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Abstract Scientific advances in technology have helped in digitizing genetic
information, which resulted in the generation of the humongous amount of genetic
sequences, and analysis of such large-scale sequencing data is the primary concern.
This chapter introduces a scalable genome sequence analysis system, which makes
use of parallel computing features of Apache Spark and its relational processing
module called Spark Structured Query Language (Spark SQL). The Spark frame-
work provides an efficient data reuse feature by holding the data in memory,
increasing performance substantially. The introduced system also provides a web-
based interface, by which users can specify the search criteria, and Spark SQL
performs search operations on the data stored in memory. Experiments detailed in
this chapter make use of publicly available 1000 genome Variant Calling Format
(VCF) data (Size 1.2TB) as input. The input data are analyzed using Spark and the
end results are evaluated to measure the scalability and performance of the system.

1 Introduction

Big data computing technologies have been proliferating fast with unprecedented
volumes of data generation in several domains. Since the completion of the Human
Genome Project in 2003 [1], the cost of sequencing human genomes is reduced by
more than 100,000x [2]. Reduced cost and recent scientific advances in technology
have helped digitize human genes and generate huge amounts of human genomic
sequences that help researchers in understanding human genes. A major challenge
encountered with such vast gene data generation is the analysis of the required
sequence structures.

Many data processing techniques are available, but the ability to process the
increasing data needs to address the performance and scalability challenges. For
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instance, processing of increasing data by minimizing the query response time is
key to achieving scalability. One of the tools available for such large-scale analysis
is Apache Hadoop [3], which is an open source framework that gives users powerful
features to store and process huge datasets. While widely used, we observed it
requires around 20 min for every single query to be completed against a data size of
1.2 terabytes (for the 1000 genome data set) using 16 Hadoop computing resources.
This motivates us to explore other tools for scalable gene sequence analysis. Apache
Spark [4] can provide enhanced performance for certain applications compared
to the existing MapReduce framework using its in-memory processing feature. In
detail, Spark provides Resilient Distributed Datasets (RDDs) that can be stored in
memory between query executions that facilitates the reuse of intermediate outputs.

In this chapter, we examine the feasibility of Spark for the application of
gene sequence variation analysis with respect to performance and scalability. In
addition, optimization is an important part of system performance and we will
evaluate the impact of caching in Spark with extensive experiments on performance
evaluation. Another important element for such analysis systems is the degree of
user friendliness to access the analysis tool since the majority of the users of this
application would be scientific researchers with limited knowledge on computing
systems. This chapter also introduces a graphical user interface for intuitive analysis
and develops a prototype system that equips a variety of features to improve user
friendliness including an automatic query generation engine.

Figure 1 shows an overview of the introduced system for large-scale gene
sequence analysis with low latency for processing. The system uses the Spark
framework with Spark SQL and YARN resource management that provides effective
configuration of the cluster computing system. The graphical user interface of
the system promotes user interaction as part of data analysis. As shown in
Fig. 1, researchers can simply access the system interface on existing web browsers
for composing a query. Based on the users’ selection criteria, application system
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Fig. 1 System overview: The system is based on the Spark framework with Spark SQL and YARN
resource management. End users access the system through Web-based interfaces
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generates a query script automatically and executes the query script on Spark.
Finally, the processing results are delivered to the end users.

This chapter is organized as follows. Section 2 provides the summary of the
big data computing tools including Hadoop and Spark, with closely related studies
to our work. Section 3 demonstrates the design of the system for scalable gene
sequence processing on the Spark framework, and Sect. 4 presents the evaluation
results conducted on a Spark computing cluster with 16 compute nodes. In Sect. 5,
we present a prototyping system and we conclude our presentation in Sect. 6.

2 Background

2.1 Apache Hadoop and Spark

Hadoop is an open source software platform managed by the Apache Software
Foundation. It is the most widely recognized platform for efficient and cost-effective
storage and management of large volumes of data. HDFS provides a resilient and
fault-tolerant storage of data by means of data duplication which is termed as data
replication. Pig [5] and Hive [6] are the two high-level query languages supported
by Hadoop, whose execution is based on MapReduce programming model that
provides a scalable, flexible and fault-tolerant computing solution [7]. Hadoop
comprises of two major components: Hadoop Distributed File System (HDFS) and
the MapReduce framework. A traditional Hadoop job works by reading the data
from HDEFS for each run and writing back the intermediate results to HDFS which
incurs the cost of data operations for each run time. Thus, Hadoop does not seem to
be a good fit for iterative computations and low latency applications.

Spark is an open source framework that can process data 100x faster than
Hadoop. It is a widely accepted for parallel cluster computing systems in both
science and industry [8]. This framework attracts users due to the delivery speed
it provides by making use of its in-memory computing capability using fault-
tolerant [9] Resilient Distributed Datasets (RDDs).RDDs are created by performing
operations called transformations (map, filter etc.) on the data stored in the file
systems or other existing RDDs. By default, RDDs will be persisted in memory
but they can even spill to the disk if there is not enough Random Access Memory
(RAM). Spark also provides users with an option to specify the storage level for
RDDs, such as persisting in disk only, disk by using replicating flag and both
memory and disk. Spark provides Scala, Java, and Python programming interfaces
to create RDDs transformations and performs actions on it [10]. Spark contains
Spark SQL module that helps to achieve relational processing on the persisted data.
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2.2 Gene Sequence Analysis

Genes are small pieces of a genome and they are made of DNAs. DNA contains
bases that carry the genetic information which helps in understanding the behavioral
pattern of organisms. Each human genome contains approximately three million
DNA base pairs. Genome sequencing is about identifying the order of DNA bases
that defines the characteristics of an organism. Genome sequences help researchers
or scientists answer questions like why some people get infections or why some
people have different behaviors that others do not have, and will the genes have any
impact on others genes.

Many computational tools have been developed for digitizing the genetic infor-
mation, producing genome sequences which can be further analyzed for meaningful
patterns. As mentioned, one genome has up to three million base pairs and thus
sequencing of multiple human genomes will quickly add up to larger data sizes and
mapping, in turn, generates more. For effective analysis of such data, it is essential to
store data in a fault-tolerant manner and process the data with optimal performance
and scalability. To address this concern, Hadoop has been applied in the Genome
Analysis Toolkit (GATK) tool [11]. In the tool, the GATK process needs to access
the distributed data across the cluster, parallelize the processing, persist and share
intermediate processing results. This process has drawbacks such as limited parallel
processing with the significant overhead due to disk I/O between stages of walkers
and expensive read while processing between stages for repeated access. The idea
of caching in Spark could reduce the repeated disk access of data that eliminates the
repeated I/0 bottleneck and improves the performance.

Spark is used by variant calling tools for the genomic analysis. Using the
advantages of Spark, the ADAM project was developed by Big Data Genomics
(BDG) group at UC Berkeley. ADAM can process large-scale genome data available
in various data formats such as VCF, BAM, and SAM [12]. ADAM project uses
APIs that transform the input data to ADAM-defined formats and store the RDD
sets generated from these formats in memory to perform sorting and other oper-
ations using Spark modules such as GraphX, MLIib (Machine Learning libraries)
and Shark. Even though ADAM has overcome the traditional processing speed
limitations of MapReduce, additional processing complexities such as converting
VCF files to the ADAM formats and overhead for compression of inputs before
processing, have led to non-optimal performance.

Another Spark based implementation for genomic information analysis is Vari-
antSpark [13]. This system is developed in Scala using Spark and its machine
learning methods (MLIib). VariantSpark reads the VCF files and transposes them
into vectors based on variants, which are then transformed into key-value pairs. The
key-value pairs are then zipped and saved in a distributed system. Further processing
is implemented using a K-means clustering algorithm. MLIib performs complex
programming logic by transforming, zipping and processing of data using machine
learning algorithms.
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Unlike the above Spark-based gene sequence analysis system, our system
employs Spark SQL tables to process the direct genome VCF data without
conversion and uses Spark in-memory data store for processing required data, in
order to reduce format conversion and save processing times. The introduced system
concentrates on reducing the processing complexities, maximizing the performance
of the variants analysis, and increasing the ease of usability of the tool when
compared to the other variant tools.

3 System Model for Scalable Gene Sequence Analysis

Utilizing the advantages of HDFS, Sparks’ relational processing module Spark SQL
and YARN cluster management, a scalable model is designed as shown in Fig.
2. A series of experiments were conducted on top of this design to examine the
scalability. Spark applications can run on top of existing HDFS that store data in
clusters in a resilient manner. There are three possible cluster modes that control the
resources of a cluster, namely, Standalone Mode, Mesos Mode, and YARN mode.
Standalone Mode utilizes all the recourses available in the cluster and at least, each
executor has to be running on each node. Total utilization of resources causes other
applications to be in the queue until the prior process is completed, which will be a
downside when processing multiple applications. To overcome this, YARN resource
manager can be used as it can allocate resources dynamically within the cluster or
we can choose the number of executors to be assigned to each process [14].

In order to process the data in a cluster, Spark application runs as an independent
process in each node of the cluster and these processes are coordinated by a driver
program called SparkContext. As shown in Fig. 2, the driver program interacts with
Resource Manager in YARN Mode, which keeps track of the cluster resources and
monitors tasks allocated to Node Mangers. Node manager acts as a worker that
initiates tasks based on allocated cores for processing of data stored in its respective
nodes. Each node can have multiple executors and each executor can have multiple
tasks. Each node also has designated cache memory to store the data which can be
accessed by all the executors in the node.

Fig. 2 System model,
utilizing the advantages of
HDFS, Sparks’ relational
processing module Spark
SQL and YARN cluster
management
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Spark provides a Thrift JDBC/ODBC server that helps to run queries from within
applications or by end-users using a command-line interface called Beeline. This
acts as Business Integration medium in connecting different applications to Spark.
This server provides distributed engine that can run SQL queries without writing
complex code for querying. Beeline command lines are used to test the JDBC server
connectivity from applications to run the SQL queries. This thrift server helps in
maintaining the cache as long as the server is active. Keeping the server active
helps multiple users access the cache to obtain faster results. This server is used in
the design of proposed prototype system for efficient and optimized gene sequence
analysis.

We assume that VCF [15] format genomic data is read and processed using Spark
to identify if the system is scalable to use. In addition, a web-based gene Sequence
analysis system is designed to store the VCF formatted data and process the data
interactively for faster and easier access as will be discussed in Sect. 5.

4 Evaluation

In this section, we present the experimental results conducted particularly to
evaluate the scalability of the system.

The experiments were conducted in a computing cluster machine that consists
of 16 nodes mounted in a rack. Cluster configuration used for the experiments is
of 128 cores, 128 GB memory and 32TB disk space. The nodes in the cluster are
interconnected through Gigabit Ethernet Switch. The Operating System used for the
cluster is CentOS release 6.5 that comes with rocks application, which manages the
connections between all nodes that make up a cluster machine. I have installed the
Hadoop pre-built version of Apache Spark v1.4.1, Stable version of Hadoop v2.6.0
and high-level query language Pig v0.14.0, Hive v1.2.0 and MySQL Server v5.6 for
the experiments.

The experimental data set used has VCF formatted F data file [16], which
contains genotype data of 1,092 individuals which equal to 37,644,734 records
that approximate to 1.2TB. VCF represents Variant Calling Format that stores the
genome data in the form of variants or subjects arranged as columns in the data
file. The data are distributed to the fault tolerant HDFS across 16 nodes in the
cluster. To consider the impact of query characteristics, three types of queries that
have different coverage with respect to the fraction of the records hit are defined.
Table 1 presents a summary of the queries with the description and hit coverage.

Table 1 Query definition

Query Description % hits
Query1/Q1 1 < CHROME < 5 and REF = ‘C’ and ALT = ‘G’ 1.44%
Query2/Q2 CHROME = 1 and 1,000 < POS < 200,000 <0.01%

Query3/Q3 QUAL > 100 94.80%
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Table 2 Query performance for Spark SQL and other high-level query tools (unit: seconds)
Pig | Hive | Spark (w/o cache)| Spark w/ Cache (first run)| Spark w/ cache (second run)

Queryl| 1260 1247| 603 6.88 6.8
Query2| 1258 1244 | 598 5.22 5.2
Query3| 1290| 1114/ 614 8.67 8.7

Query?2 and Query3 are extreme cases with a very rare hit (“small hit”) and a large
hit (“large hit”), respectively. SQL aggregate functions executed on data have less
output display time compared to the select functions on the data. Hence, the queries
are chosen to perform the count operations on data to minimize the output display
time and thereby to measure the computational performance exclusively.

4.1 Spark SQL vs. Other High-Level Query Tools (Pig
and Hive)

For big data analytic tools, high-level query support is essential for easy usage
and reducing programming complexities. Input dataset is loaded into HDFS, and
high-level query languages are often used to process the loaded data. We compared
several high-level query tools such as Pig and Hive with Spark SQL.

Table 2 shows the query completion time in seconds. The results show that
Spark’s iterative response time gives approximately 90-100% decreases the
response, increasing the performance, when compared to Spark’s initial response
time (Cache Time) and approximately 200% increase when compared to Pig and
Hive’s response time.

4.2 Scale-Out and Scale-Up Performance

To check the scalability of using Spark for analysis the experiments are conducted
in two folds. First, we evaluate scale-out performances of the proposed system.
The scale-out check is to evaluate the impact of increasing computing capability
for processing of data. Second, we evaluate scale-up performance of the proposed
system. This scale-up check is to examine the impact of increasing data sizes for
processing the data using the proposed system.

Figures 3 and 4 show scale-out performance in case of in-memory data access
(Fig. 3) and in-disk data access (Fig. 4). The experiments are carried on the cluster
using one executor and three cores on each node. The two figures show a certain
degree of scalability. The benefit is the greatest from four nodes to eight nodes in
both settings. As expected, Query 3 (large hit) shows the greatest improvement with
an increasing number of compute nodes. When we compare the two settings, in-disk
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Fig. 4 Scale-out performance in case of in-disk data access

data access shows the greater scale-out performance. We presume that it is due to
the basic overhead (around 5 s) to run an individual query.

We next discuss scale-up performance with increasing data sizes. The 1.2TB
Genome dataset is divided into multiple datasets of increasing sizes from 10% to
100% of the total. For the Spark initial run or Cache run, an increase in data sizes
results in greater processing time. Figure 5 shows the processing time that was taken
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to cache the data in memory and on disk and increasing data sizes retain the linear
scale-up performance of the system. Figure 6 shows scale up of the scan operation
performed on the records cached in memory and on disk. After loading 10% percent
genome, 16 columns of data is cached in memory or on disk for iterative runs. From
both figures, we can see that initial loading time is tremendous; however after the
data is loaded, we can see relatively very small scan time with a good degree of

scalability.
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4.3 Impact of the Number of Cached Columns

We also evaluated the impact of the number of cached columns. As shown from
Fig. 7, increasing the number of columns cached does not much impact the data
response times. To test this, a series of query runs are implemented on the cached
data by increasing the number of columns but with the same number of rows every
time. Despite the increase in the amount of data loaded in cache, the processing time
of queries on data remains consistent.

4.4 Impact of Data Spills

Spark caches the data in the memory based on configurations provided. If the
memory available to cache is less than the amount of data to be cached, then
Spark spills the leftover data after caching on to disk to avoid data loss. A series
of queries are executed on cache data to test the impact of data spill from memory
on performance. The configuration for this experiment is set to 16 executors with
three cores and 1GB of memory allocated. From this configuration, the total memory
capacity available for storing of data is up to 8.2GB.

As shown in Table 3, due to limited memory capacity, if users try to load more
data into cache beyond the capacity that it can accommodate, then the remaining
data will be spilled onto disk across each computing node within the cluster. The
data spill on each node of the cluster is based on the size of data distributed across
the nodes. From the previous experiment, we observe that each query executed
on cached data with an increasing number of columns cached gives consistent
processing time. However, an increasing number of columns cached will increase
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Table 3 Response times in processing the spilled data from memory

Number of Columns Data cached | Data spilled
columns data size in memory in disk Query] Query2 Query3
10 6.45GB 6.4GB 0.05GB 7.88 4.02 15.09
20 9.3GB 7.6GB 1.7GB 8.59 4.8 18.21
30 11.9GB 8GB 3.9GB 10.11 5.68 20.06
40 14.6GB 8.2GB 6.4GB 14.3 6.83 25.73
50 17.6GB 8.2GB 9.4GB 14.6 7.05 27.28
60 21.3GB 8.2GB 13.1GB 16.1 7.34 30.48
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Fig. 8 Impact of data spills from memory

the size of data spill from memory due to limited capacity, which in turn impacts
the processing time of the cached data. Figure 8 shows that increase in data
spilled to disk increases the cached data processing time, and thus, decreasing the
performance.

4.5 Impact of Record Hits

Accessing in memory data using different query options with varied output results
will impact the data processing time. Within the cached data, increase in the number
of records accessed (i.e. number of record hits) increases the processing time for
each run. To demonstrate this, we loaded 16 columns of genome data in memory
with 3.9 million records and performed a set of scan count queries. These queries hit
the cache data with increasing percentage of output records. The results are plotted
in Fig. 9, which shows that increasing access to the records from the cache data
increases the processing time which ultimately leads to lower performance.



108 M. Syed et al.

-
N

=
o

Response Time in Seconds
o

0 20 40 60 80 100 120

% of record hits on data

Fig. 9 Impact of record hits

S System Prototyping

A prototype system is implemented to analyze the genome data using Spark. Figure
10 shows the proposed system architecture for gene sequence analysis that is
designed to read the input VCF genome data and analyze the data using query
scripts.

A web-based interface system designed to store and processes the VCF data in
a more user-friendly manner. Figure 11 gives the flow diagram of this interface
based on which the web interface is designed. Figure 12 displays the GUI interface
designed for providing the query support to users, especially scientists with minimal
programming skills.

This prototype system provides an option to execute queries in count only mode
to maximize the performances. It minimizes the time that is taken to transfer the
queried results between execution engine and the graphical user interface compared
to transfer time without count mode. Larger the queried results the more will be
transferred time of results.

Based on the above criteria editable query will be generated on the right-hand
side of the interface for execution, as shown in Fig. 12. The generated query is
executed and the output of executed query displays results along with record count
and run time taken by Spark, as shown in Fig. 13. The query runtime does not
include the data transfer time between Spark engine and the user interface module.
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Fig. 10 Gene sequence analysis system architecture

6 Conclusions

Big data computing and analytics open the doors for researchers to play with an
unprecedentedly large set of data in a cost-effective manner with efficient parallel
computing clusters. This chapter makes use of these advanced analytic tools to
develop a scalable system for gene sequence variation analysis. The key summary
of this work are as follows:

* In this work, we examined the feasibility of using Spark for our own application
with respect to performance and scalability, with the comparison with other
analytics tools of Pig and Hive. We observed that Spark SQL significantly
outperforms Pig and Hive. After loading the data in memory, it takes no longer
than 15 s by Spark to complete any type of queries (execution plus response
time) in our experimental setting with 16 computing nodes, while the other two
tools require greater than 18 min for any individual query. The architecture used
in this system with Spark and its ecosystem also demonstrated a high degree of
scalability, particularly for scale-up over data size, suggesting it as a good choice
for the bioinformatics application.

¢ We conducted extensive experiments to analyze ways to achieve optimal perfor-
mance of the system. Even though iterative operations on the cached data will
give results in seconds, the maximum number of active tasks or cores allocated
for performing of cached data results in further minimizing the latency of jobs.
Caching of any number subjects does not impact the processing time of queries
on the cached data. Extended caching of data beyond the available cache memory
degrades the performance of the system.
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* We implemented a prototype system that can process VCF files of any number
of subjects. In this prototype system, users will load the data into the cache,
after which the system generates and executes queries for the selected criteria’s
giving optimal results. The data will remain in the cache as long as user explicitly
removes the cache. Hence, the holding of data in cache for longer duration helps
users perform various query operations on data iteratively.

The prototype system can be further enhanced to process all formats of genome
data along with VCE In addition, providing a function for customization to
individual users would be helpful for more flexible analysis. For example, users
may want to configuration certain properties, such as the number of subjects to be
cached, the size of the cache memory to be used, the size of the cache memory that
is to be made available, and so forth. This work leaves such functions for greater
flexibility for composing queries as one of the future studies.
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Since the genome data contains sensitive information of an individual, it is
important to protect the data from unauthorized access. To ensure the privacy of
the data, the system can be enhanced to implement encryption or privacy preserved
algorithms and evaluate if there is any performance trade-off between processing
data before encryption and after encryption. The presented system in this chapter
does not contain a technical module for privacy and it will be an interesting piece of
the future research.
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