (6). The FD formula for the spatial
Darboux vector ��� results from a forward rotation Ouj D Oqj˙1=2 ı OUj ı Oq�

j˙1=2 of the
material rotation axis to the spatial one. The discrete derivative equations (12) and
(13) are the equivalent quaternionic counterparts of the discrete generalized Frénet
equations (11).

4.2.4 The Principal Theorem for Discrete Cosserat Curves

At this point, we have obtained all ingredients necessary for the statement and
constructive proof of the principal theorem of discrete Cosserat curve theory.

The basic data of a discrete Cosserat curve, consisting of a polygonal arc
PnŒ p0; : : : ; pn� and the set f Oqj�1=2gjD1;:::;n of quaternion frames representing
orthonormal frames Rj�1=2 D E. Oqj�1=2/ located at edge centers Npj�1=2, are:
• the set f .k/j gkD1;2;3jD1;:::;n�1 of curvature angles, and
• the set f`.k/j�1=2gkD1;2;3jD1;:::;n of material edge components.

The essential parts of the discrete integration procedure, resulting in a recon-
struction of a discrete Cosserat curve from its basic data and chosen initial
conditions, have already been outlined in the previous paragraphs of this section
and is summarized compactly in the following algorithm:

1. A rotational quaternion Oq0 2 S3 representing an orthonormal frame R0 D
E. Oq0/ 2 SO.3/ and a point p0 2 E 3 are selected as arbitrarily chosen initial
values.

2. Starting from Oq1=2 WD Oq0, the quaternion frames are generated iteratively from the

material rotation vectors #j OUj D  
.k/
j ek defined by the given curvature angles

via sequential rotations

OqjC1=2 D Oqj�1=2 ı exp.#j=2 OUj/ for j D 1; : : : ; n � 1
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according to (4). The sequence f Oqj�1=2gjD1;:::;n is an exact solution of the discrete
derivative equations [(12), (13)] uniquely determined by its initial value.

3. Starting from p0, the vertices are obtained iteratively by summation as

pj D p0 C
jX

iD1
`
.k/
i�1=2 Oqi�1=2 ı ek ı Oq�

i�1=2 for j D 1; : : : ; n

according to (9) from the known quaternion frames and the given material
edge components. The sequence f pjgjD0;:::;n is an exact solution of the discrete
derivative equations (10) uniquely determined by its initial value p0.

This algorithm provides a constructive proof of the principal theorem for discrete
Cosserat curves, which may be formulated as follows:

For given discrete data consisting of the sets of curvature angles f .k/j gkD1;2;3jD1;:::;n
and material edge components f`.k/j�1=2gkD1;2;3jD1;:::;n, the solutions of the discrete
derivative equations (10) and (12), (13) determine the quaternion frames
f Oqj�1=2gjD1;:::;n and the vertices f pjgjD0;:::;n of a discrete Cosserat curve up to
an overall rigid body motion in E 3.

5 Discrete Elastic Energy of Quaternionic Cosserat Rods

We discretize the continuum model of an elastic Cosserat rod by approximating
its elastic energy integrals (1) and (2) by suitable quadrature rules, making use
of the discrete curvatures fK.k/j gkD1;2;3jD1;:::;n�1 and extensional and shearing strains

f� .k/
j�1=2gkD1;2;3jD1;:::;n defined in the previous Sects. 4.2.1 and 4.2.2. Here we briefly outline

this approach described in detail in our article in [20].
We start with a discretization 0 DW s0 < s1 < : : : < sn WD L of the

interval domain Œ0;L� of the arc length parameter s of the reference curve r0.s/ into
subintervals Œsj�1; sj� of length hj�1=2 WD sj � sj�1. The distance between interval
midpoints sj˙1=2 D 1

2
.sj C sj˙1/ is given by �sj WD sjC1=2 � sj�1=2 D Nhj, where

Nhj WD 1
2
.hj�1=2 C hjC1=2/ is the average of the grid constants hj˙1=2 adjacent to sj.

5.1 Discrete Extensional and Shear Energy

As the discrete extensional and shear strains � .k/
j�1=2 are edge based quantities, an

approximation of the energy integral (1) by midpoint quadrature is the natural
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choice to obtain a discrete version of Wes. The pull back of the strains to the
reference configuration is obtained by a rescaling with the factors `j�1=2=hj�1=2 	
kr0.sj�1=2/k, according to

N� .k/
j�1=2 WD `j�1=2

hj�1=2
�
.k/
j�1=2 D hlj�1=2; a.k/j�1=2i=hj�1=2 D h N��� j�1=2; eki ; (14)

where N��� j�1=2 WD Oq�
j�1=2 ı.lj�1=2=hj�1=2/ı Oqj�1=2 is the material vector obtained from

rotating the discrete edge tangent vector lj�1=2=hj�1=2 back to the local frame. The
discrete approximation of Wes can be written in compact form as

Wes 	 W .D/
es WD 1

2

nX

jD1
hj�1=2 h� N��� j�1=2;Ces �� N��� j�1=2i ; (15)

where � N��� j�1=2 WD N��� j�1=2 � ��� 0 with ��� 0 D .0; 0; 1/T , and the shear
and extensional stiffness parameters collected in the diagonal matrix Ces WD
diag.ŒGA1�; ŒGA2�; ŒEA�/.

The condition of vanishing discrete transverse shear strains N� .˛/

j�1=2 � 0 implies
N� .3/

j�1=2 D `j�1=2=hj�1=2, such that (14) reduces to the extensional energy

W
.D/
ext WD 1

2

nX

jD1
hj�1=2 ŒEA�

�
`j�1=2=hj�1=2 � 1

�2

of a discrete extensible Kirchhoff rod model [21], which approximates its continuum
counterpart given byWext WD 1

2

R L
0 ds ŒEA� .kr0.s/k�1/2. Additionally imposing the

inextensibility condition `j�1=2 � hj�1=2 on the edges implies W .D/
ext � 0 � W

.D/
es .

5.2 Discrete Bending and Torsion Energy

The discrete curvatures K.k/j are vertex based quantities, such that a discrete
approximation of Wes can be obtained from the energy integral (2) by (non-
equidistant) trapezoidal quadrature. The pull back of the curvatures originally
defined w.r.t. discrete arc length to the reference configuration implies a rescaling
by the factor �&j=�sj 	 kr0.sj/k, i.e.: NK.k/j WD .�&j=�sj/K

.k/
j , equivalent to the

definition

NK.k/j WD h NKj; eki ; NKj WD .�sj/
�1 2 log OWj D .#j=�sj/ OUj D NK.k/j ek (16)
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of discrete pulled back material curvatures. The discrete approximation of Wbt can
then be written in compactly as

Wbt 	 W
.D/
bt WD 1

2

nX

jD0
�sj h� NKj;Cbt �� NKji ; (17)

with the curvature differences� NKj WD NKj�K0j between the deformed and reference
configurations, the diagonal matrix Cbt WD diag.ŒEI1�; ŒEI2�; ŒGJ�/ of bending and
torsional stiffness parameters, and the grid constants of the half-edges near the
boundary defined as �s0 WD h1=2=2 and �sn WD hn�1=2=2.

5.3 Boundary Conditions

The definition of material curvature vectors NK0 and NKn at the boundary vertices is a
new element in the discrete model that did not have to be considered in the theory of
discrete Cosserat curves up to this point. These discrete curvatures are defined in the
deformed configuration in terms of the material difference rotations OW0 WD Oq�

0 ı Oq1=2
and OWn WD Oq�

n�1=2 ı Oqn connecting the boundary frames Oq0 and Oqn to the frames on
the adjacent edges, with analogous definitions for the boundary curvatures of the
reference configuration.

The boundary frames of both configurations are determined by boundary
conditions imposed on the discrete rod model, which have to be formulated as
separate conditions, or can directly be built into the discrete energyW .D/

bt . Likewise,

boundary conditions on the vertices p0 and pn influence the discrete energyW
.D/
es .

5.4 Discrete Equilibrium Equations

With the boundary conditions built into the respective terms of the discrete energies
(15) and (17), the total discrete elastic energy given by

W
.D/
el .Xf / WD W .D/

es .Xf / C W
.D/
bt .Xf / (18)

become functions of the free vertex positions frjg and quaternion frames f Oqj�1=2g
collected in the set Xf WD frjg [ fOqj�1=2g of free variables.

Static equilibrium configurations of a discrete Cosserat rod subject to given
boundary conditions can be obtained by minimizing the discrete elastic energy of
the rod. The discrete equilibrium equations

rXf W
.D/
el .Xf / D 0 , @W

.D/
el

@rj
.Xf / D 0 ;

@W
.D/
el

@ Oqj�1=2 .Xf / D 0 (19)
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provide a necessary condition for such energy minima. The discrete equilibrium
equations (18) is a coupled nonlinear system of algebraic equation, which can be
solved numerically by Newton’s method. Alternatively, one can find approximate
equilibrium configurations by energy minimization, using nonlinear conjugate
gradients or Quasi-Newton type optimization methods like BFGS.

The system (18) is actually a special case of the dynamic equilibrium equations
for a semi–discrete model of time dependent discrete quaternionic Cosserat rods
[20], which are obtained as the (abstractly written) Euler–Lagrange equations

@t
�r@tXf L

.D/.Xf ; @tXf /
� � rXf L

.D/.Xf ; @tXf / D 0

for the Lagrangian function L .D/.Xf ; @tXf / WD T
.D/
kin .Xf ; @tXf / � W

.D/
el .Xf /

defined as the difference of the kinetic and potential energy according to the general
concepts of Lagrangian mechanics (see [18, 20] for further details).

5.5 The Geometric Nature of the Discrete Elastic Energy

Up to this point, the various steps to obtain a discrete energy function from a
continuum functional and to determine equilibrium configurations as energyminima
did not involve any specific aspects of the discrete geometry of the underlying
model: The energy integrals are discretized by standard quadrature rules, the
discrete equilibrium equations result from the gradient of the discrete energy
w.r.t. the free variables, and the numerical solution of the equations is done by
Newton or Quasi–Newton methods.

The essential ingredient to this procedure is provided by the fact that the
curvatures and strains are well defined for arbitrarily large deformations, completely
independent of the coarseness of the discretization. The discrete curvatures increase
with increasing values of the angles, up to the very limit of degenerate configura-
tions. The energy vanishes exactly only in the reference configuration and does not
possess any “artificial” minima otherwise.

Not all discretizations share these important properties. For example, a finite
element approach using linear interpolation of nodal SO.3/ frames yields discrete
curvatures 
 sin.#j/ Ouj (see the discussion in Remark 8 of [16]), which becomes
extremal at #j D ˙�=2 and then decreases in modulus for larger values of #j, up to
the value zero taken in the degenerate case #j D ˙� . For coarse discretizations, it
can easily happen that bending or torsion angles j#jj 	 �=2 occur. A model based
on this discretization of curvature would obviously produce unphysical results, as
zig-zag type configurations with angles �=2 � j#jj � � become energetically
favourable.

The discussion of this example illustrates that our efforts to construct a proper
discrete theory of framed curves by geometric finite differences yields the essential
contribution to a rod model required to behave qualitatively correct even for very



Discrete Cosserat Rod Models Based on the Difference Geometry of Framed Curves . . . 311

coarse discretizations. In this sense, one can state that our discrete Cosserat rod
model inherits its structural stability from its underlying kinematic model of discrete
Cosserat curves, completely independent of the coarseness of the discretization, and
therefore displaying qualitatively correct physical behaviour at arbitrarily coarse
discretizations.

5.6 Academic Test Examples

We conclude this section on discrete models of elastic Cosserat rods by showing
some typical results obtained in two well known academic benchmark examples
that illustrate the behaviour of our discrete Cosserat rod model in certain boundary
value problems that are also relevant for our practical applications, and also show an
illustrative comparison of a simulation with a corresponding laboratory experiment.

Figure 5 shows the performance of a recent implementation [19] of our discrete
rod model in classical examples for inextensible rods due to Euler [12] and
Kirchhoff [17] that are analytically solvable in closed form by Kirchhoff’s kinetic
analogy (see Art. 260, 262 and 270 in Ch. XIX of [23] and Dill [8] for details and
historical remarks).

The coarse discretization in the Elastica example with only four edges has been
deliberately fixed to equidistant edge lengths to induce visible differences between
the discrete and the analytical solutions in configurations at larger deflections. How-
ever, these differences remain rather small, although an equidistant discretization
is certainly not optimal in this example. Even on the level of kinetic quantities
(i.e.: forces and moments), the “coarse” discrete solution captures the trend of the
analytical curves of the bendingmoment and the tension force not only qualitatively,
but displays a quantitative agreement with the corresponding analytical values
that could hardly be expected. Nevertheless, the slight S–shaped variation of the
analytical curve for the transverse shear force is captured only very roughly. For
a finer equidistant discretization with 20 edges both the kinematic as well as the
kinetic quantities of the analytical solution are captured almost perfectly .

The example of the Kirchhoff helix shows that equally positive results can be
obtained for spatial deformations involving a combination of bending and torsion of
the rod. In the classical form of Kirchhoff’s problem for helical equilibrium configu-
rations of elastic rods, the latter are shown to result from special combinations of the
material components of forces and moments applied at both ends of the rod, which
determines the solution up to an overall rigid body motion. The solution shown in
Fig. 5 results from a slightly different variant of the boundary value problem, where
the vertices and frames at both ends were clamped and varied along the known
analytical solution of the continuum problem. Here, only the configuration data are
shown, perfectly matching the analytical centerline curves for both the coarser (10
edges) and finer (50 edges) discretization. The plots of the kinetic quantities, which
are all straight horizontal lines corresponding to constant material components of
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Fig. 5 (a) Plane bending of a clamped cantilever beam loaded by a vertical end force, with
analytical solution curves given by Euler’s Elastica model. (b) Bending moment (left), transverse
shear force (middle), and tension force (right) as a function of arc length for the clamped cantilever
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Fig. 6 Spatial configurations of a clamped cable after twisting and axial displacement of the
clamped ends. Left: Laboratory experiment; Right: Results in IPS Cable Simulation

the forces and moments relative to the local frames, all captured accurately by the
discrete solution, are omitted here.

The laboratory experiment [10] shown in Fig. 6 is conceptually similar to the
Kirchhoff helix example with clamped ends, but more general, as it involves non-
constant torsion and bending, which is closer to realistic cases encountered in
assembly simulation. Although the real cable that has been used as a specimen
in the experiment clearly displayed viscoplastic material properties measured for
larger local deformations, on top of the basic elastic constitutive behaviour that
dominates in the regime of small local strains, the computation of equilibrium
configurations performed with the discrete Cosserat rod model in the software IPS
Cable Simulation properly captures the complex spatial deformation behaviour of
the cable in the real experiment if appropriately averaged effective elastic cable
properties are used.

Concerning the computing times we would like to remark that already a decade
ago it was possible to simulate the entire deformation sequences of the two examples
discussed in this section (as well as others, see [21]) on a standard desktop
computer within the range of milliseconds. This provides the basis for true real
time interaction with the simulation model by an interactive change of the boundary
conditions, or likewise a change of model parameters, like e.g. the length and
stiffness parameters of the rod. Also immediate adaptions of the (in general: non-
equidistant) discretization in reaction to external constraints induced by various
types of clips or contact with rigid geometries in the environment can be handled
algorithmically in a very efficient manner.

J
Fig. 5 (continued) beam example shown in (a): the values obtained from the discrete model with
coarser (5 points) and finer (20 points) discretization approximate the analytical solution (blue
curves) obtained from Euler’s Elastica model. (c) Two helical configurations with smaller and
larger pitch angle of a steel string in space, modeled as an inextensible Kirchhoff rod, with analytical
solutions given by Kirchhoff’s constant curvature helices, matched by discrete constant curvature
solutions of the same boundary value problem with coarser (top) and finer (bottom) discretization
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6 Application Examples from Vehicle Industry

The software package IPS Cable Simulation contains different variants of discrete
Cosserat models, augmented by numerous productivity features that are useful for
a variety of applications in industry, like enhanced CAD, digital mock-up, or the
simulation of assembly (or disassembly) processes on desktop computers as well as
in virtual (VR) or augmented (AR) reality environments. In IPS Cable Simulation
the rod models have been enhanced w.r.t. a variety of different elements, such that
external constraints induced by various types of clips, restricting spatial motions of
one to six of the local rigid body d.o.f. of the rod, frictionless contact interaction
with rigid geometries in the environment, or self contact and contact with other rods
can be handled efficiently.

The user can interact with the discrete elastic rod model of a cable or hose e.g. by
grabbing one of its ends with the mouse (or more sophisticated VAR devices), or
likewise a clip attached at some intermediate location, and change its position and
orientation in space interactively. These changes are captured by the user interface
and translated by the software into a sequential change of boundary conditions. This
sequence is then passed to the simulation model, which computes corresponding
deformation sequences by solving the mechanical equilibrium equations sufficiently
fast for rendering deformed configuration at interactive rates (i.e.: 25GHz or faster).

The seamless integration of discrete Cosserat rod models into the IPS software
is supported by their formulation in terms of elementary geometric quantities (i.e.:
vertex positions and orthonormal frames) that can be handled highly efficient by the
computational geometrymethods and algorithms already implemented in IPS. As an
example, frames translated along polygonal paths in space are fundamental objects
in rigid body path planning, which historically has been one of the core capabilities
of the IPS software.

6.1 Representative Application Examples from Automotive
Industry

In what follows, we present some examples, all taken from joint projects with
AUDI AG, to illustrate the typical usage of our discrete rod models integrated
in the IPS software in automotive industry. Of course, simple screenshots from
the software as the ones shown here are not able to convey the user experience
in interactive operation with the software in a realistic way, and even the more
detailed information provided by video8 sequences of the software in operation
at real application cases can hardly be more than a substitute. Nevertheless, the

8We refer to the various videos shown on the website www.flexstructures.com for a visualization
of deformation sequences of cables in different application cases.

www.flexstructures.com
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Fig. 7 Left: Assembly sequence of various clips and connectors to be mounted at head-up display.
Right: Variation of the position and the type of a clip to lower the level of strain in the cable

principle way of usage of the simulation software and the benefits obtained in
industrial applications should become clear from our descriptive exposition.

Figure 7 shows some screenshots taken from the simulation of the assembly
sequence of various clips and connectors to be mounted at a head up display. The
numbers indicate the assembly sequence, and the arrows point out the direction of
the movement of the various clips and plugs towards their final mounting positions.
The engineer working with the simulation software would typically grab individual
clips, plugs or connectors with the mouse and perform the assembly operation for
all on the virtual model sequentially, just as it would later be done by the worker in
the real process. In this way, the engineer can validate if it is possibly to assemble
all cables without mutual crossing, and if the cable lengths are sufficient to avoid
extensional straining and sharp bending at clips. If not, the length of a cable can
be changed interactively to its optimal length. Also, the function of various clip
types as well as their positioning can be checked and varied to avoid infavourable
configurations. The two pictures to the right of Fig. 7 show such a variation of the
position and the type of a clip to lower the level of strain in the cable. Note that the
assembly of the connector labeled as No. 3 requires a clockwise rotation by 90ı for
plug-in. The effect of torsional straining of the attached cable can be computed in
terms of the torsional moment acting on the cable in its mounted configuration, in
combination with the bending strains that are simultaneously acting. The combined
level of stresses and strains can be assessed by St. Venant type stress functions that
superpose forces and moments of the rod model into local 3D stress tensor values,
which can be evaluated e.g. in terms of von Mises stress values.

Figure 8 displays another issue discovered and solved during the digital vali-
dation of the functionality of the same head up display: The originally suggested
design of one of the plastic parts in the kinematic mechanismwas done in a compact
way to assure its mechanical stability with a minimal amount of plastic material,
with a rather sharp rectangular kink at its upper right corner. Despite the slight
rounding at its corner, the simulation of the operation of the whole mechanism
including the cables showed that during sequential moving out and in of the display
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Fig. 8 Redesign of a plastic part in the kinematic mechanism of the same head-up display. Left:
Former design with a sharp corner, where the cable may get hooked, which might cause damage.
Right: Improved design, where the cable can slide along reproducibly always in the same stable
way, such that potential damage due to hook-up or clamping of the cable is avoided

the cable had to slide across the corner, with a sudden change of its configuration
due to buckling. The whole situation turned out to be rather sensitive to small
changes in the cable length. All in all, it became clear that the initial design was
not robust enough, and the increased bending strains occurring in the cable in its
configuration hooked up at the corner of the plastic part might later cause damage
due to the frequent repetitive loading. Therefore the design of the plastic part had to
be changed. The picture to the right of Fig. 8 shows the final design solution: The
vertical edge at the respective corner was bent upwards and elongated, such that the
sharp right angle is eliminated, and the edge functions as a rail on which the cable
can slide in a stable way during the forward and backward operation of the kinematic
mechanism. Clearly, the simulation of the whole system with the physically correct
deformation of flexible cables in contact with the rigid geometries in its environment
provided the essential insights leading to an improved design.With this software, the
functionality of the whole system of the headup display with all cables connected
can be simulated and validated digitally in an early design phase. Traditionally,
one would manufacture hardware prototypes of the simulated design to perform
a physical validation. However, the possibility of simulation with physically correct
models allows for functional validation without physical prototypes.

The third example shown in Fig. 9 addresses the optimization of the length
of a flexible grommet to avoid damage during the repeated opening and closing
operation of the hatchback and has been discussed in detail in [15], introducing
a (at that time) new method of comparative durability assessment based on the
prediction of local stresses during quasi-static deformation sequences of flexible
cables or hoses. In this case, the grommet joining the chassis and hatchback,
which conducts various cables inside, becomes substantially deformed during the
opening and closing of the hatchback, such that bending and torsional strain occur
at a considerable level. The issue could be resolved in a simulation study by an
elongation of the length of the grommet tube, which lowers the level of strains, but
still avoids unwanted clamping at the nearby hinge.
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Fig. 9 Optimization of the length of a flexible grommet to avoid damage during the repeated
opening and closing operation of the hatchback. Left: Design variant with a shorter length and
higher bending strains. Middle: Alternative elongated design variant, showing lower bending
strains in the shut state of the hatchback

7 Conclusion

Software tools used in industry for design and digital validation require a seamless
integration of efficient models that are able to handle the simulation of large spatial
deformations of slender elastic structures like cables and hoses by bending, twisting
and extension at interactive rates.

In our article, we presented the construction of discrete elastic rod models of
Cosserat type within the framework of Lagrangian mechanics on the kinematic
basis of discrete models of framed curves in Euclidian space. We obtain discrete
framed curves from their continuum counterparts by a discretization method we
denote as geometric finite differences, which can be regarded as an extension of
Sauer’s “difference geometry” approach to Frénet curves. These discrete Cosserat
curves, which consist of polygonal arcs augmented by orthonormal frames located at
edge centers and represented by rotational quaternions, provide a family of discrete
kinematical models that qualitatively capture all essential features of Cosserat
curves in the continuum, independent of the coarseness of the discretization.

As a consequence, the discrete bending and twisting curvatures as well as
the discrete extensional and transverse shear strains obtained from the difference
geometry of Cosserat curves yield discrete approximations of the elastic energy of
continuum Cosserat rods that model the deformation behaviour of slender elastic
structures physically correct for arbitrarily coarse discretizations. As the basic
kinematical constituents of our discrete Cosserat rod models are vertex positions
and orthonormal frames, i.e.: elementary geometric quantities that can be handled
very efficiently by methods and algorithms of computational geometry, they can be
integrated in a computationally efficient and seamless way in geometry-oriented
software packages, with enhancements to support the interaction with the CAD
geometries in the environment, as well as user interaction in real time.

Our application examples from automotive industry illustrate the principle way
of usage to solve practical tasks in design and digital validation with the software
IPS Cable Simulation. As an outlook, we would like to mention that by the same
approach we are able to integrate fully dynamical models of cables that account for
inertial and viscous effects into our software environment as well as in other CAE
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software packages for multibody system dynamics simulations [28]. Moreover, our
geometric discretization approachmay likewise be applied to obtain discrete models
of flexible surfaces (see [32, 33] for basic research work).
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