
Chapter 8
Problems on Large Domains

Many theoretical problems in continuum fluid mechanics are formulated on
unbounded physical domains, most frequently on the whole Euclidean space R

3.
Although, arguably, any physical but also numerical space is necessarily bounded,
the concept of unbounded domain offers a useful approximation in the situations
when the influence of the boundary or at least its part on the behavior of the system
can be neglected. The acoustic waves examined in the previous chapters are often
ignored in meteorological models, where the underlying ambient space is large
when compared with the characteristic speed of the fluid as well as the speed of
sound. However, as we have seen in Chap. 5, the way the acoustic waves “disappear”
in the asymptotic limit may include fast oscillations in the time variable caused
by the reflection of acoustic waves by the physical boundary that may produce
undesirable numerical instabilities. In this chapter, we examine the incompressible
limit of the NAVIER-STOKES-FOURIER SYSTEM in the situation when the spatial
domain is large with respect to the characteristic speed of sound in the fluid.
Remarkably, although very large, our physical space is still bounded exactly in the
spirit of the leading idea of this book that the notions of “large” and “small” depend
on the chosen scale.

8.1 Primitive System

Similarly to the previous chapters, our starting point is the full NAVIER-STOKES-
FOURIER SYSTEM, where the Mach number is proportional to a small parameter ",
while the remaining characteristic numbers are kept of order unity.
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314 8 Problems on Large Domains

� SCALED NAVIER-STOKES-FOURIER SYSTEM:

@t%C divx.%u/ D 0; (8.1)

@t.%u/C divx.%u ˝ u/C 1

"2
rxp D divxS C 1

"
rxF; (8.2)

@t.%s/C divx.%su/C divx

� q
#

�
D �; (8.3)

with

� � 1

#

�
"2S W rxu � q � rx#

#

�
; (8.4)

where the inequality sign in (8.4) is motivated by the existence theory developed in
Chap. 3. The viscous stress tensor S satisfies the standard Newton’s rheological law

S D S.#;rxu/ D �.#/
�
rxu C rx

tu � 2

3
divxuI

�
C �.#/divxuI; (8.5)

where the effect of the bulk viscosity may be omitted, while the heat flux q obeys
Fourier’s law

q D q.#;rx#/ D ��.#/rx#: (8.6)

System (8.1)–(8.3) is considered on a family of spatial domains f�"g">0 “large”
enough in order to eliminate the effect of the boundary on the local behavior of
acoustic waves. Seeing that the speed of sound in (8.1)–(8.3) is proportional to 1="
we shall assume that the family f�"g">0 has the following property.

� PROPERTY (L):

The boundary @�" consists of two disjoint parts

@�" D � [ �";

where � is a fixed compact subset of R3 and, for any x 2 �",

"distŒx; �"� ! 1 for " ! 0: (8.7)
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In other words, given a fixed bounded cavity B � �" in the ambient space, the
acoustic waves initiated in B cannot reach the boundary, reflect, and come back
during a finite time interval .0;T/. Typically, we may consider � � R

3 an exterior
domain—an unbounded domain with a compact boundary �—and define

�" D � \
�

x 2 R
3
ˇ̌
ˇ jxj < 1

"m

�
; m > 1:

Similarly to Chap. 5, we suppose that the initial distribution of the density and
the temperature are close to a spatially homogeneous state, specifically,

%.0; �/ D %0;" D %C "%
.1/
0;"; (8.8)

#.0; �/ D #0;" D # C "#
.1/
0;" ; (8.9)

where %, # are positive constants, and

u.0; �/ D u0;": (8.10)

The analysis in this chapter will heavily lean on the assumption that both the
perturbations %.1/0;", #

.1/
0;" and the velocity field u0;" are spatially localized, specifically

they satisfy the far field boundary conditions

%
.1/
0;" ! 0; #

.1/
0;" ! 0; u0;" ! 0 as jxj ! 1

in some sense, and the solutions we look for are supposed to enjoy a similar property.
Finally, we impose the complete slip boundary conditions and the no flux

condition

u � nj@�" D 0; Sn � nj@�" D 0; q � nj@�" D 0: (8.11)

Problem Formulation We consider a family f%";u"; #"g">0 of (weak) solutions
to problem (8.1)–(8.6), (8.11) on a compact time interval Œ0;T� emanating from
the initial state satisfying (8.8)–(8.10) on a family of spatial domains �" enjoying
Property (L). Our main goal formulated in Theorem 8.3 below is to show that

u" ! U in L2..0;T/ � BIR3/ for any compact set B � �"; (8.12)

at least for a suitable subsequence " ! 0, where the limit velocity field complies
with the standard incompressibility constraint

divxU D 0: (8.13)
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Thus, in contrast with the case of a bounded domain examined in Chap. 5, we
recover strong (pointwise) convergence of the velocity field regardless the specific
shape of the “far field” boundary �", and, in fact, the boundary conditions imposed
on �".

The strong convergence of the velocity is a consequence of the dispersive
properties of the acoustic equation—the energy of acoustic waves decays on
any compact set. Mathematically this can be formulated in terms of Strichartz’s
estimates or their local variant discovered by Smith and Sogge [249]. Here we use
probably the most general result in this direction—the celebrated RAGE theorem.

As already pointed out, these considerations should be independent of the
behavior of f%";u"; #"g">0 on the far-field boundary �", in particular, we may
impose there any boundary conditions, not just (8.11). On the other hand, certain
restrictions have to be made in order to prevent the energy to be “pumped” into the
system at infinity. Specifically, the following hypotheses are required.

(i) The total mass of the fluid contained in�" is proportional to j�"j, in particular
the average density is constant.

(ii) The system dissipates energy, specifically, the total energy of the fluid con-
tained in �" is non-increasing in time.

(iii) The system produces entropy, the total entropy is non-decreasing in time.

Typical examples of fluid motion on unbounded (exterior) domains arise in
meteorology or astrophysics, where the complement of the physical space often
plays a role of a rigid core (a star) around which the fluid evolves. Since the effect
of gravitation is essential in these problems, it is natural to ask if the Oberbeck–
Boussinesq approximation introduced in Chap. 5 can be adapted to unbounded
domains.

The matter in this chapter is organized as follows. The Oberbeck–Boussinesq
approximation considered on an exterior domain is introduced in Sect. 8.2. Similarly
to the preceding part of this book, our analysis is based on the uniform estimates
of the family f%";u"; #"g">0 resulting from the dissipation inequality deduced in
the same way as in Chap. 5 (see Sect. 8.3 and the first part of convergence proof
in Sect. 8.4 ). The time evolution of the velocity field, specifically its gradient
component, is governed by a wave equation (acoustic equation) introduced in
Sect. 5.4.3 and here revisited in Sect. 8.5. Since the acoustic waves propagate with a
finite speed proportional to 1=", the acoustic equation may be handled as if defined
on an unbounded exterior domain, where efficient tools for estimating the rate
of local decay of acoustic waves as RAGE theorem are available, see Sects. 8.6
and 8.7. In particular, the desired conclusion on strong (pointwise) convergence of
the velocity fields is proved and rigorously formulated in Theorem 8.2. The proof of
convergence towards the limit system is then completed in Sect. 8.8 and formulated
in Theorem 8.3. We finish by discussing possible extensions and refinements of
these techniques in Sects. 8.9 and 8.10.
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8.2 Oberbeck–Boussinesq Approximation in Exterior
Domains

The OBERBECK–BOUSSINESQ APPROXIMATION has been introduced in Sect. 4.2.
The fluid velocity U and the temperature deviation‚ satisfy

� OBERBECK–BOUSSINESQ APPROXIMATION:

divxU D 0; (8.14)

%
�
@tU C divxU ˝ U

�
C rx… D �.#/	U C rrxF; (8.15)

%cp

�
@t‚C divx.‚U/

�
� �.#/	‚ � %#˛divx.FU/ D 0; (8.16)

r C %˛‚ D 0; (8.17)

where … is the pressure and the quantities cp D cp.%; #/, ˛ D ˛.%; #/ are defined
through (4.17), (4.18).

The function F D F.x/ represents a given gravitational potential acting on
the fluid. In real world applications, it is customary to take the x3-coordinate to
be vertical parallel to the gravitational force rxF D gŒ0; 0;�1�. This is indeed a
reasonable approximation provided the fluid occupies a bounded domain � � R

3,
where the gravitational field can be taken constant. Thus one may be tempted to
study system (8.14)–(8.17) with rxF D gŒ0; 0;�1� also un an unbounded physical
space (cf. Brandolese and Schonbek [32], Danchin and Paicu [74–76]). Although
such an “extrapolation” of the model is quite natural from the mathematical
viewpoint, it seems a bit awkward physically. Indeed, if the self-gravitation of the
fluid is neglected, the origin of the gravitational force must be an object placed
outside the fluid domain� therefore a more natural setting is

F.x/ D
Z

R3

1

jx � yjm.y/ dy; with m � 0; suppŒm� � R
3 n�; (8.18)

where m denotes the mass density of the object acting on the fluid by means of
gravitation. In other words, F is a harmonic function in�, F.x/ � 1=jxj as jxj ! 1.

Accordingly, we consider the Oberbeck-Boussinesq system on a domain � D
R3 n K exterior to a compact set K, @K D � , where, in accordance with (8.18), F
satisfies

�	F D m in R
3; rxF 2 L2.R3IR3/; suppŒm� � K: (8.19)
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In particular, introducing a new variable 
 D ‚ � #˛F=cp we can rewrite the
system (8.14)–(8.17) in the more frequently used form

divxU D 0;

%
�
@tU C divxU ˝ U

�
C rxP D �	U � %˛
rxG;

%cp

�
@t
 C divx.
U/

�
� �	
 D 0;

where we have set P D … � F2%#˛2=2cp.

8.3 Uniform Estimates

The uniform estimates derived below follow immediately from the general axioms
(i)–(iii) stated in the introductory section, combined with the hypothesis of thermo-
dynamic stability (see (1.44))

@p.%; #/

@%
> 0;

@e.%; #/

@#
> 0; (8.20)

where e D e.%; #/ is the specific internal energy interrelated to p and s through
Gibbs’ equation (1.2). We recall that the first condition in (8.20) asserts that the
compressibility of the fluid is always positive, while the second one says that the
specific heat at constant volume is positive.

Although the estimates deduced below are formally the same as in Chap. 5,
we have to pay special attention to the fact that the volume of the ambient space
expands for " ! 0. In particular, the constants associated to various embedding
relations may depend on ". Note that the existence theory developed in Chap. 3
relies essentially on boundedness of the underlying physical domain.

8.3.1 Static Solutions

Similarly to Sect. 6.3.1, we introduce the static solutions Q% D Q%" satisfying

rxp. Q%; #/ D " Q%rxF: (8.21)

Note that solutions of (8.21) depend on ". More specifically, fixing two positive
constants % > 0, # > 0, we look for a solution to (8.21) in the whole space R

3

satisfying the far field condition

Q%.x/ ! % as jxj ! 1: (8.22)
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Anticipating that Q% is positive, it is not difficult to integrate (8.21) to obtain

P. Q%/ D "F C P.%/; where P0.%/ D 1

%
@%p.%; #/:

Thus, if p is twice continuously differentiable in a neighborhood of .%; #/, the
unique solution Q%" of (8.21), (8.22) satisfies

Q%" � % D "

P0.%/
F C "2h"F; kh"kL1.R3/ � c; (8.23)

jrx Q%".x/j � "cjrxF.x/j for all x 2 R
3; (8.24)

uniformly for " ! 0.

8.3.2 Estimates Based on the Hypothesis of Thermodynamic
Stability

To derive the uniform bounds, it is convenient to introduce the total dissipation
inequality based on the static solutions, similar to (6.56) derived in the context of
stratified fluids.

� TOTAL DISSIPATION INEQUALITY:

Z

�"

h1
2
%"ju"j2 C 1

"2

�
H#.%"; #"/ � @%H#. Q%"; #/.%" � Q%"/ � H#. Q%"; #/

�i
.t/ dx

(8.25)

C #

"2
�"
�
Œ0; t� ��"

�

D
Z

�"

h1
2
%0;"ju0;"j2 C 1

"2

�
H
#
.%0;"; #0;"/� @%H

#
. Q%"; #/.%0;" � Q%"/ � H

#
. Q%"; #/

�i
dx

for a.a. t 2 Œ0;T�,
where

H#.%; #/ D %e.%; #/ � #%s.%; #/

is the Helmholtz function introduced in (2.48), and

�"

h
Œ0; t� ��"

i
D
Z

�"

h
%"s.%"; #"/.t/ � %0;"s.%0;"; #0;"/

i
dx (8.26)
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is the total entropy production,

�" � 1

#"

�
"2S" W rxu" � q" � rx#"

#"

�
; S" D S.#";rxu"/; q" D q.#";rx#"/:

(8.27)
Relation (8.25) reflects the general principles (i)–(iii) introduced in Sect. 8.1 and has
bees rigorously verified in the present form in Sect. 6.4.1 as long as�" is a bounded
domain. We recall that, by virtue of Gibbs’ relation (1.2),

@2H#.%; #/

@%2
D 1

%

@p.%; #/

@%
;
@H#.%; #/

@#
D %

#
.# � #/

@e.%; #/

@#
I

whence the hypothesis of thermodynamic stability (8.20) implies that

% 7! H#.%; #/ is strictly convex on .0;1/;

and

# 7! H#.%; #/ is decreasing for # < # and increasing for # > #

(see Sect. 2.2.3).
As observed several times in this book, the total dissipation inequality (8.25)

is the only source of uniform bounds available in the limit process. The minimal
assumption in this respect is the expression on the right hand side, controlled
exclusively by the initial data, to be bounded uniformly for " ! 0. To this end,
we take

%0;" D Q%" C " Q%.1/0;"; #0;" D # C "#
.1/
0;" ; (8.28)

where

k Q%.1/0;"kL2\L1.�"/ � c; k#.1/0;" kL2\L1.�"/ � c; (8.29)

Z

�"

Q%.1/0;" dx D
Z

�"

#
.1/
0;" dx D 0I (8.30)

and

ku0;"kL2\L1.�"IR3/ � c; (8.31)

where all constants are independent of ". As a matter of fact, boundedness in L1 is
never used and may be relaxed to weaker integrability properties, the bound in L2,
independent of " and the size of �", is however essential.
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Remark Comparing (8.28) with (8.8) we observe that

%
.1/
0;" D Q%.1/0;" C Q%" � %

"
;

where, by virtue of (8.23),

Q%" � %
"

D 1

P0.%/
F C "h"F:

As F is the gravitational potential determined by (8.18), the initial distribution of the
density %0;" cannot be taken a square integrable perturbation of the constant state %
on R

3.

As a direct consequence of the structural properties of the Helmholtz function
observed in Lemma 5.1, boundedness of the left-hand side of (8.25) gives rise to a
number of useful uniform estimates. Similarly to Sect. 6.4, we obtain

ess sup
t2.0;T/

kp
%"u"kL2.�"IR3/ � c; (8.32)

ess sup
t2.0;T/

���
h%" � Q%"

"

i
ess

���
L2.�"/

� c; (8.33)

ess sup
t2.0;T/

���
h#" � #

"

i
ess

���
L2.�"/

� c; (8.34)

ess sup
t2.0;T/

k Œ%"e.%"; #"/�reskL1.�"/ � "2c; (8.35)

and

ess sup
t2.0;T/

k Œ%"s.%"; #"/�reskL1.�"/ � "2c; (8.36)

where the “essential” and “residual” components have been introduced
through (4.39)–(4.45).

Remark We point out that, by virtue of (8.23),

k Q%" � %kL1.R3/ � "cI

whence the essential and residual sets may be defined using % exactly as in (4.39).
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In addition to the above estimates, we control the measure of the “residual set”,
specifically,

ess sup
t2.0;T/

jM"
resŒt�j � "2c; (8.37)

where M"
resŒt� � � was introduced in (4.43). Note that estimate (8.37) is

particularly important as it says that the measure of the “residual” set, on which
the density and the temperature are far away from the equilibrium state . Q%"; #/ (or,
equivalently .%; #/), is small, and, in addition, independent of the measure of the
whole set �".

Finally, we deduce

k�"kMC.Œ0;T���"/ � "2c; (8.38)

therefore,

Z T

0

Z

�"

1

#"
S" W rxu" dx dt � c; (8.39)

and

Z T

0

Z

�"

�q" � rx#"

#"
2

dx dt � "2c: (8.40)

8.3.3 Estimates Based on the Specific Form of Constitutive
Relations

The uniform bounds obtained in the previous section may be viewed as a con-
sequence of the general physical principles postulated through axioms (i)–(iii) in
the introductory section combined with the hypothesis of thermodynamic stabil-
ity (8.20). In order to convert them to a more convenient language of the standard
function spaces, structural properties of the thermodynamic functions as well as of
the transport coefficients must be specified.

Motivated by the general hypotheses of the existence theory developed in Sect. 3,
exactly as in Sect. 5, we consider the state equation for the pressure in the form

p.%; #/ D pM.%; #/„ ƒ‚ …
molecular pressure

C pR.#/„ƒ‚…
radiation pressure

; pM D #
5
2 P
� %
#

3
2

�
; pR D a

3
#4; a > 0;

(8.41)
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while the internal energy reads

e.%; #/ D eM.%; #/C eR.%; #/; eM D 3

2

#
5
2

%
P
� %
#

3
2

�
; eR D a

#4

%
; (8.42)

and, in accordance with Gibbs’ relation (1.2),

s.%; #/ D sM.%; #/C sR.%; #/; sM.%; #/ D S
� %
#

3
2

�
; sR D 4

3
a
#3

%
; (8.43)

where

S0.Z/ D �3
2

5
3
P.Z/� ZP0.Z/

Z2
for all Z > 0: (8.44)

The hypothesis of thermodynamic stability (8.20) reformulated in terms of the
structural properties of P requires

P 2 C1Œ0;1/\ C2.0;1/; P.0/ D 0; P0.Z/ > 0 for all Z � 0; (8.45)

0 <

5
3
P.Z/� ZP0.Z/

Z
� sup

z>0

5
3
P.z/� zP0.z/

z
< 1: (8.46)

Furthermore, it follows from (8.46) that P.Z/=Z5=3 is a decreasing function of Z,
and we assume that

lim
Z!1

P.Z/

Z
5
3

D p1 > 0: (8.47)

The transport coefficients � and � will be continuously differentiable functions
of the temperature # satisfying the growth restrictions

8
<
:

0 < �.1C #/ � �.#/ � �.1C #/;

0 < �.1C #3/ � �.#/ � �.1C #3/ for all # � 0;

9
=
; (8.48)

where �, �, �, and � are positive constants.
To facilitate future considerations and basically without loss of generality we

focus on the class of domains satisfying a slightly stronger version of Property (L),
namely

�" D � \
n
x 2 R

3
ˇ̌
ˇ jxj < d."/

o
; lim
"!0

"d."/ D 1; (8.49)

where� is an exterior domain with a regular (Lipschitz) boundary.
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Now, observe that (8.48), together with estimate (8.39), and Newton’s rheological
law expressed in terms of (8.5), give rise to

Z T

0

k rxu" C rx
tu" � 2

3
divxu"I k2L2.�"IR3�3/ dt � c; (8.50)

with c independent of " ! 0.
At this stage, we apply Korn’s inequality in the form stated in Proposition 2.1 to

r D Œ%"�ess, v D u" and use the bounds established in (8.33), (8.37), (8.50) in order
to conclude that

Z T

0

k u" k2W1;2.�"IR3/ dt � c uniformly for " ! 0 (8.51)

This can be seen writing

�" D � \
n
x 2 R

3
ˇ̌
ˇ jxj < r

o
[
n
x 2 R

3
ˇ̌
ˇr � jxj < d."/

o

for a suitable r so large that the ball fjxj < rg contains @� in its interior. Now,
writing

n
x 2 R

3
ˇ̌
ˇr � jxj < d."/

o
D [m."/

iD1 Qi

as a union of equi-Lipschitz sets Qi with mutually disjoint interiors, we can apply
Korn’s inequality on

� \
n
x 2 R

3
ˇ̌
ˇ jxj < r

o

and on each Qi separately to obtain the desired conclusion.
In a similar fashion, we can use Fourier’s law (8.6) together with (8.40) to obtain

Z T

0

Z

�"

�.#"/

#"
2

jrx#"j2 dx dt � "2c; (8.52)

which, combined with the structural hypotheses (8.48), the uniform bounds estab-
lished in (8.34), (8.37), and the Poincaré inequality stated in Proposition 2.2, yields

Z T

0

k#" � #k2W1;2.�"/
dt C

Z T

0

k log.#"/� log.#/k2W1;2.�"/
dt � "2c: (8.53)

Finally, a combination of (8.35), (8.41), and (8.47) yields

ess sup
t2.0;T/

Z

�"

Œ%"�
5=3
res dx � "2c: (8.54)

ess sup
t2.0;T/

Z

�"

Œ#"�
4
res dx � "2c: (8.55)
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8.4 Convergence, Part I

The uniform bounds established in the previous section allow us to pass to the limit
in the family f%";u"; #"g">0. To begin, we deduce from (8.33), (8.54) that

ess sup
t2.0;T/

k.%" � Q%"/.t; �/k.L2CL5=3/.�"/ ! 0 as " ! 0; (8.56)

which, together with (8.23), yields

ess sup
t2.0;T/

k.%" � %/.t; �/kL5=3.K/ ! 0 as " ! 0 for any compact K � �: (8.57)

Thus, at least for a suitable subsequence, %" converges a.a. to the constant
equilibrium state %.

Similarly, relations (8.34), (8.37), and (8.55) imply that

ess sup
t2.0;T/

k.#" � #/.t; �/kL2.�"/ ! 0 as " ! 0: (8.58)

Finally, extending suitably #", u" outside�" (cf. Theorem 8) we may assume, in
view of (8.51), (8.53) that

‚" 	 #" � #
"

! ‚ weakly in L2.0;TI W1;2.�//; (8.59)

and

u" ! U weakly in L2.0;TI W1;2.�IR3//; divxU D 0; (8.60)

passing to subsequences as the case may be.
Our next goal will be to establish pointwise (a.a.) convergence of the sequence

of velocities fu"g">0. More specifically, we show that

u" ! U (strongly) in L2..0;T/ � KIR3/ for any compact K � �: (8.61)

Observe that for (8.61) to hold, it is enough to show that

%"u" ! %U in L2.0;TI W�1;2.KIR3//: (8.62)

Indeed, for any ' 2 C1
c .�/, we have

%

Z T

0

Z

�

'ju"j2 dx dt D
Z T

0

Z

�

'.% � %"/ju"j2 dxdt C
Z T

0

Z

�

'%"u" � u" dx dt;
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where, in accordance with (8.57), (8.60), and the embedding relation W1;2.�/ ,!
L6.�/,

Z T

0

Z

�

'.% � %"/ju"j2 dx dt ! 0;

while, as a consequence of (8.60), (8.62),

Z T

0

Z

�

'%"u" � u" dx dt ! %

Z T

0

Z

�

'jUj2 dx dt:

Remark As the function ' is compactly supported in �, its support is contained in
�" for all " > 0 small enough and all the above integrals are therefore well defined.

The final observation is that, by virtue of (8.32), (8.33), and (8.54),

ess sup
t2.0;T/

k%"u"k
L
5
4 .KIR3/ � c.K/ for any compact K � �:

As the embedding L5=4.K/ ,! W�1;2.K/ is compact, we infer that the desired
relation (8.62) follows as soon as we are able to show that the family of functions

n
t 7!

Z

�

.%"u"/.t; �/ � ' dx
o

is precompact in L2.0;T/ (8.63)

for any fixed ' 2 C1
c .�/. Relation (8.63) will be shown in the following part of

this chapter as a consequence of the local decay of acoustic waves. Note that (8.63)
is very weak with respect to regularity in the space variable. This is because
compactness in space is already guaranteed by the gradient estimate (8.51).

8.5 Acoustic Equation

The acoustic equation, introduced in Chap. 4 and thoroughly investigated in various
parts of this book, governs the time evolution of the acoustic waves and as such
represents a key tool for studying the time oscillations of the velocity field in the
incompressible limits for problems endowed with ill-prepared data. It can be viewed
as a linearization of system (8.1)–(8.3) around the static state f%; 0; #g.

If f%";u"; #"g">0 satisfy (8.1)–(8.3) in the weak sense specified in Chap. 1, we
get, exactly as in Sect. 5.4.3,

Z T

0

Z

�"

h
"
�%" � %

"

�
@t' C %"u" � rx'

i
dx dt D 0 (8.64)
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for any test function ' 2 C1
c ..0;T/ ��"/;

Z T

0

Z

�"

"%"

� s.%"; #"/� s.%; #/

"

�
@t' dx dt (8.65)

D
Z T

0

Z

�"

"%"

� s.%; #/� s.%"; #"/

"

�
u" � rx' dx dt

C
Z T

0

Z

�"

�.#"/rx#"

#"
� rx' dx dt� < �"I' >ŒMIC�.Œ0;T���/

for any test function ' 2 C1
c ..0;T/ ��"/; and

Z T

0

Z

�"

h
".%"u"/ � @t' C

�p.%"; #"/ � p.%; #/

"
� %F

�
divx'

i
dx dt (8.66)

D
Z T

0

Z

�"

"
�
S" � %"u" ˝ u"

�
W rx' dx dt C

Z T

0

Z

�"

.%� %"/rxF � ' dx dt

for any test function ' 2 C1
c ..0;T/ ��"IR3/.

Thus, after a simple manipulation, we obtain

Z T

0

Z

�"

h
"!r"@t' C !%"u" � rx'

i
dx dt (8.67)

D A
Z T

0

Z

�"

"%"

� s.%; #/ � s.%"; #"/

"

�
u" � rx' dx dt

CA
Z T

0

Z

�"

�rx#"

#"
� rx' dx dt � A < �"I' >ŒMIC�.Œ0;T���/

for all ' 2 C1
c ..0;T/ ��"/, and

Z T

0

Z

�"

h
".%"u"/ � @t' C !r"divx'

i
dx dt (8.68)

D
Z T

0

Z

�"

h
!r" �

�p.%"; #"/� p.%; #/

"

�i
divx' dx dt

C
Z T

0

Z

�"

"
�
S" � %"u" ˝ u"

�
W rx' dx dt C

Z T

0

Z

�"

.% � %"/rxF � ' dx dt
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for any test function ' 2 C1
c ..0;T/ ��"IR3/, where we have set

r" D %" � %
"

C A

!
%"

� s.%"; #"/� s.%; #/

"

�
� %

!
F; (8.69)

with the constants !, A determined through

A%
@s.%; #/

@#
D @p.%; #/

@#
; ! C A%

@s.%; #/

@%
D @p.%; #/

@%
: (8.70)

As a direct consequence of Gibbs’ equation (1.2), we have

@s

@%
D � 1

%2
@p

@#
;

in particular,

! D p%.%; #/C jp#.%; #/j2
%2s#.%; #/

as soon as e, p comply with the hypothesis of thermodynamic stability stated
in (8.20).

Finally, exactly as in Sect. 5.4.7, we introduce the “time lifting” †" of the
measure �" as

†" 2 L1.0;TIMC.�"//\ Cweak��.Œ0;T�;MC.�"//

< †"I >ŒL1.0;TIM.�"//IL1.0;TIC.�//�WD< �"I IŒ'� >ŒMIC�.Œ0;T���"/; (8.71)

where

IŒ'�.t; x/ D
Z t

0

'.s; x/ ds:

Consequently, system (8.67), (8.68) can be written in a concise form as

� ACOUSTIC EQUATION:

Z T

0

Z

�"

h
"Z"@t' C V" � rx'

i
dx dt D

Z T

0

Z

�"

"F1" � rx' dx dt (8.72)

for all ' 2 C1
c ..0;T/ ��"/,
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Z T

0

Z

�"

h
"V" � @t' C !Z"divx'

i
dx dt D

Z T

0

Z

�"

�
"F2" W rx' C "F3"divx'

�
dx dt

(8.73)

C A

"!
< †"I divx' >ŒL1.0;TIM.�"//IL1.0;TIC.�"//� C

Z T

0

Z

�"

"F4" � ' dx dt

for all ' 2 C1
c ..0;T/ ��"IR3/, ' � nj@�" D 0,

where we have set

Z" D %" � %
"

C A

!
%"

� s.%"; #"/� s.%; #/

"

�
C A

"!
†" � %

!
F; V" D %"u"; (8.74)

F1" D A

!
%"

� s.%; #/ � s.%"; #"/

"

�
u" C A

!

�rx#"

"#"
; (8.75)

F
2
" D S" � %"u" ˝ u"; (8.76)

F3" D !

	
%" � %

"2



CA%"

� s.%"; #"/� s.%; #/

"2

�
�
�p.%"; #"/� p.%; #/

"2

�
; (8.77)

and

F4" D % � %"

"
rxF: (8.78)

Here, similarly to Chap. 5, we have identified the “lifted measure”

Z

�"

†"' dx WD< †"I' >ŒMIC�.�"/ :

8.5.1 Boundedness of the Data

Our next goal is to examine the integrability properties of the quantities appearing
in the weak formulation of the acoustic equation (8.72), (8.73). We start by writing

%" � %

"
D %" � Q%"

"
C Q%" � %

"
D
�
%" � Q%"
"

�

ess
C
�
%" � Q%"
"

�

res
C Q%" � %

"
;

where, in accordance with the uniform bounds (8.33), (8.37), and (8.54),

ess sup
t2.0;T/

����
�
%" � Q%"
"

�

ess

����
L2.�"/

� c; ess sup
t2.0;T/

����
�
%" � Q%"
"

�

res

����
L1.�"/

� "c:

(8.79)
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Remark It is worth noting that the measure of the “residual set” is uniformly small
as stated in (8.37). In particular, unlike on the unbounded domain �, the Lp norms
on the residual set are comparable.

Next, by virtue of (8.23), (8.24),

����
Q%" � %

"

����
.L1\Lq/.R3/

� c for any q > 3; (8.80)

����rx

	 Q%" � %
"


����
L2.R3IR3/

� c: (8.81)

Remark The previous computations reveal one of the main difficulties in obtaining
uniform bounds, namely the terms proportional to the difference . Q%�%/=" � F that
are not (uniformly) square integrable in �".

Next, we have

%"s.%"; #"/ � %s.%; #/

"
D %"s.%"; #"/ � Q%"s. Q%"; #/

"
C Q%"s. Q%"; #/ � %s.%; #/

"

D
"
%"s.%"; #"/� Q%"s. Q%"; #/

"

#

ess

C
"
%"s.%"; #"/� Q%"s. Q%"; #/

"

#

res

C Q%"s. Q%"; #/� %s.%; #/

"
;

where, by virtue of (8.33), (8.34), (8.36), (8.37),

ess sup
t2.0;T/

�����

"
%"s.%"; #"/ � Q%"s. Q%"; #/

"

#

ess

�����
L2.�"/

� c; (8.82)

ess sup
t2.0;T/

�����

"
%"s.%"; #"/ � Q%"s. Q%"; #/

"

#

res

�����
L1.�"/

� "c; (8.83)
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and, in accordance with (8.23), (8.24),

�����
Q%"s. Q%"; #/ � %s.%; #/

"

�����
.L1\Lq/.R3/

� c for all q > 3; (8.84)

�����rx

 
Q%"s. Q%"; #/� %s.%; #/

"

!�����
L2.R3IR3/

� c: (8.85)

Finally, as a consequence of (8.38),

ess sup
t2.0;T/

����
†".t; �/
"

����
MC.�"/

� "c; (8.86)

and we may infer that Z" introduced in (8.74) can be written in the form

Z".t; �/ D Z1" .t; �/C Z2" .t; �/C Z3.t; �/C Z4; (8.87)

where

ess sup
t2.0;T/

kZ1"kMC.�"/
� "c; ess sup

t2.0;T/
kZ2"kL1.�"/; (8.88)

ess sup
t2.0;T/

kZ3"kL2.�"/ � c; Z4 D � %
!

QF 2 D1;2.�/;

with

QF 2 C1.�/; QF.x/ D 0 for jxj < r1; QF.x/ D F.x/ for jxj > r2; (8.89)

and where @� � B.0; r1=2/.

Remark Note that F being determined by (8.19) admits a decomposition

F D QF C G; G 2 L2.R3/:

We recall that the space D1;2.�/ is defined as the closure of C1
c .�/ with respect to

the norm

kvk2D1;2.�/ D
Z

�

jrxvj2 dx:
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Now, similarly,

V" D Œ%"u"�ess C Œ%"u"�res;

where, by virtue of (8.32), (8.37), and (8.54),

ess sup
t2.0;T/

kŒ%"u"�esskL2.�"IR3/ � c; ess sup
t2.0;T/

kŒ%"u"�reskL1.�"IR3/ � "c: (8.90)

The “forcing terms” F1" , F
2
" , F3" , and F4" can be treated in a similar manner. We

focus only on the most complicated term:

!

	
%" � %

"2



C A

 
%"s.%"; #"/� %s.%; #/

"2

!
�
 

p.%"; #"/� p.%; #/

"2

!

D !

	
%" � Q%"
"2



C A

 
%"s.%"; #"/� Q%"s. Q%"; #/

"2

!
�
 

p.%"; #"/� p. Q%"; #/
"2

!

C!
	 Q%" � %

"2



C A

 
Q%"s. Q%"; #/ � %s.%; #/

"2

!
�
 

p. Q%"; #/ � p.%; #/

"2

!
:

Seeing that ! and A have been chosen to satisfy

! C A@%.%s/.%; #/ � @%p.%; #/ D 0;

the quantity

!

	
%" � Q%"
"2



C A

 
%"s.%"; #"/� Q%"s. Q%"; #/

"2

!
�
 

p.%"; #"/ � p. Q%"; #/
"2

!

contains only quadratic terms proportional to %" � Q%", # � # and as such may be
handled by means of the estimates (8.33)–(8.37), (8.53)–(8.55). Moreover, by the
same token, we may use (8.23), (8.24) to deduce

���!
	
%" � Q%"
"2



C A

 
%"s.%"; #"/� Q%"s. Q%"; #/

"2

!
� (8.91)

 
p.%"; #"/� p. Q%"; #/

"2

!���
.L1\Lq/.R3/

� c for all q > 3=2:
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8.5.2 Acoustic Equation Revisited

Summing up the previous considerations, we may rewrite the acoustic equa-
tion (8.72), (8.73) in a more concise form.

� ACOUSTIC EQUATION (REVISITED):

"

Z T

0

< Z".t; �/; @t' > dt C
Z T

0

Z

�"

V" � rx' dx dt (8.92)

D �" < Z0;"; '.0; �/ > C"
Z T

0

Z

�"

�
H1
" � rx' C H2

" � rx'
�

dx dt;

for any ' 2 C1
c.Œ0;T/ ��"/,

"

Z T

0

Z

�"

V" � @t' dx dt C !

Z T

0

< Z".t; �/; divx' > dt (8.93)

D �"
Z

�"

V0;" � '.0; �/ dx

C"
Z T

0

< G1
".t; �/; divx' > C"

Z T

0

Z

�

G
2
" W rx' dx dt dt

C"
Z T

0

Z

�

G
3
" W rx' dx dt C "

Z T

0

Z

�

G4
" � ' dx dt;

for any ' 2 C1
c.Œ0;T/ ��"IR3/, ' � nj@�" D 0.

Remark Note that, unlike (8.72), (8.73), the weak formulation (8.92), (8.93) already
incorporates the satisfaction of the initial conditions.

We have

Z" 2 Cweak�.�/.Œ0;T�IM.�"//;

and

Z" D Z1" C Z2" C Z3" C Z1;2;
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where

ess sup
t2.0;T/

kZ1" .t; �/kMC.�"/
� "c; ess sup

t2.0;T/
kZ2" .t; �/kL1.�"/ � c; (8.94)

ess sup
t2.0;T/

kZ3" .t; �/kL2.�"/ � c; Z1;2 D � %
!

QF 2 D1;2.�/;

and

Z0;" D Z10;" C Z20;" C Z30;" C Z1;2; (8.95)

where

kZ10;"kM.�"/
� "c; kZ20;"kL1.�"/ � c; kZ30;"kL2.�"/ � c: (8.96)

Furthermore,

V" D V1" C V2";

ess sup
t2.0;T/

kV1"kL1.�"IR3/ � "c; ess sup
t2.0;T/

kV2"kL2.�"IR3/ � c; (8.97)

kV0;"k.L1\L2/.�"IR3/ � c; (8.98)

and

V" 2 Cweak.Œ0;T�I L1.�"//:

Finally,

Z T

0

�
kH1

"k2L1.�"IR3/ C kH2
"k2L2.�"IR3/

�
dt � c; (8.99)

G1 2 Cweak�.�/.Œ0;T�IMC.�"//; sup
t2.0;T/

kG1.t; �/kM.�"/
� c; (8.100)

Z T

0

�
kG2

"k2L1.�"IR3�3/ C kG3
"k2L2.�"IR3�3/

�
dt � c; (8.101)

ess sup
t2.0;T/

kG4
".t; �/k.L5=3/.�"IR3/ � c; (8.102)

where all constants are independent of ".
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8.6 Regularization and Extension to �

As already observed and used in several parts of this book, the acoustic equa-
tion (8.92), (8.93) provides a suitable platform for studying the time evolution of
the gradient component of the velocity field, and, in particular, for establishing
the desired property (8.63) that guarantees strong (pointwise) convergence of the
velocity fields.

To facilitate the forthcoming discussion it is more convenient

• to deal with classical (strong) solutions to the acoustic system (8.92), (8.93);
• to consider the problem on the limit domain� rather than �".

8.6.1 Regularization

A standard regularization of generalized functions is provided by a spatial convolu-
tion with a family of regularizing kernels f�ıgı>0, namely

Œv�ı.x/ D
Z

R3

�ı.x � y/v.y/ dy;

where the kernels �ı are specified in Sect. 11.2 in Appendix. Note that this can be
applied to a general distribution v 2 D0

R
3, setting

Œv�ı.x/ D hvI �ı.x � �/i for any x 2 R
3:

Regularization of vector valued functions (distributions) is performed component-
wise.

For " > 0,�" fixed for a moment, we proceed by regularizing the initial data and
the driving forces in (8.92), (8.93).

Regularizing the Initial Data As for Z20;", we take

Z20;";ı D Œ�ıZ
2
0;"�

 ;

where �ı is a cut-off function

�ı.x/ D
8
<
:
1 for x 2 �"; distŒx; @�"� > 1;

0 otherwise
:

It is straightforward to see that

��Z20;";ı
��

L1.�"/
� kZ20;"kL1.�"/; (8.103)
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and that ı, .ı/ can be adjusted in such a way that

Z20;";ı 2 C1
c .�"/; Z20;";ı ! Z20;" in L1.�"/ as ı ! 0 (8.104)

for any fixed ".
Applying the same treatment to Z30;" we obtain Z30;";ı ,

��Z30;";ı
��

L2.�"/
� kZ30;"kL2.�"/; (8.105)

Z30;";ı 2 C1
c .�"/; Z30;";ı ! Z30;" in L2.�"/ as ı ! 0 (8.106)

for any fixed ".
The “measure-valued” component Z10;" 2 M1.�"/ is slightly more delicate.

First, we use the approximation theorem (Theorem 12 in Notation, Definitions, and
Function Spaces, Sect. 7) to construct a sequence QZ10;";ı such that

QZ10;";ı 2 L1.�"/; QZ10;";ı 2 L1.�"/ � 0;
�� QZ10;";ı

��
L1.�"/

� kZ10;"kMC.�"/
;

QZ10;";ı ! Z10;" weakly - (*) in M.�"/:

(cf. Theorem 12). Next, similarly to the above, we cut-off and regularize the
functions QZ10;";ı to obtain Z10;";ı such that

Z10;";ı 2 C1
c .�"/; Z10;";ı 2 L1.�"/ � 0;

��Z10;";ı
��

L1.�"/
� kZ10;"kMC.�"/

; (8.107)

Z10;";ı ! Z10;" weakly - (*) in M.�"/ for any fixed " > 0; (8.108)

specifically,

Z

�"

Z10;";ı' dx ! ˝
Z10;"I'

˛
M.�"/;C.�"/

for any ' 2 C.�"/:

Finally, with (8.98) in mind, we may construct V0;";ı ,

V0;";ı 2 C1
c .�"IR3/; kV0;";ık.L1\L2/.�"IR3/ � kV0;"k.L1\L2/.�"IR3/ (8.109)

V0;";ı ! V0;" in L2.�"IR3/ as ı ! 0 (8.110)

for any fixed ".

Regularizing the Forcing Terms The forces Hj
", G

j
", j D 1; 2, G3

" can be
regularized by means of the following procedure.

• Extend a given function H 2 L2.0;TI X/, X D L1.�/; L2.�/; MC.�/ to be
zero for t � 0, t � T.
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• Use the regularization in time by means of the convolution

ŒH�ı.�/ D
Z 1

�1
�ı.� � t/H.t/ dt

to produce an approximate sequence

Hı 2 C1.RI X/; kHıkL2.RIX/ � kHkL2.0;TIX/; Hı ! H in L2.0;TI X/

cf. Sect. 11.2 in Appendix.
• Approximate Hı by piece-wise constant functions, specifically by Hı

N ,

Hı
N D

N�1X
jD0

�Œ.Tj/=N;T.jC1/=N�hj; hj 2 X:

• Similarly to the preceding section, approximate each function hj 2 X by Qhj 2
C1

c .�"/ producing

QHı
N D

N�1X
jD0

�Œ.Tj/=N;T.jC1/=N� Qhj:

• Regularize the functions QHı
N performing once more the time convolution

� QHı
N

�ı
.�/ D

Z 1

�1
�ı.� � t/ QHı

N.t/dt:

Going back to the acoustic equation (8.92), (8.93), we may regularize the forcing
terms as follows:

Hj
";ı 2 C1

c .Œ0;T� ��"IR3/; j D 1; 2;

Z T

0

�
kH1

";ık2L1.�"IR3/ C kH2
";ık2L2.�"IR3/

�
dt (8.111)

�
Z T

0

�
kH1

"k2L1.�"IR3/ C kH2
"k2L2.�"IR3/

�
dt;

Hj
";ı ! Hj

" in L2.0;TI Lj.�"IR3// as ı ! 0; j D 1; 2 (8.112)



338 8 Problems on Large Domains

for any fixed " > 0;

G
j
";ı 2 C1

c .Œ0;T� ��"IR3�3/; j D 2; 3;

Z T

0

�
kG1

";ık2L1.�"IR3�3/ C kG2
";ık2L2.�"IR3�3/

�
dt; (8.113)

�
Z T

0

�
kG1

"k2L1.�"IR3�3/ C kG2
"k2L2.�"IR3�3/

�
dt

G
2
";ı ! G

2
" in L2.0;TI L1.�"IR3�3// as ı ! 0; (8.114)

G
3
";ı ! G

3
" in L2.0;TI L2.�"IR3�3// as ı ! 0; (8.115)

and

sup
t2Œ0;T�

��G4
";ı.t; �/

��
L5=3.�IR3/ � ess sup

t2Œ0;T�

��G4
".t; �/

��
L5=3.�IR3/ ; (8.116)

G4
";ı ! G3

" in Lp.0;TI L5=3.�"IR3�3//; 1 � p < 1 as ı ! 0 (8.117)

for any fixed " > 0.
Finally, we find

G1
";ı 2 C1

c .Œ0;T� ��/

such that

sup
t2Œ0;T�

kG1
";ıkL1.�"/ � sup

t2Œ0;T�
kG1

"kM.�"/
; (8.118)

Z

�"

G1
";ı.t; �/' dx ! ˝

G1
".t; �/; '

˛
for any ' 2 C.�"/; t 2 Œ0;T� as ı ! 0

(8.119)
for any fixed " > 0.

8.6.2 Reduction to Smooth Data

We recall that our ultimate goal is to show (8.63), or, in terms of the present notation,

�
t 7!

Z

�

V" � ' dx

�
is precompact in L2.0;T/; (8.120)
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for any fixed ' 2 C1
c .�IR3/. For the rest of this section we therefore fix ' and

suppose its support is contained in a ball B � �.
As it is definitely more convenient to replace the abstract weak formulation of

the acoustic equation by a classical one, meaning to consider the regularized data
constructed in the previous section, we show that the error in (8.120) resulting from
such a simplification can be made arbitrarily small.

Step 1: Eliminating the Initial Data Z1;2 We start by the term Z1;2 appearing
in (8.95). For a given (small) constant � > 0, we find a function Z1;2� ,

Z1;2� 2 C1
c .�/; krxZ1;2� � rxZ1;2k2L2.�IR3/ < �:

In view of (8.49),

Z1;2� 2 C1
c .�"/

as soon as 0 < " < "0.�/.
We estimate the error resulting from replacing Z1;2 by Z1;2� in the acoustic

equation. More specifically, we look for (weak) solutions to the problem

"@tZ� C divxV� D 0; "@tV� C !rxZ� D 0 in .0;T/ ��"; V� � nj@�" D 0;

with that initial data

Z�.0; �/ D Z1;2 � Z1;2� ; V�.0; �/ D 0;

or, more precisely, in its weak formulation

"

Z T

0

Z

�"

Z�.t; �/ � @t' dxdt C
Z T

0

Z

�"

V� � rx' dx dt (8.121)

D �
Z

�"

"
�

Z1;2 � Z1;2�
�
'.0; �/ dx for any ' 2 C1

c.Œ0;T/ ��"/;

"

Z T

0

Z

�"

V� � @t' dx dt C !

Z T

0

Z

�"

Z�.t; �/divx' dxdt D 0 (8.122)

for any ' 2 C1
c.Œ0;T/ ��"IR3/; ' � nj@�" D 0:

System (8.121), (8.122) can be seen as a weak formulation of the standard
acoustic wave equation with the initial data

Z�.0; �/ 2 W1;2.�"/; V�.0; �/ D 0
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belonging to the associated energy space W1;2 � W1;2
n . Consequently, the problem

admits a unique solution

Z� 2 C.Œ0;T�I W1;2.�"//; (8.123)

V� D rx‰� 2 W1;2.�"/;

Z

�"

‰� dx D 0; rx‰� � nj@�" D 0;

satisfying the energy balance

Z

�"

!jrxZ�.t; �/j2 C jdivxV�.t; �/j2 dx D
Z

�"

!jrxZ�.0; �/j2 C !jdivxV�.0; �/j2 dx

(8.124)
D !krxZ1;2� � rxZ1;2k2L2.�"IR3/ � !�;

cf. Sect. 11.1 in Appendix.
To proceed, we need to show that solutions of system (8.121), (8.122) admits a

finite speed of propagation proportional to
p
!=". This can be seen by “integrat-

ing” (8.121), (8.122) over the space-time cone

C D
�
.t; x/

ˇ̌
ˇ t 2 .0; �/; x 2 B \�; distŒ@B� >

p
!

"
t

�

where B D B.r; 0/ is a ball (centered at zero) containing @� in its interior. As Z�,
V� belong to W1;2.C/ (the time derivatives being computed from the equations), the
Gauss-Green theorem can be used to obtain

0 D
Z

C

h
!@tZ�Z� C !divxV�Z� C @tV� � V� C !

"
rxZ� � V�

i
dx dt

D
Z

C

�
1

2
@t

!jZ�j2 C jVj2�C !

"
divx


Z�V�

��
dx dt

D
"Z

n
jxj<r�

p

!

" t
o
\�

1

2


!jZ� j2 C jVj2� dx

#tD�

tD0

C
Z
n
t2.0;�/; xDr�

p

!
" t
o
�
1

2


!jZ�j2 C jVj2� nt C !

"
Z�V�nx

�
dSt;x;

where

1

2


!jZ� j2 C jVj2� nt C !

"
Z�V�nx � 1

2
!

 
jZ� j2 C

ˇ̌
ˇ̌ Vp
!

ˇ̌
ˇ̌
2
!	

nt �
p
!

"
jnxj



� 0
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yielding the desired conclusion

Z
n
jxj<r�

p

!

" �
o
\�

1

2


!jZ� j2 C jVj2� dx �

Z

fjxj<rg\�
1

2


!jZ� j2 C jVj2� dx

(8.125)
for any 0 � � � T.

Recalling our goal—proving (8.120)—we realize that what matters is only the
behavior of the solution V� on the fixed compact set containing suppŒ'�. As the
family �" enjoys Property (L) specified through (8.49), and i view of the finite
speed of propagation property enjoyed by solutions of (8.121), (8.122), we may
therefore replace V� in by a weak solution QV� D rx Q‰� of the same system on the
limit domain�. Accordingly,

Z

�

V� � ' dx D
Z

�

QV� � ' dx D
Z

�

rx Q‰� � H?' dx (8.126)

D
Z

�

rx Q‰� � H?' dx D �
Z

�

	 Q‰� ˆ dx;

where H denotes the Helmholtz projection on the limit domain � and H?Œ'� D
rxˆ. Note that, similarly to 	‰� ,

sup
t2.0;T/

k	 Q‰�k2L2.�/ � !�

by virtue of teh energy bounds stated in (8.124). Finally, as ' 2 C1
c .BIR3/, we get

ˆ 2 D1;p.�/,

krxˆkLp.�IR3/ � c.p/ for all 1 < p < 1;

in particular, by virtue of Sobolev inequality, ˆ 2 L2.�/ (cf. Theorem 7). Thus the
bound (8.124) yields the desired conclusion

ˇ̌
ˇ̌
Z

�

V� � ' dx

ˇ̌
ˇ̌ � k	 Q‰�kL2.�/kˆkL2.�/ � c.'/

p
�; (8.127)

meaning the error in (8.120) can be made small if we replace Z1;2 by Z1;2� in (8.95).

Step 2: Approximating Data Given by Measure The next step is to estimate the
error in (8.120) if we replace ŒZ";V"� by the solution of the same system endowed
with the mollified initial data

Z";ı.0; �/ D Z10;";ı C Z20;";ı C Z30;";ı C Z1;2� ; V";ı.0; �/ D V0;ı;
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and with the driving forces determined through the regularized functions

Hj
";ı ; G

j
";ı ; j D 1; 2; G3

";ı

identified in Sect. 8.6.1. As the deviation between the solution of the homogeneous
acoustic system emanating from the data ŒZ1;2; 0� and ŒZ1;2� ; 0� has been estimated in
the previous part, our goal reduces to showing

sup
t2.0;T/

ˇ̌
ˇ̌
Z

�

V�.t; �/ � ' dx

ˇ̌
ˇ̌ < o.�/; o.�/ ! 0 as � ! 0: (8.128)

for a given (small) � > 0, where ' is the same as in (8.120), and ŒZ� ;V� � is a (weak)
solution of the acoustic system

"

Z T

0

< Z�.t; �/; @t' > dt C
Z T

0

Z

�"

V� � rx' dx dt (8.129)

D �" < Z0;� ; '.0; �/ > C"
Z T

0

Z

�"

H� � rx' dx dt;

for any ' 2 C1
c.Œ0;T/ ��"/,

"

Z T

0

Z

�"

V� � @t' dx dt C !

Z T

0

< Z�.t; �/; divx' > dt (8.130)

D �"
Z

�"

V0;� � '.0; �/ dx

C"
Z T

0

˝
g�; divx'

˛
dt C "

Z T

0

Z

�"

G�.t; �/ W rx' dx dt dt C "

Z T

0

Z

�"

h� � ' dx dt;

for any ' 2 C1
c.Œ0;T/ ��"IR3/, ' � nj@�" D 0, with the initial data

Z0;� D
3X

jD1

�
Zj
0;" � Zj

0;";ı

�
; V0;� D V0;" � V0;";ı ;

and the forces

H� D
2X

jD1

�
Hj
" � Hj

";ı

�
; G� D

2X
jD1

�
G

j
" � G

j
";ı

�
; g� D G3

" � G2
";ı :
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To begin, we fix " D ".�/ is in Step 1 to guarantee (8.127). With " fixed and the
approximation estimates (8.104), (8.106), (8.108), we may take ı D ı."/ so small
that

DM.�"/
ŒZ0;� ; 0� < �; (8.131)

where D denotes the metric in the M weak-(*) topology on bounded sets in M.�"/.
Next, by virtue of (8.110),

kV�kL2.�"IR3/ < �: (8.132)

Similarly, evoking (8.112), (8.114), (8.115) we get

kH�kL2.0;TIL1.�IR3�3// < �; kG�kL2.0;TIL1.�IR3�3// < �; (8.133)

and, by virtue of (8.117),

kh�kLp.0;TIL5=3.�IR3// < c.p/�; 1 � p < 1: (8.134)

Finally, in accordance with (8.119),

g� 2 Cweak�.�/.Œ0;T�IM.�"//;

Z T

0

ˇ̌
ˇDM.�"/

Œg�.t; �/; 0�
ˇ̌
ˇ
p

dt < c.p/�; 1 � p < 1: (8.135)

Remark Note that, as " > 0 is fixed, the L2-norm dominates the L1-norm in �".

Roughly speaking, we have to show that solutions of the acoustic sys-
tem (8.129), (8.130) with “small” data are “small”. The main difficulty is that
the data are very irregular (measures) and so are the solutions. Note, however, that
regularity of ŒZ� ;V� � is the same as that of ŒZ";V"� as the approximate data are
regular.

Writing

Z

�

V� � ' dx D
Z

�"

V� � ' dx D
Z

�"

V� � HŒ'�C H?Œ'�
�

dx;

where H is the Helmholtz projection in�", we immediately see by taking .t/HŒ'�,
 2 C1

c .Œ0;T/ as test function in (8.130) that

�
t 7!

Z

�"

V� � HŒ'� dx

�
! 0 in CŒ0;T� as � ! 0:
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Thus showing (8.128) reduces to

sup
t2.0;T/

ˇ̌
ˇ̌
Z

�"

V�.t; �/ � H?Œ'� dx

ˇ̌
ˇ̌ < o.�/; o.�/ ! 0 as � ! 0: (8.136)

Our idea, similar to Sect. 5.4.6, is to regularize (8.129), (8.130) by means of the
spectral projections associated to the Neumann Laplacian	N ;�" ,

	N ;�"v D 	v

defined on

DŒ	N ;�" � D
n
v 2 W2;2.�"/

ˇ̌
ˇ rxv � nj@�" D 0 (in the sense of traces)

o
:

It is well-known that if @�" is regular, the operator �	N ;�" generates a self-adjoint
non-negative operator on the space L2.�"/. In particular, as �" is bounded, the
eigenvalue problem

�	wn D ƒnwn in �"; rxwn � nj@�" D 0

admits a countable sequence of eigenvalues ƒ0 D 0 < ƒ1 � ƒ2 : : : , where the
eigenspace associated to ƒ0 is spanned by constants, cf. (5.146). In particular, we
may define the functional calculus and the functions of �	N ;�" by means of a
simple formula

G.�	N ;�"/Œv� D
1X

jD0
G.ƒn/anŒv�wn; anŒv� D

Z

�"

vwn dx

see Sect. 11.1 in Appendix. We may also define a scale of Hilbert spaces

D.�	N ;�"
˛/ D

8<
:v 2 L2.�"/

ˇ̌
ˇ

1X
jD0

ƒ2˛
n jan.v/j2 < 1;

Z

�"

v dx D 0 if ˛ < 0

9=
;

Since D.�	N ;�"/ � W2;2.�"/, where W2;2.�"/ is compactly embedded in
C.�"/, bounded sets in M.�"/ are compact in the dual space D..�	N ;�"/

�1/.
In particular, the linear form

' 7!
Z

�"

H�.t; �/ � rx' dx

can be understood as a bounded linear form acting on D..�	N ;�"/
3=2/. Applying

the Riesz representation theorem we get

Z

�"

H�.t; �/ � rx' dx D
Z

�"

�1�.t; �/.�	N ;�"/
3=2Œ'� dx; (8.137)
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with

k�1.t; �/kL2.�"/ � ckH�.t; �/kL1.�"IR3/

Next, we take a test function rx', rx' � nj@�" D 0 in (8.130) to obtain

"

Z T

0

Z

�"

V� � @trx' dx dt C !

Z T

0

˝
Z�.t; �/;	N ;�" Œ'�

˛
dt

D �"
Z

�"

V0;� � rx'.0; �/ dx C "

Z T

0

˝
g�; 	N ;�" Œ'�

˛
dt

C"
Z T

0

Z

�"

G�.t; �/ W rx
2' dx dt dt C "

Z T

0

Z

�"

h� � rx' dx dt:

Here, similarly to (8.137), we have

Z

�"

G�.t; �/ W rx
2' dx D

Z

�"

�2.t; �/.�	N ;�"/
2Œ'� dx; (8.138)

with

k�2.t; �/kL2.�"/ � ckG�.t; �/kL1.�"IR3�3/;

and, similarly,

Z

�"

h�.t; �/ � rx' dx D
Z

�"

�3.t; �/.�	N ;�"/
3=2Œ'� dx (8.139)

with

k�3.t; �/kL2.�"/ � ckh�.t; �/kL1.�"IR3/:

Finally, since the embedding D..�	N ;�"/
2/ ,! C.�"/ is compact, we have

˝
g�.t; �/;	N ;�"Œ'�

˛ D
Z

�"

�4.t; �/.�	N ;�"/
2Œ'� dx; (8.140)

with

k�4.t; �/kL2.�"/ � cDM.�"/
Œg�.t; �/; 0�:

Writing

V� D HŒV� �C rx‰�
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we may reformulate the acoustic system (8.129), (8.130) as

"

Z T

0

< Z�.t; �/; @t' > dt �
Z T

0

Z

�"

‰� �	N ;�"Œ'� dx dt (8.141)

D �" < Z0;� ; '.0; �/ > C"
Z T

0

Z

�"

�1.�	N ;�"/
3=2Œ'� dx dt;

for any ' 2 C1.Œ0;T�;D..�	N ;�" /
3=2//, '.T; �/ D 0,

�"
Z T

0

Z

�"

‰� � @t	N ;�"Œ'� dx dt C !

Z T

0

˝
Z�.t; �/;	N ;�"Œ'�

˛
dt

D "

Z

�"

‰0;�	N ;�"Œ'�.0; �/ dx C "

Z T

0

Z

�"

�4.�	N ;�"/
2Œ'�dt

C"
Z T

0

Z

�"

�2.�	N ;�"/
2Œ'� dx dt dt C "

Z T

0

Z

�"

�3.�	N ;�"/
3=2Œ'� dx dt;

where the latter can be rephrased as

� "

Z T

0

Z

�"

‰� � @t' dx dt C !

Z T

0

˝
Z�.t; �/; '

˛
dt (8.142)

D "

Z

�"

‰0;�'.0; �/ dx C "

Z T

0

Z

�"

�4.�	N ;�"/Œ'�dt

C"
Z T

0

Z

�"

�2.�	N ;�"/Œ'� dx dt dt C "

Z T

0

Z

�"

�3.�	N ;�"/
1=2Œ'� dx dt

for any ' 2 C1.Œ0;T�;D..�	N ;�" /
3=2//, '.T; �/ D 0.

Remark Formally, the system of equations (8.141), (8.142) can be written as

"@tZ� C	N ;�"‰� D �".�	N ;�"/
3=2Œ�1�;

"@tˆ� C !Z� D ".�	N ;�"/Œ�
4�C ".�	N ;�"/Œ�

2�C ".�	N ;�"/
1=2Œ�3�:

Such a formulation can be rigorously justified at the level of individual projections
onto the eigenfunctions of the operator	N ;�" , which corresponds to taking the test
functions in (8.141), (8.142) in the form

' D G.�	N ;�"/Œw�; G 2 C1
c .0;1/:
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Note that such a procedure has already been performed in Sect. 5.4.6.

Solutions, or rather their spectral projections, of the linear system (8.141), (8.142)
can be conveniently expressed by means of the variation-of-constants formula,
namely

‰�.t; �/ D 1

2
exp

�
i
t

"
.�!	N ;�"/

1=2
� h
‰0;� C i! .�	N ;�"/

�1=2 ŒZ0;� �
i

(8.143)

C1

2
exp

�
�i

t

"
.�!	N ;�"/

1=2
� h
‰0;� � i! .�	N ;�"/

�1=2 ŒZ0;� �
i

C1

2

Z t

0

exp
�

i
t � s

"
.�!	N ;�"/

1=2
� �
.�	N ;�"/Œ�

4�

C.�	N ;�"/Œ�
2�C .�	N ;�"/

1=2Œ�3� � i! .�	N ;�"/ Œ�
1�
�

ds

C1

2

Z t

0

exp
�
�i

t � s

"
.�!	N ;�"/

1=2
� �
.�	N ;�"/Œ�

4�C .�	N ;�"/Œ�
2�

C.�	N ;�"/
1=2Œ�3�C i! .�	N ;�"/ Œ�

1�
�

ds;

where we have set

rx‰0;� D H?ŒV0;� �:

In accordance with (8.132), we have

krx‰0;�kL2.�"IR3/ � �I whence ‰� D .�	N ;�"/
�1=2Œ � �; k �kL2.�"/ � c�:

Remark A similar formula holds for Z� , however, we do not need it here.

The identity between ‰� and the expression on the right-hand side of (8.143) is
to be understood in the sense of the Fourier coefficients

an D
Z

�"

‰�wn dx; n D 1; 2; : : :

wn being the eigenfunctions of .�	N ;�"/. In view of the uniform bounds established
in (8.131)–(8.135), in combination with (8.137)–(8.140), it is easy to deduce from
formula (8.143) that

‰�.t; �/ D .�	N ;�"/
�1Œ �.t; �/�;
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where

sup
t2Œ0;T�

k �.t; �/kL2.�"/ D o.�/; o.�/ ! 0 as � ! 0:

Going back to (8.136) we easily observe that

Z

�"

V�.t; �/ � H?Œ'� dx D �
Z

�"

‰�divx' dx

D �
Z

�"

.�	N ;�"/
�1Œ �.t; �/�divx' dx

D �
Z

�"

.�	N ;�"/
�1 �.t; �/.�	N ;�"/

�1Œdivx'� dxI

whence (8.136) follows as ' 2 C1
c .�"/.

Step 3: Extension to � As shown in the previous two steps, the desired prop-
erty (8.120) can be verified replacing the original problem (with irregular data) by
the problem with regularized and compactly supported data specified in Sect. 8.6.1.
Moreover, extending the data to be zero in �" n � we may use the finite speed of
propagation property established in (8.124), together with Property (L), to observe
that we may consider the problem defined on the target domain �. Thus our task
reduces to the following problem

� PROBLEM (D):

For a given ' 2 C1
c .�/ show that

�
t 7!

Z

�

V" � ' dx

�
is precompact in L2.0;T/ as " ! 0; (8.144)

where ŒZ";V"� is a family of (regular) solutions of the acoustic system

"@tZ" C divxV" D "divxH" (8.145)

"@tV" C !rxZ" D " .divxG" C g/ (8.146)

with the Neumann boundary conditions

V" � nj@� D 0; (8.147)

and the far field conditions

V"; Z" ! 0 as jxj ! 1; (8.148)
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and the initial data

Z".0; �/ D Z0;";V";0.0; �/ D V0;": (8.149)

The data enjoy the following regularity properties:

8
<
:

Z0;" 2 C1
c .�/; V0;" 2 C1

c .�IR3/;

kZ0;"k.L1CL2CD1;2/.�/ � c; kV"k.L2\L1/.�IR3/ � c;

9
=
; (8.150)

H 2 C1
c .Œ0;T� ��IR3/;

Z T

0

kHk2
.L1CL2/.�IR3/ dt � c; (8.151)

G 2 C1
c .Œ0;T� ��IR3�3/;

Z T

0

kHk2
.L1CL2/.�IR3�3/ dt � c; (8.152)

and

g 2 C1
c .Œ0;T� ��IR3/; sup

t2Œ0;T�
kg.t; �/kL5=3.�IR3/ � c; (8.153)

where all constants are independent of ".

Remark Note that system (8.145), (8.146) is formally the same as (8.92), (8.93).
However, there are two essential features that make the present setting definitely
more convenient for future discussion: system (8.145), (8.146) is defined on the
(" independent) target domain � and admits unique classical solutions compactly
supported in Œ0;T� ��.

8.7 Dispersive Estimates and Time Decay of Acoustic Waves

Our goal in this section is to give a positive answer to Problem (D) and thus complete
the proof of the strong (a.a. pointwise) convergence of the velocity fields claimed
in (8.61). To this end, we use the dispersive decay estimates for solutions of the
acoustic system (8.145), (8.146) on the unbounded domain�. The method, formally
similar to that used in the previous section, is based on the spectral properties of the
Neumann Laplacian �	N ;�,

	N ;�v D 	v in �; rxv � nj@� D 0; v 2 C1
c .�/

and its extension to a self-adjoint non-negative operator on that Hilbert space
L2.�/, see Sect. 11.3.4 in Appendix. As a consequence of Rellich’s theorem (The-
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orem 11.10 in Appendix), the point spectrum of �	N ;� is empty in sharp contrast
with its bounded domain counterpart �	N ;�" . Moreover, the spectrum of �	N ;�

is absolutely continuous and coincides with the half-line Œ0;1/, see Sect. 11.3.4
in Appendix. In particular, we may develop the spectral theory, define functions
G.�	N ;�/ for G 2 C.0;1/, and the associated Hilbert spaces D..�	N ;�/

˛/,
˛ 2 R, see Sect. 11.1 in Appendix.

8.7.1 Compactness of the Solenoidal Components

Similarly to the preceding part, we observe that (8.144) holds true for solenoidal
functions, in particular

�
t 7!

Z

�

V" � HŒ'� dx

�
is precompact in L2.0;T/ as " ! 0:

Writing V" in terms of its Helmholtz decomposition

V" D HŒV"�C rx‰";

we therefore conclude that it is enough to show

�
t 7!

Z

�

rx‰" � ' dx

�
is precompact in L2.0;T/ as " ! 0:

Moreover, as the gradient part rx‰" is expected to disappear in the asymptotic limit
(cf. (8.60)), we may anticipate a stronger statement

�
t 7!

Z

�

rx‰" � ' dx

�
! 0 (strongly) in L2.0;T/ as " ! 0: (8.154)

for any fixed ' 2 C1
c .�IR3/.

Remark Note that (8.154) cannot hold on any domain, where �	N ;� admits
positive eigenvalues, in particular if � was a bounded domain, as can be observed
from the variation-of-constants formula (8.143). On the other hand, we will see that
the absence of eigenvalues is basically sufficient to produce (8.154).

8.7.2 Analysis of Acoustic Waves

Similarly to the preceding section, system (8.145), (8.146) can be written in the
form of
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� LINEAR WAVE EQUATION:

"@tZ" C	N ;�‰" D "divxH"; (8.155)

"@t‰" C !Z" D ".	N ;�/
�1divx .divxG" C g/ (8.156)

with the Neumann boundary conditions

rx‰" � nj@� D 0; (8.157)

the far field conditions

‰"; Z" ! 0 as jxj ! 1; (8.158)

and the initial data

Z".0; �/ D Z0;"; ‰";0.0; �/ D 	N ;�
�1divxV0;": (8.159)

Our aim is to rewrite the linear operators on the right-hand sides of (8.155),
(8.156) in the form

G.�	N ;�/Œh� where h 2 L2.0;TI L2.�//;

cf. Step 2 in Sect. 8.6.2.

• As H admits the bound (8.151) and is compactly supported in�, the linear form

' 7!
Z

�

divxH.t; �/' dx D �
Z

�

H.t; �/ � rx' dx

is continuous on the space of functions ' having their gradient rx' bounded in
L2 \ L1, in particular, it is continuous on the Hilbert space

D..�	N ;�/
1=2/ \ D..�	N ;�/

3=2/:

Indeed, by virtue of the standard elliptic regularity estimates (see Theorem 11.12
in Appendix), the gradients of functions in D..�	N ;�/

1=2/ \ D..�	N ;�/
3=2/

belong to L2.�/, with their second derivatives bounded in L2.�/; whence
bounded in W2;2.�/ � .L2 \ L1/.�/. Thus we can write

divxH D ..�	N ;�/
3=2 C .�	N ;�/

1=2/Œ�1�; k�1kL2.0;TIL2.�// � c: (8.160)
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• Similarly,

divxg D ..�	N ;�/
3=2 C .�	N ;�/

1=2/Œ�2�

therefore, by virtue of (8.153),

	N ;�
�1divxg D ..�	N ;�/

1=2 C .�	N ;�/
�1=2/Œ�2�; sup

t2Œ0;T�
k�2.t; �/kL2.�/ � c:

(8.161)
• The expression divxdivxG can be identified with

divxdivxG D ..�	N ;�/
2 C .�	N ;�/

1=2/Œ�3�I
whence, by virtue of (8.151),

	N ;�
�1divxdivxG D ..�	N ;�/C .�	N ;�/

�1=2/Œ�3�; k�3kL2.0;TIL2.�// � c:
(8.162)

• Finally, in accordance with (8.150), the initial data can be written as
8
<
:

Z0;" D 
.�	N ;�/

2 C .�	N ;�/
�1=2� Œ�4�;

‰0;" D .�	N ;�/
�1=2Œ�5�; k�jkL2.�/ � c:

9
=
;

Consequently, system (8.155), (8.156) takes the form

"@tZ" C	N ;�‰" D "..�	N ;�/
3=2 C .�	N ;�/

1=2/Œf 1" � (8.163)

"@t‰" C !Z" D "..�	N ;�/C .�	N ;�/
�1=2/Œf 2" � (8.164)

where

k f 1" kL2.0;TIL2.�/ C k f 2" kL2.0;TIL2.�/ � c; (8.165)

Z0;" D 
.�	N ;�/

2 C .�	N ;�/
�1=2� Œz0;"�; ‰0;" D .�	N ;�/

�1=2Œ 0;"�

kz0;"kL2.�/ C k 0;"kL2.�/ � c: (8.166)

Remark We have used a simple observation that

F.�	N ;�/Œa�C G.�	N ;�/Œb� D .F.�	N ;�/C G.�	N ;�//Œd�;

d D F.�	N ;�/

.F.�	N ;�/C G.�	N ;�//
Œa�C F.�	N ;�/

.F.�	N ;�/C G.�	N ;�//
Œb� 2 L2.�/

whenever F;G � 0, a; b 2 L2.�/.



8.7 Dispersive Estimates and Time Decay of Acoustic Waves 353

At this stage, we evoke the variation-of-constants formula introduced in (8.143)
to compute‰":

‰".t; �/ D 1

2
exp

�
i
t

"
.�!	N ;�/

1=2
� �
.�	N ;�/

�1=2Œ 0;"� (8.167)

Ci!

.�	N ;�/

3=2 C .�	N ;�/
�1� Œz0;"�

�

C1

2
exp

�
�i

t

"
.�!	N ;�/

1=2
� �
.�	N ;�/

�1=2Œ 0;"�

� i!

.�	N ;�/

3=2 C .�	N ;�/
�1� Œz0;"�

�

C1

2

Z t

0

exp
�

i
t � s

"
.�!	N ;�/

1=2
� h
..�	N ;�/C .�	N ;�/

�1=2/Œf 2" �

Ci!..�	N ;�/C Id/Œf 1" �
i

ds

C1

2

Z t

0

exp
�
�i

t � s

"
.�!	N ;�/

1=2
� h
..�	N ;�/C .�	N ;�/

�1=2/Œf 2" �

�i!..�	N ;�/C Id/Œf 1" �
i

ds:

Now, take G� 2 C1
c .0;1/ such that

0 � G� � 1; G�.z/ D 1 for z 2 Œ�; 1
�
�; � > 0:

Going back to (8.154), we write

Z

�

rx‰" � ' dx D �
Z

�

‰"divx' dx D (8.168)

�
Z

�

G2
�.�	N ;�/Œ‰"�divx' dx C

Z

�

�
G2
�.�	N ;�/� Id

�
Œ‰"�divx' dx;

where
Z

�

�
G2
�.�	N ;�/� Id

�
Œ‰"�divx' dx D

Z

�

‰"

�
G2
�.�	N ;�/� Id

�
Œdivx'� dx:

In accordance with the explicit formula (8.167) and the bounds (8.165), (8.166),
we have

‰" D 
.�	N ;�/

3=2 C .�	N ;�/
�1� Œ "�;
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where

sup
t2Œ0;T�

k ".t; �/kL2.�/ � c:

Consequently, writing

Z

�

‰"

�
G2
�.�	N ;�/ � Id

�
Œdivx'� dx

D
Z

�


.�	N ;�/

3=2 C .�	N ;�/
�1� Œ "�

�
G2
�.�	N ;�/� Id

�
Œdivx'� dx

D
Z

�

 "

�
G2
�.�	N ;�/ � Id

� �
.�	N ;�/

3=2 C .�	N ;�/
�1� divx'

�
dx

we get

ˇ̌
ˇ̌
Z

�

�
G2
�.�	N ;�/� Id

�
Œ‰"�divx' dx

ˇ̌
ˇ̌ < o.�/; o.�/ ! 0 as � ! 0

uniformly in " as soon as we observe that


.�	N ;�/

3=2 C .�	N ;�/
�1� Œdivx'� 2 L2.�/:

Indeed

.�	N ;�/
3=2Œdivx'� 2 L2.�/

as ' is smooth and compactly supported, while, by the same token,

divx' 2 Lp.�/ for any 1 � p � 1;

therefore, by the Lp-elliptic estimates (see Theorem 11.12 in Appendix),

.�	N ;�/
�1Œdivx'� 2 D1;p.�/ for any 1 < p < 1;

and the desired conclusion

.�	N ;�/
�1Œdivx'� 2 L2.�/

follows from Sobolev inequality.
Consequently, in view of (8.168), verifying validity of (8.154) amounts to

showing

�
t 7!

Z

�

G2
�.�	N ;�/Œ‰"� � divx' dx

�
! 0 (strongly) in L2.0;T/ as " ! 0

(8.169)
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for any fixed ' 2 C1
c .�IR3/ and any fixed � > 0. As ‰" is given (8.167), the

problem reduces to suitable time decay properties of

�G�.�	N ;�/ exp
�
˙i

t

"
.!	N ;�/

1;2
�
Œh�; � 2 C1

c .�/; (8.170)

with h belonging to a bounded set in L2.�/, and

�G�.�	N ;�/

Z t

0

exp
�
˙i

t � s

"
.!	N ;�/

1;2
�
Œh.s/� ds; � 2 C1

c .�/; (8.171)

with h belonging to a bounded set in L2.0;TI L2.�//.

8.7.3 Decay Estimates via RAGE Theorem

In order to establish (8.170), (8.171) we use the celebrated RAGE Theorem, see Reed
and Simon [237, Theorem XI.115], Cycon et al. [66]. The reader may consult
Sect. 11.1 in Appendix for the relevant part of the spectral theory for self-adjoint
operators used in the text below.

� RAGE THEOREM

Theorem 8.1 Let H be a Hilbert space, A W D.A/ � H ! H a self-adjoint
operator, C W H ! H a compact operator, and Pc the orthogonal projection onto
Hc, where

H D Hc ˚ clH
n
spanfw 2 H j w an eigenvector of Ag

o
:

Then
����
1

�

Z �

0

exp.�itA/CPc exp.itA/ dt

����
L.H/

! 0 for � ! 1: (8.172)

We apply Theorem 8.1 to

H D L2.�/; A D .�!	N ;�/
1=2; C D �2G.�	N ;�/; Pc D Id;

with

� 2 C1
c .�/; � � 0; G 2 C1

c .0;1/; 0 � G � 1:
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Remark The operator C D �2G.�	N ;�/ represents a cut-off both in the physical
space R3 represented by the compactly supported function � and in the “frequency”
space represented by picking up a compact part of the spectrum of �	N ;�

belonging to the support of G. It is easy to see that

G.�	N ;�/ � D..	N ;�/
˛/ for any ˛ 2 R;

in particular

krx
kG.�	N ;�/Œv�kL2.�/ � c.k/kvkL2.�/ for any k � 0

ensuring local compactness in L2.

Taking � D 1=" in (8.172) we obtain

Z T

0

D
exp

�
�i

t

"
.�!	N;�/

1=2
�
�2G.�	N;�/ exp

�
i
t

"
.�!	N;�/

1=2
�

XI Y
E
L2.�/

dt

� o."/kXkL2.�/kYkL2.�/; o."/ ! 0 as " ! 0:

Thus for Y D G.�	N ;�/ŒX� we deduce that

Z T

0

����G.�	N ;�/ exp
�

i
t

"
.�!	N ;�/

1=2
�
ŒX�
���
2

L2.�/
dt (8.173)

� o."/kXk2L2.�/ for any X 2 L2.�/; o."/ ! 0 as " ! 0;

yielding (8.169) for the component of ‰" given by (8.170).
Similarly, we have

�����
Z T

0

G.�	N ;�/ exp
�

i
t � s

"
.�!	N;�/

1=2
�
ŒY.s/� ds

����
2

L2..0;T/��/
(8.174)

�
Z T

0

 ����
Z T

0

�G.�	N ;�/ exp
�

i
t � s

"
.�!	N ;�/

1=2
�
ŒY.s/� ds

����
2

L2.�/

!
dt

�
Z T

0

Z T

0

����G.�	N ;�/ exp
�

i
t � s

"
.�!	N ;�/

1=2
�
ŒY.s/�

���
2

L2.�/
dt ds

� o."/
Z T

0

���exp
�
�i

s

"
.�!	N ;�/

1=2
�
ŒY.s/�

���
2

L2.�/
ds

D o."/
Z T

0

kY.s/k2L2.�/ ds; o."/ ! 0 as " ! 0;
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which implies (8.169) for the component of ‰" given by (8.171).
Having completed the proof of (8.144) we have shown the strong convergence of

the velocities claimed in (8.61).

� LOCAL DECAY OF ACOUSTIC WAVES:

Theorem 8.2 Let f�"g">0 be a family of bounded domains in R
3, with C2C�

boundaries

@�" D � [ �"

enjoying PROPERTY (L). Let F be determined through (8.18), where m � 0 is a
bounded measurable function,

suppŒm� � R
3 n�;

� being the exterior domain, @� D � . Assume that the thermodynamic functions p,
e, s as well as the transport coefficients�, � satisfy the structural hypotheses (8.41)–
(8.48). Let f%";u"; #"g">0 be a weak solution of the NAVIER-STOKES-FOURIER

SYSTEM (8.1)–(8.6) in .0;T/��" with the complete slip boundary conditions (8.11)
in the sense specified in Sect. 5.1.2. Finally, let the initial data satisfy (8.28)–(8.31).

Then, at least for a suitable subsequence, we have

u" ! U in L2..0;T/ � KIR3/ for any compact K � �;

with

U 2 L2.0;TI W1;2.�IR3//; divxU D 0:

Remark Smoothness of the boundaries @�" is necessary as we have repeatedly used
the regularity theory for the Neumann Laplacian. Recall that RAGE Theorem is
applicable under the mere assumption of the absence of eigenvalues of 	N ;�. On
the other hand, we have no information on the rate of decay. In Sect. 8.9 below, we
shall discuss other possibilities to deduce dispersive estimates with an explicit decay
rate in terms the parameter " > 0.
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8.8 Convergence to the Target System

Since we have shown strong pointwise (a.a.) convergence of the family of the
velocity fields fu"g">0 we may let " ! 0 in the weak formulation of the NAVIER-
STOKES-FOURIER SYSTEM to deduce as in Sect. 5.3 that

%" � %

"
! r weakly-(*) in L1.0;TI L5=3.K// for any compact K � �;

#" � #

"
! ‚ weakly in L2.0;TI W1;2.�//;

cf. (8.59), and

u" ! U

8
<
:

weakly in L2.0;TI W1;2.�IR3//

and (strongly) in L2..0;T/ � K/ for any compact K � �;

cf. (8.60), where Œr; ‚;U� solves the OBERBECK–BOUSSINESQ APPROXIMA-
TION (8.14)–(8.17) in .0;T/ ��. Specifically, we have

divxU D 0 a.a. on .0;T/ ��;
Z T

0

Z

�

.%.U � @t' C .U ˝ U/ W rx'// dx dt (8.175)

D �
Z

�

%U0 � ' dx C
Z T

0

Z

�

S W rx' � rrxF dx dt

for any test function ' 2 C1
c .Œ0;T/ ��IR3/, divx' D 0, ' � nj@� D 0, where

S D �.#/.rxU C rx
tU/:

Furthermore,

%cp.%; #/
h
@t‚C divx.‚U/

i
� �	‚� %#˛.%; #/divx.FU/ D 0 a.a. in .0;T/ ��;

rx# � nj@� D 0;‚.0; �/ D ‚0;

and

r C %˛.%; #/‚ D 0 a.a. in .0;T/ ��:
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Similarly to the primitive system, the limit velocity field U satisfies the complete
slip boundary conditions condition

U � nj@� D 0 and ŒSn� � nj@� D 0;

where the latter holds implicitly through the choice of test functions in the
momentum equation (8.175).

Exactly as in Sect. 5.5.3 the adjustment of the initial temperature distribution
experiences some difficulties related to the initial time boundary layer. While the
initial conditions for the limit velocity are determined through

u0;" ! U0 weakly in L2.�IR3/;
the initial value of the temperature deviation‚0 reads

‚0 D #

cp.%; #/

 
@s.%; #/

@%
%
.1/
0 C @s.%; #/

@#
#
.1/
0

!
; (8.176)

where

Q%.1/0;" ! %
.1/
0 ; #

.1/
0;" ! #

.1/
0 weakly in L2.�/:

Thus if %.1/0 , #.1/0 satisfy

@p.%; #/

@%
%
.1/
0 C @p.%; #/

@#
#
.1/
0 D 0;

which is nothing other than linearization of the pressure at the constant state .%; #/
applied to the vector Œ%.1/0 ; #

.1/
0 �, relation (8.176) reduces to

‚0 D #
.1/
0 :

We have shown the following result.

� LOW MACH NUMBER LIMIT: LARGE DOMAINS

Theorem 8.3 Let f�"g">0 be a family of bounded domains in R
3, with C2C�

boundaries

@�" D � [ �"

enjoying PROPERTY (L). Let F be determined through (8.18), where m � 0 is a
bounded measurable function,

suppŒm� � R
3 n�;
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� being the exterior domain, @� D � . Assume that the thermodynamic functions p,
e, s as well as the transport coefficients�, � satisfy the structural hypotheses (8.41)–
(8.48). Let f%";u"; #"g">0 be a weak solution of the NAVIER-STOKES-FOURIER

SYSTEM (8.1)–(8.6) in .0;T/��" with the complete slip boundary conditions (8.11)
in the sense specified in Sect. 5.1.2. Finally, let the initial data satisfy

%0;" D Q%" C " Q%.1/0;"; #0;" D # C "#
.1/
0;" ;

where

k Q%.1/0;"kL2\L1.�"/ � c; k#.1/0;" kL2\L1.�"/ � c;
Z

�"

Q%.1/0;" dx D
Z

�"

#
.1/
0;" dx D 0I

Q%.1/0;" ! %
.1/
0 weakly in L2.�/; #.1/0;" ! #

.1/
0 weakly in L2.�/;

and

ku0;"kL2\L1.�"IR3/ � c; u0;" ! u0 weakly in L2.�IR3/:

Then, at least for a suitable subsequence, we have

%" � %
"

! r weakly-(*) in L1.0;TI L5=3.K// for any compact K � �;

#" � #
"

! ‚ weakly in L2.0;TI W1;2.�//;

u" ! U

8
<
:

weakly in L2.0;TI W1;2.�IR3//

and (strongly) in L2..0;T/ � K/ for any compact K � �;

where Œr; ‚;U� is a weak solution OBERBECK–BOUSSINESQ APPROXIMA-
TION (8.14)–(8.17) in .0;T/ ��, with the initial data

U.0; �/ D HŒu0�; ‚.0; �/ D #

cp.%; #/

 
@s.%; #/

@%
%
.1/
0 C @s.%; #/

@#
#
.1/
0

!
:

Remark We have tacitly assumed that the initial data were suitable extended outside
�" to the whole space R3.
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8.9 Dispersive Estimates Revisited

The crucial arguments used to derive the dispersion estimates in Sect. 8.7.3 were all
based on the decay rate d D d."; ';G/ of the integral

Z T

0

ˇ̌
ˇ̌Dexp

�
˙i

t

"
.�	N ;�/

1=2
�
Œ‰�;G.�	N ;�/Œ'�

E
L2.�/

ˇ̌
ˇ̌
2

dt � d."; ';G/k‰k2L2.�/:
(8.177)

In particular, we have shown, by means of RAGE Theorem, that d."; ';G/ ! 0 as
" ! 0 for any fixed ' 2 C1

c .�/ and G 2 C1
c .0;1/ as long as �	N ;� does not

possesses any proper eigenvalues in its spectrum. In this section, we examine (8.177)
in more detail and show that certain piece of qualitative information concerning
d may be available at least on a special class of domains including the exterior
domains considered sofar in this chapter. To this end, refined tools of the spectral
theory will be used, in particular the properties of the spectral measure associated
to the function '. The reader may consult Sect. 11.1 in Appendix for the relevant
results used in the text below.

8.9.1 RAGE Theorem via Spectral Measures

We start by rewriting the integral

D
exp

�
˙i

t

"
.�	N ;�/

1=2
�
Œ‰�;G.�	N ;�/Œ'�

E
L2.�/

to a more tractable form. Following the language of quantum mechanics, notably
the work by Last [181], we use the spectral measure �' associated to the function
'. Given �' , any function‰ possesses its representative‰' such that

‰' 2 L2.Œ0;1/; �'/; k‰'kL2.Œ0;1/;�'/ � k‰kL2.�/

and

hH.�	N ;�/Œ‰�; 'iL2.�/ D
Z

Œ0;1/

H.�/‰'.�/ d�';

in particular

D
exp

�
˙i

t

"
.�	N ;�/

1=2
�
Œ‰�;G.�	N ;�/Œ'�

E
L2.�/

(8.178)

D
Z

Œ0;1/

exp
�
˙i

t

"
�1=2

�
G.�/‰'.�/ d�':
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Accordingly, we write

Z T

0

ˇ̌
ˇ̌Dexp

�
˙i

t

"
.�	N ;�/

1=2
�
Œ‰�;G.�	N ;�/Œ'�

E
L2.�/

ˇ̌
ˇ̌
2

dt (8.179)

D
Z T

0

ˇ̌
ˇ̌
Z

Œ0;1/

exp
�
˙i

t

"
�1=2

�
G.�/‰'.�/ d�'

ˇ̌
ˇ̌
2

dt

� e
Z

1

�1

exp.�.t=T/2/

ˇ̌
ˇ̌
Z

Œ0;1/

exp
�
˙i

t

"
�1=2

�
G.�/‰'.�/ d�'

ˇ̌
ˇ̌
2

dt

D e
Z

Œ0;1/

Z

Œ0;1/

�Z
1

�1

exp.�.t=T/2/ exp
�
˙i

t

"


x1=2 � y1=2

��
dt

�
�

�G.x/G.y/‰'.x/‰'.y/ d�'.x/ d�'.y/

D eT
p
�

Z

Œ0;1/

Z

Œ0;1/

exp

	
�T2

jx1=2 � y1=2j2
4"2



G.x/G.y/‰' .x/‰'.y/ d�'.x/ d�'.y/:

Remark We have used the explicit formula
Z 1

�1
exp.�t2/ exp.˙iƒt/ D p

� exp

	�ƒ2

4



:

Thus, finally, by means of Hölder’s inequality,

Z T

0

ˇ̌
ˇ̌Dexp

�
˙i

t

"
.�	N ;�/

1=2
�
Œ‰�;G.�	N ;�/Œ'�

E
L2.�/

ˇ̌
ˇ̌
2

dt (8.180)

� eT
p
�

Z

Œ0;1/

�Z

Œ0;1/

exp

	
�T2

jx1=2 � y1=2j2
4"2



jG.x/jj‰'.x/jd�'.x/

�
�

�jG.y/jj‰'.y/j d�'.y/

� eT
p
� sup

z2Œ0;1/

jG.z/j2�

�
	Z

Œ0;1/

Z

Œ0;1/

exp

	
�T2

jx1=2 � y1=2j2
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We infer that (8.177) holds with

d."; ';G/

D eT
p
� sup

z2Œ0;1/

jG.z/j2
	Z

Œ0;1/

Z

Œ0;1/

exp

	
�T2

jx1=2 � y1=2j2
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d�'.x/d�'.y/


1=2
;

where

	Z

Œ0;1/

Z

Œ0;1/

exp

	
�T2

jx1=2 � y1=2j2
4"2



d�'.x/d�'.y/


1=2
! 0 for " ! 0

as long as the spectral measure�' does not charge points in Œ0;1/, meaning as long
as the point spectrum of the operator 	N ;� is empty (cf. Sect. 11.1 in Appendix).
We have recovered the statement shown in the previous section by means of RAGE
Theorem.

8.9.2 Decay Estimates via Kato’s Theorem

An alternative approach to study the local decay of acoustic waves is based on an
abstract result of Tosio Kato [166] (see also Burq et al. [44], Reed and Simon
[237, Theorem XIII.25 and Corollary]).

� KATO’S THEOREM

Theorem 8.4 Let C be a closed densely defined linear operator and A a self-adjoint
densely defined linear operator in a Hilbert space H. For � … R, let RAŒ�� D
.A � �Id/�1 denote the resolvent of A. Suppose that

� D sup
�…R; v2D.C�/; kvkH D1

kC ı RAŒ�� ı C�Œv�kH < 1: (8.181)

Then

sup
w2X; kwkHD1

�

2

Z 1

�1
kC exp.�itA/Œw�k2X dt � �2:



364 8 Problems on Large Domains

Anticipating, for a while, that A D .�	N ;�/
1=2, C—the projection onto the 1D-

space spanned by ', satisfy the hypotheses of Kato’s theorem, we get

Z T

0

ˇ̌
ˇ̌Dexp

�
˙i.�	N ;�/

1=2 t

"

�
Œ‰�; '

E
L2.�/

ˇ̌
ˇ̌
2

dt (8.182)

D "

Z T="

0

ˇ̌
ˇ˝exp

˙i.�	N ;�/
1=2�

�
Œ‰�; '

˛
L2.�/

ˇ̌
ˇ
2

d� � "�2.'/k‰k2L2.�/;

meaning (8.177) holds with an explicit decay of d of order ". This is because the
piece of information hidden in hypothesis (8.181) is definitely stronger than the
mere absence of eigenvalues required by RAGE Theorem. In fact, as we shall se
bellow, relation (8.181) is basically equivalent to the so-called limiting absorption
principle for the operator 	N ;�, cf. Vaı̆nberg [263]. Our plan for the remaining
part of this section is to use a direct argument, based on the spectral measure
representation introduced above, to show explicit decay rate for d in (8.177), among
which (8.182) as a special case. To this end, we adopt an extra assumptions on the
cut-off function G, namely

suppŒG� � Œa; b�; 0 < a < b < 1: (8.183)

Exactly as in (8.179), we have
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ˇ̌Dexp

�
˙i

t

"
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dt (8.184)
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where we have used the Cauchy-Schwartz inequality and Fubini’s theorem in the
following way:

Z Z
K.x; y/f .x/f .y/ d�.x/d�.y/ D

Z 	Z
K.x; y/f .y/d�.y/



f .x/d�.x/

�
Z

jf .x/j
	Z

K.x; y/f 2.y/d�.y/


1=2 	Z
K.x; y/d�.y/


1=2
d�.x/

	Z 	Z
K.x; y/d�.x/



f 2.y/d�.y/


1=2 	Z 	Z
K.x; y/d�.y/



f 2.x/d�.x/


1=2



8.9 Dispersive Estimates Revisited 365

yielding the desired conclusion for the symmetric kernel

K.x; y/ D exp
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4"2



D K.y; x/:

Now, the kernel in the last integral in (8.184) can be written as

Z

Œa;b�
exp

	
�T2

jx1=2 � y1=2j2
4"2



d�'.y/

D
1X

nD0

Z

"n�jy1=2�x1=2j<".nC1/; y2Œa;b�
exp

	
�jx1=2 � y1=2j2

"2
T2

4



d�'.y/

� sup
n�0

�Z

"n�jy1=2�x1=2j<".nC1/
1Œa;b�d�'.y/

� 1X
nD0

exp

	
�n2T2

4



:

As only the points x 2 Œa; b� are relevant in evaluating
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relation (8.184) gives rise to
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p

x, n, the length of the interval of y0s satisfying

"n � jy1=2 � x1=2j < ".n C 1/; a � y � b

does not exceed "

a1=2 C b1=2

�
therefore

Z

"n�jy1=2�x1=2j<".nC1/
1Œa;b�.y/d�'.y/ < "c.a; b; '/


a1=2 C b1=2

�
(8.186)
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provided�' is absolutely continuous with respect to the Lebesgue measure on Œa; b�
and

�'ŒI� � c.a; b; '/jIj for any closed interval I � Œa; b�: (8.187)

Relations (8.186), (8.187) give rise to (8.177) with

d."; ';G/ D "c.';G/I

it remains to show sufficient conditions for (8.187) to hold. The value of �'Œ˛; ˇ�
can be evaluated by means of Stone’s formula (formula (11.1) in Appendix)

�'Œ˛; ˇ� (8.188)
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� 1
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'; '

�

L2.�/

d�;

consequently, (8.187) holds as soon as the operator �	N ;� satisfies the so-called
limiting absorption principle (LAP).

� LIMITING ABSORPTION PRINCIPLE:

We say that �	N ;� satisfies limiting absorption principle (LAP) if

8
ˆ̂̂
ˆ̂<
ˆ̂̂
ˆ̂:

Operators

V ı .�	N ;� � �˙ i�/�1 ı V W L2.�/ ! L2.�/; V Œv� D .1C jxj2/�s=2; s > 1

are bounded uniformly for � 2 Œ˛; ˇ�; 0 < ˛ < ˇ; � > 0;

9
>>>>>=
>>>>>;

It is known that �	N ;� satisfies (LAP) if� is an exterior domain with a smooth
boundary considered in this chapter, see Theorem 11.11 in Appendix. Accordingly,
we have

Z T
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ˇ̌Dexp
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E
L2.�/

ˇ̌
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dt � "c.'; a; b/k‰k2L2.�/
(8.189)

provided

G 2 C1
c .0;1/; suppŒG� � Œa; b�; 0 � G � 1:
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8.10 Conclusion

Apart form the exterior domains considered in this chapter, there is a vast class of
domains on which the operator �	N ;� has empty point spectrum or even satisfies
the limiting absorption principle. Obviously our method can be extended to the
situation when these domains are approximated by a suitable family of bounded
domains. A relevant example is the perturbed half-space studied in [123].

Another possibility how to exploit the stronger decay rate stated in (8.189) is the
situation, where the boundary of �" varies with ", in particular, it may contains one
or several “holes” vanishing in the asymptotic limit " ! 0, see [122].

There are intermediate decay rates of d.";G; '/ for spectral measures that are
˛-Hölder continuous with respect to the Lebesgue measure, see Strichartz [252].
Other interesting extensions were obtained by Last [181].


	8 Problems on Large Domains
	8.1 Primitive System
	8.2 Oberbeck–Boussinesq Approximation in Exterior Domains
	8.3 Uniform Estimates
	8.3.1 Static Solutions
	8.3.2 Estimates Based on the Hypothesis of Thermodynamic Stability
	8.3.3 Estimates Based on the Specific Form of Constitutive Relations

	8.4 Convergence, Part I
	8.5 Acoustic Equation
	8.5.1 Boundedness of the Data
	8.5.2 Acoustic Equation Revisited

	8.6 Regularization and Extension to Ω
	8.6.1 Regularization
	8.6.2 Reduction to Smooth Data

	8.7 Dispersive Estimates and Time Decay of Acoustic Waves
	8.7.1 Compactness of the Solenoidal Components
	8.7.2 Analysis of Acoustic Waves
	8.7.3 Decay Estimates via RAGE Theorem

	8.8 Convergence to the Target System
	8.9 Dispersive Estimates Revisited
	8.9.1 RAGE Theorem via Spectral Measures
	8.9.2 Decay Estimates via Kato's Theorem

	8.10 Conclusion


