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Chapter 3
Silver Nanoparticles for Treatment 
of Neglected Diseases
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and Nelson Durán

Abstract  The study of neglected diseases is an important topic and deeply dis-
cussed in the newspapers, publications, and research foundations in the world. 
However, unfortunately no public or private attention has been paid on this issue. 
Still old drugs are being used, and very few are new for these diseases. 
Nanobiotechnology has appeared as a new strategy for the treatment of neglected 
diseases. The new developments in nanostructured carrier systems appear as prom-
ising in the treatment of many diseases with low toxicity, better efficacy and bio-
availability, prolonged release of drugs, and reduction in the dosage of administration. 
This chapter is related to the use of nanobiotechnology in the treatment of neglected 
diseases by application of metallic nanoparticles on dengue virus, leishmaniosis, 
malaria, schistosomiasis, and trypanosomiasis.
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3.1  �Introduction

In general, the neglected diseases are getting slow but constant attention, than few 
years ago. Several reviews on this subject were published recently showing the 
importance of nanobiotechnology as a new approach to solve old problems in devel-
oping countries (Durán et.al. 2009, 2016a, b; Rai et al. 2014b; Rai and Kon 2015).

Metal nanoparticles play a pivotal role since they exhibit unique optoelectronic 
and physicochemical properties (Rai et  al. 2014b). These properties depend on 
morphological aspects (e.g., shape, size, structure, crystallinity) (Duran et  al. 
2016b) and thus have led to a large range of applications in various areas such as 
electronics, molecular diagnostics, drug release, catalysis, and nanosensing (Rai 
et al. 2014a). Preparation methods for metal nanoparticles are diverse (e.g., physi-
cal and chemical methods). The use of biogenic synthesis of nanoparticles has 
drawn much attention, since they are green, efficient synthetic processes, and cost-
effective procedure. There are many organisms able to synthesize nanoparticles, 
such as yeasts, bacteria, actinomycetes, fungi, and plants. In biomedicine, most 
importantly, it will play a crucial role in diagnostics, drug delivery, bandages, 
related cosmetics, etc. Although they are important in remediation through the 
absorption of pollutants, filtration, sterilization, etc., the most relevant example is 
the use of these nanoparticles as antimicrobial (Rai and Durán 2011). Silver 
nanoparticles are used as new generation of antimicrobials, with significant activ-
ity against many types of pathogens including multidrug-resistant organisms. 
Although there is interest in extensive applications, their possible toxicities must 
be studied (El-Nour et al. 2010; Durán et al. 2010, 2011a, b; Rai and Durán 2011; 
Rai et al. 2014a, b; Castro et al. 2014).

Nanobiotechnology is an important tool in order to develop new strategies for 
neglected diseases, which are of great importance in many countries in the world. 
This chapter will deal with role of silver nanoparticles in treatment of neglected 
diseases.

3.2  �Neglected Diseases

3.2.1  �Dengue

Dengue virus infection (DVI) exhibits a spectrum of illnesses from asymptomatic 
although in apparent infection, or a flu-like mild fever, to classic dengue fever (DF) 
or worst to DF with hemorrhagic consequences. Many other diseases or nonspecific 
viral syndrome can mimic DVI (Mungrue 2014). DVI is the wildest mosquito-borne 
infection which appeared on 2.5 billion people in many regions, including tropical 
and subtropical areas in the world. It is transmitted by female Aedes aegypti or 
Aedes albopictus to humans (Beatty et al. 2010) (Fig. 3.1). Unfortunately, the only 
treatment against dengue is the prevention and a supportive care; although some 
attempts were made, still now they are not proved to be efficient (Idrees and Ashfag 
2013; Durán et al. 2016a).
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Metallic nanoparticles have demonstrated efficacy against mosquito larvae 
(Salukhe et al. 2011; Soni and Prakash 2012a, b, c, d, 2013, 2014a). The leaf extracts 
from plants were used for silver nanoparticle (AgNP) production as an eco-friendly 
alternative for adulticidal activity against filarial, dengue, and malaria vector mos-
quitoes (Suganya et al. 2013; Veerakumar et al. 2014a, b).

Reviews on biogenic AgNPs against mosquitoes were recently published (Hajra 
and Mondal 2015; Rai and Kon 2015; Durán et al. 2016a, b), together with impor-
tant results on biogenic AgNPs on biological systems (Durán et al. 2010; Gaikwad 
et al. 2013; Mashwani et al. 2015).

The efficacy of biogenic silver nanoparticles on Aedes aegypti and Culex quin-
quefasciatus demonstrated that the median lethal concentrations (LC50) of AgNPs 
that killed fourth instars of Aedes aegypti and Culex quinquefasciatus were 0.30 and 
0.41 μg mL−1, respectively. Adult longevity (days) was reduced by 30% in male and 
female mosquitoes exposed as larvae to 0.1 μg mL−1AgNPs, whereas the number of 
eggs laid by female larvae decreased in 36% when exposed to this concentration 
(Arjunan et al. 2012).

Related to mosquito larvae mortality with metallic nanoparticles, it has been 
found LC50 at the range of 0.56–606.5 μg mL−1 and also lower than those values 
cited on Table 3.1 (Hajra and Mondal 2015; Durán et al. 2016a). These large differ-
ences are probably due to synthesis of AgNPs with different kinds of capped pro-
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Fig. 3.1  Graphic panel of dengue virus infection (From http://factsanddetails.com/world/cat52/
sub334/item1195.html)
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teins on them or due to the presence of different silver nanostructures (e.g., silver 
chloride or/and silver oxides nanoparticles) (Durán et al. 2016b).

Silver nanoparticles (AgNPs) were prepared from the latex of the plant Euphorbia 
milii. Latex-synthesized AgNPs were evaluated against the second- and fourth-
instar larvae of Aedes aegypti and Anopheles stephensi. E. milii AgNPs showed a 
LC50 of 8.76 ± 0.46 and 8.67 ± 0.47 μgmL−1, for second instars of Ae. aegypti and An. 
stephensi, respectively, showing similar activities to different mosquitoes (Borase 
et al. 2014) (Table 3.2).

3.2.2  �Leishmaniasis

Leishmaniases are vector-borne zoonotic diseases caused by various species of the 
genus Leishmania (protozoa). These pathogens are transmitted by sandflies (e.g., 
phlebotomine) and infect humans where the vectors and reservoirs coexist (Fig. 3.2). 

Table 3.1  Lethal dose (LD50) (μgmL−1) of silver nanoparticles effective on mosquito

LD50 (μgmL−1) Reference

0.05 (from A. indica) (pupae C. quinquefasciatus) (41–60 nm) Poopathi et al. (2015)
34.5 (from Euphorbia hirta) (pupae A. stephensi) (30–60 nm) Priyadarshini et al. (2012)
25.3 (from C. indica) (pupae of A. stephensi) (30–60 nm) Kalimuthu et al. (2013)
23.8 (from C. indica) (pupae of C. quinquefasciatus) (30–60 nm)
0.59 (from Rhizophora mucronata) (fourth-instar larvae  
of C. quinquefasciatus) (60–95 nm)

Gnanadesigan et al. (2011)

1.10 (from Plumeria rubra) (third-instar larvae of A. stephensi) 
(32–200 nm)

Patil et al. (2012)

1.74 (from Plumeria rubra) (fourth-instar larvae of A. stephensi) 
(32–200 nm)
10.0 (from Cinnamomum zeylanicum) (fourth-instar larvae  
of A. stephensi) (12 nm)

Soni and Prakash (2014b)

4.90 (from Jatropha gossypifolia) (fourth-instar larvae  
of A. stephensi) (163 nm)

Borase et al. (2013)

54.9 (from Feronia elephantum) (third-instar larvae  
of A. stephensi) (20–60 nm)

Veerakumar et al. (2014b, 
c)

67.1 (from Feronia elephantum) (third-instar larvae  
of C. quinquefasciatus) (20–60 nm)
26.7 (from Heliotropium indicum)(adult mosquitoes  
of A. stephensi) (18–45 nm)

Veerakumar et al. (2014a)

32.1 (from Heliotropium indicum) (adult mosquitoes  
of C. quinquefasciatus) (18–45 nm)
21.9 (from Sida acuta) (late third-instar larvae of A. stephensi) 
(18–35 nm)

Veerakumar et al. (2013)

26.1 (from Sida acuta) (late third-instar larvae  
of C. quinquefasciatus) (18–45 nm)
32.1 (from Murraya koenigii) (pupae of A. stephensi) (20–35 nm) Suganya et al. (2013)
1.0 (from Hibiscus rosasinensis) (fourth-instar larvae  
of Aedes albopictus) (35 nm)

Sareen et al. (2012)
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Anthroponotic cycles have been documented for some species of Leishmania (e.g., 
Leishmania donovani in India, Leishmania major in Afghanistan). Visceral leish-
maniasis (VL) is caused by L. donovani (Indian and East Africa) and by L. infantum 
or L. chagasi (e.g., Asia, Europe, Africa, and the New World). Tegumentary leish-
maniasis (TL) is caused by many species of parasites in Europe (e.g., L. major, L. 
tropica, L. aethiopica, and sometimes L. infantum), in America (e.g., L. (Viannia) 
braziliensis, L. amazonensis, L. (V.) guyanensis, L. (V.) panamensis, L. mexicana, L. 
pifanoi, L. venezuelensis, L. (V.) peruviana, L. (V.) shawi, and L. (V.) lainsoni), in 
Mexico, Argentina, and Brazil (e.g., subgenus Viannia and L. amazonensis), and in 
Mexico and Central American countries (e.g., L. mexicana) (Lindoso et al. 2012). 
The recent treatment for VL involved miltefosine and paromomycin. These com-
pounds were evaluated only few times and should be evaluated in different epide-
miological scenarios (Marinho et al. 2015).

AgNPs as an alternative therapy for leishmaniasis are effective, specifically by 
subcutaneous intralesional administration for cutaneous leishmaniasis (CL). AgNPs, 
as discussed in many publications, can be prepared by chemical, physical, or 

Table 3.2  Mortality of Aedes aegypti with biogenic silver nanoparticles

Plants used  
for synthesis Life stages Size (nm)

LD50  
(μg mL−1) Ref.

Murraya koenigii Instar I 20–35 10.8 Suganyaet al. (2013)
Instar II 14,7
Instar III 53.7
Instar IV 63.6
Pupa 75.3

Feronia elephantum Adult 
(3–4 days)

18–45 20.4 Veerakumaret al. 
(2014a, b, c)
Veerakumar and 
Govindarajan (2014)

Azadirachta indica Instar III 41–60 0.006 Poopathi et al. (2015)
Bacillus thuringiensis 
(Bacteria)

Instar III 44–143 0.14 Banu et al. (2014)

Rhizophora mucronata Instar IV 60–95 0.89 Gnanadesigan et al. 
(2011)

Plumeria rubra Instar II 32–220 181,7 Patil et al. (2012)
Instar IV 287.5

Pedilanthus 
tithymaloides

Instar I 15–30 0.029 Sundaravadivelan et al. 
(2013)Instar II 0.027

Instar III 0.047
Instar IV 0.086
Pupa 0.018

Jatropha gossypifolia Instar II 30–60 5.9 Borase et al. (2013)
Instar IV 4.44

Euphorbia milii (Latex) Instar II 208 8.76 Borase et al. (2014)
Sida acuta Instar IV 18–35 23.9 Veerakumar et al. (2013)

Modified from Durán et al. (2016a)

3  Silver Nanoparticles for Treatment of Neglected Diseases



44

biological procedures (Durán et al. 2011a, b). Besides these, biosynthetic methods 
generate more effective NPs in medical applications because of their protein-coated 
surface (Prasad et al. 2011). In addition, both chemically and biologically synthe-
sized NPs were studied first by in vitro experiments against Leishmania amazonen-
sis promastigotes. Biologically generated AgNPs (Bio-AgNPs) were shown to be 
threefold more effective than chemically generated ones (Chem-AgNPs). Later, 
in  vivo studies in infected mice demonstrated that Bio-AgNPs dose showed the 
same effectiveness than 300-fold higher doses of amphotericin B and also threefold 
higher doses of Chem-AgNP. Important results such as no hepato- and nephrotoxic-
ity were found in comparison with amphotericin B and Chem-AgNPs (Rossi-
Bergmann et al. 2012).

The viability of L. tropica promastigotes after 72 h recorded maximum cytotoxic 
effect of AgNPs (no size was described) at a concentration of 2.1 μg/mL with an 
IC50 of 1.749 μg/mL, and from L. tropica amastigote phase the IC50 was 1.148 μg/
mL (Gharby et al. 2017).

3.2.3  �Malaria

Plasmodium species P. malariae, P. knowlesi, P. ovale, P. falciparum, and P. vivax 
infect human with malaria (Fig.  3.3). A decrease of 42% in malaria death was 
achieved due to many efforts to control and eradicate malaria through insecticides 
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and antimalarial treatments (e.g., artemisinin-combined therapies). However, one 
of the challenges is the increasing drug resistance, and no effective malaria vaccine 
exists today. One malaria vaccine in phase III is under testing by GSK (Glaxo 
Smith KlineRTS,S/AS01 vaccine), but its vaccine efficacy is around 30% (Siu and 
Ploss 2015).

AgNPs produced from aqueous extracts of leaves and bark of Azadirachta indica 
(neem) (10.5 nm in leaf and 19.2 nm in bark) showed activities against mosquito 
(e.g., larvicides, pupicides, and adulticides) and against the malaria vector Anopheles 
stephensi (An. stephensi) and filariasis vector Culex quinquefasciatus at different 
doses. The larvae, pupae, and adults of C. quinquefasciatus were found to be more 
susceptible to AgNPs than An. stephensi. The I and the II instar larvae of C. quin-
quefasciatus show a mortality rate of 100% after 30 min of exposure. The results 
against the pupa of C. quinquefasciatus were recorded as LC50 4 μg mL−1 (3 h expo-
sure). In the case of adult mosquitoes, LC50 1.06 μL/cm2 was obtained (4 h expo-
sure). The authors suggested that biogenic AgNPs were environment friendly for 
controlling malarial and filarial vectors (Soni and Prakash 2014a).

AgNP synthesis using plant extract of Pteridium aquilinum, acting as a reducing 
and capping agent, showed that AgNP (10 × LC50) led to 100% larval reduction after 
72 h and reduced longevity and fecundity of An. stephensi adults. Furthermore, the 

Fig. 3.3  Graphic panel for malaria (From https://www.cdc.gov/malaria/about/biology)
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antiplasmodial activity of AgNPs was evaluated against CQ-resistant (CQ-r) and 
CQ-sensitive (CQ-s) strains of P. falciparum. P. aquilinum-synthesized AgNPs 
achieved IC50 of 78.12 μgmL−1 (CQ-s) and 88.34 μgmL−1 (CQ-r). Overall, their 
results highlighted that P. aquilinum-synthesized AgNPs could be candidate as a 
new tool against chloroquine-resistant P. falciparum and also on An. stephensi 
(Panneerselvam et al. 2016).

Synthesis of AgNPs using β-caryophyllene isolated from the leaf extract of 
Murraya koenigii, as reducing and stabilizing agent (5–100 nm), exhibited promis-
ing activity on chloroquine-sensitive Plasmodium falciparum (3D7) with an IC50 of 
2.34 ± 0.07 μg/mL) was reported (Kamaraj et al. 2017).

3.2.4  �Schistosomiasis

Three species of parasitic flatworms of the genus Schistosoma (S. mansoni, S. hae-
matobium, and S. japonicum) caused schistosomiasis that is also considered a 
neglected tropical disease (Fig. 3.4). These parasites cause a chronic infection and 
often debilitating the infected individual that impairs development and productivity. 
In an estimate, the World Health Organization (WHO) indicated that over 250 mil-
lion people have been infected in around 80 endemic countries (e.g., sub-Saharan 
Africa, the Middle East, the Caribbean, and South America) resulting in approxi-
mately 200,000 deaths annually. Unfortunately, praziquantel (PZQ) is the actual 
product used due to the absence of an effective vaccine. PZQ offers oral administra-
tion, high efficacy, tolerability, low transient side effects, and a low cost. However, 
PZQ resistance is actually detected (Neves et al. 2015).

Another strategy for controlling schistosomiasis is combating the vector 
Biomphalaria glabrata (mollusk) through the use of AgNPs as a molluscicidal with 
low toxicity to other aquatic organisms (Yang et al. 2011; Guang et al. 2013).

3.2.5  �Trypanosomiasis

Human African trypanosomiasis (HAT) caused by infection with the parasite 
Trypanosoma brucei gambiense or T. b. rhodesiense and its vector is tsetse fly 
(Fig. 3.5). Around 70 million people worldwide were at risk of infection, and prob-
ably over 20,000 people in Africa are infected with HAT (Nagle et  al. 2014; 
Sutherland et al. 2015).

American trypanosomiasis or Chagas disease is caused by the protozoan parasite 
Trypanosoma cruzi. This disease is endemic in 21 Latin American countries, with a 
strong economic impact because it affects economically active people. Over ten 
million people are infected, and over 25 million people are within the endemic 
countries. After many years of infection, 10–30% of infected people develop symp-
toms of chronic phase. In general, the effect on the heart is the most common organ 
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problem; symptoms include cardiomyopathy and thromboembolism. The patient’s 
death usually occurs from heart failure (Rodrigues-Morales et al. 2015).

Unfortunately, very few compounds are in development, and drug discovery 
efforts are limited. Nifurtimox and SCYX-7158 are the only two compounds in 
clinical trials for HAT showing the need for novel chemical entities or new strate-
gies (Nagle et al. 2014).

Against Chagas disease, in human trials, are nifurtimox and benznidazole. 
Benznidazole is still being used in Brazil (Pereira and Navarro 2013). Unfortunately, 
limited human data and better supported by the findings in animal models suggest 
that T. cruzi strains may vary in their drug susceptibility (Bern 2015).

The enzyme arginine kinase (AK) is absent in humans, and important for the 
Trypanosoma development, fact that makes it an attractive target choice for a try-
panocide development. Adeyemi and Whiteley (2014) performed a thermodynamic 
and spectrofluorimetric study on the interaction of metal nanoparticles (i.e., AuNPs 
and AgNPs) with AK. AgNPs and AuNPs bound tightly to the arginine substrate 
through a sulfur atom of a cysteine residue (Cys271). This interaction controls the 
electrophilic and nucleophilic profile of the substrate arginine-guanidinium group, 
absolutely important for enzyme phosphoryl transfer from ATP to Trypanosoma.
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3.3  �Conclusion

Actually, there are a few recently published reviews focusing on dengue virus, leish-
maniasis, malaria, schistosomiasis, and trypanosomiasis with alternative strategies. 
The present review pointed out the most important advances in the metallic nanopar-
ticles action on these diseases. Silver nanoparticles appeared as a possible alternative 
in the therapy of many of these diseases and also on vectors with low toxicity and with 
enhanced efficacy. This revision dealt with the current status of nanobiotechnology 
through silver nanoparticles acting on neglected diseases. Therefore, it is clear that it 
is possible to use nanotechnology to manage safety to these humans’ diseases.
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