
Chapter 6
Linear Versus Nonlinear Stability
in Hamiltonian Systems

Ferdinand Verhulst

Abstract The stability of periodic solutions of time-independent Hamiltonian sys-
tems is often studied by linearization techniques. In the case of two degrees of
freedom near stable equilibrium this is a correct procedure, in the case of three or
more degrees of freedomwe present some counterexamples. The case of the classical
Fermi-Pasta-Ulam chain with cubic and quartic interactions illustrates the instability
phenomenon.

6.1 Introduction

It iswell-known that linearizing procedures in dissipative systems produce no conclu-
sive evidence regarding stability if the eigenvalues are purely imaginary. An example
is given in [6] ex. 3.2 where a second order autonomous equation with a centre equi-
librium point is perturbed by nonlinear terms. For various choices of the nonlinear
terms we may obtain asymptotic stability or instability of the equilibrium.

For Hamiltonian systems the stability question is more complicated. Suppose we
have a time-independent Hamiltonian H(p, q) with p, q ∈ R

n so that we have n
degrees of freedom and a 2n dimensional system of differential equations. Suppose
that the system has a nontrivial periodic solution φ(t) (in fact there will be many in
general). We want to establish its stability by small perturbations in a neighborhood
of φ(t). The usual practice is to linearize the perturbed system and consider the
characteristic exponents.

From now on we will also assume that we consider the system near stable equi-
librium so that we have a family of compact energy manifolds. This will enable us to
apply known theorems and, if necessary, normalization techiques. If we have one or
more positive Lyapunov exponents, the periodic solution will be unstable. To have
only negative parts in the Hamiltonian case is impossible because of the symmetry
of the spectrum in Hamiltonian systems.
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A periodic solution corresponds with a fixed point of a suitable Poincaré map
of the phase-flow. Suppose now that the spectrum of the linearized flow near this
fixed point has purely imaginary parts only. In many papers it is assumed then that
the periodic solution is stable. We will argue that this is correct in the case of two
degrees of freedom but not necessarily if n ≥ 3. There can be various causes for
instability, for instance higher order resonance or diffusion processes in phase-space.
Our analysis may also have consequences for conservative, nonlinear wave equations
whereGalerkin projection leads to finite-dimensional but largeHamiltonian systems.

6.2 Two Degrees of Freedom

The system of equations of motion is four-dimensional, the energy manifolds near
stable equilibrium are three-dimensional and compact. Apart from degenerate cases
one can quite generally apply the KAM theorem that guarantees a foliation of tori
of the energy manifolds around stable periodic solutions, see for instance [1] or [2]
and further references there. The Weinstein theorem [7] guarantees the existence
of at least two periodic solutions on an energy manifold near stable equilibrium.
One can construct a transversal to the flow on the energy manifold that results in an
area-preserving map, a Poincaré map, of the transversal into itself. We can choose
the map so that the periodic solution produces a fixed point of the map. Because of
the area-preserving character of the map, the eigenvalues associated with the fixed
point will generically be real (positive and negative) or purely imaginary. The KAM
tori around the stable periodic solutions are two-dimensional, the tori separate the
three-dimensional energy manifold; the solutions between the tori can not escape.
This means that purely imaginary eigenvalues imply stability of the solution in the
nonlinear system.

6.3 Counter-Examples for More Degrees of Freedom

In the case of three or more degrees of freedom we can also apply the KAM theorem
quite generally. However, the energy manifolds are 2n − 1 dimensional, the tori at
most n-dimensional. The tori do not separate the energy manifolds for n ≥ 3. We
will discuss examples showing various causes of instability but with common feature
resonance.

6.3.1 The Influence of Quartic Terms

This example shows that higher order Hamiltonian perturbations may introduce
instability. Indicating the quadratic, cubic and quartic parts of the Hamiltonian by
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H2, H3, H4 respectively we have:

H2 = 1

2
(ẋ21 + x21 + ẋ22 + 2x22 + ẋ23 + x23 ), H3 = −x1x2x3, H4 = −(

1

4
x41 + x21 x

2
3 + 1

4
x43 ).

The equations of motion can be written as:

⎧
⎪⎨

⎪⎩

ẍ1 + x1 = x2x3 + x31 + 2x1x23 ,

ẍ2 + 2x2 = x1x3,

ẍ3 + x3 = x1x2 + 2x21 x3 + x33 .

(6.1)

The origin of phase-space correspondswith stable equilibrium. Localizing in a neigh-
borhood of this equilibrium we can rescale ẋi , xi → εẋi , εxi , i = 1, . . . , 3 resulting
in:

⎧
⎪⎨

⎪⎩

ẍ1 + x1 = εx2x3 + ε2(x31 + 2x1x23 ),

ẍ2 + 2x2 = εx1x3,

ẍ3 + x3 = εx1x2 + ε2(2x21 x3 + x33).

(6.2)

The system induced by Hamiltonian H2 + εH3 + ε2H4 admits the three normal
modes in the coordinate planes. Consider the x1 normal mode to O(ε), the solution
is harmonic:

x1(t) = φ(t) = r0 cos(t + θ0).

Puttting x1 = y + φ(t) and linearizing near the normal mode in system (6.2) to O(ε)
we obtain:

⎧
⎪⎨

⎪⎩

ÿ + y = 0,

ẍ2 + 2x2 = εφ(t)x3,

ẍ3 + x3 = εφ(t)x2.

(6.3)

We have kept the notation x2, x3 to avoid too many new symbols. The righthand
sides of the last two equations contain non-resonant quasi-periodic terms that keep
the inhomogeneous solutions O(|x3|), O(|x2|) respectively. Put in a different way,
normalizing the equations for x2, x3 involves non-resonant terms to any order. We
conclude to linear stability of the x1 normal mode. The higher order terms O(ε2)
destroy this picture as was shown in [5] that the system induced by H2 + H4 contains
two unstable normal modes; for an illustration see Fig. 6.1.

We can also linearize around the normal mode including the cubic terms of the
equations. The x1 normal mode satisfies to O(ε2) the equation

ẍ1 + x1 = ε2x31 .
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Fig. 6.1 The actions of system (6.2) with x1(0) = 1, x2(0) = x3(0) = 0.1, velocities zero; ε = 0.1
and 6000 time-steps. The action I1 = 1

2 (ẋ
2
1 + x21 ) associated with the x1 normal mode starts in 0.5

and shows recurrence on around 3400 time-steps. The sum of the actions I2 + I3 associated with
the x2, x3 modes starts near zero and shows similar recurrence

The solutions are elliptic functions that are more complicated to handle. However,
for ε small we can determine the solution by the Poincaré-Lindstedt (or Poincaré
continuation) method; see [6] ch. 10. The solution can be written as

φ(t) = r0(ε
2) cos(t + ε2η(ε2)t + φ0)

where r0(ε2), η(ε2) have convergent Taylor expansions with respect to their argu-
ment. In this way we find linear stability but again instability in the full, nonlinear
system.

6.3.2 Instability by the Presence of Mathieu-Tongues

Consider the Hamiltonian with

H2 = 1

2
(ẋ21 + 4x21 + ẋ22 + 4x22 + ẋ23 + ω2x23 ), H3 = −(x1 + x2)x

2
3 .
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Applying the same scaling with small, positive parameter ε as before we have:

⎧
⎪⎨

⎪⎩

ẍ1 + 4x1 = εx23 ,

ẍ2 + 4x2 = εx23 ,

ẍ3 + ω2x3 = ε2(x1 + x2)x3.

(6.4)

The x1 normal mode is harmonic, we put for this solution

x1(t) = φ(t) = r0 cos(2t + θ0).

We assume now that ω2 is close but not equal to 1. Puttting x1 = y + φ(t) and
linearizing near the normal mode in system (6.4) we find:

⎧
⎪⎨

⎪⎩

ÿ + 4y = 0,

ẍ2 + 4x2 = 0,

ẍ3 + ω2x3 = 2εφ(t)x3.

(6.5)

Stability or instability depends now on the Mathieu instability tongues of the third
equation. Given ω near 1, x3(0) can be chosen small enough to produce stability of
the x1 normal mode, see Fig. 6.2 right, so formally the x1 normal mode is stable.
However, a slightly smaller perturbation of the frequency 1 may put the solution
x3(t) with the same initial conditions in the unstable Mathieu tongue, see Fig. 6.2
left. These phenomena are subtle and should be kept in mind near resonance.

Fig. 6.2 The action I3 = 1
2 (ẋ

2
3 + ω2x23 ) in two cases of system (6.4) with x1(0) = 1, x2(0) =

0.1, x3(0) = 0.01, velocities zero; ε = 0.1 and 1000 time-steps. Left the case ω2 = 1.1 leading to
instability of the x1 normal mode, 0 < I3 < 0.23. Right the slightly more detuned case ω2 = 1.15
leading to stability of the x1 normal mode, the fluctuations of I3 are of size 10−4
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6.4 Application to a Chain with 4 Interacting Particles

Consider a periodic chain consisting of four particles of equal mass (m = 1) with
quadratic and cubic nearest-neighbor interaction. With position q j and momentum
p j = q̇ j , j = 1 . . . 4, the Hamiltonian is of the form

H(p, q) =
4∑

j=1

(
1

2
p2j + V (q j+1 − q j )) with V (z) = 1

2
z2 + α

3
z3 + β

4
z4. (6.6)

This is a low-dimensional case of the periodic Fermi-Pasta-Ulam problem; usually
many more particles are considered in this classical problem. We will choose

α = 1,β = −1.

The corresponding equations of motion were studied in [4] where the stability
and instability of the short-periodic solutions was established for arbitrary α and β.
The equations induced by Hamiltonian (6.6) have a second integral of motion, the
momentum integral

∑4
1 p j = constant. This enables us to reduce the 4 degrees-of-

freedomequations ofmotion to 3degrees-of-freedom.The symplectic transformation
was carried out in [3] producing with α = 1,β = −1:

{
H2 = 2x21 + x22 + x23 + 1

2 (ẋ
2
1 + ẋ22 + ẋ23 ), H3 = −4x1x2x3,

H4 = − 1
4 (4x

4
1 + x42 + 6x22 x

2
3 + x43 + 12x21 (x

2
2 + x23 )).

(6.7)

Rescaling as before xi → εxi , ẋi → εẋi , i = 1, 2, 3 in a neighborhoodof stable equi-
librium we find the equations of motion:

Fig. 6.3 The actions for 3000 timesteps near the unstable x2 normal mode of system (6.8) with
ε = 0.1, initial conditions x1(0) = x3(0) = 0.1, x2(0) = 1 and initial velocities zero.Left the action
I3(t) = 1

2 (ẋ
2
3 + 2x23 ) starting near zero and increasing to values near 1. Right I2(t) starting at

I2(0) = 1 and I1(t) which remains small
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⎧
⎪⎨

⎪⎩

ẍ1 + 4x1 = 4εx2x3 + ε2
(
4x31 + 6x1(x22 + x23 )

)
,

ẍ2 + 2x2 = 4εx1x3 + ε2(x32 + 3x2x23 + 6x21 x2),

ẍ3 + 2x3 = 4εx1x2 + ε2(x33 + 3x22 x3 + 6x21 x3).

(6.8)

The three normal modes (in the coordinate planes) satisfy the equations of system
(6.8). It was shown in [4] that the x1 normal mode is stable, the x2 and x3 normal
modes are unstable. Consider normal mode x2. Linearization near the normal mode
to O(ε) produces stability as in the examples presented before. The instability is
illustrated in Fig. 6.3.
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