Chapter 11
Appendix

For reader’s convenience, a number of standard results used in the preceding text
is summarized in this chapter. Nowadays classical statements are appended with
the relevant reference material, while complete proofs are provided in the cases
when a compilation of several different techniques is necessary. A significant part
of the theory presented below is related to general problems in mathematical fluid
mechanics and may be of independent interest.

In the whole appendix M denotes a positive integer while N € N refers to the
space dimension. The space dimension is always taken greater or equal than 2, if
not stated explicitly otherwise.

11.1 Spectral Theory of Self-Adjoint Operators

Let H be a complex Hilbert space with a scalar produce (-;-). A linear operator
A : H — H is called self-adjoint, if

¢ the domain D(A) of A is dense in H;
* Ais symmetric,

(Av;w) = (v; Aw)

for all v, w € D(A);
o if

(Ax;y) = (x;h) forall x € D(A),

theny € D(A) and h = Ay.
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The spectrum of a self-adjoint operator A is a subset of the real axis R, meaning

for any complex A = A 4+ Ay, A1, A, € R, A, # 0, the operator
A+ Ald: D(A) CH—H

is surjective with bounded inverse.

B SPECTRAL DECOMPOSITION:

Theorem 11.1 Let A be a densely defined self-adjoint operator on a Hilbert

space H.

Then there exists a family of orthogonal projections {P)}ier enjoying the

following properties:

* Py, P, commute,
Py o Py = Pyinr iy forany A, € R;
* P, are right continuous,

P,h — Pyhin H for any h € H whenever . “\{ A;

P,h — 0inH forany h € H if A\ — —o0,
Pyh — hinH forany h € Hif A — oc;

* P, commutes with A on D(A),
o
u € D(A) if and only if / A2 d (Pyu;u) < oo,
—0o0

and

o0
(Au; v) = / A d(Pyu;v) foranyu € D(A), v € H. (11.1)
—00
See Reed and Simon [237], Leinfelder [182] O
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The above results is also known as Spectral Theorem for self-adjoint operators.
The integral in (11.1) is understood in the Lebesgue-Stieltjes sense. We report

B STONE’S FORMULA:

((Pp = Py) u; v) (11.2)

b+
= lim ( lim / (A= (s +ie] ™" = [A— (s —ie)]] ") u; v) ds)

§—>0+ \ e=>0+ J 45

foranya < band u,v € H.

See Reed and Simon [238] O

Given the spectral decomposition {P,},ecr we may define functional calculus
associated to A, specifically for any Borel function G defined on R we define G(.A)
with a domain

o0
u € D(G(A)) if and only if / |G| d (Pru; u) < oo < o0,

—00

and

o

(G(A)u; v) = / G(A) d(Pyu;v), v e H,

see Reed and Simon [238].
Finally, we introduce the spectral measure 1, associated to u € H as

o0

G(A) d(Pu; u) .

{u> G) pmry;cer) = /

We report the following consequence of Spectral Theorem.

B SPECTRAL MEASURE REPRESENTATION:

Theorem 11.2 Let A be a densely defined self-adjoint operator on a Hilbert space
H, G a Borel function on R. Let u € D(G(A)) and let |1, be the associated spectral
measure.

Then any ¥ € H admits a representative ¥, € L*>(R, dj,),

o0
/ P dje < (912,
—00



432 11 Appendix

such that

o0

(G(Au, W) = / G)W,(A) it

See Reed and Simon [238] O

11.2 Mollifiers

A function { € C°(RM) is termed a regularizing kernel if
supp[¢] € (=1, DY, {(—x) = ¢{(x) > 0, /M {(x)dx = 1. (11.3)
R

For a measurable function a defined on RM with values in a Banach space X, we
denote

Solal = a®(x) = Lo ¥ a = [pu {u(x —y)a®y) dy,
(11.4)
where ,(x) = w1M§(;‘)) w >0,

provided the integral on the right hand-side exists. The operator S, : a +— a® is
called a mollifier. Note that the above construction easily extends to distributions by
setting a® (x) =< a; §u(x — ) >[p/;pjrM)-

B MOLLIFIERS:

Theorem 11.3 Let X be a Banach space. If a € L} (RM;X), then we have a® €
C%(RM; X). In addition, the following holds:

(i) Ifa e ’ (RM;X), 1 <p<oo thena® € LfOC(RM;X), and

loc

a® —ainL] (R™;X)as ® — 0.
(ii) Ifa € LP(RM;X), 1 < p < oo, then a® € L?(RY; X),
la®llLr@m:xy < llallLo@m;x). and a® — a in L’"(RM:X) as w — 0.

(iii) Ifa € L®(RM; X), then a® € L®(RM; X), and

la” || oo mmxy < llall oo mm;x)-
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iv) Ifa € CK(U; X), where U C RM is an (open) ball, then (3%a)®(x) = 3%a® (x)
for all x € U, € (0,distlx,dU]) and for any multi-index o, || < k.
Moreover,

@Il ek gy < llallcrevix

for any w € (0,dist[dB, dV]), where B, V are (open) balls in RM such that
BCVCVcCU.Finally,

a® —sa in C'B:;X)asw — 0.

See Amann [8, Chap.II1.4], or Brezis [41, Chap.IV.4]. O

11.3 Basic Properties of Some Elliptic Operators

Let @ C RY be a bounded domain. We consider a general elliptic equation in the
divergence form

N
Ax,u) = — Z 0y, (aij(x)dyu) + c(x)u = f forx € Q, (11.5)

ij=1

supplemented with the boundary condition

N
Sut (8—1)) " aijdyunilig =g (11.6)
j=1
where § = 0, 1. We suppose that
aij = aj; € C'(Q). Y_ai&i&; > ale] (11.7)
if
for a certain @ > 0 and all £ € RY, |§| = 1. The case § = 1 corresponds to the

Dirichlet problem, § = 0 is termed the Neumann problem.
In several applications discussed in this book, €2 is also taken in the form

Q = {(x1,%2,%3) | (x1,%2) € T, Boottom (X1,%2) < X3 < Biop(x1,%2)}, (11.8)
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where the horizontal variable (x1, x,) belongs to the flat torus

T2 = (-, n]l{—n,n})z‘

Although all results below are formulated in terms of standard domains, they apply
to domains €2 given by (11.8) as well provided we identify

9Q = {(x1,%2,x3) | (x1,%2) € T?, X3 = Bpottom (¥1,%2) }
U{(x1, 22, x3) | (x1.%2) € T2, x3 = Biop(x1.x2)}.

This is due to the fact that all theorems concerning regularity of solutions to elliptic
equations are of local character.

11.3.1 A Priori Estimates

We start with the classical Schauder estimates.

B HOLDER REGULARITY:

Theorem 11.4 Let Q@ C RN be a bounded domain of class CH2v k=0,1,...,
withv > 0. Suppose, in addition to (11.7), that a;; € CH(Q),ij=1,...,N,ce
CkY(Q). Let u be a classical solution of problem (11.5), (11.6), where f € C*¥(Q),
g€ Ck+8+1,v(39).

Then

lllcesaaey = € (Ifllcin @y + lgllersinagy + Nl -

See Ladyzhenskaya and Uralceva [178, Theorems 3.1 and 3.2, Chap. 3], Gilbarg and
Trudinger [136, Theorem 6.8]. O

Similar bounds can be also obtained in the LP-framework. We report the
celebrated result by Agmon et al. [2] (see also Lions and Magenes [193]). The
hypotheses we use concerning regularity of the boundary and the coefficients a; j, ¢
are not optimal but certainly sufficient in all situations considered in this book.

B STRONG LP-REGULARITY:

Theorem 11.5 Let Q@ C RY be a bounded domain of class C2. In additionto (11.7),
assume that ¢ € C(Q). Let u € W?P(Q), 1 < p < oo, be a (strong) solution of
problem (11.5), (11.6), with f € LP(2), g € WiH1=1/rr(3Q).
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Then

lullw2r@) < c (Il @) + g llws+1-1/00 302y + lullzr ) -

See Agmon et al. [2]. O

The above estimates can be extrapolated to “negative” spaces. For the sake of
simplicity, we set g = 0 in the Dirichlet case § = 1. In order to formulate the
adequate results, let us introduce the Dirichlet form associated to the operator A,
namely

[Au, v] := /Qa,-z,-(x)axjuax,v + c(x)uv dx.
In such a way, the operator A can be regarded as a continuous linear mapping
A: Wé’p(Q) — W 12(Q) for the Dirichlet boundary condition
or
AW (Q) - [Wl"’/ (2)]* for the Neumann boundary condition,

where

1
l<p<oo, + =1.
p

B WEAK LP-REGULARITY:

Theorem 11.6 Assume that Q@ C RY is a bounded domain of class C% and 1 <
p < o0. Let a;j satisfy (11.7), and let c € L*°(2).

() Ifuc WS‘P(Q) satisfies

[Au,v] =< f,v > forallv € Wé’p,(Q)

w=1r;wy " )(@)
for a certain f € W™LP(Q), then

||“||W(1)-ﬂ(9) =c (”f”W*LP(Q) + ”u”W*I-l’(Q)) .
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(ii) Ifu € W'(Q) satisfies
[Al/l, v] =< Fa v >[[W1.p/]*;W1,p’](Q) for all NS Wl,[)/(Q)
foracertain F € [Wl"”/]*(Q), then
”u”Wl'I’(Q) S Cc (”F”[Wlp’]*(ﬂ) =+ ||M|I[W1p/]*(ﬂ)) .
In particular, if
[Au,v] = /fv dx—/ gudS, forallv € Wl"’/(Q),
Q aQ
then

lllwiocgy = ¢ (1 lyiary= @y + Iglhw-noagy + Nallyioryecey ) -

See Lions [190], Schechter [242]. O

Remark The hypothesis concerning regularity of the boundary can be relaxed to
C%! in the case of the Dirichlet boundary condition, and to C"! for the Neumann
boundary condition.

Remark The norm containing u on the right-hand side of the estimates in Theo-
rems 11.4-11.61is irrelevant and may be omitted provided that the solution is unique
in the given class.

Remark As we have observed, elliptic operators, in general, enjoy the degree of
regularity allowed by the data. In particular, the solutions of elliptic problems with
constant or (real) analytic coefficients are analytic on any open subset of their
domain of definition. For example, if

Au+b-Vau+cu=finQ CR",

where b, ¢ are constant, and 2 is a domain, then u is analytic in €2 provided that
f is analytic (see John [162, Chap. VII]). The result can be extended to elliptic
systems and even up to the boundary provided the latter is analytic (see Morrey and
Nirenberg [216]).
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11.3.2 Fredholm Alternative

Now, we focus on the problem of existence. Given the scope of applications
considered in this book, we consider only the Neumann problem, specifically
8 = 0in system (11.5), (11.6). Similar results hold also for the Dirichlet boundary
conditions. A useful tool is the Fredholm alternative formulated in the following
theorem.

B FREDHOLM ALTERNATIVE:

Theorem 11.7 Let Q C RY be a bounded domain of class C2. In addition to (11.7),
assume thatc € C(RQ), l <p < oo, k=1,2,and§ = 0.
Then either

(i) Problem (11.5), (11.6) possesses a unique solution u € WP (Q) for any f, g
belonging to the regularity class

e WY (Q)F, g e WP (ORQ) ifk = 1, (11.9)
feLP(Q), ge WrPORQ) ifk = 2; (11.10)

or
(ii) the null space

ker[A] = {u € W*(Q) | u solve (11.5), (11.6) with f = g = 0}

is of finite dimension, and problem (11.5), (11.6) admits a solution for f, g
belonging to the class (11.9), (11.10) only if

<L >pwi @) T < &W -t wiee/ o2 = 0

Sor all w € ker[A].

See Amann [7, Theorem 9.2], Geymonat and Grisvard [135]. O

In the concrete cases, the Fredholm alternative gives existence of a solution u
while the estimates of u in W*”(2) in terms of f and g follow from Theorems 11.5
and 11.6 via a uniqueness contradiction argument.

For example, in the sequel, we shall deal with a simple Neumann problem for
generalized Laplacian

—div, (an (v)) =finQ, Vx(v) ‘nye =0,
n n
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where 7 is a sufficiently smooth and positive function on 2 and f € LP(2) with a
certain I < p < oo. In this case the Fredholm alternative guarantees existence of
u € W?P(Q) provided f € LP(Q), fodx = 0. The solution is unique in the class
u€ W(Q), [o »dx = 0 and satisfies estimate

lullw2r) < cllfllr)-

11.3.3 Spectrum of a Generalized Laplacian

We begin by introducing a densely defined (unbounded) linear operator

Ay = div, (nvx(’;)), (11.11)

with the function 7 to be specified later, acting from L”(£2) to L?(2) with domain
of definition

D(Ayn) = {u€ W (Q) |V, (;) |y = 0}. (11.12)

Further we denote Ay = Aj s the classical Laplacian with the homogenous
Neumann boundary condition.

We shall apply the results of Sects. 11.3.1-11.3.2 to the spectral problem that
consists in finding couples (4, v), A € C, v € D(A, n) that verify

—div, (ﬂvx (U)) = Avin @, V, (U) -n|yo = 0.
n n

The results announced in the main theorem of this section are based on a
general theorem of functional analysis concerning the spectral properties of compact
operators.

Let T : X — X be a linear operator on a Hilbert space X endowed with scalar
product < -;- >. We say that a complex number A belongs to the spectrum of T
(one writes A € o(T)) if ker(T — Al) # {0} or if (T — A)™! : X — X is not
a bounded linear operator (here I denotes the identity operator). We say that A is
an eigenvalue of T or belongs to the discrete (pointwise) spectrum of T (and write
A € 0,(T) C o(7)) if ker(T — AL) # {0}. In the latter case, the non zero vectors
belonging to ker(7T — Al) are called eigenvectors and the vector space ker(7T — AI)
eigenspace.

B SPECTRUM OF A COMPACT OPERATOR:
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Theorem 11.8 Let H be an infinite dimensional Hilbert space and T : H — H a
compact linear operator. Then

(i) 0€o(T);
(ii) o(T) \ {0} = 0,(T) \ {0};
(iii)

o(T) \ {0} is finite, or else
o (T) \ {0} is a sequence tending to 0.

(iv) If A € a(T) \ {0}, then the dimension of the eigenspace ker(T — Al) is finite.

(v) If T is a positive operator, meaning < Tv;v >> 0, v € H, then o(T) C
[0, +00).

(vi) If T is a symmetric operator, meaning < Tv;w >=< v;Tw >, v,w € H, then
o(T) C R. Ifin addition H is separable, then H admits an orthonormal basis
of eigenvectors that consists of eigenvectors of T.

See Evans [96, Chap. D, Theorems 6,7]

The main theorem of this section reads:

B SPECTRUM OF THE GENERALIZED LAPLACIAN WITH NEUMANN BOUND-
ARY CONDITION:

Theorem 11.9 Let Q@ C RN be a bounded domain of class C?. Let

neC'(Q). infnx)=n>0.

Then the spectrum of the operator —Ay nr, where A, s is defined in (11.11)—
(11.12), coincides with the discrete spectrum and the following holds:

(i) The spectrum consists of a sequence {A}72,, of real eigenvalues, where Ay =
0,0 < Ak < /Xk+1y k= 1,2, e andlimk_mo Ak = o0,
(ii) 0 < dim(Ey) < oo and Ey = span{n}, where E; = ker(—A, nv — Al is the
eigenspace corresponding to the eigenvalue Ay;
(iii) L2() = D2, Ex, where the direct sum is orthogonal with respect to the
scalar product

dx

<U v >pp= / uv
Q n

(here the line over v means the complex conjugate of v).
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Proof We set

—A NS iff € L2(Q),
T:L2(Q) — LX), Tf =
0 if f € span{l},

A P@ =tf 2@ [ fax=0m we @) [ Mar=oy,

—A;}\ﬂf =u & —Ajyu=f.

In accordance with the regularity properties of elliptic operators collected in
Sects. 11.3.1-11.3.2 (see notably Theorems 11.5 and 11.7), the operator T is a
compact operator.

A double integration by parts yields

—/Qdivx (nVX(;))udnx :/QnVX(Z)-VX(z) dx =
—/Qdivx (nvx(Z))v dnx.

Taking in the last formulau = Tf, f € L*(Q), v = Tg, g € L*(R) and recalling that
functions Ty{, Tng have zero mean, we deduce that

dx dx dx
/ng :/ng and /Tff > 0.
Q n Q n Q n

To resume, we have proved that T is a compact positive linear operator on L?($2)
that is symmetric with respect to the scalar product < - ;- >{,,. Now, all statements
of Theorem 11.9 follow from Theorem 11.8.

O

11.3.4 Neumann Laplacian on Unbounded Domains

In this section, @ C RY, N = 2, 3 is an unbounded exterior domain,
Q =RV \B,

where B is a compact set (the case B = @, Q = R included). We consider the
Neumann Laplacian Arq defined for sufficiently smooth functions decaying at
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infinity as
Anqlv] = Avin Q, Vv -n|ye =0, v(x) — 0as |x| - oo.
The standard notation A will be used for the same operator if Q = RV,
Conventionally, the operator (—A o) is usually considered being self-adjoint and
non-negative.
In order to apply the abstract spectral theory introduced in Sect. 11.1, we define

(—An.@) on the Hilbert space L?(£2) in the following way:
For u € D'2(Q), f € L*(Q), we say that

—Apq[v] = f only if/ Vow-Vpdx = /fqo dx for any ¢ € C°(2).
Q Q
The domain of —A r.q in the Hilbert space L*(Q) is defined as
D(~Axg) = {v € @ NDAQ) | - Aval] =1 f € @)

If Q2 is at least of class C2, then —A /g is a densely defined self-adjoint operator
on the Hilbert space L?(R2), with

D(—Anxg) = {v e W(Q) ‘ V,v -njse = 0 in the sense of traces} ,

see e.g. Leis [183].

B RELLICH’S THEOREM:

Theorem 11.10 Ler Q C RN, N = 2,3 be an exterior domain with C? boundary.
Suppose that

—Au(x) + gx)u(x) = Au(x) € 2, A >0,
where q is Holder continuous in Q and
|x|g(x) = 0 as |x| — oo.
Then ifu € L>({|x| > ro}) for a certain ry > 0, then

u=0in.

See Eidus [91, Theorem 2.1] O
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As an immediate corollary of Rellich’s theorem we deduce that (—A s ) defined
on an exterior domain has no eigenvalues—its point spectrum is empty. More
specifically, we report the following result.

| SPECTRUM OF NEUMANN LAPLACIAN ON EXTERIOR DOMAIN:

Theorem 11.11 Let Q C R? be an exterior domain with C* boundary.

Then —Axr q is a non-negative self-adjoint operator with absolutely continuous
spectrum [0, 00)—all spectral projection are absolutely continuous with respect
to the Lebesgue measure. In addition, —Aprq satisfies the Limiting absorption
principle (LAP):

Operators
Vo(=Axa—A=xin oV :LX(Q) = LX(Q), V[v] = (1 + [x]) /2, s> 1

are bounded uniformly for A € [o, 8], 0 <a < 8, n >0,

See Leis [183] O

We recall “negative” LP-estimates for the Neumann Laplacian on exterior
domains.

B NEGATIVE L?-ESTIMATES FOR THE NEUMANN LAPLACIAN ON EXTERIOR
DOMAIN:

Theorem 11.12 Let Q@ C RY be an exterior domain with C* boundary. Then for
any w € C°(Q2), the problem

/Vm-Vﬂpdxz/W-Vﬂp dx forall p € C°(2) (11.13)
Q Q

admits a unique solution u € D(—Ar.q). Moreover, u € D' () and

IVaullr@iryy < c(PIWlLrsry) for any 1 < p < oo.

See e.g. Galdi [131] O

Finally, we consider the operator U = exp (:tit \/ —-A ./\/',Q) [A] that appears in the
variation-of-constants formula associated to the wave equation

9;,U—AU =0, V,U-n|yg = 0.
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B STRICHARTZ ESTIMATES FOR THE FLAT LAPLACIAN ON RV:

Theorem 11.13 Let A be the L*>(RY) self-adjoint realization of the Laplacian
defined on the whole space R". Suppose that

N N 1 2 N-1 2
N>2,2<p<o0,2<g<o00,y= - -, < 1-— .

2 g pp- 2 q
Then
o0
[ Jew (=) o] . ar = ¥ g B,
oo L4(RV) HYA(RY)
See Keel and Tao [168] O

Remark Here H”?> denotes the homogeneous Sobolev space of functions having
derivatives of order y square integrable. The norm in H”?(RV) can be defined via
Fourier transform

[0y = [ 167 [Pl @ o

11.4 Normal Traces

Let 2 be a bounded domain in RY. For 1 < g, p < oo, we introduce a Banach space
E?(Q) = {u € LY(Q:RY)| divu € L7 (Q)}. (11.14)
endowed with norm
lullza@) == l[ullpaq;rs) + lldivallLr ). (11.15)
We also define
El"(Q) = closureEq.p(Q){Cfo (Q; RN)}
and

EP(Q) = EMP(Q).  Ej(Q) = E;7(Q).
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Our goal is to introduce the concept of normal traces and to derive a variant of
Green’s formula for the functions belonging to E77(2).

B NORMAL TRACES:

Theorem 11.14 Let Q C RY be a bounded Lipschitz domain, and let 1 < p < oo.
Then there exists a unique linear operator yy with the following properties:

(i)
Vot EP(Q) > W77 Q)] = WP (9Q), (11.16)
and
Ya() = yo(u) - n a.a. on IQ wheneveru € C®°(Q; RY). (11.17)

(ii) The Stokes formula

/ vdivudx—i—/ Vv-udx =< yp(u); yo(v) >, (11.18)
Q Q

holds for anyu € EP(2) and v € wir’ (2), where < -; - > denotes the duality
— 1y -
pairing between W' 7' (Q) and W rl”p(Q).
(iii)

ker[yn] = Ej(). (11.19)

(iv) Ifu € W' (Q;RY), then yy(u) in LP(382), and yn(u) = yo(u) - n a.a. on 9.

Proof of Theorem 11.14 As a matter of fact, Theorem 11.14 is a standard result
whose proof can be found in Temam [256, Chap. 1]. We give a concise proof based
on the following three lemmas that may be of independent interest.

Step 1 We start with a technical result, the proof of which can be found in Galdi
[131, Lemma 3.2]. We recall that a domain Q C RV is said to be star-shaped if
there exists a € Qsuchthat Q = {x e RV | [x—a| < h(‘;‘:Z‘ )}, where h is a positive

continuous function on the unit sphere; it is said star-shaped with respect to a ball
B C Q if it is star-shaped with respect to any of its points.

Lemma 11.1 Let Q2 be a bounded Lipschitz domain.
Then there exists a finite family of open sets {O;}ie; and a family of balls {B™ ¢,
such that each Q; :== Q N O, is star-shaped with respect to the ball B?, and

Q C U0,
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Step 2 The main ingredient of the proof of Theorem 11.14 is the density of
smooth functions in the spaces E4”($2).

Lemma 11.2 Let Q2 be a bounded Lipschitz domain and 1 < p < q < oo. Then
C®(Q2;RY) = CX(Q) is dense in E77(Q2).

Proof of Lemma 11.2 Hypothesis g > p is of technical character and can be relaxed
if, for instance, Q is of class C!. It ensures that up € E9”(S2) as soon as ¢ €
C2°(R2). Moreover, according to Lemma 11.1, any bounded Lipschitz domain can
be decomposed as a finite union of star-shaped domains with respect to a ball. Using
the corresponding subordinate partition of unity we may assume, without loss of
generality, that 2 is a starshaped domain with respect to a ball centered at the origin
of the Cartesian coordinate system.

For u € E??(2) we denote u.(x) = u(tx), t > 0,so thatif t € (0,1), u, €
Eo?(r7'Q) and div(u;) = t(divu), in D' (r7'Q), where 17'Q = {x e RV | tx €
Q}. We therefore have

||diV(ll — ul—)”LP(Q) < (1 — T)”diVll”Lp(Q) + ||diVll — (diVll)T”Lp(Q). (1120)

Since the translations RY 5 h — u(- + h) € L*(RV) are continuous for any
fixed u € L'(RV), 1 < s < o0, the right hand side of formula (11.20) as well as
lu —u;||ze(q) tend to zero as t — 1—. Thus it is enough to prove that u, can be
approximated in E97(£2) by functions belonging to C*°(£2; RY).

Since Q C 7! Q, the mollified functions ¢, *u, belong to C®(R2; RY)NEY ()
provided 0 < & < dist(Q,d(z7'R2)) and tend to u, in E97(Q) as e — 0+ (see
Theorem 11.3). This observation completes the proof of Lemma 11.2.

|

Step 3 We are now in a position to define the operator of normal traces. Let €2 be

_ 1 o
a bounded Lipschitz domain, 1 < p < co, v € W' (02), and u € C®(Q; RY).
According to the trace theorem (see Theorem 6), we have

/ vu-ndo:/@(v)divudx+/ VE(v) -udx,
90 Q Q

and

[ vundo] <l 16y = D ullo@ [y oo
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where the first identity is independent of the choice of the lifting operator £.
Consequently, the map

Yn U — Yo(u)-n (11.21)

is a linear densely defined (on C*°(2)) and continuous operator from EP(£2) to

W10 P Q)] = W_;"’(BQ). Its value at u is termed the normal trace of u on
92 and denoted yn(u) or (u-n)|yq.

Step 4 In order to complete the proof of Theorem 11.14, it remains to show that
ker[yn] = Ej(S2).

Lemma 11.3 Let Q2 be a bounded Lipschitz domain, 1 < p < oo, and let yy :

EP(Q) — W‘?"(asz) be the operator defined as a continuous extension of the
trace operator introduced in (11.21). Then ker[yn] = E5(S2).

Proof of Lemma 11.3 Clearly, C2°(2) C ker[yn]; whence, by continuity of yp,
E)(Q) C kerlyal.
Conversely, we set

u(x) if x € 2,
ux) =

0 otherwise.

Assumption u € ker[yy] yields [, vdivadx+ [, Vv-udx = Oforallv € C®(RY),
meaning that, in the sense the distributions,

diva(x) if x € 2,
divii(x) = e L"(RY),
0 otherwise

and, finally, & € EP(RV).

In agreement with Lemma 11.2, we suppose, without loss of generality, that
Q is starshaped with respect to the origin of the coordinate system. Similarly
to Lemma 11.2, we deduce that supp[(u/;)] belongs to the set T2 C £, and,
moreover, || — W[ — 0as 7 — 1—.

Consequently, it is enough to approximate U/, by a suitable function belonging
to the set C2°(£2; RY). However, according Theorem 11.3, functions {; *u,/; belong
to C2°(2)NEP () provided 0 < ¢ < ;dist(tQ, 0R2), and {p*u;/; — W7 in EP(Q).
This completes the proof of Lemma 11.3 as well as that of Theorem 11.14.

O
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11.5 Singular and Weakly Singular Operators

The weakly singular integral transforms are defined through formula

T = [ Keex—nro)ay (11.22)
where
K(x.7) = 9|(x|’f), 0<A<N, 6eL®RxRY). (11.23)
Z

A function K satisfying (11.23) is called weakly singular kernel.
The singular integral transforms are defined as

o = tim ([ Kexmma) = v [ Ko,
(11.24)

where

K(x,z) =", 6 e =R x9),

(11.25)
S={zeRV[lZ =1} [, 0(x.2dS.=0.

The kernels satisfying (11.25) are called singular kernels of Calderon-Zygmund

type.
The basic result concerning the weakly singular kernels is the Sobolev theorem.

B WEAKLY SINGULAR INTEGRALS:

Theorem 11.15 The operator T defined in (11.22) with K satisfying (11.23) is a
bounded linear operator on L1(RN) with values in L'(RY), where 1 < q < oo,
A

1 _ 1 .
S =at g 1. In particular,

17O @yy < cll fllza gy

where the constant ¢ can be expressed in the form co(q, N) |0 || oo mvxrv)-

See Stein [251, Chap. V, Theorem 1] O

The fundamental result concerning the singular kernels is the Calderon-Zygmund
theorem.

B SINGULAR INTEGRALS:
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Theorem 11.16 The operator T defined in (11.24) with K satisfying (11.25) is a
bounded linear operator on L1(RN) for any 1 < q < oo. In particular,

1T ey < cllfllzanys

where the constant c takes the form ¢ = co(q, N)||0|| oo &~ xs)-

See Calderén-Zygmund [46, Theorem 2], [47, Sect. 5, Theorem 2]. Oa

11.6 The Inverse of the div-Operator (Bogovskii Formula)

We consider the problem
div,u=fin Q, ulpe =0 (11.26)

for a given function f, where & C R is a bounded domain. Clearly, prob-
lem (11.26) admits many solutions that may be constructed in different manners.
Here, we adopt the integral formula proposed by Bogovskii [28] and elaborated
by Galdi [131]. In such a way, we resolve (11.26) for any smooth f of zero
integral mean. In addition, we deduce uniform estimates that allow us to extend
solvability of (11.26) to a significantly larger class of right-hand sides f, similarly
to Geissert et al. [134]. The main advantage of our construction is that it
requires only Lipschitz regularity of the underlying spatial domain. Extensions to
other geometries including unbounded domains are possible. We recommend the
interested reader to consult the monograph by Galdi [131] or [224, Chap. III] for
both positive and negative results in this direction.
Our result are summarized in the following theorem.

M THE INVERSE OF THE DIV-OPERATOR:

Theorem 11.17 Let Q C RY be a bounded Lipschitz domain.

(i) Then there exists a linear mapping B,
Q

such that div(B[f]) = f, meaning, u = B[f] solves (11.26).
(ii) We have

||B[f]||W1<+1.p(Q;RN) < c|lfllwkr(q) foranyl <p < oo, k=0,1,...,
(11.27)
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in particular, B can be extended in a unique way as a bounded linear operator
B:{f|feLl(Q), /fdx =0} > W, (% RY).
Q

(iii) Iff € LP(Q), fo dx = 0, and, in addition, f = div,g where g € El"(Q),
1 < g < oo, then

1B ra@;r3) < cllglioq;rs)- (11.28)
(iv) B can be uniquely extended as a bounded linear operator
B W (@I = {f € W @) | <fi1>=0} > L/(Q:RY)

in such a way that

—/ Blf]- Vv dx =< f1v >y pewinye) Jorallv e w7 (Q),
Q
(11.29)

||B[f]||LP(Q;RN) = C”f”[wl»p’(g)]*- (11.30)

Here, a function f € C°(2) is identified with a linear form in WL (Q)]* via
the standard Riesz formula

<f7 v >[W1'p/(Q)]*§W1-f/(Q): /fv dxfor allv € Wl’p/(Q). (1131)
Q

Remark Since B is linear, it is easy to check that
9, B[f](t, x) = B[0,f](t, x) fora.a. (t,x) € (0,T) x Q2 (11.32)

provided

of, f € LP((0,T) x Q), /Qf(t, ydx=0fora.a.re (0,7).

The proof of Theorem 11.17 is given by means of several steps which may be of
independent interest.

Step 1 The first ingredient of the proof is a representation formula for function-
als belonging to [W'?' (Q)]*.
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Lemma 11.4 Let Q be a domgin inRN andlet 1 < p < oo.
Then any linear form f € [W'' (Q)]* admits a representation

N
< f; v >[W1~P’(Q)]*,W1~P’(Q)= Z/QW,‘&,“) d.x,
i=1

where

w=[wi,...,wy] € L"(RY) and || f|l it e = IWllLosmy)-

Proof of Lemma 11.4 The operator [ : W’ () — (S RM), I(u) = Vuis an
isometric isomorphism mapping W' (Q) onto a (closed) subspace / (Wl’p/(Q)) of
L’ (RN ). The functional ¢ defined as

< ¢, Vu >:=< f, u >[Wl'1’/(Q)]*,W1’1’/(Q)

is a linear functional on / (WI'P/(Q)) satisfying condition

sup{ < giv > [v e IOV (@), IVl guam = 1} = Ifllgins

Therefore by the Hahn-Banach theorem (see e.g. Brezis [41, Theorem I.1]), there
exists a linear functional ® defined on L' (Q; RY) satisfying

< B Vu >=< ¢;Vu >, ue W(Q), [Pl qrvys = Il @y

According to the Riesz representation theorem (cf. Remark following Theorem 2)
there exists a unique w € L?(2; RY) such that

< ®;v >:/w~v, VELP/(Q;RN),
Q

19l @:mmyp = IWllLr @)
(L7 (S3RY)]

This yields the statement of Lemma 11.4.

Step 2 We use Lemma 11.4 to show that C2°(€2) is dense in (W' (Q)]*.
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Lemma 11.5 Let Q C RY be an open set, 1 < p' < oc. ]
Then the set {C°(Q)| [qvdx = 0}, identified as a subset of W' (22)]*
via (11.31), is dense in [W'"' ()]*.

Proof of Lemma 11.5 Let w € LP(S2;RY) be a representant of f € [W!'*' (Q)]*
constructed in Lemma 11.4 and let w, € C®(€2;R") be a sequence converging
strongly to w in L?($2;RY). Then a family of functionals f, = divw, € {v €
C®(Q) | [qudx = 0}, defined as < fy;v >= [, W, Vvdx = — [ divw,v dux,
converges to f in [W17'(Q)]*. This completes the proof.

O

Step 3 Having established the preliminary material, we focus on particular
solutions to the problem div,u = f with a smooth right hand side f. These solutions
have been constructed by Bogovskii [28], and their basic properties are collected in
the following lemma.

Lemma 11.6 Let Q2 be a bounded Lipschitz domain.
Then there exists a linear operator

B:{feCXEQQ)] /Qfdx =0} > C®(;RY) (11.33)

such that:
(i)
div,B(f) =1, (11.34)

and

”VXB(f)Hwk.p(Q;RNxN) < C”f”Wk.p(Q), 1< p <00, k= 0, 1, ey
(11.35)

where c is a positive constant depending on k, p, diam(2) and the Lipschitz
constant associated to the local charts covering 052.
(ii) Iff = div,g where g € C°(2;RY), then

1B a@irym = cllgla@iry), 1 < g < oo, (11.36)

where ¢ is a positive constant depending on q, diam(S2), and the Lipschitz
constant associated to 052.

(iii) If f,0f € {v € CPUx Q)| [qu(t,x)dx = 0, 1 € I}, where I is an (open)
interval, then

aB(f)
ot

of

o=}

)(t,x)forallte[, xeqQ. (11.37)
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Remark In the case of a domain star-shaped with respect to a ball of radius r and for
k = 1, the estimate of the constants in (11.35), (11.36) are given by formula (11.41)
below. In the case of a Lipschitz domain, it may be evaluate by using (11.41)
combined with Lemmas 11.1, and 11.7 below.

Step 4 Before starting the proof of Lemma 11.6, we observe that it is enough to
consider star-shaped domains.

Lemma 11.7 Let Q C RN be a bounded Lipschitz domain, and let
feCr(), /Qfdxzo.
Then there exists a family of functions
fi € C(Q2)), /Q.fidx =0, Q2=2Nn0; foriel,

where {O}ics is the covering of Q constructed in Lemma 11.1, and Q; are star-
shaped with respect to a ball. Moreover,

I fillwery < cllfllwer@y, 1 <p <00, k=0,1,...,

where c is a positive constant dependent solely on p, k and |O;|, i € L.

Proof of Lemma 11.7 Let {@;}ie;u; be a partition of unity subordinate to the cover-
ing {O;}ier of 2. We set

Q1 =Qn0;, Q' = UiengQ, where 2, = 0;,N Q.

Next, we introduce
fi=for=r [ forax g=fo - [ soax
Q Q
where

K1 € CX(Q NQY), /,qu= L= > o
& ien{1}

With this choice,

fi € C2Q), /Qﬁdx=o,gecc°°(szl), /ngdx=o,
1
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and both f; and g satisfy W*?-estimates stated in Lemma 11.7. Applying the above
procedure to g in place of f and to Q' in place of Q, we can proceed by induction
and complete the proof after a finite number of steps.

|

Step 5: Proof of Lemma 11.6

In view of Lemma 11.7, it is enough to assume that €2 is a star-shaped domain
with respect to a ball B(0; r), where the latter can be taken of radius r centered at
the origin of the coordinate system.

In such a case, a possible candidate satisfying all properties stated in Lemma 11.6
is the so-called Bogovskii’s solution given by the explicit formula:

B[f](x) =/Qf(y)[|xx__yle /: §r(y+s|i:§|)sN_lds] dy, (11.38)

or, equivalently, after the change of variables z = x —y, r = s/|z|,

B0 = [ =2z [tz 4ot ar]as (11.39)

where ¢, is a mollifying kernel specified in (11.3)-(11.4). A detailed inspection of
these formulas yields all statements of Lemma 11.6.

Thus, for example, we deduce from (11.39) that B[f] € C*°(R2), and that
supp[B[f]] C M where

M={zeQ|z=Az1 + (1 = A)z2, 21 € supp(f),z2 € B(r;0),A € [0,1]}.

Since M is closed and contained in €2, (11.33) follows.
Now we explain, how to get (11.34) and estimate (11.35) with £k = 1.
Differentiating (11.39) we obtain

(a"Bf(f))(x) - /RN if x— Z)Z/[ /100 x—z+ V! dr] dz

+/RNf(x—Z)Zj[/loo gir (x—z+ rz)rNdr] dz.

1

Next, we split the set R in each integral into a ball B(0; &) and its complement
realizing that the integrals over B(0;¢) tend to zero as ¢ — 0+. The first of the
remaining integrals over RN \ B(0; ¢) is handled by means of integration by parts.
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This direct but rather cumbersome calculation leads to

(@B1) w0 = tim { [ rer—2x

>0+ Ulelze

x[&.j /100 Lx—z+ N dr + g /100 ?fr (x—z+ rz)rNdr] dz

Xi

+ f(x—z)[z;lzzil /100 §,(x—z+rz)rN_ldr] dO’Z},

|z|=¢

or, equivalently,

(3:81) ) = 1im | /| o)
y—x|>e

—>0+

8iy * - _
x[ J §,(x+rx y)(|x—y|+r)N Vdr+
|x =yl

[x =y Jo

N /000 3§r(x+ rlj:;)ﬂx-ﬂ + V)Ndr] dy}

|x_y|N+1 axi

e—>0+

+£(x) lim {/ zj 2l / G(x—z+r)rV! dr] daz},
lz|=¢
where we have used the fact that

lim {/|z|=s [(f(x—z) —f(x))zj |ZZL| /100 G(x—z+rgrV! dr] daz} =0.

e—>0+

Developing the expressions (|x —y| + r)V~!, (]x—y| + r)" in the volume integral
of the above identity by using the binomial formula, we obtain

(aiBj[f])(x) = V‘P‘( Ja Kis(e.x = f () dy ) (11.40)

+ Jq Gij(x,.x = y)f () dy + £ () Hij(x).

The terms on the right hand side have the following properties:

(i) The first kernel reads

0;(x.
Kij(x.2) = \}(TZ|ZN/|Z|)
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with

e l;) s /0 °°;,(H ré')rzv—l dr + g' /0 - gif (Wl;)rwdr.

Thus a close inspection shows that

/ O(x,z)do. =0, x € R",
|z|=1

16(x,2)| < c(N)

(dlam(Q))N (1 + dlan;(g))’ xe RN, IZI = 1.

o

We infer that K;; are singular kernels of Calderén-Zygmund type obeying
conditions (11.25) that were investigated in Theorem 11.16.
(i1) The second kernel reads

0;(x,2)

G[J(-xs Z) = |Z|N_1 )

where

(diam(2))
N

Thus G;; are weakly singular kernels obeying conditions (11.23) discussed in
Theorem 11.15.
(iii) Finally,

|6:(x, 2)| < c(N) (1 + dianrl(m), (x,z) e RY xRV,

Hijx) = /R 99 (v 4+ 2) dz.

v |z]?
where
diam(2))V
@) < evy FmET g
IN
and

N
ZHU(X) = 1
i=1

Using these facts together with Theorems 11.15, 11.16 we easily verify esti-
mate (11.35) with k = 1. We are even able to give an explicit formula for the
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constant appearing in the estimate, namely

= co(p,N)(dian;(Q))N<1 + dianrl(m). (11.41)

Since

d xX—y

Lot 0 el + 0] =

— Yk 98, x—y
Z ] g (5 Ty =T 40"
X—Yy _
+N§,(x+ r|x_y|)(|x—y| + r)N L
we have
N
> FONKii(x.x—y) + Gii(r.x—y) ) dy = £(x) | f(»)dy = 0.
[x—yl Q

i=1 =Yz

Moreover, evidently,

N
> = [ e =1

whence (11.34) follows directly from (11.40).

In a similar way, the higher order derivatives of B[f] can be calculated by means
of formula (11.39). Moreover, they can be shown to obey a representation formula
of type (11.40), where, however, higher derivatives of f do appear; this leads to
estimate (11.35) with an arbitrary positive integer k.

Last but not least, formula (11.39) written in terms of div,g yields, after
integration by parts, a representation of 5[div,g] of type (11.40), with f replaced
by g. Again, the same reasoning as above yields naturally estimate (11.36).

Finally, property (11.37) is a consequence of the standard result concerning
integrals dependent on a parameter.

The proof of Lemma 11.6 is thus complete.

Step 6: End of the Proof of Theorem 11.17 . For

<fiv >[W1_[/(Q)]*,W1_p/(g): /;l w-Vudx, withw e LP(Q; RN),
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we can take
< f:&‘v v >[W1'p/(Q)]*,W1~p/(Q): / We - Vv d.x,
Q

where w, € C°(L2; RY) have been constructed in Lemma 11.5.
Furthermore, let h, € L?(Q;RY),

Jofevdx=— [ h. - Vv dxforallv € C®(Q),

”fs”[Wl.p’(g)]*,wl.p’(g) = ||hs||Lﬂ(Q;RN)s

be a sequence of representants of f; introduced in Lemma 11.4. The last formula
yields

f. = divh,, / (vdivhs +h,- Vv) dx =0,
Q

meaning, in particular,
Yn(h;) = 0 and, equivalently, h, € E{(2), 1 <p < oo

(see (11.19) in Theorem 11.14).
In view of the basic properties of the spaces Ej(S2), we can replace h, by g. €
C(22; RY) so that

[he — gellr@) — 0.

In particular, the sequencefg, < f;; V> @ e (@) = fQ g. - Vv dux, converges
tof’ < fv v >[W1~p/(Q)]*,W1-l’/(Q): fQ W VU d.x, Strongly in [Wl,p/ (Q)]*

_Due to estimate (11.36), the operator B is densely defined and continuous from
[W'» (8_2)]* to LP(2; RY), therefore it can be extended by continuity to the whole
space [W'7' (Q)]*. _

If < f10 > s’ = Jo W0 dax, with w = Wy (Q) N 12(R), we take £,
such that < ‘fg, v >[W1,1)/(Q)]*’Wl_p/(9): .[Q Wel d-x’ We = Cé‘ *W—K ,[Q(é‘s * W) d-X,
where k € C2°(Q2), [, k dx = 0 so that

CR®(Q) 3 f. =w, — f = win W(Q).

If < fiv > @i @= Jow - Vudx with w € El"(Q2), we take
a sequence f; such that < fiiv >y, g« i/ (@)= JoWe - Vodx, with w €
LP(Q2;RY) = [, divw,v dx, where w, € C°(Q;RY), w, — win E;”(Q).

By virtue of estimates (11.35), (11.36), the operator B is in both cases a
densely defined bounded linear operator on Wg’p (Q) (= [W(Q)]*) ranging in
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Wy T'7(Q), and on ELP(Q2) (= [W'#'(R2)]*) with values in LI(R2) N Wy?(R2); in
particular, it can be continuously extended to Wi " (£2), and EZ” (), respectively.
This completes the proof of Theorem 11.17.
O

11.7 Helmholtz Decomposition

Let © be a domain in R". Set
L2(Q;RY) = {v € LP(Q;R"Y) | div,vy = 0, v-n|sq = 0}
and
LD (:RY) = {v e LP(:RY) | v = nV, ¥, ¥ € W,7(Q)},

loc

where n € C(2). The definition and the basic properties of the Helmholtz
decomposition are collected in the following theorem.

B HELMHOLTZ DECOMPOSITION:

Theorem 11.18 Let Q2 be a bounded domain of class CM and let
n € C(Q), infn(x) =n>0.
Then the Lebesgue space LP(2; RY) admits a decomposition
LP(Q:RY) = LZ(Q:RY) @ LY (Q:RY), 1 < p < o0,
more precisely,
v =H,[v] + H;'[v] for any v € LP(Q: R"),

with H,IJ‘ [v] = nV,V, where ¥ € W'P(Q) is the unique (weak) solution of the
Neumann problem

/an\IJ-Vx(p dx:/v-fop dxforallfpeCoo(Q),/ Wdx=0.
Q Q Q
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In the particular case p = 2, the decomposition is orthogonal with respect to the
weighted scalar product
dx

<V;w>1/,7=/V-w .
Q n

Proof We start the proof with a lemma which is of independent interest.

Lemma 11.8 Let Q be a bounded domain of class C' and 1 < p < 0o. Then
LP(Q;RY) = closure; » q.rv) Cog (2: RM),
where

C2 (Q:RY) = {v e C°(Q:RY) | div,v = 0}.

Proof of Lemma 11.8 Let u € LY(Q;R?). Due to Lemma 11.3, there exists a
sequence w, € C>®(Q,RY), such that w, — u in L”(Q;R?) and div,w, — 0
in L?(Q2) as ¢ — 04. Next we take the sequence u, = w, — B[div,w,], where
B is the Bogovskii operator introduced in Sect. 11.6. According to Theorem 11.17,
the functions u, belong to CZ5 (£2; RV) and the sequence {u,},~ converges to u in
L?(2;RV). This completes the proof of Lemma 11.8.

|

Existence and uniqueness of W follow from Theorems 11.6, 11.7. Evidently,
according to the definition, H,[v] = v — nV,¥ € L7(Q;RY). Finally, we may
use density of CZ% (£2; RV) in LZ(2: RY) and integration by parts to show that the
spaces L2 (€2; RV) and Lﬁ’n(Q; RY) are orthogonal with respect to the scalar product
< -;+ >1/y- This completes the proof of Theorem 11.18.

O

Remark In accordance with the regularity properties of the elliptic operators
reviewed in Sect.11.3.1, both H, and Hf]- are continuous linear operators on
LP(22;RY) and W' (Q;RV) forany 1 < p < oo provided 2 is of class C!!.

If n = 1, we recover the classical Helmholtz decomposition denoted as H,
Ht (see, for instance, Galdi [131, Chap.3]). The result can be extended to a
considerably larger class of domains, in particular, it holds for any domain Q C R?
if p = 2. For more details about this issue in the case of arbitrary 1 < p < 0o see
Farwig et al. [99] or Simader, Sohr [248], and references quoted therein.

If Q@ = RY, the operator H* can be defined by means of the Fourier multiplier

E®¢

HY[V](x) = fgix[ p

Friosg [v]:| .



460 11 Appendix
11.8 Function Spaces of Hydrodynamics

Let Q be a domain in RY. We introduce the following closed subspaces of the
Sobolev space W!'?(Q:RY), 1 < p < oo:

Wo2(Q) = {v e Wy”(2:RY) | div, v = 0},
WP (Q) = {ve WP (Q;RY)|v-n|yq = 0},
Wal (2 RY) = {v e Wp?(Q) | div,v = 0}.
We also consider the vector spaces
C2 (Q:RY) = {v e C°(Q:RY) | divv = 0},
CEV(Q;RY) = {v e C*(Q;RY) | v-nyq = 0},
Civ(Q.RY) = {v e CL(Q:RY) | div,v = 0},

CR(RY) = N2 GV (Q:RY), €9 (U RY) = N2, Chv (2 RY).

,0

Under certain regularity assumptions on the boundary 0€2, these spaces are dense
in the afore-mentioned Sobolev spaces, as stated in the following theorem.

B DENSITY OF SMOOTH FUNCTIONS:

Theorem 11.19 Suppose that Q is a bounded domain in RY, and 1 < p < oco.
Then we have:

(i) If the domain Q is of class C%', then the vector space Coo (2 RN) is dense in
W, (2:RY).
(ii) Suppose that Q is of class C*V, v € (0,1), k = 2,3, ..., then the vector space
CkY (Q;RYN) is dense in Wal (Q:RV).
(iii) Finally, if Q is of class C*", v € (0,1), k = 2,3,..., then the vector space
CEkY (Q:RY) is dense in Wy (2: RY).

Proof Step 1 In order to show statement (i), we reproduce the proof of Galdi
[131, Sect.I1.4.1]. Let v € Wé,’g(Q) — WS’P(Q;RN). There exists a sequence
of smooth functions w, € C?O(Q;RN) such that w, — v in WI'P(Q;RN), and,
obviously, divw, — 0 in LP(Q). Let u, = B[div,w,], where B ~ div, "' is
the operator constructed in Theorem 11.17. In accordance with Theorem 11.17,
u, € C°(Q;RY), divu, = divw,, and ||u, || 1rqry) = 0.
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In view of these observations, we have
Ve =W,—Uu, € Cfo(Q;RN), div,v, = 0,
v, — vin WP (Q:RY)
yielding part (i) of Theorem 11.19.

Step 2 Let v € W% (Q:RY) <> W'2(Q; RY). Take w, € C(2; R") such that
w. — vin W!'?(Q;R"). Obviously, we have

divw, — 0in LP(2), . -nlag — 0 in W' r7(3<).
Let ¢, € CV(Q), fﬂ @ dx = 0 be an auxiliary function satisfying
A, = divw,, V. -nlgo = W, - n|yq.
Then, in accordance with Theorem 11.4,
Cﬁz(”,(Q;RN) 5w, — Vg, > vin Wl”’(Q;RN).

This finishes the proof of Part (i1).

Step 3 Let v € W,"(Q;RY). We take u = B(div,v), where B is the
Bogovskii operator constructed in Theorem 11.17, and set w = v — u. Clearly

w € Wal (Q:RY).
In view of statement (i), there exists a sequence w, € Ci (Q2;R") such that

w, — win WP (Q;RM).

On the other hand u belonging to Wé’p (Q2:RM), there exists a sequence u, €
C(2; RY) such that

u, — uin W'7(Q;RM).

The sequence v, = W, + u, belongs to Ck”(€2; RY) and converges in W!7(Q2; RY)
tov.
This completes the proof of Theorem 11.19
U

The hypotheses concerning regularity of the boundary in statements (ii), (iii) are
not optimal but sufficient in all applications for all treated in this book.
If the domain Q2 is of class C*°, the density of the space CI?O(Q;RN) in

Wa?(Q;RY) and of C (2:RY) in Wa? (S2: RY) is a consequence of the theorem.
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11.9 Poincaré Type Inequalities

The Poincaré type inequalities allow to estimate the L”-norm of a function by
the LP-norms of its derivatives. The basic result in this direction is stated in the
following lemma.

B POINCARE INEQUALITY:

Lemma 11.9 Let 1 < p < oo, and let @ C RN be a bounded Lipschitz domain.
Then the following holds:

(i) For any A C 02 with the non zero surface measure there exists a positive
constant ¢ = c(p, N, A, Q) such that

lvllzre) < c (”VU”L;?(Q;RN) +/ [v] de) for any v e W' (Q).
a0
(ii) There exists a positive constant ¢ = c(p, 2) such that

1
|lv — |Q|/ v dx|rr) < ||Vl qry) for any v € Wi (Q).
Q

The above lemma can be viewed as a particular case of more general results, for
which we refer to Ziemer [277, Chap.4, Theorem 4.5.1].

Applications in fluid mechanics often require refined versions of Poincaré
inequality that are not directly covered by the standard theory. Let us quote
Babovski, Padula [13] or [87] as examples of results going in this direction. The
following version of the refined Poincaré inequality is sufficiently general to cover
all situations treated in this book.

B GENERALIZED POINCARE INEQUALITY:

Theorem 11.20 Let 1 < p < 00,0 < T < 00, Vo > 0, and let @ C RN be a
bounded Lipschitz domain.
Then there exists a positive constant ¢ = c¢(p, I, Vo) such that

1
:
1o oy = e[ IVsvlan + ([ 1017ax)']
Vv

for any measurable V C Q, |V| > Vo and any v € W' (Q).
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Proof Fixing the parameters p, I, V, and arguing by contradiction, we construct
sequences w, € W!*(Q), V,, C Q such that

alirer = 1 Wl + ([ bl a) <) e
[Val = Vo. (11.43)
By virtue of (11.42), we have at least for a chosen subsequence
w, — win W'(Q) where w = |Q|_!17
Consequently, in particular,
‘w%ggw—»a (11.44)
On the other hand, by virtue of (11.42)

< (2/W)F/ w,lzdx—> 0,

fwe > 230V,
o=

in contrast to

Vit < 0} =

Vi

[wa = 30V, —[twn < 3| = va.

where the last statement follows from (11.43), (11.44).
O

Another type of Poincaré inequality concerns norms in the negative Sobolev
spaces in the spirit of Necas [219].

B POINCARE INEQUALITY IN NEGATIVE SPACES:

Lemma 11.10 Let Q be a bounded Lipschitz domain, 1 < p < oo, and k =
0,1,.... Letk € Wé’p (R2), fQ k dx = 1 be a given function.

(i) Then we have

1 lw—sot2y < e(IVf lp—ctoomn +
(11.45)

a1 [ waik dx|) for any f € W (@),

where {Wq }ja|<i» Wa € LP(Q) is an arbitrary representative of f constructed in
Theorem 3, and c is a positive constant depending on p, N, 2.
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(ii) In particular, if k = 0, inequality (11.45) reads

”f”Ll’(Q) < C<||Vf||W—l.P(Q;]RN) + )/ﬂfl( de.

Proof Since C*°(2) is dense in W™*#(2), it is enough to suppose that f is smooth.
By direct calculation, we get

Jofgdx
”f”W*’“P(Q) = sup le] =
sewt? (@) 181wk’ (@)

sup

Jof l8—k [qgdxldx  llg—« [ gdx”wk»z”(sz))
geWi” (@)

X
lg —« fg 8 dx”wk-p’(g) ”g”Wk.p’(Q)

(Jo 840)(Jofrdx) _

+ sup
geW{;‘p/(Q) ”g”Wk-p’(Q)

div,vdx
oo s B 5 [
VGW(I;JFI-I’/(Q;RN) ||V||Wk+l‘p/(Q;RN) \a\fk @

)

where {w, }o <k is any representative of f (see formula (3) in Theorem 3), and where
the quantity W, ' (Q) 3 v = B(g — k [ gdx) appearing on the last line is a
solution of problem

diVXV =g —K/di-x, ”V”WkJrl.p’Q) = C(Ps Q)Hg_ K/S;gdx‘ Wk-l’/(Q)

constructed in Theorem 11.17.
The proof of Lemma 11.10 is complete.

11.10 Korn Type Inequalities

Korn’s inequality has played a central role not only in the development of linear
elasticity but also in the analysis of viscous incompressible fluid flows. The reader
interested in this topic can consult the review paper of Horgan [157], the recent
article of Dain [69], and the relevant references cited therein. While these results
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rely mostly on the Hilbertian L*-setting, various applications in the theory of
compressible fluid flows require a general L”-setting and even more.

We start with the standard formulation of Korn’s inequality providing a bound of
the L”-norm of the gradient of a vector field in terms of the L”-norm of its symmetric
part.

B KORN’S INEQUALITY IN L”:

Theorem 11.21 Assume that 1 < p < oo.

(i) There exists a positive constant ¢ = ¢(p, N) such that
|| VV”L;;(RN;RNXN) < C”VV =+ VTV”Lp(RN;RNxN)
for any v e WP (RN; RV).

(ii) Let @ C RY be a bounded Lipschitz domain. Then there exists a positive
constant ¢ = ¢(p, N, ) > 0 such that

¥l < c(IVY + VI¥lpg peny + / vl dx)
Q

foranyv € W' (Q; RM).

Proof Step 1 Since C°(RY; RY) is dense in W!”(RV; RY), we may suppose that v
is smooth with compact support. We start with the identity

03 0x; Vs = Oy Dsx + 0y Dsj — 0x,Dji, (11.46)
where
D = (Dij)}i=1» Dij = ;(axjui + dyu)).
Relation (11.46), rewritten in terms of the Fourier transform, reads

E&iF e (vs) = _i(é-j}-xag‘(Dx,k) + & Frse(Dsy) — S‘v]:x—ﬂ;‘(Dj,k)-
Consequently,

Eibr
&>

Thus estimate (i) follows directly from the Hormander-Mikhlin theorem (Theo-
rem 9).

%‘js

]:x—>E(aX1< U‘y) = ]:x—>E(Dx,k) + ]:x—>E(DYj) - ]:X—>E(Djsk)
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Step 2 Similarly to the previous part, it is enough to consider smooth functions
v. Lemma 11.10 applied to formula (11.46) yields

where k € C2°(Q), fﬂ k dx = 1. Consequently, estimate (ii) follows.

”VV”Lp(Q;RNxN) < C(”D”Lp(Q;RNxN) =+ ‘ /Q Vvkdx

|

In applications to models of compressible fluids, it is useful to replace the
symmetric gradient in the previous theorem by its traceless part. The adequate result
is stated in the following theorem.

B GENERALIZED KORN’S INEQUALITY:

Theorem 11.22 Let 1 < p < 00, and N > 2.

(i) There exists a positive constant ¢ = c¢(p, N) such that
T 2
”VV”LP(RN;RNXN) < C”VV + Viv— NdIVVH”LP(RN;RNXN)

foranyv € WP (RY;RY), where 1 = (&J)Z‘=l is the identity matrix.
(ii) Let @ C RN be a bounded Lipschitz domain. Then there exists a positive
constant ¢ = ¢(p, N, ) > 0 such that

2
IVl qzn) < c(||Vv + VIV — vV g + /Q Iv| dx)

for any v e W' (Q;RM).

Remark As a matter of fact, part (i) of Theorem 11.22 holds for any N > 1. On the
other hand, statement (ii) may fail for N = 2 as shown by Dain [69].

Proof Step 1 In order to show (i), we suppose, without loss of generality, that v is
smooth and has a compact support in RV. A straightforward algebra yields

BXkax_,.vx = aX:/.DX,/( + akaw' — BXXDj,k—i-
(11.47)
11, (8S,k8¥/divxv + 850y, divev — &0y, divxv),

(N —2)d,.div,v = 2Ndy, Dy — NA;, (11.48)

1
ax]'(Avs) = axj’akas,k + ADi,S - axxakai,k + N — 18i,saxk ax,,Dk,ns (11.49)
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where D = (D; J)?‘];: , denotes the tensor

1 1
D= Z(va +V,Ilv)— Ndivxv]I.
Moreover, we deduce from (11.47) that

‘/—"x—>§'(axk US) = ]:x—>E(DS,k) + Ifgl% ‘/—"x—>§(DU)
(11.50)

N ‘if‘% ]:x—>§ (le) + 1118&1(]:)(—)%‘ (leV) y

where, according to (11.48), (11.49),

Fg(dive) = 7 | SlszHg(ax(Avs)) N o glgfﬁs(uv i)
with
| Fec((any) = ~(FeoeDy) + % 2 ))
|S|2 x—E\0Os s x—>E\WUss N—1 |§|2 k.n) |-

Thus, estimate (i) follows from (11.50) via the Hérmander—Mikhlin multiplier
theorem.

Step 2 Similarly to the previous step, it is enough to show (ii) for a smooth v. By
virtue of Lemma 11.10, we have

|03, vjllLr(@) < c(p, Q)(||ankai||W—1»P(Q;RN) + ‘/ Oy vjk dx
Q

), (11.51)

and
”AUJHW—I»I’(Q) = c(p, Q)(”VXAUJHW_Z*”(Q;RN) + ‘ / AUJIdel) (11.52)
Q

forany € I (Q), [ycdx =1, € o' (Q), [, kdx = 1.
Using the basic properties of the W~!”-norm we deduce from identities (11.47)-
(11.48) that

Va0 villw—10@iryy < C(”D”Ll’(Q;RN) + ”AV”W*LP(Q;RN))s

where the second term at the right-hand side is estimated by help of identity (11.49)
and inequality (11.52). Coming back to (11.51) we get

50l < (. D (1lusaien +| [ dwear] +| [ svgax
Q Q
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which, after by parts integration and with a particular choice k € C}(Q2),k € C*(RQ),
yields estimate (ii).
|

We conclude this part with another generalization of the previous results.

| GENERALIZED KORN-POINCARE INEQUALITY:

Theorem 11.23 Let Q@ C RY, N > 2 be a bounded Lipschitz domain, and let
l<p<oo,My>0,K>0,9y>1.
Then there exists a positive constant ¢ = ¢(p, My, K, y) such that the inequality

IV Ilwir@:my (11.53)

< C(‘ +/ rlv] dx)
LP(Q2;RN) Q

holds for any v e W' (Q; RY) and any non negative function r such that

2
V.v+ V.S v— “divwl
N

0<M0§/rdx,/r” dx <K. (11.54)
Q Q

Proof Without loss of generality, we may assume that y > max{l, +1¥§’1)_N}.
Indeed replacing r by Ti(r), where Ty(z) = max{z, k}, we can take k = k(My, y)
large enough. Moreover, it is enough to consider smooth functions v.

Fixing the parameters K, M, y we argue by contradiction. Specifically, we

construct a sequence w, € W!”(Q; R") such that

IWallwio @y = 1, W, — w weakly in W'?(Q; RY) (11.55)
and
; 2 1
) Vow, + Vilw, — = divew, ]1( [ ralwa] dx < (11.56)
N LP(Q;RN) Q n
for certain
r, — r weakly in L” (), / rdx > M, > 0. (11.57)
Q

Consequently, due to the compact embedding W' (2) into L?(£2), and by virtue
of Theorem 11.22,

w, — w strongly in W'?(Q;RY). (11.58)
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Moreover, in agreement with (11.55)—(11.58), the limit w satisfies the identities

Wllwir@myy =1, (11.59)
T 2.
Vw + V w—Ndlvw]I:O, (11.60)
/ riw| dx = 0. (11.61)
Q

Equation (11.60) which is valid provided N > 2, implies that Adivw = 0 and
Aw = 21_VN divw, see (11.48), (11.49). In particular, in agreement with remarks
after Theorem 11.4 in Appendix, w is analytic in 2. On the other hand, according
to (11.61), w vanishes on the set {x € Q| r(x) > 0} of a nonzero measure; whence
w = 0 in  in contrast with (11.61).

Theorem 11.23 has been proved.

|

Finally, we address the question how the constant in Theorem 11.23 depends
on the geometry of the spatial domain 2. To this end, we assume that Q2 can
be described by a finite number of charts based on balls of radius r and Lipschitz
constant L. Then it turns out that ¢ depends only on these two parameters.

| GENERALIZED KORN-POINCARE INEQUALITY—DOMAIN DEPENDENCE:

Theorem 11.24 Under the hypotheses of Theorem 11.23, suppose that there exists
a radius r and a constant L such that 02 can be covered by a finite number of balls
B(x, r), on each of which 0S2 is expressed as a graph of a Lipschitz function with the
Lipschitz constant L.

Then the generalized Korn inequality (11.53) holds with a constant depending
only on r and L.

Proof See [42]. O

11.11 Estimating Vu by Means of div,u and curl,u

B ESTIMATING Vu IN TERMS OF div,u AND curl,u:
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Theorem 11.25 Assume that 1 < p < oo.
(i) Then

190 o vszveny < e(p M) (divtoge) + lleurlaulls vz ).

for anyu € WP (RN RV),
(11.62)
(ii) If @ C RY is a bounded domain, then

LT r— c(||divxu||Lp(Q) + ||cur1xu||L1,(Q;RNXN)),
(11.63)

foranyu e Wé’p(Q;RN).

Proof To begin, observe that it is enough to show the estimate foru € C®°(RY; RY).
To this end, we write

N
1Y EFee(u) = Fose(divou),
k=1

i(8F e () — §F s () = Fie(fourllpw), j # k.
Solving the above system we obtain

JEPFme(u) = EFase(diva) + Y 6 F g ((ourl]u),

J#k
fork =1,...,N. Consequently, we deduce
Frose(0x,ux) = ?glir Frosg(diva) + Z iﬁ; Frosg([curl]g ju).
2k

Thus estimate (11.62) is obtained as a direct consequence of Hérmander-Mikhlin
theorem on multipliers (Theorem 9).
|

If the trace of u does not vanish on 92, the estimates of type (11.62) depend
strongly on the geometrical properties of the domain €2, namely on the values of its
first and second Betti numbers.
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For example, the estimate

IVullr @iz < c(p. N @) (Idivsullzre) + lleurlull ooz )

holds

(i) foranyu € W!'?(Q:R?), u x n|yg = 0, provided Q is a bounded domain with
the boundary of class C"! and the set R? \ Q is (arcwise) connected (meaning
R3 \ © does not contain a bounded (arcwise) connected component);

(i) for any u € WP (Q:R?), u - nlyo = 0, if Q is a bounded domain with the
boundary of class C""! whose boundary 9 is a connected and compact two-
dimensional manifold.

The interested reader should consult the papers of von Wahl [270] and Bolik and
von Wahl [29] for a detailed treatment of these questions including more general
results in the case of non-vanishing tangential and/or normal components of the
vector field u.

11.12 Weak Convergence and Monotone Functions

We start with a straightforward consequence of the De la Vallée Poussin criterion of
the L'-weak compactness formulated in Theorem 10.

Corollary 11.1 Let Q C RY be a domain and let {f,}°°, be a sequence in L'(Q)
satisfying

n>0

SUP/ O([fu]) dx < o0, (11.64)
0

where ® is a non negative function continuous on [0, 00) such that lim,—, o ®(2)/z
= oQ.
Then

sup {/ [ﬁ(x)|dx} 50 ask— oo, (11.65)
U=k

n>0

in particular,

ksup {|{lf:| = k}|} = 0ask — oo.

n>0
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Typically, ®(z) = 7/, p > 1, in which case we have

< < 1 < 1 1/p < 1/p'
tnzii=, [ el ([ ara) iz e

Consequently, we report the following result.

Corollary 11.2 Let Q C RY be a domain and let { f,}°2 | be a sequence of functions
bounded in LP(Q), where p € [1, 00).

Then
s 1 p
" fildr< sug{anHL,,(Q)}, s € [0.p]. (11.66)
nl= n>
In particular
1 p
(ARSI VAT (11.67)

In the remaining part of this section, we review a mostly standard material based
on monotonicity arguments. There are several variants of these results scattered
in the literature, in particular, these arguments have been extensively used in the
monographs of Lions [192], or [102, 224]. Our aim is to formulate these results
at such a level of generality so that they may be directly applicable to all relevant
situations investigated in this book.

B WEAK CONVERGENCE AND MONOTONICITY:

Theorem 11.26 Let I C R be an interval, Q C RN a domain, and
(P,G) € C(I) x C(I) a couple of non-decreasing functions. (11.68)
Assume that 0, € L'(Q;1) is a sequence such that
P(on) = P(o).

G(on) — G(0). weakly in L' (Q). (11.69)

P(0,)G(0n) — P(0)G(0)

(i) Then

P(0) G(o) = P(0)G(0). (11.70)
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(ii) If, in addition,

G e CR), GR)=R, Gisstrictly increasing,

(11.71)
P e C(R), P isnon-decreasing,

and
P(0)G(o) = P(0) G(o), (11.72)

then
P(o) = P o G '(G(0)). (11.73)

(iii) In particular, if G(z) = z, then

P(0) = P(0). (11.74)
Proof We shall limit ourselves to the case I = (0,00) already involving all

difficulties encountered in other cases.

Step 1 If P is bounded and G strictly increasing, the proof is straightforward.
Indeed, in this case,

0 < lim, o0 f, [ Ple) = (Po G™)(G(@)) | (Glen) — Gle) )dx =
Iy (P(Q)G(Q) —P(o) G(Q))dx (11.75)

—lim,c0 [P0 G (G(0)(Glen) — G(0))d,

where B is a ball in Q and P o G™'(G(0)) = lim_, ., P o G~'(s). By virtue of
assumption (11.69), the second term at the right hand side of the last formula tends
to 0; whence the desired inequality (11.70) follows immediately from the standard
result on the Lebesgue points.

Step 2 If P is bounded and G non-decreasing, we replace G by a strictly
increasing function, say,

1
Gi(z) = G(z) + P arctan(z), k> 0.
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In accordance with Step 1 we obtain

1 1
P(0)G(o) + kP(Q)arctan(Q) > P(o) G(o) + kP(Q) arctan(o),

where we have used the De la Vallé Poussin criterion ( Theorem 10) to guarantee
the existence of the weak limits. Letting k — oo in the last formula yields (11.70).

Step 3 If lim,— 0+ P(z) € R and if P is unbounded, we may approximate P by a
family of bounded non-decreasing functions,

PoT,, k>0,
where
zifz € [0, 1]
. concave in (0, 00)
Ti@) =kT()). C'®R)>T(@) = . (11.76)
k .
2ifz>3
~T(-z)if z € (=00, 0)

Reasoning as in the previous step, we obtain

(PoTo(0)G(o) = (PoTo)(e) G(o). (1L.77)

In order to let k — oo, we observe first that

(P oT)(e) =P =

liminf [[(P o 7o) (ea) — P(en) 1 ) < 25up | / [P(on)ldx}.
n—oo neN {on=k}

where the last integral is arbitrarily small provided k is sufficiently large (see
Theorem 10). Consequently,

(PoTi)(0) = P(o) a.e.in Q.
Similarly,

PoTi(0)G(o) — P(0)G(o) ae.inQ.

Thus, letting kK — oo in (11.77) we obtain again (11.70).
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Step 4 Finally, if lim,—, o4 P(z) = —oo, we approximate P by
P(h) ifz e (—oo,h)
Pi(z) = , h>0,
P(z) ifz>h
so that, according to Step 3,
Py(0)G(o) = Pi(0) G(o),

As in the previous step, in accordance with Theorem 10,

1Pr(@) — P(@) |11 <liminf,—c [[Pr(0n) — P(0n)llLi(0)

< 2sup,cy { f{lP(gn)\zlP(h)I} |P(Qn)|dx} —0 ash— 0+,
and

1Pr(@)G(0) = P(@)G(0) I (o)

< 28up,ey { f{lP(gn)\zlP(h)l} |P(Qn)G(Qn)|dx} -0 ash—0+.
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(11.78)

(11.79)

(11.80)

(11.81)

Thus we conclude the proof of part (i) of Theorem 11.26 by letting # — 0+

in (11.79).

Step 5 Now we are in a position to prove part (ii). We set

M, = {x € B| xes[gllj,l] G_I(G(Q) + s)(x) < k},

where B is a ball in Q, and £ > 0. Thanks to monotonicity of P and G, we can write

0=y 1w, [Plen) = (PoG)(Glo) + e9) |
(Glon — G(@) F eg)dx =
Sy 1w (P@)Glen) — P(o) G(o) ) dx
~ Jy 1 (P G)(Glo) £ ¢ ) (Glew) — Gl0) )dx

Fe [5 1y, [P(Qn) —(Po G_l)(G(Q) + e<p)]<pdx,

(11.82)
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where € > 0, ¢ € C2°(B) and 1y, is the characteristic function of the set M.

For n — oo in (11.82), the first integral on the right-hand side tends to zero
by virtue of (11.69), (11.72). Recall that 13, G(0) is bounded. On the other hand,
the second integral approaches zero by virtue of (11.69). Recall that 1y, (P o
G_l)(G(Q) + efp) is bounded.

Thus we are left with

/B Ly, [P(Q) —(Po G_l)(G(Q) + e<p)]<pdx =0, ¢eC>®(@B); (11.83)

whence (11.73) follows by sending € — 0+ and realizing that U;.oM; = B. This
completes the proof of statement (ii).
O

11.13 Weak Convergence and Convex Functions

The idea of monotonicity can be further developed in the framework of convex
functions. Similarly to the preceding section, the material collected here is standard
and may be found in the classical books on convex analysis as, for example, Ekeland
and Temam [92], or Azé [12].

Consider a functional

F:RY — (—o00,00], M > 1. (11.84)
We say that F is convex on a convex set O C R if
F(tv+ (1 —1tw) <tF(v) + (1 —t)F(w) forallv,w € O, t € [0, 1]; (11.85)

F is strictly convex on O if the above inequality is strict whenever v # w.

Compositions of convex functions with weakly converging sequences have a
remarkable property of being lower semi-continuous with respect to the weak L!-
topology as shown in the following assertion (cf. similar results in Visintin [268],
Balder [15]).

B WEAK LOWER SEMI-CONTINUITY OF CONVEX FUNCTIONS:

Theorem 11.27 Let O C RY be a measurable set and {v,}°°, a sequence of
functions in L' (0; RM) such that

v, — v weakly in L' (O; RM).
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Let ® : RM — (—00, 00| be a lower semi-continuous convex function. Then

/ d(v)dx < liminf/ D(v,)d x.
0 =0 Jo
Moreover if
®(v,) — D(v) weakly in L'(0),

then

d(v) < d(v) a.a. on O. (11.86)

If, in addition, ® is strictly convex on an open convex set U C R™, and

®d(v) = ®(v) a.a. on O,

then

v, (y) = v(y) fora.a.y e {y € O|v(y) € U} (11.87)

extracting a subsequence as the case may be.

Proof Step 1 Any convex lower semi-continuous function with values in (—oo, o]
can be written as a supremum of its affine minorants:

®(z) = sup{a(z) | a an affine function on RY a < ® on R¥} (11.88)
(see Theorem 3.1 of Chap. 1 in [92]). Recall that a function is called affine if it can

be written as a sum of a linear and a constant function.
On the other hand, if B C O is a measurable set, we have

[oma=tim [oa)ar= tim [atar= [ama

for any affine function @ < ®. Consequently,

S(v)(y) = a(v)(y)

for any y € O which is a Lebesgue point of both ®(v) and v.

Thus formula (11.88) yields (11.86).

Step 2 As any open set U C RM can be expressed as a countable union of
compacts, it is enough to show (11.87) for

y e Mg ={yeO|v(y) € K},

where K C U is compact.
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Since @ is strictly convex on U, there exists an open set V such that
Kcvcvcuy,

and ® : V — R is a Lipschitz function (see Corollary 2.4 of Chap.Il in [92]). In
particular, the subdifferential d®(v) is non-empty for each v € K, and we have

d(w) — D(v) > dD(v)- (W—v) foranyw € RY, v e K,
where d®(v) denotes the linear form in the subdifferential d®(v) C (R™)* with the
smallest norm (see Corollary 2.4 of Chap. 1 in [92]).
Next, we shall show the existence of a function w,
w € C[0,00), w(0) =0,
(11.89)
 non-decreasing on [0, 00) and strictly positive on (0, 00),
such that

D(w) — O(v) = 0P(v) - (W—V) + w(]lw—v]|) forallwe V, v e K. (11.90)

Were (11.90) not true, we would be able to find two sequences w, € V,z, € K
such that

d(w,) — O(z,) — 09P(z,) - (W, —z,) — Oforn — oo
while
W, —z,] > 6 >O0foralln=1,2,...
Moreover, as K is compact, one can assume
z, >z €K, ®(z,) > ®(z), w, > winV, 0®(z,) > L € RM,
and, consequently,
O(y) — D(z) > L-(y—z) forally e R,

that is L € 09 (z).
Now, the function

V(y) = ®(y) - @) —L-(y—2)
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is non-negative, convex, and
Y(z) = ¥(w) =0, l[w—1z| > 6.
Consequently, ¥ vanishes on the whole segment [z, w], which is impossible as ® is
strictly convex on U.
Seeing that the function
ar> O(z + ay) — &(z) —add(z) -y

is non-negative, convex and non-decreasing for a € [0,00) we infer that the
estimate (11.90) holds without the restriction w € V. More precisely, there exists @
as in (11.89) such that

D(W) — B(V) > 0P(V) - (W—V) +o(lw—v|) forallw e RY, ve K. (11.91)

Taking w = v, (y), v = v(y) in (11.91) and integrating over the set Mx we get

/ o(jv, —v|)dy < / D(v,) — D(v) — 0P(V) - (v, — V) dy,
Mg

Mg

where the right-hand side tends to zero for n — oo. Note that the function d®(v) is
bounded measurable on M} as ® is Lipschitz on V, and

ad(v) = ling) Vo, (v) forany v e V,
where

®.(v) = min {1 lz—v| + @(z)} (11.92)
zeRM \ g

is a convex, continuously differentiable function on R (see Propositions 2.6, 2.11
of Chap.2 in [40]).
Thus

/ (v, —v|) dy = 0 forn — oo
Mk

which yields pointwise convergence (for a subsequence) of {v,}°2, to v a.a. on M.
|
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11.14 Div-Curl Lemma

The celebrated Div-Curl Lemma of Tartar [254] (see also Murat [218]) is a
cornerstone of the theory of compensated compactness and became one of the most
efficient tools in the analysis of problems with lack of compactness. Here, we recall
its LP-version.

Lemma 11.11 Let Q C RY be an open set, and 1 < p < co. Assume

U, — U weakly in L (Q; RY),
(11.93)
V, = V weakly in L (Q; RY).

In addition, let

i =V.
div U, U,, W-1(0),

W rvy, (199

be precompact in

curlV, = (VV, - V7V,)
Then

U,-V,—-U-V inD(Q).

Proof Since the result is local, we can assume that Q = RY. We have to show that

/ (H[U,] + H*[U,]) - (H[V,] + HY[V,]) ¢ dx —
]RN

/ (H[U] + H*[U]) - (H[V] + HY[V]) ¢ dx
]RN

for any ¢ € C®(R"), where H, H' are the Helmholtz projections introduced in
Sect. 11.7. We have

H[U,] = VWY, HY[V,] = VU,

where, in accordance with hypothesis (11.94) and the standard elliptic estimates
discussed in Sects. 11.3.1 and 11.11,

VU — Vol = HL[U] in L?(B; RY),

H[V,] — H[V] in L (B; R"),
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and

H[U,] — H[U] weakly in L?(B; R"),
VoY — VUV = HL[V] weakly in L7 (B: RV),

where B C RY is a ball containing the support of ¢.
Consequently, it is enough to handle the term H[U,] - V, ¥ ¢. However,

H[U,| -V, ¥ o dx = —/ H[U,|- Vo¥' dx —
RN RN

—/ H[U]-V(p‘llvdx:/ H[U]- V. g dx.
RN RN

|

The following variant of Div-Curl Lemma seems more convenient from the
perspective of possible applications.

B Div-CURL LEMMA:

Theorem 11.28 Let Q C RN be an open set. Assume

U, — U weakly in L?(Q; RY),

(11.95)
V, — V weakly in L1(Q; R"),
where
1 1 1
+ = <1
P q r
In addition, let
divU, =V U, s
be precompact in W= Q) (11.96)

—Ls(). PNXN
curl V, = (VV, - VTV,) WO RTT,

for a certain s > 1. Then

U, -V, — U-Vweakly in L' (Q).

The proof follows easily from Lemma 11.11 as soon as we observe that
precompact sets in W1 that are bounded in W~ are precompact in W~ for
any s <m < p.
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11.15 Maximal Regularity for Parabolic Equations
We consider a parabolic problem:
du—Au=fin (0,T) x 2,
u(0,x) = up(x), x € Q, (11.97)
Viu-n=0in (0,7) x 9L2,

where Q@ C R is a bounded domain. In the context of the so-called strong solutions,

the first equation is satisfied a.e. in (0, ') x €2, the initial condition holds a.e. in €2,

and the homogenous Neumann boundary condition is satisfied in the sense of traces.
The following statement holds.

B MAXIMAL L? — L9 REGULARITY:

Theorem 11.29 Let Q@ C RY be a bounded domain of class C*, 1 < p,q < oo.
Suppose that

f € Lp(ov T, LCI(Q))’ ug € Xp,qs Xp,q = {Lq(Q);ID(AN)}l—l/p,pv
D(Ax) = {v € W*(Q) | Vov -mpg = 0},

where {-;-}.. denotes the real interpolation space.
Then problem (11.97) admits a solution u, unique in the class

u € LP(0,T; W>4(Q)), du € LP(0,T;LI(R)),
ue C(0,T];X,,).
Moreover, there exists a positive constant ¢ = c(p, q, 2, T) such that
lu()x,, + 10:ullro.re@) + |AullLroriLe@) < (11.98)

¢ (1flerrao@y) + lluollx,,)

foranyt € [0,T].

See Amann [7, 8]. O
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For the definition of real interpolation spaces see e.g. Bergh, Lofstrom [27,
Chap. 3]. It is well known that

92
B, (Q)if1-2 ! <0,
Xpq = ,
2— .
{u € By, (Q)| Vaurmlyg =0}, if 1 -2 = ! >0,

see Amann [7]. In the above formula, the symbol B, ,(€2) refers to the Besov space.

For the definition and properties of the scale of Besov spaces B;J,(RN ) and
B;J,(Q), s € R, 1 < ¢q,p < oo see Bergh and Lofstrom [27, Sect. 6.2], Triebel
[257, 258]. A nice overview can be found in Amann [7, Sect.5]. Many of the
classical spaces are contained as special cases in the Besov scales. It is of interest
for the purpose of this book that

B, () = WP(Q), s € (0,00) \N, 1 <p < o0,

where W*”(£2) is the Sobolev-Slobodeckii space.

Extension of Theorem 11.29 to general classes of parabolic equations and
systems as well as to different type of boundary conditions are available. For more
information concerning the L” — L? maximal regularity for parabolic systems with
general boundary conditions, we refer to the book of Amann [8] or to the papers by
Denk et al. [77, 78, 148].

Maximal regularity in the classes of smooth functions relies on classical argu-
ment. A result in this direction reads as follows.

B MAXIMAL HOLDER REGULARITY:

Theorem 11.30 Let Q@ C RY be a bounded domain of class C*>V, v > 0. Suppose
that

f € C(0.T]: C**(RQ)). ug € C*"(Q), Viuo - nlyq = 0.
Then problem (11.97) admits a unique solution
u € C([0,T]: C*"(R)). du € C([0,T]: C**(RQ)).

Moreover, there exists a positive constant ¢ = c(p, q, 2, T) such that

19:ull e po.11:000 @)y + Ntllcqoriczv@y < C(HMOHCZ-V(Q) + ”f”C([O,T];CQV(Q)))‘
(11.99)

See Lunardi [199, Theorem 5.1.2] O
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Unlike most of the classical existence theorems that can be found in various
monographs on parabolic equation (see e.g. Ladyzhenskaya et al. [179]), the above
results requires merely the continuity in time of the right hand side. This aspect is
very convenient for the applications in this book.

11.16 Quasilinear Parabolic Equations

In this section we review a well known result solvability of the quasilinear parabolic
problem:

ot — ZN agj(t, x,u)dy,yu + b(t,x,u, Viu) = 0 in (0,7) x 2,

ij=1
N
> ij=1 Mi@ogu+y =0 onSr,

u(0,-) = uy,
(11.100)

where
aj = ay(t.x,u), i,j=1,....N, ¥ = ¥(&.x), b(t.x,u,z) and uy = uo(x)

are continuous functions of their arguments (f,x) € [0,7T] x Q, u € R,z € RV,
St =10,7T] x 9Q andn = (ny, ..., ny) is the outer normal to the boundary 9<2.

The results stated below are taken over from the classical book by Ladyzhen-
skaya et al. [179]. We refer the reader to this work for all details, and also for the
further properties of quasilinear parabolic equations and systems.

B EXISTENCE AND UNIQUENESS
FOR THE QUASILINEAR PARABOLIC NEUMANN PROBLEM:

Theorem 11.31 Let v € (0, 1) and let Q@ C RY be a bounded domain of class C*".
Suppose that

(i)
up € C*'(Q), v e CY([0,T] xQ), V. is Holder continuous
in the variables t and x with exponents v/2 and v, respectively,

N

D ni(x) a0y, (0. x. up(x)) + ¥(0.x) = 0. x € 0Q;

ij=1
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(ii)
aj € C'([0,T] x @ x R),

Viay, 0,a; are v — Holder continuous in the variable x;

(iii)
be C'([0,T] x 2 x R x RY),
V.b, d,b,V,b are v — Holder continuous in the variablex;
(iv) there exist positive constants c, ¢, c1, ¢, such that
0 < a;(t,x, w&& < cl&)?,  (t,x,u,&) € (0,T] x Q xR x R",
aij(t, x, w&& > cl€?,  (tx,u,£) € Srx QxR xRY,
—ub(t,x,u,z) < Co|z|2 + ciu® + ¢, (t,x,u,§) € [0,T] x 2 x R x RY:

(v) for any L > O there are positive constants C and C such that

C(L)|*;‘|2 <aj(t,x,u)§&, (tx,u§) €[0,T] x Q x[-L,L] x RV,
b,0:b,0d,b, (1 +2)V;b |(t,x,u,z)

<o+ z»), (t.xuz)e[0,T]xQx[-L, L] xR",

Then problem (11.100) admits a unique classical solution u belonging to the
Holder space C'V/%2Y ([0, T] x ), where the symbol C"-"/%2([0, T] x Q) stands
for the Banach space with norm

|0,u(t, x) — Ou(z, x)|
||M||c1([o,T]xQ) + SUDP(; 7 e[, T2 X2 It — z|v/2

3
+ Z 119, x4l cpo.11%2)

ij=1

3
- |axiax]-u(ts X) - ax,'ax]'u(ts y)l
+ Z SUP; + y)efo.1]x 0> Ix — y|” :

ij=1

See Ladyzhenskayaetal. [179, Theorems 7.2,7.3,7.4]. O
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11.17 Basic Properties of the Riesz Transform
and Related Operators

Various (pseudo) differential operators used in the book are identified through their
Fourier symbols:

¢ the Riesz transform:

Rj ~ iéj

~ 7 j=1,...,N,
€]

meaning that

Rlo) = L[| Filol]

¢ the “double” Riesz transform:

§i&j

R = {Rk.j}%:p R = AX—IVX ® Vx, Rw‘ ~ |E|2, l,J = 1,...,N,
meaning that
1[5
Riglo) = P [ Foon ]
 the inverse divergence:
_ i§ .
A = {Aj}j]»v=1, Aj = axijl = —|§|]2, J= 1, e ,N,

meaning that
A _ —1 lg/ .
o) =~ | el

* the inverse Laplacian:

1

ANy ,
CATX ep

meaning that

Al = F [ Pl

1
&1
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In the sequel, we shall investigate boundedness of these pseudo- differential
operators in various function spaces. The following theorem is an immediate
consequence of the Hormander-Mikhlin theorem (Theorem 9).

B CONTINUITY OF THE RIESZ OPERATOR:

Theorem 11.32 The operators Ry, Ry are continuous linear operators mapping
LP(RY) into LP(RY) for any 1 < p < oo. In particular, the following estimate holds
true:

IR o @yy < cN.p)vlLo@y for all v € LP(RY), (11.101)

where R stands for Ry or Ry.

As a next step, we examine the continuity properties of the inverse divergence
operator. To begin, we recall that for Banach spaces X and Y, with norms || - ||x
and || - |ly, the sum X + Y = {w = u+v|lu € X, v € Y} and the
intersection X N'Y can be viewed as Banach spaces endowed with norms |w|x+y =

inf { max{|jull. [vly}, |w=u+ v} and |wlxay = |wlx + [wly, respectively.

B CONTINUITY PROPERTIES OF THE INVERSE DIVERGENCE:

Theorem 11.33 Assume that N > 1.

(i) The operator Ay is a continuous linear operator mapping L'(RY) N L*>(RN)
N
into L*(RN) + L®(RN), and L?(R") into Ly (RY) forany 1 < p < N.
(ii) In particular,

[ Ac[V]ll oo V) +r2Y) < c(N) V|21 @¥yAL2(RY)
(11.102)
forallv e L'(RY) N L2(RY),

and
| AVl ~o < c(N.p)vllLr@y forall v € LP(RM), 1 <p <N.
LN=P (RN)
(11.103)
(iii) If v, %’; € LP(I x RY), where I is an (open) interval, then
0 a
Agt(f) (t,x) = Ak<aJ:)(t,x) fora.a. (t,x) € I xRV, (11.104)
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Proof Step 1 We write
—Aiv] = ]'}__lm[ iékz 1{\5\51}]"x_>s[v]] + ]'}__lm[ iékz 1{\g\>1}]'}_>s[v]]~
€] €]

Since v belongs to L'(RY), the function F,_,¢[v] is uniformly bounded; whence
the quantity ";"‘2 L{je|<13Fr—e[v] is integrable. Similarly, v being square integrable,
Fi—¢[v] enjoys the same property so that |l§|k2 Lgg> 13 Fx—g[v] is square integrable
as well. After these observations, estimate (11.102) follows immediately from the
basic properties of the Fourier transform, see Sect. 5.

Step 2 We introduce £(x)—the fundamental solution of the Laplace operator,
specifically,

AL =8 inD(RY), (11.105)
where § denotes the Dirac distribution. If N > 2, d,, £ takes the form
27 if N =2

where ay = (11.106)
(N—=2)oyif N >2

1

ay [xN x|’

0, E(x) =

with oy being the area of the unit sphere. From (11.105) we easily deduce that

L&
.FX—> BX g == .
= Gy g
Consequently,
—1 1 —1 i€
0y & * v = ‘F$—>x|:]:x—>f[axkg * U]] = (2n)N/2]:§—>x|:|%-|2‘Fx—>§[v]:|

where the weakly singular operator v — 9,, & * v is continuous from L?(R") to
L'®RN), 1 ="+ 11) — 1, provided 1 < p < N as a consequence of the classical
results of harmonic analysis stated in Theorem 11.15. This completes the proof of

parts (i), (ii).

Step 3 If v € C°(I x R?), statement (iii) follows directly from the theorem on
differentiation of integrals with respect to a parameter. Its L”-version can be proved
via the density arguments.

|

In order to conclude this section, we recall several elementary formulas that can
be verified by means of direct computation.
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Rialf) = A = ~Ry| Rulf1].
R Rulf)] = Re[Ri111).
ZkN=1Rk[Rk[f]] =f (11.107)
Jo Adflgdx = — [ fAdg) dx,

Jo Rj[Rk [f]]g dx = [, ij[Rk[g]] dx.

These formulas hold for all f,g € S(RY) and can be extended by density in
accordance with Theorems 11.33, 11.32to f € LP(RV), g € I’ (RV), 1 < p < o0,
whenever the left and right hand sides make sense. We also notice that functions
Ai(f), Rjx(f) are real valued functions provided f is real valued.

11.18 Commutators Involving Riesz Operators

This section presents two important results involving Riesz operators. The first one
represents a keystone in the proof of the weak continuity property of the effective
pressure. Its formulation and proof are taken from [101, 117].

B COMMUTATORS INVOLVING RIESZ OPERATORS, WEAK CONVERGENCE:

Theorem 11.34 Let
V. — V weakly in LP(RY; RY),
U, — U weakly in Lq(RN; RN),
1,1 _ 1
wherep + 0= s < 1. Then

U, - R[V:] — R[U.] -V, = U-R[V] = R[U] - V weakly in L*(R").
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Proof Writing
U. - R[V.] - V. -R[U] = (Us — ’R[Us]) “RIV.] — (Vs — R[vg]) “R[U.]
we easily check that
div, (UE - R[Us]) - divx(Vg - R[Vg]) —0,
while R[U;], R[V,] are gradients, in particular
curl, R[U,] = curl, R[V.] = 0.

Thus the desired conclusion follows from Div-Curl Lemma (Theorem 11.28).
O

The following result is in the spirit of Coifman, Meyer [62]. The main ideas of
the proof are taken over from [87].

| COMMUTATORS INVOLVING RIESZ OPERATORS, BOUNDEDNESS IN
SOBOLEV-SLOBODECKII SPACES:

Theorem 11.35 Letw € W' (RY) and V € LP(RY; RY) be given, where

1
l<r<N, 1<p<oo, + - < 1.
r p N

Then for any s satisfying

there exists
1 1
B = B(s,p.r) € (0,1), = +- -

such that

[ROVI—wRIVI| |, < el IVIvia,

where ¢ = c(s, p, r) is a positive constant.
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Proof We may suppose without loss of generality that w € C®(RY), V € C®(RY;
RY). First we notice that the norms

||a||Wl.m(RN;RN) and ”a”Lm(RN;RN) =+ ||Curlxa||Lm(RN;RN) =+ ||dian||Lm(RN) (11108)

are equivalent for 1 < m < oo, see Theorem 11.25. We also verify by a direct
calculation that

[(curl (RIWVD ] = 0, [eurl WRIVD]x = duow Ry [Vi] = 9w Ris[Vil,
(11.109)

and

N N

divo(R[wV]) — divx(wR[V]) =S awVi— Y dwRylVI.  (11110)
j=1 ij=1

Next we observe that for any s, i + ; - 11/

r1(s,p) < r <1y = r(s,p) < oo such that

< i < lthereexist 1 < r =

1+1 1_1 1 1
r p N s ) p'

Taking advantage of (11.108)—(11.110) and using Theorem 11.32 together with
the Holder inequality, we may infer that

HR[WV] — WR[V] H vy = Il @ 1V Levies) (11.111)

On the other hand, Theorem 11.32 combined with the continuous embedding
Nr
WIT(RN) — L (RM), and the Holder inequality yield

[ RIVI = wRIVI| < clwlhyro oo IVl o sz, (11.112)

L3 (RV;RV)

We thus deduce that, for any fixed V € L?(2;RRY), the linear operator w —
R[wV] — wR[V] is a continuous linear operator from W!2(Q) to W*(22, R") and
from W' () to L*(Q2; R"Y). Now we conclude by the Riesz-Thorin interpolation
theorem (see [257]) that this operator is as well continuous from W''(Q) to
WP(Q), where B € (0, 1) verifies the formula fl + lr_zﬁ = i

This finishes the proof.
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11.19 Renormalized Solutions to the Equation of Continuity

In this section we explain the main ideas of the regularization technique developed
by DiPerna and Lions [85] and discuss the basic properties of the renormalized
solutions to the equation of continuity. To begin, we introduce a variant of the
classical Friedrichs commutator lemma.

B FRIEDRICHS’ COMMUTATOR LEMMA IN SPACE:

Lemma 11.12 Let N > 2, 8 € [1,00), q € [, 00], where 611 + /13 = i e (0,1].
Suppose that
oell ®RY), ue W IRY;RY).

loc loc

Then
div, (se [Qu]) — div, (Ss [Q]u) — 0in LI (RY), (11.113)

where S, is the mollifying operator introduced in (11.3)—(11.4).

Proof We have

div, (Ss [Qu]) — div, (Ss [Q]ll) = I. — S.(0)div,u,

where
109 = [ e0u0) — (o] Ve =y (11114
According to Theorem 11.3,
Se(0)div,u — odiviau  in Lj (RN );
whence it is enough to show that
I, — odivau in L (RY). (11.115)

After a change of variables y = x + ¢z, formula (11.114) reads

1) = [ 00+ €9 " T VL ()de
(11.116)
= fol f\z\sl o(x + e2) z- Viulx + erz) - V£ (z)dz dr,
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where we have used the Lagrange formula

1
u( +ez) —u) = 8/ z- Viu(€ + etz)dr.
0
From (11.116) we deduce a general estimate

”I«S”LS(BR) = C(}", s, p, q) ”Q”U’(BrJH)” ”ini”Lq(B,dr])v (11117)

where B, is a ball of radius r in RY, and where
s is arbitrary in [1, 00) if p = ¢ = o0,

T _ 1 1el 41
= q—}—plfq—i—p € (0,1]

Formula (11.117) can be used with g, — o and p = B, ¢ and s = r, where
on € C.(RY), 0, — o strongly in Lﬁm (RM), in order to justify that it is enough to
show (11.115), with g belonging to C.(R"). For such a g, we evidently have

I.(x) — [odiv,u](x) a. a. in RY

as is easily seen from (11.116). Moreover, formula (11.117) now with p = oo,
yields I, bounded in L*(B,) with s > r. This observation allows us obtain the desired

conclusion by means of Vitali’s convergence theorem.
|

In the case of a time dependent scalar field ¢ and a vector field u, Lemma 11.117
gives rise to the following corollary.

B FRIEDRICHS COMMUTATOR LEMMA IN TIME-SPACE:

Corollary 11.3 Let N > 2, B € [1,00), g € [1, 0], [11 + é = i € (0, 1]. Suppose
that

0 € L) .((0.7) x RY), w e LY (0. T; W/ (RV: RY)).

Then

divX(Se [Qll]) — div, (se [Q]u) — 0in L., ((0,T) x RY), (11.118)

where S, is the mollifying operator introduced in (11.3)—(11.4) acting solely on the
space variables.
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With Lemma 11.12 and Corollary 11.3 at hand, we can start to investigate the
renormalized solutions to the continuity equation.

B RENORMALIZED SOLUTIONS OF THE CONTINUITY EQUATION I:

Theorem 11.36 Let N > 2, 8 € [1,00), g € [1, 00], [11 + é € (0, 1]. Suppose that
the functions (o,u) € b2 ((0,T) x RNy x L (0, T; Wllo’g(RN; RM)), where ¢ > 0 a.

loc loc

e. in (0,T) x RY, satisfy the transport equation
3,0 + div.(ou) = fin D' ((0,T) x RY), (11.119)

where f € Ll _((0,T) x R").
Then

0ib(0) + div((b(o)u) + (eb'(@) — () )div.u = /(o) in D'(0.7) x RY)
(11.120)

for any

b e C'([0,00)), b e C.(0,00)). (11.121)

Proof Taking convolution of (3.198) with ¢, (see (11.3)—(11.4)), that is to say using
Le(x — -) as a test function, we obtain

0 (Selel) + divi(S:[elu) = pe(o.w). (11.122)
where
(0, 1) = divx(Ss [Q]ll) — div,S,[ou] a.e.in (0,T) x R".

Equation (11.122) can be multiplied on b'(S.[0)], where b is a globally Lipschitz
function on [0, 00); one obtains

9:b (Selo]) + divi [b (Se[o]) u] (11.123)

+ [Selolt (Sele]) — b (Se[eD] = p:(0. w) b’ (Sele]) -

It is easy to check that for ¢ — 04 the left hand side of (11.123) tends to the
desired expression appearing in the renormalized formulation of the continuity
equation (11.120). Moreover, the right hand side tends to zero as a direct conse-
quence of Corollary 11.3.

O
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Once the renormalized continuity equation is established for any b belonging
to (11.121), it is satisfied for any “renormalizing” function b belonging a larger
class. This is clarified in the following lemma.

B RENORMALIZED SOLUTIONS OF THE CONTINUITY EQUATION II:

Lemma 11.13 Let N > 2, 8 € [1,00), g € [1,00], (1] + /13 € (0, 1]. Suppose that
the functions (o,u) € o ((0,7) x RYy x LI (0,T; Wllo’g(RN;RN)), where 0 > 0

loc loc

a. e.in (0,T) x RN, satisfy the renormalized continuity equation (11.120) for any b
belonging to the class (11.121).
Then we have:

() Iff € LY ((0,T) x RN) for some p > 1, p/(f, — 1) < B, then Eq.(11.120)
holds for any

b e C([0,00)), |b'(s)| < cs*, fors > 1, where A < 5/ —1. (11.124)

(i) Iff = 0, then Eq. (11.120) holds for any

b € C([0, 00)) N C'((0, 00)),
lim, 04 (sb’(s) - b(s)) eR, (11.125)

B/ (s)| < esifs € (1,00) for a certain A < 5, -1

(iii) The function z — b(z) in any of the above statements (i)—(ii) can be replaced
by z = cz + b(z), ¢ € R, where b satisfies (11.124) or (11.125) as the case
may be.

@{v) Iff =0, then
d, (QB(Q)) + divx(QB(Q)u) +b(o)diviu = 0in D'((0,T) xRY)  (11.126)
for any

(11.127)

b € C([0,00)) N L*(0,00), B(o) = B(1) + /IQ bZ(zZ) dz

Proof Statement (i) can be deduced from (11.120) by approximating conveniently
the functions b satisfying relation (11.124) by functions belonging to the class
C'([0,00)) N W"*®(0,00) and using consequently the Lebesgue dominated or
Vitali’s and the Beppo-Levi monotone convergence theorems. We can take a
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sequence S1 (bo7,), n — oo, where T, is defined by (11.76), and with the mollifying
operator § 'introduced in (11.3)—(11.4).

Statemént (ii) follows from (i): The renormalized continuity equation (11.121)
certainly holds for b,(-) := b(h + -). Thus we can pass to the limit & — 0+,
take advantage of condition limy_o+ (sb’(s) — b(s)) € R, and apply the Lebesgue
dominated convergence.

Statement (iii) results from summing the continuity equation with the renormal-
ized continuity equation.

The function z — zB(z) satisfies assumptions (11.125). Statement (iv) thus
follows immediately from (ii).

|

Next, we shall investigate the pointwise behavior of renormalized solutions with
respect to time.

B TiME CONTINUITY OF RENORMALIZED SOLUTIONS

Lemma 11.14 Ler N > 2, f,q € (1,0), cl] + /é € (0,1]. Suppose that the
functions (o,u) € L*(0,T; LﬁC(RN)) x LU0, T; WEA(RV; RV)), 0 > 0 a.a. in

(0, T)xRY, satisfy continuity equation (11.119) withf € L}, .((0,T)x), s > 1, and
renormalized continuity equation (11.120) for any b belonging to class (11.121).
Then
0 € Cueax([0. T1: L7 (0)) N C([0. 7], L7(0))

with any 1 < p < B and O any bounded domain in R".

Proof According to Lemma 11.13,
1
0,0 + divy(cu) = Zadivxu in D'((0, T) x RY),

where we have set 0 = ,/o; we may therefore assume that

0 € Cyear([0, T]; L*# (0))  for any bounded domain O C R". (11.128)

Regularizing the latter equation over the space variables, we obtain

9, (Se[o]) + div, (Se[o]u) = ;Ss [odivau] + p.(0,u) a.a.in (0,T) x RY,
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where S, and g, are the same as in the proof of Theorem 11.36. Now, applying to
the last equation Theorem 11.36 and Lemma 11.13, we get

0 (S.lo])” + divi( (S.[0])*u) = S.[0]S. (odiv,u)

+ 28 [0]pe (0. u) — (Se[o])* diviu  a.a.in (0,7) x RV. (11.129)
We employ Eq. (11.129) together with Theorem 11.3 and Corollary 11.3 to verify
that the sequence { [, (S [o)?ndx}eso, 1 € C®(RYN) satisfies assumptions of

Arzela-Ascoli theorem on C([0, T]). Combining this information with separability
of LP'(0) and the density argument, we may infer that

/(Ss[o])zndx—>/02(t)ndx in C([0, T)).
o o

for any 5 € L#' (0).
On the other hand, Theorem 11.3 yields

(S.[o])* (1) = o2(r) in LP(O) forallt € [0, T);
therefore [, 02ndx = [, 0*ndxon [0, 7] and
02 € Cyeux ([0, T]; L (0)). (11.130)
Relations (11.128) and (11.130) yield o € C([0, T]; L>(0)), whence we complete

the proof by a simple interpolation argument.
O

We conclude this section with a compactness result involving the renormalized
continuity equation.

Theorem 11.37 Let N > 2, f > 1\/2_1:2, Q be a bounded Lipschitz domain in RV,
T > 0, and

B e C([0,T] x 2 x [0, 0)), sup  |B(t,x,s)| <c(1+s"), (11.131)
(t0)€(0.T) XL

: s N+2g :
where c is a positive constant, and 0 < p < "17 B is a fixed number.

Suppose that {0, > 0,u,}°2, is a sequence with the following properties:
()

on — 0 weakly — (%) in L®(0, T; LP(RQ)),
(11.132)
w, — u weakly in L*(0, T; W"2(2; RM));



498 11 Appendix
(i)
T
| [ (at@no + ateau, - Vg = @i (@) - aten)divia, ) dadt = 0
0 Q
(11.133)

forall a € C'([0, 00)) N W2°((0, 00)), and for all ¢ € CX((0,T) x Q).

Then the sequence {B(-, -, 0,)}°2, is precompact in the space L°(0, T; W~'% (Q))
forany s € [1,00).

Proof Step 1 Due to Corollary 11.2 and in accordance with assumptions (11.131)—
(11.133),

B”'ﬂ n _B'v's n 0 k s
igg”( Ti(en)) — B( Q)||LN2~‘1[YZ(Q)_> ask — oo

where 7Ty is the truncation function introduced in (11.76). Since LF(Q) <<
W~12(Q) whenever 8 > 1\,21\’2, it is enough to show precompactness of the sequence
of composed functions B(-, -, Tx(0,))-

Step 2 According to the Weierstrass approximation theorem, there exists a

polynomial A, on RV "2 such that

[Ae = Bllcqo.r1xexpo.21) < &

where ¢ > 0. Therefore,

sup [Ac (-, - Te(@n) — B, -, Te(on) oo (0.1)x0) < &

neN

Consequently, it is merely enough to show precompactness of any sequence of
type a1 (t)ay(x)a(o,), where a; € C'([0,T]), a» € C'(R), and where a belongs to
C'([0, 00)) N W2 ((0, 00)). However, this is equivalent to proving precompactness
of the sequence a(p,), a € C'([0, 00)).

Step 3 Since g,, u, solve Eq.(11.133), we easily check that the functions t —
[ fQ a(o,)¢ d x](r) form a bounded and equi-continuous sequence in C([0, T) for all
@ € C(2). Consequently, the standard Arzela-Ascoli theorem combined with the
separability of LF'(Q) yields, via density argument and a diagonalization procedure,
the existence of a function a() € Cyeax ([0, T]; LP(R)) satisfying

/ aon)p dx — / a(@)pdxin C([0,T]) forall ¢ € Lﬂ/(Q)
Q Q

at least for a chosen subsequence. Since L# () << W~12(Q), we deduce that

a(on)(t,+) = a(o)(t,-) strongly in W~'2(Q) for all 7 € [0, T].
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Thus applying Vitali’s theorem to the sequence {||la(0,)lw—12(q)}ne, Which is
bounded in L>°(0, T') completes the proof.
O
11.20 Transport Equation and the Euler System
For a given vector field w = w(#, x), consider the transport equation
U+ w-V,U=0, UQ,x) = Up(x). (11.134)

We also define a weak solution to the transport equation in (0, 7) x RY via a family
of integral identities

T
/ (Udip + UW - Vo + Udivywg) dxdr = —/ Usp(0,)dx  (11.135)
0 RN RN

for any ¢ € C*([0,T) x RY).
Solutions of (11.134) can be computed by the method of characteristics. Specifi-
cally, supposing we can solve the system of ordinary differential equations

th(t, x) =w(, X(x), X(0,x) = x,

we may take
U (t.X(t,x)) = Up(x), t > 0, x e RV,

More specifically, the following holds.

B CHARACTERISTICS AND TRANSPORT EQUATION:

Theorem 11.38 Let the vector field w belongs to the class
w e L®((0,T) x RM;RY), V,w € L' (0, T; L®(RY; RV*V),
Then for any Uy € L® (RN) the problem (11.134) admits a solution U determined

by the method of characteristics. Moreover, the solution is unique in the class of
weak solutions satisfying (11.135).

See DiPerna and Lions [85] O
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Finally, we consider the incompressible Euler system

0v+v-Vv+ V. II =0, div,v = 0, v(0,-) = v,. (11.136)

B CLASSICAL SOLUTIONS TO THE EULER SYSTEM:

Theorem 11.39 Let vo € W™2(RY) be given such that
N .
m > 5 +1, N=2,3, div,vyg = 0.

Then the initial-value problem (11.136) admits a classical solution v, unique in
the class

v € C([0, Tmax): W™2(RY; RY)), TI € C([0, Trmay); W™2(RN)),
3,v € C([0, Trmax); W L2(RY; RY))

defined on some maximal time interval [0, Tyax), where Tyax > 0 if N = 3 and
TmaXZOOlfNZZ.

See Kato and Lai [167] O

Finally, we remark that vorticity w = curl,v satisfies the pure transport equation
0w +v-Viw=0if N =2,
and
ow+v-Viw=w-V,vif N = 3.

Therefore the theory of the transport equation (11.134) may be applied as long as
the velocity field v is smooth.
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