Chapter 9
Vanishing Dissipation Limits

The behavior of fluids in the vanishing dissipation regime, meaning when both the
Reynolds number and the Péclet number are large, plays an important role in the
study of turbulence. In this chapter, we examine the situation when

1 1
Sr=1,Ma=¢, andRe= , Pe = g with suitably chosen ¢, v, d > 0.
v

Such a choice of scaling parameters gives rise to qualitatively new difficulties in the
study of the singular limit as we lose compactness in the space variable of both
velocity and temperature. As a result, the singular limit is no longer a problem
of convergence of solutions of the primitive system to those of the target system
but rather a problem of stability of the target solution with respect to singular
perturbations. Accordingly, we have to assume that the target system admits a
regular solution at least on a certain maximal time interval (0, 7). Thus the existence
of solutions to the target problem is no longer a byproduct of the singular limit
analysis but a necessary hypothesis for the singular limit process to converge.

Stability of the target solution will be evaluated in the “norm” induced by a
new quantity called relative energy, the analogue of which—the so-called relative
entropy—has been introduced in the context of hyperbolic systems of conservation
laws by Dafermos [67]. Formally, the relative energy reads

5(@, Ju

T, V) ©.1)

aHT(}’, T)

1
= / [2g|u—V|2 +Hr@®) ~(-n"",
Q Q

—Hry(r, T)} dx,
where [o, ¥, u] is a weak solution of the (unscaled) Navier-Stokes-Fourier system,

(0.0) — Hr(0.0)
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370 9 Vanishing Dissipation Limits

is the Helmholtz function introduced in Sect. 2.2.3, and [r, T, V] a trio of admissible
smooth “test” functions. Formally, the relative energy is reminiscent of the quantity
appearing in the total dissipation balance (2.52), where the arguments r, 8, and
V are now functions of the independent variables (¢,x). The relative energy

& (Q, v, u‘ r,T, V) can be seen as a kind of distance between the quantities [0, 9, u]
and [r, T, V]. Indeed the hypothesis of thermodynamics stability (1.44) implies that

E(Q, Du

rT, V) >0;
if r > 0, then

E(Q, U, u

r,T, V) = Oonlyif[o,?,u] = [r, T, V].

Remark Note however that £ is not a metric, in particular it is not symmetric with
respect to [0, ¥, u] and [r, T, V].

The strength of the existence theory of weak solutions based on the entropy
balance developed in Chap. 3 will be demonstrated by the fact that the time evolution
of £ can be controlled by means of the weak formulation introduced in Chap. 2,
Sect.2.1.

9.1 Problem Formulation

To simplify the presentation, we consider the primitive NAVIER-STOKES-FOURIER
SYSTEM in the absence of external driving forces:

B PRIMITIVE SYSTEM:

d:0 + div,(ou) = 0, 9.2)

d;(ou) + div,(ou ® u) + 512 V.p(o, ) = vdiv,S, 9.3)

3,(0s(0, 9)) + div, (QS(Q, ﬂ)u) + ddivx(g) = o, (9.4)
d e .,

dt/g ( , olul” + gele. 19)) dx = 0. (9.5)
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In accordance with the general framework of fluid motions considered in this book,
the viscous stress tensor is determined by Newton’s law

S = S, Vou) = u(z?)(qu + V. u— idivxu]l) + () divyul, (9.6)
the heat flux by Fourier’s law
q=q(, V) = —«(3)V, 9, 9.7)
and the entropy production rate is a non-negative measure o, satisfying

q~Vxl9).

N 9.8)

1
op > ﬁ<82vS:VXu—d

9.1.1 Physical Space and Boundary Conditions

Similarly to Chap. 8, we consider an expanding family of spatial domains {Qg} g0,
specifically

o Qp CR3are simply connected, bounded, C2tY domains, uniformly for R — oo;

{x €R} ’ | < R} C Q. 9.9)
¢ there exists D > 0 such that

BQRC{xeR3‘R<|x|<R+D} (9.10)

Remark A typical example of such domains is, of course, a family of balls of
radius R,

QRz{x€R3‘|x|<R+5},8>O.

We impose the no-slip boundary conditions for the velocity field
ulye, =0, 9.11)
together with the no-flux conditions

q-njyo, = 0. 9.12)
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9.1.2 Initial Data

Similarly to the low Mach number limit problems considered in this book, we
suppose that the initial data can be written in the form

00,) =00 =0 +eo), 9(0.) =0 =0 +ed", u0,) =u,  (9.13)
where o, ¥ are positive constants,

0<D ' <o, % <D,
9.14)

(1 1
||Q())||(L20L°°)(R3) + ||l90( )||(L20L°°)(R3) + [[woll(z2nro0y®3) < D.

Remark The parameter D > 0 measures the size of the data and may be chosen
large enough to comply also with (9.10). Of course, the initial data perturbations
Qél) , l?él) , Wp as well as the corresponding weak solutions to the Navier-Stokes-
Fourier system may depend on the scaling parameters ¢, v, d and also on the total
mass

M = Q()dx.
Qg

9.1.3 Target Problem

As the family of expanding domains will eventually fill up the whole space R, it
makes sense to consider the limit problem with this geometry, supplemented with
the far field boundary condition for the limit velocity

U — Oas |x| — oo.
Given our previous experience with the low Mach number limit and since we

intend to let the diffusion coefficients v and w vanish, we may anticipate the
following form of the target problem.
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B INCOMPRESSIBLE EULER SYSTEM WITH TEMPERATURE TRANSPORT:

div,U = 01in (0, T) x R, (9.15)
9, U 4 div,(U® U) + V,IT = 0in (0, T) x R, (9.16)
90+ U-V,® =0in (0,T) x R, 9.17)

Here, as observed many times in the previous chapters, the transported quantity
O is related to the temperature deviation

System (9.15), (9.16)—called (incompressible) Euler system—decouples
from (9.17) and may be solved independently. A nowadays classical result of
Tosio Kato [164, 165, 167] asserts the existence of a unique classical solution U of
the initial-value problem associated to (9.15), (9.16) in the class

U € C([0. Trax): WS (R R?), 8,U € C([0, Trpax): W2 (R RY), (9.18)
defined on a maximal time interval [0, Tiax ), Tmax > O for any initial data

U(0,-) = Uy € W*2(R? R?) as soon as k > 3. (9.19)

To avoid technicalities, we have taken k to be an integer. More general results
can be shown, see e.g. Constantin et al. [64], Chemin [55], Danchin [73]. Note
that regularity of the pressure IT can be deduced from (9.16), (9.18).

Any field U belonging to the regularity class (9.18) possesses a continuous
gradient V,U, in particular, the transport equation (9.17) can be uniquely solved
for any initial data

8(0,-) = O, (9.20)

by the method of characteristics. Specifically, the system of ordinary differential
equations

th(t) = U1, X), X(0) = X,, (9.21)
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admits a unique solution X = X(¢, Xo) for any X, in R? and we set

O, X(t, Xo)) = 09(Xop), t € [0, Tmax)-

9.1.4 Strategy of the Proof of Stability of Smooth Solutions
to the Target Problem

Our goal in this chapter is to show that solutions of the primitive Navier-Stokes-
Fourier system remain close to a smooth solution of the target problem provided

& v,d—>0,R— o0

and the initial data of the two systems are close. As we shall see, the result will be
path dependent, meaning the rates of convergence of the singular parameters to their
limit values must be interrelated in a certain specific fashion. Here, the “distance”
between the data will be measured in terms of the relative energy £.

Our strategy leans on the following steps.

* Derive a relation between the values of the relative energy £ at the times r = 0, 7.

* Take the strong solution of the target system as a test function in the relative
entropy.

* Use a Gronwall lemma type argument to evaluate the distance between the two
solutions by means of £.

9.2 Relative Energy Inequality

The relative energy inequality may be seen as a refined version of the total
dissipation balance (2.52), where the constants g, ¥ are replaced by functions r, 7T,
and the velocity u = u — 0 by u — V. It is of independent interest so we formulate
it for the unscaled version of the Navier-Stokes-Fourier system where we set, for a
moment,

e=v=d=R=1, Q=Q,.

We consider a weak solution [g, #, u] of problem (9.2)—(9.8), (9.11), (9.12) in
the sense specified in Chap. 2, Sect. 2.1. The crucial observation is that the relative
energy can be decomposed as the sum

6

r, T, V) = ZE},

Jj=1

5(@, Ju
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where

!
a=/[mﬁ+wmmkn

P
52:—/ ou-Vdx,

Q

1 2
&= 2Q|V| dx,

Q

&=—/wm%TM
Q

H
55=—/ QB TB(F,T) dx.
Q Q

d .
Eo = /Q [r HTBZ (R, 7')} dx,

where each integral can be evaluated by means of the weak formulation as long as
the functions r, 7, and V are smooth enough, » > 0, 7 > 0, and V satisfies the
relevant boundary conditions, here

V]se = 0.
Our goal is to compute
[8 (Q, dulr, T, V)]Z; =¢ (Q, d,u|r, T, V) (r) - €& (Q, dou|r, T, V) 0)

using only the weak formulation of the Navier-Stokes-Fourier system

Step 1 The total energy balance (2.22) yields

1 1=t
UQ [2Q|u|2 + gelo, l‘})} dx} (9.22)
=0

:/Q[;Q|u|2+ge(g’ﬁ):|(r")dx_/g[;Q0|UO|Z+Q06(Q0,ﬂo)i|dx:O

fora.a. 7 € [0, 7).
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Step 2 Taking V as a test function in the weak formulation of the momentum

balance (2.9) gives rise to
1=t
[/ ou-V dxi| (9.23)
Q =0

= / / [Qu- o,V +olu®u]: V.,V +p(o,9)div,V-S: VXV] dx dt
0o Ja

forany t € [0, T7.

Step 3 Taking |V|? as a test function in the equation of continuity (2.2) we get

1 =1 T
U o|V|? dx} - / / [QV 3V +ou-V. vxv] dxdr (9.24)
Q2 =0 0o Ja

for any t € [0, 7.
Step 4 Taking 7 as a test function in the entropy balance (2.27) yields

_[/ Qs(Q,l?)dei|_ +/ /T(S:vxu—q'v"ﬁ)dxdt (9.25)
Q =0 0 Q % 4

= —/ / [QS(Q, )0, T + os(o,¥)u -V, T + q VXT:I & ds
0o Jo 5

fora.a. r € [0, 7].

Step 5 Taking d,H7(r, 7 ) as a test function in the equation of continuity (2.2) we
obtain

[ / pHT(RT) dx:| B (9.26)
Q do =0

_ /r/ [Qat(BHT(r,T)) +ou-v, (aHT(}’, T))i| dr dx dr
0o Jo do do

for any t € [0, T.

Step 6 Summing up the previous identities we obtain

=t T (<. q-V,0
r,’T,V)]r=0+/O/Qﬁ(S.qu— X )dxdt (9.27)

< / / [g BV +u-V.V) - (V—u)—plo,9)diviV + S : VXV] dx dr
0 Q

[8 (Q, ?,u
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—/ / [QS(Q, )0, T + os(o, H)u-V, T + g -VX'T] dx dr
0o Ja

L (T v (T

[ La (T <o) v

Conclusion Finally, making of use of Gibbs’ equation (1.2), we compute

fora.a. r € [0, 7).

OHr(r, T)\ _ as(r,T) 2H(r,T) ZH(r,T)
81‘ ( aQ ) = —S(r, 7-)81‘7- —r aQ 8[7- + BQZ B,r 39319 8[7-,
2 2
v, OHT(r,T) S TV T —r as(r,T) VT4 “Hr(r,T) Vord “Hy(r,T) v.T.
do do 002 000V

together with the relations

PHr(r.T) _ 10p(r.T) ras(r,T) _ Lop(r.T)
902 T r d do  r

PHr(rT) 0 ds _ 0s
9009 do (Q(l9 _T)af}) rn7)= ((ﬁ [AF ( 81‘})) 7=
and

( 8HT(r, T)
r

3 — Hr(r, T)) =p,T).
o

Thus inequality (9.27) can be written in a more concise form as

B RELATIVE ENERGY INEQUALITY:

[5 (Q, U, u

1=t T T ) q(Q, Vxl?) -V, 0
r,T, V)]t=0 +/O /Q 9 (§(l9, V) : V,u — 9 ) dx dr
(9.28)

S/OT/QQ(u—V)-VxV-(V—u)dxdt

+/0 /Qg(s@, 8) — s(r.T)) (V — ) - V, T dx dr
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+ / / [g O,V +V-VV) - (V=) — p(o, $)div,V + S, Vu) : VXV] dx dr
0 Q

_/0 /Q [Q (s(0.9) —s(r. T)) 0T + 0 (s(0. %) —s(r, T)) V- VT

9, V.0
+q( )

) -VXT] dx dr

i /OI/Q [(1 N ér?) 9up(r.T) = i“ - Vap(r, T)] dx dr

for a.a. T € [0, 7] and any trio of continuously differentiable test functions [r, T, V]
satisfying

r>0, T > 0, V|3Q =0. (9.29)

Remark Note that the requirement on smoothness of the test functions may be
relaxed by a density argument if the weak solution enjoys certain regularity. Similar
inequality may be derived also for the slip boundary conditions (1.19), (1.27), for
which V must satisfy V -n|yq = 0.

9.3 Uniform Estimates

To derive suitable uniform bounds on the family of solutions to the scaled Navie-
Stokes-Fourier system, certain restrictions must be imposed on the constitutive
relations. These are basically the same as in Chap.5 and we list them here for
convenience:
5 /0 a .,
Pe.9) = pule. ) +pr®). pu = 0 P( ) pr= 304 a> 0 930)

2

392 94
e(0.9) = eulo.9) + exle. D). ew = P( 93 ) er=a. . 9.31)
0 0

and
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where

3 3P(2)—ZP'(2)

S'(Z) = -
2 ) 2

forall Z > 0, and Zlim S(Z) =0. (9.33)
—>00

Remark The last stipulation in (9.33) reflects the Third law of thermodynamics
discussed in Chap. 1, Sect. 1.4.2. It implies, in particular, that

0<SZ)<S()forZ>1,0<8Z)<S(1)—clog(Z2), c >0, forZ < 1;
whence
o0s(0,9) < c (1 + olog(o) + oflog(®)]" + ¥?) forall o, > 0. (9.34)

This condition plays a technical role in our analysis and may be probably omitted.

Furthermore, the hypothesis of thermodynamic stability (1.44) requires P €
C'[0, 00) N C*(0, 00),

P(0) =0, P'(Z) > Oforall Z> 0, (9.35)
SP(2)—2zP'(Z 3P(2) — 2P
O<3() ()Ssup3(Z) : (Z)<Oo, (9.36)
Z >0 Z
and, in addition,
. P2
lim s =Poo > 0. 9.37)
Z—>00 73

The viscosity coefficients © = w(?), n = n(P) are (globally) Lipschitz
continuous in [0, c0), and

0<p(l4+0) < pu@) < ud+9),

forall ¢ > 0, (9.38)
0=n@) =n(l+7)
where p, i, n are positive constants. Similarly, k = k() is a continuously
differentiable function satisfying
0 < k(149 <k®) <k 4+ forall ¥ >0, (9.39)

with positive constants «, k.
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The basic uniform estimates will be derived by means of the rescaled version of
the relative energy inequality associated to system (9.2)—(9.5). For

Eer (Q, Soa|r, T, V)
1 1 H(r. T
- [ [ ou-VP+ | (HT(Qv 9)—(g—n ATl )—HT(r,T))} dx
Qx L2 € do
we have
[ex (.0 ulr T V)]~ (9.40)
/ / (vS(ﬁ Vo) : Vou q(g,vg) W}) dx dr
QR

5/0 /QRQ(U—V)'VXV-(V—u)dxdt
+€12 /OT/QRQ(S(Qaﬁ)—S(F,T))(V—u)-Vx'dedt
T 1 .
+ / / [g 0V + V- V,V)-(V=u)— _ p(o. $)div,V+vS(¥, V,u) : VXV]dxdt
0 QR &

1 T
— 2 /0 /Q [Q (s(0, %) —s(r, 7)) 0T +o0(s(0, ) —s(r, T)) V- VT

9,V
e )

) VXT] dxdr

52/ / 1— rP(r T)— u Vi (r, 'T)] dx dr
The necessary uniform bounds can be derived in exactly the same way as in
Chap. 8, Sect. 8.3. Introducing [/]ess, [A]es as in (4.39)—(4.45), we take
r=o, T=9,V=0
in the relative energy inequality (9.40) to deduce the estimates:

ess sup |l/oull2qursy < c(D), (9.41)
1€(0,T)

I
€ss sup
1€(0,T) & ess

iy = D) (9.42)
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U -0

ess su <c(D), 9.43
te(O,I;") H[ & ]ess L2(QR) ( ) ( )
ess sup | [oe(0, ®)lreslri (ap < €7c(D), (9.44)

1€(0,7)

and

ess sup | [05(0. ®)lres | @p) < £7c(D), (9.45)

t€(0,7)

along with the estimate on the measure of the residual set (cf. (4.43) and (8.37))

ess sup | Mies[f]| < e%c(D), (9.46)
t€(0,7)

where the bounds depend solely on the norm of the initial data through (9.14).
Finally, exactly as in (8.50)—(8.55), Chap. 8, we conclude

ess sup [Q]fe/s3 dx < £2¢(D), (9.47)
1€(0.7) J Qg

ess sup [ﬁ]fes dx < %¢(D), (9.48)
1€(0,7) J

and

T

/ v [|ulffi2qpmsy df < c(D), (9.49)

0

T T
4 [ 19 =9y dr+d [ 1108(0) 1080 s, 1 < D). (950
0 0

Remark We tacitly anticipate d and v to be small, in particular, the above estimates
hold (independently of v, d) on condition thatd < 1, v < 1.

9.4 Well-Prepared Initial Data

To illuminate the method based on the relative entropy inequality, we first consider
the well-prepared initial data. Accordingly, we consider

r=9,T=9,V=U
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in (9.40), where U is a solution of the Euler system (9.15), (9.16). Unfortunately, the
function U does not vanish on d2; and therefore cannot be used as a test function
in (9.40). Instead we take a suitable cut-off of the Euler solution.

First, we fix

vo € C"(R?) and write vo = H[vo] + V, Wy, (9.51)
supp[vo] C B(0,D), [[vollcnws) < D, m > 4, (9.52)
where H denotes the Helmholtz projection defined on the whole space R?, and
consider U—the solution of the Euler system (9.15), (9.16) defined on a time

interval (0, T.x )—satisfying

U(0.-) = wo = Hv). (9.53)

Remark Similarly to (9.10), (9.14), the quantity D measures the size of the initial
data. Obviously, D may be chosen large enough so that both (9.10), (9.14) and (9.52)
hold.

The solenoidal function U can be expressed by means of the Biot—Savart law
U= —curlex_lcurlx [u],

where

-1 _ h(y)
armw = [ .

Consequently, as
curl,[wy] = curl,[vo] € C:.”_I(R3),

and the Euler system (9.15), (9.16) propagates curl,U with a finite speed (see
Sect. 11.20 in Appendix), we infer that

U = curl,[h],
where Ah = 0 (h is a harmonic function) outside a bounded ball in R3.

By the same token, AW is compactly supported and we conclude that

- c(D) - c(D)

[ViWo(x)| + |U(t, x)| < w2 = R whenever x € dQ2g. (9.54)
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We introduce a cut-off function yg = yg(x),
xr(x) = x(|x| =R), x € C(R), 0 < y <1, x(z) = 1forz € [0,D].
It follows from (9.54) and hypothesis (9.10) that
9,0 0. My + 1RO ooy < @R
120V Woll e o) < c@R™) forany 1< p < oo, 1 € [0. Tymy).

(9.55)

The function V = (1 — yg)U vanishes on dQ2g, therefore can be taken, together
with r = g9, T = ¥ as a test function in the relative energy inequality (9.40) to
obtain

=1
[€ex (0. 0ule. 2. (1= xov)] 9.56)
v V,9) -V,
+/ / v (vS(ﬁ, Vo) : Vou— dzq(g’ ?) 19) dx dr
o Jop ¥ P O

S/OT/Q o(w—V)-V,V-(V—u)dxdr

t 1
—i—/ / [Q @,V+V-V.V)-(V—u)— Zp(Q, )div,V+vS(d, V,u) : VXV] dx dz,
0 Jog &

where, in view of (9.55),

/ o@—V)-V,V-(V—-u)dx
Qpr

< / olu—(1— xUPI%V]de  (9.57)
Qp

<c(D) A olu—(1— )(R)U|2 dx < ¢(D)E (Q, tu )Q, 7, (11— )(R)U) .

Next, we compute

=

/ vS(¥, Viu) : V.V dx
Qg

2
/ v () (qu + V/u-— 3divxu]l) VA Y dx‘
Q
(9.58)

+

/ v (¥)div,udiv, V dx)
Qpr

< ;S(zﬁ‘, Vo) : Veu dx + c(8)v / F () + ()| ViV dx
QR QR



384 9 Vanishing Dissipation Limits

for any § > 0, where the former integral on the right-hand side my be absorbed
by the left-hand side of (9.56) for § = §(%) > 0, while in accordance with
hypothesis (9.38) and the bounds established in (9.48), (9.55),

) F( () + n(D))| V. V[ dx (9.59)

- [Q 9 (L(8) + 1(9))]es| V2V d + [ () + 1(9)hes | V]2 dr

Qpr
= c(l‘})||U||W12(R3 Ry T cll@ ]res||L2(QR)||U|IW14(R3 Ry = < c(D).

In view of (9.57), (9.58), inequality (9.56) reduces to

[&R (g, 9 u }g, 9, (1— XR)U)LO (9.60)

<c¢(D) /OI [v + Eer (Q, tu o, 9, (1 — XR)U)] dr

T
1
+ / / [Q OV+V:-V,V)-(V—-u)— Szp(g, z‘})diva] dx dr.
o Jag
Next, we write

/Q zp(g, #)div,V dx = / p(g, %) —p(o. 19)) div,V dx

1 . 1 .
=/ 02 [Pl —ple. 9] _div.V dX+/Q 2 [pe.)=pe.)] divVar,
SS R res

Qg

where, by virtue of hypotheses (9.30) and the coercivity properties of H estab-
lished in Chap. 5, Lemma 5.1,

0.9, (1= xn)U).
(9.61)

‘ / [ple.) —ple.)] divVdx| < cD)ecr (000
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Moreover,

1 .
/Q o2 [p(g, %) —p(e, 19)]e div,V dx
R SS

ap(o, V¥ (o, ¥ .
-/ [p(g,ﬁ)— e == " )(ﬁ—ﬂ)—p(g,ﬁ)] v,V ds

€8s

dx,

_/ BP(Q,t?)Q—QJrf?p(Q,l?)ﬁ—l? U- Ve
Qr aQ & i & oss &

where, similarly to (9.61),

1 0 ap(o, v .
‘/ﬂ . [( T R p(g,m} dIVXde’

€ss

(9.62)
< c(D)Er (Q, d,u ‘Q, o, (1 — )(R)U) .
Finally, in accordance with (9.55),
/ [ap(g, Me-e, dle.0) 0~ ﬂ] U- Vi dxi 0.63)
Qr do e 99 e e
< eDEn (0.0 0.0, — ov) + ) [ 19 TH g
<c(D) |:86.,R (Q, v.u ‘Q, v.(1- XR)U) + glez} :
Thus (9.60) gives rise to
[ES,R (Q, U,u ’Q, v, (1 - XR)U)]Z; (9.64)

<c(D)/ [ 2R2 +Eun (g,ﬂ,u}g,ﬂ,(l—XR)U)}dt

+/ / 03,V +V-V,V) (V—u)dxdr.
0 Qr
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The final step is to handle the integral

T 5 T
/ / Q(BtV—l-V-VXV)-(V—u)dxdt:Z/ Lde,
0 Jop =170

where

- /ﬂ o(V—u) - (1x0) - V.U dx.
/ﬂ o(V-1u)-U-9, (V) dx.
B= [ o(u=V)- Gu0)- ¥ Gl a

li= [ o(V-u)-0(ut) ax
Qpr
I :/ olV—-u)-(0,U+U-V,U dxdt:/ olu—V)-V.II dx.
s= ] e(v-u)-(a ) | o(u-v)
First, writing
o(@m—V) = [gless (@ = V) + [0]res (1 — V),
we observe that, by virtue of (9.41),

ess sup |[oless( = V)(7, )|l 2(0pm3) < (D). (9.65)

t€(0,7)
Similarly, by virtue of (9.41), (9.47),

ess sup [[[O]res(u— V)(2, ')”L5/4(QR;R3) < c(D). (9.66)
t€(0,7)

As a consequence of (9.55) we may infer that

4
> L <) (R + R™7) < c(D)R™" provided R > 1. 9.67)
j=1
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To conclude, we have
/ 15dt=/ / Q(u—V)-VXdez ou-Villdi— | oV.V.IIdxds,
0 0 Qr Qr Qr

where, in accordance with the weak formulation of the equation of continuity (2.2),

T T _ _ 1=t
/ / Qu-Vdexdtz—S/ / ¢ QB,dedt+8|:/ ¢ Qdei| ,
0 Jag o Jor € Qr € =0

(9.68)

and, by virtue of the estimates (9.42), (9.47),

/ @705 M dx
Qr €

and, by the same token,
/ =0 4y
Qr €

Remark Note that the pressure in the Euler system can be “computed”’, namely

< c1(D) (19,1l 2 g3y + 19,1 || z00R3)) < c2(D), 9.69)

< c1(D) (1Ml 2@s) + 1Tl 00 @) < c2(D). (9.70)

I = —A;'div,div,(U x U),
in particular,

sup [|[TI(z, ) ||lp@3) < c(p,7.D) forany 1 < p <00, T < Tiax,
t€[0,7]

see Sect. 11.20 in Appendix.

Finally, the last integral to handle reads

/QV-VXdezef Q_QV-VXde—l-Q/ V.V, dx 9.71)
Qr Qr € Qg

=e/ Q_QV-VXde—Q/ Voyx-UTldx,
Qr & Qg
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where the first integral can be estimates exactly as in (9.69), (9.70), while, by virtue
of (9.55),

/ Vexr-Ulldx| < Cl(D)R_1||H||L2(R3) <R
Qpr

Summing up the previous estimates and going back to (9.64) we may infer that

1=t

[&R (g, 9 u }g, 9, (1— )(R)U)] 9.72)

t=0

’ 1
Ec(D)/ [s+u+ + e (o ﬂ,u)g,ﬁ,(l—xR)U)} di
0 R

82 R2

whenever T < Tyax, Where Ty is the life-span for the Euler system. Consequently,
a straightforward application of Gronwall’s lemma yields the following result.

B  VANISHING DIFFUSION LIMIT—WELL PREPARED INITIAL DATA:

Theorem 9.1 Let {Qg}r>1 be afamily of uniformly C*’ simply connected bounded
domains in R? satisfying (9.9), (9.10). Let the constitutive hypotheses (9.30)—(9.39)
be satisfied.

Let [o,9,u] be a weak solution of the Navier-Stokes-Fourier system (9.2)-
(9.8), (9.11), (9.12) in (0, T) x Qg starting from the initial data

Q(07) =go=0+ EQE)I)’ 19(()’ ) =9 =0+ 819(1), ll(O,') = u,

where

0<D!'<p,® <D,

1 1
||Q§))||(L20L°°)(R3) + ||l90( )||(L20L°°)(R3) + [[woll(z2nroey@3) < D.

Let U be a (strong) solution to the Euler system (9.15), (9.16) in R? x (0, Trax)
starting from the initial data

U(O, ) = Wo = H[V()],
where

vo € C(R?), supp[vo] C B(0,D), ||[Vollcnmsy < D, m > 4.
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Then for any compact K C R* and any T € (0, Tyax), there are ¢; = ¢(T, D),
c2(D) such that

1 1 0H, (0, %)
/ olu—UP+ | |Hy@®)—(c—0) ° —Hy(o.9) ) | (z.)) dx
k|2 & do
9.73)
1 1
<c|(T,D) (e + v+ R + ngz)
2 9o — 0|
+c2(D) Go—e ‘ 0 + Jlup — WO“iZ(QR;R%
& lrew L2(Qp)

fora.a. T € [0,T) provided R = R(K) is large enough.

Remark Theorem 9.1 yields uniform in time convergence of u towards the solutions
of the Euler system and asymptotic spatial homogeneity in o and % provided the
right-hand side of (9.73) tends to zero, in particular, Q(()l), z‘}él) must be small and the
initial velocity close to a solenoidal (divergenceless) function vy. Such a situation

corresponds to the so-called well-prepared initial data.

9.5 Ill-Prepared Initial Data

The stability result established in Theorem 9.1 is quite restrictive with respect to the
initial data that must be close to the expected limit solution. This can be improved by
choosing a more refined ansatz of the test functions [r, 7, V] in the relative energy
inequality. The basic idea used several times in this book, is to augment the basic
state [o, ¥, U] by the oscillatory component produced by acoustic waves.

9.5.1 Acoustic Equation

The equation governing the propagation of acoustic waves is represented by the
homogeneous part of acoustic system (8.141), (8.142), specifically we get

B ACOUSTIC WAVE EQUATION:

€0, Z + AV =0, £0,V,¥ + wV,Z = 01in (0,T) x R, (9.74)
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with the wave speed /w/¢,

Ipo (0. 9)[?
w=pee. )+, >0,
o ss(0,9)
and the initial data
Z(0,+) = Zy, V,¥(0,-) = V, . 9.75)

The potential W, was introduced in (9.51) as the gradient component of a compactly
supported vector field vy. As showed in (8.125), solutions of (9.74) admit the finite
speed of propagation /w/¢. In particular, for the initial data

Zy, VW = HJ'[V()], supp[vol, supp[Zo] C B(0,D), (9.76)
the solution of (9.74), (9.75) satisfies
Vo
.
9.77)

V(1 x) = VW (x), AV(r,x) = Z(t,x) = O whenevert > 0, |x| > D+t

To facilitate future considerations, it is convenient that the acoustic waves may
not reach the boundary Qg of the physical space within the time lap (0, T).
Accordingly, we suppose that

R>p4+1V (9.78)
£

It is easy to see that solutions of acoustic system (9.74), (9.75) with spatially
concentrated initial data conserve the total energy,

/ [a)IZI2 + |VX\I'|2] (r,)dx = / [a)|Zo|2 + |VX\IJO|2] (t,-) dx for any T > 0.
R3 R3

Moreover, differentiating (9.74) with respect to the x-variable, we deduce higher
order energy balance

ol Z(z, ‘)”%Vk,z(RS) + [V ¥(z, ‘)”%Vk,z(Rs,Rsxs) =# 9.79)

w”ZO”%Vk.Z(R}) + ||Vx\1"0||%4/k.2(R3!R3><3), k=0,1,2,..., t =2 0.
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Similarly to their counterpart investigated in Chap. 8, solutions of the acoustic
equation considered on the unbounded physical space R* enjoy certain dispersive
decay properties that are crucial for future analysis. Here, we report the celebrated
Strichartz estimates

1Z(7, IMawsy + IVa¥ (T, ) | Lars;r3) (9.80)

1_1
o
<cp.g) (14 1) " [1Zollweces) + Ve Wolwsresies) ]

for
1 1
+ =1,1<p=<2,
P q

see Theorem 11.13 in Appendix Similarly to (9.80) we may differentiate the
equations to obtain higher order version of (9.80), namely
1Z(z, ')”W‘“I(R3) + [V ¥(z, ')||W"-q(R3;R3) (9.81)

1_1

t p
<c(p.q) (1 + S)q ! [||ZO||W4+I<.p(R3) + ||Vx‘p0||w3+k.p(R3)] ,k=0,1,...

for

1

1
+ =11l<p=<2.
P q

Note that, in accordance with hypothesis (9.52), the right-hand side of (9.81)
remains bounded by a constant ¢ = ¢(D) at least for k = 0, 1.

9.5.2 Transport Equation

For a given solution U of the Euler system (9.15), (9.16), we consider the transport
equation

P+ U-V,P=0, O0,) = Pyin (0, Tax) x R. (9.82)

As U is regular, problem (9.82) admits a unique solution for any given initial
datum P, that may be computed by the method of characteristics, see Sect. 11.20
in Appendix. More precisely, solutions of (9.82) enjoy the same regularity as those
of the Euler system,

1P(z, ) lwez@sy + 10:P(z, )lwr—12m3y < c(z, D) (9.83)
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as soon as
”PO”WI‘-Z(]R3) < C(D), k > 3.

Moreover, the solution P remains compactly supported for any positive time as long
as Py has compact support.

9.5.3 Stability via the Relative Energy Inequality

We consider a trio of test functions
V=0—p) U+V V), r=0+cA, T =0+¢0,
where U is the solution of the Euler system (9.15), (9.16) in (0, Tx) X R3,
U(0,-) = H[vo],

and A and ® are uniquely determined as the unique solution of the system

1
ople.9) , 1 dple.?) z. (9.84)
ow Jo ow Y

phe?) Ny, (9.85)

where [Z, V, W] is the solution of the acoustic system (9.74), with the initial data
1 dp(o,V 1 dp(o, v
2= '), 1 opled)

V.U, = H+ )
0w do 0w 39 ©o, V¥y = H-[vq], (9.86)

and P solves the transport equation (9.82), with the initial data

0 Is(e. %) Ao+o %(.9) B¢ = Py. (9.87)
do v

Py =
Similarly to vy, the functions Ao, ®¢ belong to the class

Ao, @ € C'(R), | Aollenze) + 190 lcnzy < D. supplAo]. suppl®s] € B(O, D).
(9.88)
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With this ansatz, the relative energy inequality (9.40) reads

[€cx (00 ulo+en 0 +20.(— U+ V)]~ (9.89)
/ / ﬁ+£®(§(ﬂ V) Vo G 4@V W}) dx dr
Qpr

S/t/ o(w—V)-V,V-(V—u)dxdr
0 Jax
1 T
+8/0 /QRQ(s(Q,ﬁ)—s(r,T))(V—u)-Vx(adxdt
T 1 .
—i—/ / [Q (@:V+V-V,V)-(V=uw)— _p(o, NdiviV+vS(J, V,u) : VXV]dxdt
0 Jag &

_l / / [Q (S(Qs ﬁ)_S(V,T)) 8,@—}-@(3(@, ﬁ)_S(V,T))VVXQ
0 Qr

9.V, 9
+al ) ) vx@)] dx dt

82/ / 1— tp(r T)— u V.p(r, T)] dx dr

Similarly to the preceding part, our goal is to “absorb” all terms on the right-hand
side by means of a Gronwall type argument.

Step 1 To begin, we observe that the integrals

//Q(u—V)-VXV-(V—u)dxdt
0 Jog
and

/ / vS(¥, Vyu) @ V.V dx dr
0 Jag

can be handled exactly as in (9.57), (9.58).
Moreover,

d
e

v 1%

\Y
/ q(?, xﬂ)-Vx@)dx‘: d
Qg

/ “Dg 5 .v.0 de
Qg

fad/ K(ﬁ)lv 9 dx + (S)d/ k()| VO dx
Qg

g2 Q&
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for any 6 > 0; whence the first integral can be absorbed by the left-hand side
of (9.89).
Finally, we have

/ €(®)|V.O[2 dv = / (9o | VO dx + / ()]s | VO dx
Qr Qg

Qg
= Cl(D) I:”Vx@”iZ(RS;RS) + ”Vx®”ioo(R3;R3)] =< C2(D)‘

Indeed the function ® is a linear combination of P and Z; where P is compactly
supported and Z admits the energy bound (9.79).
Thus (9.89) reduces to

[&R (g, 9 u )g oA D +60,(1— yr)(U + vx\p))] (9.90)

=

Sc(D)/OI [v+d+5&R (Q,l?,u

r, T,V)]dt
+i/0/9 0 (5(0,8) = 5(r, T)) (V—u) - V,0 du dr
+/O/Q [0V +V-V.V) - (V—u) - Slzp(g, 9)div. V| de dr

1 T
e /o /Q [0 (5(0.8) =5 T) 910 + 0 (s(0.9) = s T) V- V,0 | drdr

r r

+£12 /OI/;Z [(1—Q)3rP(V’T)—Qu~pr(r,7')] dx dr

Step 2 The next observation is that the integral

/OT/QR[Q(E),V—FV-VXV)'(V—u)

can be handled in a similar way as its counterpart in the preceding section. Indeed
we have

T 9 T
/ / Q(BtV—l-V-VXV)-(V—u)dxdt:Z/ Lde,
0 JQg =170
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where
hi= [ o(V=u): eV -+ V) VU,
:/QQ ) U+ Ve (a(U + VW) d,
B= [ o(u=V)- (o) U + 9,9 ds

I :/Q Q(V—u) -3, (xr(U + V1)) dx,

15:/QRQ<V—u)~(B,U—}—U-VXU)dxdt:/Q Q(u—V)-VXde,

R

Is = ;/QRQ(V—u)-VXWX\Dde

I7=/QRQ(V—H)-VXU-VX\Ide,

Igz/QRQ(V—u)-U-VXZ\Ddx,

and

19=/QRQ(V—u).a,VX\Ide

Now, as a consequence (9.78), the function W coincides with W, on the support
of yg, in particular, we may apply the bounds (9.55) in the same way as when
deriving (9.67) to obtain

4
le < c¢(D)R7. (9.91)

j=1

Moreover, I5 is exactly the same as in the preceding section, therefore esti-
mates (9.69)—(9.71) remain valid yielding

/ Is dt
0

< c(D) (e + Ile) . (9.92)
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As for I it can be treated in a similar way. First, we write
i 1 2 1 2
I dt = ou- V|V, |~ dx dr — oV - V.|V, V| dx dt,
0 2 Qr 2 Qg

where the first integral on the right-hand side can be bounded exactly as
in (9.69), (9.70) as, in view of the energy estimates (9.79), |V, ¥|? enjoys the
same integrability properties as IT.

The second integral reads

/ QV'VX|VX\II|2dx: 5/ Q_QV'Vxlvx\plzdx'FQ/ \& Vx|vx\p|23
Qr Qr € Qg

where the first term is controlled exactly as in (9.71), while

/ V-V, VU dx = divx()(R(U—i-Vx\P))Wx\Iflzdx—/ AV|V,|? dx,
Qr Qg

Qg

where again the first term is handled as in (9.71). Now, we use the energy and decay
estimates for the acoustic potential (9.79), (9.81) to conclude that

/ AV|V,|? dx
Qg

2)

a\
< c@IA¥ @ V¥l V¥ 20, < c(q.D) (1+ )"
where
1 n 1 n 1
9 p 2

= 1.
Thus taking g close to co, p > 2 close to 2, we may infer that

<c(a,D,T)e* forany 0 < o < 1.

/ AV|V,W|? dx
Qg

In view of (9.65), (9.66), the integrals I7, I3 can be estimated in a similar fashion
using again the decay estimates (9.81).
Finally, we use (9.77), (9.78) to rewrite

Ig=/QRQ(V—u)-8,VX\Ddx= QRQ(U-l-Vx\IJ—u)-B;Vx\Ide

= Q/ V-0,V W dx + (0 —0)V,W-0,V, W dx
R3 Q&

+ ] (06—0U-0,V,¥dx— | ou-9,V,¥dx,
Qr Qr
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where, furthermore,

’ / (0= Q) VW - 3,V W dx‘ + ’ / (0—Q)U- 3,7, W dx‘
QR QR

< c(D)

/ €7 Cq.y. Vde‘—l—c(D)
Qp

/ Q_QU-Vdex‘ <c(a,D)e*, 0<a <1,
Qr &

where we have used the dispersive estimates (9.81).
Summing up the previous observations we can rewrite (9.90) as

[€ex (0.0 + A2 +20. (1 - ) (U + W))L;_[ AT }
.

rT, V):| dr

+l/0 /QRQ(S(Q,ﬁ)—s(r,T))(V—u)-Vx®dxdt

4 1
§C(D)/ [v+d+e+c(a)e°‘+ R + Eer (Q,ﬁ,u
0

1 T T
- 2/ / p(o, ﬂ)diVdexdt—/ / ou-9,V, ¥ dx dr
& Jo Jag 0 Jag

1 T
! /0 /Q R [0 650 9) = 5(r. 7)) 80 + 0 (s(. ) = (- T) V- V,0] dv

/ / - tp(r T)- u V.p(r, T)] dxdr, 0 <a < 1.
82 QR

Step 3 We write

L[ eGlen st Ty (vV-w Ve dr
& Qr

= ! / 0150, 9) — 5(r Tl (V — ) - V,© dx
& Qr

4! [ 0150.9) — 5. T s (V — w) - V,© di,
& Qr
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where

)1 / 0[50, 9) — 5(r T)lew (V —u) - V,0 dx‘
& Qr

1
< 1D Va0 oo oz /Q [Q|V —u+ , (llo = + 119 —ﬂesslz)} d
R

r, T,V).

= D)k (0.9
Next,

! / 0150.9) — 5(r. Tl (V —w) - V,0 d,
£ Qr

1 1
- [ 0150 9) — 5(r. TV V- V.0 d + / Q15 T) — (0. ) u- V,0 d,
I Qr & Qr

where, by virtue of (9.45), (9.47),

< ec(D).

1
L[ eben st Tl v-von
& Qr
Now, using hypothesis (9.33), or, specifically (9.34), we get
olls(e. %) —s( Tll < ¢ [0 + ollog(@)] +ellog 91" + 9] = clote' 1+

where § > 0 can be taken arbitrarily small.

Remark This is the only point when we effectively use hypothesis (9.33) (the Third
law of thermodynamics).

Consequently, by virtue of the uniform bounds (9.47)-(9.49),

L[ et - ste g uv0 ar
Qg

c1(D) 12 148 | 93
E 8\)1/2 ||VX®||L°°(QR)”V / u||L6(QR;]R3) H [Q + Q + 19 ]res HLG/S(QR)

c1(D)
+ 12 55/3 ||Vl/2u||Wl,2(QR;R3).
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Thus we conclude that

1 2/3
' / ols(r, T)—s(0,9)]esu- Vi® dx| < c(D) /2 (9.94)
& Jag
After this step, the inequality (9.93) gives rise to
=1
[&R(g,ﬂu)g—}-SA 9+ 6@, (I—XR)(U+V\P) [ / VAL }
o
95)
T 1 82/3
SC(D)/ v+d+e+celw)e*+  + +85,R(Q,l9,u r,T,V) dr
0 R vl/2

1 .
- 2/ / p(o, ﬂ)diVdexdt—/ / ou- 9,V dx dr
&= Jo Jag 0 Jag

1 T
e /o /Q [0 65(e.9) =5~ T) 96 + 0 (5. 9) =5 T) V- V0| dr s

82// 1— ,p(rT) uVXp(rT)]dxdt,O§a<l.

Step 4 The next step is to observe that we can replace V in the remaining three
integrals on the right-hand side of (9.95) by U 4 V, W committing an error of order
is' Indeed we have

1 1
o [ re MG e = [ (p(0.9) . ) divs(ra(U+ Tk

| [p(Q, 9) —ple, 19)] .
= / “divi(rr(U + VW) dx
Qr €

[pe.) —pe.9)]
n / . = dive (2r(U + V,¥)) dx,
Qg €

where, by virtue of (9.42), (9.43), combined with (9.55),

| [pe ) -]
/QR

< 1
U dive(xr(U + Vi) dx| < e(D)
& eR
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and, using (9.46)—(9.48), and again (9.55),

p(o,¥) —p(o,¥)
/ [ ) ]resdivx(XR(U+ vy de| < D)
Qx € R?

As the integral
1 T
[ [ eten -se.mnv-v.0]aar
€ Jo Jag

can be handled in a similar fashion, we are allowed to rewrite (9.95) in the form

[&R(g,ﬂu)g—}-SA 9 + €0, (I—XR)(U+V\P) [ / IV }
9.56)
T 1 $2/3
< c(D)/0 [u—i—d—i—s—i—c(a)s“ + R + /2 + Eer (Q, Hu r,T,V)} dr

1 (7 z
+ 2/ / (p(g, ?) —plo, l‘})) A‘Ifdxdt—/ / ou- 3,V W dx dr
& 0 Qgr 0 Qr

t / f [g (5(0,9) — s(r. T)) 3,0 + 0 (s(0, ®) — s(r, T)) (U + V, ¥) - VXG] dx dr
Qpr

52/ / 1— rP(r T)— u V.p(r, 'T)] dxdr, 0 <a <.

Step S We rewrite the integrals containing the pressure as

! /ﬂ R [(1— ) dp(r, T) — u Vo(r, T)] (9.97)

&2

r—o (10p(r,T) 1op(r,T)
A dx
/QR e (r o ML s a,@))

_1/ Qu'(lf)p(r,T)VxA_’_18p(r,T)Vx®) &
Q r 0o r 09

Assume, for a moment, that we can replace in the above expression

13p(r,T)b 1 dp(o, ) andlf?p(r,T)b 1 dp(o,?)
rode Yo 0 UM o Yo o aw
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Consequently, in accordance with (9.84),

/ r—o (1 Pr.T)y o 1P T) ar@)) dr (9.98)
ar € r 39 r o
_1/ ou. (1 8p(r,T)VXA+ 13}7(777-)%@) dx
P Qn r aQ r 319

r—o [ 1dp(o,?) 1 9dp(e. 1)
~ A dx
[ ( & Myp s ey

_1/ ou. [1PE@D g\ LD o)
e Ja, o do o Y

=a)/ V_Qatde—w/ ou-V,Z dx
Qr € & Jag

=a)/ r_Qa,deJr/ ou- 9,V dx,
Qr & Qg

where the last term will cancel with his counterpart in (9.96).
Finally, we check the error committed by the approximation in (9.98) in two
steps. First,

r—o 1ap(r, 7)) 10dp(o,V) 1ap(r, 7)) 10dp(o,V)
/QR I3 |:<r do _Q do )aIA+<r v _Q a1 )B,Oi| dx'

<c(D)

_Q)s(|3,A| +19,0]) dx < c(D,e)(e + &%), 0 <a < 1,
QR

where we have used Egs. (9.74), (9.82) to express d,A, 9,0, together with the
bounds (9.81), (9.83).
The second step is to approximate

13p(r,T)  19p(e.?)
r 9o o do

a (1dp 1 azp
- [39 (Q 39) (DA + 0 000V @ 19)6} + 7, i llee @) < e(D),
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and
1ap(r,T) 19p(e.?)
ro 0% o 0JY

e ! aZP (0, )\ + ! 82 (0,0)® + ¢ l72 || < c(D).
= . . I, || o C
QBQBI?Q aﬂzQ 2 2[[Lo° (R3)

Thus we have

1/ ou. 18p(r,7')_18p(g,19) V.A
e Jap r do o Jo

N (1 op(r.T) _10p(e, ﬂ)) w] dx‘

roo90 o

Ssc(D)—I—’aaQ (; g‘Z)(Q,z?) ou -V, A2 dx’ ‘ P 0.9) | ou-vi(r®) dx’

909 o
‘ 1 8*p

0 -V, 0?
ZQaﬂZ(Q )/QRQ“

where the gradient dependent terms are of order &, which can be shown in the same
way as in (9.68)—(9.70).
Thus we may rewrite (9.96) as

[ER(Q,ﬂu’Q+£A 9 + €0, (I—XR)(U+V\P) [ / AR T
)
T 1 §2/3
< c(D)/0 |:v +d+ ¢+ cla)s” + R + " +&r (Q, d,ulr, T, V):| dr

1T : _
+ 2/ / (p(g,z‘/‘)—p(a,l‘})) A‘I’dxdt—i—w/ / "z dxdr
& Jo Jag o Jag €

1 // [g (s(0,9) — s(r, T)) 3,0 + 0 (s(0, 9) — s(r, T)) (U + Vx\p),vx@] de dr
& Jo Jag

forO<a < 1.
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Step 6 Repeating the arguments of the previous step, we may replace

:2 /O/Q (p(a, ) —ple, z‘/‘)) AW dx dt

// 317(9,19)9 Q+3p(a,z9)z‘}—z9 AW dedr
Qr 819 & ’

committing an error of order ¢*,0 < o < 1, and

-, / t / [0 (s(0.%) = 5(r. 7)) 8,0 + 0 (s(e. ) (- T)) U- V,0 | dr
& Jo Jag

%/ / [<Qas<g,z9)r—g+gas(g,z9) de-ﬁ)mdxdt
0o Jan do e 0 €

// [(Qas(g,ﬁ)r—g+Q8s(g,ﬂ)T—ﬂ)U'vX®dxdt
0 Jag o € v €

with an error of order ¢.
Summing up the previous estimates and using the first equation in (9.74), we get

1 (7 . _
2 / / (p(g, ¥) —plo, l‘})) AV dx df + @ / / "0z dvar
& Jo Jag o Jox €

-, / t / [0 (s(0.%) = 5(r. 7)) 8,0 + 0 (s(0. ) (- T)) U- V,0 | dr
& Jo Jag

// 317(9,19)9 Q+3p(a,l‘})z9—z‘} 57 deds
Qr 819 I !

+w// 70y zdvdr

o Jop €
i ds(0, %) 0 — 3s(0,9) § — 9

+// [ pree—o i) 5,0 dr dt
0o Jag do 3 RLs 3

‘ ds(0.)o—0  0ds(0.¥) ¥~
.V
+/0 /QR[<Q %0 . te s .| U VO dxdr
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+w/ / A8,dedt+// [ 0"@D 4 8CD )6 ava
0 Jog 0 Jog do v

+// [ e 8@V G 6 dvar
0 Qr aQ v

Introducing the notation

Lop(e.?) , _ 1dp(e.?) ,_ ds(0.9) N b?
a = 9 = bl = 9 a) = a ,
o o 99 ) ¢ d

we may write the above expression in a concise form

1 (7 . _
2 / / (p(g, ¥) —plo, l‘})) AV dx df + @ / / "0z dvar
& Jo Jag o Jox €

1 /’ / [Q (s(0,9) —s(r, 7)) 03,0 + 0 (s(0,?) —s(r,T)) U- Vx@] dx dr
& Jo Jag

v ¥ o-o bd 9-9
~ _ 3,(aA + bO) dx d
/O/QR<b2+ad e b +ad e )’(“ +50) dxdf
i 9 — -
+// (d A Q)8,®dxdt
0 Qr & &
+// [(dﬂ_ﬂ—bQ_Q)U-Vx(adxdt
0 Qr & &

+/ / Ad,(ah + bO) dxdt+/ (d® — bA)3,0 dx dt
0 Qr 0 Qr

T
+/ dO® —-bA)U - V,0 dxdr.
0 Jag
Now, the rest is just a bit of simple algebra. First we write

/ Ad,(aA + b®) + (dO — bA)0,0 dx
Qg

1

d a
= 9,(alh + bT)? 9,(dT —bA)? | dx
2/(2R|:b2+adr(a + )+b2+adt( )i|

1 =1 1 a =1
= 7% dx P? dx
290) I:/R3 i|t=0 * 202+ ad |:/R3 i|r=0
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In view of the acoustic energy balance (9.79), the former integral cancels with

=1
— [Q A dx}
2 Jgs =0

appearing on the left-hand side of (9.99), while

1 =1
a / Prdx| =0
202 +ad | Jos .

as P satisfies the transport equation (9.82) with div,U = 0.

Similarly,
v 9—0 o—
// (d —p° Q)a,(adxdt (9.100)
0 Qr & &
-0 bd 9 —v
— d:(aA + bO®) dx dt
//QR(b +ad & b>+ad ¢ (@A +50)

-0 e-e
Pdxd
b2+ad/ /QR( P )3’ .

while

v 9 —9 -
/ / [(d —»° Q)U.vx@) dx dr (9.101)
0 Qr & &

+/ (d® — bA)U - V,© dx dt
0 Jaog

-? _,e-o
- Vi(aA + bO) dx d
b2+ad/ /Q( . )U (aA + bO) dx dt

// TV 2T UV, — bA) dr dr
b2+ad Qr &

b T
d® — bA)U -V, (aA + b®) dx dt
+b2+ad/0 /QR( JU-V,(ah + bO)

a T
d® — bA)U - Vi(d® — bA) dx dr
+b2+ad/0 QR( ) ( )
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b T -1 -
= // d —p°7 % u.vzdrds
b>+ad Jy Jog & &

- 9 — 9 _
+ // d —5?2 7% Uu.v.pdrdr
b>+ad )y Jo, & e

bw

d® —bA)U - V,Z dx dr.
+b2+dd/0 QR( )

Thus, putting together (9.100), (9.101), we observe that the P-dependent terms
cancel out as P satisfies the transport equation (9.82) whereas the integrals
containing V,Z are of order c¢(«, D)%, 0 < a < 1 as a consequence of the dispersive
estimate (9.80).

Step 7 Finally, we observe that the integral
1 T
/ / o (s(0,9) —s(r,T)) V¥ - V,0 dx dr
& Jo Jag

is small of order ¢(D, @)e*, 0 < o < 1 due to the dispersive estimates (9.80).
Thus the relative energy inequality finally gives rise to

[Een (o0 |0+ en 2 + 60, (1 - ) (U + V.0))] (9.102)
T 1 82/3
< c(D) / v+d+e+cla)e” + + + Er (Q, vu|r, T, V) dr
0 eR V1/2

forO0 <o < 1.

9.5.4 Conclusion

Applying Gronwall’s lemma to (9.102) we obtain the following conclusion.

B VANISHING DIFFUSION LIMIT—ILL PREPARED INITIAL DATA:

Theorem 9.2 Let {Qg}r>1 be afamily of uniformly C*’ simply connected bounded
domains in R? satisfying (9.9), (9.10). Let the constitutive hypotheses (9.30)—(9.39)
be satisfied.

Let [o,V,u] be a weak solution of the Navier-Stokes-Fourier system (9.2)-
(9.8), (9.11), (9.12) in (0, T) x Qg starting from the initial data

Q(07) =go=0+ EQE)I)’ 19(()’ ) =9 =0+ 819(1), ll(O,') = u,
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where

0<D'<p,® <D,

1 1
105" l2nzeey@) + 1082 e nzeoy@s) + [0l @2Azeey@s) < D

In addition, let

319‘ 2
R>D+T‘/w lps (0, 9|
£

, where w = po(0,0) + .
0’s9 (0. 9)

Let U be a (strong) solution to the Euler system (9.15), (9.16) in R? x (0, Trax)
starting from the initial data

U(0,-) = H[vo].
where
Vo € C:."(R3), supp[vo] C B(0,D), [[vollenmsy < D, m > 4.

Let [Z, W] be the solution of the acoustic system (9.74), (9.75), with the initial
data

1 dp(o,d 1 dp(o, ¥

2= @), 1 D)

®o, V,¥y = Ht
0w 90 0 ow 3P 0 0 [vo]

where
Ao, O € CIE). [ Aallengesy+190lenges) < D. supplAo]. supp[@0] C B(0. D).

Let P solve the transport equation (9.82) in (0, Tyyax) X R3, with the initial data

e, dse.)

Py =
0 90 ¢

.

Finally, let A and © be determined as

1 1
31r7(é?,l‘/‘)AJr ap(e. )

®=2Z
ow 0o ow JY

ds(o, O ds(o, O
Qs(@ )A+Qs(9)

®=P.
o 90
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Then for any compact K C R* and any T € (0, Tyax), there are ¢; = ¢(T, D),
c2(D) such that

1
/ olu—U—V,¥|(z,-) dx
k2

2
_i_H[Q(r,.)—Q_A(t")} . "[ﬁ‘(r,-)—ﬂ _@(m]
& 12(K) &

+ o [ (14 b r O + D))

2

€8s

L2(K)

1 2/3
<ci(a,T,D)|v+d+ e+ cla)e* + +€
eR ~ vl/2

(1) 2
+c2(D) HQO — Ao @
R

p) _@ ? 2
+ |y — O LZ(QR)J’_|Iu0_V0||L2(QR;R3)

forany 0 <« < 1 and fora.a. T € [0,T).

Remark Theorem 9.2 gives an explicit rate of convergence in terms of the scaling
parameters. In particular, we need the quantity

1 &3
o
(u+d+€+c(a)8 + R + 1)1/2)

to be small. Such a process is termed path dependent.
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