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Foreword

Manufacturing industry has, for decades, been a key element in the prosperity
of regions and countries around the world, and, more precisely, in Europe. The
competitiveness of our strong industry, which leads the global competition in diverse
sectors, is grounded on its technological strength. New technologies and their indus-
trialisation are closely linked to the application and the market in the knowledge life
cycle. However, if we take a closer look at the basics, the fundamentals of these
innovative technologies, we can easily identify the contribution of mathematics:
industrial cybersecurity, machine learning, manufacturing process monitoring and
diagnosis, product and process design and analysis tools, navigation systems for
mobile devices, robotics, artificial vision systems—all of them are based on diverse
mathematical fields: analysis, algebra, statistics, probability, topology, geometry,
numeric methods, etc. This book provides a brilliant example of cooperation
between the scientific and industrial worlds, and I would like to welcome it on
behalf of the European “Factories of the Future” research community. Readers will
find articles that clearly explain the contribution of mathematics to solving diverse
problems in industry, or to providing better tools for the manufacturing sector. In
the age of the digitalisation of factories, the smartisation of the productive sector, or,
as it is called in some countries, the fourth industrial revolution, let us celebrate the
contribution from mathematics, even in the naming of the whole new paradigm, 4.0!

Donostia/San Sebastián, Spain Dr. Rikardo Bueno1

June 2017

1Dr. Rikardo Bueno is Co-chair of the Factories of the Future private-public partnership board
and director of the advanced manufacturing area at Tecnalia, Mikeletegi 7, 20009 Donostia/San
Sebastián.

v



Preface

The digital factory represents a network of digital models, as well as simulation and
3D visualisation methods for the holistic planning, realisation, control and ongoing
improvement of all factory processes related to a specific product. In the last ten
years, all industrialised countries have launched initiatives to realise this vision,
sometimes also referred to as Industry 4.0 (in Europe) or Smart Manufacturing (in
the United States). Its main goals are

• reconfigurable, adaptive and evolving factories capable of small-scale production
• high performance production, combining flexibility, productivity, precision and

zero defect
• energy and resource efficiency in manufacturing

None of these goals can be achieved without the development of new concepts
for the mathematical modelling, simulation and optimisation of all aspects of
manufacturing on multiple scales, ranging from individual production processes to
work cells and large-scale manufacturing chains with hundreds of robots, together
with new concepts for bridging these in a multi-scale framework for manufacturing.
To foster collaboration between mathematics and industry in this area, the European
Consortium for Mathematics in Industry (ECMI) founded a new special interest
group on Math for the Digital Factory (M4DiFa).

This volume compiles a selection of review papers from the M4DiFa kick-
off meeting, which took place from 7 to 9 May 2014 at Weierstrass Institute for
Applied Analysis and Stochastics in Berlin, Germany. Mathematicians and industry
practitioners discussed the essential role of mathematics in the competitiveness of
manufacturing companies. The topics addressed include state-of-the-art mathemat-
ical models and simulation tools to minimise production costs, reduce the time to
market, as well as increase energy and resource efficiency. The book includes 15
articles and is divided into 3 sections. The first is concerned with the planning and
scheduling of production systems and presents innovative mathematical techniques
such as mixed integer linear programs (T. Kis and M. Drótos), continuous partial
differential equations (S. Göttlich et al.) and (max,+)-algebra to model and optimise
production processes (X. David-Henriet et al.). The paper by L. Ghezzi offers

vii
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new insights into the optimal storage of physical goods. The last contribution (A.
Lüder and N. Schmidt) shows the crucial link between mechatronical engineering
and mathematics for digital factories. The second section covers the optimisation
of production lines. The first two papers (F. Damrath et al. and P. Burget et al.)
discuss the optimisation of energy consumption in a robotic cell, while T. Hajba
et al., D. Hömberg et al., and K. Palagachev and M. Gerdts make new contributions
to the task assignment and scheduling of jobs to robots. In addition, these last
two papers provide innovative solutions to the crucial issue of the collision-free
coordination of robots. The last section describes several production technologies.
First, F. Edelvik et al. discuss the full simulation of electrostatic spray painting and
sealing. D. Brander et al. provide insights into the use of robots to cut expanded
polystyrene for the building industry. M. Krüger et al. present a self-correcting
strategy for a metal forming process, while J. Linn and K. Dressler provide realistic
simulations of large deformations of slender flexible structures. Last but not least,
C. Leithäuser and R. Pinnau model, simulate and optimise the entire process chain
for the production of non-woven materials. We hope this volume will be of interest
to researchers in applied mathematics as well as practitioners and engineers from
the manufacturing sector. Even though many contributions have been written at
an advanced mathematical level, efforts have been made to make the aim and the
impact on digital factories in each paper understandable to a wide audience. Lastly,
we would like to express our gratitude to the Research Center MATHEON, the
Committee for Mathematical Modeling, Simulation and Optimization (KoMSO),
the European Consortium for Mathematics in Industry (ECMI) and the Weierstrass
Institute, whose financial support made the workshop possible.

Milano, Italy Luca Ghezzi
Berlin, Germany Dietmar Hömberg
Winterthur, Switzerland Chantal Landry
May 2017
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Part I
Planning and Scheduling

of Production Systems



Hard Planning and Scheduling Problems
in the Digital Factory

Tamás Kis and Márton Drótos

Abstract Production planning and scheduling with the aid of software tools in
today’s manufacturing industries have become a common practice which is indis-
pensable for providing high level customer service, and at the same time to utilize
the production resources, like workforce, machine tools, raw materials, energy, etc.,
efficiently. To meet the new requirements, problem modeling tools, optimization
techniques, and visualization of data and results have become part of the software
packages. In this chapter some recent developments in problem modeling and
optimization techniques applied to important and challenging industrial planning
and scheduling problems are presented. We will focus on new problem areas
which are still at the edge of current theoretical research, but they are motivated
by practical needs. On the one hand, we will discuss project based production
planning, and on the other hand, we will tackle a resource leveling problems in a
machine environment. We will present the problems, some modeling and solution
approaches, and various extensions and applications.

1 Introduction

Digital factories encompass the digital model of most of the technical and business
processes of physical production systems [17]. Running such a model in parallel
with the real-world factory can help decrease the time required for the realization
of products as well as production [6]. An integral part of digital factories is the
modeling of planning and scheduling activities, as they are largely responsible
for meeting customer’s deadlines, and minimizing production costs. Therefore,
software tools that are capable to obtain suboptimal production plans, and schedules
are fundamental components of digital factory solutions [23]. In this chapter we
overview some of the recent developments in automatic planning and scheduling of
complex manufacturing processes. We will consider problems that in our experience
frequently occur in practice, but they are not so well studied like several single

T. Kis (�) • M. Drótos
Institute for Computer Science and Control, Kende str. 13-17, Budapest H-1111, Hungary
e-mail: kis.tamas@sztaki.mta.hu; drotos.marton@sztaki.mta.hu

© Springer International Publishing AG 2017
L. Ghezzi et al. (eds.), Math for the Digital Factory, Mathematics in Industry 27,
DOI 10.1007/978-3-319-63957-4_1
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4 T. Kis and M. Drótos

machine scheduling problems, or the makespan minimization problem in job shops
[5, 7].

We will introduce two problem areas in detail, and for each problem area we
provide a problem formulation, some theoretical background, sketch a solution
approach and summarize computational results. We will also provide references to
the literature offering further results and extensions.

2 Project Based Production Planning

Traditionally, production planning is concerned with determining production quan-
tities of final products and that of their subcomponents over time based on man-
ufacturing lead times and the bill-of-materials. This approach may be inadequate
when dealing with a large variety of products manufactured in small quantities.
For instance, when a customer orders e.g., a complex product made of several
components, which have to be designed, manufactured, assembled, tested, and
finally delivered to the customer, then determining production quantities is just
not the right way of making a feasible plan, not mentioning that a manufacturing
company may have several big projects running concurrently, which have to be
controlled separately.

In order to build a planning model, we will use the terminology of project
scheduling [9]. A project consists of activities needing various resources, and
connected by precedence constraints. Consider for instance a manufacturing firm
which produces complex products for its customers. Each customer’s order becomes
a project, where an activity represents a major step in the project, like design,
various manufacturing steps, assembly, etc. There is a natural precedence relation
between the project activities. Design must precede manufacturing, which, in turn,
is a prerequisite to assembly, and testing. As for the resources, the design activity
requires engineers making the blueprint of the parts to be manufactured. The
manufacturing steps may require CNC work centers, or milling/turning machines,
heat treatment, etc. In the following we assume that the projects are broken down
to some main steps, and for each step the key resources are known. So far, we can
build a network of activities representing the main steps of the project which in the
end delivers the final product to the customer.

Since production plans are made for a longer time horizon, e.g., 26 or 52 weeks,
it is desirable that activities are also at the right aggregation level, e.g., the design
of the project is represented by a few major design activities, which have a time
span of several weeks. Resource are also aggregated, like chef-designers, or a
group of identical CNC machines is considered as a single cumulative resource.
The processing capacity of a cumulative resource equals the sum of the processing
capacities of the resources grouped together.

In practice, the intensity of aggregated activities vary over time. The intensity
increases gradually to a maximum level permitted by technological constraints,
then it is run for a while at maximum, or close to maximum level, For instance,
if a project needs 100 h of CNC machining, only 10% can be done daily, since
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Fig. 1 Variable intensity
activities connected by a
feeding precedence constraint

A
time

in
te
ns
it
y

B
time

in
te
ns
it
y 20%

several operations must be done on the same part. On the other hand, the activities
may overlap in time. For example, design provides blueprints to manufacturing,
and as manufacturing of parts progresses, more and more components can be
assembled. Therefore, we connect the activities of the project by feeding precedence
constraints. Such a constraints specifies that, say, 20% of activity A must be com-
pleted before activity B may start, and then B cannot progress faster than A, for an
illustration see Fig. 1.

It is natural to assume that resource consumption of variable intensity activities
is proportional to their intensity over time. For renewable resources, like machine
tools, or workforce, if the intensity of an activity i is xit in time period t, then its
resource consumption from some renewable resource Rk is qik � xit, where qik is the
total demand of activity i from resource k. Of course, one may consider more general
functions for computing the resource usage of activities depending on their intensity,
however, we consider only linear functions in this paper.

In the rest of this section, we describe a mathematical model and discuss some
solution approaches. Finally, we overview some possible extensions of the model.

2.1 Modeling by a Mixed-Integer Linear Program

Firstly, we introduce formally the problem data and the objective function, and then
describe a mixed-integer linear program for solving it to optimality. There is a set N
of activities, and a set RR of renewable resources. The time horizon is divided into
time periods 1; : : : ;T, and any changes in the project can occur only at the border of
two consecutive time periods. Each activity i has a time window Œri; di� in which it
has to be completed, a maximum intensity ai > 0, and resource requirements qik � 0

for k 2 RR. The activities are connected by feeding precedence constraints given by
triples .i; j; fij/ meaning that an fij fraction of activity i must be completed before
starting activity j. Each renewable resource k 2 RR has a time varying capacity
bkt, and an additional external capacity which can be purchased at the expense of
additional costs.

The objective is to find an intensity assignment to the activities such that
each activity is entirely processed in its time window, the nonrenewable resource
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time

resource
usage

Above capacity

Fig. 2 Resource usage above internal capacity. The internal capacity is indicated by horizontal
thick line

constraints are respected, and the cost of external resource usage is minimized. The
external resource usage from some renewable resource k 2 RR can be measured as
the total resource usage above the internal capacities, i.e., maxfPT

tD1
P

i2N qikx
i
t �

bkt; 0g. This is illustrated in Fig. 2. The motivation for this objective function is
the fact that companies usually have their internal workforce and other production
capacities from renewable resources, and in case of bottlenecks, they are willing to
subcontract or hire some extra resources.

Now we are ready to present a mixed-integer linear program for modelling our
problem. The decision variables are

xit D intensity of activity i in time period t;

ykt D resource usage above internal capacity from resource k2RR in time period t;

zift D
�
0 if f -fraction of activity i has been completed before time period t;
1 otherwise:

The meaning of other symbols in the following problem formulation are as follows:

N D set of activities;

ri; di D earliest and latest time periods when activity i can be processed;

Nt D set of activities with ri � t � di;

ai D maximum intensity of activity i;

ckt D cost of external resource usage from resource k 2 RR in time period t;

bkt D internal capacity of resource k 2 RR in time period t;

Nbkt D additional external capacity of resource k 2 RR in time period t;

Ei D set of precedence relations of the form .i; j; f /;

Fi D set of fractions that occur in precedence constraints Fi;

pif D minimum number of periods to finish an f fraction of activity i
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min
TX

tD1

X

k2RR
cktykt (1)

subject to

diX

tDri

xit D 1; i 2 N ; (2)

`�1X

tDri

xit C fzif` � f ; i 2 N ; f 2 Fi; ` 2 fri C pif ; : : : ; dig; (3)

x j
t C a jzift � a j; i 2 N ; .i; j; f / 2 Ei; t 2 fri C pif ; : : : ; dig (4)

zift � ziftC1 � 0; i 2 N ; f 2 Fi; t 2 fri C pif ; : : : ; di � 1g; (5)

X̀

tDri

xit �
X̀

tDrj

x j
t � 0;

i 2 N ; .i; j; f / 2 Ei;

` 2 fmaxfri; rjg; : : : ;minfdi; djgg; (6)

X

i2Nt

qik � xit � ykt � bkt; k 2 RR; t 2 f1; : : : ;Tg; (7)

0 � xit � ai; i 2 N ; t 2 fri; : : : ; dig; (8)

0 � ykt � Nbkt; k 2 RR; t 2 f1; : : : ;Tg; (9)

zift 2 f0; 1g; i 2 N ; f 2 Fi; t 2 fri C pif ; : : : ; dig; (10)

The objective function (1) aims at the minimization of resource hiring/
subcontracting costs. Constraints (2) ensure that each activity is totally processed
in its time window. The precedence constraints between pairs of activities are
described by inequalities (3) through (5). In particular, (3) ensures that zift can
be zero only if an f -fraction of activity i is completed up to time period t � 1.
Moreover, (4) makes sure that a the successor j of activity i can only start if an f -
fraction of activity i is completed. Inequalities (5) ensure that there is only one point
in time when the zift switches from 1 to 0. The feeding aspect is captured by (6).
The external renewable resource usage is expressed by (7), since ykt is non-negative
and it has a positive weight in the objective function, thus strict inequality holds in
(7) only if the resource usage is below the internal capacity, in which case ykt D 0.
Finally, the remaining constraints specify the feasible domains of the variables.
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2.2 Solution Approaches

There are various exact and heuristic methods for solving the problem (1)–(10). As
for the exact methods, we sketch the main ideas of one based on branch-and-cut,
and another based on branch-and-price. Both methods use a linear programming
formulation of the problem along with restricting a subset of variables to take
integral values only. In the former one, the LP is a natural and more or less
straightforward formulation of the problem. In the latter one, the original problem is
reformulated by encoding parts of the feasible solutions as columns of a huge linear
program. Both methods guarantee to find an optimal solution for the problem at
the expense of possibly large computation times. In contrast, heuristics work much
faster than exact methods, but they do not guarantee optimal solutions. They may
use some LP formulation, but they could also be based on proprietary data structures
and techniques.

Solution by Branch-and-Cut This approach is an extension of branch-and-bound
in which the linear programming relaxation of a MIP is solved and strengthened
by inequalities valid for the convex hull of integer solutions, but violated by the
(fractional) solution of the LP relaxation [22]. The new inequalities are added to
the problem in the root node, and also in search tree nodes. The inequalities are
generated by so-called separation procedures, which may be exact or heuristic, and
they are designed to find inequalities in a class that are violated by the optimal LP
solution of the search tree node.

A special case of the problem in which there can be no overlap between pairs of
activities connected by a precedence constraint is discussed in [15]. In that paper,
a polyhedral approach is pursued, and an exact branch-and-cut type method is
proposed. The crux of the method is a polyhedral characterization of the convex hull
of points satisfying (3)–(6), along with (8)–(10). The polyhedral characterization
consists of providing the inequalities giving the convex hull of points with integer
z coordinates satisfying the constraints (3)–(6). The inequalities are used in a
branch-and-cut method in which the formulation is strengthened by the new family
of inequalities, and they proved very effective in solving the problem with non-
overlapping activities to optimality. These results are generalized to overlapping
activities in [16]. The computational results for the latter problem show that if
we allow more overlap between activities, but we do not change other problem
parameters, then the resulting instance is easier to solve. This is plausible, since
overlapping of activities connected by a precedence constraint can be seen as a
relaxation of the problem without any overlaps between activities connected by
precedences.

Solution by Branch-and-Price This approach is suitable for solving a reformulation
in which parts of the feasible solutions are encoded as columns of a huge LP.
Hans [14] proposed a problem reformulation in which the columns represented the
supports of feasible activity assignments of the activities. The possible executions of
project activities are modeled by a set of binary vectors fˇh 2 f0; 1gjN j�T j h 2 …g,
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… being a suitable set of indices, consisting of the supports of all feasible intensity
assignments to the activities. Notice that a binary vector ˇ 2 f0; 1gjN j�T is
the support of a feasible intensity assignment if and only if

PT
tD1 ˇi;t � pi;1,

minft j ˇi;t D 1g � ri, maxft j ˇi;t D 1g � di, and if .i; j/ is a pair of activities
connected by a precedence relation, then maxft j ˇi;t D 1g < minft j ˇj;t D 1g.
For solving the problem, precisely one vector ˇh must be chosen. To this end, Hans
introduced new binary variables zh, h 2 …, together with the following constraints:

X

h2…
zh D 1;

zh 2 f0; 1g; h 2 …;

0 � xit � ai
 
X

h2…
ˇh
i;tzh

!

; i 2 N ; t 2 fri; : : : ;Tg:

The first two constraints ensure that exactly one vector ˇh is chosen. The third one
specifies that xit is either 0, or is between 0 and ai, depending on whether ˇh

i;t is 0 or
1. Hans’ model incorporates resource constraints similar to ours, although instead
of (9) it has ykt � 0, and

P
k ykt � bk, for all t.

Since there are millions of combinations in …, it is not convenient to store all
the columns in memory. For solving LPs with millions of variables, branch-and-
price is the method of choice. In such a method, there is an initial linear program
containing only a fraction of the columns of the entire linear program, just enough
to have a feasible solution. Then, new columns are inserted gradually using the
standard pricing technique of the primal simplex method. The crux of the method
is the subroutine for solving the pricing problem efficiently, i.e., given the values
of the dual variables associated with the rows of the restricted primal program, one
has to find a new column with negative reduced cost (in case of minimization type
of problems), or verify that no such column exists in the full linear program, in
which case the current LP basis is optimal. When embedded in a Branch-and-Bound
method with appropriate branching rules, we get Branch-and-Price, see Barnhart
et al. [3].

Hans proposed various algorithms for solving the pricing problem, and to branch
on the right variables. However, the computational results are inferior to those with
Branch-and-Cut, see [15] for a comparison.

Heuristics Heuristical methods usually provide a feasible solution fast, but there
is no guarantee for optimality, or even to get solutions close to the optimum.
Gademann and Schutten [12] divide the heuristics for our problem into three cat-
egories: (1) constructive heuristics, (2) heuristics that start with infeasible solutions
and convert these to feasible ones, and (3) heuristics that improve feasible solutions.

De Boer and Schutten [8] propose algorithms in the first two categories, and
Gademann and Schutten [12] present algorithms that fall in the second and third
class. Wullink [24] propose new heuristics and provide a very detailed comparison
of the various exact and heuristical methods.
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2.3 Extensions and Further Developments

The model discussed above can be extended in various ways. For instance, in some
applications non-renewable resources, like raw materials, or money are to be taken
into account when making feasible project plans. LetNR be the set of non-renewable
resources. Each non-renewable resource k 2 NR has an initial supply (or stock level)
of sk0, and there are further supplies arriving at known moments of time, i.e., for each
non-renewable resource k 2 NR, we have a sequence of uk supplies with supplied
quantities skh > 0 in time points tkh 2 f1; : : : ;Tg, h D 1; : : : uk. The consumption
of activity i from some k 2 NR until the end of time period t can be computed as
qik
Pt

�D0 xi� .
The following set of constraints can be added to the model (1)–(10):

X

i2N

tk;.`C1/�1X

tD1
qikx

i
t � sk0 C

X̀

hD1
skh; ` D 1; : : : ; uk; k 2 NR; (11)

where we define tk;ukC1 WD T C 1. This constraint ensures that the total amount of
resource k 2 NR that is used until the .` C 1/th supply event is not more than the
total supply over the first ` supply events in addition to the initial stock.

Another possible direction is to consider further variants of the precedence
constraints. In Alfieri et al. [1] and Bianco and Caramia [4] the following four types
of constraints are considered:

(a) %Completed-to-Start (CtS) precedence: successor activity j can start its
process- ing only when, in time period t, the fraction of predecessor activity i
that has been processed is greater than or equal to fij (Fig. 3a).

fij

i

j

(a)

fij

i

j

(b)

gij

i

j

(c)

gij

i

j

(d)

Fig. 3 Illustration of precedence relations: (a) CtS, (b) CtF, (c) StC, (d) FtC
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(b) %Completed-to-Finish (CtF) precedence: successor activity j can be completed
only when, in time period t, the fraction of predecessor activity i that has been
processed is greater than or equal to fij (Fig. 3b).

(c) Start-to-%Completed (StC) precedence: the fraction execution of successor
activity j, in time period t, can be greater than gij only if the execution of
predecessor activity i has already started (Fig. 3c).

(d) Finish-to-%Completed (FtC) precedence: the fraction execution of successor
activity j, in time period t, can be greater than gij only if the execution of
predecessor activity i has been completed (Fig. 3d).

The first one in the list is the same as that defined in Sect. 2.1, while the other
three are new. Alfieri et al. provide two problem formulations; in the first one
binary variables are used to mark the start and finish of activities over the time
horizon, whereas the second one is much like ours, where binary variables are used
as execution masks as in Sect. 2.1. A detailed computational evaluation shows the
superiority of the second model in terms of solution time. Bianco and Caramia [4]
in turn develop a new Lagrangian relaxation based lower bound for the makespan
minimization problem with feeding precedence constraints, where the resource
usage is bounded by a constant.

When preemption of activities is not allowed, but a flexible resource usage per
activity is desirable, the models discussed above need to be extended by additional
constraints to ensure that once an activity started, its intensity does not become
zero until it is completely finished. Such formulations are proposed and thoroughly
evaluated in Naber and Kolisch [18]. One of their main findings is that the modeling
of precedence constraints by the system (3)–(5) is a key ingredient of a strong
formulation.

3 Resource Leveling

Resource leveling problems aim at finding schedules in which the resource usage is
leveled, or smooth over time. Such problems are well studied in project scheduling
(see e.g., [2, 9, 19, 21]), but there are only a few results for machine scheduling
problems, see e.g., Rager et al [20]. Notice that in machine scheduling, machines
are unary resources that can process one job at a time, while in the more general
project scheduling problems each resource can process multiple activities at the
same time. Moreover, in project scheduling activities are usually connected by
precedence constraints, while in machine scheduling problems this is not always
the case [5, 7]. In this section we will study resource leveling problems in a machine
environment, where each job is dedicated to a single machine, and may require one
or more additional resources whose usage must be leveled.

Consider a scenario where the tasks are already assigned to machines, and
the time windows where individual tasks can be processed are already known
(e.g. based on precedence constraints, due dates, etc.). Each task may require a
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given amount of some resources (such as skilled workers, some tools, etc.). For
each resource, the available amount is known. Most companies are willing to rent
temporary resources (e.g. hiring temporary workers) in order to complete their
orders on time, however they want to minimize the extra cost (recall that this was
also the motivation for the objective function in Sect. 2). Another related application
is the classical resource leveling problem: the company wants to minimize the
variation of resource usage over time.

Beside the above applications, resource leveling problems occur in scheduling
problems where a balanced use of energy is one of the main objectives [20], in
construction engineering [11], and in production planning [2, 13].

In this section, based on [10], an efficient solution approach is presented for a
resource leveling problem in a machine environment as described above. There are
m parallel machines, and ni tasks are assigned to machine i. Preemption of tasks is
not allowed, and no machine can process more than one task at a time. Task j has
a time window Œej; dj� in which it has to be processed for pj time units. Furthermore
there are L types of renewable resources, each resource ` having a target level C`.
Task j requires an amount of bj` from resource `. An illustrative example is shown
in Fig. 4.

The goal is to minimize some function of the deviation of the resource usage
from prespecified values. We consider objective functions of the following form:

LX

`D1

DX

tD0
f`. y`t;C`/;

where y`t is the total usage of resource ` at time t, D is the time horizon, and f` W
QC �QC ! QC satisfy f`.x; y� z/ D f`.xC z; y/. Note that f` may be different for
different types of resources.

M1

M2

C

time time

re
so

u
rc

e
u

sa
g

e

Fig. 4 Example with two machines, three tasks, and one resource. The height of the tasks is
proportional to their resource requirement. The chart on the right hand side shows the resource
profile of the schedule for each time unit; the resource overuse is marked above the target level C
of the resource
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3.1 Modeling by a Mixed Integer Linear Program

The following notations will be used to describe the problem and a solution
approach:

m D number of machines

L D number of resource types

C` D target level of resource `

J D set of tasks

Ji D set of tasks pre-assigned to machine Mi

ni D jJij; the number of tasks pre-assigned to machine i

pj D processing time of task j

ej D release time of task j

dj D deadline of task j

bj` D amount of resource ` required by task j

D D time horizon

The optimization problem can be formulated as a mixed integer linear program:

OPT D min
LX

`D1

DX

tD0
f`. y`t;C`/ (12)

subject to

DX

tD0
xjt D 1; 8 j 2 J; (13)

X

j2Ji

tX

�Dt�pjC1
xj� � 1; 8 t 2 f0; : : : ;Dg; i 2 f1; : : : ;mg (14)

X

j2J

tX

�Dt�pjC1
bj`xj� � y`t D 0; 8 t 2 f0; : : : ;Dg; ` 2 f1; : : : ;Lg (15)

xjt 2 f0; 1g; 8j 2 J; t 2 fej; : : : ; dj � pjg: (16)

The decision variables are xjt 2 f0; 1g, j 2 J, t 2 fej; : : : ; dj�pjg, indicating the start
times of the tasks, and y`t 2 QC, j 2 J, t 2 f0; : : : ;Dg representing the resource
usage in each time period from each resource. As each task must be processed in its
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time window, if � < ej or � > dj � pj, then xj� is not defined and the corresponding
term is omitted.

The set of equations (13) ensures that every task is started in precisely one time
point t 2 Œej; dj � pj/\Z. The set of constraints (14) prescribes that no two tasks on
the same machine may overlap. Finally, the resource usage is computed in (15).

3.2 Calculation of Lower Bound by Lagrangian Relaxation

In order to compute lower bounds for an optimization problem, a standard technique
is to apply Lagrangian duality (see, e.g., [22]), where some nasty constraints of
a problem formulation are moved to the objective function so that the resulting
problem becomes a relaxation of the original, and at the same time is easier to solve.

By dualizing the constraints (15) we obtain the following Lagrangian relaxation
of the problem:

LB.�/ D
mX

iD1
LBi.�/C min

y

LX

`D1

DX

tD0
. f`. y`t;C`/� �`ty`t/ ; (17)

where

LBi.�/ D min
LX

`D1

DX

tD0

X

j2Ji

tX

�Dt�pjC1
�`tbj`xj� (18)

subject to

X

t2fej;:::;dj�pjg
xjt D 1; 8 j 2 Ji; (19)

X

j2Ji

tX

�Dt�pjC1
xj� � 1; 8 t 2 f0; : : : ;Dg (20)

xjt 2 f0; 1g; 8j 2 Ji; t 2 fej; : : : ; dj � pjg: (21)

From the theory of Lagrangian duality it is known that

max
�

LB.�/ � OPT

where OPT is the optimum value of (12)–(16).
In [10] it is shown that the subproblems (18)–(21) can be solved efficiently for

f .x; y/ WD maxfx � y; 0g, and f .x; y/ WD .x � y/2.
Note that by using this relaxation, the original problem is decomposed into

independent single machine problems that can be solved concurrently. Another
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advantage of this approach is that the structure and the size of the subproblems
(identified by (18)–(21)) are independent of the number of resources and the
objective function.

3.3 A Branch&Bound Method

The nodes in the Branch&Bound search tree represent a constrained version of the
original problem, where the time windows of the tasks are narrowed, and the root
node represents the original problem. In each node, the following calculations are
performed:

1. Constraint propagation. Some well known single machine constraint propaga-
tion methods are applied on each machine in order to narrow the time windows
of the tasks.

2. Calculation of lower bound. By using the subgradient method, the Lagrangian
multipliers � are determined for the actual subproblem, and a lower bound is
calculated for the actual node. The formulation presented in Sect. 3.2 is used,
however instead of solving the IP-s, their LP-relaxations are considered.

3. Shaving. Concurrently for each machine, a shaving procedure is applied. For
each task, the lower bound of the objective function is calculated for each
possible start time, again using the Lagrangian relaxation. This method may
improve the lower bound, and may also narrow the time windows. For an
overview of shaving techniques, the reader is referred to [5].

4. Calculation of upper bound. By using the solution of the Lagrangian relaxation
and applying some heuristics, a solution is sought for the problem represented by
the actual node of the Branch&Bound tree.

5. Branching. A task is chosen heuristically, and its time window is partitioned into
sub-windows. By using the results of shaving, a lower bound can be determined
for each child node without extra calculations.

A best-first search is used to traverse the search tree according to the predicted
lower bounds of the unvisited nodes, ensuring that the promising combination of
time windows are evaluated first. Furthermore, the minimal lower bound among the
unvisited nodes represents a lower bound for the original problem.

3.4 Test Results

The effectiveness of the presented Branch&Bound method was demonstrated using
randomly generated test instances of different sizes, for the following objective
functions:

flin. y`t;C`/ D w` max.0; y`t � C`/ (22)

fquad. y`t;C`/ D . y`t � C`/
2 (23)
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flin represents the minimization of total weighted resource overuse, while fquad

represents the resource leveling problem (i.e. the minimization of the variation of
the resource usage over time).

A series of test instances were used with m D 5; 10; 20machines, t D 10; 15 and
20 tasks per machine, giving a total of n D 10m; 15m and 20m tasks, respectively.
Each test class with parameters .m; t/ contained 10 instances.

The results of the Branch&Bound method were compared to those obtained by
the commercial solver ILOG CPLEX 11.2 using the MIP formulation of the resource
leveling problem (12)–(16). For both programs, a time limit of 1800 s was set, and
the best lower- and upper bound was recorded at the end of each run.

The average optimality gap (defined as UB=LB � 1, expressed in percents) in
each case is shown in Tables 1 and 2 for the linear and quadratic objective function,
respectively. For the test instances with quadratic objective function, CPLEX was
only able to compute lower or upper bounds for the smallest instances within the
time limit.

3.5 Computation with Multiple CPUs

Our Branch&Bound procedure offers several opportunities for parallel computing.
We have investigated the processing of search-tree nodes by multiple CPU cores on a
shared-memory computer. Our goal with the tests has been to measure the speed-up
that could be gained by parallel processing, using the natural decomposition of the

Table 1 Average optimality gap for the linear objective function with C` D bPj2J b`jpj=Dc,
and three resources

m5 m10 m20 Avg
BB CPX BB CPX BB CPX BB CPX

t10 6:16% 3:10% 0:74% 0:24% 0:36% 0:37% 2:42% 1:24%

t15 12:94% 11:28% 5:08% 5:96% 0:41% 1:62% 6:14% 6:29%

t20 18:39% 17:15% 5:41% 7:48% 2:19% 10:39% 8:66% 11:67%

Avg 12:49% 10:51% 3:74% 4:56% 0:99% 4:13% 5:74% 6:40%

Table 2 Average optimality gap for the quadratic objective function with C` D 0, and three
resources

m5 m10 m20 Avg
BB CPX BB CPX BB CPX BB CPX

t10 2:31% 1.51% 0:85% – 0:24% – 1:13% –

t15 3:77% – 1:20% – 0:60% – 1:86% –

t20 4:31% – 2:71% – 0:37% – 2:46% –

Avg 3:46% – 1:59% – 0:40% – 1:82% –
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Table 3 Effects of using multiple CPU cores

(a) Average ratio of CPU time and wall
clock time with different number of
CPU cores

m10 m20 Avg

t10 CPU5 2:65 2:58 2:62

CPU10 3:18 3:24 3:21

t15 CPU5 3:09 3:17 3:13

CPU10 4:27 4:37 4:32

t20 CPU5 3:29 3:33 3:31

CPU10 4:81 4:92 4:87

Avg CPU5 3:01 3:03 3:02

CPU10 4:09 4:18 4:13

(b) Average speed of the algorithm
relative to execution with a single
CPU

m10 m20 Avg

t10 CPU5 1:88 2:01 1:95

CPU10 2:14 2:42 2:28

t15 CPU5 2:77 2:82 2:79

CPU10 3:81 3:79 3:8

t20 CPU5 3:08 2:91 3

CPU10 4:41 4:2 4:31

Avg CPU5 2:58 2:58 2:58

CPU10 3:45 3:47 3:46

problem as described in Sect. 3.2. Note that other approaches of parallel processing
would also be possible, such as e.g. evaluating the search-tree nodes parallelly.

As the type of the problem and the actual test environment (server load, tasks with
high priority, etc) may influence the results, the parallel execution was evaluated
with two different methods. The first is the ratio of the elapsed CPU time and the
wall clock time (see Table 3a). Recall that the notation t10, t15, t20 means that there
are 10, 15, and 20, respectively, tasks to be scheduled on a single machine, so, in
the cell, say, t20-m20, we provide speed-up for instances with 20�20 tasks (20 tasks
per machine). We use the notation CPUn to indicate that a computation is using n
CPU cores.

An ideally parallel execution would use n � t CPU seconds with n CPU cores
during t seconds wall clock time in an ideal environment. However the wall clock
time is still passing even when some CPUs are waiting for synchronizing with the
others, and therefore the ratio of total CPU time vs wall clock time is usually worse
(smaller) than n.

The other method is to calculate the average number of nodes evaluated in a
second, which can be considered the speed of the algorithm. For each instance
the speed of the multi-core test runs was calculated relative to the single-CPU one
(see Table 3b). This measure may be less accurate than the previous one because
the nodes of the branch-and-bound tree may require different amount of calculation.
This is the consequence of the fact that the nodes of the search-tree may represent
problems with different complexity.

4 Conclusions

In this chapter we have described a planning and a scheduling problem which
have recently gained more and more attention in the academic research, but which
frequently occur in practice and need proper solution techniques so that they could
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be routinely solved by future generation manufacturing planning and scheduling
softwares.

We have described some techniques to optimally solve those problems, but the
methods mentioned could be turned into heuristics by standard techniques, like
truncated branch-and-bound, or beam search.

We believe that variants of these problems do occur in several real-world
applications, and a deeper understanding and further work is needed in order to
solve them properly in industrial practice.
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Modeling of Material Flow Problems

Simone Göttlich, Michael Herty, and Melanie Luckert

Abstract In this article we discuss the description of modern manufacturing or
production problems using continuous models. Instead of a detailed description
of the production process, a mathematical formulation is used based on transport
equations. The challenge is to derive novel and nonstandard approaches that allow
to incorporate detailed nonlinear dynamic behavior, which is currently not possible
with the widely applied linear or mixed integer linear approaches. Starting from
discrete event simulations as a basic description we explore the relation between the
product density and the flow of parts (also known as clearing function). Data-fitting
procedures help to identify the underlying parameters. We show the relationships
between discrete event simulations, queuing models and transport model-based
methods, and present several applications.

1 Introduction and Literature Overview

Manufacturing systems are studied in the literature on either a discrete level (using
time recursions) or on a macroscopic level (using a continuum description based on
differential equations for transport processes). In recent years, continuous or fluid-
like models have been particularly introduced to model high-volume production
[3–5, 10–13, 17, 21]. Those dynamics are often inspired by discrete event simu-
lations (DES), see [9]. In the current work we aim on bridging the discrete and
continuous level by presenting a suitable hierarchy of models with reasonable
transitions.
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An approach is proposed similar to gas dynamics. In physics, discrete events
and discrete parts are considered as fundamental units used to describe microscopic
phenomena. Those time-dependent individual dynamics are typically governed
by ordinary differential equations. They provide an accurate description of the
underlying process. At the same time, the system as a whole shows pattern formation
such as jams in traffic flow, flocking in swarming behavior or shock waves in
aerodynamics. A similar approach for production processes is considered. Here,
the detailed dynamic is the description of the production process of individual parts.
However, often there is only interest in the global phenomena of the system like
overloads, queuing or mean production rates. We may argue that there are different
scales also present in production. Therefore, a similar approach as in gas dynamics
is suitable in order to understand the pattern formation in production.

The individual dynamics are described by a discrete event simulation (DES)
in production processes. DES is a stochastic simulation tool for individual parts.
The corresponding continuous equations are fluid-like models. On a different scale
the latter describe production flow in an aggregate way leading to coarse-grained
models. Due to the reduced dimension they are expected to be computationally
efficient. Typically, there is only one conserved quantity in production being the
total number of produced items. Therefore, the proposed continuous models are
conservation laws for the product density �.x; t/ at production stage x 2 Œ0; 1� and
time t � 0:Here, the flux function f is usually called clearing function. Starting with
Graves [19] and Karmarkar [23] monotone, concave clearing functions have been
proposed. They are now used in production engineering, see for example [7, 8, 25].
Other approaches to derive clearing functions are mean field limit considerations
[3, 5], comparisons with observed behavior [6] or queuing theory under steady-state
assumptions. Examples for all these possible options can be found in Sect. 2 (Fig. 1).

In the case of a single unlimited buffer, Poisson processes for the arrival of
products and a Poisson process for the production time lead to f D �W

1CW ; where

W D R 1
0 �.x; t/dx is the (total) Work in Progress (WIP), see for example [20],

and � is the maximal production rate. In queuing theory this is known as an
M/M/1 queue, see also the discussion in Sect. 2. We may use � and W equivalently
whenever � is constant in x due to a production stage of at most x D 1: In
[25] a clearing function for an M/G/1 queue (here service times obey general
distributions) is proposed including parameters that may adjusted to given data. The
resulting clearing function is again a steady-state consideration and in general for
models based on product flow no transient clearing function model has been derived

Observed behavior

Clearing function

Mean field limit Queuing theory

Fig. 1 Different ways to derive a clearing function f
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yet [26]. It has been observed that in different production periods different clearing
functions may be suitable. We refer to [2, 13, 24] for an overview.

We also propose different approaches using (real) data to establish the clearing
function, i.e., the fundamental relation between f and �. We present new continuous
models based on realistic data in order to predict production behavior. As already
mentioned non-stationary queuing theory predicts that there is no fixed functional
relationship between product density and flux [26]. Therefore we are concerned
with the detailed data-fitted modeling of the flux function f and its application to
conservation laws of the form

@t�.x; t/C @x f .�.x; t// D 0: (1)

The model (1) is based on the assumption that the amount of products and
the number of production stages justifies a continuous model. A prototype of a
production process consists of a machine with associate buffer and no limit on the
storage capacity. As we will see in Sect. 2 there are several ways to establish the
fundamental relation between � and f . Such a relation is required to obtain a closed
model by Eq. (1).

2 Data-Driven Differential Equations for Production

2.1 Mean Field Limit Approach

The following model was originally introduced by Armbruster et al. [5] in 2006. It
was the starting point for the description of a high-volume multi-stage production
line by partial differential equations. Detailed explanations and reasonable exten-
sions regarding this model can be found in [13, 16, 17]. The key modeling idea was
and is still today to use a discrete description, a so-called discrete event simulation
(DES), for the small scale effects and a continuous model to describe large scale
phenomena. It can be really shown that both approaches lead to the same results in
case of mass production. In the following we present the main ingredients of these
models since they are the basic framework for all further considerations.

Discrete event simulations models (DES) provide a powerful tool for an accurate
description of the underlying production process. The main idea of these models
is to track parts through the whole production process so that information on
all part arrival times is fully available. These times obey internal production and
order policies but can be given in the case of a first come-first serve policy in a
straightforward manner.

In the sequel, we assume that the amount of parts is conserved, i.e. no parts are
lost or gained during the production process. The parts have to undergo different
production steps where there is the possibility to store parts inbetween. For the first
consideration the inventories or buffers have infinite size. Parameters defined by
production are the processing velocity and a maximal capacity for each entity.
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Fig. 2 A serial production line

To derive a discrete model we consider the particular situation of a serial
production line consisting of MP production units. The output of one unit is directly
fed into the next one, i.e. machine m ships all parts to the next machine m C 1 as in
Fig. 2.

Every machine is characterized by the processing time T.m/ and the maximal
capacity �.m/ measured in parts per unit time. The processing time T.m/ is the
time which is needed to finish a single production step. In this first attempt, the
production line should be reliable, i.e. sudden shut-downs of machines are ignored
for the moment. However, since machines have possibly different capacities, it may
happen that parts have to wait until the next operations can be performed. Therefore,
inventories or buffers are installed between production units.

The evolution of parts through the system is now determined by the computation
of arrival times. We define the arrival time of part n at the buffer of machine m
as amn . The total amount of parts in the system is denoted by NP. After successful
production, the leaving time emn denotes when part n leaves machines m and arrives
at machine m C 1, see Fig. 2.

The computation of arrival times amn obviously depends on the current buffer load,
i.e. either the buffer is empty or filled. If the buffer is empty, part n is immediately
passed into production. Once the part is released for production, the leaving time emn
can be determined by adding the processing time T.m/. In the other case the part has
to wait. If N parts arrive at the same time t at the machine having an empty buffer,
the model (2) yields the departure time of the ith part as T.m/ C .i � 1/=�.m/;
i D 1; : : : ;N: Hence, within a unit length of time the machine produces �.m/ parts.
Therefore, a buffer will be build up if the inflow per unit time exceeds �.m/: This
buffer may grow to infinity if the inflow to system exceeds �.m/ for all times.

We end up with a time recursion for the computation of all arrival times:

emn D max
˚
amn C T.m/; emn�1 C 1

�.m/

�
m D 0; 1; : : : ; n � 1: (2)

As evaluation measures for (2) we use curves of cumulative counts, so-called
Newell-curves, as already successfully applied in traffic engineering, see [27]. The
idea of Newell-curves U.m; t/ is to count all parts that have been arrived at machine
m up to any fixed time t:

U.m; t/ D
NX

nD0
H.t � emn /; m D 0; : : : ;MP; t > 0; (3)
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where H.�/ is the Heaviside function

H.t � emn / D
(
0; if t < emn

1; if t � emn
:

Hence, the Newell-curve U.m; t/ provides the total number of parts passing from
machine m�1 to machine m up to time t. The difference of two consecutive Newell-
curves is the number of parts actually processed in unit m including the parts in the
buffer as well. This difference is known as Work In Progress (WIP) and is denoted
by W.m; t/:

W.m; t/ D U.m; t/ � U.m C 1; t/; m D 0; : : : ;MP � 1: (4)

Although DES models reflect the most accurate way of modeling a time-varying
production process, the computational complexity highly depends on the number
of parts being considered. An alternative simulation approach might be continu-
ous equations. These kind of equations arise whenever the relationship between
changing quantities (modeled by functions) and their rates of change (expressed as
derivatives) is known. For the special scenario depicted above, a continuous model
can be directly derived from the DES, see [5] for a detailed proof. The idea is to
investigate the continuum limit (MP;NP ! 1) and to analyze in which sense an
approximate density and flux satisfy a conservation law for the part density.

The continuous model describes the evolution of the part density �.x; t/ at x in
time t. The space variable x can be interpreted as the degree of completion. For
instance, x 2 Œ0; 1� does not represent a physical position but rather the degree
of completion or stage of production. The manufacturing system has a prescribed
inflow �.t/ over time t at x D 0 and an outflow at x D 1 of finished products. The
density �.x; t/ is transported with velocity v.x/ if the flow of parts is less than the
maximal capacity �.x/, i.e., � satisfies the transport equation or mass conservation
law

@t�.x; t/C @x f .�.x; t// D 0; �.x; 0/ D �0.x/; (5)

where the relation between flux and density is given by

f .�.x; t// D minfv.x/�.x; t/; �.x/g; (6)

and �0.x/ describes the initial state of the line, see also Fig. 3. This relation is also
known as clearing function in the production literature.

Equation (5) is the continuous analogue to Eq. (4) and hence the Work In Progress
(WIP) the discrete representation of the part density �.x; t/: The main difficulty
is that the flux function (6) can become discontinuous due to the assumption that
processors may have different maximal capacities. For instance, if machine xm has
higher capacity than machine xmC1, i.e. �.xm/ > �.xmC1/, ı-distributions occur
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Fig. 3 Example of a clearing
function given by Eq. (6)

in the density at his point since mass has to be conserved. Obviously, the limiting
density will be a distribution and not a classical function. This corresponds to the
fact having buffers in front of machines.

Finally, we present computational results for the discrete (2) and the continuous
model (5). We consider a production line consisting of two processors, i.e. MP D 2.
The capacities and processing times of the two machines are �1 D 2;T1 D 1 and
�2 D 1;T2 D 1. The discrete model (2)–(4) can be straightforward implemented
using

�.�.0; n// D 1

�.0; n C 1/� �.0; n/ (7)

�.m C 1; 0/ D �.m; 0/C T.m/: (8)

as initial conditions. Here, the function � denotes the total inflow into the system,
see Fig. 4. Furthermore, we discretize the system (5) in space m and time i using an
Upwind-scheme for the conservation law:

�.xm; tiC1/ D �.xm; ti/� �t

�x
. f .xmC1; ti/� f .xm; ti//; m D 0; 1; 2;

f .xm; tn/ D
(

minf�.xm/; v.xm/�.xm; ti/g m D 1; 2

�.ti/; m D 0:
(9)

The time steps �t are constant and satisfy the CFL condition �t � �x=v. We
assume an empty line in the beginning, i.e. �xm;0 D 0, and a randomly disturbed
initial profile �.t/ such that the maximum capacity of the machines is exceeded, see
upper part of Fig. 4. We compute the arrival times according to (7). Both machines
have length one and are divided into ten cells. We compare the WIP from the
recursion (2) and the discretized conservation law (9). Figure 4 also shows the
corresponding WIP of each machine in the production line. The red line is computed
from the time recursion for the transition times while the blue dots are computed
from the conservation law. The WIP of machine one is computed as

R 1
0
�.x; t/ dx:
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Fig. 4 Inflow profile �.t/ prescribed as initial data (above) and work in progress versus part
density (below)

2.2 Observed Behavior and Phenomenological Approach

In this section we illustrate a phenomenological approach to modeling with
macroscopic equations. The goal is to derive equations based on observations of
DES simulations. This approach can be employed when the detailed description of
the DES equations and its setup is not available.

To exemplify, we consider experiments conducted by Gossens [15] using the
� (or Chi) language during her Master-Thesis at TU Eindhoven. The data for the
DES description was collected in semiconductor production with limited storage
capacity. From the DES simulation several interesting observations have been
obtained. A single production line with exponentially distributed interarrival times
for the inflow has been considered, cf. Fig. 2. It has been assumed that the processing
rate is �.x/ but with the crucial difference that the storage capacities buffers are
limited by a quantity �max > 0. The following scenario has been taken from the
semiconductor factory and analyzed numerically using a DES simulator. In above
case the � Simulator developed by Beek and Rooda at TU Eindhoven has been used.
The description of the experiments and simulations are summarized as follows:
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1. A production line of MP D 100 stations and time horizon of T D 11;000 is
considered.

2. We start with an initially empty factory, where the arrival rate is

min
t2Œ0;T� �.t/ < min

x2Œ0;MP �
�.x/:

The inflow is ramped up until a steady state formation of the part density within
the factory is achieved.

3. After the system runs in steady state there is a shutdown �.MP/ D 0 of the last
machine immediately leading to a bottleneck situation. Buffers of downstream
machines are filled step by step since production is blocked by the unavailable
last machine. Due to the finite size of the buffers the production process stops at
some time t0:

4. At time t1 the last machine is again operational at same capacity as before. The
production starts again. The congestion is slowly moving and buffer sizes are
reduced until the system approaches its steady state.

We are interested in a continuous equation having the same wave pattern as
observed in the DES simulation, see Fig. 7. A suggestion has been proposed in [6]
and [22]. In [6] a conservation law has been derived taking into account limited
capacities of buffers and non-homogeneous steady state behavior starting from
observations only. Since parts are still conserved during production a conservation
law similar to (5) has been proposed. However, the design of the clearing function
is more involved due to the maximum part density �max characterizing the buffer
limits. The key difference to the previous model is that the production might be
interrupted and jams may occur. The latter move backwards within the production
line. In particular, the observation described in step 2 motivates therefore a non-
monotone and discontinuous clearing function. We introduce a discontinuity at �max

such that information propagates extremely fast towards the downstream machines.
The final relation is given by Eq. (10)

f .�; x/ D
(

��

1C�Ck�.1�x/ for � < �max

0 for � � �max

(10)

with k > 0 being the decay rate of the processing capacity along x. An example is
depicted in Fig. 6.

The discontinuous clearing function involves several numerical challenges due
to the high speed of wave propagation. The simplest remedy is to smooth the
function (10). Unfortunately, this implies severe restrictions to the time step size
�t. An alternative is the embedding of the clearing function into a second order
model [18, 22].

For the experiments we parameterize the workstations by x 2 Œ0; 1� and a
maximal density of �max D 1. The production capacity is constant �.x/ D 2 for
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Fig. 5 Computational results for the discontinuous flux function from a �-simulation for �.t/ <
�.x/, cf. Fig. 3.6 in [15]. We observe the following phenomena from left to the right: shutdown of
the last machine and congestion—release of production draining after the last machine has been
repaired. The figure shows snapshots of averaged WIP profiles

Fig. 6 Example of a clearing function given by Eq. (10)

all x and k D 0:7. We start with an empty factory at time t D 0 and a constant
arrival rate �.t/ < �.x/ at x D 0.

The computed results cover the essential scenarios ramp up, blocking and release
as described in Fig. 5. Apparently, the system behavior reproduced by a continuous
model is obtained at lower computational costs compared to the DES. We want to
stress that the model (10) is not derived in a rigorous way as done in Sect. 2.1, but is
solely based on observations. It is unclear for now if a rigorous derivation is possible
(Figs. 6 and 7).
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Fig. 7 Computational results for the discontinuous clearing function (10) used for a comparison
with Fig. 6. The pictures are from reference [18]

2.3 Data-Fitted Simulated Clearing Functions

In this section we propose a general method to derive clearing functions based on
a DES simulation using real factory data. As discussed previously non-stationary
queuing theory predicts that there is no fixed functional relationship between
product density and flux [26]. However, transient clearing functions have been
proposed starting with the work of [1] and [28] to incorporate dynamic effects. We
proceed in this spirit in order to obtain a coarse-grained model of transport type (1).

To exemplify we use data from a mid-size German manufacturing company.
The available data are order and release data of the major single production step.
The layout is precisely as in a theoretical queuing model, i.e., we have a buffer
where parts arrive and a machine applying a manufacturing step. Available is
production data for 1 year (2012). Mathematically, a probability distribution for the
interarrival times is computed from the data. Further, a probability distribution for
the production times is computed from the data. Here, we use as sample interval
single days. The resulting probability distributions based only on the available
data are depicted in Fig. 8. We observe a strong possibly exponential decay of the
probability of high interarrival times. A similar observation is true for the production
times. The discrete probability distribution is interpolated. This allows to have an
arbitrary amount of data points available for later DES simulations. The sampled
data are indicated by black dots in Fig. 9.
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Fig. 8 Probability distribution of number of parts per day from a German manufacturing plant.
Left: inter-arrival times, right: production times

Theoretically, now different approaches are possible. On the one hand we may
fit an exponential probability distribution function ˆr.x/ D r exp.�rx/H.x/ of
mean 1

r to each discrete resampled probability distribution. This leads to a Poisson
distributed interarrival process of a certain (fitted) rate (called �) and a Poisson
distributed production process of a data fitted rate �. Then, the setup is precisely as
in an M/M/1 queuing model with the well-established relation between WIP W and
flux f � � as

f D �W

1C W
:

This relation is obtained also when simulating a DES with interarrival process given
byˆ� and a production process described byˆ�:We have the advantage of deriving
a single explicit formula closing Eq. (1). However, the data-fitting happens prior to
simulating the dynamics.

In the second approach we reverse the procedure. We first apply a DES
simulation sampling from the interpolated probability distributions. Then, we record
the WIP and flux of several DES simulation. Note that for a DES simulation is
not required to have exponentially distributed times. However, we do not expect a
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Fig. 9 Probability distribution of number of parts resampled from real data depicted in Fig. 8. In
black are simulated points, in blue available data points. Left: interarrival times, right: production
times

closed formula since the probability distributions are not exponentially distributed
and therefore the process is not necessarily Poisson. The resulting WIP and flux
values for 2000 simulations of the interpolated data is shown in Fig. 10. Clearly,
we observe a spread of the data across the diagram related to the fact that the
underlying interarrival and production probabilities are obtained from interpolated
data. However, the data suggests an empirical clearing function f D f .W/: Several
choices are possible. We depict in Fig. 11 a clearing function fitted to the mean
of the data for any fixed WIP. This relation can not be expressed explicitly in a
functional form. However, it also provides a closure relation for Eq. (1). In order
to use this relation in a predictive model we would need to table the fitted clearing
function. However, the computational effort is very small compared with a DES
simulation. For example, here we require to table 50 pairs of WIP and flux in order
to describe the closure relation. Within the second approach the averaging therefore
happens after the DES simulation leading to a more detailed WIP flux relation. It
is interesting to note that with the presented results the WIP flux relation would not
be monotone any more. This allows therefore to also obtain a more complex flow
pattern predicted by Eq. (1).



Modeling of Material Flow Problems 33

Fig. 10 WIP-flux relations for the DES simulated data. 2000 simulations are performed. The
interarrival and production probabilities are interpolated from the existing data of the German
company

Fig. 11 WIP-flux relations for the DES simulated data. The final clearing function f is shown
in red. In green color we show the underlying simulation results from 2000 simulations. The
interarrival and production probabilities are interpolated from the existing data of the German
company
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We also mention a different approach presented in [14]. In Fig. 11 we observe
that the simulation averages (depicted as red dots) WIP flux relation resembles for
small values of the WIP a shape similar to

f .�;W/ D �W

1C W
: (11)

However, the value of � is not necessarily equal to the value obtained in the first
approach.

Furthermore, the simulation averages do not cover well the spread of the data.
In [14] we propose to combine Eq. (1) with Eq. (11). This leads to an additional
unknown � D �.x; t/ in the system. We need to prescribe a model for this quantity
in order to close the system. To this end we note that � resembles a production rate.
This rate is supposedly known when parts arrive (stating a release date). However,
this rate might change for the new parts. Hence, it is reasonable to assume that
� is a quantity that is moved with the product flow. The equation describing this
observation is given by

@t�.x; t/C v.x; t/@x�.x; t/ D 0: (12)

Herein, v is the velocity of the moving parts of density � which is given by

�.x; t/v.x; t/ D �.x; t/�.x; t/

1C �.x; t/
DW f .�.x; t/; �.x; t//: (13)

Summarizing, the full model proposed in [14] is given by Eqs. (1), (12) and (13).
Among the properties of the system are hyperbolicity except at zero production
density. The eigenvalues are at most v.x; t/: Therefore, there is only a finite speed
of propagation of information bounded by the speed of the produced parts. This
coincides with the expected behavior of a production line. The clearing functions of
the extended model form a family of functions of the type (11) for a fixed value of
�: This allows to capture the spread in the data more efficiently.

Summarizing, several possibilities to extend classical M/M/1 queuing theory
to time dynamic models of continuous type exist. Depending on the quality of
the available data as well as the possible spread in the resulting DES simulation
several approaches exit. We focus on the presentation of continuous models thereby
neglecting detailed dynamics.

3 Outlook

We have presented recent approaches on modeling production flows using contin-
uous partial differential equations. Compared with classical modeling approaches
as DES, queuing theory or mixed-integer modeling, the differential equations allow
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for a reduced computational complexity as well as efficient and structure preserving
optimization and control approaches. However rigorous derivations of models based
on differential equations are only possible for simplistic models of production
scenarios. In case of more complex problems two other approaches have been
presented. The approach based on the observed behavior has so far been able to
capture the main effects of production lines with limited buffers. The approach
based on available data of interarrival and production times has led to a second-
order model. The theory of a rigorous justification based on the underlying product
dynamics is still its infancy for both cases. Future work may include progress in the
mean field limits, the extension of the models towards control and optimization
problems as well as the extension towards large scale production networks. In
all fields there are challenging mathematical as well as computational problems.
The derived equations resemble to some extended fluid dynamical equations and
one may adapt those methods here. However, hyperbolic transport properties are
fundamentally different from fluid dynamics and require adapted and different
theoretical and numerical treatment.
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Max-Plus-Linear Systems for Modeling
and Control of Manufacturing Problems
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Abstract In this chapter, the dynamics of manufacturing systems is characterized
through the occurrence of events such as parts entering or leaving machines.
Furthermore, we assume that the relations between events are expressed by syn-
chronizations (i.e., conditions of the form: for all k � l, occurrence k of event
e2 is at least � units of time after occurrence k � l of event e1). Note that this
assumption often holds when the considered manufacturing system is functioning
under a predefined schedule. First, we discuss the modeling of such systems by
linear state-space models in the .max;C/-algebra (due to this property, such systems
are often called .max;C/-linear systems). Second, standard open-loop and closed-
loop control structures for .max;C/-linear systems are recalled. These control
structures lead to a trade-off between the rapidity of systems and their internal buffer
sizes. Some techniques to influence this trade-off are presented.
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1 Introduction

A discrete event system (e.g., [1]) is a dynamical system driven by the instanta-
neous occurrences of events. In a discrete event system, two basic elements are
distinguished: the event set and the rule describing the behavior of the system.
By considering events such as parts entering or leaving machines, discrete event
systems offer an interesting framework to model manufacturing systems at a high
level of abstraction. Many formal approaches such as finite-state automata (e.g., [2])
and Petri nets (e.g., [3]) have been investigated to express the rule describing the
behavior of the system. In the following, we focus on discrete event systems where
this rule is only composed of synchronizations (i.e., conditions of the form: for all
k � l, occurrence k of event e2 is at least � units of time after occurrence k�l of event
e1 with � 2 N0 and l 2 N0). The behavior of manufacturing systems functioning
under a predefined schedule can often be adequately modeled by synchronizations
(see Example 1).

Discrete event systems where the rule describing the behavior is only composed
of synchronizations are called .max;C/-linear systems. This terminology is due to
the fact that a specific behavior, namely the behavior under the earliest functioning
rule, is described by linear equations in particular algebraic structures such as the
.max;C/-algebra. In the literature, only this specific behavior is usually considered.
For .max;C/-linear systems, it is possible to partition the set of events into input,
internal, and output events and, based on this partition, to derive a .max;C/-linear
state-space model of the system. Therefore, much effort has been made during
the last decades to adapt key concepts from standard control theory to .max;C/-
linear systems. Transfer function matrices have been introduced for .max;C/-linear
systems by using formal power series [4]. Furthermore, some standard control
approaches such as optimal feedforward control [5], model reference control [6–8],
and model predictive control [9] have been extended to .max;C/-linear systems.
For manufacturing systems, model reference control is particularly interesting, as it
offers techniques to both reduce the size of internal buffers and take into account
unexpected disturbances.

We emphasize that the purpose of this contribution is not to compare different
modelling and control approaches for manufacturing systems. On the contrary, we
concentrate on a specific class of manufacturing systems exclusively governed by
synchronization and delay phenomena. As pointed out above, models for this class
of systems are linear in certain algebraic structures. For this reason, many methods
for designing control can be adapted form standard linear systems theory to be
applicable to the discussed class of manufacturing systems. A key advantage of this
approach is that the desired control policy, i.e., the way control reacts to external
inputs and measured outputs, can be computed analytically and offline. Hence, the
required computational online effort is negligeable.
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The rule describing the behavior of .max;C/-linear systems can also be
expressed by specific timed Petri nets called timed event graphs (TEGs). A TEG is a
directed bipartite graph, where the set of nodes is partitioned into a set of places and
a set of transitions, and arcs are either from places to transitions or from transitions
to places. Moreover, in a TEG, each place has precisely one incoming and one
outgoing arc. Each place is equipped with a holding time. Places may contain
tokens, and transitions are associated with events. A transition can “fire” (i.e., the
associated event can occur) if and only if each place from which an arc leads to
the transition (“upstream place”) has at least one token residing in the respective
place for at least the corresponding holding time. If the transition “fires” (i.e., the
associated event occurs), all upstream places lose one token and all downstream
places (places to which there is an arc from the considered transition) gain one
token. Places and transitions are graphically represented by circles and bars, and
the holding times, if nonzero, are indicated by adding numbers to places. In the
following, we focus on .max;C/-linear representations to formally manipulate
systems, but use timed event graphs to graphically represent systems.

This chapter is structured as follows. In the next section, necessary mathematical
tools are recalled. The modeling of the considered class of discrete event systems
in the .max;C/-algebra and in the dioid M ax

in �	; ı� is presented in Sect. 3. Finally,
Sect. 4 focuses on control for .max;C/-linear systems. Throughout this chapter,
the simple manufacturing system introduced in Example 1 is used to illustrate and
clarify the presented concepts. We emphasize that illustration and clarification is the
sole purpose of this example. However, methods based on .max;C/-linear systems
are also suitable for industrially relevant systems: for example, in [10], this approach
is used to model and control high-throughput screening systems (i.e., systems to
rapidly test thousands of biochemical substances) with over one hundred events and
dozens of activities and resources.

Example 1 A simple manufacturing system composed of three machines, denoted
M1, M2, and M3, is considered. Machine M1 consumes workpieces of type 1 and
releases workpieces of type 3. Machine M2 consumes workpieces of type 2 and
releases workpieces of type 4. Machine M3 pairwise assembles workpieces of type
3 and 4 and delivers workpieces of type 5. The production of a new workpiece
of type 5 from workpieces of type 1 and 2 starts after the receiving of an order
from a customer. Orders and workpieces of type 1 and 2 correspond to the inputs
of the manufacturing system (i.e., external influences either from suppliers or from
customers) and workpieces of type 5 correspond to the output of the manufacturing
system. Each machine has a capacity of one. The processing time associated with
machine M1, denoted �1, is four units of time and the processing time associated
with machine M2 (resp. M3), denoted �2 (resp. �3), is two units of time. Furthermore,
a machine Mi with 1 � i � 3 can start processing the next workpiece as soon as
it finishes processing the current workpiece. The buffers have an infinite capacity.
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To formally describe the dynamics of this manufacturing system, we define the
following events:

event ui (with i D 1; 2) a workpiece of type i enters the system
event si (with 1 � i � 3) machine Mi starts to process a (pair of) workpiece(s)
event fi (with 1 � i � 3) machine Mi delivers a processed workpiece
event o an order is received
event y a workpiece of type 5 leaves the system

The behavior of the considered manufacturing system is completely expressed by
synchronizations of the events defined above. Two synchronizations are needed to
express the dynamics of each machine Mi with 1 � i � 3. The first synchronization
models the process associated with machine Mi: for all k � 0, occurrence k of event
fi is at least �i units of time after occurrence k of event si. The second synchronization
models the capacity constraint: for all k � 1, occurrence k of event si is at least zero
units of time after occurrence k � 1 of event fi. Furthermore, to model the flow of
workpieces outside the machines some additional synchronizations are needed. The
supply of workpieces of type i with i D 1; 2 is modeled by “for all k � 0, occurrence
k of event si is at least zero units of time after occurrence k of event ui” with i D 1; 2.
The supply for machine M3 of workpieces processed by machine Mi with i D 1; 2

is expressed by “for all k � 0, occurrence k of event s3 is at least zero units of time
after occurrence k of event fi” with i D 1; 2. The release of workpieces of type 5 is
modeled “for all k � 0, occurrence k of event y is at least zero units of time after
occurrence k of event f3”. Finally, orders are taken into account by “for all k � 0,
occurrence k of event si is at least zero units of time after occurrence k of event o”
with i D 1; 2.

The timed event graph associated with this manufacturing system is shown in
Fig. 1, where holding times (if nonzero) are indicated by numbers attached to places.

s1 f14

o

u2

2

s3 2 f3

u1

Machine M1

s2 f2

Machine M2

Machine M3

y

Fig. 1 A simple manufacturing system
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2 Mathematical Preliminaries

In this section, necessary elements of dioid theory and residuation theory are
recalled. A complete survey on these topics is available in [4] and [11], respectively.

2.1 Dioid Theory

Dioids (or idempotent semirings) are algebraic structures which play a major role in
the modeling of .max;C/-linear systems.

Definition 1 (Dioid) A dioid is a set D endowed with two binary operations,
denoted ˚ and ˝, such that:

• ˚ is associative, commutative, idempotent (8a 2 D ; a ˚ a D a), and admits a
neutral element ".

• ˝ is associative and admits a neutral element e.
• ˝ is distributive with respect to ˚ from both sides:

8a; b; c 2 D ;

�
a ˝ .b ˚ c/ D .a ˝ b/˚ .a ˝ c/
.a ˚ b/˝ c D .a ˝ c/˚ .b ˝ c/

• " is absorbing for ˝, i.e., 8a 2 D ; a ˝ " D "˝ a D ".

If D is closed for infinite sums and distributivity is extended to infinite sums, then
dioid D is said to be complete.

Formally, the operations ˚ and ˝ are very similar to the standard operations C
and �. Therefore, these operations are respectively called addition and multiplica-
tion. Then, " is called the zero element of the dioid D and e is its unit element.
As in classical algebra, ˝ is often omitted and the product is simply denoted by
juxtaposition (i.e., ab corresponds to a ˝ b). As ˚ is associative, commutative, and
idempotent, it induces a partial order � on D defined by a � b , a ˚ b D b.
Hence, a dioid is a partially ordered set.

By analogy with standard linear algebra, the operations ˚ and ˝ are extended to
matrices with entries in a dioid D .

8A;B 2 Dn�p; .A ˚ B/ij D Aij ˚ Bij

8A 2 Dn�p;8B 2 Dp�q; .A ˝ B/ij D
pM

kD1
AikBkj

The operation ˚ also provides a partial order � over Dn�p. Formally, for A;B 2
Dn�p, A 	 B , A D A ˚ B. The next proposition gives the algebraic structure of
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the set of square matrices with entries in a dioid endowed with the operations ˚ and
˝ defined above.

Proposition 1 ([4]) Let D be a dioid. The set Dn�n endowed with the operations
˚ and ˝ defined above is a dioid. Besides, ifD is complete, thenDn�n is complete.

The next theorem plays an essential role in the following to solve implicit
inequalities of the form X 	 AX ˚ B where A, X, and B are matrices with entries in
a complete dioid.

Theorem 1 (Kleene Star Theorem [4]) Let D be a complete dioid and A 2
Dn�n;B 2 Dn�p. Denote the unit element of Dn�n by e. Then, the inequality
X 	 AX ˚ B admits A�B as least solution, where the Kleene star of A, denoted
A�, is defined by

A� D
C1M

kD0
Ak with Ak D

�
e if k D 0

A ˝ Ak�1 otherwise

In Sect. 3, modeling of .max;C/-linear systems in the .max;C/-algebra and in
the dioid M ax

in �	; ı� will be discussed. Next we briefly describe these two dioids.

2.1.1 The .max;C/-Algebra

The .max;C/-algebra, denotedNmax, is defined as the set N0[f�1;C1g endowed
with the operations max and C. This corresponds to a complete dioid with max as
addition ˚ and C as multiplication ˝. The zero element " is equal to �1 and the
unit element e is equal to 0. The order � induced by the operation ˚ corresponds to
the standard order, as

a � b , a ˚ b D b , b D max .a; b/ , a � b

Example 2 In the following, some simple calculations in Nmax are described. In the
scalar case,

5˚ 3 D max .5; 3/ D 5 and 5˝ 3 D 5C 3 D 8

In the matrix case,

0

@
5 3 C1
" 4 "

e " "

1

A˚
0

@
2 " 2

3 e 4

e " C1

1

A D
0

@
5 3 C1
3 4 4

e " C1

1

A

0

@
5 3 C1
" 4 "

e " "

1

A˝
0

@
2 " 2

3 e 4

e " C1

1

A D
0

@
C1 3 C1
7 4 8

2 " 2

1

A
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2.1.2 The Dioid M ax
in �”; •�

In the following, a brief introduction to the dioid M ax
in �	; ı� is given. This dioid is

especially convenient for modeling and control of .max;C/-linear systems. For a
formal definition of this dioid, the reader is invited to consult [4]. A C++-library
dedicated to computation in the dioid M ax

in �	; ı� is described in [12]. First, the
concepts of daters and operators are recalled.

Definition 2 (Dater) A dater is a non-decreasing mapping from Z to Nmax equal to

 over fn 2 Zjn < 0g. The set of daters is denoted D.
In the following sections, daters will be used to describe the occurrence times of
events. Then, for a dater d associated with a particular event, d.k/; k � 0; will
denote the time when the event occurs for the kth time. Note that it is customary to
start enumeration of event occurrences by 0 (instead of 1).

Of particular interest are the daters "D and eD defined by

8k 2 Z; "D .k/ D " and eD .k/ D
�
" if k < 0
e if k � 0

The set of daters is endowed with an operation, denoted ˚, derived from the
operation ˚ over Nmax. Formally,

8d1; d2 2 D;8k 2 Z; .d1 ˚ d2/ .k/ D d1 .k/˚ d2 .k/

Definition 3 (Operator) An operator is a mapping from D to D. The set of
operators is denoted O .

Using the operation ˚ over D, a matrix of operators is defined as a mapping
between vectors of daters. Matrix O 2 On�p corresponds to the mapping from Dp

to Dn defined by

8d 2 Dp; O .d/i D
pM

jD1
Oij
�
dj
�

Of particular interest are the operators "O , eO , 	 , and ı defined by

8d 2 D; "O .d/ D "D and eO .d/ D d

8d 2 D;8k 2 Z; 	 .d/ .k/ D d .k � 1/ and ı .d/ .k/ D 1d .k/

The set of operators is endowed with an operation, denoted ˚, derived from the
operation ˚ defined over D. Formally,

8o1; o2 2 O;8d 2 D .o1 ˚ o2/ .d/ D o1 .d/˚ o2 .d/
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Furthermore, an operation ˝ over O is defined as the composition of mappings: for
all o1; o2 2 O , o1 ˝ o2 D o1 ı o2. Under some conditions, the set of operators O
endowed with the operations ˚ and ˝ defined above is a complete dioid. Then, the
dioid M ax

in �	; ı� is defined to be the complete dioid spanned by f"O ; eO ; 	; ıg. Let
� 2 N0 and � 2 N0. The operator 	�ı� belongs to M ax

in �	; ı� and corresponds to

8d 2 D;8k 2 Z; .	�ı� / .d/ .k/ D �d .k � �/

By construction, calculation rules are available to simplify expressions in
M ax

in �	; ı�. Operators 	 and ı commute:

8d 2 D;8k 2 Z; .	ı/ .d/ .k/ D ı .d/ .k � 1/
D 1d .k � 1/

D 1	 .d/ .k/

D .ı	/ .d/ .k/

Furthermore, let l1; l2 in N0. For all d 2 D and k 2 Z,

�
ıl1 ˚ ıl2

�
.d/ .k/ D l1d .k/˚ l2d .k/

D .l1 ˚ l2/ d .k/

D ımax.l1;l2/ .d/ .k/
�
	 l1 ˚ 	 l2

�
.d/ .k/ D d .k � l1/˚ d .k � l2/

D d .k � min .l1; l2// as dater d isnon � decreasing

D 	min.l1;l2/ .d/ .k/

Hence, ıl1 ˚ ıl2 D ımax.l1;l2/ and 	 l1 ˚ 	 l2 D 	min.l1;l2/.

Representing Daters in the Dioid M ax
in �	; ı�

The dioid M ax
in �	; ı� offers a method to elegantly manipulate daters: a dater d is

associated with the operator
LC1

kD0 	 kıd.k/ where ı�1 (resp. ıC1) stands for "
(resp. ı�). Then, the operator o in M ax

in �	; ı� associated with a dater d is the single
operator in M ax

in �	; ı� satisfying o .eD/ D d. Using calculation rules specific to
M ax

in �	; ı�, the expression of the operator associated with a dater is often much
simpler than the expression of the dater itself. In the following, we do not distinguish
between a dater and the associated operator in M ax

in �	; ı�.



Max-Plus-Linear Systems for Manufacturing Problems 45

0

1

2

3

4

1 2 3 4 5

5

6

7

8

9

6 7 8 9

10

11

12

10 k

d(k)

Fig. 2 Dater d

Example 3 Let us consider the dater d defined by

d .k/ D

8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

" if k < 0
3 if k D 0; 1

5 if k D 2

6C 4j if k D 3C 3j with j 2 N0

8C 4j if k D 4C 3j; 5C 3j with j 2 N0

The dater d is pictured in Fig. 2. In M ax
in �	; ı�,

d D
C1M

kD0
	 kıd.k/ D ı3 ˚ 	ı3 ˚ 	2ı5 ˚ �

	3ı6 ˚ 	4ı8 ˚ 	5ı8
� �
	3ı4

��

Using calculation rules specific to M ax
in �	; ı�, the expression of dater d is simplified:

d D ı3 ˚ 	2ı5 ˚ �
	3ı6 ˚ 	4ı8

� �
	3ı4

��
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2.2 Residuation Theory

Residuation theory gives the theoretical foundation for the control of .max;C/-
linear systems.

Definition 4 (Residuated Mapping) Let f W E ! F with E and F ordered sets.
Mapping f is said to be residuated if f is non-decreasing and if, for all y 2 F, the
least upper bound of the subset fx 2 Ejf .x/ � yg exists and lies in this subset. This
element in E is denoted f ].y/. Mapping f ] from F to E is called the residual of f .

Let a be an element in a complete dioid D . The mappings La W x 7! a ˝ x
(left-multiplication by a) and Ra W x 7! x ˝ a (right-multiplication by a) over D
are residuated. The residuals are denoted by L]a.x/ D a ınx (left-division by a) and
R]a.x/ D xı=a (right-division by a). By definition, a ınb (resp. bı=a) denotes the greatest
solution x of the inequality a ˝ x � b (resp. x ˝ a � b).

The operations ın and ı= are also extended to matrices. Hence, A ınB (resp. Bı=A)
corresponds to the greatest solution X of the inequality AX � B (resp. XA � B).

Example 4 For a; b in Nmax,

a ınb D bı=a D
8
<

:

C1 if a D " or b D C1
" if a 	 b and a ¤ b
b � a if b 	 a and a; b 2 N0

3 Modeling

After some preliminary remarks on the modeling assumptions, the modeling of
.max;C/-linear systems is presented both in the .max;C/-algebra and in the dioid
M ax

in �	; ı�.

3.1 Preliminaries

3.1.1 Input, Output, and Internal Events

The event set of a .max;C/-linear system is partitioned into

input events: these events are the source of synchronizations, but not subject to
synchronizations. Input events correspond to external events affecting the system
(e.g., external supplies of workpieces or orders from customers).

output events: these events are subject to synchronizations, but not the source of
synchronizations. Output events correspond to events in the system which are
directly seen by other systems (e.g., deliveries of finished products).
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Fig. 3 A manufacturing system

internal events: these events are both subject to and the source of synchroniza-
tions. Internal events model the internal dynamics of the system.

Events which are neither subject to nor the source of synchronizations are neglected,
as we focus on interactions between events. In the rest of this chapter, we consider
.max;C/-linear systems, where:

• the sets of input, output, and internal events are not empty
• there exist no direct synchronizations of output events by input events

In practice, these assumptions either hold or can be made to hold by adding some
fictitious internal events. Furthermore, the following convention for notation is used.
The numbers of input, output, and internal events are respectively denoted by m, p,
and n. Input, output, and internal events are respectively denoted by u, y, and x and
integer subscripts are used to distinguish events of the same kind.

Example 5 In the considered example, the event set is partitioned into

• input events u1, u2, and o
• internal events s1, s2, s3, f1, f2, and f3
• output event y

These events are relabeled according to the above notation (see Fig. 3). For this
system, m D 3, n D 6, and p D 1.

3.1.2 Earliest Functioning Rule

Synchronizations (i.e., conditions of the form: for all k � l, occurrence k of event e2
is at least � units of time after occurrence k � l of event e1) only specify conditions
enabling occurrences of events, but never force an event to occur. Therefore, a
.max;C/-linear system is not univocally determined: a predefined timing pattern
of the input events may lead to different timing patterns for internal and output
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events. The only requirement is that these patterns are admissible with respect to the
synchronizations required by the considered system.

In the following, we only consider a particular behavior for .max;C/-linear
systems, namely the behavior under the earliest functioning rule. The earliest
functioning rule requires that each internal or output event occurs as soon as
possible. Under the earliest functioning rule, a .max;C/-linear system is univocally
determined: a predefined timing pattern of the input events leads to a unique
timing pattern for internal and output events. This fundamental property is a direct
consequence of the model in the .max;C/-algebra presented later.

Example 6 In the considered example, the earliest functioning rule is suitable, as
the aim is to meet the orders as soon as possible.

3.1.3 Modeling with Daters

To capture the timed dynamics of a discrete event system, a dater is associated with
each event such that the dater gives the times of occurrences of the considered event.
In the following, no distinction in the notation is made between an event and the
associated dater. Hence, for an event d, d .k/ denotes the time of occurrence k of
event d. This leads to the following interpretation for daters:

d .k/ D ": occurrence k of event d is at t D �1. By convention, occurrence k,
with k < 0, of an event is always at t D �1.

d .k/ 2 N0: occurrence k of event d is at time d .k/.
d .k/ D C1: occurrence k of event d never happens.

The fact that daters are non-decreasing (i.e., for a dater d, d .k C 1/ 	 d .k/ for all
k 2 Z) is always satisfied as occurrence k C 1 of event d is never before occurrence
k of event d.

3.2 Modeling in the .max;C/-Algebra

Next, we show how to model .max;C/-linear systems by recursive equations in the
.max;C/-algebra. Using daters, the synchronization “for all k � l, occurrence k of
event e2 is at least � units of time after occurrence k � l of event e1” corresponds to

8k 2 Z; e2 .k/ � � C e1 .k � l/

in the standard algebra or to

8k 2 Z; e2 .k/ 	 �e1 .k � l/
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in the .max;C/-algebra. Furthermore, the effect of several synchronizations on a
single event is also expressed by a single inequality. For example, the synchroniza-
tions “for all k � l1, occurrence k of event e2 is at least �1 units of time after
occurrence k � l1 of event e1;1” and “for all k � l2, occurrence k of event e2 is at
least �2 units of time after occurrence k � l2 of event e1;2” are both expressed by a
single inequality either in the standard algebra

8k 2 Z; e2 .k/ � max .�1 C e1;1 .k � l1/ ; �2 C e1;2 .k � l2//

or in the .max;C/-algebra

8k 2 Z; e2 .k/ 	 �1e1;1 .k � l1/˚ �2e1;2 .k � l2/

Hence, the rule describing the behavior of the system can be expressed by the
following matrix inequalities in Nmax.

�
x .k/ 	 LL

iD0 .Aix .k � i/˚ Biu .k � i//
y .k/ 	 LL

iD0 Cix .k � i/
(1)

where x, u, and y respectively correspond to the vectors of daters associated with
internal, input, and output events, and L denotes the greatest parameter l over all
synchronizations. Furthermore, matrices Ai, Bi, and Ci belong respectively to N

n�n
max,

N
n�m
max , and N

p�n
max. The entries of these matrices are given by the parameters of the

synchronizations.
To simplify (1), the event set of the considered .max;C/-linear system is

extended by additional internal events. The resulting extended set of internal events
is referred to as the set of state events. The daters of all state events are collected
in a single vector, which, slightly abusing notation, is again called x. This allows
us to convert (1) to a first-order recursion. The resulting inequalities are given in
(2). The validity of this step results from the equivalence between the different
synchronization relations between events e1 and e2 pictured in Fig. 4.

�
x .k/ 	 A0x .k/˚ A1x .k � 1/˚ B0u .k/
y .k/ 	 C0x .k/

(2)

By convention, x .k/ and y .k/ have all entries equal to " for k < 0. This choice
is valid according to (2). As the behavior under the earliest functioning rule is
considered, the time of occurrence k � 0 of state and output events is given by
the least solution for x .k/ and y .k/ in (2). Considering that x is composed of daters
(i.e., x .k/ 	 x .k � 1/ for all k 2 Z), we have

x .k/ 	 A0x .k/˚ A1x .k � 1/˚ B0u .k/

, x .k/ 	 A0x .k/˚ .A1 ˚ e/ x .k � 1/˚ B0u .k/
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Fig. 4 Equivalent
synchronizations if no other
synchronizations affect event
ei

e1 τ e2

e1 e2ei τ

e1 τ e2ei

Hence, using Theorem 1, the following .max;C/-linear state-space model is
obtained:

�
x .k/ D Ax .k � 1/˚ Bu .k/
y .k/ D Cx .k/

(3)

where A D A�
0 .A1 ˚ e/, B D A�

0B0, and C D C0. Hence, .max;C/-linear
systems are deterministic and, as expected, .max;C/-linear (i.e., a .max;C/-linear
combination of inputs induces the corresponding .max;C/-linear combination of
outputs).

Example 7 The synchronizations in the considered example are represented by the
following matrix inequalities in Nmax.

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
ˆ̂
:̂

x .k/ 	

0

B
B
B
B
B
B
B
@

" " " " " "

4 " " " " "

" " " " " "

" " 2 " " "

" e " e " "
" " " " 2 "

1

C
C
C
C
C
C
C
A

x .k/˚

0

B
B
B
B
B
B
B
@

" e " " " "
" " " " " "

" " " e " "
" " " " " "

" " " " " e
" " " " " "

1

C
C
C
C
C
C
C
A
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This leads to the following .max;C/-linear state-space model:
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Let us consider the input corresponding to a supply of five workpieces of type 1 and
type 2 at time 0 and an order of five workpieces of type 5 at time 0. Hence the kth,
0 � k � 4; occurrence of event u1 (“a workpiece of type 1 enters the system”), u2
(“a workpiece of type 2 enters the system”) and u3 D o (“an order is received”) is
at time 0. The associated daters are

u1 .k/ D u2 .k/ D u3 .k/ D
8
<

:

" if k < 0
e if 0 � k < 5
C1 if k � 5

The induced output can be easily calculated from the linear difference equation (3):

y .k/ D
8
<

:

" if k < 0
6˝ 4k if 0 � k < 5
C1 if k � 5

Hence, a workpiece of type 5 is delivered at time 6, 10, 14, 18, and 22.

3.3 Modeling in the DioidM ax
in ��; ı�

Next, we show how to model .max;C/-linear systems in the dioid M ax
in �	; ı�. Let us

consider the synchronization “for all k � l, occurrence k of event e2 is at least � units
of time after occurrence k� l of event e1”. As mentioned before, this corresponds to
the following inequality in Nmax:

8k 2 Z; e2 .k/ 	 �e1 .k � l/

Rewriting this relation with the operators 	 and ı leads to the following inequality
over daters: e2 	 �

ı�	 l
�
.e1/. Furthermore, the combination of several synchroniza-

tions on the same event can be expressed in a single inequality by using the operation
˚ over daters. For example, synchronizations “for all k � l1, occurrence k of event
e2 is at least �1 units of time after occurrence k� l1 of event e1;1” and “for all k � l2,
occurrence k of event e2 is at least �2 units of time after occurrence k � l2 of event
e1;2” are both expressed by a single inequality:

e2 	 �
ı�1	 l1

�
.e1;1/˚ �

ı�2	 l2
�
.e1;2/

Hence, the rule describing the behavior of the system can be expressed by the
following matrix inequalities.

�
x 	 A .x/˚ B .u/
y 	 C .x/

(4)
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where x, u, and y respectively correspond to the vectors of daters associated with
internal, input, and output events and matrices A, B, and C respectively belong
to M ax

in �	; ı�n�n, M ax
in �	; ı�n�m, and M ax

in �	; ı�p�n. Furthermore, as daters can be
represented by elements in the dioid M ax

in �	; ı�, the vectors of daters x, u, and y
appearing in (4) can be replaced by vectors with entries in M ax

in �	; ı�. This leads to
the following matrix inequalities in M ax

in �	; ı�.

�
x 	 Ax ˚ Bu
y 	 Cx

(5)

Under the earliest functioning rule, y D Cx and, using Theorem 1, x D A�Bu. This
leads to a transfer function matrix H D CA�B. Hence, the output y induced by input
u is given by y D Hu.

Example 8 The synchronizations in the considered example are represented by the
following matrix inequalities in M ax

in �	; ı�.
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Hence, using [12], the transfer function matrix H is given by

H D �
ı6
�
	ı4

��
ı4
�
	ı2

��
ı6
�
	ı4

�� �

As before, let us consider the input corresponding to a supply of five workpieces
of type 1 and type 2 at time 0 and to an order of five workpieces at time 0. The
associated operators in M ax

in �	; ı� are

u1 D u2 D u3 D e ˚ 	5ıC1

The induced output is given by

y D ı6 ˚ 	ı10 ˚ 	2ı14 ˚ 	3ı18 ˚ 	4ı22 ˚ 	5ıC1

This result is of course coherent with the one obtained by modeling in the .max;C/-
algebra.
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4 Control

In this section, we focus on control methods modifying the internal dynamics of
the system by adding a .max;C/-linear prefilter P (see Fig. 5a) or a .max;C/-
linear output feedback F (see Fig. 5b). As in standard control theory, a prefilter is
a dynamical system that processes an external input v as, e.g., a reference signal,
and provides a suitable input u D Pv to the system to be controlled. The notion
of output feedback refers to a scenario where the system output y is fed back via a
dynamical system F to generate the input u D Fy˚v to the system to be controlled.
Both control structures aim at modifying the given system dynamics to make it
react in an appropriate way to any external input. In a manufacturing context, where
external inputs are often non-controllable (e.g., orders from customers or parts
delivered by suppliers), this is clearly an appropriate strategy. Note that other control
methods such as optimal feedforward control [5] and model predictive control [9]
are available to directly manipulate the inputs when this is possible.

The main purpose of the control approach discussed in this section is to reduce
the size of internal buffers (and the number of workpieces in the production process
at a given time instant) by adequately delaying the occurrences of input events.
This effect can be easily quantified using second order theory for .max;C/-linear
systems [13] (i.e., least upper bounds for the number of tokens in places are
computed). However, the main drawback of this control approach is a possible
slowing down of the system. Hence, choosing a prefilter or a feedback amounts
to finding a trade-off between rapidity of the system and sizes of the internal
buffers. In the following, we review some techniques to address this trade-off.
The principle is to reduce as much as possible the internal buffers while satisfying
some requirements on the rapidity of the system. Two typical requirements are:
preservation of the transfer function matrix or preservation of the throughput.

Example 9 In the considered example, the internal buffers B1 between machine M1

and machine M3 and B2 between machine M2 and machine M3 are of interest. In the
uncontrolled case, u D v. In this case, the sizes of the buffers B1 and B2 are both
equal to C1, as the number of tokens between the transitions labelled x2 (resp. x4)
and x5 in Fig. 3 is unbounded. On the other hand, not controlling the system lets the
system evolve maximally fast, as no synchronizations are added by a prefilter P or
an output feedback F. Clearly, in practice, buffers always have restricted size, and it
is therefore vital to introduce control.

yuv
P H

(a)

yuv

w
F

H

(b)

Fig. 5 Different control architectures
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4.1 Model Reference Control

In model reference control [6–8], the requirement with respect to the rapidity of
the system is expressed by a reference model G. The transfer function matrix of
the controlled system, denoted Hc, must satisfy the condition Hc � G. Hence,
the reference model G is an upper bound for the transfer function matrix of the
controlled system: the dynamics of the controlled system is required to be at least as
fast as the one specified by the reference model G. In the following, model reference
control is only considered for the case G D H (i.e., the controlled system must be
at least as fast as the uncontrolled one or, in other words, control is not allowed
to “slow down” the output of the system). However, under some assumptions, the
following discussion can be generalized to any reference model G. Next, model
reference control by using either a prefilter or an output feedback is investigated.

4.1.1 Prefilter

Applying a prefilter P leads to the transfer function matrix HP for the controlled
system. Hence, a prefilter P such that HP � H or, equivalently, such that P � H ınH
is valid for model reference control. Under this restriction, we want to delay as much
as possible the occurrences of input events, i.e., select the optimal (i.e., greatest)
prefilter P such that P � H ınH. Therefore, H ınH seems to be the optimal prefilter.
However, it is not always possible to implement this prefilter, as it may be non-
causal (i.e., at time t this prefilter may need information available at time t C 1 or
later). This problem is solved by using a specific mapping called causal projection
and denoted PrC (see [10, 14] for a formal discussion on the causal projection).
Hence, the optimal prefilter, denoted PH, is given by

PH D PrC .H ınH/

By construction, PH 	 e and HPH � H. Hence, HPH D H. Thus, the prefilter PH

does not modify the transfer function matrix of the system.

Example 10 The prefilter PH associated with the considered example is given by

PH D PrC .H ınH/ D
0

@

�
	ı4

��
"

�
	ı4

��

ı2
�
	ı4

�� �
	ı2

��
ı2
�
	ı4

��
�
	ı4

��
"

�
	ı4

��

1

A

As expected, the prefilter PH does not modify the transfer function matrix of the
system:

HPH D H D �
ı6
�
	ı4

��
ı4
�
	ı2

��
ı6
�
	ı4

�� �
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Fig. 6 Model reference control with prefilter

A state-space system realizing the transfer function matrix PH is:

8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

xP D
�
	ı4 "

" 	ı2

�

xP ˚
�
e " e
" e "

�

v

u D
0

@
e "
ı2 e
e "

1

A xP

An implementation of this system in terms of a TEG is shown in Fig. 6. In the
controlled system, the size of the internal buffer B2 is equal to 0: as soon as a
workpiece of type 4 is produced by machine M2, this workpiece is immediately
used by machine M3. However, it can be easily seen that the size of the internal
buffer B1 is still equal to C1. Hence, in this example, using a prefilter that does
not modify the system transfer function matrix will not allow to upper-bound all
internal buffers.

4.1.2 Output Feedback

To understand the need for feedback, we have to consider perturbations in the
model. In the following, we only consider additive state perturbations. This leads
to a modified version of the model in M ax

in �	; ı�:

�
x 	 Ax ˚ Bu ˚ q
y 	 Cx

(6)

where vector q 2 M ax
in �	; ı�n represents state perturbations. Note that, for manu-

facturing systems, additive state perturbations are sufficient to model a large class
of uncertainties and failures such as machine breakdowns or changes in processing
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times of machines. Considering perturbations leads to an additional transfer function
matrix from q to y. Indeed,

y D Hu ˚ CA�q

Perturbations do also affect the sizes of internal buffers. In many cases, the existence
of perturbations strongly reduces the advantages induced by prefilters, as, by
construction, prefilters cannot take into account perturbations.

Example 11 Taking into account perturbations annihilates the gain induced by the
optimal prefilter PH in the considered example. With the optimal prefilter PH , the
sizes of internal buffers B1 and B2 remain equal to C1 when perturbations are
considered. Indeed, a breakdown of machine M3, such as machine M3 is broken
from the start (i.e., q4 D ıC1 and qi D " for i ¤ 4), could lead to an infinite
accumulation of workpieces in buffers B1 and B2.

The previous discussion illustrates the need for control structures taking into
account perturbations. In the following, we focus on output feedback, i.e., u D
Fy˚v. The transfer function matrix of the controlled system is obtained as follows.

y D Hu ˚ CA�q

D HFy ˚ Hv ˚ CA�q

D .HF/� Hv ˚ .HF/� CA�q

where the last equality follows from Theorem 1. Hence, if we choose the reference
model G D H, i.e., we require feedback to not slow down the output of the system,
we seek a feedback F such that .HF/� H � H. To delay the occurrences of input
events as much as possible, we select the greatest causal feedback F such that
.HF/� H � H. This feedback, denoted FH, is given by

FH D PrC .H ınHı=H/

For the proof, the reader is invited to consult [6, 14]. As .HFH/
� 	 e, .HFH/

� H 	
H. Furthermore, by construction, .HFH/

� H � H. Hence, .HFH/
� H D H. Thus,

the feedback FH does not modify the transfer function matrix of the system.

Example 12 The feedback FH associated with the considered example is given by

FH D PrC .H ınHı=H/ D
0

@
"

	2
�
	ı2

��

"

1

A

As expected, the feedback FH does not modify the transfer function matrix of the
system:

.HFH/
� H D H D �

ı6
�
	ı4

��
ı4
�
	ı2

��
ı6
�
	ı4

�� �
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Fig. 7 Model reference control with output feedback

A state-space system realizing the transfer function matrix FH is given by:
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ˆ̂
<

ˆ̂
:

xF D 	ı2xF ˚ y

w D
0

@
"

	2

"

1

A xP

An implementation of this system in terms of a TEG is shown in Fig. 7. The size
of the internal buffer B2 is now equal to 2, whereas in the uncontrolled case it was
equal to C1, i.e., by using an output feedback, we indeed succeed in reducing the
size of internal buffer B2. However, the size of the internal buffer B1 is still equal
to C1. Hence, for this example, using an output feedback that does not modify the
system transfer function matrix will not allow to upper-bound all internal buffers. In
other words, the specification of not altering the system transfer function matrix is
too strict. For this reason, we will now describe control for a less restrictive control
specification.

4.2 Preserving the Throughput

The aim of this approach is to preserve the throughput (i.e., the maximal average
production rate) of the system. Clearly, preserving the transfer function matrix, as
done in model reference control, implies preserving the throughput. Hence, the latter
is less restrictive (in terms of requirements on the rapidity of the system) than the
former, and we expect smaller internal buffers, if all events are delayed as much
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as possible subject to the respective requirement. In general, the optimal control
preserving the throughput will slow down the system in the sense of providing
a greater transfer function matrix. In the literature, this approach has only been
investigated for feedback [15, 16]. As shown in [4], the greatest output feedback
preserving the throughput leads to internal buffers of finite size.

Example 13 The throughput associated with the considered example amounts to
one workpiece every four units of time. The greatest feedback F� preserving the
throughput is

F� D
0

@
	2ı2

�
	ı4

��

	
�
	ı4

��

	2ı2
�
	ı4

��

1

A

The resulting closed-loop transfer function matrix is

.HF� /
� H D �

ı6
�
	ı4

��
ı4
�
	ı4

��
ı6
�
	ı4

�� �

while the open-loop transfer function matrix is

H D �
ı6
�
	ı4

��
ı4
�
	ı2

��
ı6
�
	ı4

�� �

Hence, the transfer function matrix of the controlled system is strictly greater than
the one of the uncontrolled one, i.e., the controlled system is slower than the
uncontrolled one. However, as expected, the throughput of the controlled system
and of the uncontrolled system are both equal to one workpiece every four units of
time.

A state-space system realizing the transfer function matrix F� is given by:

8
ˆ̂
<

ˆ̂
:

xF D 	ı4xF ˚ y

w D
0

@
	2ı2

	

	2ı2

1

A xP

An implementation of this system in terms of a TEG is shown in Fig. 8. The size of
internal buffer B1 is equal to two, and the size of the buffer B2 is equal to one. Hence,
by appropriately slowing down the system, the suggested feedback has indeed
succeeded in strongly reducing internal buffers B1 and B2 (in the uncontrolled case,
the sizes of internal buffers B1 and B2 are both equal to C1). A behavior affected
by the suggested feedback is provided by the input

v1 D v3 D e ˚ 	5ıC1 and v2 D ı20 ˚ 	5ıC1

This corresponds to an order of five workpieces and an arrival of five workpieces of
type 1 at time t D 0, and an arrival of five workpieces of type 2 at time t D 20. In
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Fig. 8 Output feedback preserving the throughput

the uncontrolled system, workpieces of type 5 are delivered at time 24, 26, 28, 30,
and 32. With feedback F� , workpieces of type 5 are delivered at time 24, 28, 32, 36,
and 40. Hence, the feedback F� slowed down the system

5 Conclusion

In this chapter, we have explained how to use .max;C/-linear systems to model
manufacturing problems characterized by synchronizations (i.e., conditions of the
form: for all k � l, occurrence k of event e2 is at least � units of time after occurrence
k� l of event e1). Furthermore, we have also presented some methods to address the
trade-off between rapidity of the system and sizes of internal buffers. In particular,
we have discussed two techniques preserving the transfer function matrix (i.e., the
input-output behavior) and preserving the throughput (i.e., the maximal average
production rate). Many other techniques have been investigated, e.g., preserving the
response to a specific input [17] or preserving both the input-output behavior and
the perturbation-output behavior [18].
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Stochastic Optimal Sizing of a Warehouse

Luca Ghezzi

Abstract The problem is considered of determining how many pieces to stock
in a warehouse, for a multitude of stockable goods and accounting for random
market demand and supply lead time. Classical reorder point theory is revisited,
the underlying model is no longer linearized and the involved stochastic variables
need not be normally distributed but, rather, are empirically deduced from historical
data. Uncertainty propagation is carried out either by Monte Carlo method or by a
Polynomial Chaos Expansion. A Quadratic Programming procedure is proposed to
regularize data by filtering rare events out. Performance vs. cost curves are obtained
and the global problem of choosing optimal points over them, subject to a global cost
budget constraint, is set as a combinatorial, constrained optimization. The solution
of a simplified version is attained by Linear Programming, while the full problem is
addressed by Mixed Integer Linear Programming.

1 Introduction

Storage of physical goods is a practically unavoidable need in industry and
commerce, common to most market sectors. As well-known, inventories allow
decoupling raw materials and sub-components supply chain from production, as
well as the latter from the commercial distribution of final products. Moreover,
large factories employ internal sub-component warehouses (i.e., the make-to-
stock manufacturing policy) in order to ease industrial operations by decoupling
successive, serial phases, as well as to allow, if applicable, the assemble-to-order
manufacturing policy at the very last segment of the productive chain. Similarly,
commercial as well as service organizations are usually hierarchically structured,
with tiers decoupled by warehouses. On the one side, stocked volumes allow for
strategic, massive purchase deals, simpler factory management policies as well as
high service levels in deliveries to final customers. Drawbacks include the high cost
of stocked capital, the risk for stocked product obsolescence, as well as the operative
cost for running the inventory.
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The impact of inventories over operations or overall company’s costs is clearly
business-dependent; nonetheless, strong cost reduction initiatives pertaining to
suitably sizing the inventories have been observed in last decades. A first trend
is toward reducing stocks and increasing their rotations. A second trend is fore-
casting expected needs, to be scheduled so to have materials available only when
necessary, and using stocks to cover deviations from forecasts. A third trend is
shifting inventories upstream, possibly to suppliers (a fact clearly not without
impact when negotiating supply conditions). A complex and multi-disciplinary
scenario emerges, encompassing sales, planning, production, and logistic, where
the functional relationship between warehouse benefits and costs is emphasized in
order to quantitatively evaluate alternatives and draw conclusions. Clearly, such a
central and transversal topic in factory dynamics may strongly benefit from the use
of Mathematics to model its behavior and allow its suitable dimensioning.

1.1 Goals and Results

Modeling and predictive approaches thus find a sound economic motivation.
Particularly, it is here of interest to address the problems of:

(A) Devising a performance vs. cost relationship for any stockable good, depending
on the quantity being stocked;

(B) Determining the optimal quantities to stock for all stockable goods, given
an overall budget constraint and an overall weighted average performance
indicator, possibly lower bounded (dubbed optimal budget expenditure problem
in what follows).

The kind of results obtained by solving problem (A) is exemplified by Fig. 6,
showing the performance vs. cost curve for a sample stockable good, as obtained by
the proposed approach and opposed to the one deduced by traditional approaches.
The kind of results obtained by solving problem (B) is reported in Fig. 8, showing
the fundamental Pareto front for the inventory, that is, the overall performance vs.
cost curve. Thanks to the latter, the decision maker may define the global working
point. Mathematics connect the latter to relevant working points for all stockable
goods, that is, the positioning along individual performance vs. cost curves like
Fig. 6. The combination of the two problems is relevant to global warehouse design
as well as local warehouse revisions, and needs being solved periodically (say,
quarterly) to keep the warehouse up to date with the current market scenario.

Inventories are a crucial ingredient of the “digital factory”, because only their
appropriate sizing allows a profitable and timely production flow. This means that,
on the one hand, oversized stocks are completely inadmissible in a modern, lean
production system and, on the other side, the large number of products, most
of which with low volumes, make the traditional, deterministic or oversimplified
stochastic approaches no longer adequate. It is precisely the stochastic nature of the
problem which demands for a finer mathematical treatment than traditional variance
propagation approaches.



Stochastic Optimal Sizing of a Warehouse 63

1.2 A Historical Perspective

The basic theory dates back to 1913, with the first simple models to connect
production to inventories; see [8]. The reorder point (ROP) is a rule-based inventory
control method consisting of issuing a supply reorder up to the feeder factory
(more generally, upstream) any time the stock level falls below a predetermined
threshold, the ROP itself. The threshold must be high enough to prevent from
stock-out while the supply order is being worked out and products are asked for
from the market (more generally, downstream). Assuming constant and predictable
market demand and supply lead time, a deterministic contribution is first found.
Then, a safety stock margin is supplemented, to cope with stochastic factors. The
safety stock is computed by means of uncertainty propagation: the ROP formula
is linearized, variance is propagated over the linear approximation and finally a
normal distribution is assumed to introduce a confidence level in safety assessment.
Such procedure ultimately leads to Hadley-Whitin formula (1963), very popular
among logistic professionals; see [7]. The higher the quantity being ordered, the
longer the time in between two consecutive reorders, the lower the number of
reorders to be issued in a given time horizon, and the higher the average stock
level, market demand and all other features being the same. Accounting for fixed
reorder costs (monotonically decreasing with the reordered quantity) and stock
costs (monotonically increasing with the reordered quantity), the Economic Order
Quantity (EOQ) is determined as the global cost minimizer. As an alternative
to ROP-EOQ, the reorder time (ROT) method compares the stock level with a
reference level every fixed period of time, issuing an upstream supply order to fill
the possible gap.

Most of later literature is about inventory dynamics and control. Standard
approaches are known for inventory management, addressing the problem of when
to issue replenishing orders and how large such orders need to be, for a warehouse
with prescribed sizing; see, e.g., [18] and references therein for a comprehensive
exposition of the state of the art.

Most notably, in 1964 Orlicky introducedMaterial Requirement Planning (MRP)
as an inventory management strategy, coordinated with production planning, that
quickly became an indispensable tool in industry; see [13]. With reference to
purchase orders received from the market and estimated, and the level of all involved
inventories, the MRP takes care of scheduling production, back-propagating suitable
production or purchase orders upstream. O. Wright introduced in 1983 the Manu-
facturing Resource Planning (MRP II), significantly improving the MRP by, among
other things, accounting for rough-cut production capacity; see [17]. Latest trends
attempt to include market demand prediction by time series modeling. See [14]
for a modern, retrospective review, along with the significant improvements and
advanced features added in recent times and collected under the denomination of
Demand Driven MRP (DDMRP).

Since the 1980s, the pull logic (i.e., supply orders are issued downstream
to upstream, only when supply is needed) has been widely adopted, whenever
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applicable for the specific business. In 1981, Kimura et al. modeled a celebrated,
self-regulated implementation with the so-called Just in Time (JIT) paradigm; see
[9]. Particularly, very small production lots are handled at all productive levels, with
production order cards (termed kanban, in Japanese language) traveling upstream,
whenever the representative lot is exhausted, and back, together with a new lot
to be stocked. Frequent and small supply actions, resembling a continuous flux,
characterize this scenario. Still, the need arises to determine the required stock
levels, that is, equivalently, the number of lots, or of kanban cards.

MRP, or DDMRP, or also JIT, allow remarkably reducing the stock levels needed
to run the business. As a limit condition, goods should simply transit in the suitable
quantities and at the suitable times throughout logistic hubs (for the sake of transport
and distribution chain optimization), and without being stocked for longer times
than those strictly needed for their handling. Anyway, some residual inventory
quota is still needed, along with classic theories like ROP or ROT modeling their
dynamics. This is basically to ensure a short term market coverage, so to cope with:
Discrepancies between forecast and current demand; Client orders’ withdrawal,
or postponement, or expediting; Deviations from planned delivery dates along
the productive chain (late, missed or erroneous deliveries, unforeseen production
downs or transport problems, and the like); Fluctuations in production capacity,
discrepancy between reference (usually estimated considering runner codes) and
actual (on a code-by-code basis) production capacity, when rough-cut over infinite
capacity is carried out; Discrepancy between estimated and actual defective product
rates, and other possible mishaps.

Dynamics based approaches could be useful to address problems (A) and (B),
by checking a posteriori, typically by means of Discrete Event Simulation (DES),
the adequacy of a given, prescribed inventory sizing and then moving towards a
(usually pseudo-) optimal sizing or, more frequently, simply towards a better-than-
actual sizing by means of: Either scenario analysis (that is, by partial enumeration
of possible alternatives); Or some improving strategy, consisting of either down-hill
moves (derivative free optimization, surrogate modeling, etc.) or some heuristics
(genetic algorithms, particle swarms, etc.). Drawbacks of such approaches include
being time consuming and being strongly dependent on a multitude of system
describing input data of difficult availability and sometimes questionable reliability.
Moreover, accounting for the stochastic nature of the problem is possible but
emphasizes the above mentioned limits; see, e.g., [11] for a comparison between
DES and classic inventory modeling.

In order to avoid the mentioned drawbacks, we propose, in problem (A), to
prescind from simulating the inventory evolution by means of some time-marching
scheme but, rather, to focus onto the stochastic variable concept. Any artificial
requirement of normally distributed probabilities is dropped. As an output, we get
the performance vs. cost curves for all stockable goods. Secondly, by means of
Mathematical Programming (MP) approaches, we deal with problem (B) as the
combinatorial, constrained, optimization problem of finding the optimal positioning
along the above mentioned curves for all stockable goods, possibly including the
Boolean decision variable whether or not to stock some goods.
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Fig. 1 Traditional warehouse sizing approach workflow

1.3 Traditional vs. Proposed Approach and Workflow

For the sake of a better comprehension, we provide a comparison between the
traditional (see Fig. 1) and the proposed approach (see Fig. 2) to stock sizing. In
both approaches, for each stockable good the required input data are the historical
market demand and supply lead time time-series; see Sect. 2.2.

In the traditional approach to stock sizing, historical data are processed according
to well-known statistical techniques, in order to obtain their mean value and
standard deviation; see Sect. 2.2. Based on any applicable warehouse model (see,
e.g., Sect. 2.1, or consider other models), the mean value and standard deviation
for the required stock size are deduced, possibly analytically and usually with an
underlying, implicit model linearization; see Sect. 2.3. Then, it is implicitly assumed
that the required stock size be normally distributed, which needs not being the case,
so to have available a probability density function (PDF), as well as a cumulated
probability function (CDF). The latter represents the relationship between the stock
size and the probability not to stock out. By converting the stock size into the



66 L. Ghezzi

S
T

A
R

T

E
N

D

H
is

to
ri

ca
l 

da
ta

 (
de

m
an

d
&

 le
ad

 t
im

e)

R
eg

u
la

ri
za

ti
on

 
vi

a 
Q

u
ad

ra
ti

c
P

ro
gr

am
m

in
g

(Q
P

)

A
ll

go
od

s
  p

ro
ce

ss
ed

?
C

on
si

de
r

n
ex

t 
go

od

S
ta

rt
 w

it
h

fi
rs

t 
go

od

A
ll

 g
oo

d 
pe

rf
or

m
an

ce
vs

. c
os

t 
cu

rv
es

co
nc

av
e?

L
in

ea
r

P
ro

gr
am

m
in

g
(L

P
)

M
ix

ed
 I

n
te

ge
r

L
in

ea
r 

P
ro

gr
am

m
in

g 
(M

IL
P

)

P
ro

du
ce

 
st

at
is

ti
cs

 
(C

ou
n

t 
re

pe
ti

ti
on

s,
et

c.
)

P
D

F
 

(d
em

an
d 

&
 

 le
ad

 t
im

e)

P
D

F
(s

to
ck

 s
iz

e)
C

D
F

(s
to

ck
 s

iz
e)

O
pt

im
al

pe
rf

or
m

an
ce

 &
si

zi
n

g 
fo

r 
al

l g
oo

ds

C
on

si
de

r 
a 

n
ew

bu
dg

et
 v

al
u

e

C
os

t
(i

.e
., 

bu
dg

et
)

A
ll

 
bu

dg
et

 v
al

u
es

co
n

si
de

re
d?

O
ve

ra
ll

 in
ve

n
to

ry
pe

rf
or

m
an

ce
 

 v
s.

 co
st

 c
u

rv
e

S
ta

rt
 w

it
h

 a
 

 f
ir

st
 b

u
dg

et
 

va
lu

e

W
ill

in
g 

to
re

gu
la

ri
ze

?
In

te
gr

at
io

n

C
h

oo
se

m
et

h
od

P
ol

yn
om

ia
l 

C
h

ao
s 

(P
C

)

M
an

y
w

ar
e 

h
ou

se
 

m
od

el
 r

u
n

s

M
on

te
 C

ar
lo

(M
C

)

M
an

y 
w

ar
e 

h
ou

se
m

od
el

 r
u

n
s

Y
es

N
o

Y
es

N
o

N
o

Y
es

Y
es

N
o

S
to

ck
 s

iz
e 

 �
 co

st

S
to

ck
ab

le
 g

oo
d

pe
rf

or
m

an
ce

  
 v

s.
 c

os
t 

cu
rv

e

R
ob

u
st

n
es

s 
&

st
ar

te
gi

c
po

si
ti

on
in

g

F
ig

.2
Pr

op
os

ed
w

ar
eh

ou
se

si
zi

ng
ap

pr
oa

ch
w

or
kfl

ow



Stochastic Optimal Sizing of a Warehouse 67

corresponding cost, a performance vs. cost curve is obtained for the stockable
good at hand; see Sect. 4.1. Then, after a prescribed performance level has been
selected, either arbitrarily or according to some suitable argument, from inverting
the performance vs. cost curve the corresponding cost is found. Finally, the global
inventory cost is obtained from the summation over all stockable goods.

The normality assumption is proven false by the finer approach proposed
hereafter. This introduces both a theoretical and practical bias in the performance
vs. cost curves, as well as in the computations following downstream. Moreover,
there is no guarantee, a priori, that the global inventory cost be less than the available
budget. In case not, the performance levels need being lowered, usually according to
some trial-and-error scheme. Similarly, no guarantee is provided for optimal budget
expenditure, meaning that if the global inventory cost is lower than the available
budget, then the prescribed performance levels have to increased (and also in this
case there is no direct indication on how much) so to spend the additional available
resources.

In the proposed approach to stock sizing, historical data are processed according
to well-known statistical techniques, in order to obtain their probability density
function (PDF), not just their mean value and standard deviation; see Sect. 2.2.
Then, either with Monte Carlo (MC) method (see Sect. 2.4) or with Polynomial
Chaos (PC) expansion method (see Sect. 2.5), the probability density function
for the required stock size is deduced numerically, in both cases by means of a
number of runs of a suitable warehouse model (see, e.g., Sect. 2.1, or consider other
models). Then, a Quadratic Programming (QP) based, mathematical regularization
technique is strongly advised, in order to clean the PDF from rare events and
outliers; see Sect. 3.2. By PDF integration, the relevant CDF is obtained for the
stock size. The regularization attempts to (and usually manages to) produce a
concave CDF. The latter represents the relationship between the stock size and the
probability not to stock out. By converting the stock size into the corresponding
cost, a performance vs. cost curve is obtained for the stockable good at hand; see
Sect. 4.1.

We stress that, contrarily to the traditional approach, the performance vs. cost
curve is not the outcome of a forced, and usually false, normality distribution
assumption, neither for input data (market demand and supply lead time) nor for
the output data (required stock size). Rather, all PDFs and CDFs are now either
empirically deduced or produced throughout a mathematical model that attempts
to describe the real course of events. The finer the model, the more reliable the
probability distributions. The fallacies introduced by the traditional approach may
be observed in Fig. 6, in the case of the same warehouse model (ROP).

Also the problem of optimal resource allocation, that is, optimal budget expendi-
ture, is now addressed in a radically different and mathematically structured manner.
After all stockable goods have been dealt with as above, a first global inventory
budget is considered, for instance the actually available one. Depending on whether
all stockable good performance vs. cost curves be concave or not, the optimal
budget expenditure problem is addressed by either Linear Programming (LP; see
Sect. 4.2) or Mixed Integer Linear Programming (MILP; see Sect. 4.3), respectively.
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In both cases, the optimal cost and service level for each stockable goods is obtained,
along with the overall weighted inventory performance and overall cost. Differently
from the traditional approach, now the overall inventory cost is guaranteed to
exactly equal the available budget (in case of feasible problems, for, otherwise, side
constraints need being relaxed, as shown in Sect. 4).

A yet further advantage of the proposed approach is that the optimal budget
expenditure problem is suggested to be solved for other, different budget values,
in such a way to deduce, pointwise, an overall performance vs. cost curve for
the whole inventory. This allows gaining a measure of the robustness of the
problem (see whether or not little budget perturbations result into little performance
perturbations). Robustness analysis then plays a key role in the strategic choice of
global inventory budget allocation, because the collocation in a sharp bending point
of the performance vs. cost curve may be very alluring.

It is important to notice that the particular choice of the warehouse model
is largely immaterial for the proposed approach to stock sizing, meaning that
the latter is general and may embed any other model with the same output.
Also the case of different input data (number and kind) may be handled with
straightforward modifications of inessential aspects. We mentioned the two simplest
models historically and commonly used in engineering practice, developed the
exemplification with reference to the one currently adopted in the industrial ABB
case at hand, and finally proposed a simple extension that may apply to both, in
order to address the MRP management policy. This has been done both for the sake
of simplicity and in order to more strictly adhere to the traditional approach in all
inessential aspects.

1.4 Chapter Outline

The approach proposed in this chapter may be outlined as follows. In Sect. 2
we address problem (A). First, in Sect. 2.1, basic ROP theory is recalled and
given a formal dress compatible with standard probability theory. An additional
contribution is considered that accounts for time discrete inventory control or, which
is equivalent, for large market requests. Then, in Sect. 2.2, input data probability
distributions are estimated, mainly based on historical data. Three alternative
approaches are discussed to propagate uncertainty through ROP model and deduce
the probability not to stock-out, namely: The traditional variance propagation
approach, in Sect. 2.3; Monte Carlo (MC) method, in Sect. 2.4; Polynomial Chaos
Expansion (PCE, or PC), in Sect. 2.5. In Sect. 3, the output from problem (A),
that is, performance vs. cost curves, are improved before being used as input
to problem (B). A suitable, Quadratic Programming (QP) based regularization
technique is introduced, aimed at enforcing concavity in the performance vs. cost
curves portion of interest. In Sect. 4 we address problem (B) as a combinato-
rial, constrained optimization problem. Two alternative approaches are discussed,
namely: A simplified, and computationally very slim, Linear Programming (LP)
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based optimization, in Sect. 4.2; A more refined and versatile, but computationally
more challenging, Mixed Integer Linear Programming (LP) based optimization, in
Sect. 4.3. The application of the procedure to the industrial case of ABB, the results
obtained, the possible extension of the very same machinery to other contexts of
industrial operations, including but not limited to production management, as well
as possibilities for further research are finally discussed, in Sect. 5.

2 The Local Stochastic Problem

In this section we deduce, for each single good, the stochastic relationship, i.e., a
probability density function (PDF), relating the probability not to stock-out with the
amount of items to be stocked; see Sect. 1, problem (A). Item amounts are large
when mass produced goods are at hand, allowing for real numbers to describe what
would rigorously require integer numbers.

2.1 Reorder Point and Other Models

A classical inventory management policy for make-to-stock (MTS) goods is the
so-called reorder point method, modeling stock level dynamics according to a saw-
tooth behavior; see Fig. 3. Starting from an arbitrary, high value, the stock level for
a given item is progressively lowered by market demand D, until a reorder point
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threshold S is reached. A supply order is then issued upstream, and ordered goods
eventually enter the warehouse after a supply lead time L during which time the
stock level continues to go down below the reorder point, due to the last market
requests received. Stock levels and reorders are dealt with at discrete time, i.e., they
are spaced by a prescribed period of time t (a day, or an hour, etc., depending
on the inventory type and dynamics). If t is non negligible compared to L, or
equivalently, if market orders size may be large compared to S, then the last ordered
quantity Q D Dt may result into a non negligible portion RQ below the safety
stock, where R 2 Œ0; 1� is a proportionality coefficient. Elementary geometrical
considerations (see Fig. 3, where the safety stock has to be initially neglected; as the
name suggests, this additional quota is later introduced in order to raise the reorder
point and cope with the stochastic nature of the problem) relate the reorder point to
its contributors, reading

S D DL C RQ D D.L C Rt/: (1)

In a deterministic frame, inventory dynamics would be known and repeatable,
leading to the determination of the “exact”, sharp reorder point S directly by
plugging sharp D, L and R values into (1). Actually, all involved quantities are
beyond our full control and may be considered stochastic variables. Market demand
may be associated (written D 
 �D.�D/) to a probability density function (PDF)
�D.�D/, where �D is any admissible value for D, while �D.�D/ is the probability

density associated with such value. Let˚D.�D/ D R �D
�1 �.�/ d� be the probability to

draw values of D up to �D, so that the relevant function is the cumulated density
function (CDF). Similarly, L 
 �L.�L/, R 
 �R.�R/ and S 
 �S.�S/, with relevant
CDFs. As a final result, the quantity S to be stocked is to be estimated as the value
�S such that

˚S.�S/ D
Z �s

�1
�S.�/ d� D 1 � ˛; (2)

that is, such that the reorder point S will be sufficient to cope with inventory
dynamics with confidence level 1 � ˛. Equivalently, the probability to stock-out
will be no higher than ˛ 2 Œ0; 1� (typically, ˛ is a number of the order of 5–10%, or
even less). In what follows, a mathematical method is proposed to derive the actual
expression of (2), in the case above as well as in the similar conditions introduced
hereafter.

Generalizations or other, different models are also available. It is similarly
deduced that, for goods that follow the ROT policy,

S D D.L C T C Rt/; (3)

where T is the (prescribed) reorder time, i.e., the fixed period of time after which
the current stock level is compared with the reference value S and a reorder quantity
is possibly requested upstream, so to restore level S. Most goods are nowadays
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handled by MRP. To estimate the residual safety inventory quota that is practically
still needed, we propose to use the model

S D maxf0; .D � EŒD�/.L C Rt/g (4)

or

S D maxf0; .D � EŒD�/.L C T C Rt/g (5)

instead of (1) or (3), resp., with market demand netted of its expected value EŒD�
(i.e., its mean value). Netting demand D with EŒD�, rather than with a different
quantity, is an arbitrary but reasonable choice in absence of more precise informa-
tion and in order to express any deviation from the reference scenario, for which
nothing more than average values is accessible in practice. Since negative reorder
point values would make no sense, the max operator is used as a lower cut-off with
zero. For the sake of simplicity, we shall develop the following with reference to (1).
It remains understood that methods and conclusions are to be rewritten, with suitable
modifications, with reference to (3), (4) or (5) in relevant cases.

2.2 Input Probability Densities

Stock sizing is generally accounted for in a stochastic frame, to a different extent
of mathematical subtlety and reliability, as later discussed. In any case, knowledge
is needed about input variables probability distributions. The estimation of PDFs is
generally not easy and requires care. As for R, owing to the random time sequencing
of market purchase orders as long as the reorder point threshold is randomly crossed,
there is no conceptual reason to privilege some values compared to others and one
may assume a uniform distribution for �R over the interval Œ0; 1�.

Supply lead time PDF �L could be estimated either by means of some suitable
model describing its internal dynamics and policies (not covered here), or phe-
nomenologically by counting the frequencies of supply within the terms of multiples
of a suitably defined time unit like, e.g., days (or half days, or even less, depending
on the reactivity of the supply structure). For instance, if the time unit is fixed to be
the single day, then one may consider a sufficiently long historical series, covering,
say, 6 months or a whole year, and then count how many times the supply lead time
did not exceed 1 day, how many times it was in between 1 and 2 days, how many
times in between 2 and 3 days, and the like.

In absence of more refined information, market demand PDF �D may be deduced
from a rich enough historical data base of purchase orders received. A possible,
proposed approach consists of considering three different time scales. First, we
define a long enough period of time compared to inventory dynamics time constant
like, e.g., 1 year or more (long time scale). It could be not advisable to consider
longer durations, because markets are mutable and one wants to focus on present
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Fig. 4 Probability distributions for a sample product code in ABB inventory test case. Left
Demand D, PDF �D (bold) and CDF˚D (lite), as empirically deduced from historical data records.
Right Reorder point S, PDF �S (bold) and CDF ˚S (lite), as computed by means of PC and fast
MC on polynomial surrogate model. A remarkable difference is observed from the traditionally
adopted Gaussian assumption: the actual PDF is single tailed and starts high-valued on the left side

trends. Second, the long period is subdivided into time buckets like, e.g., months,
or weeks, or the like, so that their number is large enough to allow for a reasonable
PDF resolution, as later discussed, and so that each is not too short to contain just a
few orders (middle time scale). Finally, the third time scale is the time constant
of the inventory dynamics like, e.g., the day or the like (short time scale). The
latter can be the time scale with time constant t, and must be definitely smaller
than the middle time scale. Market demand PDF �D requires cumulating all orders
received over any single time bucket of the middle time scale and then counting
the recurrence frequencies of ordered quantities, i.e., how many times the whole
market required a quantity of pieces lying in any bin. See Fig. 4 (left) for the
illustration of a sample product code in later discussed ABB inventory test case.

In all cases, histograms are obtained and PDFs are readily produced by normal-
ization. Standard techniques must be applied in bin sizing, possibly considering
variable and adaptive bin sizing, in order to guarantee statistical soundness. The
approach above is admittedly poor, and more refined statistical methods could be
conceived to enhance PDFs’ quality. It must be anyway remembered that many other
uncertainties and approximations affect the problem, so that extreme accuracy could
be unmotivated and practically unattainable.

Large purchase orders, like, e.g., periodic and contract negotiated wholesalers’
refills, need being detected and translated into the stemming multitude of smaller
order actions spread over a long time horizon, as usually dealt with by logistic
planning. Actually, since the latter actions are planned and thus known in advance,
they should be handled in a deterministic way and removed from the stochastic
sizing of the safety stock.

Some items may have such a rare and/or volatile demand, that the concept
itself of probability density in the above sense would not properly hold. Such
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and similar cases should not be considered in this modeling frame, nor stocked
according to the logics of recurrent and abundant production and resell, i.e., they
should not enter inventories. Rather, such special items should be more profitably
supplied to the market according to suitably defined policies, and with terms and
conditions negotiated with clients, like, e.g., assemble-to-order (ATO) or make-to-
order (MTO).

2.3 Output Probabilities: Traditional Approach

The traditional approach for safety stock stochastic estimation is based on the
linearization S D .EŒL� C t=2/D C EŒD�L C EŒD�Rt � EŒD�.EŒL� C t=2/
of (1), obtained after straightforward simplifications from the relevant Taylor series
expansion truncated to degree 1 terms and centered on point .EŒD�;EŒL�;EŒR� D
1=2/, corresponding to the mean values of D, L and R. After the linearization, the
mean value follows with a standard change of variables and reads

EŒS� D
Z

R

�S�S.�S/ d�S D EŒD�.EŒL�Ct=2/: (6)

Variance follows similarly, yielding the well-known variance propagation formula
that in the specific case reads

�2S D
Z

R

.�S � EŒS�/2�S.�S/ d�S

D .EŒL�Ct=2/2�2D C EŒD�2�2L C .EŒD�t/2�2R;

(7)

where D, L and R have been assumed to be mutually uncorrelated and �D, �L and
�R D 1=

p
12, resp., are their standard deviations. When t ! 0 (i.e., t is small

compared to L), the term RDt is frequently neglected compared to the term DL
in (1). Under such assumption, the mean value (6) reduces to EŒS� D EŒD�EŒL�
while variance reduces to �2S D EŒL�2�2D C EŒD�2�2L . This latter expression is
to be compared with �2S D EŒL��2D C EŒD�2�2L ; as deduced by Hadley-Whitin
[7]. When supply from the feeder factory is governed by reliable policies such as
prescribed and easily attainable delivery dates, then supply lead time is considered
deterministic and known equal to a fixed value L (here intended as a deterministic
variable, no longer as a stochastic variable), furtherly simplifying the mean to
EŒS� D LEŒD� and variance to �2S D L2�2D, or to �2S D L�2D in the Hadley-Whitin
form.

In the traditional approaches discussed above, the reorder point is estimated as

S D EŒS�C c.˛/�S; (8)
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where c.˛/ is a suitable multiplicator of standard deviation �S, corresponding to
confidence level 1 � ˛. The EŒS� contribution may be considered as a sort of
theoretical deterministic prediction, conservatively supplemented by the c.˛/�S
contribution that accounts for stochastic uncertainties. The latter contribution is
frequently termed safety stock.

The actual probability distribution �S of S is never introduced nor used. If, on
the one hand, this makes the mathematical developments extremely simple, on the
other hand c.˛/ is questionably computed by implicitly assuming that S be normally
distributed. There is no theoretical reason leading to Gaussian �S (actually, theory
clearly tells this cannot be the case, because �S must be boundedly supported on
the left, i.e., it cannot have a left tail, in order to exclude logically inconsistent
negative reorder point values). Evidence from the application of the more reliable
and logically consistent methods discussed in next sections clearly shows that S is
not normally distributed, and that the actual PDF may be remarkably different; see
also Fig. 6 for a visual comparison.

2.4 Output Probabilities: Monte Carlo

We are interested in adopting (2) instead of (8) in order to estimate the quantity to
be stocked. Consequently, �S is required. One way is the well-known Monte Carlo
(MC) method. MC basically amounts to repeatedly evaluating the deterministic
model (1), with input values D, L, R randomly extracted from relevant PDFs. The
correspondingly many random output S values are then used as samples to produce
�S. On the one hand, MC method is conceptually simple, easy to implement and
non-intrusive, in the sense that the deterministic model (1) is used as a black-box.
An additional benefit, by far the most important, is that the convergence rate does
not depend on the number of stochastic variables (which does not mean that the
number of necessary runs does not depend on the number—and type—of stochastic
variables).

On the other hand, the convergence rate is extremely slow, so that the number
of deterministic model runs is usually very high, thus requiring long computational
times, unless the deterministic model is extremely fast. Additionally, the successive
moments of the sought for PDF converge progressively slower, let alone particular
cases enjoying special properties, such as odd/even parity, and the like. As a
consequence, the correct shape of �S may be very slow to converge.

2.5 Output Probabilities: Polynomial Chaos

An alternative way to obtain �S is based on the so-called (non-intrusive)Polynomial
Chaos (PC) method, for which we need a digression into orthogonal polynomials. It
is well-known that a general probability density distribution �x.�/ associated with a
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stochastic variable x satisfies the hypotheses of a measure. Thus it naturally induces
the inner product .�; �/x W L2.R/ � L2.R/ ! R such that

.u.�/; v.�//x WD
Z

R

u.�/v.�/�x.�/ d�: (9)

Scalar product (9) naturally induces the norm k � kx W L2.R/ ! R, such that
ku.�/k2x D .u.�/; u.�//x. Let L2.RI�x/ be the set of bounded functions with
reference to norm k�kx. One can use scalar product (9) in the frame of Gram-Schmidt
process applied to the sequence f�kgC1

kD0 D f1; �; �2; : : : ; �k; : : :g. The outcome
is an orthogonal polynomial sequence (OPS), that is, a sequence f x

k .�/gC1
kD0 of

polynomials which are mutually orthogonal with reference to (9). Therefore, by
construction, . x

j ;  
x
k /x D k x

kk2xıj;k, 8j; k 2 Z0, where ıj;k is Kronecker symbol.
If desired, the OPS could be made orthonormal, to simplify notation and without
modifying the essence of the problem. The above mentioned polynomials are readily
seen to be linearly independent by a standard degree argument, leading to the
conclusion that they form a basis for L2.RI�x/; see, e.g., [3] for the easy details.

Superscript x in  x
k explicitly shows the descendence of the OPS from stochastic

variable x, to which it is linked and specific. It can be shown that some of the most
common PDFs, continuous or discrete, induce celebrated OPSs; see, e.g., [10, p. 37].
For instance, uniform PDF �R induces correspondingly an OPS which coincides
with the family of Legendre polynomials. Considering reorder point theory, three
stochastic input variables are involved, each leading to its own OPS. Another OPS
is obtained from the three above mentioned OPS by tensorization, as follows. A
vector � WD .�D; �L; �R/ is defined to collect 3-ples of values from the three input
variables. A multi-index k WD .kD; kL; kR/ is introduced to collect the degrees of
polynomials from the three OPS. Then, the OPS f k.�/gC1

jkjD0 is defined such that

 k.�/ WD  D
kD.�

D/ L
kL.�

L/ R
kR.�

R/ D
Y

x

 x
kx.�

x/; (10)

where x 2 fD;L;Rg in the products here and below and where jkj WD kDCkLCkR is
the degree of each polynomial resulting from the tensorization. A new inner product
.�; �/ W L2.R3/ � L2.R3/ ! R is naturally induced which, in turn, naturally induces
the norm k � k W L2.R3/ ! R, such that ku.�/k2 D .u.�/; u.�//. Orthogonality is
inherited from orthogonality of the three OPS, so that

. j;  k/ D
Z

R3

Y

x

�
 x
jx .�

x/ x
kx.�

x/�x.�x/d�x
	 D k kk2ıj;k; (11)

where ıj;k generalizes Kronecker symbol to the present context, differing from 0
iff multi-indices j and k are equal in all of their portions. In (11) and in similar
expressions,

Q
x �

x.�x/ DW �.�/ represents the joint probability density distribution
of the three stochastic variables, in the hypothesis of independence. The extension
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to the general, dependent case follows on the formal side by simply replacing
the multiplicative distribution with the true joint PDF. Needless to say, practical
difficulties would arise in both the theoretical and the empirical determination of
the latter distribution.

A basis for L2.RI�D/ ˝ L2.RI�L/ ˝ L2.RI�R/ is now available. We look for
the closest approximation in this function space to function (1) expressing the
dependance of stochastic variable S from stochastic variablesD, L, R. Then, one may
expand S in a (generalized) Fourier series according to the basis of polynomials (10)
as the polynomial chaos expansion (PCE)

S.�/ D
C1X

jkjD0
sk  k.�/ '

pX

jkjD0
sk  k.�/; (12)

where p � 0 determines a practically unavoidable truncation. The choice of p may
be deduced a priori in simple cases like the one at hand (viz., p D 2 to get the
exact expansion) or induced experimentally in more difficult ones, for instance by
progressively increasing p until the marginal accuracy in the final results becomes
negligible. Care must be taken, because some important modeling feature may
require some high order term after a possibly long sequence of null lower order
terms. A sound theoretical analysis of the kind of expected functional dependence
is very important in order to deal with complex cases, and comparison with MC
method in a simple and inexpensive test case may help solve the question.

After the expansion, the information content expressed by S resides in the
sequence of coefficients sk, which, owing to orthogonality (11) of the basis, may
be individually computed by orthogonal projection of S over each basis element.
Precisely, scalarly multiplying both sides of (12) by  k and recalling (11), one gets

sk D .S;  k/

k kk2 : (13)

The scalar product in (13) requires numerically evaluating a multiple integral,
a task that can be accomplished by means of a suitably defined Gauss quadrature
formula; see [16]. One gets

.S;  k/ D
Z

R3

S.�/ k.�/�.�/ d� D
NX

jD1
wjS.�j/ k.�j/�.�j/; (14)

where N is the number of Gauss points while wj and �j are, resp., the jth Gauss
point and weight, j 2 f1; : : : ;Ng. In simple cases like the one at hand, the necessary
number of Gauss points allowing exact integration may be found a priori. In more
difficult cases one may try heuristically, experimenting by progressively increasing
N until the marginal accuracy increment becomes negligible. Each Gauss point
requires a function evaluation

S.�j/ D S.�Dj ; �
L
j ; �

R
j / D �Dj .�

L
j C �Rj t/: (15)
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Owing to the tensor nature of the approach, the number of model evaluations grows
rapidly with the number of input stochastic variables. This problem prevents the
method from being applied in cases with large numbers of input stochastic variables.
Reduced schemes could be pursued, alternative to the full factorial scheme discussed
above, that help mitigating the computational burden without excessively sacrificing
accuracy. Still, the issue remains for large enough number of variables.

As soon as coefficients sk have been computed, a basic, standard change of
variable and orthogonality (11) easily lead (see, e.g., [10, p. 39]) to the analytical
deduction of the expected value (i.e., the mean)

EŒS� D
Z

R

�S�S.�S/ d�S D s0k 0k2 (16)

and of the variance

�2S D
Z

R

.�S � EŒS�/2�S.�S/ d�S D
C1X

jkjD1
skk kk2 '

pX

jkjD1
skk kk2: (17)

Notice that the actual expression of �S.�S/ is not required in order to compute
mean and variance: (16) and (17) immediately allow removing the linearization
drawback from traditional approaches to ROP; see Sect. 2.3. More elaborated
expressions may be deduced for higher order moments. If, like in the case at hand,
�S.�S/ becomes necessary for the following developments, it can be computed by,
e.g., “fast” MC simulation adopting the last term of (12) as a surrogate model for
the real S.�/ functional dependence (1). The CDF (2) is finally computed in a
straightforward manner. See Fig. 4 (right) for the illustration of a sample product
code in later discussed ABB inventory test case.

Clearly, the basic reorder point model (1) at hand, of natively polynomial kind,
is so simple that, on the one hand, well suits the explanatory goal but, on the other
hand, PCE (eventually requiring a “fast” MC) is not advantageous over a direct
MC. Nonetheless, as soon as additional features are introduced into the model, thus
complicating its analytical expression and possibly requiring the solution of ODE,
or PDE, or even possibly resulting into a very complicated black box, like in the
case of DES or other dynamics based inventory models, then PCE may outscore
direct MC in terms of required model runs, with a remarkable computational gain.

3 Local Data Regularization via QP

The CDF (2) is potentially affected by artifacts deriving from the empirical sampling
of the input data that lead to its deduction. Typically, spurious spikes in the
originating PDFs may appear, due to rare events, i.e., with a recurrence period
greater than the long time scale, but that nonetheless happened to manifest therein
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by mere chance. If not suitably dealt with, that is, if data are kept as they are
after sampling (resp., if they are removed), then rare event recurrence frequency
would result artificially and misleadingly increased (resp., decreased). Owing to
a reasonable underlying regularity assumption, the presence of such anomalies is
easily spotted in PDFs by inspection.

Since spikes in PDFs result into concavity changes in CDFs, a mathematical
regularization technique based on concavity healing is here proposed to remove or
reduce the above mentioned artifacts, thus improving the quality of (2). We shall
see, when dealing with the final global optimization problem, that the proposed
regularization is also beneficial in reducing the computational effort; see Sect. 4. For
this reason we privilege this approach compared to other possible ways of filtering.
See Fig. 5 for an applicative example based on later discussed ABB inventory
analysis.
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Fig. 5 Effects of QP regularization procedure over one product code in ABB inventory test case
(downsampled curves are shown, for clarity). Left If PDF �S and CDF˚S are generated from a 102

runs MC analysis (extremely poor and inadequate) some differences can be noted between original
(dots) and regularized (circles) PDFs, while the effect over CDFs (solid) is barely noticeable. Right
With 103 runs MC originated curves, differences become barely noticeable also in PDFs. CDFs are
already concave in the region of interest with 104 runs MC or higher, so that no regularization is
needed. In ABB inventory test case, 105 runs MC are used
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3.1 Concave CDFs

A general real function y D f .x/ of real variable x is convex over a (possibly
unbounded) connex interval U � D, where D is its domain, iff f .tx1 C .1� t/x2/ �
tf .x1/C .1� t/f .x2/, 8x1; x2 2 U;8t 2 Œ0; 1�, i.e., if the graph of function f over the
interval between any two points x1 and x2 in U does not lie “above” the line segment
from .x1; f .x1// to .x2; f .x2//. A function f is concave over U if �f is convex over
U, i.e., if the graph does not lie “below” such segment. Linear and affine functions
are immediately seen to be both convex and concave. A straightforward link with
calculus shows that, in case of piece-wise twice differentiable functions, concavity
coincides with non-positive second derivative. In other words, the first derivative
needs being monotonically non-increasing over U in order f to be concave over U.
See, e.g., [15] for in-depth discussion. As a consequence, when f D ˚ x is a CDF,
concavity overU means that the relevant PDF �x D .˚ x/0 be non-increasing overU.

In the context of ROP estimation, for a given stockable item the relevant PDF
�S.�S/ is typically single tailed on its “right” portion, witnessing the increasing
unlikeliness of extreme events. Along the tail, �S is non-increasing, by the definition
of tail, so that ˚S needs being concave over a suitable set U contained in
the tail. Nonetheless, spurious and unphysical spikes may propagate through the
computations above from empirical PDFs �D and �L to computed PDF �S. Spikes
alter the natural non-increasing nature of �S, thus spoiling the concavity of ˚S in
its rightmost portion. In most cases, one could always envisage rare enough events
that require a correspondingly longer historical data series than what experimentally
available. As a consequence, spikes should be deemed a negative noise affecting
data, to be removed for the sake of accuracy, and data regularization must be a due
diligence before attacking the problem.

3.2 Concavity Enforcement

In the general case of a PDF �.�/which is expected to be right-tailed, an a posteriori
method is proposed to remove possible spikes by finding the right-tailed, spikeless,
non-increasing PDF �0.�/ preserving mean value and minimizing a natural distance
from the original one. After this found, the relevant CDF is immediately found by
integration as ˚ 0.�/ D R �

�1 �0.�/ d�: Application to �S and ˚S will constitute a
special case. According to the preceding developments, we may assume without
loss of generality to deal with a general, compactly supported, piece-wise constant
(PWC) function reading

�.�/ D
n�1X

jD1
�j�Œ�j ;�jC1�.�/; (18)
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where the convex support U has been partitioned into n � 1 intervals Œ�j; �jC1�, for
j 2 f1; : : : ; n�1g, so that �Œ�j ;�jC1�.�/ is the characteristic function of Œ�j; �jC1�, equal
to 1 if � belongs to such interval and null otherwise, while �j is the value constantly
taken by �.�/ over such interval. An analogous expression holds for �0.�/.

As a result of integration, the CDF ˚.�/ D R �
�1 �.�/ d� is continuous and

piece-wise linear (PWL). As such, it is characterized by the sequence of n vertices
f.�j; ˚j/gnjD1, where ˚j D ˚.�j/, so that �j D .˚jC1 �˚j/=.�jC1 � �j/ � 0, the latter
sign constraint holding because PDFs are non-negative by definition. Let us collect
known values �j, for j 2 f1; : : : ; n � 1g, into vector � 2 Rn�1C , where RC denotes
the non-negative real half line. Similarly, let us collect the sought for values �0

j into
vector �0 2 Rn�1C .

For the application at hand, only the final tail of the PDF is potentially affected
by spikes. Therefore, an initial CDF part, up to a given number of points m � n,
may be preserved as is. For any given m, the unknown vector �0 is found by solving
the quadratic programming (QP) problem

QPm W

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
:

min
�02Rn�1

C

g.�0/ D
n�1X

jD1
�0
j
2 � 2

n�1X

jD1
�j�

0
j

subject to

n�1X

jD1
�0
j .�jC1 � �j/ D 1

n�1X

jD1
�0
j .�

2
jC1 � �2j / D

n�1X

jD1
�j.�

2
jC1 � �2j /

�0
j D �j; 8j 2 f1; : : : ;m � 1g

�0
j � �0

j�1; 8j 2 fm; : : : ; n � 1g;

(19)

now described in detail.
One obvious goal is not to excessively perturbate the basic PDF structure, that

is, to aim at minimizing some reasonably defined distance between the original
and regularized PDFs. A straightforward goal function is thus (the square of) the
Euclidean distance f .�0/ WD k� � �0k22 D Pn�1

jD1 .�j � �0
j /
2, to be minimized. The

minimization problem is equivalently set with reference to goal function

g.�0/ D f .�0/�
n�1X

jD1
�2j D

n�1X

jD1
�0
j
2 � 2

n�1X

jD1
�j�

0
j D �0TI�0 � 2�T�0; (20)
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differing from f .�0/ by an inessential additive constant and being homogeneous
in �0. The quadratic form (20) is convex because the identity matrix I is positive
definite. As a PDF mandatory requirement, �0

j must be non-negative, j 2 f1; : : : ;
n � 1g. This is explicitly enforced by searching for a minimizer �0 in Rn�1C , i.e., the
space obtained by the tensorization of n � 1 copies of the non-negative half line.

The 0th moment (i.e., the area) of the sought for PWC PDF �0 reads

Z

R

n�1X

jD1
�0
j�Œ�j;�jC1�.�/ d� D

n�1X

jD1
�0
j

Z �jC1

�j

d� D
n�1X

jD1
�0
j .�jC1 � �j/: (21)

Therefore, the first constraint in QPm (19) traduces a linear (and thus convex) PDF
normalization condition.

The first moment (i.e., the mean value) of the sought for PWC PDF �0 reads

Z

R

�

n�1X

jD1
�0
j�Œ�j;�jC1�.�/ d� D

n�1X

jD1
�0
j

Z �jC1

�j

� d� D
n�1X

jD1
�0
j

�2jC1 � �2j
2

: (22)

Doing similarly with known PWC PDF � and neglecting an inessential factor 1=2
in both terms, the second constraint in QPm (19) is obtained, traducing a linear (and
thus convex) mean preserving condition.

Initial PDF portion preservation is easily enforced into problem QPm as �0
j D �j,

j 2 f1; : : : ;m�1g, meaning that m�1 variables are immediately resolved. If desired,
such equalities may be used to a priori resolve up to m � 1 variables and later deal
with a reduced problem. The last part of the sought for PDF �0 is required to be
monotonically non-increasing, which implies that CDF ˚ 0 be concave over the
range of interest. The requirement is immediately enforced in problem QPm (19)
as the linear inequality constraints �0

j � �0
j�1, 8j 2 fm; : : : ; n � 1g. Clearly, other

ranges than j 2 fm; : : : ; n � 1g could be considered in different contexts, depending
on the specific nature of the application at hand, without requiring conceptual
modifications to the proposed technique. This completes the deduction of (19).

The constrained optimization problem QPm (19) may be attacked as follows. As
noted above, the goal function and all constraints are convex. It is well-known that
a convex minimization problem either has a unique minimum (not necessarily a
unique minimizer), or it is infeasible (empty admissible region). An initial guess
m D m0 value is chosen small enough so to cover a correspondingly large enough
interval U. Even though, for a given m, there is no mathematical guarantee that the
admissible region be non-empty, nonetheless it is clear that a non-increasing PDF
with suitable mean value exists ifm D 0, i.e., if any �0

j is free to take a different value
from the corresponding �j. Therefore, starting from m D m0, if m is progressively
decreased, so that a progressively larger number of degrees of freedom is introduced
into the problem, then a feasible QPm is eventually attained. The solution to problem
QPm corresponding to the first (i.e., largest) m for which this happens is retained as
the final solution to the problem. In the unlikely event that, in order to find a feasible
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QPm, m needs being reduced excessively (say, below a given and reasonably defined
threshold m0), then the decision may be drawn to abandon the iterative procedure
earlier and to keep a non completely concave CDF. Under this latter respect, large
possibilities exist for heuristic criteria.

A pseudo-code description of the proposed, iterative method reads

m=m0; while (QPm is not feasible AND m>m’), m=m-1; end
if (QPm is feasible) then

solve QPm; substitute original PDF and CDF;
else

keep original PDF and CDF;
end

where both feasibility detection and QP solution are addressed by standard, state of
the art Mathematical Programming techniques; see [1, 4–6].

4 Global Warehouse Optimal Sizing via MP

Given a collection of curves expressing the relationship between ROP and confi-
dence level not to stock-out, obtained according to the above developments, the final
step consists in assigning suitable and reasonably different ROPs to all involved
goods in stock (typically hundreds of goods, considering single product families
individually), and consequently choosing suitable service levels for all items, so
that the global (and suitably weighted) service level be maximized and under the
constraint that the global cost comply with a global budget; see Sect. 1, problem (B).

4.1 Pareto Fronts

Let us consider the ith stockable item. A key performance indicator (KPI), or service
level, is naturally expressed by the probability not to stock-out

Pi.�
S
i / D ˚S

i .�
S
i / D

Z �S

�1
�S
i .�/ d�: (23)

The cost of stock may be estimated based on the average stock level over time;
see Fig. 3. Within the assumptions of the model adopted, as soon as the reordered
quantity Oi � EŒDi�.EŒLi�CEŒR�t/ enters the stock, a level Si�Di.Li CRt/COi

is attained, eventually decreasing linearly down to a level Si � Di.Li C Rt/ just
before receiving the next reordered quantity. Such saw-tooth behavior is repeated
indefinitely. Adopting average values for other variables than the reorder point Si
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and recalling that EŒR� D 1=2, the average stock level1 for the ith good is related to
�Si as

Si D �Si C Oi

2
� EŒDi�

�

EŒLi�C t

2

�

: (24)

Stock costs can then be expressed as

Ci.�
S
i / D Ca

i C Cu
i Si D Cf

i C Cu
i �

S
i ; (25)

where Ca
i � 0 is an activation cost, i.e., independent of the stocked quantity, while

Cu
i > 0 is a unit cost, so that Cu

i Si is a cost proportional to the average stock level
Si and, finally, Cf

i D Ca
i C Cu

i .Oi=2 � EŒDi�.EŒLi� C t=2// is a fixed cost with
reference to variable �Si . The unit cost Cu

i is intrinsically non-null, for otherwise
the stock problem for the relevant good would be trivially solved by assigning an
arbitrarily large reorder point, a meaningless case in the applicative context. Indeed,
Cu
i ¤ 0 implies that map (25) be bijective and thus invertible. Moreover, the inverse

map C�1
i is still affine and such that �Si D .Ci � Cf

i /=C
u
i .

According to the commutative diagram

it is possible to translate (23) and (25) into a parametric description of the
Pi D Fi.Ci/ curve (performance vs. cost curve; see, e.g., Fig. 6), where Fi WD
.C�1

i /�.˚S
i / D ˚S

i ı C�1
i is the pullback of ˚S

i . Notice that concavity (as well
as convexity) is invariant under composition with affine maps, that is, if g D f ı l,
where f is concave and l is affine, then

. f ı l/.tx1 C .1 � t/x2/ D f .l.tx1 C .1 � t/x2//
D f .tl.x1/C .1 � t/l.x2//
� tf .l.x1//C .1 � t/f .l.x2//
D t. f ı l/.x1/C .1 � t/. f ı l/.x2/;

so that also g is concave. Therefore, since both Ci and its inverse C�1
i are affine,

concavity of Fi is equivalent to concavity of ˚S
i . Concavity in case of performance

vs. cost curves is reasonably justified empirically: Saturation frequently occurs in

1In case of models (3)–(5), similar considerations lead to Si D �Si � EŒDi�.EŒLi�Ct=2C T=2/,
Si D �Si C Oi=2 and Si D �Si , resp.
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Fig. 6 Performance vs. cost curve for a sample product code, computed according to the proposed
method, i.e., by means of a nonlinear model and without any normality assumption (solid). Also
shown are the curves computed according to the traditional normality assumption and with standard
deviation computed by means of variance propagation, i.e., with model linearization, (dash–dot)
or with Hadley-Whitin formula (dashed); non negligible deviations from the correct behavior are
observed in the latter two curves

many economical systems, so that the same marginal cost increment results into
progressively smaller marginal performance increments as the performance level
increases. The performance vs. cost curve for a sample product code is shown in
Fig. 6, where the discrepancy between proposed and traditional approach can be
appreciated.

Performance vs. cost curves satisfy Pareto front requirements. Precisely, any
given point .Ci;Pi/ on the curve is optimal in the sense that with a given cost Ci

it is not possible to obtain a better performance than Pi D Fi.Ci/, whereas lower
performances than Pi are unjustified, since the system has the capability to behave
better. Dually, to attain a given performance Pi it is not possible to spend less than
Ci, whereas to spend more is economically unjustified. In conclusion, points above
the front are infeasible and those below are uneconomical; see Fig. 8, where the
same considerations are illustrated for the whole inventory Pareto front, to be later
deduced.

We consider now the problem of choosing a suitable positioning somewhere
along the front. This amounts to solving a global optimization problem over a collec-
tion f.Gi;wi/gNiD1 of N stockable goods Gi, each one with a relevant performance vs.
cost curve and additionally provided with a global weight wi 2 Œ0; 1�, characterized
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in that
PN

iD1 wi D 1 and expressing the good’s relevance in the frame of the global
weighted average performance

P D
NX

iD1
wiPi: (26)

Weights are possibly chosen equal to 1=N for all goods, whenever no distinction has
to be made.

4.2 Problem Formulation: LP

Let us first assume that all Pi D Fi.Ci/ curves are concave, i 2 f1; : : : ;Ng. Local
data regularization via QP may be used to force non concave cases to the assumption
at hand; see Sect. 3. Let us collect costs Ci and performances Pi into vectors c
and p, resp. Then, the unknown vectors c and p are found by solving the linear
programming (LP) problem

LP W
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max
c;p2RN

C

NX

iD1
wiPi

subject to

NX

iD1
wiPi � Pl

NX

iD1
Ci � B

aCi; jCi C aPi; jPi � bi; j; 8i 2 f1; : : : ;Ng;8j 2 f1; : : : ; n � 1g

Cl
i � Ci � Cu

i ; 8i 2 f1; : : : ;Ng

Pl
i � Pi � Pu

i ; 8i 2 f1; : : : ;Ng;

(27)

now described in details.
The linear goal function is the weighted average performance (26), to be

maximized. A (possibly null) minimal admissible global performancePl is enforced
by the first constraint in problem LP (27). A global budget constraint is expressed
by the second constraint in problem LP (27), where B is a given global cost budget.
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Notice that, owing to the joint constraining action of the two inequalities above, the
problem is either infeasible or a performance non worse than Pl is obtained. In the
former case, a problem revision is needed in order to make the problem feasible, and
either the minimal performance Pl is reduced or the maximal budget B is increased.

The actual shapes of performance vs. cost curves have to be enforced. Since we
deal with PWL curves, the information relevant to the ith such curve is expressed
by the collection of n vertices f.Ci; j;Pi; j/gnjD1 the Pareto front consists of (notice
that index i runs over goods while index j runs over the curve vertices for the ith
good). The equation of the line through any two consecutive vertices .Ci; j;Pi; j/ and
.Ci; jC1;Pi; jC1/ along the ith front is of the kind

aCi; jCi C aPi; jPi D bi; j; j 2 f1; : : : ; n � 1g; (28)

where aCi; j WD Pi; j � Pi; jC1, aPi; j WD Ci; jC1 � Ci; j and bi; j WD Ci; jC1Pi; j � Ci; jPi; jC1.
Since the ith front is concave by assumption, the plane portion “below” the front is
the locus of points .Ci;Pi/ “below” the plurality of all lines (28), as expressed by
the third collection of inequality constraints found in problem LP (27); see Fig. 7.
The mathematical characterization of the Pareto front, as discussed in Sect. 4.1, will
force .Ci;Pi/ to adhere to the front for, otherwise, a more economical solution and
with same performance could be found (or, dually, a better performing solution and
with the same cost). Finally, lower bounds Cl

i (resp., Pl
i) and upper bounds Cu

i (resp.,
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Fig. 7 PWL performance vs. cost curves (pareto fronts) for two sample stockable goods (first
and last moving in the inventory), as rendered by means of a system of linear inequalities in LP
problem (27); minimally and maximally acceptable service levels are also shown as horizontal
lines defining the front portion of interest (bold) along which the optimal point is restrained to
reside
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Pu
i ) could be imposed onto Ci (resp., Pi), as expressed by the remaining constraints

in problem LP (27).
Different inventory management policies may modify the restraint set, retaining

only part of the above. The LP problem is solved with standard, state of the
art Mathematical Programming techniques, such as the well-known and efficient
simplex method; see, e.g., [2].

4.3 Problem Formulation: MILP

As an extension of Sect. 4.2, let us now address the general case in which some
or all performance vs. cost curves are non concave. Unfortunately, this case is
mathematically way harder than the concave case. To understand why, one must
recall that each pair .Ci;Pi/ of variables in LP problem (27) belongs to the region
below the corresponding concave performance vs. cost curve, including the latter
curve as part of the boundary. (In the optimal solution, the variables do belong,
pairwise, to such boundary curves.) Now, since the performance vs. cost curve is
concave, the feasible region for each pair of variables is convex. Additionally, as
detailed above, the feasible region is described by a collection of linear inequalities.

Both of these advantages are lost in the general, non-concave case. Since the
intersection of convex regions is convex and since half planes delimited by lines
are convex regions, if one should now try to describe the region below a non-concave
performance vs. cost curve by means of linear inequalities, a convex region would be
obtained, which is not the case by assumption. Nonetheless, the attack strategy here
proposed consists of partitioning each generally non-convex feasible region into
convex parts. Then, the optimal solution must reside in one, and only one, of such
parts. This fact may be handled by introducing a potential pair of variables for each
part, along with Boolean, disjunctive variables. The latter are used to express the
constraint that one, and only one, of such potential pairs of variables be active, all the
others being “phantoms”. The contributions of phantoms must be suitably removed,
since such fictitious points are only introduced for the sake of convenience, but they
are not “real”. It is easily understood that the disjunctive nature of the variables
and constraint make the problem combinatorial. The mathematical tool of integer
programming is then required, with a remarkable increase of both the theoretical
complexity and, above all, of the computational burden.

We now show the proposed approach in details. Due to its PWL nature, it
is always possible, without loss of generality, to assume that the generic ith
performance vs. cost curve consist of Ki concave portions. If such curve is originally
concave, then Ki D 1. As an extreme case, Ki D n�1 and concave portions coincide
with the linear spans of the PWL function. With reference to the ith performance
vs. cost curve, let us introduce a collection f.Cik;Pik/gKi

kD1 of the sought for points,
the kth of which belonging to the kth concave portion. Vectors c and p need being
suitably enlarged so to host all of the so introduced unknown variables for all curves,
for a total of K D PN

iD1 Ki entries. Let us also assume that the kth portion of the ith
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curve extend over the ŒCl
ik;C

u
ik/ interval, so that the “right”-most extreme coincide

with the “left”-most extreme of the next interval.
Additionally, Boolean decision variables are introduced, so that zik 2 Z2 Š f0; 1g

be associated with the kth concave portion of ith stockable item performance vs.
cost curve. The zik’s are collected into vector z 2 ZK

2 , where the latter space ZK
2

is the lattice of multidimensional points obtained by tensorization of K copies of
Z2. The basic idea is that, if zik D 1, then the point on the ith Pareto front lies on
its kth concave portion (the active portion), and zik D 0 for all other k’s. For the
sake of convenience, the points .Cik;Pik/ relevant to unused concave portions are
still formally present, and they are conventionally located at the “left”-most point
of such portion, i.e., .Cl

ik;Fi.Cl
ik//. Suitable terms will consequently arise in the

mathematical description, so to compensate the presence of such “phantom” points.
The unknown vectors c, p and z are found by solving the mixed integer linear

programming (MILP) problem

MP W
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l
ik � B

aCik; jCik C aPik; jPik � bik; j;
8i 2 f1; : : : ;Ng;8j 2 f1; : : : ; n � 1g;8k 2 f1; : : : ;Kig

PKi
kD1 zik D 1; 8i 2 Imh

PKi
kD1 zik � 1; 8i … Imh

Cl
ik � Cik � Cu

ik; 8i 2 f1; : : : ;Ng;8k 2 f1; : : : ;Kig

Pl
i � Pik � Pu

i ; 8i 2 f1; : : : ;Ng;8k 2 f1; : : : ;Kig;

(29)

now described in details.
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The basic structure of problem MP (29) is clearly inherited from problem
LP (27). Notice that the maximizer is sought for in a multidimensional space,
obtained by tensorization, where c and p are both in RKC, and thus the relevant
entries must be non-negative, while z is in ZK

2 , and thus the relevant entries are
only allowed to take either value 1 or 0.

The penultimate collection of constraints forces Cik to belong to the relevant
concave portion. Let us consider the first collection of constraints. In case the
kth is the ith good active portion, then zik D 1 and the constraint reduces to
Cik � Cu

ik, that is, a redundancy. Otherwise, zik D 0 and the constraint reduces to
Cik � Cl

ik. The only possibility is thus Cik D Cl
ik, so that phantom points are forced

to coincide with the “left”-most point of the relevant concave portion. The goal
function is still the weighted average global performance (26), with the additional
summation compensating phantom points. As a matter of fact, the active portions do
not contribute to such additional summation (1� zik D 0), whereas all other potions
remove a wiFi.Cl

ik/ contribution from the global performance (Pik D Fi.Cl
ik/ for

phantom points).
The same reasoning applies to the minimal performance Pl constraint and to

the maximal budget B constraint (Cik D Cl
ik for phantom points). As a matter of

fact, also in this problem a (possibly null) minimal admissible global performance
Pl is enforced by the second constraint in problem MP (29), and a global budget
constraint is expressed by the third constraint in problem MP (29), where B is a
given global cost budget. Notice that, exactly like in problem LP (27) and owing
to the joint constraining action of the two inequalities above, the problem is either
infeasible or a performance non worse than Pl is obtained. In the former case, a
problem revision is needed in order to make the problem feasible, and either the
minimal performance Pl is reduced or the maximal budget B is increased.

Since discrete decision variables have to be introduced in order to handle the non-
concave case, it is worth taking advantage of their modeling power and introduce the
possibility to decide whether to stock or not some goods, based on global optimality
considerations. Precisely, let us introduce an index set Imh of must-have goods,
necessarily to be stocked for any relevant strategic reason. Obviously, the subset
Imh can possibly coincide with the universe of stockable goods, if desired. All other
goods are subject to possibly being excluded from the MTS inventory management
policy, depending on the solution of problem MP (29). Must-have goods (i 2 Imh)
are characterized in that exactly one concave portion is active (i.e., exactly one
zik D 1, all others being null), while all other goods (i … Imh) are characterized in
that at most one concave portion is active (i.e., possibly one zik D 1 and not more,
all others—possibly all—being null). Such conditions are mathematically enforced
by means of the fourth last and third last constraints, resp.

The resulting problem, especially after the data regularization procedure dis-
cussed in Sect. 3, is usually lean enough to be readily handled with standard
branch-and-bound techniques on standard computers; see, e.g., [12].
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5 Conclusions, Extensions and Future Research

The proposed approach to stochastic optimal sizing of inventories is the result of
activities that the present author has undertaken in order to support the rationaliza-
tion of ABB Low Voltage Products Division warehouse located in Vercelli, Italy,
and serving the local national market from ABB factories located nationwide and
abroad. Global optimization according to Sect. 4 leads to a global Pareto front, at
inventory level, obtained pointwise by varying the global cost budget B in (27)
or (29); see Fig. 8.

As for problem (A), i.e., reorder point based performance vs. cost curve
determination, the proposed approach goes beyond ABB’s state of the art (i.e.,
Hadley-Whitin formula) in that the stochastic problem is not forcedly linearized
and in that the assumption that involved probability density functions be Gaussian
is relaxed to handling generic, experimental distributions, deduced on a sampling
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Fig. 8 Global Pareto front (solid) for a portion of ABB Italy—Low Voltage Products Division
warehouse, relating global costs (sum over 176 different products) and overall weighted service
level; points above the front are infeasible, while points below are uneconomical, because others
may be found on the front with same performance and cheaper or, dually, with same cost and better
performing. In case no global optimization is carried out but, rather, the same prescribed service
level is assigned to all goods, then, by varying the prescribed service level, a remarkably lower
curve is obtained (dashed), inside the uneconomical region. As expected, the optimal and non-
optimal curve converge at the lowest admissible (90%) and highest possible (100%) service level,
where exactly the same quantities are stocked for all goods, while inoptimality is greater elsewhere
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basis. A posteriori, it is found that involved distributions are actually very far away
from being Gaussian.

As for the global optimization problem (B) of locating working points for all
involved goods along relevant performance vs. cost curves, a very fast approach
is here proposed, based on forced regularization of non concave curves and LP,
along with an alternative, more refined, but also potentially more cumbersome
approach based on MILP. ABB priorly followed a rule-based approach following an
ABC categorization of goods, intrinsically “local” and with no guarantee for global
optimality.

The whole mathematical machinery has been condensed into a Matlab package
currently available to ABB professionals operating in Logistics. This application
reads suitably formatted data extracted from the Company’s ERP (basically, the
last 12 months movements, on a rolling basis), processes them, and finally delivers
suggested reorder points, along with graphical indication of performance vs. cost
curves, on a good-by-good basis.

The proposed methodology for the global optimization of systems consisting of
a collection of performance vs. cost curves (see Sect. 4) could be extended to other
systems than just inventories, by abstracting from what “performance” and “cost”
actually represent. Examples in the world of industrial operations include finding
the optimal strategy for running a multi-commodity productive system, where the
performance may be the volumes of each commodity produced, and the cost may
be some suitable measure of allocated resources, such as, e.g., manpower, worked
hours, externally outsourced work, and the like, each one being usually restrained
to a globally available budget. Many other interesting applicative fields could be
easily spotted, with different interpretation of involved quantities but with the same
or similar mathematical structure.

Performance vs. cost curves may also have a different origin than the one
discussed above for inventories, including empirical curves. Concavity driven data
regularization (see Sect. 3), may still be adopted in order to simplify the global
optimization problem.

Applications may be envisaged requiring large and thus challenging instances
of the MILP problem to be solved. Therefore, devising highly efficient and robust
approaches to problem MP (29) could find sound motivation. Future research may
go beyond general purpose branch-and-bound and seek for an attacking strategy
possibly exploiting the specific mathematical structure of the problem. Cumulating
a plurality of additional constraints than those examined here may also be an
interesting and motivated future research effort. Last, but not least, a deeper
statistical analysis and handling of input data could be highly beneficial. The method
hereby proposed could easily be adapted in order to be compatible with other than
PWC PDFs.
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Challenges of Mechatronical Engineering
of Production Systems: An Automation System
Engineering View

Arndt Lüder and Nicole Schmidt

Abstract The importance of quality and efficiency of engineering process for
production system is continuously increasing. Engineering sciences are encouraged
to improve its tool and method sets to face this challenge. But in several cases
engineers are not the real specialists for improving the toolbox of engineering. Here
mathematical science can assist engineering sciences.

Within this paper open research issues for mathematical sciences are derived
from the current state of the art in mechatronical engineering of production system
intending to encourage joined research activities of mathematical and engineering
science.

1 Introduction

The increasing global competition between companies from different global regions
with completely different economical conditions forces European companies on the
one hand to increase product variety, often until complete individualization to meet
customer needs. In parallel, on the other hand, these companies are encouraged to
increase production system flexibility regarding resource capabilities and quantities
as well as regarding used production system technologies. Finally, they shall reduce
both the product life cycle as well as the plant life cycle. But this results in an
increased production system complexity which has to be handled within the entire
production system life cycle adequately.

One of the key initiatives dealing with this challenge is the German Industrie 4.0
initiative focusing on increasing flexibility of production systems and improving
vertical and horizontal integration of production system components, and striving
to nothing else than the 4th industrial revolution. Key elements of this initiative are
(among others)

• the Industrie 4.0 component, a self-aware and self-adaptable production system
component,
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• the intelligent networking of Industrie 4.0 components to provide flexibility
on system level using adaptation capabilities and plug-and-work capabilities of
Industrie 4.0 components, and

• the integrated exchange of Industrie 4.0 component information related to
engineering and runtime phases along the production system life cycle.

Comprehensive technological developments during the last centuries are the
foundation of this discussion enabling new technical possibilities within the design
and use of production systems today [1]. It can be observed, that the wide-ranging
capabilities of information processing systems from the consumer market has found
their way into production systems realizing the vision of Computer Integrated
Manufacturing (CIM) in a new fashion.

As the Industrie 4.0 component is a controlled part of a production system
including manufacturing physics as well as control intelligence the Industrie 4.0
component shall be considered as a cyber physical system [2, 3] and shall be
considered in the triangle of products, production processes, and resources. Each
product requires for its production the processes defined in its Bill of Operation.
These processes will be processed on a production resource. Each production
resource will process sets of products and will be able to execute processes. Finally,
each process is used for the production of products and can be executed by a
resource [3]. Thus, the Industrie 4.0 component shall act as a resource providing
production processes useable to produce products by exploiting its production
physics and controlled by its internal control intelligence.

As proposed in [4] the life cycles of production systems and products are
interlinked as presented in Fig. 1. The use of Industrie 4.0 components within these
life cycles is mostly related to the plant and process development, the production
system engineering, the commissioning, the use for production, the maintenance
planning, and the maintenance life cycle phases (given in dark blue in Fig. 1).

Nevertheless, within these phases several engineering disciplines are involved
in the development and use of the Industrie 4.0 components. Thereby, each phase
consists of several engineering activities often related to necessary design decisions
within one of the involved engineering disciplines. Process planning, mechanical
engineering, electrical engineering, control and robot programming, and virtual
commissioning are the most relevant disciplines [5]. As visualized in Fig. 2 the
different engineering activities depend on each other (require engineering results
of prior engineering activities) and exploit different engineering tools. In most
cases, these tools are tailored to an efficient execution of the necessary work
engineering activities (the optimal execution of design decisions and creation of
required engineering artefacts) [6]. They are based on their own model type and
their own data structure optimised to the tool use and software structure. But
following the chain of engineering activities it is hard to enable a consistent and
lossless exchange of engineering data (digital engineering artefacts or parts of them)
between the engineering tools [7].

One mean to address the problem of consistent engineering of production
systems integrating different engineering disciplines (covering the data exchange
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problem, the consistency problem, etc.) is mechatronical engineering. Mechatron-
ical thinking and mechatronical engineering, based on it, are common in product
engineering and design since the seventies and the eighties of the last century.

Initially, mechatronic has been considered as supporting guideline in product
design where the meaningful combination of different engineering disciplines has
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provided an added value for the product properties and functionalities [8, 9]. Here
systems like CD players or antilock braking system have been developed. Over time,
this combination had been proven useful for engineering of production systems
since production systems are also product (even with the special nature of a single
piece of its own) [10–12].

Mechatronical thinking within production system engineering is resulting in
specific engineering processes as well as in specific production system architectures
[6, 13]. Both have an essential impact on the work of engineers.

Within this paper the main concepts of mechatronical engineering within pro-
duction system engineering will be considered. The terms of a mechatronical
unit and a mechatronically oriented control architecture are described. Based on
them the mechatronical engineering process is described as well as its main
steps going beyond classical engineering approaches within machine and plant
engineering. With this background the paper will analyse benefits, challenges and
limitations of the mechatronical engineering process from the viewpoint of the
engineering of production systems and the automation systems used within. It will
draw conclusions for open research questions possibly answered by mathematical
research.

2 Mechatronical Engineering

Mechatronical thinking and engineering had evolved from similar developments
within the industrial countries in the late seventies and early eighties of the
last century. In Germany, to give an example, the so-called “Feinwerktechnik”
(precision engineering) has emerged covering the combination of mechanical and
electrical engineering. The term “Mechatronic” originating from Japan has been
internationally adopted for the advantageous combination of mechanical, electrical,
and electronic engineering quickly. Within the following years more engineering
disciplines have been integrated like optics and information sciences [14, 15].

Initially, mechatronic was focused on the design and engineering of products
where the meaningful combination of different engineering disciplines can provide
an additional value for the functionality, stability, etc. of intended products [8, 16].
But mechatronic has been proven to be also helpful for the structuring, design, and
engineering of production systems and beyond [11, 12, 17].

2.1 Mechatronical Units and Systems in Production Systems

In recent years a broad agreement about the definition of the term Mechatronic has
been established. Following this agreement it holds:

A mechatronical unit is a closed system providing a dedicated (mostly physical)
behaviour within a production system utilizing sensors, actuators, and intelligent
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control devices in a closed loop control structure. Thereby, the mechatronical
unit combines on the one hand software (for control program development) and
hardware (mechanics, electrics, electronics, : : : ) and on the other hand different
engineering disciplines to achieve an optimal functionality.

A mechatronical system is established by the systematic combination/interlinking
of mechatronical units and/or mechatronical systems within a hierarchical structure.
Thereby, each mechatronical system will contain its own information processing
used for optimal control of the functionality and the interaction of the different
interlinked mechatronical units and mechatronical systems of the lower hierarchy
layers.

The distinction between mechatronical units and mechatronical systems results
from the consideration of the hierarchy of mechatronical units and mechatronical
systems. Usually the leaves of this hierarchy, i.e. the ends of paths, are regarded
as mechatronical units while all other objects in the layers above are regarded as
mechatronical systems. But most important, the mechatronical units have direct
access and control of the underlying physics of the production system. It depends on
the system of interest whether a drive is seen as the mechatronical unit or a power
train including drive, gearbox, and frequency converter, or the complete conveyer
with lifting table.

The structure and interlinking of mechatronical units and mechatronical systems
covering only two layers (as simplification) is depicted in Fig. 3 to give a hierarchy
example.

Following [12, 17] the complete structure of a mechatronical oriented production
system can be represented by a six layer hierarchy. The lowest of these six layers
is formed by mechanical and electrical parts like metal stiffeners, electrical wires,
and screws. They are arranged in sub-function groups which, in combination with
other sub-function groups, will provide basic functionalities of the production
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Information 
processing for 

control purposes

Information layer

Physical layer

Production 
process partMaterial, Energy Material, Energy

SensorsActuators

InformationInformation

Mechatronical unit

Information 
processing for 

control purposes

Information layer

Physical layer

Production 
process partMaterial, Energy Material, Energy

SensorsActuators

InformationInformation

Information 
processing for 

control purposes

Information Information

Information layer

Physical layer

Fig. 3 Mechatronical structure consisting of two layers
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system. Thus sub-function groups are grouped to function groups. For example,
single clamping fixtures are combined to clamping fixture groups providing the
production function “fixing material” which is required in a robot based welding
cell or combining a drive, a gearbox, a frequency converter, and some shafts within
a power train to provide the function “motion”. Thus, function groups provide more
complex functionalities which are of importance for the execution of production
steps by providing essential parts of production steps. Complete production steps
which are usually part of the bill of operation of a product will be provided by main
groups. Main groups integrate a set of function groups as it is the case for clamping
fixture groups, power trains and other function groups within a milling machine.
Together, they can execute a milling function on a work piece. Main function groups
can be combined to manufacturing cells able to execute sets of manufacturing steps.
For example a milling machine can be combined with a robot for material handling
and a storage for different milling tools in a milling cell. Finally, a set of cells can be
combined to a site as a set of milling cells can be combined to an engine production
site of a car manufacturer.

Usually sites, cells, main groups and function groups can be considered as
mechatronical systems while cells, main groups, function groups, and sub-function
groups can be regarded as mechatronical units. Here, the relevant viewpoint is
essential for the definition of the lowest level of consideration which will constitute
the mechatronical units. The hierarchical structure is depicted in Fig. 4.

Within the mechatronical engineering the mechatronical unit or system shall be
represented by an engineering artefact covering the information sets of all relevant
engineering disciplines, a kind of digital representation or digital shadow called
mechatronical information object.

A mechatronical information object is an engineering artefact combining the
modelling of mechatronical units of a manufacturing system with its different
characteristics like signals, electrical drawings, function blocks or devices in one
information object. It is the information representation of a mechatronical unit

Mechanical part

Sub-function group

Function group

Main group

Cell

Site

Mechatronical unit

Mechatronical system

Fig. 4 Hierarchical structure of a Mechatronical oriented production system
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within a mechatronical engineering process. Thus, it has to cover at least the
following information sets.

• Topology data including the hierarchy of sub-elements (other mechatronical units
and/or devices),

• Mechanical data including mechanical constructions with geometry and kine-
matics (especially mechanical drawings/MCAD),

• Electrical, pneumatic, and hydraulic data including electrical construction as
wirings of the different types and their plugs,

• Function describing data like functional models of controlled and uncontrolled
behaviour,

• Process control data like control code of any kind, and
• Generic data summarizing further organizational, technical, economical, and

other data like order information or handbooks and guidelines.

These information sets are depicted in Fig. 5.
The relations between mechatronical engineering, mechatronical units, mecha-

tronical systems and mechatronical information objects are given in Fig. 6.
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Fig. 5 Information sets of a mechatronical information object
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Fig. 6 Relations between mechatronic related terms defined

Within mechatronically structured production systems the control applications
for production system automation are distributed among the different information
processing components of the different mechatronical units and mechatronical
systems. This distribution can either be a physical distribution on different control
devices or a virtual distribution on the same hardware but with different execution
contexts. Thereby, the control decisions executed on the different information
processing units are oriented on the automation pyramid layers they belong to.
Hence, on site level enterprise resource planning (ERP) decisions and control
functions are executed, on cell and main function level manufacturing execution
control (MES) decisions and functions are relevant, and on the different function
layers field control decisions are made [18].

For the design and engineering of the automation and control applications (as
well as for the complete production system design and engineering) it is useful to
specify a stable interface structure for the information process units as depicted in
Fig. 7 [12].

Mechatronical systems of higher layers of the production system hierarchy
can access lower layered mechatronical systems using their own device interface
and the execution interface of the lower layered mechatronical systems. By their
execution interface lower layered mechatronical systems will provide access points
to their provided production functions (or parts of it) which can be accessed
by other mechatronical systems. Higher layered mechatronical systems know the
required lower layered production function and can access and parameterize them
appropriately by their device interface. Thus, a distributed but clear control decision
hierarchy can be established.

This hierarchy is especially applied at field and MES layers of the control
pyramid. Here the control application is split into components related to physical
properties of production functions as depicted in Fig. 8 [19]. At the lowest level
the function blocks are related to the direct physics control similar to the drivers
within PC operating systems. They are responsible for operating control devices,
i.e. they are relevant on the sub-function group layer of Fig. 4. Above them there
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Mechatronical system of 
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Fig. 7 Interface structure of mechatronical systems [12]
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Fig. 8 Possible control hierarchy at field layer

are layers combining control devices to basic functions of the controlled system
like moving a work piece until a sensor indicates its presence or move a robot into
a certain pose. They belong to the function layer of Fig. 4. These function blocks
are again aggregated to production system functions applicable to execute a certain
production step of a product like make a welding point at position X or make a set
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of welding points. Thus, these function blocks belong to the main group or the cell
layer of Fig. 4.

2.2 Mechatronical Engineering of Production Systems

The engineering of mechatronically structured production systems is executed with
direct application of mechatronical units1 in the structure as described above [8, 20,
21].

It can be observed, that there are two main processes to be distinguished (see
Fig. 11). The first process is focused on the design, engineering, installation and
commissioning of a production system intended for a special production purpose
(i.e. able to produce a special product portfolio) and can be considered as project
dependent engineering creating a solution for a special customer. In the course of
this process mechatronical units and mechatronical systems (or parts of them) are
exploited as starting points taken from a library of reusable mechatronical units.

The second engineering process serves the design, engineering, and test of
reusable mechatronical units and their integration in the named library (it should
be reminded that this library is not a single entity but a distributed one exploiting
different storing and management technologies) and can be considered as project
independent engineering creating reusable engineering artefacts independent from
customer orders. These mechatronical units can be exploited within the project
dependent engineering process. The design, engineering, and test of reusable
mechatronical units is based on the abstraction of engineering results of the project
dependent engineering process under inclusion of expert knowledge about the
industrial domain the intended production systems should belong to (see [22]).

Thus, the project dependent engineering process is assigned to the engineering,
implementation and use of production systems. There are structure guidelines
developed for this engineering process by research projects or applied in practice
(see for example [23–27]). All of them have more or less the same background
of systems engineering as applied in the SysMod methodology [28]. If these
processes are applied to production systems, they follow a structure presented for
mechatronical engineering in [8].

This engineering process starts with the collection of requirements of the
production system to be engineered. These requirements emerge on the one hand
from the product portfolio to be produced, i.e. the bill of operations to be executed
on the bill of material of the intended products. On the other hand there are several
requirements coming from legal entities like human and environmental safety or
from economical considerations (increase of earnings). Based on these requirements
the overall production system is engineered in a top down decomposition approach

1In the following the term mechatronical unit will be used also as representative for mechatronical
systems.
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Fig. 9 Engineering process
following [8] Requirements

Engineered

System

Modelling and model based analysis

Requirements
Engineered

System

Property validation

Control engineering
Electrical engineering
Mechanical engineering

finally resulting in a component structure to be applied in the system engineering
phase. If the overall system structure is defined the different involved engineering
disciplines (at least mechanical, electrical, and control engineering) have to execute
the detailed engineering resulting in a detailed description of the system compo-
nents. Afterwards the in detail developed system components are composed in the
system integration phase and their properties are validated with respect to the initial
requirements resulting in the final engineered production system. The system and
detailed engineering as well as the system integration and property validation are
usually accompanied by activities of modelling and model analysis to assist the
engineering. This V-Model like process is depicted in Fig. 9.

Important for the mechatronical engineering of production systems are the
system engineering and the system integration phases. Within these phases, at first
the production function to be executed is decomposed to a function hierarchy.
Therefore, the production steps to be executed are analysed and decomposed to sub-
steps following the idea of main functions, functions and sub-functions executable
by mechatronical units of the production system hierarchy given in Fig. 4. If nec-
essary the identified production process related functions are assisted by auxiliary
functions required to enable the production functions. In each decomposition step
it is analysed if there are possible realisations of the functions of interest within the
mechatronical library, i.e. are there solution elements for the required functions. If
so these solution elements are assigned to the functions. Thereby, in parallel to the
function hierarchy also a solution structures is developed [29, 30].

An example of this decomposition is given in Fig. 10. Here a welding cell for
car body manufacturing is considered. This welding cell is dedicated to execute
a set of spot welding steps following the assembly sequence of the car body.
Thus, for welding the welding function is required but also clamping functions
and transportation functions within the welding cell. To have the material to be
welded in the welding cell it has to be inserted into the cell in an insertion area and
to be transported to the insertion area. All these necessary functions are given by
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dark blue boxes in Fig. 10. For each function applicable technical realizations are
available given in light blue in Fig. 10. For example the welding can be executed by
a welding gun either mounted on an industrial robot or on a static welding station.
In case of a robot mounted gun the material has to be fixed on a geo station while
in case of a static welding station the material shall be clamped and moved by a
robot to and within the welding station. There are several human based or human
free realization possibilities for material insertion and material provision as well.

The system integration phase can start if at least one possible solution element
is identified for all leaves of the function hierarchy by either selecting it from
the mechatronical library or by developing it from scratch within the detailed
engineering. Then, the different system components are combined, connected,
validated, implemented, and commissioned.

As named above, within this activity mechatronical units are used as input from
a mechatronical library. On the one hand they are an input to the system function
decomposition and solution element identification. In addition, they are applied and
sometimes adapted in the detailed engineering, implementation, and commissioning
of the production system providing necessary engineering artefacts for these phases.

If a project dependent engineering process for a production system is finalized the
engineering results can be considered for identification of reusable system elements
(i.e. mechatronical units). The system elements of the developed system are evalu-
ated against customer and market requirements as well as technological progress
expectations. Thereby, mechatronical units are identified, separated, completely
engineered, possibly realized and tested, and finally added to the mechatronical unit
library (Fig. 11).

As an example for this process the engineering of the control architecture within
a production system shall be considered in detail.

Within the system engineering phase a hierarchy of mechatronical units is iden-
tified realizing the necessary production process. Following the control architecture
of a mechatronical unit depicted in Fig. 7, the interaction of mechatronical units
depicted in Fig. 3, and the hierarchy of mechatronical units given in Fig. 8, to each

Project dependent engineering

Product
design

Planning Realization Commision-
ing

Engineering

Project independent engineering

Analysis Planning Realization TestEngineering

Reusable artefacts
Customer, market, 
and project 
requirements

Library of 
Mechatronical  Units

Fig. 11 Two processes within mechatronical engineering following [20]
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Fig. 12 Hierarchy of control application

of the layers of the identified hierarchy of mechatronical units a dedicated control
application is assigned to.

At the cell layer this part represents the sequence of production process steps to
be established in the cell. In the welding cell example these are the material transport
and the welding steps. The cell layer exploits the resource related control sequences
of the different main groups (e.g. robots, conveyers, etc.) creating the necessary
sequences of the main groups (e.g. move robot to a position, transport material to
a position, close clamping fixture). The main groups exploit the function groups
and their control in the same way and finally the function groups exploit the sub-
function groups representing the lowest layer of control accessing the sensor and
actuator devices of the production system (e.g. start motion of a drive, read state of
inductive proximity switch). This control code hierarchy is depicted in Fig. 12.

Having the necessary mechatronical units with their control code for the defined
control applications within the mechatronic library the control code design step
within the detailed engineering as well as the validation of the integrated system
behaviour becomes easier. Here model based engineering actions as described in
[26, 31–33] (for control engineering) and [34–36] (for control system validation)
can be applied to name only some examples.

Based on several successful engineering processes the provider of production
system components of the different layers of the mechatronical hierarchy can
identify design pattern for component control. Usually, similar applications are
grouped to classes of application as identified for drive applications in [37, 38].
The 12 identified application types are presented in Fig. 13.
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Fig. 13 Different application types as identified by Lenze [38]

3 Existing Benefits of Mechatronical Engineering

A first benefit of the mechatronical engineering is obvious, the reuse of existing
engineering artefacts as envisioned by [22] or [24]. After executing a project
dependent engineering process appropriate project parts and/or system components
can be identified and treated for reuse and integrated in the library of mechatronical
units/systems in a project independent engineering process. Within the next project
dependent engineering process requiring similar solutions these mechatronical units
can be applied. Thereby, engineering effort in detailed engineering, validation,
installation, and commissioning can be reduced providing a shorter engineering
process with better tested components and less errors, and, finally, a better project
quality.

The second benefit is related to the problem of cooperation of several engineering
disciplines within the engineering process. As envisioned in VDI 3695 [20] a
common architecture for the work of the different engineers involved in an
engineering process is improving the process quality and efficiency. It will provide
a kind of a common dictionary containing common system element types (with
different discipline dependent views), a common system structure (plant hierarchy),
and, finally, the ability of identification of common object entities in the different
disciplines.
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Beyond the common vocabulary avoiding misunderstandings between the
involved engineers the data management within the engineering process can
be improved drastically. Mechatronical engineering can be exploited related to
data base based data exchange within the engineering process with common
object semantics as discussed in [39] and related to exchange data format based
engineering chain setup as discussed in [6]. This will result in improved tool
chains (all disciplines crossing data exchange) providing the ability of lossless and
consistent data exchange among involved engineering tools.

The fourth benefit is less visible as it is not related to engineering artefacts of
the engineering chain. Within the system engineering phase the production system
is initially considered from a function oriented point of view independent from
the different possible technical realisations of the production system. The function
hierarchy is developed. To each relevant function the set of possible realisations is
assigned. Using this assignment, theoretically, the complete set of possible plant
structures can be developed and the optimal one is selected. Despite the fact, that
this optimization problem is not solvable realistically, it is possible to identify a set
of meaningful candidates for final realization and discuss benefits and drawbacks of
the realizations based on a more abstract level. This approach has been successfully
applied within graduation activities of the research institute of the authors in the
fields of welding cells in car body manufacturing, cutter systems in roller mills,
stone mills, punching systems for metal sheet processing and robot gripper design
to name only some examples.

4 Existing Challenges

To realise the named benefits mechatronical engineering provides some challenges
to be solved to enable the successful application of this engineering methodology.

At the beginning of the engineering process (within the system engineering
phase) appropriate mechatronical units/ systems have to be identified applicable as
technical realisation of required functions of the production system. In the case of
a body welding shop for car manufacturing for example, the engineering process is
given as a set welding points to be made on special steel geometries to weld them
together. Here libraries of mechatronical units can assist engineers by providing
best practice system components. In the welding case the welding point structure
and the steel part geometry for example can call for a special welding gun which
will be provided as mechatronical unit or a complete welding robot consisting of a 6-
axis robot with welding gun and cable-hose assembly. But these mechatronical units
have to be modelled appropriately and should be automatically selectable based on
relevant differentiating factors (in the car welding case for example the welding
current and the gun size). The selection process requires a comparison of the
required function and the functional capabilities of the mechatronical unit/system
(like welding with welding parameters like temperature and material types). In
addition, the general conditions of the usability of the mechatronical unit have to
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be evaluated. It is an ongoing discussion how the required and provided capabilities
of mechatronical units can be modelled. There are first existing ideas based on the
generic description of manufacturing functions as described in [29, 40–42].

Theoretically, if a set of possible mechatronical units has been selected for
the different elements of the function hierarchy the optimal set of mechatronical
units/systems can be calculated. The optimization methodologies required for this
problem could be a kind of a linear program integrating the capabilities of the
mechatronical units, their mutual exclusion and dependencies, and the economical
effect the application can have (costs, throughput, etc.). Similar ideas for a manu-
facturing process flexibility based optimization in the field of scheduling have been
presented in [43]. It needs to be regarded that this optimization problem may suffer
from the theoretical size of a production system and its hierarchies. In [44] a nine
layer hierarchy of production system components has been proposed applicable
for the modelling of a production system in the automotive industry. On each of
these layers mechatronical units can be found leading to a capability of reusing
mechatronical units on these layers. Up to now there is no stringent mathematical
modelling available covering this optimization problem (Fig. 14).

Having a system structure defined, the involved engineers of the different
engineering disciplines (including the control engineer) have to execute a detailed
engineering providing the detailed description of the production system to be
built. During the process flow of the engineering the made descriptions get more
and more detailed exploiting different types of descriptions ranging from high
level/abstract models over more detailed models down to implementable code and
detailed drawings. In the case of a welding shop for car body manufacturing the set
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Fig. 14 Production system hierarchy following [44]
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Fig. 15 Engineering artefacts required within welding shop engineering for automotive industry
(selection)

of engineering artefacts is larger than 30. Figure 15 gives an overview how they are
assigned to production system layers.

All created artefacts (models, drawings, etc.) represent the same system and
shall be consistent to each other crossing engineering disciplines and levels of
detail. For example, the mechanical, electrical, pneumatical and hydraulical models
need to be in line with the 3D layouts and the part lists. In addition some of its
characteristic properties will depend on each other. If, for example, a drive defined
in the mechanical engineering has a special electrical interface this interface need to
be connected in the electrical engineering were the connections enable the necessary
ampere and volt of the energy flow to the drive. An example of first approaches
addressing this problem is given in [39].

Needless to repeat, the availability of models within the engineering process
opens up the complete box of the Pandora for model driven engineering. A survey
of model driven engineering for distributed control systems is given in [45] as an
example.

If the overall system is engineered in detail the correctness of the engineering can
be validated based on virtual commissioning approaches. Therefore, the different
models of different engineering disciplines need to be combined and a joint system
simulation has to be executed [46]. Thereby, an adequate combination of models
of production system physics and production system control at different layers are
required. To come back to the welding shop example the physical stability of steel
parts and its twist based on gravity forces within the material holders may have an
effect on the necessary positions of material fixtures as well as the positioning of the
welding gun. This information is only available if material physics is also considered
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in the simulation model. As the different modelled objects are of different nature
(continuous vs. discrete event, abstract vs. detailed, physical vs. logical, etc.) the
models to be combined are very heterogeneous and their simulation requires various
simulation strategies and tools.

5 Open Research Questions

Looking on the challenges of mechatronical engineering (which are far not new)
still a set of open issues for mathematical research can be identified improving the
applicability of mechatronical engineering.

As the engineering of production systems gets more and more model driven,
there is an increasing need for methodologies following the model driven thinking.
Models have to be created, processed, applied for generation of other (often more
detailed) models or other descriptions and finally be executed (for example in
controllers). In addition these models follow a multi-model approach with different
usually overlapping models of the different involved engineering disciplines.

Research Question 1 Mathematical research can assist production system engi-
neering by improving the capabilities for model generation, model transformation,
model integration and model consistency management. Especially the crossover
between models of different model nature (discrete event, continuous, hybrid : : : )
as well as models of different disciplines is of interest which has to be based on a
common meta modelling approach for production systems.

One essential part in mechatronical engineering of production system is the
automatic selection of potentially mechatronical units implementing special produc-
tion system functions. Therefore, models of manufacturing functions are required
applicable for automatic comparison of provided and requested functions. First
approaches like [47–51] need to be extended and enriched with respect to expres-
siveness to be applicable in optimization methods.

Research Question 2 Mathematical research can assist production system engineer-
ing by enhancing production function models towards applicability in comparison
and optimization methodologies.

At the end of the engineering of production systems more and more virtual
commissioning methodologies are applied enabling a validation/verification of
production system properties. Therefore, the created system of engineering artefacts
(models) need to be combined appropriately and executed in simulation systems.
Currently the simulation is only possible for limited sets of models over limited
model sizes.

Research Question 3 Mathematical research can assist production system engineer-
ing by enhancing model combination and model simulation/co-simulation strategies
improving the applicability of virtual commissioning to larger and more complex
systems.
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Facing the named challenges can be a task for a joined effort of mathematical and
engineering science research. This paper will explicitly appeal interested researchers
to cooperate under the roof of the Industrie 4.0 approach.
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Physics-Based Simulation for Energy
Consumption Optimization of Automated
Assembly Systems in the Automotive Industry

Felix Damrath, Anton Strahilov, Thomas Bär, and Michael Vielhaber

Abstract In this chapter a simulation based approach for optimizing energy
consumption of automated assembly systems in the automotive industry from a
production planning perspective is presented. Employing innovative simulation
capabilities, originating from the computer gaming industry, automated assembly
system’s energy consumption is prognosticated and visualized in virtual validation
procedures, based on its corresponding digital models. Potential energy efficiency
improvement measures (EEIMs) gathered from different fields of application
are identified and exemplarily tailored to specific automated assembly system’s
requirements. Considerations for suitable EEIM implementation to create energy-
efficient system designs are proposed. Ultimately, a case study for improving
energy-efficiency of automated assembly systems including preliminary results is
presented.

1 Energy Considerations of Automated Assembly Systems
in the Automotive Industry

At first energy-efficient production is motivated with respect to automotive man-
ufacturing in industrial countries. The generic structure of automated assembly
systems in automotive industries and corresponding energy consumption are further
outlined.
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1.1 Motivation and Introduction

Energy-efficient manufacturing becomes a topic of primary importance in the field
of industrial production. Over the last decade cost for electrical energy procurement
and electricity prices for industrial customers in Germany have significantly risen
[1]. The European Union targets a reduction of primary energy consumption of
20% below 2007 levels by 2020 while Kyoto-II will further restrict CO2-emissions
[2]. Additionally, growing environmental awareness among customers boosts the
demand of environmentally sound manufactured goods. Energy-efficient production
system design has therefore significant impact on production costs and total CO2-
emission, respectively. As a consequence, streamlining industrial production in
terms of energy consumption is worthwhile and economically beneficial.

Highly automated automotive manufacturing in industrial countries accounts for
substantial amounts of energy consumption [3]. In order to achieve challenging cost
saving targets and to fulfill political restrictions, many original equipment manufac-
turers (OEMs) have implemented multiple energy efficiency improvement measures
on the shop-floor, e.g. [4, 5]. Nevertheless, energy efficiency is insufficiently con-
sidered in production system’s planning phase due to a lack of appropriate features
in digital planning and validation tools [6, 7]. Capabilities for energy consumption
prognosis of the entire production system based on digital prototypes would enable
production planner to ensure an energy-efficient production system layout in early
system development and thus significantly reduce energy consumption, production
costs, and CO2-emission.

1.2 Automated Assembly Systems in the Automotive Industry

Automated production systems for automotive manufacturing are distinguished by
field of application according to the automotive manufacturing stages, i.e. press-
shop, body-shop, paint-shop, and assembly. Press-shop and paint-shop feature
special structures and tools for metal forming and applying different layers of paint,
respectively. In body-shop and assembly systems similar operations can be identi-
fied (joining, clamping, positioning, etc.), but automated assembly systems must
handle and process multiple product variants. In particular, automated assembly
systems are characterized by less standardization in terms of system design, layout,
and implemented components in comparison to body-shop systems. A simplified
overview of an automated assembly system structure is exemplified in Fig. 1.

From a systems engineering perspective automated assembly systems can be
perceived as hierarchically structured mechatronic systems representing the bottom
layers of the conventional automation pyramid. Centralized factory process con-
trol manages multiple signals including several Programmable Logic Controllers
(PLCs) that control individual assembly cells [8]. A single assembly system
features different (sub-)assemblies (i.e. turntables, robots, etc.) that are composed
of individual components (e.g. sensors, actuators) exchanging signals with the
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Fig. 1 Structural classification of automated assembly systems

PLC [9]. Those components are highly standardized but their arrangement and
operation mode must be individually designed within the development process
based on product requirements and specific assembly operations.

1.3 Fundamentals of Energy Consumption of Automated
Assembly Systems

The entire energy value sequence comprises energy conversion from primary
commercial, secondary, and final commercial to useful energy. Industrial end users
are billed for final commercial energy consumption stipulated by complex contracts
with energy suppliers. Final commercial energy accounts for all transformed
products and sources, e.g. coal, gas, fuel oil, and electricity, whereas useful energy
corresponds to the energy effectively made available through end user equipment,
e.g. process-heat, mechanical work or lighting [10]. Despite this economic view,
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in physics mechanical, thermal, electromagnetic and other forms of energy are
differentiated [11]. State variable energy (E) is further linked with process variable
work (W) that accurately specifies the energetic difference required for a system’s
change of states. Power (P) relates to work done in a certain period of time [12].

W D
Z

t
Pdt (1)

P D �W

�t
(2)

With respect to the automotive manufacturing stages, assembly accounts for
almost one quarter of the entire energy consumption of an automotive production
plant [13]. In automotive assembly mainly electrical energy (i.e. electrical work
[Wh]) and pneumatic energy (i.e. compressed air volume [m3]) are the forms of
useful energy required to execute value-adding assembly operations. Other forms of
energy consumed in automotive assembly factory buildings (heat or gas) do not have
significant impact on production system’s energy consumption. Major consumers
of electrical energy in automotive assembly are production equipment, lighting,
and radiation system, whereupon the production equipment accounts for 23% of
the entire electrical energy consumption [14]. Essential processes in automotive
assembly such as transporting, positioning, fixing and joining of semi-finished parts
are frequently recurring operations. Those operations are realized via electrical
and pneumatic actuators such as electrical engines or pneumatic drives. Electrical
and pneumatic components require energy to fulfill multiple assembly operations
(clamping, driving, etc.) and are consequently designated as Energy Consumption
Units (ECUs).

2 Virtual Validation of Automated Assembly Systems

Automated production systems in automotive manufacturing are virtually validated
based on digital models prior to commissioning and ramp-up. Based on a generic
assembly system development process, Daimler’s virtual validation procedures Vir-
tual Engineering and Virtual Commissioning are introduced. Furthermore, attempts
of physics-based simulation of production systems with regard to Virtual Commis-
sioning are presented.

2.1 Virtual Engineering and Virtual Commissioning

The development process of complex automated assembly systems for automo-
tive manufacturing comprises several design phases, quality gates, and project
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milestones. Reviewing the literature multiple schematic development processes of
automated assembly systems can be found varying primarily in terms of design task
allocation to different phases [15, 16]. Substantial similarities with the development
of body-shop production systems can be identified [17]. The development of
automated assembly systems presented in this paper arose out of several interviews
with engineers and designers of four plant manufacturers [18].

At project kick-off the plant manufacturer (PM) starts conceptual design, i.e.
systems engineering (Fig. 2) [19, 20]. Based on rough system layout set up by
the OEM’s production planning department, integrative conditions and functions,
e.g. external material flow, are determined and attested within Conceptual Design
Approval. In mechanical design internal material flow, 3D geometric component
modeling, and detailed process sequences are designed. In parallel with mechanical
design, electrical design is initiated: all electric components are integrated in electric
layouts specifying interconnections in electric diagrams. Software development
for PLC and control programs and procurement are triggered after successful
Mechanical Design Approval. Occasional system installation at PM’s site (Fig. 2A)
is followed by Installation Kick-off at the OEM’s shop floor (Fig. 2B). Commis-
sioning (C) and ramp-up (D) precedes Start of Production and final System Release
[21]. Concurrently with system design virtual validation procedures are conducted
in close collaboration with OEM’s production planning departments and PM’s

Fig. 2 Development process of automated assembly systems (based on [18])
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engineers. Tools of the Digital Factory are used to ensure correct system behavior
based on virtual 3D geometric system modeling and digital signal processing
[22, 23].

At Daimler two virtual validation methodologiesVirtual Engineering and Virtual
Commissioning are well established for body-shop systems and are increasingly
deployed for automated assembly systems. The methodology Virtual Engineering
(VE) aims at visualizing and validating system designs in terms of process sequence,
cycle time, and collision avoidance for different product variants by means of
an extended 3D geometric model. The methodology Virtual Commissioning (VC)
utilizes mechatronic system model in order to validate PLC and control programs
implementing hardware-in-the-loop. Both methodologies enable early evaluation,
optimization, and validation of the entire production system based on its digital
representations.

2.2 Physics-Based Simulation of Production Systems

Both validation methods Virtual Engineering and Virtual Commissioning require 3D
geometric representations of the production system. Nowadays, several CAD/CAE
tools from the Digital Factory are widely applied by practitioners in industry
for virtual validation such as Delmia or Process Simulate [24]. However, process
sequence design for complex production systems with those tools requires substan-
tial engineering efforts, e.g. modeling simple transportation operations. Interactions
between product and production system must be predominantly modeled individu-
ally. Furthermore, the majority of state of the art tools provide solely pure kinematic
multi-body simulation features, thus not representing correct dynamic behavior of
the production system with respect to relevant parameters such as mass, inertia, etc.

In order to reproduce multi-body dynamics in simulation environments with
respect to real-time restrictions of virtual validation procedures, several research
efforts focus on physics-based simulation, e.g. [25–27]. Physics-based simulation
capabilities based on game engine technology feature physics-engines that approx-
imate physical phenomena of rigid body dynamics, soft body dynamics and fluid
dynamics (particles). Commercial or open-source physics-engines such as ODE,
Bullet or PhysX are precompiled software libraries that iteratively solve differential
equations based on Newtonian mechanics resulting in realistic object movement and
interaction. Physics-based simulation of production systems for Virtual Commis-
sioning has been subject of several research projects and is widely discussed among
researchers and practitioners. Further attempts to improve and streamline physics-
based Virtual Commissioning for the case of automated assembly systems in the
automotive industry are currently undertaken in the ITEA-project AVANTI (Test
methodology for virtual commissioning based on behavior simulation of production
systems) [28].
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3 Energy Consumption Optimization of Automated
Assembly Systems

In recent years many efforts have been directed to reduce energy consumption
of automated production systems resulting in measures to realize energy-efficient
automotive manufacturing, e.g. [4, 5]. The majority of those energy efficiency
improvement measures (EEIMs) are implemented on the shop floor during the pro-
duction system’s operating phase. Nevertheless, considering product development
theory, exerting influence on design decisions in early system design leverages
enforceable design adjustments and is financially worthwhile [29]. Consequently,
implementing EEIMs already in early system design is continuously becoming
more popular [30]. This contribution focuses on EEIMs that may potentially be
implemented in early design phases of automated assembly system development.
In particular, these EEIMs that can be implemented via virtual validation methods
from a production planning perspective are given special attention. Prior to EEIM
analysis a brief introduction to energy efficiency for manufacturing systems is given.

3.1 Energy Efficiency of Automated Production Systems

With regard to the energy value sequence (Sect. 1.3) this contribution focuses on
optimizing useful energy consumption for efficient execution of assembly opera-
tions. There is no common definition for energy efficiency of automated production
systems. The term energy efficiency is generic, it highly relies on considered system
boundaries, and has different meanings depending on context, scale, and conceptual
background, i.e. indicator for macroeconomic performance, energy conversion or
energy demand [31, 32]. General definitions concern energy efficiency as a ratio
of output performance goods, service or energy to total energy input. Furthermore,
energy efficiency as quantifying indicator can solely be applied appropriately in
comparison of two similar systems with identical required output specifications. As
a consequence, two strategies to achieve higher energy efficiency can be identified,
i.e. reduce energy input while keeping constant output, or increasing output while
marginal energy input increase.

Energy efficiency labels have been established in recent years for several product
families (e.g. automobiles, white goods, consumer electronics), categorizing prod-
ucts in energy efficiency classes based on significant product properties (e.g. size
or operating volume) [33]. Those product families’ benefit can be quantified easily,
however, this is impossible for complex production systems in automotive industry.
Especially for highly customized automated assembly systems, energy efficiency
must be assessed individually due to limited number of comparable systems, insuf-
ficient standardization and high variety in system composition. With respect to the
energy efficiency of manufacturing systems a physical-thermodynamic definition is
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widely applied, considering energy efficiency as ratio of production output quantity
(with designated quality) to the system’s total energy input [34, 35].

Energy EfficiencyManufacturing System D Production Output

Total Energy Input
(3)

3.2 Potential Energy Efficiency Improvement Measures for
Automated Assembly Systems

Based on the structural analysis of an automated assembly system (Sect. 1.2),
elements from sub-assembly and ECU level that consume useful energy to execute
assembly operations are considered for optimization. Here three types of sub-
assemblies and components will be further analyzed: Electrical motors, Pneumatic
drives, and Robots (Fig. 3). Additionally, component interactions within the assem-
bly process need to be considered which results in the item Process. By means of
literature review multiple EEIMs from different research fields could be identified
and analyzed with respect to potential utilization for automated assembly system
components. All EEIMs are listed without claiming completeness and assigned to
different categories according to their specific field of action (Fig. 3).

Fig. 3 Potential assembly system-oriented energy efficiency improvement measures (EEIMs)
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Pneumatic drives (cylinders, clampers, etc.) offer multiple leverages of energy
efficiency improvements. The category Provision encompasses all EEIMs along
the entire process chain of compressed air provisioning on the shop-floor (creation,
conditioning, distribution, and usage). In particular adequate compressor, dryer or
storage system design contributes to energy savings in terms of reduced electrical
energy consumption. Avoiding leakages and ensure proper sealing through sound
and frequent maintenance exemplifies the category Distribution. The category
Design is of paramount importance, e.g. ECU design decisions in terms of dimen-
sioning and layout (size, pressure level, cylinder type, etc.) massively impact
pneumatic energy consumption. Furthermore, tube design needs to be carefully
considered for proper air flow in order to ensure ECU functionality.

Process refers to the potential optimization of ECUs due to timing conditions.
Switching comprises the opportunities to switch robots and electrical engines to
energy-efficient standby modes for longer standstill periods such as production
breaks, weekends or idle time within the assembly process. The category Sequenc-
ing implies optimized timing of assembly operations (within cycle time) considering
energy consumption, e.g. sequential ramp-up of originally parallel starting motors
avoids expensive peaks in electrical energy consumption.

Regarding electrical engines several categories could be identified as well.
Traditional physical measures are treated in the category Mechanics: decreasing
moving masses, lower velocity or less friction reduce engine’s electrical energy
consumption. Via Substitution saving potentials could be realized by implementing
energy-efficient motors or substituting DC machines by ASM (Asynchronous
Motor). In terms of motor engineering and design with respect to energy efficiency
it is very beneficial to run the engine in optimal operating point, thus avoiding idle
time and partial payloads. This corresponds with the category Design by means
of employing frequency converters or pole-changing engines to realize running
in optimal operating point. Energy Recuperation could be realized via additional
hardware (intermediate circuit) or generating and storing electrical energy by
running the motor in generator mode. Further energy savings can be achieved by
implementing reactive power compensation: energy suppliers design infrastructural
equipment (transformers, cables) based on required apparent power to guarantee
effective power, thus charging extra fees for over-engineered energy provision.

Energy-efficient use of industrial robotics is a broad research field where multiple
EEIMs could be identified. The category Design aims at ensuring kinematic
advantageous robot 3D positioning and realizing time saving potentials by reducing
unnecessary robot work spaces overlap. Correct robot dimensioning considers
adequate robot type and robot tool choice for the designated assembly operation.
Many measures could be identified with respect to Trajectory optimization, e.g.
optimized path generation as well as dynamics variations lead to significant energy
savings. Energy Recuperation and synchronized energy exchange between multiple
robots can be realized installing additional hardware components.
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4 Implementation Strategy for Energy Consumption
Optimization in Virtual Validation of Automated Assembly
Systems

Building upon suitable EEIMs, the conceptual approach for energy consumption
optimization is introduced and its preliminary implementation strategy is presented.
A more detailed allocation of EEIMs to the respected validation procedures is
suggested.

4.1 Conceptual Approach for Energy Consumption
Optimization

Current virtual validation procedures of automated assembly systems do not feature
physics-based simulation capabilities, thus providing solely kinematic multi-body
simulation results (Sect. 2.2). Fundamental steps towards physics-based virtual
validation of automated assembly systems and initial implementations to prove
conceptual feasibility have been carried out [15, 27]. In addition, energy effi-
ciency receives often no consideration within virtual validation procedures of
automated assembly systems. Physics-based simulation capabilities enable sim-
ulation of mechanic energy consumption within physics-based virtual validation
based on digital production system models [36]. Mechanical energy consumption
on the one hand can be mapped to electrical energy consumption for electrical
ECUs and on the other hand to pneumatic energy consumption in terms of
pneumatic ECUs. Consequently, physics-based simulation in virtual validation
delivers an energy signature based on digital models early in the development
process of automated assembly systems. Conducting individual analysis of the
respected assembly system, EEIMs shall be implemented in the digital model
by minimizing required energy input while maintaining production output and
important production parameters such as output rate, output quality or cycle time.

4.2 Implementation Strategy

The strategy for process implementation of the above mentioned conceptual
approach encompasses three phases (Fig. 4). The first phase establishes an initial
energy signature by means of physics-based simulation based on the original
assembly system design. Energy signatures pinpoint energy consumption in terms of
compressed air consumption and electrical energy consumption along the assembly
process. Physics-based 3D geometric model and mechatronic system model of the
entire assembly system must be created based on individual physics-based ECU
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Fig. 4 Strategy to implement EEIMs into virtual validation procedures

modeling (Sect. 2.1). Individual component data is extracted from components’ data
sheets and sequence diagram is used for process modeling.

Within the second phase potential EEIMs are analyzed with respect to the
assembly system’s individual characteristics. As input a catalog of potential EEIMs
is given and tailored for the application to the respected assembly system. Underpin-
ning the initial energy signature, potentials for energetic optimization is determined,
e.g. unexploited periods in cycle time, oversized components, unnecessary tool
movements, etc. Those tailored EEIMs are implemented in the design of the
assembly system and an optimized energy signature is created by means of physics-
based simulation. Those optimization efforts must be implemented iteratively while
continuously checking the updated system design for desired and undesired effects,
e.g. reduced energy consumption shall be achieved while retaining invariant bound-
ary conditions (cycle time, collision avoidance, etc.). The entire implementation
strategy requires substantial manual engineering efforts and depends significantly
on competences and experience of the system designer. The implementation strategy
entails an energy efficient system design based on the original assembly system
layout.

4.3 EEIM Allocation in Virtual Validation Procedures

PM’s system designers and OEM’s production planning department must be
supported for the implementation of EEIMs into system design. Assigning EEIMs
to the respected validation procedures and providing supplementary information
required for EEIM’s implementation are fundamental in order to enable engineers
to create energy-efficient system designs.

Physics-based Virtual Engineering considers mechanical validation of the system
design, i.e. sub-assembly motions are tested in terms of collision avoidance and
operation time. All EEIMs targeting adjustments in mechanical design, dimen-
sioning, process sequences, and layout shall be addressed in Virtual Engineering.
Considering the example of optimal sizing of pneumatic drives, since many
pneumatic drives are oversized due to excessive safety margins: the force required
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to transfer a certain payload by means of a linear pneumatic cylinder is visualized
and adequate dimensioning can be undertaken. The designer requires supplementary
information about which smaller drive to choose and if the smaller drive’s installa-
tion further affects the system’s entire layout. With respect to robot repositioning in
a layout to enable more energy-efficient axis-positions or motions entails switching
its corresponding work space. The work space and adjusted trajectories shall be
visualized to ensure proper improved system layout and avoid contrary energy
consumption rebound effects. Layout adjustments and mechanical design changes
must both be implemented in Virtual Engineering prior to Mechanical Design
Approval (Sect. 2.1) that freezes mechanical design layouts. Subsequent changes in
mechanical design layouts are not envisaged and cause substantial efforts in change
management and lead to significant cost for modification.

Physics-based Virtual Commissioning examines correct logic behavior based
on PLC and control programs, i.e. physics-based 3D geometric model is linked
with individual logic control behavior models of individual system components and
is connected to hardware PLC. All EEIMs not targeting mechanical designs and
layout adjustments shall be addressed in Virtual Commissioning, e.g. optimized
sequencing, code optimizations, etc. In the case of optimized sequencing several
motors could be started sequentially to avoid expensive power consumption peaks.
Although this approach can also be validated in Virtual Engineering, precise control
signal triggering and exchange is required for its implementation that can only be
realized within Virtual Commissioning.

5 Case Study: Opportunities and Preliminary Results

In order to demonstrate the feasibility of the presented approach, two case studies
were conducted. Single EEIM implementation within Virtual Engineering and
Virtual Commissioning is presented and preliminary results are quantitatively
discussed.

5.1 Energy Consumption Optimization in Virtual Engineering

For demonstrating energy consumption optimization in Virtual Engineering an
entire automated assembly system for front-axle positioning was modeled using
physics-based simulation approach. The assembly process sequence consists of
clamping, vertical lifting, turning, downshifting, and unclamping. For the energy
optimization solely clamping is considered, which is realized via multiple pneu-
matic drives to fix the front-axle in a mechanical frame for smooth vertical lifting.
Two linear cylinders are designated to move the frame’s sub-assembly closer to the
axle and are focused for optimization. Physics-based Virtual Engineering revealed
that this positioning could also be executed by the use of downsized cylinders
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Fig. 5 Energy consumption optimization in virtual engineering

while maintaining pressure level of 10 bar. With respect to EEIMs classification,
the measure Dimensioning of category Design is applied (Sect. 3.2). The diameter
of both cylinders is successively downsized from originally 80 to 50 mm and
corresponding compressed air consumption is visualized (Fig. 5).

Bullet physics-engine was used with accurate dynamics settings and simulation
time-step was set to 10 ms. Assembly operation could be fulfilled with all diameter
settings while deviations in compressed air consumption over time and total com-
pressed air consumption could be determined. Implementing pneumatic drives with
downsized diameter reduces compressed air consumption significantly and even
shortens process duration. Total compressed air consumption of both pneumatic
drives was reduced by approximately 37%.

5.2 Energy Consumption Optimization Virtual Commissioning

For exemplifying energy consumption optimization in Virtual Commissioning
an assembly system with several motors was modeled employing physics-based
simulation approach. For optimization only two asynchronous motors (ASMs) are
considered that are executing independent assembly operations. In the initial system
design both ASMs started concurrently, but assembly process analysis unfolds that
ASMs can be started sequentially while still fulfilling assigned assembly operations.
Referring to EEIM classification, the measure Sequential ramp-up of the category
Process is implemented.
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Fig. 6 Energy consumption optimization in virtual commissioning

Bullet physics-engine was used with accurate dynamics settings and simulation
time-step was set to 10 ms. The initial design entails significant peak of approxi-
mately 8 kW of total power consumption due to parallel start of both ASMs (Fig. 6).
Delaying one ASM’s start prolongs total process duration but reduces power peak
by 25% to approximately 6 kW. Since lower power peak was achieved by exploiting
unused cycle time and avoid idling, energy saving potential was tapped.

6 Conclusions and Potential for Future Research

A brief summary of the contribution is given by resuming results and achievements.
Furthermore, steps of ongoing and future research are outlined.

6.1 Summary and Achievements

The importance of energy consumption of automated production systems has
significantly risen in recent years. Due to approaching shortages of fossil energy
sources, pollution caused by energy generation, and increased environmental con-
sciousness among customers many OEMs aim at reducing energy consumption of
their production plants. While complex and highly automated production processes
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in automotive manufacturing especially in industrial countries require substantial
amounts of different energy sources, OEMs continuously strive to reduce investment
and operating cost of their production systems even though an increased number
of product variants must be processed at high quality standards within short cycle
times.

Automated assembly systems can be considered as mechatronic systems imply-
ing several sub-assemblies and components that consume energy in order to execute
assembly operations. Current approaches in the development of automated assembly
systems in the automotive industry often neglect energy consumption as a design
parameter due to the lack of digital tools to predict energy usage. Especially
early phases of the development process bear significant potential to ameliorate
the production system’s design according to energy-efficient criteria. In particular
virtual validation procedures, that proof the production system’s functionality
based on virtual models, offer several opportunities to modify important system
parameters in order to create a more energy-efficient system design. Initial attempts
to integrate physics-based simulation capabilities, originating from the gaming
industry, in virtual validation procedures show promising results. Physics-based
virtual validation procedures further enable energy consumption prognosis of
automated assembly systems based on its corresponding virtual models.

Electric and pneumatic energy are predominantly consumed by components
and sub-assemblies of automated assembly systems designated as ECUs. Energy
efficiency of a manufacturing system can be described by relating total energy
input to production output, baselining the initial energy signature for optimization.
Based on a literature study several EEIMs could be identified from different fields
of research and tailored to assembly system’s characteristics. The presented imple-
mentation strategy transforms the initial system design to an energy-efficient system
design by applying shortlisted EEIMs while iteratively validating system functions.
Furthermore, EEIM allocation to the respected virtual validation procedure was
suggested. Preliminary results were presented in two case studies implementing
single EEIMs in Virtual Engineering and Virtual Commissioning, respectively.
Significant energy savings could be achieved and quantitatively justified.

6.2 Outlook and Future Work

The contribution presents work in progress and thus ongoing research activities.
Future efforts are directed to enable an exact energy consumption simulation of
an entire automated assembly system thus establishing an encompassing energy
signature via physics-based modeling. Modeling activities focus on adding new
models and extending existing models for electrical engines. Quantitative and
qualitative validation of electrical engine’s power consumption calculation still
remains. In addition, refining physics-based robot modeling with respect to proper
dynamics and trajectory optimization is under development. Data acquisition for
including constant power consumers (e.g. sensors) or joining technologies (e.g.
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welding) into the energy signature is carried out. Challenges to be addressed in the
future are the limitations of physics-based simulation approach for complex systems
with respect to run-time and signaling or the integration of the suggested approach
into OEM’s tools and business processes.
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Optimisation of Power Consumption for Robotic
Lines in Automotive Industry

Pavel Burget, Libor Bukata, Přemysl Šůcha, Martin Ron,
and Zdeněk Hanzálek

Abstract A novel mathematical formulation of the energy optimisation problem
for robotic lines is presented, which allows minimising the energy consumption
in a robotic cell while keeping the required production cycle time. Different
energy saving modes of the robots are utilised as well as the fact that the robot
energy consumption during its movement depends on the movement duration. This
dependency is modelled with a so-called energy function, which can be obtained
by measurements, physical modelling of the robots or simulation. Each of these
areas is covered by the presented work. The achieved results show there is a good
potential to achieve energy savings at existing robotic cells and their series, and an
even bigger potential if the presented approach is used during the design phase of
new robotic cells.

1 Introduction

The utilisation of robots in production lines has become a very important aspect to
increase the productivity, throughput and efficiency of the production. Especially
car manufacturers have been investing big effort in obtaining reliable, precise and
high-throughput robotic production lines. Hand in hand with devoting higher ratio
of the production work to the robots and thus increasing the number of robots
participating in the production, the amount of energy consumed by the robots
increases as well. Therefore, it is of great importance to search for ways how to
improve the energy efficiency of the robot operations. In this chapter the focus is put
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on robotic welding lines, which already exist and which have been in production.
Because of this reason, there are only limited possibilities in adding additional
sensors or in performing changes in the robotic programs and in the programs of
the superordinate controllers. However, such existing lines can still be improved in
terms of their energy consumption. This contribution concentrates on methods how
to optimise the robotic operations and how to get the necessary energy models of the
robots that are needed for the optimisation. All this while keeping in mind the above
stated requirements to utilise the existing production line infrastructure. Moreover,
the underlying optimisation model together with the energy model of the robots are
general enough to be used also during the design phase of new production lines.

The core of this contribution is a novel mathematical formulation of the energy
optimisation problem for robotic lines. Contrary to the existing works the proposed
solution considers different trajectories of robots, gravity and order of robot
operations from the global point of view of the whole robotic cell. In fact, it may
also be enhanced to a series of cells but it is out of the scope here. Moreover, the
presented mathematical formulation takes into account the robots’ power saving
modes such as staying on brakes or “falling asleep”, to which robot in a stationary
position can switch to save even more energy. The optimal solution to the problem
is the one which is both the most energy-efficient and meets the desired production
cycle time.

The basic characteristics of the robots with respect to their energy consumption
is their so-called energy function, which represents the dependency of the consumed
electrical energy on the duration of given robotic operations. Such an energy
function may be obtained using electrical power measurements on the real robots,
by simulations or by analytical computations based on a physical model of the
robots. Moreover the robotic operations must be clearly separated in order to get
their boundaries to be entered into the optimisation model, as well as to be able to
compare the energy function of the individual robots with their real behaviour.

The physical modelling of the robots is based on graphically-oriented computer-
aided concept that exploits CAD software such as NX or Solidworks and simulation
environment Matlab Simulink with SimMechanics and SimPowerSystems libraries.
These software tools are used for the composition of a dynamical simulation model
that represents both mechanical robot structure and robot drives during the robot
motions. Thus the power needed for the robot movements can be obtained and the
energy functions can be calculated.

The robotic operations may also be simulated in another environment, which is
used to design and simulate complete robotic lines such as Process Simulate. Next
to the design of the robot trajectories it is possible to simulate the robot controller
itself if an appropriate Robot Controller Software (RCS) and Realistic Robot Sim-
ulation (RRS) modules are available. Recently, RCS and RRS modules that allow
simulating the energy consumption have been provided by robot manufacturers.
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1.1 Contribution

In this work the global optimisation of the robotic lines is devised with respect to
the identified energy aspects which resulted from measurements and simulations.
Compared with the existing works such as [22–25], the presented solution is more
general by considering the robot power saving modes such as brakes, bus-power-off
or hibernation, and different locations are taken into account where a robot operation
can be performed. Moreover, the presented formulation enables the robotic line
designers to specify path alternatives, i.e. selecting the best order in accordance with
precedence relations. The achieved results have revealed that a significant energy
saving is possible.

An important part of the optimisation model is the energy function of the robot
movements, which allows choosing the optimal speed of the robotic operations and
thus minimising the energy consumption of the robotic cell not only from a local
point of view but also from the point of view of the cell or even series of cells. This
work presents several ways how to obtain the energy function.

1.2 Related Works

The current research on energy optimisation of robotic lines can be categorised into
two groups. The first one is the optimisation of individual robot trajectories with
respect to physical limitations of robots and obstacles to be avoided. The second
one, rarely occurring in the literature, is the optimisation of the robotic line as a
whole using mathematical models. Both the groups are not necessarily disjunctive
and there are a few papers dealing with both of the aspects.

As an example from the first group the following works are worth to be
mentioned. In the work of Saramago et al. [16] both the time of the robot movement
and mechanical energy consumed by actuators are taken into account. The multi-
objective optimisation problem was solved by using the DOT program (Design
Optimisation Tools Program) and tested on three and six degrees of freedom
manipulator arms.

A real-time planning of energy efficient trajectories for the robot catching small
flying objects was proposed by Lampariello [9]. The authors formulated the non-
linear constrained optimisation problem, nevertheless, to be able to find good trajec-
tories in a real-time the global planner was generalised using the learning methods,
such as nearest neighbour, Support Vector Machines, and Gaussian process regres-
sion. The proposed approach has shown to be efficient on the ball-catching task.

Michna et al. [12] developed an algorithm for the generation of time optimal
trajectories for wheeled robots. The trajectory is interpolated by the cubic Hermite
spline curves and a speed profile is determined by the algorithm. To accelerate the
calculation of collision-free trajectories the authors propose to use neural network.
Nevertheless, the energy consumption is not considered and the approach was only
tested on a hypothetical example.
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The following works perceive the robotic lines as a whole to find globally good
solutions. In the work of Mashaei and Lennartson [11] an energy model of the
Pallet-Constrained Flow Shop problem was formulated to find an optimal switching
control strategy leading to the desired throughput and minimal energy consumption.
Idle states of machines were also taken into account to reduce energy consumption
if the machine is not working. However, the model requires a line with special
structure, i.e. closed-loop pallet system, and therefore it is not generally applicable
to the robotic lines.

There are a few similar papers [22–25] focusing on both the local and global
optimisation of the robotic lines. For example, in the work of Wigström et al.
[25] a physical model of a robot with AC synchronous motors is created and
optimal control problem, determining how to control the robot moving along the
specified partial trajectory in an energy efficient way, was solved using Dynamic
Programming. Nevertheless, the geometry path was fixed and the initial time
optimal trajectory obtained from ABB Robot Studio was required. Afterwards, the
locally optimised trajectories were used as an input for the global solver (Mixed
Integer Non-Linear Programming) to find a solution that is energy efficient and
satisfying demanded production cycle time. Although the model is the first model
considering the global energy aspects, there are a few drawbacks limiting the
possible energy saving—the robot power saving modes are not taken into account
and different positions of robots during the work are not considered. The same
authors provide more details about the formulation in [23]. As a verification of the
energy-aware solution [24] suggests to use Hybrid Cost Automata.

Riazi et al. in [14] combine the optimisation of individual trajectories with
ordering the robot operations. The decrease of energy consumption during move-
ments is achieved by minimising the sum of square roots of accelerations over the
trajectory. Worth mentioning is the fact that no model of the robot is needed because
the acceleration vector is obtained by sampling the existing movements and the
optimised trajectories are uploaded back into the robot afterwards.

As part of the movement optimisation in order to reduce the energy consumption
it is necessary to calculate, measure or at least assess the energy consumption of
the robot under different circumstances. Several methods exist that are based on
mathematical analysis, i.e. on modelling the kinematics and dynamics of the robots
such as in [3, 17] or [18] where a specific expression of the energy consumption
equation in dependence on a given robot trajectory is presented. Papers such as
[4, 5], or [21] focus on processing and analysing real data obtained from physical
measurements.

The way how measurements can be done differs if the robot is in a laboratory
environment or if the measurements must be done in a production environment on a
robot that is usually part of a robotic cell. In such a case pattern matching or machine
learning techniques are used to process the data and identify the robot operations.
In [6] region-based segmentation stemming from frequency analysis of the original
signal is used. Le et al. [10] relates to a state estimation and a corresponding energy
audit of injection moulding machines and the focus is given to identifying the
production state of the machine using a two-level neuron network to classify the
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states. Paper [20] focuses on pattern recognition of 1-D signal in industrial batch
dryer with a goal to slice the measured data of pressure into time windows of the
periodic batch processing intervals using supervised learning of a Takagi-Sugeno
fuzzy model. Ron et al. in [15] use 1-D pattern matching with correlation and feature
extraction techniques.

1.3 Outline of the Chapter

The following sections provide the details about the individual parts of the energy
optimisation problem. Specifically, Sect. 2 defines the problem formally and shows
examples of a simple robotic line, schedule of operations and corresponding energy
function for a robot movement.

Section 3 deals with different ways how to obtain data for modelling the energy
function such as measurements of the power consumption on a robot in a laboratory,
creation of a kinematic and dynamic model of a robot and its electrical drives
to get an equation for the energy consumption, and how to simulate the robotic
movements to get the energy function from simulation. A special attention is put
to the identification of the robotic operations at a production line, which completes
the whole picture in such a way that it is possible to evaluate the obtained energy
functions of the robot movements with respect to their real energy consumption
during production operations.

Section 4 shows how to use the energy functions to optimise the energy
consumption. The mathematical model in terms of Integer Linear Programming
is defined there and a way is proposed how to compute a lower bound using
Lagrangian relaxation. Section 5 describes the results of the optimisation, which has
been performed on generated problem instances as well as on an industrial use case
from Škoda Auto car manufacturer. Section 6 summarises the results and concludes
the chapter.

2 Problem Statement

The following aspects of energy saving at robots are crucial: (a) selection of
stationary positions represented by different robot configurations, which take into
account the robot energy consumption, (b) power saving modes, whose utilisation
may result in significant energy demand decrease,1 (c) trajectory selection and
alternatives again with respect to their energy consumption, and (d) speed of the
movement, which is dual to the duration of the movement. A detailed analysis
supporting this statement is provided in Sect. 3.1.

1The more energy-saving mode is the longer time is required to have the robot back in a ready-to-
operate mode.
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Fig. 1 Example of the line with two robots

Energy aspects are illustrated by a simple robotic line depicted in Fig. 1. In this
example the first robot takes the weldment, performs a welding operation, and puts
it on the bench where the second robot takes it, carries out a welding operation,
and finally puts the weldment on the conveyor belt. In each subspace, denoted as a
calligraphy letter without subscript (e.g. A;B; C; : : :), there are possible points (i.e.
gun coordinates), in which the robot can conduct a task, e.g. welding, assembling,
taking the workpiece, putting it on the bench, or handing it over to another robot.
The points of a subspace are indexed, for example A1;A2, and A3 are points
located in subspace A. Between subspaces the robot can move in a direction
indicated by the arrow that corresponds to the set of point-to-point movements.
From the set no more than one movement is selected and the duration of motion
and required energy is determined according to the energy function obtained either
from the measurement or from the energy model of the robot. In Fig. 2 the measured
movements corresponding to points were interpolated with function

f siE .di/ D a�1d�1
i C a0 C a1di (1)

where di is the duration of the movement, f siE .di/ consumed energy, and finally
a�1; a0; a1 are coefficients calculated by e.g. the Gauss-Newton algorithm. The
subscript letter E means energy and superscript letter s represents the fact that the
function is parametrized by the trajectory the robot moves along. The function was
empirically proposed using the following ideas and supported by the measurement
results from Sect. 3.1. As the duration tends towards 0C the power consumption
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Fig. 2 Relation between the
duration of the movement and
energy consumption

Fig. 3 Illustration of
alternatives

increases to 1, i.e. due to the first term a�1di�1. On the other hand, if the duration is
very lengthy, only the gravity part can be considered and the consumption increases
linearly, which is represented by the third term a1di. Finally, term a0 is a constant
offset of the function. The function is convex provided that coefficient a�1 � 0. It is
also possible to use higher degrees of the approximation polynomial if it fits better
the robot behaviour but it is subject to further evaluation in the particular case.

The alternatives are illustrated in Fig. 3. There are two possible paths that the
robot can take and one of them is probably more energy efficient. However, both
paths have a bit different timing (synchronisation between robots) and order of
operations.

To demonstrate how the problem can be represented by a graph and how the final
schedule looks, the robotic line from Fig. 1 was used for the example in Fig. 4, which
shows the structure of the robotic line in terms of operations and movements. The
dashed arrows are synchronisation edges L , i.e. time lags, that ensure the correct
handover of the weldment to the second robot using a turntable. The solid arrows
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Fig. 4 Graph representation of the robotic line

Fig. 5 An example of a schedule

guarantee that operations and movements are performed in a desired order (orders
in case of alternatives). All edges are weighted by length L.ei;j/ and height H.ei;j/
where the length corresponds to the duration or time offset, and the height binds
the previous or future cycles with the current one. In Fig. 4 we added a small time
tolerance (i.e. constant 
) to the lengths of time lags to guarantee a safe handover of
a weldment. For more information about time lags please refer to [7]. Finally, the
selected robot positions, power saving modes (i.e. brakes—BR, motors—MOT, and
bus-power-off—BPO), and movements are indicated in the graph nodes. One of the
possible schedules is depicted in Fig. 5 where CT is the production cycle time.

As it can be seen the problem is similar to cyclic scheduling, however, there
are a few differences. At fist, there is a synchronisation between robots, and as a
consequence rotated schedules are not equally good as it is in cyclic scheduling.
Secondly, durations are not fixed (energy functions) as it is the case of cyclic
scheduling. If only one robot is taken into account, the problem is equivalent to
the Travelling Salesman Problem with the exception of non-constant edge weights.
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3 Energy Function of the Robot Movements

There are several ways how the energy function of the robots can be obtained. The
following subsections propose three ways, i.e. measurement at a real robot, physical
modelling of the robot kinematics and dynamics, and simulation based also on a
software model of the robot controller. Section 3.4 deals with a way how to identify
the individual robotic operations automatically from the power measurement data
obtained at a production cell with multiple robots. This procedure allows evaluating
the energy model of the robot against the robot behaviour in the cell.

3.1 Power Measurements

Detailed measurements were performed at industrial robot KUKA KR 5 arc for
different speeds of movements, trajectories and robot positions to find out the
energy-saving potential. Such a measurement cannot be done in a production cell
typically. However, it is presented here to support the hypothesis about using the
energy function. A brief description of the robot, which has been used, can be found
in Table 1.

In the experiment the static consumption and dynamic consumption were mea-
sured. The static consumption is perceived as an amount of energy consumed by a
robot in a stationary position. A non-moving robot can also get to a power saving
mode (brakes, bus-power-off, hibernate) to save even more energy. The dynamic
consumption corresponds to energy consumed during the robot movement.

The measured profile of active power is shown in Fig. 6. The left part of the
graph (up to 80 s) can be used to evaluate the static consumption for the robot being
held on brakes or motors. The rest of the graph is designated for the measurement
of the dynamic consumption. For each speed, denoted as ‘T2: X%’ where X is a
relative speed of the robot, the sequence of movements (peaks in the graph) p1—
p2—p1 & p3 % p1 is executed. ‘pi—pj’ is a movement between points pi and
pj which are at the same height, ‘pi & pj’ is a descending movement, and finally
‘pi % pj’ is ascending one. Before each sequence the robot is moved from the home
position, i.e. an initial position of the robot determined by the robotic cell designer,
to p1 and after the sequence from p1 to the home position.

Table 1 Basic parameters of KUKA KR 5 arc (KUKA Industrial Robots [8])

Working range 1412 mm

Maximal load 5 kg

Weight 127 kg

Idle power: held on brakes cca 180 W

Idle power: held on motors cca 350 W

Idle power: bus-power-off cca 134 W
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Fig. 6 Energy profile of the robot power consumption

The measured data (see Fig. 6) were analysed and the results are presented in
Table 2. From the first three rows of the table it can be deduced that it is possible to
save about 48% (D 100 � .347:9 � 180:3/=347:9) of energy if the robot is braked
instead of being held in the position by motors. The difference could be even bigger
if the robot was loaded or a less energy efficient configuration (i.e. a position of
the robot) was selected. Another experiment not mentioned before, was related to
the measurement of how the robot configuration influences the power consumption.
It was found out that the robot vertically stretched out required 344 W compared
to 366 W for the robot horizontally stretched out. A relatively small difference was
caused by using a small industrial robot without load. Along with the experiment,
it was measured that the robot consumes 134 and 30 W in the bus-power-off and
hibernate modes, respectively.

To evaluate the effect of different movement speeds on the energy consumption
the average input power and total consumption were calculated (last two columns
in Table 2). From the results it is no surprise that the energy consumption was
confirmed to be higher for p1 % p3 movement than for p3 & p1 one. With respect
to the speed of the robot it was shown that there is no need to consider too slow
movements as the gravity part constitutes huge loss of energy. In a similar way,
too fast movements increase the consumption dramatically while the duration of the
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Table 2 Analysis of the measured data

Interval t1 t2 t (s) Input power (W) Energy consumption (J)

Idle—brakes 25:0 30:0 5:0 180:3 901:3

Idle—motors 57:6 58:2 0:6 347:9 208:7

T2: 30% (p1—p2) 192:7 194:8 2:1 649:5 1364:0

T2: 30% (p2—p1) 197:7 199:8 2:1 641:4 1346:9

T2: 30% (p1 & p3) 202:5 205:0 2:5 583:8 1459:6

T2: 30% (p3 % p1) 208:0 210:8 2:8 755:8 2116:2

T2: 50% (p1—p2) 252:2 253:8 1:6 858:9 1374:2

T2: 50% (p2—p1) 256:5 258:0 1:5 874:0 1310:9

T2: 50% (p1 & p3) 260:7 262:3 1:6 860:0 1376:0

T2: 50% (p3 % p1) 265:2 267:2 2:0 1015:7 2031:3

T2: 70% (p1—p2) 328:2 329:4 1:2 1204:1 1444:9

T2: 70% (p2—p1) 332:0 333:4 1:4 1001:1 1401:5

T2: 70% (p1 & p3) 336:0 337:4 1:4 1102:9 1544:0

T2: 70% (p3 % p1) 340:3 341:8 1:5 1420:6 2130:8

T2: 90% (p1—p2) 385:0 386:3 1:3 1198:1 1557:5

T2: 90% (p2—p1) 388:8 390:0 1:2 1233:9 1480:7

T2: 90% (p1 & p3) 392:5 393:8 1:3 1220:1 1586:1

T2: 90% (p3 % p1) 396:5 398:0 1:5 1492:7 2239:0

T2: 100% (p1—p2) 433:3 434:5 1:2 1270:7 1524:8

T2: 100% (p2—p1) 437:0 438:2 1:2 1182:6 1419:2

T2: 100% (p1 & p3) 440:7 441:9 1:2 1411:2 1693:5

T2: 100% (p3 % p1) 444:5 446:0 1:5 1494:5 2241:7

movement decreases only little. For instance, there is a fall of about 6.3% in energy
for the p1—p2—p1 movement if the relative speed is set to 70% instead of 90%.

3.2 Physical Model of the Robot

A complete modelling approach has been presented in [13], which deals with
a description of the fully graphically-oriented computer-aided modelling and its
mathematical analysis that is used for the determination of the robot energy
consumption. The computer-aided modelling follows from a pure geometrical 3D
model of the robot that is split by CAD software such as NX or Solidworks into
particular robot components. They are supplemented with appropriate physical
parameters like volumes, masses and moments of inertia. Such a component model,
which represents physically a mechanical robot structure, can be converted into
a simulation model operated in the Matlab/Simulink environment as shown in
Fig. 7. The blocks in the figure have the following meaning. (A) is a World
frame block, which represents the global reference frame; (B) is a Mechanism
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Fig. 7 Block diagram of robot structure in Simulink

configuration block of general parameters used in the simulation; (C) is a block for
the configuration of the solver to configure the simulation; (D) is a Rigid transform
block representing a transformation matrix that allows a following mechanical
robot element to move with respect to the basic frame; (E) is a Link block,
which represents the rigid body with its Denavit-Hartenberg frame and appropriate
information about the body mass, moment of inertia related to its center of gravity;
(F) is the Revolute joint block with one DOF, where the information about its
angle, angular velocity, angular acceleration and actuating torque are obtained from
a built-in joint sensor; and (G) is the next Link connected to the next revolute robot
joint. (H) is the path generator that feeds the trajectory coordinates to block (I)
that converts unit-less signals to physical quantities with appropriate units. The
meaning of the other blocks is straightforward. The mechanical model from Fig. 7
is completed by blocks representing the robot drives, which allows getting Eq. (3)
of torque equilibrium.

On the basis of the mathematical analysis (see [13]), Eq. (2) gives the input power
for a single electrical motor with stator resistance RSi and current iqi for axis i in q-
coordinate of the .d; q/ coordinate system where the torque component of current is
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aligned along the q axis.

P D 3

2

nX

iD1
RSi i

2
qi

C
nX

iD1
!mi.�i C Bi!mi C Ji

d

dt
!mi/ (2)

This equation is based on the equilibrium between electromagnetic torque and
mechanical torque for the individual components, i.e. for the axes of the robot, as
expressed in Eq. (3)

�ei D �i C Bi !mi C Ji
d

dt
!mi (3)

where Ji is the inertia and Bi is the friction of the motor and the load; !mi is
mechanical rotor speed related to electrical speed as !mi D !ei=p considering p
for a number of pole pairs; �i is a one load torque component of the torque vector �
from the dynamic model as expressed in Eq. (4); and �ei is electromagnetic torque.

B.#/ R# C C.#; P#/ P# C g.#/ D � (4)

where B.#/ is an inertia matrix, C.#; P#/ is a coefficient matrix of Coriolis and cen-
trifugal force effects, g.#/ is a vector of gravitational effects, # D Œ #1 #2 � � � #n �T
is a vector of joint angles and � D Œ �1 �2 � � � �n �T is a vector of torques acting on
appropriate joints as shown e.g. in [19].

By integrating the total input power over the interval corresponding to the
considered motion trajectory the robot energy consumption is obtained in Eq. (5),
where � is the duration of the robotic movement and the other variables come from
Eqs. (2)–(4).
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By evaluating the energy consumption for different durations of the motion it is
possible to construct the energy function for the considered trajectory.

3.3 Simulated Energy Function

In some situations it is not possible to perform all necessary experiments and
measurements with real equipment because of some physical or organizational
limitations. As an example, a robotic cell being part of a regular production may
be named. Thus, it may not be possible to change the robotic paths to perform
any additional movements, which are not part of productive robotic operations, to
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identify a set of parameters relating to the dependency of the power consumption on
a specific robot trajectory, to the robots’ dynamic parameters etc.

A simulation environment can be used such as Tecnomatix Process Simulate
that contains robot controllers implemented according to the Robot Controller
Simulation (RCS) specification, i.e. the robot controllers perform Realistic Robot
Simulation (RRS). One of the features of the recent Process Simulate version
is the possibility to simulate power consumption of the robot movements. By
summation of the total energy used by a robot for one particular movement
performed repeatedly with different speed settings energy function f sE.x/ can be
constructed—see Eq. (1).

3.4 Robotic Operations

As mentioned above, knowing the robotic operations and the consumption of the
energy for each of them helps evaluate the energy function for particular robot
movements. Moreover, it is also used to group robotic operations together to form
the activities that are used in the mathematical model to describe the behaviour of
the robots (see Sect. 4). According to this model, it is necessary to differentiate
operations, which represent movement trajectories, and operations representing
work such as welding, holding a part in a specific position, etc. A set of subsequent
e.g. welding operations that are executed in a given order and are next to each other,
is typically represented as a single activity because it is not expected that changing
the trajectories between the welding points would mean any significant savings.
Figure 8 shows a sequence of operations of one robot in the welding cell. The
horizontal bars with o1, o2, etc. represent the operations, which may be grouped into
activities that are later for the optimisation represented as single dynamic or static
activities (see Sect. 4). The upper horizontal bar is the length of one production
cycle, i.e. the time after which the robot repeats its set of operations for the next
part. Interval TR shows the time remaining between the last operation and the

Fig. 8 Operations of one robot in the cell
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beginning of the next production cycle. Thus, operation o1 forms activity 1, which
is dynamic, and represents a movement of the robot to its first position. Operations
o2–o6 represent a set of welding operations and short movements between the
neighbouring welding spots and forms static activity 2. Subsequent operations o7–
o9 correspond to gripping the part and moving it to another position (such as a
turn table) and all together form activity 3. This is to demonstrate that also several
movements, i.e. movement operations, can be formed into a single activity, which
in case of activity 3 is dynamic. Such a sequence of operations is specified for each
robot in the cell. Finally, as described in Sect. 4, TR is modelled as an additional
static activity that allows the robot to wait for the start of the next production cycle.

In the following text, which relates to [15], the problem of identifying individual
robotic operations from the actual power needed by the robots to execute the
movements is described.

The basic idea is to label sections of the data of power measurements, which
correspond to particular operations of each robot in the cell. This may be done
by observing the robots working in the cell and placing marks in the data. After
that patterns are marked in the labelled data as model patterns, i.e. one pattern as a
representative of one robotic operation, that will be searched for in the whole set of
the power consumption data.

The procedure of identifying the operations consists of (a) data filtering to
suppress the noise and errors stemming from misplaced samples, (b) evaluating the
similarity of all segments of the power consumption data, and finally (c) taking the
measure of similarity as a threshold to search for local maxima, which correspond
to the location of the model patterns in the data.

Data Filtering To get rid of the error (noise, misplaced samples) a median filter is
used. Its filtering window length has been chosen to filter out random signal errors
with a big amplitude difference such as unsynchronised neighbouring samples,
where two neighbours are swapped. The filter still conserves high peaks that are
used as classification feature during the detection phase.

Similarity of Segments To assess the similarity of two same-length vectors of
one-dimensional data signals the analysis in frequency or in time domain may be
done. According to the measurements, which had been performed at the robots in
a production cell, the frequency analysis has proven not to be suitable because the
signals are very similar in their spectra. There may be two instances of the same
operation but from different time points during the day, whereas one time point is
at the end of the working shift and the other is at the beginning of the next one,
whose correlation is 83%. This value is too low contrary to the fact that both spectra
correspond to the same operation. Moreover the frequency spectra of two different
operations may be correlated up to 85%. Based on this observation the frequency
analysis is not suitable.
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The get the similarity measure in the time domain Pearson’s correlation coeffi-
cient is computed for its simplicity and suitability for this intended case. It is defined
as follows.

�x;y D cov.x; y/
�x�y

(6)

cov.x; y/ D 1

N

NX

iD1
.xi � �x/.yi � �y/ (7)

�x D
s
.x � �x/T.x � �x/

N
(8)

�y D
s
.y � �y/T.y � �y/

N
(9)

Coefficients �y and �y are the standard deviations of values of vectors x and y,
respectively. The cov.x; y/ is the cross-covariance of the vectors x and y. The �x

and �y are the mean values of x; y, respectively, and N is the length of the model
pattern vector. However, the mean values �x; �y are not known exactly and thus
their approximations by computing the mean values of Nx; Ny from the measured data
are used.

Measure of Similarity After having established the measure of a good match
of two segments for the power consumption data it must be considered, which
segments to compare. A straightforward procedure is to compare every possible
vector, i.e. a window in the data, which has the same length as the model pattern
vector. Such a strategy guarantees a good precision of localization in time but is
computationally demanding. Nevertheless, the procedure lies in picking a vector
of length K of samples from the power consumption data where K is the same as
the length of the model pattern vector. Then the Pearson’s correlation coefficient is
computed and stored in a vector of results r, whose length can be expressed as

dim.r/ D dim.d/� K C 1 (10)

where d is vector of energy consumption data. The bigger K is the less correlations
are needed to be computed but the more multiplications must be performed to
compute each of them. Roughly 3K multiplications need to be done for each
window on the power consumption data vector.

To reduce the length of the model pattern and thus to lower the computational
cost to compute the correlation vector, distinctive features can be extracted from
the power consumption data and the correlation can be computed on them. Local
maxima have been chosen as these features because they can be detected during one
iteration over the power consumption data and they provide good measure to match
the patterns. Undesirable peaks are avoided by applying a threshold to choose only
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Fig. 9 Peaks extracted from the model pattern

dominant peaks, which contain enough information for classification. In case more
peaks occur in the defined neighbourhood only the biggest one is picked and in case
of same-valued peaks the first one is prioritised. Figure 9 shows the model pattern
and peaks chosen according to the rules above. However, there are also peaks under
the dashed threshold line that may get above the threshold during the peak extraction
process because of the drifts in offset during the working shifts. This fact would
cause that some patterns physically generated by the same type of operation would
have more dominant peaks than others. Such a situation is solved as follows.

The model pattern vector and the vector, in which the matching is done, must
have the same length to be able to be compared. In fact, by the extraction of
the feature vector a new down-sampled data vector with adaptive sampling time
is created. Basically three distinctive situations may occur if different peaks, i.e.
not all peaks are correctly recognised, are extracted. There may be (1) a perfect
match, (2) there is one peak missing, and (3) there is one additional peak in the
power consumption data. To avoid decreasing the correlation coefficient because of
the described situation the corresponding timestamps must be paired and the peaks
relating to unpaired timestamps must be dropped. Thus, because of the fact that the
duration of the model pattern is known and the patterns that are searched for should
not deviate much from it, a window being at least as long as the model pattern is
chosen. Then each sample of model pattern vector is assigned a sample from the
data vector based on the shortest Euclidean distance of timestamps. This procedure
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Fig. 10 Identified operations’ boundaries

equalises the sizes of the compared vectors. Finally the correlation of the vectors
of the aligned timestamps is evaluated and only such vectors that are correlated
enough, are passed further for value correlation. Thanks to this procedure the
correlation not only of the order of samples, but also of their position is considered.
Moreover, situations when the robot operations are interrupted abruptly are also
coped well with. The reason for interruptions, which are in fact unplanned pauses
in the production, may mean a failure in the equipment, interruption of the material
flow, etc. Figure 10 shows an example how the boundaries (i.e. the red vertical lines)
of the operations of one robot are identified.

4 Optimisation

The following terms are used in the formulation of the optimisation problem as an
Integer Linear Programming problem. The first one is the set of static activities VS

where static activity i 2 VS corresponds to a robot operation (i.e. subspace) such
as e.g. welding or assembling. The set of dynamic activities VD corresponds with
all the movements where dynamic activity i 2 VD consists of all possible point-
to-point movements between two subspaces, i.e. black arrows in Fig. 1 in Sect. 2.
Both the static and dynamic activities are multi-mode activities; it means that there
are different states that an activity can attain. Mode t 2 Ti of dynamic activity i
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Table 3 Model variables

Wi Required energy by activity i

si Start time of activity i

di Duration of activity i

xpi True if robot position p 2 Pi for static activity i is selected, otherwise false

zmi True if robot power saving mode m 2 Mi is selected in static activity i, otherwise false

yti True if movement t 2 Ti of dynamic activity i is selected, otherwise false

h�
i;j;r;wi;j Decide the order of activities

selects one of the point-to-point movements between related subspaces. In case of
static activity i it is the selected position p 2 Pi (six coordinates—x, y, z, rx, ry, rz)
and power saving mode m 2 Mi of the robot. It is obvious that the set of activities
V D VS [ VD . Activities associated with robot r 2 R will be denoted by set Vr.

Static activities VS can be further divided into three sets—VIN;VOP;VOUT. In set
VIN there are input activities, i.e. activities related to taking a workpiece. In a similar
way set VOUT consists of output activities related to passing a workpiece to another
robot or machine. And finally, the rest of robot operations, i.e. VS n fVIN [ VOUTg,
are activities such as welding, assembling, disassembling, cutting, etc.

In activity set V there are mandatory and optional activities. Mandatory activities
VM have to be carried out in all cases, whereas optional activities VO are not
necessary to be performed. The optional activities were introduced by considering
alternatives where different paths can be taken, and as a result there may exist
dynamic activities (i.e. VO � VD ) conditionally executed. Robot operations VS ,
however, have to be performed every time, and therefore VS � VM . It is evident
that V D VM [ VO .

4.1 Integer Linear Programming Model

The objective is to minimise the overall energy consumption of activities. Note that
not all activities in VO have to be performed. In that case their Wi and di are set to
zero due to the criterion (Table 3).

Equations (11) and (12) bind activity duration di with its power consumption
Wi. Both the equations can be enabled or disabled depending on selected activity
modes where W is an upper bound on energy. Equation (11) is proposed for static
activities,2 whose power demand ami;p depends on robot configuration p and power
saving mode m. In case of dynamic activities, i.e. Eq. (12), the energy function was
approximated by a set of linear functions with coefficients ati;k and bti;k where k 2 K
is the kth segment of the energy function for movement t. The energy function has

2Each activity can be performed by only one assigned robot.
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to be convex to ensure validity of the model.

minimise
X

8i2V
Wi

s:t: ami;pdi � W
�
2 � zmi � xpi

� � Wi (11)

8i 2 VS ;8p 2 Pi;8m 2 Mi

ati;kdi C bti;k � W
�
1 � yti

� � Wi (12)

8i 2 VD ;8t 2 Ti;8k 2 K

Equations (13) and (14) state that each static activity i 2 VS has the position and
robot power saving mode assigned. In a similar way, Eq. (15) ensures that one of the
movements is selected for each mandatory activity.

X

8p2Pi

xpi D 1 8i 2 VS (13)

X

8m2Mi

zmi D 1 8i 2 VS (14)

X

8t2Ti
yti D 1 8i 2 VD \ VM (15)

Flow preservation constraints (16) and (17) mean that if the robot moves to
position p it also has to move away from p. In other words, if a movement to position
p is selected then a movement from p is selected as well. Inward and outward
movements are found by enumerating predecessors and successors respectively.

X

8j2pred.i/

X

8t2Tj. pfrom;p/

ytj D x p
i 8i 2 VS ;8p 2 Pi (16)

X

8j2suc.i/

X

8t2Tj. p;pto/

ytj D x p
i 8i 2 VS ;8p 2 Pi (17)

Equations from (18) to (23) are related to activity ordering. Equation (18) sets
time relations for mandatory activities (VM � VD ). Alternatives are taken into
account in Eqs. (19)–(21) where wi;j is a decision variable determining whether
dynamic3 activity i 2 VO with movements to static activity j will be selected or
not. Binary variables h�

i;j;r decide which activity i 2 VD is closing (i.e. is the last
one) the production cycle for each robot (see Eqs. (22) and (23)) as it was found out

3The dynamic activity has exactly one successor and one predecessor.
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that rotated schedules have to be taken into consideration due to time lags.

sj � si D di � CTh�
i;j;r (18)

8r 2 R;8i 2 Vr \ VM ;8j 2 suc.i/
X

8t2Ti
yti D wi;suc.i/ 8i 2 VO \ VD (19)

sj � si C �
1 � wi;j

�
CT � di � CTh�

i;j;r (20)

8r 2 R;8i 2 VO \ Vr \ VD ;8j 2 suc.i/

sj � si � �
1 � wi;j

�
CT � di � CTh�

i;j;r (21)

8r 2 R;8i 2 VO \ Vr \ VD ;8j 2 suc.i/
X

8i;j

h�
i;j;r D 1 8r 2 R (22)

h�
i;j;r D 0 8r 2 R;8i 2 V;8j … VIN (23)

The duration of the activity is bound in Eqs. (24) and (25). Minimal time of
staying in a static activity dm is determined by the selected robot power saving
mode. Maximal duration di can be limited by a robot operation, e.g. immersion
of a workpiece in paint to get a protective coating. The duration of dynamic activity
i is influenced by selected trajectory t lasting from dti to dti .

dmzmi � di � di 8i 2 VS ;8m 2 Mi (24)

dtiy
t
i � di � d

t
i C CT

�
1 � yti

� 8i 2 VD ;8t 2 Ti (25)

Finally, the last two Eqs. (26) and (27) ensure the correct synchronisation
between robots. Equation (26) guarantees time constraints, e.g. the workpiece is
taken away after it has been put on the bench, whereas Eq. (27) warrants proper
handovers in terms of robot configurations. For each position p of activity i 2 VOUT

one of compatible positions p0 2 CP.i; p/ of activity j 2 VIN can be selected. Both
the equations can be perceived as the global ones because they link robots to each
other.

sj � si � li;j � CThi;j 8.li;j; hi;j/ 2 L (26)

xpi �
X

8p02CP.i;p/

xp
0

j 8i; j � VOUT � VIN (27)

Wi; si; di 2 RC
0 xpi ; z

m
i ; y

t
i; h

�
i;j;r;wi;j 2 f0; 1g
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4.2 Lagrangian Relaxation

As the first attempt to get a good lower bound it was decided to use Lagrangian
relaxation (for details see e.g. [1]) that is based on relaxing difficult constraints and
moving them to the criterion where they are multiplied by Lagrange multipliers. The
global constraints seem to be the best candidates for the relaxation, i.e. (26) and (27),
as without them the problem decomposes to subproblems where each subproblem
corresponds to one robot. Applying the relaxation the following lower bound is
obtained.

maximise
�e�0
˛�0

minimise
Wi ;si;di2RC

0

x
p
i ;z

m
i ;y

t
i;h

�
i;j;r ;wi;j2B

X

8i2V
Wi C

X

8e2E
�e
�
li;j � CThi;j C si � sj

�

C
X

8i;p

˛i;p

0

@xpi �
X

8p02CP.i;p/

xp
0

j

1

A

subject to (11) to (25)

Primal and dual Lagrangian problems are iteratively solved to get the lower
bound. The primal problem minimises the value of the modified criterion with the
fixed multipliers for the original problem without relaxed constraints. The aim of
the dual problem is to set the multipliers to such values that optimal criterion value
of the primal problem is maximised. The dual problem is usually solved by using
the subgradient method, however, other methods such as the Bundle method are
also possible (see [2]). The maximal criterion value of the primal problem is a valid
lower bound for the original problem.

5 Experimental Results

To verify the validity of the proposed optimisation model 17 problem instances were
generated, each of them corresponds to a robotic cell with five co-operating robots
where each robot has up to three power saving modes (motors, brakes, bus power
off). From 1 to 4 robot configurations are considered for each static activity and in
average there are approximately 150 activities per instance. The production cycle
time is got by multiplying a lower bound by a factor from 1:05 to 1:40.

The energy optimisation problem was formulated as an Integer Linear Pro-
gramming problem and solved by using IBM Ilog Cplex 12.6. Gentoo Linux
server equipped with 2 x Intel Xeon E5-2620 v2 @ 2.10 GHz processors and 64 GB
memory was used for benchmarks.

As the first experiment the influence of Cplex time limit on quality of solutions
was investigated as shown in Table 4. It was found out that if the solver is given
2 h instead of 100 s the quality of solutions improves about 3.3% in average. An
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Table 4 Statistics of the
energy consumption for
feasible instances

Time limit 100 s (J) Time limit 7200 s (J)

min UB 28,038.8 27,656.2

avg UB 33,796.7 32,681.6

max UB 43,043.0 40,849.9

Fig. 11 Structure of the welding cell

average gap, which is a relative distance between the best found upper bound (the
best solution) and the lower bound, was 27.5% for the 2-h limit. The size of the
model was roughly about 10,000 constraints and 1000 variables.

The Lagrangian relaxation was tested on four selected instances as it had been
shown that other feasible problems are too computationally expensive. Nonetheless,
it took a few hours to find a high quality lower bounds by using the subgradient
method and ILP solver since solving even one robot to optimality usually takes more
than a minute even though all 12 CPU cores are utilised. The subgradient algorithm
stops if more than 200 consecutive deteriorations were reached. Results reveal that
the Lagrangian relaxation provides much tighter lower bounds than Cplex solver
since average gap was 3.5% in comparison with 16.7% gap proved by Cplex.

An industrial use case has also been used as an instance for the optimisation
problem. This use case represents a robotic cell with six robots and other pieces
of equipment such as turn tables, conveyors, gluing machine and welding guns. A
general structure of the welding cell is depicted in Fig. 11. The behaviour of the
cell can be described shortly as follows. The basic part together with two smaller
parts are put onto the turn table by the operator. This turn table cannot be seen in
Fig. 11 as it is hidden below its bottom. The turn table turns and the first robot—
R1 (which is visible only partially in the figure) performs the welding to mount
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the small parts to the basic one. After this welding is finished the robot, which
besides of the servo gun possesses also a gripper, takes the part and moves it to
the following static table. Here, the next robot—R2 places another parts onto the
basic one and performs the welding afterwards. Then, the part is taken by the next
robot—R3 from the table and is moved to the next table. In the meanwhile, the next
robot—R4 prepares another part and has a glue put on it by the gluing machine. This
part is placed onto the basic part, which has been moved already, and the welding
is performed. Subsequently, the part is taken by the next robot—R5 and brought
to the static welding gun that performs the next welding operations. Finally, the
last robot—R6 takes the part, performs additional welding operations at the last
static welding gun and puts the resulting part onto the outgoing conveyor, which
conveys the part out of the cell. The timing of the operations was retrieved from the
robot programs and each trajectory’s energy function fE has been interpolated from
the points, obtained from simulations in Tecnomatix Process Simulate. Welding,
glueing, and assembling operations have not been changed by the optimisation to
ensure repeatability of the production process. Only the robot speeds and power
saving modes (at home position) were addressed in the optimization since the
minimal intervention is desirable for existing robotic cells. The results show that the
original energy consumption 500 kJ (maximal speeds, without power saving modes)
can be decreased to 391 kJ (reduced speeds, power saving modes), which makes up
roughly 20% of energy saving.

6 Conclusion and Future Work

In this work a general mathematical model was proposed to optimise the energy
consumption of robotic lines that allows taking into account robot power sav-
ing modes and different locations of operations. The optimisation problem was
formulated as an Integer Linear Programming problem and solved using Cplex
solver. The achieved results confirm the correctness of the model and show that
a significant reduction of the energy consumption can be achieved. In addition to
the mathematical model the Lagrangian relaxation was used to devise a very tight
lower bound.

Each of the presented methods to calculate the energy function has its pros and
cons and their usage depends on specific conditions for a given robotic cell to
be optimised. The measurement of the energy consumption of the robots moving
on different trajectories with various speeds is usually not possible at an existing
robotic cell, which participates in the production. Mathematical modelling depends
on having the right 3D models not only of the robots but also of the parts that
the robots carry. Realistic Robotic Simulation depends on the precision of the
simulation model whereas an exact or even an approximate value is usually not
known. Thus in a typical situation a combination of more approaches must be used
to obtain the energy function of all the robots.
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The outcomes of the industrial use-case optimisation show a significant potential
to reduce energy consumption of existing robotic cells and even more can be
expected for planned robotic cells as the full potential of the optimisation algorithm
can be exploited.

The future work will thus concentrate mainly on making the mathematical model
of the robots more precise and on decreasing the uncertainties in the models by pro-
viding further information e.g. from measurements. The robot models will probably
always contain uncertainties because of the lack of publicly available information.
Therefore, measurements must be performed to supplement the missing information
and to complete the mathematical models. Last but not least more stress is going to
be put on evaluating the optimisation results with industrial use cases to prove their
viability.
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Glossary

CT Production Cycle Time
di Duration of activity i
E.di/ Energy function linking the consumption with time of movement
hi;j The height of the edge in cyclic scheduling
H.ei;j/ See hi;j
li;j The length of the edge in cyclic scheduling
L Time lags
L.ei;j/ See li;j
Mi Set of the robot power saving modes that can be used in activity i 2 VS

pred.i/ Predecessors of activity i
Pi Set of possible robot configurations for activity i 2 VS

si Start time of activity i
suc.i/ Successors of activity i
Ti Set of possible movements of activity i 2 VD

VS Set of static activities, i.e. robot operations
VD Set of dynamic activities, i.e. robot movements
VM Set of activities that have to be executed
VO Set of activities (� VD/ that can optionally be executed
Wi Energy consumed by activity i
xpi Binary variable set to true iff the robot configuration p was selected for

activity i 2 VS

yti Binary variable set to true iff movement t was selected for activity i 2 VD

zmi Binary variable set to true iff the robot power saving mode m was selected
for activity i 2 VS
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6. Gavrovska, A.M., Paskaš, M.P., Dujković, D., Reljin, I.S.: Region-based phonocardiogram
event segmentation in spectrogram image. In: 10th Symposium on Neural Network
Applications in Electrical Engineering, NEUREL-2010 - Proceedings, pp. 69–72 (2010).
doi:10.1109/NEUREL.2010.5644108

7. Hanen, C., Munier, A.: A study of the cyclic scheduling problem on parallel processors.
Discret. Appl. Math. 57(2–3), 167–192 (1995). Combinatorial optimization 1992

8. KUKA: KUKA Industrial Robots (2014). Available at http://www.kuka-robotics.com/en/.
Accessed 3 June 2014

9. Lampariello, R., Nguyen-Tuong, D., Castellini, C., Hirzinger, G., Peters, J.: Trajectory
planning for optimal robot catching in real-time. In: 2011 IEEE International Conference
on Robotics and Automation (ICRA), pp. 3719–3726 (2011)

10. Le, C.V., Pang, C.K., Gan, O.P., Chee, X.M., Zhang, D.H., Luo, M., Chan, H.L., Lewis,
F.L.: Classification of energy consumption patterns for energy audit and machine scheduling
in industrial manufacturing systems. Trans. Inst. Meas. Control. 35(5), 583–592 (2012).
doi:10.1177/0142331212460883

11. Mashaei, M., Lennartson, B.: Energy reduction in a pallet-constrained flow shop through on–
off control of idle machines. IEEE Trans. Autom. Sci. Eng. 10(1), 45–56 (2013)

12. Michna, V., Wagner, P., Cernohorsky, J.: Constrained optimization of robot trajectory and
obstacle avoidance. In: IEEE Conference on Emerging Technologies and Factory Automation
(ETFA), pp. 1–4 (2010)

13. Othman, A., Belda, K., Burget, P.: Physical modelling of energy consumption of industrial
articulated robots. In: 15th ICCAS International Conference on Control, Automation and
Systems (2015)

14. Riazi, S., Bengtsson, K., Wigström, O., Vidarsson, E., Lennartson, B.: Energy optimization
of multi-robot systems. In: 20th IEEE CASE Conference on Automation Science and
Engineering, pp. 1345–1350 (2015)

15. Ron, M., Burget, P., Fiala, O.: Identification of operations at robotic welding lines. In: 20th
IEEE CASE Conference on Automation Science and Engineering, pp. 470–476 (2015)

16. Saramago Jr., S., Steffen, V.: Optimization of the trajectory planning of robot manipulators
taking into account the dynamics of the system. Mech. Mach. Theory 33(7), 883–894 (1998)

17. Saravanan, R., Ramabalan, S., Balamurugan, C.: Evolutionary optimal trajectory planning for
industrial robot with payload constraints. Int. J. Adv. Manuf. Technol. 38(11–12), 1213–1226
(2008)

18. Sharma, G.: Optimization of energy in robotic arm using genetic algorithm. Int. J. Comput.
Sci. Technol. 2(2), 315–317 (2011)

19. Siciliano, B., Sciavicco, L., et al.: Robotics - Modelling, Planning and Control. Springer, Berlin
(2009)

http://www.kuka-robotics.com/en/


Optimisation of Power Consumption for Robotic Lines in Automotive Industry 161

20. Simon, L., Hungerbuehler, K.: Real time takagi-sugeno fuzzy model based pattern recognition
in the batch chemical industry. In: IEEE International Conference on Fuzzy Systems,
2008. FUZZ-IEEE 2008. (IEEE World Congress on Computational Intelligence), pp. 779–782
(2008). doi:10.1109/FUZZY.2008.4630459

21. Smetanová, A.: Optimization of energy by robot movement. Mod. Mach. Sci. J. 3(1), 172–176
(2010)

22. Vergnano, A., Thorstensson, C., Lennartson, B., Falkman, P., Pellicciari, M., Leali, F., Biller,
S.: Modeling and optimization of energy consumption in cooperative multi-robot systems.
IEEE Trans. Autom. Sci. Eng. 9(2), 423–428 (2012)

23. Wigstrom, O., Lennartson, B.: Integrated OR/CP optimization for discrete event systems with
nonlinear cost. In: 2013 IEEE 52nd Annual Conference on Decision and Control (CDC), pp.
7627–7633 (2013)

24. Wigstrom, O., Sundstrom, N., Lennartson, B.: Optimization of hybrid systems with known
paths. In: 4th IFAC Conference on Analysis and Design of Hybrid Systems, 2012, pp. 39–45
(2012). doi:10.3182/20120606-3-NL-3011.00007

25. Wigstrom, O., Lennartson, B., Vergnano, A., Breitholtz, C.: High-level scheduling of energy
optimal trajectories. IEEE Trans. Autom. Sci. Eng. 10(1), 57–64 (2013)



Production Line Optimization with Model Based
Methods

T. Hajba, Z. Horváth, C. Kiss-Tóth, and J. Jósvai

Abstract In this paper we deal with different models of production lines of
factories and consider the makespan optimization problem based on these models.
We consider state-of-the-art and novel mathematical optimizers including exact
and heuristic methods. We apply these optimizers to both standard academic and
industrial data sets. We see that in a large rate of the considered cases the novel exact
optimizers converged to the optimum fast which is surprising being the problems
NP-hard and the problem sizes big. This shows the importance of exploiting the
structure present in the industrial data using standardized industrial data sets for
testing mathematical algorithms devoted to solve industrial problems and that some
provided exact mathematical optimizers are fast and perform accurately on the
considered industrial problems.

1 Introduction

One of the most important tasks at modern factories is the optimal scheduling of
the order of jobs on the production lines of the factory since this affects highly
the makespan of the set of jobs to be processed per day and thus determines the
total number of jobs that can be processed per day. Though experienced managers
can provide satisfactory schedules, with the components of the realization of the
Digital Factory concept schedules of higher quality can be achieved. Namely, the
Digital Factory concept (see [21]) can be regarded as mapping of the real physical
processes of the factory to tools of the information technology. The Digital Factory
methodology includes production simulation tools using real manufacturing data
(bill of materials, production plan, operation sequence, makespan, capacity usage,
lateness, etc.). In everydays environment where the production scheduling tasks
are situation driven - because of unreliable information, production line fall out,
material delivery failures, etc. - simulation based scheduling is asked. A production
system has many influential parameters, to optimize a set of jobs in a system
where there are conflicting goals, so the mathematical solving method can be very
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complex. Therefore a combination of simulation tools and mathematical methods
can be an effective answer for this problem. Especially when we consider the
Industry4.0 vertical and horizontal integration process within the production system.
This integration and distributed decision making methodology need sophisticated
modeling, simulation and mathematical optimization methods and tools. These
aspects let us think about our research work, which combines modeling, simulation
and mathematical optimization of production lines, gives important results for the
next steps in the field of smart and networked digital factory. This allows automatic
construction of models and/or simulations for the examined production flow, in our
case the work on the production line, and poses the corresponding optimization
problems at model/simulation level. Then the inverse mapping of the optima of
the model or simulation based optimization problems gives a suggestion to the
production line managers for the actual scheduling.

We note that often a combination of models and simulations is advantageous.
Indeed, simulations validated at high accuracy are typically time consuming and
thus simulation based optimization takes often too long for using it in a daily
routine of a company. On the other hand, one objective evaluation at model based
optimization is typically much faster than that with simulation but the accuracy of
fast models is lower than that with an enhanced simulation. Thus a fast and reliable
optimization can consist of a model based hierarchic optimization that includes the
evaluation of the design elements with accurate simulation to check whether the
actually used model is accurate enough.

In this paper we deal with optimal scheduling of the production lines using
mathematical models and their optimization methods. Namely, we provide a review
of the models based on mathematical optimization methods and test results on
academic and industrial data. In Sect. 2 we define the considered models to the
production line: first the basic model, the Permutation Flow Shop Problem (PFSP),
which is studied thoroughly in the literature and then the recently introduced and
studied models that handle more features of real industrial production lines than
PFSP, the Permutation with Repetition Flow Shop Problem (R-PFSP) and the
Permutation with Repetition Flow Shop Problem with Buffers and Palettes (PB-
R-PFSP) (see [3]). Here repetition refers to the fact that in industrial situations there
exist several types of jobs and each schedule contains many jobs of the same type.
Then in Sect. 3 we define and discuss some frequently used heuristic optimization
methods for the PFSP models. In Sect. 4 first we present mixed integer linear
programming (MILP) formulations for the PFSP, which has been studied in several
papers, see [8, 9, 12, 16–19, 22, 23] and three new MILP models of [2]. According
to numerical experiments in papers [18, 19] the MILP formulations of the PFSP
models combined with exact solvers (e.g. those based on branch and bound) are
capable to solve only small sized PFSPs. However, applying our new MILP models
to R-PFSP and PB-R-PFSP we see in Sect. 5 that large scale industrial problems
arising from the automotive industry (see [5]) and their analogues become exactly
solvable. We close the chapter with drawing conclusions.
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2 Production Line Models: The PFSP and the PB-R-PFSP

In the regular permutation flow shop problem we are given a production system of
M machines and a set of N jobs. Every job has to be processed on every machine
in the same order, i.e. every job has to be processed first on the first machine then
on the second machine and so on. The processing times of the jobs at the machines
are known in advance and deterministic. The regular PFSP entails the following
assumptions which form the constraints of the optimization problem:

• Machines are continuously available from time 0.
• Every job is available for processing at time 0.
• Each job can be processed only on one machine at a time.
• Each machine can process at most one job at a time.
• The jobs must be processed on the machines without preemption.
• Setup times are included in the processing times, or ignored.
• Any number of jobs can wait between consecutive machines.

In this paper the objective of the optimization problem is the minimization of the
makespan, i.e. the minimization of the completion time of the last job of the order
on the last machine.

Many manufacturing problems have special features which are not included in
the regular PFSP. One such property is that in real-life problems we often have a lot
of jobs that have the same processing times on every machines (see [2]). It is said in
this case that these jobs have the same type. Taking this property into consideration
can drastically reduce the number of different permutations, i.e. the design space
for the PFSP. Namely, if there are T types and nt jobs of type t then the number of
permutation reduces form NŠ to NŠ

.n1/Š�.n2/Š:::.nt/Š .
Another property of industrial situations is the presence of palette usage at lines.

Namely, jobs are often carried on palettes on the line and the number of palettes is
bounded from above, typically less than the number of jobs. This means that only a
limited number of jobs can be on the line at a time.

Moreover, since the palette size and the space between consecutive machines
are given, only a limited number of palettes (hence limited number of jobs) can
wait between consecutive machines which means that there are limited buffer sizes
between the consecutive machines.

These properties are summarized as follows:

• the number of different types of the jobs is less than the total number of the jobs;
• only a given number of palettes can be used to carry the jobs;
• the buffer sizes between consecutive machines are finite and given in advance;

We call a PFSP which contains repeated jobs, limited buffer sizes between
consecutive machines and bounded number of palettes Permutation with Repetition
Flow Shop Problem with Palettes and Buffer (PB-R-PFSP).



166 T. Hajba et al.

3 Heuristic Optimization Methods for the PFSP Model

During the last three decades many kind of heuristic approaches were published to
solve the PFSP problem. In this section we are going to give a review about some
of these algorithms we tested on our problem sets.

3.1 NEH Heuristic

One of the most famous constructive solution for the FPSP was proposed by Nawaz,
Enscore and Ham in 1983 [10]. Their algorithm is based on the assumption that jobs
with higher total processing time make bigger effect on the objective function, this
means we should give higher priority to them. NEH algorithm constructs a solution
by inserting the jobs into an empty permutation one by one. We are going to describe
the details below.

First of all we calculate the total processing times for all jobs, and after that
we choose two jobs with the highest value. We consider the two possible partial
schedules, and choose the better one. During the rest of the algorithm the relative
positions of these two jobs are fixed.

In the next step we pick up the job with the third highest total processing time,
and put it into the permutation to the proper place found by an exhaustive search
procedure. This means that we place the job to the first, the second and to the third
(last) place of the partial sequence, and keep the best solution we get. This process
is repeated until all the jobs are placed into the permutation. The pseudo-code of the
algorithm can be presented as follows (Fig. 1).

The major advantage of the NEH algorithm is that we are able to get a good
solution in a short time, since the total number of iterations (makespan evaluations
of partial solutions) is N.NC1/

2
. Although many algorithms can be found in the

literature, NEH is still a state of the art algorithm for the PFSP optimization and
also used for creating initial solutions for many other heuristic methods with higher
computational complexity such as in the following two heuristics described in the
next sections.

1: For each job i calculate Pri where Pri is the processing time of job i on machine r.

2: Arrange the job indices i into a list L in descending order of  Ti.
3: Pick the first two jobs of the list L, and find the best permutation 2 of these two jobs by

calculating the makespan for the two possible partial solutions. Fix the relative positions of

these two jobs for the remaining steps. Set i 3.

4: Pick the job from the ith position of the list L and find the best sequence by inserting it at all

possible positions of i  1 (without changing the relative positions of the previous jobs).

5: If N    i then STOP, otherwise set i    i    1, and go to Step 4.

Fig. 1 Pseudo-code for the NEH algorithm
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3.2 Ant-Colony Algorithms

The name ant-colony algorithms (ACO) group a family of techniques to solve
combinatorial optimization problems. In the framework of these techniques the
motivation is to imitate the pheromone trail in the nature used by real ants for
communication and feedback. Basically, these techniques are population-based,
cooperative search procedures. During the optimization ant-colony algorithms use
simple agents (called ants) that iteratively construct permutations, and this solution
construction is guided by these artificial pheromone trails. The details how we
calculate these artificial trails is a problem-specific heuristic information. This
information has to be tuned for the problem we would like to solve.

To understand this optimization method we have to define the meaning of
solution components. Ants iteratively construct possible permutations from these
components, and leave pheromone. In this context pheromones indicate the intensity
of ant-trails with respect to solution components. These values are determined from
the influence of each solution component to the objective function. The trails also
form a kind of adaptive memory in this search procedure: we update the intensities
at the end of each iteration, the effect of the permutation created for the last is the
biggest. In this framework �ij denotes the trail intensity of setting job i in position
j of a sequence. Since every job can be placed at every place we have to store N2

intensity values.
In every iteration one single ant constructs a complete solution starting with an

empty permutation and iteratively adding components until a complete solution
is constructed. After the construction each ant gives feedback on the solution by
leaving pheromone (updating trail intensity) on each solution component.

After updating the intensities we apply a local search scheme for the created
permutation to find possibly the best solution in the neighborhood. Summarizingly
the general structure of ACO algorithms can be described in Fig. 2.

Since many kind of ACO algorithms were published for the PFSP problem, we
chose one, named PACO published by Rajendran and Ziegler in 2004 [13], supposed
to perform the best on the Talliard problem set. In the rest of this section we will
present the details of the PACO algorithm.

Fig. 2 General pseudo-code
for ACO algorithms

1: Initialize the pheromone trails and parameters.

2: While termination condition is not met do the following:

construct a solution;

improve the solution by local search;

update the pheromone trail intensities.

3: Return the best solution found.
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3.2.1 Initialization

For initializing the trail intensities we need an initial solution. Usually we can use the
NEH heuristic to find an initial solution, in PACO we improve this by applying the
job-index-based local search three times. We denote the makespan of this solution
with Zbest. After this the initialization of the pheromone trails looks as follows:

�ik D

8
ˆ̂
<

ˆ̂
:

1
Zbest

if jposition of job i in the seed sequence � kj C 1 � n
4

1
2Zbest

if n
4
< jposition of job i in the seed sequence � kj C 1 � n

2

1
4Zbest

otherwise.

The idea behind this initialization is that we think the initial solution is good
enough, so putting a job on a place which is closer to his place in the initial solution
probably gives better result.

3.2.2 Construction of a New Solution

Every iteration of the PACO algorithm creates a new permutation iteratively. We
place an unscheduled job i for place k using the following scheme:

• Tik D Pk
qD1 �ik and sample a uniform random number u in range Œ0; 1�.

• If u 2 Œ0; 0:4�: choose the best unscheduled job in the best sequence obtained so
far.

• If u 2 .0:4; 0:8�: among the first five unscheduled jobs in the best sequence
choose the job with the maximum Tik value.

• If u 2 .0:8; 1�: among the set of the first five unscheduled jobs in the best
sequence select job i with the probability of TikP

l Tlk
.

If the number of the unscheduled jobs is less then five, then consider all of them.
After this procedure apply the job-index-based local search procedure three times,
and denote the makespan of this solution with Zcurrent.

3.2.3 Update of the Pheromone Intensities

Let h denote the position of job i in the resultant sequence. If the number of jobs is
less or equal to 40:

�new
ik D

(
% � �old

ik C 1
diff �Zcurrent if jh � kj � 1

% � �old
ik otherwise.
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If the number of jobs is greater than 40:

�new
ik D

(
% � �old

ik C 1
diff �Zcurrent if jh � kj � 2

% � �old
ik otherwise.

where diff D .jposition of job i in the best sequence obtained so far � kj C 1/
1
2 and

% is a constant, fixed as 0:75 during the algorithm.
We ran the PACO algorithm for 300 iterations.

3.3 Tabu Search Approaches

Tabu search (TS) is a general framework which can be used to find near-optimal
solutions of hard combinatorial optimization problems. Using a tabu search algo-
rithm first the neighborhood of a solution has to be defined. Then starting from an
initial solution, at each iteration the algorithm examines the neighborhood of the
actual solution and one of the neighbors (usually the best) is chosen to be the actual
solution in the next iteration. To avoid returning back to a previously used solution
tabu search algorithms use a so-called tabu list containing elements of forbidden
moves. The algorithm stops if a stopping criterion (for example the number of total
iterations) is reached.

Next we describe in more detail the TS heuristic for the PFSP of Nowicki and
Smutnicki [11].

3.3.1 Moves and Neighborhood

In the PFSP a solution is represented as a permutation. To be able to define the
neighborhood of a permutation we first introduce the concept of moves. Let � be
a permutation and a and b two positions. Removing the job from position a of the
permutation and putting it into position b of the permutation is called a move and
denoted with .a; b/. The neighborhood of � is the set of permutations that can be
reached from � with one move. Each job we remove can be placed to N � 1 places,
since the move .a; a/ does not change the permutation. Furthermore the moves .a�
1; a/ and .a; a�1/ yield the same permutation hence every permutation has .N�1/2
neighbors. Since searching in such a large neighborhood would be time-consuming
we will reduce the number of potential neighbors. In order to be able to do this we
will introduce the definition of blocks and critical path.

It is known, that the makespan of a permutation � can be written in the following
form:

Cmax.�/ D max
1Dj0� j1�:::� jM�1� jMDN

MX

iD1

jiX

jDji�1

Pi�. j/: (1)
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Let us associate with each permutation � a directed grid graph G.�/ D .V;E/
with node weights:

V D f1; : : : ;Mg � f1; : : :Ng;

E D
M[

iD1

N�1[

jD1
f..i; j/; .i; j C 1//g [

M�1[

iD1

N[

jD1
f..i; j/; .i C 1; j//g:

where the node .i; j/ represents the ith machine and the jth job of the permutation
and the weight of node .i; j/ is Pi�. j/. Then formula (1) means that the makespan of
� is the weight of the critical (longest) path in this grid graph, from node .1; 1/ to
.M;N/.

Let us suppose that the critical path in G.�/ is .1; s0/; : : : ; .1; s1/; .2; s1/; : : : ;
.2; s2/ , : : : ; .M; sM�1/; : : : ; .M; SM/, where 1 D s0 � s1 � : : : � sM D n . Then
this path consists of the vertical edges ..i; si/; .i C 1; si/ for i D 1; 2; : : : ;M � 1

and horizontal subpaths .i; si�1/; : : : ; .i; si/ if si�1 < si. If for machine i condition
si�1 < si holds then the sequence of positions si�1; si�1 C 1; : : : ; si is called a block.
Each position can be contained in one or two blocks.

It can be proven that performing a move v D .a; b/ to permutation � for which
a and b are inside the same block gives us a solution � 0 for which Cmax.�

0/ �
Cmax.�/, which means we do not have to analyze such neighbors. Based on
their experiments Nowitzki and Smutnicki reduced further the neighborhood of a
permutation.

A move .a; b/ is called a right move, if a < b else the move is called a left move.
Tests showed that for position a if a is a beginning of the lth block or lies inside the
lth block then it is enough to examine right moves .a; b/ in which b lies in the first
few positions of the .l C 1/th block (the next block). Similarly if a is an end of the
lth block or lies inside the lth block then it is enough to examine left moves .a; b/ in
which b lies in the last few positions of the .l� 1/th block (the previous block). The
algorithm uses the parameter " which controls that for a exactly how many positions
b from the next and previous blocks are considered for the right and left moves. The
value of " depends on the M and N, namely

" D

8
ˆ̂
<

ˆ̂
:

0 if N
M > 3

0:5 if 2 < N
M � 3

1 if N
M � 2

Denoting by ZRj.�; "/ the set of the above defined right moves of position j
and by ZLj.�; "/ the set of the above defined left moves for position j the set of
investigated moves:

Z.�; "/ D
N�1[

jD1
ZRj.�; "/ [

N[

jD2
ZLj.�; "/
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and the solutions we get after performing these moves are the neighbors of the
solution � . It is worth mentioning that if " D 0 then for every position j at most
one left and one right move is examined hence in this case the neighborhood of a
permutation contains at most 2n � 2 elements. As we mentioned earlier for every
permutation there are overall .n � 1/2 different moves which means that the above
procedure can drastically reduce the size of the neighborhood of a permutation
making the algorithm to be faster. After defining the moves we describe the tabu
list, the main idea of this heuristic approach.

3.3.2 Tabu List

Tabu list is a technique to prevent cycling during the search procedure. The TS
algorithm of Nowicki and Smutnicki uses a tabu list with fixed length (maxt) (i.e. the
list can contain maxt elements) which contains pair of jobs, initialized with elements
.0; 0/ at the beginning. If during the algorithm a move v D .a; b/ is performed, then
the first element of the list is deleted and the pair .�.a/; �.a C 1// if a < b and
.�.a � 1/; �.a// otherwise is added to the end of the list.

In the search procedure a move .a; b/ from permutation ˇ is „tabu” if at least one
pair .ˇ. j/; ˇ.a//, j D a C 1; : : : ; b is in the tabu list if a < b, and at least one pair
.ˇ.a/; ˇ. j//, j D b; : : : ; a � 1 is in the tabu list otherwise.

After we defined all components of the algorithm, we describe the searching
strategy.

3.3.3 Neighborhood Searching Strategy

At the first stage of the searching procedure from every set ZLj and ZRj we choose a
representative with the smallest makespan. In this way we get a new set of neighbors
containing 2.n � 1/ elements independently from the value of " denoted with OZ.

At the second stage we classify these solutions into three categories: unforbidden
(UF), forbidden but profitable (FP) and forbidden and non-profitable (FN). A
forbidden move from � is profitable, if it leads to a solution whose makespan is
less then F.Cmax.�// where F is an aspiration function.

Finally we decide to perform the best move from the set of the UF and the FP
moves. If all moves are FN then we add .0; 0/ to the tabu list; this process is repeated
until an UF-move can be chosen (Fig. 3).

1: Find sets UF -moves X   is not tabu and FP -moves Y
is tabu, Cmax F Cmax

2: If X Y then select X Y with the smallest makespan. Update the tabu list and Exit.
3: Add a zero element to the tabu list and go to Step 2.

Fig. 3 Pseudo-code for the neighborhood searching procedure
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Fig. 4 Pseudo-code for the tabu search algorithm

After this we will show the tabu search algorithm proposed by Nowicki and
Smutnicki.

The algorithm can be launched from an arbitrary initial solution, but we start
our search procedure from the permutation � given by the NEH heuristics. We set
�� D � , and start with an empty tabu list. In each iteration we find the set of moves
Z and the representatives OZ. Applying the neighborhood searching procedure we
select a move v0 2 OZ, create a new tabu list and modify the aspiration function. If
the new solution is better then the best one found so far, we update C�.

If C� does not decrease during maxret iterations then we jump back to �� and
continue searching with the stored representatives and tabu list Z� and T�. We have
two stopping criteria: the maximum number of iterations (maxiter) performed, or
Z� is empty. We can summarize this algorithm into a pseudo-code in Fig. 4.

During the tests we used maxiter D 30; 000, maxt D 8, maxret D 500.

4 Exact Optimization for the PFSP and PB-R-PFSP Models

One possible method to get the optimal solution of a PFSP is to formulate the
PFSP as a mixed integer linear programming (MILP) problem and solve it by an
appropriate software (such as CPLEX, GUROBI, and so on). The advantage of this
approach compared to heuristic methods is that even if the software can not give
optimal solution during the prescribed time limit for the running time it always
gives a lower bound for the optimal value. This means that using MILP models we
always know how far the given solution is from the optimal one. Since the PFSP is
NP-hard for M � 3, the drawback of this approach is that only small or medium-
sized problems can be solved optimally this way. However, taking into account the
rapid growth of the performance of computers and softwares that can solve MILP
models, one can expect that larger and larger problems become solvable this way.
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4.1 MILP Models of the PFSP and R-PFSP

The MILP models of the PFSP [1, 8, 9, 12, 14–19, 22, 23] can be divided into two
parts. The models of the Wagner family describe a permutation by giving for each
position the job that is placed to this position. The models of the Manne family
describe a permutation by giving for each par a jobs i and j whether i precedes j
in the permutation or not. Empirical studies showed [18, 19] that the models of the
Wagner family are superior to the models of the Manne family with regard to the
required solution times. Therefore in [2, 3] based on MILP models of the Wagner
family for the PFSP 3 new MILP models for the R-PFSP and PB-R-PFSP were
introduced. In this section we first describe the R-TS2 model for the PFSP and then
the R-TS2 model for the R-PFSP and the PB-R-TS2 model for PB-R-PFSP are
introduced.

4.1.1 The TS2 Model for the PFSP

The TS2 model was presented in [19]. Let us denote by Cr;j the completion time of
the jth job of the order on machine r (so Cr;j is a continuous variable for all .r; j/
pairs (1 � r � M; 1 � j � N/. Let Zij be a binary variable for all .i; j/ indeces
.1 � i � N; 1 � j � N/. The value of Zij is equal to 1 if job i is placed to the
jth place of the order, otherwise Zij is equal to 0. The constraints of the TS2-model
imply that the following conditions are satisfied.

• Each job is assigned to exactly one place in the sequence.

NX

jD1
Zij D 1 1 � i � N (2)

• Each position in the sequence is filled with exactly one job

NX

iD1
Zij D 1 1 � j � N (3)

• The job in the . j C 1/th position of the sequence can not finish on any machine
until the job in the jth position of the sequence is finished on that machine and
job in the . j C 1/th position of the sequence is processed on that machine.

Crj C
NX

iD1
PriZi; jC1 � Cr; jC1; 1 � r � M; 1 � j � N � 1 (4)
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• A job can not be finished on machine r C 1 until its finished on machine r and
processed on machine r C 1.

Crj C
NX

iD1
PrC1;iZij � CrC1; j; 1 � r � M � 1; 1 � j � N (5)

• The first job of the order can not finish earlier on machine 1 than its duration time
on machine 1.

NX

iD1
P1iZi1 � C11 (6)

• The makespan is the completion time of the last job of the sequence on the last
machine.

Cmax D CMN (7)

Hence the TS2 model can be summarized as

Minimize (7) Subject to: (2)–(6):

4.1.2 The R-TS2 Model for the R-PFSP

The Permutation with Repetition Flow Shop Problem (R-PFSP) is a special PFSP
which contains jobs that have equal processing times on every machines. We say that
jobs i and j have the same type if they have equal processing times on each machine.
To describe a permutation in an R-PFSP it is enough to give for each position j of the
sequence the type of the job that is placed to that position. This means that the TS2
model for the PFSP can be simplified to model R-PFSP-s. The following R-version
of the TS2model, named R-TS2 were introduced by Hajba and Horváth in [2].

We will denote by T the number of different types and by nt the number of jobs
of type t (1 � t � T). Let us denote the processing time of a job of type i on machine
r by P0

ri and let Zij be a binary variable for all .i; j/ indeces .1 � i � T; 1 � j � N/.
The value of Zij is equal to 1 if a job of type i is placed to the jth place of the
order, otherwise Zij is equal to 0. The constraints of the R-TS2-model imply that the
following conditions are satisfied.

• There are ni jobs in the sequence that are of type i.

NX

jD1
Z0
ij D 1 1 � i � T (8)
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• Each position in the sequence is filled with exactly one type of job.

TX

iD1
Z0
ij D 1 1 � j � N (9)

• The job in the . j C 1/th position of the sequence can not finish on any machine
until the job in the jth position of the sequence is finished on that machine and
job in the . j C 1/th position of the sequence is processed on that machine.

Crj C
TX

iD1
P0
riZ

0
i; jC1 � Cr; jC1; 1 � r � M; 1 � j � N � 1 (10)

• A job can not be finished on machine r C 1 until its finished on machine r and
processed on machine r C 1.

Crj C
TX

iD1
P0
rC1;iZ0

ij � CrC1; j; 1 � r � M � 1; 1 � j � N (11)

• The first job of the order can not finish earlier on machine 1 than its duration time
on machine 1.

TX

iD1
P0
1iZ

0
i1 � C11 (12)

• The makespan is the completion time of the last job of the sequence on the last
machine.

Cmax D CMN (13)

The R-TS2 can be formalized as follows below.

Minimize (13) subject to (8)–(12):

Size Complexity of the TS2 and R-TS2 Models

The size complexity of the TS2 and R-TS2 models are presented in Table 1. The
main difference is that the R-TS2 model contains much fewer binary variable than
the TS2 model. The reason for it is that in the R-TS2 model we only have to give
for each position the type of the job that is placed to that position (instead of giving
for each position the job that is placed to that position). Finally the R-TS2 model
contains less constraints than the TS2 model.



176 T. Hajba et al.

Table 1 Size complexity of the models

Model Binary variable Real variable Constraints

TS2 N2 MN C 1 2MN � M C N C 1

R-TS2 NT MN C 1 2MN � M C T C 1

Note that N D number of jobs, T D number of types, M D number of machines

4.1.3 The PB-R-TS2 Model of the PB-R-PFSP

A Permutation with Repetition Flow Shop Problem with Palettes and Buffer (PB-R-
PFSP) is a special R-PFSP in which only a limited number of jobs can wait between
consecutive machines and the jobs are carried on palettes through the line and the
number of palettes is bounded from above. We will denote by K the number palettes
and by bi the buffer size between machines i and i C 1.

The following PB-R-TS2 model was introduced in [3]. The model is the
extension of the R-TS2 model. The constraints of the PB-R-TS2 model of the PB-
R-PFSP ensure that the following two extra conditions hold.

• The number of the palettes is equal to K which implies that the jth job of the
sequence cannot start its processing on the first machine until the . j � K/th job
of the order is finished on the last machine.

CM; j�K C
TX

iD1
P0
1;iZ

0
ij � C1j K C 1 � j � N (14)

• At most br jobs can wait in the buffer between machines r and r C 1. This
condition is formulated as

CrC1; j�br�1 �
TX

iD1
P0
rC1;iZ0

i; j�br�1 C
TX

iD1
P0
r;iZ

0
ij � Crj (15)

1 � r � M � 1; 2C br � j � N

The PB-R-TS2 model can be formalized as follows below.

Minimize (13) subject to (8)–(12), (14) and (15):

4.2 Lower Bounds for the PFSP Model with Heuristic Methods

For the production line managers it is very helpful to get a guaranteed lower bound
to the optimum since it can be used to estimate how far the solution is from the
optimal solution. The MILP solvers always provide the user with a guaranteed lower



Production Line Optimization with Model Based Methods 177

bound. However, for a high quality bound we need an excellent MILP solver which
could not be available for the users for several reasons.

In this subsection we provide a pretty simple heuristic method to get a lower
bound. To this aim we relax some of the assumptions of the problem such that
the relaxed problem should be easily solvable. Then the optimal makespan of the
relaxed problem is a valid lower bound for the original problem.

To get a lower bound we relax the constraints that every machine can process
at most one job at a time. This idea was introduced by Lageweg in [7]. Suppose
that Mk and Ml are different machines and relax the assumption that every other
machine can process at most one job at a time (i.e. the other machine can process
any number of jobs at a time). In the relaxed problem each job starts its processing
on the first machine at time 0 and job i is ready for processing on machine Mk

at time
Pk�1

rD1 Pri. Similarly, when job i is finished on machine Mk then it takes
Pl�1

rDkC1 Pri time for it to be ready for processing on machine Ml and moreover
after job i is finished on machine Ml then it takes

Pm
rDlC1 Pri time for it to process

on machines MlC1;MlC2; � � �Mm. This means that the resulting relaxed problem is
a two-machine permutation flow shop problem with release dates, time lags and
delivery times with objective function minimizing the makespan. This problem is
denoted by F2jrj; lj; qj; prmujCmax where for all job j the release date rj is given by

rj D
(Pk�1

iD1 Pij if k > 1

0 if k D 1;

the time lag lj is given by

lj D
(Pl�1

iDkC1 Pij if k < l � 1

0 if k D l � 1;

and the delivery time qj is given by

qj D
(Pm

iDlC1 Pij if l < m

0 if l D m:

Here the release date rj of job j means that we can not start processing job j on
the first machine earlier than rj. The time lag lj of job j means that after job j finishes
on the first machine it has to wait at least lj time before we can start its processing
on the second machine. The delivery time qj of job j can be thought as the time of
post processing j after it finishes on the second machine. Finally prmu states that
only permutation schedules are allowed.

Since this is still a hard problem to solve we have to relax this problem too. Fixing
the release dates and delivery times for every job j to minj2J rj and minj2J qj we get
a two-machine PFSP with time lags F2jlj; prmujCmax. It was shown by Rinnoy Kan
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[6] that this problem can be solved in polynomial time by applying the Johnson’s
rule [4]. Hence for machine pairs .Mk;Ml/ a valid lower bound for the original
PFSP is

LBk;l D min
j2J rkj C Ckl

max C min
j2J qkj

where Ckl
max denotes the optimal makespan of the problem F2jlj; prmujCmax. By

running through all machine pairs a valid lower bound for the original PFSP is

LB D max
1�k<l

LBkl :

5 Numerical Experiments

5.1 Test Problems

To analyze the performance of the heuristics and the MILP models on academic
and industrial problems we generated two sets of test problems. The problems in
both sets can be described with three parameters: the number of jobs N, the number
of types T and the number of machines M. The number of machines was fixed
M D 50, and we generated problems for N D 100 and N D 200. The values of T
were 5; 10; 20; 50; 100 for N D 100, and 5; 10; 20; 50; 100; 200 for N D 200. For
every triple we generated 5 problems. This procedure gave us .5 C 6/ � 5 D 55

processing time matrices for both sets. The two sets differed in the distribution of
the values of the processing times.

In the first set we tried to create industrial problems. Hence we took a real
problem from the industry, containing 11 types and 50 machines, and for each
machine r we calculated the mean mr and the standard deviation �r of the processing
times on machine r. After that for each machine r the processing times on machine
r were random numbers drawn from the normal distribution with parameters mr

and �r .
In the second set we created academic type problems with the procedure

introduced by Taillard [20]. This means that the processing times were random
integers coming from a uniform distribution with range Œ0; 99�.

5.2 Results

Three heuristics (NEH, TABU SEARCH and PACO) and one MILP model (R-TS2
model) were applied to solve the test problems. The formulations of the TS2 model
were written in GAMS modeling language and solved by using CPLEX 12.3 on
an Intel Xeon E31225 3.1 GHz personal computer equipped with 4 GB RAM. The
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CPLEX options employed were mixed integer programming, parallel mode with
four threads and a time limit of 600 s.

The relative gap of a solution is calculated by the formula

relative gap D 100 � Cbest � LB

Cbest
(16)

where Cbest is the makespan of the solution, and if CPLEX optimally solved the TS2
model in 10 min then LB is equal to the optimal makespan of the problem else LB
is the lower bound of the optimum calculated the way it was described in Sect. 4.2.
The average relative gaps are presented in Tables 2 and 3.

Table 2 Average relative
gaps (in percentage) in the
industrial problems

N T NEH Tabu Paco R-TS2

100 5 1:14 0:52 0:18 0

100 10 0:52 0:1 0 0

100 20 1:37 0:74 0:47 0.35

100 50 1:49 0:24 0:25 1.54

100 100 1:16 0:21 0:26 *

200 5 0:86 0:34 0:06 0.05

200 10 0:24 0:01 0:16 0.03

200 20 0:49 0:45 0:11 1

200 50 0:35 0:13 0:06 *

200 100 0:49 0:09 0:11 *

200 200 0:52 0:38 0:25 *

N D number of jobs, T D number of types,
number of machines M D 50

�At least in one instance no solution were
found in 10 min

Table 3 Average relative
gaps (in percentage) in the
Talliard problems

N T NEH Tabu Paco R-TS2

100 5 7:59 5:88 3:55 8.83

100 10 13:80 8:74 6:81 *

100 20 12:79 8:68 8:78 *

100 50 15:88 12:26 12:78 *

100 100 18:05 14:94 15:30 *

200 5 3:62 2:68 0:92 6.07

200 10 7:62 3:95 1:68 *

200 20 8:73 4:74 4:00 *

200 50 11:64 8:55 8:07 *

200 100 12:90 10:21 9:85 *

200 200 13:96 11:86 11:85 *

N D number of jobs, T D number of types,
number of machines M D 50

�At least in one instance no solution were
found in 10 min
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In the industrial problems for problem sizes .N D 100; T D 5/ and .N D
100; T D 10/ the MILP model R-TS2 found the optimal solution in all five
instances while for problem sizes .N D 200; T D 5/ and .N D 200; T D 10/

the MILP model R-TS2 found the optimal solution in four of the five instances. For
larger problems ((N D 100; T D 100/; .N=200, T=50,100,200)) the R-TS2 model
did not even find an initial solution in the 10-min time limit. Overall the Tabu search
found the optimal solution in 18 of the 55 industrial problems while PACO found
the optimal solution in 23 of the 55 instances.

In contrast to the industrial problems in the Talliard-like problems none of the
four methods found the proven optimal solution in any of the 55 instances. It can be
seen in Table 3 that for problem sizes with more than five types the R-TS2 MILP
model did not even find an initial solution in any of the five instances. Furthermore
the NEH, Tabu search and Paco heuristics have much larger relative gaps in the
Taillard like problems than in the industrial like problems. The explanation of
this phenomenon is that the algorithm described in Sect. 4.2 gives much stronger
lower bounds in the industrial like problems than in the Taillard-like problems.
Table 4 contains the lower bounds and optimal value of the 10 instances of industrial
problems with problem size .N D 100; T D 5/ and .N D 100; T D 10/. It can
be seen that in 4 of the 10 instances the lower bound calculated by the algorithm of
Sect. 4.2 equals to the optimum of the problem.

5.2.1 Problems with Finite Buffer Sizes and Palettes

For the industrial problems with sizes .N D 100I T D 5/ and .N D 100I T D 10/

we solved the overall 10 instances with finite buffer sizes between the machines
and finite number of palettes using the PB-R-TS2 model. The buffer sizes were
chosen from real-world problems and the number of palettes was K D 55. We
compared the optimal values of these PB-R-PFSPs with the makespan given by the
Tabu search applied to the PFSP with infinite buffer sizes and infinite number of
palettes (which can be considered as the relaxation of the PB-R-PFSP). It turned

Table 4 Comparing the
lower bounds and the optimal
values in the industrial
problems

N T Lower bound Optimum

100 5 48,721 48,721

50,351 50,351

52,527 52,814

49,160 49,707

50,621 50,789

100 10 49,484 49,607

49,314 49,521

47,632 47,632

48,840 48,840

49,556 49,627
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out that in 9 of the 10 instances the solution given by Tabu search applied to the
PFSP (with infinite buffer sizes and infinite number of palettes) was optimal for the
PB-R-PFSP problem, too. In the remaining one case the Tabu search applied to the
PFSP gave a solution to the PB-R-PFSP with relative gap 0.51.

6 Conclusions

We can summaries the lessons learnt with the observations as follows.

• Large-scale R-PFSPs in which the number of types is small and the machines are
unbalanced can be solved efficiently by using MILP models and exact solvers.

• Both the Tabu Search and the PACO heuristics give good solutions (close to the
optimum) for large-scale PFSPs containing unbalanced machines.

• For PFSPs containing unbalanced machines the two-machine relaxation of the
problem gives lower bound close to the optimum.

• For industrial like PB-R-PFSPs (R-PFSPs with palettes and limited buffers) one
may compute a good (initial) solution of the problem by omitting the palettes
and the buffer sizes between the machines (i.e. setting the number of palettes and
buffer sizes between consecutive machines to infinite) and solving the relaxed
R-PFSP.

These scientific results can effectively be used in the digital factory environment.
We consider a production line with planning and shop floor software tools of
digital factory to collect, analyse and process real life manufacturing data. With
integration of the solving methods investigated by our work into the planning
and scheduling process of the digital factory, we can produce effective production
schedule supporting the end-to-end digital integration goal of the digital factory.
This integrated production schedule can be the one of the basics for the smart and
networked Industry4.0 production environment.
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Automatic Reconfiguration of Robotic
Welding Cells

Dietmar Hömberg, Chantal Landry, Martin Skutella, and Wolfgang A. Welz

Abstract Robotic welding cells are at the core of many complex production
systems, especially in automotive industry. In these cells, a certain number of robots
perform spot welding tasks on a workpiece. The configuration of the cells can have
a huge impact on the production rate. The smaller the cycle time is, the higher the
production is. In this paper, we present a complete algorithm that automatically
configures the welding cell such that the given cycle time of the production process
is kept. This algorithm assigns tasks to the different robots, decides in which order
the tasks are executed and computes the fastest collision-free trajectory of the robots
between two consecutive tasks.

1 Introduction

Industrial manufacturing has by now reached a high degree of automation. Complex
production lines have been created and consist of robots grouped together in
workcells connected by conveyor belts and further devices for materials supply
and temporary storage [32, 35]. Efficient production lines are essential to ensure
the competitiveness of manufacturers. A major point of this quest for efficiency
lies in the design of the workcells. These cells are usually configured by hand, the
configuration lasting up to several months [31]. Our aim is to automate their design
by using mathematical techniques. The resulting configuration will increase the
production rate, whereas the time to reconfigure a cell will be drastically decreased.
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Given the Computer Aided Design data of the workpiece, the location of the
tasks and the number of robots, the aim is to assign tasks to the different robots
and to decide in which order the tasks are executed such that the given cycle time
of the production process is kept. In order to identify the overall processing times
of these planned operations it is further necessary to automatically compute how
the robots move to the next assigned task. We have called this problem, where spot
welding tasks are performed, the Welding Cell Problem (WCP). Up to now, the
reconfiguration of such a cell is basically done by hand. The goal of this paper is to
model and solve WCP.

It is worth noting that the task assignment, the sequencing of the tasks and
the robot motion-planning cannot be handled separately. On one hand, the task
assignment and the sequencing depend on the travel time between two tasks. This
time is obtained by computing the fastest collision-free trajectory between these two
given tasks. On the other hand, one needs to know between which tasks the robot
motion-planning must be computed.

There is not much literature on the particular welding cell problem under consid-
eration. A somewhat related laser welding problem has been discussed in [27]. For
this particular problem the authors propose an approach to find makespan minimal
tours for welding robots sharing limited laser sources that avoid conflicts with each
other. The aspects of path and trajectory planning have not been considered in this
context.

In [31, 32], Segeborn et al. optimize the weld load balancing in the whole
production line. The tasks are assigned among all robots in the assembly line such
that the cycle time is minimized. The authors do not include the computation of an
optimal motion planning between the tasks. In [32], they spatially separate the robot
weld workloads. In [31], the path planning instead of the optimal motion planning is
used and performed by the IPS (Industrial Path Solutions) CAE tool. Björkenstam
et al. in [5] include the optimal motion planning of robots between the tasks in their
method to find an efficient sequencing of the welding tasks. They consider only one
robot and the tasks are already assigned to the robot.

In [34], Spensieri et al. consider a similar problem to ours: to minimize the cycle
time of a multirobot station. They develop an iterative method that first assigns tasks
among the robot, then performs the sequencing and eventually coordinates the paths
to avoid collisions. Unlike Spensieri et al., we solve the task assignment and the
sequencing in one step and take into consideration optimal trajectories. Our algo-
rithm assures to find a feasible solution of the WCP, whereas in [34] the method can
stop after reaching the maximum number of iterations or maximum available time.

We have presented in [20] an algorithm that tries to efficiently combine con-
tinuous motion planning and discrete optimization without the need to calculate
all the trajectories in advance. The proposed algorithm is an iterative method that
couples discrete optimization with collision detection and optimal control problems.
For this, the computational less expensive discrete optimization process needs to be
resolved in every iteration. Such a strategy has been developed in [28], but on a
simpler case. The authors considered one robot that had to perform several tasks in
a sequence to be optimally determined. This means, that no task assignment and no
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collision avoidance were required. Only the sequencing of the tasks and the robot
motion were addressed.

In this paper we now present a more advanced, combined approach that integrates
the solving of the exact optimal control problem into the actual column generation
approach of the underlying combinatorial assignment and sequencing problem.
Thus, in Sect. 2 we present the actual Welding Cell Problem and then discuss the
essential ideas and requirements for an algorithm combining the two parts. After
that, our solution approach for the discrete part, namely the conflict free assigning
and sequencing, is described in Sect. 3. In this section, we also explain how it is now
possible, with only slight modifications, to integrate the trajectory calculations
into the implemented column generation approach. The resulting algorithm solves
the WCP by efficiently combining both parts. It manages to keep the trajectory
calculations as low as possible while at the same time as much information as
possible is reused from the current status of the discrete solution procedure. The
collision-free motion planning as well as the detection of conflicts in the calculated
trajectories are then discussed in Sects. 4 and 5. Numerical results are presented
in Sect. 6. Our approach is applied to several two-dimensional workcells, that are
composed of single body mobile robots.

2 Welding Cell Problem

A welding cell in a production line consists of a workpiece, a certain number of
industrial robots and some obstacles such as the conveyor belt. On the workpiece,
some welding tasks must be performed. The goal is to plan trajectories for each of
the robots so that in the end all weld points are processed while the makespan of all
trajectories is below the given cycle time of the production process.

Let J be the set of welding tasks. In fact, an element j 2 J represents at the same
time a task and its location on the workpiece. Let R be the set of industrial robots
in the workcell. Since each robot has its own characteristics (size, weight, welding
tongue, etc.), a robot may not be able to perform all tasks. Therefore, each task j 2 J
has a working set Wj � R containing the robots that can process this job.

Let sr be the initial and end position of robot r 2 R and let V be the set
containing all task locations and initial positions, that is: V WD fsr W r 2 Rg [ J.
With these definitions, we can represent the welding cell problem as a complete
directed graph G D .V;A/, where the node set is V and the arc set A WD V � V . An
arc a D .vt; vh/ with the tail node vt 2 V and the head node vh 2 V corresponds
to the fastest trajectory of a robot moving from vt to vh. This trajectory is collision-
free with the obstacles present in the workcell. Let � ra be the travel time needed
by robot r to move from the tail to the head of the arc a. These travel times are
the weights of the arcs and they are assumed to be at least zero. We note, that the



186 D. Hömberg et al.

graph G is identical for all robots r 2 R only the weights differ. The travel times
related to robot r are stored in the set D r, that is:

D r D f� ra W r can move from vt to vh with a D .vt; vh/ 2 Ag:

Moreover, we store all travel times in the set D , i.e. D D [r2RD r.
For each robot r 2 R, we are looking for a tour Tr D .a1; : : : ; anr/, starting and

ending in the position sr, and a schedule Ir that assigns each arc a 2 Tr a left-closed
time interval Ira D �

tra; t
r
a

�
, where tra corresponds to the departure time in the tail of a.

This interval describes when the corresponding arc a is used by robot r. For formal
reasons, we represent waiting and processing times in a node in Tr by a longer time
interval of the arc used previously by robot r. It is however possible to start a tour
later and thus effectively leave the start position sr later.

No collision shall occur between robots moving with respect to their schedule.
The information on colliding robots is stored in the set of conflicts C . Let I1 be the
interval for which the arc a1 is used and I2 the corresponding interval for arc a2.
The element .r1; a1; I1; r2; a2; I2/ is in C if and only if at least one collision occurs
between r1 and r2, while r1 (resp. r2) moves from the tail to the head of a1 (resp. a2)
during I1 (resp. I2).

Let tcycle be the cycle time of the production process. The Welding Cell Problem
can now be outlined as follows:

Find scheduled tours Tr D .a1; : : : ; anr/, r 2 R, such that: (WCP)

1. Each tour Tr starts and ends in the position sr, with r 2 R.
2. Each job j 2 J is visited in exactly one tour Tr, with r 2 Wj, and j is the tail of

exactly one arc a 2 Tr.
3. The travel times � ra are minimized and the corresponding trajectory is collision-

free with the obstacles present in the workcell.
4. For each robot r 2 R, the schedule Ir must be feasible for tour Tr:

� rai � trai � trai ; 8i 2 f1; : : : ; nrg;
trai D traiC1

; 8i 2 f1; : : : ; nr � 1g:

5. All robot moves are conflict-free with respect to their schedule.
6. The cycle time is kept: tranr � tcycle; 8 r 2 R.

To further illustrate this definition, we give a simple example of scheduled tours.
Consider the following solution for a WCP instance with two robots r1 and r2. The
tours Tr1 and Tr2 are given as follows:

r1 r2
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A feasible schedule for these tours is for example given by:

Ir1 D fŒ0; 4/; Œ4; 6/; Œ6; 7/g ;
Ir2 D fŒ0; 2/; Œ2; 4/; Œ4; 6/; Œ6; 10/g :

To solve (WCP), one needs to know the value of all travel times in D and
information for conflicting trajectories, which is given by C . However, the travel
times are the solution of an optimal control problem (see Sect. 4) and their
computation is time consuming. Consequently, we first consider approximated
travel times and compute the exact travel times only when needed.

The approximated times are the travel times of approximated trajectories. Such
approximated trajectories can for example be obtained by putting a regular grid on
the workcell, where the nodes of the grid which are located in or in the neighborhood
of an obstacle are removed from the set of nodes. Now, a feasible trajectory between
two given points corresponds to the shortest path—along that grid—connecting
these two points. The shortest path is obtained by applying a Dijkstra-like algorithm
in which the usage of nodes that are very close to the obstacles are penalized.
The resulting trajectory is a sequence of segment lines which do not collide with
the obstacles. These approximated travel times are much easier to obtain and are
denoted by D 0.

As the conflict-information depends on the actual movements of the robots, they
cannot be derived from the calculated line segments without marking segments
conflicting that are actually feasible with respect to the exact trajectory. Thus, we
initialize the corresponding conflict set C 0 to the empty set, in order to avoid false
positives.

The basic idea to solve (WCP) can be described as follows: Instead of solving
(WCP) by finding scheduled tours with all times D and conflict information C , we
look for tours according to different conflicts C 0 and travel times D 0. The computed
tours with respect to D 0 andC 0 will in general not be feasible for (WCP) as the travel
times can differ largely and so far no conflict has been considered. However, they
give us a promising assignment and sequencing. As a second step, we replace
the approximated trajectories selected in the tours by computing the exact ones.
Then, we check if a collision occurs between the robots moving according to their
respective tours. Finally, we add the newly calculated conflicts to C 0 and update
the corresponding travel times in D 0. New promising scheduled tours can now be
computed with respect to the updated sets D 0 and C 0. This process is repeated
iteratively until the returned solution no longer contains approximated line-segments
and is conflict-free. This idea is formalized in Algorithm 1.

Thus, (WCP) consists of three major parts:

• Conflict-free assignment and sequencing of welding tasks: when the travel
times between all weld points as well as conflict-information are known, finding
a tour for each robot such that in the given cycle time all the tasks have
been processed (lines 3 and 15 in Algorithm 1), is a variant of combinatorial
optimization problems, such as the traveling salesman problem, vehicle routing
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Algorithm 1: WCP algorithm

1 initialize travel times D 0 w.r.t. the approximated trajectories;
2 initialize conflict set C 0 D ;;

3 Find scheduled tours w.r.t. D 0 and C 0;
4 while feasible scheduled tours found do
5 foreach arc a in found tours do
6 if trajectory for a is estimated then
7 calculate exact trajectory for a;
8 in D 0 replace travel time of a with exact value;

9 if new scheduled tours with exact trajectories and travel times is still feasible then
10 check trajectories for conflicts;
11 if conflicts present then
12 add conflicting trajectories and usage-intervals to C 0;
13 else
14 return found feasible scheduled tours;

15 Find scheduled tours w.r.t. D 0 and C 0;

16 return ;;

problems and scheduling [27]. This part is in the following called Combinatorial
Problem (CP) and is presented in Sect. 3.

• Motion planning of robots: The computation of the fastest trajectory of a robot
that avoids obstacles and observes the dynamic laws (line 7 in Algorithm 1) is
called kinodynamic motion planning [11] and is a typical instance of optimal
control problems. Details on this part are given in Sect. 4.

• Detection of conflicting trajectories: to detect collisions between robots moving
along specified trajectories (line 10 in Algorithm 1), techniques from compu-
tational geometry must be used in order to efficiently approximate, or even
compute, the distance between the robots. A description of this part is given in
Sect. 5.

Therefore, we can observe that solving (WCP) requires an efficient interplay
between discrete mathematics, nonlinear optimization and computational geometry.

3 Conflict-Free Assignment and Sequencing

The task of the discrete problem is to find feasible scheduled tours with respect to
given travel times D and conflict informationC . This problem represents one of the
major parts of (WCP) (lines 3 and 15 in Algorithm 1) and is in the following denoted
by CP. The definition of conflicts, however, slightly differs from the last section: For
our solution approach of the CP it is crucial that the conflict set does not depend on
the usage-intervals. We therefore convert the conflict set C into a slightly different
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set QC containing only arc pairs. It must be guaranteed that all conflicts with respect
to C are also conflicts for QC , which leads to the following stricter definition:

QC WD f.r1; a1; r2; a2/ W 9I1; I2 with .r1; a1; I1; r2; a2; I2/ 2 C g :

Using this definition, two arcs a1 and a2 are said to be in conflict with respect to
the set QC , if they are in use at the same time by the corresponding robots: Let I1
be the interval for which a1 is used and I2 the corresponding interval for arc a2, then
the tours containing the arcs a1 and a2 are conflicting w.r.t. QC , if I1 and I2 intersect.
This is a much stronger definition of conflicts than in the previous section. However,
it is thus assured that any solution which is feasible w.r.t. QC is also always feasible
w.r.t. C .

This converted set QC is then used to solve the discrete problem CP
�
D ; QC


. It

can be formulated as a very general set partitioning problem that finds a QC -conflict-
free solution which visits each weld point exactly once within the given cycle time.
The CP can be modeled as follows:

min
X

T2˝
cTxT (MP)

s.t.
X

T2˝
ıvT xT D 1 8v 2 V (1a)

xT1 C xT2 � 1 for all QC -conflicting pairs of tours .T1;T2/ (1b)

xT 2 f0; 1g 8T 2 ˝ (1c)

The model (MP) is a representation of CP
�
D ; QC


as an Integer Linear Pro-

gram (ILP) that has a binary variable for every feasible scheduled tour. The set
containing all the feasible tours is denoted by ˝ . The set ˝ only contains those
tours that fulfill the requirements of the WCP, i.e. the travel time of a tour according
to D must be lower than tcycle and they cannot contain the same weld point more
than once.

An ILP is an optimization problem that has a linear objective function which is
minimized with respect to several constraints. These constraints can either be linear
(in)equalities or integrality constraints, that force some variables to be integers. A
program only containing linear constraints is called a Linear Program (LP).

In (MP) the variables xT specify whether the corresponding scheduled tour
denoted by T is chosen or not. All values of xT that are not 0 or 1 do not represent a
feasible tour assignment and must not be used in a solution. The cost cT of tour T can
in principle be chosen arbitrarily as we are only interested in a feasible solution. By
setting cT to the energy consumption of tour T, the identical approach could be used
to find a feasible solution that also minimizes the total energy consumption of all
operations. The coefficient ıvT specifies whether node v is visited by the scheduled
tour T or not. This allows us to formulate the condition that every node needs to be
visited exactly once in jVj linear constraints (1a). As the starting position sr is also
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solve LP relaxation

T : 0 xT 1

solve LP relaxation

conflicting arcs a1 , a2 both used at time 

force a in 

solve LP relaxation
.
.
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arc a1 forbidden at 

arc a2 forced at 
arc a1 forbidden at 
arc a2 forbidden at 
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t  t
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Fig. 1 Sketch of a tree resulting from the different branching rules for (MP): It was first branched
on the fractional arc a and then on the conflicting arcs a1 and a2

contained in V , exactly one tour will be assigned to each robot r 2 R. Conflicts are
avoided in (1b) by explicitly listing all conflicting pairs of tours that contain arcs
in QC and forbidding that in each of these pairs more than one variable is set to 1.

In general, this would allow us to solve (MP)—and thus the CP—with any
available ILP solver, such as SCIP1 or CPLEX.2 Unfortunately, due to the sheer
number of variables—one for every existing tour with all its possibilities to wait—
it is impossible to explicitly formulate and solve (MP) even for a handful of
nodes. It is however possible to solve the problem for a much smaller subset of
variables and then successively adding further variables from ˝ in such a way
that optimality of the final solution can be guaranteed, although not all possible
variables have been considered. This process is called column generation and it is a
solution approach which is used for many combinatorial optimization problems such
as Vehicle Routing Problems, see e.g. [22]. While in general column generation
can only be used for linear programs it can also be extended for ILPs by using
the underlying linear program as a relaxation and then enforcing the integrality
constraints by fixing them in different subproblems which in this context are also
called branches. This technique is then called branch-and-price. To apply this
technique it is necessary to integrate heavily problem dependent parts into the ILP
solving process. An introduction to this technique can be found, e.g. in [10].

A similar difficulty occurs with the conflict constraints (1b), as even for a smaller
number of paths there is a large number of inequalities to express mutually exclusion
of tours. Numerical experiments showed that enforcing conflict-free tours using
explicit branches usually helps to improve the solution time.

An approach that uses column generation as well as explicit conflict constraints
for a very similar problem has also been described in [33]. For our problem, we
implemented the same branching rules to enforce the constraints (1b) and (1c).
A schematic diagram of this approach is shown in Fig. 1.

1SCIP Optimization Suite: http://scip.zib.de.
2IBM ILOG CPLEX: www.ibm.com/software/products/en/ibmilogcpleoptistud.

http://scip.zib.de
www.ibm.com/software/products/en/ibmilogcpleoptistud
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• We need to assure that the variables are always either 0 or 1. If a fractional
value occurs, the integrality can be guaranteed by dividing the problem into two
subproblems. In the first subproblem arc a must be used in a tour, while in the
second the arc is prohibited entirely and it cannot be part of any tour. As all arcs
must either be used by exactly one tour or none at all, this process enforces the
constraints (1c). The step of dividing the problem into several subproblems in
such a way that the total search space decreases but no feasible solution is lost is
called branching.

Since in the CP every node needs to be visited exactly once, this branching
rule can be easily implemented by either removing arc a in G or by removing all
other arcs leaving the tail of a.

• A similar approach is used to enforce the explicit constraints (1b): If two
conflicting arcs are in use, this situation can be resolved by creating three
branches in which either both of the arcs are forbidden for one of the conflicting
time steps or one of them must be used while the other one cannot.

Each branch corresponds to a new problem very similar to (MP) where only
constraints are added that enforce the properties of the subproblems stated above.
All these branching decisions need to be taken into account for the optimization
problem that identifies promising new tours, the so-called pricing problem. This
results in a problem where the shortest scheduled tour with respect to the corre-
sponding dual variables needs to be found. To correctly incorporate the branching
decisions, such a scheduled tour must also respect the time windows introduced
by the conflict branching. A more detailed explanation of the resulting pricing
problem and different solution approaches can be found in [37]. For the performed
computational experiments this branch-and-price algorithm has been implemented
using the framework provided by SCIP [2].

3.1 Revisiting the WCP Algorithm

By using the CP solution approach described in the beginning of this section as
a starting point, we can now devise a revised WCP algorithm. In the approach
described in Sect. 2 every time after the computation of updated travel times the
CP and thus the ILP described as (MP) needs to be solved again for the new sets
D 0 and C 0. An improved algorithm integrates the trajectory calculations directly
into the solution process of (MP) and therefore leaves unchanged tours untouched.
Fortunately, the described branch-and-price based approach is especially well suited
for such a procedure. Explicit restarts are not necessary and the continuous part
can be seamlessly integrated. This idea can be formalized very conveniently as
a Constraint Integer Program (CIP). This generalization of ILPs has been first
proposed in [1] and it basically represents an ILP that can have additional arbitrary
constraints which are enforced using branching. The framework SCIP itself is
designed as a constraint integer program solver and it is therefore very straight
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forward to implement the following problem using SCIP:

initialize D 0 and C 0 (CIP)

min
X

T2˝
cTxT

s.t.
X

T2˝
ıvT xT D 1 8v 2 V (2a)

xT 2 f0; 1g 8T 2 ˝ (2b)

fT W T 2 ˝; xT D 1g is QC 0-conflict-free (2c)

fT W T 2 ˝; xT D 1g contains no estimated times (2d)

fT W T 2 ˝; xT D 1g is conflict-free (2e)

The variables, objective function as well as the first constraints (2a) and (2b) are
completely identical to the ILP described in Sect. 2, they just depend on potentially
different travel times D 0. The constraint (2c) is a reformulation of (1b) using the
conflict set C 0. However, the last two constraints (2d) and (2e) have been added
and they corresponds to the checks performed in lines 6 and 11 of Algorithm 1. We
assume that all constraints are checked and enforced from top to bottom. Therefore,
if constraint (2d) is reached we are guaranteed to have an integral solution at hand
that is also conflict-free with respect to the converted QC 0 and thus also C 0. The
actual constraint (2d) now has to check whether that solution only consists of
exact trajectories or whether there exists an arc a for which D 0 corresponds to the
estimated value. If this is the case, the exact subproblem (described in Sect. 4) is
called to calculate the correct trajectory segment for that arc. Now, we first remove
all variables xT from (CIP) representing tours that contain the updated arc a and
the corresponding value in D 0 is updated. The process of column generation then
assures that if the tour T is still promising even after the update it will be re-added
to the problem. As all other tours remain in the problem, this can be interpreted as

a warm start of CP
�
D ; QC


. When an integral solution containing only updated

exact distances has been found, we check in constraint (2e) whether these tours
have conflicts that are not yet contained in C 0. This step corresponds to line 10
of Algorithm 1 and its actual process is described in Sect. 5. If no such conflicts
exist, the tours represent a feasible solution for the WCP. Otherwise, we add the
conflicting segment pair to the set C 0, calculate the corresponding QC 0 and then
branch on that particular newly added conflict.

As the re-generation of updated tours is automatically handled by the column
generation approach, these ideas can be incorporated very easily into the code
for the (MP). Since SCIP is build as a solver for constraint integer programs,
the integrated parts can very conveniently be implemented as custom constraint
handlers. When the constraint handler is called to check the current solution for
feasibility, we call the programs of the continuous part and update the distances and
conflict information accordingly.
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3.2 Analysis of the Combined Algorithm

The correctness of Algorithm 1 and (CIP) can be shown with the following obser-
vation. The only requirement is that the travel times D 0 are always underestimated,
i.e. that calculating the exact travel times never decreases the information currently
present in D’.

Lemma 1 Let D contain the exact travel times and let C be the complete conflict
set. Any feasible solution of the corresponding CP.D ; QC / is also feasible for
CP.D 0; QC 0/ for anyD 0 and QC 0 occurring in the solution process of (CIP).

Proof The proof of this lemma can be found in [37].
As the number of jobs and thus also j QC j is finite, the solution process of (CIP)

will eventually terminate. However, usually only a small subset of the trajectory-
segments needs to be computed. The computational expensive part, however,
remains in enforcing constraint (2d), where the initial distances are updated with
the correct ones.

Lemma 1 can then directly be used to show that the algorithm actually never
misses a feasible solution:

Theorem 1 If (CIP) is solved using the initial sets C 0 � C andD 0 containing only
underestimated distances, then it returns a feasible solution, if CP.D ; QC / is feasible.

This shows that (CIP) can indeed be used to obtain a solution for the WCP. Its
very convenient representation as a constraint integer program together with the
column generation approach assure that we find a feasible solution of the WCP
while at the same time much information from previous results of the intermediate
CP solution processes is reused.

4 Time-Optimal Kinodynamic Motion Planning

In this section, we present a method to compute the motion of a robot r 2 R that
moves between two given task locations, i.e. line 7 in Algorithm 1. Our goal is to
compute the fastest trajectory of the robot that avoids fixed obstacles (kinematic
constraints) and observes the dynamic laws and the bounds on the velocity or
the acceleration (dynamic constraint). This type of problem is called time-optimal
kinodynamic motion planning [11, 21].

It is worth repeating that the collision avoidance is between the robot and the
existing obstacles in the workcell such as the conveyor belt. We do not consider
the possible collision between the moving robots here, as this conflict-avoidance is
handled as part of CP described in Sect. 3.

Several methods have been developed to compute the optimal trajectories of the
robots [4, 6, 11, 14, 15]. The trajectory is in each case the solution of an optimal
control problem. The methods differ in the description of the collision avoidance
with the static environment and in the strategy to solve the optimal control problem.



194 D. Hömberg et al.

Let us consider a robot composed of m links which are connected by revolute
joints. Let q D .q1; : : : ; qm/ denote the vector of joint angles at the joints of the
robot. Moreover, let the vector Pq D .Pq1; : : : ; Pqm/ contain the joint angle velocities
and let u D .u1; : : : ; um/ describe the torques applied at the center of gravity of each
link. The robot is asked to move as fast as possible from a given position, denoted
by vt 2 V , to a desire location, vh 2 V . Its motion is given in the Lagrangian form
as follows

d

dt
q.t/ D Pq.t/;

M.q.t//
d

dt
Pq.t/ D G.q.t/; Pq.t//C F.q.t/; u.t// ; (3)

where M.q/ is the symmetric and positive definite mass matrix, G.q; Pq/ contains
the generalized Coriolis forces and F.q; u/ is the vector of applied joint torques and
gravity forces. The function F is linear in u.

The motion of robot r must follow (3), but also be collision-free with the
obstacles present in the workcell. To establish the collision avoidance condition,
robot r is approximated by a union of compact convex polyhedra, denoted by
[np

iD1Pi with np denoting the number of polyhedra and Pi being a compact convex
polyhedron. The robot must be included in the approximation, that is: r � [np

iD1Pi.
Let us assume that the workcell contains nq fixed obstacles, which are compact

convex polyhedra and denoted by Qj, j D 1; : : : ; nq. The approximation of robot r
and the obstacles do not collide if and only if for each pair of polyhedra .Pi;Qj/,
with i D 1; : : : ; np and j D 1; : : : ; nq, the distance between the polyhedra is positive.
To this end, we use the signed distance between two objects, which is negative
if the objects intersect and non-negative otherwise. The signed distance between
intersecting polyhedra is defined as follows [8, 18, 19]:

d.Pi;Qj/ D �kwk2 ;

where d is the distance function and w is the smallest translational vector, so that
int.Pi C w/ \ Qj D ;. Here, int.Pi C w/ denotes the interior of the polyhedron
Pi Cw, which is the polyhedron Pi translated by w. An illustration is given in Fig. 2.

Fig. 2 The polyhedra Pi

and Qj overlap. The vector w
is the smallest vector such
that Pi C w and Qj come into
contact

Qj

Pi

w



Automatic Reconfiguration of Robotic Welding Cells 195

If the polyhedra are disjoint, then d is simply the Hausdorff distance. In summary,
the distance function between two convex compact polyhedra is given by

d.Pi;Qj/ D
� �kwk2; ifPi \ Qj ¤ ; ;

dist.Pi;Qj/; otherwise;

where dist.�; �/ is the Hausdorff distance.
Since robot r moves, the polyhedra in the approximation of r evolve in time. A

motion of Pi is the composition of a rotation with a translation. Both geometrical
transformations depend on the joint angles q.t/, see [14, 23]. Therefore, we
subsequently write Pi.q.t// to denote the polyhedron at time t.

The collision avoidance constraint at time t is then obtained by imposing that
the minimum distance between the approximation of the robot and the obstacles is
larger than a safety margin, that is

min
iD1;:::;np
jD1;:::;nq

d.Pi.q.t//;Qj/ � " ; (4)

where " > 0 is the safety margin.
Let �f be the travel time of the robot between vt and vh. Combining (3) with (4)

leads to the following kinodynamic motion planning problem between vt and vh:

min �f w.r.t. q; Pq 2 Wm
1;1.Œ0; �f �/; u 2 Lm1.Œ0; �f �/ (OCP)

s.t.  equations of motion:

d

dt
q.t/ D Pq.t/; a.e. in Œ0; �f � ;

d

dt
Pq.t/ D M.q.t//�1 .G.q.t/; Pq.t//C F.q.t/; u.t/// ; a.e. in Œ0; �f � ;

 collision avoidance:

min
iD1;:::;np
jD1;:::;nq

d.Pi.q.t//;Qj/ � "; a.e. in Œ0; �f � ;

 boundary conditions:

g.q.0// D vt; Pq.0/ D 0; g.q.�f // D vh; Pq.�f / D 0 ;

 box constraints:

q � q.t/ � q; Pq � Pq.t/ � Pq; u � u.t/ � u; a.e. in Œ0; �f �;

where q; q; Pq; Pq; u and u are given lower and upper bound values, which are specific
to the robot. The function g.q.t// gives the position of the barycenter of the last
link of the robot at time t. This link will perform the task. See [23] for an explicit
formulation of g.
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As usual Lm1.Œ0; �f �/ denotes the Banach space of essentially bounded functions
mapping from Œ0; �f � into Rm and Wm

1;1.Œ0; �f �/ denotes the Banach space of
absolutely continuous functions with essentially bounded derivative that map from
Œ0; �f � into Rm.

The problem .OCP/ is an optimal control problem where the state variables
are q and Pq, and the control variable is u [13]. Other cost functions, such as
minimizing the energy consumption, can be defined in .OCP/. In .OCP/, the
dynamic constraints are the equations of motion and the box constraints. The
collision avoidance constraint and the boundary conditions define the kinematic
constraints. Moreover, let us observe that the collision avoidance constraint is not
continuously differentiable because of the distance function d.

Since .OCP/ contains state constraints and the dimension of the state variable is
small, we choose to use a direct method to solve it [13, 14, 36]. The method involves
first discretizing the control problem and transforming it into a finite-dimensional
nonlinear optimization problem. The control variables are approximated by B-
splines of order 2 and the ordinary differential equations are integrated with the
classical Runge-Kutta method of order 4. The resulting nonlinear optimization
problem is nonsmooth and non-convex. Despite the nonsmoothness, the problem
is solved by a sequential quadratic programming (SQP) method [16].

SQP methods are iterative methods. At each iteration, a quadratic program-
ming (QP) sub-problem is being solved to find a search iteration. The objective
function of (QP) is a local quadratic approximation of the Lagrange function. Since
the Hessian matrix of the Lagrange function is not well defined at the points of
non-differentiability of d, we use BFGS update formulas [3, 26] to replace it.
The nonsmooth constraint with d is being linearized by using an approximate
subgradient of d, which we obtain numerically by finite differences.

A trajectory between vt and vh is issued from the solution of (QP) by integrating
the equations of motion. Therefore, a sequence of trajectories is associated to
the SQP method. Without a good initial trajectory between vt and vh, even the
SQP methods that are augmented by a globalization strategy (see [12, 29]) might
not converge. However, for our particular optimal control problem, a good initial
trajectory can be found. To this end, a two-step strategy has been developed. First,
a path-planning algorithm is used to find intermediate points. These points indicate
the direction for the robot to reach vh. Then, an optimal control problem that does
not take into account the obstacles, is defined to find the fastest trajectory that passes
through the vicinity of the intermediate points. The resulting solution is the initial
trajectory. A detailed description of the computation of the initial trajectory can be
found in [21].

Another strategy to compute a good initial trajectory is given in [4]. However, the
initial trajectory in this paper must be collision-free to be integrated in the algorithm
developed by the authors to solve the optimal control problem. In our solver, the
initial trajectory may collide with the static environment.
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5 Detection of Conflicting Trajectories

This section concerns the detection of conflicts between two given trajectories
which is performed in line 10 of Algorithm 1. Let r1 and r2 be two robots in R.
For simplicity, let us assume in this section that each robot is a convex compact
polyhedron. Let robot r1 (resp. r2) move between the locations v1t and v1h (resp.
v2t and v2h) during the time interval I1 (resp. I2). Finally, let a1 (resp. a2) be the
arc whose tail node is v1t (resp. v2t ) and head node is v1h (resp. v2h). The element
.r1; a1; I1; r2; a2; I2/ belongs to the set C of conflicting trajectories if and only if at
least one collision is detected between the robots that move along their trajectory
during their respective time interval. Our aim in this section is then to detect such
collisions.

There exist two types of detection method. The static detection checks if there is
a collision between two objects at each time step. The dynamic checking determines
if for all configurations given on a continuous path a collision occurs between the
objects. As Cameron pointed out in [7], the static detection is simple, but can miss a
collision if the time discretization is too rough. On the other side, taking small time
steps is time consuming. For this reason, we choose to use a dynamic method. We
follow the method developed by Schwarzer et al. in [30]. This method is based on
the comparison of lower bounds of the distance between the robots with an upper
bound of the relative distance travelled by the points in the robots. The advantages
of this method are its simplicity, its exactness and the automatic adaptation of the
sampling resolution.

Let us recall that the motion of a robot from the tail to the head node of a
given arc a was computed in (OCP). For this computation, we have considered
the time interval Œ0; �f �. To solve (OCP), a time discretization .�i/NiD1 is used, with
�0 D 0, �N D �f and N the number of time steps. In the scheduled tours resulting
from (WCP), a time interval is associated with each arc: Ia D Œ t a; Nta/. Hence,
to detect a conflict between the arcs a1 and a2, we need first to transform the
time discretization used in (OCP) on the time interval I1 and I2. The new time
discretization for an arc a on Ia is defined as follows:

.ti/
N
iD1 with ti D �i C t a; i D 1; : : : ;N:

It follows: t1 D t a and tN D �N C t a D �f C t a.
Each robot has its own time discretization. Let .t1i /

N1
iD1, resp. .t2i /

N2
iD1, be the time

discretization of robot r1, resp. r2, after transformation on the time interval I1,
resp. I2. Let us classify the time steps .t1i /

N1
iD1 and .t2i /

N2
iD1 in an ascending order

as illustrated in Fig. 3. The time is then decomposed on subintervals Œtl; tu� of the
form: Œt1i ; t

1
iC1�, Œt1i ; t2jC1�, Œt2j ; t1iC1� or Œt2j ; t

2
jC1�. We check on each such subinterval if

a collision between the robots occurs.
Let us consider the time subinterval Œtl; tu�. The idea of Schwarzer, Saha and

Latombe is to compare upper bounds of the distance travelled by the robots
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tt11 t
1
2 t13 t14 t15 t16 t17

t21 t22 t23 t24 t25 t26

Fig. 3 Ascending order of the time steps .t1i /
N1
iD1 and .t2i /

N2
iD1. The case t21 > t11 means that robot

r2 stays at its initial position v2t while r1 is moving. Likewise, t17 < t24 indicates that robot r1 has
reached its final destination v1f , whereas robot r2 is still moving

during Œtl; tu� with a lower bound of the distance between both robots. Let us define
the following quantities

• �.t/ is a non-trivial lower bound of the Hausdorff distance between the robots
at time t. The relation �.t/ � ı, ı small and positive, means that the robots are
colliding.

• �i.ta; tb/ is an upper bound on the length of the curves traced by all points in
robot ri, i D 1; 2, between ta and tb with ta; tb 2 Œtl; tu�.

Schwarzer, Saha and Latombe’s method is based on the following sufficient
condition:

Two polyhedra r1 and r2 do not collide at any time t 2 Œtl; tu� if

�1.tl; tu/C �2.tl; tu/ < �.tl/C �.tu/ : (5)

The reverse of the above condition is not true. We cannot say anything about
the collision-freeness on Œtl; tu� when the inequality is not satisfied. In that case, the
idea is to bisect the time interval into two subintervals Œtl; tm� and Œtm; tu� where tm D
1
2
.tlCtu/. In the second step, we check if a collision occurs at tm by computing �.tm/.

If �.tm/ is positive, then the sufficient condition is applied on both subintervals Œtl; tm�
and Œtm; tu�. The collision is detected once the lower bound � is smaller than a given
threshold ı > 0.

One strength of this detection method is that the algorithm automatically decides
whether a time interval needs to be bisected further. Moreover, the method can never
fail. To prove this fact, let us observe first that �i.ta; tb/ ! 0 when jtb � taj ! 0,
i D 1; 2. Then, let us distinguish the cases:

• If no collision occurs in the interval Œtl; tu�, then there exists �min � ı > 0

such that �.t/ > �min, 8t 2 Œtl; tu�. By bisecting, the length of the new time
subintervals is always smaller. So, the left-hand side of Inequality (5) becomes
smaller with the bisection whereas the right-hand side remains lower-bounded.
Hence, Inequality (5) is satisfied.

• If the polyhedra collide, then there is a time subinterval Œta; tb� � Œtl; tu� such
that �.t/ � ı, 8 t 2 Œta; tb� since the motion of the polyhedra is continuous.
Then, by bisecting, Inequality (5) remains unsatisfied until the new middle of the
time interval falls into Œta; tb�.

Let us illustrate this argument with the example in Fig. 4. The time interval
Œtl; tu� is represented. The time interval Œta; tb� when the collision occurs is in
grey. The algorithm checks first if the polyhedra collide at tl and tu. Second
step of the algorithm establishes that Inequality (5) is not satisfied. The first
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Fig. 4 Convergence of the
collision detection algorithm
when a collision occurs t1 t2t3 t4tl tu

ta tb

bisection is executed by computing t1 D 1
2
.tl C tu/. No collision occurs at t1

(�.t1/ > ı). Inequality (5) is satisfied on Œtl; t1� but not on Œt1; tu�. Hence, the
middle point of Œt1; tu� is: t2 D 1

2
.t1 C tu/. At that time, � is greater than ı. The

bisection is then executed and we obtain the following subintervals Œt1; t2� and
Œt2; tu�. Inequality (5) is verified on Œt2; tu� but not on Œt1; t2�. Next, let us compute
t3 D 1

2
.t1 C t2/ and check if �.t3/ is bigger than ı. Let us do so on until we reach

t4 D 1
2
.t3 C t2/. For that point, the value of �.t4/ is smaller than ı. The collision

is detected and the element .r1; a1; I1; r2; a2; I2/ is reported as in conflict.

Schwarzer et al. establish in [30] an upper bound �1; �2 for any kind of robots.
The function � is defined as a non-trivial lower bound of the real distance between
two polyhedra. A two-phase approach is considered which consists of a broad phase
and a narrow phase. In the broad phase, the polyhedra are approximated by a
simple bounding volume such as an axis-aligned box or a sphere and � is defined as
the distance between the bounding volumes. As long as the bounding volumes are
disjoint, the broad phase is applied. Once the bounding volumes overlap, the narrow
phase is used. This phase computes the exact distance between the polyhedra. Thus
the two-phase approach allows a minimal cost in the computation of � since the
exact distance is determined only when the polyhedra are close to each other. Note
that if the robots would have a more complex geometry, then a hierarchy of bounding
volumes would be defined such as in [9, 17].

For the narrow phase, we use Lin and Canny’s algorithm [24, 25]. This algorithm
determines the closest pair of features between the polyhedra, where the features
of a polyhedron are its vertices, its edges and its faces located on its boundary.
We choose to follow Lin and Canny’s algorithm since the approach is fast, easy to
implement and perfectly suited when polyhedra move slightly between two time
steps.

6 Numerical Experiments

In the following, we present some of the 2D-instances that have been solved using
our implementation. Here, the polygon shaped robots move on the 2D-plane by
avoiding the obstacles. The trajectories sketched in the following only represent the
trace of the center of gravity. For clarity reasons, the rotation along the trajectories
is not shown. Also, the actual timing of the robots is not presented explicitly, but it
has been taken into account for the calculations.

The shape of a robot is visualized by its starting position, while the obstacles are
represented by black polygons. All the weld points are assumed to have a processing
time of 0 s. Since the robots are a two-dimensional polyhedron, the meaning of the
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state and control variables differs from the one given in Sect. 4. The state variables
are here the angle of rotation � of the robot as well as the position r and the velocity Pr
of the center of gravity of the robot. The control variables are the velocity � of the
angle of rotation and the acceleration a of the center of gravity of the robot. As in
(OCP), the equations of motion are ordinary differential equations, which are here
given by:

d

dt
r.t/ D Pr.t/; d

dt
�.t/ D �.t/;

d

dt
Pr.t/ D a.t/; a:e:t 2 Œ0; �f �:

For our numerical experiments, the lower and upper bounds of the control variables,
which are:

• for the acceleration of the center of gravity of the robot: Na D �a,
• for the velocity of the angle of rotation: N� D ��,

differ for the robots and the instances. Thus, their value are explicitly given. A higher
acceleration Na corresponds to a faster robot r 2 R.

The process of our approach is showcased for the following examples. To
visualize the advantages of our approach the number of total arcs compared to the
number of arcs for which the exact travel time has been calculated is given as well
as the computation times for the continuous trajectory calculations and the entire
process.

robot a tour length

2.0
10

22.04

1.0
10

13.58

0.5
10

18.26

cycle time: 23.5

#arcs #exact trajectories cont. time total time

168 34 27.1 s 29.5 s

Instance 1: Three robots, where especially the green and the much slower cyan robot
need to be coordinated. The number of required updates could be reduced by a factor
of five.
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robot a tour length

1.0
10

26.59

1.0
10

26.28

1.0
10

25.95

0.5
10

26.52

cycle time: 26.7

#arcs #exact trajectories cont. time total time

788 62 56.9 s 66.0 s

Instance 2: This example contains four robots. Due to a tight cycle time, three
robots have to operate very close to each other. Less than 10 % of the connecting
trajectories where calculated.

7 Conclusion

In this paper, the automatic reconfiguration of a welding cell using state-of-the-art
mathematical techniques has been presented. The Welding Cell Problem involves
calculating feasible robot movements in a workcell composed of several welding
robots and tasks. A solution is feasible when the tasks are assigned between the
robots and the motion between the tasks is planned in such a way that it is
finished within the cycle time of the production process and is collision-free. For
that purpose, techniques from discrete optimization were efficiently combined with
effective algorithms to solve optimal control problems and to detect collisions.

Even if we have presented numerical results in two dimensions, the formulation
and the resolution of the WCP are independent of the dimension of the workcell.
The quality of our two-dimensional results and the efficiency of our method are
very promising for a real three dimensional welding cell. The time to reconfigure a
cell should be in this case a mere fraction of the manual configuration.

Acknowledgements This work has been supported by the DFG Research Center MATHEON—
Mathematics for key technologies.
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Numerical Approaches Towards Bilevel Optimal
Control Problems with Scheduling Tasks

Konstantin D. Palagachev and Matthias Gerdts

Abstract In this paper, we consider the problem of scheduling N robots interacting
with a moving target. Both, the sequence of the robots and their trajectories are
unknown and subject to optimization. Such type of problems appear in highly
automated production plants and in the simulation of virtual factories. The purpose
of the paper is to provide a mathematical model and to suggest a numerical
solution approach. Our approach is based on the formulation of the problem as a
bilevel optimization problem, where the lower level problem is an optimal control
problem, while the upper level problem is a finite dimensional mixed-integer
optimization problem. We approach the problem by exploitation of necessary
optimality conditions for the lower level problem and by application of a Branch
& Bound method for the resulting single level optimization problem. Two settings
are taken into account. Firstly, no state constraints are assumed on the lower level
problem, thus the local minimum principle applies directly. Secondly, the problem
setting is augmented by pure state constraints, which are being handled by virtual
controls in order to regularize the problem.

1 Introduction and Formulation of Bilevel Scheduling
Optimal Control Problem

Many modern manufacturing processes are automized to a large degree using
robots for, e.g., welding, painting, or transporting parts autonomously. In the future,
the interaction of robots with other robots or human workers will become more
and more important. In addition, the flexibility with respect to the tasks a robot
has to perform will increase as well. For instance, a freely moving autonomous
transportation robot in an automated factory will have to transport some load from
one position, e.g. in a storehouse or at a production site, to another remote position
in a storehouse or a different production site. This task requires a path planning
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algorithm with the capability of avoiding collisions with other robots or objects.
In addition, the transportation process may have several phases, for instance a
transportation phase and an interaction phase with a human or another robot. This
task can be modeled by a multi-phase optimal control problem. However, there is
a second level since many of such transportation robots have to be coordinated
in such a way, that the robots arrive just in time at the requested positions. This
task leads to a scheduling problem, which determines the optimal starting times
for the individual robots such that the overall time becomes minimal. The overall
time on the other hand depends on the travel times of the robots. Hence, a coupled
optimization problem with a scheduling problem at the upper level and an optimal
control problem at the lower level has to be solved. Its solution helps to optimize the
processes and to analyze and simulate processes during the virtual factory design of
a new plant. Similar type of problems occur in automated ports of debarkation, but
also in civil or military observation tasks, where the observation of a moving or
fixed object has to be coordinated between several observers.

Let us consider the problem of scheduling N robots performing certain tasks
while they interact with a target robot which moves on a fixed trajectory. The
objective is to minimize the overall duration of the problem, guaranteeing that each
robot interacts with the target. This setting is a particular example for a bilevel
scheduling optimal control problem. Scheduling of the different robots can be
formulated as a job shop problem with the task to find the optimal starting times
ti, i D 1; : : : ;N, of the N robots. For given starting times ti, i D 1; : : : ;N, optimal
control problems have to be solved in order to find time optimal trajectories of the
robots and the durations of the robot actions. For simplicity we assume that the
interaction between the robots and the target robot is instantaneous. To this end
only an approach phase and a return phase have to be considered for each robot-
target interaction. Thus the optimal control problems consist of two phases with
durations p.i/1 and p.i/2 , respectively, for i D 1; : : : ;N. Hence, the i-th robot starts at

time instance ti, it interacts with the moving target robot at time instance ti C p.i/1 ,

and it returns to its initial position at time instance ti C p.i/1 C p.i/2 . Please note that

the durations p.i/1 and p.i/2 depend implicitly on the starting time ti, since the distance
between each robot and the target robot changes due to the target’s motion.

In order to schedule the robots, we introduce the binary variables wij 2 f0; 1g;
with i; j 2 f1; : : : ;Ng; i < j; where wij D 1 means that the i-th robot runs before
the j-th one and wij D 0 vice versa. A natural condition to avoid collisions between
robots is to impose that for each i D 1 : : : ;N � 1; the i-th scheduled robot interacts
with the moving target before the starting time of the next scheduled one.

Remark 1 Note that this condition is conservative, since it guarantees a collision
avoidance only in a neighbourhood of the target and when the target is not too close
to the staring position of the robots. Nevertheless, it prevents the problem of growing
to much in dimensionality and complexity. However, using the techniques in Sect. 6,
it is essentially possible to add further state constraints to avoid collision between
the robots at all time. The computational effort would increase considerably, though.
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As a result, the problem of scheduling the N robots can be formulated in the
following way

Problem 1 (Upper Level Problem)

Minimize max
1�i�N

˚
ti C p.i/1 C p.i/2

�
(1)

with respect to ti; p
.i/
1 ; p

.i/
2 2 R; wij 2 f0; 1g; subject to

ti C p.i/1 � tj � .1 � wij/M (2)

tj C p. j/1 � ti � wijM (3)

ti � 0 (4)

where i; j 2 f1; : : : ;Ng with i < j:
In constraints (2)–(3) the constant M is supposed to be sufficiently large in order
to ensure that just one of the constraints becomes active for a given wij. A typical
choice is to choose M greater than the sum of all starting times ti and all phase
lengths p.i/1 and p.i/2 : Note that wij D 1 implies that tj � ti C p.i/1 by (2), i.e. robot j
starts after the interaction of robot i with the target robot. Likewise, wij D 0 implies

ti � tj C p. j/1 by constraint (3).

The durations p.i/1 and p.i/2 for i D 1; : : : ;N are determined by suitably defined
optimal control problems. In order to keep the problem simple, we assume that
the dynamics of each robot are given by a system of linear ordinary differential
equations. We denote by x.i/0 2 Rnx the starting position of the i-th robot and by
xT 2 W1;1�Œ0;C1/;Rnx

�
the function providing target robot’s position at time t:

In this way, for each robot i the following parametric optimal control problem with
input ti has to be solved in order to obtain the durations p.i/1 and p.i/2 :

Problem 2 (Lower Level Problem OCP.ti/) Minimize

p.i/1 C p.i/2 C c

2

Z tiCp
.i/
1 Cp

.i/
2

ti

ku.i/.t/k2dt (5)

with respect to x.i/ 2 W1;1�Œti; tiCp.i/1 Cp.i/2 �;R
nx
�
; u.i/ 2 L1�Œti; tiCp.i/1 Cp.i/2 �;R

nu
�

and p.i/1 ; p
.i/
2 2 R and subject to

Px.i/.t/ D A.i/x.i/.t/C B.i/u.i/.t/ a:e:in .ti; ti C p.i/1 C p.i/2 / (6)

x.i/.ti/ D x.i/0 (7)

x.i/.ti C p.i/1 / D xT.ti C p.i/1 / (8)

x.i/.ti C p.i/1 C p.i/2 / D x.i/0 : (9)
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Note that in (5), we have introduced a quadratic term penalizing the control effort
with some scaling factor c � 0;while in (6) we have A.i/ 2 Rnx�nx and B.i/ 2 Rnx�nu :

As usual, the Banach space L1�Œt0; tf �;Rn
�

consists of all measurable functions
h W Œt0; tf � ! Rn with

khk1 WD ess sup
t0�t�tf

kh.t/k < 1;

where k � k denotes the Euclidean norm in Rn: For 1 � r < 1 the Banach space
Lr
�
Œt0; tf �;Rn

�
consists of all measurable functions h W Œt0; tf � ! Rn with

khkr WD
�Z tf

t0

kh.t/kr
�1=r

< 1:

For 1 � r � 1 the Banach space W1;r
�
Œt0; tf �;Rn

�
consists of all absolutely

continuous functions h W Œt0; tf � ! Rn with khk1;r WD max
˚khkr; kPhkr

�
< 1:

We emphasize that, due to the structure of the problem, an optimal scheduling
sequence is only obtained, when each robot is moving along its optimal trajectory,
given by the solution of Problem 2. It follows that the lengths of the phases for
each robot, appearing as parameters in the Problem 1, are optimization variables in
Problem 2. This in fact is a bilevel scheduling optimal control problem (BLSOCP),
which can be stated in compact notion as follows:

Minimize max
1�i�N

˚
ti C p.i/1 C p.i/2

�

with respect to ti; p
.i/
1 ; p

.i/
2 2 R; wij 2 f0; 1g subject to (2)–(4) and

. p.i/1 ; p
.i/
2 / 2 argmin

(

p.i/1 C p.i/2 C c

2

Z tiCp
.i/
1 Cp

.i/
2

ti

ku.i/.t/k2dt
ˇ
ˇ
ˇ
ˇ

constraints
(6) � (9) hold

)

for every i; j 2 f1; : : : ;Ng with i < j:
From a historical point of view, this type of problems is closely related to

the economical problem of Stackelberg [24] in the field of game theory. Further
applications can be found in resources and weapons allocation [5, 6], network
design problems [21, 23] and engineering problems. The latter are often modeled
as mathematical programs with equilibrium constraints, see, e.g., [3, 10, 11]. For
a comprehensive treatment of bilevel optimization problems, please refer to [8].
Necessary conditions for a class of bilevel optimal control problems are considered
in [25, 26].

There are basically two main techniques for solving bilevel optimization prob-
lems. The first one keeps the bilevel structure and treats the lower level problem as a
parametric optimization problem (or a black-box), which is being solved by suitable
gradient-type methods whenever the solution algorithm for the upper level problem



Numerical Approaches Towards Bilevel Optimal Control Problems with. . . 209

requires it, see [17, Chapter 7] or [9]. Since the solution of the lower level problem
in general depends in a non-smooth (or even discontinuous) way on the variables
of the upper level problem, gradient-free optimization methods or bundle methods
should be used in this approach.

The second technique, which is frequently used in practice, is based on the
formulation of first order necessary optimality conditions for the lower level
problem. The lower level problem is then replaced by its necessary conditions,
which are considered as constraints in the upper level problem, see, e.g., [1, 18, 19]
or [17, Chapter 5]. This reduces the bilevel problem into a single level nonlinear
optimization problem. The drawback of this method is that in general necessary
conditions are not sufficient for optimality and hence information is lost in the
single level formulation and non-optimal solutions for the bilevel optimization may
be obtained. The approach can be considered as an optimistic approach since the
upper level player can choose among the possible stationary points of the lower
level player the most suitable one.

In this paper, despite its potential drawback, we follow the second approach by
exploiting the local minimum principle from optimal control for Problem 2. Note
that the resulting single level problem is a mixed-integer nonlinear optimization
problem. Finding a global solution is a challenging task. Floudas and Gümüş
[16] proposed a global optimization approach based on the deterministic global
optimization algorithm ˛BB; see [2] for details.

The paper is organized as follows. Section 2 exploits the minimum principle for
the lower level problem and provides a single level reformulation of our bilevel
scheduling optimal control problem. To this end no state or control constraints are
permitted in the lower level problem. In Sect. 3, we recall the Branch and Bound
algorithm, while in Sect. 4 we apply it to the discretized bilevel scheduling optimal
control problem. Sections 5 and 6 deal with numerical results of the state constrained
case.

2 Minimum Principle and Reduction to Single Level Problem

In this section, we recall a local minimum principle from [13, Chapter 3] for
nonlinear optimal control problems and eventually apply it to Problem 2. To this
end, the bilevel scheduling optimal control problem BLSOCP will be reduced to a
single level mixed-integer nonlinear optimization problem.

Let Œt0; tf � � R be a non-empty compact interval with t0 < tf fixed. Let

f0 W Œt0; tf � � Rnx � Rnu ! R f W Œt0; tf � � Rnx � Rnu ! Rnx

g W Œt0; tf � � Rnx � Rnu ! Rng  W Rnx � Rnx ! Rn 
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be continuously differentiable functions and let g be twice continuously differen-
tiable with respect to all arguments. Consider the following generic optimal control
problem:

Problem 3

Minimize
Z tf

t0

f0.t; x.t/; u.t//dt

with respect to x 2 W1;1�Œt0; tf �;Rnx
�
; u 2 L1�Œt0; tf �;Rnu

�
; subject to the

constraints

Px.t/ D f .t; x.t/; u.t// a:e:in .t0; tf / (10)

g.t; x.t/; u.t// � 0Rng a:e:in .t0; tf / (11)

 .x.t0/; x.tf // D 0Rn : (12)

For Problem 3, the augmented Hamilton function OH W Œt0; tf � � Rnx � Rnu � Rnx �
Rng � R ! R is defined by

OH.t; x; u; �; �; �0/ WD �0f0.t; x; u/C �>f .t; x; u/C �>g.t; x; u/: (13)

In a local minimum .x�; u�/ of Problem 3, for notational convenience, we will
use the abbreviations f Œt� WD f .t; x�.t/; u�.t//, f 0

x Œt� WD f 0
x.t; x

�.t/; u�.t//,  0
x0 WD

 0
x0 .x

�.t0/; x�.tf // and in a similar way f 0
uŒt�; gŒt�; g

0
xŒt�; g

0
uŒt�, and  0

xf :

Theorem 1 (see [13, Theorem 3.3.8]) Let the following assumptions hold for
Problem 3:

(i) .x�; u�/ is a local minimum of Problem 3.
(ii) rank

�
g0
uŒt�
� D ng almost everywhere in .t0; tf / and the pseudo-inverse of g0

uŒt�;

g0
uŒt�

C D g0
uŒt�

>�g0
uŒt�g

0
uŒt�

>��1;

is essentially bounded in .t0; tf /:

Then there exist multipliers

�0 2 R; � 2 W1;1�Œt0; tf �;Rnx
�
; � 2 L1�Œt0; tf �;Rng

�
; � 2 Rn 

such that the following conditions hold:

(a) �0 � 0 and .�0; �; �; �/ 6D 0

(b) Adjoint equation: Almost everywhere in .t0; tf / we have

P�.t/ D �rx OH.t; x�.t/; u�.t/; �.t/; �.t/; �0/
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(c) Transversality conditions:

�.t0/
> D ��> 0

x0 ; �.tf /
> D �> 0

xf

(d) Stationarity of the Hamilton function: Almost everywhere in .t0; tf / we have

ru OH.t; x�.t/; u�.t/; �.t/; �.t/; �0/ D 0Rnu

(e) Complementarity condition: For every i D 1; : : : ; ng and almost everywhere
in .t0; tf / we have

�i.t/ � 0Rng and �.t/igiŒt� D 0:

Our goal now is to reduce the bilevel optimal control problem BLSOCP into a
single level problem, by exploiting Theorem 1. We first observe that for each i 2
f1; : : : ;Ng the final time in OCP.ti/ is free and subject to optimization, furthermore
intermediate state constraints are present at time ti C p.i/1 (i.e. equation (8)). We can
transform the problem into a fixed-time optimal control problem, introducing the
transformations t.i/1 W Œ0; 1� ! Œti; ti Cp.i/1 � and t.i/2 W Œ0; 1� ! Œti Cp.i/1 ; ti Cp.i/1 Cp.i/2 �;
defined as

t.i/1 .�/ WD ti C �p.i/1 and t.i/2 .�/ WD ti C p.i/1 C �p.i/2 8 � 2 Œ0; 1�: (14)

By definition t.i/1 and t.i/2 are differentiable, and for every � 2 .0; 1/ we have

dt.i/1 .�/=d� D p.i/1 and dt.i/2 .�/=d� D p.i/2 :

Let us now define for every x.i/ 2 W1;1�Œti; tiCp.i/1 Cp.i/2 �;R
nx
�

and u.i/ 2 L1�Œti; tiC
p.i/1 C p.i/2 �;R

nu
�

the functions

x.i/1 .�/ WD x.i/.t.i/1 .�//; x.i/2 .�/ WD x.i/.t.i/2 .�//;

u.i/1 .�/ WD u.i/.t.i/1 .�//; u.i/2 .�/ WD u.i/.t.i/2 .�//:
(15)

It is easy to check that x.i/1 ; x
.i/
2 2 W1;1�Œ0; 1�;Rnx

�
and u.i/1 ; u

.i/
2 2 L1�Œ0; 1�;Rnu

�
:

In this way, we can prove (see Theorem 2 below) that the bilevel optimal control
problem BLSOCP can be reduced to the following single level mixed-integer
optimal control problem:

Problem 4 Minimize

� (16)
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with respect to ti; p
.i/
1 ; p

.i/
2 2 R; wij 2 f0; 1g; x.i/1 ; x.i/2 2 W1;1�Œ0; 1�;Rnx

�
; �

.i/
x1 ; �

.i/
x2 2

W1;1�Œ0; 1�;Rnx
�

and �.i/p1 ; �
.i/
p2 2 W1;1�Œ0; 1�;R

�
subject to

ti C p.i/1 C p.i/2 � � (17)

ti C p.i/1 � tj � .1 � wij/M; tj C p. j/1 � ti � wijM; ti � 0 (18)

Px.i/k D p.i/k
�
A.i/x.i/k � 1

c
B.i/
�
B.i/
�>
�.i/xk

	
(19)

P�.i/xk D �p.i/k
�
A.i/
�>
�.i/xk (20)

P�.i/pk D �1 � �
�.i/xk

�>�
A.i/x.i/k � 1

2c
B.i/
�
B.i/
�>
�.i/xk

	
(21)

x.i/1 .0/ D x.i/2 .1/ D x.i/0 ; x.i/1 .1/ D x.i/2 .0/; x.i/1 .1/ D xT.t
.i/
1 .1// (22)

�.i/p1 .0/ D �.i/p2 .0/ D �.i/p2 .1/ D 0 (23)

�.i/p1 .1/ D ���.i/x1 .1/� �.i/x2 .0/
	> PxT.t.i/1 .1// (24)

where constraints (17)–(24) hold for almost every � 2 .0; 1/ and every i; j D
1; : : : ;N with i < j:

Theorem 2 Consider the bilevel optimal control problem BLSOCPwith upper level
Problem 1 and lower level Problems 2 with c > 0 for i D 1; : : : ;N: Let a constraint
qualification hold for Problems 2. Then replacing Problems 2 by their necessary
conditions lead to Problem 4.

Remark 2 Please note that Problem 4 is not equivalent to the bilevel problem, since
the latter is nonconvex. Moreover, we assume that the multiplier �0 (related to the
objective function) is not zero. This is justified if a constraint qualification holds,
see, e.g., [13, Lemma 3.3.10].

Proof First, we exploit transformations (14) and (15) in Problems 2 and notice
that the parameters p.i/1 and p.i/2 can be treated as a state variables (i.e. functions in

W1;1.Œ0; 1�;R/) with Pp.i/1 .�/ D 0 D Pp.i/2 .�/ for every � 2 .0; 1/: Hence Problems 2
assume the following transformed form (TLLP):

for each i 2 f1; : : : ;Ng minimize

Z 1

0

p.i/1 .�/
n
1C c

2
k.u.i/1 .�/k2

o
C p.i/2 .�/

n
1C c

2
ku.i/2 .�/k2

o
d� (25)
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with respect to x.i/1 ; x
.i/
2 2 W1;1�Œ0; 1�;Rnx

�
; p.i/1 ; p

.i/
2 2 W1;1�Œ0; 1�;R

�
and

u.i/1 ; u
.i/
2 2 L1�Œ0; 1�;Rnu

�
subject to

Px.i/k .�/ D p.i/k
�
A.i/x.i/k .�/C B.i/u.i/k .�/

	
a:e:in .0; 1/; k D 1; 2 (26)

Pp.i/k .�/ D 0 a:e:in .0; 1/; k D 1; 2 (27)

x.i/1 .0/� x.i/0 D 0Rnx ; x.i/1 .1/� x.i/2 .0/ D 0Rnx (28)

x.i/1 .1/� xT.ti C p.i/1 / D 0Rnx x.i/2 .1/� x.i/0 D 0Rnx : (29)

For simplicity, we will omit the dependency of the variables from �: Our goal
now is to transform TLLP into a boundary value problem, exploiting Theorem 1.
Let �.i/x1 ; �

.i/
x2 2 W1;1�Œ0; 1�;Rnx

�
; �

.i/
p1 ; �

.i/
p2 2 W1;1�Œ0; 1�;R

�
and � 2 R4nx be

the multipliers defined in Theorem 1. We observe that the augmented Hamilton
function, related to TLLP is defined as:

OH.i/Œ� � WD OH.i/.�; x.i/1 ; x
.i/
2 ; p

.i/
1 ; p

.i/
2 ; u

.i/
1 ; u

.i/
2 ; �

.i/
x1 ; �

.i/
x2 /

D p.i/1

n
1C c

2
ku.i/1 k2

o
C p.i/2

n
1C c

2
ku.i/2 k2

o

C �
�.i/x1

�>n
p.i/1
�
A.i/x.i/1 C B.i/u.i/1

	oC �
�.i/x2

�>n
p.i/2
�
A.i/x.i/2 C B.i/u.i/2

	o
:

Note that in the formulation of the Hamilton function, we have assumed that �0 6D 0:

In this way, we can omit it, dividing the other multipliers by �0:
Stationarity of the Hamilton function, ruk

OH.i/ D 0Rnu ; implies

p.i/k cu.i/k C p.i/k
�
B.i/
�>
�.i/xk D 0Rnu a:e:in .0; 1/; k D 1; 2

and thus, assuming p.i/k 6D 0 and c 6D 0

u.i/k .�/ D �1
c

�
B.i/
�>
�.i/xk a:e:in .0; 1/; k D 1; 2: (30)

This provides an analytic expression for the controls u.i/1 ; u
.i/
2 involved in TLLP.

Note that in (30), we have assumed that p.i/k 6D 0; which makes sense, since p.i/k D 0

corresponds to the degenerate case in which x.i/0 D xT.ti/ (i.e. i-th robot’s starting
position is exactly the same as target’s position at time ti). By substituting the
expressions of u.i/1 and u.i/2 from (30) in (26), we obtain (19).
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Let us now derive the adjoint equations (20). For k D 1; 2 we have

P�.i/xk .�/ D �rxk
OH.i/Œ� � D �p.i/k

�
A.i/
�>
�.i/xk ;

P�.i/pk .�/ D �rpk
OH.i/Œ� � D �1 � c

2
k.u.i/k k2 � �

�.i/xk

�>�
A.i/x.i/k C B.i/u.i/k

	

D �1 � �
�.i/xk

�>�
A.i/x.i/k � 1

2c
B.i/
�
B.i/
�>
�.i/xk

	
(31)

almost everywhere in .0; 1/: Note that in (31), we substituted the control u.i/k with
its expression, given by Eq. (30).

Finally, we derive the boundary conditions (23)–(24). Let us define the function
 W R2�nx � R2 � R2�nx � R2 ! R4nx as

 .x.i/1 .0/; x
.i/
2 .0/; p

.i/
1 .1/; p

.i/
2 .1/; x

.i/
1 .1/; x

.i/
2 .1/; p

.i/
1 .1/; p

.i/
2 .1//

WD

2

6
6
6
4

x.i/1 .0/� x.i/0
x.i/1 .1/� x.i/2 .0/

x.i/1 .1/� xT.ti C p.i/1 /

x.i/2 .1/� x.i/0

3

7
7
7
5
:

By the transversality conditions with �.i/ D �
�
.i/
1 ; �

.i/
2 ; �

.i/
3 ; �

.i/
4

�>
where �.i/k 2 Rnx

for k D 1; : : : ; 4; we have

�.i/x1 .0/ D ���.i/�> 0
x
.i/
1 .0/

D ��.i/1 ; �.i/x2 .0/ D ���.i/�> 0
x
.i/
2 .0/

D �
.i/
2 (32)

�.i/p1 .0/ D ���.i/�> 0
p
.i/
1 .0/

D 0; �.i/p2 .0/ D ���.i/�> 0
p
.i/
2 .0/

D 0 (33)

and

�.i/x1 .1/ D �
�.i/

�>
 0
x
.i/
1 .1/

D �
.i/
2 C �

.i/
3 ; �.i/x2 .1/ D �

�.i/
�>
 0
x
.i/
2 .1/

D �
.i/
4

(34)

�.i/p1 .1/ D �
�.i/

�>
 0
p
.i/
1 .1/

D ��.i/T3 PxT.t.i/1 .1//; �.i/p2 .1/ D �
�.i/

�>
 0
p
.i/
2 .1/

D 0: (35)

Boundary conditions (23) are given by (33) and the second equation in (35). Finally,
from (32) and (34), it follows that �.i/3 D �

.i/
x1 .1/ � �

.i/
x2 .0/: Substituting its value

in (35), we obtain

�.i/p1 .1/ D ���.i/x1 .1/� �.i/x2 .0/
�>PxT.ti C p.i/1 .1//

and thus Eq. (24).
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3 Branch and Bound

In the previous section, we saw how the bilevel optimal control problem can be
transformed into a single level optimal control problem, involving binary variables
wij. In this section, we present a technique for solving Problem 4 numerically. It is
based on the approximation of the original infinite dimensional problem by a finite
dimensional one.

For the sake of simplicity, we restrict ourselves to the simplest discretization
method: Euler’s method on an equidistant grid

GI WD ˚
kh
ˇ
ˇ k D 0; : : : ; I

�

with I 2 N and step-size h D 1=I: The discretization of the states and

multipliers of Problem 4 on GI is given by x.i/k WD �
x.i/k;0; : : : ; x

.i/
k;I

�> 2 R.IC1/nx ;
�
.i/
xk WD �

�
.i/
xk;0
; : : : ; �

.i/
xk;I

�> 2 R.IC1/nx and �.i/pk WD �
�
.i/
pk;0
; : : : ; �

.i/
pk ;I

�> 2 R.IC1/:
Discretization of the dynamics (19)–(21) of Problem 4 by Euler’s method yields

x.i/k;mC1 D x.i/k;m C h
n
p.i/k
�
A.i/x.i/k;m � 1

c
B.i/
�
B.i/
�>
�.i/xk;m

	o

�
.i/
xk;mC1 D �.i/xk;m C h

n
� p.i/k

�
A.i/
�>
�.i/xk;m

o

�
.i/
pk;mC1 D �.i/pk;m C h

n
� 1 � �.i/xk;m

h
A.i/x.i/k;m � 1

2c
B.i/
�
B.i/
�>
�.i/xk;m

io

for k D 1; 2 and m D 0; : : : ; I � 1: The boundary conditions (22)–(24) read as
follows:

x.i/1;0 D x.i/0 ; x.i/2;I D x.i/0

x.i/1;I D x.i/2;0; x.i/1;I D xT.ti C p.i/1 /

�
.i/
p1;0

D 0; �
.i/
p2;0

D 0

�
.i/
p1;I

D ���.i/x1;I � �
.i/
x2;0

�> PxT.ti C p.i/1 /; �
.i/
p2;I

D 0:

The rest of Problem 4 remains the same.
Note that after discretization, Problem 4 becomes a finite dimensional mixed-

integer nonlinear optimization problem, which can be written in the following
compact form (MINLP):

Minimize F. y/
s:t: G. y;w/ � 0; H. y/ D 0

y 2 Rny ; w 2 f0; 1gnw
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where y WD .�; ti; p
.i/
k ; x

.i/
k;m; �

.i/
xk;m; �

.i/
pk ;m/; w D .wij j i; j 2 f1; : : : ;Ng; i < j/; ny D

1C 3 � N C 4 � N � I � nx C 2 � N � I and nw D N � .N � 1/=2: Furthermore F. y/ WD �

and the functions G and H are defined as

G. y;w/ WD

2

6
6
6
4

ti C p.i/1 C p.i/2 � �
�ti

ti C p.i/1 � tj � .1 � wij/M

tj C p. j/1 � ti � wijM

3

7
7
7
5

(36)

and

H. y/ WD

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

x.i/k;mC1 � x.i/k;m � h
n
p.i/k
�
A.i/x.i/k;m � 1

cB
.i/
�
B.i/
�>
�
.i/
xk;m
	o

�
.i/
xk;mC1 � �

.i/
xk;m C hp.i/k

�
A.i/
�>
�
.i/
xk;m

�
.i/
pk;mC1 � �.i/pk;m � h

n
1C �

.i/
xk;m
�
A.i/x.i/k;m � 1

2cB
.i/
�
B.i/
�>
�
.i/
xk;m
	o

x.i/1;0 � x.i/0
x.i/2;I � x.i/0
x.i/1;I � x.i/2;0

x.i/1;I � xT.ti C p.i/1 /

�
.i/
p1;0

�
.i/
p2;0

�
.i/
p1;I

C �
�
.i/
x1;I

� �
.i/
x2;0

	> PxT.ti C p.i/1 /

�
.i/
p2;I

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

(37)

where the expressions in (36) hold for i; j 2 f1; : : : ;Ng with i < j; while the
expressions in (37) hold for i 2 f1; : : : ;Ng; k 2 f1; 2g and m 2 f0; : : : ; I � 1g:

The presence of the binary vector w makes the problem NP-hard, furthermore
no gradient based method can be applied directly to the problem. Schittkowski et
al. [4] proposed a mixed-integer SQP algorithm for solving nonlinear mixed-integer
mathematical programs, nevertheless their method applies to problems, in which
the integer variable is not “categorical”, i.e. small changes between different integer
values does not affect significantly the model. This does not apply in our case.

Our approach for solving MINLP is based on the Branch and Bound Algorithm 1
in [12]. It is a tree-search algorithm, combined with a rule for pruning sub-trees. At
each node of the tree, a continuous relaxation of the initial mixed-integer problem
has to be solved. In case the optimal solution of the relaxed problem turns out to
be feasible for MINLP, its objective function value provides an upper bound for
the optimal objective function value of MINLP and the node is explored. Usually,
the relaxed problem does not have an integer solution. In this case, the optimal
objective function value serves as lower bound for the sub-tree emanating from the
current node. If the optimal objective function value is less than the upper bound
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provided by the best solution found so far, then all successors of the current node are
generated by adding additional constraints (branching). Afterwards, all successors
have to be investigated. If at some node the relaxed problem has an optimal objective
function value, which is greater or equal to the upper bound, provided by the best
solution found so far, then this node needs not to be explored any further and the
sub-tree can be pruned, since the optimal objective function values of all nodes in
the sub-tree are greater or equal to the value of the current node.

We now investigate how a relaxation of MINLP is done. Given the vectors 0 �
w � w � 1 with w;w 2 f0; 1gnw; let W.w;w/ D ˚

w 2 Rnw
ˇ
ˇ w � w � w

�
and let

NLP.w;w/ denotes the continuous nonlinear optimization problem

Minimize F. y/
s:t: G. y;w/ � 0; H. y/ D 0

y 2 Rny ; w 2 W.w;w/:

Note that f0; 1gnw � W.0; 1/ and W.0; 1/ is called a relaxation of f0; 1gnw:
Correspondingly, NLP.w;w/ is called a relaxation of MINLP. Since the admissible
set of the relaxation is larger than the one of MINLP, the optimal objective function
value of the relaxed problem provides a lower bound for the optimal objective
function value of MINLP.

Let us focus now on how to create new nodes. This is done by the following:

Branching Rule
Let the problem NLP.w;w/ with w D .w1; : : : ;wnw

/> 2 f0; 1gnw;
w D .w1; : : : ;wnw/

> 2 f0; 1gnw; 0 � w � w � 1; w 6D w be given. Let . y�;w�/
be an optimal solution of NLP.w;w/ such that w� is not integral, i.e. w� … f0; 1gnw:
Then, branching consists of the following steps

1. Determine some index k; such that wk < w�
k < wk: The choice of k can be done

in several ways: first/last non-integer value of w�; maximum/minimum distance
of w�

k to an integer.
2. Create two new subproblems NLP.w.1/;w.1// and NLP.w.2/;w.2// with

w.1/i D wi; w.1/i D
(
wi; if i 6D k;

0; if i D k;
i D 1; : : : ; nw;

w.2/i D
(
wi; if i 6D k;

1; if i D k;
w.2/i D wi; i D 1; : : : ; nw:

A recursive application of the branching rule starting with NLP.0; 1/ generates a
finite tree structure. Each node of the tree corresponds to a continuous nonlinear pro-
gramming problem NLP.w;w/. Each edge corresponds to imposing one additional
constraint.
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Following Leyffer [22], a node NLP.w;w/ is explored or fathomed, i.e. no further
branching has to be done, if one of the following events occur:

• NLP.w;w/ is infeasible. This implies that all nodes of the subtree are infeasible
as well.

• NLP.w;w/ has an integral solution. The corresponding optimal objective func-
tion value serves as an upper bound for MINLP.

• The optimal objective function value of NLP.w;w/ is greater than or equal to
the upper bound found so far. Due to the branching rule, the optimal objective
function values are monotonically non-decreasing for the nodes of the subtree
and thus, the subtree can be pruned.

In addition, we need a rule to traverse the tree. In this article, the depth-first approach
is adopted, in this way a feasible solution for MINLP and hence an upper bound is
computed as soon as possible. Alternative strategies are breadth-first search or some
problem-specific search strategies.

Note that Algorithm 1 requires to solve the sub-problems to global optimality.
This is a difficult task in its own and could be achieved by using convex under-
estimators, which, however, are difficult to obtain for our problems. Hence, in

Algorithm 1: Branch and Bound algorithm

1: Let Fu be an upper bound for the optimal objective function value of MINLP (if none
is known, let Fu D C1)

2: Let the root of the tree NLP.0; 1/ be active
3: while (there are active nodes) do
4: Select an active node NLP.w;w/
5: Solve NLP.w;w/ (if possible) and let . y�;w�/ be an optimal solution and F� D

F. y�;w�/ be the optimal objective function value of NLP.w;w/
6: if (infeasible) then
7: Mark node as explored
8: end if
9: if (w� 2 f0; 1gnw ) then

10: if (F� < Fu) then
11: Save . y�;w�/ as best solution and set Fu D F�

12: end if
13: Mark node as explored
14: end if
15: if (F� � Fu) then
16: Mark node as explored
17: end if
18: if (F� < Fu) then
19: Apply branching rule, mark all successors as active and mark current node as

inactive
20: end if
21: end while
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our computational studies we only considered local minima facing the danger that
optimal solutions are pruned falsely. Nevertheless, since the combinatorial effort
in our case studies is not high, we crosschecked the results by enumeration of
all possible combinations. The rigorous construction of convex underestimators
remains as a task for future research.

4 Unconstrained Test Problem

In order to test Algorithm 1, applied to Problem 4, we consider a simple scheduling
problem, involving N D 3 robots moving in the two dimensional plane. Denoting
with .x.i/1 ; x

.i/
2 / the position of the i-th robot in the plane, its dynamics is given by

Px.i/1 .t/ D x.i/3 .t/ a:e:in .ti; ti C p.i/1 C p.i/2 /

Px.i/2 .t/ D x.i/4 .t/ a:e:in .ti; ti C p.i/1 C p.i/2 /

Px.i/3 .t/ D u.i/1 .t/ a:e:in .ti; ti C p.i/1 C p.i/2 /

Px.i/4 .t/ D u.i/2 .t/ a:e:in .ti; ti C p.i/1 C p.i/2 /

with starting positions x.1/0 D .4; 0/>; x.2/0 D .0; 4/> and x.3/0 D .�4; 0/>
respectively. Finally, we assume that the target robot is moving along a circle
centered in the origin with radius R D 2 [m] and speed v D 1:4 [m/s]. Thus, its

position at any instance t is given by xT.t/ D �
R � cos.v=R � t/;R � sin.v=R � t/�>:

We solve the previously described problem with c D 0:1; M D 1000 and I D 25

in the following way:

• Algorithm 1 handles the tree structure of the problem
• At each node of the tree, the relaxed problem is solved by the optimal control

package OCPID-DAE1, publicly available at http://www.optimal-control.de

The optimal scheduling of the robots is .1/ < .2/ < .3/ with starting times
t1 D 0:00; t2 D 1:46; t3 D 2:75 and phase durations p.1/ D Œ1:46; 2:49�; p.2/ D
Œ1:29; 1:94� and p.3/ D Œ1:70; 1:62�:We can observe that p.i/1 < p.i/2 for i D 1; 2while

p.3/1 > p.3/2 : This is reasonable, since p.1/2 and p.2/2 do not influence the objective

function, while p.3/2 does (being .3/ the last scheduled robot).
The necessary time for solving the problem was 3:804 s (running on 2:4GHz

Intel Core i7 with 8GB RAM). Figure 1 shows the .x1; x2/-positions of the robots
in the plane as well as the controls of the three robots.

http://www.optimal-control.de
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5 Control and State Constrained Problem

In the previous sections, we imposed no control or state constraints on Problem 2,
mainly due to the sake of simplicity. In fact, the presence of constraints leads to
complementarity conditions, stated in Theorem 1, which are hard to solve numer-
ically. Nevertheless, it is often necessary to impose constraints due to structural or
safety reasons. In many cases, pure state constraints (i.e. constraints involving only
the states of the problem) have to be considered, for instance if an obstacle has to be
avoided or the speed has to be kept in a certain range. The main drawback of pure
state constraints is that the multiplier � in Theorem 1 loses its regularity. In fact, it
can be proven (see [13, Section 3.2]) that � is a function of bounded variation and
the adjoint equations can only be written in an integral form, involving Riemann-
Stieltjes integrals (see [13, p.64–66] for details). From a numerical point of view,
this causes several difficulties, since efficient numerical schemes are required to
handle the Riemann-Stieltjes integrals properly.

To overcome these difficulties, in this paper we adopt the concept of virtual
control, introduced in [7, Chapter 4], [20] for optimal control problems subject to
an elliptic partial differential equation. The idea is to embed the optimal control
problem subject to pure state constraints into a family of optimal control problems
subject to mixed control-state constraints using a regularization parameter ˛ > 0:

For linear quadratic optimal control problems, it has been proven in [14] that the
optimal solution of the regularized problem converges to the optimal solution of the
pure state constrained problem in L2 norm, as ˛ tends to zero. For general nonlinear
optimal control problems, the convergence of the regularized solution is still an open
problem, but its formal proof is beyond the scope of this paper. Nevertheless the
numerical simulations in the next section suggest that the results obtained from [14]
can be extended to general nonlinear optimal control problem.

Let the pure state constraint

g.i/.t; x.i/.t// � 0Rng

with a twice continuously differentiable function g.i/ W Œti; tiCp.i/1 Cp.i/2 ��Rnx ! Rng

be given. Using artificial control vectors v.i/k 2 L1�Œ0; 1�;Rng
�

(called virtual
controls) with i D 1 : : : ;N; k D 1; 2, and a regularization parameter ˛ > 0,
the virtual control concept embeds the pure state constraint into a family of mixed
control constraints

g.i/.t.i/k .�/; x
.i/
k .�//� ˛v

.i/
k .�/ � 0Rng (38)

where t.i/k is the time transformation, defined in (14), while x.i/k is defined in (15).
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Moreover, an additional penalty term 1
2

R 1
0

kv.i/k .�/k2d� is added to the objective

function in order to drive v.i/k to zero as ˛ tends to zero. Using this virtual control
concept and the transformations (14) and (15), we obtain a scaled, constrained
version of Problems 2 with a mixed control state constraint for ˛ > 0:

Problem 5 Minimize

Z 1

0

p.i/1

n
1C c

2
ku.i/1 k2

o
C p.i/2

n
1C c

2
ku.i/2 k2

o
C 1

2

n
kv.i/1 k2 C kv.i/2 k2

o
d� (39)

with respect to x.i/1 ; x
.i/
2 2 W1;1�Œ0; 1�;Rnx

�
; p.i/1 ; p

.i/
2 2 R; u.i/1 ; u

.i/
2 2

L1�Œ0; 1�;Rnu
�
, and v.i/1 ; v

.i/
2 2 L1�Œ0; 1�;Rng

�
; subject to

Px.i/k D p.i/k
�
A.i/x.i/k C B.i/u.i/k

�
a:e: � 2 Œ0; 1� (40)

g.i/.t.i/k ; x
.i/
k /� ˛v

.i/
k � 0Rng a:e: � 2 Œ0; 1� (41)

x.i/1 .0/� x.i/0 D 0Rnx (42)

x.i/1 .1/� x.i/2 .0/ D 0Rnx (43)

x.i/1 .1/� xT.ti C p.i/1 .1// D 0Rnx (44)

x.i/2 .1/� x.i/0 D 0Rnx : (45)

Remark 3 Note that in order to obtain Problem 5, we have first exploited transfor-
mations (14) and (15) and then introduced the virtual control regularization (38).
This leads to a slightly simpler formulation of the adjoint equations in Theorem 3
compared to those which we would have obtained if the virtual control regulariza-
tion would have been applied prior to the time transformation.

We can now state a result similar to Theorem 2 for the constrained Problem 5.

Theorem 3 Consider the bilevel optimal control problem BLSOCPwith upper level
Problem 1 and lower level Problems 5 with c; ˛ > 0 for i D 1; : : : ;N: Let a
constraint qualification hold for Problems 5. Then, the corresponding single level
problem, which is obtained by replacing Problems 5 by their necessary conditions,
is the following mixed-integer optimal control problem:

Problem 6 Minimize

� (46)
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with respect to ti; p
.i/
1 ; p

.i/
2 2 R; wij 2 f0; 1g; x.i/1 ; x.i/2 2 W1;1�Œ0; 1�;Rnx

�
; �

.i/
x1 ; �

.i/
x2 2

W1;1�Œ0; 1�;Rnx
�
; �

.i/
p1 ; �

.i/
p2 2 W1;1�Œ0; 1�;R

�
and

�
.i/
1 ; �

.i/
2 2 L1�Œ0; 1�;Rng

�
for i; j 2 f1; : : : ;Ng with i < j; subject to

ti C p.i/1 C p.i/2 � � (47)

ti C p.i/1 � tj � .1 � wij/M; tj C p. j/1 � ti � wijM; ti � 0 (48)

Px.i/k D p.i/k
�
A.i/x.i/k � 1

c
B.i/

�
B.i/
�>
�.i/xk

	
(49)

P�.i/xk D �p.i/k
�
A.i/
�>
�.i/xk � rxg

.i/.t.i/k ; x
.i/
k /

>�.i/k (50)

P�.i/pk D �1 � �
�.i/xk

�>�
A.i/x.i/k � 1

2c
B.i/
�
B.i/
�>
�.i/xk

	

� ���.i/k
�>rtg

.i/.t.i/k ; x
.i/
k / � ık1

�
�
.i/
2

�>rtg
.i/.t.i/2 ; x

.i/
2 / (51)

�
.i/
k � 0;

�
�
.i/
k

�>�
g.i/ � ˛2�

.i/
k

	 D 0; g.i/ � ˛2�
.i/
k � 0 (52)

x.i/1 .0/ D x.i/2 .1/ D x.i/0 ; x.i/1 .1/ D x.i/2 .0/; x.i/1 .1/ D xT.t
.i/
1 .1// (53)

�.i/p1 .0/ D �.i/p2 .0/ D �.i/p2 .1/ D 0 (54)

�.i/p1 .1/ D ���.i/x1 .1/� �.i/x2 .0/
�> PxT.t.i/1 .1//: (55)

Proof Let �.i/x1 ; �
.i/
x2 2 W1;1�Œ0; 1�;Rnx

�
; �

.i/
p1 ; �

.i/
p2 2 W1;1�Œ0; 1�;R

�
; �

.i/
1 ; �

.i/
2 2

L1�Œ0; 1�;Rng
�

and �.i/ 2 R4nx be the multipliers defined in Theorem 1, related to
Problem 5. The Hamilton function reads

OH.i/
˛ Œ�� WD OH.i/

˛ .�; x
.i/
1 ; x

.i/
2 ; p

.i/
1 ; p

.i/
2 ; u

.i/
1 ; u

.i/
2 ; v

.i/
1 ; v

.i/
2 ; �

.i/
x1 ; �

.i/
x2 �

.i/
1 ; �

.i/
2 /

D p.i/1

n
1C c

2
ku.i/1 k2

o
C p.i/2

n
1C c

2
ku.i/2 k2

o
C 1

2

n
kv.i/1 k2 C kv.i/2 k2

o

C �
�.i/x1

�>n
p.i/1
�
A.i/x.i/1 C B.i/u.i/1

	oC �
�.i/x2

�>n
p.i/2
�
A.i/x.i/2 C B.i/u.i/2

	o

C �
�
.i/
1

�>n
g.i/.t.i/1 ; x

.i/
1 /� ˛v

.i/
1

o
C �

�
.i/
2

�>n
g.i/.t.i/2 ; x

.i/
2 /� ˛v.i/2

o
:

From the stationarity of the Hamilton function, we have

u.i/k D �1
c

�
B.i/
�>
�.i/xk a:e: � 2 Œ0; 1�; k D 1; 2 (56)
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(see proof of Theorem 2 for details). Furthermore 0 D rvk
OH˛ implies v.i/k �˛�.i/k D

0Rng and thus

v
.i/
k D ˛�

.i/
k a:e: � 2 Œ0; 1�; k D 1; 2: (57)

By substituting the control function value u.i/k from (56) in (40), we obtain (49).
Let us know derive the adjoint equations (50)–(51). For k D 1; 2 from Theorem 1,
we have

P�.i/xk D �rxk
OH.i/
˛ D �p.i/k

�
A.i/
�>
�.i/xk � rxg

.i/.t.i/k ; x
.i/
k /

>�.i/k

and, recalling that t.i/1 .�/ D ti C �p.i/1 and t.i/2 .�/ D ti C p.i/1 C �p.i/2 ;

P�.i/pk D �rpk
OH.i/
˛ D �1 � c

2
ku.i/k k2 � �

�.i/xk

�>�
A.i/x.i/k C B.i/u.i/k

	

� ���.i/k
�>rtg

.i/.t.i/k ; x
.i/
k / � ık1

�
�
.i/
2

�>rtg
.i/.t.i/2 ; x

.i/
2 /

D �1 � �
�.i/xk

�>�
A.i/x.i/k � 1

2c
B.i/
�
B.i/
�>
�.i/xk

	

� ���.i/k
�>rtg

.i/.t.i/k ; x
.i/
k / � ık1

�
�
.i/
2

�>rtg
.i/.t.i/2 ; x

.i/
2 / (58)

which are exactly Eqs. (50)–(51). Note that in (58), we have substituted u.i/k and v.i/k
with their analytical expression from equation (56) and (57). The complementarity
conditions in Theorem 1 read as

�
.i/
k � 0Rng ; g.i/ � ˛v

.i/
k � 0Rng ;

�
�
.i/
k

�>�
g.i/ � ˛v.i/k

� D 0

almost everywhere in Œ0; 1�: Introducing v.i/k from (57) yields (52).
Finally, Eqs. (53)–(55) can be derived in the same way as in Theorem 2.
Problem 6 is a mixed-integer dynamic optimization problem with complemen-

tarity constraints. The presence of the complementarity constraints in (52) causes
standard constraint qualifications to fail and a straightforward application of the
Branch & Bound method to the discretized problem will cause numerical difficulties
in solving the relaxed optimization problems, which will be MPCCs (mathematical
programs with complementarity constraints). There are several ways to address
MPCCs, e.g. by relaxation or penalization. Any of these approaches would be
feasible. In our numerical studies, the best performance was obtained by applying
the Lipschitz-continuous Fischer-Burmeister function

˚FB.a; b/ WD
p
a2 C b2 � a � b .a; b 2 R/ (59)
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componentwise to the complementarity constraints (52). The Fischer-Burmeister
function has the property that ˚FB.a; b/ D 0 holds, if and only if the complemen-
tarity conditions a; b � 0 and ab D 0 hold. To this end, (52) can be replaced by the
equality constraints

˚FB
�
�g.i/j C ˛2�

.i/
k;j; �

.i/
k;j


D 0Rng ; j D 1; : : : ; ng

that have to hold almost everywhere in .0; 1/.

6 Constrained Test Problem

Let us consider the same scheduling problem, already stated in Sect. 4 with addi-
tional obstacle avoidance constraints. For simplicity, we assume that the obstacle is
a circular body with center .xo; yo/ and radius ro: In order to have no collision with
it, the following constraints have to be imposed on each robot:

r2o � �x.i/1 .t/� xo
�2 � �x.i/2 .t/� yo

�2 � 0 8 t 2 Œti; ti C p.i/1 C p.2/2 �; i D 1; : : : ;N

Thus, we obtain a bilevel optimization problem, where the lower level problem has
pure state constraints. By exploiting Theorem 3, we can obtain a mixed-integer
optimal control problem, with relaxation parameter ˛ > 0; and c D 0:1 which
has to be solved at each iteration of Algorithm 1. For this numerical test, we chose
˛ D 10�6:

The starting positions of the three robots are the same as for the unconstrained
problem (i.e. x.1/ D Œ4; 0�; x.2/ D Œ0; 4� and x.3/ D Œ�4; 0�), the target moves
along the same trajectory, while the obstacle has been placed along the target’s
trajectory (.xo; yo/ D Œ�2; 0� with ro D 1), hence no interactions are allowed
inside the circle. The optimal solution provides the same scheduling as for the
unconstrained problem: .1/ < .2/ < .3/; with starting times t1 D 0:44; t2 D
2:34; t3 D 3:75 and phase durations p.1/ D Œ1:73; 2:75�; p.2/ D Œ1:40; 2:27� and
p.3/ D Œ1:48; 3:18�: We observe that the second robot interacts with the target just
before it enters the obstacle area, while the third robot interacts with the target as
soon as it leaves the obstacle area. We believe this is the reason for the starting
delay (t1 D 0:44 > 0). The running time of the whole optimization procedure was
683 seconds, significantly greater than the unconstrained one (due to the presence
of state constraints, which increase significantly the dimensions of the discretized
problem).

Figure 2 shows the .x1; x2/-positions of the robots in the plane as well as the
controls of the three robots.
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7 Conclusions and Outlook

The paper investigates a class of bilevel optimization problems with a scheduling
problem at the upper level and a control and state constrained optimal control
problem at the lower level. The lower level problem is replaced by its necessary
optimality conditions using a virtual control relaxation method and the resulting
mixed-integer nonlinear program is then solved by a Branch & Bound method.
Two simple numerical examples illustrate the performance of the method. With
the presented approach, which has to be considered as a first step towards efficient
solution techniques for the class of bilevel scheduling optimal control problems, it
is in principle possible to consider more complex dynamics and more complex state
constraints. Even more complex obstacle shapes can be handled as described in [15].
These extensions, which are imperative for practically relevant problem settings, of
course add another level of complexity and much higher CPU times and robustness
issues can be expected. To overcome these issues, further research addressing
robustness, efficiency, and structure exploitation of the methods is necessary. On a
theoretical level, the construction of convex underestimators in the Branch & Bound
method is an open and challenging task. Moreover, alternative approaches such as
the previously mentioned black-box approach or an approach using value functions
for the lower level problem have to be investigated.
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Math-Based Algorithms and Software
for Virtual Product Realization Implemented
in Automotive Paint Shops

Fredrik Edelvik, Andreas Mark, Niklas Karlsson, Tomas Johnson,
and Johan S. Carlson

Abstract We present a simulation framework that makes it possible to accurately
simulate spray painting of e.g. a truck cab in only a few hours on a standard
computer. This is an extreme improvement compared to earlier approaches that
require weeks of simulation time. Unique algorithms for coupled simulations of
air flows, electrostatic fields and charged paint particles make this possible. In
addition, we demonstrate that the same framework can be used to efficiently
simulate the laydown of sealing or adhesive material. In the virtual paint factory the
production preparation process can be performed in the computer, which allows the
engineers to replace physical prototypes with virtual ones to shorten the lead time in
product development, and avoid future unforeseen technological and environmental
problems that can be extremely costly if they are discovered at the end of the
production line, or even worse by the costumer.

1 Introduction

Today, the margins of automotive manufacturers are moderate and competition is
fierce. The industry furthermore faces shifts of paradigms regarding propulsion as
well as styling, with environmental requirements ever-present. Effective product
realization response is thus important. The rapid increase in computational power
has made virtual tools an integrated part of the development of products and
processes. Virtual prototyping stimulates industrial innovation and simulations offer
an alternative to measurements, when these are too expensive or even impossible to
perform. Furthermore, the risk for unforeseen costs and quality problems is reduced
through the possibility to perform analyses and optimization in the early stages of
product development. Today, although most development is done virtually, design
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decisions are still based on experience rather than mathematical analysis. In this
chapter the focus is on paint and surface treatment processes in automotive paint
shops, in earlier works we have shown many examples of the power of mathematics
for virtual product realization in production planning and robot lines [1, 5, 19, 20].

The surface treatment is the process in an automotive factory that consumes most
energy, water and chemicals, and produces most waste and pollution. Roughly 40%
of the energy in major OEM operations is used in the paint shop with an average
consumption of 700–900 kWh per car body. Within the paint shop the dominating
energy cost is the ventilation and heating of the air in the booth (50%) followed by
the ovens (25%). The CO2 emissions from a modern paint shop (BMW Shenyang)
are around 140 kg/car, and considerably higher in older paint shops. The solvent
based automotive paint is a major source of man-made volatile organic components
(VOCs) and hazardous air pollutants including toluene, xylene, methyl ethyl ketone,
and ethyl benzene, that may have long-term health effects and cause harm to the
environment such as increasing the ozone concentration in the lower atmosphere.
The length of a coating line from the body-in-white shop to the final assembly is
usually between two and three kilometers. Roughly 60 cars are coated per hour and
the dwell time in the paint shop is about 8–11 h [21]. This means that the paint
shop not only has a large environmental impact it is also a bottleneck in production.
On the other hand, due to its great complexity the painting process offers many
approaches to improve the use of energy, material and reduce emissions that in turn
have direct impact on sustainable automotive production.

Virtual tools are frequently used to support an effective product and production
realization in other parts of the automotive factory, but that is not the case in
the paint shop. In the paint shop the product preparation, when robot paths and
process parameters are fine-tuned, is a slow and costly trial-and-error procedure,
where a large number of prototypes are painted, washed and painted again etc.
There is therefore a great need to improve the product preparation process and
this is absolutely necessary to meet the future demands on fast adaption and
tailored solutions for new material combinations and products. The possibility to
perform systematic simulations is then essential and would contribute to sustainable
production by reducing the number of prototypes that needs to be painted, and
by making it possible to optimize the processes with respect to quality, cost
and environmental impact. However, the surface treatment processes pose great
challenges for mathematical modeling and simulation.

In this chapter we focus on spray painting and sealing. Although a few attempts
have been made to simulate spray painting [2–4, 7, 8, 27] the simulation times were
prohibitively long for the tools to be industrially useful and a systematic validation
for realistic geometries was missing. In [12] we presented a novel framework that
allows for accurate simulations of spray painting of a car in just a few hours
on a standard computer. To achieve this, novel algorithms were developed for
coupled simulations of air flow, electromagnetic fields, and charged paint droplets.
Particularly important for the computational efficiency is the Navier-Stokes solver.
Unique, immersed boundary methods are used to model the presence of objects in
the fluid and they are combined with an adaptive Cartesian octree grid [10–13].
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This enables modeling of moving objects at virtually no additional computational
cost, and greatly simplifies preprocessing by avoiding the cumbersome generation
of a body-conforming mesh. To validate the simulation framework, an extensive
measurement campaign, including painting of plates and two car fenders for
different process conditions and robot paths, was performed [12].

For the sealing application we first investigated an approach based on smoothed
particle hydrodynamics (SPH) [17]. The advantage with SPH is that non-Newtonian
fluids and free surface flow can be easily handled. The results showed a good
agreement with experiments for laydown simulation with a hollow-cone nozzle
but the approach suffered from long simulation times, mainly due to the fact that
very short time steps were required to handle when the material collides with the
target surface. Therefore, we shifted focus to the volume of fluid (VOF) method
and developed a novel method that avoids the commonly used under relaxation and
therefore can use a larger time step. In [14] the resulting width, thickness and shape
of applied material on test plates as a function of time and spraying distance were
compared to experiments with excellent agreement.

The outline of the rest of the chapter is as follows: in the next section the different
paint shop processes and their mathematical challenges are described with focus on
spray painting and sealing. In Sect. 3 we present the simulation framework which
in Sect. 4 is validated with measurements for spray painting of a truck cab and the
laydown of sealing material on a car. Finally, the last section summarizes the chapter
and future work is discussed.

2 The Paint Shop Processes

The manufacturing process in an automotive paint shop is a process chain consisting
of several different coating processes, see Fig. 1. In the pretreatment pollutants are
removed from the body and the purpose is also to increase the adhesiveness of the

Assembly line

Oven Sanding Oven

Sealing

CleaningSanding

Body shop PretreatmentBody wash E-coat Oven

CleaningPrimer

Base coat Oven Clear coat

OvenInspectionRepair

Waxing

Fig. 1 Process steps in a modern automotive paint shop
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paint film later applied. This is followed by electrocoating, which is a cathodic
electrodeposition process used for corrosion protection. The grounded body is
submerged into a bath with an electrolyte liquid and an electric voltage is applied
to a number of anodes positioned in the bath. The resulting electric current causes a
transport of the paint material in the bath to the body and a highly resistive layer is
formed. The mathematical challenges include the complex multi-phase flow that if
simulated can be used to predict the location of air pockets, which prevent the build-
up of the corrosion protective layer, and also the fluid access and drainage during
the process.

After oven curing of the E-coat layer, sealing and underbody protection material
are applied to cover cavities and seams, where moisture otherwise might create a
corrosive environment, and also to dampen noise. In the order of 50 m of material
is used for a vehicle, see Fig. 2. The sealing material is non-Newtonian and shear
thinning meaning that the viscosity decays with increasing shear rate. Due to the
complexity of the process characterized by multi-phase and free surface flows,
multi-scale phenomena, and large moving geometries, the current situation in the
automotive industry is to rely on individual experience and physical validation for
improving the sealing process.

The next step is the application of the different paint layers, where the standard
is primer followed by base coat and clear coat layers. The most common technique
is to use an Electrostatic Rotary Bell Sprayer (ERBS), see Fig. 3. Paint is injected
at the center of a rotating bell; the paint forms a film on the bottom side of the
bell and is atomized at the edge. The droplets are charged electrostatically and
driven towards the target both by shaping air surrounding the rotating bell and by a
potential difference in the order of 50–100 kV between paint applicator and target.
Also here we are facing a very complex process characterized by multi-phase flow,
large moving geometries, multi-scale phenomena and even multi-physics aspects.

The painted layers are cured in ovens, where the heat transfer typically is
through convection or IR. The curing process is very energy intensive and in the
convective ovens fans direct a hot air flow on the body such that its surface reaches

Fig. 2 A robot cell at Volvo Cars with two sealing robots applying material to the car body (left).
Examples of interior sealing beads in the front passenger seat area applied by a flat bead sealing
nozzle (right). Photos copyright: Volvo Cars
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Fig. 3 Robotized spray painting of a Volvo truck cab using electrostatic rotary bells. Photo
copyright: AB Volvo

a temperature of around 150 ıC in the clear coat oven and around 75 ıC in the base
coat oven. The large temperature gradients and thin boundary layers make also this
part of the paint shop a big challenge for modeling and simulation. Finally, before
sending the painted body to the assembly shop, it passes through a visual inspection
to ensure structure, gloss and that there are no defects. In addition, properties such
as structure, color match and paint thickness are measured on a regular basis.

Although the paint and surface processes are undoubtedly very complex the rapid
increase in computational power opens up new possibilities and making modeling
and simulation an integrated part of the development would have many advantages.
The risk for unforeseen costs and quality problems is reduced by offering the
possibility to perform analyses and optimization in the early phases of product
and process development and virtual prototyping stimulates industrial innovation.
Furthermore, fast and efficient simulation can help to reduce the time required for
introduction of new models, reduce the environmental impact and increase quality.

3 Multi-Physics Simulation Framework

The simulation framework consists of the Navier-Stokes solver, IBOFlow
(Immersed Boundary Octree Flow Solver), which is based on a finite volume
discretization on a Cartesian octree grid that can be dynamically refined and
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Fig. 4 A side view of the dynamic octree grid around a truck door frame and the paint applicator

coarsened, see Fig. 4 for an example. Unique immersed boundary methods are
used to model the presence of objects in the fluid [11]. The electrostatic solver is
based on the same discretization framework and immersed boundary conditions are
used to set the voltages at the applicator and target geometry. The paint droplets
are simulated as Lagrangian particles and their motion is given by the Basset-
Boussinesq-Oseen (BBO) equation. The Sundials package is used to efficiently
solve the BBO equation for the individual droplets and trace them from applicator
to target.

3.1 Flow Solver

An incompressible fluid is modeled by the Navier-Stokes equations,

r � Nu D 0 ; (1)

�f
@Nu
@t

C �f Nu � r Nu D �rp C �r2 Nu C Ns ; (2)

where Nu is the fluid velocity, �f is the fluid density, p is the pressure, � is the
dynamic viscosity and Ns is the droplet source term. The Navier-Stokes equations
are discretized with the finite volume method on a dynamic Cartesian octree grid,
which is automatically generated and allows adaptive grid refinements to follow
moving objects. The equations are solved in a segregated way and the SIMPLEC
method is used to couple the pressure and the velocity fields [25]. All variables are
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stored in a co-located arrangement and the pressure weighted flux interpolation is
used to suppress pressure oscillations [16]. The Forward Euler scheme is used for
the temporal discretization and an adaptive fluid time step is employed such that
the maximum Courant number based on the fluid velocity and the movement of the
applicators are restricted. A standard k � 
 turbulence model is utilized.

The internal boundary conditions are handled by the hybrid immersed boundary
method [11]. In the method the fluid velocity is set to the local velocity of the
object with an immersed boundary condition. Extrapolation and mirroring of the
velocity close to the boundary are used to formulate an implicit boundary condition
which is added to the operator for the momentum equations. The mirroring results
in a fictitious fluid velocity field inside the immersed object. Mass conservation
is ensured by excluding this velocity field in the discretized continuity equation. A
thorough description of the method and an extensive validation can be found in [11].

The two-phase flow in the sealing application is modeled with the volume of
fluid (VOF) method, where the local property of the fluid is dependent on the
volume fraction. The volume fraction is transported with the local velocity field.
To keep the interface between the sealing material and the air sharp a hybrid
CICSAM convective scheme is adopted [24]. The sealing material is characterized
by a Carreau model, in which the viscosity is dependent on the local shear rate,

� D .�0 � �1/C
�
1C .� P	/2

0:5.N�1/ C �1 ; (3)

where �0 is the viscosity at zero shear rate, �1 is the viscosity at infinite shear
rate, � is the relaxation time, P	 is the shear rate and N is a power index. The four
material parameters are determined from rheological experiments, where the sealing
material is sheared for two minutes for shear rates between 1 and 450 s�1, and to
capture thixotropic effects, going down from 450 to 1 s�1.

3.2 Electrostatic Solver

For an internally charged bell atomizer the electric field generated due to the
potential difference between the bell and the grounded target is given by the
following Poisson’s equation [4]:

r2� D ��
"
; (4)

where � is the potential, � is the droplet space charge density and " is the air
electrical permittivity. The electric field is given by NE D �r�. The electrostatic
solver also employs the finite volume method to solve the Poisson’s equation. The
equation is discretized on a dynamic octree grid and immersed boundary conditions
are used to set the voltages at the applicator and target geometry. For the electrostatic
solver it is important to refine the octree grid close to the edges of the target
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geometry, where the electric fields are large. In general, the flow and electrostatic
solvers use different octree grids.

3.3 Droplet Solver

The droplets are treated as point-like Lagrangian particles and by including only the
gravity/buoyancy, drag and electrostatic forces the following BBO equation [15] is
obtained for the motion of the droplets:

�p
d Nup
dt

D �
�p � �f

� Ng � Nur jNurjCd
�f

�p

mp

2rp
C NEqp ; (5)

where �p is the droplet density, Nup is the droplet velocity, Nur is the relative droplet
and fluid velocity, Cd is the drag coefficient, mp is the droplet mass, rp is the droplet
radius, qp is the droplet charge and NE is the electric field. The drag coefficient is
evaluated according to [18]

Cd D 24
1C 0:15Re0:687p

Rep
;Rep D 2rp jNurj �f

�
; (6)

where Rep is the instantaneous droplet Reynolds number. The droplet break-up
process is not simulated in this work and since the spray is dilute away from the
near bell region droplet-droplet interaction can be neglected.

The dominant charging mechanism for an internally charged applicator is
induction, which imparts a charge on the droplets leaving the bell. The droplet
charge is assumed to be proportional to the droplet area, which means that the
droplet charges are coupled to the droplet size distribution. The area charge density
is difficult to measure and is therefore determined empirically by matching the
measured paint thickness on the edges in the panel simulations. The fluid velocity
and the electric field are interpolated to the location of the respective droplets and
the resulting drag force and charge are interpolated back to the fluid grid, generating
the droplet source term in (2) and charge density in (4). The BBO equation is solved
for each droplet using the CVODE solver in the Sundials software package [6].
The efficient automatic time stepping in Sundials is employed but restricted by a
local droplet Courant number of 0:5. In each local time step it is checked if the
droplet collides with a triangulated object. This must be done accurately as many
droplets travel close to the target before they collide. If the droplet collides with an
object the droplet is removed from the droplet solver and stored as an impact in the
local triangle. These impacts are then employed in the paint thickness estimation
described in [23]. To include the local fluctuations of the fluid velocity field a
droplet turbulence model is introduced. Each fluid time step the velocity field is
reconstructed by adding a random turbulent noise with time correlated direction and
magnitude determined from experimental data.
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3.4 Spray Simulation

The multi-physics framework for simulation of spray painting consists of the three
described components; the air flow solver, the electrostatic solver and the droplet
solver. The air flow is coupled with the droplets through the momentum transfer and
the drag force. The electrostatic potential is coupled with the droplets through the
droplet space charge density and the electrostatic force. Finally, the air flow and the
electrostatic potential are weakly coupled through the droplets.

The breakup process is currently not simulated and therefore some near-bell
measurements are needed to generate the input to the paint thickness simulations.
For the applicator used in the Results section the droplet size distribution, and the air
and droplet velocities close to the bell, were measured for typical operating process
parameters using a Spraytec RTS 5001 from Malvern Instruments and laser doppler
anemometry (LDA), respectively. Based on these measurements so-called brushes
are generated for each set of paint process parameters that are used, see [12] for a
more thorough description.

In all simulations the paint target is put in the middle of the simulation box,
whose size is adapted depending on the geometry and robot path. At the top of
the box an inlet boundary condition corresponding to the down draft velocity in
the paint booth is set and at the bottom an outlet boundary condition is set. On the
other outer boundaries symmetry boundary conditions are employed. The droplets
are injected in a plane below the applicator with sizes and velocities sampled from
the brushes. The electrostatic potential is put to zero on the grounded target and to
the high voltage on the applicator.

The fluid and the electrostatic base grid have cell size 100 mm and is automat-
ically refined four times around the target. Further, the fluid grid is dynamically
refined three times around and below the moving applicator, and the electrostatic
grid is refined around the applicator. The grid resolution is set to ensure a grid-
independent solution; see [12] for a grid dependency study. The time step is
automatically determined from the smallest cell size and the flow velocities. The
adaptive grid update is determined by the applicator’s location.

One coupled multi-physics time step is summarized as:

1. Update position of applicators and target geometry
2. Calculate the adaptive fluid time step and update grid refinements
3. Connect immersed boundaries with octree grid
4. Solve the Navier-Stokes Eqs. (1), (2)
5. Solve the Poisson’s equation (4)
6. Calculate the electrostatic field from the potential
7. Interpolate the velocities and the electrostatic field to the octree nodes
8. Inject new droplets
9. Solve the BBO equation (5) for the droplets

a. Interpolate velocity and electrostatic field to the droplet positions
b. Take a local time step
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c. Calculate impacts
d. Add contribution to momentum transfer source terms
e. Add contribution to electrostatic space charges
f. Iterate until local time equals the fluid time

10. Perform thickness estimation
11. Iterate

Notice that the fluid solver and the electrostatic solver employ the same time step
but each droplet has its own local time step.

3.5 Sealing Laydown Simulation

To perform a sealing laydown simulation the flow solver described in Sect. 3.1 is
used with the VOF method to handle the multi-phase flow and the Carreau model
to characterize the rheology of the material. The required input is a target geometry,
the motion of the active sealing nozzle and pictures of the spray cone for different
volume flows.

Due to the high Stoke’s number the flow pattern of the sealing material between
the nozzle and impact is independent on the flow direction and velocity of the
surrounding air. Furthermore, the short application distance implies that gravity has
little or no effect on the flow pattern in the air. But, when the material strikes the
target’s surface it begins to flow and the resulting deposition is highly dependent
on the impact angle, material rheology, volume flow and the target’s geometry.
Therefore, in the air the flow dependent sealing spray pattern is reconstructed from
experiments and the fluid flow solver simulates the multi-phase surface flow.

The experimental spray pattern and the corresponding reconstruction for three
different volume flows are shown in Fig. 5. The reconstruction is based on ray
tracing. The width of the spray pattern depends on both volume flow and distance
from the applicator, and is interpolated from the experimental data. With the help
of the ray tracing the impact zone is determined and the volume flow, angle
and distance dependent impact pattern is predicted with high accuracy. A similar
approach could be used for the other common nozzle type, the hollow-cone.

At the fluid cells corresponding to the impact positions close to the target,
the material is inserted as a volumetric material source in the fluid solver and
the velocity is set by immersed boundary conditions in the momentum equations.
To ensure the no-slip boundary condition on the surface of the target the hybrid
immersed boundary condition is adopted [11]. Furthermore, a reference pressure is
set in the fluid domain.

To determine the rheology, i.e. the dependency between the viscosity and the
shear rate, of the sealing material tests are performed in a rotary rheometer with
a parallel disc. The Carreau model in (3) with parameters, viscosity at zero shear
rate �0 D 886:23Pa s, viscosity at infinite shear rate �1 D 1:3418Pa s, relaxation
time � D 0:01 s, and power index N D �200, could be fitted to the experimental
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Fig. 5 Top: Picture of the static spray pattern for three different volume flows (red 10ml/s, green
15ml/s and orange 20ml/s). Bottom: Simulated/reconstructed flow pattern for the different volume
flows visualized with virtual droplets

data of the sealing material used at Volvo Cars in Torslanda, Gothenburg, with good
agreement, see [14] for further details. The density of the sealing material, � D
1:080 kg/m3.

Therefore, one time step in the sealing laydown simulations can be summarized
as:

1. Update position of applicators and target geometry
2. Calculate the adaptive fluid time step and update grid refinements
3. Connect immersed boundaries with octree grid
4. Solve the Navier-Stokes equations (1, 2)
5. Transport volume fraction with the local velocity
6. Interpolate the material volume fraction to the octree nodes
7. Reconstruct the surface of the sealing material on the target by a marching cube

algorithm
8. Iterate

4 Results

4.1 Spray Painting

To validate the software the exterior painting of a Volvo truck cab, see Fig. 6,
was simulated with the process settings used in production and the results were
compared to measurements. The validation was performed in two steps. First,
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Fig. 6 Simulation of robotized spray painting of a Volvo truck cab in IPS Virtual Paint

Table 1 The brushes and the corresponding process parameters used for painting the truck cab

Name
Paint flow
(ml/min)

Shape air
1 (l/min)

Shape air
2 (sl/min)

Rotation speed
(rot/min)

High voltage
(V)

Brush 4 420 240 100 40,000 70,000

Brush 23 390 100 400 40,000 10,000

Brush 26 370 240 100 40,000 50,000

Brush 39 200 300 100 40,000 50,000

Brush 1 370 240 100 40,000 70,000

Brush 2 390 240 100 40,000 70,000

Brush 13 450 240 100 40,000 70,000

Brush 15 470 240 100 40,000 70,000

Brush 16 150 300 100 40,000 50,000

Brush 18 220 240 100 40,000 70,000

Brush 19 355 240 100 40,000 50,000

Brush 22 350 240 100 40,000 10,000

Brush 24 260 240 100 40,000 70,000

Brush 49 330 240 100 40,000 70,000

The first four brushes have also been used to paint rectangular panels

brushes were validated and fine-tuned by painting rectangular panels with three
identical strokes. Thickness measurements on the panels were available for four
of the brushes, see Table 1. The additional twelve brushes were generated by
interpolation and extrapolation from the first four brushes. Secondly, these brushes
were used to simulate the painting of the truck cab.

The applicator used was a Dürr Ecobell 2 internally charged atomizer. Instead of
the base coat and clear coat layers, see Fig. 1, Volvo Trucks uses a top coat paint
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as the final layer. The thickness of the top coat layer is what we validate here. The
robot speed and tool center point (TCP) distance varied slightly along the robot path
of the truck cab, but were roughly 470mm/s and 200mm, respectively. The spray
booth downdraft air velocity was set to �0:42m/s.

The painted panels were of rectangular shape and size 200 � 1000mm. The
paint thickness of each panel was measured along three lines in the middle of the
panel parallel to its long edge. The thickness value of each point in each line was
furthermore an average of three probe measurements. Near bell input data for the
simulations was generated from measurements, as described in Sect. 3.4. The input
was fine-tuned for the process conditions used in the present campaign to generate
accurate thickness results on the panels. In Fig. 7 a comparison between simulation
results and measurements are shown.

Figure 3 illustrates the spray painting of a Volvo truck cab, whereas Fig. 6 shows
the spray painting in the IPS Virtual Paint simulation software. The coverage of the
robot path and the usage of each brush can be seen in Fig. 8. Note, that the major part
of the truck cab was painted with brushes identical to, or in very close resemblance
with, the brushes validated on the panels.

Painting of the interior of the truck cab was carried out before the exterior
painting. The interior painting yields some overspray on the exterior of the cab as

Fig. 7 Measured and simulated paint thicknesses for the first four brushes shown in Table 1 in
order of ascending brush number. Note that the thickness is more than twice as large for Brush 23
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Fig. 8 The robot program, including brush triggers, used to paint the truck cab

can be seen to the right in Fig. 9. Therefore the parts affected by overspray have been
excluded in the validation. Validation points were taken from three different regions
of the truck cab exploiting different brushes and geometrical features, namely the
roof side, the cab side and the cab door. The regions as well as the exact points
chosen for validation can be seen to the left in Fig. 9.

The validation results for the cab roof side, cab side and cab door are presented
in Figs. 10, 11 and 12, respectively. Notice in particular the agreement to overall
thickness levels of the different parts. And furthermore the simulation software’s
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Fig. 9 The measurement points selected for validation, the dashed regions represent all the data
available for validation (left). The blue regions on the cab surface are affected by overspray from
interior painting and are therefore not included in the validation (right)

Fig. 10 Thickness results for the two lines on the roof side of the truck cab, see Fig. 9. The top
line is shown to the left and the bottom line is shown to the right

accurate prediction of dips and peaks in thicknesses caused by features of the
surface and robot paths, such as the dip and peak following a change in surface
curvature on the lower part of the door in Fig. 12. The standard deviation of the
difference between simulation results and measurements, the root mean square
(RMS) difference and the RMS difference normalized to the mean measured
thickness are presented in Table 2. The difference relative to the measured thickness
is 4–7% for each region. AB Volvo has observed that the small process variations
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Fig. 11 Thickness results for the two lines on the cab side, see Fig. 9. The top line is shown to the
left and the bottom line is shown to the right

Fig. 12 Thickness results for the two lines on the cab door, see Fig. 9. The top line is shown to the
left and the bottom line is shown to the right

Table 2 Numerical measures
of the difference between
experiments and simulations

Data set Std RMS RMS rel

Side 2.268 2.146 0.042

Door 3.405 3.350 0.073

Roof 3.222 3.368 0.068

Total 3.166 3.143 0.064

The RMS rel is the RMS difference rel-
ative to the mean measured thickness

that are inevitable in practice, e.g. the position of the cab in the paint booth which is
allowed to vary at most 20 mm and slightly uneven paint flow, and the error in the
measurement probe, cause a thickness difference of 3–4�m for truck cabs painted
on the same line with the same color. Hence, this means that the difference between
the simulations and measurements is in the same order as the thickness variation
observed in production.

The speed of the simulations of the truck cab is remarkable. The full robot
program for painting the cab (i.e. side, door and roof side) is performed by one robot
and takes approximately 75 s in reality. The simulation run over night on a descent
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desktop computer, and takes approximately 18 h on a six core CPU, single GPU
work station. The fluid time step was set to 0:005 s. The number of computational
cells for the flow solver was about 350;000 and approximately the same for the
electrostatic solver, 300;000 computational paint particles per second were injected
and their maximum lifetime were 2 s.

4.2 Sealing

To validate the simulation results obtained with the IPS Virtual Paint software they
were compared to measurements for four sealing beads applied to a plate with
different process conditions and a production bead on a Volvo V40 car. For the
plates the volume flow, nozzle to plate distance (TCP distance) and nozzle velocity
are stated in Table 3. In Fig. 13 the experimental and simulated beads are shown and
in Fig. 14 the average bead widths are compared with excellent agreement.

The final verification was performed on a Volvo V40 car produced in the factory
in Gent. An interesting bead in production in the rear wheel house area was chosen.
In Fig. 15 the scanned experimental bead (yellow) is compared with the simulated
one (green). Notice the good agreement in width, thickness and surface structure.

Table 3 The volume flow, nozzle to plate distance (TCP distance) and nozzle velocity for the four
validation beads

Bead number Volume flow [ml/s] TCP distance [mm] Velocity [mm/s]

1 30 35 400

2 40 35 400

3 50 35 400

4 30 50 400

Fig. 13 The four experimental beads (left) and the corresponding simulated beads (right)
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Fig. 14 Comparison between the measured and simulated bead widths

Fig. 15 Sealing bead verification in the rear wheel house area of a Volvo V40 car. The scanned
experimental bead is shown in yellow and the simulated bead in green

5 Summary

In this paper a novel framework for simulation of electrostatic spray painting and
sealing is presented. A systematic validation is performed including both plates, a
car and a truck cab. Overall the agreement between simulations and measurements
is very good. The framework is integrated in the IPS (Industrial Path Solutions)
software for automatic path planning. The very efficient implementation gives a
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major improvement of computational speed compared to earlier approaches and
makes it possible to perform detailed simulations in just a few hours on a standard
computer. This fact makes it feasible to include such detailed simulations in the
production preparation process and offline programming of the paint robots. A
large part of the production preparation process can therefore be performed in the
computer, which allows the engineers to replace physical prototypes with virtual
ones to shorten the lead time in product development, reduce the cycle time in
production, and avoid future unforeseen technological and environmental problems
that can be extremely costly if they are discovered at the end of the production line,
or even worse by the customer.

The near future work on the simulation of electrostatic spray painting includes
an extension to externally charged bells, where the foundation has been set with
a novel finite volume based solver for three species negative corona discharge
simulations [9, 26]. In the longer perspective the aim is to automate the product
preparation by automatically generating robot paths and process conditions that
guarantee a certain wanted paint coverage. This is obviously a big step compared
to the current status and it is a step that cannot be taken without developing novel
mathematical methods, algorithms and tools.

For the sealing application an extension to laydown of glue is ongoing [22]. The
main difference compared to sealing is that glue has a more complex rheology.
The complexity is increased by also considering the hemming process. Hemming is
combined with glue to fixate inner and outer structures such as e.g. doors, hoods and
trunk lids, and create sealed joints that prevent corrosion. Its usage will most likely
increase in importance in automotive production since the method has the potential
to join different materials in future lightweight structures. The simulation of the
hemming process requires modeling of the complex fluid-structure interaction,
where the glue interacts with the folded structure.
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Hot Blade Cuttings for the Building Industries
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Abstract The constructions of advanced architectural designs are presently very
labour intensive, time consuming, and expensive. They are therefore only applied
to a few prestige projects, and it is a major challenge for the building industry
to bring the costs down and thereby offer the architects more variability in the
(economically allowed) designs—i.e., to allow them to think out of the box. To
address this challenge The Danish National Advanced Technology Foundation (now
Innovation Fund Denmark) is currently supporting the BladeRunner project that
involves several Danish companies and public institutions. The project aims to
reduce the amount of manual labour as well as production time by applying robots
to cut expanded polystyrene (EPS) moulds for the concrete to form doubly curved
surfaces. The scheme is based upon the so-called Hot Wire or Hot Blade technology
where the surfaces are essentially swept out by driving an Euler elastica through
a block of EPS. This paper will be centered around the mathematical challenges
encountered in the implementation of this idea. Since the elastica themselves are
well known and described in the works of Euler et al. already in eighteenth century,
these new challenges are mainly concerned with the rationalization of the architects’
CAD drawings into surfaces that can be created via this particular sweeping and
cutting technology.

D. Brander • A. Bærentzen • J. Gravesen • S. Markvorsen (�) • K. Steenstrup
DTU Compute, Kongens Lyngby, Denmark
e-mail: dbra@dtu.dk; janba@dtu.dk; jgra@dtu.dk; stema@dtu.dk; khor@dtu.dk

A. Evgrafov
NTNU, Department of Mathematical Sciences, Trondheim, Norway
e-mail: anton.evgrafov@math.ntnu.no

T.B. Nørbjerg
Edlund A/S, Valby, Denmark
e-mail: toke.norbjerg@edlund.dk

P. Nørtoft
Aqubiq, Kongens Lyngby, Denmark
e-mail: peter.nortoft@aqubiq.com

© Springer International Publishing AG 2017
L. Ghezzi et al. (eds.), Math for the Digital Factory, Mathematics in Industry 27,
DOI 10.1007/978-3-319-63957-4_12

253

mailto:dbra@dtu.dk
mailto:janba@dtu.dk
mailto:jgra@dtu.dk
mailto:stema@dtu.dk
mailto:khor@dtu.dk
mailto:anton.evgrafov@math.ntnu.no
mailto:toke.norbjerg@edlund.dk
mailto:peter.nortoft@aqubiq.com


254 D. Brander et al.

1 The Need for Low Cost Procedures

A recurring theme in the architectural industry of today is a conflict between
the design ambitions of the architect and the economic realities of fabrication
processes. The desire to create unique and attractive designs, often motivated
by the competitive industry climate, leads to the use of curved geometries and
bespoke elements that can be conceived easily within modern CAD systems, but,
in reality, are prohibitively expensive to build. This results in compromises at the
so-called rationalization stage, where the design is adjusted within an engineering
context for production purposes. A typical example is where the desired shape of
a building leads to panels (or some other element) of perhaps 200 different shapes.
Consultation with fabrication contractors then reveals that dramatic cost reductions
can be achieved if the design is adjusted so that only 20 unique elements are
used, with repetition, instead of the 200. Finally, budgetary considerations force
a compromise of the original design.

The present project addresses this issue, in particular within the domain of the
production of formwork for concrete constructions. The shape of the surface of a
facade or other element is produced—possibly on location—in negative in several
pieces of (easily transported and packed) expanded polystyrene (EPS) foam that is
then used as a mould for concrete (in situ) casting. EPS can also be used in positive
shape production for some applications by applying a coating and retaining the EPS
as a structural element. For curved surfaces the currently available technology for
shaping the EPS is computer numerically controlled milling, a slow, and therefore
expensive, process. The BladeRunner project, supported by the Innovation Fund
Denmark, is presently developing new processes, robotic Hot Wire/Blade cutting,
for carving shapes out of EPS using a robotically controlled heated wire or blade.
The technology is projected to reduce production time of architectural formwork by
a factor of over 100, and to bring the cost of production for advanced shapes into
the domain of financial feasibility.

2 Principles of Hot Blade Cuttings

The essential principle of both Hot Wire and Hot Blade cutting is very simple. A
heated wire or blade, either of which we may think of as a “blade”, is moved relative
to a block of EPS, carving out a surface through the block (Fig. 1). Either the block
or the blade, or both, are controlled by a robot. For definiteness, we regard the block
as fixed and the blade as moving.
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Fig. 1 Robotic Hot Wire cutting in Odense, Denmark

Fig. 2 A saddle surface. Left: The normal curvature defined by this intersection curve is positive
if the downward pointing surface normal is chosen. Middle: The planes defining the principal
curvatures at the center. Right: This normal section is a straight line; the normal curvature is zero
in this direction

2.1 Hot Wire Cutting and Its Limitations

For the wire technology, the wire is held tight, forming a straight line, and thus
sweeps out a ruled surface. This technology is limited in its ability to approximate
general freeform surfaces. This can be seen by considering the Gaussian curvature
of a surface, which is defined as follows: through any point p on a surface a curve is
obtained by intersecting the surface with a plane perpendicular to the tangent plane
at that point (Fig. 2). The normal curvature associated to the tangent direction of
this curve is the curvature of this curve at the point p, with the sign determined by
a fixed choice of surface normal vector (Fig. 2, left). The maximum and minimum
values obtained from all possible tangent directions at p are called the principal
curvatures, �1 and �2, and their product is the Gaussian curvature K D �1�2. In the
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Fig. 3 At a point of positive Gaussian curvature the surface is bowl-shaped. No straight line
tangent to the surface can approximate a curve in the surface to more than first (tangential) order

Fig. 4 Left to right: The hyperboloid (a ruled surface with automatic tangent matching along
adjacent strips); approximation of a negatively curved surface by strips of ruled surfaces; Ruled
strip approximation of a positively curved surface

saddle surface shown at Fig. 2, the principal curves bend in opposite directions away
from the tangent plane and so �1 and �2 have opposite signs and K < 0.

If the Gaussian curvature is positive, then �1 and �2 at p have the same sign,
and any other tangent direction at p has normal curvature �n with �1 � �n �
�2. Therefore �n cannot be zero in this case. Now for an arbitrary arc-length
parameterized curve � in the surface the acceleration vector decomposes as � 00.s/ D
�g.s/�.s/C�n.s/N.s/, where N is the surface normal, and �n is the normal curvature
in the direction of � 0. It follows that, if �n ¤ 0, then the acceleration is non-zero
and thus the curve cannot be a straight line. On the other hand, a ruled surface is
defined to be a surface swept out by a smoothly varying family of straight lines:
through every point of a ruled surface there is a straight line lying in the surface.
Therefore, by the discussion above, a ruled surface cannot have positive Gaussian
curvature; moreover, there is no chance of obtaining a good local approximation for
a positively curved surface by a ruled surface (Fig. 3).

Figure 4 shows (center) an approximation of a negatively curved surface by ruled
strips which can be realized by repeated hot wire cuttings. The ruling directions are
chosen to be close to the asymptotic directions, namely directions where the normal
curvature �n is zero. However, even for negatively curved surfaces, it is in general
not possible to obtain a tangent continuous approximation—the tangent planes do
not match along adjacent strips.

We refer to Sect. 7 for a concrete modern example of a relevant surface—a
skater ramp—which clearly displays all curvatures and thence also the production
challenges that we are addressing in this work.
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2.2 Hot Blade Cutting

The blade concept is much more general than the wire concept illustrated above:
the end points and the tangents at the endpoints of the blade (center-)curve can vary
relative to each other during the sweeping. We will assume, however,that the curve
lies in a plane, that is, that the end tangents are co-planar. This restriction makes
the mechanical implementation of the process easier, both in terms of choosing the
cross-sectional shape of the blade design and allowing for the possibility that only
one edge of the physical blade is heated, as illustrated to the right in Fig. 8 below.

An elastic rod, of a fixed length and with end points and end tangents at a given
position, assumes the shape of an Euler elastica (discussed below). These curves are
well understood mathematically and are given in terms of elliptic functions. We refer
to Sect. 3 below for a brief outline of the parametric representation of the family of
all planar elastica.

In order to apply either of these technologies to a given CAD design, a rational-
ization of the relevant surface is necessary: the surface must first be segmented into
pieces, each of which can be approximated within a given tolerance by a surface
swept out by curves of the relevant type (lines or a family of elastica). Next, each
segment is foliated by curves each of which is approximated by a curve of the type
in question. Finally, the data for producing these curve sweepings is given to the
robot control software.

Methods for rationalization for Hot Wire cutting have been given already in the
literature (see below). Therefore, in this article, the rationalization project we are
concerned with consists of both developing a segmentation algorithm for blade-
cut surfaces, and an algorithm for approximating arbitrary spline curves by Euler
elastica.

2.3 Previous Related Works

Pottmann and Flörey [5] developed a ruled surfaces segmentation algorithm using
the fact that on ruled surfaces one of the asymptotic directions at a point must be
tangent to the ruling, giving natural candidates for the ruling direction in the surface
to be approximated. As such, this segmentation strategy does not generalize to the
case of hot blade cutting, therefore a new strategy must be developed.

For the Hot Blade technology, some work has been done in the late 1990s to the
early 2000s by a group at Delft: see [4, 6] and associated references. The use of
the Hot Blade technology there is somewhat different, as the aim is to produce 3-
dimensional solid rapid prototype models from EPS via a so-called “thick-layered
fabrication” process. The solid is built up by stacking many thick slices, and the
curved surface that needs to be cut is only a narrow strip around the boundary of
each slice. Therefore, the segmentation problem is completely different from the
surface segmentation problem that will apply to the BladeRunner process.
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The work of the Delft group is concentrated on approximating the blade shape
and algorithms for tool positioning. The approach they use for approximating the
blade shape is to apply a numerical method to minimize the bending energy. Below
we will use a different approach that takes advantage of the known analytic solutions
for this problem to give an explicit parameterization of the space of solutions.
This allows us to move easily in the space of solutions, calculate gradients, and
use standard optimization packages to find an elastic curve that approximates an
arbitrary given curve.

3 The Euler Elastica

We describe here a parameterization of the space of planar elastic curve segments.
More details of this parameterization and further references can be found in [3]. An
introduction to the theory of elastic curves, with historical references, can be found
in [8]. Other works on the topic of elastic curves as splines are [1, 2, 10, 11].

3.1 The Euler-Lagrange Equation

We give here a brief derivation of the differential equation that determines the solu-
tions to the elastica problem. The reader unfamiliar with the calculus of variations
could take this derivation for granted and proceed directly to the solutions given in
the next subsection. Let � W Œ0; `� ! R2 be a plane curve segment parameterized
by arc-length, and define an angle function �.s/ by P�.s/ D .cos �.s/; sin �.s//. A
curve segment of length ` starting at .x0; y0/ and ending at .x`; y`/ satisfies

x` D x0 C
Z `

0

cos � ds ; y` D y0 C
Z `

0

sin � ds : (1)

Let � denote the curvature � 0.s/. An elastica is a curve that minimizes the bending
energy

1

2

Z `

0

�.s/2 ds : (2)

The equations defining the elastica are obtained from a variational problem: suppose
� is an elastica from .x0; y0/ to .x`; y`/ with angle function �.s/. A smooth variation
is given by the family � t with angle function �t.s/ D �.s/ C t .s/, where  is a
differentiable function with  .0/ D  .`/ D 0. Applying the method of Lagrange
multipliers we find that, if � minimizes the energy among such curves, then the
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angle function � satisfies:

d2�

ds2
C �1 sin � � �2 cos � D 0 : (3)

Setting .�1; �2/ D �.cos�; sin �/, with � � 0, this becomes d2�
ds2

C� sin.���/ D 0.
Note that � D 0 if and only if � is constant, i.e the curve � is either a straight line
segment or a piece of a circle. If � ¤ 0, set

e�.s/ D
p
�R���

�
sp
�

�

; R� D



cos� � sin �
sin � cos�

�

: (4)

Then Q� is a scaled and rotated version of � and thus also an elastica. Its tangent
angle is Q�.s/ D �.s=

p
�/ � � and it satisfies the normalized pendulum equation

d2 Q�
ds2

D � sin Q� . Hence we conclude that, up to a scaling and rotation of the ambient
space, all arc-length parameterized elastica � W Œ0; 1� ! R2, with non-constant
curvature �, can be expressed as:

�.s/ D �.0/C
Z s

0

.cos �.t/; sin �.t// dt (5)

where

R� D � sin � : (6)

3.2 The Space of Elastic Curve Segments

We now find some suitable parameters to describe the space of elastic curve
segments. First, it is well known that the solutions to (6) can be expressed in closed
form via the elliptic functions sn, cn, and dn. These solutions can be found in Love
[9]. There are two classes of solution curves: those with inflection points (i.e. points
where � D P� D 0) and those without inflections. Each class of solutions is a 1-
parameter family (Fig. 5).

The inflectional elastica starting at .0; 0/ with initial angle �.0/ D 0 and P�.0/ >
0 is

�k.s/ D �.s; k/ D
�

2E.s; k/� s
2k.1 � cn.s; k//

�

; wherek D P�.0/=2:

A segment of such a curve is determined by the value k, a starting point s0 and a
length `. Finally, adding a scaling S, a rotation � and a translation .x0; y0/, we have a
standard representation �.k;s0;L;S;�;x0 ;y0/ W Œ0; 1� ! R2 for a segment of an inflectional
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k = 0

k = 0.3

k = 0.7

k = 0.83

k = 0.87

k = 0.9089

k = 0.937

k = 0.99

k = 1

Fig. 5 Euler elastica. Left: Inflectional. Right: Non-inflectional. The respective elastica—with
values of k ranging from 0 at the top to 1 at the bottom—are plotted

elastic curve:

�.k;s0;`;S;�;x0 ;y0/.t/ D S R� .�k.s0 C ` t//C
�
x0
y0

�

D S R�

�
2E.s0 C ` t; k/ � .s0 C ` t/
2k .1 � cn.s0 C ` t; k//

�

C
�
x0
y0

�

;

where

E.s; k/ WD
Z s

0

dn2.�; k/d� :

Note that the arc-length parameter in this representation is s D S .s0 C ` t/ and not
t and that the length is L D S `.
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Similarly, we obtain a standard representation of a non-inflectional elastic curve
segment:

�.k;s0;`;S;�;x0 ;y0/.t/ D S R�

0

@
.1 � 2

k2
/.s0 C ` t/C 2

k E
�
s0C` t

k ; k


2
k .1 � dn

�
s0C` t

k ; k/


1

AC
�
x0
y0

�

:

4 Sweeping Surfaces with Euler Elastica

Figures 6 and 7 in this section illustrate examples of surfaces foliated by con-
tinuously varying segments of Euler elastica. These examples are constructed by
parameterizing the space of planar elastica segments, as in the previous section,
choosing a small number of sample curve segments, and then interpolating the data
through the parameter space. Hence each surface is swept by a family of planar
elastica.

In principle, all of these surfaces could be produced by robotic hot-blade cutting,
but there are technical issues that depend on the practical implementation. For
example, the surface on the left in Fig. 7 is a surface of revolution, but one end
of the profile curve is much closer to the axis of rotation than the other. This means
that the blade moves much more slowly on the inner end resulting in too much
melting of the EPS. One solution is to segment the surface into several pieces, cut
separately. Another is to approximate this surface by some other, non-rotational,
family of elastic segments.

Fig. 6 Examples of surfaces swept by continuously varying elastic curve segments

Fig. 7 Two technically problematic situations
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Fig. 8 Left: A cylindrical rod can cut in any direction that is close to perpendicular to the tangent
of the curve. Right: A flat (ribbon) blade design (with its hot edge indicated in red) moves well
only in the directions given by the flat extension of the blade past the hot edge itself

Yet another restriction arises if a flat blade is used, rather than a cylindrical rod
(see Fig. 8). With the flat blade design, the blade is curved in a plane perpendicular
to the plane of the blade. If one edge of the blade is heated, the motion of the blade
should be roughly in the direction of this edge, that is, approximately perpendicular
to the plane of the curve, in order to cut a path through the material. Another way to
say this is that the elastic curves should be as close as possible to geodesic curves
(which are characterized by j�nj D � D k	 00k) on the surface under construction.
To require that these planar elastic curves are true geodesics would place too large a
restriction on the uses of this method; so we apply a tolerance instead. Both surfaces
shown in Fig. 6 are reasonable candidates for cutting with a flat blade like the blade
to the right in Fig. 8. The surface to the right in Fig. 7 however, would be impractical
with the given elastica foliation. The osculating plane spanned by 	 0 and 	 00 of the
elastic curve shown is very close to the tangent plane of the surface; thus the hot
edge of the blade is pointing out of the surface, and the blade would not be able to
progress in the required direction.

5 Approximation by Euler Elastica

In this section we consider the problem of approximating a given planar spline curve
x W Œ0; 1� ! R2 by a planar elastic curve. We present two different approaches to this
problem. In the first we try to find the parameters .k; s0; `; S; �; x0; y0/ of the elastica
that has the best fit to the curve x. This is a nonlinear optimization problem, and the
final result depends crucially on a good initial guess. The second approach is purely
numerical—we model the elastica with a spline on a much finer knot vector than
the original curve, and then solve a constrained optimization problem minimizing
the elastic energy under the constraint of being within some distance to the original
curve.
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5.1 Analytic Approach: Finding the Parameters
for the Elastica

We describe here the essentials of the gradient driven analytic approach. For full
details, see the article [3].

We wish to find the elastic curve segment which most closely resembles the given
spline curve x. We choose to minimize the L2-distance between the curves. For a
given set of parameters, the elastic curve segment �.k;s0;`;S;�;x0 ;y0/ is parameterized
with constant speed `S over the interval Œ0; 1�. The spline curve is itself also defined
on Œ0; 1�, but its speed is not necessarily constant. Since the L2-norm compares
points at corresponding parameter values, we need to reparameterize either the
spline or the elastica for the L2-distance to be a good measure of the curves’
resemblance to each other. The simplest way is to reparameterize the elastica using
the arc length s of the spline which can be calculated as

s.t/ D
Z t

0

ds

dt
d� D

Z t

0

kx0.�/k d� ; (7)

and the length of the spline is then L D s.1/. We now consider the minimization
problem

minimizek;s0;`;S;�;x0 ;y0 E .k; s0; `; S; �; x0; y0/; (8)

where

E D 1

2

Z 1

0

�
�x.t/ � �.k;s0;`;S;�;x0 ;y0/.s.t/=L/

�
�2 kx0.t/k dt (9)

is the square of the L2-distance between the spline and the elastica segment.
We use a gradient driven optimization package IPOPT [13], so we need the

partial derivatives of the objective function E with respect to the parameters
.c1; : : : ; c7/ D .k; s0; `; S; �; x0; y0/, i.e.,

@E

@ci
D �

Z 1

0

�
@�c

@ci
.s.t/=L/; x.t/ � �c.s.t/=L/

�

kx0.t/k dt : (10)

The optimization problem is non-convex, so there are several local minima for
E . Therefore the optimization gives different results depending on the initial values
of the parameters, cf. Fig. 9. It is therefore necessary for us to have a good initial
guess. We describe next our method for finding an initial guess. The full details can
be found in [3].

We find the initial guess by considering the differential equation (3). If we let
u D 1

�
.�2 x � �1 y/ then the differential equation can be written as d2�

ds2 D � du
ds , and
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spline
intial guess
result

Fig. 9 Approximating a spline by elastica. The solid line is the spline, the dashed curves are the
initial guess, the dash-dotted curves are the optimized approximations. To the left an arbitrary (bad)
initial guess and to the right our guess

integrating this yields

� D d�

ds
D � u C ˛ D �2 x � �1 y C ˛ : (11)

Letting �u denote the angle between the u-axis and the tangent, we have

cos �u D 1

�

�
�2

��1
�

�
�Px

Py
�

D du

ds
;

so

d sin �u
du

D ds

du

d sin �u
ds

D 1

cos �u
cos �u

d�u
ds

D � D �u C ˛;

and thus

sin �u D 1

2
� u2 C ˛ u C ˇ :

As .�1; �2/ D S�2.cos�; sin �/ we get estimates for the scale S and the angle �
by solving the first equation with respect to �1; �2; ˛ in the least square sense. In a
similar manner we can estimate ˇ, and by analysing the resulting parabola we can
determine whether we should use an elastica with or without inflections and estimate
the parameter k. In the next step we determine which segment of the elastica we
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should use, i.e., estimate s0 and `. We finally determine the translation .x0; y0/ by
a least square fit. If we want end point interpolation then we can achieve that by a
final scaling, rotation, and translation.

5.2 A Purely Numerical Approach

We have described above a method for approximating a spline curve x W Œ0; 1� ! R2

by a segment of an elastic curve, represented by an analytic solution in terms of
elliptic functions. An alternative approach is to approximate the spline by another
spline curve y which is intended to be close to an elastica, in the sense that it
minimizes the elastic energy. This approach could be advantageous for practical
reasons. For example, existing CAD software and other mathematical software and
algorithms already work with the data structure of splines.

We will use a refined knot vector for the new spline curve y. By knot insertion
we express both the target spline x and the elastica approximation y using the same
basis functions (B-splines). This gives us control points xi and yi, i D 1; : : : ; n,
that we can compare. We now seek to minimize the bending energy (2) of the new
spline curve y, with control points yi, while staying close to the original curve x,
with control points xi. The difference between these spline curves is also a spline
curve, with control points xi �yi, and the distance between the curves is captured by
the distance between the control points. These points have coordinates .xi � yi/ � ei,
where e1 D .1; 0/ and e2 D .0; 2/. That is, we consider the constrained optimization
problem:

minimizey1;:::;yn
1

2

Z 1

0

�2y ds ; (12)

such that � 
 � �
xi � yi

� � ej � 
 ; i D 1; : : : ; n; j D 1; 2 : (13)

We need to constrain the problem additionally, e.g., by fixing the positions and
tangents at the two end points. On top of this, we thus have an optimization, or
sampling, over end points and tangents. For end point interpolation we simply put
y1 D x1, yn D xn, and remove these two control points from both the optimization
and the constraints. The tangent constraints just specify directions along which y2
and yn�1 can move. The length could also be specified. In any case, we are no longer
looking for the elastica that minimizes the distance to x, but rather for an elastica that
is 
-close x. If none of the constraints are active at the end of the optimization we
conclude that we have obtained an elastica which is closer to the target spline than 
.
This is of course only true up to the discretization error resulting from using splines
to model elastica. By refining the knot vector of the spline we obtain a smaller
discretization error, and we can validate the solution by checking the differential
equation (11). An example of this approach is shown in Fig. 10.



266 D. Brander et al.

spline curve
spline control points
refined spline control points
resulting curve
resulting control points

Fig. 10 A spline approximation of an elastica (blue) constrained by a target spline (red). The end
positions and tangents have been fixed

A disadvantage of this method is that we cannot guarantee that our solution y
is close to an elastica—only that it has less bending energy than the input curve x.
For this reason, we have chosen to work with the analytic approach outlined in the
previous subsection.

6 Surface Rationalization

Before a given CAD surface can be realized as a mould in the form of a collection
of EPS blocks it needs to be divided into patches. Each individual patch is
approximated by a surface swept by a hot blade, i.e., a surface foliated by planar
elastic curves as described in the previous sections.

In fact, we need to consider two processes: blocking and segmentation. Blocking
is the process of dividing a surface into blocks such that each block can be cut
individually using either a hot wire or a hot blade. Segmentation on the other
hand is the process of dividing the surface into patches swept by elastica or ruled
patches. If blocking is performed before segmentation, we simply divide the 3D
shape into blocks and then fit the best possible ruled or elastic surface patch to
each block—possibly taking constraints between block boundaries into account.
Doing segmentation first is arguably harder, but has certain benefits: knowing which
segments intersect a given block can be used to inform the blocking procedure.
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Fig. 11 A simple approach to the rationalization of the red ellipsoid by planar surfaces. No
boundary conditions are enforced in this rationalization

In the following, we consider a more concrete approach to segmentation in the
context where we assume that blocking has been performed first.

We first consider the problem of approximating a single surface by a surface
foliated by planar elastic curves. One way to accomplish this is first to foliate the
surface by planar curves and then approximate these planar curves by elastica. That
is, we intersect the surface with a family of planes that are sufficiently overall
transversal to the given surface, and thereby foliate the surface by planar curves. We
then pick a finite number of these planes, approximate each of the corresponding
planar sections with a segment of an elastica, calculate endpoints, end tangents, and
lengths and interpolate this data to obtain an approximation of the original surface.

For the general case we imagine our CAD surface sitting inside a collection of
EPS blocks. This divides the surface into a collection of pieces each of which is the
intersection between a block and the full surface, see Fig. 11. We now approximate
each of these pieces by an elastica swept surface while demanding that neighbouring
surfaces fit together in a C1 fashion. This can be a large global optimization problem,
and at the end we check to see if the result is within the required tolerance. We then
pick the blocks where the tolerance is exceeded, cut these blocks in half and redo
the optimization.

In the more complex approach, where segmentation (of the CAD surface) is
performed first, several options can be considered. One way is to fit the largest
patch that upholds the tolerance criteria to the surface and remove this part to create
a reduced surface. This procedure is repeated until the whole surface is removed,
i.e., the original surface is covered by patches. Another approach is a patch-growing
algorithm as in [7]: A number of patches grow on the surface and whenever two
patches meet a competition determines the boundary between the patches. The
determining force in the competition is the improvement on the Euler elastica sweep
approximation, i.e., the resulting boundary is the one with the largest combined
improvement.

For fabrication, each patch needs to be divided into blocks, and this can be
difficult on the boundaries; either the blocks need to be cut smaller to align with
the boundaries or multiple elastica sweeps are needed, i.e., the block can be cut
more than once by the blade.
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A third option is a hybrid of the above mentioned methods, where the knowledge
from the patch methods guides the placement of the blocks.

7 Example

To illustrate the procedures, we consider the modelling and construction of the
skater ramp shown in Fig. 12. This CAD surface consists of spline surfaces, some
of which are doubly curved. The curved surfaces (see Fig. 13) are the ones that
need special moulds. Here there are three different types: (1) three ruled parts (the
“sides”), (2) two corners with negative curvature at the front of the image and (3)
two corners with positive curvature at the back. We will approximate each corner
by a surface swept by elastica. The ruled parts can be cut either by the hot wire
following the rulings or by the hot blade approximating the curved cross section
curve by an elastic curve.

For each corner, the control points give rise to a set of planar spline curves which
foliate the surface (see Fig. 14). These curves can be approximated by elastica as
described in Sect. 5.

If the splines are approximated independently, the control parameters for the
resulting elastica might differ quite a lot between two adjacent curves. This is
because, for a typical (uncomplicated) curve segment, there can be many different
elastic curve segments that approximate it quite closely. To avoid large jumps in the
control parameters we use the elastica that approximates the first spline curve as the
initial guess for the optimization at the next spline, and so forth.

Fig. 12 The skater ramp example
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Fig. 13 The spline surfaces of the skater ramp must be approximated by elastica swept surfaces

Fig. 14 The corner surfaces are foliated by planar spline curves (blue). Each of these are
approximated by an elastic curve (red)

Table 1 The optimized value
for the L2-distance for the two
corner types

Min Max Average

Negative 0.838846837 0.9107882 0.868163184

Positive 5.738445432 5.788943718 5.778703296

The minimal value corresponds to the elastic curve which
best approximates the spline. The height of the ramp
is 854.10 with the lengths of the spline curves varying
between 1342.6 and 1459.8

The optimization is performed with constraints: the approximating elastic curve
is in each case required to have the same length and the same end points as the
original spline curve. The resulting elastic curves can also be seen in Fig. 14.

Our optimization algorithm minimizes the square on the L2-distance between the
spline curve and the elastica, see (9). Table 1 shows some of these distance values.

For a visual inspection and evaluation of the result, in Fig. 15 we have plotted
the spline and the approximating elastica in the worst case (i.e. highest L2 distance).
For the corner with negative curvature the curves are nearly indistinguishable. For
the positively curved corner, there is clearly a difference, but the overall shape is the
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Fig. 15 The original planar spline curve (black) on top of the approximating elastica (red). These
are the worst cases for the corners with negative curvature (left) and positive curvature (right)

Fig. 16 Left: The surface is foliated by planar spline curves. Right: The surfaces are foliated by
elastic curves each one of which approximates the corresponding spline in the figure to the left

same, and the approximation is certainly within any conceivable tolerance for this
particular application (Fig. 16).

8 Conclusion

Our work on approximating arbitrary spline curves by elastic curves, illustrated here
by the test case of the skater ramp, indicates that the problem of approximating
most of the CAD surfaces used in architecture by panels of surfaces swept by planar
elastica is feasible, and that it can be effectively implemented into the work flow
of modern robotics enhanced constructions of buildings and other manifestations of
architectural design, see also the report in [12].

The utility of the technology depends now on the technical problem of designing
blades that can be heated and used to cut EPS in a consistent, robust and predictable
way. We have received positive experimental results and optimistic input from our
project partners showing that this blade technology can indeed be developed and
made operational on the scale needed.

In addition to the application to final production architecture, we anticipate that
the theoretical framework described here will also have other industrial applications.
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For example, rapid prototyping is an important part of the innovation pipeline.
Prototypes that are currently produced in EPS using CNC milling could be produced
much more quickly using hot blade cutting.

As is evident from our present description and also from the discussion of the
state of the art in Sect. 2.3 the full implementation of the various assets of the
robotic Hot Wire/Blade cutting idea needs—to mention but one momentum, at least
for the Building Industries—an almost paradigmatic shift of attention away from
the classical use of relatively complicated scaffoldings and laths for the concrete
shuttering of facade elements that are not just off-the-shelf items. In comparison
with the proposed applications of the Hot Blade Cutting Technology, the classical
way of facade production is often very labor intensive, and often it even demands
an extra time-consuming postprocessing, a fairing by hand, in order to obtain
the desired smoothness of the facades and surfaces. On a final note we should
also mention that this particular MaDiFa concept, that we have presented in this
chapter, offers one more genuine quality, which will also reduce transportation and
logistics costs considerably, namely that in this case the digital factory in question
is essentially mobile and can be set up for EPS cutting, assembling, and shaping on
any location.

Acknowledgements This work was completed with the support of Innovation Fund Denmark,
project number 128-2012-3.
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Model-Based Design of Self-Correcting Forming
Processes

M. Krüger, M. Borzykh, U. Damerow, M. Gräler, and A. Trächtler

Abstract In this paper, a self-correcting strategy for a metal forming process is
presented. This strategy entails continuously observing the properties of the product
and ensuring that these properties stay in the required tolerances. This reduces the
scrap rate and the need to adapt the configuration of the machine manually, both
aspects leading to an increase of the productivity and efficiency of the process.
For the development of the strategy, a structured design method for mechatronic
systems is adapted. During the whole development process, it uses intensively
mathematical models of system dynamics to ensure a high quality of the results.
There are two commonly used model types to describe the behavior of a forming
process: finite-element models and multibody system models. For the development
of such a mathematical model, the process has to be examined. It is analyzed
regarding its disturbances, influences and possibilities to take action. In this paper,
the bending-process is modeled as a multibody system. It describes the most
significant influences and is fundamental to develop the self-correcting closed-loop
control. The presented model includes a good compromise between computation
time and accuracy. After introducing the structured developed closed-loop control,
the implementation and the results are presented.

1 Introduction

Industry is confronted with growing requirements regarding quantity, quality, flex-
ibility and costs. Companies are thus equipped with highly automated production
systems, in which sensors detect slightest variations between reference values and
actual tool path and powerful control units take action to correct these errors. In a lot
of processes, uncertainties which lead to varying quality of the produced products
exist. This is caused by unpredictable disturbances and changing system properties.
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In particular, offline calculated reference values are no longer optimal in view of
the real process. Therefore, more flexibility and intelligent control of production
processes are necessary in order to react to quality changes.

Metal parts are often produced using metal-forming processes, especially for
large volume production runs. Challenges in metal-forming processes are devel-
opment of robust, adaptable and intelligent forming processes, which are able to
react to unforeseen disturbances. We call such a process a self-correcting forming
processes. Nowadays, most common mechanical manufacturing processes are
equipped with measuring, drive and control engineering elements. Hence, they are
mechatronic systems. However, metal-forming processes are usually developed with
classical domain-specific design methods instead of using a model-based domain-
spanning development process as is well established for mechatronic systems [10].
Metal-forming processes are most often optimized offline with FEM (finite element
method) and optimal trajectories are calculated for a particular set of parameters.
The static trajectories are realized by means of closed-loop controlled actuators.
However, there is usually no feedback of product properties and hence no possibility
to react to unpredictable disturbances like temperatures, different material behavior
or tool wear [8]. These effects cause the static optimized trajectories to diverge
from the optimum which results in deviations of product properties, e.g. workpiece
dimensions (see Fig. 1), causing suboptimal operation point. Due to that, a lot of
produced parts do not match the quality requirements like geometric tolerances,
which implies lower productivity, higher scrap rate and higher costs for the
producing company.

In the following sections we present how to design intelligent self-correcting
forming processes. The design includes several aspects of the metal-forming pro-
cess. Existing sensors and actuators can either be used or substituted. If necessary,
additional devices can be integrated. Also, an intelligent control strategy has to be
designed. Mathematical process models are mandatory for design of such complex
systems. Models have to include all relevant dynamic effects in order to find
a reliable self-correcting strategy. Further, a well-structured, model-based design
process has to be used. The transfer of the design methodology for mechatronic
systems to self-correcting metal-forming processes is also presented.

Online process control despite facing unpredictable disturbances requires the
relevant product properties to be observable. Only with this information is it possible
to react on deviations to hold the product properties within tolerances (see Fig. 1 for
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Fig. 1 Non-controlled and controlled processes
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an illustration). However, this is still not very common in metal-forming processes
despite having highly automated machines.

We demonstrate modeling and design of self-correcting forming processes using
a punch-bending process as application example. Here, product properties of the
individual parts are checked manually and randomly by an operator. If the part’s
properties leave the required tolerances (see Fig. 1), the configuration of the punch-
bending machine has to be changed. The failure to reproduce the shape of the
element within allowable tolerances is caused by varying shape or strength of the
semi-finished material (flat wire) as well as the thermal and dynamical behavior and
wears phenomena of the punch-bending machine itself or of the punch-bending tool.
Currently, the machine’s parameters have to be adapted manually by the operator
and his personal experience. Further, these targeted interventions are only possible
with a stopped punch-bending machine, making this procedure time consuming,
especially if more than one iteration step is necessary. If the machine is to change
its configuration by itself, it requires certain knowledge about the process. This
knowledge is gained by a simulation model, which is also used to design the control
strategy.

This contribution is structured as follows: In the next section we present the
general idea of self-correcting metal-forming processes and give a short introduction
of the model-based design methodology. This is followed by a brief description of
the bending process. The following two sections present our modeling approach
for the bending process and the design of the self-correcting control strategy. The
contribution ends with a short conclusion.

2 Self-Correcting Metal-Forming Processes

Nowadays, production systems including metal forming are extensively equipped
with sensors, actuators and digital information processing (e.g. with PLCs), thereby
following the trend towards intelligent, networked production systems. Develop-
ment activities in metal forming focus on two criteria: accuracy of produced parts
and flexibility of machines and tools. Although there are lots of sensors integrated
in a forming machine, it is difficult to measure or predict product properties like
geometric dimensions online. First and foremost, sensors are used to measure
signals necessary for control of actuators, e.g. velocity or position of punches or
servo motors. Today, control of metal forming is mostly realized as open-loop
control [8] (see Fig. 2). Process planning is done offline in a quasi-static way, i.e.
trajectories of presses or punches are designed offline. The result is a target tool-
path that is realized by means of available actuators or by adjusting tools manually.
Local controllers are used to ensure realization of desired tool-path with sufficient
precision. A significant drawback of this approach is that there is no possibility to
react on unforeseen changes like fluctuations in material properties, tool wear or
varying temperatures, just to name a few examples. Machine dynamics are mostly
neglected, too.
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Fig. 2 Open-loop control vs. closed-loop control of metal forming processes, (based on [8])

A closed loop control of the production properties is necessary in order to cope
with such time-varying, unpredictable fluctuations of the process. The existing local
controllers can still be used, but they are not sufficient as they can only react on
deviations from the offline tool-path and not on unforeseen disturbances. Hence, the
product properties have to be controlled by means of a closed-loop control strategy
(see dotted line in Fig. 2). This results in a hierarchical control architecture. On the
top level there is an online process controller which is used to control deviations
in product properties and computes reference values for actuators. These reference
values are then controlled by means of several local controllers on a subordinate
level. Figure 3 illustrates this hierarchical control architecture.

A closed-loop control of product properties necessitates the relevant properties
to be measurable or observable. A lot of research has been done in development
of condition monitoring systems [5]. Today, it is possible to measure the desired
product properties like geometric shape in several metal forming machines. This
information is used to enhance the quality by rejecting produced parts with poor
properties [1]. Usually there is no feedback to the control unit and this technique
is also not state-of-the-art. In most processes, the product properties are inspected
offline after production as a separate step of quality control. Especially for large
volume production, only a small subset of produced parts are inspected, e.g.
following some statistical approach.

Self-Correcting forming processes are metal forming process which are equipped
with such a hierarchical control architecture. Similar hierarchical control strategies
have already been implemented successfully in lots of application examples, see
[4] for more details. Such hierarchical systems are complex systems with several
actuators and sensors. Particularly for metal forming processes, there are non-
negligible couplings between different tools as they influence product properties
over a much wider area than the zone of contact. Appropriate models of the process
dynamics are neccessary in order to design a self-correcting control strategy. Such
models have to include all relevant dynamical effects, either resulting from varying
material properties, machine dynamics or the forming process itself. In general, a
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Fig. 3 Hierarchical
closed-loop control of metal
forming processes
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time-discrete model of process dynamics is given by

xiC1 D f .xi;ui/; (1a)

yiC1 D g.xi;ui/; (1b)

with y the product properties that have to be controlled, x the state of the system
and u the inputs. i denotes the discrete time step e.g. assuming the production of
one part per step. For some processes, it is not sufficient to control the product
properties at discrete time steps, but to have some continuous property evolution. In
such cases, a continuous model analogue to (1) is needed. The goal of modeling is
the derivation of a distinct mathematical description of some physical behavior. The
model can be based on physical equations or measurements through experiments.
Due to efficiency, the model should be as simple as possible, meaning just the
significant effects should be modeled with sufficient precision.

In order to develop a closed-loop control of product properties, several questions
have to be answered, such as: What are the properties that have to be controlled?
How can current product properties be measured? Do additional sensors need to
be implemented? How can the process be adjusted for the properties to become
controllable? Are the existing actuators sufficient or are additional ones neccessary?
What kind of model has to be developed to design the online process controller?
A structured, model-based system development is the best way to answer these
questions adequately.
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Fig. 4 V-model for development of mechatronic systems adapted to metal-forming processes

Modern metal forming machines are mechatronic systems. They consist of
sensors, actuators and information processing that are used to realize some desired
behavior of a basic system (the metal forming). Looking at the system hierarchy,
the local controllers are mechatronic function modules as defined in [7]. They also
consist of actuators, sensors, information processing and some physical system as
part of the forming process. A modularization of the system into several mechatronic
subsystems can be achieved using this structuring principle. This reduces the
complexity of the system and is one of the first steps of designing a self-correcting
forming process.

The VDI guideline 2206 [10] describes a structured, well established design
method for mechatronic systems including mathematical models of system dynam-
ics. This design method can be adapted to the design of metal-forming processes
(see Fig. 4). One of the basic principles in design of mechatronic systems is the
intensive use of mathematical models during the whole design process. This is still
a challenge for metal-forming processes, as usually only quasi-static models of the
mechanical domain are used. These models, however, are not suited for dynamic
simulations and design of closed-loop control. An alternative modeling approach is
presented within this contribution.

Model-based design starts with Process Analysis. Basic information and require-
ments of the system are determined e.g. product properties to be controlled or
relevant effects like temperature dependency, varying material behavior. A modeling
approach has also to be chosen and a first ideal model of the process dynamics has
to be built. This model and probably additional experiments are used to analyse
the process. The process analysis answers most of the basic questions. The inputs
and outputs as well as an ideal control strategy are developed and tested using the
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process model. In this phase the actual sensors and actuators are not chosen yet,
but the signals that have to be measured and how the process can be controlled is
verified. In mechatronic systems design the result of this phase is called the principle
solution.

Domain-specific design and development is the next step of the design process.
In the context of self-correcting forming processes, the main steps are Control Unit
Design and Development of Actuators and Sensors. Suitable sensors and actuators
have to be chosen, considering the system requirements as well as the principle
solution. If any proper sensors or actuators are not available, they have to be
developed. The control strategy has to be detailed in view of additional requirements
corresponding to particular sensors and actuators e.g. measurement noise or actuator
limits. Relevant effects for the process dynamics are also added to the process
model, so that it can be further used for control design.

The last phase of the design process is System Integration. At first, sensors and
actuators are tested separately. Afterwards, smaller groups are tested e.g. consisting
of one actuator and sensor. Particular testbeds may be used for this task. Also,
the control unit can be tested by means of hardware-in-the-loop (HiL) techniques.
After successful verification of the groups, they are integrated in the target forming
machine and extensive tests have to carried out.

3 Bending Process

The model-based design of self-correcting forming processes is demonstrated on
a punch-bending process. Typical parts made with a punch-bending process are
e.g. contact springs used in the electrical connection technology. In our case, a
servo-controlled stamping and forming machine is used which is running at up to
60 parts per minute. The slide units driving the punches in the tool are driven by
servo motors and their motion behavior can be adapted variably without necessity
of additional actuators. Nowadays, these machines are usually driven with fixed
process parameters during production. The produced part we look at is a so-called
contact spring. It is made of a high-strength copper alloy flat wire and produced in
two process steps as shown in Fig. 5. In the first step, two punches and dies shape
the flat wire. In the next step, the shaped flat wire is bent around a bending core and

1. Step 2. Step Punches 

Dies 

Downholder 

Bending core Workpiece 

Fig. 5 Production steps of the contact spring
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the critical dimension, here the opening length, is adjusted. Using the fixed machine
parameters, the critical dimension leaves the tolerances very often, which leads to
high scrap rates. The reasons for this can be a variation in the properties of the semi-
finished product, or wear phenomena on the punch-bending machine itself or on the
punch-bending tool. The only way to avoid deviations in the opening length is a
manual adjustment of the machine. Additionally, the choice of the most appropriate
process parameters is based on the operator’s experience. The manual adjustment is
a time-consuming and expensive procedure right at the early stages of a production
scenario. In addition, the trend towards reduced part sizes with tight tolerances,
made of high strength materials, is drastically increasing the requirements regarding
the production process.

4 Modelling of Bending Process

As seen in Fig. 4, the design method for mechatronic systems intensively uses math-
ematical models during every phase. In this section, the development of the bending
process model is shown. Modelling opens optimization possibilities to reach the
quality goal without the necessity of time consuming and expensive experiments.
Furthermore, the model can be used to perform numerical optimizations to ensure
the best operating point during the whole process. Additionally, failures can be
injected in the model and the dependencies investigated. That allows finding and
testing a robust closed-loop control strategy to correct the behavior of the machine
in a very structured way.

For further process analysis and the following design of the correction strategy, a
modeling of the forming process and feed-back control is required. In general, finite
element (FE) models and multibody systems (MBS) are used to describe a system
[12]. These models lead to the following nonlinear differential equations of motion

POx .t/ D f .Ox .t/ ; Ou .t// (2a)

Oy .t/ D g .Ox .t/ ; Ou .t// ; (2b)

which describe the time-continuous dynamic behavior for one workpiece of the
punch-bending process. In this equation Ox .t/ are the states of the system, Ou .t/ the
inputs and Oy .t/ the outputs, which in case of metal forming are the relevant product
properties. There are already a variety of different simulation models for the purpose
of metal forming. In most cases, these are quasi static models, which allow to design
and optimize the process offline [9]. Especially in the last few years, the FE method
has been extensively used to reduce expensive experiments [3]. The precision of the
results is good, as long as only minor unpredictable disturbances or variations of the
process occur. The computing time of FE simulations adds up to several hours, as a
result of a high amount of degrees of freedom (see Fig. 6a). Due to that, these kind
of models are inappropriate for tasks like online optimization or control design. The
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Fig. 6 Simulation models (a) FE model (b) MBS model
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Fig. 7 Setup of the MBS model: (a) Modell of the bending process; (b) Modelling of the
workpiece

computing time can be reduced by combining the response surface method (RSM)
with such an FE model [11] to minimize the necessary number of simulations. This
method also can be used to create an empirical model out of measurements. In [2]
this method is used to react online to variations of the process. The adaption of the
process takes place between the strokes of the punch. Furthermore, extensions to
FE models are possible. For instance, in [13] a criterion for the creation of crinkles
during the deep drawing process is implemented.

The quasi static models of metal forming processes do not allow the description
of the whole system. Dynamic effects, which are induced by the behavior of the
machine or by the electrical drives, are hardly considered in these kind of commonly
used simulation models. These are effects which are usually implemented in MBS
models. In the example of the deep drawing process [9], a crack was predicted
with the quasi static simulation. In reality, this crack did not appear because the
assumptions of the simulation did not fit to reality. This fact was not considered
in the initial model. The false prediction is corrected with a co-simulation, which
includes the dynamic behavior of the system as well. Unfortunately, this co-
simulation was even more computationally intensive than the pure FE simulation,
making it inappropriate for control design as well. Obviously, there is a compromise
between computing time and accuracy which is necessary to be able to design a
closed-loop controller. In this paper an MBS model for the bending processes is
presented, which is suitable for control design purposes.

In Fig. 6, both types of models are shown. In comparison to FE models, the
level of discretization in multibody system models is significantly rougher. In
this particular case, the discretization is further decreased by employing a two-
dimensional approach. The model contains m discrete rigid bodies (see Fig. 7),
which are connected by spring-damper elements. Through these elements, the
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elastic deformation of the workpiece is modeled. As a consequence, the dimension
of the state vector Ox .t/ and the computing time are appreciably lower in comparison
to an FE model.

The state vector Ox .t/ consists of time dependent variables of the system. In this
particular case, it includes the relative angles and relative angular velocities between
the elements.The angle between the rigid bodies j and j C 1 (see Fig. 7b) is called
˛j. As a result, the state vector is defined as

Ox .t/ D �
˛1 P̨1 : : : ˛j P̨ j : : : ˛m P̨m

	T
(3)

and is dependent on the tool geometry and the punch position Ou .t/, as indicated
in Eq. (2). To consider plastic deformation as well, a plastic bending torque is
calculated in the model. In contrast to the spring-damper torque, the plastic bending
torque is calculated by a nonlinear relation of material properties and the relative
angle between two rigid bodies. The sum of all relative angles equals the total angle
˛ (see Fig. 7a):

˛ D
mX

jD1
˛j (4)

One of the goals of the following section is to find a function, which describes
the remaining total angle of plasticity dependent on the applied total angle ˛.

4.1 Model of Plastic Deformation

The model is based on the elementary bending theory by Ludwik [6] which showed
sufficiently good results. This model assumes a workpiece to be built of a chain
whose joints are connected by a spring-damping system and torsional elements
representing material properties (see Fig. 7b). Geometries of punches were imported
in the MBS-model directly from CAD-data. The movement trajectories and velocity
profiles of the punch and timing of the bending process were taken from the real
process and fed into the model.

During the forming process, the total angle ˛ is composed of the elastic ˛el and
plastic ˛pl portions. For the continuous system, it means that

˛ D ˛el C ˛pl : (5)

Originally, Ludwik-law describes the deformation of a continuous beam. In this
approximation, however, it is used for the total angle between two of the discrete
elements, so that

˛ D
mX

jD1
˛el;j C ˛pl;j (6)
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holds. More precisely, the elementary bending theory is applied repeatedly to the
discrete elements. After the forming process is completed, the workpiece springs
back by the elastic component and only the plastic part remains. According to
Ludwik-law, the remaining total plastic angle ˛pl can be calculated as a function
of the total angle.

˛pl D K ˛ D
mX

jD1
Kj ˛j (7)

The spring-back coefficient

Kj D 1 � rm;j MB;j

E I
2 Œ0;C1/ (8)

can be determined from middle radius of curvature rm;j, bending moment MB;j,
modulus of elasticity E and inertia geometric parameter I. The approximated radius
of curvature rm;j for each joint can be found from element length Le and relative
angle ˛j:

rm;j D Le
2

1

tan.˛j=2/
: (9)

The inertia geometric parameter

I D b .S0/3

12
(10)

is dependent on the element width b and element thickness S0. The bending moment
and elastic modulus are also variable and can be calculated depending on the flow
curve and stress-strain diagram of the material.

Equipped with the described model, the first step of the design method, Process
Analysis, can be started. An analysis of model and simulations revealed that
the punch position .u/ at the second bending step has the highest influence on
the opening dimension of the contact spring. Figure 8 shows the change of the
opening dimension at different values of the position of the punch by constant value

Fig. 8 Simulation results:
Influence of the punch
position on the opening
dimension

Position of the punch [%]

4

30 
0 

15,5

O
pe

ni
ng

 [%
] 



284 M. Krüger et al.

O
pe

ni
ng

 [%
]

O
pe

ni
ng

 [%
]

E-module [%]Thickness [%]a) b)

30

0 0

14

0 10 130

Fig. 9 Simulation results: (a) Influence of the material thickness on the opening, (b) Influence of
E-module of the materials on the opening

of thickness—0:82mm and elastic modulus—130GPa. In this case, by position
variation of 3% from initial value of 14:22mm, the opening dimension change is
approximately 15:5%.

Additionally, the influence of the material properties like thickness S0 and elastic
modulus E of a workpiece was analyzed. Both variables are varied within the
tolerances specified in the data sheet. Figure 9a shows the change of the opening
dimension at different thickness of workpiece with machine settings held constant
and elastic modulus of 130GPa. By thickness variation of 10% from initial value
of 0:78mm, the opening dimension change is approximately 30%. The influence of
physical properties of the flat band on the bending process was also investigated.
Figure 9b shows the change of the opening dimension at different values of the
elastic modulus with machine settings held constant and thickness of workpiece of
0:82mm. In this case, by elastic modulus variation of 13% from initial value of
123GPa, the opening dimension change is approximately 14%.

As the result of the Process Analysis, it can be seen that the thickness of a
workpiece as well as the punch position from the second bending step exert the
greatest influence on the opening dimension. The thickness is an unpredictable
disturbance that has to be compensated for by the self-correcting controller. Instead,
the punch position can be controlled by giving varying reference values to the servo
motors. Hence, it can be used as a controller output of the self-correcting controller.

5 Self-Correcting Control Strategy

Development of the correction strategy, sensors and actuators are the next steps of
the design method. The development of actuators is not necessary as the bending
machine is equipped with NC axes so that the movement of the punches can be
controlled online. The position of the punch tool can be read from the machine
control unit, too. The analysis showed a positioning accuracy of the NC-axis of
0.02 mm being absolutely sufficient. At a production speed of 60 parts per minute
the machine dynamics can be neglected, too. In order to measure the opening
dimension, additional sensors are necessary. In our case, commercially available
systems were used. For the measurement of the opening dimension an optical
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camera system has been integrated into the bending tool. The influence of varying
material thickness can be reduced if it can be also be measured online. In the
bending process, the thickness measurement is realized by a force measurement,
because the relationship between thickness and force change is linear. Force sensors
are more robust and less expensive. Hence, they are better suited to the application
example than optical sensors. The influence of elastic modulus will be neglected due
to minimal influence on the opening dimension and difficulties to measure it online.
The dynamic model (2) is also used for design of the self-correcting strategy. The
change of the opening dimension y is a non-linear function, which is dependent on
material thickness S0, elastic modulus E and punch position u.

For designing the self-correcting strategy the results from model-based analysis
were taken. For constant thickness S0 and constant elastic modulus E the depen-
dency between opening dimension and punch position can be computed using the
dynamic model. To do so, a linearly increasing punch position Ou.t/ is used as input.
The corresponding opening dimension is given by an evaluation of the equations of
motions

Oy .t/ D g .Ox .t/ ; Ou .t// : (11)

The punch position u is the control variable of the self-correcting controller. The
parametersE and S0 are disturbance variables. So the self-correcting control strategy
consists of a feedback control of the opening dimension. Additionally, the influence
of the thickness is compensated for by means of a disturbance compensation that
is based on the force sensor. In order to build up a self-correcting strategy, it is
necessary to measure the opening dimension for each workpiece online, especially
if it begins to drift from the desired value to one of the tolerance limits.

The opening dimension can only be measured after the current part is produced.
Hence, the current opening dimension is used for correcting the opening dimension
of the next part. This is possible as the change rate of the opening dimension are
slight enough from one part to the next one. For disturbance compensation, the
situation is different. The thickness can be approximated using the measured punch
force Fi of the first bending step (cf. Fig. 5) and there is enough time between the
measurement and the second bending step to adjust the punch position. Hence,
thickness variations can be compensated for separately for each produced part. For
determination of the feedback control structure and design of control parameters, the
nonlinear system response (11) of the opening dimension is linearized at a particular
operating point

@Oy .t/
@Ou .t/

ˇ
ˇ
ˇ
ˇ
tDtend

D k ; (12)

so that a linear relationship between the opening dimension and the punch position
can be achieved. The result is a linear system

yi D k � ui ; (13)
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Fig. 10 Schematic design of the self-correcting controller

which is dependent on the maximum punching position ui D Ou .tend/ D max .u .t//.
This system has proportional behavior that can be used as controller model (1),
which is independent of discrete states xi. The coefficient k is a function of the tool
geometry and the spring-back coefficient K [see Eq. (8)].

Due to the proportional behavior, a discrete I-controller (a controller which sums
up the discrete error value ydesired � yi�1) is sufficient to keep the opening dimension
on demand value. In combination with the disturbance compensation the control law
(see Fig. 10) is given by

ui D ui�1 C k1 .ydesired � yi�1/C k2 .Fi � Fi�1/ : (14)

Here, Fi and Fi�1 are the maximum punch force of the first bending step from the
previous and current part. The controller coefficients k1 and k2 can be designed using
the bending model. The term Fi � Fi�1 represents a discrete differentiation of the
maximum punch force from the first bending step.

6 Implementation and Results

As mentioned before, the control of product properties regarding the quality of a
product needs a comparison between desired and current value. The desired value
is known, but the current value has to be determined online. One way is to measure
the product property directly. If that is not possible, the product property can often
be calculated using other sensor signals in combination with a mathematical model.

In case of the bending process, the opening dimension has to be measured online
during the manufacturing process by means of contact or contactless measurement
methods. As the produced contact spring is formed inside the tool, a contactless
optical measurement device has proven to be the most appropriate sensor. For
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Fig. 11 Measured trend of the opening dimension without (a) and with (b) the self-correcting
strategy

keeping the opening dimension of the contact spring within the tolerance range of
˙1mm, a measurement accuracy of about 0:02mm is indispensable. Additionally,
the measurement device has to be fast enough to detect the opening dimension of
each part at a production speed of 60 parts per minute.

The self-correcting strategy has been implemented into the existing machine
control system. The required interfaces to measurement devices are also present
in the control unit. Implementation of the correction step is achieved by adjusting
the stroke of the machine axis at the second bending step for each part. A first
verification of the self-correcting strategy under production conditions was carried
out.

Using a production speed of 60 parts per minute the opening dimension as well
as the punch force could be measured reliable and the closed-loop control showed
a stable behavior. The opening dimension of the contact spring can be held within
the tolerances. Figure 11a shows the opening dimension in non-controlled process.
The dispersion of opening dimension is more than 80% of tolerances. Using the
self-correcting control strategy, the dispersion of opening dimension was reduced
to 40% of tolerances (see Fig. 11b). Furthermore, the current opening dimension is
close to the nominal value.

7 Conclusion

This contribution illustrates how a mathematical description of a metal forming
process can be used to enhance process quality in a digital factory. In this paper,
a model-based design method for design of self-correcting controller is presented
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an demonstrated using a bending process as application example. Using the bending
model the forming process was analyzed and the appropriate correcting strategy was
developed. The results of implementation of this strategy show that the current value
of the opening dimension can be hold close to the desired value during a production
run. Furthermore, it was possible to reduce the deviation of the opening dimension
significantly. The same approach for developing corrective strategies is currently
successfully used in other forming processes.
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Discrete Cosserat Rod Models Based
on the Difference Geometry of Framed Curves
for Interactive Simulation of Flexible Cables

Joachim Linn and Klaus Dreßler

Abstract For software tools currently used in industry for computer aided design
(CAD), digital mock-up and virtual assembly there is an increasing demand to
handle not only rigid geometries, but to provide also capabilities for realistic
simulations of large deformations of slender flexible structures in real time (i.e.: at
interactive rates). The theory of Cosserat rods provides a framework to perform
physically correct simulations of arbitrarily large spatial deformations of such
structures by stretching, bending and twisting. The kinematics of Cosserat rods is
described by the differential geometry of framed curves, with the differential invari-
ants of rod configurations corresponding to the strain measures of the mechanical
theory. We utilize ideas from the discrete differential geometry of framed curves in
combination with the variational framework of Lagrangian mechanics to construct
discrete Cosserat rod models that behave qualitatively correct for rather coarse
discretizations, provide a fast computational performance at moderate accuracy,
and thus are suitable for interactive simulations. This geometry based discretization
approach for flexible 1D structures has industrial applications in design and digital
validation. We illustrate this with some application examples from automotive
industry.

1 Introduction

Standard software tools currently used in industry for CAD, digital mock-up and
virtual assembly can only handle rigid geometries. However, there is an increasing
demand for a realistic, yet easy-to-use simulation of large deformations of slender
flexible structures, preferably in real time (i.e.: at interactive rates). Typical
examples of such structures from automotive industry are tubes, hoses, single cables,
or wiring harnesses collecting many cables within a compound structure (see Fig. 1).
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Fig. 1 Overview of the system of cables installed in a car (left), and simulation model of a wiring
harness in the IPS Cable Simulation software (right)

The theory of Cosserat rods [1, 26, 29] provides a framework for structural
models that are suitable for physically correct simulations of deformations of
slender flexible objects by stretching, bending and twisting. Due to the slenderness
of the geometry—i.e.: typical cross section diameters d are small relative to typical
lengths L of the considered structures, such that d=L � 1 holds—such deformations
may possibly imply large spatial displacements and rotations, while the local strains
always remain small. Cosserat rod models, also denoted as geometrically exact
models due to the possibility of a kinematically exact treatment of large rigid body
motions, are particularly well suited to handle such large deformations.

In computational mechanics, such models are usually discretized via nonlinear
finite elements [13]. This approach is taylored to provide very accurate simulation
results. However, due to their algorithmic and algebraic complexity, discrete
models constructed via nonlinear FE are technically complicated and in general
computationally far too demanding for doing fast simulations compatible with
rendering at 25Hz (at least), simultaneous to an interactive modification of the
boundary conditions by the user, either via the graphical user interface of a desktop
computer, or via a data glove (or similar devices) within an augmented reality (AR)
environment, unless such simulations are executed on highly performant computer
hardware, using many processors with multiple cores, and highly parallelized
algorithms. Therefore, if one aims at interactive simulations on ordinary desktop
computers available to a broader range of users, the development of a different
approach is required.

The kinematics of Cosserat rods is closely related to the differential geometry
of framed curves [3, 7], with the differential invariants of rod configurations
corresponding to the strain measures of the mechanical theory [1]. We propose to
utilize ideas from the discrete differential geometry of framed curves [2, 5, 27, 30] to
construct the discrete kinematics of Cosserat rod models in a way that preserves the
essential geometric properties independent of the coarseness of the discretization.

Different from a nonlinear FE approach aiming at weak solutions of the
mechanical equilibrium equations [34], we consider Cosserat rod models within
the variational framework of Lagrangian mechanics in terms of the kinetic and
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elastic energy of the rod [16, 20, 21]. In particular, as the elastic energy density of
a rod is given as a quadratic form in the strain measures, we obtain the discrete
elastic energy by an approach which we denote as geometric finite differences,
providing a discretization of the strain measures that preserves their essential
geometric properties, in combination with simple quadrature rule to approximate
the integrated energy density. Due to the geometric discretization of the strains,
discrete rod models constructed according to our discrete Lagrangian mechanics
approach behave qualitatively correct even for very coarse discretizations, provide
an ultrafast computational performance at moderate accuracy, and thus are suitable
for interactive simulations.

In our article, we introduce the basic ideas of our geometry based discretization
approach for flexible slender structures as sketched above. The mathematical
backbone of our construction of discrete Cosserat rod models is provided by the
difference geometry of framed curves in the spirit of Sauer’s approach [27] to
discrete Frénet curve theory. We present an extension of Sauer’s ideas to construct
the basic constituents of the discrete geometry of Cosserat curves in Euclidian
space, including proper definitions of discrete curvatures, discrete generalized
Frénet equations with geometrically exact solutions in terms of finite rotations, all
summarized in the formulation of a principal theorem of discrete Cosserat curve
theory. On this basis, the construction of discrete Cosserat rod models formulated
in terms of discrete elastic energy functions, defined as quadratic forms of the
invariants of discrete Cosserat curves, can be obtained in a straightforward manner.

Our discrete formulation of geometrically exact rods turns out to be partic-
ularly useful for a seamless integration into a CAE software environment as
IPS Cable Simulation. As the models and algorithms are formulated in terms of
elementary concepts of computational geometry, one can achieve the computational
performance necessary for a true interaction of the user with the software in real
time, which is a key feature in practical applications. We illustrate this aspect by
presenting some typical application examples of assembly simulations of cables
performed in automotive industry for design and digital validation purposes.

2 Notational Conventions

In this section we collect a few facts of linear algebra to introduce some notational
conventions inspired by the ones given in [1, 14, 25].

2.1 Euclidian Point Space E 3 and Its Vector Space E3

We denote three-dimensional Euclidian point space by E 3, its associated Euclidian
vector space by E3 and use bracket notation h�; �i to denote its scalar product. All
vectors w 2 E3 are written in boldface roman letters. By definition, they provide
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parallel displacements q D p C w of points p; q 2 E 3. This explains the operation
C W E 3 � E3 ! E 3 on Euclidian space

�
E 3;E3;C� in a memnonic way, and

likewise introduces the difference q � p D w of points as a proper operation. The
distance of points in E 3 is measured by the length kwk D phw;wi DW kq � pk
of their displacement vectors. A fixed cartesian coordinate frame of E3 is defined
by choosing a fixed origin O D 0 and a fixed right-handed orthonormal triple
.e1; e2; e3/ of basis vectors. Any vector quantity may be decomposed with respect
to the fixed basis fekgkD1;2;3 in the form w D P3

kD1 wkek, where the real numbers
wk D hw; eki denote the cartesian components of w 2 E3. The position vector
x. p/ of a point p 2 E 3 is given by p D O C x. p/, with its cartesian components
xk. p/ D hx. p/; eki.

2.2 Linear Mappings in E3

We denote linear mappings A W E3 ! E3 within Euclidian vector space by upper
case upright serifless letters and use dot notation w 7! A � w to indicate their
operation on vectors. The composition .A � B/ � w D A � .B � w/ of linear mappings
is written in the same style. The identity I maps all vectors onto themselves.

A linear mapping is completely determined by its values vk D A � ek on the fixed
basis and may be written in invariant form as a sum1 A D P3

kD1 vk˝ek � vk˝ek of
tensor products defined as .a ˝ b/ � w D hb;wi a. The corresponding representation
of the identity in terms of the fixed basis is given by I D ek ˝ ek. Occasionally we
use the notation A D .v1; v2; v3/, which identifies the linear mapping A with the
triple of vectors obtained as images of the fixed basis.

The determinant det.A/ of a linear mapping is an invariant and equals the deter-
minant of its representing matrix w.r.t. an arbitrary basis. The cross product u � v
of vectors may be defined invariantly via the identity hu � v;wi D det..u; v;w// D
Œu; v;w� which is required to hold for arbitrary vectors, and likewise explains their
scalar valued triple product. The identity Qu � v D u � v establishes the one-to-
one correspondence between vectors u and skew-symmetric mappings Qu D �QuT ,
represented by tilde notation.

2.3 Orthogonal Mappings

Linear mappings that preserve length are denoted as orthogonal: for orthogonal
mappings R the identity kwk D kR � wk must holds for all vectors w 2 E3. This
implies the orthonormality hai; aji D ıij of the column vectors ak D R � ek of an

1We make frequent use of Einstein’s summation convention, with Latin indices i; j; k; : : : running
from 1 to 3, and Greek indices ˛; ˇ; : : : from 1 to 2.
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orthogonal mapping. This characteristic property may be equivalently formulated in
a more compact form by the identities RT D R�1 or RT �R D I D R �RT which hold
by definition for any orthogonal mapping. Orthogonal mappings R that preserve the
orientation of the fixed basis are characterized by det.R/ D 1 and denoted as proper
orthogonal. The orthogonal and proper orthogonal linear mappings on E3 form Lie
groups O.3/ and SO.3/ respectively. Their Lie algebra is the set so.3/ ' R3 ' E3

of skew-symmetric linear mappings.

2.4 Quaternions

Following ch. 7 of [11], we denote Hamilton’s algebra of quaternions by H. We
identify the orthonormal basis fi; j;kg of =H ' E3 with the fixed basis fe1; e2; e3g
of E3. Denoting the base vector of <H ' R as e0 D 1, we may represent arbitrary
quaternions invariantly as2 q D q C q, with scalar part q D <.q/ 2 E1 ' R

and vector part q D =.q/ 2 E3 ' R3. The product of two arbitrary quaternions
p and q is given by the formula: p ı q D pq � hp;qi C pq C qp C p � q. Using
the notation q� D q � q for conjugate quaternions, the scalar product h ; iH of
H ' E4 may be obtained by hp;qiH D 1

2
.p ı q� C q ı p�/ D pq C hp;qi, such

that jqj D p
q� ı q D p

q2 C q2 yields the modulus of a quaternion. All non-
zero quaternions have a unique inverse q�1 D q�=jqj2, such that q ı q�1 D 1 D
q�1 ı q holds. Quaternions q D q with a scalar part <.q/ D 0 are called pure
(or vector) quaternions and identified with vectors in E3. As the product of two
vector quaternions is given by the simplified formula p ı q D �hp;qi C p � q, their
scalar and cross products in E3 may be written in terms of quaternion products as:
hp;qi D � 1

2
.p ı q C q ı p/, and p � q D 1

2
.p ı q � q ı p/.

Proper rotations R 2 SO.3/ may be represented by unimodular (or rotational)
quaternions Oq D q C q, satisfying j Oqj2 D q2 C q2 D 1 and therefore located on
the unit sphere S3 � E4, by means of the Euler map Oq 7! R D E. Oq/ implicitly
defined via its operation on vectors v 2 E3 ' =H as: R. Oq/ � v D Oq ı v ı Oq�.
Thus, the pair ˙Oq represents the same proper rotation R. Oq/ D R.�Oq/, consistent
with the fact that S3 ' SU.2/ yields a double covering of SO.3/. The definition of
E. Oq/ implies the formulas R. Op/ � R. Oq/ D R. Op ı Oq/ for the composition of rotations
and R. Oq/T D R. Oq�/ for the inverse rotation, as R.1/ D I holds. According to Euler,
each proper rotation may be represented as R D exp.# Qu/, i.e.: a rotation by an angle
# around an axis determined by the unit vector Ou, with uniquely determined # 2
.0; 2�/ and Ou 2 S2 for R ¤ I. The corresponding rotational quaternion is given by
Oq D exp.#=2 Ou/ D cos.#=2/C sin.#=2/ Ou, such that exp.# Qu/ D E.˙ exp.#=2 Ou//
holds identically.

2It is always clear from the context whether a term q C q refers to the addition of the real and
imaginary parts of a quaternion or the parallel displacement of a point in E 3 by a vector.
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2.5 Geometric Curves in Euclidian Space

We regard geometric curves as simple arcs [30] corresponding to smooth, one-
dimensional connected submanifolds.3 Thus, the mapping C 3 p 7! �. p/ 2 R

of the points p on a geometric curve C � E 3 to their real coordinates � is (at least
once) differentiable and invertible, and the inverse mapping � 7! p.�/ from open
intervals in R into E 3 provides a local parametrization of the curve. By joining
the open intervals of local parametrizations, we obtain a larger one .a; b/ � R

corresponding to a global parametrization � W Œa; b� ! C of the geometric curve,
such that .a; b/ 3 � 7! p D �.�/ yields all interior points of C , and the two
boundary points of C are given by �.a/ and �.b/. The position vectors x. p/ 2 E3

of curve points are then given by a parameter curve � 7! r.�/ WD x.�.�// in E3.

3 Framed Curves and Cosserat Rods

The theory of Continuum Mechanics of solid bodies [14, 31] provides proper
physical models to simulate deformations of flexible parts. A continuum-mechanical
model of a material body consists of three main constituents: kinematics, equilib-
rium equations and constitutive laws. Summarized briefly, the general programme
of continuum mechanics aims at determining equilibrium configurations of a body
subject to certain boundary conditions, such that all external forces acting on the
body are in equilibrium with the internal ones (resulting from deformations of its
shape) and inertial effects, making use of constitutive laws that relate local changes
of shape, measured in terms of strains, to stresses that encode information on the
corresponding local forces.

The theoretical framework provided by Continuum Mechanics as sketched above
is a rather complex one, in particular if one is interested to model large (finite)
deformations of parts w.r.t. their shape in an undeformed state, in contrast to
infinitesimally small ones that can be treated by the well known standard models
and numerical methods of Linear Elasticity. This seems to be discouraging in view
of our goal to simulate large deformations of cables and tube-like parts fast enough
to permit interactive action for the users with the simulation model. Fortunately
the slender geometry of the parts considered provides the possibility to reduce the
continuum model analytically to an object which is well known (and likewise well
understood) in classical differential geometry, namely: a framed curve.

3One-dimensional connected (sub)manifolds are either simple arcs diffeomorphic to an interval, or
simple loops diffeomorphic to a circle (see the appendix of Milnor’s booklet [24] for a proof).
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3.1 Basic Differential Geometry of Framed Parameter Curves

More precisely, we consider so called Cosserat curves, consisting of [1]

• a space curve r.s/ corresponding to the centerline of the rod, and
• a moving frame R.s/ D a. j/.s/˝ ej of orthonormal directors,

where the pair fa.1/.s/; a.2/.s/g spans the local cross section of the rod at the position
r.s/, such that a.3/ D a.1/ � a.2/ equals the unit length cross section normal vector,
as sketched in Fig. 2.

As r.s/ 2 E3 and R.s/ 2 SO.3/, a Cosserat curve may be interpreted as
a parameter curve in the manifold E3 � SO.3/ of rigid body configurations in
Euclidian space. The curve parameter s is usually assumed to correspond to the
arc length of r.s/, such that the tangent vector t.s/ D r0.s/ has unit length. The
frame R.s/ is called adapted to the curve if a.3/.s/ D t.s/ holds. While in the
setting of classical differential geometry of framed curves mainly adapted frames
are considered, non-adapted frames are of primary interest in the kinematical
theory of geometrically exact rods, where adapted frames merely occur as a special
case, recoverable from a kinematically more general Cosserat curve by the Euler–
Bernoulli constraint r0.s/ D a.3/.s/, enforcing cross sections to remain orthogonal
to the tangent vector of an inextensible centerline curve.

(1)a

(2)a
(3)a

1e
3e

2e

r

1ξ

2ξ

Fig. 2 Centerline curve r.s/ and attached moving frame R.s/ D a.k/.s/˝ ek of a Cosserat curve,
describing the geometry of the configurations of a prismatic rod in Euclidian space. The volumetric
geometry is generated by sliding the cross section spanned by the frame directors fa.1/; a.2/g along
the centerline. The position vectors of the material points in the rod volume are parametrized by:
x D r.s/C �˛ a.˛/.s/
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3.1.1 Frénet Curves and Ribbons

The most well known adapted frame in elementary differential geometry of space
curves is the Frénet frame .a.1/; a.2/; a.3// D .n;b; t/, consisting of the principal
normal and binormal vectors defined as n.s/ WD t0.s/=�.s/ and b.s/ WD t.s/ � n.s/
on intervals of non-zero Frénet curvature �.s/ WD kt0.s/k. More general, one may
consider parameter curves on oriented surfaces patches, with the (likewise adapted)
Darboux frame of the curve defined by the curve tangent t and the unit length normal
vector field N of the surface at the curve points. This leads to the notion of a ribbon
(or surface strip), defined as a surface patch of infinitesimally small width around
a curve r.s/, oriented by a unit vector N.s/ orthogonal to the tangent vector t.s/ of
the curve, with an adapted frame given by: .a.1/; a.2/; a.3// D .N; t � N; t/.

From a slightly different point of view, one may consider an arbitrary frame field
R.s/, given as a parameter curve in SO.3/, and recover its corresponding space
curve by integration: r0.s/ D a.3/.s/ , r.s/ D r0 C R s

0
a.3/.�/ d�. The evolution

of the adapted frame of a ribbon along its curve is determined by the generalized
Frénet equations @sa.k/.s/ D ���.s/� a.k/.s/. The curvatures ~.k/.s/ are defined as the
components of the Darboux vector ��� D ~. j/ a. j/ D 1

2
a. j/ � @sa. j/ D � b C ~.3/ t

w.r.t. the directors of the moving frame. If they are given as continuous functions of
arc length, they provide a complete set of differential invariants that determine the
geometry of a ribbon up to a global rigid body motion.

3.1.2 Cosserat Curves and Quaternion Frames

Cosserat curves may be considered as natural generalizations of ribbons by omitting
the requirement of an adaption of the frame to the curve. In the context of the
kinematics of geometrically exact rods one proceeds even one step further by
considering regular curves that are not necessarily parametrized by arc length:
If one resolves the tangent vector r0.�/ w.r.t. the directors of the moving frame
R.�/ D a.k/.�/˝ ek, then the components � .k/.�/ WD ha.k/.�/; r0.�/i of the tangent
vector, together with the curvatures K.k/.�/, which are implicitly given by the frame
equations @�a.k/ D ��� � a.k/ and associated Darboux vector ���.�/ D K. j/.�/ a. j/.�/,
provide a complete set of differential invariants that determine a Cosserat curve up
to a global rigid body motion.

The proof of this statement, which constitutes the principal theorem of the
differential geometry of Cosserat curves, may be obtained by a straightforward
adaption of the corresponding one for ribbons (see [1]): For given curvature
functionsK. j/.�/, the frame equations become a system of linear ODEs for the frame
directors that can be integrated for an arbitrary initial value R0 2 SO.3/ according
to the theory of ordinary differential equations. Due to the special algebraic structure
of the frame equations, the scalar products of the frame directors are conserved
(i.e.: ha.i/.�/; a. j/.�/i D ıij), such that the solution R.�/ D a. j/.�/ ˝ ej always
remains in SO.3/. For given ��� .�/ WD � . j/.�/ ej and known R.�/, the tangent
vector r0.�/ D � . j/.�/ a. j/.�/ D R.�/ � ��� .�/ can then be considered as a known
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function that can subsequently be integrated, which finally yields the space curve
r.�/ D r0 C R �

0
R.�/ ���� .�/ d� for an arbitrarily chosen initial value r0.

Note that as kr0.�/k D k��� .�/k holds, the differential of arc length is given by
ds D k��� .�/k d�, such that one may always reparametrize a regular Cosserat curve
by its arc length function s.�/, with a corresponding rescaling of the curvatures
according to: ~.k/.s/ D K.k/.�/=k��� .�/k. For curves parametrized by arc length
� .k/.s/ D ha.k/.s/; t.s/i are the direction cosines of the tangent vector w.r.t. the
local frame axes. Ribbons consisting of regular curves parametrized by arc length
with adapted frames correspond to the special case of constant ��� 0 D .0; 0; 1/T �
e3. Frénet curves may in turn be considered as special cases of ribbons, with their
Darboux vector given by ��� D � b C � t.

The formulation of Cosserat rod models as presented in [20] is based on quater-
nionic Cosserat curves, where the moving frame R.s/ is represented equivalently
by a moving unimodular (rotational) quaternion field Oq.s/, characterized by the
identity R.s/ � v D Oq.s/ ı v ı Oq�.s/ holding for arbitrary vectors v 2 E3 ' =H.
The generalized Frénet equations can be written equivalently in terms of a derivative
equation R0.s/ D R.s/ � QK.s/ for the moving frame, using the skew matrix QK 2 so.3/
associated to the material Darboux vector K.s/ D K. j/.s/ ej D RT.s/ � ���.s/.

The corresponding derivative equation for the equivalent quaternion frame is then
given by Oq0.s/ D 1

2
���.s/ ı Oq.s/ D 1

2
Oq.s/ ı K.s/. As <.K/ D 0 D <.���/, any solution

of this ODE has constant modulus. In particular j Oq.s/j � 1 holds for any solution of
the frame equation starting from an initial value Oq0 2 S3. The recovery formula for
the centerline by integration in terms of a solution Oq.s/ of the quaternionic frame
equation—determined by the given curvature vector K.s/ and initial value Oq0—
and given ��� .s/ may then be reformulated in terms of quaternionic quantities as:
r.s/ D r0CR s

0
Oq.�/ı��� .�/ı Oq�.�/ d�. This implies an equivalent formulation of the

principal theorem for quaternionic Cosserat curves, which are likewise determined
by given functions K.s/ and ��� .s/ up to a global rigid body motion.

3.2 Elastic Energy of a Cosserat Rod

Static equilibria of deformed elastic structures can be computed as minima of
their elastic energy, subject to the assumed boundary conditions. As we intend
to model slender flexible structures as elastic Cosserat rods, we need to specify
a corresponding elastic energy function. For linear elastic material behaviour, the
elastic (stored) energy function of a 3D body is a quadratic form of its Green–
Lagrange strain tensor E D 1

2
.FT � F � I/, where F D d˚.X/ is the deformation

gradient computed as the derivative of the positions x D ˚.X/ of the material points
in the deformed body volume w.r.t. their positions X in the undeformed body (see
[14] for details).

If one computes the deformation gradient and Green–Lagrange strain tensors
for the deformed configurations x D r.s/ C �˛ a.˛/.s/ of a Cosserat rod w.r.t. its
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undeformed reference configuration X D r0.s/ C �˛ a.˛/0 .s/ given by a smooth
regular curve r0.s/ parametrized by arc length and its adapted frame R0.s/ D
a.k/0 .s/˝ ek with r0

0.s/ D a.k/0 .s/, one obtains [22] an exact closed form expression
for E which depends on the differences K.s/ � K0.s/ and ��� .s/ � ��� 0 (with ��� 0 D
.0; 0; 1/T) of the invariants of the framed curve in their deformed and undeformed
configurations.

For slender rod geometries, one may always assume that the local strains remain
small, although the deformations of the rod configuration correspond to large (finite)
rotations and displacements in space. In this case one may approximate the exact
expression for E by taking only the leading order terms in the differences of the
invariants into account. The resulting approximated energy density can then be
integrated analytically over the cross section coordinates .�1; �2/ in closed form,
which finally yields [22] the elastic energy Wel of a Cosserat rod as a quadratic
functional in the differences K � K0 and��� ���� 0 of the invariants, given by the sum
Wel D Wes C Wbt of the two integrals

Wes D 1

2

Z L

0

ds ŒEA�
�
� .3/.s/ � 1�2 C ŒGA˛� �

.˛/.s/2 ; (1)

Wbt D 1

2

Z L

0

ds ŒEI˛�
�
K.˛/.s/ � K.˛/0 .s/

2 C ŒGJ�
�
K.3/.s/ � K.3/0 .s/

2
: (2)

The first term (1) represents the elastic energy related to rod deformations by
longitudinal extension combined with transverse shearing, the second term (2)
accounts for the elastic energy stored in bending and torsional deformations of the
rod.

The parameters ŒEA�; ŒGA˛�; ŒEI˛� and ŒGJ� quantify the effective stiffness proper-
ties of the local cross section of the rod related to the respective deformation mode.
They may be constants, or vary along the rod as functions of s. In the simple case of
a homogeneous and isotropic material characterized by the elastic moduli E and G,
they are given as products of the moduli and geometric quantities (i.e.: area A, area
moments I˛, polar moment J) of the cross section.

To discretize the energy integrals (1) and (2) we need a discrete model of framed
curves with discrete versions of their invariants K and ��� .

4 The Difference Geometry of Framed Curves

In this section we inductively develop our approach to construct the discrete
kinematics of geometrically exact rod models by “geometric finite differences”.
We use concepts and results of the differential geometry of framed curves in
three-dimensional Euclidian space, and introduce ideas from Discrete Differential
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Geometry (DDG)4 to construct their discrete counterparts in a particular way, such
that essential properties of the continuum theory are preserved in the discrete setting.

Below we consider basic concepts of the elementary differential geometry of
parameter curves in Euclidian space, as presented in standard texts (e.g. do Carmo’s
book [9]), from the geometric viewpoint emphasized throughout Blaschke’s books
[3, 4], and outline some essential ideas how to transfer the continuous concepts to
the discrete setting, following and extending ideas of Sauer [27].

4.1 Discrete Arc Length and Edge Tangent Vectors

The mutual distance of points on a smooth curve can be measured by unbending the
curve to a straight line, such that the distance of the same points on the straightened
curve equals their Euclidian distance in space.

This procedure of continuously “unrolling” a smooth curve to the real axis can
be understood most easily for the simplified case of a discrete approximation of the
curve by a polygonal arc, given by a sequence of curve points pj D �.�j/ obtained
from a given discretization a DW �0 < �1 < : : : < �n WD b of the parameter interval
with position vectors rj WD r.�j/ � x. pj/. The corresponding polygonal arc is the
piecewise linear curve in E 3 defined as the union PnŒ p0; : : : ; pn� WD [n

jD1Œ pj�1; pj�
of edges Œ pj�1; pj� WD fp 2 E 3jp D pj�1 C �. pj � pj�1/; 0 � � � 1g that are
spanned by pairs of adjacent points (vertices) pj�1 and pj D pj�1 C lj� 1

2
, linked by

edge vectors lj� 1
2

WD pj � pj�1 D rj � rj�1 of length `j� 1
2

WD klj� 1
2
k D krj � rj�1k.

Then, the distance of any pair . pk; pl/ of vertices (with k < l), measured
along the path of the polygonal arc Pn, is given by the sum

Pl
jDkC1 `j� 1

2
of

edge lengths in between, which equals the Euclidian distance of . pk; pl/ if the
polygonal arc is straightened out to a line. If the discretization is refined, the
polygonal arc Pn approximates the curve C with increasing accuracy, provided
the curve is sufficiently smooth (i.e.: at least Lipschitz continuous). According to
the (approximate) identity

lX

jDkC1
`j� 1

2
D

lX

jDkC1

�
�
�
�

rj � rj�1
�j � �j�1

�
�
�
� .�j � �j�1/ �

lX

jDkC1

�
�r0.�j�1=2/

�
� .�j � �j�1/ ;

the sum of edge lengths may be interpreted as a discrete approximation of the

continuous integral
R �l
�k

kr0.�/k d� D Pl
jDkC1

R �j
�j�1

kr0.�/k d� by evaluating the
integral over the intervals Œ�j�1; �j� of length hj�1=2 WD �j � �j�1 approximately by

4DDG is an interdisciplinary field in applied mathematics which emerged rather recently at the
borderline of differential geometry and discrete computational geometry, with the majority of
applications in computer graphics. For a survey, we refer to the articles collected in the book [6].
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Fig. 3 Polygonal arc PnŒ p0; : : : ; pn� approximating a smooth regular geometric curve C : The
vertices pj 2 C define the edges Œ pj�1; pj� of length `j�1=2 > 0, with unit length tangent vectors
tj�1=2 D . pj � pj�1/=`j�1=2 located at edge centers Npj�1=2

the midpoint rule according to
R �j
�j�1

kr0.�/k d� � kr0.�j�1=2/k hj�1=2 C O.h3j�1=2/,
and approximating the derivative r0.�/ at the midpoints �j�1=2 WD 1

2
.�j�1 C �j/ by a

central finite difference as r0.�j�1=2/ � .rj � rj�1/=hj�1=2 C O.h2j�1=2/.
Likewise, the position vector rj�1=2 WD 1

2
.rj�1 C rj/ � x.Npj�1=2/ of the edge

center approximates the position vector r.�j�1=2/ at the midpoint of the parameter
interval with second order accuracy. Thus, considering the polygonal approximation
of a curve naturally leads to the concept of edge based tangent vectors lj�1=2=hj�1=2,
with unit length edge tangent vectors given by tj�1=2 WD lj�1=2=`j�1=2, both located
at edge centers. Requiring that consecutive vertices pj and pjC1 must not coincide,
which in turn implies non–zero edge vectors (i.e.: kljC1=2k > 0 , pj ¤ pjC1) and
unit vectors tj�1=2 well defined for all edges, corresponds to the definition of discrete
regularity of a polygonal arc (see Fig. 3).

While the mapping k 7! pk of integer indices to vertex points in Euclidian
space may be interpreted as a discrete geometric curve that induces a corresponding
mapping k 7! rk � x. pk/ of indices to position vectors, a discrete parameter curve
is defined by the mapping �k 7! r.�k/ induced by a discretization of the domain
of a smooth parameter curve. Therefore, the discrete counterpart of arc length
parametrisation corresponds to the case hk�1=2 D `k�1=2 of grid constants equal to
edge lengths, with discrete arc length parameters defined as &k WD &0CPk

jD1 `j�1=2,
marking the vertex positions of the polygonal arc straightened out parallel to the real
axis. The main concepts introduced in this section may be summarized as follows:

A discrete geometric curve is a mappingZ 3 j 7! pj 2 E 3 of integer indices to
points in Euclidian space. The discrete curve is regular iff pj ¤ pj�1 holds for
all vertex pairs . pj�1; pj/. A discrete regular geometric curve has well defined
unit tangent vectors tj�1=2 D . pj � pj�1/=`j�1=2 on all edges (see Fig. 3).
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Fig. 4 Polygonal arc PnŒ p0; : : : ; pn� and edge based quaternionic frames Oqj�1=2 � Rj�1=2 D
E.Oqj�1=2/ of a discrete Cosserat curve. In general, the frames are not adapted to the edges of Pn,

i.e.: a.3/j�1=2 ¤ tj�1=2. A discrete ribbon is a special case of a discrete Cosserat curve with adapted
frames

4.2 The Difference Geometry of Discrete Cosserat Curves

Our discussion of discrete regular geometric curves with edge centered unit tangent
vectors indicates the path to introduce Cosserat curves in the discrete setting:

A discrete Cosserat curve is defined as a polygonal arc PnŒ p0; : : : ; pn�
corresponding to a regular discrete geometric curve, augmented by a set
fRj�1=2gjD1;:::;n of orthonormal frames SO.3/ 3 Rj�1=2 D a.k/j�1=2 ˝ ek located
at edge centers Npj�1=2. The frames are represented by rotational quaternions
as Rj�1=2 D E. Oqj�1=2/ in terms of the Euler map E W S3 ! SO.3/ implicitly
defined via its operation E. Oq/v D Oq ı v ı Oq� on vectors, with frame directors
given by: a.k/j�1=2 D Rj�1=2 � ek D Oqj�1=2 ı ek ı Oq�

j�1=2 (see Fig. 4).

4.2.1 Curvature Angles and Discrete Curvatures

For each pair of frames Rj˙1=2, there is a unique spatial difference rotation5

connecting these frames as RjC1=2 D wj �Rj�1=2. According to Euler’s theorem, this
rotation wj D RjC1=2 � RT

j�1=2 can be written as wj D exp.#j Quj/, i.e.: a rotation by
an angle #j around the axis given by the unit vector Ouj. The corresponding rotational
quaternion connects the quaternion frames via OqjC1=2 D Owj ı Oqj�1=2 and is given by:

OqjC1=2 ı Oq�
j�1=2 DW Owj D cos.#j=2/C sin.#j=2/ Ouj D exp.#j=2 Ouj/ :

5As the group operation on SO.3/ is a product, the terminology quotient rotation would be more
appropriate. However, we prefer the term difference rotation to emphasize the analogy to FD
discretization of vectors in Euclidian space.
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The material difference rotation given by Wj WD RT
j�1=2 � RjC1=2 may be obtained

from the spatial one by a pull back rotation with either of the frames Rj˙1=2, i.e.:
Wj D RT

j˙1=2 � wj � Rj˙1=2, and can be written as a rotation Wj D exp.#j QUj/ by

the angle #j about the back rotated axis6 OUj WD RT
j˙1=2 � Ouj. In terms of rotational

quaternions, the equivalent relations for OWj D Oq�
j˙1=2 ı Owj ı Oqj˙1=2 read:

Oq�
j�1=2 ı OqjC1=2 DW OWj D cos.#j=2/C sin.#j=2/ OUj D exp.#j=2 OUj/ :

Extraction of the material rotation vector #j OUj D 2 log. OWj/ from the quaternionic
difference rotation OWj then leads to the following definition of curvature angles:

 
.k/
j WD hek; 2 log. OWj/i D #j hek; OUji , #j OUj D  

.k/
j ek : (3)

As OUj WD RT
j˙1=2 � Ouj and a.k/j˙1=2 D Rj˙1=2 � ek hold, one obtains the angles

 
.k/
j equivalently by decomposing #j Ouj D 2 log. Owj/ w.r.t. the frame directors,

i.e.:  .k/j D ha.k/j˙1=2; 2 log. Owj/i D #jha.k/j˙1=2; Ouji. The set f#j OUjgjD1;:::;n of material

rotation vectors (or equivalently: the set f .k/j gkD1;2;3jD1;:::;n of curvature angles) corre-
sponds to the discrete data of the set of quaternion frames f Oqj�1=2gjD1;:::;n of a
discrete Cosserat curve. The frames can be reconstructed iteratively by the material
difference rotations as Oqj�1=2 7! OqjC1=2 D Oqj�1=2 ı exp.#j=2 OUj/, or likewise
equivalently by spatial ones according to the algorithm

Oqj�1=2 ! Owj D Oqj�1=2 ı exp.#j=2 OUj/ ı Oq�
j�1=2 ! OqjC1=2 D Owj ı Oqj�1=2 ; (4)

for j D 1; : : : ; n�1, starting at Oq1=2 chosen as initial value, and proceeding edgewise
in ascending order.

Discrete material curvatures K.k/j can then be defined by dividing the curvature
angles by the discrete arc length distance �&j between the edge centers Npj˙1=2:

K.k/j WD  
.k/
j

�&j
D �&�1

j hek; 2 log. OWj/i D #j

�&j
hek; OUji : (5)

If the discrete Cosserat curve approximates a smooth one, the vector Kj D K.k/j ek
of discrete material curvatures converges to the material Darboux vector K. pj/ in
the limit�&j ! 0. In this case, the curvature angles can be interpreted as integrated

values, approximating the integrals
R pjC1=2

pj�1=2
hek; 2 Oq� ı d Oqpi �  

.k/
j of the curvature

6Note that the vectors Ouj and OUj are eigenvectors of the difference rotations wj and Wj with

eigenvalue 1, which implies the identities RT
j�1=2 � Ouj D RT

jC1=2 � Ouj and Rj�1=2 � OUj D RjC1=2 � OUj.
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1–form t. p/ 7! 2 Oq�. p/ ı d Oqp.t. p// D K. p/, and the discrete curvatures K.k/j D
 
.k/
j =�&j with �&j � R pjC1=2

pj�1=2
ds correspond to approximate integral averages.

Alternative discrete curvature expressions that approximate K. pj/ � Kj accord-
ing to the relations #j � 2 sin.#j=2/ � 2 tan.#j=2/ valid for small angles can be
obtained directly from the imaginary and real parts =. OWj/ D sin.#j=2/ OUj and
<. OWj/ D cos.#j=2/ of the material difference rotation. The simplest examples
are: �&jKj � 2=. OWj/ D 2 sin.#j=2/ OUj and �&jKj � 2=. OWj/=<. OWj/ D
2 tan.#j=2/ OUj. A particularly interesting variant, which appears within the deriva-
tion of discrete derivative equations for quaternionic frames, is given by:

�&j Kj � 4=. OWj/ = .1C <. OWj// D 4 tan.#j=4/ OUj : (6)

4.2.2 Material Edge Components, Edge Tangent Cosines and Shear
Angles

The second set of data of a discrete Cosserat curve is given by the components

`
.k/
j�1=2 WD ha.k/j�1=2; lj�1=2i D `j�1=2 ha.k/j�1=2; tj�1=2i (7)

of the edge vectors lj�1=2 D `j�1=2 tj�1=2 w.r.t. the local frame, which we denote as
material edge components. The squared edge lengths can be obtained as the sum
`2j�1=2 D P3

kD1.`
.k/
j�1=2/2 of the squared material edges components. Considering

f`.k/j�1=2gkD1;2;3jD1;:::;n as given data, the edge lengths `j�1=2 and the discrete arc length

parameters &k D &0 CPk
jD1 `j�1=2 can be computed from these.

According to (7) the components `.k/j�1=2 are given as products of the edge lengths
and the edge tangent cosines

�
.k/
j�1=2 WD `

.k/
j�1=2
`j�1=2

D ha.k/j�1=2; tj�1=2i D hek; Oq�
j�1=2 ı tj�1=2 ı Oqj�1=2i : (8)

The shear angles 	.k/j�1=2 D arccos.� .k/
j�1=2/ measure the angles enclosed by the edge

vector and the frame axes. The edge tangent cosines (8) converge to the direction
cosines ha.k/. p/; t. p/i of the unit tangent vector t. p/ w.r.t. the frame directors
a.k/. p/ at p D pj�1=2 in the limit `j�1=2 ! 0.

The set f pjgjD0;:::;n of vertices of the polygonal arc P can be obtained by
summation of the edge vectors lj�1=2 according to pj D p0 C Pj

iD1 li�1=2, starting

from an arbitrarily chosen initial value p0 2 E 3. As lj�1=2 D ha.k/j�1=2; lj�1=2i a.k/j�1=2 D
`
.k/
j�1=2 a.k/j�1=2 and a.k/j�1=2 D Oqj�1=2 ı ek ı Oq�

j�1=2, the sum for the computation of the
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vertices from edge vectors may be rewritten in the form

pj � p0 D
jX

iD1
`i�1=2 ti�1=2 D

jX

iD1
`
.k/
i�1=2 Oqi�1=2 ı ek ı Oq�

i�1=2 (9)

as an expression in terms of known quantities.
The sum (9) yields a discrete approximation of the integral pj � p0 D R pj

p0
dp with

dp D t. p/ ds, which can be rewritten equivalently as
R pj
p0

Oqı��� ı Oq� ds in terms of the

quaternion frame Oq. p/ and��� . p/ D RT. p/ � t. p/ D Oq�. p/ı t. p/ı Oq. p/. The second
sum term in (9) corresponds to an approximation of the integrals

R pi
pi�1

Oq ı��� ı Oq� ds
by the midpoint rule as `i�1=2 Oqi�1=2ı��� i�1=2ı Oq�

i�1=2, with��� i�1=2 WD �
.k/
i�1=2 ek. The

discrete integration formula provided by (9) is equivalent to the difference equation

. pj � pj�1/=`j�1=2 D Oqj�1=2 ı��� j�1=2 ı Oq�
j�1=2 (10)

discretizing the derivative equation dp D Oq ı��� ı Oq� ds.

4.2.3 Discrete Generalized Frénet Equations

The directors a.k/j˙1=2 of adjacent frames Rj˙1=2 D a.k/j˙1=2 ˝ ek are connected by
spatial difference rotations wj D exp .#j Quj/ D cay.tan.#j=2/ Quj/ and satisfy the

equations a.k/jC1=2 D wj � a.k/j�1=2, which may be rewritten equivalently as:

a.k/jC1=2 � a.k/j�1=2 D 2 tan.#j=2/ Ouj � 1

2
.a.k/j�1=2 C a.k/jC1=2/ : (11)

Divided by �&j, this coupled system of difference equations corresponds to a

geometric FD discretization of the generalized Frénet equations da.k/p D ��� � a.k/

satisfied by the frame directors of a Cosserat curve.
According to (5) the FD approximation of the material Darboux vector at pj is

given by Kj D .#j=�&j/ OUj � K. pj/. The corresponding spatial Darboux vector
then results from a forward rotation according to ��� j D Rj˙1=2 � Kj and is therefore
given by: ��� j D .#j=�&j/ Ouj � ���. pj/. The discrete spatial Darboux vector identified
from (11) equals�&�1

j 2 tan.#j=2/ Ouj � ��� j, which provides an alternative consistent
FD approximation of ���. pj/ that coincides with ��� j in the limit �&j ! 0.

Averaged Frame Director Expansion of the Discrete Spatial Darboux Vector

For Rj˙1=2 2 SO.3/ the matrix Rj�1=2 C RjC1=2 D Rj�1=2 � .I C Wj/ is regular if
the eigenvalues of Wj are different from �1, which is always the case for curvature
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angles j .k/j j < � . Then the averaged frame directors Na.k/j WD 1
2
.a.k/j�1=2 C a.k/jC1=2/

associated to vertex pj, which appear on the r.h.s. of (11), are linearly independent
and form a basis of E3. Although they do not form an orthonormal frame, they
become orthonormal in the limit �&j ! 0, as lim�&j!0 Na.k/j D a.k/. pj/ holds.
The discrete generalized Frénet equations (11) can be rewritten with greater formal
similarity to their continuous counterpart by expanding the spatial Darboux vector

��� j 
 Ouj w.r.t. the dual basis vectors Nb.k/j implicitly defined as h Nb.k/j ; Na.l/j i D ıkl and

explicitly given by Nb.k/j D .Na.l/j � Na.m/j /=hNa.1/j � Na.2/j ; Na.3/j i for cyclic permutations

.klm/ of .123/. By construction lim�&j!0
Nb.k/j D a.k/. pj/ holds. The representation

���. pj/ � �&�1
j 2 tan.#j=2/ h Nb.k/j ; Ouji Na.k/j of the discrete spatial Darboux vector

is obtained by using the identity Ouj D hNb.k/j ; Ouji Na.k/j and implies the corresponding

approximation K.k/. pj/ � �&�1
j 2 tan.#j=2/ h Nb.k/j ; Ouji of the material curvatures at

the vertices. Inserting this expansion into (11) leads to the equivalent reformulation

a.k/jC1=2 � a.k/j�1=2 D 2 tan.#j=2/
h
h Nb.m/j ; Ouji Na.m/j � hNb.l/j ; Ouji Na.l/j

i

of these equations for cyclic permutations .klm/ of .123/, as the Darboux vector
component 
 Na.k/j is canceled due to the cross product. Dividing both sides of this

FD equation for a.k/j˙1=2 by �&j and taking the limit �&j ! 0 yields the well known

form da.k/p D ��� � a.k/ D K.m/a.m/ � K.l/a.l/ of the generalized Frénet equations of
the continuum theory of framed curves.

Discrete Derivative Equations for Quaternion Frames

An analogous discretisation of the derivative equation d Oqp D 1
2
��� ı Oq for the

quaternion frames can be obtained from the Cayley transform7 and its inverse

q 7! Op D cay.q/ D 1C q
1� q

; Op 7! q D cay�1. Op/ D Op � 1
Op C 1

mapping vectors to rotational quaternions and vice versa. For Op D cos.˛/ C
sin.˛/ Oe D exp.˛ Oe/ one obtains q D cay�1. Op/ D tan.˛=2/ Oe, such that exp.˛ Oe/ D
cay.tan.˛=2/ Oe/ holds. Applied to the rotation Owj D exp.#j=2 Ouj/ D OqjC1=2 ı Oq�

j�1=2

7The notation .1C q/=.1� q/ captures the fact that .1C q/ ı .1� q/�1 D .1� q/�1 ı .1C q/
holds for all q 2 E3. Likewise the identity .Op � 1/ ı .Op C 1/�1 D .Op C 1/�1 ı .Op � 1/ valid for
all �1 ¤ Op 2 S3 is abbreviated by .Op � 1/=.Op C 1/.
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connecting adjacent quaternions frames this yields the desired result:

OqjC1=2 � Oqj�1=2 D 1

2




4 tan

�
#j

4

�

Ouj

�

ı 1

2
. Oqj�1=2 C OqjC1=2/ : (12)

Starting from OqjC1=2 D Oqj�1=2 ı OWj with OWj D exp.#j=2 OUj/ one obtains the
equivalent difference equation

2 . OqjC1=2 � Oqj�1=2/ D 1

2
. Oqj�1=2 C OqjC1=2/ ı




4 tan

�
#j

4

�
OUj

�

; (13)

which provides a geometric FD discretization of the equivalent form d Oqp D 1
2

Oq ı K
of the derivative equation for the quaternion frames in terms of the material Darboux
vector K D Oq� ı��� ı Oq. The FD approximation of the material Darboux vector K. pj/
implied in (13) is the one already mentioned in (6). The FD formula for the spatial
Darboux vector ��� results from a forward rotation Ouj D Oqj˙1=2 ı OUj ı Oq�

j˙1=2 of the
material rotation axis to the spatial one. The discrete derivative equations (12) and
(13) are the equivalent quaternionic counterparts of the discrete generalized Frénet
equations (11).

4.2.4 The Principal Theorem for Discrete Cosserat Curves

At this point, we have obtained all ingredients necessary for the statement and
constructive proof of the principal theorem of discrete Cosserat curve theory.

The basic data of a discrete Cosserat curve, consisting of a polygonal arc
PnŒ p0; : : : ; pn� and the set f Oqj�1=2gjD1;:::;n of quaternion frames representing
orthonormal frames Rj�1=2 D E. Oqj�1=2/ located at edge centers Npj�1=2, are:

• the set f .k/j gkD1;2;3jD1;:::;n�1 of curvature angles, and

• the set f`.k/j�1=2gkD1;2;3jD1;:::;n of material edge components.

The essential parts of the discrete integration procedure, resulting in a recon-
struction of a discrete Cosserat curve from its basic data and chosen initial
conditions, have already been outlined in the previous paragraphs of this section
and is summarized compactly in the following algorithm:

1. A rotational quaternion Oq0 2 S3 representing an orthonormal frame R0 D
E. Oq0/ 2 SO.3/ and a point p0 2 E 3 are selected as arbitrarily chosen initial
values.

2. Starting from Oq1=2 WD Oq0, the quaternion frames are generated iteratively from the

material rotation vectors #j OUj D  
.k/
j ek defined by the given curvature angles

via sequential rotations

OqjC1=2 D Oqj�1=2 ı exp.#j=2 OUj/ for j D 1; : : : ; n � 1
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according to (4). The sequence f Oqj�1=2gjD1;:::;n is an exact solution of the discrete
derivative equations [(12), (13)] uniquely determined by its initial value.

3. Starting from p0, the vertices are obtained iteratively by summation as

pj D p0 C
jX

iD1
`
.k/
i�1=2 Oqi�1=2 ı ek ı Oq�

i�1=2 for j D 1; : : : ; n

according to (9) from the known quaternion frames and the given material
edge components. The sequence f pjgjD0;:::;n is an exact solution of the discrete
derivative equations (10) uniquely determined by its initial value p0.

This algorithm provides a constructive proof of the principal theorem for discrete
Cosserat curves, which may be formulated as follows:

For given discrete data consisting of the sets of curvature angles f .k/j gkD1;2;3jD1;:::;n
and material edge components f`.k/j�1=2gkD1;2;3jD1;:::;n, the solutions of the discrete
derivative equations (10) and (12), (13) determine the quaternion frames
f Oqj�1=2gjD1;:::;n and the vertices f pjgjD0;:::;n of a discrete Cosserat curve up to
an overall rigid body motion in E 3.

5 Discrete Elastic Energy of Quaternionic Cosserat Rods

We discretize the continuum model of an elastic Cosserat rod by approximating
its elastic energy integrals (1) and (2) by suitable quadrature rules, making use
of the discrete curvatures fK.k/j gkD1;2;3jD1;:::;n�1 and extensional and shearing strains

f� .k/
j�1=2gkD1;2;3jD1;:::;n defined in the previous Sects. 4.2.1 and 4.2.2. Here we briefly outline

this approach described in detail in our article in [20].
We start with a discretization 0 DW s0 < s1 < : : : < sn WD L of the

interval domain Œ0;L� of the arc length parameter s of the reference curve r0.s/ into
subintervals Œsj�1; sj� of length hj�1=2 WD sj � sj�1. The distance between interval
midpoints sj˙1=2 D 1

2
.sj C sj˙1/ is given by �sj WD sjC1=2 � sj�1=2 D Nhj, where

Nhj WD 1
2
.hj�1=2 C hjC1=2/ is the average of the grid constants hj˙1=2 adjacent to sj.

5.1 Discrete Extensional and Shear Energy

As the discrete extensional and shear strains � .k/
j�1=2 are edge based quantities, an

approximation of the energy integral (1) by midpoint quadrature is the natural
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choice to obtain a discrete version of Wes. The pull back of the strains to the
reference configuration is obtained by a rescaling with the factors `j�1=2=hj�1=2 �
kr0.sj�1=2/k, according to

N� .k/
j�1=2 WD `j�1=2

hj�1=2
�
.k/
j�1=2 D hlj�1=2; a.k/j�1=2i=hj�1=2 D h N��� j�1=2; eki ; (14)

where N��� j�1=2 WD Oq�
j�1=2 ı.lj�1=2=hj�1=2/ı Oqj�1=2 is the material vector obtained from

rotating the discrete edge tangent vector lj�1=2=hj�1=2 back to the local frame. The
discrete approximation of Wes can be written in compact form as

Wes � W .D/
es WD 1

2

nX

jD1
hj�1=2 h� N��� j�1=2;Ces �� N��� j�1=2i ; (15)

where � N��� j�1=2 WD N��� j�1=2 � ��� 0 with ��� 0 D .0; 0; 1/T , and the shear
and extensional stiffness parameters collected in the diagonal matrix Ces WD
diag.ŒGA1�; ŒGA2�; ŒEA�/.

The condition of vanishing discrete transverse shear strains N� .˛/

j�1=2 � 0 implies
N� .3/

j�1=2 D `j�1=2=hj�1=2, such that (14) reduces to the extensional energy

W
.D/
ext WD 1

2

nX

jD1
hj�1=2 ŒEA�

�
`j�1=2=hj�1=2 � 1

�2

of a discrete extensible Kirchhoff rod model [21], which approximates its continuum
counterpart given by Wext WD 1

2

R L
0 ds ŒEA� .kr0.s/k�1/2. Additionally imposing the

inextensibility condition `j�1=2 � hj�1=2 on the edges implies W .D/
ext � 0 � W

.D/
es .

5.2 Discrete Bending and Torsion Energy

The discrete curvatures K.k/j are vertex based quantities, such that a discrete
approximation of Wes can be obtained from the energy integral (2) by (non-
equidistant) trapezoidal quadrature. The pull back of the curvatures originally
defined w.r.t. discrete arc length to the reference configuration implies a rescaling
by the factor �&j=�sj � kr0.sj/k, i.e.: NK.k/j WD .�&j=�sj/K

.k/
j , equivalent to the

definition

NK.k/j WD h NKj; eki ; NKj WD .�sj/
�1 2 log OWj D .#j=�sj/ OUj D NK.k/j ek (16)
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of discrete pulled back material curvatures. The discrete approximation of Wbt can
then be written in compactly as

Wbt � W
.D/
bt WD 1

2

nX

jD0
�sj h� NKj;Cbt �� NKji ; (17)

with the curvature differences� NKj WD NKj�K0j between the deformed and reference
configurations, the diagonal matrix Cbt WD diag.ŒEI1�; ŒEI2�; ŒGJ�/ of bending and
torsional stiffness parameters, and the grid constants of the half-edges near the
boundary defined as �s0 WD h1=2=2 and �sn WD hn�1=2=2.

5.3 Boundary Conditions

The definition of material curvature vectors NK0 and NKn at the boundary vertices is a
new element in the discrete model that did not have to be considered in the theory of
discrete Cosserat curves up to this point. These discrete curvatures are defined in the
deformed configuration in terms of the material difference rotations OW0 WD Oq�

0 ı Oq1=2
and OWn WD Oq�

n�1=2 ı Oqn connecting the boundary frames Oq0 and Oqn to the frames on
the adjacent edges, with analogous definitions for the boundary curvatures of the
reference configuration.

The boundary frames of both configurations are determined by boundary
conditions imposed on the discrete rod model, which have to be formulated as
separate conditions, or can directly be built into the discrete energy W

.D/
bt . Likewise,

boundary conditions on the vertices p0 and pn influence the discrete energy W
.D/
es .

5.4 Discrete Equilibrium Equations

With the boundary conditions built into the respective terms of the discrete energies
(15) and (17), the total discrete elastic energy given by

W
.D/
el .Xf / WD W .D/

es .Xf / C W
.D/
bt .Xf / (18)

become functions of the free vertex positions frjg and quaternion frames f Oqj�1=2g
collected in the set Xf WD frjg [ fOqj�1=2g of free variables.

Static equilibrium configurations of a discrete Cosserat rod subject to given
boundary conditions can be obtained by minimizing the discrete elastic energy of
the rod. The discrete equilibrium equations

rXf W
.D/
el .Xf / D 0 , @W

.D/
el

@rj
.Xf / D 0 ;

@W
.D/
el

@ Oqj�1=2 .Xf / D 0 (19)
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provide a necessary condition for such energy minima. The discrete equilibrium
equations (18) is a coupled nonlinear system of algebraic equation, which can be
solved numerically by Newton’s method. Alternatively, one can find approximate
equilibrium configurations by energy minimization, using nonlinear conjugate
gradients or Quasi-Newton type optimization methods like BFGS.

The system (18) is actually a special case of the dynamic equilibrium equations
for a semi–discrete model of time dependent discrete quaternionic Cosserat rods
[20], which are obtained as the (abstractly written) Euler–Lagrange equations

@t
�r@tXf L

.D/.Xf ; @tXf /
� � rXf L

.D/.Xf ; @tXf / D 0

for the Lagrangian function L .D/.Xf ; @tXf / WD T
.D/
kin .Xf ; @tXf / � W

.D/
el .Xf /

defined as the difference of the kinetic and potential energy according to the general
concepts of Lagrangian mechanics (see [18, 20] for further details).

5.5 The Geometric Nature of the Discrete Elastic Energy

Up to this point, the various steps to obtain a discrete energy function from a
continuum functional and to determine equilibrium configurations as energy minima
did not involve any specific aspects of the discrete geometry of the underlying
model: The energy integrals are discretized by standard quadrature rules, the
discrete equilibrium equations result from the gradient of the discrete energy
w.r.t. the free variables, and the numerical solution of the equations is done by
Newton or Quasi–Newton methods.

The essential ingredient to this procedure is provided by the fact that the
curvatures and strains are well defined for arbitrarily large deformations, completely
independent of the coarseness of the discretization. The discrete curvatures increase
with increasing values of the angles, up to the very limit of degenerate configura-
tions. The energy vanishes exactly only in the reference configuration and does not
possess any “artificial” minima otherwise.

Not all discretizations share these important properties. For example, a finite
element approach using linear interpolation of nodal SO.3/ frames yields discrete
curvatures 
 sin.#j/ Ouj (see the discussion in Remark 8 of [16]), which becomes
extremal at #j D ˙�=2 and then decreases in modulus for larger values of #j, up to
the value zero taken in the degenerate case #j D ˙� . For coarse discretizations, it
can easily happen that bending or torsion angles j#jj � �=2 occur. A model based
on this discretization of curvature would obviously produce unphysical results, as
zig-zag type configurations with angles �=2 � j#jj � � become energetically
favourable.

The discussion of this example illustrates that our efforts to construct a proper
discrete theory of framed curves by geometric finite differences yields the essential
contribution to a rod model required to behave qualitatively correct even for very
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coarse discretizations. In this sense, one can state that our discrete Cosserat rod
model inherits its structural stability from its underlying kinematic model of discrete
Cosserat curves, completely independent of the coarseness of the discretization, and
therefore displaying qualitatively correct physical behaviour at arbitrarily coarse
discretizations.

5.6 Academic Test Examples

We conclude this section on discrete models of elastic Cosserat rods by showing
some typical results obtained in two well known academic benchmark examples
that illustrate the behaviour of our discrete Cosserat rod model in certain boundary
value problems that are also relevant for our practical applications, and also show an
illustrative comparison of a simulation with a corresponding laboratory experiment.

Figure 5 shows the performance of a recent implementation [19] of our discrete
rod model in classical examples for inextensible rods due to Euler [12] and
Kirchhoff [17] that are analytically solvable in closed form by Kirchhoff’s kinetic
analogy (see Art. 260, 262 and 270 in Ch. XIX of [23] and Dill [8] for details and
historical remarks).

The coarse discretization in the Elastica example with only four edges has been
deliberately fixed to equidistant edge lengths to induce visible differences between
the discrete and the analytical solutions in configurations at larger deflections. How-
ever, these differences remain rather small, although an equidistant discretization
is certainly not optimal in this example. Even on the level of kinetic quantities
(i.e.: forces and moments), the “coarse” discrete solution captures the trend of the
analytical curves of the bending moment and the tension force not only qualitatively,
but displays a quantitative agreement with the corresponding analytical values
that could hardly be expected. Nevertheless, the slight S–shaped variation of the
analytical curve for the transverse shear force is captured only very roughly. For
a finer equidistant discretization with 20 edges both the kinematic as well as the
kinetic quantities of the analytical solution are captured almost perfectly .

The example of the Kirchhoff helix shows that equally positive results can be
obtained for spatial deformations involving a combination of bending and torsion of
the rod. In the classical form of Kirchhoff’s problem for helical equilibrium configu-
rations of elastic rods, the latter are shown to result from special combinations of the
material components of forces and moments applied at both ends of the rod, which
determines the solution up to an overall rigid body motion. The solution shown in
Fig. 5 results from a slightly different variant of the boundary value problem, where
the vertices and frames at both ends were clamped and varied along the known
analytical solution of the continuum problem. Here, only the configuration data are
shown, perfectly matching the analytical centerline curves for both the coarser (10
edges) and finer (50 edges) discretization. The plots of the kinetic quantities, which
are all straight horizontal lines corresponding to constant material components of
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Fig. 5 (a) Plane bending of a clamped cantilever beam loaded by a vertical end force, with
analytical solution curves given by Euler’s Elastica model. (b) Bending moment (left), transverse
shear force (middle), and tension force (right) as a function of arc length for the clamped cantilever
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Fig. 6 Spatial configurations of a clamped cable after twisting and axial displacement of the
clamped ends. Left: Laboratory experiment; Right: Results in IPS Cable Simulation

the forces and moments relative to the local frames, all captured accurately by the
discrete solution, are omitted here.

The laboratory experiment [10] shown in Fig. 6 is conceptually similar to the
Kirchhoff helix example with clamped ends, but more general, as it involves non-
constant torsion and bending, which is closer to realistic cases encountered in
assembly simulation. Although the real cable that has been used as a specimen
in the experiment clearly displayed viscoplastic material properties measured for
larger local deformations, on top of the basic elastic constitutive behaviour that
dominates in the regime of small local strains, the computation of equilibrium
configurations performed with the discrete Cosserat rod model in the software IPS
Cable Simulation properly captures the complex spatial deformation behaviour of
the cable in the real experiment if appropriately averaged effective elastic cable
properties are used.

Concerning the computing times we would like to remark that already a decade
ago it was possible to simulate the entire deformation sequences of the two examples
discussed in this section (as well as others, see [21]) on a standard desktop
computer within the range of milliseconds. This provides the basis for true real
time interaction with the simulation model by an interactive change of the boundary
conditions, or likewise a change of model parameters, like e.g. the length and
stiffness parameters of the rod. Also immediate adaptions of the (in general: non-
equidistant) discretization in reaction to external constraints induced by various
types of clips or contact with rigid geometries in the environment can be handled
algorithmically in a very efficient manner.

J
Fig. 5 (continued) beam example shown in (a): the values obtained from the discrete model with
coarser (5 points) and finer (20 points) discretization approximate the analytical solution (blue
curves) obtained from Euler’s Elastica model. (c) Two helical configurations with smaller and
larger pitch angle of a steel string in space, modeled as an inextensible Kirchhoff rod, with analytical
solutions given by Kirchhoff’s constant curvature helices, matched by discrete constant curvature
solutions of the same boundary value problem with coarser (top) and finer (bottom) discretization
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6 Application Examples from Vehicle Industry

The software package IPS Cable Simulation contains different variants of discrete
Cosserat models, augmented by numerous productivity features that are useful for
a variety of applications in industry, like enhanced CAD, digital mock-up, or the
simulation of assembly (or disassembly) processes on desktop computers as well as
in virtual (VR) or augmented (AR) reality environments. In IPS Cable Simulation
the rod models have been enhanced w.r.t. a variety of different elements, such that
external constraints induced by various types of clips, restricting spatial motions of
one to six of the local rigid body d.o.f. of the rod, frictionless contact interaction
with rigid geometries in the environment, or self contact and contact with other rods
can be handled efficiently.

The user can interact with the discrete elastic rod model of a cable or hose e.g. by
grabbing one of its ends with the mouse (or more sophisticated VAR devices), or
likewise a clip attached at some intermediate location, and change its position and
orientation in space interactively. These changes are captured by the user interface
and translated by the software into a sequential change of boundary conditions. This
sequence is then passed to the simulation model, which computes corresponding
deformation sequences by solving the mechanical equilibrium equations sufficiently
fast for rendering deformed configuration at interactive rates (i.e.: 25GHz or faster).

The seamless integration of discrete Cosserat rod models into the IPS software
is supported by their formulation in terms of elementary geometric quantities (i.e.:
vertex positions and orthonormal frames) that can be handled highly efficient by the
computational geometry methods and algorithms already implemented in IPS. As an
example, frames translated along polygonal paths in space are fundamental objects
in rigid body path planning, which historically has been one of the core capabilities
of the IPS software.

6.1 Representative Application Examples from Automotive
Industry

In what follows, we present some examples, all taken from joint projects with
AUDI AG, to illustrate the typical usage of our discrete rod models integrated
in the IPS software in automotive industry. Of course, simple screenshots from
the software as the ones shown here are not able to convey the user experience
in interactive operation with the software in a realistic way, and even the more
detailed information provided by video8 sequences of the software in operation
at real application cases can hardly be more than a substitute. Nevertheless, the

8We refer to the various videos shown on the website www.flexstructures.com for a visualization
of deformation sequences of cables in different application cases.

www.flexstructures.com
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Fig. 7 Left: Assembly sequence of various clips and connectors to be mounted at head-up display.
Right: Variation of the position and the type of a clip to lower the level of strain in the cable

principle way of usage of the simulation software and the benefits obtained in
industrial applications should become clear from our descriptive exposition.

Figure 7 shows some screenshots taken from the simulation of the assembly
sequence of various clips and connectors to be mounted at a head up display. The
numbers indicate the assembly sequence, and the arrows point out the direction of
the movement of the various clips and plugs towards their final mounting positions.
The engineer working with the simulation software would typically grab individual
clips, plugs or connectors with the mouse and perform the assembly operation for
all on the virtual model sequentially, just as it would later be done by the worker in
the real process. In this way, the engineer can validate if it is possibly to assemble
all cables without mutual crossing, and if the cable lengths are sufficient to avoid
extensional straining and sharp bending at clips. If not, the length of a cable can
be changed interactively to its optimal length. Also, the function of various clip
types as well as their positioning can be checked and varied to avoid infavourable
configurations. The two pictures to the right of Fig. 7 show such a variation of the
position and the type of a clip to lower the level of strain in the cable. Note that the
assembly of the connector labeled as No. 3 requires a clockwise rotation by 90ı for
plug-in. The effect of torsional straining of the attached cable can be computed in
terms of the torsional moment acting on the cable in its mounted configuration, in
combination with the bending strains that are simultaneously acting. The combined
level of stresses and strains can be assessed by St. Venant type stress functions that
superpose forces and moments of the rod model into local 3D stress tensor values,
which can be evaluated e.g. in terms of von Mises stress values.

Figure 8 displays another issue discovered and solved during the digital vali-
dation of the functionality of the same head up display: The originally suggested
design of one of the plastic parts in the kinematic mechanism was done in a compact
way to assure its mechanical stability with a minimal amount of plastic material,
with a rather sharp rectangular kink at its upper right corner. Despite the slight
rounding at its corner, the simulation of the operation of the whole mechanism
including the cables showed that during sequential moving out and in of the display
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Fig. 8 Redesign of a plastic part in the kinematic mechanism of the same head-up display. Left:
Former design with a sharp corner, where the cable may get hooked, which might cause damage.
Right: Improved design, where the cable can slide along reproducibly always in the same stable
way, such that potential damage due to hook-up or clamping of the cable is avoided

the cable had to slide across the corner, with a sudden change of its configuration
due to buckling. The whole situation turned out to be rather sensitive to small
changes in the cable length. All in all, it became clear that the initial design was
not robust enough, and the increased bending strains occurring in the cable in its
configuration hooked up at the corner of the plastic part might later cause damage
due to the frequent repetitive loading. Therefore the design of the plastic part had to
be changed. The picture to the right of Fig. 8 shows the final design solution: The
vertical edge at the respective corner was bent upwards and elongated, such that the
sharp right angle is eliminated, and the edge functions as a rail on which the cable
can slide in a stable way during the forward and backward operation of the kinematic
mechanism. Clearly, the simulation of the whole system with the physically correct
deformation of flexible cables in contact with the rigid geometries in its environment
provided the essential insights leading to an improved design. With this software, the
functionality of the whole system of the headup display with all cables connected
can be simulated and validated digitally in an early design phase. Traditionally,
one would manufacture hardware prototypes of the simulated design to perform
a physical validation. However, the possibility of simulation with physically correct
models allows for functional validation without physical prototypes.

The third example shown in Fig. 9 addresses the optimization of the length
of a flexible grommet to avoid damage during the repeated opening and closing
operation of the hatchback and has been discussed in detail in [15], introducing
a (at that time) new method of comparative durability assessment based on the
prediction of local stresses during quasi-static deformation sequences of flexible
cables or hoses. In this case, the grommet joining the chassis and hatchback,
which conducts various cables inside, becomes substantially deformed during the
opening and closing of the hatchback, such that bending and torsional strain occur
at a considerable level. The issue could be resolved in a simulation study by an
elongation of the length of the grommet tube, which lowers the level of strains, but
still avoids unwanted clamping at the nearby hinge.
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Fig. 9 Optimization of the length of a flexible grommet to avoid damage during the repeated
opening and closing operation of the hatchback. Left: Design variant with a shorter length and
higher bending strains. Middle: Alternative elongated design variant, showing lower bending
strains in the shut state of the hatchback

7 Conclusion

Software tools used in industry for design and digital validation require a seamless
integration of efficient models that are able to handle the simulation of large spatial
deformations of slender elastic structures like cables and hoses by bending, twisting
and extension at interactive rates.

In our article, we presented the construction of discrete elastic rod models of
Cosserat type within the framework of Lagrangian mechanics on the kinematic
basis of discrete models of framed curves in Euclidian space. We obtain discrete
framed curves from their continuum counterparts by a discretization method we
denote as geometric finite differences, which can be regarded as an extension of
Sauer’s “difference geometry” approach to Frénet curves. These discrete Cosserat
curves, which consist of polygonal arcs augmented by orthonormal frames located at
edge centers and represented by rotational quaternions, provide a family of discrete
kinematical models that qualitatively capture all essential features of Cosserat
curves in the continuum, independent of the coarseness of the discretization.

As a consequence, the discrete bending and twisting curvatures as well as
the discrete extensional and transverse shear strains obtained from the difference
geometry of Cosserat curves yield discrete approximations of the elastic energy of
continuum Cosserat rods that model the deformation behaviour of slender elastic
structures physically correct for arbitrarily coarse discretizations. As the basic
kinematical constituents of our discrete Cosserat rod models are vertex positions
and orthonormal frames, i.e.: elementary geometric quantities that can be handled
very efficiently by methods and algorithms of computational geometry, they can be
integrated in a computationally efficient and seamless way in geometry-oriented
software packages, with enhancements to support the interaction with the CAD
geometries in the environment, as well as user interaction in real time.

Our application examples from automotive industry illustrate the principle way
of usage to solve practical tasks in design and digital validation with the software
IPS Cable Simulation. As an outlook, we would like to mention that by the same
approach we are able to integrate fully dynamical models of cables that account for
inertial and viscous effects into our software environment as well as in other CAE
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software packages for multibody system dynamics simulations [28]. Moreover, our
geometric discretization approach may likewise be applied to obtain discrete models
of flexible surfaces (see [32, 33] for basic research work).
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The Production of Filaments and Non-woven
Materials: The Design of the Polymer
Distributor

Christian Leithäuser and René Pinnau

Abstract We present results from the joint research project ProFil (Stochastic
Processes for the Production of Filaments and Non-wovens), which were derived
for the optimal design of the polymer distributor. In particular, one is interested
in designs which prevent the cooling and degeneration of the polymer due to long
occupation times. Since this is directly related to the wall shear stress distribution the
questions arise, which wall shear stresses are attainable and how the corresponding
design can be computed numerically. Employing the concept of approximate
controllability we can answer the first one and characterize the set of attainable wall
shear stresses. Further, we present a new numerical approach based on conformal
mappings which allows for an optimization in the supremum norm and for an
additional incorporation of state constraints. Finally, we show how the real industrial
problem is solved by a least-squares optimization using shape gradients.

1 Introduction

The motivation for this contribution originates at Fraunhofer ITWM (Fraunhofer-
Institute for Industrial Mathematics) with its long history of research on the
industrial processes of fiber spinning and production of non-woven materials.
Synthetic fibers and non-wovens have become increasingly important in recent years
and find applications in a broad variety of products: The range goes from hygienic
products, like diapers, over various filter materials towards high-tech applications
like battery separators.
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Fig. 1 Illustration of the
spunbond production process
for non-woven materials spinneret

plate

deposition

distributor

The production process for non-woven materials is illustrated in Fig. 1: In a
first step molten polymer with high viscosity is pressed from an extruder through
a distributor geometry onto the spinneret plate. This is a plate containing small
capillaries which are used for spinning the polymer into fibers. Turbulent air flow is
applied for drawing and swirling the fibers. Finally, many fibers are deposited on a
moving belt to form a non-woven material.

From 2010 until 2013, the joint research project ProFil (Stochastic Processes for
the Production of Filaments and Non-wovens), which was funded by the Federal
Ministry of Education and Research (BMBF), focused on the modeling, simulation
and optimization of the whole process chain for the production of non-woven
materials. See [18] for a state of the art overview of models and applications for
the spinning process at Fraunhofer ITWM. Here, we deal with the first step of the
process, especially with polymer flow in the distributor geometry and the following
problem: The polymer is routed through tubes into the geometry which distributes
it onto the spinneret plate. However, this is often a time-critical step because the
polymer can degenerate or cool down if its occupation time is too long, which results
in a poor fiber quality. It can lead to fiber breakage or even blockage of capillaries
or parts of the distributor. In particular, in regions close to the walls, polymer can
stagnate or solidify.

Research and practical applications at the Fraunhofer ITWM have shown that
this can be greatly improved by designing geometries which avoid regions with low
wall shear stress. A low wall shear stress means that there is a large boundary layer
with low velocity, where polymer degeneration can take place. Increasing the wall
shear stress results in a reduction of this layer and an improvement of the fiber
quality. Hence, we need to find a geometry for a polymer flow distributor with an
improved wall shear stress distribution. Mathematically we are dealing with a shape
optimization problem [10, 11, 16]. See [12, 13] for a similar application of the wall
shear stress problem from hemodynamics.
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Intrinsically, this is a shape optimization problem with supremum norm cost
function, because even a small stagnation area can have negative effects. Therefore,
the wall shear stress must be controlled on every part of the distributor surface.
However, a supremum norm cost function is not differentiable and therefore solving
such a shape optimization problem is a challenge of its own.

The flow in the distributor is modelled by the Stokes equations and it turns
out that the biharmonic stream function formulation allows for a straight forward
calculation of the wall shear stress (Sect. 2). We present a new algorithm based on
conformal mappings, which allows for optimization in the supremum norm and
further the incorporation of state constraints (Sect. 3). The numerical results are
very promising and yield even bounds on the deviation from the desired wall shear
stress distribution. Naturally, the question arises if all desired wall shear stresses
are attainable (Sect. 4). Using the concept of approximate controllability, we study
the underlying operator and can characterize the set of attainable wall shear stress
distributions. Based on these theoretical results, we can expect that also a standard
shape optimization using the shape gradient of a least-squares functional will yield
promising results (Sect. 5). Here, we can allow for more degrees of freedom in the
shape compared to the previous approach.

2 Modelling

In this section we present the mathematical model for the flow in the polymer
distributor. We begin by defining the wall shear stress operator S W D ! L2.� w

0 /,
which maps any shape˝ from the set of admissible shapes D to the corresponding
wall shear stress. The set D consists of all open and bounded domains ˝ � Rd,
d 2 f2; 3g, which are admissible for our shape design problem. Precise definitions
for D depend on the actual setup and are provided later. For˝ 2 D let n denote the
outward pointing unit normal vector.

Since flow velocities are rather slow while the viscosity of the polymer melt is
high, we use the incompressible Stokes equations to model the fluid inside the spin
pack. For ˝ 2 D let u.˝/ W ˝ ! Rd denote the vector valued velocity and let
p.˝/ W ˝ ! R denote the scalar valued pressure. Then, Stokes equations read

��u.˝/C rp.˝/ D 0 in ˝

div u.˝/ D 0 in ˝:
(1)

We consider three types of boundary conditions which are needed for the
underlying application. Therefore, let the boundary � decompose into inflow � in,
wall � w and outflow � out. On the inflow we define a normal velocity profile
w˝ W � in ! R and set

u.˝/ D w˝n on � in: (2)
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On the wall we apply a no-slip and vanishing normal velocity condition, i.e.,

u.˝/ D 0 on � w: (3)

We use an outflow boundary condition to model the spinneret plate as a porous
medium. This means that we do not perform a full simulation for the spinneret
plate, which is a complex geometry with many small-scale capillaries, but we cover
it through the boundary condition:

u.˝/ � n D 0 on � out

p � �out.n � u.˝// D �gout on � out
(4)

where �out and gout are constants modeling the porous medium. The first condition
is a no-slip condition and the second is a Darcy law modelling the porous medium.

Altogether, this yields the following boundary value problem: Find velocity and
pressure .u.˝/; p.˝// such that

��u.˝/C rp.˝/ D 0 in ˝

div u.˝/ D 0 in ˝

u.˝/ D w˝n on � in

u.˝/ D 0 on � w

p.˝/� �out.n � u.˝// D �gout on � out

u.˝/ � n D 0 on � out:

(5)

When dealing with the Stokes problem our goal is to study and optimize the wall
shear stress which we denote by �.˝/ W � w ! R. It is defined by

�.˝/ D jr � u.˝/j on � w: (6)

2.1 Wall Shear Stress Operator

Let us define a wall shear stress operator S which maps any admissible shape to the
wall shear stress. However, the following problem arises when trying to define such
an operator: For every ˝ 2 D the wall shear stress is a function in L2.� w/, where
� w is the wall boundary of ˝ . Thus the space does depend on the actual choice of
˝ 2 D .
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In order to get a well-defined operator we use the concept of a reference domain.
Let ˝0 2 D be a fixed reference domain with boundary �0. Assume that for every
˝ 2 D there exists a predefined diffeomorphism

G˝ W �0 ! � (7)

from the reference boundary to the boundary of ˝ . This map does then induce a
pull-back operator

G�̋ W L2.� / ! L2.�0/

f 7! f ı G˝
(8)

and we define the wall shear stress operator

S W D ! L2.� w
0 /

˝ 7! G�̋ �.˝/:
(9)

We can also use the diffeomorphism G˝ to derive the inflow boundary condition
w˝ from a given condition w0 WD w˝0 on the reference domain by defining

w˝ WD w0 ı G�1
˝ : (10)

2.2 Stream Function Formulation

To get the more convenient stream function formulation, we restrict the setting to
d D 2 and assume that the Darcy boundary � out is empty. In this case, � in acts as
the in- and outflow boundary, by prescribing a given velocity profile on the inflow
as well as on the outflow. For this setup the wall shear stress can also be computed
by means of the stream function �.˝/ and vorticity !.˝/ solving the following
biharmonic problem (cf. [1]):

��.˝/ D �!.˝/ in ˝

�!.˝/ D 0 in ˝

�.˝/ D g˝ on �

@n�.˝/ D 0 on �

(11)

The relation between velocity and stream function is

u.˝/ D
�
@2�.˝/

�@1�.˝/
�

: (12)



326 C. Leithäuser and R. Pinnau

Here, g˝ with @sg˝ D 0 on � w defines the boundary conditions in the following
way:

n � u.˝/ D @s�.˝/ D @sg˝ on �; (13)

which vanishes on � w by definition and

� � u D �@n� D 0 on �; (14)

where � D .�n2; n1/ is the tangential vector. Again, we define

g˝ WD g0 ı G�1
˝ (15)

where g0 WD g˝0 is given for the reference domain˝0.
The wall shear stress is equal to the vorticity at the boundary

�.˝/ D !.˝/ on � w: (16)

Without loss of generality we have dropped the absolute value from the definition
of the wall shear stress [cf. (6)], because the wall shear stress is scalar valued in the
two-dimensional case.

3 Supremum Norm Shape Optimization

Our goal is to control the wall shear stress pointwise in order to prevent any
stagnation zones. Therefore, for a given target wall shear stress �d 2 C0.� w

0 / we
want to compute an optimal solution to the following shape optimization problem
with supremum norm cost function:

minimize˝2D k�d � S.˝/kC0.� w
0 /
; (17)

i.e., we minimize the maximal pointwise error between wall shear stress and target
wall shear stress. The norm is defined by k fkC0.� w

0 /
WD supx2� w

0
j f .x/j.

Let ˝0 � R2 be a simply connected bounded reference domain of class C4;1

and let the boundary �0 decompose into the in- and outflow parts � in
0 and the wall

parts � w
0 . For simplicity, there is no boundary � out

0 of Darcy type. For this setup the
outflow boundary is part of � in

0 and is realized by prescribing an outflow velocity
with opposite sign.
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3.1 Conformal Maps

Conformal maps are a special class of diffeomorphisms which are angle preserving.
They can be used to pull-back a shape-dependent problem to a fixed reference
domain, leading to an ordinary optimization problem. The shape information is then
hidden in a so called conformal parameter, which is a scalar function living on the
reference domain.

Definition 1 Let ˝0;˝˛ � R2 be two-dimensional domains. Then a
k-diffeomorphism T D .T1;T2/ W ˝0 ! ˝˛, k 2 N, is called conformal map,
if it fulfills the Cauchy-Riemann equations

@1T1 D @2T2

@2T1 D �@1T2
(18)

on ˝0. Therefore, it is possible to identify conformal maps with holomorphic
complex functions. We define the conformal parameter ˛ 2 Ck�1. N̋

0/ such that

e2˛ D det.DT/; (19)

where DT is the Jacobian of T. In the following we write T˛ W ˝0 ! ˝˛ for a
conformal map corresponding to the conformal parameter ˛. Such a conformal map
exists if and only if �˛ D 0 (see [5]).

Conformal maps can also be defined in higher dimensions, however, already in
three dimensions the set of reachable domains is negligibly small. On the other hand
in two dimensions the Riemann Mapping Theorem states that all simply connected
domains can be reached from a simply connected reference domain by conformal
deformations.

Theorem 1 (Riemann Mapping Theorem, [14]) Let ˝0;˝1 ¨ R2 be two
sufficiently regular simply connected domains. Then, there exists a conformal map
T W ˝0 ! ˝1.
For this reason the conformal deformations approach is essentially limited to
problems on two-dimensional domains.

We define the set of admissible shapes as all shapes which are reachable by
certain conformal deformations of a given reference domain˝0:

D WD f˝˛ D T˛.˝0/I˛ 2 A g (20)

Here, A denotes the set of admissible conformal parameters, e.g., defined via:

A WD
(

˛ 2 H4.˝0/I �˛ D 0I @n˛j� in
0

D 0I : : :

Z

� k
0

e˛ ds D
Z

� k
0

1 ds for every part � k
0 of � in

0

) (21)
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The Neumann constraint in the definition of A makes sure that the curvature of
the � in boundary is preserved, i.e., straight inflow parts stay straight. The integral
constraint makes sure that for every ˝˛ 2 D and every connected component � k

0

of � in
0 the length of � k

0 and � k
˛ D T˛.� k

0 / is equal. These conditions are necessary,
because the conformal parameter has a global influence.

3.2 Supremum Norm Shape Optimization Problem

We can now formulate the shape optimization problem (17) using the biharmonic
formulation (11). For numerical reasons we have also added a regularization term
to the cost function with " > 0. This yields

minimize.˝˛;�;!/2M1 k�d � T �̨!kC0.� w
0 /

C " k˛k2H1.˝0/
with M1 D D � H2.˝˛/ � H2.˝˛/

subject to �� D �! in ˝˛

�! D 0 in ˝˛

� D g0 ı T�1
˛ on �˛

@n� D 0 on �˛:

(22)

Thus, the task is to minimize the supremum norm distance between wall shear stress
� D !j� w

˛
and target wall shear stress �d.

3.2.1 Problem on the Reference Domain

We eliminate the shape-dependence by applying the conformal pull-back operator
T �̨ to the whole system. This yields a new optimization problem on the reference
domain˝0 which is equivalent to (22). Instead of˝˛ 2 D the conformal parameter
˛ 2 A acts as the control.

minimize.˛;�;!/2M2 k�d � !kC0.� w
0 /

C " k˛k2H1.˝0/
with M1 D A � H2.˝0/ � H2.˝0/

subject to �� D �e2˛! in ˝0

�! D 0 in ˝0

� D g0 on �0

@n� D 0 on �0:

(23)
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Remark 1 For analytical reasons the regularity conditionA � H4.˝0/ is necessary
to guarantee that the optimization problem is well-defined, i.e., that ! 2 C0.� w

0 /

holds. However, numerically a H1.˝0/ regularization term is sufficient.

3.2.2 Problem with State Constraints

In order to eliminate the supremum norm from the cost functional, we use a
technique discussed, e.g., in [3]. We replace the cost functional by a scalar variable
ı 2 R together with additional inequality constraints, which make sure that the
distance between ! and �d does not grow bigger than ı. This yields

minimize.ı;˛;�;!/2M3 ı C " k˛k2H1.˝0/
with M3 D R � A � H2.˝0/ � H2.˝0/

subject to �� D �e2˛! in ˝0

�! D 0 in ˝0

� D g0 on �0

@n� D 0 on �0

�d � ! � ı on � w
0

��d C ! � ı on � w
0 :

(24)

This is a nonlinear constrained optimal control problem (see [4]) given on a fixed
domain. All geometric information is hidden in the conformal parameter ˛ 2 A
and the optimal shape can be recovered later after the optimal ˛ has been computed.

3.2.3 Discretization

In order to solve (24) we derive a full discretization using finite elements, which
leads to a Nonlinear Programming Problem (NLP). Note, that additional constraints
are hidden in the definition of the set of admissible conformal parameters A , which
are also discretized. For details we refer to [9]. We apply existing methods to
solve the NLP. For the following result we have made use of the interior point
solver LOQO (see [17]). The reconstruction of ˝opt is done by solving another
optimization problem (see [9]).
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3.3 Numerical Results

We test the supremum norm shape optimization algorithm by optimizing a two-
dimensional polymer distributor. Figure 2 shows the optimal shape ˝opt and the
corresponding optimal wall shear stress, together with the target wall shear stress �d
and the error region, i.e., the region between �d � ı and �d C ı. The black markers
help to draw a connection between geometry and arc length plot.

Using the presented approach it is possible to derive optimal shapes for two-
dimensional shape optimization problems with supremum norm cost functions.
However, when moving on to higher dimensional geometries, problems arise:
On the one hand we cannot use conformal mappings and on the other hand the
complexity increases due to the rising number of degrees of freedom. We could
use more general mappings, but this would add even more degrees of freedom.
Therefore, this approach is not suitable for the design of industrial three-dimensional
distributor geometries. In the following, we make use of the classical least-square
shape optimization to design the industrial spin pack. However, before we do this we
take a closer look at the underlying operator and try to answer the question which
wall shear stress distributions are attainable.
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Fig. 2 Optimal wall shear stress distributor for supremum norm shape optimization
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4 Linear Controllability

Even though the wall shear stress problem is intrinsically a supremum norm
optimization problem, a least-square shape optimization approach may still be
successful. Since a least-square cost function is differentiable, this approach is
much more efficient, because we can make use of gradient based optimization.
The motivation for studying the controllability of the operator is the following
consideration: If a given target wall shear stress �d is reachable or at least close
to reachable by the operator S, we can expect similar results for different norms.
Since the operator S is highly nonlinear and therefore hard to study, we look at
its linearization dS. The idea to study the approximate controllability of linearized
shape dependent operators originates in fact from [2]. In [6] we have followed a
different approach to characterize the image space of a shape-dependent potential
flow operator.

4.1 Geometric Setup

Instead of using conformal shape deformations, we choose a different geometric
setup and consider normal boundary deformations. We use the biharmonic formu-
lation (11). Let ˝0 � R2 be a bounded domain of class C6;1 and let g0 2 H5C 1

2 .�0/

be given with @sg0j� w
0

D 0. See Remark 2 for a justification of the high regularity
requirement. Let the boundary�0 decomposes into the in- and outflow parts � in

0 and
wall parts � w

0 .
We define

� D f� 2 C4;1.R2;R2/I k�kC4;1.R2;R2/ < 0:5g (25)

to be a ball around zero, where C4;1.R2;R2/ denotes the space of 4-times differ-
entiable functions from R2 to R2 with Lipschitz-continuous derivatives up to order
4 (see [19]). Let Id 2 C4;1.R2;R2/ denote the identity mapping. For � 2 � we
consider the map

Id C � W R2 ! R2; (26)

i.e., .Id C �/.x/ D x C �.x/. From [15] we know that k�kC4;1.R2;R2/ < 0:5 implies
that IdC� is a .4; 1/-diffeomorphism. In order to define the set of admissible shapes
let the space of admissible deformation directions be

V WD fV 2 C4;1.R2;R2/I Vj� in
0

D 0I Vj� w
0

D vnnI vn 2 C4;1.R2/g: (27)
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Note, that since˝0 is assumed to be of class C6;1 we have n 2 C4;1.�0;R2/. Hence,
this definition makes sense. We only consider normal shape deformations, because
infinitesimal tangential deformations would shift the boundary along itself and are
therefore no real shape deformations. Let the intersection with � be denoted by

�V WD � \ V : (28)

We define the set of admissible shapes by

D WD f˝� D .Id C �/.˝0/I � 2 �V g: (29)

Thus, D is a set of perturbations of the reference domain ˝0 which leave � in
0 fixed

and are normal on � w
0 .

With G˝� WD .Id C �/ we study the operator

S W D ! L2.� w
0 /

˝� 7! .!.˝�/j� w
�
/ ı .Id C �/;

(30)

where the stream function �.˝�/ and vorticity !.˝�/ are the solutions of

��.˝�/ D �!.˝� / in ˝�

�!.˝�/ D 0 in ˝�

�.˝�/ D g0 ı .Id C �/�1 on ��

@n�.˝�/ D 0 on �� :

(31)

Definition 2 The corresponding linearized wall shear stress operator dS is
defined by

dS W V ! L2.� w
0 /

V 7! dS.˝�/

d�
.0/V;

(32)

i.e., it is the derivative of S.˝�/ D S..Id C �/.˝0// with respect to � in direction
V 2 V evaluated at � D 0.

We have shown in [8] that the linearized operator dS is well-defined and can be
computed by

dS W V ! L2.� w
0 /

V 7! !0.V/j� w
0

C @n!.˝0/.n � V/;
(33)
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where � 0.V/ and !0.V/ are the shape derivatives (cf. [16]) in direction V and can
be derived as the solution of

�� 0.V/ D �!0.V/ in ˝0

�!0.V/ D 0 in ˝0

� 0.V/ D 0 on �0

@n�
0.V/ D 0 on � in

0

@n�
0.V/ D .n � V/!.˝0/ on � w

0 :

(34)

Definition 3 (Approximate Controllability) Let F W X ! Y be a linear operator.
Then, F is approximately controllable if and only if imF lies dense in Y.
Our goal is to prove the following result about the approximate controllability of the
linearized wall shear stress operator:

Theorem 2 Let˝0 be bounded and of class C6;1 and assume that S.0/ ¤ 0 on � w
0 .

Then, the operator dS W V ! L2.� w
0 /=Z@n is approximately controllable. Here

Z@n D f@n�j� w
0

2 L2.� w
0 /I� 2 H4.˝0/ solution of (35)g is a finite dimensional

subspace of L2.� w
0 /.

Remark 2 The assumptions of this section include a very high regularity require-
ment of C6;1 for the reference domain ˝0. For the well-definedness of the operator
S itself, C4;1 would suffice, because this would provide the existence of the trace of
!.�/. It is also true that in many parts of this section the regularity assumptions can
be relaxed by applying weak arguments. However, a key part for the final proof is
the V-coercivity of the bilinear form corresponding to the uniqueness problem (35),
which due to [19] does require c11 2 C1. N̋

0/ for the coefficient of the boundary
form. And by definition of that coefficient this requires C6;1 for˝0. However, since
this coefficient is only needed on � w

0 , the regularity requirement can probably be
weakend for the other boundary parts.

For the proof of Theorem 2 we need the following uniqueness lemma, which
follows from [19, Theorem 17.11] (cf. [8]):

Lemma 1 Assume that ˝0 is bounded and of class C4;1 and c11 2 C1. N̋
0/. We

consider

��� D 0 in ˝0

� D 0 on �0

@n� D 0 on � in
0

�� C c11@n� D 0 on � w
0

(35)

and define Z WD f� 2 H4.˝0/I� solves (35)g. Then, Z is a finite dimensional
subspace of H4.˝0/.
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Proof of Theorem 2 Define

H
5
2

iD0.�0/ D f� 2 H
5
2 .�0/I� D 0 on � in

0 g (36)

and for � 2 H
5
2

iD0.�0/ let �.�/ 2 H4.˝0/ be the solution of the adjoint problem

���.�/ D 0 in ˝0

�.�/ D 0 on �0

@n�.�/ D � on �0:

(37)

For .V; �/ 2 V � H
5
2

iD0.�0/ integration by parts yields

0 D
Z

˝0

��� 0.V/�.�/ dx

D
Z

˝0

�� 0.V/��.�/ dx �
Z

�0

�� 0.V/@n�.�/ ds

D
Z

˝0

� 0.V/���.�/ dx �
Z

�0

�� 0.V/@n�.�/ ds C
Z

�0

@n�
0.V/��.�/ ds

(38)

and we get the identity

�
Z

� w
0

!0.V/� ds D
Z

� w
0

.n � V/!.0/��.�/ ds: (39)

Now, assume that � 2 im.dS/? \ H
5
2

iD0.�0/, i.e.,

Z

� w
0

dS.V/� ds D 0 for all V 2 V : (40)

We conclude

0 D
Z

� w
0

dS.V/� ds

D
Z

� w
0

!0.V/� ds C
Z

� w
0

@n!.0/.n � V/� ds

D
Z

� w
0

.n � V/.�!.0/��.�/C @n!.0/@n�.�// ds:

(41)
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Since fn � VI V 2 V g is dense in L2.� w
0 / we derive

�!.0/��.�/C @n!.0/@n�.�/ D 0 on � w
0 : (42)

Because of !.0/ D S.0/ ¤ 0 on � w
0 , we can define

c11 WD �@n!.0/

!.0/
2 C1.� w

0 /: (43)

This yields the uniqueness problem

���.�/ D 0 in ˝0

�.�/ D 0 on �0

@n�.�/ D 0 on � in
0

��.�/C c11�.�/ D 0 on � w
0 :

(44)

Define

Z WD f�.�/ 2 H4.˝0/I�.�/ is solution of (44)g (45)

and

Z@n WD f� D @n�j� w
0

I� 2 Z g: (46)

By Lemma 1 we know that Z is a finite dimensional subspace of H4.˝0/. Then,

Z@n is a finite dimensional subspace of H
5
2

iD0.�0/j� w
0

and thus of L2.� w
0 /. Hence we

conclude that dS is approximately controllable as a mapping to L2.� w
0 /=Z@n .

4.2 Conclusions

We were able to prove that the linearized wall shear stress operator is approximately
controllable up to a finite dimensional subspace. Even though we have studied
the linearizations, we can draw conclusions for the actual operator. Having the
approximate controllability property for the linearization means that we can change
the wall shear stress into almost every direction by applying infinitesimal shape
deformations. This does suggest that the space of reachable wall shear stress profiles
is rather large. But if a given target wall shear stress is close to reachable, we can
hope that optimal shapes obtained by least-square shape optimization are also good
in the supremum norm sense.
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5 Least-Squares Shape Optimization

Encouraged by the controllability results, we use classical least-squares shape
optimization to solve the real three-dimensional industrial problem. Since a least-
squares cost function is differentiable, we can compute the gradient via a system of
adjoint equations. This enables us to solve the optimization problem using gradient
based optimization.

5.1 Optimization Problem

Let �d 2 H1.R3/ be a given target wall shear stress. Our goal is to find a shape
whose wall shear stress is close to the target wall shear stress in the least-squares
sense. We want to solve

minimize˝2D J.˝/ D
Z

� w
.jr � uj � �d/

2 ds (47)

subject to ��u C rp D 0 in ˝

div u D 0 in ˝

u D w0n on � in

u D 0 on � w

p � �out.n � u/ D �gout on � out

u � n D 0 on � out;

(48)

with

D WD f˝ � R3sufficiently regular; � in D � in
0 ; �

out D � out
0 g: (49)

Thus, D consists of all domains ˝ whose in- and outflow boundaries agree with a
fixed reference or initial domain˝0.

5.2 Gradient

In a similar way as in Sect. 4 we apply deformations of the wall boundaries. That is
for a domain˝k 2 D we apply deformations from the space

Vk WD fV 2 H2.R3;R3/I Vj� in
0 [� out

0
D 0g: (50)
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Thus, for a deformation � 2 Vk the domain ˝k is deformed into the domain ˝� WD
.Id C �/.˝k/. And by definition of Vk the in- and outflow boundaries of ˝� remain
unchanged.

We use a gradient descent method to solve the shape optimization problem and
therefore the gradient must be computed. The gradient Vk 2 H2.˝k/ can be derived
using the following variational formulation (for details see [5]):

.Vk; �/H2.˝0/ D dJ.�/ for all � 2 Vk; (51)

with

dJ.V/ D �
Z

� w
k

.@nu.0/ � n/ � r � v .n � V/ ds

C
Z

� w
k

2
�.0/ � �d
�.0/

r � u.0/ � @n.r � u.0// .n � V/ ds

�
Z

� w
k

2.�.0/� �d/@n�d .n � V/ ds C
Z

� w
k

�.�.0/ � �d/2 .n � V/ ds:

(52)

Furthermore .v; q/ are the solution of the following adjoint Stokes problem:

��v C rq D 0 in ˝k

div v D 0 in ˝k

v D 0 on � in
k [ � f

k

n � v D 0 on � w
k

v � n D 2
� � �d

�
.r � u.0// on � w

k

q � �out.n � v/ D 0 on � out
k

v � n D 0 on � out
k

(53)

This enables us to solve the optimization problem using a gradient descent method.
For details we refer to [5].
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Fig. 3 Optimal distributor geometry for a uniform target wall shear stress of �d D 0:1

(nondimensional). The wall shear stress is indicated by color

5.3 Numerical Results

See Fig. 3 for an optimal distributor geometry for a uniform target wall shear stress
of �d D 0:1 (nondimensional). The setup includes a parabolic velocity profile at the
inflow tube and a Darcy type outflow condition to model the spinneret plate. We use
an implementation based on COMSOL Multiphysics.

The wall shear stress of the optimal geometry is very close to the target wall shear
stress. On the one hand this agrees with Theorem 2 and the interpretation that most
wall shear stresses are attainable. On the other hand this provides us with a powerful
tool to design new industrial distributor geometries while having extensive control
over the wall shear stress.

6 Outlook

The results presented in this article have been obtained in the joint research project
ProFil, which was funded by the Federal Ministry of Education and Research
(BMBF). The utilization of the results concerning the spin pack is taking place in
the ongoing project AUTOPOS funded by AiF (German Federation of Industrial
Research Associations). AUTOPOS is a joint project between Fraunhofer ITWM,
ITA (Institute for Textile Engineering, Aachen) and ten partners from industry. One
of the goals is a complete redesign of industrial spin packs. Intermediate results
(see [7]) from AUTOPOS show that a redesign of a spin pack can lead to a great
improvement of the polymer occupation time: Figure 4 shows that both magnitude
and variance of the occupation time is reduced.
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Fig. 4 Occupation time for
two spin pack designs. The
bars show the deviations
along different pathlines
together with the median
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