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Abstract The chapter is an attempt to collate the basics of fractional electric
circuits involving fractional time derivatives in the sense of Riemann–Liouville,
Caputo and Caputo–Fabrizio. The examples analysed use mainly Caputo
time-fractional derivative but comparative analyses with derivative based on
different relaxation kernels are provided, too.
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1 Introduction

Fractional calculus (FC), involving integrals and derivatives of non-integer order, is
the natural generalization of the classical calculus allowing better modelling and
control of processes in various areas of science and engineering [1–6]. A broad
range of physical phenomena can be deeply analysed by applications of models
involving fractional integral and derivatives [6] thus providing accurate information
of the physical systems employing the memory mechanisms and hereditary effects
in various materials and processes [7] where dissipations take place.

In this chapter, we focus on fractional calculus applications on simple electric
circuits involving resistors, capacitors and inductors under transient conditions. The
non-local character of the transient processes in the electric circuits is directly
related to the dissipative processes in their elements such as the Ohmic resistance,
the capacitor charge–discharge process, dissipation of charge transfer in dielectrics
[8] or energy accumulation by inductors.

Fractional calculus is a well-known tool for the investigation of nonlinear
time-dependent process in electrochemistry for surface concentration determination
[1] and impendance spectroscopy [9].
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The purpose of this chapter is to demonstrate the mathematical formalism in
analyses of transient process of simple RLC circuits by the tools of fractional
calculus and to focus on the fact that the real resistors, capacitors and inductors are
nonlinear by nature with sensible dissipative processes in their work. The text
collates research results from various sources and tries to present them in a
straightforward manner, thus allowing an easy step from the conventional
integer-order models to one with fractional derivatives.

2 Time-Fractional Derivatives to Transient Electric
Circuit Analysis: The Reason to Use

The linear approach to model RLC circuits by integer-order derivatives and inte-
grals are idealizations which do not take into account the fractality in time and the
inherent nonlinearities of the electric components. The principle questions prior to
some detailed analyses of fractional electric circuits are as follows: Why this
modelling technique should be applied and what are the advantages of it beyond the
well-known integer-order models?

We will try to answer these principle questions in view of the basic knowledge
of relaxation phenomena and how this philosophy works when transients in electric
circuits should be analysed.

Let us start with the well-known constitutive equations associated with the three
basic elements of RLC electric circuits as follows[10]:

The voltage drop across an inductor

ULðtÞ ¼ L
d
dt
IðtÞ: ð1Þ

The voltage drop across a resistor

UR ¼ RIðtÞ: ð2Þ

The voltage drop across a capacitor

Uc ¼ 1
C

Z t

0

IðzÞdz: ð3Þ

Applying the Kirchhoff voltage law and the above constitutive equations we can
express the homogeneous integer-order differential equation expressed through the
voltage drop across the capacitor (3) or alternatively non-homogenous equation
about the current iCðtÞ (2) corresponding to RLC circuit (see Fig. 1):
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L
d2

dt2
UcðtÞþR

d
dt
UcðtÞþ 1

C
UcðtÞ ¼ d

dt
uðtÞ; ð4Þ

where uðtÞ is the unit step of the voltage (Heaviside function).
Let consider only a resistive medium (only Ohmic resistance) and that the

current between points with a gradient of the electric potential @u=@x depends on
its history over time, namely

IðtÞ ¼ � 1
R

Z t

0

Sz t � zð Þ @u
@x

dt: ð5aÞ

We may simplify the problem and consider a homogeneous resistor as element
of a circuit where accordingly @u=@x is equal to the voltage drop applied to its
ends. Let us consider the voltage drop as a unit step uðtÞ and therefore the memory
integral (5a) can be expressed as (omitting the negative sign as unnecessary since
the equation becomes expressed in scalar values) in contrast to (5a) where @u=@x is
a vector.

IðtÞ ¼ � 1
R

Z t

0

Sz t � zð ÞuðtÞdt: ð5bÞ

In these equations z is a dummy variable, while the negative sign in front of the
history integral simply indicates that the current flow direction is opposite to the
change in the potential gradient.

Moreover, (5a) and (5b) are constitutive equations which simply state natural
processes with infinite speed of change do not exist and therefore the relaxation in
time should be taken into account. In the heat conduction area, this is the
well-known Cattaneo–Maxwell postulate of heat transfer across a homogeneous
rigid conductor [11–15], namely

qH x; tð Þ ¼ �
Z t

�1
SH x; tð ÞrT x; t � zð Þdz: ð6Þ

Fig. 1 Basic RLC circuit
used in the analysis
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In terms of the present chapter the heat flux qH x; tð Þ is analogue of the electric
i x; tð Þ current, while rT x; tð Þ corresponds to the electric tension (potential @u=@x)
applied to the resistor. As in the spatially homogeneous heat conductors, the current
passing through a simple resistor, the relaxation kernel, should be space-
independent, that is SRðtÞ is a function only of the time.

If we consider the relaxation kernel as an exponential function SHðtÞ ¼
expð� t � zð Þ=szÞ; where the relaxation time sz is finite, i.e. sz ¼ const:; then for
sz ! 0 the limit of Eq. (5a) is the Ohm law (2). However, in the first-order
approximation of the current iðtÞ, in sz we have

i tþ sð Þ � i tð Þþ sz
@i tð Þ
@t

: ð7Þ

This leads to a first-order differential equation

1
sz
i tð Þþ @i tð Þ

@t
¼ � k1

sz

@h x; tð Þ
@t

: ð8Þ

The integration of (8) leads to the constitutive Eq. (5a) which is an analogue of
the Cattaneo constitutive equation and considers only linear elastic effects in the
transient of the passing electric current.

However, if the relaxation kernel is presented as a linear combination [16]

Sex ¼ k1d zð Þþ k2=szð Þ exp �z=szð Þ; ð9Þ

where k1 ¼ 1=R and k2 ¼ 1=R2 are the effective resistance and the elastic resistance
of the resistor. d zð Þ is the Dirac delta function. If the relaxation kernel is presented
only by d zð Þ, that is Sz tð Þ ¼ d tð Þ, then Eq. (5a) reduces to the classic Ohm law.

In case the relaxation function is expressed as Sex, then the modified Ohm law
leads to a current defined as

i tð Þ ¼ 1
R1

U tð Þ � 1
R2

1
sz

Z t

�1
e�

t�z
szð Þ @U zð Þ

@z
dz: ð10Þ

Hence, when sz is infinite, the history of the current evolution process presented
by the memory integral [the second term in (10)] is zero and we get the classical
Ohm law. The consequent step in integration of (10), with a finite value of sz, leads
to the well-known Kirchhoff’s telegraph equation [16] (see [16] and the reference
therein for more details).

Now, the natural question is: what happens if the relation function in (5a) is
defined not by an exponential (Jeffrey’s kernel SH tð Þ but with a power-law function
Ss t; lð Þ ¼ t�l? In this case, we get a new form of the history integral
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I tð Þ ¼ 1
R

Z t

0

t � zð Þ�lU zð Þdz; 0\l\1: ð11Þ

As we will see in the next section, the fractional integral with singular power-law
kernel Ss t; lð Þ ¼ t�l is the basis of the widely used Riemann–Liouville and Caputo
fractional derivatives. Otherwise, when the relaxation kernel is of the Jeffrey’s type
we get a history integral with non-singular kernel [17, 18] resulting in the Caputo–
Fabrizio time-fractional derivative [15, 17, 18].

With these introductory notes, we try to explain why fractional integrals and
derivatives are used to describe relaxation processes in electric circuits. The reason
is simple and physically motivated: There are no physical phenomena with infinite
speed of change and the correct description should take into account relaxation
processes. If the relaxation process is rapid and the relaxation time is negligible
with respect to the entire observation time at issue, then we get the well-known
constitutive equation (5a). However, when the processes at issue are with time-
scales comparable to the relaxation times, the histories (the memories) should be
taken into account that leads to use of the memory formalism (history integrals) and
the fractional calculus approach.

3 Preliminaries: Necessary Mathematical Background

We start with the mathematical background necessary to demonstrate the solution
and modelling approaches. The fractional integral and derivatives of Riemann–
Liouville and Caputo with singular (power-law) kernels are the principles ones used
in the literature devoted to the problems discussed in this chapter. In addition, the
basis of the newly defined Caputo–Fabrizio derivative with a non-singular (Jeffrey)
kernel is briefly outlined.

3.1 Time-Fractional Integral and Derivatives
with Singular Kernels

3.1.1 Fractional Integral

In accordance with the Riemann–Liouville approach, the fractional integral of order
l[ 0 is a natural result of the Cauchy’s formula reducing calculations of the m-fold
primitive of a function f tð Þ: the result is a single integral of convolution type [19]
for arbitrary positive number l[ 0, namely
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0I
lf tð Þ :¼ 1

C lð Þ
Z t

0

t � sð Þl�1f sð Þds; t[ 0; n 2 Rþ ð12Þ

where C �ð Þ is the gamma function.
For the sake of convenience, we will use also the notation 0D�lf tð Þ for 0Ilf tð Þ.

Further, the law of exponents for fractional integrals means
0D�l

0D�cf tð Þ ¼ 0D�l�cf tð Þ ¼ 0D�c
0D�lf tð Þ.

The Laplace transform of the fractional integral is defined by the convolution
theorem as

Laplace 0D
�l
t f tð Þ� � ¼ Laplace

tl�1

C lð Þ
� �

Laplace f tð Þ; s½ � ¼ s�lF sð Þ; ð13Þ

where < sð Þ[ 0; < lð Þ[ 0 and F sð Þ is the Laplace transform of f tð Þ:

3.1.2 Riemann–Liouville Fractional Derivative

Therefore, we may define the fractional derivative Dnf tð Þ with n 2 N þ by the
relations [19] as 0Dl

0Il ¼ I but 0Il0Dl 6¼ I. Therefore, Dn is the left-inverse, but
not right-inverse, to the integral operator Il. Hence, introducing a positive integer m
such that m� 1\l�m the natural definition of the Riemann–Liouville (left-sided)
fractional derivative of order l[ 0 is

0Dlf tð Þ :¼ 0Dm
0Im�lf tð Þ ¼ 1

C m� lð Þ
dm

dtm

Z t

0

f tð Þ
t � sð Þlþ 1�m; ð14Þ

m� 1\l�m; m 2 N

0D
lf tð Þ ¼ d

dt
f tð Þ; for l ¼ 1: ð15Þ

Thus, we have D0 ¼ I0 ¼ I, that is DlIl ¼ I for l� 0. Additionally, the frac-
tional derivative of power-law function and a constant, frequently used in this
chapter, is

0D
ltb ¼ C bþ 1ð Þ

C bþ 1� lð Þ t
b�l and 0D

lC ¼ C
t�l

C 1� lð Þ l[ 0; b[ � 1;

t[ 0:
ð16Þ
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Similarly, the fractional integrals of the power-law function and a constant are

0D
�ltb ¼ C bþ 1ð Þ

C bþ 1þ lð Þ t
lþb; 0D

�lC ¼ C
C 1þ lð Þ t

l; l 6¼ 1; 2; . . . ð17a; bÞ

The Laplace transform of theRiemann–Liouville fractional derivative form 2 N is

Laplace
dm

dtm
f tð Þ; s

� �
¼ smF sð Þ �

Xm�1

k¼0

sm�k�1f mð Þ 0þð Þ

¼ smF sð Þ �
Xm
k¼1

sk�1Dl�k
t f 0þð Þ;

ð18Þ

where < sð Þ[ 0; < lð Þ[ 0 and m� 1� l\m.

3.1.3 Caputo Fractional Derivative

The Caputo derivative of a casual function f tð Þ, i.e. f tð Þ ¼ 0 for t\0, is defined
[19, 20] as

CD
l
t f tð Þ ¼ 0I

m�l dm

dtm
f tð Þ ¼ 0D

� m�lð Þ
t f mð Þ tð Þ

¼ 1
C m� lð Þ

Z t

0

f mð Þ tð Þ
s� 1ð Þlþ 1�m dt;

ð19aÞ

where m 2 N and m� 1\l\m

CD
l
t f tð Þ ¼ d

dt
f tð Þ; for l ¼ 1: ð19bÞ

The Laplace transform of Caputo derivative is

Laplace CD
l
t f tð Þ; s� � ¼ slF sð Þ �

Xm�1

k¼0

f mð Þ 0ð Þsl�k�1: ð20Þ

The Caputo derivative of a constant is zero, i.e. CD
l
t C ¼ 0 that matches the

common knowledge we have from the integer-order calculus; and because of that
the Riemann–Liouville derivative is the preferred fractional derivative among
mathematicians, while Caputo fractional derivative is the preferred one among
engineers [3].

If f 0ð Þ ¼ f 0 0ð Þ ¼ f 00 0ð Þ ¼ � � � ¼ f m�1ð Þ 0ð Þ ¼ 0, then both Riemann–Liouville
and Caputo derivatives coincide. In particular for l 2 0:1ð Þ and f 0ð Þ ¼ 0 one has
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CD
l
t f tð Þ ¼ RLD

l
t f tð Þ. Further, in this chapter we will use the notations RLD

l
t f tð Þ and

CD
l
t f tð Þ to discriminate the effects of the solutions when both derivatives are used.

In addition in some situations, we will use also the notation @lf tð Þ=@tl meaning a
time-fractional derivative without specification of the type.

Further, for simplicity, we will assume that all expressions are with the Caputo
time-fractional derivative. For the sake of coherence with the existing practice
describing transient regimes in electrical circuits, we will use the notation
CD

l
t ¼ dl=dtl.

3.1.4 Mittag–Leffler Function

Generally, the fractional-order differential equation has the form

Xn
k¼0

akD
l kf tð Þ ¼ g tð Þ: ð21Þ

After application of the Laplace transform and successful solution on the
s-space, the inverse transform with 0\l\1 requires a special function, namely the
Mittag–Leffler function defined as [19, 21]

El tð Þ ¼
X1
k¼0

tk

C lkþ 1ð Þ; l[ 0: ð22Þ

For example with l ¼ 1 we have E1 tð Þ ¼ P1
k¼0

tk
C kþ 1ð Þ ¼ et since the Mittag–

Leffler function is a generalization of the exponential function and widely used for
describing dissipative processes.

3.1.5 Alternative Representation of the Fractional Derivative
with Singular Kernels

In order to facilitate the understanding of the transition from the classical
integer-order models to the ones involving time-fractional derivatives, we will
present this step as [22]

d
dt

! 1
r1�l

dl

dtl
: ð23Þ

Here the parameter r (with a dimension in seconds) plays a role of normalizing
function, and when l ¼ 1 we get the ordinary fractional derivative. This presen-
tation is more intuitive rather than mathematically correct but for people not
involved in fractional calculus, it would be the more acceptable approach.
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3.2 Fractional Derivatives with Non-singular Kernel

The hot topic in modelling of dissipative phenomena involves fractional derivatives
by the application of fractional derivatives. As it is stated in the seminal work of
Caputo and Fabrizio [17] many classical constitutive equations (see the comments
in [15] and the references therein) cannot model some transport dissipative process
with advanced characteristics. To satisfy these requirements a new time-fractional
derivative with a non-singular smooth exponential kernel was conceived by Caputo
and Fabrizio [17], namely

CFD
l
t f tð Þ ¼ M lð Þ

1� l

Z t

0

exp � l t � zð Þ
1� l

� �
df tð Þ
dt

dz ð24Þ

CFD
l
t f tð Þ ¼ 1

1� l

Z t

0

exp � l t � zð Þ
1� l

� �
df tð Þ
dt

dz; ð25Þ

where M lð Þ in Eq. (24) is a normalization function such that M 0ð Þ ¼ M 1ð Þ ¼ 1.
With M lð Þ ¼ 1 suggested for convenience in [17] we get the final definition of the
Caputo–Fabrizio time-fractional derivative in the form of Eq. (25). The derivative
of a constant is zero as in the classical Caputo derivative [19, 20], but now the
exponential (Jeffrey’s) kernel has no singularity. An application to transients in RC
circuit is demonstrated in this chapter.

The Laplace transform of Caputo–Fabrizio derivative is [17]

Laplace CFD
l
t f tð Þ� � ¼ 1

1� l
Laplace f tð Þ½ �Laplace exp� l

1� l
t

� �

¼ sLaplace f tð Þ½ � � f 0ð Þ
sþ l 1� sð Þ : ð26Þ

Similar to the alternative and intuitive presentation of the transition from frac-
tional to integer-order derivative we have the following [24, 25]:

• Fractional in time

d
dt

! 1

exp � 1�lð Þ
2�l

h i
rt

CFD
l
t f tð Þ ð27Þ
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• Fractional in space

d
dt

! 1

exp � 1�lð Þ
2�l

h i
rx

CFD
l
x f tð Þ; ð28Þ

where for l ¼ 1 we recover the ordinary (integer-order) derivatives

4 Transients in Fractional Electric Circuits: Analyses
by Examples

4.1 Fractional RC Circuit

The conventional integer-order differential equation for the RC circuit is given by

E tð Þ ¼ R
dq tð Þ
dt

þ q tð Þ
C

: ð29Þ

We will investigate two simple cases: capacitor discharge and transient due to
unit step of the voltage.

4.1.1 Capacitor Discharge

In case of capacitor discharge through the resistor R we have E tð Þ ¼ 0

C
dUc

dt
þ 1

R
Uc tð Þ ¼ 0 ð30Þ

and in this case the solution of (30) classic solution is [25]

Uc ¼ U0 exp � t
RC

� 	
; Uc t ¼ 0ð Þ ¼ U0: ð31Þ

With Riemann–Liouville time-fractional derivative the analogue of (31) is

0D
lUc tð Þþ 1

R
Uc tð Þ ¼ 0: ð32Þ

Then, the solution is [26]

URL
c tð Þ ¼ U0El � 1

RC
tl

� �
� U0

l
C 1� lð Þ

Z t

0

t � zð Þ�lzl�1El � 1
RC

zl
� �

dz ð33Þ

260 J. Hristov



or equivalently in a dimensionless form

URL
c tð Þ
U0

¼ El � 1
RC

tl
� �

� l
C 1� lð Þ

Z t

0

t � zð Þ�lzl�1El � 1
RC

zl
� �

dz: ð34Þ

With Caputo derivative the alternative equation of the capacitor discharge is

CD
l
t Uc tð Þþ 1

R
Uc tð Þ ¼ 00: ð35Þ

Then, the solution is

UC
c tð Þ ¼ U0El � 1

RC
tl

� �
ð36Þ

or equivalently in a dimensionless form

UC
c tð Þ
U0

¼ El � 1
RC

tl
� �

: ð37Þ

We can see that the only difference between (33) and (36) is the last term in
(RC-1d) due to the fact that the Riemann–Liouville derivative of a constant is not
zero (see 17b).

With the Caputo–Fabrizio derivative, the same problem has a model resembling
(35), namely

CFD
l
t Uc tð Þþ 1

R
Uc tð Þ ¼ 0: ð38Þ

The simple solutions through the Laplace transform yield

UCF
c tð Þ ¼ U0 exp � 2l

2RCþ 2 1� lð Þ t
� �

ð39Þ

or equivalently in a dimensionless form

UCF
c tð Þ
U0

¼ exp � 2l
2RCþ 2 1� lð Þ t

� �
: ð40Þ

4.1.2 Transient Due to Unit Step of the Voltage

Assuming the transient analysis, that E tð Þ ¼ u tð Þ is a unit step function, we may
express (29) in a dimensionless form [23]
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dgc sð Þ
ds

þ gc sð Þ ¼ u sð Þ; gc sð Þ ¼ q tð Þ
C

; s ¼ t
RC

: ð41a; bÞ

The time-fractional counterpart of (41a) (assuming Caputo derivatives) is

dlgc sð Þ
dtl

þ gc sð Þ ¼ u sð Þ; 0\l\1: ð42Þ

Solution in the Time Domain

With the Laplace transform of the Caputo derivative (in the alternative form
expressed by Eq. 20) we have from (42) that

Vc �sð Þ ¼ 1
�s �sl þ 1ð Þ ;Vc �sð Þ ¼ L gc sð Þ½ � and �s ¼ RCð Þs: ð43a; b; cÞ

The inverse Laplace transform of (43a) yields a solution in the time domain [23]
:

gc tð Þ ¼ u tð Þ 1�
X1
k¼0

�1ð Þk
t

RC

� 	kl

C lkþ 1ð Þ

2
64

3
75 ¼ u tð Þ 1� El;1 sð Þ� � ð44a; bÞ

or equivalently in a dimensionless form

gc tð Þ
u tð Þ ¼ 1� El;1 sð Þ: ð44cÞ

For l ¼ 1 we have E1;1 ¼ e�s ¼ e�
t

RC and gc tð Þ=u tð Þ ¼ 1� e�t=RC:
The solution was tested by a simple example [23] calculating the times required

the response to attain 10% of its initial value and the 90% value of the final
(saturation) level. The answers are straightforward because from (44a) we have
[23], for instance

0:99 ¼ 1�
X1
k¼0

�1ð Þk sssð Þkl
C klþ 1ð Þ ¼ 1� El;1 sssð Þ: ð45aÞ

This allows to find a solution with respect to the dimensionless settling time
defined as sss ¼ tss=RC. From (45a) we have

f sssð Þ ¼
X1
k¼0

�1ð Þk sssð Þkl
C klþ 1ð Þ � 0:01 ¼ 0: ð45bÞ

262 J. Hristov



The dimensionless settling time tss=RC can be determined by the Newton–
Raphson method, where the mth iteration of solution of (45b) can be expressed as
[23]

s mþ 1ð Þ
ss ¼ s mð Þ

ss � f s mð Þ
ss

� �
f 0 s mð Þ

ss

h i : ð46Þ

The plot of sss ¼ tss=RC as a function of the fractional-order l demonstrates
strong decaying behaviour (see Fig. 2).

Solution in the Frequency Domain

Starting from the Laplace transform (44) and multiplying both sides by �s ¼ RCð Þs
we get [23]

H �sð Þ ¼ 1
�sl þ 1

: ð47Þ

Now we may construct the Bode plot from the relation H jxð Þj�s¼jx resulting in
two equations:

H jxð Þj jdB¼ 20 log10 H jxð Þj jð Þ ð48aÞ

argH jxð Þ ¼ 180 argH jxð Þ
p

: ð48bÞ

Fig. 2 Semi-logarithmic
relationship of the settling
time and the fractional order l
Adapted from [23]
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4.2 Fractional RL Circuit

With only resistor and inductor charged by a voltage source U tð Þ, the integer-order
model is

L
d
dt
I tð ÞþRI tð Þ ¼ E tð Þ: ð49Þ

We will consider some sub-examples of (49) and the solutions of their
time-fractional analogues.

4.2.1 Constant Electromotive Force

With initial condition I t ¼ 0ð Þ ¼ I0 6¼ 0 and E tð Þ ¼ E0, the solution of (49) is [27]

I tð Þ ¼ I0 � E0L
R

� �
exp �R

L
t

� �
þ E0L

R
ð50aÞ

or equivalently

I tð Þ
I0

¼ 1� L
IR0
I0

� �
exp �R

L
t

� �
þ L

IR0
I0

; IR0 ¼ E0

R
: ð50bÞ

With Riemann–Liouville time-fractional derivative the analogue of (49) is [26, 27]

0D
lI tð Þþ R

L
I tð Þ ¼ E0

L
: ð51aÞ

With a dimensionless solution

I tð Þ
I0

¼ El �R
L
tl

� �
þ l

Z t

0

U0

I0L
� t � zð Þl
C 1� lð Þ

� �
zl�1E0

l �R
L
zl

� �
dz: ð51bÞ

Now, with Caputo derivative the equivalent of (49) and (51a) is [26]

CD
l
t I tð Þþ R

L
I tð Þ ¼ E0

L
: ð52aÞ

Then, the dimensionless solution is

I tð Þ
I0

¼ 1� l
IR0
I0

� �
El �R

L
tl

� �
þ l

IR0
I0

; IR0 ¼ E0

R
: ð52bÞ
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With the Caputo–Fabrizio derivative the same transient process is modelled as

CFD
l
t I tð Þþ R

L
I tð Þ ¼ E0

L
; ð53aÞ

and therefore the solution is

I tð Þ
I0

¼ IR0
I0

� IR0
I0

� 1
� �

exp �2l
1

L=Rþ 1� lð Þ t
� �

; IR0 ¼ E0

R
: ð53bÞ

The plots in Fig. 3 show the graphical representations of the developed solu-
tions, as it was reported by [26] for l ¼ 0:5; there is no similarity between the
developed solutions. However, when l ! 1, particularly for l ¼ 0:999, solutions
with the classical ðl ¼ 1Þ and the Caputo–Fabrizio derivative coincide matching in
the exponential current increase and the steady-state value that is easy to check from
the developed dimensionless solutions (see Fig. 4 in the original work).

4.2.2 Absence of Electromotive Force

Hence with E tð Þ ¼ 0 we may rewrite (49) in terms of Caputo time-fractional
derivative as

CD
l
t I tð Þþ R

L
I tð Þ ¼ 0: ð54Þ

Then, the solution through the Laplace transform of (54) yields [27]

I sð Þ ¼ I0
sl�1

sl þR=Lð Þ ) I tð Þ ¼ I0El �R
L
tl

� �
: ð55Þ

Fig. 3 Time evolution of the
voltage calculated by different
fractional derivatives in the
case l ¼ 0:5: Adapted from
[26]
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4.2.3 Electromotive Force as a Unit Step Function

With an electromotive force as a unit step, i.e. E tð Þ ¼ u tð Þ ¼ 1 we have with the
Caputo derivative

CD
l
t I tð Þþ R

L
I tð Þ ¼ u tð Þ

L
: ð56Þ

With the initial conditions I t ¼ 0ð Þ ¼ I0 [ 0 taking into account that l ! 1
CD

l
t I tð Þ ! dI=dt we may express (56) as

CD
l
t I tð Þ ¼ 1

L
u tð Þ � R

L
I tð Þ: ð57Þ

The Laplace transform of (57) is

I sð Þ ¼ 1
L

1
s sl þR=Lð Þ þ I0

sl�1

sl þR=Lð Þ : ð58Þ

Then, the time domain solution is

I tð Þ ¼ I0 � 1
R

� �
El �R

L
tl

� �
þ 1

R
: ð59Þ

4.3 Fractional RLC Circuit

The integer-order equation of an RLC circuit is

L
d2

dt2
q tð ÞþR

d
dt
q tð Þþ q tð Þ

C
¼ 0: ð60Þ

The last term q tð Þ=C is crucial for the oscillatory behaviour of the circuit since
the RL circuit only exhibits a decaying transient behaviour.

4.3.1 Analysis Through the Caputo Derivative

Since the transformation of the integer-order equations to the fractional time
counterparts could be considered as a formal replacement of the integer-order
derivatives by fractional ones, which might cast some doubts what really needs this
step, we will use the alternative approach to explain intuitively the requirement to
use fractional derivatives. With the expression (23) we may present (60) as [22]
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1
r1 1�lð Þ L

d2l

dt2l
q tð ÞþR

dl

dtl
q tð Þþ q tð Þ

C
¼ 0; ð61Þ

where dl

dtl is the Caputo derivative, assumed by default.

The solution of (61) by the Laplace transform is [22]

ql RLCð Þ tð Þ ¼ q0El �Rr1�l

2L
tl

� �
� E2l � 1

LC
� R2

4L2

� �
r2 1�lð Þt2l


 �
: ð62Þ

In the undamped case when R\2
ffiffiffiffiffiffiffiffiffi
L=C

p
and ql RLCð Þ t ¼ 0ð Þ ¼ q0 the natural

frequency is defined as x0 ¼
ffiffiffiffiffiffiffiffiffiffiffi
1=LC

p
:

In the limiting situation with l ¼ 1 the solution (62) reduces to the classical
solution defining the time constant sRL ¼ 2L=R:

q RLCð Þ tð Þ ¼ q0 exp � R
2L

t

� �
cos Xtð Þ; X ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

0 �
R2

4L2

r
: ð63a; bÞ

The solution (63a) allows demonstrating the functional relationship between the
normalizing parameter r and the fractional order l [22]

l ¼ r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
LC

� R2

4L2

r
; 0\r� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
LC� R2

4L2

q : ð64a; bÞ

When the undamped case, R\2
ffiffiffiffiffiffiffiffiffi
L=C

p
and the damping factor is defined as

a ¼ ffiffiffiffiffiffiffiffiffiffiffi
R=2L

p
. With the condition a\x0 solution reduces to [22]

ql RLCð Þ t1ð Þunder¼ q0El � R

2L
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
LC� R2

4L2

q l 1�lð Þtl1

2
64

3
75 � E2l �l2 1�lð Þt2l1

n o
ð65aÞ

t1
t
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
LC

� R2

4L2

r
: ð65bÞ

When the overdamped case is at issue where a[x0 and R[ 2
ffiffiffiffiffiffiffiffiffi
L=C

p
the

solution (62) reduces to [22]

ql RLCð Þ tð Þover¼ �q0El �r1�l R
2L

tl
� �

� E2l �r 1�lð Þtl
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

4L2
� 1
LC

r( )
: ð66Þ

For l ¼ 1 the solution (66) reduces to the well-known aperiodic solution of the
capacitor discharge
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ql¼1 RLCð Þ tð Þover¼ �q0 exp � t
tl¼1

� �
; tl¼1 ¼ 2L

R 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4L

R2C

qh i ; ð67a; bÞ

where �q0 is the charge of the capacitor at t ¼ 0

4.3.2 Analysis Through the Caputo–Fabrizio Derivative

Case with Voltage Drop Dependent on Space and Time

For this analysis, we will use the model of Riaza [28] and the results of Atangana
and Nieto [24]

@2U x; tð Þ
@x2

� LC
@2U x; tð Þ

@t2
� RCþGLð Þ ð68aÞ

@U x; tð Þ
@x

� GRU x; tð Þ; ð68bÞ

where G denotes the electric resistance of the materials connecting the resistors
(conductors) in the circuits.

Thir fractional analogues of (68a, b) are [24]

CFD
b
xU x;tð Þ

exp � b
1�brxð Þ � LC CFD

b
x U x;tð Þ

exp � b
1�brtð Þ

� ðRCþGLÞ
exp �1�l

2�brtð Þ CFD
l
t U x; tð Þ½ � � GRU x; tð Þ ¼ 0

ð69Þ

with 1\b\2 and 0\l\1.
This model has no analytical solution and only numerical approaches are pos-

sible. Atangana and Nieto [24] used finite-difference approximations in time and
space of the Caputo–Fabrizio derivatives and the Crank–Nicolson solution scheme.
More details about the numerical solution and the stability analysis are available in
the original work [24]. We will skip the mentioned problems which are beyond the
scope of the present chapter.

Solution in Time Domain Only

In this case the analogue of (60) is [25]

L CFD
2l
t q tð Þ

exp � 1�l
2�l rt

� 	 þR CFD
l
t q tð Þ

exp � 1�l
2�l rt

� 	 þ q tð Þ
C

¼ 0: ð70Þ
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In this model the second fractional derivative is considered as a sequential one,
namely

CFD
2l
t q tð Þ ¼CF Dl

t CFD
l
t q tð Þ� �

: ð71Þ

The Laplace transform of (70) is [25]

L
Laplace CFD

2l
t q tð Þ

h i
exp � 1�l

2�l r
2
t

� 	 þR
1

exp � 1�l
2�l rt

� 	 sQ sð Þ � q 0ð Þ
sþ l 1� sð Þ þ Q sð Þ

C
¼ 0: ð72Þ

With

Laplace CFD
2l
t q tð Þ� � ¼ s

sLaplace q tð Þ � q 0ð Þ½ �f g
sþ l 1� sð Þ : ð73Þ

The solution becomes

Q sð Þ ¼ q 0ð Þ a sð Þþ 1½ �
sa sð Þþ b sð Þþ 1

C

ð74aÞ

a sð Þ ¼ 1

exp � 1�l
2�l r

2
t

� 	 s

sþ l 1� sð Þ½ �2 ð74bÞ

b sð Þ ¼ 1

exp � 1�l
2�l rt

� 	 R
sþ l 1� sð Þ½ � : ð74cÞ

The exact solution can be obtained by the inverse Laplace transform, namely

q tð Þ ¼ Laplace�1 q 0ð Þ a sð Þþ 1½ �
sa sð Þþ b sð Þþ 1

C

( )
: ð75Þ

More details concerning numerical simulations are available in the original work
[25].
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5 Electrical Impedance Spectroscopy to RC Circuits:
An Example

The electric impedance spectroscopy is wide and well-developed scientific area [9]
and the fractional-order analysis allows deeper understanding of the physical
problems at issue. With this short example taken from [29], we demonstrate how
the fractional-order analysis of RC circuit works.

The electrical impedance spectroscopy applies a potential difference between
two electrodes attached to a sample by passing a low power alternating electric
current. This input is then compared to the corresponding output voltage and
current. The impedance is defined by the simple relation

Z sð Þ ¼ U sð Þ
I sð Þ : ð76Þ

From the Kirchhoff law of a simple RC circuit, we have that

u ¼ RpiþUcp and i ¼ iR þ ic ¼ Ucp
Rp

þCp
dUcp
dt

: ð77a; bÞ

In term of time-fractional derivatives the fractional versions of (77a,b) are

iR ¼ Ucp
Rp

and ic ¼ Cp
dlUcp
dtl

: ð78a; bÞ

Hence, we have

i ¼ Ucp
Rp

þCp
dlUcp
dtl

and u ¼ RsiþUcp: ð79a; bÞ

In this model the time-fractional derivative will be considered in its alternative
form 1=r1�lð Þ dl=dtlð Þ. Further, the Laplace transforms of (79a,b) are

I sð Þ ¼ Ucp sð Þ
Rp

þ Cp

r1�l
slUcp sð Þ and U sð Þ ¼ RsI sð ÞþUcp sð Þ: ð80a; bÞ

Therefore, from the definition of the impedance (76) we have [30]

Z slð Þ ¼ Rs þ Rp

1þ RpCp

r1�l sl
) Z jxð Þl¼ Rs þ Rp

1þ RpCp

r1�l jxð Þl
: ð81a; bÞ

Since the normalizing function, r needs justification that the simplest approach
applicable to the RC circuit is the choice r ¼ RpCp which allows to reduce the Cole
model [29]. In the case when l ¼ 1 we obtain an ideal RC circuit.
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6 Further Commentaries

Fractional calculus is attractive not only for electrical engineers but also for any
scientist applying the equivalent electric circuit approach to model biomedical
problems derivatives (assume the Caputo derivative); it is possible to define a
generalized in [31, 32] because of the application of the Laplace transform to the
factional impedance of a fractional in time device with a proportionality to sl [33–
35]. In this case the well-known general devices with l ¼ �1 (capacitor), l ¼ 0
(resistor) and l ¼ 1 (inductor) are special cases. In this direction the Cole–Cole
impedance [29, 34, 36] with fractional developed on the basis of equivalent
fractional-order circuits is a powerful tool in the bioimpedance measurements [22,
23, 34, 37].

Further, the diffuse layer capacitances at micro- and nanoeletrodes are well
described by simple RC circuits [38]. The anomalous diffusion in ionic solutions,
especially in the low-frequency limit where the systems may be a present anoma-
lous electrical response, are well described by anomalous diffusion and equivalent
RC circuits of fractional order [39]. In this context, the development of superca-
pacitors [40] is more accurately described by fractional order in their transient
processes of charging and discharging [37].

Systems process with equivalent RLC circuit models which allow deep analysis
by the fractional calculus approach for a hot research area with a continuously
number of publication on various applications which are hard to encompass in a
single chapter. For more complex cases, some literature sources are highly rec-
ommended [31, 41–43].
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