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Abstract Various search methods combined with frontier technology have been
utilized to save lives in rescue situations throughout history. Today, new net-
worked technology, cyber-physical system platforms, and algorithms exist which
can coordinate rescue operations utilizing swarm intelligence with Rapid Alert
Sensor for Enhanced Night Vision (RASEN). We will also introduce biologically
inspired algorithms combined with proposed fusion night vision technology that
can rapidly converge on a near optimal path between survivors and identify signs
of life trapped in rubble. Wireless networking and automated suggested path data
analysis is provided to rescue teams utilizing drones as first responders based on
the results of swarm intelligence algorithms coordinating drone formations and
triage after regional disasters requiring Big Data analytic visualization in real-
time. This automated multiple-drone scout approach with dynamic programming
ability enables appropriate relief supplies to be deployed intelligently by networked
convoys to survivors continuously throughout the night, within critical constraints
calculated in advance, such as projected time, cost, and reliability per mission.
Rescue operations can scale according to complexity of Big Data characterization
based on data volume, velocity, variety, variability, veracity, visualization, and
value.
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1 Introduction

Historically, optimization methods combined with frontier technology have been
utilized to save lives in rescue situations. Today, new technology and search
algorithms exist which can optimize rescue operations utilizing Rapid Alert Sensor
for Enhanced Night vision (RASEN). We will introduce biologically inspired
algorithms combined with fusion night vision technology that can rapidly converge
on optimal paths for discovering disaster survivors and the rapid identification
of signs of life for survivors trapped in rubble. Networked data visualization is
provided to rescue teams based upon swarm intelligence sensing results so that
appropriate relief supplies can optimally be deployed by convoys to survivors within
critical time and resource constraints (e.g. people, cost, effort, power).

Many countries have rescue strategies in development for disasters like fires,
earthquakes, tornadoes, flooding, hurricane, and other catastrophes. In 2016, the
world suffered the highest natural disaster losses in 4 years, and losses caused by
disasters worldwide hit $175 billion [1]. Search and rescue (SAR) missions are the
first responder for searching for and providing relief to people who are in serious
and/or imminent danger. Search and rescue teams and related support organizations
take actions for searching and rescuing victims from varying incident environments
and locations. During search and rescue, lack of visibility, especially at night, has
been considered one of the major factors affecting rescue time and therefore, rescue
mission success. Poor night visibility and diverse weather conditions also makes
searching, detecting, and rescuing more difficult and sometimes even impossible if
survivors are hidden behind obstacles. Furthermore, poor visibility is also a common
cause of roadway accidents given that vision provides over 90% of the information
input used to drive [2]. In fact, it has been reported that the risk of an accident at
night is almost four times greater than during the day [3]. When driving at night our
eyes are capable of seeing in limited light with the combination of headlights and
road lights, however, our vision is weaker and more blurry at night, adding difficulty
when avoiding moving objects that suddenly appear.

Recent years have seen significant advancement in the fields of mobile, sensing,
communications, and embedded technologies, and reduction in cost of hardware and
electronic equipment. This has afforded new opportunities for extending the range
of intelligent night vision capabilities and increasing capabilities for searching and
detecting pedestrians, vehicles, obstacles, and victims at night and under low light
conditions.

Herein, intelligent physical systems are defined to be machines and systems
for night vision that are capable of performing a series of intelligent operations
based upon sensory information from cameras, LIDAR, radar and infrared sensors
in complex and diverse Big Data analytic environments. These intelligent machines
can be used for various applications, including power line inspection, automotive,
construction, precision agriculture, and search and rescue, which is the focus of
this chapter. Each application requires varying levels of visibility. Unlike traditional
systems which only have a single purpose or limited capabilities and require
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Fig. 1 Sample intelligent physical systems. (a) ENVG II [4]. (b) Traffic control (FLIR) [5]. (c)
Automotive [6]. (d) Precision agriculture (SAGA) [7]. (e) Firefighting (C-Thru) [8]. (f) Security
(ULIS) [9]

human intervention during missions, intelligent physical systems which include
night vision, combines computing, sensing, communication, and actuation, in order
to tailor operational behavior in accordance with a particular collected operational
information context. Figure 1 depicts six sample intelligent physical systems for
potential use during night or low-light vision conditions.
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Advantages of night vision based intelligent physical systems are their ability to
sense, adapt and act upon changes in their environments. Becoming more aware of
the detailed operational context is one important requirement of night vision based
intelligent physical systems. As every domain application is different, it is difficult
to provide a single system or technique which provides a solution for all specialized
needs and applications. Therefore, our motivation is to provide an overview of night
vision based intelligent machine systems, and related challenges to key technologies
(e.g. Big Data, Swarm, and Autonomy) in order to help guide readers interested in
intelligent physical systems for search and rescue.

2 Literature Survey

Efficient communication and processing methods are of paramount importance
in the context of search-and-rescue due to massive volume of collected data.
As a consequence, in order to enable search-and-rescue applications, we have
to implement efficient technologies including wireless networks, communication
methodologies, and data processing methods. Among them, Big Data (also referred
to as “big data”), artificial intelligence, and swarm intelligence allow important
advantages to real-time sensing and large-volume data gathering through search-
and-rescue sensors and environment. Before elaborating further on the specific
technologies fitting into the search and rescue scenarios, we outline the unique
features of rescue drones, review challenges, and discuss potential benefits of rescue
drones in supporting search-and-rescue applications.

2.1 Rescue Drones

Drones, commonly known as Unmanned Aerial Vehicles (UAV), are small aircraft
which perform automatically without human pilots. They could act as human
eyes and can easily reach areas which are too difficult to reach or dangerous
for human beings and they can collect images through aerial photography [12].
Compared to skillful human rescuers (e.g., police helicopter, CareFlite etc.) and
ground based rescue robots, the use of UAVs in emergency response and rescue
has been emerging as a cost-effective and portable complement for conducting
remote sensing, surveying accident scenes, and enabling fast rescue response and
operations, as depicted in Fig. 2. A drone is typically equipped with a photographic
measurement system, including, but not limited to, video cameras, thermal or
infrared cameras, airborne LiDAR (Light Detection and Ranging) [13], GPS, and
other sensors (Fig. 3). The thermal or infrared cameras can be particularly useful
for detecting biological organisms such as animals and human victims and for
inspecting inaccessible buildings, areas (e.g. Fukushima), and electric power lines.
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Fig. 2 Rescue scenario with
drones [10]

Fig. 3 Flying unit: Arducopter [11]

Airborne LiDAR can operate day and night and is generally used to create fast and
accurate environmental information and models.

Drones are ideal for searching over vast areas that required Big Data analytics;
however, drones are often limited by factors such as flying time and payload
capacity. Many popular drones on the market need to follow preprogrammed routes
over a region and can only stay airborne for a limited period of time. This limitation
has increased research conducted for drone-aided rescue. The research includes path
planning [14, 15], aerial image fusion [12, 16–19], and drone swarm [20, 21].

Early research has focused on route path planning problems in SAR motivated
by minimizing time from initial search to rescue which can range from hours, days,
to even months after the disaster. Search efficiency affects the overall outcome of
SAR, so that the time immediately following the event requires a fast response
in order to locate survivors on time. The path planning is generally used to find
a collision-free flight path and to cover maximum area in adverse environments
in the presence of static and dynamic obstacles under various weather conditions
with minimal user intervention. The problem is not simply an extension or variation
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of UAV path planning aiming to find a feasible path between two points [22, 23].
For example, the complete-coverage method, local hill climbing scheme, and
evolutionary algorithms, developed by Lin and Goodrich [14] defined the problem
as a discretized combinatorial optimization problem with respect to accumulated
probability in the airspace. To reduce the complexity of the path planning problem,
the study [15] divided the terrain of the search area into small search areas, each
of which was assigned to an individual drone. Each drone initializes its static path
planning using a Dijkstra algorithm and uses Virtual Potential Function algorithm
for dynamic path planning with a decentralized control mechanism.

Aerial images, infrared images, and sensing data captured by drones enable
rescue officers and teams to have a more detailed situational awareness and
increased comprehensive damage assessment. Dong et al. [17] presented a fast
stereo aerial image construction method with a synchronized camera-GPS imaging
system. The high precision GPS is used to pre-align and stitch serial images. The
stereo images are then synthesized with pair-wise stitched images. Morse et al. [18]
created coverage quality maps by combining drone-captured video and telemetry
with terrain models. The facial recognition is another task of great interest. Hsu and
Chen [12] compared the use of aerial images in face recognition so as to identify
specific individuals within a crowd. The focus of the study [19] lies on real-time
vision attitude and altitude estimation in low light or dark environments by means
of a combination of camera and laser projector.

Swarm behavior of drones is featured by coordinated functions of multiple
drones, such as collective decision making, adaptive formation flying, and self-
healing. Drones need to communicate with each other to achieve coordination.
Burkle et al. [20] refined the infrastructure of drone systems by introducing a ground
central control station as a data integration hub. Drones can not only communicate
with each other, but also exchange information with the ground station to increase
optimization of autonomous navigation. Gharibi et al. [21] investigated layered
network control architectures for providing coordination for efficiently utilizing
the controlled airspace and providing collision-free navigation for drones. Rescue
drones also need to consider networking described next.

2.2 Drone Networking

In typical scenarios, drones fly over an area, perform sensory operations, and trans-
mit gathered information back to a ground control station or the operation center
via networks (Figs. 4 and 5). However, public Internet communication networks
are often unavailable or broken in remote or disaster areas. The question that arises
now is how to find a rapid, feasible way of re-establishing communications, while
remaining connected to the outside world for disaster areas. The rise of rescue
drones and extensive advancements in communication and sensing technologies
drives new opportunities in designing feasible solutions for the communication
problem. Besides data gathering, rescue drones can act as a temporary network
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Fig. 4 MQ-9 reaper taxiing [24]

Fig. 5 Airnamics R5

access points for survivors and work cooperatively to forward and request data back
to the ground control station [10, 11, 25–27].

In the literature, there are two types of rescue drone network systems: single-
drone and multiple-drone. The single drone network system generally has a star
topology, in which drones are working independently and linked to a ground control
station. In [11], drones are equipped with WiFi (802.11n) module and responsible
for listening to survivor “HELP” requests in communication range. The drone
then forwards the “HELP” request to the ground control station through an air-to-
ground communication link that is a reliable, IEEE 802.15.4-based remote control
link with low bandwidth (up to 250 kbps) but long communication range (up to
6 km), as included in Table 1 [28], which also used a single drone and developed a
contour map based location strategy for locating targets. However, the outcome and
efficiency of search and rescue are greatly restricted by single drone systems, where
the single drone [24] can only have limited amount of coverage increases.

Instead of having only one (large or heavy-lift) drone in the system, multiple
drones are deployed, working interactively for sensing and transmitting data in
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Fig. 6 Air shield [25]

multiple-drone systems [25, 26, 29–31], as shown in Figs. 6 and 7. Generally, the
system is composed of multiple drones and a ground control center. The drones are
small or middle-sized unmanned aerial vehicles equipped with wireless transceivers,
GPS, power supply systems, and/or on-board computers. The wireless transceivers
are modules to provide wireless end-point connectivity to drones. The module can
use xBee, ZigBee, WiFi, Blue-tooth, WiMAX, and LTE protocols for fast or long
distance networking. Table 1 shows available wireless communication technologies
for drone systems. In particular, each technology has its unique characteristics
and limitations to fulfill the requirements of drone networks. Bluetooth and WiFi
technology are main short-range communication technologies and generally used
to build small wireless ad-hoc networks of drones. The communication links allow
drones to exchange status information with each other during networked flight.

Daniel et al. [25] used this idea and built a multi-hop drone-to-drone (mesh)
and single-hop drone-to-ground network. Given not all drones have a connection
to the ground control station, the inter-drone links guide data routing towards the
station. This process repeats until the data reaches a drone with drone-to-ground
link realized with wireless communication techniques WiMAX and LTE. Cimino
et al. [32] claimed that WiMAX can also be used for inter-drone communication.
SAR Drones [26] studied the squadron and independent exploration schemes of
drones. Drones can also be linked to satellites in multi-drone systems [21, 33].

It is possible that drones might fly outside of the communication range of
the ground communication system, as shown in Fig. 7. PhantomPilots: Airnamics
[29] proposed a multi-drone real-time control scheme based on multi-hop Ad-hoc
networking. Each drone acts as a node of the Ad-hoc network and uses the ad- hoc
network to transmit the data to the ground control station via drones in the station
communication range.
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Fig. 7 Multi-drone control system [29]

Beside single-layer networks, there are also dedicated multi-layer networks
designed for multi-drone systems. Asadpour et al. [34] proposed a 2-layer multi-
drone network, as shown in Fig. 8. Layer I consists of airplanes (e.g. Swinglet in
Fig. 8a) which are employed to form a stable, high-throughput wireless network
for copters (e.g. Arducopter in Fig. 8b). Copters are at layer II to provide single-
hop air-to-ground connection for victims and rescue teams. For efficient search and
rescue, controlled mobility can be applied to airplanes and copters to maximize
network coverage and link bandwidth. In [35], three categories of drones: blimps,
fixed wing, and vertical axis drones were considered to constitute a multi-layer
organization of the drone fleet with instantaneous communication links. Big Data
in rescue operations introduces another factor of complexity.

2.3 Regional Disasters

Night vision systems for search and rescue are undergoing a revolution driven
by the rise of drones and night vision sensors to gather data in complex and
diverse environments and by the use of data analytics to guide decision-making.
Big Data collecting from satellites, drones, automotive, sensors, cameras, and
weather monitoring all contain useful information about realistic environments.
The complexity of data includes consideration of data volume, velocity, variety,
variability, veracity, visualization, and value. The ability to process and analyze this
data to extract insight and knowledge that enable in-time rescue, intelligent services,
and new ways to assess disaster damage, is a critical capability. Big Data analytics is
actually not a new concept or paradigm. However, in addition to cloud computing,
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Fig. 8 A 2-layer drone network [34]. (a) Swinglet. (b) Arducopter. (c) Aerial network

distributed systems, sensor networks, and health areas, the principles, the utility of
Big Data analytics in night vision systems have much promise for search and rescue.

On January 12, 2010, a 7.0 magnitude earthquake rocked Haiti with an epicenter
that was 25 km west of Haiti’s [37]. By 24 January, another 52 aftershocks with
magnitude 4.5 or greater had been reported. According to incomplete statistics,
more than 220,000 people were killed, 300,000 people were injured, and 1.5
million people were displaced in the disaster. Population movement, in reality,
can contribute to increase morbidity and mortality and precipitate epidemics of
communicable diseases in both displaced and host communities. To track and
estimate population movements, Camara [36] conducted a prompt geospatial study
using mobile data, as shown in Fig. 9. The mobile data was the position data of
active mobile users with valid subscriber identity modules (SIM). For each SIM, a
list of locations on each day during the study periods was recorded and managed in
a database. The mobile and mobility data was then used to estimate the population
movements and identify areas outside the city at risk of cholera outbreaks as a
result of the population movements. One drawback of the use of mobile data for
disaster and relief operations is the availability and fidelity of mobile data. If, for
example, the mobile cellular network is down in the disaster affected areas, no
mobile data can be collected. Under some scenarios, survivors that can be rescued
may be, hidden under, stuck, or trapped by objects or obstacles, who are not
capable of using mobile devices. This problem can be further complicated due to the
existence of several population groups including the elderly, children, sick, disabled
people, and pregnant woman, which RASEN night vision system could triage in
advance.

The study [39] provided a review of the use of big data to aid the identification,
mapping, and impact of climate change hotspots for risk communication and
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Fig. 9 Population distribution [36]. (a) Jan 31, 2010. (b) Oct 23, 2010

decision making. de Sherbinin [40] argued the data fusion for predication of the
location of surface water cover and exploited the idea of bagged decision tree to
derive inundation maps by combining coarse-scale remotely sensed data and fine-
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Fig. 10 Segments of spatial video data [38]. (a) Slight damage. (b) Severe damage

scale topography data. It is widely recognized that the imagery is key to provide
rapid, reliable damage assessments and enable quick response and rescue [38, 41].
CNN [38] employed a spatial video system to collect data by following the path
of the Tuscaloosa tornado of April 27, 2011. Example segments of spatial video
data are shown in Fig. 10. The spatial video data is then loaded into a GIS system
ArcMap and processed offline to support post-disaster recovery. Fluet-Chouinard
et al. [41] conducted the spatial video data collection four days after the tornado
of April 3, 2012 in Dallas Fort-Worth (DFW) area. An online survey was then
performed with the data collection to refine the damage classification, which can
be referenced by further studies.

ADDSEN [42] was proposed for adaptive real-time data processing and dissem-
ination in drone swarms executing urban sensing tasks, as shown in Fig. 11a. Two
swarms of drones were dispatched and performed a distributed sensing mission.
Each drone was responsible for sensing a partial area of the roadway along flight
path. Instead of immediately transmitting the sensed data back to the ground control
center, ADDSEN allows each drone to enable partial ordered knowledge sharing
via inter-drone communication as described in Fig. 11b. Considering the drones
are limited in flight time and data payload capacity, ADDSEN designed a load
balancing method. In each swarm, the drone with most residual energy was selected
as a balancer. The balancer relocated the work load for overload or heavy load
drones and can coordinate with the drones in the same or different swarm to achieve
cooperative balanced data dissemination. To enable rapidly processing big aerial
data in a time-sensitive manner, Ofli et al. [43] proposed a hybrid solution combining
human computing and machine intelligence. Human annotation was needed in this
method to train trace data for error minimization. On the basis of trained data,
image-based machine learning classifiers were able to be developed to automate
disaster damage assessment process.
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Fig. 11 Drone swarms for urban sensing [42]. (a) Drone swarms. (b) Distributed knowledge
management

2.4 Swarm Intelligence

For efficient and effective search and rescue, night vision systems are required to
coordinate with each other and optimize searching and sensing strategies. However,
night vision systems for search and rescue exhibit complex behaviors that can
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be simplified and less costly when a swarm search algorithm is executed to
determine a recommended path for rescue drones to traverse as first responders.
As circumstances change, the swarm algorithm can adjust and recalculate with new
data, providing an alternate path to rescue drones to follow for initial monitoring
and injury assessment using special night vision equipment, such as RASEN, that
can provide scouting details for future convoys to the disaster area. Note that the
locations of objects and circumstance in target areas are often unpredictable, it
is very difficult to model and analyze the behavior of night vision systems and
the interactions between the systems. As matter of fact, it is desirable that night
vision systems are networked and can self-organize, self-configure, accommodating
to new circumstances in terms of terrain, weather, tasks, network connectivity, and
visibility, etc. Our approach simplifies that adaptive response of rescue drones to
such Big Data analytic environments.

Inspired by autonomy societies of insects with exact, desired characteristics, a
considerable body of work on swarm intelligence (SI) for supporting rapid search
and rescue has been conducted [19, 20, 43–46]. Swarm intelligence (SI) is an
artificial intelligence discipline that focuses on the emergent collective behaviors
of a group of self-organized individuals leveraging local knowledge. It has been
observed that, as an innovative distributed intelligent paradigm, SI has exhibited
remarkable efficiency in solving complex optimization problems.

The most notable examples of swarm intelligence based algorithms [47–50]
are ant colony optimization (ACO), ant colony cluster optimization (ACC), boids
colony optimization (BCO), particle swarm optimization (PSO), artificial bee
colony (ABC), stochastic diffusion search (SDS), firefly algorithm (FA), bacteria
foraging (BF), grey wolf optimizer (GWO), genetic algorithms (GA), and multi-
swarm optimization (MSO).

Advanced Multi-Function Interface System (AMFIS) is an integrated system
with a ground control station and a set of flight platforms developed by Fraunhofer
IOSB [20]. The ground control station was deployed for controlling flight platforms
and managing sensor data collection in a real-time fashion, and the flight platforms
were dispatched for flight maneuvers like object tracking and data collection.
Via uplink and downlink channels, the ground control station communicated with
the flight platforms for controlling and transmitting data information. The uplink
channel was for control while the downlink was for data transmission. It is
claimed that the intelligence of the flight platforms is supported by the ground
control station based on sensor data using data fusion, which is missing in [20].
Figure 12 illustrates the blueprint of AMFIS working with various sensors and
mobile platforms.

RAVEN [44] is an early system that enables investigating a multi-task system
with ground vehicles and drones, as shown in Fig. 13. The ground vehicles and
drones were used to emulate air and ground cooperative mission scenarios. Similar
to AMFIS, the coordination of ground vehicles and drones and the swarm logic are
supported and provided by a central ground center station.
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Fig. 12 AMFIS [20]

Fig. 13 RAVEN [44]

Unlike aforementioned systems, a layered dual-swarm system [46] was proposed
with more detailed insight in swarm intelligences. The core of this project was
focused on the intra-swarm and inter-swam intelligence in a network of wire- less
sensors and mobile objects. As shown in Fig. 14, two swarm collectives were
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Fig. 14 A layered dual-swarm system [46]. (a) Layered structure. (b) System diagram

coexisting in a system. The upper layer consisted of autonomous mobile objects
and used a boids model to guide object movements and actions.

The lower layer is a self-organized wireless sensor network, while an algorithm
of ant colony swarm was applied for environmental sensing. Via a communica-
tion channel, two swarm collectives exchanged necessary information to foster
cooperation between two collectives so as to form new swarm intelligence. The
study [45] aimed at providing autonomous control of multiple drones. To achieve
it, a function named kinematic field was introduced, which enables the drones
to calculate kinematic fields on the basis of local information and autonomously
plan their routes while the field was being asymmetrically modified by co-existing
drones.

2.5 Night Vision Systems

Night vision is an ability of seeing in darkness, low illumination or night conditions.
However, humans have poor night vision since there are tiny bits of visible light
present and the sensitivity of human eye is quite low in such conditions. To improve
visibility at night, a number of night vision devices, systems, and projects have
been designed, developed, and conducted in areas. The night vision devices (NVD),
also known as night optical/observation device (NOD), denote the electronically
enhanced optical devices such as night vision goggles, monocular, binocular,
scopes, and clip-on systems from the night vision manufacturers like Armasight
Night Vision, ATN Night Vision, Yukon Night Vision, Bushnell Night Vision and
others. NVDs were first used in World War II and now are available to the military,
polices, law enforcement agencies, and civilian users.

Based on technology used, NVDs primarily operate in three modes: image
enhancement, thermal imaging, and active illumination.
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• Image enhancement, also called low light imaging or light amplification, collects
and magnify the available light that is reflected from objects to the point that we
can easily observe the image. Most consumer night vision products are image
intensification devices [51]. Light amplification is less expensive than thermal
imaging.

• Thermal imaging (infrared) operates by collecting the heat waves from hot
objects that emit infrared energy as a function of their temperature such as human
and animals. In general, the hotter an object is, the more radiation it emits.
Thermal imaging night vision devices are widely used to detect potential security
threats from great distances in low-light conditions.

• Active illumination works by coupling image enhancement with an active
infrared illumination source for better vision. With lowest cost, active
illumination night vision devices typically produce higher resolution images
than that of other night vision technologies and are able to perform high-speed
video capture (e.g. reading of license plates on moving vehicles). However, active
illumination night vision devices that can be easily detected by other devices like
night vision goggles are generally not used in tactical military operations.

Night vision devices and sensors (such as cameras, GPS, Lidar, and Radar) are
integrated into night vision systems [52–56] to sense and detect objects that are
difficult to see in the absence of sufficient visible light or in the blind spots. Based
on the relative behavior of the night vision devices and sensors, night vision systems
are commonly classified into two main categories: active and passive.

Active night vision systems equip infrared light sources and actively illuminate
the objects at a significant distance ahead on the road where the headlights cannot
reach. The light reflected by objects is then captured by cameras. Active systems
are low cost solutions, performing well at detecting inanimate objects. In the market,
automotive companies like Mercedes-Benz [56], Audi, BMW [54, 56], Rolls-Royce,
GM, and Honda [57] have offered night vision systems with infrared cameras.

In the case of Audi [56, 58], BMW [56, 59], and Rolls-Royce [60, 61], Auto-
liv [55] systems were passive solutions. Passive systems detect thermal radiation
emitted by humans, animals and other objects in the road which are processed using
different filters. The object detection range can be up to 328 yards (300 m) which
has twice the range of an active system and thrice the range of headlights. Honda
deploys dual infrared cameras on vehicle to provide depth information for night
vision. Drones may be equipped accordingly.

2.6 Artificial Cognitive Architectures

Rescue drones can also be adapted to aquatic environments considering the vast
uncharted depths on Earth which is more water than land. Autonomous systems
are required for navigating austere environments such as harsh landscapes on
other planets and deep oceans where human analysis cannot function and directly
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guide drones. Hence, cognitive architectures are required and as these systems
evolve and become more self-reliant and cognitive through machine learning they
become increasingly valuable to search and rescue teams such as the Coast Guard
and NASA. Carbone [62, 63] defines cognitive formalism within systems as a
biologically inspired knowledge development workflow developed from decades
of cognitive psychology research combined with neuron-like knowledge relativity
threads to capture context for systems to be able to self-learn. Microsoft can store
magnitudes of high volume data now in DNA and IBM continues to develop more
powerful neurotropic chipsets. Artificial Cognitive Architecture research [63] is also
making great strides and will provide needed improvement in levels of self-learning,
context, and trust in order for autonomous systems to expand usage across difficult
search and rescue environments. Therefore, it is essential to have a system that
can move and think on its own, with machine learning capability, while satisfying
human-driven objectives and rules optimal for SAR missions.

3 Rapid Alert System for Enhanced Night Vision (RASEN)

We developed a proposal for Sony that fused their night vision technology with
emerging MMW radar that can discern detail of life behind walls from a distance,
which can possibly be applied to discerning survivor status under rubble and at night
as first responder rescue drones detect movement. Until very recently, efficacy of
proposed approaches and systems was mostly ignored in terms of visual quality and
detection accuracy with consideration of hardware cost. To help prevent accidents
and increase driver awareness in a dark environment, low-cost, high accuracy, real
time night vision is needed that integrates seamlessly with other smart sensors. We
argue that it is essential to redesign the current architecture of night vision systems
with networked vehicles and drones.

Contrary to existing architectures which rely only on drones, infrared cameras,
LiDAR, or other on-board units, we develop the concept of providing capabil-
ity of network-wide sensor data fusion for dynamically changing environments,
particularly coupled with real-time map, weather, and traffic updates. Meanwhile,
an important property of the system architecture is that it is evolvable, in the
sense that it can allow far more devices or sensors mounted on vehicles, new
protocols, features, and capabilities to be added on on-board platforms or the system
infrastructure. The system architecture is a modularization of on-board platforms,
networks, servers and technologies in which certain components (e.g., platforms and
networks) remain stable, while others (the devices, sensors, links, and technologies)
are encouraged to vary over time.

Figure 15 illustrates the generic framework architecture of RASEN deployment.
It consists of three main components: data center and its servers, available high-
speed networks including vehicular network, LTE and 5G networks, and on-board
embedded platforms with the radar-camera module, sensors, and single or multiple
drones. Data center and its servers are set up to achieve data and provide services to
vehicles equipped with on-board platform and its modules. We aim to yield network-
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Fig. 15 Generic framework architecture of RASEN deployment

side insights on environment changes, traffic status, map updates, and weather
conditions. The servers inform vehicles about real-time lightweight locational based
information, which enables vehicles to know about what is ahead now on the road so
that the drivers could become confident and pro-actively react to different situations.
Leveraging links among servers, vehicles, and drones (i.e., remote sensing enabler)
to provide network-wide machine learning capability, users (i.e., drivers) could gain
the most personalized and accurate route guidance experience. Users can customize
theirs interests of data from vehicle, sensors, environment, and people, etc.

Our on-board platform, as shown in Fig. 16, has an embedded PC with a
TFLOP/s 256-core with NVIDIA Maxwell Architecture graphics processor unit
(GPU), connecting to a 360ı MMW radar, a camera system of four cameras with
IMX224MQV CMOS image sensors, a Raspberry Pi3, a GPS navigation system, a
DSRC module, a remote sensing system of multiple-drone.

However, due to inherent shortcoming associated with the wide signal beam,
MMW radar is insensitive to the contour, feature, size, and color of the detected
targets. To this end, we use high sensitivity CMOS image sensor (IMX224MQV),
which is capable of capturing high-resolution color images under 0.005 lux light
conditions which are nearly dark nights. On dark nights, traditional cameras
typically experience low sensitivity and difficulties in discerning one color from
another [51–58]. The remote sensing system is a self-organized, distributed multiple
drone system to improve information fusion and situational awareness. Drones
extend the limited sensing range of cameras, Lidar, MMW radar, and DSRC
and provide multiple views that describe distinct perspectives of the same area
circumscribing the vehicle. In some extreme circumstances, drones can serve as
temporary network access points for emergency communications.
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Fig. 16 On board platform configuration

By collecting and analyzing sensing data, we construct 3-layer RASEN system
architecture aiming at serving various applications with demands of high accurate
environmental perception like night vision, as shown in Fig. 17. Data layer collects,
achieves, and unifies data representations; Fusion layer consumes the data provided
by the data layer, abstracts features, detects, classifies and tracks objects; and
the control layer mainly focuses on modeling situation and driving, sends, alters,
and takes in-time vehicle control with respect to the information abstracted and
discerned from sensing data.

In RASEN, with a geometrical model of four systems, the calibrated 360ı MMW
radar system, camera system, GPS navigation system, multi-drone system, and
Raspberry PI work together to generate a sequence of sensing data containing
environment objects through iterations of two phases. One phase explores the ability
of the long detection of the multi-drone system and 360ı MMW radar system. When
the vehicle is moving, those systems find possible targets. Based on the remote
sensing data and network-wide insights, when any target enters the vision range of
the night camera system, Raspberry PI/Wolfram, a cyber-physical system platform
with the capability of milliseconds processing, issues a notification message and
triggers the other phase. Then the night camera starts capturing a series of low-
light images. It can provide lateral resolution to analyze data and ascertain further
actionable intelligence for automated vehicle systems when combined with data
provided in advance by the recently developed MMW radar.

The fusion layer deals with how to fuse sensors measurements to accurately
detect and consistently track neighboring objects. Each time the fusion layer
receives new raw data, it reads information encoded in the data format and generates
a prediction of the current set of object hypotheses [64, 65]. Features are extracted
out of the measured raw data with the goal of finding all objects around the vehicle.
For artifacts caused by ground detections or vegetation, we suppress them by
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Fig. 17 RASEN system architecture

exploring their features. Both ground detections and vegetation are static and have
no speed, so using the radar data, we can easily identify and mark them out. To
reduce misidentification rate, 3D map information can also be used by checking
against the road geometry. The result is a list of validated features that potentially
originate from objects around the vehicle.

Sensing data are processed by the fusion layer and then delivered to support tasks
and services in the control layer. In RASEN, network-wide information techniques
are employed to assess, evaluate, and combine the information yielded from the
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on-board platform, in conjunction with the host-vehicle states, into reliable features
which are used to improve the performance of object detection, tracking, and night
vision. Besides night vision, our system is also suitable or can be extended for other
applications such as smart cruise control, lane-departure warning, headlight control,
active night vision, rain sensing, and road sign recognition.

4 Swarm Intelligence Utilizing Networked RFID

Modern developments in wireless technology have increased the reliability and
throughput of this type of communication. The factors of portability, mobility, and
accessibility have all improved. We will apply metaheuristics of Ant-Optimization
using Wolfram language to a previous work of Antenna Networks [62, 63, 66].
We will review below three widely used systems, which are Radio Frequency
Identification, Wireless Sensor Networks, and Multiple-Input Multiple-Output com-
munication.

4.1 Radio Frequency Identification (RFID) for Wireless Drone
Networking

Radio Frequency Identification (RFID) is a technology that uses a radio frequency
electromagnetic field to identify objects through communication with tags that
are attached to them. This technology originally was introduced during World
War II [67]. Figure 18 depicts RFID components in context of a communication
network. The RFID system consists of two components: readers and tags or namely
interrogators and transponders. Each reader and tag has antenna to communicate
wirelessly through electromagnetic waves (See Fig. 19). There are two types of
RFID tags, which are Active and Passive. The active RFID tags contain internal
power source and the passive RFID tags usually harvest energy from readers’
signals.

Wireless Sensor Networks (WSNs) consist of spatially distributed autonomous
devices using sensors to monitor physical or environmental conditions as shown in
Fig. 19. A WSN is used in many industrial, military, and consumer applications.
The WSN consists of nodes where each node is connected to a single or multiple
sensors. Typically, each sensor network node has multiple components [69]:

• Transceiver with an internal antenna or connection for external antenna.
• Microcontroller, an electronic circuit, with sensor interface as well as energy

source interface which is usually a battery or an embedded form of energy
harvesting.
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Fig. 18 A generic IoT platform consisting of intelligent RFID tag and reader with a hierarchical
two-layer network [68]

Fig. 19 A typical RFID system wireless sensor networks [67]

A sensor is a device that receives a signal or stimulus from the surrounding
and responds to it in a distinctive manner. It converts any mechanical, chemical,
magnetic, thermal, and electrical or radiation quantity into measurable output signal.
The basic features and properties of sensors are:

• Sensitivity: This represents the detection capability of the sensor with respect to
the sample concentration.

• Selectivity: This represents the ability to detect the desired quantity among other
non-desired quantity.

• Response time: This describes the speed in which the sensor can react to changes.
• Operating life: This is the lifetime of the sensor.

A WSN topology can vary from a simple star network to a complex multi-hop
wireless mesh network and the propagation between the hops of WSN can be routing
or flooding [70] (Fig. 20).

The concepts of multiple-input multiple-output (MIMO) in wireless communica-
tion is based on the use of multiple antennas at both the source (transmitter) and the
destination (receiver) to exploit multipath propagation [71]. MIMO is a developed
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Fig. 20 A typical wireless sensor network via multiple-input multiple-output (MIMO)
communication

Fig. 21 A multiple-input
multiple-output (MIMO)
channel

form of antenna array communication that provides advantages such as gain and
spatial diversity. Although multiple receive antennas have been known and used
for some time, the use of transmit diversity has only been studied recently [65].
Figure 21 illustrates the concept of MIMO system with source transmit antennas
and destination receive antennas.

In modeling and analysis of antenna systems in settings of RFID systems,
networks of sensors, and MIMO situations, we implemented a simulation using
metaheuristics of Ant-Optimization and Particle Optimization with Wolfram lan-
guage. Although the examples are limited to small number of nodes, due to the
nature of the approach and its scalability, this model represents a step towards
scaling to Big Data related problems in these situations.
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4.2 Ant-Colony Meta-Heuristics for Night Rescue Operations

In the early 1990s, ant colony optimization (ACO) was introduced by M. Dorigo
and associates as a bio-inspired metaheuristic for the solution of combinatorial
optimization (CO) problems [72]. It has been stated that “ACO belongs to the class
of metaheuristics which are approximate algorithms used to obtain good enough
solutions to hard CO problems in a reasonable amount of computation time”. We
are adapting this approach to rescue drones that need to determine, in CO problems
posed by disaster areas, an optimal path to survivors in a reasonable amount of
time using ACO approach. It is known that the inspiration of ACO is based on
the behavior of real ants. When searching for food, ants initially explore randomly
surrounding environment of their nest. If an ant finds a food source, it carries a
sample back to the nest. During this trip, it is known that the ant leaves a Chemical
(pheromone) trail. The quantity of pheromone deposited guides other ants to the
food source. This indirect communication among ants through pheromones provides
a mechanism to find near-optimal paths between their nest and sources. Naturally
this approach results in a swarm convergence toward the shortest trail to food
sources. This colony metaheuristic approach modeling ant behavior in nature has
been used successfully to find near-optimal solutions to relatively large unstructured
network problems, which we are applying to rescue drones determining optimal path
to survivors. Instead of deploying expensive drones to survey an expanse of disaster
area to determine best way to deploy relief convoys, our approach simplifies the first
responder search by deploying more, inexpensive scout drones that can immediately
execute a swarm algorithm that will provide a recommended path to follow between
survivors. This approach saves on parameters such as rescue time and fuel cost
when surveying vast areas with drones to determine optimal path by calculating in
advance using a swarm algorithm to precisely plot a course of action for the drones
to execute, with capability to recalculate and adjust network as conditions change.
Wireless sensor bandwidth can then be made available directly for survivor search
with less costly drones, with increased payload availability for RASEN and other
night vision systems, rather than deploying more sophisticated drones to survey a
vast expanse of area for pinpoint accuracy.

Adapting the Ant-Colony metaheuristic as implemented in Mathematica by
Rasmus Kamper, we started with a random set of antenna nodes (these antennas,
depending on the problem, can belong to actual drones). As explained in the above
wireless networks section, we demonstrated that the Ant-Colony algorithm would
find the solution in reasonable time and iterations. The progressive iterations of the
algorithm applied to the networks of antenna problem are shown in Fig. 22. The
advantages of using ant-colony algorithm before actual deployment of swarm of
drones are many. Firstly, the actual communication among drones would either be
avoided or minimized, since a near-optimal visit patterns of the drones are identified
already through the process ant-colony optimization. Therefore, cheaper and less
capable drones could be used as well.
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Fig. 22 Path convergence of swarm intelligence to guide rescue drones

Figure 22 illustrates the operation of the algorithm. First step is the identification
of size of disaster sites (DS) (notion of survivors on location). The DS are
represented by random points in a two dimensional space and the distance between
each pair of DS (represented by the edge weight) is taken as the Euclidean distance.
Algorithms proceed to construct tours to visit the DSs until convergence after the
first initialization. Algorithm also simulates evaporation of deposited chemicals
called “pheromones”, which provide a basis for AI weighting. It should be noted
that as ants explore the options, all ants complete Hamiltonian cycles by starting
from a randomly selected DS. At the time of initialization all edges are assigned
equal weights (pheromone) which can be controlled by the “initial level” slider in
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the visualization screen. After each construction step, the weight on each edge is
multiplied by a fraction to adjust the weight to simulate evaporation. The user can
use the slider “min/max ratio” to set a minimum weight to prevent early convergence
toward a sub-optimal trail. The update simulates pheromone deposit by a weight
increase. It should be noted that shorter trail edges are favored; thereby weight
increase (pheromone deposited) is inversely proportional to trail length. An edge
with higher weight (shorter length) is assigned higher probability to be selected by
an ant. As this process continues, the edges on the graph with less traffic will fade
as observed by color intensity, and the ants’ preferred trail (near-optimized) will
emerge. In large networks, the notion of elite ants is implemented by allowing only
the most efficient ants to increase weights (deposit pheromone). The menu “elite
ants” in the screen controls the corresponding percentage. In addition, a “candidate
list” allows the search for the next DS to be restricted to the nearest DS. For larger
graphs, this strategy increases the speed considerably. This process is repeated until
all ants converge toward a particular trail. There is also a simple tour improvement
algorithm (TIA) which can be activated on each tour. This capability can be turned-
off with the “TIA” checkbox on the screen. The checkbox “MMAS” on the screen
enables the MAX-MIN Ant System algorithm. If enabled, only the best-performing
ant can increase the weights (deposit pheromone). After the ants converge to a
selected trail, shown as read in the screen, the result (red) is compared to the
usually optimal trail (dashed) using FindShortestTour function. Various runs can
be performed by saving the outcome of a particular run. One can change parameters
and run again to see performance on the same graph with the new settings.

As can be seen in Fig. 22 the algorithm converged to find a reasonable path.
The rescue drones will be able to follow this path to determine conditions of
survivors day and night with RASEN, relaying critical data to relief convoys to
prepare according to the status of each DS node. This example and recent examples
in the literature indicates that ACO research is a practical approach to scale for
unstructured Big Data problems with visual analytics. In the near future, we will
work on comparing these results with our Least Action Algorithm [62].

5 Conclusion

Swarm intelligence algorithms combined with Rapid Alert Sensor for Enhanced
Night vision (RASEN) can provide continuous night search capability and survivor
condition identification hidden under rubble for first responders during rescue oper-
ations. The Wolfram Framework provides an environment to for research students
to expand their capability to develop smart rescue drones with decision support
functions such as swarm intelligence. We have introduced biologically inspired
algorithms combined with fusion night vision technology that can rapidly converge
on a near optimal path in reasonable time between survivors and identify signs
of life trapped in rubble. Wireless networking with dynamic programming ability
to determine near optimal path using Big Data analytic visualization is provided
to rescue teams utilizing drones as first responders based on the results of swarm
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intelligence algorithms. This automated multiple drone scout approach enables
appropriate relief supplies to be deployed intelligently by networked convoys to
survivors continuously throughout the night, within critical constraints calculated in
advance by rescue drones, such as projected time, cost, and energy per mission.
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