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Abstract This study focuses on a class of a three-phase switched reluctance motor.
The aim of the paper is to optimize torque and iron loss as a function of the geometry.
To enhance the efficiency of the motor, a procedure of automated optimal design is
adopted. The analysis model of the motor is based on 2D finite element method
simulation, while the design optimization is based on evolutionary computing.

Keywords Finite elements methods � Genetic algorithm � Multi-objective
optimization � Switched reluctance motor

1 Introduction

Switched reluctance motors (SRM) have inherent advantages such as simple
structure with non-winding construction in rotor side, fail-safe because of high
tolerances, robustness, low cost with no permanent magnet in the structure, and also
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possible operation at high temperatures or under strong temperature variations [1].
With these advantages, the SRM recently are increasingly used in a broad range of
applications. The fundamental theory, design procedure, modeling, and analysis of
SRM have been presented in the literature [2–4]. In recent years, machine designers
have focused greatly on evolutionary computation based design optimization
techniques to fulfill the desired performance requirements under various constraints
such as converter rating, winding configuration, and outline dimensions [5].
Automated optimal design of motors has been applied since the 90s [6] and
nowadays it is still being used successfully [7]. Multi-objective optimization
methodology has been used in various optimization problems in different areas of
engineering considering the aspect multi-physics of the electrical devices and
MEMS actuator like those proposed in [8, 9]. From the literature [10–12], it is also
evident that computational intelligence techniques like genetic algorithm (GA) has
been effectively implemented for design optimization of SRM.

As the design of SRM for a particular application is a compromise between
various performance criteria, improvement of a performance parameter may result
in the degradation of other important features. Consequently, the designer has to
search for solutions that are feasible with respect to all performance parameters. To
deal with this trade-off and achieve efficient design, multi-objective optimization
based design techniques seem to be the most suitable approach. Hence, there is
growing interest towards the application of multi-objective optimization techniques
for solving a wide variety of SRM design optimization problems [13].

Shape design of electromagnetic devices usually demands that multiple criteria
be fulfilled concurrently. The most general solution is represented by the front of
nondominated solutions [14]. The aim of this study is to optimize geometrical
parameters of a 12/8 SRM to improve the maximum torque and also to reduce the
total iron losses. The machine then is analyzed through finite element model
(FEM) due to its accuracy in modeling complex geometry and considering physical
phenomena like saturation. Genetic algorithm (GA) optimization code was carried
out under MATLAB software coupled to FEM.

2 Motor Model and Field Analysis

The proposed structure of the 12/8 SRM, characterized by nominal power 450 W,
14,000 rpm and supply voltage of whole drive of 230 V, 50 Hz is shown in Fig. 1.
It can be used as the drive of house appliances like washing machines [15]. The
values of physical sizes of motor are reported in Table 1.

The stator and the rotor are assumed to be made of “M27: USS Motor - 26 Gage
(M330-50-A5 according to IEC 60404-8-4 standard)” 0.5 mm thick electrical steel
which the B–H curve is shown in Fig. 2 and loss curve is shown in Fig. 3. An
advanced design procedure is needed in view of the design optimization in terms of
geometry properties.
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Since the motor exhibits a four-pole magnetic field which is shown in Fig. 1;
currents in the motor windings have been set to simulate one-phase control mode
(ia 6¼ 0, ib = 0, ic = 0). Each phase incorporates four coils; phase “a” is driven by
unipolar current with a constant value of 1 A. The two-dimensional finite element
model of the motor is implemented using MagNet code by Infolytica [16]. The
mesh with maximum element size of 0.5 mm with a detail of which is shown in
Fig. 4 is considered. In simulation, the axial stack length has been set equal to 1 m.

Fig. 1 Geometry, design
variables, flux lines

Table 1 Size of switched
reluctance motor

Parameters Value Symbol

Stator outer radius 70 mm RSO

Stator inner radius 41.75 mm RSI

Shaft radius 8 mm RSh

Air gap length 0.25 mm AG

Rotor outer radius 41.5 mm ROR

Rotor pole width 11 mm TW

Rotor inner radius 26.5 mm RIR

Stator pole height 15.25 mm hs
Back iron thickness 13 mm BIT

Stator tooth outer span 15.14 (°) a

Stator tooth inner span 12.58 (°) b

Number turns of a coil winding 140 N

Axial length of a magnetic core 46.6 mm
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Fig. 2 Specific B–H curve for M27 material
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Fig. 3 Loss curve for M27 material at a frequency = 60 Hz
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A typical solution for the field analysis of prototype model is shown in Fig. 1.
The torque versus rotor position over 45° is shown in Fig. 5. Moreover, total losses
were calculated by assuming supplying phase A with 1 A current with 60 Hz
frequency and is also shown in Fig. 5. Additionally, magnetic induction along the
air gap midline is shown in Figs. 6 and 7.

Fig. 4 Detail of the mesh
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Fig. 5 Motor torque and iron losses versus rotor position for prototype
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Fig. 6 Magnetic induction along the air gap midline at rotor initial position (see Fig. 1)
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3 Inverse Problem: Optimal Shape Synthesis

Geometric sizes of machine are considered as unknown parameters for the opti-
mization procedure. Specifically, the rotor outer radius, rotor inner radius, and back
iron thickness are considered as design variables while the remaining parameters
are considered as fixed.

X1 = rotor outer radius (ROR)
X2 = rotor inner radius (RIR)
X3 = back iron thickness (BIT)

The following inverse problem is considered:
given the material properties (i.e., B–H magnetization curve, P–B loss curve)

and the power supply (one phase on, equal to 1 A), find the optimal values of
geometric variables such that the maximum torque is maximized and the iron loss is
minimized, subject to the problem constraints.

3.1 Design the Problem

A vector X ¼ Xif g, i = 1,2,3 of design variables is shown in Fig. 8. To satisfy
variable bound as one of constraints, the overall diameter of the switched reluctance
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Fig. 7 Magnetic induction along the air gap midline with rotor aligned with stator poles
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motor must not exceed 70 mm; and the air gap width is kept constant equal to
0.25 mm. The range of continuous-valued variables is reported in Table 2.

Overall, the constraints define the feasible design space of X 2 R3: The problem
of determining optimal value for these parameters is formulated to provide trade-off
solutions between torque density and power loss in the iron core. The objective
functions are defined as:

f 1 xð Þ = Minimization of total iron losses
f 2 xð Þ = Maximization of the maximum value of torque.

The above criteria are defined by:

f 1 xð Þ ¼ R

S xð Þ
P B xð Þ½ �2ds; x 2 X

f 2 xð Þ ¼ R
r0 � f dv;

f ¼ R

X
r:T dX ¼ R

C
T :�n dC

where P is the specific power loss in the ferromagnetic material subject to induction
B, S is iron volume, r0 is the vector going from the origin to an element of volume

in the body, V is the volume of the body, f is the force on body calculated by T the
Maxwell’s stress Tensor, C is a closed surface enclosing the body and n is the
outward normal versor, respectively. Due to this fact that the induction, iron vol-
ume, and force values are dependent on x (the design variables), thus the inverse
problem should be investigated for finding optimal values of geometric parameters
for a given material to satisfy problem criteria.

In this study, a multi-objective genetic algorithm optimization method based on
Pareto-optimal solutions is implemented for solving the problem. Figure 9 shows
the flowchart diagram that is used for multi-objective optimal design of an SR
motor in MATLAB [17].

Fig. 8 Prototype geometry,
design variables

Table 2 Variation range of
the design variables

Design variables X (mm) X1 X2 X3

Min 30.5 17 6

Max 46.6 mm 30.97 24
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3.2 Optimization Process and Problem Formulation

Genetic algorithm (GA) is one kind of direct search algorithms, based on the
developing mechanism from genetic evolution and natural selection. It begins by
randomly creating its population. Each individual of the population represents a
search point in the space of potential solutions of the given optimization problem.
Candidate solutions are combined by a crossover operator to produce offspring,
which expands the current population of solutions. Thus, the individuals in the
population are evaluated via the fitness function. Meanwhile, a mutation operator is
performed at a certain probability level to increase variation in the search space. By
favoring the mating of the more fit individuals, the more promising areas of the
search space are explored. The process of evaluation, selection, crossover and

Fig. 9 Optimal design of SR
motor by GA in MATLAB
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mutation is repeated until a predetermined number of generations are reached or a
satisfied solution has been found. The following sections describe each of the
components of our GA method [18].

Multi-objective optimization involves minimizing or maximizing multiple
objective functions subject to a set of constraints that are often contradictory, as the
minimization of an objective leads to an increase of another goal, so the solution we
seek is always a compromise between these objectives. The general multi-objective
optimization problem (MOOP) can be stated as finding the n-dimensional vector, x,
which

Min orMax f xð Þ ¼ f 1 xð Þ; f 2 xð Þ; f 3 xð Þ; . . .; f n xð Þ
x 2 F

ð1Þ

where x 2 Rn, f i : R
n ! R and F is the feasible set of problem including inequality,

equality and/or variable bounds to be satisfied such as:

F ¼ fx 2 Rn : gi xð Þ� 0& hi xð Þ ¼ 0& axlb � xi � xub i ¼ 1; 2; . . .; n ð2Þ

The vector f xð Þ includes several objective functions. An ideal solution of
(1) introduced as Pareto-optimal solution (nondominated set) would be a point x* 2
F such that (Table 3):

fi x�ð Þ� fi xð Þ; 8x 2 F; 8i 2 1; 2; . . .::kf g

Population size is the number of individuals in each generation.
Selection function defines the selection method of parents for the next genera-

tion. “Tournament” selection chooses each parent by choosing tournament size
players at random and then choosing the best individual out of that set to be a
parent.

Crossover function is a genetic operator that combines two individuals, or
parents to produce a new child for the next generation. The “Intermediate” cross-
over function creates children by taking a weighted average of the parents.
Intermediate crossover (IC) is controlled by a single parameter ratio which can be a
scalar or a row vector of length number of variables.

Table 3 Genetic
optimization parameters

Parameters Value/type

Population size 20

Selection function Tournament

Crossover function Intermediate

Mutation function Adaptive feasible

Elite count 1

Crossover fraction 0.8

Pareto fraction 1

Stopping criterion 50 generations
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child ¼ parent1þ rand � Ratio � parent2 � parent1ð Þ

The ratio parameter in this study is set to 1.
Mutation function is used by genetic algorithm to make small random changes in

the individuals in the population in order to create mutation children that provides
genetic diversity. Thus, mutation enables the genetic algorithm to search a broader
space. “Adaptive Feasible” mutation function is used so that mutation satisfied
constraints and bounds.

Elite count specifies the number of individuals that are guaranteed to survive to
the next generation.

Crossover fraction sets the fraction of the next generation, other than elite
children, that are produced by crossover.

Pareto fraction defines the fraction of individuals to keep on the first Pareto front
while the solver selects individuals from higher fronts.

Stopping criterion determines what causes the algorithm to terminate [17].

4 Results

The results of the optimization (solution of a Pareto-optimal set in objective space)
and the objective function space of the synthesis problem are shown in Fig. 10. The
solutions (marked by circles) are examples of best compromise solution between
conflicting design criteria, i.e., torque and losses [19].

To illustrate the specific improvements obtained from optimization, two solu-
tions are selected and their comparison with initial design (prototype) is presented
in Table 4. The comparison of the results shows that solution B has best maximum
torque but higher iron loss, whereas solution A has low iron loss and poor torque.
The comparison of the results verified that each objective gets improved at the cost
of the other and there is a clear trade-off between maximum torque and total losses.
Notice that there is no clear best design, therefore the design can be selected based
on the preferences of the designer, for a given specific application.

Flux and field distributions of the two optimal designs in the nominal condition are
carried out by Magnet. The geometry and field results are shown in Figs. 11 and 12.

With respect to the optimal solutions obtained on Pareto front (circles in Fig. 9),
the trend of varying design variables along Pareto front is shown in Fig. 12. By
analyzing Figs. 9 and 12, the contribution of each design variables to performance
of the model is defined. It shows that as rotor outer radius is increased, the max-
imum torque and consequently maximum iron losses are increased too. In contrary,
as back iron thickness is increased, the maximum torque and maximum losses are
decreased. It is worth highlighting that rotor inner radius makes nondominant
contribution to quality characteristics. Additionally, it is also interesting to note that
the prototype is one of the solutions on the front (Fig. 13).

Field-Based Analysis and Optimal Shape Synthesis … 81



6 6.5 7 7.5 8 8.5 9 9.5
20

30

40

50

60

70

80

90

Torque [Nm] 

To
ta

l l
os

se
s 

[W
/K

g]

 

 
Optimization History
Results on Pareto Front
Prototype

Fig. 10 Objective space, prototype (triangle), nondominated solutions (circle)

Table 4 Compared solutions obtained for objective functions

Performance
parameters

Rotor outer
radius (mm)

Rotor inner
radius (mm)

Back iron
thickness (mm)

Torque
(Nm)

Total losses
(W/kg)

Solution A 48.37 17.54 6.13 9.41 87.90

Solution B 30.50 18.87 24.00 5.98 29.25

Prototype 41.50 26.50 13.00 8.20 52.46
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Fig. 11 Geometry and flux
lines for solution A

Fig. 12 Geometry and flux
lines for solution B
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5 Conclusion

The optimization approach used in this work has proved that the optimal shape
design problem is well posed because it has achieved its objectives, namely
improving the performance of a 12/8 SRM prototype through the optimization of
geometrical parameters under constraints. According to the results, it is possible to
identify solutions which improved both torque and total iron losses.
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