
Chapter 11
Appendix

For reader’s convenience, a number of standard results used in the preceding text
is summarized in this chapter. Nowadays classical statements are appended with
the relevant reference material, while complete proofs are provided in the cases
when a compilation of several different techniques is necessary. A significant part
of the theory presented below is related to general problems in mathematical fluid
mechanics and may be of independent interest.

In the whole appendix M denotes a positive integer while N 2 N refers to the
space dimension. The space dimension is always taken greater or equal than 2, if
not stated explicitly otherwise.

11.1 Spectral Theory of Self-Adjoint Operators

Let H be a complex Hilbert space with a scalar produce h�I �i. A linear operator
A W H ! H is called self-adjoint, if

• the domain D.A/ of A is dense in H;
• A is symmetric,

hAvIwi D hvIAwi

for all v;w 2 D.A/;
• if

hAxI yi D hxI hi for all x 2 D.A/;

then y 2 D.A/ and h D Ay.
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The spectrum of a self-adjoint operator A is a subset of the real axis R, meaning
for any complex � D �1 C i�2, �1; �2 2 R, �2 ¤ 0, the operator

A C �Id W D.A/ � H ! H

is surjective with bounded inverse.

� SPECTRAL DECOMPOSITION:

Theorem 11.1 Let A be a densely defined self-adjoint operator on a Hilbert
space H.

Then there exists a family of orthogonal projections fP�g�2R enjoying the
following properties:

• P�, P� commute,

P� ı P� D Pminf�;�g for any �;� 2 RI

• P� are right continuous,

P�h ! P�h in H for any h 2 H whenever � & �I

•

P�h ! 0 in H for any h 2 H if � ! �1;

P�h ! h in H for any h 2 H if � ! 1I

• P� commutes with A on D.A/,

u 2 D.A/ if and only if
Z 1

�1
�2 d hP�uI ui < 1;

and

hAuI vi D
Z 1

�1
� d hP�uI vi for any u 2 D.A/; v 2 H: (11.1)

See Reed and Simon [237], Leinfelder [182] �
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The above results is also known as Spectral Theorem for self-adjoint operators.
The integral in (11.1) is understood in the Lebesgue-Stieltjes sense. We report

� STONE’S FORMULA:

h.Pb � Pa/ uI vi (11.2)

D lim
ı!0C

 
lim
"!0C

Z bCı

aCı
˝�
ŒA � .s C i"/I��1 � ŒA � .s � i"/I��1

�
uI v˛ ds

!

for any a < b and u; v 2 H.

See Reed and Simon [238] �

Given the spectral decomposition fP�g�2R we may define functional calculus
associated to A, specifically for any Borel function G defined on R we define G.A/
with a domain

u 2 D.G.A// if and only if
Z 1

�1
jG.�/j2 d hP�uI ui < 1 < 1;

and

hG.A/uI vi D
Z 1

�1
G.�/ d hP�uI vi ; v 2 H;

see Reed and Simon [238].
Finally, we introduce the spectral measure �u associated to u 2 H as

h�u;GiM.R/ICc.R/ D
Z 1

�1
G.�/ d hP�uI ui :

We report the following consequence of Spectral Theorem.

� SPECTRAL MEASURE REPRESENTATION:

Theorem 11.2 Let A be a densely defined self-adjoint operator on a Hilbert space
H, G a Borel function on R. Let u 2 D.G.A// and let �u be the associated spectral
measure.

Then any ‰ 2 H admits a representative‰u 2 L2.R; d�u/,

Z 1

�1
j‰u.�/j2 d�u � k‰k2H ;
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such that

hG.A/u; ‰i D
Z 1

�1
G.�/‰u.�/ d�u:

See Reed and Simon [238] �

11.2 Mollifiers

A function � 2 C1
c .R

M/ is termed a regularizing kernel if

suppŒ�� � .�1; 1/M; �.�x/ D �.x/ � 0;

Z
RM
�.x/ dx D 1: (11.3)

For a measurable function a defined on R
M with values in a Banach space X, we

denote

S!Œa� D a!.x/ D �! � a D R
RM �!.x � y/a.y/ dy;

where �!.x/ D 1
!M �.

x
!
/; ! > 0;

(11.4)

provided the integral on the right hand-side exists. The operator S! W a 7! a! is
called a mollifier. Note that the above construction easily extends to distributions by
setting a!.x/ D< aI �!.x � �/ >ŒD0ID�.RM/.

� MOLLIFIERS:

Theorem 11.3 Let X be a Banach space. If a 2 L1loc.R
MIX/, then we have a! 2

C1.RMIX/. In addition, the following holds:
(i) If a 2 Lploc.R

MIX/, 1 � p < 1, then a! 2 Lploc.R
MIX/, and

a! ! a in Lp
loc.R

MIX/ as ! ! 0:

(ii) If a 2 Lp.RMIX/, 1 � p < 1, then a! 2 Lp.RMIX/,

ka!kLp.RMIX/ � kakLp.RM IX/; and a! ! a in Lp.RMIX/ as ! ! 0:

(iii) If a 2 L1.RMIX/, then a! 2 L1.RMIX/, and

ka!kL1.RM IX/ � kakL1.RM IX/:
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iv) If a 2 Ck.UIX/, where U � R
M is an (open) ball, then .@˛a/!.x/ D @˛a!.x/

for all x 2 U, ! 2 .0; distŒx; @U�/ and for any multi-index ˛, j˛j � k.
Moreover,

ka!kCk.BIX/ � kakCk.VIX/

for any ! 2 .0; distŒ@B; @V�/, where B, V are (open) balls in R
M such that

B � V � V � U. Finally,

a! ! a in Ck.BIX/ as ! ! 0:

See Amann [8, Chap. III.4], or Brezis [41, Chap. IV.4]. �

11.3 Basic Properties of Some Elliptic Operators

Let � � R
N be a bounded domain. We consider a general elliptic equation in the

divergence form

A.x; u/ D �
NX

i;jD1
@xi.ai;j.x/@xju/C c.x/u D f for x 2 �; (11.5)

supplemented with the boundary condition

ıu C .ı � 1/

NX
jD1

ai;j@xju njj@� D g; (11.6)

where ı D 0; 1. We suppose that

ai;j D aj;i 2 C1.�/;
X
i;j

ai;j�i�j � ˛j�j2 (11.7)

for a certain ˛ > 0 and all � 2 R
N ; j�j D 1. The case ı D 1 corresponds to the

Dirichlet problem, ı D 0 is termed the Neumann problem.
In several applications discussed in this book,� is also taken in the form

� D f.x1; x2; x3/ j .x1; x2/ 2 T 2; Bbottom.x1; x2/ < x3 < Btop.x1; x2/g; (11.8)
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where the horizontal variable .x1; x2/ belongs to the flat torus

T 2 D �
Œ��; ��jf��;�g

�2
:

Although all results below are formulated in terms of standard domains, they apply
to domains� given by (11.8) as well provided we identify

@� D f.x1; x2; x3/ j .x1; x2/ 2 T 2; x3 D Bbottom.x1; x2/g

[f.x1; x2; x3/ j .x1; x2/ 2 T 2; x3 D Btop.x1; x2/g:

This is due to the fact that all theorems concerning regularity of solutions to elliptic
equations are of local character.

11.3.1 A Priori Estimates

We start with the classical Schauder estimates.

� HÖLDER REGULARITY:

Theorem 11.4 Let � � R
N be a bounded domain of class CkC2;	 , k D 0; 1; : : : ,

with 	 > 0. Suppose, in addition to (11.7), that ai;j 2 CkC1;	.�/, i; j D 1; : : : ;N, c 2
Ck;	.�/. Let u be a classical solution of problem (11.5), (11.6), where f 2 Ck;	.�/,
g 2 CkCıC1;	.@�/.

Then

kukCkC2;	 .�/ � c
�
k fkCk;	 .�/ C kgkCkC1;	 .@�/ C kukC.�/

�
:

See Ladyzhenskaya and Uralceva [178, Theorems 3.1 and 3.2, Chap. 3], Gilbarg and
Trudinger [136, Theorem 6.8]. �

Similar bounds can be also obtained in the Lp-framework. We report the
celebrated result by Agmon et al. [2] (see also Lions and Magenes [193]). The
hypotheses we use concerning regularity of the boundary and the coefficients ai;j, c
are not optimal but certainly sufficient in all situations considered in this book.

� STRONG Lp-REGULARITY:

Theorem 11.5 Let� � R
N be a bounded domain of class C2. In addition to (11.7),

assume that c 2 C.�/. Let u 2 W2;p.�/, 1 < p < 1, be a (strong) solution of
problem (11.5), (11.6), with f 2 Lp.�/, g 2 WıC1�1=p;p.@�/.
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Then

kukW2;p.�/ � c
�k fkLp.�/ C kgkWıC1�1=p;p.@�/ C kukLp.�/

�
:

See Agmon et al. [2]. �

The above estimates can be extrapolated to “negative” spaces. For the sake of
simplicity, we set g D 0 in the Dirichlet case ı D 1. In order to formulate the
adequate results, let us introduce the Dirichlet form associated to the operator A,
namely

ŒAu; v� WD
Z
�

ai;j.x/@xju@xiv C c.x/uv d x:

In such a way, the operator A can be regarded as a continuous linear mapping

A W W1;p
0 .�/ ! W�1;p.�/ for the Dirichlet boundary condition

or

A W W1;p.�/ ! ŒW1;p0

.�/�� for the Neumann boundary condition;

where

1 < p < 1;
1

p
C 1

p0 D 1:

� WEAK Lp-REGULARITY:

Theorem 11.6 Assume that � � R
N is a bounded domain of class C2, and 1 <

p < 1. Let ai;j satisfy (11.7), and let c 2 L1.�/.

(i) If u 2 W1;p
0 .�/ satisfies

ŒAu; v� D< f ; v >
ŒW�1;pIW1;p0

0 �.�/
for all v 2 W1;p0

0 .�/

for a certain f 2 W�1;p.�/, then

kuk
W
1;p
0 .�/

� c
�k fkW�1;p.�/ C kukW�1;p.�/

�
:
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(ii) If u 2 W1;p.�/ satisfies

ŒAu; v� D< F; v >ŒŒW1;p0
��IW1;p0

�.�/ for all v 2 W1;p0

.�/

for a certain F 2 ŒW1;p0

��.�/, then

kukW1;p.�/ � c
�
kFkŒW1;p0

��.�/ C kukŒW1;p0
��.�/

�
:

In particular, if

ŒAu; v� D
Z
�

fv d x �
Z
@�

gv dSx for all v 2 W1;p0

.�/;

then

kukW1;p.�/ � c
�
k fkŒW1;p0

��.�/ C kgkW�1=p;p.@�/ C kukŒW1;p0
��.�/

�
:

See Lions [190], Schechter [242]. �

Remark The hypothesis concerning regularity of the boundary can be relaxed to
C0;1 in the case of the Dirichlet boundary condition, and to C1;1 for the Neumann
boundary condition.

Remark The norm containing u on the right-hand side of the estimates in Theo-
rems 11.4–11.6 is irrelevant and may be omitted provided that the solution is unique
in the given class.

Remark As we have observed, elliptic operators, in general, enjoy the degree of
regularity allowed by the data. In particular, the solutions of elliptic problems with
constant or (real) analytic coefficients are analytic on any open subset of their
domain of definition. For example, if


u C b � rxu C cu D f in � � R
N ;

where b, c are constant, and � is a domain, then u is analytic in � provided that
f is analytic (see John [162, Chap. VII]). The result can be extended to elliptic
systems and even up to the boundary provided the latter is analytic (see Morrey and
Nirenberg [216]).
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11.3.2 Fredholm Alternative

Now, we focus on the problem of existence. Given the scope of applications
considered in this book, we consider only the Neumann problem, specifically
ı D 0 in system (11.5), (11.6). Similar results hold also for the Dirichlet boundary
conditions. A useful tool is the Fredholm alternative formulated in the following
theorem.

� FREDHOLM ALTERNATIVE:

Theorem 11.7 Let� � R
N be a bounded domain of class C2. In addition to (11.7),

assume that c 2 C.�/, 1 < p < 1, k D 1; 2, and ı D 0.
Then either

(i) Problem (11.5), (11.6) possesses a unique solution u 2 Wk;p.�/ for any f , g
belonging to the regularity class

f 2 ŒW1;p0

.�/��; g 2 W� 1
p ;p.@�/ if k D 1; (11.9)

f 2 Lp.�/; g 2 W1� 1
p ;p.@�/ if k D 2I (11.10)

or
(ii) the null space

kerŒA� D fu 2 Wk;p.�/ j u solve (11.5), (11.6) with f D g D 0g

is of finite dimension, and problem (11.5), (11.6) admits a solution for f , g
belonging to the class (11.9), (11.10) only if

< f Iw >ŒŒW1;p0
��IW1;p0

�.�/ � < gIw >ŒW�1=p;p ;W1=p;p0
�.@�/D 0

for all w 2 kerŒA�.

See Amann [7, Theorem 9.2], Geymonat and Grisvard [135]. �

In the concrete cases, the Fredholm alternative gives existence of a solution u
while the estimates of u in Wk;p.�/ in terms of f and g follow from Theorems 11.5
and 11.6 via a uniqueness contradiction argument.

For example, in the sequel, we shall deal with a simple Neumann problem for
generalized Laplacian

�divx

�
�rx

�
v

�

��
D f in �; rx

�
v

�

�
� nj@� D 0;
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where � is a sufficiently smooth and positive function on � and f 2 Lp.�/ with a
certain 1 < p < 1. In this case the Fredholm alternative guarantees existence of
u 2 W2;p.�/ provided f 2 Lp.�/,

R
�
fd x D 0. The solution is unique in the class

u 2 W2;p.�/,
R
�

u
�
d x D 0 and satisfies estimate

kukW2;p.�/ � ck fkLp.�/:

11.3.3 Spectrum of a Generalized Laplacian

We begin by introducing a densely defined (unbounded) linear operator


�;N D divx

�
�rx

�
v

�

��
; (11.11)

with the function � to be specified later, acting from Lp.�/ to Lp.�/ with domain
of definition

D.
�;N / D fu 2 W2;p.�/ j rx

�
v

�

�
� nj@� D 0g: (11.12)

Further we denote 
N D 
1;N the classical Laplacian with the homogenous
Neumann boundary condition.

We shall apply the results of Sects. 11.3.1–11.3.2 to the spectral problem that
consists in finding couples .�; v/, � 2 C, v 2 D.
�;N / that verify

�divx

�
�rx

�
v

�

��
D �v in �; rx

�
v

�

�
� nj@� D 0:

The results announced in the main theorem of this section are based on a
general theorem of functional analysis concerning the spectral properties of compact
operators.

Let T W X ! X be a linear operator on a Hilbert space X endowed with scalar
product < �I � >. We say that a complex number � belongs to the spectrum of T
(one writes � 2 �.T/) if ker.T � �I/ ¤ f0g or if .T � �I/�1 W X ! X is not
a bounded linear operator (here I denotes the identity operator). We say that � is
an eigenvalue of T or belongs to the discrete (pointwise) spectrum of T (and write
� 2 �p.T/ � �.T// if ker.T � �I/ ¤ f0g. In the latter case, the non zero vectors
belonging to ker.T � �I/ are called eigenvectors and the vector space ker.T � �I/

eigenspace.

� SPECTRUM OF A COMPACT OPERATOR:
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Theorem 11.8 Let H be an infinite dimensional Hilbert space and T W H ! H a
compact linear operator. Then

(i) 0 2 �.T/;
(ii) �.T/ n f0g D �p.T/ n f0g;
(iii)

8<
:

�.T/ n f0g is finite, or else

�.T/ n f0g is a sequence tending to 0:

(iv) If � 2 �.T/ n f0g, then the dimension of the eigenspace ker.T � �I/ is finite.
(v) If T is a positive operator, meaning < TvI v >� 0, v 2 H, then �.T/ �

Œ0;C1/.
(vi) If T is a symmetric operator, meaning < TvIw >D< vITw >, v;w 2 H, then

�.T/ � R. If in addition H is separable, then H admits an orthonormal basis
of eigenvectors that consists of eigenvectors of T.

See Evans [96, Chap. D, Theorems 6,7]

The main theorem of this section reads:

� SPECTRUM OF THE GENERALIZED LAPLACIAN WITH NEUMANN BOUND-
ARY CONDITION:

Theorem 11.9 Let � � R
N be a bounded domain of class C2. Let

� 2 C1.�/; inf
x2� �.x/ D � > 0:

Then the spectrum of the operator �
�;N , where 
�;N is defined in (11.11)–
(11.12), coincides with the discrete spectrum and the following holds:

(i) The spectrum consists of a sequence f�kg1
kD0 of real eigenvalues, where �0 D

0, 0 < �k < �kC1, k D 1; 2; : : :, and limk!1 �k D 1;
(ii) 0 < dim.Ek/ < 1 and E0 D spanf�g, where Ek D ker.�
�;N � �kI/ is the

eigenspace corresponding to the eigenvalue �k;
(iii) L2.�/ D L1

kD0 Ek, where the direct sum is orthogonal with respect to the
scalar product

< uI v >1=�D
Z
�

uv
d x

�

(here the line over v means the complex conjugate of v).



440 11 Appendix

Proof We set

T W L2.�/ ! L2.�/; Tf D

8̂
<
:̂

�
�1
�;N f if f 2 PL2.�/;

0 if f 2 spanf1g;


�1
�;N W PL2.�/ D f f 2 L2.�/ j

Z
�

f d x D 0g 7! fu 2 L2.�/ j
Z
�

u

�
d x D 0g;

�
�1
�;N f D u , �
�;N u D f :

In accordance with the regularity properties of elliptic operators collected in
Sects. 11.3.1–11.3.2 (see notably Theorems 11.5 and 11.7), the operator T is a
compact operator.

A double integration by parts yields

�
Z
�

divx

�
�rx

�
v

�

��
u

d x

�
D
Z
�

�rx

�
v

�

�
� rx

�
u

�

�
d x D

�
Z
�

divx

�
�rx

�
u

�

��
v

d x

�
:

Taking in the last formula u D Tf , f 2 L2.�/, v D Tg, g 2 L2.�/ and recalling that
functions Tf

�
, Tg
�

have zero mean, we deduce that

Z
�

Tf g
d x

�
D
Z
�

f Tg
d x

�
and

Z
�

Tf f
d x

�
� 0:

To resume, we have proved that T is a compact positive linear operator on L2.�/
that is symmetric with respect to the scalar product< � I � >1=�. Now, all statements
of Theorem 11.9 follow from Theorem 11.8.

�

11.3.4 Neumann Laplacian on Unbounded Domains

In this section, � � RN , N D 2; 3 is an unbounded exterior domain,

� D RN n B;

where B is a compact set (the case B D ;, � D RN included). We consider the
Neumann Laplacian 
N ;� defined for sufficiently smooth functions decaying at
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infinity as


N ;�Œv� D 
v in �; rxv � nj@� D 0; v.x/ ! 0 as jxj ! 1:

The standard notation 
 will be used for the same operator if � D RN .
Conventionally, the operator .�
N ;�/ is usually considered being self-adjoint and
non-negative.

In order to apply the abstract spectral theory introduced in Sect. 11.1, we define
.�
N ;�/ on the Hilbert space L2.�/ in the following way:

For u 2 D1;2.�/, f 2 L2.�/, we say that

�
N ;�Œv� D f only if
Z
�

rxv � rx' d x D
Z
�

f' d x for any ' 2 C1
c .�/:

The domain of �
N ;� in the Hilbert space L2.�/ is defined as

D.�
N ;�/ D
n
v 2 L2.�/\ D1;2.�/

ˇ̌
ˇ �
N ;�Œv� D f ; f 2 L2.�/

o
:

If @� is at least of class C2, then �
N ;� is a densely defined self-adjoint operator
on the Hilbert space L2.�/, with

D.�
N ;�/ D
n
v 2 W2;2.�/

ˇ̌
ˇ rxv � nj@� D 0 in the sense of traces

o
;

see e.g. Leis [183].

� RELLICH’S THEOREM:

Theorem 11.10 Let � � RN, N D 2; 3 be an exterior domain with C2 boundary.
Suppose that

�
u.x/C q.x/u.x/ D �u.x/ 2 �; � > 0;

where q is Hölder continuous in � and

jxjq.x/ ! 0 as jxj ! 1:

Then if u 2 L2.fjxj > r0g/ for a certain r0 > 0, then

u � 0 in �:

See Eidus [91, Theorem 2.1] �
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As an immediate corollary of Rellich’s theorem we deduce that .�
N ;�/ defined
on an exterior domain has no eigenvalues—its point spectrum is empty. More
specifically, we report the following result.

� SPECTRUM OF NEUMANN LAPLACIAN ON EXTERIOR DOMAIN:

Theorem 11.11 Let � � R3 be an exterior domain with C2 boundary.
Then �
N ;� is a non-negative self-adjoint operator with absolutely continuous

spectrum Œ0;1/—all spectral projection are absolutely continuous with respect
to the Lebesgue measure. In addition, �
N ;� satisfies the Limiting absorption
principle (LAP):

8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

Operators

V ı .�
N ;� � �˙ i�/�1 ı V W L2.�/ ! L2.�/; V Œv� D .1C jxj2/�s=2; s > 1

are bounded uniformly for � 2 Œ˛; ˇ�; 0 < ˛ < ˇ; � > 0;

9>>>>>=
>>>>>;

See Leis [183] �

We recall “negative” Lp-estimates for the Neumann Laplacian on exterior
domains.

� NEGATIVE Lp-ESTIMATES FOR THE NEUMANN LAPLACIAN ON EXTERIOR

DOMAIN:

Theorem 11.12 Let � � RN be an exterior domain with C2 boundary. Then for
any w 2 C1

c .�/, the problem

Z
�

rxu � rx' d x D
Z
�

w � rx' d x for all ' 2 C1
c .�/ (11.13)

admits a unique solution u 2 D.�
N ;�/. Moreover, u 2 D1;p.�/ and

krxukLp.�IRN/ � c. p/kwkLp.�IRN / for any 1 < p < 1:

See e.g. Galdi [131] �

Finally, we consider the operator U D exp
�˙it

p�
N ;�

�
Œh� that appears in the

variation-of-constants formula associated to the wave equation

@2t;tU �
U D 0; rxU � nj@� D 0:
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� STRICHARTZ ESTIMATES FOR THE FLAT LAPLACIAN ON RN :

Theorem 11.13 Let 
 be the L2.RN/ self-adjoint realization of the Laplacian
defined on the whole space RN. Suppose that

N � 2; 2 � p < 1; 2 � q < 1; 
 D N

2
� N

q
� 1

p
;
2

p
� N � 1

2

�
1 � 2

q

�
:

Then
Z 1

�1

���exp
�
˙it

p�

�
Œh�
���p
Lq.RN/

dt � c.N; p; q; 
/khkp
H
;2.RN /

:

See Keel and Tao [168] �

Remark Here H
;2 denotes the homogeneous Sobolev space of functions having
derivatives of order 
 square integrable. The norm in H
;2.RN/ can be defined via
Fourier transform

kvk2H
;2.RN/
D
Z
RN

j�j2
 ˇ̌Fx!� Œv�.�/
ˇ̌2

d�:

11.4 Normal Traces

Let� be a bounded domain in R
N . For 1 � q; p � 1, we introduce a Banach space

Eq;p.�/ D fu 2 Lq.�IRN/j divu 2 Lp.�/g: (11.14)

endowed with norm

kukEq.�/ WD kukEq.�IR3/ C kdivukLp.�/: (11.15)

We also define

Eq;p
0 .�/ D closureEq;p.�/

n
C1
c .�IRN/

o

and

Ep.�/ D Ep;p.�/; Ep
0.�/ D Ep;p

0 .�/:
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Our goal is to introduce the concept of normal traces and to derive a variant of
Green’s formula for the functions belonging to Eq;p.�/.

� NORMAL TRACES:

Theorem 11.14 Let � � R
N be a bounded Lipschitz domain, and let 1 < p < 1.

Then there exists a unique linear operator 
n with the following properties:

(i)


n W Ep.�/ 7! ŒW1� 1
p0
;p0

.@�/�� WD W� 1
p ;p.@�/; (11.16)

and


n.u/ D 
0.u/ � n a.a. on @� whenever u 2 C1.�IRN/: (11.17)

(ii) The Stokes formula

Z
�

vdivu d x C
Z
�

rv � u d x D< 
n.u/ I 
0.v/ >; (11.18)

holds for any u 2 Ep.�/ and v 2 W1;p0

.�/, where< � I � > denotes the duality

pairing between W1� 1
p0
;p0

.�/ and W� 1
p ;p.�/.

(iii)

kerŒ
n� D Ep
0.�/: (11.19)

(iv) If u 2 W1;p.�IRN/, then 
n.u/ in Lp.@�/, and 
n.u/ D 
0.u/ � n a.a. on @�.

Proof of Theorem 11.14 As a matter of fact, Theorem 11.14 is a standard result
whose proof can be found in Temam [256, Chap. 1]. We give a concise proof based
on the following three lemmas that may be of independent interest.

Step 1 We start with a technical result, the proof of which can be found in Galdi
[131, Lemma 3.2]. We recall that a domain Q � R

N is said to be star-shaped if
there exists a 2 Q such that Q D fx 2 R

N j jx� aj < h. x�a
jx�aj /g, where h is a positive

continuous function on the unit sphere; it is said star-shaped with respect to a ball
B � Q if it is star-shaped with respect to any of its points.

Lemma 11.1 Let � be a bounded Lipschitz domain.
Then there exists a finite family of open sets fOigi2I and a family of balls fB.i/gi2I

such that each �i WD � \ Oi is star-shaped with respect to the ball B.i/, and

� � [i2IOi:
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Step 2 The main ingredient of the proof of Theorem 11.14 is the density of
smooth functions in the spaces Eq;p.�/.

Lemma 11.2 Let � be a bounded Lipschitz domain and 1 � p � q < 1. Then
C1.�IRN/ D C1

c .�/ is dense in Eq;p.�/.

Proof of Lemma 11.2 Hypothesis q � p is of technical character and can be relaxed
if, for instance, � is of class C1;1. It ensures that u' 2 Eq;p.�/ as soon as ' 2
C1
c .�/. Moreover, according to Lemma 11.1, any bounded Lipschitz domain can

be decomposed as a finite union of star-shaped domains with respect to a ball. Using
the corresponding subordinate partition of unity we may assume, without loss of
generality, that� is a starshaped domain with respect to a ball centered at the origin
of the Cartesian coordinate system.

For u 2 Eq;p.�/ we denote u� .x/ D u.�x/, � > 0, so that if � 2 .0; 1/, u� 2
Eq;p.��1�/ and div.u� / D �.divu/� in D0.��1�/, where ��1� D fx 2 R

N j �x 2
�g. We therefore have

kdiv.u � u� /kLp.�/ � .1 � �/kdivukLp.�/ C kdivu � .divu/�kLp.�/: (11.20)

Since the translations R
N 3 h ! u.� C h/ 2 Ls.RN/ are continuous for any

fixed u 2 Ls.RN/, 1 � s < 1, the right hand side of formula (11.20) as well as
ku � u�kLq.�/ tend to zero as � ! 1�. Thus it is enough to prove that u� can be
approximated in Eq;p.�/ by functions belonging to C1.�IRN/.

Since� � ��1�, the mollified functions ���u� belong to C1.�IRN/\Eq;p.�/

provided 0 < " < dist.�; @.��1�// and tend to u� in Eq;p.�/ as " ! 0C (see
Theorem 11.3). This observation completes the proof of Lemma 11.2.

�

Step 3 We are now in a position to define the operator of normal traces. Let� be

a bounded Lipschitz domain, 1 < p < 1, v 2 W1� 1
p0
;p0

.@�/, and u 2 C1.�IRN/.
According to the trace theorem (see Theorem 6), we have

Z
@�

vu � n d� D
Z
�

`.v/divu d x C
Z
�

r`.v/ � u d x;

and

ˇ̌
ˇ
Z
@�

vu � n d�
ˇ̌
ˇ � kukEp.�/ k`.v/kW1;p0

.�/ � c. p; �/kukEp.�/ kvkW1�1=p0 ;p0
.@�/;
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where the first identity is independent of the choice of the lifting operator `.
Consequently, the map


n W u ! 
0.u/ � n (11.21)

is a linear densely defined (on C1.�/) and continuous operator from Ep.�/ to

ŒW1�1=p0 ;p0

.@�/�� D W� 1
p ;p.@�/. Its value at u is termed the normal trace of u on

@� and denoted 
n.u/ or .u � n/j@�.

Step 4 In order to complete the proof of Theorem 11.14, it remains to show that
kerŒ
n� D Ep

0.�/.

Lemma 11.3 Let � be a bounded Lipschitz domain, 1 < p < 1, and let 
n W
Ep.�/ ! W� 1

p ;p.@�/ be the operator defined as a continuous extension of the
trace operator introduced in (11.21). Then kerŒ
n� D Ep

0.�/.

Proof of Lemma 11.3 Clearly, C1
c .�/ � kerŒ
n�; whence, by continuity of 
n,

Ep
0.�/ � kerŒ
n�.

Conversely, we set

Qu.x/ D
8<
:
u.x/ if x 2 �;

0 otherwise:

Assumption u 2 kerŒ
n� yields
R
� vdivu d xCR� rv �u d x D 0 for all v 2 C1

c .R
N/,

meaning that, in the sense the distributions,

div Qu.x/ D
8<
:

divu.x/ if x 2 �;

0 otherwise

9=
; 2 Lp.RN/;

and, finally, Qu 2 Ep.RN/.
In agreement with Lemma 11.2, we suppose, without loss of generality, that

� is starshaped with respect to the origin of the coordinate system. Similarly
to Lemma 11.2, we deduce that suppŒ. Qu1=� /� belongs to the set �� � �, and,
moreover, kQu � Qu1=�kEp.�/ ! 0 as � ! 1�.

Consequently, it is enough to approximate Qu1=� by a suitable function belonging
to the set C1

c .�IRN/. However, according Theorem 11.3, functions �"�u1=� belong
toC1

c .�/\Ep.�/ provided 0 < " < 1
2
dist.��; @�/, and �"�Qu1=� ! Qu1=� in Ep.�/.

This completes the proof of Lemma 11.3 as well as that of Theorem 11.14.
�
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11.5 Singular and Weakly Singular Operators

The weakly singular integral transforms are defined through formula

ŒT. f /�.x/ D
Z
RN

K.x; x � y/f .y/ dy; (11.22)

where

K.x; z/ D �.x; z/

jzj� ; 0 < � < N; � 2 L1.RN 	 R
N/: (11.23)

A function K satisfying (11.23) is called weakly singular kernel.
The singular integral transforms are defined as

ŒT. f /�.x/ D lim
"!0C

� Z
jx�yj�"

K.x; x � y/f .y/ dy
�

WD v:p:
Z
RN

K.x; x � y/f .y/ dy;

(11.24)

where

K.x; z/ D �.x;z=jzj/
jzjN ; � 2 L1.RN 	 S/;

S D fz 2 R
N j jzj D 1g; R

jzjD1 �.x; z/ dSz D 0:

(11.25)

The kernels satisfying (11.25) are called singular kernels of Calderón-Zygmund
type.

The basic result concerning the weakly singular kernels is the Sobolev theorem.

� WEAKLY SINGULAR INTEGRALS:

Theorem 11.15 The operator T defined in (11.22) with K satisfying (11.23) is a
bounded linear operator on Lq.RN/ with values in Lr.RN/, where 1 < q < 1,
1
r D �

N C 1
q � 1. In particular,

kT. f /kLr .RN / � ck fkLq.RN /;

where the constant c can be expressed in the form c0.q;N/k�kL1.RN�RN /.

See Stein [251, Chap. V, Theorem 1] �

The fundamental result concerning the singular kernels is the Calderón-Zygmund
theorem.

� SINGULAR INTEGRALS:
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Theorem 11.16 The operator T defined in (11.24) with K satisfying (11.25) is a
bounded linear operator on Lq.RN/ for any 1 < q < 1. In particular,

kT. f /kLq.RN / � ck fkLq.RN /;

where the constant c takes the form c D c0.q;N/k�kL1.RN�S/.

See Calderón-Zygmund [46, Theorem 2], [47, Sect. 5, Theorem 2]. �

11.6 The Inverse of the div-Operator (Bogovskii Formula)

We consider the problem

divxu D f in �; uj@� D 0 (11.26)

for a given function f , where � � R
N is a bounded domain. Clearly, prob-

lem (11.26) admits many solutions that may be constructed in different manners.
Here, we adopt the integral formula proposed by Bogovskii [28] and elaborated
by Galdi [131]. In such a way, we resolve (11.26) for any smooth f of zero
integral mean. In addition, we deduce uniform estimates that allow us to extend
solvability of (11.26) to a significantly larger class of right-hand sides f , similarly
to Geissert et al. [134]. The main advantage of our construction is that it
requires only Lipschitz regularity of the underlying spatial domain. Extensions to
other geometries including unbounded domains are possible. We recommend the
interested reader to consult the monograph by Galdi [131] or [224, Chap. III] for
both positive and negative results in this direction.

Our result are summarized in the following theorem.

� THE INVERSE OF THE DIV-OPERATOR:

Theorem 11.17 Let � � R
N be a bounded Lipschitz domain.

(i) Then there exists a linear mapping B,

B W f f j f 2 C1
c .�/;

Z
�

f d x D 0g ! C1
c .�IRN/;

such that divx.BŒ f �/ D f , meaning, u D BŒ f � solves (11.26).
(ii) We have

kBŒ f �kWkC1;p.�IRN / � ck fkWk;p.�/ for any 1 < p < 1; k D 0; 1; : : : ;

(11.27)
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in particular, B can be extended in a unique way as a bounded linear operator

B W f f j f 2 Lp.�/;

Z
�

f d x D 0g ! W1;p
0 .�IRN/:

(iii) If f 2 Lp.�/,
R
�
f d x D 0, and, in addition, f D divxg, where g 2 Eq;p

0 .�/,
1 < q < 1, then

kBŒ f �kLq.�IR3/ � ckgkLq.�IR3/: (11.28)

(iv) B can be uniquely extended as a bounded linear operator

B W Œ PW1;p0

.�/�� D f f 2 ŒW1;p0

.�/�� j < f I 1 >D 0g ! Lp.�IRN/

in such a way that

�
Z
�

BŒ f � � rv d x D< f I v >fŒW1;p0
��IW1;p0 g.�/ for all v 2 W1;p0

.�/;

(11.29)

kBŒ f �kLp.�IRN/ � ck fkŒW1;p0
.�/�� : (11.30)

Here, a function f 2 C1
c .�/ is identified with a linear form in ŒW1;p0

.�/�� via
the standard Riesz formula

< f I v >ŒW1;p0
.�/��IW1;p0

.�/D
Z
�

fv d x for all v 2 W1;p0

.�/: (11.31)

Remark Since B is linear, it is easy to check that

@tBŒ f �.t; x/ D BŒ@tf �.t; x/ for a.a. .t; x/ 2 .0;T/ 	� (11.32)

provided

@tf ; f 2 Lp..0;T/ 	�/;
Z
�

f .t; �/ d x D 0 for a.a. t 2 .0;T/:

The proof of Theorem 11.17 is given by means of several steps which may be of
independent interest.

Step 1 The first ingredient of the proof is a representation formula for function-
als belonging to Œ PW1;p0

.�/��.
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Lemma 11.4 Let � be a domain in R
N, and let 1 < p � 1.

Then any linear form f 2 Œ PW1;p0

.�/�� admits a representation

< f I v >Œ PW1;p0
.�/��; PW1;p0

.�/D
NX
iD1

Z
�

wi@xiv d x;

where

w D Œw1; : : : ;wN � 2 Lp.�IRN/ and k fkŒ PW1;p0
.�/�� D kwkLp.�IRN/:

Proof of Lemma 11.4 The operator I W PW1;p0

.�/ ! Lp
0

.�IRN/, I.u/ D ru is an
isometric isomorphism mapping PW1;p0

.�/ onto a (closed) subspace I. PW1;p0

.�// of
Lp

0

.�IRN/. The functional � defined as

< �I ru >WD< f I u >Œ PW1;p0
.�/��; PW1;p0

.�/

is a linear functional on I. PW1;p0

.�// satisfying condition

sup
n
< �I v > j v 2 I. PW1;p0

.�//; kvkLp0
.�IRN/ � 1

o
D k fkŒ PW1;p0

.�/�� :

Therefore by the Hahn-Banach theorem (see e.g. Brezis [41, Theorem I.1]), there
exists a linear functionalˆ defined on Lp

0

.�IRN/ satisfying

< ˆI ru >D< �I ru >; u 2 PW1;p0

.�/; kˆkŒLp0
.�IRN/�� D k fkŒ PW1;p0

.�/�� :

According to the Riesz representation theorem (cf. Remark following Theorem 2)
there exists a unique w 2 Lp.�IRN/ such that

< ˆI v >D
Z
�

w � v; v 2 Lp
0

.�IRN/;

kˆkŒLp0
.�IRN/�� D kwkLp.�IRN/:

This yields the statement of Lemma 11.4.
�

Step 2 We use Lemma 11.4 to show that C1
c .�/ is dense in Œ PW1;p0

.�/��.
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Lemma 11.5 Let � � RN be an open set, 1 < p0 � 1.
Then the set fC1

c .�/ j R
�
v d x D 0g, identified as a subset of Œ PW1;p0

.�/��
via (11.31), is dense in Œ PW1;p0

.�/��.

Proof of Lemma 11.5 Let w 2 Lp.�IRN/ be a representant of f 2 Œ PW1;p0

.�/��
constructed in Lemma 11.4 and let wn 2 C1

c .�IRN/ be a sequence converging
strongly to w in Lp.�IRN/. Then a family of functionals fn D divwn 2 fv 2
C1
c .�/ j R

�
v d x D 0g, defined as < fnI v >D R

�
wn � rv d x D � R

�
divwnv d x,

converges to f in Œ PW1;p0

.�/��. This completes the proof.
�

Step 3 Having established the preliminary material, we focus on particular
solutions to the problem divxu D f with a smooth right hand side f . These solutions
have been constructed by Bogovskii [28], and their basic properties are collected in
the following lemma.

Lemma 11.6 Let � be a bounded Lipschitz domain.
Then there exists a linear operator

B W f f 2 C1
c .�/j

Z
�

f d x D 0g 7! C1
c .�IRN/ (11.33)

such that:

(i)

divxB. f / D f ; (11.34)

and

krxB. f /kWk;p.�IRN�N/ � ck fkWk;p.�/; 1 < p < 1; k D 0; 1; : : : ;

(11.35)

where c is a positive constant depending on k, p, diam.�/ and the Lipschitz
constant associated to the local charts covering @�.

(ii) If f D divxg, where g 2 C1
c .�IRN/, then

kB. f /kLq.�IRN�N/ � ckgkLq.�IR3/; 1 < q < 1; (11.36)

where c is a positive constant depending on q, diam.�/, and the Lipschitz
constant associated to @�.

(iii) If f ; @tf 2 fv 2 C1
c .I 	 �/ j R

�
v.t; x/ d x D 0; t 2 Ig, where I is an (open)

interval, then

@B. f /
@t

.t; x/ D B
�@f
@t

�
.t; x/ for all t 2 I; x 2 �: (11.37)
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Remark In the case of a domain star-shaped with respect to a ball of radius r and for
k D 1, the estimate of the constants in (11.35), (11.36) are given by formula (11.41)
below. In the case of a Lipschitz domain, it may be evaluate by using (11.41)
combined with Lemmas 11.1, and 11.7 below.

Step 4 Before starting the proof of Lemma 11.6, we observe that it is enough to
consider star-shaped domains.

Lemma 11.7 Let � � R
N be a bounded Lipschitz domain, and let

f 2 C1
c .�/;

Z
�

f d x D 0:

Then there exists a family of functions

fi 2 C1
c .�i/;

Z
�i

fi d x D 0; �i D � \ Oi for i 2 I;

where fOgi2I is the covering of � constructed in Lemma 11.1, and �i are star-
shaped with respect to a ball. Moreover,

k fikWk;p.�i/ � ck fkWk;p.�/; 1 � p � 1; k D 0; 1; : : : ;

where c is a positive constant dependent solely on p, k and jOij, i 2 I.

Proof of Lemma 11.7 Let f'igi2I[J be a partition of unity subordinate to the cover-
ing fOigi2I of �. We set

�1 D � \ O1; �
1 D [i2Inf1g�i; where �i D Oi \�:

Next, we introduce

f1 D f'1 � �1

Z
�1

f'1 d x; g D f� � �1

Z
�1

f� d x;

where

�1 2 C1
c .�1 \�1/;

Z
�

�1 d x D 1; � D
X

i2Inf1g
'i:

With this choice,

f1 2 C1
c .�1/;

Z
�1

f1 d x D 0; g 2 C1
c .�

1/;

Z
�1

g d x D 0;
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and both f1 and g satisfy Wk;p-estimates stated in Lemma 11.7. Applying the above
procedure to g in place of f and to �1 in place of �, we can proceed by induction
and complete the proof after a finite number of steps.

�

Step 5: Proof of Lemma 11.6
In view of Lemma 11.7, it is enough to assume that � is a star-shaped domain

with respect to a ball B.0I r/, where the latter can be taken of radius r centered at
the origin of the coordinate system.

In such a case, a possible candidate satisfying all properties stated in Lemma 11.6
is the so-called Bogovskii’s solution given by the explicit formula:

BŒ f �.x/ D
Z
�

f .y/
h x � y

jx � yjN
Z 1

jx�yj
�r

�
y C s

x � y

jx � yj
�
sN�1 ds

i
dy; (11.38)

or, equivalently, after the change of variables z D x � y, r D s=jzj,

BŒ f �.x/ D
Z
RN

h
f .x � z/z

Z 1

1

�r.x � z C rz/rN�1 dr
i

dz; (11.39)

where �r is a mollifying kernel specified in (11.3)–(11.4). A detailed inspection of
these formulas yields all statements of Lemma 11.6.

Thus, for example, we deduce from (11.39) that BŒ f � 2 C1.�/, and that
suppŒBŒ f �� � M where

M D fz 2 � j z D �z1 C .1 � �/z2; z1 2 supp. f /; z2 2 B.rI 0/; � 2 Œ0; 1�g:

Since M is closed and contained in �, (11.33) follows.
Now we explain, how to get (11.34) and estimate (11.35) with k D 1.

Differentiating (11.39) we obtain

�
@iBj. f /

�
.x/ D

Z
RN

@f

@xi
.x � z/zj

h Z 1

1

�r.x � z C rz/rN�1 dr
i

dz

C
Z
RN

f .x � z/zj
h Z 1

1

@�r

@xi

�
x � z C rz

�
r N dr

i
dz:

Next, we split the set RN in each integral into a ball B.0I "/ and its complement
realizing that the integrals over B.0I "/ tend to zero as " ! 0C. The first of the
remaining integrals over RN n B.0I "/ is handled by means of integration by parts.
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This direct but rather cumbersome calculation leads to

�
@iBjŒ f �

�
.x/ D lim

"!0C

n Z
jzj�"

f .x � z/	

	
h
ıi;j

Z 1

1

�r.x � z C rz/rN�1 dr C zj

Z 1

1

@�r

@xi

�
x � z C rz

�
r N dr

i
dz

C
Z

jzjD"
f .x � z/

h
zj
zi
jzj
Z 1

1

�r.x � z C rz/rN�1 dr
i

d�z
o
;

or, equivalently,

�
@iBjŒ f �

�
.x/ D lim

"!0C

n Z
jy�xj�"

f .y/	

	
h ıi;j

jx � yjN
Z 1

0

�r

�
x C r

x � y

jx � yj
�
.jx � yj C r/N�1 drC

xj � yj
jx � yjNC1

Z 1

0

@�r

@xi

�
x C r

x � y

jx � yj
�
.jx � yj C r/N dr

i
dy
o

Cf .x/ lim
"!0C

n Z
jzjD"

h
zj
zi
jzj
Z 1

1

�r.x � z C rz/rN�1 dr
i

d�z
o
;

where we have used the fact that

lim
"!0C

n Z
jzjD"

h�
f .x � z/ � f .x/

�
zj
zi
jzj
Z 1

1

�r.x � z C rz/rN�1 dr
i

d�z
o

D 0:

Developing the expressions .jx� yj C r/N�1, .jx� yj C r/N in the volume integral
of the above identity by using the binomial formula, we obtain

�
@iBjŒ f �

�
.x/ D v:p:

� R
�
Ki;j.x; x � y/f .y/ dy

�

C R
�
Gi;j.x; x � y/f .y/ dy C f .x/Hi;j.x/:

(11.40)

The terms on the right hand side have the following properties:

(i) The first kernel reads

Ki;j.x; z/ D �i;j.x; z=jzj/
jzjN
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with

�i;j

�
x;

z

jzj
�

D ıi;j

Z 1

0

�r

�
x C r

z

jzj
�
rN�1 dr C zj

jzj
Z 1

0

@�r

@xi

�
x C r

z

jzj
�
r N dr:

Thus a close inspection shows that

Z
jzjD1

�.x; z/ d�z D 0; x 2 R
N ;

j�.x; z/j � c.N/
.diam.�//N

rN

�
1C diam.�/

r

�
; x 2 R

N ; jzj D 1:

We infer that Ki;j are singular kernels of Calderón-Zygmund type obeying
conditions (11.25) that were investigated in Theorem 11.16.

(ii) The second kernel reads

Gi;j.x; z/ D �i;j.x; z/

jzjN�1 ;

where

j�i;j.x; z/j � c.N/
.diam.�//N

rN

�
1C diam.�/

r

�
; .x; z/ 2 R

N 	 R
N :

Thus Gi;j are weakly singular kernels obeying conditions (11.23) discussed in
Theorem 11.15.

(iii) Finally,

Hi;j.x/ D
Z
RN

zizj
jzj2 �r.x C z/ dz;

where

jHi;j.x/j � c.N/
.diam.�//N

rN
; x 2 R

N

and

NX
iD1

Hi;i.x/ D 1:

Using these facts together with Theorems 11.15, 11.16 we easily verify esti-
mate (11.35) with k D 1. We are even able to give an explicit formula for the
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constant appearing in the estimate, namely

c D c0. p;N/
�diam.�/

r

�N�
1C diam.�/

r

�
: (11.41)

Since

d

dr

h
�r

�
x C r

x � y

jx � yj
�
.jx � yj C r/N

i
D

NX
kD1

xk � yk
jx � yj

@�r

@xk

�
x C r

x � y

jx � yj
�
.jx � yj C r/N

CN�r
�
x C r

x � y

jx � yj
�
.jx � yj C r/N�1;

we have

NX
iD1

� Z
jx�yj�"

f .y/.Ki;i.x; x � y/C Gi;i.x; x � y/
�

dy D �r.x/
Z
�

f .y/ dy D 0:

Moreover, evidently,

NX
iD1

Hi;i.x/ D
Z
�

�r.y/ dy D 1I

whence (11.34) follows directly from (11.40).
In a similar way, the higher order derivatives of BŒ f � can be calculated by means

of formula (11.39). Moreover, they can be shown to obey a representation formula
of type (11.40), where, however, higher derivatives of f do appear; this leads to
estimate (11.35) with an arbitrary positive integer k.

Last but not least, formula (11.39) written in terms of divxg yields, after
integration by parts, a representation of BŒdivxg� of type (11.40), with f replaced
by g. Again, the same reasoning as above yields naturally estimate (11.36).

Finally, property (11.37) is a consequence of the standard result concerning
integrals dependent on a parameter.

The proof of Lemma 11.6 is thus complete.
�

Step 6: End of the Proof of Theorem 11.17 . For

< f I v >Œ PW1;p0
.�/��; PW1;p0

.�/D
Z
�

w � rv d x;with w 2 Lp.�IRN/;
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we can take

< f"I v >Œ PW1;p0
.�/��; PW1;p0

.�/D
Z
�

w" � rv d x;

where w" 2 C1
c .�IRN/ have been constructed in Lemma 11.5.

Furthermore, let h" 2 Lp.�IRN/,

R
�
f"v d x D � R

�
h" � rv d x for all v 2 C1.�/;

k f"kŒ PW1;p0
.�/��; PW1;p0

.�/ D kh"kLp.�IRN /;

be a sequence of representants of f" introduced in Lemma 11.4. The last formula
yields

f" D divh";
Z
�

�
vdivh" C h" � rv

�
d x D 0;

meaning, in particular,


n.h"/ D 0 and, equivalently, h" 2 Ep
0.�/; 1 < p < 1

(see (11.19) in Theorem 11.14).
In view of the basic properties of the spaces Ep

0.�/, we can replace h" by g" 2
C1
c .�IRN/ so that

kh" � g"kEp.�/ ! 0:

In particular, the sequence Qf", < Qf"I v >Œ PW1;p0
.�/��; PW1;p0

.�/D
R
�
g" � rv d x; converges

to f , < f I v >Œ PW1;p0
.�/��; PW1;p0

.�/D
R
�w � rv d x, strongly in Œ PW1;p0

.�/��.
Due to estimate (11.36), the operator B is densely defined and continuous from

Œ PW1;p0

.�/�� to Lp.�IRN/, therefore it can be extended by continuity to the whole
space Œ PW1;p0

.�/��.
If < f I v >Œ PW1;p0

.�/��; PW1;p0
.�/D

R
� wv d x, with w D Wk;p

0 .�/\ PLp.�/, we take f"
such that < f"I v >Œ PW1;p0

.�/��; PW1;p0
.�/D

R
�
w"v d x, w" D �" � w � �

R
�
.�" � w/ d x,

where � 2 C1
c .�/,

R
�
� d x D 0 so that

C1
c .�/ 3 f" D w" ! f D w in Wk;p.�/:

If < f I v >Œ PW1;p0
.�/��; PW1;p0

.�/D
R
�
w � rv d x with w 2 Eq;p

0 .�/, we take
a sequence f" such that < f"I v >Œ PW1;p0

.�/��; PW1;p0
.�/D

R
�
w" � rv d x, with w 2

Lp.�IRN/ D R
� divw"v d x, where w" 2 C1

c .�IRN/, w" ! w in Eq;p
0 .�/.

By virtue of estimates (11.35), (11.36), the operator B is in both cases a
densely defined bounded linear operator on Wk;p

0 .�/ (,! Œ PW1;p0

.�/��) ranging in
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WkC1;p
0 .�/, and on Eq;p

0 .�/ (,! Œ PW1;p0

.�/��) with values in Lq.�/ \ W1;p
0 .�/; in

particular, it can be continuously extended to Wk;p
0 .�/, and Eq;p

0 .�/, respectively.
This completes the proof of Theorem 11.17.

�

11.7 Helmholtz Decomposition

Let � be a domain in R
N . Set

Lp
� .�IRN/ D fv 2 Lp.�IRN/ j divxv D 0; v � nj@� D 0g

and

Lp
g;�.�IRN/ D fv 2 Lp.�IRN/ j v D �rx‰; ‰ 2 W1;p

loc .�/g;

where � 2 C.�/. The definition and the basic properties of the Helmholtz
decomposition are collected in the following theorem.

� HELMHOLTZ DECOMPOSITION:

Theorem 11.18 Let � be a bounded domain of class C1;1, and let

� 2 C1.�/; inf
x2��.x/ D � > 0:

Then the Lebesgue space Lp.�IRN/ admits a decomposition

Lp.�IRN/ D Lp
� .�IRN/˚ Lp

g;�.�IRN/; 1 < p < 1;

more precisely,

v D H�Œv�C H?
� Œv� for any v 2 Lp.�IRN/;

with H?
� Œv� D �rx‰, where ‰ 2 W1;p.�/ is the unique (weak) solution of the

Neumann problem

Z
�

�rx‰ � rx' d x D
Z
�

v � rx' d x for all ' 2 C1.�/;
Z
�

‰ d x D 0:
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In the particular case p D 2, the decomposition is orthogonal with respect to the
weighted scalar product

< vIw >1=�D
Z
�

v � wd x

�
:

Proof We start the proof with a lemma which is of independent interest.

Lemma 11.8 Let � be a bounded domain of class C0;1 and 1 < p < 1. Then

Lp
� .�IRN/ D closureLp.�IRN /C

1
c;� .�IRN/;

where

C1
c;� .�IRN/ D fv 2 C1

c .�IRN/ j divxv D 0g:

Proof of Lemma 11.8 Let u 2 Lp
� .�IR3/. Due to Lemma 11.3, there exists a

sequence w" 2 C1
c .�;R

N/, such that w" ! u in Lp.�IR3/ and divxw" ! 0

in Lp.�/ as " ! 0C. Next we take the sequence u" D w" � BŒdivxw"�, where
B is the Bogovskii operator introduced in Sect. 11.6. According to Theorem 11.17,
the functions u" belong to C1

c;� .�IRN/ and the sequence fu"g">0 converges to u in
Lp.�IRN/. This completes the proof of Lemma 11.8.

�

Existence and uniqueness of ‰ follow from Theorems 11.6, 11.7. Evidently,
according to the definition, H�Œv� D v � �rx‰ 2 Lp

� .�IRN/. Finally, we may
use density of C1

c;� .�IRN/ in Lp
� .�IRN/ and integration by parts to show that the

spaces L2� .�IRN/ and L2g;�.�IRN/ are orthogonal with respect to the scalar product
< �I � >1=�. This completes the proof of Theorem 11.18.

�

Remark In accordance with the regularity properties of the elliptic operators
reviewed in Sect. 11.3.1, both H� and H?

� are continuous linear operators on
Lp.�IRN/ and W1;p.�IRN/ for any 1 < p < 1 provided� is of class C1;1.

If � D 1, we recover the classical Helmholtz decomposition denoted as H,
H? (see, for instance, Galdi [131, Chap. 3]). The result can be extended to a
considerably larger class of domains, in particular, it holds for any domain� � R

3

if p D 2. For more details about this issue in the case of arbitrary 1 < p < 1 see
Farwig et al. [99] or Simader, Sohr [248], and references quoted therein.

If � D R
N , the operator H? can be defined by means of the Fourier multiplier

H?Œv�.x/ D F�1
�!x

	
� ˝ �

j�j2 Fx!� Œv�


:
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11.8 Function Spaces of Hydrodynamics

Let � be a domain in R
N . We introduce the following closed subspaces of the

Sobolev space W1;p.�IRN/, 1 � p � 1:

W1;p
0;� .�/ D fv 2 W1;p

0 .�IRN/ j divx v D 0g;

W1;p
n .�/ D fv 2 W1;p.�IRN/ j v � nj@� D 0g;

W1;p
n;� .�IRN/ D fv 2 W1;p

n .�/ j divxv D 0g:

We also consider the vector spaces

C1
c;� .�IRN/ D fv 2 C1

c .�IRN/ j divv D 0g;

Ck;	
n .�IRN/ D fv 2 Ck;	

c .�IRN/ j v � nj@� D 0g;

Ck;	
n;� .�;R

N/ D fv 2 Ck;	
n .�IRN/ j divxv D 0g;

C1
n .�IRN/ D \1

kD1Ck;	
n .�IRN/; C1

n;� .�IRN/ D \1
kD1Ck;	

n;� .�IRN/:

Under certain regularity assumptions on the boundary @�, these spaces are dense
in the afore-mentioned Sobolev spaces, as stated in the following theorem.

� DENSITY OF SMOOTH FUNCTIONS:

Theorem 11.19 Suppose that� is a bounded domain in R
N, and 1 < p < 1.

Then we have:

(i) If the domain� is of class C0;1, then the vector space C1
c;� .�IRN/ is dense in

W1;p
0;� .�IRN/.

(ii) Suppose that� is of class Ck;	 , 	 2 .0; 1/, k D 2; 3; : : :, then the vector space
Ck;	
n;� .�IRN/ is dense in W1;p

n;� .�IRN/.
(iii) Finally, if � is of class Ck;	 , 	 2 .0; 1/, k D 2; 3; : : :, then the vector space

Ck;	
n .�IRN/ is dense in W1;p

n .�IRN/.

Proof Step 1 In order to show statement (i), we reproduce the proof of Galdi
[131, Sect. II.4.1]. Let v 2 W1;p

0;� .�/ ,! W1;p
0 .�IRN/. There exists a sequence

of smooth functions w" 2 C1
c .�IRN/ such that w" ! v in W1;p.�IRN/, and,

obviously, divw" ! 0 in Lp.�/. Let u" D BŒdivxw"�, where B 
 divx�1 is
the operator constructed in Theorem 11.17. In accordance with Theorem 11.17,
u" 2 C1

c .�IRN/, divu" D divw", and ku"kW1;p.�IRN / ! 0.
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In view of these observations, we have

v" D w" � u" 2 C1
c .�IRN/; divxv" D 0;

v" ! v in W1;p.�IRN/

yielding part (i) of Theorem 11.19.
Step 2 Let v 2 W1;p

n;� .�IRN/ ,! W1;p.�IRN/. Take w" 2 C1
c .�IRN/ such that

w" ! v in W1;p.�IRN/. Obviously, we have

divw" ! 0 in Lp.�/; w" � nj@� ! 0 in W1� 1
p ;p.@�/:

Let '" 2 Ck;	
c .�/,

R
�
'" d x D 0 be an auxiliary function satisfying


'" D divw"; r'" � nj@� D w" � nj@�:

Then, in accordance with Theorem 11.4,

Ck;	
n;� .�IRN/ 3 w" � r'" ! v in W1;p.�IRN/:

This finishes the proof of part (ii).
Step 3 Let v 2 W1;p

n .�IRN/. We take u D B.divxv/, where B is the
Bogovskii operator constructed in Theorem 11.17, and set w D v � u. Clearly
w 2 W1;p

n;� .�IRN/.
In view of statement (ii), there exists a sequence w" 2 Ck;	

n;� .�IRN/ such that

w" ! w in W1;p.�IRN/:

On the other hand u belonging to W1;p
0 .�IRN/, there exists a sequence u" 2

C1
c .�IRN/ such that

u" ! u in W1;p.�IRN/:

The sequence v" D w" C u" belongs to Ck;	
n .�IRN/ and converges in W1;p.�IRN/

to v.
This completes the proof of Theorem 11.19

�

The hypotheses concerning regularity of the boundary in statements (ii), (iii) are
not optimal but sufficient in all applications for all treated in this book.

If the domain � is of class C1, the density of the space C1
n .�IRN/ in

W1;p
n .�IRN/ and of C1

n;� .�IRN/ in W1;p
n .�IRN/ is a consequence of the theorem.
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11.9 Poincaré Type Inequalities

The Poincaré type inequalities allow to estimate the Lp-norm of a function by
the Lp-norms of its derivatives. The basic result in this direction is stated in the
following lemma.

� POINCARÉ INEQUALITY:

Lemma 11.9 Let 1 � p < 1, and let � � R
N be a bounded Lipschitz domain.

Then the following holds:

(i) For any A � @� with the non zero surface measure there exists a positive
constant c D c. p;N;A; �/ such that

kvkLp.�/ � c

�
krvkLp.�IRN/ C

Z
@�

jvj dSx

�
for any v 2 W1;p.�/:

(ii) There exists a positive constant c D c. p; �/ such that

kv � 1

j�j
Z
�

v d xkLp.�/ � ckrvkLp.�IRN/ for any v 2 W1;p.�/:

The above lemma can be viewed as a particular case of more general results, for
which we refer to Ziemer [277, Chap. 4, Theorem 4.5.1].

Applications in fluid mechanics often require refined versions of Poincaré
inequality that are not directly covered by the standard theory. Let us quote
Babovski, Padula [13] or [87] as examples of results going in this direction. The
following version of the refined Poincaré inequality is sufficiently general to cover
all situations treated in this book.

� GENERALIZED POINCARÉ INEQUALITY:

Theorem 11.20 Let 1 � p � 1, 0 < � < 1, V0 > 0, and let � � R
N be a

bounded Lipschitz domain.
Then there exists a positive constant c D c. p; �;V0/ such that

k v kW1;p.�/ � c
h
krxvkLp.�IRN / C

� Z
V

jvj�d x
� 1
�
i

for any measurable V � �, jVj � V0 and any v 2 W1;p.�/.
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Proof Fixing the parameters p, � , V0 and arguing by contradiction, we construct
sequences wn 2 W1;p.�/, Vn � � such that

kwnkLp.�/ D 1; krwnkW1;p.�IRN / C
� Z

Vn

jwnj� dx
� 1
�
<
1

n
; (11.42)

jVnj � V0: (11.43)

By virtue of (11.42), we have at least for a chosen subsequence

wn ! w in W1;p.�/ where w D j�j� 1
p :

Consequently, in particular,

ˇ̌
ˇfwn � w

2
g
ˇ̌
ˇ ! 0: (11.44)

On the other hand, by virtue of (11.42)

ˇ̌
ˇfwn � w

2
g \ Vn

ˇ̌
ˇ �

�
2=w

�� Z
Vn

w�n d x ! 0;

in contrast to

ˇ̌
ˇfwn � w

2
g \ Vn

ˇ̌
ˇ D

ˇ̌
ˇVn n fwn <

w

2
g
ˇ̌
ˇ �

ˇ̌
ˇVn

ˇ̌
ˇ �

ˇ̌
ˇfwn <

w

2
g
ˇ̌
ˇ � V0;

where the last statement follows from (11.43), (11.44).
�

Another type of Poincaré inequality concerns norms in the negative Sobolev
spaces in the spirit of Nečas [219].

� POINCARÉ INEQUALITY IN NEGATIVE SPACES:

Lemma 11.10 Let � be a bounded Lipschitz domain, 1 < p < 1, and k D
0; 1; : : :. Let � 2 Wk;p0

0 .�/,
R
�
� d x D 1 be a given function.

(i) Then we have

k fkW�k;p.�/ � c
�
krxfkW�k�1;p.�IRN /C

ˇ̌
ˇPj˛j�k.�1/j˛j R

� w˛@˛� dx
ˇ̌
ˇ
�
for any f 2 W�k;p.�/;

(11.45)

where fw˛gj˛j�k, w˛ 2 Lp.�/ is an arbitrary representative of f constructed in
Theorem 3, and c is a positive constant depending on p, N, �.
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(ii) In particular, if k D 0, inequality (11.45) reads

k fkLp.�/ � c
�
krfkW�1;p.�IRN/ C

ˇ̌
ˇ
Z
�

f� d x
ˇ̌
ˇ
�
:

Proof Since C1
c .�/ is dense in W�k;p.�/, it is enough to suppose that f is smooth.

By direct calculation, we get

k fkW�k;p.�/ D sup
g2Wk;p0

0 .�/

R
�
fg d x

kgkWk;p0
.�/

�

sup
g2Wk;p0

0 .�/

�R
�
f Œg � � R

�
g d x� d x

kg � � R
�
g d xkWk;p0

.�/

	 kg � �
R
�
g d xkWk;p0

.�/

kgkWk;p0
.�/

�

C sup
g2Wk;p0

0 .�/

.
R
� g d x/.

R
� f� d x/

kgkWk;p0
.�/

�

c. p; �/
�

sup
v2WkC1;p0

0 .�IRN/

R
�
fdivxv d x

kvkWkC1;p0
.�IRN/

C
ˇ̌
ˇ X

j˛j�k

.�1/˛
Z
�

w˛@
˛� d x

ˇ̌
ˇ
�
;

where fw˛g˛�k is any representative of f (see formula (3) in Theorem 3), and where

the quantity WkC1;p0

0 .�/ 3 v D B.g � �
R
g d x/ appearing on the last line is a

solution of problem

divxv D g � �
Z
�

g d x; kvkWkC1;p0
�/ � c. p; �/

���g � �

Z
�

g d x
���
Wk;p0

.�/

constructed in Theorem 11.17.
The proof of Lemma 11.10 is complete.

�

11.10 Korn Type Inequalities

Korn’s inequality has played a central role not only in the development of linear
elasticity but also in the analysis of viscous incompressible fluid flows. The reader
interested in this topic can consult the review paper of Horgan [157], the recent
article of Dain [69], and the relevant references cited therein. While these results
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rely mostly on the Hilbertian L2-setting, various applications in the theory of
compressible fluid flows require a general Lp-setting and even more.

We start with the standard formulation of Korn’s inequality providing a bound of
the Lp-norm of the gradient of a vector field in terms of the Lp-norm of its symmetric
part.

� KORN’S INEQUALITY IN Lp:

Theorem 11.21 Assume that 1 < p < 1.

(i) There exists a positive constant c D c. p;N/ such that

krvkLp.RN IRN�N / � ckrv C rTvkLp.RN IRN�N /

for any v 2 W1;p.RN IRN/.
(ii) Let � � R

N be a bounded Lipschitz domain. Then there exists a positive
constant c D c. p;N; �/ > 0 such that

kvkW1;p.�IRN / � c
�
krv C rTvkLp.�;RN�N / C

Z
�

jvj d x
�

for any v 2 W1;p.�IRN/.

Proof Step 1 Since C1
c .R

N IRN/ is dense in W1;p.RN IRN/, we may suppose that v
is smooth with compact support. We start with the identity

@xk@xjvs D @xjDs;k C @xkDs;j � @xsDj;k; (11.46)

where

D D .Di;j/
N
i;jD1; Di;j D 1

2
.@xjui C @xiuj/:

Relation (11.46), rewritten in terms of the Fourier transform, reads

�k�jFx!�.vs/ D �i
�
�jFx!�.Ds;k/C �kFx!�.Ds;j/� �sFx!�.Dj;k

�
:

Consequently,

Fx!�.@xkvs/ D Fx!�.Ds;k/C �j�k

j�j2Fx!�.Ds;j/� �j�s

j�j2Fx!�.Dj;k/:

Thus estimate (i) follows directly from the Hörmander-Mikhlin theorem (Theo-
rem 9).
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Step 2 Similarly to the previous part, it is enough to consider smooth functions
v. Lemma 11.10 applied to formula (11.46) yields

krvkLp.�IRN�N/ � c
�
kDkLp.�IRN�N/ C

ˇ̌
ˇ
Z
�

rv� d x
ˇ̌
ˇ
�
;

where � 2 C1
c .�/,

R
�
� d x D 1. Consequently, estimate (ii) follows.

�

In applications to models of compressible fluids, it is useful to replace the
symmetric gradient in the previous theorem by its traceless part. The adequate result
is stated in the following theorem.

� GENERALIZED KORN’S INEQUALITY:

Theorem 11.22 Let 1 < p < 1, and N > 2.

(i) There exists a positive constant c D c. p;N/ such that

krvkLp.RN IRN�N / � ckrv C rTv � 2

N
divvIkLp.RN IRN�N /

for any v 2 W1;p.RN IRN/, where I D .ıi;j/
N
i;jD1 is the identity matrix.

(ii) Let � � R
N be a bounded Lipschitz domain. Then there exists a positive

constant c D c. p;N; �/ > 0 such that

kvkW1;p.�IRN/ � c
�
krv C rTv � 2

N
divvIkLp.�IRN�N/ C

Z
�

jvj d x
�

for any v 2 W1;p.�IRN/.

Remark As a matter of fact, part (i) of Theorem 11.22 holds for any N � 1. On the
other hand, statement (ii) may fail for N D 2 as shown by Dain [69].

Proof Step 1 In order to show (i), we suppose, without loss of generality, that v is
smooth and has a compact support in R

N . A straightforward algebra yields

@xk@xjvs D @xjDs;k C @xkDs;j � @xsDj;kC

1
N

�
ıs;k@xjdivxv C ıs;j@xkdivxv � ıj;k@xsdivxv

�
;

(11.47)

.N � 2/@xsdivxv D 2N@xkDs;k � N
vs; (11.48)

@xj.
vs/ D @xj@xkDs;k C
Dj;s � @xs@xkDj;k C 1

N � 1
ıj;s@xk@xnDk;n; (11.49)
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where D D .Di;j/
N
i;jD1 denotes the tensor

D D 1

2
.rxv C rx

Tv/� 1

N
divxvI:

Moreover, we deduce from (11.47) that

Fx!�.@xkvs/ D Fx!�.Ds;k/C �k�j

j�j2Fx!�.Ds;j/

� �s�j

j�j2Fx!�.Dj;k/C 1
N ıs;kFx!�.divv/;

(11.50)

where, according to (11.48), (11.49),

Fx!�.divv/ D N

N � 2

1

j�j2Fx!�

�
@s.
vs/

�C 2N

N � 2

�s�j

j�j2Fx!�.Ds;j/;

with

1

j�j2Fx!�

�
@s.
vs/

� D �
�
Fx!�.Ds;s/C N

N � 1

�k�n

j�j2 F.Dk;n/
�
:

Thus, estimate (i) follows from (11.50) via the Hörmander–Mikhlin multiplier
theorem.

Step 2 Similarly to the previous step, it is enough to show (ii) for a smooth v. By
virtue of Lemma 11.10, we have

k@xkvjkLp.�/ � c. p; �/
�
krx@xkvjkW�1;p.�IRN/ C

ˇ̌
ˇ
Z
�

@xkvj� d x
ˇ̌
ˇ
�
; (11.51)

and

k
vskW�1;p.�/ � c. p; �/
�
krx
vskW�2;p.�IRN / C

ˇ̌
ˇ
Z
�


vs Q� d xj
�

(11.52)

for any � 2 Lp
0

.�/,
R
�
� d x D 1, Q� 2 W1;p0

0 .�/,
R
�

Q� d x D 1.
Using the basic properties of the W�1;p-norm we deduce from identities (11.47)–

(11.48) that

krx@xkvjkW�1;p.�IRN / � c
�
kDkLp.�IRN / C k
vkW�1;p.�IRN/

�
;

where the second term at the right-hand side is estimated by help of identity (11.49)
and inequality (11.52). Coming back to (11.51) we get

k@xkvjkLp.�/ � c. p; �/
�
kDkLp.�IRN / C

ˇ̌
ˇ
Z
�

@xkvj� d x
ˇ̌
ˇC

ˇ̌
ˇ
Z
�


vj Q� d x
ˇ̌
ˇ
�
;
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which, after by parts integration and with a particular choice � 2 C1c .�/, Q� 2 C2c.�/,
yields estimate (ii).

�

We conclude this part with another generalization of the previous results.

� GENERALIZED KORN-POINCARÉ INEQUALITY:

Theorem 11.23 Let � � R
N, N > 2 be a bounded Lipschitz domain, and let

1 < p < 1, M0 > 0, K > 0, 
 > 1.
Then there exists a positive constant c D c. p;M0;K; 
/ such that the inequality

kvkW1;p.�IRN/ (11.53)

� c
����rxv C rx

Tv � 2

N
divv I

���
Lp.�IRN /

C
Z
�

rjvj d x
�

holds for any v 2 W1;p.�IRN/ and any non negative function r such that

0 < M0 �
Z
�

r d x;
Z
�

r
 d x � K: (11.54)

.

Proof Without loss of generality, we may assume that 
 > maxf1; Np
.NC1/p�N g.

Indeed replacing r by Tk.r/, where Tk.z/ D maxfz; kg, we can take k D k.M0; 
/

large enough. Moreover, it is enough to consider smooth functions v.
Fixing the parameters K, M0, 
 we argue by contradiction. Specifically, we

construct a sequence wn 2 W1;p.�IRN/ such that

kwnkW1;p.�IRN/ D 1; wn ! w weakly in W1;p.�IRN/ (11.55)

and

���rxwn C rx
Twn � 2

N
divxwn I

���
Lp.�IRN/

C
Z
�

rnjwnj d x <
1

n
(11.56)

for certain

rn ! r weakly in L
 .�/;
Z
�

r d x � M0 > 0: (11.57)

Consequently, due to the compact embeddingW1;p.�/ into Lp.�/, and by virtue
of Theorem 11.22,

wn ! w strongly in W1;p.�IRN/: (11.58)
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Moreover, in agreement with (11.55)–(11.58), the limit w satisfies the identities

kwkW1;p.�IRN/ D 1; (11.59)

rw C rTw � 2

N
divwI D 0; (11.60)

Z
�

rjwj d x D 0: (11.61)

Equation (11.60) which is valid provided N > 2, implies that 
divw D 0 and

w D 2�N

N divw, see (11.48), (11.49). In particular, in agreement with remarks
after Theorem 11.4 in Appendix, w is analytic in �. On the other hand, according
to (11.61), w vanishes on the set fx 2 � j r.x/ > 0g of a nonzero measure; whence
w � 0 in � in contrast with (11.61).

Theorem 11.23 has been proved.
�

Finally, we address the question how the constant in Theorem 11.23 depends
on the geometry of the spatial domain �. To this end, we assume that @� can
be described by a finite number of charts based on balls of radius r and Lipschitz
constant L. Then it turns out that c depends only on these two parameters.

� GENERALIZED KORN-POINCARÉ INEQUALITY—DOMAIN DEPENDENCE:

Theorem 11.24 Under the hypotheses of Theorem 11.23, suppose that there exists
a radius r and a constant L such that @� can be covered by a finite number of balls
B.x; r/, on each of which @� is expressed as a graph of a Lipschitz function with the
Lipschitz constant L.

Then the generalized Korn inequality (11.53) holds with a constant depending
only on r and L.

Proof See [42]. �

11.11 Estimating ru by Means of divxu and curlxu

� ESTIMATING ru IN TERMS OF divxu AND curlxu:
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Theorem 11.25 Assume that 1 < p < 1.

(i) Then

krukLp.RN IRN�N / � c. p;N/
�
kdivxukLp.RN / C kcurlxukLp.RN IRN�N /

�
;

for any u 2 W1;p.RN IRN/:
(11.62)

(ii) If� � R
N is a bounded domain, then

krukLp.�IRN�N/ � c
�
kdivxukLp.�/ C kcurlxukLp.�IRN�N/

�
;

for any u 2 W1;p
0 .�IRN/:

(11.63)

Proof To begin, observe that it is enough to show the estimate for u 2 C1
c .R

N IRN/.
To this end, we write

i
NX

kD1
�kFx!�.uk/ D Fx!�.divxu/;

i
�
�kFx!�.uj/� �jFx!�.uk/

�
D Fx!�.Œcurl�j;ku/; j ¤ k:

Solving the above system we obtain

ij�j2Fx!�.uk/ D �kFx!�.divu/C
X
j¤k

�jFx!�.Œcurl�k;ju/;

for k D 1; : : : ;N. Consequently, we deduce

Fx!�.@xruk/ D �k�r

j�j2 Fx!�.divu/C
X
j¤k

�j�r

j�j2Fx!�.Œcurl�k;ju/:

Thus estimate (11.62) is obtained as a direct consequence of Hörmander-Mikhlin
theorem on multipliers (Theorem 9).

�

If the trace of u does not vanish on @�, the estimates of type (11.62) depend
strongly on the geometrical properties of the domain�, namely on the values of its
first and second Betti numbers.
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For example, the estimate

krukLp.�IR3�3/ � c. p;N; �/
�
kdivxukLp.�/ C kcurlxukLp.�IR3�3/

�

holds

(i) for any u 2 W1;p.�IR3/, u 	 nj@� D 0, provided� is a bounded domain with
the boundary of class C1;1 and the set R3 n� is (arcwise) connected (meaning
R
3 n� does not contain a bounded (arcwise) connected component);

(ii) for any u 2 W1;p.�IR3/, u � nj@� D 0, if � is a bounded domain with the
boundary of class C1;1 whose boundary @� is a connected and compact two-
dimensional manifold.

The interested reader should consult the papers of von Wahl [270] and Bolik and
von Wahl [29] for a detailed treatment of these questions including more general
results in the case of non-vanishing tangential and/or normal components of the
vector field u.

11.12 Weak Convergence and Monotone Functions

We start with a straightforward consequence of the De la Vallée Poussin criterion of
the L1-weak compactness formulated in Theorem 10.

Corollary 11.1 Let Q � R
N be a domain and let f fng1

nD1 be a sequence in L1.Q/
satisfying

sup
n>0

Z
Q
ˆ.jfnj/ d x < 1; (11.64)

where ˆ is a non negative function continuous on Œ0;1/ such that limz!1ˆ.z/=z
D 1.

Then

sup
n>0

n Z
fjfnj�kg

jfn.x/jd x
o

! 0 as k ! 1; (11.65)

in particular,

k sup
n>0

fjfjfnj � kgjg ! 0 as k ! 1:
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Typically,ˆ.z/ D zp, p > 1, in which case we have

jfjfnj � kgj � 1

k

Z
fjfnj�kg

jfn.x/jd x � 1

k

� Z
Q

jfnjpd x
�1=pjfjfnj � kgj1=p0

:

Consequently, we report the following result.

Corollary 11.2 Let Q � R
N be a domain and let f fng1

nD1 be a sequence of functions
bounded in Lp.Q/, where p 2 Œ1;1/.

Then
Z

fjfnj�kg
jfnjsd x � 1

kp�s
sup
n>0

n
k fnkpLp.Q/

o
; s 2 Œ0; p�: (11.66)

In particular

jfjfnj � kgj � 1

kp
supn>0

n
k fnkpLp.Q/

o
: (11.67)

In the remaining part of this section, we review a mostly standard material based
on monotonicity arguments. There are several variants of these results scattered
in the literature, in particular, these arguments have been extensively used in the
monographs of Lions [192], or [102, 224]. Our aim is to formulate these results
at such a level of generality so that they may be directly applicable to all relevant
situations investigated in this book.

� WEAK CONVERGENCE AND MONOTONICITY:

Theorem 11.26 Let I � R be an interval, Q � R
N a domain, and

.P;G/ 2 C.I/ 	 C.I/ a couple of non-decreasing functions. (11.68)

Assume that %n 2 L1.QI I/ is a sequence such that

8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

P.%n/ ! P.%/;

G.%n/ ! G.%/;

P.%n/G.%n/ ! P.%/G.%/

9>>>>>=
>>>>>;

weakly in L1.Q/: (11.69)

(i) Then

P.%/ G.%/ � P.%/G.%/: (11.70)
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(ii) If, in addition,

G 2 C.R/; G.R/ D R; G is strictly increasing;

P 2 C.R/; P is non-decreasing;
(11.71)

and

P.%/G.%/ D P.%/ G.%/; (11.72)

then

P.%/ D P ı G�1.G.%//: (11.73)

(iii) In particular, if G.z/ D z, then

P.%/ D P.%/: (11.74)

Proof We shall limit ourselves to the case I D .0;1/ already involving all
difficulties encountered in other cases.

Step 1 If P is bounded and G strictly increasing, the proof is straightforward.
Indeed, in this case,

0 � limn!1
R
B

h
P.%n/� .P ı G�1/

�
G.%/

�i�
G.%n/� G.%/

�
d x D

R
B

�
P.%/G.%/ � P.%/ G.%/

�
d x

� limn!1
R
B P ı G�1.G.%//

�
G.%n/� G.%/

�
d x;

(11.75)

where B is a ball in Q and P ı G�1.G.%// D lims!G.%/ P ı G�1.s/. By virtue of
assumption (11.69), the second term at the right hand side of the last formula tends
to 0; whence the desired inequality (11.70) follows immediately from the standard
result on the Lebesgue points.

Step 2 If P is bounded and G non-decreasing, we replace G by a strictly
increasing function, say,

Gk.z/ D G.z/C 1

k
arctan.z/; k > 0:
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In accordance with Step 1 we obtain

P.%/G.%/C 1

k
P.%/arctan.%/ � P.%/ G.%/C 1

k
P.%/ arctan.%/;

where we have used the De la Vallé Poussin criterion ( Theorem 10) to guarantee
the existence of the weak limits. Letting k ! 1 in the last formula yields (11.70).

Step 3 If limz!0C P.z/ 2 R and if P is unbounded, we may approximate P by a
family of bounded non-decreasing functions,

P ı Tk; k > 0;

where

Tk.z/ D kT . z
k
/; C1.R/ 3 T .z/ D

8̂
ˆ̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
:̂

z if z 2 Œ0; 1�

concave in .0;1/

2 if z � 3

�T .�z/ if z 2 .�1; 0/

9>>>>>>>>>=
>>>>>>>>>;

: (11.76)

Reasoning as in the previous step, we obtain

.P ı Tk/.%/G.%/ � .P ı Tk/.%/ G.%/: (11.77)

In order to let k ! 1, we observe first that

k.P ı Tk/.%/ � P.%/kL1.Q/ �

lim inf
n!1 k.P ı Tk/.%n/ � P.%n/kL1.Q/ � 2 sup

n2N

n Z
f%n�kg

jP.%n/jd x
o
;

where the last integral is arbitrarily small provided k is sufficiently large (see
Theorem 10). Consequently,

.P ı Tk/.%/ ! P.%/ a.e. in Q:

Similarly,

P ı Tk.%/G.%/ ! P.%/G.%/ a.e. in Q:

Thus, letting k ! 1 in (11.77) we obtain again (11.70).
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Step 4 Finally, if limz!0C P.z/ D �1, we approximate P by

Ph.z/ D
8<
:
P.h/ if z 2 .�1; h/

P.z/ if z � h

9=
; ; h > 0; (11.78)

so that, according to Step 3,

Ph.%/G.%/ � Ph.%/ G.%/; (11.79)

As in the previous step, in accordance with Theorem 10,

kPh.%/ � P.%/kL1.Q/ � lim infn!1 kPh.%n/� P.%n/kL1.Q/

� 2 supn2N
n R

fjP.%n/j�jP.h/jg jP.%n/jd x
o

! 0 as h ! 0C;
(11.80)

and

kPh.%/G.%/ � P.%/G.%/kL1.Q/

� 2 supn2N
n R

fjP.%n/j�jP.h/jg jP.%n/G.%n/jd x
o

! 0 as h ! 0C :

(11.81)

Thus we conclude the proof of part (i) of Theorem 11.26 by letting h ! 0C
in (11.79).

Step 5 Now we are in a position to prove part (ii). We set

Mk D
n
x 2 B j sup

s2Œ�1;1�
G�1�G.%/C s

�
.x/ � k

o
;

where B is a ball in Q, and k > 0. Thanks to monotonicity of P and G, we can write

0 � R
B 1Mk

h
P.%n/ � .P ı G�1/

�
G.%/˙ �'

�i
	

�
G.%n/ � G.%/� �'

�
d x D

R
B 1Mk

�
P.%n/G.%n/� P.%n/ G.%/

�
d x

� RB 1Mk .P ı G�1/
�
G.%/˙ �'

��
G.%n/� G.%/

�
d x

�" RB 1Mk

h
P.%n/� .P ı G�1/

�
G.%/˙ �'

�i
'd x;

(11.82)
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where � > 0, ' 2 C1
c .B/ and 1Mk is the characteristic function of the set Mk.

For n ! 1 in (11.82), the first integral on the right-hand side tends to zero
by virtue of (11.69), (11.72). Recall that 1MkG.%/ is bounded. On the other hand,
the second integral approaches zero by virtue of (11.69). Recall that 1Mk .P ı
G�1/

�
G.%/˙ �'

�
is bounded.

Thus we are left with
Z
B
1Mk

h
P.%/ � .P ı G�1/

�
G.%/˙ �'

�i
'd x D 0; ' 2 C1

c .B/I (11.83)

whence (11.73) follows by sending � ! 0C and realizing that [k>0Mk D B. This
completes the proof of statement (ii).

�

11.13 Weak Convergence and Convex Functions

The idea of monotonicity can be further developed in the framework of convex
functions. Similarly to the preceding section, the material collected here is standard
and may be found in the classical books on convex analysis as, for example, Ekeland
and Temam [92], or Azé [12].

Consider a functional

F W RM ! .�1;1�; M � 1: (11.84)

We say that F is convex on a convex set O � R
M if

F.tv C .1 � t/w/ � tF.v/C .1 � t/F.w/ for all v;w 2 O; t 2 Œ0; 1�I (11.85)

F is strictly convex on O if the above inequality is strict whenever v ¤ w.
Compositions of convex functions with weakly converging sequences have a

remarkable property of being lower semi-continuous with respect to the weak L1-
topology as shown in the following assertion (cf. similar results in Visintin [268],
Balder [15]).

� WEAK LOWER SEMI-CONTINUITY OF CONVEX FUNCTIONS:

Theorem 11.27 Let O � R
N be a measurable set and fvng1

nD1 a sequence of
functions in L1.OIRM/ such that

vn ! v weakly in L1.OIRM/:
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Let ˆ W RM ! .�1;1� be a lower semi-continuous convex function. Then
Z
O
ˆ.v/d x � lim inf

n!1

Z
O
ˆ.vn/d x:

Moreover if

ˆ.vn/ ! ˆ.v/ weakly in L1.O/;

then

ˆ.v/ � ˆ.v/ a.a. on O: (11.86)

If, in addition, ˆ is strictly convex on an open convex set U � R
M, and

ˆ.v/ D ˆ.v/ a.a. on O;

then

vn.y/ ! v.y/ for a.a. y 2 fy 2 O j v.y/ 2 Ug (11.87)

extracting a subsequence as the case may be.

Proof Step 1 Any convex lower semi-continuous function with values in .�1;1�

can be written as a supremum of its affine minorants:

ˆ.z/ D supfa.z/ j a an affine function on R
M; a � ˆ on R

Mg (11.88)

(see Theorem 3.1 of Chap. 1 in [92]). Recall that a function is called affine if it can
be written as a sum of a linear and a constant function.

On the other hand, if B � O is a measurable set, we have

Z
B
ˆ.v/ dy D lim

n!1

Z
B
ˆ.vn/ dy � lim

n!1

Z
B
a.vn/ dy D

Z
B
a.v/ dy

for any affine function a � ˆ. Consequently,

ˆ.v/.y/ � a.v/.y/

for any y 2 O which is a Lebesgue point of bothˆ.v/ and v.
Thus formula (11.88) yields (11.86).
Step 2 As any open set U � R

M can be expressed as a countable union of
compacts, it is enough to show (11.87) for

y 2 MK � fy 2 O j v.y/ 2 Kg;

where K � U is compact.
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Since ˆ is strictly convex on U, there exists an open set V such that

K � V � V � U;

and ˆ W V ! R is a Lipschitz function (see Corollary 2.4 of Chap. I in [92]). In
particular, the subdifferential @ˆ.v/ is non-empty for each v 2 K, and we have

ˆ.w/ �ˆ.v/ � @ˆ.v/ � .w � v/ for any w 2 R
M; v 2 K;

where @ˆ.v/ denotes the linear form in the subdifferential @ˆ.v/ � .RM/� with the
smallest norm (see Corollary 2.4 of Chap. 1 in [92]).

Next, we shall show the existence of a function !,

! 2 CŒ0;1/; !.0/ D 0;

! non-decreasing on Œ0;1/ and strictly positive on .0;1/;

(11.89)

such that

ˆ.w/ �ˆ.v/ � @ˆ.v/ � .w � v/C !.jw � vj/ for all w 2 V; v 2 K: (11.90)

Were (11.90) not true, we would be able to find two sequences wn 2 V , zn 2 K
such that

ˆ.wn/�ˆ.zn/ � @ˆ.zn/ � .wn � zn/ ! 0 for n ! 1

while

jwn � znj � ı > 0 for all n D 1; 2; : : :

Moreover, as K is compact, one can assume

zn ! z 2 K; ˆ.zn/ ! ˆ.z/; wn ! w in V; @ˆ.zn/ ! L 2 R
M;

and, consequently,

ˆ.y/ �ˆ.z/ � L � .y � z/ for all y 2 R
M;

that is L 2 @ˆ.z/.
Now, the function

‰.y/ � ˆ.y/�ˆ.z/� L � .y � z/
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is non-negative, convex, and

‰.z/ D ‰.w/ D 0; jw � zj � ı:

Consequently,‰ vanishes on the whole segment Œz;w�, which is impossible as ˆ is
strictly convex on U.

Seeing that the function

a 7! ˆ.z C ay/�ˆ.z/� a@ˆ.z/ � y

is non-negative, convex and non-decreasing for a 2 Œ0;1/ we infer that the
estimate (11.90) holds without the restriction w 2 V . More precisely, there exists !
as in (11.89) such that

ˆ.w/�ˆ.v/ � @ˆ.v/ � .w � v/C !.jw � vj/ for all w 2 R
M; v 2 K: (11.91)

Taking w D vn.y/, v D v.y/ in (11.91) and integrating over the set MK we get

Z
MK

!.jvn � vj/ dy �
Z
MK

ˆ.vn/ �ˆ.v/� @ˆ.v/ � .vn � v/ dy;

where the right-hand side tends to zero for n ! 1. Note that the function @ˆ.v/ is
bounded measurable on Mk as ˆ is Lipschitz on V , and

@ˆ.v/ D lim
"!0

rˆ".v/ for any v 2 V;

where

ˆ".v/ � min
z2RM

n1
"

jz � vj Cˆ.z/
o

(11.92)

is a convex, continuously differentiable function on R
M (see Propositions 2.6, 2.11

of Chap. 2 in [40]).
Thus

Z
MK

!.jvn � vj/ dy ! 0 for n ! 1

which yields pointwise convergence (for a subsequence) of fvng1
nD1 to v a.a. on MK .

�
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11.14 Div-Curl Lemma

The celebrated Div-Curl Lemma of Tartar [254] (see also Murat [218]) is a
cornerstone of the theory of compensated compactness and became one of the most
efficient tools in the analysis of problems with lack of compactness. Here, we recall
its Lp-version.

Lemma 11.11 Let Q � R
N be an open set, and 1 < p < 1. Assume

Un ! U weakly in Lp.QIRN/;

Vn ! V weakly in Lp
0

.QIRN/:

(11.93)

In addition, let

div Un � r � Un;

curl Vn � .rVn � rTVn/

9=
; be precompact in

�
W�1;p.Q/;
W�1;p0

.QIRN�N/:
(11.94)

Then

Un � Vn ! U � V in D0.Q/:

Proof Since the result is local, we can assume that Q D R
N . We have to show that

Z
RN

�
HŒUn�C H?ŒUn�

� � �HŒVn�C H?ŒVn�
�
' d x !

Z
RN

�
HŒU�C H?ŒU�

� � �HŒV�C H?ŒV�
�
' d x

for any ' 2 C1
c .R

N/, where H, H? are the Helmholtz projections introduced in
Sect. 11.7. We have

H?ŒUn� D r‰U
n ; H

?ŒVn� D r‰V
n ;

where, in accordance with hypothesis (11.94) and the standard elliptic estimates
discussed in Sects. 11.3.1 and 11.11,

r‰U
n ! r‰U D H?ŒU� in Lp.BIRN/;

HŒVn� ! HŒV� in Lp
0

.BIRN/;
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and

HŒUn� ! HŒU� weakly in Lp.BIRN/;

r‰V
n ! r‰V D H?ŒV� weakly in Lp

0

.BIRN/;

where B � R
N is a ball containing the support of '.

Consequently, it is enough to handle the term HŒUn� � rx‰
V
n '. However,

Z
RN

HŒUn� � rx‰
V
n ' d x D �

Z
RN

HŒUn� � r'‰V
n d x !

�
Z
RN

HŒU� � r'‰V d x D
Z
RN

HŒU� � rx‰
V' d x:

�

The following variant of Div-Curl Lemma seems more convenient from the
perspective of possible applications.

� DIV-CURL LEMMA:

Theorem 11.28 Let Q � R
N be an open set. Assume

Un ! U weakly in Lp.QIRN/;

Vn ! V weakly in Lq.QIRN/;

(11.95)

where

1

p
C 1

q
D 1

r
< 1:

In addition, let

div Un � r � Un;

curl Vn � .rVn � rTVn/

9=
; be precompact in

�
W�1;s.Q/;
W�1;s.QIRN�N/;

(11.96)

for a certain s > 1. Then

Un � Vn ! U � V weakly in Lr.Q/:

The proof follows easily from Lemma 11.11 as soon as we observe that
precompact sets in W�1;s that are bounded in W�1;p are precompact in W�1;m for
any s < m < p.
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11.15 Maximal Regularity for Parabolic Equations

We consider a parabolic problem:

8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

@tu �
u D f in .0;T/ 	�;

u.0; x/ D u0.x/; x 2 �;

rxu � n D 0 in .0;T/ 	 @�;

9>>>>>=
>>>>>;

(11.97)

where� � R
N is a bounded domain. In the context of the so-called strong solutions,

the first equation is satisfied a.e. in .0;T/ 	�, the initial condition holds a.e. in �,
and the homogenous Neumann boundary condition is satisfied in the sense of traces.

The following statement holds.

� MAXIMAL Lp � Lq REGULARITY:

Theorem 11.29 Let � � R
N be a bounded domain of class C2, 1 < p; q < 1.

Suppose that

f 2 Lp.0;TILq.�//; u0 2 Xp;q; Xp;q D fLq.�/ID.
N /g1�1=p;p;

D.
N / D fv 2 W2;q.�/ j rxv � nj@� D 0g;

where f�I �g�;� denotes the real interpolation space.
Then problem (11.97) admits a solution u, unique in the class

u 2 Lp.0;TIW2;q.�//; @tu 2 Lp.0;TILq.�//;

u 2 C.Œ0;T�IXp;q/:

Moreover, there exists a positive constant c D c. p; q; �;T/ such that

ku.t/kXp;q C k@tukLp.0;TILq.�// C k
ukLp.0;TILq.�// � (11.98)

c
�k fkLp.0;TILq.�// C ku0kXp;q

�

for any t 2 Œ0;T�.
See Amann [7, 8]. �
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For the definition of real interpolation spaces see e.g. Bergh, Löfström [27,
Chap. 3]. It is well known that

Xp;q D

8̂
<̂
ˆ̂:

B
2� 2

p
q;p .�/ if 1 � 2

p � 1
q < 0;

fu 2 B
2� 2

p
q;p .�/ j rxu � nj@� D 0g; if 1 � 2

p � 1
q > 0;

see Amann [7]. In the above formula, the symbol Bs
q;p.�/ refers to the Besov space.

For the definition and properties of the scale of Besov spaces Bs
q;p.R

N/ and
Bs
q;p.�/, s 2 R, 1 � q; p � 1 see Bergh and Löfström [27, Sect. 6.2], Triebel

[257, 258]. A nice overview can be found in Amann [7, Sect. 5]. Many of the
classical spaces are contained as special cases in the Besov scales. It is of interest
for the purpose of this book that

Bs
p;p.�/ D Ws;p.�/; s 2 .0;1/ n N; 1 � p < 1;

where Ws;p.�/ is the Sobolev-Slobodeckii space.
Extension of Theorem 11.29 to general classes of parabolic equations and

systems as well as to different type of boundary conditions are available. For more
information concerning the Lp � Lq maximal regularity for parabolic systems with
general boundary conditions, we refer to the book of Amann [8] or to the papers by
Denk et al. [77, 78, 148].

Maximal regularity in the classes of smooth functions relies on classical argu-
ment. A result in this direction reads as follows.

� MAXIMAL HÖLDER REGULARITY:

Theorem 11.30 Let � � R
N be a bounded domain of class C2;	 , 	 > 0. Suppose

that

f 2 C.Œ0;T�IC0;	 .�//; u0 2 C2;	.�/; rxu0 � nj@� D 0:

Then problem (11.97) admits a unique solution

u 2 C.Œ0;T�IC2;	 .�//; @tu 2 C.Œ0;T�IC0;	 .�//:

Moreover, there exists a positive constant c D c. p; q; �;T/ such that

k@tukC.Œ0;T�IC0;	 .�// C kukC.Œ0;T�IC2;	 .�// � c
�
ku0kC2;	 .�/ C k fkC.Œ0;T�IC0;	 .�//

�
:

(11.99)

See Lunardi [199, Theorem 5.1.2] �
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Unlike most of the classical existence theorems that can be found in various
monographs on parabolic equation (see e.g. Ladyzhenskaya et al. [179]), the above
results requires merely the continuity in time of the right hand side. This aspect is
very convenient for the applications in this book.

11.16 Quasilinear Parabolic Equations

In this section we review a well known result solvability of the quasilinear parabolic
problem:

8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

@tu �PN
i;jD1 aij.t; x; u/@xi@xj u C b.t; x; u;rxu/ D 0 in .0;T/ 	�;

PN
i;jD1 ni aij@xju C  D 0 on ST ;

u.0; �/ D u0;

9>>>>>=
>>>>>;

(11.100)

where

aij D aij.t; x; u/; i; j D 1; : : : ;N;  D  .t; x/; b.t; x; u; z/ and u0 D u0.x/

are continuous functions of their arguments .t; x/ 2 Œ0;T� 	 �, u 2 R, z 2 R
N ,

ST D Œ0;T� 	 @� and n D .n1; : : : ; nN/ is the outer normal to the boundary @�.
The results stated below are taken over from the classical book by Ladyzhen-

skaya et al. [179]. We refer the reader to this work for all details, and also for the
further properties of quasilinear parabolic equations and systems.

� EXISTENCE AND UNIQUENESS

FOR THE QUASILINEAR PARABOLIC NEUMANN PROBLEM:

Theorem 11.31 Let 	 2 .0; 1/ and let� � R
N be a bounded domain of class C2;	 .

Suppose that

(i)

u0 2 C2;	.�/;  2 C1.Œ0;T� 	�/; rx is Hölder continuous

in the variables t and x with exponents 	=2 and 	; respectively,

NX
i;jD1

ni.x/ aij@xj.0; x; u0.x//C  .0; x/ D 0; x 2 @�I
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(ii)

aij 2 C1.Œ0;T� 	� 	 R/;

rxaij; @uaij are 	 � Hölder continuous in the variable xI

(iii)

b 2 C1.Œ0;T� 	� 	 R 	 R
N/;

rxb; @ub;rzb are 	 � Hölder continuous in the variablexI

(iv) there exist positive constants c, c, c1, c2 such that

0 � aij.t; x; u/�i�j � cj�j2; .t; x; u; �/ 2 .0;T� 	� 	 R 	 R
N ;

aij.t; x; u/�i�j � cj�j2; .t; x; u; �/ 2 ST 	� 	 R 	 R
N ;

�ub.t; x; u; z/ � c0jzj2 C c1u
2 C c2; .t; x; u; �/ 2 Œ0;T� 	� 	 R 	 R

N I

(v) for any L > 0 there are positive constants C and C such that

C.L/j�j2 � aij.t; x; u/�i�j; .t; x; u; �/ 2 Œ0;T� 	� 	 Œ�L;L� 	 R
N ;

ˇ̌
ˇb; @tb; @ub; .1C z/rzb

ˇ̌
ˇ.t; x; u; z/

� C.L/.1C jzj2/; .t; x; u; z/ 2 Œ0;T� 	� 	 Œ�L;L� 	 R
N :

Then problem (11.100) admits a unique classical solution u belonging to the
Hölder space C1;	=2I2;	.Œ0;T� 	 �/, where the symbol C1;	=2I2;	.Œ0;T� 	 �/ stands
for the Banach space with norm

kukC1.Œ0;T���/ C sup.t;�;x/2Œ0;T�2��
j@tu.t; x/� @tu.�; x/j

jt � � j	=2

C
3X

i;jD1
k@xi@xjukC.Œ0;T���/

C
3X

i;jD1
sup

.t;x;y/2Œ0;T���2
j@xi@xju.t; x/ � @xi@xju.t; y/j

jx � yj	 :

See Ladyzhenskaya et al. [179, Theorems 7.2, 7.3, 7.4]. �
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11.17 Basic Properties of the Riesz Transform
and Related Operators

Various (pseudo) differential operators used in the book are identified through their
Fourier symbols:

• the Riesz transform:

Rj 
 i�j
j�j ; j D 1; : : : ;N;

meaning that

RjŒv� D F�1
�!x

h i�j
j�jFx!� Œv�

i
I

• the “double” Riesz transform:

R D fRk;jgNk;jD1; R D 
�1
x rx ˝ rx; Ri;j 
 �i�j

j�j2 ; i; j D 1; : : : ;N;

meaning that

Rk;jŒv� D F�1
�!x

h�k�j
j�j2Fx!� Œv�

i
I

• the inverse divergence:

A D fAjgNjD1; Aj D @xj

�1
x 
 � i�j

j�j2 ; j D 1; : : : ;N;

meaning that

AjŒv� D �F�1
�!x

h i�j
j�j2Fx!� Œv�

i
I

• the inverse Laplacian:

.�
/�1 
 1

j�j2 ;

meaning that

.�
/�1Œv� D F�1
�!x

h 1

j�j2Fx!� Œv�
i
:



11.17 Basic Properties of the Riesz Transform and Related Operators 487

In the sequel, we shall investigate boundedness of these pseudo- differential
operators in various function spaces. The following theorem is an immediate
consequence of the Hörmander-Mikhlin theorem (Theorem 9).

� CONTINUITY OF THE RIESZ OPERATOR:

Theorem 11.32 The operators Rk, Rk;j are continuous linear operators mapping
Lp.RN/ into Lp.RN/ for any 1 < p < 1. In particular, the following estimate holds
true:

kRŒv�kLp.RN / � c.N; p/kvkLp.RN / for all v 2 Lp.RN/; (11.101)

whereR stands forRk orRk;j.

As a next step, we examine the continuity properties of the inverse divergence
operator. To begin, we recall that for Banach spaces X and Y, with norms k � kX
and k � kY , the sum X C Y D fw D u C v j u 2 X; v 2 Yg and the
intersection X\Y can be viewed as Banach spaces endowed with norms kwkXCY D
inf
n

maxfkukX; kvkY g;
ˇ̌
ˇw D u C v

o
and kwkX\Y D kwkX C kwkY , respectively.

� CONTINUITY PROPERTIES OF THE INVERSE DIVERGENCE:

Theorem 11.33 Assume that N > 1.

(i) The operator Ak is a continuous linear operator mapping L1.RN/ \ L2.RN/

into L2.RN/C L1.RN/, and Lp.RN/ into L
Np

N�p .RN/ for any 1 < p < N.
(ii) In particular,

kAkŒv�kL1.RN /CL2.RN / � c.N/kvkL1.RN /\L2.RN /

for all v 2 L1.RN/\ L2.RN/;

(11.102)

and

kAkŒv�k
L

Np
N�p .RN /

� c.N; p/kvkLp.RN / for all v 2 Lp.RN/; 1 < p < N:

(11.103)

(iii) If v; @v
@t 2 Lp.I 	 R

N/, where I is an (open) interval, then

@Ak. f /

@t
.t; x/ D Ak

�@f
@t

�
.t; x/ for a. a. .t; x/ 2 I 	 R

N : (11.104)



488 11 Appendix

Proof Step 1 We write

�AkŒv� D F�1
�!x

h i�k
j�j2 1fj�j�1gFx!� Œv�

i
C F�1

�!x

h i�k
j�j2 1fj�j>1gFx!� Œv�

i
:

Since v belongs to L1.RN/, the function Fx!� Œv� is uniformly bounded; whence
the quantity i�k

j�j2 1fj�j�1gFx!� Œv� is integrable. Similarly, v being square integrable,

Fx!� Œv� enjoys the same property so that i�k
j�j2 1fj�j>1gFx!� Œv� is square integrable

as well. After these observations, estimate (11.102) follows immediately from the
basic properties of the Fourier transform, see Sect. 5.

Step 2 We introduce E.x/—the fundamental solution of the Laplace operator,
specifically,


xE D ı in D0.RN/; (11.105)

where ı denotes the Dirac distribution. If N � 2, @xkE takes the form

@xkE.x/ D 1

aN

1

jxjN�1
xk
jxj ; where aN D

8<
:

2� if N D 2

.N � 2/�N if N > 2

9=
; (11.106)

with �N being the area of the unit sphere. From (11.105) we easily deduce that

Fx!� Œ@xkE � D 1

.2�/N=2
i�k
j�j2 :

Consequently,

@xkE � v D F�1
�!x

h
Fx!� Œ@xkE � v�

i
D 1

.2�/N=2
F�1
�!x

h i�k
j�j2Fx!� Œv�

i

where the weakly singular operator v ! @xkE � v is continuous from Lp.RN/ to
Lr.RN/, 1r D N�1

N C 1
p � 1, provided 1 < p < N as a consequence of the classical

results of harmonic analysis stated in Theorem 11.15. This completes the proof of
parts (i), (ii).

Step 3 If v 2 C1
c .I 	 R

3/, statement (iii) follows directly from the theorem on
differentiation of integrals with respect to a parameter. Its Lp-version can be proved
via the density arguments.

�

In order to conclude this section, we recall several elementary formulas that can
be verified by means of direct computation.
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Rj;kŒ f � D @jAkŒ f � D �Rj

h
RkŒ f �

i
;

Rj

h
RkŒ f �

i
D Rk

h
RjŒ f �

i
;

PN
kD1Rk

h
RkŒ f �

i
D f

R
�
AkŒ f �g d x D � R

�
fAkŒg�/ d x;

R
�
Rj

h
RkŒ f �

i
g d x D R

�
fRj

h
RkŒg�

i
d x:

(11.107)

These formulas hold for all f ; g 2 S.RN/ and can be extended by density in
accordance with Theorems 11.33, 11.32 to f 2 Lp.RN/, g 2 Lp

0

.RN/, 1 < p < 1,
whenever the left and right hand sides make sense. We also notice that functions
Ak. f /, Rj;k. f / are real valued functions provided f is real valued.

11.18 Commutators Involving Riesz Operators

This section presents two important results involving Riesz operators. The first one
represents a keystone in the proof of the weak continuity property of the effective
pressure. Its formulation and proof are taken from [101, 117].

� COMMUTATORS INVOLVING RIESZ OPERATORS, WEAK CONVERGENCE:

Theorem 11.34 Let

V" ! V weakly in Lp.RN IRN/;

U" ! U weakly in Lq.RN IRN/;

where 1
p C 1

q D 1
s < 1. Then

U" � RŒV"�� RŒU"� � V" ! U � RŒV� � RŒU� � V weakly in Ls.RN/:
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Proof Writing

U" � RŒV"� � V" � RŒU"� D
�
U" � RŒU"�

�
� RŒV"� �

�
V" � RŒV"�

�
� RŒU"�

we easily check that

divx
�
U" � RŒU"�

�
D divx

�
V" � RŒV"�

�
D 0;

while RŒU"�, RŒV"� are gradients, in particular

curlxRŒU"� D curlxRŒV"� D 0:

Thus the desired conclusion follows from Div-Curl Lemma (Theorem 11.28).
�

The following result is in the spirit of Coifman, Meyer [62]. The main ideas of
the proof are taken over from [87].

� COMMUTATORS INVOLVING RIESZ OPERATORS, BOUNDEDNESS IN

SOBOLEV-SLOBODECKII SPACES:

Theorem 11.35 Let w 2 W1;r.RN/ and V 2 Lp.RN IRN/ be given, where

1 < r < N; 1 < p < 1;
1

r
C 1

p
� 1

N
< 1:

Then for any s satisfying

1

r
C 1

p
� 1

N
<
1

s
< 1;

there exists

ˇ D ˇ.s; p; r/ 2 .0; 1/; ˇ

N
D 1

s
C 1

N
� 1

p
� 1

r

such that
���RŒwV� � wRŒV�

���
Wˇ;s.RN IRN /

� ckwkW1;r.RN /kVkLp.RN IRN /;

where c D c.s; p; r/ is a positive constant.
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Proof We may suppose without loss of generality that w 2 C1
c .R

N/, V 2 C1
c .R

N I
R

N/. First we notice that the norms

kakW1;m.RN IRN / and kakLm.RN IRN / C kcurlxakLm.RN IRN / C kdivxakLm.RN / (11.108)

are equivalent for 1 < m < 1, see Theorem 11.25. We also verify by a direct
calculation that

Œ.curlx.RŒwV�/�j;k D 0; Œcurlx.wRŒV�/�j;k D @xkw Rj;sŒVs� � @xjw Rk;sŒVs�;

(11.109)

and

divx.RŒwV�/ � divx
�
wRŒV�

�
D

NX
jD1

@xjw Vj �
NX

i;jD1
@xiw Ri;jŒVj�: (11.110)

Next we observe that for any s, 1
r C 1

p � 1
N < 1

s < 1 there exist 1 � r1 D
r1.s; p/ < r < r2 D r2.s; p/ < 1 such that

1

r1
C 1

p
� 1

N
D 1

s
D 1

r2
C 1

p
:

Taking advantage of (11.108)–(11.110) and using Theorem 11.32 together with
the Hölder inequality, we may infer that

���RŒwV� � wRŒV�
���
W1;s.RN IRN /

� ckwkW1;r2 .RN /kVkLp.RN IRN /: (11.111)

On the other hand, Theorem 11.32 combined with the continuous embedding

W1;r1 .RN/ ,! L
Nr1

N�r1 .RN/, and the Hölder inequality yield

���RŒwV� � wRŒV�
���
Ls.RN IRN /

� ckwkW1;r1 .RN /kVkLp.RN IRN /: (11.112)

We thus deduce that, for any fixed V 2 Lp.�IRN/, the linear operator w !
RŒwV� � wRŒV� is a continuous linear operator from W1;r2 .�/ to W1;s.�;RN/ and
from W1;r1 .�/ to Ls.�IRN/. Now we conclude by the Riesz-Thorin interpolation
theorem (see [257]) that this operator is as well continuous from W1;r.�/ to
Wˇ;s.�/, where ˇ 2 .0; 1/ verifies the formula ˇ

r1
C 1�ˇ

r2
D 1

r .
This finishes the proof.

�
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11.19 Renormalized Solutions to the Equation of Continuity

In this section we explain the main ideas of the regularization technique developed
by DiPerna and Lions [85] and discuss the basic properties of the renormalized
solutions to the equation of continuity. To begin, we introduce a variant of the
classical Friedrichs commutator lemma.

� FRIEDRICHS’ COMMUTATOR LEMMA IN SPACE:

Lemma 11.12 Let N � 2, ˇ 2 Œ1;1/, q 2 Œ1;1�, where 1
q C 1

ˇ
D 1

r 2 .0; 1�.
Suppose that

% 2 Lˇloc.R
N/; u 2 W1;q

loc .R
N IRN/:

Then

divx
�
S�Œ%u�

�
� divx

�
S�Œ%�u

�
! 0 in Lrloc.R

N/; (11.113)

where S" is the mollifying operator introduced in (11.3)–(11.4).

Proof We have

divx
�
S�Œ%u�

�
� divx

�
S�Œ%�u

�
D I" � S".%/divxu;

where

I".x/ D
Z
RN
%.y/Œu.y/ � u.x/� � rx�".x � y/dy: (11.114)

According to Theorem 11.3,

S".%/divxu ! %divxu in Lrloc.R
N/I

whence it is enough to show that

I" ! %divxu in Lrloc.R
N/: (11.115)

After a change of variables y D x C "z, formula (11.114) reads

I".x/ D R
jzj�1 %.x C "z/ u.xC"z/�u.x/

"
� rx�.z/dz

D R 1
0

R
jzj�1 %.x C "z/ z � rxu.x C "tz/ � rx�.z/dz dt;

(11.116)
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where we have used the Lagrange formula

u.� C "z/ � u.�/ D "

Z 1

0

z � rxu.� C "tz/dt:

From (11.116) we deduce a general estimate

kI"kLs.BR/ � c.r; s; p; q/ k%kLp.BrC1/k krxEukLq.BrC1/; (11.117)

where Br is a ball of radius r in R
N , and where

8̂
<
:̂
s is arbitrary in Œ1;1/ if p D q D 1;

1
s D 1

q C 1
p if 1

q C 1
p 2 .0; 1�

9>=
>; :

Formula (11.117) can be used with %n � % and p D ˇ, q and s D r, where
%n 2 Cc.R

N/, %n ! % strongly in Lˇloc.R
N/, in order to justify that it is enough to

show (11.115), with % belonging to Cc.R
N/. For such a %, we evidently have

I".x/ ! Œ%divxu�.x/ a. a. in R
N

as is easily seen from (11.116). Moreover, formula (11.117) now with p D 1,
yields I" bounded in Ls.Br/ with s > r. This observation allows us obtain the desired
conclusion by means of Vitali’s convergence theorem.

�

In the case of a time dependent scalar field % and a vector field u, Lemma 11.117
gives rise to the following corollary.

� FRIEDRICHS COMMUTATOR LEMMA IN TIME-SPACE:

Corollary 11.3 Let N � 2, ˇ 2 Œ1;1/, q 2 Œ1;1�, 1q C 1
ˇ

D 1
r 2 .0; 1�. Suppose

that

% 2 Lˇloc..0;T/ 	 R
N/; u 2 Lqloc.0;TIW1;q

loc .R
N IRN//:

Then

divx
�
S�Œ%u�

�
� divx

�
S�Œ%�u

�
! 0 in Lrloc..0;T/ 	 R

N/; (11.118)

where S" is the mollifying operator introduced in (11.3)–(11.4) acting solely on the
space variables.
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With Lemma 11.12 and Corollary 11.3 at hand, we can start to investigate the
renormalized solutions to the continuity equation.

� RENORMALIZED SOLUTIONS OF THE CONTINUITY EQUATION I:

Theorem 11.36 Let N � 2, ˇ 2 Œ1;1/, q 2 Œ1;1�, 1q C 1
ˇ

2 .0; 1�. Suppose that

the functions .%;u/ 2 Lˇloc..0;T/ 	 R
N/ 	 Lqloc.0;TIW1;q

loc .R
N IRN//, where % � 0 a.

e. in .0;T/ 	 R
N, satisfy the transport equation

@t%C divx.%u/ D f in D0..0;T/ 	 R
N/; (11.119)

where f 2 L1loc..0;T/ 	 R
N/.

Then

@tb.%/C divx
�
.b.%/u

�
C
�
%b0.%/ � b.%/

�
divxu D fb0.%/ in D0..0;T/ 	 R

N/

(11.120)

for any

b 2 C1.Œ0;1//; b0 2 Cc.Œ0;1//: (11.121)

Proof Taking convolution of (3.198) with �" (see (11.3)–(11.4)), that is to say using
�".x � �/ as a test function, we obtain

@t

�
S"Œ%�

�
C divx

�
S"Œ%�u

�
D }".%;u/; (11.122)

where

}".%;u/ D divx
�
S"Œ%�u

�
� divxS"Œ%u� a.e. in .0;T/ 	 R

N :

Equation (11.122) can be multiplied on b0.S"Œ%/�, where b is a globally Lipschitz
function on Œ0;1/; one obtains

@tb .S"Œ%�/C divx Œb .S"Œ%�/ u� (11.123)

C �
S"Œ%�b

0 .S"Œ%�/ � b .S"Œ%�/

 D }".%;u/ b0 .S"Œ%�/ :

It is easy to check that for " ! 0C the left hand side of (11.123) tends to the
desired expression appearing in the renormalized formulation of the continuity
equation (11.120). Moreover, the right hand side tends to zero as a direct conse-
quence of Corollary 11.3.

�
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Once the renormalized continuity equation is established for any b belonging
to (11.121), it is satisfied for any “renormalizing” function b belonging a larger
class. This is clarified in the following lemma.

� RENORMALIZED SOLUTIONS OF THE CONTINUITY EQUATION II:

Lemma 11.13 Let N � 2, ˇ 2 Œ1;1/, q 2 Œ1;1�, 1q C 1
ˇ

2 .0; 1�. Suppose that

the functions .%;u/ 2 Lˇloc..0;T/ 	 R
N/ 	 Lqloc.0;TIW1;q

loc .R
N IRN//, where % � 0

a. e. in .0;T/ 	 R
N, satisfy the renormalized continuity equation (11.120) for any b

belonging to the class (11.121).
Then we have:

(i) If f 2 Lp
loc..0;T/ 	 R

N/ for some p > 1, p0. ˇq0
� 1/ � ˇ, then Eq. (11.120)

holds for any

b 2 C1.Œ0;1//; jb0.s/j � cs�; for s > 1; where � � ˇ

q0 � 1: (11.124)

(ii) If f D 0, then Eq. (11.120) holds for any

b 2 C.Œ0;1//\ C1..0;1//;

lims!0C
�
sb0.s/� b.s/

�
2 R;

jb0.s/j � cs� if s 2 .1;1/ for a certain � � ˇ

q0
� 1

(11.125)

(iii) The function z ! b.z/ in any of the above statements (i)–(ii) can be replaced
by z ! cz C b.z/, c 2 R, where b satisfies (11.124) or (11.125) as the case
may be.

(iv) If f D 0, then

@t

�
%B.%/

�
C divx

�
%B.%/u

�
C b.%/divxu D 0 in D0..0;T/	R

N/ (11.126)

for any

b 2 C.Œ0;1// \ L1.0;1/; B.%/ D B.1/C
Z %

1

b.z/

z2
dz (11.127)

Proof Statement (i) can be deduced from (11.120) by approximating conveniently
the functions b satisfying relation (11.124) by functions belonging to the class
C1.Œ0;1// \ W1;1.0;1/ and using consequently the Lebesgue dominated or
Vitali’s and the Beppo-Levi monotone convergence theorems. We can take a
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sequence S 1
n
.bıTn/, n ! 1, where Tn is defined by (11.76), and with the mollifying

operator S 1
n

introduced in (11.3)–(11.4).
Statement (ii) follows from (i): The renormalized continuity equation (11.121)

certainly holds for bh.�/ WD b.h C �/. Thus we can pass to the limit h ! 0C,
take advantage of condition lims!0C.sb0.s/ � b.s// 2 R, and apply the Lebesgue
dominated convergence.

Statement (iii) results from summing the continuity equation with the renormal-
ized continuity equation.

The function z ! zB.z/ satisfies assumptions (11.125). Statement (iv) thus
follows immediately from (ii).

�

Next, we shall investigate the pointwise behavior of renormalized solutions with
respect to time.

� TIME CONTINUITY OF RENORMALIZED SOLUTIONS

Lemma 11.14 Let N � 2, ˇ; q 2 .1;1/, 1
q C 1

ˇ
2 .0; 1�. Suppose that the

functions .%;u/ 2 L1.0;TILˇloc.R
N// 	 Lq.0;TIW1;q

loc .R
N IRN//, % � 0 a.a. in

.0;T/	R
N, satisfy continuity equation (11.119)with f 2 Lsloc..0;T/	�/, s > 1, and

renormalized continuity equation (11.120) for any b belonging to class (11.121).
Then

% 2 Cweak.Œ0;T�ILˇ.O//\ C.Œ0;T�;Lp.O//

with any 1 � p < ˇ and O any bounded domain in RN.

Proof According to Lemma 11.13,

@t� C divx.�u/ D 1

2
�divxu in D0..0;T/ 	 R

N/;

where we have set � D p
%; we may therefore assume that

� 2 Cweak.Œ0;T�IL2ˇ.O// for any bounded domain O � R
N : (11.128)

Regularizing the latter equation over the space variables, we obtain

@t .S"Œ��/C divx .S"Œ��u/ D 1

2
S" Œ�divxu�C }".�;u/ a.a. in .0;T/ 	 R

N ;
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where S" and }" are the same as in the proof of Theorem 11.36. Now, applying to
the last equation Theorem 11.36 and Lemma 11.13, we get

@t .S"Œ��/
2 C divx

�
.S"Œ��/

2 u
�

D S"Œ��S" .�divxu/

C 2S"Œ��}".�;u/ � .S"Œ��/
2 divxu a.a. in .0;T/ 	 R

N : (11.129)

We employ Eq. (11.129) together with Theorem 11.3 and Corollary 11.3 to verify
that the sequence fR

�
.S"Œ��/

2 � d xg">0, � 2 C1
c .R

N/ satisfies assumptions of
Arzelà-Ascoli theorem on C.Œ0;T�/. Combining this information with separability
of Lˇ

0

.O/ and the density argument, we may infer that

Z
O
.S"Œ��/

2 � d x !
Z
O
�2.t/� d x in C.Œ0;T�/:

for any � 2 Lˇ
0

.O/.
On the other hand, Theorem 11.3 yields

.S"Œ��/
2 .t/ ! �2.t/ in Lˇ.O/ for all t 2 Œ0;T�I

therefore
R
O �

2� d x D R
O �

2� d x on Œ0;T� and

�2 2 Cweak.Œ0;T�ILˇ.O//: (11.130)

Relations (11.128) and (11.130) yield � 2 C.Œ0;T�IL2.O//, whence we complete
the proof by a simple interpolation argument.

�

We conclude this section with a compactness result involving the renormalized
continuity equation.

Theorem 11.37 Let N � 2, ˇ > 2N
NC2 , � be a bounded Lipschitz domain in R

N,
T > 0, and

B 2 C.Œ0;T� 	� 	 Œ0;1//; sup
.t;x/2.0;T/��

jB.t; x; s/j � c.1C sp/; (11.131)

where c is a positive constant, and 0 < p < NC2
2N ˇ is a fixed number.

Suppose that f%n � 0;ung1
nD1 is a sequence with the following properties:

(i)

%n ! % weakly � .�/ in L1.0;TILˇ.�//;

un ! u weakly in L2.0;TIW1;2.�IRN//I
(11.132)
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(ii)

Z T

0

Z
�

�
a.%n/@t' C a.%n/un � rx' � .%na

0.%n/� a.%n//divxun
�

d xdt D 0

(11.133)

for all a 2 C1.Œ0;1//\ W1;1..0;1//, and for all ' 2 C1
c ..0;T/ 	�/.

Then the sequence fB.�; �; %n/g1
nD1 is precompact in the space Ls.0;TIW�1;2 .�//

for any s 2 Œ1;1/.

Proof Step 1 Due to Corollary 11.2 and in accordance with assumptions (11.131)–
(11.133),

sup
n2N

kB.�; �; Tk.%n// � B.�; �; %n/k
L

2N
NC2 .�/

! 0 as k ! 1;

where Tk is the truncation function introduced in (11.76). Since Lˇ.�/ ,!,!
W�1;2.�/ whenever ˇ > 2N

NC2 , it is enough to show precompactness of the sequence
of composed functions B.�; �; Tk.%n//.

Step 2 According to the Weierstrass approximation theorem, there exists a
polynomial A" on R

NC2 such that

kA" � BkC.Œ0;T����Œ0;2k�/ < ";

where " > 0. Therefore,

sup
n2N

kA".�; �; Tk.%n/ � B.�; �; Tk.%n/kL1..0;T/��/ < ":

Consequently, it is merely enough to show precompactness of any sequence of
type a1.t/a2.x/a.%n/, where a1 2 C1.Œ0;T�/, a2 2 C1.�/, and where a belongs to
C1.Œ0;1//\W1;1..0;1//. However, this is equivalent to proving precompactness
of the sequence a.%n/, a 2 C1.Œ0;1//.

Step 3 Since %n, un solve Eq. (11.133), we easily check that the functions t !
Œ
R
�
a.%n/' d x�.t/ form a bounded and equi-continuous sequence in C.Œ0;T�/ for all

' 2 C1
c .�/. Consequently, the standard Arzelà-Ascoli theorem combined with the

separability of Lˇ
0

.�/ yields, via density argument and a diagonalization procedure,
the existence of a function a.%/ 2 Cweak.Œ0;T�ILˇ.�// satisfying

Z
�

a.%n/' d x !
Z
�

a.%/' d x in C.Œ0;T�/ for all ' 2 Lˇ
0

.�/

at least for a chosen subsequence. Since Lˇ.�/ ,!,! W�1;2.�/, we deduce that

a.%n/.t; �/ ! a.%/.t; �/ strongly in W�1;2.�/ for all t 2 Œ0;T�:
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Thus applying Vitali’s theorem to the sequence fka.%n/kW�1;2.�/g1
nD1, which is

bounded in L1.0;T/ completes the proof.
�

11.20 Transport Equation and the Euler System

For a given vector field w D w.t; x/, consider the transport equation

@tU C w � rxU D 0; U.0; x/ D U0.x/: (11.134)

We also define a weak solution to the transport equation in .0;T/ 	 RN via a family
of integral identities

Z T

0

Z
RN
.U@t' C Uw � rx' C Udivxw'/ dx dt D �

Z
RN

U0'.0; �/ dx (11.135)

for any ' 2 C1
c .Œ0;T/ 	 RN/.

Solutions of (11.134) can be computed by the method of characteristics. Specifi-
cally, supposing we can solve the system of ordinary differential equations

d

dt
X.t; x/ D w .t;X.t; x// ; X.0; x/ D x;

we may take

U .t;X.t; x// D U0.x/; t � 0; x 2 R
N :

More specifically, the following holds.

� CHARACTERISTICS AND TRANSPORT EQUATION:

Theorem 11.38 Let the vector field w belongs to the class

w 2 L1..0;T/ 	 R
N IRN/; rxw 2 L1.0;TIL1.RN IRN�N/:

Then for any U0 2 L1.RN/ the problem (11.134) admits a solution U determined
by the method of characteristics. Moreover, the solution is unique in the class of
weak solutions satisfying (11.135).

See DiPerna and Lions [85] �
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Finally, we consider the incompressible Euler system

@tv C v � rxv C rx… D 0; divxv D 0; v.0; �/ D v0: (11.136)

� CLASSICAL SOLUTIONS TO THE EULER SYSTEM:

Theorem 11.39 Let v0 2 Wm;2.RN/ be given such that

m >

	
N

2



C 1; N D 2; 3; divxv0 D 0:

Then the initial-value problem (11.136) admits a classical solution v, unique in
the class

v 2 C.Œ0;Tmax/IWm;2.RN IRN//; … 2 C.Œ0;Tmax/IWm;2.RN//;

@tv 2 C.Œ0;Tmax/IWm�1;2.RN IRN//

defined on some maximal time interval Œ0;Tmax/, where Tmax > 0 if N D 3 and
Tmax D 1 if N D 2.

See Kato and Lai [167] �

Finally, we remark that vorticity w D curlxv satisfies the pure transport equation

@tw C v � rxw D 0 if N D 2;

and

@tw C v � rxw D w � rxv if N D 3:

Therefore the theory of the transport equation (11.134) may be applied as long as
the velocity field v is smooth.
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