
Advances in Mathematical Fluid Mechanics

Eduard Feireisl
Antonín Novotný

Singular Limits in 
Thermodynamics 
of Viscous Fluids
Second Edition





Advances in Mathematical Fluid Mechanics

Series editors

Giovanni P. Galdi, Pittsburgh, USA
John G. Heywood, Vancouver, Canada
Rolf Rannacher, Heidelberg, Germany

Advances in Mathematical Fluid Mechanics is a forum for the publication of high
quality monographs, or collections of works, on the mathematical theory of fluid
mechanics, with special regards to the Navier-Stokes equations. Its mathematical
aims and scope are similar to those of the Journal of Mathematical FluidMechanics.
In particular, mathematical aspects of computational methods and of applications to
science and engineering are welcome as an important part of the theory. So also are
works in related areas of mathematics that have a direct bearing on fluid mechanics.

More information about this series at http://www.springer.com/series/5032

http://www.springer.com/series/5032


Eduard Feireisl • Antonín Novotný

Singular Limits
in Thermodynamics
of Viscous Fluids

Second Edition



Eduard Feireisl
ASCR Praha Mathematical Institute
Praha 1, Czech Republic

Antonín Novotný
Université de Toulon, IMATH
La Garde, France

ISSN 2297-0320 ISSN 2297-0339 (electronic)
Advances in Mathematical Fluid Mechanics
ISBN 978-3-319-63780-8 ISBN 978-3-319-63781-5 (eBook)
DOI 10.1007/978-3-319-63781-5

Library of Congress Control Number: 2017949356

Mathematics Subject Classification (2010): 35Q30, 35-02, 76-02, 76N10, 80A22, 35B45, 76Q05

© Springer International Publishing AG 2009, 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, express or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

Printed on acid-free paper

This book is published under the trade name Birkhäuser, www.birkhauser-science.com
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

www.birkhauser-science.com


Preface to the Second Edition

Besides the updates of the results discussed in the original version, the second
edition of the book contains completely new material collected in Chaps. 7–9.

Chapter 7 has been considerably extended to problems involving slip boundary
conditions on physical domains with “wavy” boundaries. In the almost incom-
pressible regime, the boundary oscillates with an amplitude proportional and the
frequency inversely proportional to the Mach number. The resulting effect on the
motion is the same as for the non-slip boundary conditions; specifically the acoustic
waves are damped and vanish in the low-Mach-number limit.

Chapter 8 has been essentially rewritten and amply extended by the new material.
The singular limits are studied on a family of bounded domains that are large with
respect to the characteristic speed of sound inversely proportional to the Mach
number. Accordingly, in the low-Mach-number regime, the acoustic waves do not
reach the boundary in a bounded lap of time, and the underlying acoustic system
exhibits locally the same behavior as on an unbounded physical space. In particular,
the dispersive estimates can be used to eliminate the acoustic component in the
incompressible regime. This is illustrated by several examples, where the standard
Strichartz estimates are used along with their “spectral” localization obtained by
means of the celebrated RAGE theorem as well as its more refined version due
to Tosio Kato. The theory is applied to the case of the limit passage from the
compressible Navier-Stokes-Fourier system to the Boussinesq approximation.

Chapter 9 is completely new and extends the previous results to problems with
vanishing dissipation–here represented by viscosity and heat conductivity of the
fluid. Accordingly, the fluid becomes inviscid in the asymptotic limit, the motion
being governed by a system of hyperbolic equations of Euler type. As a result,
compactness provided by the presence of diffusive terms in the momentum and
thermal energy equation is lost, and solutions of the primitive system are likely to
develop oscillations in the course of the asymptotic limit. Still the problem enjoys
a kind of structural stability encoded in the underlying system of equations. In
particular, convergence to the target system can be recovered as long as the latter
admits a regular solution. The “distance” between solutions of the primitive and
target system is evaluated by a quantity termed relative energy. This approach,
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vi Preface to the Second Edition

developed for hyperbolic systems of conservation laws by Constantine Dafermos,
seems rather new in the context of viscous and heat-conducting fluids. Besides a
rather elegant proof of convergence, this method gives rise to an explicit rate of
convergence for certain model situations considered in Chap. 9.

The extended list of references includes the new results achieved since the first
edition of the book was published as well as a piece of supplementary material
relevant to the new topics addressed in the second edition.

Praha, Czech Republic Eduard Feireisl
Toulon, France Antonín Novotný
December 2016



Preface to the First Edition

Another advantage of a mathematical statement is
that it is so definite that it might be definitely wrong . . .
Some verbal statements have not this merit.
L.F. Richardson (1881–1953)

Many interesting problems in mathematical fluid mechanics involve the behav-
ior of solutions to systems of nonlinear partial differential equations as certain
parameters vanish or become infinite. Frequently the solutions converge, provided
the limit exists, to a solution of a limit problem represented by a qualitatively
different system of differential equations. The simplest physically relevant example
of this phenomenon is the behavior of a compressible fluid flow in the situation
when the Mach number tends to zero, where the limit solution formally satisfies
a system describing the motion of an incompressible fluid. Other interesting
phenomena occur in the equations of magnetohydrodynamics, when either the Mach
or the Alfven number or both tend to zero. As a matter of fact, most, if not all,
mathematical models used in fluid mechanics rely on formal asymptotic analysis of
more complex systems. The concept of incompressible fluid itself should be viewed
as a convenient idealization of a medium in which the speed of sound dominates the
characteristic velocity.

Singular limits are closely related to scale analysis of differential equations. Scale
analysis is an efficient tool used both theoretically and in numerical experiments to
reduce the undesirable and mostly unnecessary complexity of investigated physical
systems. The simplified asymptotic limit equations may provide a deeper insight
into the dynamics of the original mathematically more complicated system. They
reduce considerably the costs of computations or offer a suitable alternative in the
case when these fail completely or become unacceptably expensive when applied to
the original problem. However, we should always keep in mind that these simplified
equations are associated with singular asymptotic limits of the full governing
equations, this fact having an important impact on the behavior of their solutions,
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viii Preface to the First Edition

for which degeneracies as well as other significant changes of the character of the
governing equations become imminent.

Despite the vast amount of the existing literature, most of the available studies
devoted to scale analysis are based on formal asymptotic expansion of (hypothetical)
solutions with respect to one or several singular parameters. Although this might
seem wasted or at least misguided effort from the purely theoretical point of view,
such an approach proved to be exceptionally efficient in real-world applications.
On the other hand, progress at the purely theoretical level has been hampered for
many years by almost complete absence of a rigorous existence theory that would be
applicable to the complex nonlinear systems arising in mathematical fluid dynamics.
Although these problems are essentially well-posed on short time intervals or
for small, meaning close to equilibrium states, initial data, a universal existence
theory is still out of reach of modern mathematical methods. Still understanding the
theoretical aspects of singular limits in systems of partial differential equations in
general, and in problems of mathematical fluid mechanics in particular, is of great
interest because of its immediate impact on the development of the theory. Last but
not least, a rigorous identification of the asymptotic problem provides a justification
of the mathematical model employed.

The concept of weak solution based on direct integral formulation of the
underlying physical principles provides the only available framework for studying
the behavior of solutions to problems in fluid mechanics in the large. The class of
weak solutions is reasonably wide in order to accommodate all possible singularities
that may develop in a finite time because of the highly nonlinear structures
involved. Although optimality of this class of solutions may be questionable and
still not completely accepted by the whole community, we firmly believe that
the mathematical theory elaborated in this monograph will help to promote this
approach and to contribute to its further development.

The book is designed as an introduction to problems of singular limits and scale
analysis of systems of differential equations describing the motion of compressible,
viscous, and heat-conducting fluids. Accordingly, the primitive problem is always
represented by the Navier-Stokes-Fourier system of equations governing the time
evolution of three basic state variables: the density, the velocity, and the absolute
temperature associated to the fluid. In addition we assume the fluid is linearly
viscous, meaning the viscous stress is determined through Newton’s rheological
law, while the internal energy flux obeys Fourier’s law of heat conduction. The
state equation is close to that of a perfect gas at least for moderate values of the
density and the temperature. General ideas as well as the variational formulation of
the problem based on a system of integral identities rather than partial differential
equations are introduced and properly motivated in Chap. 1.

Chapters 2 and 3 contain a complete existence theory for the full Navier-Stokes-
Fourier system without any essential restriction imposed on the size of the data as
well as the length of the existence interval. The ideas developed in this part are of
fundamental importance for the forthcoming analysis of singular limits.

Chapter 4 resumes the basic concepts and methods to be used in the study of
singular limits. The underlying principle used amply in all future considerations is
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a decomposition of each quantity as a sum of its essential part relevant in the limit
system and a residual part, where the latter admits uniform bounds induced by the
available a priori estimates and vanishes in the asymptotic limit. This chapter also
reveals an intimate relation between certain results obtained in this book and the
so-called Lighthill’s acoustic analogy used in numerous engineering applications.

Chapter 5 gives a comprehensive treatment of the low-Mach-number limit
for the Navier-Stokes-Fourier system in the regime of low stratification, which
means the Froude number is strongly dominated by the Mach number. As a limit
system, we recover the well-known Oberbeck-Boussinesq approximation widely
used in many applications. Remarkably, we establish uniform estimates of the
set of weak solutions of the primitive system derived by help of the so-called
dissipation inequality. This can be viewed as a direct consequence of the Second
law of thermodynamics expressed in terms of the entropy balance equation, and the
hypothesis of thermodynamic stability imposed on the constitutive relations. The
convergence toward the limit system in the field equations is then obtained by means
of the nowadays well-established technique based on compensated compactness.
Another non-standard aspect of the analysis is a detailed description of propagation
of the acoustic waves that arise as an inevitable consequence of ill-prepared initial
data. In contrast with all previous studies, the underlying acoustic equation is
driven by an external force whose distribution is described by a non-negative Borel
measure. This is one of the intrinsic features encountered in the framework of weak
solutions, where a piece of information concerning the energy transfer through
possible singularities is lost.

Chapter 6 is primarily concerned with the strongly stratified fluids arising in
astrophysics and meteorology. The central issue discussed here is the anisotropy
of the sound wave propagation resulting from the strong stratification imposed by
the gravitational field. Accordingly, the asymptotic analysis of the acoustic waves
must be considerably modified in order to take into account the dispersion effects.
As a model example, we identify the asymptotic system proposed by several authors
as a suitable model of stellar radiative zones.

Most of the wave motions, in particular the sound wave propagation examined
in this book, are strongly influenced by the effect of the boundary of the underlying
physical space. If viscosity is present, a strong attenuation of the sound waves is
expected at least in the case of so-called no-slip boundary conditions imposed on the
velocity field. These phenomena are studied in detail in Chap. 7. In particular, it is
shown that under certain geometrical conditions imposed on the physical boundary,
the convergence of the velocity field in the low-Mach-number regime is strong,
meaning free of time oscillations. Although our approach parallels other recent
studies based on boundary layer analysis, we tried to minimize the number of
necessary steps in the asymptotic expansion to make it relatively simple, concise,
and applicable without any extra effort to a larger class of problems.

Another interesting aspect of the problem arises when singular limits are
considered on large or possibly even unbounded spatial domains, where “large” is
to be quantified with regard to the size of other singular dimensionless parameters.
Such a situation is examined in Chap. 8. It is shown that the acoustic waves
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redistribute rapidly the energy and, leaving any fixed bounded subset of the physical
space during a short time as the speed of sound becomes infinite, render the velocity
field strongly (pointwise) convergent. Although the result is formally similar to
those achieved in Chap. 7, the methods are rather different based on dispersive
estimates of Strichartz type and finite speed of propagation for the acoustic equation.

Chapter 10 interprets the results on singular limits in terms of the acoustic
analogies used frequently in numerical analysis. We identify the situations, where
these methods are likely to provide reliable results and point out their limitations.
Our arguments here rely on the uniform estimates obtained in Chap. 5.

The book is appended by two supplementary parts. In order to follow the subse-
quent discussion, the reader is recommended first to turn to the preliminary chapter,
where the basic notation, function spaces, and other useful concepts, together
with the fundamental mathematical theorems used in the book, are reviewed. The
material is presented in a concise form and provided with relevant references
when necessary. The appendix (Chap. 11) provides for reader’s convenience some
background material, with selected proofs, of more advanced but mostly standard
results widely applicable in the mathematical theory of viscous compressible fluids
in general and in the argumentation throughout this monograph in particular.
Besides providing an exhaustive list of the relevant literature, the appendix is
also aimed to offer a comprehensive and self-contained introduction to various
specific recent mathematical tools designed to handle the problems arising in the
mathematical theory of compressible fluids. As far as these results are concerned,
the proofs are performed in full detail.

Since the beginning of this project, we have greatly profited from a number of
seminal works and research studies. Although the most important references are
included directly in the text of Chaps. 1–11, and Chap. 12 is designed to take the
reader through the available literature on the topics addressed elsewhere in the book.
In particular, a comprehensive list of the reference material is given, with a clear
indication of the corresponding part discussed in the book. The reader is encouraged
to consult these resources, together with the references cited therein, for a more
complex picture of the problem as well as a more comprehensive exposition of some
special topics.

The authors sincerely appreciate all who have offered comments and criticisms
concerning the content of this book; in particular, many thanks go to Giovanni
P. Galdi for many fruitful discussions and to Jan Březina, Petr Kaplický, Josef
Málek, William Layton, Šárka Nečasová, Hana Petzeltová, Milan Pokorný, Dalibor
Pražák, Jan Stebel, and Ivan Straškraba for careful reading of several chapters of the
manuscript.

Praha, Czech Republic Eduard Feireisl
Toulon, France Antonín Novotný
September 2008
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Notation, Definitions, and Function Spaces

1 Notation

Unless otherwise indicated, the symbols in the book are used as follows:

(i) The symbols const, c, ci denote generic constants, usually found in inequalities.
They do not have the same value as they are used at different parts of the text.

(ii) Z, N, and C are the sets of integers, positive integers, and complex numbers,
respectively. The symbol R denotes the set of real numbers; RN is the N-
dimensional Euclidean space.

(iii) The symbol� � R
N stands for a domain–an open connected subset of RN . The

closure of a set Q � R
N is denoted by Q; its boundary is @Q. By the symbol

1Q, we denote the characteristic function of the set Q. The outer normal vector
to @Q, if it exists, is denoted by n.

The symbol T N denotes the flat torus

T N D �
Œ��; ��jf��I�g

�N D .Rj2�Z/N

considered as a factor space of the Euclidean space RN , where x � y whenever
all coordinates of x differ from those of y by an integer multiple of 2� .
Functions defined on T N can be viewed as 2�-periodic in R

N .
The symbolB.aI r/ denotes an (open) ball in R

N of center a 2 RN and radius
r > 0.

(iv) Vectors and functions ranging in a Euclidean space are represented by symbols
beginning by a boldface minuscule, for example, u, v. Matrices (tensors) and
matrix-valued functions are represented by special Roman characters such as
S and T; in particular, the identity matrix is denoted by I D fıi;jgNi;jD1. The
symbol I is also used to denote the identity operator in a general setting.

The transpose of a square matrix A D fai;jgNi;jD1 is A
T D faj;igNi;jD1. The

trace of a square matrix A D fai;jgNi;jD1 is traceŒA� D PN
iD1 ai;i.

xiii
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(v) The scalar product of vectors a D Œa1; : : : ; aN �, b D Œb1; : : : ; bN � is denoted by

a � b D
NX

iD1
aibiI

the scalar product of tensors A D fAi;jgNi;jD1, B D fBi;jgNi;jD1 reads

A W B D
NX

i;jD1
Ai;jBj;i:

The symbol a ˝ b denotes the tensor product of vectors a, b; specifically

a ˝ b D fa ˝ bgi;j D aibj:

The vector product a � b is the antisymmetric part of a ˝ b. If N D 3, the
vector product of vectors a D .a1; a2; a3/, b D .b1; b2; b3/ is identified with a
vector

a � b D .a2b3 � a3b2; a3b1 � a1b3; a1b2 � a2b1/:

The product of a matrix A with a vector b is a vector Ab whose compo-
nents are

ŒAb�i D
NX

jD1
Ai;jbj for i D 1; : : : ;N;

while the product of a matrix A D fAi;jgN;Mi;jD1 and a matrix B D fBi;jgM;Si;jD1 is a
matrix AB with components

ŒAB�i;j D
MX

kD1
Ai;kBk;j:

(vi) The Euclidean norm of a vector a 2 R
N is denoted by

jaj D p
a � a D

vu
u
t

NX

iD1
a2i :

The distance of a vector a to a set K � R
N is denoted as

distŒa;K� D inffja � kj j k 2 Kg;
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and the diameter of K is

diamŒK� D sup
.x;y/2K2

jx � yj:

The closure of K is denoted by closureŒK�; the Lebesgue measure of a set Q
is jQj.

2 Differential Operators

The symbol

@yig. y/ � @g

@yi
. y/; i D 1; : : : ;N;

denotes the partial derivative of a function g D g. y/, y D Œy1; : : : ; yN �, with respect
to the (real) variable yi calculated at a point y 2 R

N . The same notation is used for
distributional derivatives introduced below. Typically, we consider functions g D
g.t; x/ of the time variable t 2 .0;T/ and the spatial coordinate x D Œx1; x2; x3� 2
� � R

3. We use italics rather than boldface minuscules to denote the independent
variables although they may be vectors in many cases.

(i) The gradient of a scalar function g D g. y/ is a vector

rg D ryg D Œ@y1g. y/; : : : ; @yN g. y/�I

rTg denotes the transposed vector to rg.
The gradient of a scalar function g D g.t; x/ with respect to the spatial

variable x is a vector

rxg.t; x/ D Œ@x1g.t; x/; @x2g.t; x/; @x3g.t; x/�:

The gradient of a vector function v D Œv1. y/; : : : ; vN. y/� is the matrix

rv D ryv D f@yjvigNi;jD1I

rTv denotes the transposed matrix to rv. Similarly, the gradient of a vector
function v D Œv1.t; x/; v2.t; x/; v3.t; x/� with respect to the space variables x is
the matrix

rxv.t; x/ D f@xjvi.t; x/g3i;jD1:
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(ii) The divergence of a vector function v D Œv1. y/; : : : ; vN. y/� is a scalar

divv D divyv D
NX

iD1
@yivi:

The divergence of a vector function depending on spatial and temporal
variables v D Œv1.t; x/; v2.t; x/; v3.t; x/� with respect to the space variable x
is a scalar

divxv.t; x/ D
3X

iD1
@xivi.t; x/:

The divergence of a tensor (matrix-valued) function B D fBi;j.t; x/g3i;jD1 with
respect to the space variable x is a vector

ŒdivB�i D ŒdivxB.t; x/�i D
3X

jD1
@xjBi;j.t; x/; i D 1; : : : ; 3:

(iii) The symbol� D �x denotes the Laplace operator,

�x D divxrx:

(iv) The vorticity (rotation) curl of a vectorial function v D Œv1. y/; : : : ; vN. y/� is
an antisymmetric matrix

curl v D curlyv D rv � rTv D
n
@yjvi � @yivj

oN

i;jD1:

The vorticity of a vectorial function v D Œv1.t; x/; : : : ; v3.t; x/� is an
antisymmetric matrix

curlxv D rxv � rT
x v D

n
@xjvi � @xivj

o3

i;jD1:

The vorticity operator in R
3 is sometimes interpreted as a vector curl v D

rx � v.
(v) For a surface S � R

3, with an outer normal n, we introduce the normal
gradient of a scalar function g W G ! R

3 defined on an open set G � R
3

containing S as

@ng D rxg � n
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and the tangential gradient as

Œ@S�ig D @xig � .rxg � n/ni; i D 1; 2; 3:

The Laplace-Beltrami operator on S is defined as

�sg D
3X

iD1
Œ@S�iŒ@S�ig

(see Gilbarg and Trudinger [136, Chap. 16]).

3 Function Spaces

If not otherwise stated, all function spaces considered in this book are real. For a
normed linear space X, we denote by k � kX the norm on X. The duality pairing
between an abstract vector space X and its dual X� is denoted as < �I � >X�IX , or
simply < �I � > in case the underlying spaces are clearly identified in the context.
In particular, if X is a Hilbert space, the symbol < �I � > denotes the scalar product
in X.

The symbol spanfMg, where M is a subset of a vector space X, denotes the space
of all finite linear combinations of vectors contained in M.

(i) For Q � R
N , the symbol C.Q/ denotes the set of continuous functions on Q.

For a bounded set Q, the symbol C.Q/ denotes the Banach space of functions
continuous on the closure Q endowed with norm

kgkC.Q/ D sup
y2Q

jg. y/j:

Similarly, C.QIX/ is the Banach space of vectorial functions continuous in Q
and ranging in a Banach space X with norm

kgkC.Q/ D sup
y2Q

kg. y/kX:

(ii) The symbol Cweak.QIX/ denotes the space of all vector-valued functions on
Q ranging in a Banach space X continuous with respect to the weak topology.
More specifically, g 2 Cweak.QIX/ if the mapping y 7! kg. y/kX is bounded
and

y 7!< f I g. y/ >X�IX

is continuous on Q for any linear form f belonging to the dual space X�.
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We say that gn ! g in Cweak.QIX/ if

< f I gn >X�IX!< f I g >X�IX in C.Q/ for all g 2 X�:

(iii) The symbol Ck.Q/, Q � R
N , where k is a non-negative integer, denotes

the space of functions on Q that are restrictions of k-times continuously
differentiable functions on R

N . Ck;�.Q/, � 2 .0; 1/ is the subspace of Ck.Q/ of
functions having their k-th derivatives �-Hölder continuous in Q. Ck;1.Q/ is a
subspace of Ck.Q/ of functions whose k-th derivatives are Lipschitz on Q. For
a bounded domain Q, the spaces Ck.Q/ and Ck;� .Q/, � 2 .0; 1/ are Banach
spaces with norms

kukCk.Q/ D max
j˛j�k

sup
x2Q

j@˛u.x/j

and

kukCk;� .Q/ D kukCk.Q/ C max
j˛jDk

sup
.x;y/2Q2; x¤y

j@˛u.x/� @˛u. y/j
jx � yj� ;

where @˛u stands for the partial derivative @˛1x1 : : : @
˛N
xN u of order j˛j D PN

iD1 ˛i.
The spaces Ck;�.QIRM/ are defined in a similar way. Finally, we set C1 D
\1

kD0Ck.
(iv)

� ARZELÀ-ASCOLI THEOREM:

Theorem 1 Let Q � R
M be compact and X a compact topological metric space

endowed with a metric dX. Let fvng1
nD1 be a sequence of functions in C.QIX/ that is

equi-continuous, meaning for any " > 0 there is ı > 0 such that

dX
h
vn.y/; vn.z/

i
� " provided jy � zj < ı independently of n D 1; 2; : : :

Then fvng1
nD1 is precompact in C.QIX/, that is, there exists a subsequence (not

relabeled) and a function v 2 C.QIX/ such that

sup
y2Q

dX
h
vn.y/; v.y/

i
! 0 as n ! 1:

See Kelley [169, Chap. 7, Theorem 17]. �
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(v) For Q � R
N an open set and a function g W Q ! R, the symbol suppŒg�

denotes the support of g in Q; specifically

suppŒg� D closure Œfy 2 Q j g. y/ ¤ 0g� :

(vi) The symbol Ck
c.QIRM/, k 2 f0; 1; : : : ;1g denotes the vector space of

functions belonging to Ck.QIRM/ and having compact support in Q. If
Q � R

N is an open set, the symbolD.QIRM/will be used alternatively for the
space C1

c .QIRM/ endowed with the topology induced by the convergence:

'n ! ' 2 D.Q/

if

suppŒ'n� � K; K � Q a compact set; 'n ! ' in Ck.K/ for any k D 0; 1; : : :

(1)
We write D.Q/ instead of D.QIR/.

The dual space D0.QIRM/ is the space of distributions on � with values
in R

M . Continuity of a linear form belonging to D0.Q/ is understood with
respect to the convergence introduced in (1).

(vii) A differential operator @˛ of order j˛j can be identified with a distribution

< @˛vI' >D0.Q/ID.Q/D .�1/j˛j
Z

Q
v@˛' dy

for any locally integrable function v.
(viii) The Lebesgue spaces Lp.QIX/ are spaces of (Bochner) measurable functions

v ranging in a Banach space X such that the norm

kvkpLp.QIX/ D
Z

Q
kvkpX dy is finite; 1 � p < 1:

Similarly, v 2 L1.QIX/ if v is (Bochner) measurable and

kvkL1.QIX/ D ess sup
y2Q

kv. y/kX < 1:

The symbol Lploc.QIX/ denotes the vector space of locally Lp-integrable
functions, meaning

v 2 Lploc.QIX/ if v 2 Lp.KIX/ for any compact set K in Q:

We write Lp.Q/ for Lp.QIR/.
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Let f 2 L1loc.Q/ where Q is an open set. A Lebesgue point a 2 Q of f in Q
is characterized by the property

lim
r!0C

1

jB.a; r/j
Z

B.aIr/
f .x/dx D f .a/: (2)

For f 2 L1.Q/, the set of all Lebesgue points is of full measure, meaning
its complement in Q is of zero Lebesgue measure. A similar statement holds
for vector-valued functions f 2 L1.QIX/, where X is a Banach space (see
Brezis [40]).

If f 2 C.Q/, then identity (2) holds for all points a in Q.
(ix)

� LINEAR FUNCTIONALS ON Lp.QIX/:

Theorem 2 Let Q � R
N be a measurable set, X a Banach space that is reflexive

and separable, and 1 � p < 1.
Then any continuous linear form � 2 ŒLp.QIX/�� admits a unique representation

w� 2 Lp
0

.QIX�/,

< �I v >Lp0

.Q;X�/ILp.QIX/D
Z

Q
< w� .y/I v.y/ >X�IX dy for all v 2 Lp.QIX/;

where

1

p
C 1

p0 D 1:

Moreover the norm on the dual space is given as

k�kŒLp.QIX/�� D kw�kLp0

.QIX�/:

Accordingly, the spaces Lp.QIX/ are reflexive for 1 < p < 1 as soon as X is
reflexive and separable.

See Gajewski et al. [130, Chap. IV, Theorem 1.14, Remark 1.9].
�

Identifying � with w� , we write

ŒLp.QIRN/�� D Lp
0

.QIRN/; k�kŒLp.QIRN /�� D k�kLp0

.QIRN /; 1 � p < 1:

This formula is known as Riesz representation theorem.

(x) If the Banach space X in Theorem 2 is merely separable, we have

ŒLp.QIX/�� D Lp
0

weak�.�/.QIX�/ for 1 � p < 1;
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where

Lp
0

weak�.�/.QIX�/

WD
n
� W Q ! X�

ˇ̌
ˇ y 2 Q 7!< �. y/I v >X�IX measurable for any fixed v 2 X;

y 7! k�. y/kX� 2 Lp
0

.Q/
o

(see Edwards [90] and Pedregal [231, Chap. 6, Theorem 6.14]).
(xi) Hölder’s inequality reads

kuvkLr.Q/ � kukLp.Q/kvkLq.Q/; 1
r

D 1

p
C 1

q

for any u 2 Lp.Q/, v 2 Lq.Q/, Q � R
N (see Adams [1, Chap. 2]).

(xii) Interpolation inequality for Lp-spaces reads

kvkLr .Q/ � kvk�Lp.Q/kvk.1��/Lq.Q/ ;
1

r
D �

p
C 1 � �

q
; p < r < q; � 2 .0; 1/

for any v 2 Lp \ Lq.Q/, Q � R
N (see Adams [1, Chap. 2]).

(xiii)

� GRONWALL’S LEMMA:

Lemma 1 Let a 2 L1.0;T/, a 	 0, ˇ 2 L1.0;T/, b0 2 R, and

b.	/ D b0 C
Z 	

0

ˇ.t/ dt

be given. Let r 2 L1.0;T/ satisfy

r.	/ � b.	/C
Z 	

0

a.t/r.t/ dt for a.a. 	 2 Œ0;T�:

Then

r.	/ � b0 exp

�Z 	

0

a.t/ dt

�
C
Z 	

0

ˇ.t/ exp

�Z 	

t
a.s/ ds

�
dt

for a.a. 	 2 Œ0;T�.
See Carroll [49]. �
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4 Sobolev Spaces

(i) A domain � � R
N is of class C if for each point x 2 @�, there exist r > 0

and a mapping 
 W RN�1 ! R belonging to a function class C such that–upon
rotating and relabeling the coordinate axes if necessary–we have

� \ B.xI r/ D fy j 
. y0/ < yNg \ B.x; r/

@� \ B.xI r/ D fy j 
. y0/ D yNg \ B.x; r/

9
=

;
; where y0 D . y1; : : : ; yN�1/:

In particular,� is called Lipschitz domain if 
 is Lipschitz.
If A � � WD @� \ B.xI r/, 
 is Lipschitz, and f W A ! R, then one can

define the surface integral

Z

A
f dSx WD

Z

ˆ
.A/
f . y0; 
. y0//

vu
ut1C

N�1X

iD1

�
@


@yi

�2
dy0;

where ˆ
 W R
N 7! R

N , ˆ
. y0; yN/ D . y0; yN � 
. y0//, whenever the
(Lebesgue) integral at the right-hand side exists. If f D 1A, then SN�1.A/ DR
A dSx is the surface measure on @� of A that can be identified with the
.N � 1/-Hausdorff measure on @� of A (cf. Evans and Gariepy [97,
Chap. 4.2]). In the general case of A � @�, one can define

R
A f dSx using

a covering B D fB.xiI r/gMiD1, xi 2 @�, M 2 N of @� by balls of radii r and
subordinated partition of unity F D f'igMiD1 and set

Z

A
f dSx D

MX

iD1

Z

�i

'if dSx; �i D @� \ B.xiI r/I

see Nečas [219, Sect. I.2] or Kufner et al. [175, Sect. 6.3].
A Lipschitz domain� admits the outer normal vector n.x/ for a.a. x 2 @�.

Here a:a: refers to the surface measure on @�.
The distance function d.x/ D distŒx; @�� is Lipschitz continuous. In

addition, d is differentiable a.a. in R
3, and

rxd.x/ D x � �.x/

d.x/

whenever d is differentiable at x 2 R
3 n�, where � denotes the nearest point

to x on @� (see Ziemer [277, Chap. 1]). Moreover, if the boundary @� is of
class Ck, then d is k-times continuously differentiable in a neighborhood of
@�, provided k 	 2 (see Foote [127]).
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We say that a family of domains f�"g">0 is uniformly of class C if the
radius r of the balls B.x; r/ as well as the norm of the functions 
 in C
describing the boundary can be taken the same for all " > 0.

(ii) The Sobolev spaces Wk;p.QIRM/, 1 � p � 1, k a positive integer, are
the spaces of functions having all distributional derivatives up to order k in
Lp.QIRM/. The norm in Wk;p.QIRM/ is defined as

kvkWk;p.QIRM/ D

8
<̂

:̂

�PM
iD1

P
j˛j�k k@˛vikpLp.Q/

�1=p
if 1 � p < 1

max1�i�M; j˛j�kfk@˛vikL1.Q/g if p D 1

9
>=

>;
;

where the symbol @˛ stands for any partial derivative of order j˛j.
If Q is a bounded domain with boundary of class Ck�1;1, then there exists

a continuous linear operator which maps Wk;p.Q/ to Wk;p.RN/; it is called
extension operator. If, in addition, 1 � p < 1, then Wk;p.Q/ is separable and
the space Ck.Q/ is its dense subspace.

The space W1;1.Q/, where Q is a bounded domain, is isometrically
isomorphic to the space C0;1.Q/ of Lipschitz functions on Q.

For basic properties of Sobolev functions, see Adams [1] or Ziemer [277].
(iii) The symbol Wk;p

0 .QIRM/ denotes the completion of C1
c .QIRM/ with respect

to the norm k � kWk;p.QIRM/. In what follows, we identify W0;p.�IRN/ D
W0;p
0 .�IRN/ with Lp.�IRN/.
We denote PLp.Q/ D fu 2 Lp.Q/ j RQ u dy D 0g and PW1;p.Q/ D W1;p.Q/\

PLp.Q/. If Q � R
N is a bounded domain, then PLp.Q/ and PW1;p.Q/ can be

viewed as closed subspaces of Lp.Q/ and W1;p.Q/, respectively.
(iv) Let Q � R

N be an open set, 1 � p � 1, and v 2 W1;p.Q/. Then we have:

(a) jvjC, jvj� 2 W1;p.Q/ and

@xj jvjC D
8
<

:

@xkv a.a. in fv > 0g

0 a.a. in fv � 0g

9
=

;
; @xj jvj� D

8
<

:

@xkv a.a. in fv < 0g

0 a.a. in fv 	 0g

9
=

;
;

j D 1; : : : ;N, where jvjC D maxfu; 0g denotes a positive part and jvj� D
minfu; 0g a negative part of v.

(b) If f W R ! R is a Lipschitz function and f ı v 2 Lp.Q/, then f ı v 2
W1;p.Q/ and

@xj Œf ı v�.x/ D f 0.v.x//@xjv.x/ for a.a. x 2 Q:

For more details, see Ziemer [277, Sect. 2.1].
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(v) Dual spaces to Sobolev spaces.

� DUAL SOBOLEV SPACES:

Theorem 3 Let � � R
N be a domain, and let 1 � p < 1. Then the dual

space ŒWk;p
0 .�/�

� is a proper subspace of the space of distributions D0.�/.
Moreover, any linear form f 2 ŒWk;p

0 .�/�
� admits a representation

< f I v >
ŒW

k;p
0 .�/��IWk;p

0 .�/
D
X

j˛j�k

Z

�

.�1/j˛jw˛ @˛v dx; (3)

where w˛ 2 Lp
0

.�/;
1

p
C 1

p0 D 1:

The norm of f in the dual space is given as

kfk
ŒW

k;p
0 .�/��

D

8
ˆ̂
ˆ̂̂
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂̂
:

inf
n�P

j˛j�k kw˛kp0

Lp0

.�/

�1=p0 ˇˇ
ˇw˛ satisfy (3)

o

for 1 < p < 1I

inf
n

maxj˛j�kfkw˛kL1.Q/g
ˇ
ˇ̌w˛ satisfy (3)

o

if p D 1:

The infimum is attained in both cases.

See Adams [1, Theorem 3.8] and Mazya [209, Sect. 1.1.14]. �

The dual space to the Sobolev space Wk;p
0 .�/ is denoted as W�k;p0

.�/.
The dual to the Sobolev space Wk;p.�/ admits formally the same rep-

resentation formula as (3). However it cannot be identified as a space of
distributions on �. A typical example is the linear form

< f I v >D
Z

�

wf � rxv dx; with divxwf D 0

that vanishes on D.�/ but generates a non-zero linear form when applied to
v 2 W1;p.�/.

(vii)

� RELLICH-KONDRACHOV EMBEDDING THEOREM:

Theorem 4 Let � � RN be a bounded Lipschitz domain.
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(i) Then, if kp < N and p 	 1, the space Wk;p.�/ is continuously embedded in
Lq.�/ for any

1 � q � p� D Np

N � kp
:

Moreover, the embedding is compact if k > 0 and q < p�.
(ii) If kp D N, the space Wk;p.�/ is compactly embedded in Lq.�/ for any q 2

Œ1;1/.
(iii) If kp > N, then Wk;p.�/ is continuously embedded in Ck�ŒN=p��1;� .�/, where

Œ � denotes the integer part and

� D

8
<̂

:̂

ŒNp �C 1 � N
p if N

p … Z;

arbitrary positive number in .0; 1/ if N
p 2 Z:

Moreover, the embedding is compact if 0 < � < ŒNp �C 1 � N
p .

See Ziemer [277, Theorem 2.5.1, Remark 2.5.2]. �

The symbol ,! will denote continuous embedding; ,!,! indicates compact
embedding.

The following result may be regarded as a direct consequence of Theorem 4.

� EMBEDDING THEOREM FOR DUAL SOBOLEV SPACES:

Theorem 5 Let � � R
N be a bounded domain. Let k > 0 and q < 1 satisfy

q >
p�

p� � 1
; where p� D Np

N � kp
if kp < N;

q > 1 for kp D N;

or

q 	 1 if kp > N:

Then the space Lq.�/ is compactly embedded into the space W�k;p0

.�/, 1=p C
1=p0 D 1.

(viii) The Sobolev-Slobodeckii spaces WkCˇ;p.Q/, 1 � p < 1, 0 < ˇ < 1, k D
0; 1; : : :, where Q is a domain in R

L, L 2 N, are Banach spaces of functions
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with finite norm

WkCˇ;p.Q/ D
0

@kvkp
Wk;p.Q/

C
X

j˛jDk

Z

Q

Z

Q

j@˛v. y/� @˛v.z/jp
jy � zjLCˇp dy dz

1

A

1
p

I

see, e.g., Nečas [219, Sect. 2.3.8].
Let � � R

N be a bounded Lipschitz domain. Referring to the notation
introduced in (i), we say that f 2 WkCˇ;p.@�/ if .'f /ı.I0; 
/ 2 WkCˇ;p.RN�1/
for any � D @� \ B with B belonging to the covering B of @� and ' the
corresponding term in the partition of unity F . The space WkCˇ;p.@�/ is a
Banach space endowed with an equivalent norm k � kWkCˇ;p.@�/, where

kvkp
WkCˇ;p.@�/

D
MX

iD1
k.v'i/ ı .I0; 
/kp

WkCˇ;p.RN�1/
:

In the above formulas, .I0; 
/ W RN�1 ! R
N maps y0 to . y0; 
. y0//. For more

details, see, e.g., Nečas [219, Sect. 3.8].
In the situation when� � R

N is a bounded Lipschitz domain, the Sobolev-
Slobodeckii spaces admit similar embeddings as classical Sobolev spaces.
Namely, the embeddings

WkCˇ;p.�/ ,! Lq.�/ and WkCˇ;p.�/ ,! Cs.�/

are compact provided .k C ˇ/p < N, 1 � q < Np
N�.kCˇ/p , and s D 0; 1; : : : ; k,

.k � s C ˇ/p > N, respectively. The former embedding remains continuous
(but not compact) at the border case q D Np

N�.kCˇ/p .
(ix)

� TRACE THEOREM FOR SOBOLEV SPACES AND GREEN’S FORMULA:

Theorem 6 Let � � R
N be a bounded Lipschitz domain.

Then there exists a linear operator 
0 with the following properties:

Œ
0.v/�.x/ D v.x/ for x 2 @� provided v 2 C1.�/:

k
0.v/k
W
1� 1

p ;p.@�/
� ckvkW1;p.�/ for all v 2 W1;p.�/:

kerŒ
0� D W1;p
0 .�/

provided 1 < p < 1.
Conversely, there exists a continuous linear operator

` W W1� 1
p ;p.@�/ ! W1;p.�/
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such that


0.`.v// D v for all v 2 W1� 1
p ;p.@�/

provided 1 < p < 1.
In addition, the following formula holds:

Z

�

@xiuv dx C
Z

�

u@xiv dx D
Z

@�


0.u/
0.v/ni dSx; i D 1; : : : ;N;

for any u 2 W1;p.�/, v 2 W1;p0

.�/, where n is the outer normal vector to the
boundary @�.

See Nečas [219, Theorems 5.5, 5.7]. �

The dual ŒW1� 1
p ;p.@�/�� to the Sobolev-Slobodeckii space W1� 1

p ;p.@�// D
W

1
p0
;p
.@�/ is denoted simply by W� 1

p0
;p0

.@�/.

(ix) If � � R
N is a bounded Lipschitz domain, then we have the interpolation

inequality

kvkW˛;r.�/ � ckvk�Wˇ;p.�/
kvk1��W
;q.�/; 0 � � � 1; (4)

for

0 � ˛; ˇ; 
 � 1; 1 < p; q; r < 1; ˛ D �ˇ C .1 � �/
;
1

r
D �

p
C 1 � �

q

(see Sects. 2.3.1, 2.4.1, and 4.3.2 in Triebel [257]).
(x)

� SOBOLEV INEQUALITY:

Theorem 7 Let N 	 2 and 1 < p; q < 1 such that

p < N; q D Np

N � p
:

There is a constant c D c. p; q;N/ such that

kvkLq.RN / � ckrxvkLp.RN IRN / for any v 2 C1
c .R

N/:

See Ziemer [277, Chap. 2, Theorem 2.4.1]. �



xxviii Notation, Definitions, and Function Spaces

The Sobolev spaces D1;p.�/ are defined as the completion of functions C1
c .�/

with respect to the gradient (pseudo)-norm

kvkD1;p.�/ D krxvkLp.�IRN/:

If � is a regular bounded domain, the spaces D1;p.�/ coincide with W1;p
0 .�/ via

Poincaré’s inequality. If � is unbounded, we get, in view of Theorem 7,

D1;p.�/ � Lq.�/ if � � R
N ; p < N; q D Np

N � p
: (5)

In general, the spaces D1;p consist of classes of functions differing by an additive
constant; see Galdi [131].

(xi)

� EXTENSION PROPERTY:

Theorem 8 Let � � R
N be a bounded Lipschitz domain. Then there exists an

extension operator E,

E W W1;p.�/ ! W1;p.RN/; 1 � p < 1;

with the following properties:

• EŒv� is compactly supported for any v 2 W1;p.�/.
• EŒv�j� D v.
•

kEŒv�kW1;p.RN / � ckvkW1;p.�/;

where the constant depends only on p and on the radius and the Lipschitz
constant of the charts describing @�.

See Stein [251, Chap. 6]. �

5 Fourier Transform

Let v D v.x/ be a complex-valued function integrable onRN . The Fourier transform
of v is a complex-valued function Fx!� Œv� of the variable � 2 R

N defined as

Fx!� Œv�.�/ D
�
1

2�

�N=2 Z

RN
v.x/ exp.�i� � x/ dx: (6)
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Therefore, the Fourier transform Fx!� can be viewed as a continuous linear
mapping defined on L1.RN/ with values in L1.RN/.

(i) For u, v complex-valued square-integrable functions on R
N , we have Parse-

val’s identity:

Z

RN
u.x/v.x/ dx D

Z

RN
Fx!� Œu�.�/Fx!� Œv�.�/ d�;

where bar denotes the complex conjugate. Parseval’s identity implies that
Fx!� can be extended as a continuous linear mapping defined on L2.RN/ with
values in L2.RN/.

(ii) The symbol S.RN/ denotes the space of smooth rapidly decreasing (complex-
valued) functions; specifically, S.RN/ consists of functions u such that

sup
j˛j�m

sup
x2RN

.1C jxj2/sj@˛uj < 1

for all s;m D 0; 1; : : : . We say that un ! u in S.RN/ if

sup
j˛j�m

sup
x2RN

.1C jxj2/sj@˛.un � u/j ! 0; s;m D 0; 1; : : : : (7)

The space of tempered distributions is identified as the dual S 0.RN/. Con-
tinuity of a linear form belonging to S 0.RN/ is understood with respect to
convergence introduced in (7).

The Fourier transform introduced in (6) can be extended as a bounded linear
operator defined on S.RN/ with values in S.RN/. Its inverse reads

F�1
�!xŒf � D

� 1
2�

�N=2 Z

RN
f .�/exp.ix � �/d�: (8)

(iii) The Fourier transform of a tempered distribution f 2 S 0.RN/ is defined as

< Fx!� Œf �I g >D< f IFx!� Œg� > for any g 2 S.RN/: (9)

It is a continuous linear operator defined on S 0.RN/ onto S 0.RN/ with the
inverse F�1

�!x,

< F�1
�!xŒf �; g >D< f ;F�1

�!xŒg� >; f 2 S 0.RN/; g 2 S.RN/: (10)

(iv) We recall formulas

@�kFx!� Œf � D Fx!� Œ�ixkf �; Fx!� Œ@xk f � D i�kFx!� Œf �; (11)



xxx Notation, Definitions, and Function Spaces

where f 2 S 0.RN/, and

Fx!� Œf 
 g� D
�
Fx!� Œf �

�
�
�
Fx!� Œg�

�
; (12)

where f 2 S.RN/, g 2 S 0.RN/, and 
 denotes convolution.
(v) A partial differential operator D of order m,

D D
X

j˛j�m

a˛@
˛;

can be associated to a Fourier multiplier in the form

QD D
X

j˛j�m

a˛.i�/
˛; �˛ D �

˛1
1 : : : �

˛N
N

in the sense that

DŒv�.x/ D F�1
�!x

2

4
X

j˛j�m

a˛.i�/
˛Fx!� Œv�.�/

3

5 ; v 2 S.RN/:

The operators defined through the right-hand side of the above expression are
called pseudodifferential operators.

(vi) Various pseudodifferential operators used in the book are identified through
their Fourier symbols:

• Riesz transform:

Rj � �i�j
j�j ; j D 1; : : : ;N:

• Inverse Laplacian:

.��/�1 � 1

j�j2 :

• The “double” Riesz transform:

fRgNi;jD1; R D ��1rx ˝ rx; Ri;j � �i�j

j�j2 ; i; j D 1; : : : ;N:

• Inverse divergence:

Aj D @xj�
�1 � i�j

j�j2 ; j D 1; : : : ;N:
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We denote

A W R �
3X

i;jD1
Ai;jRi;j; RŒv�i �

3X

jD1
Ri;jŒvj�; i D 1; 2; 3:

(vii)

� HÖRMANDER-MIKHLIN THEOREM:

Theorem 9 Consider an operator L defined by means of a Fourier multiplier m D
m.�/,

LŒv�.x/ D F�1
�!x

�
m.�/Fx!� Œv�.�/

	
;

where m 2 L1.RN/ has classical derivatives up to order ŒN=2�C 1 in RN n f0g and
satisfies

j@˛�m.�/j � c˛j�j�j˛j; � ¤ 0;

for any multiindex ˛ such that j˛j � ŒN=2�C 1, where Œ � denotes the integer part.
Then L is a bounded linear operator on Lp.RN/ for any 1 < p < 1.

See Stein [251, Chap. 4, Theorem 3]. �

6 Weak Convergence of Integrable Functions

Let X be a Banach space, BX the (closed) unit ball in X, and BX� the (closed) unit
ball in the dual space X�.

(i) Here are some known facts concerning weak compactness:

(1) BX is weakly compact only if X is reflexive. This is stated in Kakutani’s
theorem; see Theorem III.6 in Brezis [41].

(2) BX� is weakly-(*) compact. This is stated in Banach-Alaoglu-Bourbaki
theorem; see Theorem III.15 in Brezis [41].

(3) If X is separable, then BX� is sequentially weakly-(*) compact; see
Theorem III.25 in Brezis [41].

(4) A non-empty subset of a Banach space X is weakly relatively com-
pact only if it is sequentially weakly relatively compact. This is stated
in Eberlein-Shmuliyan-Grothendieck theorem; see Kothe [174], Para-
graph 24, 3.(8); 7.
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(ii) In view of these facts:

(1) Any bounded sequence in Lp.Q/, where 1 < p < 1 and Q � R
N is a

domain, is weakly (relatively) compact.
(2) Any bounded sequence in L1.Q/, where Q � R

N is a domain, is weakly-
(*) (relatively) compact.

(iii) Since L1 is neither reflexive nor dual of a Banach space, the uniformly bounded
sequences in L1 are in general not weakly relatively compact in L1. On the
other hand, the property of weak compactness is equivalent to the property of
sequential weak compactness.

� WEAK COMPACTNESS IN THE SPACE L1:

Theorem 10 Let V � L1.Q/, where Q � R
M is a bounded measurable set.

Then the following statements are equivalent:

(i) Any sequence fvng1
nD1 � V contains a subsequence weakly converging in

L1.Q/.
(ii) For any " > 0, there exists k > 0 such that

Z

fjvj�kg
jv.y/j dy � " for all v 2 V :

(iii) For any " > 0, there exists ı > 0 such that for all v 2 V
Z

M
jv.y/jdy < "

for any measurable set M � Q such that

jMj < ı:

(iv) There exists a non-negative function ˆ 2 C.Œ0;1//,

lim
z!1

ˆ.z/

z
D 1;

such that

sup
v2V

Z

Q
ˆ.jv.y/j/ dy � c:

See Ekeland and Temam [92, Chap. 8, Theorem 1.3] and Pedregal [231,
Lemma 6.4]. �
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Condition (iii) is termed equi-integrability of a given set of integrable functions,
and the equivalence of (i) is the Dunford-Pettis theorem (cf., e.g., Diestel [82,
p.93]. Condition (iv) is called de la Vallé-Poussin criterion; see Pedregal [231,
Lemma 6.4]. The statement “there exists a non-negative function ˆ 2 C.Œ0;1//”
in condition (iv) can be replaced by “there exists a non-negative convex function on
Œ0;1/.”

7 Non-negative Borel Measures

(i) The symbol Cc.Q/ denotes the space of continuous functions with compact
support in a locally compact Hausdorff metric space Q.

(ii) The symbol M.Q/ stands for the space of signed Borel measures on Q. The
symbol MC.Q/ denotes the cone of non-negative Borel measures on Q. A
measure � 2 MC.Q/ such that �ŒQ� D 1 is called probability measure.

(iii)

� RIESZ REPRESENTATION THEOREM:

Theorem 11 Let Q be a locally compact Hausdorff metric space. Let f be a non-
negative linear functional defined on the space Cc.Q/.

Then there exist a �-algebra of measurable sets containing all Borel sets and a
unique non-negative measure on f 2 MC.Q/ such that

< f I g >D
Z

Q
g df for any g 2 Cc.Q/: (13)

Moreover, the measure f enjoys the following properties:

• f ŒK� < 1 for any compact K � Q.
•

f ŒE� D sup
˚
f ŒK� j K � E




for any open set E � Q.
•

f ŒV� D inf f.E/ j V � E; E openg

for any Borel set V.
• If E is f measurable, f .E/ D 0, and A � E, then A is f measurable.

See Rudin [239, Chap. 2, Theorem 2.14]. �



xxxiv Notation, Definitions, and Function Spaces

(iv) Corollary 1 Assume that f W C1
c .Q/ ! R is a linear and non-negative

functional, where Q is a domain in R
N.

Then there exists a measure f enjoying the same properties as in
Theorem 11 such that f is represented through (13).
See Evans and Gariepy [97, Chap. 1.8, Corollary 1].

(v) If Q � R
M is a bounded set, the space M.Q/ can be identified with the dual to

the Banach space C.Q/ via (13). The space M.Q/ is compactly embedded into
the dual Sobolev space W�k;p0

.Q/ as soon as Q � R
M is a bounded Lipschitz

domain and kp > M, 1=p C 1=p0 D 1 (see Evans [95, Chap. 1, Theorem 6]).
(vi) If  is a probability measure on� and g a -measurable real-valued function,

then we have Jensen’s inequality

ˆ

�Z

�

g d

�
�
Z

�

ˆ.g/ d (14)

for any convexˆ defined on R.
(vii)

� APPROXIMATION OF MEASURES BY INTEGRABLE FUNCTION:

Theorem 12 Let � � R
N be a bounded domain. Let  2 MC.�/ be a non-

negative Borel measure on�.
Then there exists a sequence of functions fgng1

nD1,

gn 2 L1.�/; kgnkL1.�/ � kkMC.�/; gn 	 0 a.a. in � for any n D 1; 2; : : :

such that

gn !  weakly-(*) in M.�/I

specifically

Z

�

gn' dx ! hI'iM.�/;C.�/ for any ' 2 C.�/:

This is a very particular case of Olech [226, Sect. 2, property (4)].

Remark The same result holds true for any signed measure  2 M.�/. In this
case, of course, the approximate functions gn need not be non-negative.
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8 Parametrized (Young) Measures

(i) Let Q � R
N be a domain. We say that ˆ W Q � R

M is a Caratheodory function
on Q � R

M if

8
<

:

for a. a. x 2 Q, the function � 7! ˆ.x; �/ is continuous on R
MI

for all � 2 R
M, the function x 7! ˆ.x; �/ is measurable on Q:

9
=

;
(15)

We say that f�xgx2Q is a family of parametrized measures if �x is a probability
measure for a.a. x 2 Q and if

8
<

:

the function x ! R
RM �.�/ d�x.�/ WD< �x; � > is measurable on Q

for all � W RM ! R; � 2 C.RM/ \ L1.RM/:

9
=

;

(16)
(ii)

� FUNDAMENTAL THEOREM OF THE THEORY OF PARAMETERIZED (YOUNG)
MEASURES:

Theorem 13 Let fvng1
nD1, vn W Q � R

N ! R
M be a weakly convergent sequence of

functions in L1.QIRM/, where Q is a domain in RN.
Then there exist a subsequence (not relabeled) and a parametrized family f�ygy2Q

of probability measures on R
M depending measurably on y 2 Q with the following

property:
For any Caratheodory function ˆ D ˆ. y; z/, y 2 Q, z 2 R

M such that

ˆ.�; vn/ ! ˆ weakly in L1.Q/;

we have

ˆ. y/ D
Z

RM
ˆ. y; z/ d�y.z/ for a.a. y 2 Q:

See Pedregal [231, Chap. 6, Theorem 6.2]. �

(iii) The family of measures f�ygy2Q associated to a sequence fvng1
nD1,

vn ! v weakly in L1.QIRM/;

is termed Young measure. We shall systematically denote by the symbol
ˆ.�; v/ the weak limit associated to fˆ.�; vn/g1

nD1 via the corresponding Young
measure constructed in Theorem 13. Note that Young measure need not be
unique for a given sequence.
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Chapter 1
Fluid Flow Modeling

Physics distinguishes four basic forms of matter: Solids, liquids, gases, and plasmas.
The last three forms fall in the category of fluids. Fluid is a material that can flow,
meaning fluids cannot sustain stress in the equilibrium state. Any time a force
is applied to a fluid, the latter starts and keeps moving even when the force is
no longer active. Fluid mechanics studies flows of fluids under the principal laws
of mechanics. Examples of real fluid flows are numerous ranging from oceans
and atmosphere to gaseous stars. The relevant applications include meteorology,
engineering, astrophysics to name only a few.

There are several qualitative levels of models studied in mathematical fluid
mechanics. The main conceptual idea is the fundamental hypothesis that matter
is made of atoms and molecules, viewed as solid objects with several degrees of
freedom, that obey the basic principles of classical mechanics.

• MOLECULAR DYNAMICS (MD) studies typically a very large number of ordi-
nary differential equations that govern the time evolution of each single particle
of the fluid coupled through the interaction forces of different kind. Numerical
simulations based on (MD) are of fundamental importance when determining the
physical properties of “macroscopic” fluids, for instance their interaction with a
solid wall. Models based on (MD) are fully reversible in time.

• KINETIC MODELS are based on averaging with respect to particles having the
same velocity. The basic state variable is the density of the fluid particles at a
given time and spatial position with the same velocity. Accordingly, the evolution
is governed by a transport equation of Boltzmann’s type including the so-called
collision operator. The presence of collisions results in irreversibility of the
process in time.

• CONTINUUM FLUID MECHANICS is a phenomenological theory based on the
macroscopic (observable) state variables as the density, the fluid velocity, and the
temperature. The time evolution of these quantities is described through a system
of partial differential equations. The objective existence of the macroscopic
quantities (fields) is termed continuum hypothesis. The theory is widely used
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2 1 Fluid Flow Modeling

in numerical analysis and real world applications. The processes, in general, are
irreversible in time.

• MODELS OF TURBULENCE are based on further averaging of the macroscopic
models studied in continuum fluid mechanics. According to the present state of
knowledge, there is no universally accepted theory of turbulence. The evolution
of the state variables is described by a system of partial differential equations and
is irreversible in time.

The mathematical theory of continuum fluid mechanics developed in this book
is based on fundamental physical principles that can be expressed in terms of
balance laws. These may be written by means of either Lagrangian or Eulerian
reference system. In the Lagrangian coordinates, the description is associated
to the particles moving in space and time. The Eulerian reference system is
based on a fixed frame attached to the underlying physical space. We will use
systematically the Eulerian description more suitable for fluids which undergo
unlimited displacements. Accordingly, the independent variables are associated to
the physical space represented by a spatial domain � � R

3, and a time interval
I � R, typically, I D .0;T/.

1.1 Fluids in ContinuumMechanics

We adopt the standard mathematical description of a fluid as found in many
classical textbooks on continuum fluid mechanics. Unlike certain recently proposed
alternative theories based on a largely extended number of state variables, we
assume the state of a fluid at a given instant can be characterized by its density and
temperature distribution whereas the motion is completely determined by a velocity
field. Simplifying further we focus on chemically inert homogeneous fluids that may
be characterized through the following quantities.

� FLUIDS IN CONTINUUM MECHANICS:

(a) a domain� � R
3 occupied by the fluid in the ambient space;

(b) a non-negative measurable function % D %.t; x/ defined for t 2 .0;T/, x 2 �,
yielding the mass density;

(c) a vector field u D u.t; x/, t 2 .0;T/, x 2 �, defining the velocity of the fluid;
(d) a positive measurable function # D #.t; x/, t 2 .0;T/, x 2 �, describing the

distribution of the temperature measured in the absolute Kelvin’s scale;
(e) the thermodynamic functions: the pressure p D p.%; #/, the specific internal

energy e D e.%; #/, and the specific entropy s D s.%; #/;
(f) a stress tensor T D fTi;jg3i;jD1 yielding the force per unit surface that the part

of the fluid in contact with an ideal surface element imposes on the part of the
fluid on the other side of the same surface element;

(g) a vector field q giving the flux of the internal energy;
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(h) a vector field f D f.t; x/, t 2 .0;T/, x 2 �, defining the distribution of a volume
force acting on the fluid;

(i) a function Q D Q.t; x/, t 2 .0;T/, x 2 �, yielding the rate of production of the
internal energy.

The trio f%;u; #g introduced in (b)–(d) represents the basic state variables
characterizing completely the state of a fluid at a given instant t. The remaining
quantities are determined in terms of the state variables by means of a set of
constitutive relations.

Fluids are characterized among other materials through Stokes’ law

T D S � pI; (1.1)

where S denotes the viscous stress tensor. Viscosity is a property associated to the
relative motion of different parts of the fluid; whence S is always interrelated with
the velocity gradient rxu or rather its symmetric part rxu C rx

Tu. In particular,
the viscous stress vanishes whenever rxu C rx

Tu D 0, that means, when the fluid
exhibits a rigid motion with respect to a fixed coordinate system. In accordance
with the Second law of thermodynamics, viscosity is responsible for the irreversible
transfer of the mechanical energy associated to the motion into heat. Although
omitted in certain mathematical idealizations (Euler system), viscosity is always
present and must be taken into account when modeling the motion of fluids in the
long run.

The pressure p, similarly to the specific energy e and the specific entropy s are
typical thermostatic variables attributed to a system in thermodynamic equilibrium
and as such can be evaluated as numerical functions of the density and the absolute
temperature. Moreover, in accordance with the Second law of thermodynamics, p D
p.%; #/, e D e.%; #/, and s D s.%; #/ are interrelated through

� GIBBS’ EQUATION:

#Ds.%; #/ D De.%; #/C p.%; #/D
�1
%

�
: (1.2)

The symbol D in (1.2) stands for the differential with respect to the variables
%, # . A common hypothesis tacitly assumed in many mathematical models asserts
that the time scale related to the macroscopic motion of a fluid is so large that the
latter can be considered at thermodynamic equilibrium at any instant t of the “real”
time, in particular, the temperature # is well determined and can be taken as a state
variable even if the system may be quite far from the equilibrium state (see Öttinger
[227]).
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Gibbs’ equation (1.2) can be equivalently written in the form of Maxwell’s
relation

@e.%; #/

@%
D 1

%2

�
p.%; #/� #

@p.%; #/

@#

�
: (1.3)

The precise meaning of (1.3) is that the expression 1=#.DeC pD.1=%// is a perfect
gradient of a scalar function termed entropy.

1.2 Balance Laws

Classical continuum mechanics describes a fluid by means of a family of state
variables—observable and measurable macroscopic quantities—a representative
sample of which has been introduced in the preceding part. The basic physical
principles are then expressed through a system of balance laws. A general balance
law takes the form of an integral identity

Z

B
d.t2; x/ dx �

Z

B
d.t1; x/ dx C

Z t2

t1

Z

@B
F.t; x/ � n.x/ dSx dt (1.4)

D
Z t2

t1

Z

B
�.t; x/ dx dt

to be satisfied for any t1 � t2 and any subset B � �, where the symbol d stands
for the volumetric (meaning per unit volume) density of an observable property,
F denotes its flux, n is the outer normal vector to @B, and � denotes the rate of
production of d per unit volume. The principal idea, pursued and promoted in this
book, asserts that (1.4) is the most natural and correct mathematical formulation of
any balance law in continuum mechanics.

The expression on the left-hand side of (1.4) can be interpreted as the integral
mean of the normal trace of the four-component vector field Œd;F� on the boundary
of the time-space cylinder .t1; t2/ � B. On the other hand, by means of the Gauss-
Green theorem, we can write

Z

B
d.t2; x/'.t2; x/ dx �

Z

B
d.t1; x/'.t1; x/ dx C

Z t2

t1

Z

@B
F.t; x/ � n.x/'.t; x/dSx dt

(1.5)

D
Z t2

t1

Z

B

�
@td.t; x/C divxF.t; x/

�
'.t; x/ dx dt

C
Z t2

t1

Z

B

�
d.t; x/@t'.t; x/C F.t; x/ � rx'.t; x/

�
dx dt
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for any smooth test function ' defined on R � R
3. If all quantities are continuously

differentiable, it is easy to check that relations (1.4), (1.5) are compatible as soon as

@td.t; x/C divxF.t; x/ D �.t; x/ (1.6)

yielding

Z

B
d.t2; x/'.t2; x/ dx �

Z

B
d.t1; x/'.t1; x/ dx (1.7)

C
Z t2

t1

Z

@B
F.t; x/ � n.x/'.t; x/dSx dt

D
Z t2

t1

Z

B
�.t; x/'.t; x/ dx dt

C
Z t2

t1

Z

B

�
d.t; x/@t'.t; x/C F.t; x/ � rx'.t; x/

�
dx dt:

The integral identity (1.7) can be used as a proper definition of the normal trace
of the field Œd;F� as long as

Z T

0

Z

�

�
d.t; x/@t'.t; x/C F.t; x/ � rx'.t; x/

�
dx dt (1.8)

C
Z T

0

Z

�

�.t; x/'.t; x/ dx dt D 0

for any ' 2 C1
c ..0;T/ � �/. In the terminology of the modern theory of partial

differential equations, relation (1.8) represents a weak formulation of the differential
equation (1.6). If (1.8) holds for any test function ' 2 C1

c ..0;T/ ��/, we say that
Eq. (1.6) is satisfied in D0..0;T/ ��/, or, in the sense of distributions.

The satisfaction of the initial condition d.0; �/ D d0, together with the prescribed
normal component of the flux Fb D F � nj@� on the boundary, can be incorporated
into the weak formulation by means of the integral identity

�
Z

�

d0.x/'.0; x/ dx C
Z T

0

Z

@�

Fb.t; x/'.t; x/dSx dt (1.9)

D
Z T

0

Z

�

�.t; x/'.t; x/ dx dt C
Z T

0

Z

�

�
d.t; x/@t'.t; x/C F.t; x/ � rx'.t; x/

�
dx dt

to be satisfied for any ' 2 C1
c .Œ0;T/ ��/.
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As a matter of fact, the source term � need not be an integrable function. The
normal trace of Œd;F� is still well defined through (1.7) even if � is merely a signed
measure, more specifically, � D �C���, where �C; �� 2 MC.Œ0;T���/ are non-
negative regular Borel measures defined on the compact set Œ0;T���. Accordingly,
relation (1.9) takes the form of a general

� BALANCE LAW:

< � I' >ŒMIC�.Œ0;T���/ C
Z T

0

Z

�

�
d.t; x/@t'.t; x/C F.t; x/ � rx'.t; x/

�
dx dt

(1.10)

D
Z T

0

Z

@�

Fb.t; x/'.t; x/ dSx dt �
Z

�

d0.x/'.0; x/ dx

for any test function ' 2 C1
c .Œ0;T/ ��/:

If (1.10) holds, the (outer) normal trace of the field Œd;F� can be identified through
(1.7), in particular, the instantaneous values of d at a time t can be defined. However,
these may exhibit jumps if the rate of production � is not absolutely continuous with
respect to the Lebesgue measure. Specifically, using (1.7), (1.10), we can define the
left instantaneous value of d at a time 	 2 .0;T� as

< d.	�; �/; ' >ŒMIC�.�/D (1.11)

Z

�

d0.x/'.x/ dx C
Z 	

0

Z

�

F.t; x/ � rx'.x/ dx dt C lim
ı!0C < �; ı' >ŒM;C�.Œ0;T����/;

for any ' 2 C1
c .�/, where  ı D  ı.t/ is non-increasing,

 ı 2 C1.R/;  ı.t/ D
8
<

:

1 for t 2 .�1; 	 � ı�;

0 for t 2 Œ	;1/:

Similarly, we define the right instantaneous value of d at a time 	 2 Œ0;T/ as

< d.	C; �/; ' >ŒMIC�.�/D (1.12)

Z

�

d0.x/'.x/ dx C
Z 	

0

Z

�

F.t; x/ � rx'.x/ dx dt C lim
ı!0C < �; ı' >ŒM;C�.Œ0;T����/;

where  ı D  ı.t/ is non-increasing,

 ı 2 C1.R/;  ı.t/ D
8
<

:

1 for t 2 .�1; 	 �;

0 for t 2 Œ	 C ı;1/:
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Note that, at least for d 2 L1.0;TIL1.�//, the left and right instantaneous values
are represented by signed measures on � that coincide with d.	; �/ 2 L1.�/ at any
Lebesgue point of the mapping 	 7! d.	; �/. Moreover, d.	�; �/ D d.	C; �/ for any
	 2 Œ0;T� and the mapping 	 7! d.	; �/ is weakly-(*) continuous as soon as � is
absolutely continuous with respect to the standard Lebesgue measure on Œ0;T���.

Under certain circumstances, notably when identifying the entropy production
rate, the piece of information that is provided by the available mathematical theory
enables us only to show that

Z T

0

Z

�

d.t; x/@t'.t; x/C F.t; x/ � rx'.t; x/ dx � 0 (1.13)

for any non-negative test function ' 2 C1
c .Œ0;T/ ��/. Intuitively, this means

@td C divx.F/ 	 0

though a rigorous verification requires differentiability of d and F.
Let us show that (1.13) is in fact equivalent to the integral identity

Z T

0

Z

�

d.t; x/@t'.t; x/C F.t; x/ � rx'.t; x/ dx dtC < � I' >ŒMCIC�.Œ0;T���/D 0

(1.14)

for any ' 2 C1
c .Œ0;T/ ��/, where � 2 MC.Œ0;T� ��/ is a non-negative regular

Borel measure on the set Œ0;T���. This fact may be viewed as a variant of the well-
known statement that any non-negative distribution is representable by a measure.

In order to see (1.14), assume that

d 2 L1.0;TIL1.�// and F 2 Lp..0;T/ ��IR3/ for a certain p > 1:

Consider a linear form

< � I' >D �
Z T

0

Z

�

�
d.t; x/@t'.t; x/C F.t; x/ � rx'.t; x/

�
dx

which is well defined for any ' 2 C1c.Œ0;T/��/. Moreover, it follows from (1.13),
that

< � I' > 	 0 for any ' 2 C1
c .Œ0;T/ ��/; ' 	 0: (1.15)

Next, for any compact set K � Œ0;T/ �� we can find a function �K such that

�K D �K.t/ 2 C1
c Œ0;T/; 0 � �K � 1; @t�K � 0; �K D 1 on K: (1.16)
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In particular, as a direct consequence of (1.15), we get

< � I�K >� ess sup
t2.0;T/

kd.t; �/kL1.�/ for any K: (1.17)

We claim that � can be extended in a unique way as a bounded non-negative
linear form on the vector space Cc.Œ0;T/ ��/. Indeed for any sequence f'ng1

nD1 of
(smooth) functions supported by a fixed compact set K � Œ0;T/ ��, we have

j < � I'n > � < � I'm > j � < � I�K > k'n � 'mkC.K/;

with �K constructed in (1.16).
By virtue of Riesz’s representation theorem (Theorem 11), the linear form �

can be identified with a non-negative Borel measure on the set Œ0;T/ � �. Finally,
because of the uniform estimate (1.17) on the value of �ŒK� for any compact
set K � Œ0;T/ � �, the measure �ŒŒ0;T/ � �� of the full domain is finite, in
particular � can be trivially extended (by zero) to the set Œ0;T���. Let us point out,
however, that such an extension represents only a suitable convention (the measure
� is defined on a compact set Œ0;T� � �) without any real impact on formula
(1.14).

To conclude, we recall that the weak formulation of a balance law introduced
in (1.10) is deliberately expressed in the space-fixed, Eulerian form rather than a
“body-fixed” material description. This convention avoids the ambiguous notion
of trajectory in the situation where F, typically proportional to the velocity of
the fluid, is not regular enough to give rise to a unique system of stream-
lines.

1.3 Field Equations

In accordance with the general approach delineated in Sect. 1.2, the basic physical
principles formulated in terms of balance laws will be understood in the sense
of integral identities similar to (1.10) rather than systems of partial differential
equations set forth in classical textbooks on fluid mechanics. Nonetheless, in the
course of formal discussion, we stick to the standard terminology “equation” or
“field equation” even if these mathematical objects are represented by an infinite
system of integral identities to be satisfied for a suitable class of test functions rather
than a single equation. Accordingly, the macroscopic quantities characterizing the
state of a material in continuum mechanics are called fields, the balance laws they
obey are termed field equations.
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1.3.1 Conservation of Mass

The fluid density % D %.t; x/ is a fundamental state variable describing the
distribution of mass. The integral

M.B/ D
Z

B
%.t; x/ dx

represents the total amount of mass of the fluid contained in a set B � � at an
instant t. In a broader sense, the density could be a non-negative measure defined
on a suitable system of subsets of the ambient space �. However, for the purposes
of this study, we content ourselves with %.t; �/ that is absolutely continuous with
respect to the standard Lebesgue measure on R

3, therefore representable by a non-
negative measurable function.

Motivated by the general approach described in the previous part, we write the
physical principle of mass conservation in the form

Z

B
%.t2; x/ dx �

Z

B
%.t1; x/ dx C

Z t2

t1

Z

@B
%.t; x/u.t; x/ � n dSx dt D 0

for any (smooth) subset B � �, where u D u.t; x/ is the velocity field determining
the motion of the fluid. Thus assuming, for a moment, that all quantities are smooth,
we deduce equation of continuity in the differential form

@t%.t; x/C divx.%.t; x/u.t; x// D 0 in .0;T/ ��: (1.18)

In addition, we impose impermeability of the boundary @�, meaning,

u � nj@� D 0: (1.19)

Multiplying (1.18) on B.%/ C %B0.%/, where B is a continuously differentiable
function, we easily deduce that

@t.%B.%//C divx.%B.%/u/C b.%/divxu D 0 (1.20)

for any b 2 BCŒ0;1/ (bounded and continuous functions), where

B.%/ D B.1/C
Z %

1

b.z/

z2
dz: (1.21)

Equation (1.20) can be viewed as a renormalized variant of (1.18).
Summing up the previous discussion and returning to the weak formulation, we

introduce
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� RENORMALIZED EQUATION OF CONTINUITY:

Z T

0

Z

�

�
%B.%/@t' C %B.%/u � rx' � b.%/divxu '

�
dx dt (1.22)

D
Z

�

%0B.%0/'.0; �/ dx

to be satisfied for any test function ' 2 C1
c .Œ0;T/ � �/, and any B, b interrelated

through (1.21), where b is continuous and uniformly bounded function on R.

The family of integral identities (1.22) represents a mathematical formulation
of the physical principle of mass conservation. Formally, relation (1.22) reduces
to (1.20) provided all quantities are smooth, and, furthermore, to (1.18) if we
take b � 0, B.1/ D 1. The initial distribution of the density is determined
by a given function %0 D %.0; �/, while the boundary conditions (1.19) are
satisfied implicitly through the choice of test functions in (1.22) in the spirit of
(1.10).

In a certain sense, the renormalized Eq. (1.22) can be viewed as a very weak
formulation of (1.18) since, at least for B.1/ D 0, the density % need not be
integrable. On the other hand, relation (1.22) requires integrability of the velocity
field u at the level of first derivatives, specifically, divxu must be integrable on the
set Œ0;T/ ��.

In contrast to (1.18), relation (1.22) provides a useful piece of information on
the mass transport and possible density oscillations in terms of the initial data. It
is important to note that (1.22) can be deduced from (1.18) even at the level of
the weak formulation as soon as the density is a bounded measurable function (see
Sect. 11.19 in Appendix).

1.3.2 Balance of Linear Momentum

In accordance with Newton’s second law, the flux associated to the momentum %u
in the Eulerian coordinate system can be written in the form .%u ˝ u � T/, where
the symbol T stands for the stress tensor introduced in Sect. 1.1. In accordance with
Stokes’ law (1.1), the balance of linear momentum reads

@t.%u/C divx.%u ˝ u/C rxp D divxS C %f in D0..0;T/ ��IR3//; (1.23)



1.3 Field Equations 11

or,

Z T

0

Z

�

�
.%u/ � @t' C %.u ˝ u/ W rx' C pdivx'

�
dx dt (1.24)

D
Z T

0

Z

�

�
S W rx' � %f � '

�
dx �

Z

�

.%u/0 � '.0; �/ dx;

to be satisfied by any test function ' 2 C1
c .Œ0;T/��IR3/. Note that relation (1.24)

already includes the initial condition

%u.0; �/ D .%u/0 in �: (1.25)

Analogously as in the previous sections, the variational formulation (1.24) may
include implicit satisfaction of boundary conditions provided the class of admissible
test functions is extended “up to the boundary”. Roughly speaking, the test functions
should belong to the same regularity class as the velocity field u. Accordingly, in
order to enforce the impermeability condition (1.19), we take

' 2 C1
c .Œ0;T/ ��IR3//; ' � nj@� D 0: (1.26)

Postulating relation (1.24) for any test function satisfying (1.26), we deduce
formally that

.Sn/ � nj@� D 0; (1.27)

that means, the tangential component of the normal stress forces vanishes on the
boundary. This behavior of the stress characterizes complete slip of the fluid against
the boundary.

In the theory of viscous fluids, however, it is more customary to impose the no-
slip boundary condition

uj@� D 0; (1.28)

together with the associated class of test functions

' 2 C1
c .Œ0;T/ ��IR3/: (1.29)

The no-slip boundary condition (1.28) and even the impermeability condition
(1.19) require a concept of trace of the field u on the boundary @�. Therefore the
velocity field u must belong to a “better” space than just Lp.�IR3/. As for the
impermeability hypothesis (1.19), we recall the Gauss-Green theorem yielding

Z

@�

'u � n dSx D
Z

�

rx' � u dx C
Z

�

' divxu dx: (1.30)
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Consequently, we need both u and divxu to be at least integrable on � for (1.19) to
make sense. The no-slip boundary condition (1.28) requires the partial derivatives
of u to be at least (locally) integrable in � (cf. Theorem 6).

Before leaving this section, we give a concise formulation of Newton’s second
law in terms of

� BALANCE OF MOMENTUM:

Z T

0

Z

�

�
.%u/ � @t' C %.u ˝ u/ W rx' C pdivx'

�
dx dt (1.31)

D
Z T

0

Z

�

�
S W rx' � %f � '

�
dx �

Z

�

.%u/0 � '.0; �/ dx

to be satisfied by any test function ' belonging to the class C1
c .Œ0;T/ � �IR3/ if

the no-slip boundary conditions (1.28) are imposed, or

' 2 C1
c .Œ0;T/ ��IR3/; ' � nj@� D 0;

in the case of complete slip boundary conditions (1.19), (1.27).

1.3.3 Total Energy

The energy density E can be written in the form

E D 1

2
%juj2 C %e.%; #/; (1.32)

where the symbol e denotes the specific internal energy introduced in Sect. 1.1.
Multiplying Eq. (1.23) on u we deduce the kinetic energy balance

@t

�1
2
%juj2

�
C divx

�1
2
%juj2u

�
D divx.Tu/� T W rxu C %f � u; (1.33)

where the stress tensor T is related to S and p by means of Stokes’ law (1.1). On the
other hand, by virtue of the First law of thermodynamics, the changes of the energy
of the system are caused only be external sources, in particular, the internal energy
balance reads

@t.%e/C divx.%eu/C divxq D S W rxu � pdivxu C %Q; (1.34)

where the term %Q represent the volumetric rate of the internal energy production,
and q is the internal energy flux.



1.3 Field Equations 13

Consequently, the energy balance equation may be written in the form

@tE C divx.Eu/C divx
�
q � Su C pu

�
D %f � u C %Q: (1.35)

Relation (1.35) can be integrated over the whole domain� in order to obtain the
balance of total energy. Performing by parts integration of the resulting expression
we finally arrive at

� TOTAL ENERGY BALANCE:

Z

�

E.t2; �/ dx �
Z

�

E.t1; �/ dx D
Z t2

t1

Z

�

�
%f � u C %Q

�
dx dt (1.36)

for any 0 � t1 � t2 � T provided

q � nj@� D 0; (1.37)

and either the no-slip boundary condition (1.28) or the complete slip boundary
conditions (1.19), (1.27) hold.

In the previous considerations, the internal energy e has been introduced to
balance the dissipative terms in (1.33). Its specific form required by Gibbs’
equation (1.2) is a consequence of the Second law of thermodynamics discussed
in the next section.

1.3.4 Entropy

The Second law of thermodynamics is the central principle around which we intend
to build up the mathematical theory used in this study. As a matter of fact, Gibbs’
equation (1.2) should be viewed as a constraint imposed on p and e by the principles
of statistical physics, namely 1

#
.DeCpD 1

%
/must be a perfect gradient. Accordingly,

the internal energy balance Eq. (1.34) can be rewritten in the form of entropy
balance

@t.%s/C divx.%su/C divx
� q
#

�
D � C %

#
Q; (1.38)

with the entropy production rate

� D 1

#

�
S W rxu � q � rx#

#

�
: (1.39)

The Second law of thermodynamics postulates that the entropy production rate �
must be nonnegative for any admissible thermodynamic process. As we will see
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below, this can be viewed as a restriction imposed on the constitutive relations for S
and q.

A weak formulation of Eq. (1.38) reads

� ENTROPY BALANCE EQUATION:

Z T

0

Z

�

�
%s@t' C %su � rx' C

� q
#

�
� rx'

�
dx dt D �

Z

�

.%s/0' dx (1.40)

�
Z T

0

Z

�

�' dx dt �
Z T

0

Z

�

%

#
Q' dx dt

to be satisfied for any test function ' 2 C1
c .Œ0;T/ � �/. Note that (1.40) already

includes the no-flux boundary condition (1.37) as well as the initial condition
%s.0; �/ D .%s/0.

In the framework of the weak solutions considered in this book, the entropy
production rate � will be a non-negative measure satisfying

� 	 1

#

�
S W rxu � q � rx#

#

�

in place of (1.39). Such a stipulation reflects one of the expected features of the
weak solutions, namely they produce maximal dissipation rate of the kinetic energy
enhanced by the presence of singularities that are not captured by the “classical”
formula (1.39). As we will see in Chap. 2, this approach still leads to a (formally)
well-posed problem.

1.4 Constitutive Relations

The field equations derived in Sect. 1.3 must be supplemented with a set of
constitutive relations characterizing the material properties of a concrete fluid. In
particular, the viscous stress tensor S, the internal energy flux q as well as the
thermodynamic functions p, e, and s must be determined in terms of the independent
state variables f%;u; #g.

1.4.1 Molecular Energy and Transport Terms

The Second law of thermodynamics, together with its implications on the sign of the
entropy production rate discussed in Sect. 1.3.4, gives rise to further restrictions that
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must be imposed on the transport terms S, q. In particular, as the entropy production
is non-negative for any admissible physical process, we deduce from (1.39) that

S W rxu 	 0; �q � rx# 	 0: (1.41)

A fundamental hypothesis of the mathematical theory developed in this book
asserts that the constitutive equations relating S, q to the affinities rxu, rx# are
linear. Such a stipulation gives rise to

� NEWTON’S RHEOLOGICAL LAW:

S D 
�
rxu C rx

Tu � 2

3
divxu I

�
C �divxu II (1.42)

and

� FOURIER’S LAW:

q D ��rx#: (1.43)

The specific form of S can be deduced from the physical principle of the material
frame indifference, see Chorin and Marsden [60] for details.

Writing

S W rxu D 

2

ˇ
ˇ
ˇrxu C rx

Tu � 2

3
divxuI

ˇ
ˇ
ˇ
2 C �jdivxuj2;

we conclude, by virtue of (1.41), that the shear viscosity coefficient , the bulk
viscosity coefficient �, as well as the heat conductivity coefficient � must be non-
negative. As our theory is primarily concerned with viscous and heat conducting
fluids, we shall always assume that the shear viscosity coefficient  as well as
the heat conductivity coefficient � are strictly positive. On the other hand, it is
customary, at least for certain gases, to neglect the second term in (1.42) setting
the bulk viscosity coefficient � D 0.

1.4.2 State Equations

Gibbs’ equation (1.2) relates the thermal equation of state

p D p.%; #/
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to the caloric equation of state

e D e.%; #/;

in particular, p and e must obey Maxwell’s relation (1.3).
The mathematical theory of singular limits developed in this book leans essen-

tially on

� HYPOTHESIS OF THERMODYNAMIC STABILITY:

@e.%; #/

@#
> 0;

@p.%; #/

@%
> 0: (1.44)

The meaning of (1.44) is that both the specific heat at constant volume cv D
@e=@# and the compressibility of the fluid @p=@% are positive although the latter
condition is apparently violated by the standard Van der Waals equation of state.

In order to fix ideas, we focus on the simplest possible situation supposing the
fluid is a monatomic gas. In this case, it can be deduced by the methods of statistical
physics that the molecular pressure p D pM and the associated internal energy e D
eM are interrelated through

pM.%; #/ D 2

3
%eM.%; #/ (1.45)

(see Eliezer et al. [93]). It is a routine matter to check that (1.45) is compatible with
(1.3) only if there is a function P such that

pM.%; #/ D #5=2P
� %

#3=2

�
: (1.46)

Indeed inserting (1.46) into (1.3) gives rise to a first order partial differential
equation that can be solved by means of the change of variables q.Z; #/ D
p.Z#3=2; #/.

If P is linear, we recover the standard Boyle-Marriot state equation of perfect gas

pM.%; #/ D R%# with a positive gas constant R: (1.47)

As a matter of fact, formula (1.46) applies to any real gas, monoatomic or not, at
least in the following two domains of the .%; #/-plane:

• NON-DEGENERATE REGION, where the density is low and/or the temperature is
sufficiently large, specifically,

%

#
3
2

< Z (1.48)
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for a certain positive constant Z. Here the fluid can be considered as a mixture of
classical gases that obeys Dalton’s law, hence the pressure p is given by the state
Eq. (1.47) (see Galavotti [132]);

• DEGENERATE AREA

%

#
3
2

> Z; with Z >> Z; (1.49)

where the gas is completely ionized, and the nuclei as well as the free electrons
behave like a monoatomic gas satisfying (1.46). If, in addition, we assume that
in the degenerate area at least one of the gas constituents, for instance the cloud
of free electrons, behaves as a Fermi gas, we obtain

lim
#!0

eM.%; #/ > 0 for any fixed % > 0 (1.50)

(see Müller and Ruggeri [217]).

Finally, we suppose that the specific heat at constant volume is uniformly
bounded meaning

cv D @eM.%; #/

@#
� c for all %; # > 0; (1.51)

with obvious implications on the specific form of the function P in (1.46) discussed
in detail in Chap. 2.

It is worth noting that, unlike (1.47), the previous assumptions are in perfect
agreement with the Third law of thermodynamics requiring the entropy to vanish
when the absolute temperature approaches zero (see Callen [48]).

1.4.3 Effect of Thermal Radiation

Before starting our discussion, let us point out that the interaction of matter and
radiation (photon gas) occurring in the high temperature regime is a complex
problem, a complete discussion of which goes beyond the scope of the present study.
Here we restrict ourselves to the very special but still physically relevant situation,
where the emitted photons are in thermal equilibrium with the other constituents
of the fluid, in particular, the whole system admits a single temperature # (see the
monograph by Oxenius [228]).

Under these circumstances, it is well known that the heat conductivity is
substantially enhanced by the radiation effect, in particular, the heat conductivity
coefficient � takes the form

� D �M C �R; �R D k#3; k > 0; (1.52)
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where �M denotes the standard “molecular” transport coefficient and �R represents
the contribution due to radiation. The influence of the radiative transport is
particularly relevant in some astrophysical models studied in the asymptotic limit
of small Péclet (Prandtl) number in Chap. 6.

Similarly, the standard molecular pressure pM is augmented by its radiation
counterpart pR so that, finally,

p.%; #/ D pM.%; #/C pR.#/; where pR.#/ D a

3
#4; a > 0I (1.53)

whence, in accordance with Gibbs’ equation (1.2),

e.%; #/ D eM.%; #/C eR.%; #/; where %eR.%; #/ D a#4; (1.54)

and

s.%; #/ D sM.%; #/C sR.%; #/; with %sR.%; #/ D 4

3
a#3: (1.55)

1.4.4 Typical Values of Some Physical Coefficients

In order to get better insight concerning the magnitude and proportionality of the
different material forces acting on the fluid, we conclude this introductory part
by reviewing the typical values of several physical constants introduced in the
preceding text.

The quantity R appearing in formula (1.47) is the specific gas constant, the value
of which for a gas (or a mixture of gases) equals R=M, where R is the universal
gas constant (R D 8:314 JK�1 mol�1), and M is the molar mass (or a weighted
average of molar masses of the mixture components). For the dry air, we get R D
2:87 Jkg�1 K�1.

In formulas (1.53)–(1.55), the symbol a stands for the Stefan-Boltzmann constant
(a D 5:67 � 10�8 J K�4 m�2 s�1), while the coefficient k in formula (1.52) is related
to a by k D 4

3
alc, where l denotes the mean free path of photons (typically l �

10�7–10�8 m), and c is the speed of light (c D 3 � 108 ms�1).
The specific heat at constant volume cv takes the value cv D 2:87 J kg�1 K�1 for

the dry air, in particular, eR � 1 J kg�1, eM � 102–103 J kg�1 at the atmospheric
temperature, while at the temperature of order 103 K attained, for instance, in the
solar radiative zone, eR � 103–104 J kg�1 and eM � 103–104 J kg�1. Accordingly,
the effect of radiation is often negligible under the “normal” laboratory conditions
on the Earth (eM=eR � 102–103) but becomes highly significant in the models of
hot stars studied in astrophysics (eM=eR � 10�1–10). However, radiation plays an
important role in certain meteorological models under specific circumstances.
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The kinetic theory predicts the viscosity of gases to be proportional to
p
# or a

certain power of # varying with the specific model and characteristic temperatures.
This prediction is confirmed by experimental observations; a generally accepted
formula is the so-called Shutherlang correlation yielding

 D A
p
#

1C B=#
for # “large”;

where A and B are experimentally determined constants. For the air in the range
of pressures between 1 and 10 atm, we have A D 1:46 kg m�1 s�1;K�1=2, B D
100:4K. The dependence of the transport coefficients on the temperature plays a
significant role in the mathematical theory developed in this book.

The specific values of physical constants presented in this part are taken over
from Bolz and Tuve [30].



Chapter 2
Weak Solutions, A Priori Estimates

The fundamental laws of continuum mechanics interpreted as infinite families of
integral identities introduced in Chap. 1, rather than systems of partial differential
equations, give rise to the concept of weak (or variational) solutions that can be
vastly extended to extremely divers physical systems of various sorts. The main
stumbling block of this approach when applied to the field equations of fluid
mechanics is the fact that the available a priori estimates are not strong enough
in order to control the flux of the total energy and/or the dissipation rate of the
kinetic energy. This difficulty has been known since the seminal work of Leray
[184] on the incompressible NAVIER-STOKES SYSTEM, where the validity of the so-
called energy equality remains an open problem, even in the class of suitable weak
solutions introduced by Caffarelli et al. [45]. The question is whether or not the rate
of decay of the kinetic energy equals the dissipation rate due to viscosity as predicted
by formula (1.39). It seems worth-noting that certain weak solutions to hyperbolic
conservation laws indeed dissipate the kinetic energy whereas classical solutions of
the same problem, provided they exist, do not. On the other hand, however, we are
still very far from complete understanding of possible singularities, if any, that may
be developed by solutions to dissipative systems studied in fluid mechanics. The
problem seems even more complex in the framework of compressible fluids, where
Hoff [154] showed that singularities survive in the course of evolution provided
they were present in the initial data. However, it is still not known if the density may
develop “blow up” (gravitational collapse) or vanish (vacuum state) in a finite time.
Quite recently, Brenner [33] proposed a daring new approach to fluid mechanics,
where at least some of the above mentioned difficulties are likely to be eliminated.

Given the recent state of art, we anticipate the hypothetical possibility that the
weak solutions may indeed dissipate more kinetic energy than indicated by (1.33),
thereby replacing the classical expression of the entropy production rate (1.39) by
an inequality

� 	 1

#

�
S W rxu � q

#
� rx#

�
: (2.1)
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Similarly to the theory of hyperbolic systems, the entropy production rate � is now
to be understood as a non-negative measure on the set Œ0;T� ��, whereas the term

Z T

0

Z

�

�' dx is replaced by < � I' >ŒMCIC�.Œ0;T���/ in (1.40):

Although it may seem that changing equation to mere inequality may consider-
ably extend the class of possible solutions, it is easy to verify that inequality (2.1)
reduces to the classical formula (1.39) as soon as the weak solution is regular and
satisfies the global energy balance (1.36). By a regular solution we mean that all
state variables %, u, # are continuously differentiable up to the boundary of the
space-time cylinder Œ0;T� ��, possess all the necessary derivatives in .0;T/ � �,
and %, # are strictly positive. Indeed if # is smooth we are allowed to use the quantity
#' as a test function in (1.40) to obtain

Z T

0

Z

�

%s
�
@t# C u � rx#

�
' dx dt C

Z T

0

Z

�

%s#
�
@t' C u � rx'

�
dx dt

C
Z T

0

Z

�

q � rx' dx dt C < � I#' > C
Z T

0

Z

�

q
#

� rx#' dx dt

D �
Z T

0

Z

�

%Q' dx dt

for any ' 2 C1
c ..0;T/ � �/. Moreover, as %, u satisfy the equation of continuity

(1.22), we get

Z T

0

Z

�

%s
�
@t# C u � rx#

�
' dx dt C

Z T

0

Z

�

%s#
�
@t' C u � rx'

�
dx dt

D �
Z T

0

Z

�

%#
�
@ts C u � rxs

�
' dx dt D �

Z T

0

Z

�

%
�
@te C u � rxe

�
' dx dt

�
Z T

0

Z

�

pdivxu' dx;

where we have used Gibbs’ relation (1.2). Consequently, we deduce

Z

�

%e.%; #/.t2/ dx �
Z

�

%e.%; #/.t1/ dx D
Z t2

t1

Z

�

�
%Q � pdivxu

�
dx dt

C
Z t2

t1

Z

�

�
#� C q

#
� rx#

�
dx dt for 0 < t1 � t2 < T:
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Conversely, since regular solutions necessarily satisfy the kinetic energy equa-
tion (1.33), we can use the total energy balance (1.36) in order to conclude that

Z

�

%e.%; #/.t2/ dx �
Z

�

%e.%; #/.t1/ dx

D
Z t2

t1

Z

�

�
%Q C S W rxu � pdivxu

�
dx dtI

whence, by means of (2.1),

� D 1

#

�
S W rxu � q

#
� rx#

�
in Œt1; t2� ��:

Note that our approach based on postulating inequality (2.1), together with
equality (1.36) is reminiscent of the concept of weak solutions with defect measure
elaborated by DiPerna and Lions [84] and Alexandre and Villani [5] in the context
of Boltzmann’s equation. Although uniqueness in terms of the data is probably out
of reach of such a theory, the piece of information provided is sufficient in order
to study the qualitative properties of solutions, in particular, the long-time behavior
and singular limits for several scaling parameters tending to zero. Starting from
these ideas, we develop a thermodynamically consistent mathematical model based
on the state variables f%;u; #g and enjoying the following properties:

• The problem admits global-in-time solutions for any initial data of finite energy.
• The changes of the total energy of the system are only due to the action of the

external source terms represented by f and Q. In the absence of external sources,
the total energy is a constant of motion.

• The total entropy is increasing in time as soon as Q 	 0, the system evolves to a
state maximizing the entropy.

• Weak solutions coincide with classical ones provided they are smooth, notably
the entropy production rate � is equal to the expression on the right-hand side
of (2.1).

• The weak formulation introduced in this chapter gives rise to the relative energy
inequality–a powerful tool for studying stability of strong solutions and certain
singular limits with the lack of suitable compactness estimates.

2.1 Weak Formulation

For reader’s convenience and future use, let us summarize in a concise form theweak
formulation of the problem identified in Chap. 1. The problem consists of finding
a trio f%;u; #g satisfying a family of integral identities referred to in the future
as NAVIER-STOKES-FOURIER SYSTEM. We also specify the minimal regularity
of solutions required, and interpret formally the integral identities in terms of
standard partial differential equations provided all quantities involved in the weak
formulation are smooth enough.
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2.1.1 Equation of Continuity

(i) Weak (renormalized) formulation:

Z T

0

Z

�

%B.%/
�
@t' C u � rx'

�
dx dt (2.2)

D
Z T

0

Z

�

b.%/divxu' dx dt �
Z

�

%0B.%0/'.0; �/ dx:

(ii) Admissible test functions:

b 2 L1 \ CŒ0;1/; B.%/ D B.1/C
Z %

1

b.z/

z2
dz; (2.3)

' 2 C1c.Œ0;T/ ��/: (2.4)

(iii) Minimal regularity of solutions required:

% 	 0; % 2 L1..0;T/ ��/; (2.5)

%u 2 L1..0;T/ ��IR3/; divxu 2 L1..0;T/ ��/: (2.6)

(iv) Formal interpretation:

@t.%B.%//C divx.%B.%/u/C b.%/divxu D 0 in .0;T/ ��; (2.7)

%.0; �/ D %0; u � nj@� D 0: (2.8)

2.1.2 Balance of Linear Momentum

(i) Weak formulation:

Z T

0

Z

�

�
%u � @t' C %Œu ˝ u� W rx' C pdivx'

�
dx dt D (2.9)

D
Z T

0

Z

�

�
S W rx' � %f � '

�
dx dt �

Z

�

.%u/0 � '.0; �/ dx:
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(ii) Admissible test functions:

' 2 C1c .Œ0;T/ ��IR3//; (2.10)

and either

' � nj@� D 0 in the case of the complete slip boundary conditions, (2.11)

or

'j@� D 0 in the case of the no-slip boundary conditions. (2.12)

(iii) Minimal regularity of solutions required:

%u 2 L1..0;T/ ��IR3//; %juj2 2 L1..0;T/ ��/; (2.13)

p 2 L1..0;T/ ��/; S 2 L1..0;T/ ��IR3�3//; %f 2 L1..0;T/ ��IR3//;
(2.14)

rxu 2 L1.0;TILq.�IR3�3//; for a certain q > 1I (2.15)

and, either

u � nj@� D 0 in the case of the complete slip boundary conditions, (2.16)

or

uj@� D 0 in the case of the no-slip boundary conditions. (2.17)

(iv) Formal interpretation:

@t.%u/C divx.%u ˝ u/C rxp D divxS C %f in .0;T/ ��; (2.18)

.%u/.0; �/ D .%u/0; (2.19)

together with the complete slip boundary conditions

u � nj@� D 0; .Sn/ � nj@� D 0; (2.20)

or, alternatively, the no-slip boundary condition

uj@� D 0: (2.21)
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2.1.3 Balance of Total Energy

(i) Weak formulation:

Z T

0

Z

�

E.t/ dx @t .t/ dt D �
Z T

0

Z

�

�
%u � f.t/C %Q.t/

�
 .t/ dx dt �  .0/E0

(2.22)

E.t/ D 1

2
%juj2.t/C %e.t/ for a.a. t 2 .0;T/: (2.23)

(ii) Admissible test functions:

 2 C1c Œ0;T/: (2.24)

(iii) Minimal regularity of solutions required:

E ; %u � f; %Q 2 L1..0;T/ ��/: (2.25)

(iv) Formal interpretation:

d

dt

Z

�

E dx D
Z

�

�
%u � f C %Q

�
dx in .0;T/;

Z

�

E.0/ dx D E0: (2.26)

2.1.4 Entropy Production

(i) Weak formulation:

Z T

0

Z

�

%s
�
@t' C u � rx'

�
dx dt C

Z T

0

Z

�

q
#

� rx' dx dt C < �I' >ŒMC
IC�.Œ0;T���/D

(2.27)

�
Z

�

.%s/0'.0; �/ dx �
Z T

0

Z

�

%

#
Q' dx dt;

where � 2 MC.Œ0;T� ��/,

� 	 1

#

�
S W rxu � q

#
� rx#

�
: (2.28)
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(ii) Admissible test functions:

' 2 C1c.Œ0;T/ ��/: (2.29)

(iii) Minimal regularity of solutions required:

# > 0 a.a. on .0; T/��;# 2 Lq..0; T/��/; rx# 2 Lq..0; T/��IR3//; q > 1;
(2.30)

%s 2 L1..0;T/ ��/; %su; q
#

2 L1..0;T/ ��IR3//; %
#
Q 2 L1..0;T/ ��/;

(2.31)

1

#
S W rxu;

1

#2
q � rx# 2 L1..0;T/ ��/: (2.32)

(iv) Formal interpretation:

@t.%s/C divx.%su/C divx

� q
#

�
	 1

#

�
S W rxu � q

#
� rx#

�
C %

#
Q in .0;T/ ��;

(2.33)

%s.0C; �/ 	 .%s/0; q � nj@� � 0: (2.34)

2.1.5 Constitutive Relations

(i) Gibbs’ equation:

p D p.%; #/; e D e.%; #/; s D s.%; #/ a.a. in .0;T/ ��;

where

#Ds D De C pD
�1
%

�
: (2.35)

(ii) Newton’s law:

S D 
�
rxu C rx

Tu � 2

3
divxu I

�
C �divxu I a.a. in .0;T/ ��; (2.36)

(iii) Fourier’s law:

q D ��rx# a.a. in .0;T/ ��: (2.37)
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2.2 A Priori Estimates

A priori estimates represent a corner stone of any mathematical theory related to
a system of nonlinear partial differential equations. The remarkable informal rule
asserts that “if we can establish sufficiently strong estimates for solutions of a
nonlinear partial differential equation under the assumption that such a solution
exists, then the solution does exist”. A priori estimates are natural bounds imposed
on the family of all admissible solutions through the system of equations they
obey, the boundary conditions, and the given data. The modern theory of partial
differential equations is based on function spaces, notably the Sobolev spaces, that
have been identified by means of the corresponding a priori bounds for certain
classes of elliptic equations.

Strictly speaking, a priori estimates are formal, being derived under the hypoth-
esis that all quantities in question are smooth. However, as we shall see below, all
bounds obtained for the NAVIER-STOKES-FOURIER SYSTEM hold even within the
class of the weak solutions introduced in Sect. 2.1. This is due to the fact that
all nowadays available a priori estimates follow from the physical principle of
conservation of the total amount of certain quantities as mass and total energy, or
they result from the dissipative mechanism enforced by means of the Second law of
thermodynamics.

2.2.1 Total Mass Conservation

Taking b � 0, B D B.1/ D 1 in the renormalized equation of continuity (2.2) we
deduce that

Z

�

%.t; �/ dx D
Z

�

%0 dx D M0 for a.a. t 2 .0;T/; (2.38)

more specifically, for any t 2 .0;T/ which is a Lebesgue point of the vector-valued
mapping t 7! %.t; �/ 2 L1.�/. As a matter of fact, in accordance with the property of
weak continuity in time of solutions to abstract balance laws discussed in Sect. 1.2,
relation (2.38) holds for any t 2 Œ0;T� provided % was redefined on a set of times
of zero measure. Formula (2.38) rigorously confirms the intuitively obvious fact
that the total mass M0 of the fluid contained in a physical domain � is a constant
of motion provided the normal component of the velocity field u vanishes on the
boundary @�.

2.2.2 Energy Estimates

The balance of total energy expressed through (2.22) provides another sample of a
priori estimates. Indeed assuming, for simplicity, that both f and Q are uniformly
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bounded we get

ˇ
ˇ
ˇ
Z

�

%f � u C %Q dx
ˇ
ˇ
ˇ

� kfkL1..0;T/��IR3/
p
M0kp

%ukL2.�IR3/ C M0kQkL1..0;T/��/I

whence a straightforward application of Gronwall’s lemma to (2.22) gives rise to

ess sup
t2.0;T/

Z

�

�1
2
%juj2 C %e.%; #/

�
.t/ dx (2.39)

� c
�
T;E0;M0; kfkL1..0;T/��IR3/; kQkL1..0;T/��/

�
:

In particular,

ess sup
t2.0;T/

Z

�

%juj2.t/ dx � c.data/; (2.40)

where the symbol c.data/ denotes a generic positive constant depending solely on
the data

T;E0;M0; kfkL1..0;T/��IR3/; kQkL1..0;T/��/; and S0 D
Z

�

.%s/0 dx: (2.41)

In order to get more information, we have to exploit the specific structure of the
internal energy function e. In accordance with hypotheses (1.44), (1.50), (1.54), we
have

%e.%; #/ 	 a#4 C % lim
#!0

eM.%; #/: (2.42)

On the other hand, the molecular component eM is given through (1.45), (1.46)
in the degenerate area % > Z#3=2, therefore

lim
#!0

eM.%; #/ D 3%
2
3

2
lim
#!0

#
5
2

%5
3

P
� %

#
3
2

�
D 3%

2
3

2
lim
Z!1

P.Z/

Z
5
3

; (2.43)

where, in accordance with (1.50),

lim
Z!1

P.Z/

Z
5
3

D p1 > 0: (2.44)
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Consequently, going back to (2.42) we conclude

%e.%; #/ 	 a#4 C 3p1
2
%
5
3 ; (2.45)

in particular, it follows from (2.39) that

ess sup
t2.0;T/

Z

�

�
#4 C %

5
3

�
.t/ dx � c.data/: (2.46)

It is important to note that estimate (2.46) yields a uniform bound on the pressure
p D pM C pR. Indeed the pressure is obviously bounded in the degenerate area
(1.49), where pM satisfies (1.45) and the appropriate bound is provided by (2.39).
Otherwise, using hypothesis of thermodynamic stability (1.44), we obtain

0 � pM.%; #/ � pM.Z#
3
2 ; #/ D #

5
2P.Z/I

whence the desired bound follows from (2.46) as soon as � is bounded. Conse-
quently, we have shown that the energy estimate (2.39) gives rise to

ess sup
t2.0;T/

Z

�

p.%; #/.t/ dx � c.data/ (2.47)

at least for a bounded domain �.

2.2.3 Estimates Based on Second Law of Thermodynamics

The Second law of thermodynamics asserts the irreversible transfer of the mechani-
cal energy into heat valid for all physical systems. This can be expressed mathemat-
ically by means of the entropy production equation (2.27). In order to utilize this
relation for obtaining a priori bounds, we introduce a remarkable quantity which
will play a crucial role not only in the existence theory but also in the study of
singular limits.

� HELMHOLTZ FUNCTION:

H#.%; #/ D %
�
e.%; #/ � #s.%; #/

�
; (2.48)

where # is a positive constant.

Obviously, the quantity H# is reminiscent of the Helmholtz free energy albeit for the
latter # must be replaced by # .
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It follows from Gibbs’ relation (2.35) that

@2H#.%; #/

@%2
D 1

%

@p.%; #/

@%
D 1

%

@pM.%; #/

@%
; (2.49)

while

@H#.%; #/

@#
D %

#
.#�#/@e.%; #/

@#
D 4a#2.#�#/C %

#
.#�#/@eM.%; #/

@#
: (2.50)

Thus, as a direct consequence of hypothesis of thermodynamic stability (1.44), we
thereby infer that

• % 7! H#.%; #/ is a strictly convex function, which, being augmented by a suitable
affine function of %, attains its global minimum at some positive %,

• the function # 7! H#.%; #/ is decreasing for # < # and increasing for # > # ,
in particular, it attains its (global) minimum at # D # for any fixed %.

The total energy balance (2.22), together with the entropy production equa-
tion (2.27), give rise to

Z

�

�1
2
%juj2 C H#.%; #/

�
.	/ dx C #�

h
Œ0; 	� ��

i
D (2.51)

E0 � #S0 C
Z 	

0

Z

�

h
%
�
Q � #

#
Q
�

C %f � u
i

dx dt

for a.a. 	 2 .0;T/, where we have introduced the symbol �ŒQ� to denote the value
of the measure � applied to a Borel set Q.

Now suppose there exists a positive number % > 0 such that

Z

�

.% � %/.t/ dx D 0 for any t 2 Œ0;T�:

Clearly, if� is a bounded domain, we have % D M0=j�j, where M0 is the total mass
of the fluid. Accordingly, relation (2.51) can be rewritten as

� TOTAL DISSIPATION BALANCE:

Z

�

�1
2
%juj2 C H#.%; #/ � .% � %/

@H#.%; #/

@%
� H#.%; #/

�
.	/ dx (2.52)

C#�
h
Œ0; 	� ��

i
D
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E0 � #S0 �
Z

�

�
.%0 � %/

@H#.%; #/

@%
C H#.%; #/

�
dx

C
Z 	

0

Z

�

�
%
�
Q � #

#
Q
�

C %f � u
�

dx dt

for a.a. 	 2 .0;T/

at least if � is a bounded domain. In contrast with (2.51), the quantity H#.%; #/ �
.% � %/

@H#
@%
.%; #/ � H#.%; #/ at the left hand side is obviously non-negative as a

direct consequence of the hypothesis of thermodynamic stability.
Consequently, assuming Q 	 0, we can use (2.28), together with (2.52), in order

to obtain
Z T

0

Z

�

1

#

�
S W rxu � q � rx#

#

�
dx � c.data/: (2.53)

As the transport terms S, q are given by (1.42), (1.43), notably they are linear
functions of the affinities rxu, rx# , respectively, we get

Z T

0

Z

�



#

ˇ
ˇ̌rxu C rx

?u � 2

3
divxu I

ˇ
ˇ̌2 dx dt � c.data/; (2.54)

and
Z T

0

Z

�

�

#2
jrx#j2 dx dt � c.data/: (2.55)

In order to continue, we have to specify the structural properties to be imposed on
the transport coefficients  and �. In view of (1.52), it seems reasonable to assume
that the heat conductivity coefficient � D �M C �R satisfies

0 < �M.1C #˛/ � �M.#/ � �M.1C #˛/;

0 < �R#
3 � �R.#/ � �R.1C #3/;

(2.56)

where �M , �M , �R, �R are positive constants.
Similarly, the shear viscosity coefficient  obeys

0 < .1C #˛/ � .#/ � .1C #˛/ (2.57)

for any # 	 0, positive constants , , and a positive exponent ˛ specified below.
Note that �M ,  are not allowed to depend explicitly on %—a hypothesis that is
crucial in the existence theory but entirely irrelevant in the study of singular limits.
We remark that such a stipulation is physically relevant at least for gases (see Becker
[22]) and certain liquids.
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Keeping (2.56) in mind we deduce from (2.55) that

Z T

0

Z

�

�
jrx log.#/j2 C jrx#

3
2 j2
�

dx dt � c.data/: (2.58)

Combining (2.58) with (2.46) we conclude that the temperature #.t; �/ belongs
to W1;2.�/ for a.a. t 2 .0;T/, where the symbol W1;2.�/ stands for the Sobolev
space of functions belonging with their gradients to the Lebesgue space L2.�/ (cf.
the relevant part in Sect. 3). More specifically, we have, by the standard Poincare’s
inequality (Theorem 11.20),

k #ˇ kL2.0;TIW1;2.�// � c.data/ for any 1 � ˇ � 3

2
: (2.59)

A similar estimate for log.#/ is more delicate and is postponed to the next section.
From estimate (2.54) and Hölder’s inequality we get

�
�
�rxu C rx

?u � 2

3
divxu I

�
�
�
Lp.�IR3�3/

�
��
�

s
#

.#/

��
�
Lq.�/

��
�

r
.#/

#

�
rxu C rx

?u � 2

3
divxu I

���
�
L2.�IR3�3/

� ck.1C #
1�˛
2 /kLq.�/

�
��

r
.#/

#

�
rxu C rx

?u � 2

3
divxu I

����
L2.�IR3�3/

provided

1

p
D 1

q
C 1

2
:

Thus we deduce from estimates (2.46), (2.54) that

�
��rxu C rx

?u � 2

3
divxu I

�
��
L2.0;TILp.�IR3�3// � c.data/ (2.60)

for

p D 8

5 � ˛ ; 0 � ˛ � 1: (2.61)

Similarly, in accordance with (2.59) and the standard embedding W1;2.�/ ,!
L6.�/ (see Theorem 4), we have

k # kL3.0;TIL9.�IR3// � c.data/I (2.62)
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whence, following the arguments leading to (2.60),

��
�rxu C rx

?u � 2

3
divxu I

��
�
Lq.0;TILp.�IR3�3// � c.data/ (2.63)

for

q D 6

4 � ˛
; p D 18

10 � ˛ ; 0 � ˛ � 1: (2.64)

As we will see below, the range of suitable values of the parameter ˛ in (2.61),
(2.62) is subjected to further restrictions.

The previous estimates concern only certain components of the velocity gradient.
In order to get uniform bounds on rxu, we need the following version of Korn’s
inequality proved in Theorem 11.23 in Appendix.

� GENERALIZED KORN-POINCARE INEQUALITY:

Proposition 2.1 Let � � R
3 be a bounded Lipschitz domain. Assume that r is a

non-negative function such that

0 < M0 � R
�
r dx;

R
�
r
 dx � K

for a certain 
 > 1:

Then

kvkW1;p.�IR3/

� c. p;M0;K/
����rxv C rx

?v � 2

3
divxv I

�
��
Lp.�IR3/ C

Z

�

rjvj dx
�

for any v 2 W1;p.�IR3/, 1 < p < 1.

Applying Proposition 2.1 with r D %, 
 D 5
3
, v D u, we can use estimates (2.40),

(2.46), (2.60), and (2.63) to conclude that

k u kL2.0;TIW1;p.�IR3// � c.data/ for p D 8

5 � ˛
; (2.65)

and

k u kLq.0;TIW1;p.�IR3// � c.data/ for q D 6

4 � ˛
; p D 18

10 � ˛ : (2.66)
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Estimates (2.65), (2.66) imply uniform bounds on the viscous stress tensor S. To
see this, write

.#/
�
rxu C rx

?u � 2

3
divxu I

�
D
p
#.#/

r
.#/

#

�
rxu C rx

?u � 2

3
divxu I

�
;

where
q

.#/

#

�
rxu C rx

?u � 2
3
divxu I

�
admits the bound established in (2.54). On

the other hand, in view of estimates (2.46), (2.62), # is bounded in L
17
3 ..0;T/ �

�/. This fact combined with hypothesis (2.57) yields boundedness of
p
#.#/ in

Lp..0;T/ ��/ for a certain p > 2. Assuming the bulk viscosity � satisfies

0 � �.#/ � c.1C #˛/; (2.67)

with the same exponent ˛ as in (2.57), we obtain

k S kLq.0;TILq.�IR3�3// � c.data/ for a certain q > 1: (2.68)

In a similar way, we can deduce estimates on the linear momentum and the
kinetic energy. By virtue of the standard embedding relation W1;p.�/ ,! Lq.�/,
q � 3p=.3� p/ (Theorem 4), we get

k u k
L2.0;TIL 24

7�3˛ .�IR3// C k u k
L

6
4�˛ .0;TIL 18

4�˛ .�IR3// � c.data/; (2.69)

see (2.65), (2.66). On the other hand, by virtue of (2.40), (2.46),

ess sup
t2.0;T/

k%uk
L
5
4 .�IR3/ � c.data/: (2.70)

Combining the last two estimates, we get

k %u ˝ u kLq..0;T/��IR3�3// � c.data/ for a certain q > 1; (2.71)

provided

˛ >
2

5
: (2.72)

It is worth-noting that (2.72) allows for the physically relevant exponent ˛ D 1=2

(cf. Sect. 1.4.4).
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2.2.4 Positivity of the Absolute Temperature

Our goal is to exploit estimate (2.58) in order to show

Z T

0

Z

�

�
j log#j2 C jrx log#j2

�
dx dt � c.data/: (2.73)

Formula (2.73) not only facilitates future analysis but is also physically relevant as
it implies positivity of the absolute temperature with a possible exception of a set of
Lebesgue measure zero.

In order to establish (2.73), we introduce the following version of Poincare’s
inequality proved in Theorem 11.20 in Appendix.

� POINCARE’S INEQUALITY:

Proposition 2.2 Let � � R
3 be a bounded Lipschitz domain. Let V � � be a

measurable set such that

jVj 	 V0 > 0:

Then there exists a positive constant c D c.V0/ such that

k v kW1;2.�/ � c.V0/
�
krxvkL2.�IR3/ C

Z

V
jvjdx

�

for any v 2 W1;2.�/.

In view of Proposition 2.2 the desired relation (2.73) will follow from (2.58) as
soon as we show that the temperature # cannot vanish identically in the physical
domain �. As the hypothetical state of a system with zero temperature minimizes
the entropy, it is natural to evoke the Second law of thermodynamics expressed in
terms of the entropy balance (2.27).

The total entropy of the system
R
� %s.%; #/ dx is a non-decreasing function of

time provided the heat source Q is non-negative. In particular,

Z

�

%s.%; #/.t; �/ dx 	
Z

�

.%s/0 dx for a.a. t 2 .0;T/; (2.74)

where we assume that the initial distribution of the entropy is compatible with that
for the density, that means, .%s/0 D %0s.%0; #0/ for a suitable initial temperature
distribution #0.

If % 	 Z#
3
2 , meaning if .%; #/ belong to the degenerate region introduced in

(1.49), the pressure p and the internal energy e are interrelated through (1.45),
(1.46). Then it is easy to check, by means of Gibbs’ equation (2.35), that the specific
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entropy s can be written in the form s D sM C sR, where

sM.%; #/ D S.Z/; Z D %

#
3
2

; S0.Z/ D �3
2

5
3
P.Z/� P0.Z/Z

Z2
; Z 	 Z: (2.75)

The quantity

5
3
P.Z/� P0.Z/Z

Z

plays a role of the specific heat at constant volume and is strictly positive in
accordance with hypothesis of thermodynamic stability (1.44). In particular, we can
set

s1 D lim
Z!1 S.Z/ D lim

#!0
sM.%; #/ 	 �1 for any fixed % > 0: (2.76)

Moreover, modifying S by a suitable additive constant, we can assume s1 D 0 in
the case the limit is finite.

In order to proceed we need the following assertion that may be of independent
interest. The claim is that the absolute temperature # must remain strictly positive
at least on a set of positive measure.

Lemma 2.1 Let� � R
3 be a bounded Lipschitz domain. Assume that non-negative

functions %, # satisfy

M0 D
Z

�

% dx;
Z

�

�
#4 C %

5
3

�
dx � K;

and
Z

�

%s.%; #/ dx > M0s1 C ı for a certain ı > 0; (2.77)

where s1 2 f0;�1g is determined by (2.76).
Then there are # > 0 and V0 > 0, depending only on M0, K, and ı such that

ˇ
ˇ̌nx 2 �

ˇ
ˇ̌
#.x/ > #

oˇˇ̌ 	 V0:

Proof Arguing by contradiction we construct a sequence %n, #n satisfying (2.77)
and such that

%n ! % weakly in L
5
3 .�/;

R
�
% dx D M0;

ˇ
ˇ˚x 2 � j#n > 1

n


ˇˇ < 1
n :

(2.78)
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In particular,

#n ! 0 (strongly) in Lp.�/ for any 1 � p < 4; (2.79)

%nsR.%n; #n/ D 4

3
a#3n ! 0 in L1.�/:

Next we claim that

lim sup
n!1

Z

f%n�Z#
3
2
n g
%nsM.%n; #n/ dx � 0: (2.80)

In order to see (2.80), we first observe that the specific (molecular) entropy sM is
increasing in # ; whence

sM.%; #/ �

8
<̂

:̂

sM.%; 1/ if # < 1;

sM.%; 1/C R #
1

@sM.%;z/
@z dz � sM.%; 1/C c log# for # 	 1;

where we have used hypothesis (1.51). On the other hand, it follows from Gibbs’
equation (2.35) that

@sM.%; #/

@%
D � 1

%2
@pM.%; #/

@#
I

whence

jsM.%; 1/j � c.Z/.1C j log.%/j/ for all % � Z:

Resuming the above inequalities yields

jsM.%; #/j � c.1C j log.%/j C j log.#/j/: (2.81)

Returning to (2.80) we get
Z

f%n�Z#
3
2
n g
%nsM.%n; #n/ dx � c

Z

f%n�Z#
3
2
n g
%n.1C j log.%n/j C j log.#n/j/ dx �

c.Z/
Z

�

.#
3
2
n C #

3
4
n

p
%nj log.

p
%n/j C #n

p
#nj log.

p
#n/j/ dx ! 0;

where we have used (2.78), (2.79).
Finally, we have

%sM.%; #/ D %S
� %

#
3
2

�
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in the degenerate area % > Z#
3
2 , and, consequently,

Z

f%n>Z#
3
2
n g
%nsM.%n; #n/ dx

D
Z

fZ#
3
2
n >%n>Z#

3
2
n g
%nS

� %n

#
3
2
n

�
dx C

Z

f%n�Z#
3
2
n g
%nS

� %n

#
3
2
n

�
dx;

where
Z

fZ#
3
2
n >%n�Z#

3
2
n g
%nS

� %n

#
3
2
n

�
dx � S.Z/Z

Z

�

#
3
2
n dx ! 0: (2.82)

Combining (2.79)–(2.82), together with hypothesis (2.77), we conclude that

lim inf
n!1

Z

f%n>Z#
3
2
n g
%nS

� %n

#
3
2
n

�
dx > M0s1 for any Z > Z: (2.83)

However, relation (2.83) leads immediately to contradiction as

Z

f%n>Z#
3
2
n g
%nS

� %n

#
3
2
n

�
dx � S.Z/

Z

f%n>Z#
3
2
n g
%n dx ! S.Z/M0:

Indeed write
R
�
%n dx as

R

f%n�Z#
3
2
n g
%n dx C R

f%n>Z#
3
2
n g
%n dx, and observe that

0 �
Z

f%n�Z#
3
2
n g
%n dx D

Z

f%n�Z. 1n /
3
2 g
%n dx C

Z

f#n> 1
n g
%n dx;

where the right-hand side tends to 0 by virtue of (2.77). ut

By means of Proposition 2.2 and Lemma 2.1, it is easy to check that estimates
(2.46), (2.58) give rise to (2.73).

2.2.5 Pressure Estimates

The central problem of the mathematical theory of the NAVIER-STOKES-FOURIER

SYSTEM is to control the pressure. Under the constitutive relations considered in
this book, the pressure p is proportional to the volumetric density of the internal
energy %e that is a priori bounded in L1.�/ uniformly with respect to time, see
(2.45)–(2.47). This section aims to find a priori estimates for p in the weakly closed
reflexive space Lq..0;T/ � �/ for a certain q > 1. To this end, the basic idea is
to “compute” p by means of the momentum equation (2.9) and use the available
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estimates in order to control the remaining terms. Such an approach, however,
faces serious technical difficulties, in particular because of the presence of the time
derivative @t.%u/ in the momentum equation. Instead we use the quantities

'.t; x/ D  .t/�.t; x/; with � D B
h
h.%/ � 1

j�j
Z

�

h.%/ dx
i
;  2 C1

c .0;T/

(2.84)

as test functions in the momentum equation (2.9), where B is a suitable branch of
the inverse divx�1.

There are several ways how to construct the operator B, here we adopt the
formula proposed by Bogovskii (see Sect. 11.6 in Appendix). In particular, the
operator B enjoys the following properties.

� BOGOVSKII OPERATOR B � divx�1:

(b1) Given

g 2 C1
c .�/;

Z

�

g dx D 0;

the vector field BŒg� satisfies

BŒg� 2 C1
c .�IR3/; divxBŒg� D g: (2.85)

(b2) For any non-negative integer m and any 1 < q < 1,

k BŒg� kWmC1;q.�IR3/ � ckgkWm;q.�/ (2.86)

provided � � R
3 is a Lipschitz domain, in particular, the operator B can be

extended to functions g 2 Lq.�/ with zero mean satisfying

BŒg�j@� D 0 in the sense of traces: (2.87)

(b3) If g 2 Lq.�/, 1 < q < 1, and, in addition,

g D divxG; G 2 Lp.�IR3/; G � nj@� D 0;

then

k BŒg� kLp.�IR3/ � ckGkLp.�IR3/: (2.88)
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In order to render the test functions (2.84) admissible, we take

'˛.t; x/ D  .t/Œ��˛.t; x/; with Œ��˛ D B
h
h.%/ � 1

j�j
Z

�

h.%/ dx
i˛
;  2 C1

c .0;T/;

(2.89)

where h is a smooth bounded function, and the symbol Œv�˛ denotes convolution in
the time variable t with a suitable family of regularizing kernels (see Sect. 11.2 in
Appendix). Here, we have extended h.%/ to be zero outside the interval Œ0;T�.

Since %, u satisfy the renormalized Eq. (2.2), we easily deduce that

@t

h
h.%/

i˛ C divx
h
h.%/u

i˛ C
h
.%h0.%/ � h.%//divxu

i˛ D 0

for any t 2 .˛;T � ˛/ and a.a. x 2 �;
(2.90)

in particular, from the properties (b2), (b3) we may infer that

@tŒ��
˛ D �B

h
divx.h.%/u/

i˛
(2.91)

�B
h�
%h0.%/ � h.%/

�
divxu � 1

j�j
Z

�

�
%h0.%/ � h.%/

�
divxu dx

i˛

(cf. Sect. 11.6 in Appendix).
By virtue of (2.86)–(2.88), we obtain

k Œ��˛.t; �/ kW1;p.�IR3/ � c. p; �/k Œh.%/�˛.t; �/ kLp.�/; 1 < p < 1; (2.92)

and

k Œ@t��˛.t; �/ kLp.�IR3/ � c. p; s; �/ k Œh.%/u�˛.t; �/ kLp.�/

C

8
<̂

:̂

k Œ.%h0.%/ � h.%//divu�˛.t; �/ k
L

3p
3Cp .�/

if 3
2
< p < 1;

kŒ.%h0.%/ � h.%//divu�˛.t; �/ kLs.�/ for any 1 < s < 1 if 1 � p � 3
2
;
(2.93)

for any t 2 Œ˛;T � ˛�.
Having completed the preliminary considerations we take the quantities '˛

specified in (2.89) as test functions in the momentum equation (2.9) to obtain

Z T

0

�
 

Z

�

p.%; #/Œh.%/�˛ dx
�

dt D
5X

jD1
Ij; (2.94)
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where

I1 D 1

j�j
Z T

0

�
 

Z

�

Œh.%/�˛
Z

�

p.%; #/ dx
�

dt;

I2 D �
Z T

0

�
 

Z

�

%u � @tŒ��˛ dx
�

dt;

I3 D �
Z T

0

�
 

Z

�

%u ˝ u W rxŒ��
˛ dx

�
dt;

I4 D
Z T

0

�
 

Z

�

S W rxŒ��
˛ dx

�
dt;

I5 D �
Z T

0

�
 

Z

�

%f � Œ��˛ dx
�

dt;

and

I6 D �
Z T

0

�
 0
Z

�

%u � Œ��˛ dx
�

dt:

Now, our intention is to use the uniform bounds established in Sect. 2.2.3,
together with the integral identity (2.94), in order to show that

Z T

0

Z

�

p.%; #/%� dx dt � c.data/ for a certain � > 0: (2.95)

To this end, the integrals I1; : : : ; I6 are estimated by means of Hölder’s inequality
as follows:

jI1j � k kL1.0;T/ k Œh.%/�˛ kL1..0;T/��/ kp.%; #/kL1.0;TIL1.�//;

jI2j � k kL1.0;T/ k%uk
L1.0;TIL 54 .�IR3// k@tŒ��

˛kL1.0;TIL5.�IR3//;

jI3j � k kL1.0;T/ k%u ˝ ukLp..0;T/��IR3�3/ krxŒ��
˛kLp0

..0;T/��IR3/;

where p is the same as in (2.71);

jI4j � k kL1.0;T/ k S kLq..0;T/��IR3�3/ krxŒ��
˛kLq0

..0;T/��IR3�3/;
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1

q
C 1

q0 D 1; with the same q as in (2.68);

jI5j � k kL1.0;T/ kfkL1..0;T/��IR3/k%k
L1.0;TIL 53 .�// kŒ��

˛k
L1.0;TIL 52 .�IR3//;

jI6j � k 0kL1.0;T/ k%uk
L1.0;TIL 54 .�IR3// k Œ��˛ kL1.0;TIL5.�IR3//:

Furthermore, by virtue of the uniform bounds established in (2.92), (2.93), the
above estimates are independent of the value of the parameter ˛, specifically,

jI1j � k kL1.0;T/ kh.%/kL1..0;T/��/ kp.%; #/kL1.0;TIL1.�//;

jI2j � k kL1 .0;T/ k%uk
L1.0;TIL 54 .�IR3//�

�
kh.%/ukL1.0;TIL5.�IR3// C k.%h0.%/ � h.%//divxuk

L1.0;TIL 158 .�//
�
;

jI3j � k kL1.0;T/ k%u ˝ ukLp..0;T/��IR3�3// kh.%/kLp0

..0;T/��/;

with p as in (2.71);

jI4j � k kL1.0;T/ kSkLq..0;T/��IR3�3// kh.%/kLq0

..0;T/��//;

with q as in (2.68);

jI5j � k kL1.0;T/ kfkL1..0;T/��IR3/k%k
L1.0;TIL 53 .�// kh.%/kL1.0;TIL 1511 .�//;

jI6j � k 0kL1.0;T/ k%uk
L1.0;TIL 54 .�IR3// kh.%/kL1.0;TIL 158 .�//:

Consequently, taking h.%/ � %� in (2.94) for a sufficiently small � > 0 and
sufficiently large values of %, we can use estimates (2.46), (2.47), (2.68)–(2.71),
together with the bounds on the integrals I1; : : : ; I6 established above, in order to
obtain the desired estimate (2.95).

Furthermore, as

c%
5
3 � pM.%; #/ � c

8
<̂

:̂

%# for % � Z#
3
2 ;

%
5
3 for % 	 Z#

3
2 ;

(2.96)
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estimate (2.95) implies

k%k
L
5
3C�..0;T/��/ � c.data/: (2.97)

Finally (2.97) together with (2.46) and (2.96) yields

kpM.%; #/kLp..0;T/��/ � c.data/ for some p > 1: (2.98)

2.2.6 Pressure Estimates, an Alternative Approach

The approach to pressure estimates based on the operator B � divx
�1 requires

certain minimal regularity of the boundary @�. In the remaining part of this chapter,
we shortly discuss an alternative method yielding uniform estimates in the interior
of the physical domain together with equi-integrability of the pressure up to the
boundary. In particular, the interior estimates may be of independent interest since
they are sufficient for resolving the problem of global existence for the NAVIER-
STOKES-FOURIER SYSTEM provided the equality sign in the total energy balance
(2.22) is relaxed to inequality “�”.

Local Pressure Estimates Similarly to the preceding part, the basic idea is to
“compute” the pressure by means of the momentum equation (2.9). In order to do it
locally, we introduce a family of test functions

'.t; x/ D  .t/�.x/.rx�
�1
x /Œ1�h.%/�; (2.99)

where  2 C1
c .0;T/, � 2 C1

c .�/, h 2 C1
c .0;1/,

0 �  ; � � 1; and h.r/ D r� for r 	 1

for a suitable exponent � > 0. Here the symbol ��1
x stands for the inverse of

the Laplace operator on the whole space R
3, specifically, in terms of the Fourier

transform Fx!� ,

��1
x Œv�.x/ D �F�1

�!x

hFx!� Œv�

j�j2
i
; (2.100)

see Sects. 5 and 11.17.
Note that

rx' D  rx�˝ rx�
�1
x Œ1�h.%/�C  �RŒ1�h.%/�;
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where

R D Œrx ˝ rx��
�1
x ; Ri;jŒv�.x/ D F�1h�i�jFx!� Œv�

j�j2
i

(2.101)

is a superposition of two Riesz maps. By virtue of the classical Calderón-Zygmund
theory, the operator Ri;j is bounded on Lp.R3/ for any 1 < p < 1. In particular,
' 2 Lq.0;TIW1;p

0 .�IR3// whenever h.%/ 2 Lq.0;TILp.�// for certain 1 � q �
1, 1 < p < 1, see Sect. 11.17 in Appendix.

Similarly, using the renormalized Eq. (2.2) with b.%/ D h0.%/% � h.%/ we
“compute”

@t' D @t �rx�
�1
x Œ1�h.%/�

C �
�
rx�

�1
x

h
1�.h.%/ � h0.%/%/divxu

i
� rx�

�1
x Œdivx.1�h.%/u/�

�
:

Let us point out that Eq. (2.2) holds on the whole space R
3 provided u has been

extended outside � and h replaced by 1�h.%/. Note that functions belonging to
W1;p.�/ can be extended outside � to be in the space W1;p.R3/ as soon as � is a
bounded Lipschitz domain.

It follows from the above discussion that the quantity ' specified in (2.99) can
be taken as a test function in the momentum equation (2.9), more precisely, the
function ’, together with its first derivatives, can be approximated in the Lp-norm by
a suitable family of regular test functions satisfying (2.10), (2.12). Thus we get

Z T

0

Z

�

 �
�
ph.%/ � S W RŒ1�h.%/�

�
dx dt D

7X

jD1
Ij; (2.102)

where

I1 D
Z T

0

Z

�

 �
�
%u � RŒ1�h.%/u� � .%u ˝ u/ W RŒ1�h.%/�

�
dx dt;

I2 D �
Z T

0

Z

�

 � %u � rx�
�1
x

h
1�.h.%/ � h0.%/%/divxu

i
dx dt;

I3 D �
Z T

0

Z

�

 �%f � rx�
�1
x Œ1�h.%/� dx dt;

I4 D �
Z T

0

Z

�

 prx� � rx�
�1
x Œ1�h.%/� dx dt;
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I5 D
Z T

0

Z

�

 S W rx�˝ rx�
�1
x Œ1�h.%/� dx dt;

I6 D �
Z T

0

Z

�

 .%u ˝ u/ W rx�˝ rx�
�1Œ1�h.%/� dx dt;

and

I7 D �
Z T

0

Z

�

@t �%u � rx�
�1
x Œ1�h.%/� dx dt:

Here, we have used the notation

A W R �
3X

i;jD1
Ai;jRi;j; RŒv�i �

3X

jD1
Ri;jŒvj�; i D 1; 2; 3:

Exactly as in Sect. 2.2.5, the integral identity (2.102) can be used to establish a
bound

Z T

0

Z

K
p.%; #/%� dx dt � c.data;K/ for a certain � > 0; (2.103)

and, consequently,

Z T

0

Z

K
%
5
3C� dx dt � c.data;K/; (2.104)

Z T

0

Z

K
jp.%; #/jr dx dt � c.data;K/ for a certain r > 1 (2.105)

for any compact K � �.

Pressure Estimates Near the Boundary Our ultimate goal is to extend, in a
certain sense, the local estimates established in Sect. 2.2.6 up to the boundary @�.
In particular, our aim is to show that the pressure is equi-integrable in �, where the
bound can be determined in terms of the data. To this end, it is enough to solve the
following auxiliary problem:

Given q > 1 arbitrary, find a function G D G.x/ such that

G 2 W1;q
0 .�IR3/; divxG.x/ ! 1 uniformly for dist.x; @�/ ! 0: (2.106)

If � is a bounded Lipschitz domain, the function G can be taken a solution of
the problem

divxG D g in �; Gj@� D 0; (2.107)
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where

g D dist�ˇ.x; @�/� 1

j�j
Z

�

dist�ˇ.x; @�/ dx; with 0 < ˇ <
1

q
;

so that (2.106) is satisfied. Problem (2.107) can be solved by means of the operator
B introduced in Sect. 2.2.5 as soon as � is a Lipschitz domain. For less regular
domains, an explicit solution may be found by an alternative method (see Kukučka
[176]).

Pursuing step by step the procedure developed in the preceding section we take
the quantity

'.t; x/ D  .t/G.x/;  2 C1
c .0;T/;

as a test function in the momentum equation (2.9). Assuming G belongs to
W1;q
0 .�IR3/, with q > 1 large enough, we can deduce, exactly as in Sect. 2.2.6,

that

Z T

0

Z

�

p.%; #/divxG dx dt � c.data/: (2.108)

Note that this step can be fully justified via a suitable approximation of G by a
family of smooth, compactly supported functions. As divxG.x/ ! 1 whenever
x ! @�, relation (2.108) yields equi-integrability of the pressure in a neighborhood
of the boundary (cf. Theorem 10).



Chapter 3
Existence Theory

The informal notion of a well posed problem captures many of the desired features
of what we mean by solving a system of partial differential equations. Usually a
given problem is well-posed if

• the problem has a solution;
• the solution is unique in a given class;
• the solution depends continuously on the data.

The first condition is particularly important for us as we want to perform the
singular limits on existing objects. It is a peculiar feature of non-linear problems
that existence of solutions can be rigorously established only in the class determined
by a priori estimates. Without any extra assumption concerning the magnitude of
the initial data and/or the length of the existence interval .0;T/, all available and
known a priori bounds on solutions to the NAVIER-STOKES-FOURIER SYSTEM

have been collected in Chap. 2. Accordingly, the existence theory to be developed
in the forthcoming chapter necessarily uses the framework of the weak solutions
introduced in Chap. 1 and identified in Chap. 2. To begin, let us point out that the
existence theory is not the main objective of this book, and, strictly speaking, all
results concerning the singular limits can be stated without referring to any specific
solution. On the other hand, however, it seems important to know that the class of
objects we deal with is not void.

The complete proof of existence for the initial-boundary value problem associ-
ated to the NAVIER-STOKES-FOURIER SYSTEM is rather technical and considerably
long. The following text aims to provide a concise and self-contained treatment
starting directly with the approximate problem and avoiding completely the nowa-
days popular “approach” based on reducing the task of existence to showing the
weak sequential stability of the set of hypothetical solutions.

© Springer International Publishing AG 2017
E. Feireisl, A. Novotný, Singular Limits in Thermodynamics of Viscous Fluids,
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The principal tools to be employed in the existence proof can be summarized as
follows:

• Nowadays “classical” arguments based on compactness of embeddings of
Sobolev spaces (the Rellich-Kondrashov theorem);

• a generalized Arzelá-Ascoli compactness result for weakly continuous functions
and its variants including Lions-Aubin Lemma;

• the Div-Curl lemma developed in the theory of compensated compactness;
• the “weak continuity” property of the so-called effective viscous flux established

by P.-L. Lions and its generalization to the case of non-constant viscosity
coefficients via a commutator lemma;

• the theory of parametrized (Young) measures, in particular, its application to
compositions of weakly converging sequences with a Carathéodory function;

• the analysis of density oscillations via oscillations defect measures in weighted
Lebesgue spaces.

3.1 Hypotheses

Before formulating our main existence result, we present a concise list of hypotheses
imposed on the data. To see their interpretation, the reader may consult Chap. 1 for
the physical background and the relevant discussion.
(i) Initial data: The initial state of the system is determined through the choice of
the quantities %0, .%u/0, E0, and .%s/0.

The initial density %0 is a non-negative measurable function such that

%0 2 L
5
3 .�/;

Z

�

%0 dx D M0 > 0: (3.1)

The initial distribution of the momentum satisfies a compatibility condition

.%u/0 D 0 a.a. on the set fx 2 � j %0.x/ D 0g; (3.2)

notably the total amount of the kinetic energy is finite, meaning,

Z

�

j.%u/0j2
%0

dx < 1: (3.3)

The initial temperature is determined by a measurable function #0 satisfying

#0 > 0 a.a. in �; .%s/0 D %0s.%0; #0/; %0s.%0; #0/ 2 L1.�/: (3.4)
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Finally, we assume that he initial energy of the system is finite, specifically,

E0 D
Z

�

� 1

2%0
j.%u/0j2 C %0e.%0; #0/

�
dx < 1: (3.5)

(ii) Source terms: For the sake of simplicity, we suppose that

f 2 L1..0;T/ ��IR3//; Q 	 0; Q 2 L1..0;T/ ��/: (3.6)

(iii) Constitutive relations: The quantities p, e, and s are continuously differen-
tiable functions for positive values of %, # satisfying Gibbs’ equation

#Ds.%; #/ D De.%; #/C p.%; #/D
�1
%

�
for all %; # > 0: (3.7)

In addition,

p.%; #/ D pM.%; #/C pR.#/; pR.#/ D a

3
#4; a > 0; (3.8)

and

e.%; #/ D eM.%; #/C eR.%; #/; %eR.%; #/ D a#4; (3.9)

where, in accordance with hypothesis of thermodynamic stability (1.44), the
molecular components satisfy

@pM.%; #/

@%
> 0 for all %; # > 0; (3.10)

and

0 <
@eM.%; #/

@#
� c for all %; # > 0: (3.11)

Furthermore,

lim
#!0C eM.%; #/ D eM.%/ > 0 for any fixed % > 0; (3.12)

and,

ˇ
ˇ̌
%
@eM.%; #/

@%

ˇ
ˇ̌ � c eM.%; #/ for all %; # > 0: (3.13)

Finally, we suppose that there is a function P satisfying

P 2 C1Œ0;1/; P.0/ D 0; P0.0/ > 0; (3.14)
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and two positive constants 0 < Z < Z such that

pM.%; #/ D #
5
2P
� %

#
3
2

�
whenever 0 < % � Z#

3
2 ; or, % > Z#

3
2 ; (3.15)

where, in addition,

pM.%; #/ D 2

3
%eM.%; #/ for % > Z#

3
2 : (3.16)

(iv) Transport coefficients: The viscosity coefficients , � are continuously
differentiable functions of the absolute temperature # , more precisely ; � 2
C1Œ0;1/, satisfying

0 < .1C #˛/ � .#/ � .1C #˛/; (3.17)

sup
#2Œ0;1/

j0.#/j � m; (3.18)

0 � �.#/ � �.1C #˛/: (3.19)

The heat conductivity coefficient � can be decomposed as

�.#/ D �M.#/C �R.#/; (3.20)

where �M; �R 2 C1Œ0;1/, and

0 < �R#
3 � �R.#/ � �R.1C #3/; (3.21)

0 < �M.1C #˛/ � �M.#/ � �M.1C #˛/: (3.22)

In formulas (3.17)–(3.22),, , m, �, �R, �R, �M , �M are positive constants and

2

5
< ˛ � 1: (3.23)

Remark Some of the above hypotheses, in particular those imposed on the thermo-
dynamic functions, are rather technical and may seem awkward at first glance. The
reader should always keep in mind the prototype example

p.%; #/ D #
5
2P
� %

#
3
2

�
C a

3
#4; P.0/ D 0; P0.0/ > 0; P.Z/ � Z

5
3 for Z >> 1

which meets all the hypotheses stated above. Note that if a > 0 is small and P.Z/
is close to a linear function for moderate values of Z, the above formula approaches
the standard Boyle-Marriot law of a perfect gas.
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The present hypotheses cover, in particular, the physically reasonable case when
the constitutive law for the molecular pressure is that one of the monoatomic gas,
meaning

pM D 2

3
%eM;

for more details see Sect. 1.4.2.
Very roughly indeed, we can say that the pressure is regularized in the area where

either % or # are close to zero. The radiation component pR prevents the temperature
field from oscillating in the vacuum zone where % vanishes, while the superlinear
growth of P for large arguments guarantees strong enough a priori estimates on the
density % in the “cold” regime # � 0.

3.2 Structural Properties of Constitutive Functions

The hypotheses on constitutive relations for the pressure, the internal energy and
the entropy entail further restrictions imposed on the structural properties of the
functions p, e, and s. Some of them have already been identified and used in Chap. 2.
For reader’s convenience, they are recorded and studied in a systematic way in the
text below.

(i) The first observation is that for (3.15), (3.16) to be compatible with the
hypothesis of thermodynamic stability expressed through (3.10), (3.11), the
function P must obey certain structural restrictions. In particular, relation
(3.10) yields

P0.Z/ > 0 whenever 0 < Z < Z; or, Z > Z;

which, together with (3.14), yields

P0.Z/ > 0 for all Z 	 0; (3.24)

where P has been extended to be strictly increasing on the interval ŒZ;Z�.
Similarly, a direct inspection of (3.11), (3.15), (3.16) gives rise to

0 <
3

2

5
3
P.Z/� ZP0.Z/

Z
WD cv;M < c; whenever Z D %

#3=2
	 Z: (3.25)

In particular P.Z/=Z5=3 possesses a limit for Z ! 1, specifically, in
accordance with (3.15), (3.16),

lim
#!0C

eM.%; #/ D 3

2
lim

#!0C

#5=2

%
P
� %

#3=2

�
D 3

2
%
2
3 lim
Z!1

P.Z/

Z5=3
for any fixed % > 0:
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Moreover, in agreement with (3.12),

lim
Z!1

P.Z/

Z5=3
D p1 > 0; (3.26)

and

lim
#!0C eM.%; #/ D eM.%/ D 3

2
%2=3p1: (3.27)

(ii) By virtue of (3.11), the function # 7! eM.%; #/ is strictly increasing on the
whole interval .0;1/ for any fixed % > 0. This fact, together with (3.9), (3.27),
gives rise to the lower bound

%e.%; #/ 	 3p1
2
%
5
3 C a#4: (3.28)

On the other hand,

eM.%; #/ D eM.%/C
Z #

0

@eM
@#

.%; 	/ d	; (3.29)

which, together with (3.11) and (3.27), yields

0 � eM.%; #/ � c.%
2
3 C #/: (3.30)

Similarly, relation (3.24), together with (3.14)–(3.16), and (3.26), yield the
following bounds on the molecular pressure pM:

c%# � pM.%; #/ � c%# if % < Z#
3
2 ; (3.31)

and

c%
5
3 � pM.%; #/ � c

8
<̂

:̂

#
5
2 if % < Z#

3
2

%
5
3 if % > Z#

3
2 :

9
>=

>;
(3.32)

Here, we have used the monotonicity of pM in % in order to control the behavior
of the pressure in the region

Z#
3
2 � % � Z#

3
2 :

Moreover, in accordance with (3.30), (3.32), it is easy to observe that

eM; pM are bounded on bounded sets of Œ0;1/2: (3.33)
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(iii) In agreement with Gibbs’ relation (3.7), the specific entropy s can be written
as

s D sM C sR;
@sM
@#

D 1

#

@eM
@#

; %sR.%; #/ D 4

3
a#3; (3.34)

where the molecular component sM satisfies

sM.%; #/ D S.Z/; Z D %

#3=2
; S0.Z/ D �3

2

5
3
P.Z/ � ZP0.Z/

Z2
< 0 (3.35)

in the degenerate area % > Z#
3
2 . Note that the function S is determined up to

an additive constant.
On the other hand, due to (3.11), the function # 7! sM.%; #/ is increasing

on .0;1/ for any fixed # . Accordingly,

sM.%; #/ �

8
<̂

:̂

sM.%; 1/ if # � 1

sM.%; 1/C R #
1

@sM
@#
.%; 	/ d	 � sM.%; 1/C c log# if # > 1

9
>=

>;
;

(3.36)

where we have exploited (3.11) combined with (3.34) in order to control

ˇ
ˇ
ˇ
ˇ
ˇ

Z #

1

@sM
@#

.%; 	/ d	

ˇ
ˇ
ˇ
ˇ
ˇ

� cj log#j for all # > 0: (3.37)

Another application of Gibbs’ relation (3.7) yields

@sM
@%

D � 1

%2
@pM
@#

;

see also (1.3); therefore

sM.%; 1/ D sM.1; 1/C
Z %

1

1

	2
@pM
@#

.	; 1/ d	:

By virtue of (3.15) and (3.25),

@pM
@#

.�; 1/ D 5

2
P.%/� 3

2
%P0.%/ � c% for all % 2 .0;Z� [ ŒZ;1/;

whereas

j@pM
@#

.�; 1/j is bounded in ŒZ;Z�:
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Consequently,

jsM.%; 1/j � c.1C j log%j/ for all % 2 .0;1/: (3.38)

Writing

sM.%; #/ D sM.%; 1/C
Z %

1

@sM
@#

.%; 	/ d	

and resuming the previous estimates, we conclude that

jsM.%; #/j � c.1C j log%j C j log#j/ for all %; # > 0: (3.39)

(iv) It follows from (3.35) that

limZ!1 S.Z/ D s1 D
8
<

:

�1

0

9
=

;
I

whence

lim#!0C sM.%; #/ D s1 for any fixed % > 0:

(3.40)

where, in the latter case, we have fixed the free additive constant in the
definition of S in (3.35) to obtain s1 D 0.

(v) Finally, as a direct consequence of (3.15),

@pM
@%

.%; #/ D #P0
�
%

#
3
2

�
if % < Z#

3
2 ; or, % > Z#

3
2 ;

where, by virtue of (3.24)–(3.26),

P0.Z/ 	 c.1C Z
2
3 /; c > 0; for all Z 	 0: (3.41)

Thus we can write

pM.%; #/ D #
5
2P

�
%

#
3
2

�
C pb.%; #/;

with

pb.%; #/ D pM.%; #/ � #
5
2P

�
%

#
3
2

�
:
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In accordance with (3.15), (3.32), we have

jpb.%; #/j � c.1C #
5
2 /: (3.42)

Finally, we conclude with help of (3.41) that there exists d > 0 such that

pM.%; #/ D d%
5
3 C pm.%; #/C pb.%; #/; (3.43)

where

@pm
@%

.%; #/ > 0 for all %; # > 0: (3.44)

3.3 Main Existence Result

Having collected all the preliminary material, we are in a position to formulate
our main existence result concerning the weak solutions of the NAVIER-STOKES-
FOURIER SYSTEM.

� GLOBAL EXISTENCE FOR THE NAVIER-STOKES-FOURIER SYSTEM:

Theorem 3.1 Let � � R
3 be a bounded domain of class C2;� , � 2 .0; 1/. Assume

that

• the data %0, .%u/0, E0, .%s/0 satisfy (3.1)–(3.5);
• the source terms f,Q are given by (3.6);
• the thermodynamic functions p, e, s, and the transport coefficients , �, � obey

the structural hypotheses (3.7)–(3.23).

Then for any T > 0 the Navier-Stokes-Fourier system admits a weak solution
f%;u; #g on .0;T/ �� in the sense specified in Sect. 2.1. More precisely, f%;u; #g
satisfy relations (2.2)–(2.6), (2.9)–(2.17), (2.22)–(2.25), (2.27)–(2.32), with (2.35)–
(2.37).

The complete proof of Theorem 3.1 presented in the remaining part of this
chapter is tedious, rather technical, consisting in four steps:

• The momentum equation (2.9) is replaced by a Faedo-Galerkin approximation,
the equation of continuity (2.2) is supplemented with an artificial viscosity term,
and the entropy production equation (2.27) is replaced by the balance of internal
energy. The approximate solutions are obtained by help of the Schauder fixed
point theorem, first locally in time, and then extended on the full interval .0;T/
by means of suitable uniform estimates.

• Performing the limit in the Faedo-Galerkin approximation scheme we recover
the momentum equation supplemented with an artificial pressure term. Simul-
taneously, the balance of internal energy is converted to the entropy production
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equation (2.27), together with the total energy balance (2.22) containing some
extra terms depending on small parameters.

• We pass to the limit in the regularized equation of continuity sending the artificial
viscosity terms to zero.

• Finally, the proof of Theorem 3.1 is completed letting the artificial pressure term
go to zero.

3.3.1 Approximation Scheme

(i) The equation of continuity (2.2) is regularized by means of an artificial
viscosity term:

@t%C divx.%u/ D "�% in .0;T/ ��; (3.45)

and supplemented with the homogeneous Neumann boundary condition

rx% � nj@� D 0; (3.46)

and the initial condition

%.0; �/ D %0;ı; (3.47)

where

%0;ı 2 C2;�.�/; inf
x2�%0;ı.x/ > 0; rx%0;ı � nj@� D 0: (3.48)

(ii) The momentum balance expressed through the integral identity (2.9) is
replaced by a Faedo-Galerkin approximation:

Z T

0

Z

�

�
%u � @t' C %Œu ˝ u� W rx' C

�
p.%; #/C ı.%� C %2/

�
divx'

�
dx dt

(3.49)

D
Z T

0

Z

�

�
".rx%rxu/ � ' C Sı W rx' � %fı � '

�
dx dt �

Z

�

.%u/0 � ' dx;

to be satisfied for any test function ' 2 C1c .Œ0;T/IXn/, where

Xn � C2;�.�IR3/ � L2.�IR3/ (3.50)

is a finite-dimensional vector space of functions satisfying either

' � nj@� D 0 in the case of the complete slip boundary conditions, (3.51)
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or

'j@� D 0 in the case of the no-slip boundary conditions. (3.52)

The space Xn is endowed with the Hilbert structure induced by the scalar
product of the Lebesgue space L2.�IR3/.

Furthermore, we set

Sı D Sı.#;rxu/ D ..#/C ı#/
�
rxu C rx

Tu � 2

3
divxu I

�
C �.#/divxu I;

(3.53)

while the function

fı 2 C1.Œ0;T� ��IR3/ (3.54)

is a suitable approximation of the driving force f.
(iii) Instead of the entropy balance (2.27), we consider a modified internal energy

equation in the form:

@t.%eı.%; #//C divx.%eı.%; #/u/ � divxrxKı.#/ (3.55)

D Sı.#;rxu/ W rxu�p.%; #/divxuC%QıC"ı.�%��2C2/jrx%j2Cı 1
#2

�"#5;

supplemented with the Neumann boundary condition

rx# � nj@� D 0; (3.56)

and the initial condition

#.0; �/ D #0;ı; (3.57)

#0;ı 2 W1;2.�/\ L1.�/; ess inf
x2�#0;ı.x/ > 0: (3.58)

Here

eı.%; #/ D eM;ı .%; #/C a#4; eM;ı.%; #/ D eM.%; #/C ı#; (3.59)

Kı.#/ D
Z #

1

�ı.z/ dz; �ı.#/ D �M.#/C �R.#/C ı
�
#� C 1

#

�
;

and

Qı 	 0; Qı 2 C1.Œ0;T� ��/: (3.60)
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In problem (3.45)–(3.60), the quantities ", ı are small positive parameters, while
� > 0 is a sufficiently large fixed number. The meaning of the extra terms
will become clear in the course of the proof. Loosely speaking, the "-dependent
quantities provide more regularity of the approximate solutions modifying the type
of the field equations, while the ı-dependent quantities prevent concentrations
yielding better estimates on the amplitude of the approximate solutions. For
technical reasons, the limit passage must be split up in two steps letting first " ! 0

and then ı ! 0.

3.4 Solvability of the Approximate System

We claim the following result concerning solvability of the approximate problem
(3.45)–(3.60).

� GLOBAL EXISTENCE FOR THE APPROXIMATE SYSTEM:

Proposition 3.1 Let ", ı be given positive parameters.
Under the hypotheses of Theorem 3.1, there exists �0 > 0 such that for any

� > �0 the approximate problem (3.45)–(3.60) admits a strong solution f%;u; #g
belonging to the following regularity class:

% 2 C.Œ0;T�IC2;� .�//; @t% 2 C.Œ0;T�IC0;� .�//; infŒ0;T��� % > 0;

u 2 C1.Œ0;T�IXn/;

# 2 C.Œ0;T�IW1;2.�// \ L1..0;T/ ��/; @t#; �Kı.#/ 2 L2..0;T/ ��/;

ess inf.0;T/�� # > 0:
(3.61)

Remark As a matter of fact, since the velocity field u is continuously differentiable,
a bootstrap argument could be used in order to show that # is smooth, hence a
classical solution of (3.55) for t > 0, as soon as the thermodynamic functions p, e
as well as the transport coefficients , �, and � are smooth functions of %, # on the
set .0;1/2.

In spite of a considerable number of technicalities, the proof of Proposition 3.1
is based on standard arguments. We adopt the following strategy:

• The solution u of the approximate momentum equation (3.49) is looked for as
a fixed point of a suitable integral operator in the Banach space C.Œ0;T�IXn/.
Consequently, the functions %, # have to be determined in terms of u. This is
accomplished in the following manner:
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• Given u, the approximate continuity equation (3.45) is solved directly by means
of the standard theory of linear parabolic equations.

• Having solved (3.45)–(3.47) we determine the temperature # as a solution of the
quasilinear parabolic problem (3.55)–(3.57), where %, u play a role of given data.

3.4.1 Approximate Continuity Equation

The rest of this section is devoted to the proof of Proposition 3.1. We start with
a series of preparatory steps. Following the strategy delineated in the previous
paragraph, we fix a vector field u and discuss solvability of the Neumann-initial
value problem (3.45)–(3.47).

� APPROXIMATE CONTINUITY EQUATION:

Lemma 3.1 Let � � R
3 be a bounded domain of class C2;� , � 2 .0; 1/ and let

u 2 C.Œ0;T�IXn/ be a given vector field. Suppose that %0;ı belongs to the class of
regularity specified in (3.48).

Then problem (3.45)–(3.47) possesses a unique classical solution % D %u, more
specifically,

%u 2 V �
8
<

:

% 2 C.Œ0;T�IC2;� .�//;

@t% 2 C.Œ0;T�IC0;� .�//

9
=

;
(3.62)

for a certain � > 0. Moreover, the mapping u 2 C.Œ0;T�IXn/ 7! %u maps
bounded sets in C.Œ0;T�IXn/ into bounded sets in V and is continuous with values
in C1.Œ0;T� ��/.

Finally,

%
0

exp
�

�
Z 	

0

kdivxukL1.�/ dt
�

� %u.	; x/ (3.63)

� %0 exp
� Z 	

0

kdivxukL1.�/ dt
�
for all 	 2 Œ0;T�; x 2 �;

where %
0

D inf� %0;ı , %0 D sup� %0;ı:

Proof Step 1: The unique strong solution of problem (3.45)–(3.48)

% 2 L2.0;TIW2;2.�// \ C.Œ0;T�IW1;2.�//; @t% 2 L2..0;T/ ��//
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that satisfies the estimate

k%kC.Œ0;T�IW1;2 .�// C k%kL2.0;TIW2;2.�// C k@t%kL2..0;T/��// � ck%0;ıkW1;2.�/;

with c D c.";T; kukCŒ0;T�IC� .�/// > 0, may be constructed by means of the standard
Galerkin approximation within the standard L2 theory.

The maximal Lp � Lq regularity resumed in Theorem 11.29 in Appendix applied
to the problem

@t% � "�x% D f WD �divx.%u/; rx% � nj@� D 0; %.0/ D %0;ı (3.64)

combined with a bootstrap argument gives the bound

k%k
C.Œ0;T�IW2� 2

p ;p.�//
C k%kLp.0;TIW2;p.�// C k@t%kLp..0;T/��/ � ck%0;ık

W
2� 2

p ;p.�/

for any p > 3.

Since W2� 2
p ;p.�/ ,! C1;�.�/ for any sufficiently large p, we have divx.%u/ 2

C.Œ0;T�I C1;�.�// and may employ Theorem 11.30 from Appendix to show relation
(3.62) as well as boundedness of the map u 7! %u: C.Œ0;T�IXn/ ! V .
Step 2: The difference ! D %u1 � %u2 satisfies

@t! � "�! C divx.!u1/ D f WD divx.%u2 .u1 � u2//; rx! � nj@� D 0; !.0/ D 0:

Similar reasoning as in the first step applied to this equation yields the continuity of
the map u 7! %u from C.Œ0;T�IXn/ to C1.Œ0;T� ��/.
Step 3: The difference

!.t; x/ D %u.	; x/ � %0exp

�Z 	

0

kdivxukL1.�/ dt

�

obeys a differential inequality

@t! C divx.!u/ � "�x! � 0; rx! � nj@� D 0; !.0/ D %0 � %0 � 0:

When multiplied on the positive part j!jC and integrated over �, the first relation
gives k j!jC.t/kL2.�/ � 0 which shows the right inequality in (3.63). The left
inequality can be obtained in a similar way. Lemma 3.1 is thus proved. The reader
may consult [102, Chap. 7.3] or [224, Sect. 7.2] for more details. ut
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3.4.2 Approximate Internal Energy Equation

Having fixed u, together with % D %u—the unique solution of problem (3.45)–
(3.47)—we focus on the approximate internal energy equation (3.55) that can be
viewed as a quasilinear parabolic problem for the unknown # .

Comparison Principle To begin, we establish a comparison principle in the class
of strong (super, sub) solutions of problem (3.55)–(3.57). We recall that a function
# is termed a super (sub) solution if it satisfies (3.55) with “D” sign replaced by
“	” (“�”).

Lemma 3.2 Given the quantities

u 2 C.Œ0;T�IXn/; % 2 C.Œ0;T�IC2.�//; @t% 2 C.Œ0;T� ��/; inf
.0;T/�� % > 0;

(3.65)

assume that # and # are respectively a sub and super-solution to problem (3.55)–
(3.57) belonging to the class

8
<

:

#; # 2 L2.0;TIW1;2.�//; @t#; @t# 2 L2..0;T/ ��/;

�Kı.#/; �Kı.#/ 2 L2..0;T/ ��/;

9
=

;
; (3.66)

8
<̂

:̂

0 < ess inf.0;T/��# � ess sup.0;T/��# < 1;

0 < ess inf.0;T/��# � ess sup.0;T/��# < 1;

9
>=

>;
(3.67)

and satisfying

#.0; �/ � #.0; �/ a.a. in �: (3.68)

Then

#.t; x/ � #.t; x/ a.a. in .0;T/ ��:

Proof As # , # belong to the regularity class specified in (3.66), we can compute

sgnC�%eı.%; #/ � %eı.%; #/
�h�

@t

�
%eı.%; #/� %eı.%; #/

�
(3.69)

Crx

�
%eı.%; #/ � %eı.%; #/

�
� u
i
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C�x

�
Kı.#/� Kı.#/

�
sgnC�%e.%; #/� %e.%; #/

�

� jF.t; x; #/� F.t; x; #/j sgnC
�
%eı.%; #/� %eı.%; #/

�
;

where we have introduced

sgnC.z/ D
8
<

:

0 if z � 0;

1 if z > 0;

and where we have set

F.t; x; #/ D Sı.#;rxu.t; x// W rxu.t; x/C �
"ı.�%��2 C 2/jrx%j2�.t; x/

�%.t; x/eı.%.t; x/; #/divxu.t; x/ � p.%.t; x/; #/divxu.t; x/C ı
1

#2
� "#5 C %Qı:

In accordance with our hypotheses, we may assume that F D F.t; x; #/ is globally
Lipschitz with respect to # .

Denoting jzjC D maxfz; 0g the positive part, we have

@tjwjC D sgnC.w/@tw; rxjwjC D sgnC.w/rxw a.a. in .0;T/ ��

for any w 2 W1;2..0;T/ ��/, in particular,

sgnC
�
%eı.%; #/� %eı.%; #/

�
�

�
h�
@t

�
%eı.%; #/ � %eı.%; #/

�
C rx

�
%eı.%; #/� %eı.%; #/

�
� u
i

D @t

ˇ
ˇ̌
%eı.%; #/ � %eı.%; #/

ˇ
ˇ̌C C rx

ˇ
ˇ̌
%eı.%; #/ � %eı.%; #/

ˇ
ˇ̌C � u:

Moreover, as both eı and Kı are increasing functions of # , we have

sgnC
�
%eı.%; #/ � %eı.%; #/

�
D sgnC

�
Kı.#/� Kı.#/

�
:

Seeing that

Z

�

�xw sgnC.w/ dx � 0 whenever w 2 W2;2.�/; rxw � nj@� D 0;
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we can integrate (3.69) in order to deduce

Z

�

ˇ
ˇ
ˇ%eı.%; #/� %eı.%; #/

ˇ
ˇ
ˇ
C
.	/ dx

� c
Z 	

0

Z

�

.1C jdivxuj/
ˇ
ˇ̌
%eı.%; #/� %eı.%; #/

ˇ
ˇ̌C dx dt

for any 	 > 0. Here we have used Lipschitz continuity of F.t; x; �/ and the fact that
j# � #j sgnCŒ%eı.%; #/ � %eı.%; #/� � cj%eı.%; #/ � %eı.%; #/jC which follows
from (3.9), (3.11), (3.65), (3.67). Thus a direct application of Gronwall’s lemma,
together with the monotonicity of eı with respect to # , completes the proof.

ut

Corollary 3.1 For given data %, u satisfying (3.65), and a measurable function #0;ı
such that

0 < #0 D ess inf
�
#0;ı � ess sup

�

#0;ı D #0 < 1; (3.70)

problem (3.55)–(3.57) admits at most one (strong) solution # in the class specified
in (3.66)–(3.67).

Another application of Lemma 3.2 gives rise to uniform bounds on the function
# in terms of the data.

Corollary 3.2 Let %, u belong to the regularity class (3.65), and let #0;ı satisfy
(3.70). Suppose that # is a (strong) solution of problem (3.55)–(3.57) belonging to
the regularity class (3.66).

Then there exist two constants # , # depending only on the quantities

kukC.Œ0;T�IXn /; k%kC1.Œ0;T���/;

satisfying

0 < # � #0 � #0 � #; (3.71)

and

# � #.t; x/ � # for a.a. .t; x/ 2 .0;T/ ��: (3.72)
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Proof It is a routine matter to check that a constant function # is a subsolution of
(3.55)–(3.57) as soon as

ı

#2
	
h
"#5 C pM.%; #/divxu C a#4divxu (3.73)

C%@eM.%; #/
@%

�
@t%C u � rx%

�
C
�
eM.%; #/C a#4 C ı#

��
@t%C divx.%u/

�

�Sı.#;rxu/ W rxu � "ı.�%��2 C 2/jrx%j2 � %Qı
i
:

Revoking (3.30) we can use hypotheses (3.65), (3.13), together with estimate (3.32),
in order to see that all quantities on the right-hand side of (3.73) are bounded in terms
of k%kC1.Œ0;T���/ and kukC.Œ0;T�IXn/ provided, say, 0 < # < 1. Note that all norms are
equivalent when restricted to the finite dimensional space Xn.

Consequently, a direct application of the comparison principle established in
Lemma 3.2 yields the left inequality in (3.72).

Following step by step with obvious modifications the above procedure, the upper
bound claimed in (3.72) can be established by help of the dominating term �"#5 in
(3.55).

ut

Remark Corollary 3.2 reveals the role of the extra term ı=#2 in Eq. (3.55), namely
to keep the absolute temperature # bounded below away from zero at this stage
of the approximation procedure. Positivity of # is necessary for the passage from
(3.55) to the entropy balance equation used in the weak formulation of the Navier-
Stokes-Fourier system.

A Priori Estimates We shall derive a priori estimates satisfied by any strong
solution of problem (3.55)–(3.57).

Lemma 3.3 Let the data %, u belong to the regularity class (3.65), and let #0;ı 2
W1;2.�/ satisfy (3.70).

Then any strong solution # of problem (3.55)–(3.57) belonging to the class
(3.66)–(3.67) satisfies the estimate

ess sup
t2.0;T/

k#k2W1;2.�/
C
Z T

0

�
k@t#k2L2.�/ C k�xKı.#/k2L2.�/

�
dt (3.74)

� h
�
k%kC1.Œ0;T���/; kukC.Œ0;TIXn/; . inf

.0;T/�� %/
�1; k#0;ıkW1;2.�/

�
;

where h is bounded on bounded sets.

Proof Note that relation (3.74) represents the standard energy estimates for problem
(3.55)–(3.57). These are easily deduced via multiplying Eq. (3.55) by # and
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integrating the resulting expression by parts in order to obtain

1

2

Z

�

%
@eı
@#
.%; #/@t#

2 dx �
Z

�

%eı.%; #/rx# � u dx (3.75)

C
Z

�

�ı.#/jrx#j2 dx D
Z

�

F1.t; x/# dx;

where

F1 D �@.%eı/
@%

.%; #/@t%C Sı.#;rxu/ W rxu

C"ı.�%��2 C 2/jrx%j2 � p.%; #/divxu C ı
1

#2
� "#5 C %Qı:

In view of the uniform bounds already proved in (3.72), the function F1 is bounded
in L1..0;T/ ��/ in terms of the data.

Similarly, multiplying (3.55) on @tKı.#/ gives rise to

d

dt

Z

�

1

2
jrxKı.#/j2 dx C

Z

�

%�ı.#/
@eı
@#
.%; #/j@t#j2 dx (3.76)

C
Z

�

%
@eı
@#
.%; #/ @t#rxKı.#/ � u dx D

Z

�

F2.t; x/@t# dx

where

F2 D ��ı.#/
�
@%Œ%eı �.%; #/@t% � @%Œ%eı�.%; #/rx% � u

�%eı.%; #/divxu
�

C Sı.#;rxu/ W rxu C "ı.�%��2 C 2/jrx%j2

�p.%; #/divxu C ı
1

#2
� "#5 C %Qı

is bounded in L1..0;T/ ��/ in terms of the data.
Taking the sum of (3.75), (3.76), and using Young’s inequality and Gronwall’s

lemma, we conclude that

ess sup
t2.0;T/

krxKı.#/k2L2.�IR3/ C
Z T

0

k@t#k2L2.�/ dt

� h
�
k%kC1.Œ0;T���/; kukC.Œ0;TIXn/; . inf

.0;T/�� %/
�1; k#0kW1;2.�/

�
:
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Finally, evaluating�xKı.#/ by means of Eq. (3.55), we get (3.74).
ut

Existence for the Approximate Internal Energy Equation Having prepared the
necessary material, we are ready to show existence of strong solutions to problem
(3.55)–(3.57). In fact, the a priori bounds (3.72), (3.74) imply compactness of
solutions in the space L2.0;TIW1;2.�//, in particular, any accumulation point of
a family of strong solutions is another solution of the same problem. Under these
circumstances, showing existence is a routine matter. Regularizing the data %, u
with respect to the time variable, and approximating the quantities , �, �ı , e, p by
smooth ones as the case may be, we can construct a family of approximate solutions
to problem (3.55)–(3.57) via the classical results for quasilinear parabolic equations.
Then we pass to the limit in a suitable sequence of approximate solutions to recover
the (unique) solution of problem (3.55)–(3.57). The relevant theory of quasilinear
parabolic equations taken over from the book (Ladyzhenskaya et al. [179, Chap. V])
is summarized in Sect. 11.16 in Appendix.

Hereafter we describe a possible way of the construction of the approximations
to problem (3.55)–(3.57).

(i) Let � 2 .0; 1/ be the same parameter as in Lemma 3.1. To begin, we extend
% 2 C.Œ0;T�IC2;� .�//\C1.Œ0;T�IC0;� .�//, u 2 C.Œ0;T�IXn/, continuously to
% 2 C.RIC2;�.�//\C1.RIC0;�.�//, supp% � .�2T; 2T/��, u 2 C.R;Xn/,
suppu � .�2T; 2T/ � �. We approximate Qı by smooth functions Q! on
Œ0;T� �� and we take sequence of initial conditions

C2;�.�/ 3 #0;! ! #0;ı inW1;2.�/\ L1.�/

such that infx2� #0;!.x/ > #0 uniformly with respect to ! ! 0C, where #0 is
a positive constant.

(ii) We denote

EM.%; #/ D %eM.%; #/

and set

Eı;!.%; #/ D Œ< EM >�
!.%; �!/C a�4! C ı%#; (3.77)

f@#Egı;!.%; #/ D Œ< @#EM >�
!.%; #/C 4a

#4p
#2 C !2

C ı%

�ı;!.#/ D Œ< �M >�
!.�!/C Œ< �R >�

!.�!/C ı.��! C 1p
#2 C !2

/;

Kı;!.#/ D
Z #

1

�ı;!.	/ d	;
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p!.%; #/ D Œ< pM >�
!.%; �!/C a

3
�4!;

G.t; x/ D
�
.�%��2 C 2/jrx%j2

�
.t; x/; G!.t; x/ D G!.t; x/

Sı;!.#;rxu!/ D<  >! .�!/
�
ru! CrTu! � 2

3
divu!I

�
C < � >! .�!/divu!I;

where

�! D �!.#/ D
p
#2C!2

1C!p
#2C!2 ;

< a > .z/ D
8
<

:

a.z/ if z 2 .0;1/N

maxfinfz2.0;1/N a.z/ ; 0g

9
=

;
; N D 1; 2:

(3.78)

The operator b 7! b! , ! > 0 is the standard regularizing operator, see (11.4)
in Sect. 11.2, that applies to all independent variables in the case of functions
< EM >, < @#EM >, < p >, <  >, < � >, < �M >, and to the variable t in
the case of functions %.t; x/, u.t; x/, G.t; x/. Notice that in virtue of hypotheses
(3.21)–(3.23) and (3.11)

�ı;!.#/ 	 �M > 0; f@#Egı;!.%; #/ > ı% > 0 (3.79)

for all .%; #/ 2 R
2, where % D inf.0;T/�� %.

(iii) We will find a solution of problem (3.55)–(3.57), as a limit of the sequence
f#!g!>0 of solutions to the following equation

f@#Egı;!.%!; #/@t# C div
�
Eı;!.%

!; #/u
�

��xKı;!.#/

D �@%Eı;!.%!; #/@t%! C Sı;!.rxu!; #/ W ru!C (3.80)

"ıG! � p!.%
!; #/� ı

#2 C !2
C "�5! C %!Q!;

rx# � nj@� D 0; #.0; x/ D #0;!.x/:

Problem (3.80) for the unknown # has the form of the following quasilinear
parabolic equation

@t# �P3
i;jD1 aij.t; x; #/@xi@xj# C b.t; x; #;rx#/ D 0 in .0;T/ ��;�P3

i;jD1 aij@xj# ni C  
�ˇˇ
ˇ
.0;T/�@� D 0;

#jf0g�� D 0;
(3.81)
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where

aij.t; x; #/ D �ı;!.#/

Œ@#E�ı;!.%!.t; x/; #/
ıij; i; j D 1; 2; 3;  D 0 (3.82)

and

b.t; x; #; z/ D 1

f@#Egı;!.%!.t; x/; #/
h

� �0
ı;!.#/jzj2C (3.83)

@%Eı;!.%
!.t; x/; #/@t%

!.t; x/C @%Eı;!.%
!.t; x/; #/

�r%! � u!�.t; x/C

�Sı;!.rxu!.t; x/; #/ W ru!.t; x/C @#Eı;!.%
!.t; x/; #/

�
z � u!�.t; x/C

Eı;!.%
!.t; x/; #/divxu! C p!.%

!.t; x/; #/divxu!.t; x/

��ıG!.t; x/C ı

#2 C !2
� "�5!.#/ � %!Q!.t; x/�:

In accordance with the properties of mollifiers recalled in Sect. 11.2 in
Appendix, aij, b,  satisfy assumptions of Theorem 11.31 from Sect. 11.16.
Therefore, problem (3.80) admits a (unique) solution # D #! which belongs
to class

#! 2 C.Œ0;T�IC2;� .�//\ C1.Œ0;T� ��/; @t#! 2 C0;�=2.Œ0;T�IC.�//:

(iv) The proofs of Lemma 3.2, Corollary 3.2 and Lemma 3.3 apply with minor
modifications to system (3.80), yielding the uniform bounds

k 1
#!

kL1..0;T/��/ C k#!kL1..0;T/��/ � c;

ess sup
t2.0;T/

k#!k2W1;2.�/
C
Z T

0

�
k@t#!k2L2.�/ C k�xKı.#!/k2L2.�/

�
dt � c

with respect to ! ! 0C. With these bounds and the properties of mollifiers
recalled in Sect. 11.2 at hand, the limit passage from system (3.80) to (3.55)–
(3.57) is an easy exercise.

The results achieved in this section can be stated as follows.

� APPROXIMATE INTERNAL ENERGY EQUATION:

Lemma 3.4 Let � � R
3 be a bounded domain of class C2;� , � 2 .0; 1/. Let u 2

C.Œ0;T�IXn/ be a given vector field and let % D %u be the unique solution of the
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approximate problem (3.45)–(3.47) constructed in Lemma 3.1. Further

(i) let the initial datum #0;ı 2 W1;2.�/ \ L1.�/ be bounded below away from
zero as stated in hypothesis (3.58) and the source term Qı satisfies (3.60);

(ii) let the constitutive functions p, e, s and the transport coefficients , �, � obey
the structural assumptions (3.7)–(3.23).

Then problem (3.55)–(3.57), with eı, Kı defined in (3.59) and u, %u fixed,
possesses a unique strong solution # D #u belonging to the regularity class

Y D
8
<

:

@t# 2 L2..0;T/ ��/; �xKı.#/ 2 L2..0;T/ ��/;

# 2 L1.0;TIW1;2.�/ \ L1.�//; 1
#

2 L1..0;T/ ��/:

9
=

;
(3.84)

Moreover, the mapping u ! #u maps bounded sets in C.Œ0;T�IXn/ into bounded
sets in Y and is continuous with values in L2.0;TIW1;2.�//.

3.4.3 Local Solvability of the Approximate Problem

At this stage, we are ready to show the existence of approximate solutions on
a possibly short time interval .0;Tmax/. In accordance with (3.50), Xn is a finite
dimensional subspace of L2.�;R3/ endowed with the Hilbert structure induced
by L2.�IR3/. We denote by Pn the orthogonal projection of L2.�;R3/ onto Xn.
Furthermore, we set

u0;ı D .%u/0
%0;ı

; u0;ı;n D PnŒu0;ı�: (3.85)

We start rewriting (3.49) as a fixed point problem:

u.	/ D J
h
%.	/;

Z 	

0

M.t; %.t/; #.t/;u.t//dt C .%u/�0
i

� SŒu�.	/; 	 2 Œ0;T�;
(3.86)

where we have denoted

.%u/�0 2 X�
n ; < .%u/

�
0 I ' >�

Z

�

.%u/0 � ' dx for all ' 2 Xn;

M.t; %; #;u/ 2 X�
n ;

< M.t; %; #;u/I' >D
Z

�

�
%Œu ˝ u� W rx' C . p C ı.%� C %2//divx'

�
dx

�
Z

�

�
".rx%rxu/ � ' C Sı W rx' � %fı.t/ � '

�
dx for all ' 2 X�

n ;
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and

JŒ%; �� W X�
n ! Xn;

Z

�

%JŒ%; �� � ' dx D< �I ' > for all � 2 X�
n ; ' 2 Xn:

Note that

k JŒ%; �� kXn � 1

A
k � kX�

n
; A D inf

.t;x/2.0;T/�� %.t; x/ (3.87)

and

k JŒ%1; �� � JŒ%2; �� kXn � (3.88)

c

A1A2
k%1 � %2kL1.�/k�kX�

n
; Ai D inf

.t;x/2.0;T/�� %i.t; x/; i D 1; 2;

where c > 0 depends solely on n, in particular, it is independent of the data specified
in (2.41) and the parameters ", ı, � .

Given u 2 C.Œ0;T�IXn/, the density % D %u can be identified as the unique
(classical) solution of the parabolic problem (3.45)–(3.48), the existence of which
is guaranteed by Lemma 3.1. In particular, the (approximate) density %u remains
bounded below away from zero as soon as we can control divxu. Note that, at this
level of approximation, the norm of divxu is dominated by that of u as the dimension
of Xn is finite.

With u, %u at hand, the temperature # D #u can be determined as the unique
solution of problem (3.55)–(3.57) constructed by means of Lemma 3.4, in particular,
# is strictly positive with a lower bound in terms of the data, see Corollary 3.2.

If kukC.Œ0;T�IXn / � R, then

kJŒ%.	/; R 	
0
M.t; %.t/;u.t/; #.t/ dt C .%u/�0 kXn �

c0
%0
%
0

exp.2R	/ku0;ı;nkXn C 	h.R/ for all 	 2 Œ0;T�;
(3.89)

where we have used Lemmas 3.1, 3.4, specifically, bounds (3.62), (3.84). The
constant c0, determined in terms of equivalence of norms on Xn, depends solely
on n and h is a positive function bounded on bounded sets.

Consequently, if

R > 2c0
%0

%
0

ku0;ı;nkXn ; (3.90)

the operator u 7! SŒu� determined through (3.86) maps the ball

BR;	0 D
n
u 2 C.Œ0; 	0�;Xn/

ˇ
ˇ
ˇ kukC.Œ0;	0 �IXn/ � R; u.0/ D u0;ı;n

o
(3.91)

into itself as soon as 	0 is small enough.



3.4 Solvability of the Approximate System 73

Moreover, as a consequence of (3.88) and smoothness of %, the image of BR;	0
consists of uniformly Lipschitz functions on Œ0; 	0�, in particular, it belongs to a
compact set in C.Œ0; 	0�IXn/. Thus a direct application of the Leray-Schauder fixed
point theorem yields existence of a solution f%;u; #g of the approximate problem
(3.45)–(3.57) defined on a (possibly short) time interval Œ0;T.n/�. Finally, taking
advantage of Lemma 3.1, we deduce from (3.86) that

u 2 C1.Œ0;T.n/�IXn/: (3.92)

The above procedure can be iterated as many times as necessary to reach T.n/ D
T as long as there is a bound on u independent of T.n/. The existence of such a
bound is the main topic discussed in the next section.

3.4.4 Uniform Estimates and Global Existence

Let f%;u; #g be an approximate solution of problem (3.45)–(3.57) defined on a
time interval Œ0;Tmax�, Tmax � T. The last step in the proof of Proposition 3.1
is to establish a uniform (in time) bound on the norm ku.t/kXn for t 2 Œ0;Tmax�

independent of Tmax. The existence of such a bound allows us to iterate the local
construction described in the previous section in order to obtain an approximate
solution defined on the full time interval Œ0;T�. To this end, the a priori estimates
derived in Sect. 2.2 will be adapted in order to accommodate the extra terms arising
at the actual level of approximation.

First of all, it follows from (3.45), (3.46) that the total mass remains constant in
time, specifically,

Z

�

%.t/ dx D
Z

�

%0;ı dx D M0;ı for all t 2 Œ0;Tmax�: (3.93)

The next observation is that the quantity  u, with  D  .t/,  2 C1c Œ0;Tmax/,
can be taken as a test function in the variational formulation of the momentum
equation (3.49) to obtain

Z

�

�1
2
%juj2 C ı.

%�

� � 1 C %2/
�
.	/ dx C "ı

Z 	

0

Z

�

jrx%j2.�%��2 C 2/ dx dt

(3.94)

D
Z

�

�1
2
.%u/0u.0/C ı.

%�0;ı

� � 1 C %20;ı/
�

dx C
Z 	

0

Z

�

�
pdivxu � Sı W rxu

�
dx dt

C
Z 	

0

Z

�

%fı � u dx dt;
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which, combined with (3.55), gives rise to the approximate energy balance

Z

�

�1
2
%juj2 C %eı.%; #/C ı.

%�

� � 1 C %2/
�
.	/ dx (3.95)

D
Z

�

�1
2
.%u/0u.0/C %0;ıeı.%0;ı; #0;ı/C ı.

%�0;ı

� � 1 C %20;ı/
�

dx

C
Z 	

0

Z

�

�
%fı � u C %Qı C ı

1

#2
� "#5

�
dx dt for all 	 2 Œ0;Tmax�:

Moreover, dividing the approximate internal energy equation (3.55) on # , we
obtain, after a straightforward manipulation, an approximate entropy production
equation in the form

@t.%sı.%; #//C divx.%sı.%; #/u/� divx
h��.#/

#
C ı.#��1 C 1

#2
/
�
rx#

i
(3.96)

D 1

#

h
Sı W rxu C

��.#/
#

C ı.#��1 C 1

#2
/
�
jrx#j2 C ı

1

#2

i

C"ı

#
.�%��2 C 2/jrx%j2C

"
�x%

#

�
#sı.%; #/ � eı.%; #/ � p.%; #/

%

�
� "#4 C %

#
Qı

satisfied a.a. in .0;Tmax/ ��, where
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%
: (3.98)

Relations (3.95), (3.96) give rise to uniform estimates similar to those obtained in
Sect. 2.2.3. Indeed, multiplying (3.96) on # , where # is a arbitrary positive constant,
integrating over�, and subtracting the resulting expression from (3.96), we get
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where Hı;# is an analogue of the Helmholtz function introduced in (2.48), specifi-
cally,

Hı;# .%; #/ D %eı.%; #/ � #%sı.%; #/ D H#.%; #/C ı%.# � # log#/: (3.100)

Here, in accordance with (3.98),
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where, by virtue of Gibbs’ relation (3.7),
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Equality (3.99) therefore transforms to
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.%; #/jrx%j2:

Similarly to Sect. 2.2.3, relation (3.104) provides all the necessary uniform
estimates as soon as we check that the terms on the right hand side can be controlled
by the positive quantities on the left hand side. In order to see that, observe that the
term ı=#2 on the right-hand side of (3.104) is dominated by its counterpart ı=#3 in
the entropy production term �";ı . Analogously, the quantity "##4 at the right hand
side is “absorbed” by the term "#5 at the left hand side of (3.104). Finally, the term
%.1� #

#
/Qı can be written as a sum %.1� #

#
/Qı1f#�1g C %.1� #

#
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Consequently, it remains to handle the quantity
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appearing on the right-hand side of (3.104). To this end, we first use hypothesis
(3.13), together with (3.30), in order to obtain
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where, furthermore,
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and, similarly,
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Thus we infer that
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provided " D ".ı/ > 0 is small enough.
Taking into account the properties of the function Hı;# (see (2.49)–(2.50) in

Sect. 2.2.3), we are ready to summarize the so far obtained estimates as follows:
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(3.107)

where c is a positive constant depending on the data specified in (2.41) but
independent of Tmax, n, ", and ı.

At this stage, following the line of arguments presented in Sect. 2.2.3, we can use
the bounds listed in (3.107) in order to deduce uniform estimates on the approximate
solutions defined on the time interval Œ0;Tmax� independent of Tmax. Indeed it follows
from (3.107) that

ess sup
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%uk2L2.�IR3/C (3.108)
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in particular, by means of hypothesis (3.53) and Proposition 2.1,

Z Tmax

0

Z

�

�
juj2 C jrxuj2

�
dx dt � c.data; "; ı/:

Consequently, by virtue of (3.63), the density % is bounded below away from
zero uniformly on Œ0;Tmax�, and we conclude

sup
Œ0;Tmax�

kukXn � c.data; "; ı/: (3.109)

As already pointed out, bound (3.109) and the local construction described in the
previous section give rise to an approximate solution f%;u; #g defined on Œ0;T�. We
have proved Proposition 3.1.

3.5 Faedo-Galerkin Limit

In the previous section, we constructed a family of approximate solutions to the
NAVIER-STOKES-FOURIER SYSTEM satisfying (3.45)–(3.60), see Proposition 3.1.
Our goal in the remaining part of this chapter is to examine successively the
asymptotic limit for n ! 1, " ! 0, and, finally, ı ! 0. The first step of this
rather long procedure consists in performing the limit n ! 1.

We recall that the spaces Xn introduced in Sect. 3.3.1 are formed by sufficiently
smooth functions ' (belonging at least to C2;�.�/) satisfying either the complete
slip boundary condition (3.51) or the no-slip boundary conditions (3.52) as the case
may be. Clearly, the approximate velocity field u 2 C1.Œ0;T�IXn/ belongs to the
same class for each fixed t 2 Œ0;T�. In the remaining part of the chapter, we make
an extra hypothesis that the vector space X,

X � [1
nD1Xn is dense in W1;p

n .�IR3/; W1;p
0 .�IR3/; respectively,

for any 1 � p < 1, where

W1;p
n .�IR3/ D

n
v
ˇ
ˇ
ˇv 2 Lp.�IR3/; rxv 2 Lp.�IR3�3/;

v � nj@� D 0 in the sense of traces
o
;

W1;p
0 .�IR3/ D

n
v
ˇ
ˇ
ˇv 2 Lp.�IR3/; rxv 2 Lp.�IR3�3/;

vj@� D 0 in the sense of traces
o
:



3.5 Faedo-Galerkin Limit 79

Such a choice of Xn is possible provided � belongs to the regularity class C2;�

required by Theorem 3.1. The interested reader may consult Sect. 11.8 in Appendix
for technical details.

3.5.1 Estimates Independent of the Dimension
of Faedo-Galerkin Approximations

For " > 0, ı > 0 fixed, let f%n;un; #ng1
nD1 be a sequence of approximate solutions

constructed in Sect. 3.4. In accordance with (3.107), this sequence admits the
following uniform estimates:
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and
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#

%n#n

@pM
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.%n; #n/jrx%nj2 dx dt � c; (3.113)

where c denotes a generic constant depending only on the data specified in (2.41),
in particular, c is independent of the parameters n, ", and ı.

By virtue of the coercivity properties of Hı;# established in (2.49), (2.50), the
uniform bound (3.110) implies that

f%ng1
nD1 is bounded in L1.0;TIL�.�//; (3.114)

therefore we can assume

%n ! % weakly-(*) in L1.0;TIL�.�//: (3.115)
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On the other hand, estimate (3.111), together with hypothesis (3.53) and Proposi-
tion 2.1, yield

fung1
nD1 bounded in L2.0;TIW1;2.�IR3//; (3.116)

in particular

un ! u weakly in L2.0;TIW1;2.�IR3//; (3.117)

at least for a suitable subsequence.
At this point it is worth noting that the limit density % is still a non-negative

quantity albeit not necessarily strictly positive as this important property stated in
(3.63) is definitely lost in the limit passage due to the lack of suitable uniform
estimates for divxun. The fact that the class of weak solutions admits cavities
(vacuum regions) seems rather embarrassing from the point of view of the model
derived for non-dilute fluids, but still physically acceptable.

Convergence (3.115) can be improved to

%n ! % in Cweak.Œ0;T�IL� .�// (3.118)

as %n, un solve Eq. (3.45). Indeed we check easily that for all ' 2 C1
c .�/, the

functions t ! Œ
R
�
%n' dx�.t/ form a bounded and equi-continuous sequence in

CŒ0;T�. Consequently, the standard Arzelà-Ascoli theorem (Theorem 1) yields

Z

�

%n' dx !
Z

�

%' dx in CŒ0;T� for any ' 2 C1
c .�/:

Since %n satisfy (3.114), the convergence extends easily to each ' 2 L�
0

.�/ via
density.

In order to deduce uniform estimates on the approximate temperature #n, we
exploit the structural properties of the Helmholtz functionH# . Note that these follow
directly from the hypothesis of thermodynamics stability and as such may be viewed
as a direct consequence of natural physical principles. The following assertion will
be amply used in future considerations.

� COERCIVITY OF THE HELMHOLTZ FUNCTION:

Proposition 3.2 Let the functions p, e, and s be interrelated through Gibbs’
equation (1.2), where p and e comply with hypothesis of thermodynamic stability
(1.44).

Then for any fixed % > 0, # > 0, the Helmholtz function

H#.%; #/ D %e.%; #/ � #%s.%; #/
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satisfies

H#.%; #/ 	 1

4
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%e.%; #/C #%js.%; #/j

�
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ˇ̌
.% � %/@H2#

@%
.%; 2#/C H2# .%; 2#/

ˇ
ˇ̌

for all positive %, # .

Proof As the result obviously holds if s.%; #/ � 0, we focus on the case s.%; #/ > 0.
It follows from (2.49), (2.50) that

H2# .%; #/ 	 .% � %/@H2#
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and, similarly,

H#.%; #/ D #%s.%; #/C H2#.%; #/ 	 #%s.%; #/
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@H2#
@%

.%; 2#/C H2#.%; 2#/:

Summing up the last two inequalities we obtain the desired conclusion.
ut

On the basis of Proposition 3.2, we can deduce from hypothesis (3.9) and the
total energy estimate (3.110) that

f#ng1
nD1 is bounded in L1.0;TIL4.�//; (3.119)

therefore we may assume

#n ! # weakly-(*) in L1.0;TIL4.�//: (3.120)

In addition, using boundedness of the entropy production rate stated in (3.111) we
get

frx#
�
2
n g1

nD1;
n
rx

� 1p
#n

�o1
nD1 bounded in L2.0;TIL2.�IR3//: (3.121)
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Estimates (3.119), (3.121), together with Poincare’s inequality formulated in terms
of Proposition 2.2, yield

f#ng1
nD1; f# �

2
n g1

nC1 bounded in L2.0;TIW1;2.�//; (3.122)

in particular,

#n ! # weakly in L2.0;TIW1;2.�//: (3.123)

Moreover, by virtue of estimate (3.111), we have
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#3n
dx dt � c; (3.124)

notably the limit function # is positive almost everywhere in .0;T/�� and satisfies
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#3
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n!1

Z T
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Z

�

1

#3n
dx dt; (3.125)

where we have used convexity of the function z 7! z�3 on .0;1/, see Theo-
rem 11.27 in Appendix.

Finally, the standard embedding relation W1;2.�/ ,! L6.�/, together with
(3.121), can be used in order to derive higher integrability estimates of #n, namely

f#ng1
nD1 bounded in L�.0;TIL3�.�//: (3.126)

Note that, as a byproduct of (3.125), (3.126),

flog.#n/g1
nD1 is bounded in Lq..0;T/ ��/ for any finite q 	 1: (3.127)

3.5.2 Limit Passage in the Approximate Continuity Equation

At this stage, we are ready to show strong (pointwise) convergence of the approxi-
mate densities and to let n ! 1 in equation (3.45). To this end, we need to control
the term pdivxu in the approximate energy balance (3.94).

A direct application of (3.32) yields
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where, by virtue of (3.114), (3.116), (3.119), and (3.126), the last integral is bounded
provided � > 5. Accordingly, relation (3.94) gives rise to

"ı

Z T

0

Z

�

.�%��2
n C 2/jrx%nj2 dx dt � c; (3.128)

with c independent of n. Applying the Poincaré inequality (see Proposition 2.2) we
get

f%ng1
nD1; f%�

2
n g1

nD1 bounded in L2.0;TIW1;2.�//; (3.129)

and

f%ng1
nD1 bounded in L�.0;TIL3�.�//: (3.130)

The next step is to obtain uniform estimates on @t%n, �%n. This is a delicate task
as

.@t � "�/Œ%n� D �rx%n � un � %ndivxun;

where, in accordance with (3.116), (3.129), rx%n �un is bounded in L1.0;TIL 3
2 .�//,

notably this quantity is merely integrable with respect to time. To overcome this
difficulty, multiply Eq. (3.45) on G0.%n/ and integrate by parts to obtain
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G.%n/ dx C "

Z
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G00.%n/jrx%nj2 dx D
Z
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G.%n/� G0.%n/%n

�
divxun dx:

(3.131)

This is of course nothing other than an integrated “parabolic” version of the
renormalized continuity equation (2.2). Taking G.%n/ D %n log.%n/ we easily
deduce

"
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jrx%nj2
%n

dx dt � c: (3.132)

As a consequence of (3.110), the kinetic energy is bounded, specifically,

ess supt2.0;T/
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%njunj2 dx dt � cI (3.133)

whence estimate (3.132) can be used to obtain
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p
%nunkL2.�IR3/;
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where the product on the right-hand side is bounded in L2.0;T/. Then a standard
interpolation argument implies

8
<

:

frx%n � ung1
nD1 bounded in Lq.0;TILp.�//

for any p 2 .1; 3
2
/; where q D q. p/ 2 .1; 2/:

9
=

;
(3.134)

Applying the Lp � Lq theory to the parabolic equation (3.45) (see Sect. 11.15 in
Appendix) we conclude that

f@t%ng1
nD1; f@xi@xj%ng1

nD1; i; j D 1; : : : ; 3 are bounded in Lq.0;TILp.�//

for any p 2 .1; 3
2
/; where q D q. p/ 2 .1; 2/:

(3.135)
Now we are ready to carry out the limit passage n ! 1 in the approximate

continuity Eq. (3.45). To begin, the uniform bounds established (3.135), together
with the standard compactness embedding relations for Sobolev spaces, imply

%n ! % a.a. in .0;T/ ��: (3.136)

Moreover, in view of (3.99), (3.117), (3.134), (3.135), and (3.136), it is easy to let
n ! 1 in the approximate continuity Eq. (3.45) to obtain

@t%C divx.%u/ D "�% a.a. in .0;T/ ��; (3.137)

where % is a non-negative function satisfying

rx%.t; �/ � nj@� D 0 for a.a. t 2 .0;T/ in the sense of traces; (3.138)

together with the initial condition

%.0; �/ D %0;ı ; (3.139)

where %0;ı has been specified in (3.48).
Our next goal is to show strong convergence of the gradients rx%n. To this

end, we use the “renormalized” identity (3.131) with G.z/ D z2, together with the
pointwise convergence established in (3.136), to deduce
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for any 0 < 	 � T. On the other hand, multiplying Eq. (3.137) on % and integrating
by parts yields
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0
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whence

rx%n ! rx% (strongly) in L2.0;TIL2.�IR3//: (3.140)

3.5.3 Strong Convergence of the Approximate Temperatures
and the Limit in the Entropy Equation

Strong Convergence of the Approximate Temperatures The next step is to
perform the limit in the approximate entropy balance (3.96). Here the main problem
is to show strong (pointwise) convergence of the temperature. Indeed all estimates
on f#ng1

nD1 established above concern only the spatial derivatives leaving open the
question of possible time oscillations. Probably the most elegant way to overcome
this difficulty is based on the celebrated Div-Curl lemma discovered by Tartar [254].

� DIV-CURL LEMMA:

Proposition 3.3 Let Q � R
N be an open set. Assume

Un ! U weakly in Lp.QIRN/;

Vn ! V weakly in Lq.QIRN/;

where

1

p
C 1

q
D 1

r
< 1:

In addition, let

div Un � r � Un;

curl Vn � .rVn � rTVn/

9
=

;
be precompact in

�
W�1;s.Q/;
W�1;s.Q;RN�N/;

for a certain s > 1.
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Then

Un � Vn ! U � V weakly in Lr.Q/:

Proposition 3.3 is proved in Sect. 11.14 in Appendix for reader’s convenience.
�

The basic idea is to apply Proposition 3.3 to the pair of functions

Un D Œ%nsı.%n; #n/; r
.1/
n �;

Vn D Œ#n; 0; 0; 0�;

(3.141)

defined on the set Q D .0;T/ � � � R
4, where the term r.1/n , together with the

necessary piece of information concerning divt;xUn, are provided by Eq. (3.96).
To see this, we observe first that the only problematic term on the right-hand side

of (3.96) can be handled as
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@eM
@%

.%n; #n/
�rx%n � rx#n

#2n

(cf. (3.101)–(3.103)). Indeed, in accordance with the uniform estimates (3.106),
(3.111), the approximate entropy balance equation (3.96) can be now written in
the form

@t.%nsı.%n; #n//C divx.r.1/n / D r.2/n C r.3/n ; (3.143)

where

r.1/n D %nsı.%n; #n/un � �ı.#n/

#n
rx#n

�"
�
#nsM;ı.%n; #n/ � eM;ı .%n; #n/ � pM.%n; #n/

%n

�rx%n

#n
;
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r.2/n D 1

#n

h
Sı.#n;rxun/ W rxun C

��.#n/
#n

C ı.#��1
n C 1

#2n
/
�
jrx#nj2 C ı

1

#n
2

i
C

"ı

#n
.�%��2

n C 2/jrx%nj2 C "
1

%n#n

@pM
@%

.%n; #n/jrx%nj2 	 0;

and

r.3/n D �"
�
eM;ı .%n; #n/C %n

@eM
@%

.%n; #n/
�rx%n � rx#n

#2n
� "#4n C %n

#n
Qı:

Hence, by virtue of the uniform estimates (3.106), (3.111)–(3.113), and (3.119),

divt;xUn D r.2/n C r.3/n

is bounded in L1..0;T/ ��/, therefore precompact in W�1;s..0;T/ ��/ provided
s 2 Œ1; 4

3
/ (cf. Sect. 7). On the other hand, due to (3.116), curlt;xVn is obviously

bounded in L2..0;T/ � �IR4/ which is compactly embedded into W�1;2..0;T/ �
�IR4/. Let us remark that the “space-time” operator curlt;x applied to the vector
field Œ#n; 0; 0; 0� involves only the partial derivatives in the spatial variable x.

Consequently, in order to apply Proposition 3.3 in the situation described in
(3.141), we have to show that %ns.%n; #n/ and r.1/n are bounded in a Lebesgue space
“better” than only L1.

To this end, write

%sı.%; #/ D 4

3
a#3 C %sM.%; #/C ı% log.#/;

where %nsM.%n; #n/ satisfies (3.39), therefore

%njsı.%n; #n/j � c.%n C #3n C %nj log%nj C %nj log#nj/:

Consequently, thanks to estimates (3.127), (3.129),

f%nsı.%n; #n/g1
nD1 is bounded in L

�
3 ..0;T/ ��/;

f%nsı.%n; #n/ung1
nD1 is bounded in Lp..0;T/ ��/; 1p D 1

2
C 3

�
provided � > 6:

(3.144)

Next we observe that (3.111) implies in the way explained in (2.58) that

fr log.#n/g1
nD1 is bounded in L2..0;T/ ��IR3/:
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Furthermore, it follows from (3.111) that

( p
�ı.#n/

#n
rx#n

)1

nD1
is bounded in L2..0;T/ ��IR3/:

Moreover, estimates (3.124), (3.126) and (3.119) combined with a simple interpo-
lation yield

f
p
�ı.#n/g1

nD1 is bounded in Lp..0;T/ ��/ for a certain p > 2;

on condition that � > 6. From the last two estimates, we deduce that

n�ı.#n/
#n

rx#n

o1
nD1 is bounded in Lp..0;T/��IR3/ for a certain p > 1: (3.145)

Finally, the "-dependent quantity contained in r.1/n can be handled in the following
way:

• Similarly to the proof of formula (3.144), we conclude, by help of estimates
(3.126), (3.127), (3.132), that

fsı.%n; #n/r%ng1
nD1 is bounded in L

2�
�C6 ..0;T/ ��/ (3.146)

provided � > 6.
• Since the specific internal energy eM satisfies (3.30), we have

ˇ
ˇ̌eM.%n; #n/

#n
rx%n

ˇ
ˇ̌ � c.1C %

2
3
n

#n
/jrx%njI

whence, in accordance with estimates (3.114), (3.124), and (3.129),

neM.%n; #n/
#n

rx%n

o1
nD1 is bounded in L

6�
5�C4 ..0;T/ ��IR3/: (3.147)

• By virtue of (3.31) and (3.32),

ˇ
ˇ̌pM.%n; #n/

%n#n
rx%n

ˇ
ˇ̌ � cjrx%nj

�
1C %

2
3
n

#n

�
; (3.148)

where the right hand side can be controlled exactly as in (3.147).

Having verified the hypotheses of Proposition 3.3 for the vector fields Un, Vn

specified in (3.141), we are allowed to conclude that

%sı.%; #/# D %sı.%; #/ # (3.149)
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provided � > 6. In formula (3.149) and hereafter, the symbol F.U/ denotes a weak
L1-limit of the sequence of composed functions fF.Un/g1

nD1 (cf. Sect. 8).
Since the entropy is an increasing function of the absolute temperature, relation

(3.149) can be used to deduce strong (pointwise) convergence of the sequence
f#ng1

nD1.
To begin, we recall (3.97), namely

%sı.%; #/ D %sM.%; #/C ı% log.#/C 4

3
a#3:

As all three components of the entropy are increasing in # , we observe that

%sM.%; #/# 	 %sM.%; #/#; % log.#/# 	 % log.#/#; and #4 	 #3#: (3.150)

Indeed, as f%ng1
nD1 converges strongly (see (3.136)) we have

%sM.%; #/# D %sM.%; #/#; %sM.%; #/ D %sM.%; #/;

where, as a direct consequence of monotonicity of sM in # ,

sM.%; #/# 	 sM.%; #/#;

see Theorem 11.26 in Appendix. Here, we have used (3.123), (3.136) yielding

sM.%n; #/.#n � #/ ! 0 weakly in L1..0;T/ ��/:

The remaining two inequalities in (3.150) can be shown in a similar way.
Combining (3.149), (3.150) we infer that

#4 D #3#;

in particular, at least for a suitable subsequence, we have

#n ! # a.e. in .0;T/ ��/ (3.151)

(cf. Theorems 11.26, 11.27 in Appendix).

Limit in the Approximate Entropy Equation Our ultimate goal in this section is
to let n ! 1 in the approximate entropy Eq. (3.143).

First of all, we estimate the term

"
�
eM;ı.%n; #n/C %n

@eM
@%

.%n; #n/
�rx%n � rx#n

#2n
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in the same way as in (3.106) transforming (3.143) to inequality

@t.%nsı.%n; #n//C divx
�
%nsı.%n; #n/un � �ı.#n/

#n
rx#n

�
(3.152)

�"divx
h�
#nsM;ı .%n; #n/� eM;ı.%n; #n/ � pM.%n; #n/

%n

�rx%n

#n

i

	 1

#n

h
Sı.#n;rxun/ W rxun C

��.#n/
#n

C ı

2
.#��1

n C 1

#2n
/
�
jrx#nj2 C ı

1

#n
2

i

C "ı

2#n
.�%��2

n C 2/jrx%nj2 C "
1

%n#n

@pM
@%

.%n; #n/jrx%nj2 � "#4n C %n

#n
Qı:

As a consequence of (3.136), (3.144), (3.151),

%nsı.%n; #n/ ! %sı.%; #/ (strongly) in L2..0;T/ ��/; (3.153)

and, in accordance with (3.116),

%nsı.%n; #n/un ! %sı.%; #/u weakly in L1..0;T/ ��IR3/: (3.154)

Since the sequence f#ng1
nD1 converges a.a. in .0;T/ ��, we can use hypotheses

(3.21), (3.22), together with estimates (3.119), (3.122), (3.124), (3.126), to get

�.#n/

#n
! �.#/

#
(strongly) in L2..0;T/ ��/

yielding, in combination with (3.123),

�.#n/

#n
rx#n ! �.#/

#
rx# weakly in L1..0;T/ ��IR3/: (3.155)

On the other hand, by virtue of relations (3.121), (3.124), (3.126),

�
#��1
n C 1

#2n

�
rx#n D 1

�
rx.#

�
n /� rx.1=#n/ ! (3.156)

1

�
rx.#�/� rx1=# weakly in Lp..0;T/ ��/ for some p > 1;

where, according to (3.151),

1

�
rx.#�/ � rx1=# D 1

�
rx.#

�/ � rx1=# D #��1rx# C 1

#2
rx#: (3.157)
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In order to control the "-term on the left hand side of (3.152), we first observe
that

ˇ
ˇ
ˇ
1

#

�
#sM;ı .%; #/�eM;ı .%; #/�pM.%; #/

%

�
r%
ˇ
ˇ
ˇ � c.j log#jCj log %jC%2=3

#
C1/jr%j;

where we have used (3.31), (3.32), (3.39).
As a next step, we apply relations (3.122), (3.129), and (3.132), together with the

arguments leading to (3.147), in order to deduce boundedness of the quantity

1

#n

�
#sM;ı .%n; #n/ � eM;ı.%n; #n/ � pM.%n; #n/

%n

�
r%n

in Lp..0;T/ ��IR3/ for some p > 1:

In particular, by virtue of (3.136), (3.140), (3.151), we obtain

1

#n

�
#nsM;ı .%n; #n/� eM;ı.%n; #n/� pM.%n; #n/

%n

�
r%n ! (3.158)

1

#

�
#sM;ı .%; #/ � eM;ı.%; #/ � pM.%; #/

%

�
r% weakly in L1..0;T/ ��IR3/:

Finally, we identify the asymptotic limit for n ! 1 of the approximate entropy
production rate represented through the quantities on the right-hand side of (3.152).
In accordance with (3.111), we have

8
<

:

s

.
�.#n/
#n

C ı
��

rxun C rx
Tun � 2

3
divxun

�
9
=

;

1

nD1
;

8
<

:

s
�.#n/

#n
divxun

9
=

;

1

nD1

bounded in L2..0;T/ ��IR3�3/, and in L2..0;T/ ��/, respectively. In particular,

r�
.#n/

#n
C ı

��
rxun C rx

Tun � 2
3
divxun

�

!
r�

.#/

#
C ı

��
rxu C rx

Tu � 2
3
divxu

�
weakly in L2..0;T/ ��IR3�3/;

(3.159)

where we have used (3.117) and (3.151).
Similarly,

s
�.#n/

#n
divxun !

r
�.#/

#
divxu weakly in L2..0;T/ ��/; (3.160)
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and, by virtue of (3.111), (3.123) and (3.151),

p
�ı.#n/

#n
rx#n !

p
�ı.#/

#
rx# weakly in L2..0;T/ ��IR3/: (3.161)

By the same token, due to (3.112), (3.136), (3.140),

s
��%��2

n C 2

#n

�
rx%n ! (3.162)

r��%��2 C 2

#

�
rx% weakly in L2..0;T/ ��IR3/;

while, by virtue of (3.113), (3.136), (3.140), (3.151),

1
p
%n#n

s
@pM
@%

.%n; #n/rx%n ! (3.163)

1
p
%#

s
@pM
@%

.%; #/rx% weakly in L2..0;T/ ��IR3/:

Finally, as a consequence of (3.136), (3.151), and the bounds established in
(3.124), (3.126), (3.130), we have

"#4n � %n

#n
Qı ! "#4 � %

#
Qı in Lp..0;T/ ��/ for some p > 1: (3.164)

The convergence results just established are sufficient in order to perform the
weak limit for n ! 1 in the approximate entropy balance (3.152). Although we are
not able to show strong convergence of the gradients of %, # , and u, the inequality
sign in (3.152) is preserved under the weak limit because of lower semi-continuity
of convex superposition operators (cf. Theorem 11.27 in Appendix). Consequently,
we are allowed to conclude that

Z T

0

Z

�

%sı.%; #/
�
@t' C u � rx'

�
dx dt C

Z T

0

Z

�

�qı
#

C "r�
�

� rx' dx dt

(3.165)

C
Z T

0

Z

�

�";ı' dx dt � �
Z

�

.%s/0;ı'.0; �/ dx C
Z T

0

Z

�

�
"#4 � %

#
Qı

�
' dx dt;

for any ' 2 C1
c .Œ0;T/ ��/; ' 	 0;
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where we have set

qı D qı.#;r#/ D �ı.#/rx#; �ı.#/ D �.#/C ı
�
#� C 1

#

�
;

sı.%; #/ D s.%; #/C ı log#;

(3.166)

and

�";ı D 1

#

h
Sı W rxu C

��.#/
#

C ı

2
.#��1 C 1

#2
/
�
jrx#j2 C ı

1

#2

i
C (3.167)

C "ı

2#
.�%��2 C 2/jrx%j2 C "

@pM
@%

.%; #/
jrx%j2
%#

;

r" D �
�
#sM;ı .%; #/ � eM;ı .%; #/ � pM.%; #/

%

�rx%

#
:

3.5.4 Limit in the Approximate Momentum Equation

With regard to formulas (3.32), (3.53), estimates (3.114), (3.116), (3.119), (3.126),
(3.129), (3.130), and the asymptotic limits established in (3.117), (3.136), (3.140),
(3.151), it is easy to identify the limit for n ! 1 in all quantities appearing in
the approximate momentum equation (3.49) for a fixed test function ', with the
exception of the convective term. Note that, even at this level of approximations, we
have already lost compactness of the velocity field in the time variable because of
the hypothetical presence of vacuum zones.

To begin, observe that

%nun ˝ un ! %u ˝ u weakly in Lq..0;T/ ��IR3�3/ for a certain q > 1;

where we have used the uniform bounds (3.110), (3.116). Thus we have to show

%u ˝ u D %u ˝ u: (3.168)

To this end, observe first that

%nun ! %u weakly-(*) in L1.0;TIL 5
4 .�IR3//

as a direct consequence of estimates (3.114), (3.133), and strong convergence of the
density established in (3.136).
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Moreover, it can be deduced from the approximate momentum equation (3.49)
that the functions
�
t 7!

Z

�

%nun � � dx


are equi-continuous and bounded in C.Œ0;T�/ (3.169)

for any fixed � 2 [1
nD1Xn. Since the set [1

nD1Xn is dense in L5.�IR3/ we obtain,
by means of the Arzelà-Ascoli theorem, that

%nun ! %u in Cweak.Œ0;T�IL5=4.�//:

On the other hand, as the Lebesgue space L5=4.�/ is compactly embedded into the
dual W�1;2.�/, we infer that

%nun ! %u (strongly) in Cweak.Œ0;T�IW�1;2.�IR3//: (3.170)

Relation (3.170), together with the weak convergence of the velocities in the
space L2.0;TIW1;2.�IR3// established in (3.117), give rise to (3.168).

3.5.5 The Limit System Resulting from the Faedo-Galerkin
Approximation

Having completed the necessary preliminary steps, in particular, the strong conver-
gence of the density in (3.140), and the strong convergence of the temperature in
(3.151), we can let n ! 1 in the approximate system (3.45)–(3.60) to deduce that
the limit quantities f%;u; #g satisfy:

(i) Approximate continuity equation:

@t%C divx.%u/ D "�% a.a. in .0;T/ ��; (3.171)

together with the homogeneous Neumann boundary condition

rx% � nj@� D 0; (3.172)

and the initial condition

%.0; �/ D %0;ı: (3.173)
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(ii) Approximate balance of momentum:

Z T

0

Z

�

�
%u � @t' C %Œu ˝ u� W rx' C

�
p C ı.%� C %2/

�
divx'

�
dx dt

(3.174)

D
Z T

0

Z

�

�
".rx%rxu/ � ' C Sı W rx' � %fı � '

�
dx dt �

Z

�

.%u/0 � ' dx;

satisfied for any test function ' 2 C1
c .Œ0;T/ ��IR3/, where either

' � nj@� D 0 in the case of the complete slip boundary conditions, (3.175)

or

'j@� D 0 in the case of the no-slip boundary conditions, (3.176)

and where we have set

Sı D Sı.#;rxu/ D ..#/C ı#/
�
rxu C rx

?u � 2

3
divxu I

�
C �.#/divxu I:

(3.177)

(iii) Approximate entropy inequality:

Z T

0

Z

�

%sı.%; #/
�
@t' C u � rx'

�
dx dtC

Z T

0

Z

�

��ı.#/rx#

#
C "r

�
� rx' dx dt

(3.178)

C
Z T

0

Z

�

�";ı' dx dt � �
Z

�

.%s/0;ı'.0; �/ dx C
Z T

0

Z

�

�
"#4 � %

#
Qı

�
' dx dt

for any test function ' 2 C1
c .Œ0;T/ ��/, ' 	 0, where we have set

sı.%; #/ D s.%; #/C ı log#; �ı.#/ D �.#/C ı
�
#� C 1

#

�
; (3.179)

and

�";ı D 1

#

h
Sı W rxuC

��.#/
#

C ı

2
.#��1 C 1

#2
/
�
jrx#j2 C ı

1

#2

i
C (3.180)

C "ı

2#
.�%��2 C 2/jrx%j2 C "

@pM
@%

.%; #/
jrx%j2
%#

;

r D �
�
#sM;ı .%; #/ � eM;ı .%; #/ � pM.%; #/

%

�rx%

#
:
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(iv) Approximate total energy balance:

Z

�

�1
2
%juj2 C %eı.%; #/C ı.

%�

� � 1
C %2/

�
.	/ dx (3.181)

D
Z
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j.%u/0;ı j2
%0;ı

C %0;ıe0;ı C ı.
%�0;ı

� � 1
C %20;ı/

�
dx

C
Z 	

0

Z

�

�
%fı � u C %Qı C ı

1

#2
� "#5

�
dx dt for a.a. 	 2 Œ0;T�;

where

eı.%; #/ D e.%; #/C ı#: (3.182)

3.5.6 The Entropy Production Rate Represented
by a Positive Measure

In accordance with the general ideas discussed in Sect. 1.2, the entropy inequality
can be interpreted as a weak formulation of a balance law with the production rate
represented by a positive measure. More specifically, writing (3.178) in the form

Z

�

.%s/0;ı'.0; �/ dx �
Z T

0

Z

�

�
"#4 � %

#
Qı

�
' dx dt

�
Z T

0
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�

%sı.%; #/
�
@t' C u � rx'

�
dx dt C

Z T

0

Z
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��ı.#/rx#

#
C "r

�
� rx' dx dt

	
Z T

0

Z

�

�";ı' dx dt

for any ' 2 C1
c .Œ0;T/��/, ' 	 0, the left-hand side can be understood as a non-

negative linear form defined on the space of smooth functions with compact support
in Œ0;T/ ��.

Consequently, by means of the classical Riesz representation theorem, there
exists a regular, non-negative Borel measure †";ı on the set Œ0;T/ � �, that can
be trivially extended on the compact set Œ0;T� �� such that

Z T

0

Z

�

%sı.%; #/
�
@t' C u � rx'

�
dx dt C

Z T
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��ı.#/rx#

#
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�
� rx' dx dt

(3.183)

C < †";ı I' >ŒMIC�.Œ0;T���/D �
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for any ' 2 C1
c .Œ0;T/ ��/. Moreover,

†";ı 	 �";ı; (3.184)

where we have identified the function �";ı 2 L1..0;T/ � �/ with a non-negative
measure, see (1.13)–(1.17) for more details.

3.6 Artificial Diffusion Limit

The next step in the proof of Theorem 3.1 is to let " ! 0 in the approximate
system (3.171)–(3.181) in order to eliminate the artificial diffusion term in (3.171)
as well as the other "-dependent quantities in the remaining equations. Such a step
is not straightforward, as we loose the uniform bound on rx%; whence compactness
of % with respect to the space variable becomes an issue. In particular, the lack
of pointwise convergence of the densities has to be taken into account in the
proof of pointwise convergence of the approximate temperatures; accordingly,
the procedure described in the previous section relating formulas (3.150), (3.151)
has to be considerably modified. Apart from these principal new difficulties a
number of other rather technical issues has to be addressed. In particular, uniform
bounds must be established in order to show that all "-dependent quantities in the
approximate continuity equation (3.171), momentum equation (3.174), and energy
balance (3.181) vanish in the asymptotic limit " ! 0. Similarly, the non-negative
quantities appearing in the approximate entropy production rate �";ı are used to
obtain uniform bounds in order to eliminate the “artificial” entropy flux r in (3.178).

In order to show pointwise convergence of the approximate temperatures, we
take advantage of certain general properties of weak convergence of composed
functions expressed conveniently in terms of parameterized (Young) measures (see
Sect. 3.6.2). On the other hand, similarly to the recently developed existence theory
for compressible viscous fluids, we use the extra regularity properties of the quantity
… WD p.%; #/ � . 4

3
.#/ C �.#//divxu called effective viscous flux in order to

establish pointwise convergence of the approximate densities. Such an approach
requires a proper description of possible oscillations of the densities provided by
the renormalized continuity equation (cf. Sect. 11.19 in Appendix).

3.6.1 Uniform Estimates and Limit in the Approximate
Continuity Equation

Let f%";u"; #"g">0 be a family of solutions to the approximate system (3.171)–
(3.181) constructed in Sect. 3.5. Similarly to Sect. 2.2.3, the total energy balance
(3.181), together with the entropy inequality represented through (3.183), give rise
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to the dissipation balance
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%"ju"j2 C Hı;# .%"; #"/C ı.

%"
�

� � 1 C %"
2/
�
.	/ dx (3.185)
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dx dt for a.a. 	 2 Œ0;T�;

where †";ı 2 MC.Œ0;T� � �/ is the entropy production rate introduced in
Sect. 3.5.6, and the “approximate Helmholtz function” Hı;# is given through
(3.100).

Repeating the arguments used after formula (3.104) we obtain

sup
">0

(

ess sup
t2.0;T/

Z

�

�1
2
%"ju"j2 C Hı;# .%"; #"/C ı.

%�"
� � 1

C %2"/
�
.t/ dx

)

< 1;

(3.186)

together with

sup
">0

�
†";ı

h
Œ0;T� ��

i
C
Z T

0

Z

�

"#5" dx dt


< 1; (3.187)

where, in accordance with (3.180), (3.184), estimate (3.187) further implies

sup
">0

�Z T

0

Z

�

n 1
#"

h
Sı.#";rxu"/ W rxu"C

��.#"/
#"

C ı.#��1
" C 1

#2"
/
�
jrx#"j2

i
C ı

1

#3"
C "#5"

o
dx dt


< 1; (3.188)

sup
">0

�
"ı

Z T

0

Z

�

1

#"
.�%��2

" C 2/jrx%"j2 dx dt


< 1; (3.189)

and

sup
">0

( Z T

0

Z

�

"
#

%"#"

@pM
@%

.%"; #"/jrx%"j2 dx dt

)

< 1: (3.190)
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Exactly as in Sect. 3.5, the above estimates can be used to deduce that

%" ! % weakly-(*) in L1.0;TIL�.�//; (3.191)

u" ! u weakly in L2.0;TIW1;2.�IR3//; (3.192)

and

#" ! # weakly-(*) in L1.0;TIL4.�//; (3.193)

at least for suitable subsequences. Moreover, we have u.t; �/ 2 W1;2
n .�IR3/ for a.a.

t 2 .0;T/ in the case of the complete slip boundary conditions, while u.t; �/ 2
W1;2
0 .�IR3/ for a.a. t 2 .0;T/, if the no-slip boundary conditions are imposed.
Multiplying Eq. (3.171) on %" and integrating by parts we get

1

2

Z

�

%"
2.	/ dx C "

Z 	

0

Z

�

jrx%"j2 dx dt

D 1

2

Z

�

%20;ı dx � 1

2

Z 	

0

Z

�

%"
2divxu" dx dtI

whence, taking (3.191)–(3.193) into account, we can see that

fp"rx%"g">0 is bounded in L2.0;TIL2.�IR3//;

in particular,

"rx%" ! 0 in L2.0;TIL2.�IR3//: (3.194)

As the time derivative @t%" can be expressed by means of Eq. (3.171), conver-
gence in (3.191) can be, similarly to (3.118), strengthened to

%" ! % in Cweak.Œ0;T�IL� .�//: (3.195)

Relation (3.195), combined with (3.192) and boundedness of the kinetic energy,
yields

%"u" ! %u weakly-(*) in L1.0;TIL 2�
�C1 .�IR3//: (3.196)

Thus we conclude that the limit functions %, u satisfy the integral identity

Z T

0

Z

�

�
%@t' C %u � rx'

�
dx dt C

Z

�

%0;ı'.0; �/ dx D 0 (3.197)
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for any test function ' 2 C1
c .Œ0;T/ � �/. Moreover, since the boundary @� is

regular (Lipschitz) we can extend continuously the velocity field u outside � in
such a way that the resulting vector field belongs to W1;2.R3IR3/. (In the case of
no-slip boundary conditions one can take trivial extension, where u D 0 outside�.)
Accordingly, setting % � 0 in R

3 n� we can assume that %, u solve the equation of
continuity

@t%C divx.%u/ D 0 in D0..0;T/ � R
3/: (3.198)

3.6.2 Entropy Balance and Strong Convergence
of the Approximate Temperatures

Our principal objective is to show strong (pointwise) convergence of the family
f#"g">0. Following the same strategy as in Sect. 3.5.3, we divide the proof into three
steps:

(i) Div-Curl lemma (Proposition 3.3) is applied to show that

%sı.%; #/G.#/ D %sı.%; #/ G.#/

for any G 2 W1;1.0;1/. This relation is reminiscent of formula (3.149); the
quantity G playing a role of a cut-off function is necessary because of the low
integrability of # . The proof uses the same arguments as in Sect. 3.5.3.

(ii) Although strong convergence of the densities is no longer available at this
stage, we can still show that

b.%/G.#/ D b.%/ G.#/; (3.199)

where b 2 C.Œ0;1// \ L1..0;1//, and G is the same as in the previous
step. In order to prove this identity, we use the properties of renormalized
solutions to the approximate continuity equation (cf. Sect. 11.19 in Appendix).
Very roughly indeed, we can say that possible oscillations in the sequence of
approximate densities and temperatures take place in orthogonal directions of
the space-time.

(iii) The simple monotonicity argument used in formula (3.150) has to be replaced
by a more sophisticated tool. Here, the desired relation

sM.%"; t; x/.G.#"/ � G.#// ! 0

is shown to follow directly from (3.199) by means of a general argument
borrowed from the theory of parameterized (Young) measures. An elementary
alternative proof of this step involving a compactness argument based on
the renormalized continuity equation (more precisely on Theorem 11.37 in
Appendix) is shown in Sect. 3.7.3.
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In the remaining part of this section, we develop the ideas delineated in the above
program in a more specific way.

Uniform Estimates Seeing that the sequence f%";u"; #"g">0 admits the bounds
obtained in (3.188), we infer that f#"g">0 satisfies the estimates stated in (3.121)–
(3.127), namely

f#"g">0; f#�=2" g">0 are bounded in L2.0;TIW1;2.�//;

fr.#�1=2
" /g">0 is bounded in L2..0;T/ ��IR3/;

f#�1
" g">0 is bounded in L3..0;T/ ��/;

flog#"g">0 is bounded in L2.0;TIW1;2.�// \ L�.0;TIL3�.�//:

(3.200)

Moreover, relations (3.128), (3.129) imply that

fp"%"g">/; fp"%�
2
" g">0 are bounded in L2.0;TIW1;2.�//: (3.201)

Application of Div-Curl Lemma Now we rewrite the approximate entropy bal-
ance (3.183) in the form

@t

�
%"sı.%"; #"/

�
C divx

�
%"sı.%"; #"/u" C �ı.#"/rx#"

#"
C "r"

�

D †";ı C %"

#"
Qı � "#4"

to be understood in the weak sense specified in Sects. 1.2 and 3.5.6.
Similarly to Sect. 3.5.3, we intend to apply Div-Curl lemma (Proposition 3.3) to

the four-component vector fields

U" WD
�
%"sı.%"; #"/; %"sı.%"; #"/u" C �ı.#"/rx#"

#
C "r"

�
; (3.202)

V" WD ŒG.#"/; 0; 0; 0� ; (3.203)

where G is a bounded globally Lipschitz function on Œ0;1/.
First observe that the families

divt;xU" D †";ı C %"

#"
Qı � "#4" ; curlt;xV" D G0.#"/

�
0 r#"

rT#" 0

�

are relatively compact in W�1;s..0;T/��//, W�1;s..0;T/��IR4�4/ for s 2 Œ1; 4
3
/,

respectively. Indeed, it is enough to use estimates (3.187), (3.191), (3.193), (3.200),
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and compactness of the embeddings MC.Œ0;T� � �/ ,! W�1;s..0;T/ � �//,
L1..0;T/ ��// ,! W�1;s..0;T/ ��//. Notice that we have, in particular,

"#"
4 ! 0 in L1..0;T/ ��/ (3.204)

as a direct consequence of (3.193).
As the sequence fG.#"/g">0 is bounded in L1..0;T/ ��/, it is enough to show

boundedness of the family fU"g">0 in Lp..0;T/ ��IR4/ for a certain 1 < p < 1.
Combining the arguments already used in (3.144), (3.145) with the bounds (3.191),
(3.200), we infer that

f%"sı.%"; #"/g">0 is bounded in Lp..0;T/ ��/ for a certain p > 2; (3.205)

while

f%"sı.%"; #"/u"g">0;
�
�ı.#"/

#"
r#"



">0

are bounded in Lq..0;T/ ��IR3/
(3.206)

for a certain q > 1 provided � > 6:

Finally, following the reasoning of (3.146)–(3.148), we use (3.200) and (3.201) to
obtain

"r" ! 0 in Lp..0;T/ ��IR3// for a certain p > 1: (3.207)

Having verified all hypotheses of Proposition 3.3 we conclude that

%sı.%; #/G.#/ D %sı.%; #/ G.#/ (3.208)

for any bounded and continuous function G.

Monotonicity of the Entropy and Strong Convergence of the Approximate
Temperatures: Application of the Theory of Parametrized (Young) Measures
Similarly to Sect. 3.5.3, relation (3.208) can be used to show strong (pointwise)
convergence of f#"g">0. Decomposing

%sı.%; #/ D %sM.%; #/C ı% log.#/C 4

3
a#3;

we have to show that

%sM.%; #/G.#/ 	 %sM.%; #/ G.#/; % log.#/G.#/ 	 % log.#/ G.#/;

#3G.#/ 	 #3 G.#/
(3.209)
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for any continuous and increasing G chosen in such a way that all the weak limits
exist et least in L1. Indeed, relations (3.209) combined with (3.208) imply

#3G.#/ D #3 G.#/I whence #4 D #3# (3.210)

yielding, up to a subsequence, the desired conclusion

#" ! # a.a. in .0;T/ ��: (3.211)

In order to see (3.209), write

0 �
�
%"sM

�
%";G

�1.G.#"//
�

� %"sM
�
%";G

�1.G.#//
�� �

G.#"/� G.#/
�

D %"sM.%"; #"/
�
G.#"/ � G.#//

�
� %"sM

�
%";G

�1.G.#//
��

G.#"/� G.#/
�
:

Consequently, the first inequality in (3.209) follows as soon as we can show that

%"sM
�
%";G

�1.G.#//
��

G.#"/�G.#/
�

! 0 weakly in L1..0;T/��/: (3.212)

The quantity

%"sM
�
%";
h
G�1.G.#//

i
.t; x/

�
D  .t; x; %"/

may be regarded as a superposition of a Carathéodory function with a weakly
convergent sequence. In such a situation, a general argument of the theory of
parameterized (Young) measures asserts that (3.212) follows as soon as we show
that

b.%/G.#/ D b.%/ G.#/ (3.213)

for arbitrary smooth and bounded functions b and G (see Theorem 13).
Indeed, if �.%;#/.t;x/ , �%.t;x/ and �#.t;x/ are families of parametrized Young measures

associated to sequences f.%"; #"/g">0, f%"g">0 andf#"g">0, respectively, then (3.213)
implies

Z

R2

b.�/G./ d�.%;#/.t;x/ .�; / D
Z

R

b.�/ d�%.t;x/.�/ �
Z

R

G./ d�#.t;x/./:

This evidently yields a decomposition

�
.%;#/

.t;x/ .A � B/ D �
%

.t;x/.A/�
#
.t;x/.B/;
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where A, B are open subsets in R. Consequently, for any Carathéodory function
 .t; x; �/ and a continuous function G.#/, such that sequences  .�; �; %n/G.#n/ and
 .�; �; %n/, G.#n/ are weakly convergent in L1..0;T/ ��IR2/ and L1..0;T/ ��/,
respectively, we have

Œ .�; �; %/G.#/�.t; x/ D
Z

R2

 .t; x; �/G./ d�.%;#/.t;x/ .�; / D
Z

R2

 .t; x; �/G./ d�%.t;x/.�/d�
#
.t;x/./ D Œ .�; �; %/ G.#/�.t; x/

which is nothing other than (3.212).
In order to verify (3.213), multiply the approximate continuity equation (3.171)

by b0.%/', ' 2 C1
c .�/, and integrate over� to obtain

d
dt

R
�
b.%/'dx � R

�
b.%/u � rx'dx

C" R� b00.%/jrx%j2'dx C "
R
� b0.%/rx% � rx'dx

C R
�
.%b0.%/ � b.%//divxu'dx D 0:

(3.214)

Consequently, the sequence ft 7! R
�
b.%"/'g">0 is uniformly bounded and equi-

continuous in C.Œ0;T�/; whence

b.%"/ ! b.%/ in Cweak.Œ0;T�IL� .�// (3.215)

at least for any smooth function b with bounded second derivative.
Now, we use compactness of the embedding L�.�/ ,! W�1;2.�/ to deduce

b.%"/ ! b.%/ in C.Œ0;T�IW�1;2.�//: (3.216)

On the other hand, in accordance with the uniform bounds established in (3.200),

G.#"/ ! G.#/ weakly in L2.0;TIW1;2.�//I (3.217)

whence (3.213) follows from (3.216), (3.217).
In addition to (3.211), the limit temperature field # is positive a.a. on the set

.0;T/ ��, more precisely, we have

#�3 2 L1..0;T/ ��/: (3.218)

Indeed, (3.218) follows from the uniform bounds (3.200), the pointwise conver-
gence of f#"g">0 established in (3.211), and the property of weak lower semi-
continuity of convex functionals (see Theorem 11.27 in Appendix).
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Asymptotic Limit in the Entropy Balance At this stage, we are ready to let " ! 0

in the approximated entropy equality (3.183).
Using relations (3.200)–(3.211)we obtain, in the same way as in (3.155), (3.156),

�ı.#"/

#"
rx#" ! �ı.#/

#
rx#

weakly in Lp..0;T/ ��IR3/ for some p > 1:

Furthermore, in accordance with (3.191), (3.211), we get

%"

#"
Qı ! %

#
Qı weakly in Lp..0;T/ ��/ for some p > 1:

Applying Div-Curl Lemma (Proposition 3.3) to the sequence fU"g">0 defined in
(3.202) and fV"g">0,

V" D Œ.u"/i; 0; 0; 0�; i D 1; 2; 3;

we deduce

%"sı.%"; #"/u" ! %sı.%; #/uweakly in Lp..0;T/ ��IR3/ for a certain p > 1:

The terms 1
#"
Sı.#";u"/ W ru",

�ı.#"/

#"
jr#"j2 appearing in �";ı are weakly

lower semi-continuous as we have already observed in (3.159)–(3.164), while the
remaining "-dependent quantities in �";ı are non-negative. Finally, by virtue of
(3.187), we may assume

†";ı ! �ı 2 weakly-(*) in M.Œ0;T� ��/, where �ı 2 MC.Œ0;T� ��/:

Recalling the limits (3.204) and (3.207), we let " ! 0 in (3.183) to obtain

Z T

0

Z

�

%sı.%; #/
�
@t' C u � rx'

�
dx dt (3.219)

C
Z T

0

Z

�

�ı.#/rx#

#
� rx' dx dtC < �ı; ' >ŒCIM�.Œ0;T���/D

�
Z

�

.%s/0;ı'.0; �/ dx �
Z T

0

Z

�

%

#
Qı' dx dt; for all ' 2 C1

c .Œ0;T/ ��/;

where

�ı 	 1

#
Sı.#;rxu/ W rxu C �ı.#/

#
jr#j2:
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Consequently, in order to perform the limit " ! 0 in the remaining equations of
the approximate system (3.171)–(3.181), we have to show

(i) uniform pressure estimates analogous to those established in Sect. 2.2.5 or,
alternatively, in Sect. 2.2.6,

(ii) strong (pointwise) convergence of the approximate densities.

3.6.3 Uniform Pressure Estimates

The pressure estimates are derived in the same way as in Sect. 2.2.5, namely we use
the quantities

' D  �;  2 C1
c .0;T/; � D BŒ%" � %� (3.220)

as test functions in the approximate momentum equation (3.174), where

% D 1

j�j
Z

�

%" dx;

and B � divx�1 is the Bogovskii operator introduced in Sect. 2.2.5 and investigated
in Sect. 11.6 in Appendix.

Since %" satisfies the approximate continuity equation (3.171), we have

@t� D �B Œdivx.%u � "rx%/� : (3.221)

Consequently, by virtue of the basic properties of the operatorB listed in Sect. 2.2.5,

k�.t; �/kW1;p.�IR3/ � c. p; �/k%".t; �/kLp.�/ for a.a. t 2 .0;T/; (3.222)

and

k@t�.t; �/kLp.�IR3/ � c. p; �/
�
��%"u".t; �/C "rx%".t; �/

�
��
Lp.�IR3/for a.a. t 2 .0;T/

(3.223)

for any 1 < p < 1.
The last two estimates, together with those previously established in (3.191)–

(3.196), (3.200), and (3.201), render the test functions (3.220) admissible in (3.174)
provided, say, � 	 4. Note that, unlike in Sect. 2.2.5, the argument of the operator
B is an affine function of %", whereas the necessary uniform estimate on f%"g">0 in
L1.0;TIL�.�// is provided by the extra pressure term ı%� .
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In view of these arguments, we can write, similarly to (2.94),

Z T

0

h
 

Z

�

�
p.%"; #"/C ı.%�" C %2"/

�
%" dx

i
dt D

7X

jD1
Ij; (3.224)

where

I1 D
Z T

0

h
 %

Z

�

�
p.%"; #" C ı.%�" C %2"/

�
dx
i

dt;

I2 D �
Z T

0

h
 

Z

�

%"u" � @t� dx
i

dt;

I3 D �
Z T

0

h
 

Z

�

%"u" ˝ u" W rx� dx
i

dt;

I4 D
Z T

0

h
 

Z

�

Sı.u"; #"/ W rx� dx
i

dt;

I5 D �
Z T

0

h
 

Z

�

%"f � � dx
i

dt;

I6 D �
Z T

0

h
 0
Z

�

%"u" � � dx
i

dt;

and

I7 D
Z T

0

 
hZ

�

"rx%"rxu" � � dx
i

dt:

The simple form of I7 conditioned by the specific form of the test function ', where
the argument of B is an affine function of %", is the only technical reason why the
limit processes for " ! 0 and ı ! 0 must be separated.

The integral identity (3.224) can be used to obtain uniform bounds on the
pressure independent of ". Exactly as in Sect. 2.2.5, we deduce that

k%"kL�C1..0;T/��/ � c.data; ı/; (3.225)

and

kpM.%"; #"/kLp..0;T/��/ � c.data; ı/ for a certain p > 1: (3.226)
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Indeed, these bounds can be obtained by dominating the integrals I1� I7 in the spirit
of Sect. 2.2.5, specifically, by means of estimates (3.222), (3.223), (3.191)–(3.196),
and (3.200), provided � 	 4. In particular, by virtue of (3.192), (3.194),

"rx%"rxu" ! 0 in L1..0;T/ ��IR3// (3.227)

yielding boundedness of integral I7.

3.6.4 Limit in the Approximate Momentum Equation
and in the Energy Balance

In accordance with estimates (3.225), (3.226), together with (3.193), (3.200), and
(3.211),

pı.%"; #"/ ! pı.%; #/ D pM.%; #/C a
4
#4 C ı.%� C %2/

weakly in Lp..0;T/ ��/ for a certain p > 1;
(3.228)

where we have denoted

pı.%; #/ D pM.%; #/C a

4
#4 C ı.%� C %2/: (3.229)

On the other hand, by virtue of (3.17), (3.23), (3.193), and (3.211),

.#"/ ! .#/; �.#"/ ! �.#/ (strongly) in Lp..0;T/ ��/ for any 1 � p < 4:

Moreover, since Sı takes the form specified in (3.53), we can use (3.192) in order to
deduce

Sı.#";rxu"/ ! Sı.#;u/weakly in Lp..0;T/��/, for a certain p > 1: (3.230)

As the limits of the families %"f, %"u", and "r%"ru" have already been identified
through (3.191), (3.196) and (3.227), we are left with the convective term %"u"˝u".
Following the arguments of Sect. 3.5.4 we observe that

%"u" ! %u in Cweak.Œ0;T�IL 2�
�C1 .�IR3//: (3.231)

Consequently, because of compact embedding Ls.�/ ,! W�1;2.�/, s > 6
5
,

%"u" ! %u (strongly) in Lp.0;TIW�1;2.�IR3//
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for any 1 � p < 1. In accordance with (3.192),

%"u" ˝ u" ! %u ˝ uweakly in Lp..0;T/ ��/ for a certain p > 1: (3.232)

Letting " ! 0 in the approximate momentum equation (3.174) we get

Z T

0

Z

�

�
%u � @t' C %Œu ˝ u� W rx' C pı.%; #/divx'

�
dx dt (3.233)

D
Z T

0

Z

�

�
Sı.#;rxu/ W rx' � %fı � '

�
dx dt �

Z

�

.%u/0 � ' dx;

for any test function ' 2 C1
c .Œ0;T/ ��IR3// such that either

' � nj@� D 0 in the case of the complete slip boundary conditions,

or

'j@� D 0 in the case of the no-slip boundary conditions.

Finally, as the sequence f%"eı.%"; #"/g">0 is bounded in Lp..0;T/ � �/ (see
(3.30), (3.191)–(3.193), (3.200)), we are allowed to let " ! 0 in the approximate
energy balance (3.181) to obtain

Z

�

�1
2
%juj2 C %eı.%; #/C ı.

%�

� � 1
C %2/

�
.	/ dx (3.234)

D
Z

�

�1
2

j.%u/0;ıj2
%0;ı

C %0;ıe0;ı C ı.
%�0;ı

� � 1
C %20;ı/

�
dx

C
Z 	

0

Z

�

�
%fı � u C %Qı C ı

1

#2
� "#5

�
dx dt for a.a. 	 2 Œ0;T�:

3.6.5 Strong Convergence of the Densities

In order to show strong (pointwise) convergence of f%"g">0, we adapt the method
introduced in the context of barotropic fluids with constant viscosity coefficients by
Lions [192], and further developed in [103] in order to accommodate the variable
transport coefficients.

Similarly to Sect. 2.2.6, we use the quantities

'.t; x/ D  .t/�.x/�; � D .rx�
�1
x /Œ1�%"�;  2 C1

c ..0;T//; � 2 C1
c .�/;

(3.235)
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as test functions in the approximate momentum equation (3.174), where the
symbol ��1

x stands for the inverse Laplace operator considered on the whole space
R
3 introduced in (2.100). The operator rx�

�1
x is investigated in Sect. 11.17 in

Appendix.
Since %"u" and r%" possess zero normal traces, the approximate continuity

equation (3.171) can be extended to the whole R3, specifically,

@t.1�%"/C divx.1�%"u"/ � "divx.1�r%"/ D 0 a.e. in .0;T/ � R
3: (3.236)

Accordingly, we have

@t� D �.rx�
�1
x / Œdivx.1�%"u" � "1�rx%/� ; (3.237)

cf. Theorem 11.33 in Appendix.
Now, exactly as in Sect. 2.2.6, we can use the uniform estimates (3.191)–(3.196),

(3.200), and (3.201), in order to observe that ' defined through (3.235) is admissible
in the integral identity (3.174) as soon as � 	 4. Thus we get

Z T

0

Z

�

 �
�
pı.%"; #"/%" � Sı.#";rxu"/ W RŒ1�%"�

�
dx dt D

8X

jD1
Ij;"; (3.238)

where

I1;" D
Z T

0

Z

�

 �
�
%"u" � RŒ1�%"u"� � .%"u" ˝ u"/ W RŒ1�%"�

�
dx dt;

I2;" D �"
Z T

0

Z

�

 � %"u" � rx�
�1Œdivx.1�rx%"/� dx dt;

I3;" D �
Z T

0

Z

�

 �%"fı � rx�
�1
x Œ1�%"� dx dt;

I4;" D �
Z T

0

Z

�

 pı.%"; #"/rx� � rx�
�1
x Œ1�%"� dx dt;

I5;" D
Z T

0

Z

�

 Sı.#";rxu"/ W rx� ˝ rx�
�1
x Œ1�%"� dx dt;

I6;" D �
Z T

0

Z

�

 .%"u" ˝ u"/ W rx� ˝ rx�
�1
x Œ1�%"� dx dt;

I7;" D �
Z T

0

Z

�

@t �%"u" � rx�
�1
x Œ1�%"� dx dt;
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and

I8;" D "

Z T

0

Z

�

rx%"rxu" � .rx�
�1
x /Œ1�%"� dx dt:

Here, the symbol R stands for the double Riesz transform, defined componentwise
as Ri;j D @xi�

�1
x @xj , introduced in (2.101).

Repeating the same procedure we use the quantities

'.t; x/ D  .t/�.x/.rx�
�1
x /Œ1�%�;  2 C1

c .0;T/; � 2 C1
c .�/;

as test functions in the limit momentum equation (3.233) in order to obtain

Z T

0

Z

�

 �
�
pı.%; #/%� Sı.#;rxu/ W RŒ1�%�

�
dx dt D

6X

jD1
Ij; (3.239)

where

I1 D
Z T

0

Z

�

 �
�
%u � RŒ1�%u� � .%u ˝ u/ W RŒ1�%�

�
dx dt;

I2 D �
Z T

0

Z

�

 �%fı � rx�
�1
x Œ1�%"� dx dt;

I3 D �
Z T

0

Z

�

 pı.%; #/rx� � rx�
�1
x Œ1�%� dx dt;

I4 D
Z T

0

Z

�

 Sı.#;rxu/ W rx� ˝ rx�
�1
x Œ1�%� dx dt;

I5 D �
Z T

0

Z

�

 .%u ˝ u/ W rx� ˝ rx�
�1
x Œ1�%� dx dt;

and

I6 D �
Z T

0

Z

�

@t �%u � rx�
�1
x Œ1�%� dx dt:

Combining (3.191) with (3.215) we get

%" ! % in Cweak.Œ0;T�IL� .�//:

In accordance with the standard theory of elliptic problems, the pseudodifferential
operator .rx�

�1
x / “gains” one spatial derivative, in particular, by virtue of the
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embedding W1;�.�/ ,! C.�/, we get

.rx�
�1/Œ1�%"� ! .rx�

�1/Œ1�%� in C.Œ0;T� ��IR3/

provided � > 3 (see Theorem 11.33 in Appendix). Consequently, we can use
relations (3.191), (3.196), (3.228)–(3.232) in order to see that (i) I2;"; I8;" ! 0,
while (ii) the integrals Ij;"; j D 3; : : : ; 7, converge for " ! 0 to their counterparts in
(3.239). We infer that

lim
"!0

Z T

0

Z

�

 �
�
pı.%"; #"/%" � Sı.#";rxu"/ W RŒ1�%"�

�
dx dt (3.240)

D
Z T

0

Z

�

 �
�
pı.%; #/%� Sı.#;rxu/ W RŒ1�%�

�
dx dt

C lim
"!0

Z T

0

Z

�

 �
�
%"u" � RŒ1�%"u"� � .%"u" ˝ u"/ W RŒ1�%"�

�
dx dt

�
Z T

0

Z

�

 �
�
%u � RŒ1�%u� � .%u ˝ u/ W RŒ1�%�

�
dx dt:

Now, the crucial observation is that the difference of the two most right
quantities in (3.240) vanishes. In order to see this, we need the following assertion
(Theorem 11.34 in Appendix) that can be viewed as a straightforward consequence
of the Div-Curl lemma.

Lemma 3.5 Let

U" ! U weakly in Lp.R3IR3/;

V" ! V weakly in Lq.R3IR3/;

where

1

p
C 1

q
D 1

r
< 1:

Then

U" � RŒV"� � RŒU"� � V" ! U � RŒV� � RŒU� � V weakly in Lr.R3/:

This statement provides the following corollary:
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Corollary 3.3 Let

V" ! V weakly in Lp.R3IR3/;

r" ! r weakly in Lq.R3/;

where

1

p
C 1

q
D 1

s
< 1:

Then

r"RŒV"� � RŒr"�V" ! rRŒV� � RŒr�V weakly in Ls.R3IR3/:

Hereafter, we shall use Corollary 3.3 to show that

lim
"!0

Z T

0

Z

�

 �u" �
�
%"RŒ1�%"u"� � RŒ1�%"�%"u"

�
dx dt (3.241)

D
Z T

0

Z

�

 �u �
�
%RŒ1�%u� � RŒ1�%�%u

�
dx dt;

where, recall, RŒv� is a vector field with i-th component
P3

jD1Ri;jŒvj� while RŒa�v
is a vector field with i-th component

P3
jD1Ri;jŒa�vj.

As shown in (3.195), (3.231),

8
<̂

:̂

%".t; �/ ! %.t; �/weakly in L�.�/;

.%"u"/.t; �/ ! .%u/.t; �/weakly in L
2�
�C1 .�IR3/

9
>=

>;
for all t 2 Œ0;T�:

Applying Corollary 3.3 to r" D %".t; �/, U" D %"u".t; �/ (extended by 0 outside �),
we obtain

.%"RŒ1�%"u"� � RŒ1�%"�%"u"/ .t; �/ ! .%RŒ1�%u� � RŒ1�%�%u/ .t; �//

weakly in L
2�
�C3 .�/; provided � > 9

2

for all t 2 Œ0;T�.
As the embedding L

2�
�C3 .�/ ,! W�1;2.�/ is compact for � > 9=2, we conclude

that

%"RŒ1�%"u"� � RŒ1�%"�%"u" ! %RŒ1�%u� � RŒ1�%�%u

in Lq.0;TIW�1;2.�IR3// for any q 	 1;

(3.242)
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which, together with (3.192), yields (3.241). Consequently, (3.240) reduces to

lim
"!0

Z T

0

Z

�

 �
�
pı.%"; #"/%" � Sı.#";rxu"/ W RŒ1�%"�

�
dx dt (3.243)

D
Z T

0

Z

�

 �
�
pı.%; #/% � Sı.#;rxu/ W RŒ1�%�

�
dx dt:

Our next goal is to replace in (3.243) the quantity Sı.#";rxu"/ W RŒ1�%"� by

%"

�
4
3
ı.#"/ C�.#"/

�
divxu", and, similarly, Sı.#;rxu/ W RŒ1�%� by the expression

%
�
4
3
ı.#/ C�.#/

�
divxu in (3.243), where ı.#/ D .#/C ı# .

To this end write

Z T

0

Z

�

 �ı.#"/
�
rxu" C rx

Tu"
�

W RŒ1�%"� dx dt

D
Z T

0

Z

�

 R W
h
�ı.#"/

�
rxu" C rx

Tu"
�i
%" dx dt;

and

Z T

0

Z

�

 �ı.#/
�
rxu C rx

Tu
�

W RŒ1�%� dx dt

D
Z T

0

Z

�

 R W
h
�ı.#/

�
rxu C rx

Tu
�i
% dx dt;

where we have used the evident properties of the double Riesz transform recalled in
Sect. 11.17 in Appendix. Furthermore,

R W
h
�ı.#"/

�
rxu" C rx

Tu"
�i

D 2�ı.#"/divxu" C !.#";u"/;

and

R W
h
�ı.#/

�
rxu C rx

Tu
�i

D 2�ı.#/divxu C !.#;u/;

with the commutator

!.#;u/ D R W
h
�ı.#/

�
rxu C rx

Tu
�i

� �ı.#/R W
h
rxu C rx

Tu
i
:

In order to proceed, we report the following result in the spirit of Coifman and
Meyer [62] proved as Theorem 11.35 in Appendix.
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� COMMUTATOR LEMMA:

Lemma 3.6 Let w 2 W1;2.R3/ and Z 2 Lp.R3IR3/ be given, where 6
5
< p < 1.

Then for any 1 < s < 6p
6Cp ,

��
�RŒwZ� � wRŒZ�

��
�
Wˇ;s.R3IR3/ � ckwkW1;2.R3/kZkLp.R3IR3/;

where 0 < ˇ D 3
s � 6Cp

6p < 1 and c D c. p; s/ is a positive constant.

Applying Lemma 3.6 to w D w" D �..#"/C ı#"/, Z D Z" D ŒZ";1;Z";2;Z";3�,
with Z";i D @xiu";j C @xju";i, j D 1; 2; 3, where fw"g">0, fZ"g">0 are bounded in
L2.0;TIW1;2.�// and L2..0;T/��IR3/, respectively, cf. (3.192), (3.200), (3.17)–
(3.18), we deduce that

f!.#";u"/g">0 is bounded in L1.0;TIWˇ;s.�// (3.244)

for certain 1 < s < 3
2
, 0 < ˇ D 3�2s

s < 1.
Next we claim that

!.#";u"/%" ! !.#;u/% weakly in L1..0;T/ ��/; (3.245)

where, in accordance with relations (3.17), (3.23), (3.192), (3.193), and (3.211),

!.#;u/ D !.#;u/: (3.246)

In order to show (3.245), we apply the Div-Curl Lemma (see Proposition 3.3) to
the four-component vector fields

U" D Œ%"; %"u"�; V" D Œ!.#";u"/; 0; 0; 0�:

In view of relations (3.171), (3.194), (3.244) yielding the sequences fdivt;xU"g">0
and fcurlt;xV"g">0 compact in W�1;s..0;T/��/ and W�1;s..0;T/��IR3�3/ for a
certain s > 1, it is enough to observe that

fU"g">0

fV"g">0

9
=

;
are bounded in

8
<

:

Lq..0;T/ ��IR4//;

Lr..0;T/ ��IR4//;
respectively,

with 1=r C 1=q < 1. This is certainly true provided � is large enough.
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Relations (3.243), (3.245), (3.246) give rise to a remarkable identity

� WEAK COMPACTNESS IDENTITY FOR EFFECTIVE PRESSURE (LEVEL ") :

pı.%; #/% �
�4
3
.#/C 4

3
ı# C �.#/

�
%divxu D (3.247)

pı.%; #/% �
�4
3
.#/C 4

3
ı# C �.#/

�
%divxu;

where the quantity p � . 4
3
 C �/divxu is usually termed effective viscous flux or

effective pressure. As we will see below, the quantity

%divxu � %divxu

plays a role of a “defect” measure of the density oscillations described through the
(renormalized) equation of continuity. Relation (3.247) enables us to relate these
oscillations to the changes in the pressure.

In order to exploit (3.247), we multiply the approximate continuity equa-
tion (3.171) on G0.%"/, where G is a smooth convex function, integrate by parts,
and let " ! 0 to obtain
Z

�

G.%/.	/ dx C
Z 	

0

Z

�

�
G0.%/% � G.%/

�
divxu dx dt �

Z

�

G.%0;ı/ dx (3.248)

from which we easily deduce that

Z

�

% log.%/.	/ dx C
Z 	

0

Z

�

%divxu dx dt D
Z

�

%0;ı log.%0;ı/ dx (3.249)

for a.a. 	 2 .0;T/.
To derive a relation similar to (3.249) for the limit functions %, u, we need the

renormalized continuity equation introduced in (1.20). Note that we have already
shown that the quantities %, u solve the continuity equation (3.197) in .0;T/ � R

3.
On the other hand, the general theory of transport equations developed by DiPerna-
Lions asserts that any solution of (3.197) is automatically a renormalized one as
soon as, roughly speaking, the quantity %divxu is integrable.

More precisely, we report the following result proved in Sect. 11.19 in Appendix.

Lemma 3.7 Assume that % 2 L2..0;T/ � R
3/, u 2 L2.0;TIW1;2.R3// solve the

equation of continuity (3.197) in D0..0;T/ � R
3//.
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Then %, u represent a renormalized solution in the sense specified in (2.2).
As a consequence of Lemma 3.7 (see also Theorem 11.36 and Lemma 11.13 for

more details), we deduce

Z

�

% log.%/.	/ dx C
Z 	

0

Z

�

%divxu dx dt �
Z

�

%0;ı log.%0;ı/ dx: (3.250)

Since the pressure pı is non-decreasing with respect to % and we already know that
#" ! # strongly in L1..0;T/ ��/, we have

pı.%; #/% 	 pı.%; #/%:

Indeed,

lim
n!1

Z

B

�
pı.%n; #n/%n � pı.%n; #n/%

�
dx dt D

lim
n!1

Z

B

�
pı.%n; #n/� pı.%; #n/

�
.%n � %/dx dt

C lim
n!1

Z

B
pı.%; #n/.%n � %/dx dt;

where the first term is non-negative, and the second term tends to zero by virtue of
the asymptotic limits established in (3.191), (3.211), the bounds (3.193), (3.200),
(3.225), (3.226), and the structural properties of pı stated in (3.229).

Consequently, relation (3.247) yields

%divxu 	 % divxuI

whence (3.249) together with (3.250) imply the desired conclusion

% log.%/ D % log.%/:

As z 7! z log.z/ is a strictly convex function, we may infer that

%" ! % a.a. in .0;T/ ��; (3.251)

in agreement with Theorem 11.27 in Appendix.
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3.6.6 Artificial Diffusion Asymptotic Limit

Strong convergence of the sequence of approximate densities established in (3.251)
completes the second step in the proof of Theorem 3.1 eliminating completely the
"-dependent terms in the approximate system. For any ı > 0, we have constructed
a trio f%;u; #g solving the following problem:

(i) Renormalized continuity equation:

Z T

0

Z

�

%B.%/
�
@t' C u � rx'

�
dx dt (3.252)

D
Z T

0

Z

�

b.%/divxu' dx dt �
Z

�

%0;ıB.%0;ı/'.0; �/ dx

for any

b 2 L1 \ CŒ0;1/; B.%/ D B.1/C
Z %

1

b.z/

z2
dz;

and any test function

' 2 C1
c .Œ0;T/ ��/:

(ii) Approximate balance of momentum:

Z T

0

Z

�

�
%u � @t' C %Œu ˝ u� W rx' C

�
p C ı.%� C %2/

�
divx'

�
dx dt

(3.253)

D
Z T

0

Z

�

�
Sı W rx' � %fı � '

�
dx dt �

Z

�

.%u/0 � ' dx;

for any test function ' 2 C1
c .Œ0;T/ ��IR3/, where either

' � nj@� D 0 in the case of the complete slip boundary conditions, (3.254)

or

'j@� D 0 in the case of the no-slip boundary conditions. (3.255)

Furthermore,

Sı D ..#/C ı#/
�
rxu C rx

?u � 2

3
divxu I

�
C �.#/divxu I: (3.256)
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(iii) Approximate entropy balance:

Z T

0

Z

�

%sı.%; #/
�
@t' C u � rx'

�
dx dt (3.257)

C
Z T

0

Z

�

�ı.#/rx#

#
� rx' dx dtC < �ı I' >ŒM;C�.Œ0;T���/D

�
Z

�

.%s/0;ı'.0; �/ dx �
Z T

0

Z

�

%

#
Qı' dx dt

for all ' 2 C1
c .Œ0;T/ ��/, where �ı 2 MC.Œ0;T� ��/ satisfies

�ı 	 1

#

h
Sı W rxu C

��.#/
#

C ı

2
.#��1 C 1

#2
/
�
jrx#j2 C ı

1

#2

i
; (3.258)

and where we have set

sı.%; #/ D s.%; #/C ı log.#/; �ı.#/ D �.#/C ı
�
#� C 1

#

�
: (3.259)

(iv) Approximate energy balance:

Z

�

�1
2
%juj2 C %e.%; #/C ı.

%�

� � 1
C %2/

�
.	/ dx (3.260)

D
Z

�

�1
2

j.%u/0j2
%0;ı

C %0;ıe0;ı C ı.
%�0;ı

� � 1 C %20;ı/
�

dx

C
Z 	

0

Z

�

�
%fı � u C %Qı C ı

1

#2

�
dx dt for a.a. 	 2 Œ0;T�:

3.7 Vanishing Artificial Pressure

The last and probably the most illuminative step in the proof of Theorem 3.1 is to
let ı ! 0 in the approximate system (3.252)–(3.260). Although many arguments
are almost identical or mimick closely those discussed in the previous text, there
are still some new ingredients coming into play. Notably, we introduce a concept
of oscillation defect measure in order to control the density oscillations beyond the
theory of DiPerna and Lions. Moreover, weighted estimates of this quantity are used
in order to accommodate the physically realistic growth restrictions on the transport
coefficients imposed through hypotheses (3.17), (3.23).
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3.7.1 Uniform Estimates

From now on, let f%ı;uı; #ıgı>0 be a family of approximate solutions satisfying
(3.252)–(3.260). To begin, we recall that the total mass is a constant of motion,
specifically,

Z

�

%ı.t; �/ dx D
Z

�

%0;ı dx for any t 2 Œ0;T�: (3.261)

Since we assume that

%0;ı ! %0 in L1.�/; (3.262)

the bound (3.261) is uniform for ı ! 0.
The next step is the dissipation balance

Z

�

�1
2
%ıjuıj2.	/C H#.%ı; #ı/.	/C ı.

1

� � 1%ı
� C %ı

2/.	/
�

dx (3.263)

C# �ı
h
Œ0; 	� ��

i

D
Z

�

�1
2

j.%u/0j2
%0;ı

C H#.%0;ı; #0;ı/C ı.
%�0;ı

� � 1 C %20;ı/
�

dx

C
Z 	

0

Z

�

�
%ıfı � uı C %ı.1 � #

#ı
/Qı C ı

1

#ı
2

�
dx dt

satisfied for a.a. 	 2 Œ0;T�, which can be deduced from (3.257), (3.260), with the
Helmholtz function H# introduced in (2.48). Accordingly, in order to get uniform
estimates, we have to take

ffıgı>0 bounded in L1..0;T/ ��IR3/;

Qı 	 0; fQıgı>0 bounded in L1..0;T/ ��/
(3.264)

as well as

Z

�

�1
2

j.%u/0j2
%0;ı

C H#.%0;ı ; #0;ı/C ı.
%�0;ı

� � 1
C %20;ı/

�
dx � c (3.265)

uniformly for ı ! 0.
As the term ı=#ı

2 is “absorbed” by its counterpart in the entropy production
�ı satisfying (3.258), the dissipation balance (3.263) gives rise, exactly as in
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Sect. 3.6.1, to the following uniform estimates:

ess sup
t2.0;T/

kp
%ıuı.t/kL2.�IR3/ � c; (3.266)

ess sup
t2.0;T/

k%ı.t/k
L
5
3 .�/

� c; (3.267)

ess sup
t2.0;T/

k%ı.t/kL� .�/ � ı� 1
� c; (3.268)

and

ess sup
t2.0;T/

k#ı.t/kL4.�/ � c: (3.269)

In addition, we have

�ı

h
Œ0;T� ��

i
� c; (3.270)

and, as a consequence of (3.258),

Z T

0

Z

�

jrx log.#ı/j2 dx dt � c; (3.271)

Z T

0

Z

�

jrx#ı
3
2 j2 dx dt � c; (3.272)

and

ı

Z T

0

Z

�

1

#ı
3

dx dt � c; (3.273)

ı

Z T

0

Z

�

�
#ı
��2 C 1

#ı
3

�
jrx#ıj2 dx dt � c: (3.274)

Finally, making use of Korn’s inequality established in Proposition 2.1 we
deduce, exactly as in (2.65), (2.66), that

k uı kL2.0;TIW1;p.�IR3// � c for p D 8

5 � ˛
; (3.275)

and

k uı kLq.0;TIW1;s.�IR3// � c for q D 6

4 � ˛ ; s D 18

10� ˛
; (3.276)
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where ˛ was introduced in hypotheses (3.17)–(3.23). Moreover,

ı

Z T

0

Z

�

ˇ
ˇ̌rxuı C rx

Tuı � 2

3
I

ˇ
ˇ̌2 dx dt � c: (3.277)

Note that estimates (3.269)–(3.272) yield

f#ıˇgı>0 bounded in L2.0;TIW1;2.�// for any 1 � ˇ � 3

2
; (3.278)

while (3.275), (3.276), together with hypotheses (3.17), (3.19), and (3.23), imply
that

fSıgı>0 is bounded in Lq..0;T/ ��IR3�3// for a certain q > 1; (3.279)

(cf. estimate (2.68)).
Now, positivity of the absolute temperature can be shown by help of Proposi-

tion 2.2 and Lemma 2.1, exactly as in Sect. 2.2.4. In particular, estimate (3.271) can
be strengthened to

Z T

0

Z

�

�
j log#ıj2 C jrx log#ıj2

�
dx dt � c: (3.280)

In order to complete our list of uniform bounds, we evoke the pressure estimates
obtained in Sect. 2.2.5. In the present context, relation (2.95) reads

Z T

0

Z

�

�
ı%ı

� C pı.%ı; #ı/
�
%ı
� dx dt � c.data/; (3.281)

where � > 0 is a constant exponent.

3.7.2 Asymptotic Limit for Vanishing Artificial Pressure

The piece of information provided by the uniform bounds established in the
previous section is sufficient for taking ı ! 0 in the approximate system of
equations (3.252)–(3.260).

Due to the structural properties of the molecular pressure pM derived in (3.32),
and because of (3.229), estimates (3.267), (3.269), and (3.275), (3.276) imply that

%ı ! % weakly-(*) in L1.0;TIL 5
3 .�//; (3.282)

#ı ! # weakly-(*) in L1.0;TIL4.�//; (3.283)
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and

uı ! u

8
<

:

weakly in L2.0;TIW1;p.�IR3//; p D 8
5�˛ ;

weakly in Lq.0;TIW1;s.�IR3//; q D 6
4�˛ ; s D 18

10�˛ ;

9
=

;
(3.284)

at least for suitable subsequences.
Taking b � 0 in the renormalized Eq. (3.252), we deduce, in view of the previous

estimates, that

%ı ! % in Cweak.Œ0;T�IL 5
3 .�//: (3.285)

On the other hand, as the Lebesgue space L
5
3 .�/ is compactly embedded into the

dualW�1;p0

.�/, p0 D 8=.3C˛/ as soon as ˛ 2 .2=5; 1�, we conclude, taking (3.282)
together with (3.266), (3.267) into account, that

%ıuı ! %u weakly-(*) in L1.0;TIL 5
4 .�IR3//: (3.286)

A similar argument in the case when the time derivative of the momentum %ıuı
is expressed via the approximate momentum equation (3.253) gives rise to

%ıuı ! %u in Cweak.Œ0;T�IL 5
4 .�IR3//: (3.287)

Since

W1;s.�/ is compactly embedded into L5.�/ for s D 18

10 � ˛ ; (3.288)

we can use (3.284) to conclude that

%ıuı ˝ uı ! %u ˝ u weakly in Lq.0;TILq.�IR3�3// for a certain q > 1:
(3.289)

In order to handle the approximate pressure in the momentum equation (3.253),
we first observe that, as a direct consequence of (3.281),

ı%ı ! 0 in L1..0;T/ ��/: (3.290)

Moreover, writing

p.%ı; #ı/ D pM.%ı; #ı/C a

3
#ı
4;

and interpolating estimates (3.269), (3.278), we have

#ı
4 ! #4 weakly in Lq..0;T/ ��/ for a certain q > 1: (3.291)
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In accordance with hypotheses (3.15), (3.16), the asymptotic structure of pM
derived in (3.32), and in agreement with (3.281), (3.291),

p.%ı; #ı/ D pM.%ı; #ı/C a

3
#ı
4 ! pM.%; #/C a

3
#4 weakly in L1..0;T/ ��/:

(3.292)

At this stage, it is possible to let ı ! 0 in Eqs. (3.252), (3.253) to obtain

Z T

0

Z

�

�
%B.%/@t' C %B.%/u � rx' � b.%/divxu'

�
dx dt (3.293)

D �
Z

�

%0B.%0/'.0; �/ dx

for any test function ' 2 C1
c .Œ0;T/ ��/ and any

b 2 L1 \ CŒ0;1/; B.%/ D B.1/C
Z %

1

b.z/

z
dz:

Similarly, we get

Z T

0

Z

�

�
%u � @t' C %u ˝ u W rx' C .pM.%; #/C a

3
#4/divx'

�
dx dt (3.294)

D
Z T

0

Z

�

�
S.#;rxu/ W rx' � %f � '

�
dx dt �

Z

�

.%u/0 � '.0; �/ dx

for any test function ' 2 C1
c .Œ0;T/��IR3/ satisfying ' �nj@� D 0, or, in addition,

'j@� D 0 in the case of the no-slip boundary conditions. Here we have set

S.#;rxu/ D .#/
�
rxu C rx

?u � 2

3
divxuI

�
C �.#/divxuI: (3.295)

Finally, letting ı ! 0 in the approximate total energy balance (3.260) we
conclude

Z

�

�1
2
%juj2 C %e.%; #/

�
.	/ dx D

Z

�

�1
2

j.%u/0j2
%0

C %0e.%0; #0/
�

dx (3.296)

C
Z 	

0

Z

�

�
%f � u C %Q

�
dx dt for a.a. 	 2 .0;T/;

where we have used estimate (3.273) in order to eliminate the singular term ı=#ı
2.

Moreover, we have assumed strong convergence (a.a.) of the approximate data fı,
%0;ı , #0;ı, and Qı .
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3.7.3 Entropy Balance and Pointwise Convergence
of the Temperature

Similarly to the preceding parts, specifically Sect. 3.6.2, our aim is to use Div-Curl
lemma (Proposition 3.3), together with the monotonicity of the entropy, in order to
show

#ı ! # a.a. on .0;T/ ��: (3.297)

Uniform Estimates We have to show that all terms appearing on the left-hand side
of the approximate entropy balance (3.257) are either non-negative or belong to an
Lp-space, with p > 1.

To this end, we use the structural properties of the specific entropy s stated
in (3.34), (3.39), together with the uniform estimates (3.267), (3.269), (3.280), to
deduce that

%ıs.%ı; #ı/ ! %s.%; #/ weakly in Lp..0;T/ ��/ for a certain p > 1: (3.298)

Similarly, we have

j%ıs.%ı; #ı/uıj � c
�
j#ıj3juıj C %ıj log.%ı/jjuıj C juıj C %ıj log.#ı/jjuıj

�
I

whence, by virtue of (3.288), combined with estimates (3.282)–(3.284), there is
p > 1 such that

n
j#ıj3juıj C %ıj log.%ı/jjuıj C juıj

o

ı>0
is bounded in Lp..0;T/ ��/: (3.299)

In addition, relations (3.277), (3.290) give rise to

f%ı log.#ı/uıgı>0 bounded in Lp..0;T/ ��IR3/ for a certain p > 1: (3.300)

The entropy flux can be handled by means of the uniform estimates established
in (3.269), (3.278). Indeed, writing

�.#ı/

#ı
jrx#ıj � c

�
jrx log.#ı/j C #ı

3
2 jrx#ı

3
2 j
�

we observe easily that

n�.#ı/
#ı

rx#ı

o

ı>0
is bounded in Lp..0;T/ ��IR3/ (3.301)

for a suitable p > 1.
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Finally, relations (3.269), (3.274), (3.280) can be used to obtain

8
<̂

:̂

ı
R T
0

k#ı �2 .t; �/k2W1;2.�/
dt � c;

ı
R T
0

k#ı� 1
2 .t; �/k2

W1;2.�/
dt � c;

9
>=

>;
(3.302)

uniformly for ı ! 0. Consequently, seeing that

ı#ı
��1rx#ı D ı

�

2
#ı

�
2 rx#ı

�
2 D ı

�

2
#ı

1
4 #ı

�
2 � 1

4rx#ı
�
2 ;

we can use (3.283), (3.302), together with Hölder’s inequality and the embedding
relation W1;2.�/ ,! L6.�/, in order to conclude that

ı#ı
��1rx#ı ! 0 in Lp..0;T/��IR3// for ı ! 0 and a certain p > 1: (3.303)

Similarly, by the same token,

ı

#ı
2
rx#ı ! 0 in Lp..0;T/ ��IR3//; where p > 1: (3.304)

Strong Convergence of Temperature via the Young Measures Having estab-
lished all necessary estimates we can proceed as in Sect. 3.6.2.

By virtue of (3.280),

ı log.#ı/G.#ı/ ! 0 in L1..0;T/ ��/: (3.305)

We can apply Div-Curl lemma (Proposition 3.3) in order to obtain identity

%s.%; #/G.#/ D %s.%; #/ G.#/: (3.306)

Consequently, employing Theorem 11.37, we show identity (3.213). Now we apply
Theorem 13 in the same way as in Sect. 3.6.2 and conclude that

%sM.%; #/G.#/ 	 %sM.%; #/ G.#/: (3.307)

We also observe that, according to Theorem 11.26,

#3G.#/ 	 #3 G.#/: (3.308)

The symbol G in the last four formulas denotes an arbitrary nondecreasing and
continuous function on Œ0;1/, chosen in such a way that all the L1-weak limits in
the above formulas exist.
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Relations (3.307)–(3.308) combined with identity (3.306) yield (3.210). The
latter identity implies the pointwise convergence (3.297).

Strong Convergence of Temperature: An Alternative Proof The departure point
is formula (3.306) with G.#/ D Tk.#/, where the truncation functions Tk is defined
by formula (3.316) below. The goal is to show the inequality (3.307) by using more
elementary arguments than in the previous section. Once this is done, (3.306) and
Theorem 11.26 yield

#3Tk.#/ D #3 Tk.#/:

Since the sequence #ı is bounded in L1.0;TIL4.�// \ L2.0;TIL6.�//, the last
inequality and Corollary 11.2 in Appendix, imply

#4 D #3 #

which proves (3.297).
Accordingly, it is enough to show

%sM.%; #/Tk.#/ 	 %sM.%; #/ Tk.#/: (3.309)

Due to Corollary 11.2 and property (3.39), we have

sup
">0

k%ısM.%ı; #ı/Tk.#ı/ � %ısM.%ı;Tk.#ı//Tk.#ı/kL1..0;T/��/ ! 0

and

sup
">0

k%ısM.%ı; #ı/Tk.#/ � %ısM.%ı;Tk.#ı//Tk.#/kL1..0;T/��/ ! 0

as k ! 1. It is therefore sufficient to prove

%sM.%;Tk.#//Tk.#/ 	 %sM.%;Tk.#// Tk.#/: (3.310)

Due to the monotonicity of function # 7! sM.%; #/, we have

�
%ısM.%ı;Tk.#ı//� %ısM.%ı;Tk.#//

��
Tk.#ı/� Tk.#/

�
	 0:

Therefore, (3.310) will be verified if we show that

Z

B
%ısM.%ı;Tk.#//

�
Tk.#ı/� Tk.#/

�
dxdt ! 0 as " ! 0C; (3.311)

where B is an arbitrary ball in .0;T/ ��.
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Since log is a concave function, we have log.Tk.#// � log.Tk.#//. Moreover,
the sequence flog.#ı/gı>0 is bounded in L2.0;TIW1;2.�// and the same holds for
flog.Tk.#ı//gı>0. Consequently,

log.Tk.#// 1fTk.#/�1g 2 L2.0;TIL6.�//;

0 < log.Tk.#// 1fTk.#/>1g � Tk.#/ 2 L2.0;TIL6.�//;

therefore log.Tk.#// belongs to the space L2.0;TIL6.�//. In particular, there exists
z� 2 C1.Œ0;T� ��/ such that

kz� � log.Tk.#//kL2.0;TIL6.�// < "

where " > 0 is a parameter that can be taken arbitrarily small. Setting ‚ D exp.z"/
we have

‚ 2 C1.Œ0;T� ��/; min
.t;x/2Œ0;T���

‚.t; x/ > 0:

Now, we write

Z

B
%ısM.%ı;Tk.#//

�
Tk.#ı/� Tk.#/

�
dx dt

D
Z

B

�
%ısM.%ı;Tk.#// � %ısM.%ı;‚/

��
Tk.#ı/ � Tk.#/

�
dx dt (3.312)

C
Z

B
%ısM.%ı;‚/

�
Tk.#ı/ � Tk.#/

�
dx dt:

We may use (3.11), (3.34) to verify that

ˇ
ˇ
ˇ%ısM.%ı;Tk.#// � %ısM.%ı;‚/

ˇ
ˇ
ˇ D

%ı

ˇ
ˇ̌
Z ‚

Tk.#/

1

r

@eM
@#

.%ı; r/ dr
ˇ
ˇ̌ � c%ı

ˇ
ˇ̌ log.Tk.#//� log.‚/

ˇ
ˇ̌
:

Since %ı is bounded in L1.0;TIL 5
3 .�//, we infer that

sup
ı>0

�
�
�%ı

�
log.Tk.#// � log.‚/

���
�
L2.0;TIL 3023 .�// � c"I

whence the first integral on the right-hand side of (3.311) tends to 0 as " ! 0C.
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As a consequence of (3.39), the sequence B.t; x; %ı/ D %ısM.%ı;‚.t; x// satisfies
hypothesis (11.131) of Theorem 11.37 in Appendix. We can therefore conclude that

f%ısM.%ı;‚/gı>0 is precompact in L2.0;TIW�1;2.�//;

which, together with the fact that Tk.#ı/ ! Tk.#/ weakly in L2.0;TIW1;2.�//,
concludes the proof of inequality (3.309).

Asymptotic Limit in the Entropy Balance Using weak lower semicontinuity of
convex functionals, we can let ı ! 0 in the approximate entropy balance (3.257) to
conclude that

Z T

0

Z

�

%s.%; #/
�
@t' C u � rx'

�
dx dt C

Z T

0

Z

�

q
#

� rx' dx dt (3.313)

C < � I' >ŒMIC�.Œ0;T���/D �
Z

�

.%s/0'.0; �/ dx �
Z T

0

Z

�

%

#
Q' dx dt;

for any ' 2 C1
c .Œ0;T/ ��/. In this equation

q D ��.#/rx#; (3.314)

and � 2 MC.Œ0;T���/ is a weak-(*) limit in M.Œ0;T���/ of the sequence �ı that
exists at least for a chosen subsequence due to estimate (3.270). Employing (3.258),
(3.270), (3.284), (3.297) and lower weak semicontinuity of convex functionals,
using the fact that all ı-dependent quantities in the entropy production rate at the
right hand side of (3.258) are non negative, we show that

� 	 1

#

�
S.#;rxu/ W rxu C �.#/

#
jr#j2

�
: (3.315)

For more details see the similar reasoning between formulas (3.158)–(3.160) in
Sect. 3.5.3.

Consequently, in order to complete the proof of Theorem 3.1, we have to show
pointwise convergence of the densities. This will be done in the next section.

3.7.4 Pointwise Convergence of the Densities

We follow the same strategy as in Sect. 3.6.5, however, some essential steps have
to be considerably modified due to lower Lp-integrability available for f%ıgı>0,
fuıgı>0.
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To begin, we introduce a family of cut-off functions

Tk.z/ D kT
� z
k

�
; z 	 0; k 	 1; (3.316)

where T 2 C1Œ0;1/,

T.z/ D

8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

z for 0 � z � 1;

concave on Œ0;1/;

2 for z 	 3:

(3.317)

Similarly to Sects. 2.2.6, 3.6.5, we use the quantities

'.t; x/ D  .t/�.x/.rx�
�1
x /Œ1�Tk.%ı/�;  2 C1

c .0;T/; � 2 C1
c .�/;

with the operators .rx�
�1
x / introduced in (2.100), as test functions in the approxi-

mate momentum equation (3.253) to deduce

Z T

0

Z

�

 �
h�

p.%ı; #ı/C ı.%ı
� C %ı

2/
�
Tk.%ı/ � Sı W RŒ1�Tk.%ı/�

i
dx dt D

7X

jD1

Ij;ı ;

(3.318)

where Sı WD Sı.#ı;rxuı/ and

I1;ı D
Z T

0

Z

�

 �
�
%ıuı � RŒ1�Tk.%ı/uı� � .%ıuı ˝ uı/ W RŒ1�Tk.%ı/�

�
dx dt;

I2;ı D �
Z T

0

Z

�

 � %ıuı � rx�
�1
x

h
1�.Tk.%ı/ � T 0

k.%ı/%ı/divxuı
i

dx dt;

I3;ı D �
Z T

0

Z

�

 �%ıfı � rx�
�1
x Œ1�Tk.%ı/� dx dt;

I4;ı D �
Z T

0

Z

�

 
�
p.%ı; #ı/C ı.%ı

� C %ı
2/
�
rx� � rx�

�1
x Œ1�Tk.%ı/� dx dt;

I5;ı D
Z T

0

Z

�

 Sı W rx� ˝ rx�
�1
x Œ1�Tk.%ı/� dx dt;

I6;ı D �
Z T

0

Z

�

 .%ıuı ˝ uı/ W rx� ˝ rx�
�1
x Œ1�Tk.%ı/� dx dt;



3.7 Vanishing Artificial Pressure 131

and

I7;ı D �
Z T

0

Z

�

@t �%ıuı � rx�
�1
x Œ1�Tk.%ı/� dx dt:

Now, mimicking the strategy of Sect. 3.6.5, we use

'.t; x/ D  .t/�.x/.rx�
�1
x /Œ1�Tk.%/�;  2 C1

c .0;T/; � 2 C1
c .�/

as test functions in the limit momentum balance (3.294) to obtain

Z T

0

Z

�

 �
h�

pM.%; #/C a

4
#4/

�
Tk.%/ � S W RŒ1�Tk.%/�

i
dx dt D

7X

jD1
Ij;

(3.319)

where

I1 D
Z T

0

Z

�

 �
�
%u � RŒ1�Tk.%/u� � .%u ˝ u/ W RŒ1�Tk.%/�

�
dx dt;

I2 D �
Z T

0

Z

�

 � %u � rx�
�1
x

h
1�.Tk.%/ � T 0

k.%/%/divxu
i

dx dt;

I3 D �
Z T

0

Z

�

 �%f � rx�
�1
x Œ1�Tk.%/� dx dt;

I4 D �
Z T

0

Z

�

 p.%; #/rx� � rx�
�1
x Œ1�Tk.%/� dx dt;

I5 D
Z T

0

Z

�

 S W rx� ˝ rx�
�1
x Œ1�Tk.%/� dx dt;

I6 D �
Z T

0

Z

�

 .%u ˝ u/ W rx� ˝ rx�
�1
x Œ1�Tk.%/� dx dt;

and

I7 D �
Z T

0

Z

�

@t �%u � rx�
�1
x Œ1�Tk.%/� dx dt:

We recall that R D Ri;j is the double Riesz transform introduced in Sect. 5.
To get formula (3.319) we have used (3.284), (3.297) to identify #4 with #4 and

S.#;rxu/ with S WD S.#;rxu/. We also recall that R D Ri;j is the double Riesz
transform introduced in Sect. 5.
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Now, letting ı ! 0C in (3.318), we get

Z T

0

Z

�

 �
h
pM.%; #/ Tk.%/C a#4Tk.%/ � S W RŒ1� Tk.%/�

i
dxdt D

7X

jD1
Ij;

(3.320)

where the right hand side is the same as the right hand side in (3.319). Here, we
have used the commutator lemma in form of Corollary 3.3 with rı D 1� Tk.%ı/ and
Vı D 1�%ıuı to show that

I1;ı ! I1 as ı ! 0C;

exactly in the same way as explained in detail in Sect. 3.6.5. We have also employed
the pointwise convergence (3.297) to verify that #4 D #4 and that #4 Tk.%/ D
#4Tk.%/.

Combining (3.319) and (3.320), we get identity

Z T

0

Z

�

 �
h
pM.%; #/ Tk.%/ � pM.%; #/ Tk.%/

i
dxdt

D
Z T

0

Z

�

 �
h
S W RŒ1�Tk.%/� � S W RŒ1�Tk.%/�

i
dxdt:

We again follow the great lines of Sect. 3.6.5. Employing the evident properties of
the Riesz transform evoked in formulas (11.107), we may write

Z T

0

Z

�

 �S W RŒ1� Tk.%/� dxdt D lim
ı!0C

Z T

0

Z

�

 !.#ı;uı/ Tk.%ı/ dxdt

C lim
ı!0C

Z T

0

Z

�

 �.
4

3
.#ı/C �.#ı//divxuTk.%ı/ dxdt

and

Z T

0

Z

�

 �S W RŒ1�Tk.%/� dxdt D
Z T

0

Z

�

 !.#;u/ Tk.%/ dxdt

C
Z T

0

Z

�

 �.
4

3
.#/C �.#//divxuTk.%/ dxdt;

where

!.#;u/ D R W
h
�.#/

�
rxu C rx

Tu
�i

� �.#/R W
h
rxu C rx

Tu
i
:
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Applying Lemma 3.6 to w D �.#ı/, Z D Œ@xi u";j C @xj u";i�
3
iD1, j 2 f1; 2; 3g

fixed, where, according to (3.17)–(3.18), (3.278), (3.275), the sequences w, Z are
bounded in L2.0;TIW1;2.�// and L8=.5�˛/..0;T/��/, respectively, we deduce that

f!.#ı;uı/gı>0 is bounded in L1.0;TIWˇ;s.�// for certain ˇ 2 .0; 1/; s > 1:
(3.321)

Now, we consider four-dimensional vector fields

Uı D ŒTk.%ı/;Tk.%ı/uı�; Vı D Œ!.%ı; #ı/; 0; 0; 0�

and take advantage of relations (3.252), (3.266), (3.267), (3.269), (3.278), (3.275)
and (3.321) in order to show that Uı, Vı verify all hypotheses of the Div-Curl lemma
stated in Proposition 3.3. Using this proposition, we may conclude that

!.#ı;uı/Tk.%ı/ ! !.#;u/ Tk.%/ D !.#;u/ Tk.%/ weakly in L1..0;T/ ��/;
(3.322)

where we have used (3.284), (3.297) to identify !.#;u/ with !.#;u/.
We thus discover on this level of approximations again the weak compactness

identity for the effective pressure

� WEAK COMPACTNESS IDENTITY FOR EFFECTIVE PRESSURE (LEVEL ı) :

pM.%; #/Tk.%/�
�4
3
.#/C �.#/

�
Tk.%/divxu (3.323)

D pM.%; #/ Tk.%/ �
�4
3
.#/C �.#/

�
Tk.%/ divxu:

Thus our ultimate goal is to use relation (3.323) in order to show pointwise
convergence of the family of approximate densities f%ıgı>0. To this end, we revoke
the “renormalized” limit Eq. (3.293) yielding

Z T

0

Z

�

�
%Lk.%/@t' C %Lk.%/u � rx' � Tk.%/divxu'

�
dx dt (3.324)

D �
Z

�

%0Lk.%0/'.0; �/ dx

for any test function ' 2 C1
c .Œ0;T/ ��/, where we have set

Lk.%/ D
Z %

1

Tk.z/

z2
dz:
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Assume, for a moment, that the limit functions %, u also satisfy the equation of
continuity in the sense of renormalized solutions, in particular,

Z T

0

Z

�

�
%Lk.%/@t' C %Lk.%/u � rx' � Tk.%/divxu'

�
dx dt (3.325)

D �
Z

�

%0Lk.%0/'.0; �/ dx

for any test function ' 2 C1
c .Œ0;T/ ��/.

Now, relations (3.324), (3.325) give rise to

Z

�

�
%Lk.%/ � %Lk.%/

�
.	/ dx C

Z 	

0

Z

�

�
Tk.%/divxu � Tk.%/divxu

�
dx dt

(3.326)

D
Z 	

0

Z

�

�
Tk.%/divxu � Tk.%/divxu dx dt for any 	 2 Œ0;T�:

As f#ıgı>0 converges strongly in L1 and pM is a non-decreasing function of %, we
can use relation (3.323) to obtain

Tk.%/divxu � Tk.%/divxu 	 0:

Letting k ! 1 in (3.326) we obtain

% log.%/ D % log.%/ a.a. on .0;T/ ��; (3.327)

as soon as we are able to show that
Z 	

0

Z

�

�
Tk.%/divxu � Tk.%/divxu

�
dx dt ! 0 for k ! 1: (3.328)

Relation (3.327) yields

%ı ! % in L1..0;T/ ��/; (3.329)

see Theorem 11.27 in Appendix. This completes the proof of Theorem 3.1.
Note, however, that two fundamental issues have been left open in the preceding

discussion, namely

• the validity of the renormalized Eq. (3.325),
• relation (3.328).

These two intimately related questions will be addressed in the following section.



3.7 Vanishing Artificial Pressure 135

3.7.5 Oscillations Defect Measure

The oscillations defect measure introduced in [117] represents a basic tool for
studying density oscillations. Given a family f%ıgı>0, a set Q, and q 	 1, we
introduce:

� OSCILLATIONS DEFECT MEASURE:

oscqŒ%ı ! %�.Q/ D sup
k�1

�
lim sup
ı!0C

Z

Q

ˇ
ˇ
ˇTk.%ı/� Tk.%/

ˇ
ˇ
ˇ
q

dx dt
�
; (3.330)

where Tk are the cut-off functions introduced in (3.316).
Assume that

divxu 2 Lr..0;T/ ��/; oscqŒ%ı ! %�..0;T/ ��/ < 1; with
1

r
C 1

q
< 1:

(3.331)

Seeing that

Tk.%/ ! %; Tk.%/ ! % in L1..0;T/ ��/ for k ! 1;

we conclude easily that (3.331) implies (3.328).
A less obvious statement is the following assertion.

Lemma 3.8 Let Q � R
4 be an open set. Suppose that

%ı ! % weakly in L1.Q/;

uı ! u weakly in Lr.QIR3/; (3.332)

rxuı ! rxu weakly in Lr.QIR3�3/; r > 1; (3.333)

and

oscqŒ%ı ! %�.Q/ < 1 for
1

q
C 1

r
< 1; (3.334)

where %ı , uı solve the renormalized Eq. (2.2) in D0.Q/.
Then the limit functions %, u solve the renormalized Eq. (2.2) in D0.Q/.

Proof Clearly, it is enough to show the result on the set J�K, where J is a bounded
time interval andK is a ball such that J � K � Q. Since %ı is a renormalized solution
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of (2.2), we get

Tk.%ı/ ! Tk.%/ in Cweak.JILˇ.�// for any 1 � ˇ < 1I

whence, by virtue of hypotheses (3.332), (3.333),

Tk.%ı/uı ! Tk.%/u weakly in Lr.J � KIR3/:

Consequently, we deduce

@tTk.%/C divx
�
Tk.%/u

�
C
�
T 0
k.%/% � Tk.%/

�
divxu

�
D 0 in D0.J ��/: (3.335)

Since Tk.%/ are bounded, we can apply the regularization technique introduced
by DiPerna and Lions [85] (Theorem 11.36), already used in Lemma 3.7, in order
to deduce

@th.Tk.%//C divx
�
h.Tk.%//u

�
C
�
h0.Tk.%// Tk.%/� Tk.%/

�
divxu

D h0.Tk.%//
�
Tk.%/ � T 0

k.%/%
�

divxu in D0.J � K/;

where h is a continuously differentiable function such that h0.z/ D 0 for all z large
enough, say, z 	 M.

Consequently, it is enough to show

h0.Tk.%//
�
Tk.%/ � T 0

k.%/%
�

divxu ! 0 in L1.J � K/ for k ! 1: (3.336)

To this end, denote

Qk;M D f.t; x/ 2 J � K j jTk.%/j � Mg:

Consequently,

�
�
�h0.Tk.%//

�
Tk.%/ � T 0

k.%/%
�

divxu
�
�
�
L1.J�K/

(3.337)

�
�

sup
0�z�M

jh0.z/j
��

supı>0kdivxuıkLr.J�K/

�
lim inf
ı!0

kTk.%ı/� T 0
k.%ı/%ıkLr0 .Qk;M/

;

where 1=r C 1=r0 D 1.
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Furthermore, a simple interpolation argument yields

kTk.%ı/ � T 0
k.%ı/%ıkLr0 .Qk;M/

(3.338)

� kTk.%ı/� T 0
k.%ı/%ıkˇL1.J�K/

kTk.%ı/ � T 0
k.%ı/%ık1�ˇLq.Qk;M/

;

with ˇ 2 .0; 1/.
As the family f%ıgı>0 is equi-integrable, we deduce

sup
ı>0

n
kTk.%ı/� T 0

k.%ı/%ıkL1.J�K/

o
! 0 for k ! 1: (3.339)

Finally, seeing that jT 0
k.%ı/%ıj � Tk.%ı/, we conclude

kTk.%ı/ � T 0
k.%ı/%ıkLq.Qk;M/

� 2
�
kTk.%ı/ � Tk.%/kLq.J�K/ C kTk.%/ � Tk.%/kLq.J�K/ C kTk.%/kLq.Qk;M/

�

� 2
�
kTk.%ı/ � Tk.%/kLq.J�K/ C oscqŒ%ı ! %�.J � K C jJ � Kj 1q I

whence

lim sup
ı!0

kTk.%ı/� T 0
k.%ı/%ıkLq.Qk;M/ � 4oscqŒ%ı ! %�.J � K/C 2MjJ � Kj 1q :

(3.340)

Clearly, relation (3.336) follows from (3.337) to (3.340).
ut

In order to apply Lemma 3.8, we need to establish suitable bounds on
oscqŒ%ı!%�. To this end, revoking (3.42)–(3.44) we write

pM.%; #/ D d%
5
3 C pm.%; #/C pb.%; #/; d > 0; (3.341)

where

@pm.%; #/

@%
	 0; (3.342)

and

jpb.%; #/j � c.1C #
5
2 / (3.343)

for all %, # > 0.
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Consequently,

d lim sup
ı!0C

Z T

0

Z

�

'jTk.%ı/� Tk.%/j 83 dx dt

� d
Z T

0

Z

�

'
�
%
5
3 Tk.%/ � %5

3 Tk.%/
�

dx dt

Cd
Z T

0

Z

�

'
�
%
5
3 � %5

3

��
Tk.%/ � Tk.%/

�
dx dt

�
Z T

0

Z

�

'
�
pM.%; #/Tk.%/ � pM.%; #/ Tk.%/

�
dx

C
ˇ
ˇ
ˇ
ˇ

Z T

0

Z

�

'
�
pb.%; #/Tk.%/ � pb.%; #/ Tk.%/

�
dx dt

ˇ
ˇ
ˇ
ˇ

for any ' 2 C1
c ..0;T/ � �/, ' 	 0, where we have used (3.342), convexity of

% 7! %
5
3 , and concavity of Tk on Œ0;1/.

In accordance with the uniform bound (3.269) and (3.343), we have

ˇ
ˇ
ˇ
ˇ

Z T

0

Z

�

'
�
pb.%; #/Tk.%/� pb.%; #/ Tk.%/

�
dx dt

ˇ
ˇ
ˇ
ˇ (3.344)

� c1
�
1C sup

ı>0

k#ı 52 k
L
8
5 ..0;T/��/

��Z T

0

Z

�

'jTk.%ı/� Tk.%/j 83 dx dt

� 3
8

� c2 lim sup
ı!0

�Z T

0

Z

�

'jTk.%ı/ � Tk.%/j 83 dx dt

� 3
8

:

Furthermore, introducing a Carathéodory function

Gk.t; x; z/ D jTk.z/ � Tk.%.t; x//j 83

we get, in accordance with (3.344),

Gk.�; �; %/ � c
�
1C pM.%; #/Tk.%/� pM.%; #/ Tk.%/

�
; with c independent of k 	 1:

Thus, evoking once more (3.323) we infer that

Gk.�; �; %/ � c
�
1C .

4

3
.#/C �.#//.divxu Tk.%/ � divxu Tk.%//

�
for all k 	 1:

(3.345)
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On the other hand, by virtue of hypothesis (3.17) and estimate (3.275), we get

Z T

0

Z

�

.1C #/�˛Gk.t; x; %/ dx dt (3.346)

� c
�
1C sup

ı>0

kdivxuık
L

8
5�˛ ..0;T/��/ lim sup

ı!0C
kTk.%ı/� Tk.%/k

L
8

3C˛ ..0;T/��/

�

� c
�
1C lim sup

ı!0C
kTk.%ı/� Tk.%/k

L
8

3C˛ ..0;T/��/

�
:

Taking

8

3C ˛
< q <

8

3
; ˇ D 3q˛

8

and using Hölder’s inequality, we obtain

Z T

0

Z

�

jTk.%ı/ � Tk.%/jq dx dt D
Z T

0

Z

�

.1C #/�ˇ.1C #/ˇjTk.%ı/ � Tk.%/jq dx dt

(3.347)

� c
� Z T

0

Z

�

.1C #/�˛jTk.%ı/ � Tk.%/j 83 dx dt C
Z T

0

Z

�

.1C #/
3˛q
8�3q dx dt

�
:

Finally, choosing q such that

8

3C ˛
< q � 32

3˛ C 12
; meaning

3˛q

8 � 3q
� 4;

we can combine relations (3.346), (3.347), together with estimate (3.269), in order
to conclude that

oscqŒ%ı ! %�..0;T/ ��/ < 1 for a certain q >
8

3C ˛
: (3.348)

Relation (3.348) together with (3.275) allow us to apply Lemma 3.8 in order to
conclude that

• the limit functions % u satisfy the renormalized Eq. (3.325),
• relation (3.328) holds.

Thus we have rigorously justified the strong convergence of f%ıgı>0 claimed in
(3.329). The proof of Theorem 3.1 is complete.
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3.8 Regularity Properties of the Weak Solutions

The reader will have noticed that the weak solutions constructed in the course of
the proof of Theorem 3.1 enjoy slightly better regularity and integrability properties
than those required in Sect. 2.1. As a matter of fact, the uniform bounds obtained
above can be verified for any weak solution of the NAVIER-STOKES-FOURIER

SYSTEM in the sense of Sect. 2.1 and not only for the specific one resulting from our
approximation procedure. Similarly, the restrictions on the geometry of the spatial
domain can be considerably relaxed and other types of domains, for instance, the
periodic slab, can be handled.

� REGULARITY OF THE WEAK SOLUTIONS:

Theorem 3.2 Let � � R
3 be a bounded Lipschitz domain. Assume the data %0,

.%u/0, E0, .%s/0, the source terms f,Q, the thermodynamic functions p, e, s, and the
transport coefficients , �, � satisfy the structural hypotheses (3.1)–(3.23) listed in
Sect. 3.1. Let f%;u; #g be a weak solution to the Navier-Stokes-Fourier system on
.0;T/ �� in the sense specified in Sect. 2.1.

Then, in addition to the minimal integrability and regularity properties required
in (2.5)–(2.6), (2.13)–(2.15), (2.30)–(2.31), there holds:

(i)

% 2 Cweak.Œ0;T�IL 5
3 .�// \ C.Œ0;T�IL1.�//;

%u 2 Cweak.Œ0;T�IL 5
4 .�//;

(3.349)

# 2 L2.0;TIW1;2.�// \ L1.0;TIL4.�//;

log# 2 L2.0;TIW1;2.�//;

(3.350)

8
<

:

S.#;rxu/ 2 Lq..0;T/ ��IR3�3/ for a certain q > 1;

u 2 Lq.0;TIW1;p.�IR3// for q D 6
4�˛ ; p D 18

10�˛ ;

9
=

;
(3.351)

8
<

:

% 2 Lq..0;T/ ��/ for a certain q > 5
3
;

p.%; #/ 2 Lq..0;T/ ��/ for a certain q > 1:

9
=

;
(3.352)

(ii) The total kinetic energy
R
�

j%uj2
%
1f%>0g dx is lower semicontinuous on .0;T/, left

lower semicontinuous at T and right lower semicontinuous at 0; in particular

lim inf
t!0C

� Z

�

j%uj2
%

1f%>0g dx
�
.t/ 	

Z

�

j.%u/0j2
%0

1f%0>0g dx: (3.353)
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(iii) The entropy satisfies

8
<

:

ess limt!0C
R
�
%s.%; #/.t; �/' dx 	 R

�
%0s.%0; #0/' dx

for any ' 2 C1
c .�/; ' 	 0:

9
=

;
(3.354)

If, in addition, #0 2 W1;1.�/, then

ess lim
t!0C

Z

�

%s.%; #/.t; �/' dx D
Z

�

%0s.%0; #0/' dx; for all ' 2 C1
c .�/:

(3.355)

Proof
Step 1: Unlike the proof of existence based on the classical theory of parabolic

equations requiring � to be a regular domain, the integrability properties (3.349)–
(3.352) of the weak solutions follow directly from the total dissipation balance
(2.52) and the space-time pressure estimates obtained by means of the operator
B � divx�1 introduced in Sect. 2.2.5; for more details, see estimates (2.40), (2.46),
(2.66), (2.68), (2.73), (2.96) and (2.98). In particular, it is enough to assume� � R

3

to be a bounded Lipschitz domain.
Step 2: Strong continuity in time of the density claimed in (3.349) is a general

property of the renormalized solutions that follows from the DiPerna and Lions
transport theory [85], see Lemma 11.14 in Appendix. Once % 2 C.Œ0;T�IL1.�///\
Cweak.Œ0;T�IL 5

3 .�//, we deduce from the momentum equation (2.9) and estimates
(3.350)–(3.352) that one may take a representative of u 2 Lq.0;TIW1;p.�// such
that m WD %u 2 Cweak.Œ0;T�IL 5

4 .�IR3//. In addition, we may infer from the
inequality

km.t/k2
L
5
4 .�/

� k%.t/k
L
5
3 .�/

k%.t/ju.t/j2kL1.0;TIL1.�//; t 2 Œ0;T�

that m.t/ vanishes almost anywhere on the set fx 2 � j %.t/ D 0g. The expression
jm.t/j2
%.t/ 1f%.t/>0g is therefore defined for all t 2 Œ0;T� and is equal to %juj2.t/ a.a. on
.0;T/.

Since
R
�

jm.t/j2
%.t/C" dx � k%ukL1.0;TIL1.�// uniformly with " ! 0C, we deduce by

the Beppo-Lévi monotone convergence theorem that

Z

�

jm.t/j2
%.t/C "

dx !
Z

�

jm.t/j2
%.t/

1f%.t/>0g dx < 1 for all t 2 Œ0;T�:

This information together with (3.349) guarantees m.t/=
p
%.t/C " 2 Cweak.Œ0;T�I

L2.�//. Therefore, for any ˛ > 0 and sufficiently small 0 < " < ".˛/, and for any
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	 2 Œ0;T/,
Z

�

jm.	/j2
%.	/

1f%.	/>0g dx � ˛ �
Z

�

jm.	/j2
%.	/C "

dx

� lim inf
t!	C

Z

�

jm.t/j2
%.t/

1f%.t/>"g dx � lim inf
t!	C

Z

�

jm.t/j2
%.t/

1f%.t/>0g dx;

where, to justify the inequality in the middle, we have used (3.349) and the
lower weak semicontinuity of convex functionals discussed in Theorem 11.27 in
Appendix. We have completed the proof of lower semicontinuity in time of the total
kinetic energy, and, in particular, formula (3.353).

Step 3: In agreement with formulas (1.11)–(1.12), we deduce from the entropy
balance (2.27) that

Œ%s.%; #/�.	C/ 2 MC.�/; 	 2 Œ0;T/; Œ%s.%; #/�.	�/ 2 MC.�/; 	 2 .0;T�;

Œ%s.%; #/�.	C/ 	 Œ%s.%; #/�.	�/; 	 2 .0;T/;

where the measures Œ%s.%; #/�.	C/, 	 2 Œ0;T/ and Œ%s.%; #/�.	�/, 	 2 .0;T� are
defined in the following way

< Œ%s.%; #/�.	˙/I � >ŒMIC�.�/WD lim
ı!0C

Z

I˙	;ı

Z

�

Œ%s.%; #/�.t/Œ 	;˙ı �0.t/� dx dt

D
Z

�

%0s.%0; #0/� dx C lim
ı!0C < � I .	;˙/ı � >ŒMIC�.Œ0;T���/ (3.356)

C
Z

�

%0s.%0; #0/� dx C
Z 	

0

Z

�

�
%s.%; #/u C q

#

�
� rx� dx C

Z 	

0

Z

�

Q
#
� dx:

In this formula, � 2 C.�/, IC
	;ı D .	; 	 C ı/, I�

	;ı D .	 � ı; 	/ and  .	;˙/ı 2 C1.R/
are non increasing functions such that

 
.	;C/
ı .t/ D

8
<

:

1 if t 2 .�1; 	/;

0 if t 2 Œ	 C ı;1/;

9
=

;
;  

.	;�/
ı .t/ D

8
<

:

1 if t 2 .�1; 	 � ı/;

0 if t 2 Œ	;1/;

9
=

;
:

According to the theorem about the Lebesgue points applied to function %s.%; #/
(belonging to L1.0;TIL1.�/), we may infer

< Œ%s.%; #/�.	�/I � >ŒMIC�.�/D< Œ%s.%; #/�.	C/I � >ŒMIC�.�/ (3.357)

D
Z

�

Œ%s.%; #/�.	/� dx; � 2 C1
c .�/; � 	 0 for a.a. 	 2 .0;T/:
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Letting ı ! 0C in (3.356), we obtain

Z

�

Œ%s.%; #/�.	C/� dx� < � I � >ŒMIC�.Œ0;	���/ (3.358)

D
Z

�

%0s.%0; #0/� dx C
Z 	

0

Z

�

�
%
Q
#
� C .%s.%; #/u C q

#
/ � rx�

�
dx:

In the remaining part of the proof, we shall show that

ess lim
	!0C < � I � >ŒMIC�.Œ0;	���/D 0: (3.359)

Step 4: To this end we employ in the entropy balance (2.27) the test function
'.t; x/ D  

.	;C/
ı .t/#0.x/, 	 2 .0;T/, which is admissible provided #0 2 W1;1.�/.

Using additionally (3.357), we get

Z

�

.Œ%s.%; #/�.	/ � %0s.%0; #0// #0 dx D< � I#0 >ŒMIC�.Œ0;	���/ (3.360)

C
Z 	

0

Z

�

�
%s.%; #/u C q

#

�
� rx#0 dx C

Z 	

0

Z

�

Q
#
#0 dx

for a.a. 	 2 .0;T/. On the other hand, the total energy balance (2.22) with the test
function  D  

.	;C/
ı yields

Z

�

�
Œ
1

2%
j%uj2 C %e.%; #/�.	/ � Œ 1

2%0
j%0u0j2 C %0e.%0; #0/�

�
dx (3.361)

D
Z 	

0

Z

�

.%fu C %Q/ dx dt

for a.a. 	 2 .0;T/. Now, we introduce the Helmholtz function

H#0.%; #/ D %e.%; #/ � #0%s.%; #/

and combine (3.360)–(3.361) to get

Z

�

�
Œ
1

2%
j%uj2�.	/ � 1

2%0
j%0u0j2

�
dx C

Z

�

ŒH#0 .%; #/ � H#0.%; #0/�.	/ dx

C
Z

�

�
H#0 .%.	/; #/ � H#0 .%0; #0/� .%.	/ � %0/@H#0

@%
.%0; #0/

�
dx (3.362)
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C
Z

�

.%.	/ � %0/
@H#0
@%

.%0; #0/ dxC < � I#0 >ŒMIC�.Œ0;	���/

D
Z 	

0

Z

�

�
%fu C %Q

�
1 � #0

#

�
�
�
%s.%; #/u C q

#

�
� r#0

�
dx dt

for a.a. 	 in .0;T/.
It follows from the thermodynamic stability hypothesis (1.44) that % 7!

H#0.%; #0/ is strictly convex for any fixed #0 and that # 7! H#0.%; #/ attains
its global minimum at #0, see Sect. 2.2.3 for more details. Consequently,

H#0.%; #/�H#0.%; #0/ 	 0; H#0.%; #/�H#0.%0; #0/� .%� %0/@H#0
@%

.%0; #0/ 	 0:

Moreover, due to the strong continuity of density with respect to time stated in
(3.349), we show

lim	!0C
Z

�

.%.	/ � %0/
@H#0
@%

.%0; #0/ dx D 0;

while the last integral at the right hand side of (3.362) tends to 0 as 	 ! 0C since
the integrand belongs to L1..0;T/ ��/. Thus, relation (3.362) reduces in the limit
	 ! 0C to

ess lim
	!0C < � I#0 >ŒMIC�.Œ0;	���/;

whence ess lim	!0C�
�
Œ0; 	� ��	 D 0 and (3.359) follows. Having in mind

identity (3.357), statement (3.355) now follows by letting 	 ! 0C in (3.358)
(evidently, the right hand side in (3.358) tends to zero as the integrand belongs to
L1..0;T/ ��/).

Theorem 3.2 is proved.
ut



Chapter 4
Asymptotic Analysis: An Introduction

The extreme generality of the full NAVIER-STOKES-FOURIER SYSTEM whereby
the equations describe the entire spectrum of possible motions—ranging from
sound waves, cyclone waves in the atmosphere, to models of gaseous stars in
astrophysics—constitutes a serious defect of the equations from the point of view of
applications. Eliminating unwanted or unimportant modes of motion, and building
in the essential balances between flow fields, allow the investigator to better focus on
a particular class of phenomena and to potentially achieve a deeper understanding
of the problem. Scaling and asymptotic analysis play an important role in this
approach. By scaling the equations, meaning by choosing appropriately the system
of the reference units, the parameters determining the behavior of the system
become explicit. Asymptotic analysis provides a useful tool in the situations when
certain of these parameters called characteristic numbers vanish or become infinite.

The main goal of many studies devoted to asymptotic analysis of various physical
systems is to derive a simplified set of equations solvable either analytically or at
least with less numerical effort. Classical textbooks and research monographs (see
Gill [137], Pedlosky [230], Zeytounian [274, 276], among others) focus mainly
on the way how the scaling arguments together with other characteristic features of
the data may be used in order to obtain, mostly in a very formal way, a simplified
system, leaving aside the mathematical aspects of the problem. In particular, the
existence of classical solutions is always tacitly anticipated, while exact results in
this respect are usually in short supply. In fact, not only has the problem not been
solved, it is not clear that in general smooth solutions exist. This concerns both the
primitive NAVIER-STOKES-FOURIER SYSTEM and the target systems resulting from
the asymptotic analysis. Notice that even for the “simple” incompressible NAVIER-
STOKES SYSTEM, the existence of regular solutions represents an outstanding open
problem (see Fefferman [100]). Consequently, given the recent state of art, a
rigorous mathematical treatment without any unnecessary restrictions on the size
of the observed data as well as the length of the time interval must be based on
the concept of weak solutions defined in the spirit of Chap. 2. Although suitability
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of this framework might be questionable because of possible loss of information
due to its generality, we show that this class of solutions is sufficiently robust to
perform various asymptotic limits and to recover a number of standard models
in mathematical fluid mechanics (see Sects. 4.2–4.4). Accordingly, the results
presented in this book can be viewed as another piece of evidence in support of
the mathematical theory based on the concept of weak solutions.

In the following chapters, we provide a mathematical justification of several
up to now mostly formal procedures, hope to shed some light on the way how
the simplified target problems can be derived from the primitive system under
suitable scaling, and, last but not least, contribute to further development of the
related numerical methods. We point out that formal asymptotic analysis performed
with respect to a small (large) parameter tells us only that certain quantities may
be negligible in certain regimes because they represent higher order terms in the
(formal) asymptotic expansion. However, the specific way how they are filtered off
is very often more important than the limit problem itself. A typical example are the
high frequency acoustic waves in meteorological models that may cause the failure
of certain numerical schemes. An intuitive argument states that such sizeable elastic
perturbations cannot establish permanently in the atmosphere as the fast acoustic
waves rapidly redistribute the associated energy and lead to an equilibrium state
void of acoustic modes. Such an idea anticipates the existence of an unbounded
physical space with a dominating dispersion effect. However any real physical as
well as computational domain is necessarily bounded and the interaction of the
acoustic waves with its boundary represents a serious problem from both analytical
and numerical point of view unless the domain is large enough with respect to the
characteristic speed of sound in the fluid. Relevant discussion of these issues is
performed formally in Sect. 4.4, and, at a rigorous mathematical level, in Chaps. 7, 8
below. As we shall see, the problem involves an effective interaction of two different
time scales, namely the slow time motion of the background incompressible flow
interacting with the fast time propagation of the acoustic waves through the convec-
tive term in the momentum equation. Another interesting asymptotic regime, studied
in detail in Chap. 9, is the situation when the above phenomena are accompanied by
vanishing dissipation, here represented by viscosity and heat conductivity of the
fluid. In such a case, the resulting target problem is hyperbolic, typically an incom-
pressible Euler system. The lack of compactness characteristic for this singular
regime must be compensated by structural stability encoded in the relative energy
functional introduced in Chap. 9. General issues concerning propagation of acoustic
waves are discussed in Chap. 10. It becomes evident that this kind of problem lies
beyond the scope of the standard methods based on formal asymptotic expansions.

The key idea pursued in this book is that besides justifying a number of
important models, the asymptotic analysis carried out in a rigorous way provides a
considerably improved insight into their structure. The purpose of this introductory
chapter is to identify some of the basic problems arising in the asymptotic analysis
of the complete NAVIER-STOKES-FOURIER SYSTEM along with the relevant limit
equations. To begin, we introduce a rescaled system expressed in terms of dimen-
sionless quantities and identify a sample of characteristic numbers. The central
issue addressed in this study is the passage from compressible to incompressible
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fluid models. In particular, we always assume that the speed of sound dominates the
characteristic speed of the fluid, the former approaching infinity in the asymptotic
limit (see Chap. 5). In addition, we study the effect of strong stratification that is
particularly relevant in some models arising in astrophysics (see Chap. 6). Related
problems concerning the propagation of acoustic waves in large domains and their
interaction with the physical boundary are discussed in Chaps. 7 and 8. In Chap. 9,
we consider the situation when the Mach number becomes small but the Reynolds
and Péclet number are large. Last but not least, we did not fail to notice a close
relation between the asymptotic analysis performed in this book and the method of
acoustic analogies used in engineering problems (see Chap. 10).

4.1 Scaling and Scaled Equations

For the physical systems studied in this book we recognize four fundamental
dimensions: Time, Length, Mass, and Temperature. Each physical quantity that
appears in the governing equations can be measured in units expressed as a product
of fundamental ones.

The field equations of the NAVIER-STOKES-FOURIER SYSTEM in the form
introduced in Chap. 1 do not reveal anything more than the balance laws of
certain quantities characterizing the instantaneous state of a fluid. In order to
get a somewhat deeper insight into the structure of possible solutions, we can
identify characteristic values of relevant physical quantities: the reference time
Tref, the reference length Lref, the reference density %ref, the reference temperature
#ref, together with the reference velocity Uref, and the characteristic values of
other composed quantities pref, eref, ref, �ref, �ref, and the source terms fref, Qref.
Introducing new independent and dependent variables X0 D X=Xref and omitting the
primes in the resulting equations, we arrive at the following scaled system.

� SCALED NAVIER-STOKES-FOURIER SYSTEM:

Sr @t%C divx.%u/ D 0; (4.1)

Sr @t.%u/C divx.%u ˝ u/C 1

Ma2
rxp D 1

Re
divxS C 1

Fr2
%f; (4.2)

Sr @t.%s/C divx.%su/C 1

Pe
divx

� q
#

�
D � C Hr%

Q
#
; (4.3)

together with the associated total energy balance

Sr
d

dt

Z �Ma2

2
%juj2 C %e

�
dx D

Z �Ma2

Fr2
%f � u C Hr%Q

�
dx: (4.4)
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Here, in accordance with the general principles discussed in Chap. 1, the thermody-
namic functions p D p.%; #/, e D e.%; #/, and s D s.%; #/ are interrelated through
Gibbs’ equation

#Ds.%; #/ D De.%; #/C p.%; #/D
�1
%

�
; (4.5)

while

S D 
�
rxu C rx

Tu � 2

3
divxuI

�
C �divxuI; (4.6)

q D ��rx#; (4.7)

and

� D 1

#

�Ma2

Re
S W rxu � 1

Pe

q � rx#

#

�
: (4.8)

Note that relation (4.5) requires satisfaction of a natural compatibility condition

pref D %referef: (4.9)

The above procedure gives rise to a sample of dimensionless characteristic
numbers listed below.

� SYMBOL � DEFINITION � NAME

Sr Lref=.TrefUref/ Strouhal number

Ma Uref=
p
pref=%ref Mach number

Re %refUrefLref=ref Reynolds number

Fr Uref=
p
Lreffref Froude number

Pe prefLrefUref=.#ref�ref/ Péclet number

Hr %refQrefLref=.prefUref/ Heat release parameter

The set of the chosen characteristic numbers is not unique, however, the maximal
number of independent ones can be determined by means of Buckingham’s …-
theorem (see Curtis et al. [65]).

Much of the subject to be studied in this book is motivated by the situation,
where one or more of these parameters approach zero or infinity, and, consequently,
the resulting equations contain singular terms. The Strouhal number Sr is often
set to unity in applications; this implies that the characteristic time scale of
flow field evolution equals the convection time scale Lref=Uref. Large Reynolds
number characterizes turbulent flows, where the mathematical structure is far less
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understood than for the “classical” systems. Therefore we concentrate on a sample
of interesting and physically relevant cases, with Sr D Re D 1, the characteristic
features of which are shortly described in the rest of this chapter.

4.2 Low Mach Number Limits

In many real world applications, such as atmosphere-ocean flows, fluid flows
in engineering devices and astrophysics, velocities are small compared with the
speed of sound proportional to 1=

p
Ma in the scaled NAVIER-STOKES-FOURIER

SYSTEM. This fact has significant impact on both exact solutions to the governing
equations and their numerical approximations. Physically, in the limit of vanishing
flow velocity or infinitely fast speed of sound propagation, the elastic features of
the fluid become negligible and sound-wave propagation insignificant. The low
Mach number regime is particularly interesting when accompanied simultaneously
with smallness of other dimensionless parameters such as Froude, Reynolds, and/or
Péclet numbers. When the Mach number Ma approaches zero, the pressure is almost
constant while the speed of sound tends to infinity. If, simultaneously, the temper-
ature tends to a constant, the fluid is driven to incompressibility. If, in addition,
Froude number is small, specifically if Fr � p

Ma, a formal asymptotic expansion
produces a well-known model—the OBERBECK-BOUSSINESQ APPROXIMATION—
probably the most widely used simplification in numerous problems in fluid
dynamics (see also the introductory part of Chap. 5). An important consequence
of the heating process is the appearance of a driving force in the target system, the
size of which is proportional to the temperature.

In most applications, we have

f D rxF;

where F D F.x/ is a given potential. Taking Ma D ", Fr D p
", and keeping all

other characteristic numbers of order unity, we formally write

% D %C "%.1/ C "2%.2/ C : : : ;

u D U C "u.1/ C "2u.2/ C : : : ;

# D # C "#.1/ C "2#.2/ C : : :

(4.10)

Regrouping the scaled system with respect to powers of ", we get, again formally
comparing terms of the same order,

rxp.%; #/ D 0: (4.11)
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Of course, relation (4.11) does not imply that both % and # must be constant;
however, since we are primarily interested in solutions defined on large time
intervals, the necessary uniform estimates on the velocity field have to be obtained
from the dissipation equation introduced and discussed in Sect. 2.2.3. In particular,
the entropy production rate � D �" is to be kept small of order "2 � Ma2.
Consequently, as seen from (4.7), (4.8), the quantity rx# vanishes in the asymptotic
limit " ! 0. It is therefore natural to assume that # is a positive constant; whence,
in agreement with (4.11),

% D const in �

as soon as the pressure is a strictly monotone function of %. The fact that the density
% and the temperature # will be always considered in a vicinity of a thermodynamic
equilibrium .%; #/ is an inevitable hypothesis in our approach to singular limits
based on the concept of weak solution and energy estimates “in-the-large”.

Neglecting all terms of order " and higher in (4.1)–(4.4), we arrive at the
following system of equations.

� OBERBECK-BOUSSINESQ APPROXIMATION:

divxU D 0; (4.12)

%
�
@tU C divx.U ˝ U/

�
C rx… D divx

�
.#/.rxU C rx

TU/
�

C rrxF; (4.13)

%cp.%; #/
�
@t‚C divx.‚U/

�
� divx.GU/� divx.�.#/rx‚/ D 0; (4.14)

where

G D % #˛.%; #/F; (4.15)

and

r C %˛.%; #/‚ D 0: (4.16)

Here r can be identified with %.1/ modulo a multiple of F, while ‚ D #.1/.
The specific heat at constant pressure cp is evaluated by means of the standard
thermodynamic relation

cp.%; #/ D @e

@#
.%; #/C ˛.%; #/

#

%

@p

@#
.%; #/; (4.17)



4.3 Strongly Stratified Flows 151

where the coefficient of thermal expansion ˛ reads

˛.%; #/ D 1

%

@#p

@%p
.%; #/: (4.18)

An interesting issue is a proper choice of the initial data for the limit system. Note
that, in order to obtain a non-trivial dynamics, it is necessary to consider general
%.1/, #.1/, in particular, the initial values %.1/.0; �/, #.1/.0; �/ must be allowed to be
large. According to the standard terminology, such a stipulation corresponds to the
so-called ill-prepared initial data in contrast with the well-prepared data for which

%.0; �/ � %

"
� %

.1/
0 ;

#.0; �/� #

"
� #

.1/
0 provided " ! 0;

where %.1/0 , #.1/1 are related to F through

@p

@%
.%; #/%

.1/
0 C @p

@#
.%; #/#

.1/
0 D %F

(cf. Theorem 5.3 in Chap. 5).
Moreover, as we shall see in Chap. 5 below, the initial distribution of the

temperature ‚ in (4.14) is determined in terms of both %.1/.0; �/ and #.1/.0; �/.
In particular, the knowledge of %.1/—a quantity that “disappears” in the target
system—is necessary in order to determine ‚ � #.1/. The piece of information
provided by the initial distribution of the temperature for the full NAVIER-STOKES-
FOURIER SYSTEM is not transferred entirely on the target problem because of the
initial-time boundary layer. This phenomenon is apparently related to the problem
termed by physicists the unsteady data adjustment (see Zeytounian [275]). For
further discussion see Sect. 5.5.

The low Mach number asymptotic limit in the regime of low stratification is
studied in Chap. 5.

4.3 Strongly Stratified Flows

Stratified fluids whose densities, sound speed as well as other parameters are
functions of a single depth coordinate occur widely in nature. Several so-called
mesoscale regimes in the atmospheric modeling involve flows of strong stable
stratification but weak rotation. Numerous observations, numerical experiments as
well as purely theoretical studies to explain these phenomena have been recently
surveyed in the monograph by Majda [200].

From the point of view of the mathematical theory discussed in Sect. 4.1, strong
stratification corresponds to the choice

Ma D Fr D ":
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Similarly to the above, we write

% D Q%C "%.1/ C "2%.2/ C : : : ;

u D U C "u.1/ C "2u.2/ C : : : ;

# D # C "#.1/ C "2#.2/ C : : : :

Comparing terms of the same order of the small parameter " in the NAVIER-
STOKES-FOURIER SYSTEM (4.1)–(4.4) we deduce

� HYDROSTATIC BALANCE EQUATION:

rxp. Q%; #/ D Q%rxF; (4.19)

where we have assumed the driving force in the form f D rxF, F D F.x3/
depending solely on the depth coordinate x3. Here the temperature # is still assumed
constant, while, in sharp contrast with (4.11), the equilibrium density Q% depends
effectively on the depth (vertical) coordinate x3.

Accordingly, the standard incompressibility conditions (4.12) has to be replaced
by

� ANELASTIC CONSTRAINT:

divx. Q%U/ D 0 (4.20)

– a counterpart to the equation of continuity in the asymptotic limit.
In order to identify the asymptotic form of the momentum equation, we assume,

for a while, that the pressure p is given by the standard perfect gas state equation:

p.%; #/ D R%#: (4.21)

Under these circumstances, the zeroth order terms in (4.2) give rise to

@t. Q%U/C divx. Q%U ˝ U/C Q%rx… (4.22)

D .#/�U C
�1
3
.#/C �.#/

�
rxdivxU � #.2/

#
Q%rxF:

Note that, similarly to Sect. 4.2, the quantities %.1/, #.1/ satisfy the Boussinesq
relation

Q%rx

�%.1/

Q%
�

C rx

� Q%
#
#.1/

�
D 0;
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which, however, does not seem to be of any practical use here. Instead we have to
determine #.2/ by means of the entropy balance (4.3).

In the absence of the source Q, comparing the zeroth order terms in (4.3) yields

divx. Q%s. Q%; #/U/ D 0:

However, this relation is compatible with (4.20) only if

U3 � 0: (4.23)

In such a case, the system of equations (4.20)–(4.22) coincides with the so-
called layered two-dimensional incompressible flow equations in the limit of strong
stratification studied by Majda [200, Sect. 6.1]. The flow is layered horizontally,
whereas the motion in each layer is governed by the incompressible NAVIER-
STOKES EQUATIONS, the vertical stacking of the layers is determined through the
hydrostatic balance, and the viscosity induces transfer of horizontal momentum
through vertical variations of the horizontal velocity.

Even more complex problem arises when, simultaneously, the Péclet number Pe
is supposed to be small, specifically, Pe D "2. A direct inspection of the entropy
balance equation (4.3) yields, to begin with,

#.1/ � 0;

and, by comparison of the terms of zeroth order,

Q%rxF � U C �.#/�#.2/ D 0: (4.24)

Equations (4.20)–(4.22), together with (4.24), form a closed system introduced
by Chandrasekhar [53] as a simple alternative to the OBERBECK-BOUSSINESQ

APPROXIMATION when both Froude and Péclet numbers are small. More recently,
Ligniéres [188] identified a similar system as a suitable model of flow dynamics
in stellar radiative zones. Indeed, under these circumstances, the fluid behaves as
a plasma characterized by the following features: (1) a strong radiative transport
predominates the molecular one; therefore the Péclet number is expected to be
vanishingly small; (2) strong stratification effect due to the enormous gravitational
potential of gaseous celestial bodies determines many of the properties of the fluid
in the large; (3) the convective motions are much slower than the speed rendering
the Mach number small.

On the point of conclusion, it is worth-noting that system (4.20)–(4.22) rep-
resents the so-called ANELASTIC APPROXIMATION introduced by Ogura and
Phillipps [225], and Lipps and Hemler [198]. The low Mach number limits for
strongly stratified fluids are examined in Chap. 6.
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4.4 Acoustic Waves

Acoustic waves, as their proper name suggests, are intimately related to compress-
ibility of the fluid and as such should definitely disappear in the incompressible
limit regime. Accordingly, the impact of the acoustic waves on the fluid motion is
neglected in a considerable amount of practical applications. On the other hand, a
fundamental issue is to understand the way how the acoustic waves disappear and
to which extent they may influence the motion of the fluid in the course of the
asymptotic limit.

4.4.1 Low Stratification

The so-called acoustic equation provides a useful link between the first order terms
%.1/, #.1/, and the zeroth order velocity field U introduced in the formal asymptotic
expansion (4.10). Introducing the fast time variable 	 D t=" and neglecting terms
of order " and higher in (4.1)–(4.3), we deduce

@	%
.1/ C divx.%U/ D 0

@	 .%U/C rx

h
@%p.%; #/%.1/ C @#p.%; #/#.1/ � %F

i
D 0

@	

h
@%s.%; #/%.1/ C @# s.%; #/#.1/

i
D 0:

9
>>>>>>=

>>>>>>;

(4.25)

Thus after a simple manipulation we easily obtain

� ACOUSTIC EQUATION:

@	 r C divxV D 0;

@	V C !rxr D 0;

(4.26)

where we have set

r D 1

!

�
@%p.%; #/%

.1/ C @#p.%; #/#
.1/ � %F

�
; V D %U;

! D @%p.%; #/C j@#p.%; #/j2
%2@# s.%; #/

:

System (4.26) can be viewed as a wave equation, where the wave speed
p
!

is a real number as soon as hypothesis of thermodynamic stability (1.44) holds.
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Moreover, the kernel N of the generator of the associated evolutionary system reads

N D f.r;V/ j r D const; divxV D 0g: (4.27)

Consequently, decomposing the vector field V in the form

V D HŒV�
„ƒ‚…

solenoidal part

C H?ŒV�
„ƒ‚…

gradient part

; where divxHŒV� D 0; H?ŒV� D rx‰

(cf. Sect. 11.7 and Theorem 11.18 in Appendix), system (4.26) can be recast as

@	 r C�‰ D 0;

@	 .rx‰/C !rxr D 0:

(4.28)

Returning to the original time variable t D "	 we infer that the rapidly oscillating
acoustic waves are supported by the gradient part of the fluid velocity, while the
time evolution of the solenoidal component of the velocity field remains essentially
constant in time, being determined by its initial distribution. In terms of stability
of the original system with respect to the parameter " ! 0, this implies strong
convergence of the solenoidal part HŒu"�, while the gradient component H?Œu"�
converges, in general, only weakly with respect to time. Here and in what follows,
the subscript " refers to quantities satisfying the scaled primitive system (4.1)–(4.3).
The hypothetical oscillations of the gradient part of the velocity field reveal one of
the fundamental difficulties in the analysis of asymptotic limits in the present study,
namely the problem of “weak compactness” of the convective term divx.%"u"˝u"/.

Writing

divx.%"u" ˝ u"/ � divx.%u" ˝ u"/

D % divx.u" ˝ HŒu"�/C % divx.HŒu"�˝ rx‰"/C 1

2
%rxjrx‰"j2 C % �‰"rx‰";

where we have set ‰" D H?Œu"�, we realize that the only problematic term
is �‰"rx‰" as the remaining quantities are either weakly pre-compact or can
be written as a gradient of a scalar function therefore irrelevant in the target
system (4.12), (4.13), where they can be incorporated in the pressure.

A bit naive approach to solving this problem would be to rewrite the material
derivative in (4.13) by means of (4.12) in the form

@t.%"u"/C divx.%"u" ˝ u"/ D %"@tu" C %"u" � rxu" � %@tu" C %u" � rxu"

� %@tu" C %u" � rxHŒu"�C %HŒu"� � rxH?Œu"�C %
1

2
rxjrx‰"j2:
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Unfortunately, in the framework of the weak solutions, such a step is not allowed at
least in a direct fashion.

Alternatively, we can use the acoustic equation (4.28) in order to see that

�‰"rx‰" D �@	 .r"rx‰"/ � !

2
rxr

2
" D �"@t.r"rx‰"/ � !

2
rxr

2
" ;

where the former term on the right-hand side is pre-compact (in the sense of
distributions) while the latter is a gradient. This is the heart of the so-called local
method developed in the context of isentropic fluid flows by Lions and Masmoudi
[194].

4.4.2 Strong Stratification

Propagation of the acoustic waves becomes more complex in the case of a strongly
stratified fluid discussed in Sect. 4.3. Similarly to Sect. 4.4.1, introducing the fast
time variable 	 D t=" and supposing the pressure in the form p D %# , we deduce
the acoustic equation in the form

@	 r C 1
Q%divxV D 0;

@	V C # Q%rxr C rx. Q%#.1// D 0;

(4.29)

where we have set r D %.1/= Q%, V D Q%U.
Assuming, in addition, that Pe D "2 we deduce from (4.3) that #.1/ � 0; whence

Eq. (4.29) reduces to

� STRATIFIED ACOUSTIC EQUATION:

@	 r C 1
Q%divxV D 0;

@	V C # Q%rxr D 0:

9
>=

>;
(4.30)

Apparently, in sharp contrast with (4.26), the wave speed in (4.30) depends
effectively on the vertical coordinate x3.

4.4.3 Attenuation of Acoustic Waves

There are essentially three rather different explanations why the effect of the
acoustic waves should be negligible.
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Well-Prepared vs. Ill-Prepared Initial Data For the sake of simplicity, assume
that F D 0 in (4.25). A proper choice of the initial data for the primitive system can
eliminate the effect of acoustic waves as the acoustic equation preserves the norm
in the associated energy space. More specifically, taking

%.1/.0; �/ � #.1/.0; �/ � 0; U.0; �/ � V;

where V is a solenoidal function, we easily observe that the amplitude of the
acoustic waves remains small uniformly in time. As a matter of fact, the problem is
more complex, as the “real” acoustic equation obtained in the course of asymptotic
analysis contains forcing terms of order " therefore not negligible in the “slow” time
of the limit system. These issues are discussed in detail in Chap. 10.

Moreover, we point out that, in order to obtain an interesting limit problem, we
need

#.1/ � ‚

to be large (see Sect. 4.2). Consequently, the initial data for the primitive system
considered in this book are always ill-prepared, meaning compatible with the
presence of large amplitude acoustic waves.

The Effect of the Kinematic Boundary Although it is sometimes convenient to
investigate a fluid confined to an unbounded spatial domain, any realistic physical
space is necessarily bounded. Accordingly, the interaction of the acoustic waves
with the boundary of the domain occupied by the fluid represents an intrinsic feature
of any incompressible limit problem.

Viscous fluids adhere completely to the boundary. That means, if the latter is at
rest, the associated velocity field u satisfies the no-slip boundary condition

uj@� D 0:

The no-slip boundary condition, however, is not compatible with free propa-
gation of acoustic waves, unless the boundary is flat or satisfies very particular
geometrical constraints. Consequently, a part of the acoustic energy is dissipated
through a boundary layer causing a uniform time decay of the amplitude of acoustic
waves. Such a situation is discussed in Chap. 7.

Dispersion of the Acoustic Waves on Large Domains As already pointed out,
realistic physical domains are always bounded. However, it is still reasonable
to consider the situation when the diameter of the domain is sufficiently large
with respect to the characteristic speed of sound in the fluid. The acoustic waves
redistribute quickly the energy and, leaving a fixed bounded subset of the physical
space, they will be reflected by the boundary but never come back in a finite lapse
of time as the boundary is far away. In practice, such a problem can be equivalently
posed on the whole space R

3. Accordingly, the gradient component of the velocity
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field decays to zero locally in space with growing time. This problem is analyzed in
detail in Chap. 8.

Vanishing Dissipation Limit Even more interesting situation arises when the dif-
fusion terms like viscosity or heat conductivity become negligible in the asymptotic
regime. In such a case the limit system is inviscid and the lack of compactness must
be compensated by structural stability properties of the system, see Chap. 9.

4.5 Acoustic Analogies

The mathematical simulation of aeroacoustic sound presents in many cases numer-
ous technical problems related to modeling of its generation and propagation.
Its importance for diverse industrial applications is nowadays without any doubt
in view of various demands in relation to the user comfort or environmental
regulations. A few examples where aeroacoustics enters into the game are the
sounds produced by jet engines of an airliner, the noise produced in high speed
trains and cars, wind noise around buildings, ventilator noise in various household
appliances, etc.

The departure point of many methods of acoustic simulations (at least those
called hybrid methods) is Lighthill’s theory [186, 187]. The starting point in
Lighthill’s approach is the system of NAVIER-STOKES EQUATIONS describing the
motion of a viscous compressible gas in isentropic regime, with unknown functions
density % and velocity u. The system of equations reads:

@t%C divx%u D 0;

@t.%u/C divx.%u ˝ u/C rxp D divxS C %f;
(4.31)

where p D p.%/, and

S D .rxu C rx
Tu � 2

3
divxuI/C �divxuI;  > 0; � 	 0:

We can rewrite this system in the form

@tR C divxQ D 0;

@tQ C !rxR D F � divxT;
(4.32)

where

Q D %u; R D % � % (4.33)
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are the momentum and the density fluctuations from the basic constant density
distribution % of the background flow. Moreover, we have set

! D @p
@%
.%/ > 0; F D %f;

T D %u ˝ u C
�
p � !.% � %/

�
I � S:

(4.34)

The reader will have noticed apparent similarity of system (4.32) to the acoustic
equation discussed in the previous part. Condition ! > 0 is an analogue of the
hypothesis of thermodynamics stability (3.10) expressing positive compressibility
property of the fluid, typically a gas.

Taking the time derivative of the first equation in (4.32) and the divergence of the
second one, we convert the system to a “genuine” wave equation

@2t R � !�xR D �divxF C divx.divx T/; (4.35)

with wave speed
p
!. The viscous component is often neglected in T because of the

considerable high Reynolds number of typical fluid regimes.
The main idea behind the method of acoustic analogies is to view system (4.32),

or, equivalently (4.35), as a linear wave equation supplemented with a source
term represented by the quantity on the right-hand side. In contrast with the
original problem, the source term is assumed to be known or at least it can be
determined by solving a kind of simplified problem. Lighthill himself completed
system (4.32) adding extra terms corresponding to acoustic sources of different
types. The resulting problem in the simplest possible form captures the basic
acoustic phenomena in fluids and may be written in the following form.

� LIGHTHILL’S EQUATION:

@tR C divxQ D †;

@tQ C !rxR D F � divxT:
(4.36)

According to Lighthill’s interpretation, system (4.36) is a non-homogenous wave
equation describing the acoustic waves (fluctuations of the density), where the
terms on the right-hand side correspond to the mononopolar (†), bipolar (�F),
and quadrupolar (divxT) acoustic sources, respectively. These source terms are
considered as known and calculable from the background fluid flow field. The
physical meaning of the source terms can be interpreted as follows:

• The first term† represents the acoustic sources created by the changes of control
volumes due to changes of pressure or displacements of a rigid surface: this
source can be schematically described via a particle whose diameter changes



160 4 Asymptotic Analysis: An Introduction

(pulsates) creating acoustic waves (density perturbations). It may be interpreted
as a non stationary injection of a fluid mass rate @t† per unit volume. The acoustic
noise of a gun shot is a typical example.

• The second term F describes the acoustic sources due to external forces (usually
resulting from the action of a solid surface on the fluid). This sources are
responsible for the most of the acoustic noise in the machines and ventilators.

• The third term divx.T/ is the acoustic source due to the turbulence and viscous
effects in the background fluid flow which supports the density oscillations
(acoustic waves). The noise of steady or non steady jets in aero-acoustics is a
typical example.

• The tensor T is called the Lighthill tensor. It is composed of three tensors whose
physical interpretation is the following: the first term is the Reynolds tensor with
components %uiuj describing the (nonlinear) turbulence effects, the term .p �
!.% � %//I expresses the entropy fluctuations and the third one is the viscous
stress tensor S.

The method for predicting noise based on Lighthill’s equation is usually referred
to as a hybrid method since noise generation and propagation are treated separately.
The first step consists in using data provided by numerical simulations to identify
the sound sources. The second step then consists in solving the wave equation (4.36)
driven by these source terms to determine the sound radiation. The main advantage
of this approach is that most of the conventional flow simulations can be used in the
first step.

In practical numerical simulations, the Lighthill tensor is calculated from the
velocity and density fields obtained by using various direct numerical methods
and solvers for compressible NAVIER-STOKES EQUATIONS. Then the acoustic
effects are evaluated from Lighthill’s equation by means of diverse direct numerical
methods for solving the non-homogenous wave equations (see e.g. Colonius [63],
Mitchell et al. [214], Freud et al. [129], among others). For flows in the low
Mach number regimes the direct simulations are costly, unstable, inefficient and
non-reliable, essentially due to the presence of rapidly oscillating acoustic waves
(with periods proportional to the Mach number) in the equations themselves (see
the discussion in the previous part). Thus in the low Mach number regimes the
acoustic analogies as Lighthill’s equation, in combination with the incompressible
flow solvers, give more reliable results, see [129].

Acoustic analogies, in particular Lighthill’s approach in the low Mach number
regime, will be discussed in Chap. 10.

4.6 Initial Data

Motivated by the formal asymptotic expansion discussed in the previous sections,
we consider the initial data for the scaled NAVIER-STOKES-FOURIER SYSTEM in
the form

%.0; �/ D Q%C "%
.1/
0;"; u.0; "/ D u0;"; #.0; �/ D # C "#

.1/
0;" ;
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where " D Ma, %.1/0;", u0;", #
.1/
0;" are given functions, and Q%, # represent an equilibrium

state. Note that the apparent inconsistency in the form of the initial data is a
consequence of the fact that smallness of the velocity with respect to the speed
of sound is already incorporated in the system by scaling.

The initial data are termed ill-prepared if

f%.1/0;"g">0; f#.1/0;" g">0 are bounded in Lp.�/; fu0;"g">0 is bounded in Lp.�IR3/

for a certain p 	 1, typically p D 2 or even p D 1. If, in addition,

%
.1/
0;" ! %

.1/
0 ; #

.1/
0;" ! #

.1/
0 ; H

?Œu0;"� ! 0 a.a. in �;

where %.1/0 , #.1/0 satisfy certain compatibility conditions, we say that the data are
well-prepared. For instance, in the situation described in Sect. 4.2, we require

@p

@%
.%; #/%

.1/
0 C @p

@#
.%; #/#

.1/
0 D %F:

In particular, the common definition of the well-prepared data, namely %.1/0 D
#
.1/
0 D 0, is recovered as a special case provided F D 0.

As observed in Sect. 4.4, the ill-prepared data are expected to generate large
amplitude rapidly oscillating acoustic waves, while the well-prepared data are not.
Alternatively, following Lighthill [188], we may say that the well-prepared data
may be successfully handled by the linear theory, while the ill-prepared ones require
the use of a nonlinear model.

4.7 A General Approach to Singular Limits for the Full
Navier-Stokes-Fourier System

The overall strategy adopted in this book leans on the concept of weak solutions
for both the primitive system and the associated asymptotic limit. The starting
point is always the complete NAVIER-STOKES-FOURIER SYSTEM introduced in
Chap. 1 and discussed in Chaps. 2, 3, where one or several characteristic numbers
listed in Sect. 4.1 are proportional to a small parameter. We focus on the passage
to incompressible fluid models, therefore the Mach number Ma is always of order
" ! 0. On the contrary, the Strouhal number Sr as well as the Reynolds number Re
are assumed to be of order 1 with exception of Chap. 9, where the Reynolds number
approaches infinity. Consequently, the velocity of the fluid in the target system will
satisfy a variant of incompressible (viscous) NAVIER-STOKES EQUATIONS coupled
with a balance of the internal energy identified through a convenient choice of the
characteristic numbers Fr and Pe.
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Our theory applies to dissipative fluid systems that may be characterized through
the following properties.

� DISSIPATIVE FLUID SYSTEM:

(P1) The total mass of the fluid contained in the physical space � is constant at
any time.

(P2) In the absence of external sources, the total energy of the fluid is constant or
non-increasing in time.

(P3) The system produces entropy, in particular, the total entropy is a non-
decreasing function of time. In addition, the system is thermodynamically
stable, that means, the maximization of the total entropy over the set
of all allowable states with the same total mass and energy delivers a
unique equilibrium state provided the system is thermally and mechanically
insulated.

The key tool for studying singular limits of dissipative fluid systems is the
dissipation balance, or rather inequality, analogous to the corresponding equality
introduced in (2.52). Neglecting, for simplicity, the source terms in the scaled
system (4.1)–(4.3), we deduce

� SCALED DISSIPATION INEQUALITY:

Z

�

 
Ma2

2
%juj2 C H#.%; #/ � .%� %/

@H#.%; #/

@%
� H#.%; #/

!

.	; �/ dx (4.37)

C�
h
Œ0; 	� ��

i

�
Z

�

 
Ma2

2

j.%u/0j2
%0

C H#.%0; #0/� .%0 � %/
@H#.%; #/

@%
� H#.%; #/

!

dx

for a.a. 	 2 .0;T/,

� 	 1

#

 
Ma2

Re
S W rxu � 1

Pe

q � rx#

#

!

; (4.38)

where H# D %e � #%s is the Helmholtz function introduced in (2.48). Note that, in
accordance with (P2), there is an inequality sign in (4.37) because we admit systems
that dissipate energy.
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The quantities % and # are positive constants characterizing the static distribution
of the density and the absolute temperature, respectively. In accordance with (P1),
we have

Z

�

.%.t; �/ � %/ dx D 0 for any t 2 Œ0;T�;

while # is determined by the asymptotic value of the total energy for t ! 1. In
accordance with (P3), the static state .%; #/ maximizes the entropy among all states
with the same total mass and energy and solves the NAVIER-STOKES-FOURIER

SYSTEM with the velocity field u D 0, in other words, .%; #/ is an equilibrium
state. In Chap. 6, the constant density equilibrium state % is replaced by Q% D Q%.x3/.

Basically all available bounds on the family of solutions to the scaled system
are provided by (4.37), (4.38). If the Mach number Ma is proportional to a small
parameter ", and, simultaneously Re D Pe � 1, relations (4.37), (4.38) yield a
bound on the gradient of the velocity field provided the integral on the right-hand
side of (4.37) divided on "2 remains bounded.

On the other hand, seeing that

H#.%0; #0/� .%0 � %/
@H#.%; #/

@%
� H#.%; #/ � c

�
j%0 � %j2 C j#0 � #j2

�

at least in a neighborhood of the static state .%; #/, we conclude, in agreement with
the formal asymptotic expansion discussed in Sect. 4.2, that the quantities

%
.1/
0;" D %.0; �/� %

"
and #.1/0;" D #.0; �/� #

"
; and u0;" D u.0; �/

have to be bounded uniformly for " ! 0, or, in the terminology introduced in
Sect. 4.6, the initial data must be at least ill-prepared.

As a direct consequence of the structural properties of H# established in
Sect. 2.2.3, it is not difficult to deduce from (4.37) that

%.1/.t; �/ D %.t; �/ � %
"

and #.1/ D #.t; �/ � #
"

remain bounded, at least in L1.�/, uniformly for t 2 Œ0;T� and " ! 0.
Now, we introduce the set of essential values Oess � .0;1/2,

Oess WD
n
.%; #/ 2 R

2
ˇ
ˇ
ˇ %=2 < % < 2%; #=2 < # < 2#

o
; (4.39)

together with its residual counterpart

Ores D .0;1/2 n Oess: (4.40)
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Let f%"g">0, f#"g">0 be a family of solutions to a scaled NAVIER-STOKES-
FOURIER SYSTEM. In agreement with (4.39), (4.40), we define the essential set
and residual set of points .t; x/ 2 .0;T/ �� as follows.

� ESSENTIAL AND RESIDUAL SETS:

M"
ess � .0;T/ ��;

M"
ess D f.t; x/ 2 .0;T/ �� j .%".t; x/; #".t; x// 2 Oessg; (4.41)

M"
res D ..0;T/ ��/ n M"

ess (4.42)

We point out that Oess, Ores are fixed subsets of .0;1/2, while M"
ess, M"

res are
measurable subsets of the time-space cylinder .0;T/ �� depending on %", #".

It is also convenient to introduce the “projection” of the set M"
ess for a fixed time

t 2 Œ0;T�,

M"
essŒt� D fx 2 � j .t; x/ 2 M"

essg

and

M"
resŒt� D � n M"

essŒt�; (4.43)

where both are measurable subsets of � for a.a. t 2 .0;T/.
Finally, each measurable function h can be decomposed as

h D Œh�ess C Œh�res; (4.44)

where we set

Œh�ess D h 1M"
ess
; Œh�res D h 1M"

res
D h � Œh�ess: (4.45)

Of course, we should always keep in mind that such a decomposition depends on
the actual values of %", #".

The specific choice of Oess is not important. We can take Oess D U , where
U � U � .0;1/2 is a bounded open neighborhood of the equilibrium state .%; #/.
A general idea exploited in this book asserts that the “essential” component Œh�ess

carries all information necessary in the limit process, while its “residual” counterpart
Œh�res vanishes in the asymptotic limit for " ! 0. In particular, the Lebesgue measure
of the residual sets jMresŒt�j becomes small uniformly in t 2 .0;T/ for small values
of ".

Another characteristic feature of our approach is that the entropy production rate
� is small, specifically of order "2, in the low Mach number limit. Accordingly, in
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contrast with the primitive NAVIER-STOKES-FOURIER SYSTEM, the target problem
can be expressed in terms of equations rather than inequalities. The ill-prepared
data, for which the perturbation of the equilibrium state is proportional to the Mach
number, represent a sufficiently rich scaling leading to non-trivial target problems.



Chapter 5
Singular Limits: Low Stratification

This chapter develops the general ideas discussed in Sect. 4.2 focusing on the
singular limits characterized by the spatially homogeneous (constant) distribution
of the limit density. We start with the scaled NAVIER-STOKES-FOURIER SYSTEM

introduced in Sect. 4.1 as a primitive system, where we take the Mach number Ma
proportional to a small parameter ",

Ma D "; with " ! 0:

In addition, we assume that the external sources of mechanical energy are small, in
particular,

Ma

Fr
! 0:

Specifically, we focus on the case

Fr D p
"

corresponding to the low stratification of the fluid matter provided f is proportional
to the gravitational force. Keeping the remaining characteristic numbers of order
unity we recover the well-known OBERBECK-BOUSSINESQ APPROXIMATION as a
target problem in the asymptotic limit " ! 0. As a byproduct of asymptotic analysis,
we discover a variational formulation of Lighthill’s acoustic equation and discuss
the effective form of the acoustic sources in the low Mach number regime.

The overall strategy adopted in this chapter is somehow different from the
remaining part of the book. We abandon the standard mathematical scheme of
theorems followed by proofs and rather concentrate on a general approach, where
hypotheses are made when necessary and goals determine the appropriate methods.
The final conclusion is then stated in full rigor in Sect. 5.5. The reader preferring the
traditional way of presentation is recommended to consult Sect. 5.5 first.
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E. Feireisl, A. Novotný, Singular Limits in Thermodynamics of Viscous Fluids,
Advances in Mathematical Fluid Mechanics, DOI 10.1007/978-3-319-63781-5_5

167



168 5 Singular Limits: Low Stratification

In accordance with the general hypotheses discussed above, the scaled NAVIER-
STOKES-FOURIER SYSTEM introduced in Sect. 4.1 can be written in the following
form.

� PRIMITIVE SYSTEM:

@t%C divx.%u/ D 0; (5.1)

@t.%u/C divx.%u ˝ u/C 1

"2
rxp.%; #/ D divxS C 1

"
%rxF; (5.2)

@t.%s.%; #//C divx
�
%s.%; #/u

�
C divx

� q
#

�
D �"; (5.3)

d

dt

Z

�

�"2

2
%juj2 C %e.%; #/ � "%F

�
dx D 0; (5.4)

where, similarly to Sect. 1.4, the viscous stress tensor is given throughNewton’s law

S D S.#;rxu/ D .#/
�
rxu C rx

Tu � 2

3
divxuI

�
C �.#/divxuI; (5.5)

the heat flux obeys Fourier’s law

q D q.#;rx#/ D ��.#/rx#; (5.6)

while the volumetric entropy production rate is represented by a non-negative
measure �" satisfying

�" 	 1

#

�
"2S W rxu � q � rx#

#

�
: (5.7)

Note that for the total energy balance (5.4) to be compatible with Eqs. (5.1)–(5.3),
system (5.1)–(5.4) must be supplemented by a suitable set of boundary conditions
to be specified below.

Similarly to Sect. 4.2, we write

% D %C "%.1/ C "2%.2/ C : : : ;

u D U C "u.1/ C "2u.2/ C : : : ;

# D # C "#.1/ C "2#.2/ C : : : :
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Grouping Eqs. (5.1)–(5.4) with respect to powers of ", and dropping terms contain-
ing powers of " higher than zero in (5.1), (5.2), we formally obtain

divxU D 0; (5.8)

%
�
@tU C divx.U ˝ U/

�
C rx… D divx

�
.#/.rxU C rx

?U/
�

C rrxF (5.9)

with a suitable “pressure” or, more correctly, normal stress represented by a scalar
function …, where r D %.1/ C ˆ.F/ for a continuous function ˆ. Note that the
componentˆ.F/rxF can be always incorporated in the pressure gradient rx….

In order to establish a relation between %.1/ and #.1/, we use (5.2) to deduce

rx

�@p.%; #/
@%

%.1/ C @p.%; #/

@#
#.1/

�
D %rxF;

therefore

%.1/ C @#p.%; #/

@%p.%; #/
#.1/ D %

@%p.%; #/
F C h.t/ (5.10)

for a certain spatially homogeneous function h.
In a similar way, the entropy balance equation (5.3) gives rise to

%@t

 
@s.%; #/

@%
%.1/ C @s.%; #/

@#
#.1/

!

(5.11)

C%divx

" 
@s.%; #/

@%
%.1/ C @s.%; #/

@#
#.1/

!

U

#

� divx

 
�.#/

#
rx#

.1/

!

D 0:

Supposing the “conservative” boundary conditions

U � nj@� D 0; rx#
.1/ � nj@� D 0

we can combine (5.10) with (5.11) to obtain

%cp.%; #/
�
@t‚C divx.‚U/

�
� divx.GU/� divx.�.#/rx‚/ D 0; (5.12)

where we have set

‚ D #.1/;
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and

G D % #˛.%; #/F: (5.13)

We recall that the physical constants ˛, cp have been introduced in (4.17), (4.18).
Moreover, equality (5.10) takes the form of

� BOUSSINESQ RELATION:

r C %˛.%; #/‚ D 0; (5.14)

where r is the same as in Eq. (5.9).
The system of equations (5.8), (5.9), (5.12), together with (5.14), is the well-

known OBERBECK-BOUSSINESQ APPROXIMATION having a wide range of appli-
cations in geophysical models, meteorology, and astrophysics already discussed in
Sect. 4.1 (see also the survey paper by Zeytounian [275]).

The main goal of the present chapter is to provide a rigorous justification of the
formal procedure discussed above in terms of the asymptotic limit of solutions to
system (5.1)–(5.4). Accordingly, there are three main topics to be addressed:

• Identifying a suitable set of physically relevant hypotheses, under which the
primitive system (5.1)–(5.4) possesses a global in time solution f%";u"; #"g for
any " > 0 in the spirit of Theorem 3.1.

• Uniform bounds on the quantities

u"; %"; #" as well as %".1/ D %" � %
"

; #"
.1/ D #" � #

"

independent of " ! 0.
• Analysis of oscillations of the acoustic waves represented by the gradient

component in the Helmholtz decomposition of the velocity field u". Since the
momentum equation (5.2) contains a singular term proportional to the pressure
gradient, we do not expect any uniform estimates on the gradient part of the time
derivative @t.%u/ not even in a very weak sense.

5.1 Hypotheses and Global Existence for the Primitive
System

The existence theory developed in Chap. 3 can be applied to the scaled system (5.1)–
(5.4). In order to avoid unnecessary technical details in the analysis of the
asymptotic limit, the hypotheses listed below are far less general than those used
in Theorem 3.1.
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5.1.1 Hypotheses

We assume that the fluid occupies a bounded domain� � R
3. In order to eliminate

the effect of a boundary layer on propagation of the acoustic waves, we suppose that
the velocity field u satisfies the complete slip boundary conditions

u � nj@� D 0; Sn � nj@� D 0: (5.15)

Although such a stipulation may be at odds with practical experience in many
models, it is still physically relevant and mathematically convenient. The more
realistic no-slip boundary conditions are examined in Chap. 7.

In agreement with (5.4), the total energy of the fluid is supposed to be a constant
of motion, in particular, the boundary of the physical space is thermally insulated,
meaning,

q � nj@� D 0: (5.16)

The structural restrictions imposed on the thermodynamic functions p, e, s as
well as the transport coefficients , �, and � are motivated by the existence theory
established in Chap. 3. Specifically, we set

p.%; #/ D pM.%; #/C pR.#/; pM D #
5
2P
� %

#
3
2

�
; pR D a

3
#4; a > 0; (5.17)

e.%; #/ D eM.%; #/C eR.%; #/; eM D 3

2

#
5
2

%
P
� %

#
3
2

�
; eR D a

#4

%
; (5.18)

and

s.%; #/ D sM.%; #/C sR.%; #/; sM.%; #/ D S
� %

#
3
2

�
; sR D 4

3
a
#3

%
; (5.19)

where

S0.Z/ D �3
2

5
3
P.Z/� ZP0.Z/

Z2
for all Z > 0: (5.20)

Furthermore, in order to comply with the hypothesis of thermodynamic stability
formulated in (1.44), we assume P 2 C1Œ0;1/\ C2.0;1/,

P.0/ D 0; P0.Z/ > 0 for all Z 	 0; (5.21)

0 <

5
3
P.Z/ � ZP0.Z/

Z
� sup

z>0

5
3
P.z/ � zP0.z/

z
< 1; (5.22)



172 5 Singular Limits: Low Stratification

and, similarly to (2.44),

lim
Z!1

P.Z/

Z
5
3

D p1 > 0: (5.23)

The reader may consult Chap. 1 for the physical background of the above
assumptions. As a matter of fact, the presence of the radiative components pR, eR,
and sR is not necessary in order to perform the low Mach number limit. On the other
hand, the specific form of the molecular pressure pM , in particular (5.23), provides
indispensable uniform bounds and cannot be relaxed. Hypotheses (5.17)–(5.23) are
more restrictive than in Theorem 3.1.

For the sake of simplicity, the transport coefficients , �, and � are assumed to
be continuously differentiable functions of the temperature # satisfying the growth
restrictions

0 < .1C #/ � .#/ � .1C #/;

0 � �.#/ � �.1C #/

9
=

;
for all # 	 0; (5.24)

0 < �.1C #3/ � �.#/ � �.1C #3/ for all # 	 0; (5.25)

where,, �, �, and � are positive constants. The linear dependence of the viscosity
coefficients on # facilitates considerably the analysis and is still physically relevant
as the so-called hard sphere model. On the other hand, the theory developed in
this chapter can accommodate the whole range of transport coefficients specified
in (3.17)–(3.23).

The initial data are taken in the form

%.0; �/ D %0;" D %C "%
.1/
0;"; u.0; �/ D u0;"; #.0; �/ D #0;" D # C "#

.1/
0;" ; (5.26)

where

% > 0; # > 0;

Z

�

%
.1/
0;" dx D 0 for all " > 0: (5.27)

5.1.2 Global-in-Time Solutions

The following result may be viewed as a straightforward corollary of Theorem 3.1:

Theorem 5.1 Let � � R
3 be a bounded domain of class C2;� . Assume that p, e, s

satisfy hypotheses (5.17)–(5.23), and the transport coefficients , �, and � meet the
growth restrictions (5.24), (5.25). Let the initial data be given through (5.26), (5.27),
where %.1/0;", u0;", #

.1/
0;" are bounded measurable functions, and let F 2 W1;1.�/.
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Then, for any " > 0 so small that the initial data %0;" and #0;" are strictly positive,
there exists a weak solution f%";u"; #"g to the Navier-Stokes-Fourier system (5.1)–
(5.7) on the set .0;T/��, supplementedwith the boundary conditions (5.15), (5.16),
and the initial conditions (5.26). More specifically, we have:

•

Z T

0

Z

�

%"B.%"/
�
@t' C u" � rx'

�
dx dt (5.28)

D
Z T

0

Z

�

b.%"/divxu"' dx dt �
Z

�

%0;"B.%0;"/'.0; �/ dx

for any b as in (2.3) and any ' 2 C1
c .Œ0;T/ ��/;

•

Z T

0

Z

�

�
%"u" � @t' C %"Œu" ˝ u"� W rx' C 1

"2
p.%"; #"/divx'

�
dx dt (5.29)

D
Z T

0

Z

�

�
S" W rx' � 1

"
%"rxF � '

�
dx dt �

Z

�

.%0;"u0;"/ � '.0; �/ dx

for any test function

' 2 C1
c .Œ0;T/ ��IR3/; ' � nj@� D 0I

•

Z

�

�"2

2
%"ju"j2 C %"e.%"; #"/� "%"F

�
.t/ dx (5.30)

D
Z

�

�"2

2
%0;"ju0;"j2 C %0;"e.%0;"; #0;"/ � "%"F

�
dx for a.a. t 2 .0;T/I

•

Z T

0

Z

�

%"s.%"; #"/
�
@t' C u" � rx'

�
dx dt C

Z T

0

Z

�

q"
#"

� rx' dx dt (5.31)

C < �"I' >ŒMIC�.Œ0;T���/D �
Z

�

%0;"s.%0;"; #0;"/'.0; �/ dx

for any ' 2 C1
c .Œ0;T/ ��/, with �" 2 MC.Œ0;T� ��/,

�" 	 1

#"

�
"2S" W rxu" � q"

#"
� rx#"

�
; (5.32)
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where

S" D S.#";rxu"/ D .#"/
�
rxu" C rx

Tu" � 2

3
divxu" I

�
C �.#"/divxu" I;

(5.33)

and

q" D q.#";rx#"/ D ��.#"/rx#": (5.34)

We recall that the weak solution f%";u"; #"g enjoys the regularity and integra-
bility properties collected in Theorem 3.2. Let us point out that smallness of the
parameter " is irrelevant in the existence theory and needed here only to ensure that
the initial distribution of the density and the temperature is positive.

5.2 Dissipation Equation, Uniform Estimates

A remarkable feature of all asymptotic limits investigated in this book is that
the initial values of the thermostatic state variables %0;", #0;" are close to the
stable equilibrium state .%; #/. As an inevitable consequence of the Second law
of thermodynamics, the total entropy of the system is non-decreasing in time
approaching its maximal value attained at .%; #/. The total mass and energy of the
fluid being constant, the state variables are trapped in a kind of potential well (or
rather “cap”) in the course of evolution. This is a physical interpretation of the
uniform bounds obtained in this section. Mathematically, the same is expressed
through the coercivity properties of the Helmholtz functionH# D %e�#%s discussed
in Sect. 2.2.3. In particular, the uniform bounds established first in Chap. 2 apply to
the family f%";u"; #"g of solutions of the primitive system uniformly for " ! 0.
This observation plays an indispensable role in the analysis of the asymptotic limit.

5.2.1 Conservation of Total Mass

In accordance with hypothesis (5.27), the total mass

M0 D
Z

�

%".t/ dx D %j�j (5.35)

is a constant of motion independent of ". Note that, by virtue of Theorem 3.2,
%" 2 Cweak.Œ0;T�IL 5

3 .�//, therefore (5.35) makes sense for any t 2 Œ0;T�. The
case when the total mass of the fluid depends on " can be accommodated easily by
a straightforward modification of the arguments presented below.
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5.2.2 Total Dissipation Balance and Related Estimates

As observed in Sect. 4.7, the total dissipation balance is the central principle
yielding practically all uniform bounds available for the primitive system. Pursuing
the ideas of Sect. 2.2.3 we combine relations (5.30), (5.31) to obtain the dissipation
equality

Z

�

�"2

2
%"ju"j2 C H#.%"; #"/� "%"F

�
.t/ dx C #�"

h
Œ0; t� ��

i
(5.36)

D
Z

�

�"2

2
%0;"ju0;"j2 C H#.%0;"; #0;"/� "%0;"F

�
dx

satisfied for a.a. t 2 .0;T/, where the function H# was introduced in (2.48).
In addition, as the total mass M0 does not change in time, relation (5.36) can be

rewritten in the form
Z

�

�1
2
%"ju"j2 � .%" � %/

"
F
�
.t/ dx (5.37)

C
Z

�

1

"2

�
H#.%"; #"/� .%" � %/

@H#.%; #/

@%
� H#.%; #/

�
.t/ dx

C #

"2
�"

h
Œ0; t� ��

i

D
Z

�

�1
2
%0;"ju0;"j2 � .%0;" � %/

"
F
�

dx

C
Z

�

1

"2

�
H#.%0;"; #0;"/� .%0;" � %/

@H#.%; #/

@%
� H#.%; #/

�
dx

(cf. (4.37)).
At this stage, we associate to each function h" its essential part Œh"�ess and residual

part Œh"�res introduced through formulas (4.44), (4.45) in Sect. 4.7. A common
principle adopted in this book asserts that:

• The “residual” components of all "-dependent quantities appearing in the
primitive Eqs. (5.28)–(5.31) admit uniform bounds that are exactly the same as a
priori bounds derived in Chap. 2. Moreover, the measure of the “residual” subset
Mres of .0;T/�� being small, the “residual” parts vanish in the asymptotic limit
" ! 0.

• The decisive piece of information concentrates in the “essential” components,
in particular, they determine the limit system of equations. The fact that the
“essential” values of %", #" are bounded from above as well as from below away
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from zero facilitates the analysis considerably as all continuously differentiable
functions on R

2 are globally Lipschitz when restricted the range of “essential”
quantities.

In order to exploit relation (5.37) we need a piece of information concerning the
structural properties of the Helmholtz function H# . More precisely, we show that the
quantity

H#.%"; #"/� .%" � %/
@H#.%; #/

@%
� H#.%; #/

is non-negative and strictly coercive, attaining its global minimum zero at the equi-
librium state .%; #/. Moreover, it dominates both %e.%; #/ and %s.%; #/ whenever
.%; #/ is far from the equilibrium state. These structural properties utilized in (5.37)
yield the desired uniform estimates on %", #" as well as on the size of the “residual
subset” of .0;T/ ��.

Lemma 5.1 Let % > 0, # > 0 be given constants and let

H#.%; #/ D %
�
e.%; #/ � #s.%; #/

�
;

where e, s satisfy (5.18)–(5.23). Let Oess, Ores be the sets of essential and residual
values introduced in (4.39), (4.40).

Then there exist positive constants ci D ci.%; #/, i D 1; : : : ; 4, such that

(i)

c1
�
j%�%j2Cj#�#j2

�
� H#.%; #/�.%�%/@H#.%; #/

@%
�H#.%; #/ (5.38)

� c2
�
j% � %j2 C j# � #j2

�

for all .%; #/ 2 Oess;
(ii)

H#.%; #/ � .% � %/
@H#.%; #/

@%
� H#.%; #/ (5.39)

	 inf
.r;‚/2@Oess

n
H#.r; ‚/� .r � %/

@H#.%; #/

@%
� H#.%; #/

o
D c3.%; #/ > 0

for all .%; #/ 2 Ores;
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(iii)

H#.%; #/ � .% � %/
@H#.%; #/

@%
� H#.%; #/ (5.40)

	 c4
�
%e.%; #/C %js.%; #/j

�

for all .%; #/ 2 Ores.

Proof To begin, write

H#.%; #/ � .% � %/@H#.%; #/
@%

� H#.%; #/ D F.%/C G.%; #/;

where

F.%/ D H#.%; #/� .% � %/@H#.%; #/
@%

� H#.%; #/

and

G.%; #/ D H#.%; #/ � H#.%; #/:

As already observed in Sect. 2.2.3, the function F is strictly convex attaining
its global minimum zero at the point %, while G.%; �/ is strictly decreasing for
# < # and strictly increasing for # > # as a direct consequence of the
hypothesis of thermodynamic stability expressed in terms of (5.21), (5.22). In
particular, computing the partial derivatives of H# as in (2.49), (2.50) we deduce
estimate (5.38). By the same token, the function

# 7! H#.%; #/ � .% � %/@H#.%; #/
@%

� H#.%; #/

is decreasing for # < # and increasing whenever # > # ; whence (5.39) follows.
Finally, as F is strictly convex, we have

H#.%; #/ � .% � %/@H#.%; #/
@%

� H#.%; #/ 	 c.%; #/% whenever % 	 2%;

and, consequently, estimate (5.40) can be deduced from (5.39) and Proposition 3.2.
�
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In order to exploit the dissipation balance (5.37), we have to ensure that its right-
hand side determined in terms of the initial data is bounded uniformly with respect
to " ! 0. Since the initial data are given by (5.26), (5.27), this can be achieved if

fp%0;"u0;"g" is bounded in L2.�IR3/; (5.41)

and

n
%
.1/
0;" D %0;" � %

"

o

">0
;
n
#
.1/
0;" D #0;" � #

"

o

">0
are bounded in L1.�/: (5.42)

Observe that these hypotheses are optimal with respect to the chosen scaling and the
desired target problem.

Consequently, using estimate (5.38) we deduce from (5.37) that

ess supt2.0;T/
�
�
� Œ%" � %�ess.t/

�
�
�
2

L2.�/
� "2c;

ess supt2.0;T/
�
�
� Œ#" � #�ess.t/

�
�
�
2

L2.�/
� "2c;

and, by virtue of (5.40),

ess supt2.0;T/k Œ%"e.%"; #"/�res kL1.�/ � "2c; (5.43)

ess supt2.0;T/k Œ%"s.%"; #"/ �reskL1.�/ � "2c: (5.44)

Note that, as a consequence of the coercivity properties of the Helmholtz function
H# established in Lemma 5.1, the quantity

Z

�

.%" � %/

"
F dx

can be handled as a lower order term.
In addition, we have

ess sup
t2.0;T/

kp
%"u"kL2.�IR3/ � c;

�"

h
Œ0;T� ��

i
� "2c;

and, as a direct consequence of (5.39),

ess sup
t2.0;T/

ˇ
ˇM"

resŒt�
ˇ
ˇ � "2c;
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where the sets M"
resŒt� � � has been introduced in (4.43). Note that the last estimate

reflects the previous vague statement “the measure of the residual set is small”.
Since the entropy production rate �" remains small of order "2, we deduce

from (5.32) that (1) the term 1
#"
S" W rxu" is bounded in L1..0;T/ � �/, and, in

accordance with hypothesis (5.25), (2) rx.#"="/ is bounded in L2..0;T/ � �/. In
particular, we observe that rx#" vanishes in the asymptotic limit, that is to say #"
approaches a spatially homogeneous function. As the pressure becomes constant
in the low Mach number regime, the density is driven to a constant as well. This
observation justifies our choice of the initial data. On the other hand, it is intuitively
clear that we need a uniform bound on the entropy production rate in order to control
the norm of the velocity gradient. In other words, we have to impose the hypothesis
of thermodynamic stability (1.44) for the thermostatic variables %", #" to remain
close to the equilibrium state. We can see again the significant role of dissipativity
of the system in our approach to singular limits.

5.2.3 Uniform Estimates

In this rather technical part, we use the structural properties of thermodynamic
functions imposed through the constitutive relations (5.17)–(5.25) to reformulate the
uniform estimates obtained in the previous section in terms of the standard function
spaces framework. These estimates or their analogues will be used repeatedly in the
future discussion so it is convenient to summarize them in a concise way.

� UNIFORM ESTIMATES:

Proposition 5.1 Let the quantities e D e.%; #/, s D s.%; #/ satisfy hypothe-
ses (5.17)–(5.23), and let the transport coefficients  D .#/, � D �.#/, and
� D �.#/ obey the growth restrictions (5.24), (5.25).

Then we have:

ess sup
t2.0;T/

ˇ
ˇM"

resŒt�
ˇ
ˇ � "2c; (5.45)

ess supt2.0;T/
�
�
�
h%" � %

"

i

ess
.t/
�
�
�
L2.�/

� c; (5.46)

ess supt2.0;T/
�
�
�
h#" � #

"

i

ess
.t/
�
�
�
L2.�/

� c; (5.47)

ess sup
t2.0;T/

Z

�

�
Œ%"�

5
3
res C Œ#"�

4
res

�
.t/ dx � "2c; (5.48)
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ess sup
t2.0;T/

kp
%"u"kL2.�IR3/ � c; (5.49)

�"

h
Œ0;T� ��

i
� "2c; (5.50)

Z T

0

ku".t/k2W1;2.�IR3/ dt � c; (5.51)

Z T

0

�
�
�
�#" � #

"

�
.t/
�
�
�
2

W1;2.�//
dt � c; (5.52)

Z T

0

�
�
�
� log.#"/� log.#/

"

�
.t/
�
�
�
2

W1;2.�//
dt � c; (5.53)

and

Z T

0

�
��
h%"s.%"; #"/

"

i

res
.t/
�
��
q

Lq.�/
dt � c; (5.54)

Z T

0

�
�
�
h%"s.%"; #"/

"

i

res
u".t/

�
�
�
q

Lq.�IR3/ dt � c; (5.55)

Z T

0

�
�
�
h�.#"/
#"

i

res

�rx#"

"

�
.t/
�
�
�
q

Lq.�IR3/ dt � c (5.56)

for a certain q > 1, where the generic constant c is independent of " ! 0.

Proof

(i) Estimates (5.45)–(5.47) and (5.49), (5.50) have been proved in the previous
section. Estimate (5.48) follows immediately from (5.18), (5.43), and the
structural hypotheses (5.21), (5.23).

(ii) Estimate (5.50) combined with (5.32)–(5.34) and hypothesis (5.24) gives rise
to

Z T

0

krxu" C rx
Tu" � 2

3
divxu"Ik2L2.�IR3�3/ dt � c: (5.57)

On the other hand, we can use estimates (5.49), (5.57), together with (5.45)
and Korn’s inequality established in Proposition 2.1, in order to obtain (5.51).

(iii) In a similar fashion, we deduce from (5.50) a uniform bound

Z T

0

h���rx

�#"
"

����
2

L2.�/
C
�
��rx

� log.#"/

"

����
2

L2.�/

i
dt � c;
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which, together with (5.47), (5.45) and Proposition 2.2, gives rise
to (5.52), (5.53).

(iv) By virtue of the structural hypotheses (5.21), (5.22), we get

j%s.%; #/j � c
�
1C %j log.%/j C %j log.#/ � log.#/j C #3

�
(5.58)

(cf. (3.39)).
On the other hand, it follows from (5.45) that

ess sup
t2.0;T/

k Œ1
"
�res.t/kL2.�/ � c; (5.59)

while (5.48) yields

ess sup
t2.0;T/

�
�
�
�

�
%" log.%"/

"

�

res
.t/

�
�
�
�
Lq.�/

� c for any 1 � q <
5

3
: (5.60)

Furthermore, by means of (5.48), (5.53),

Z T

0

�
�
�
�
�

"
%".log.#"/� log.#//

"

#

res

�
�
�
�
�

2

Lp.�/

dt � c for a certain p > 1; (5.61)

and, finally,

ess sup
t2.0;T/

�
�
�
��

"
#"
3

"

#

res

.t/

�
�
�
��
L
4
3 .�/

� c"; (5.62)

where we have used (5.48).
Relations (5.59)–(5.62), together with (5.58), imply (5.54).

(v) In order to see (5.55), we use estimates (5.49), (5.48), and (5.53) to obtain

nh%".log.#"/� log.#//u"
"

i

res

o

">0
bounded in Lq.0;TILq.�IR3//

for a certain q > 1, which, combined with (5.58)–(5.62), and (5.45), gives rise
to (5.55).

(vi) Finally, in accordance with hypothesis (5.25),

h�.#"/
#"

i

res

ˇ
ˇ
ˇ
rx#"

"

ˇ
ˇ
ˇ � c

�ˇˇ
ˇ
rx log.#/

"

ˇ
ˇ
ˇC Œ#"

2�res

ˇ
ˇ
ˇ
rx#"

"

ˇ
ˇ
ˇ
�
;
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where, as a consequence of estimates (5.48), (5.52), and the embedding relation
W1;2.�/ ,! L6.�/,

fŒ#"�resg">0 is bounded in L1.0;TIL2.�// \ L1.0;TIL3.�//: (5.63)

Thus (5.56) follows from (5.52), (5.53) combined with (5.63) and a simple
interpolation argument.

�

5.3 Convergence

The uniform estimates established in Proposition 5.1 will be used in order to let
" ! 0 in equations (5.28), (5.29), (5.31) and to identify the limit problem. As we
have observed in Proposition 5.1, the residual parts of the thermodynamic quantities
related to the state variables %, # are small of order ". In order to handle the
essential components, we need the following general result exploited many times
in the forthcoming considerations.

Proposition 5.2 Let f%"g">0, f#"g">0 be two sequences of non-negativemeasurable
functions such that

Œ%
.1/
" �ess ! %.1/;

Œ#
.1/
" �ess ! #.1/

9
>=

>;
weakly-(*) in L1.0;TIL2.�// as " ! 0;

where we have denoted

%.1/" D %" � %

"
; #.1/" D #" � #

"
:

Suppose that

ess sup
t2.0;T/

jM"
resŒt�j � "2c: (5.64)

Let G 2 C1.Oess/ be a given function, where the sets M"
essŒt�, Oess have been

introduced in (4.43), (4.39), respectively.
Then

ŒG.%"; #"/�ess � G.%; #/

"
! @G.%; #/

@%
%.1/ C @G.%; #/

@#
#.1/

weakly-(*) in L1.0;TIL2.�//.
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If, in addition, G 2 C2.Oess/, then

��
�
ŒG.%"; #"/�ess�G.%; #/

"
�@G.%; #/

@%
Œ%.1/" �essC@G.%; #/

@#
Œ#.1/" �ess

��
�
L1.0;TIL1.�// � "c:

(5.65)

Remark If, in addition, the function %", #" satisfy estimate (5.48), then (5.65) may
be replaced by

�
�
�
ŒG.%"; #"/�ess � G.%; #/

"
� @G.%; #/

@%
%.1/" C @G.%; #/

@#
#.1/"

�
�
�
L1.0;TIL1.�// � "c:

(5.66)

Proof To begin, by virtue of (5.64),

k1
"
ŒG.%; #/�reskL1.�/ � "c; k1

"
ŒG.%; #/�reskL2.�/ � c;

and, consequently, it is enough to show that

hG.%"; #"/ � G.%; #/

"

i

ess
! @G.%; #/

@%
%.1/ C @G.%; #/

@#
#.1/ (5.67)

weakly-(*) in L1.0;TIL2.�//.
The next step is to observe that (5.67) holds as soon as G 2 C2.Oess/. Indeed as

G is twice continuously differentiable, we have

ˇ̌
ˇ
hG.%"; #"/� G.%; #/

"
�
�@G.%; #/

@%

%" � %
"

C @G.%; #/

@#

#" � #

"

�i

ess

ˇ̌
ˇ

� "�"

h�%" � %

"

�2 C
�#" � #

"

�2i
;

where

k Œ�"�esskL1..0;T/��/ � ckGkC2.Oess/
:

In particular, we have shown (5.65).
Finally, seeing that

ˇ
ˇ
ˇ
hG.%"; #"/� G.%; #/

"

i

ess

ˇ
ˇ
ˇ � kGkC1.Bess/

�ˇˇ
ˇ
h%" � %

"

i

ess

ˇ
ˇ
ˇC

ˇ
ˇ
ˇ
h#" � #

"

i

ess

ˇ
ˇ
ˇ
�

we complete the proof approximating G by a family of smooth functions uniformly
in C1.Oess/.

�



184 5 Singular Limits: Low Stratification

5.3.1 Equation of Continuity

In the low Mach number regime, the equation of continuity (5.28) reduces to the
incompressibility constraint (5.8). In order to verify this observation, we first use
the uniform estimate (5.51) to deduce

u" ! U weakly in L2.0;TIW1;2.�IR3// (5.68)

passing to a suitable subsequence as the case may be.
Furthermore, we have

%" � %
"

D
h%" � %

"

i

ess
C
h%" � %

"

i

res
;

where, in accordance with (5.46),

h%" � %

"

i

ess
! %.1/ weakly-(*) in L1.0;TIL2.�//; (5.69)

while estimates (5.45), (5.48) give rise to

h%" � %
"

i

res
! 0 in L1.0;TIL 5

3 .�//I (5.70)

whence

%" � %

"
! %.1/ weakly-(*) in L1.0;TIL 5

3 .�//: (5.71)

In particular, (5.71) implies

%" ! % in L1.0;TIL 5
3 .�//; (5.72)

and we can let " ! 0 in the continuity equation (5.28) in order to conclude that

Z T

0

Z

�

U � rx' dx dt D 0

for all ' 2 C1
c ..0;T/ � �/. Since the limit velocity field U belongs to the class

L2.0;TIW1;2.�IR3//, we have shown

divxU D 0 a.a. in .0;T/ ��; U � nj@� D 0 in the sense of traces (5.73)

provided the boundary @� is at least Lipschitz (cf. Sect. 11.4 in Appendix).
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5.3.2 Entropy Balance

With regard to (5.28), we recast the entropy balance (5.31) in the form

Z T

0

Z

�

%"

� s.%"; #"/� s.%; #/

"

��
@t' C u" � rx'

�
dx dt (5.74)

�
Z T

0

Z

�

�.#"/

#"
rx

�#"
"

�
� rx' dx dt

C1

"
< �"I' >ŒM;C�.Œ0;T���/D �

Z

�

%0;"

� s.%0;"; #0;"/� s.%; #/

"

�
'.0; �/ dx

to be satisfied for any ' 2 C1
c .Œ0;T/ ��/.

Adopting the notation introduced in Proposition 5.2 and using estimate (5.47) we
get

h#" � #

"

i

ess
! #.1/ weakly-(*) in L1.0;TIL2.�//; (5.75)

passing to a suitable subsequence as the case may be. On the other hand, in
accordance with (5.52),

#" � #

"
! #.1/ weakly in L2.0;TIW1;2.�//: (5.76)

Note that the limit functions in (5.75), (5.76) coincide since the measure of the
“residual” subset of .0;T/ �� tends to zero as claimed in (5.45).

In order to identify the limit problem resulting from (5.74) we proceed by several
steps:

(i) Write

%"

� s.%"; #"/ � s.%; #/

"

�

D Œ%"�ess
Œs.%"; #"/�ess � s.%; #/

"

C
h%"
"

i

res

�
Œs.%"; #"/�ess � s.%; #/

�
C
h%"s.%"; #"/

"

i

res
;

where, by virtue of (5.48),

h%"
"

i

res

�
Œs.%"; #"/�ess � s.%; #/

�
! 0 in L1.0;TIL 5

3 .�//; (5.77)
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and, in accordance with (5.45), (5.54),

h%"s.%"; #"/
"

i

res
! 0 in Lp..0;T/ ��/ for a certain p > 1: (5.78)

Similarly, combining (5.45) with (5.55), (5.68), (5.77), we obtain

h%"
"

i

res

�
Œs.%"; #"/�ess � s.%; #/

�
u" ! 0 in Lp.0;TILp.�IR3//; (5.79)

and

h%"s.%"; #"/
"

i

res
u" ! 0 in Lp.0;TILp.�IR3// (5.80)

for a certain p > 1.
Finally, Proposition 5.2 together with (5.72) yield

Œ%"�ess
Œs.%"; #"/�ess � s.%; #/

"
! %

�@s.%; #/
@%

%.1/ C @s.%; #/

@#
#.1/

�
(5.81)

weakly-(*) in L1.0;TIL2.�IR3//.
(ii) In a similar way, the entropy flux can be written as

�.#"/

#"
rx

�#"
"

�
D
h�.#"/
#"

i

ess
rx

�#" � #
"

�
C
h�.#"/
#"

i

res
rx

�#"
"

�
;

where, as a consequence of (5.75), (5.76),

h�.#"/
#"

i

ess
rx

�#" � #

"

�
! �.#/

#
rx#

.1/ weakly in L2.0;TIL2.�IR3//;
(5.82)

and, in accordance with (5.45), (5.56),

h�.#"/
#"

i

res
rx

�#"
"

�
! 0 in Ls.0;TILs.�IR3// for a certain s > 1: (5.83)

(iii) Eventually, we have to identify the weak limit D of the product

Œ%"�ess
Œs.%"; #"/�ess � s.%; #/

"
u" ! D weakly in L2.0;TIL 3

2 .�IR3//:
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To this end, we evoke Div-Curl Lemma formulated in Proposition 3.3. Following
the notation of Proposition 3.3 we set

U" D
"

Œ%"�ess
Œs.%"; #"/�ess � s.%; #/

"
;

Œ%"�ess
Œs.%"; #"/�ess � s.%; #/

"
u" �

h�.#"/
#"

i

ess
rx

�#"
"

�
#

;

V" D ŒG.u"/; 0; 0; 0�

considered as vector fields defined on the set ..0;T/ ��/ � R
4 with values in R

4,
for an arbitrary function G 2 W1;1.R3/.

Using estimates (5.77)–(5.83), together with (5.50), we can check that U", V"
meet all hypotheses of Proposition 3.3; whence, in agreement with (5.81),

Œ%"�ess
Œs.%"; #"/�ess � s.%; #/

"
G.u"/ ! %

�@s.%; #/
@%

%.1/ C @s.%; #/

@#
#.1/

�
G.u/

for any G, yielding the desired conclusion

Œ%"�ess
Œs.%"; #"/�ess � s.%; #/

"
u" ! %

�@s.%; #/
@%

%.1/ C @s.%; #/

@#
#.1/

�
U (5.84)

weakly in L2.0;TIL 3
2 .�IR3//.

At this stage, we are ready to let " ! 0 in the entropy balance equation (5.74) in
order to conclude that

Z T

0

Z

�

%
�@s.%; #/

@%
%.1/ C @s.%; #/

@#
#.1/

��
@t' C U � rx'

�
dx dt (5.85)

�
Z T

0

Z

�

�.#/

#
rx#

.1/ � rx' dxdt

D �
Z

�

%
�@s.%; #/

@%
%
.1/
0 C @s.%; #/

@#
#
.1/
0

�
'.0; �/ dx

for any ' 2 C1
c .Œ0;T/ ��/, where

%
.1/
0;" D %0;" � %

"
! %

.1/
0 weakly-(*) in L1.�/; (5.86)
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and

#
.1/
0;" D #0;" � #

"
! #

.1/
0 weakly-(*) in L1.�/: (5.87)

A remarkable feature of this process is that the entropy production rate represented
by the measure �" disappears in the limit problem (5.85) as a consequence of the
uniform bound (5.50). Loosely speaking, the entropy balance “inequality” (5.74)
becomes an equation (5.85).

To conclude, we deduce from (5.85) that

Z

�

%
�@s.%; #/

@%
%.1/ C @s.%; #/

@#
#.1/

�
.t/ dx

D
Z

�

%
�@s.%; #/

@%
%
.1/
0 C @s.%; #/

@#
#
.1/
0

�
dx for a.a. t 2 .0;T/:

However, since we have assumed that %.1/ has zero mean and the total mass is
conserved, this relation reduces to

Z

�

#.1/.t/ dx D
Z

�

#
.1/
0 dx for a.a. t 2 .0;T/:

Assuming, in addition to (5.27), that

Z

�

#
.1/
0;" dx D 0 for all " > 0 (5.88)

we conclude
Z

�

#.1/.t/ dx D 0 for a.a. t 2 .0;T/: (5.89)

Clearly, the resulting equation (5.85) should give rise to the heat equation (5.12)
in the OBERBECK-BOUSSINESQ APPROXIMATION as soon as we establish a
relation between %.1/ and #.1/. This will be done in the next section.

5.3.3 Momentum Equation

The asymptotic limit in the momentum equation is one of the most delicate steps
as the latter contains the convective term %"u" ˝ u" difficult to handle because of
possible violent time oscillations of the acoustic waves represented by the gradient
component of the velocity.
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Incompressible Limit It follows from (5.68), (5.72), combined with the standard
embedding relation W1;2.�/ ,! L6.�/, that

%"u" ! %U weakly in L2.0;TIL 30
23 .�IR3//: (5.90)

Moreover, we deduce from (5.49), (5.72) that

%"u" ! %U weakly-(*) in L1.0;TIL 5
4 .�IR3//; (5.91)

which, combined with (5.68), gives rise to

%"u" ˝ u" ! %U ˝ U weakly in L2.0;TIL 30
29 .�IR3�3//: (5.92)

As already noted in Sect. 4.4, we do not expect to have %U ˝ U D %U˝U because
of possible time oscillations of the gradient component of the velocity field.

Next, as a consequence of (5.48), (5.52),

f#"g">0 is bounded in L1.0;TIL4.�// \ L2.0;TIL6.�//: (5.93)

Thus hypothesis (5.24), together with (5.68), (5.93), and a simple interpolation
argument, give rise to

S" ! .#/.rxU C rx
TU/ weakly in Lq.0;TILq.�IR3// for a certain q > 1:

(5.94)

Note that, in accordance with (5.73), divxU D 0.
Now, it is easy to let " ! 0 in the momentum equation (5.29) as soon as the test

function ' is divergenceless. If this is the case, we get

Z T

0

Z

�

�
%U � @t' C %U ˝ U W rx'

�
dx dt (5.95)

D
Z T

0

Z

�

�
.#/ŒrxU C rx

TU� W rx' � %.1/rxF � '
�

dx dt �
Z

�

.%U0/ � ' dx

for any test function

' 2 C1
c .Œ0;T/ ��IR3/; divx' D 0 in �; ' � nj@� D 0;

where we have assumed

u0;" ! U0 weakly-(*) in L1.�IR3/: (5.96)
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Note that
Z

�

%"

"
rxF � ' dx D

Z

�

%" � %
"

rxF � ' dx

as ' is a solenoidal function with vanishing normal trace.
Relation (5.95) together with (5.73) represent a weak formulation of the incom-

pressible NAVIER-STOKES SYSTEM (5.8), (5.9), supplemented with the complete
slip boundary condition

U � nj@� D 0;
�
ŒrxU C rx

TU�n
� � nj@� D 0; (5.97)

provided we can replace %U � U by %U � U. Moreover, the function U satisfies the
initial condition

U.0; �/ D HŒU0�; (5.98)

where the symbol H denotes the Helmoltz projection onto the space of solenoidal
functions (see Sect. 5.4.1 below and Sect. 11.7 in Appendix).

The fact that we loose completely control of the pressure term in the asymptotic
limit is inevitable for problems with ill-prepared data. As a result, the limit process
is spoiled by violent oscillations yielding merely the weak convergence towards the
target problem.

Pressure The pressure, deliberately eliminated in the previous part, is the key
quantity to provide a relation between the limit functions %.1/, #.1/. We commence
writing

p.%"; #"/ D Œ p.%"; #"/�ess C Œ p.%"; #"/�res;

where, in accordance with hypotheses (5.21), (5.23),

0 � Œ p.%"; #"/�res

"
� c

�h1
"

i

res
C
h%"

5
3

"

i

res
C
h#"4

"

i

res

�
; (5.99)

see also (3.32). Consequently, estimates (5.45), (5.48) imply that

ess sup
t2.0;T/

�
��
hp.%"; #"/

"

i

res

�
��
L1.�/

� "c: (5.100)

Thus by means of Proposition 5.2 and estimate (5.100), we multiply the
momentum equation (5.29) on " and let " ! 0 to obtain

Z T

0

Z

�

�@p.%; #/
@%

%.1/ C @p.%; #/

@#
#.1/

�
divx' dx dt (5.101)
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D �
Z T

0

Z

�

%rxF � ' dx

for all ' 2 C1
c ..0;T/ ��IR3/, which is nothing other than (5.10).

If we assume, without loss of generality, that

Z

�

F dx D 0; (5.102)

relation (5.101) yields the desired conclusion

%.1/ D �@#p
@%p

.%; #/#.1/ C %

@%p.%; #/
F: (5.103)

Expressing %.1/ in (5.85) by means of (5.103) and using Gibbs’ equation (2.35),
we get

Z T

0

Z

�

%cp.%; #/#
.1/
�
@t' C U � rx'

�
dx dt (5.104)

�
Z T

0

Z

�

�
% #˛.%; #/FU � rx' C �.#/rx#

.1/ � rx'
�

dx dt D

�
Z

�

% #
�@s.%; #/

@%
%
.1/
0 C @s.%; #/

@#
#
.1/
0 C ˛.%; #/F

�
'.0; �/ dx

for any ' 2 C1
c .Œ0;T/ � �/, where the physical constants cp, ˛ are determined

through (4.17), (4.18). Relation (5.104) represents a weak formulation of Eq. (5.12)
with‚ D #.1/, supplemented with the homogeneous Neumann boundary condition.

Moreover, it follows from estimate (5.49) combined with (5.68), (5.72) that

p
%"u" ! p

%U weakly in L1.0;TIL2.�IR3//;

in particular,

U 2 L1.0;TIL2.�IR3// \ L2.0;TIW1;2.�IR3//; (5.105)

and, consequently,

divx.U#.1// D U � rx#
.1/ 2 Lq..0;T/ ��/ for a certain q > 1:

Thus we may use the standard L2-theory for linear parabolic equations combined
with the Lp �Lq estimates reviewed in Sect. 11.15 of Appendix, in order to conclude
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that

#.1/ 2 W1;q.ı;TILq.�// \ Lq.ı;TIW2;q.�// \ C.Œ0;T�ILq.�// (5.106)

for a certain q > 1 and any 0 < ı < T.
Thus, setting ‚ D #.1/, we obtain

%cp.%; #/
�
@t‚CU �rx‚/

�
�% #˛.%; #/U �rxF�divx.�.#/rx‚/ D 0 (5.107)

for a.a. .t; x/ 2 .0;T/ ��,

rx‚ � nj@� D 0 in the sense of traces for a.a. t 2 .0;T/; (5.108)

and

cp.%; #/‚.0; �/ D #
�@s.%; #/

@%
%
.1/
0 C @s.%; #/

@#
#
.1/
0 C ˛.%; #/F

�
a.a. in �:

(5.109)

Note that we can take ı D 0 in (5.106) as soon as the initial data in (5.109) are more
regular (see Sect. 11.15 in Appendix).

Finally, we deduce the celebrated Boussinesq relation

r C %˛.%; #/‚ D 0 (5.110)

putting

r D %.1/ � %

@%p.%; #/
F (5.111)

in (5.103). Note that %.1/ can be replaced by r in (5.95) as the difference multiplied
on rxF is a gradient, irrelevant in the variational formulation based on solenoidal
test functions.

5.4 Convergence of the Convective Term

So far we have almost completely identified the limit problem for the full NAVIER-
STOKES-FOURIER SYSTEM in the regime of the low Mach number and low
stratification, specifically,

Ma D "; Fr D p
"; " ! 0:
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The only missing point is to clarify the relation between the weak limit %U ˝ U and
the product of weak limits %U ˝ U in the momentum equation (5.95).

As already pointed out in Sect. 4.4.1, we do not really expect to show that

%U ˝ U D %U ˝ U;

however, we may still hope to prove a weaker statement

Z T

0

Z

�

%U ˝ U W rx' dx dt D
Z T

0

Z

�

Œ%U ˝ U� W rx' dx dt (5.112)

for any

' 2 C1
c ..0;T/ ��IR3/; divx' D 0; ' � nj@� D 0:

Relation (5.112) can be interpreted in the way that the difference

divx
�
%U ˝ U � %U ˝ U

�

is proportional to a gradient that may be incorporated into the limit pressure;
whence (5.112) is sufficient for replacing %U ˝ U by %U ˝ U in (5.95) as required.

The remaining part of this section is devoted to the proof of (5.112). The main
ingredients include:

• Helmholtz decomposition of the momentum;
• proof of compactness of the solenoidal part;
• analysis of the acoustic equation governing the time evolution of the gradient

component.

5.4.1 Helmholtz Decomposition

Before commencing a rigorous analysis, we have to identify the solenoidal part
(divergenceless, incompressible) and the gradient part (acoustic) of a given vector
field. The following material is classical and may be found in most of the modern
textbooks devoted to mathematical fluid mechanics (see Sect. 11.7 in Appendix).

� HELMHOLTZ DECOMPOSITION:

A vector function v W � ! R
3 is written as

v D HŒv�
„ƒ‚…

solenoidal part

C H?Œv�
„ƒ‚…

gradient part

;
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where

H?Œv� D rx‰;

�‰ D divxv in �; rx‰ � nj@� D v � n;
Z

�

‰ dx D 0: (5.113)

The standard variational formulation of problem (5.113) reads

Z

�

rx‰ � rx' dx D
Z

�

v � rx' dx;
Z

�

‰ dx D 0 (5.114)

to be satisfied for any test function ' 2 C1
c .�/. In particular, as a direct

consequence of the standard Lp-theory of elliptic operators (see Sect. 11.3.1 in
Appendix), it can be shown that the Helmholtz projectors

v 7!
8
<

:

HŒv�

H?Œv�

map continuously the spaces Lp.�IR3/ and W1;p.�IR3/ into itself for any 1 < p <
1 as soon as @� is at least of class C2.

5.4.2 Compactness of the Solenoidal Part

Keeping in mind our ultimate goal, meaning a rigorous justification of (5.112),
we show first that the solenoidal part of the momentum HŒ%"u"� does not exhibit
oscillations in time, in particular, it converges a.a. in the set .0;T/ � �. To this
end, take HŒ'�, ' 2 C1

c .Œ0;T/ � �IR3/, ' � n D 0, as a test function in the
variational formulation of the momentum equation (5.29). Note that the normal trace
of HŒ'� vanishes on @� together with that of '. Consequently, in accordance with
the uniform estimates obtained in Sect. 5.2, notably (5.46), (5.48), and (5.49), we
conclude that

HŒ%"u"� ! HŒ%U� D %U in Cweak.Œ0;T�IL 5
4 .�IR3//; (5.115)

where we have used (5.73). Note that, similarly to (5.95), the singular terms in
Eq. (5.29) are irrelevant as divxHŒ'� D 0.

In addition, by virtue of (5.71), (5.115), we have

%HŒu"� � u" D
�
"HŒ

% � %"
"

u"�C HŒ%"u"�
�

� u" ! %jUj2 weakly in L1.�/;
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in particular,

Z T

0

Z

�

jHŒu"�j2 dx D
Z

�

HŒu"� � u" dx !
Z

�

jUj2 dx:

As U D HŒU�, the last relation allows us to conclude that

HŒu"� ! U in L2.0;TIL2.�IR3//: (5.116)

Coming back to (5.112) we write

%"u" ˝ u" D HŒ%"u"�˝ u" C H?Œ%"u"�˝ HŒu"�C H?Œ%"u"�˝ H?Œu"�;

where, by means of (5.68), (5.115), the compact embedding W1;2.�/ ,! L5.�/,
and the arguments used in (3.231)–(3.232),

HŒ%"u"�˝ u" ! %U ˝ U weakly in L2.0;TIL 30
29 .�IR3�3//: (5.117)

Moreover, combining (5.116) with (5.90) we infer that

H?Œ%"u"�˝ HŒu"� ! 0 weakly in L2.0;TIL 30
29 .�IR3�3//: (5.118)

In the previous discussion we have repeatedly used the continuity of the Helmholtz
projectors on Lp and W1;p.

In view of (5.117), (5.118), the proof of relation (5.112) reduces to showing

Z T

0

Z

�

H?Œ%"u"�˝ H?Œu"� W rx' dx dt ! 0 (5.119)

for any

' 2 C1
c ..0;T/ ��IR3/; divx' D 0; ' � nj@� D 0:

A priori, our uniform estimates do not provide any bound on the time derivative
of the gradient part of the velocity. Verification of (5.119) must be therefore based
on a detailed knowledge of possible time oscillations and their mutual cancelations
in the acoustic waves described by means of H?Œ%"u"� governed by the acoustic
equation introduced in Sect. 4.4.1. Accordingly, the next three sections are devoted
to a detailed deduction of the acoustic equation and the spectral analysis of
the corresponding wave operator. The proof of relation (5.119) is postponed to
Sects. 5.4.6 and 5.4.7.
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5.4.3 Acoustic Equation

A formal derivation of the acoustic equation was given in Sect. 4.4.1. Here we
consider a variational formulation in the spirit of Chap. 2. To this end, we write
system (5.28)–(5.29) in the form:

Z T

0

Z

�

�
"%.1/" @t' C V" � rx'

�
dx dt D 0; (5.120)

for any ' 2 C1
c ..0;T/ ��/,

Z T

0

Z

�

�
"V" � @t' C

h Œ p.%"; #"/�ess � p.%; #/

"
� %F

i
divx'

�
dx dt (5.121)

D
Z T

0

Z

�

.% � %"/rxF � ' dx dt C
Z T

0

Z

�

h1" W rx' dx dt

for any ' 2 C1
c ..0;T/ ��IR3/, ' � nj@� D 0, where we have set

%.1/" D %" � %
"

; V" D %"u";

and

h1" D "S" � "%"u" ˝ u" � Œ p.%"; #"/�res

"
I:

Similarly, the entropy balance equation (5.31) can be rewritten with help of (5.28)
as

Z T

0

Z

�

"
�
%"

s.%"; #"/� s.%; #/

"

�
@t' dx (5.122)

D
Z T

0

Z

�

h2" � rx' dx dt� < �"I' >ŒMIC�.Œ0;T���/

for any ' 2 C1
c ..0;T/ ��/, where

h2" D �.#"/

#"
rx#" C

�
%"s.%; #/� %"s.%"; #"/

�
u":

Following the ideas delineated in Sect. 4.4.1 we have

Œ p.%"; #"/�ess � p.%; #/

"
D @p.%; #/

@%
%.1/" C @p.%; #/

@#
#.1/" C h3"; #

.1/
" D #" � #

"
;
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and, analogously,

%"
s.%"; #"/� s.%; #/

"
D
h
%"

s.%"; #"/ � s.%; #/

"

i

ess
C
h
%"

s.%"; #"/� s.%; #/

"

i

res

D %
h@s.%; #/

@%
%.1/" C @s.%; #/

@#
#.1/"

i
C
h
%"

s.%"; #"/ � s.%; #/

"

i

res
C h4";

(5.123)

where, by virtue of Proposition 5.2, specifically (5.65),

ess sup
t2.0;T/

Z

�

jh3".t/j dx � "c; (5.124)

ess sup
t2.0;T/

Z

�

jh4".t/j dx � "c; (5.125)

since p and s are twice continuously differentiable on the set .0;1/2.
Now, we rewrite system (5.120)–(5.122) in terms of new independent variables

r" D 1

!

�
!%.1/" C A%"

s.%"; #"/� s.%; #/

"
� %F

�
;V" D %"u";

where we have set

! D @%p.%; #/C j@#p.%; #/j2
%2 @# s.%; #/

and A D @#p.%; #/

% @#s.%; #/
: (5.126)

After a bit lengthy but straightforward manipulation we arrive at the system

Z T

0

Z

�

�
"r"@t' C V" � rx'

�
dx dt D A

!

h Z T

0

Z

�

h2" � rx' dx dt� < �"I' >
i

(5.127)

for any ' 2 C1
c ..0;T/ ��/,

Z T

0

Z

�

�
"V" � @t' C !r"divx'

�
dx dt (5.128)

D
Z T

0

Z

�

.% � %"/rxF � ' dx dt C
Z T

0

Z

�

�
h1" W rx' � h3"divx'

�
dx dt

CA
Z T

0

Z

�

�h
%"

s.%"; #"/ � s.%; #/

"

i

res
C h4"

�
divx' dx dt



198 5 Singular Limits: Low Stratification

for any ' 2 C1
c ..0;T/ ��IR3/, ' � nj@� D 0. System (5.127), (5.128) represents

a non-homogeneous variant of the acoustic equation (4.26).
Our ultimate goal in this section is to show that the quantities on the right-hand

side of (5.127), (5.128) vanish for " ! 0. In order to see this, we use first the
uniform estimates (5.46), (5.48) to obtain

ess sup
t2.0;T/

k.%" � %/rxFk
L
5
3 .�IR3/ D " ess sup

t2.0;T/

�
�
�
%" � %
"

rxF
�
�
�
L
5
3 .�IR3/ � "c;

(5.129)
and, by virtue of (5.92), (5.94), (5.100),

kh1"kLq.0;TIL1.�IR3�3// � "c for a certain q > 1: (5.130)

In a similar way, relation (5.44) together with (5.45), (5.48) give rise to

ess sup
t2.0;T/

�
��
h
%"

s.%"; #"/ � s.%; #/

"

i

res

�
��
L1.�/

� "c: (5.131)

Finally, writing

h2" D "
�.#"/

#"
rx
#"

"
� "

� Œ%"s.%"; #"/�ess � %s.%; #/
"

�
u" � "

h%"s.%"; #"/
"

i

res
u"

C"%" � %
"

s.%; #/u"

we can use estimates (5.51), (5.53), (5.56), and (5.71), together with Proposition 5.2,
in order to conclude that

kh2"kLq.0;TILq.�IR3// � "c for a certain q > 1: (5.132)

Having established all necessary estimates, we can use (5.123)–(5.125), together
with (5.129)–(5.132), in order to rewrite system (5.127), (5.128) in a more concise
form. We should always keep in mind, however, that the resulting problem is
nothing other than the primitive NAVIER-STOKES-FOURIER SYSTEM conveniently
rearranged in the form of an acoustic analogy in the spirit of Lighthill [188]
discussed in Sect. 4.5.

� SCALED ACOUSTIC EQUATION:

Z T

0

Z

�

�
"r"@t' C V" � rx'

�
dx dt (5.133)
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D A

!

�Z T

0

Z

�

h2" � rx' dx dt� < �"I' >ŒMIC�.Œ0;T���/
�

for any ' 2 C1
c ..0;T/ ��/,

Z T

0

Z

�

�
"V" � @t' C !r"divx'

�
dx dt D

Z T

0

Z

�

�
h5" W rx' C h6" � '

�
dx dt

(5.134)

for any ' 2 C1
c ..0;T/ ��IR3/, ' � nj@� D 0.

In accordance with the previous estimates, the functions h2" , h
5
" , and h6 satisfy

8
<

:

kh2"kLq.0;TIL1.�IR3// C kh6"kLq.0;TIL1.�IR3// � "c;

kh5"kLq.0;TIL1.�IR3�3// � "c

9
=

;
(5.135)

for a certain q > 1, and, in accordance with (5.50), �" 2 MC.Œ0;T� � �/ is a
non-negative measure such that

j < �"I' >ŒMIC�.Œ0;T���/ j � "2ck'kC.Œ0;T���/: (5.136)

5.4.4 Formal Analysis of Acoustic Equation

In view of estimates (5.135), (5.136), the right-hand side of system (5.133), (5.134)
is small of order ". In particular, these terms are negligible in the fast time scaling
	 � t=" as we have observed in Sect. 4.4.1. In order to get a better insight into the
complexity of the wave phenomena described by acoustic equation, we perform a
formal asymptotic analysis of (5.133), (5.134) in the real time t keeping all quantities
of order " and lower. Such a procedure leads formally to the system

"@tr" C divxV" D "G1"; (5.137)

"@tV" C !rxr" D "G2
"; (5.138)

with

G1" D A

"!

�
divxh2"C < �"I' >ŒMIC�.Œ0;T���/

�
; (5.139)

G2
" D 1

"

�
divxh5" � h6"

�
: (5.140)
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Solutions of the linear system (5.137), (5.138) can be expressed by means of
Duhamel’s formula

�
r".t/
V".t/

�
D S

� t
"

� � r".0/
V".0/

�
C
Z t

0

�
S
� t � s

"

� �G1".s/
G2
".s/

��
ds;

where

S.t/

�
R0
Q0

�
D
�
R.t/
Q.t/

�
(5.141)

is the solution group of the homogeneous problem

@tR C divxQ D 0; @tQ C !rxR; Q � nj@� D 0; R.0/ D R0; Q.0/ D Q0:

We easily deduce the energy equality

Z

�

1

2

�
!R2 C jQj2� .t/ dx D

Z

�

1

2

�
!R20 C jQ0j2

�
dx

satisfied for any t 2 R. In particular, the mapping t 7! S.t/ represents a group of
isomorphisms on the Hilbert space L2.�/ � L2.�IR3/.

For the sake of simplicity, assume that G1" , G
2
" are more regular in the x-variable

than guaranteed by (5.135), (5.136), namely

kG1"kLq.0;TIW1;2.�// � c; kG2
"kLq.0;TIW1;2.�IR3// � c for a certain q > 1

uniformly with respect to ".
Writing

�
r".t/
V".t/

�
D S

� t
"

� �� r".0/
V".0/

�
C
Z t

0

�
S
��s

"

� �G1".s/
G2
".s/

��
ds

�

we observe that the family of mappings

t 2 Œ0;T� 7!
��

r".0/
V".0/

�
C
Z t

0

�
S
��s

"

� �G1".s/
G2
".s/

��
ds

�

is precompact in the space C.Œ0;T�IL2.�/ � L2.�IR3// provided

r".0/ ! r0 in L2.�/; V".0/ ! V0 in L2.�IR3/:
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Consequently, we have

supt2Œ0;T� kr".t/ � R".t/kL2.�/ ! 0

supt2Œ0;T� kV".t/ � Q".t/kL2.�IR3/ ! 0

9
=

;
for " ! 0;

where

�
R".t/
Q".t/

�
D S

� t
"

� �� r0
V0

�
C
Z t

0

�
F1.s/
F2.s/

�
ds

�
; (5.142)

and where ŒF1;F2� denote a weak limit of

S
�
� s

"

� �G1".s/
G".s/

�

in Lq.0;TIL2.�/ � L2.�IR3//.
Finally, (5.142) can be written in the form

"@tR" C divxQ" D "H1
" ; (5.143)

"@tQ" C !rxR" D "H2
"; (5.144)

with

�
H1
" .t/

H2
".t/

�
D S

� t
"

� �F1.t/
F2.t/

�
:

System (5.143), (5.144) may be regarded as a scaled variant of Lighthill’s equa-
tion (4.36) discussed in Sect. 4.5, where the acoustic source terms can be determined
in terms of fixed functionsF1, F2. For a fixed " > 0, system (5.143), (5.144) provides
a reasonable approximation of propagation of the acoustic waves in the low Mach
number regime.

In practice the functions F1, F2, or even their oscillating counterparts H1
" , H2

" ,
should be fixed by experiments. This is the basis of the so-called hybrid methods in
numerical analysis, where the source terms in the acoustic equation are determined
by means of a suitable hydrodynamic approximation. Very often, the limit passage
is performed at the first step, where the functions G1" , G

2
" are being replaced by

their formal incompressible limits for " ! 0 (see Golanski et al. [142]). As we
have seen, however, the effective form of the acoustic sources has to be deduced
as a kind of time average of highly oscillating quantities on which we do not
have any control in the low Mach number limit. This observation indicates certain
limitations of the hybrid methods used in numerical simulations. Indeed as we show
in Chap. 10, any method based on linear acoustic analogy can be effective only for
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problems with well-prepared data. This is due to the fact that the wave operator used
in (5.143), (5.144) is linear thus applicable only to small perturbations of the limit
problem. In the case of ill-prepared data, the non-linear character of the equations,
in particular of the convective term, must be taken into account in order to obtain
reliable results. These topics will be further elaborated in Chap. 10.

The purpose of the previous discussion was to motivate the following steps
in the analysis of the low Mach number limit. In particular, we shall reduce the
problem to a finite number of modes represented by the eigenfunctions of the wave
operator in (5.133), (5.134) that are smooth in the x-variable. Inspired by the formal
approach delineated above, we show that the non-vanishing oscillatory part of the
convective term can be represented by a gradient of a scalar function irrelevant in
the incompressible limit.

5.4.5 Spectral Analysis of the Wave Operator

We consider the following eigenvalue problem associated to the operator on the
left-hand side of (5.133), (5.134):

divxw D �q; !rxq D �w in �; w � nj@� D 0: (5.145)

System (5.145) can be reformulated as a homogeneous Neumann problem

��xq D ƒq in �; rxq � nj@� D 0; �ƒ D �2

!
: (5.146)

As is well-known, problem (5.146) admits a countable system of eigenvalues

0 D ƒ0 < ƒ1 � ƒ2 � : : :

with the associated system of (real) eigenfunctions fqng1
nD0 forming an orthogonal

basis of the Hilbert spaces L2.�/ (see Theorem 11.9 in Appendix). The correspond-
ing (complex) eigenfunctions w˙n are determined through (5.145) as

w˙n D ˙i

r
!

ƒn
rxqn; n D 1; 2; : : : (5.147)

Furthermore, the Hilbert space L2.�IR3/ admits an orthogonal decomposition

L2.�IR3/ D L2� .�IR3/˚ L2g.�IR3/;

where

L2g.�IR3/ D closureL2
n
span f �ip

!
wng1

nD1
o
;
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and where the symbol L2� denotes the subspace of divergenceless functions

L2� .�IR3/ D closureL2fv 2 C1
c .�IR3/ j divxv D 0 in �g

(see Sects. 11.7, 11.3.2 in Appendix).

5.4.6 Reduction to a Finite Number of Modes

Having collected the necessary material, we go back to problem (5.119). To begin,
we make use of spatial compactness of fu"g">0 in order to reduce the problem to
a finite number of modes associated to the eigenfunctions fi w˙ng1

jnjD1 introduced
in (5.147). To this end, let

PM W L2.�IR3/ ! spanf �ip
!

wng0<jnj�M; M D 1; 2; : : :

denote the corresponding orthogonal projectors. Note that PM commutes with H?
and set

H?
MŒv� D PMH?Œv� D H?ŒPMv�:

For any function v 2 L1.�IR3/ we introduce the Fourier coefficients

anŒv� D �ip
!

Z

�

v � wn dx (5.148)

along with a scale of Hilbert spaces H˛
g .�IR3/ � L2g.�IR3/ endowed with the

norm

kvk2H˛g D
1X

nD1
ƒ˛

n janŒv�j2;

where fƒng1
nD0 is the family of eigenvalues associated to the Neumann prob-

lem (5.146). It is easy to check that k�kH1g .�IR3/ is equivalent to the standard Sobolev

norm k � kW1;2.�IR3/ restricted to the space H1
g.�IR3/.

A straightforward computation yields

kH?Œv� � H?
MŒv�k2H˛1g D

1X

nDM

ƒ˛1
n janŒv�j2 (5.149)

� ƒM
˛1�˛2

1X

nDM

ƒ˛2
n janŒv�j2 D ƒM

˛1�˛2kH?Œv� � H?
MŒv�k2H˛2g .�IR3/ for ˛2 	 ˛1:



204 5 Singular Limits: Low Stratification

Moreover, since H0
g D L2g and H1

g.�IR3/ ,! L6.�IR3/, a simple interpolation
argument yields

H˛
g .�IR3/ ,! L5.�IR3/ whenever ˛ 	 9

10
: (5.150)

Consequently, writing the quantity (5.119) in the form

Z T

0

Z

�

H?Œ%"u"�˝ H?Œu"� W rx' dx dt

D
Z T

0

Z

�

H?Œ%"u"�˝ H?
MŒu"� W rx' dx dt

C
Z T

0

Z

�

H?Œ%"u"�˝ .H?Œu"� � H?
MŒu"�/ W rx' dx dt

we can use the uniform estimate (5.91), together with (5.149), (5.150), in order to
conclude that

ˇ
ˇ
ˇ
Z T

0

Z

�

H?Œ%"u"�˝ .H?Œu"� � H?
MŒu"�/ W rx' dx dt

ˇ
ˇ
ˇ � cƒM

� 1
20

uniformly with respect to " ! 0 for any fixed ', where ƒM ! 1 for M ! 1.
Similarly, by means of (5.150) and a simple duality argument,

k H?Œv� � H?
MŒv� k2

ŒW1;2.�IR3/�� � cM� 1
10 kvk2

L
5
4 .�IR3/

;

where we have identified v with a bounded linear form on W1;2.�IR3/ via the
standard Riesz formula

< vI ' >ŒW1;2��IW1;2D
Z

�

v � ' dx:

In view of these arguments, the proof of (5.119) reduces to showing

Z T

0

Z

�

H?
MŒ%"u"�˝ H?

MŒu"� W rx' dx dt ! 0;

or, equivalently, in agreement with (5.72),

Z T

0

Z

�

H?
MŒ%"u"�˝ H?

MŒ%"u"� W rx' dx dt ! 0; (5.151)

for any fixed M 	 1 and any ' 2 C1
c ..0;T/ ��IR3/, divx' D 0, ' � nj@� D 0.

In principle, the operator H?
M in (5.151) could have been replaced by any

smoothing operator, for instance, a spatial convolution with a suitable family of
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regularizing kernels. The advantage of our choice based on the spectral decomposi-
tion of the wave operator is that the problem is reduced to a finite number of ordinary
differential equations.

5.4.7 Weak Limit of the Convective Term: Time Lifting

The analysis of the asymptotic limit of system (5.1)–(5.4) will be completed as soon
as we establish (5.151). To this end, we exploit the fact that the time oscillations of
the quantities H?

MŒ%"u"� are completely determined by means of the scaled acoustic
equation (5.133), (5.134).

We start noticing that Eq. (5.133) contains the measure �" as a forcing term. In
particular, the corresponding solutions of the acoustic equation (5.133), (5.134) may
not be continuous with respect to time. In order to eliminate this rather unpleasant
phenomenon, we use the method of time-lifting introducing the “primitive” †"
through formula

< †"; ' >ŒMIC�.Œ0;T���/D< �"; IŒ'� >ŒMIC�.Œ0;T���/;

where we set

IŒ'�.	; x/ D
Z 	

0

'.t; x/ dt for all ' 2 C.Œ0;T� ��/:

Accordingly, system (5.133), (5.134) can be rewritten in the form

Z T

0

Z

�

�
"Z"@t' C V" � rx'

�
dx dt D A

!

Z T

0

Z

�

h2" � rx' dx dt (5.152)

for any ' 2 C1
c ..0;T/ ��/,

Z T

0

Z

�

�
"V" � @t' C !Z"divx'

�
dx dt D

Z T

0

Z

�

�
h7" W rx' C h6" � '

�
dx dt

(5.153)

for any ' 2 C1
c ..0;T/ ��IR3/, ' � nj@� D 0, where we have set

Z" D 1

!

�
!%.1/" C A%"

s.%"; #"/ � s.%; #/

"
� %F C A

†"

"

�
;V" D %"u";

h7" D h5" C A

"!
†"I:

Note that, by virtue of the standard representation theorem (Theorem 2), the
quantity †" can be viewed as a bounded (non-negative) linear form on the Banach



206 5 Singular Limits: Low Stratification

space L1.0;TIC.�// that can be identified with an element of the dual space
L1.0;TIMC.�//. As a matter of fact, it is easy to check that

< †".	/I' >ŒMIC�.�/D lim
ı!0C < �"I ı' >ŒMIC�.Œ0;T���/; ' 2 C.�/; (5.154)

for any 	 2 Œ0;T/, where

 ı.t/ D

8
ˆ̂̂
ˆ̂
<

ˆ̂̂
ˆ̂
:

1 if t � 	;

1
ı
.t � 	/ for t 2 .	; 	 C ı/

0 if t 	 	 C ı:

In particular, as a direct consequence of the uniform bound established in (5.50), we
get

ess sup
t2.0;T/

k†".t/kMC.�/ � k�"kMC.Œ0;T���/ � "2c: (5.155)

Accordingly, we have identified

Z

�

†"' dx WD< †"I' >ŒMIC�.�/ (5.156)

everywhere in (5.152), (5.153).
Loosely speaking, possible instantaneous changes of†" are matched by those of

the entropy density so that the quantity Z" remains continuous in time. Note that the
wave equation (5.152), (5.153) is well-posed even for measure valued initial data
as the space of measures can be identified with a subspace of a Sobolev space of
negative order.

For qn, ƒn solving the eigenvalue problem (5.146), we take

'.t; x/ D  .t/qn.x/;  2 C1
c .0;T/

as a test function in (5.152), and

'.t; x/ D  .t/
1p
ƒn

rxqn;  2 C1
c .0;T/;

as a test function in (5.153). After a straightforward manipulation, we deduce a
system of ordinary differential equations

8
<

:

"@tbnŒZ"� � p
ƒnanŒV"� D �1";n

"@tanŒV"�C !
p
ƒnbnŒZ"� D �2";n; n D 1; : : :

9
=

;
(5.157)
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to be satisfied by the Fourier coefficients an defined in (5.148), and

bnŒZ"� D
Z

�

Z"qn dx;

with convention (5.156). Here, in agreement with (5.135), (5.155),

k�1";nkL1.0;T/ C k�2";nkL1.0;T/ � "c for any fixed n D 1; : : : (5.158)

Moreover, it is convenient to rewrite (5.157) in terms of the Helmholtz projectors,
namely

8
<

:

"@tŒZ"�M C divx.H?
MŒ%"u"�/ D Q�1";M

"@tH?
MŒ%"u"�C !rxŒZ"�M D Q�2

";M;

9
=

;
(5.159)

where we have set

ŒZ"�M D
MX

nD1
bnŒZ"�qn;

and where, by virtue of (5.158),

k Q�1";MkL1..0;T/��/ C k Q�2
";MkL1..0;T/��IR3/ � "c (5.160)

for any fixed M 	 1. Let us remark that both ŒZ"�M and H?
MŒ%"u"� are at least

twice continuously differentiable with respect to x and absolutely continuous in t
so that (5.159) makes sense.

Now we are in the situation discussed in Sect. 4.4.1. Introducing the potential
‰";M ,

rx‰";M D H?
MŒ%"u"�;

Z

�

‰";M dx D 0;

we can rewrite the integral in (5.151) as

Z T

0

Z

�

H?
MŒ%"u"�˝ H?

MŒ%"u"� W rx' dx dt D �
Z T

0

Z

�

�x‰";Mrx‰";M � ' dx dt

provided

' 2 C1
c ..0;T/ ��IR3/; divx' D 0; ' � nj@� D 0:
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Furthermore, keeping in mind that ' is a solenoidal function with vanishing
normal trace, meaning orthogonal to gradients, we can use Eq. (5.159) in order to
obtain

Z T

0

Z

�

�‰";Mrx‰";M � ' dx dt D "

Z T

0

Z

�

ŒZ"�Mrx‰";M � @t' dx dt

C
Z T

0

Z

�

�
Q�1";MH?

MŒ%"u"� � ' C ŒZ"�M Q�2
";M � '

�
dx dt;

where, in accordance with the uniform bounds established in (5.160), the right-
hand side tends to zero as " ! 0 for any fixed ' (cf. the formal arguments in
Sect. 4.4.1). Thus we have shown (5.151) yielding the desired conclusion (5.112).
Accordingly, the term %U ˝ U can be replaced by %U ˝ U in the momentum
equation (5.95), which, together with (5.73), (5.107), represent a weak formulation
of the OBERBECK-BOUSSINESQ APPROXIMATION. We shall summarize our results
in the next section.

5.5 Conclusion: Main Result

In this chapter, we have performed the asymptotic limit in the primitive NAVIER-
STOKES-FOURIER SYSTEM in the case of low Mach number and low stratification.
We have identified the limit (target) problem as OBERBECK-BOUSSINESQ

APPROXIMATION. In the remaining part, we recall a weak formulation of the target
problem and state our convergence result in a rigorous way. In addition, we discuss
validity of the energy inequality for the target system and the problem of a proper
choice of the initial data (data adjustment). The fact that the weak formulation of the
limit momentum equation is based on solenoidal test functions should be viewed as
the weakest point of this framework based on the ideas of Leray [184] and Hopf
[156]. The reader will have noticed that the pressure or rather the normal stress …
is in fact absent in the weak formulation of the limit problem and may be recovered
by the methods described in Caffarelli et al. [45]. Apparently, we were not able to
establish any relation between … and the asymptotic limit of the thermodynamic
pressure p.%"; #"/.

5.5.1 Weak Formulation of the Target Problem

We say that functions U and ‚ represent a weak solution to the OBERBECK-
BOUSSINESQ APPROXIMATION if

U 2 L1.0;TIL2.�IR3//\ L2.0;TIW1;2.�IR3//;

‚ 2 W1;q
loc ..0;T�ILq.�// \ Lqloc..0;T�IW2;q.�// \ C.Œ0;T�ILq.�//
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for a certain q > 1, and the following holds:

(i) Incompressibility and impermeability of the boundary:

divxU D 0 a.a. on .0;T/ ��; U � nj@� D 0 in the sense of traces: (5.161)

(ii) Incompressible Navier-Stokes system with complete slip on the boundary:

Z T

0

Z

�

�
%U � @t' C %U ˝ U W rx'

�
dx dt (5.162)

D
Z T

0

Z

�

�
.#/ŒrxU C rx

TU� W rx' � rrxF � '
�

dx dt �
Z

�

.%U0/ � ' dx

for any test function

' 2 C1
c .Œ0;T/ ��IR3/; divx' D 0 in �; ' � nj@� D 0:

(iii) Heat equation with insulated boundary:

%cp.%; #/
�
@t‚C U � rx‚/

�
� divx.�.#/rx‚/

D%#˛.%; #/U � rxF a.a. in .0;T/ ��; (5.163)

rx‚ � nj@� D 0 in the sense of traces for a.a. t 2 .0;T/; (5.164)

‚.0; �/ D ‚0 a.a. in �: (5.165)

(iv) Boussinesq relation:

r C %˛.%; #/‚ D 0: (5.166)

The integral identity (5.162), together with the incompressibility constraint
imposed through (5.161), represent the standard weak formulation of the incom-
pressible NAVIER-STOKES SYSTEM (5.8), (5.9), supplemented with the complete
slip boundary conditions

U � nj@� D 0; ŒrxU C rx
TU�n � nj@� D 0: (5.167)

Moreover, it is easy to check that U 2 Cweak.Œ0;T�IL2.�IR3// and

Z

�

U.0; �/ � ' dx D
Z

�

U0 � ' dx for all ' 2 D.�/; divx' D 0; ' � nj@� D 0;

in other words,

U.0; �/ D HŒU0�;
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whereH is the Helmholtz projection onto the space of solenoidal functions. This fact
can be interpreted in terms of the asymptotic limit performed in this chapter in the
sense that the piece of information provided by the gradient component H?Œu0;"�
is lost in the limit problem because of the process of acoustic filtering removing
the rapidly oscillating acoustic waves from the system. This rather unpleasant
but inevitable feature obviously disappears if we consider well-prepared data,
specifically,

H?Œu0;"� ! 0 in L2.�/

(cf. Sect. 4.6). A similar problem connected with the initial distribution ‚0 of the
limit temperature will be discussed in the remaining part of this chapter. We would
like to point out, however, that considering well-prepared data in all state variables
would eliminate completely the heat equation, giving rise to a system with constant
temperature.

5.5.2 Main Result

We are in a position to state the main result concerning the asymptotic limit of
solutions to the complete NAVIER-STOKES-FOURIER SYSTEM in the regime of low
Mach number Ma D " and under low stratification—the Froude number FrD p

".
We recall that the underlying physical system is energetically isolated, in particular,
the normal component of the heat flux vanishes on the boundary. The boundary is
assumed to be acoustically hard, meaning, the complete slip boundary conditions are
imposed on the fluid velocity. The initial state of the system is determined through
a family of ill prepared data. The system is driven by a potential force rxF, where
F is a regular time independent function.

� LOW MACH NUMBER LIMIT - LOW STRATIFICATION:

Theorem 5.2 Let � � R
3 be a bounded domain of class C2;� . Assume that p, e,

s satisfy hypotheses (5.17)–(5.23), with P 2 C1Œ0;1/ \ C2.0;1/, the transport
coefficients , �, and � meet the growth restrictions (5.24), (5.25), and the driving
force is determined by a scalar potential F D F.x/ such that

F 2 W1;1.�/;
Z

�

F dx D 0:

Let f%";u"; #"g">0 be a family of weak solutions to the scaled Navier-Stokes-
Fourier system (5.1)–(5.7) on the set .0;T/ � �, supplemented with the boundary
conditions (5.15), (5.16), and the initial data

%".0; �/ D %C "%
.1/
0;"; u".0; �/ D u0;"; #".0; �/ D #0;" D # C "#

.1/
0;" ;
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where

% > 0; # > 0

are constant, and

Z

�

%
.1/
0;" dx D

Z

�

#
.1/
0;" dx D 0 for all " > 0:

Moreover, assume that

8
ˆ̂̂
ˆ̂
<

ˆ̂
ˆ̂
:̂

%
.1/
0;" ! %

.1/
0 weakly-(*) in L1.�/;

u0;" ! U0 weakly-(*) in L1.�IR3/;

#
.1/
0;" ! #

.1/
0 weakly-(*) in L1.�/:

9
>>>>>=

>>>>>;

(5.168)

Then

ess sup
t2.0;T/

k%".t/ � %k
L
5
3 .�/

� "c;

and, at least for a suitable subsequence,

u" ! U weakly in L2.0;TIW1;2.�IR3//;
#" � #

"
D #.1/" ! ‚ weakly in L2.0;TIW1;2.�IR3//;

where U and‚ solve the Oberbeck-Boussinesq approximation in the sense specified
in Sect. 5.5.1, where the initial distribution of the temperature‚0 can be determined
in terms of %.1/0 , #.1/0 , and F, specifically,

‚.0; �/ D ‚0 � #

cp.%; #/

�@s.%; #/
@%

%
.1/
0 C @s.%; #/

@#
#
.1/
0 C ˛.%; #/F

�
: (5.169)

5.5.3 Determining the Initial Temperature Distribution

As indicated by formula (5.169), determining the initial distribution of the tem-
perature represents a rather delicate issue. Note that the initial state of the primitive
NAVIER-STOKES-FOURIER SYSTEM is uniquely determined by three state variables
f%0;";u0;"; #0;"g, while the limit OBERBECK-BOUSSINESQ approximation contains
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only two independent state functions, namely U and ‚. On the other hand,
determining the initial distribution of‚ in (5.163) requires the knowledge of %.1/0 —
a meaningless quantity for the limit problem! Here, similarly to Sect. 5.5.1, an extra
hypothesis imposed on the data may save the game, for instance,

%
.1/
0;" D %0;" � %

"
! 0 in L2.�/ for " ! 0: (5.170)

An alternative choice of data will be discussed in the next section.
Obviously, the above mentioned problems are intimately related to the existence

of an initial-time boundary layer resulting from the presence of rapidly oscillating
acoustic waves discussed in Sect. 5.4.

5.5.4 Energy Inequality for the Limit System

It is interesting to see if the resulting OBERBECK-BOUSSINESQ SYSTEM specified
in Sect. 5.5.1 satisfies some form of the kinetic energy balance. Formally, taking the
scalar product of the momentum equation (5.9) with U we obtain

d

dt

1
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Z

�

%jUj2 dx C .#/

2

Z

�

jrxU C rx
TUj2 dx D

Z

�

rrxFU dx; (5.171)

where r obeys Boussinesq’s relation (5.166). However, for the reasons explained
in detail in the introductory part of Chap. 2, the weak solutions are not expected to
satisfy (5.171) but rather a considerably weaker energy inequality

1
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Z

�

%jUj2.	/ dx C .#/

2

Z 	

0
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�

jrxU C rx
TUj2 dx dt (5.172)
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%jU0j2 dx C
Z 	
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Z

�

rrxF � U dx dt

for a.a. 	 2 Œ0;T�. The weak solutions of the incompressible Navier-Stokes
system satisfying, in addition, the energy inequality (5.172) were termed “turbulent”
solutions in the seminal paper of Leray [184].

A natural idea is to derive (5.172) directly from the dissipation equality (5.37).
To this end, however, supplementary assumptions have to be imposed on the family
of initial data. In addition to the hypotheses of Theorem 5.2, suppose that

8
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ˆ̂̂
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ˆ̂
ˆ̂̂
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0;" ! %
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0 ;

u0;" ! U0;

#
.1/
0;" ! #

.1/
0

9
>>>>>=

>>>>>;

a.a. in �; (5.173)
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in particular, by virtue of hypothesis (5.168), the data converge strongly in Lp.�/
for any 1 � p < 1. Still relation (5.173) does not imply that the initial data are
well-prepared.

We recall that, in accordance with (5.71), (5.76),

%.1/" D %" � %

"
! %.1/ weakly-(*) in L1.0;TIL5=3.�//;

#.1/" D #" � #

"
! #.1/ � ‚ weakly in L2.0;TIW1;2.�//;

where the limit quantities are interrelated through

@p

@%
.%; #/%.1/ C @p

@#
.%; #/#.1/ D %F (5.174)

(see (5.103)).

Asymptotic Form of the Dissipation Balance Rewriting the dissipation equal-
ity (5.37) by help of (5.32) we get
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@t dx dt (5.175)
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� H#.%; #/

�
dx

for any function  2 C1Œ0;T� such that

 .0/ D 1;  .T/ D 0; @t � 0 in Œ0;T�:

Assume, for simplicity, that H# D H#.%; #/ is three times continuously
differentiable in an open neighborhood O of the equilibrium state .%; #/. As H#
is determined in terms of the function P, it is enough that P to be in C3.0;1/.
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Under this extra hypothesis, since @#H#.%; #/ D 0, we have

H#.%; #/ � .% � %/
@H#.%; #/

@%
� H#.%; #/ (5.176)
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C�.%; #/;

with

j�.%; #/j � c
�
j%� %j3 C j# � #j3

�
as soon as .%; #/ 2 Oess;

where Oess is the set of essential values introduced in (4.39).
Note that, in accordance with (2.49), (2.50),
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Consequently, by virtue of hypotheses (5.168), (5.173), the expression on the right-
hand side of inequality (5.175) tends to
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Next, we have
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therefore
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Moreover,

� lim inf
"!0

Z T

0

Z

�

�
1

2
%"ju"j2 � %" � %

"
F

�
@t dx dt (5.179)

	 �
Z T

0

Z

�

�
1

2
%jUj2 C %.1/F

�
@t dx dt;

where, similarly to (5.178), we have used weak lower semi-continuity of convex
functionals, see Theorem 11.27 in Appendix.

Writing

H#.%"; #"/� .%" � %/
@H#.%; #/

@%
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@%

� H#.%; #/C H.%"; #"/� H.%"; #/

we observe easily that the function
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� H#.%; #/

is strictly convex attaining its global minimum at % D %. Moreover, in agreement
with (2.49),
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Our goal is to show that
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for any non-negative ' 2 C1
c .Œ0;T� ��/. To this end, we first observe that
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for any D > 0 small enough. By virtue of (5.45), we have

1f%" j j%"�%j<Dg ! 1 as " ! 0 a.a. in .0;T/ ��I

whence, using (5.69), we conclude that
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for any D > 0 small enough. Thus, letting D ! 0 we get (5.180).
In accordance with (5.180),
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where, similarly to (5.176),
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It follows from the uniform bounds established in (5.46), (5.52), and (5.62) that
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Consequently, going back to (5.181) we infer that
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Summing up relations (5.175)–(5.182), we derive the asymptotic form of the
dissipation inequality
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for a.a. 	 2 .0;T/.
Asymptotic Thermal Energy Balance Our next goal is to compare (5.183) with
the associated thermal energy balance computed by means of equation (5.163).
To this end, we need to multiply (5.163) on ‚ and integrate over �. Although
Eq. (5.163) is satisfied in the strong sense (a.a. in .0;T/ � �), the regularity
of the limit temperature field ‚ is not sufficient to justify this step. Instead we
multiply (5.163) on H0.‚/, where H is a smooth bounded function with two
bounded derivatives. After a straightforward manipulation, we obtain

%cp.%; #/
Z

�

H.‚/.	; �/ dx C
Z 	

ı

Z

�

�.#/H00.‚/jrx‚j2 dx dt

D %cp.%; #/
Z

�

H.‚.ı; �// dx C %#˛.%; #/

Z 	

ı

Z

�

H0.‚/rxF � U dx dt

for any 0 < ı < 	 � T. Moreover, since ‚ 2 C.Œ0;T�ILq.�// for a certain q > 1,
we can let ı ! 0 to deduce
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Now, approximating H.z/ � z2 we can use the Lebesgue convergence theorem to
conclude
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Computing F by means of (5.174), we combine (5.183), (5.184) to obtain, after

a bit tedious but straightforward manipulation,
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Initial Data Adjustment Our ultimate goal is to fix the initial distribution of %.1/0
in such a way that the last two integrals in (5.185) vanish. To this end, we assume
that %.1/0 , #.1/0 are chosen to satisfy
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%
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0 C @p.%; #/

@#
#
.1/
0 D %F: (5.186)

Relation (5.186) can be regarded as a kind pressure compatibility condition to be
compared with (5.174).

If this is the case, we easily check that

(i) ‚0 given through formula (5.169) coincides with #.1/0 ,

and, moreover,
(ii) we obtain the desired conclusion
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in particular, relation (5.185) gives rise to the kinetic energy inequality (5.172).
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In the light of the previous arguments, it is relation (5.186) rather than (5.170) that
yields the correct data adjustment for the limit problem. Note that (5.186) coincides
with our definition of well-prepared data introduced in Sect. 4.6.

As for the energy balance for the limit problem, we have shown the following
result.

� KINETIC ENERGY INEQUALITY:

Theorem 5.3 In addition to the hypotheses of Theorem 5.2, let P 2 C1Œ0;1/ \
C3.0;1/, and let
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where %.1/0 , #.1/0 satisfy the pressure compatibility condition (5.186).
Then the limit quantitiesU,‚ identified in Theorem 5.2 satisfy the kinetic energy

inequality
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for a.a. 	 2 .0;T/.
Since r and ‚ are interrelated through Boussinesq equation (5.166), we can

use (5.184) to deduce the total energy inequality for the OBERBECK-BOUSSINESQ

APPROXIMATION in the form
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Chapter 6
Stratified Fluids

We expand the methods developed in the previous chapter in order to handle
the strongly stratified systems discussed briefly in Sect. 4.3. In comparison with
the previous considerations, a new aspect arises, namely the thermodynamic state
variables % and # undergo a scaling procedure similar to that of kinematic quantities
like velocity, length, and time. In particular, both thermal and caloric equations of
state modify their form reflecting substantial changes of the material properties of
the fluid.

6.1 Motivation

Many recent applications of mathematical fluid mechanics are motivated by prob-
lems arising in astrophysics. However, investigations in this field are hampered
by both theoretical and observational problems. The vast range of different scales
extending in the case of stars from the stellar radius to 102 m or even less entirely
prevents a complex numerical solution. Progress in this field therefore calls for
a combination of physical intuition with rigorous analysis of highly simplified
mathematical models.

A typical example is the flow dynamics in stellar radiative zones representing a
major challenge of the current theory of stellar interiors. Under these circumstances,
the fluid is a plasma characterized by the following specific features:

• A strong radiative transport predominates the molecular one. This is due to
extremely hot and energetic radiation fields prevailing the plasma. The Péclet
number is therefore expected to be vanishingly small.

• Strong stratification effects because of the enormous gravitational potential of
gaseous celestial bodies determine many of the properties of the fluid in the large.

• The convective motions are much slower than the speed of sound yielding the
Mach number small. The fluid is therefore almost incompressible, whereas the

© Springer International Publishing AG 2017
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density variations can be simulated via the anelastic approximation (see also
Gough [145], Gilman and Glatzmaier [138, 140]).

Motivated by the previous discussion and in accordance with the general
philosophy of this book, we assume that the time evolution of the fluid we deal with
is governed by the NAVIER-STOKES-FOURIER SYSTEM subjected to an appropriate
scaling. Similarly to the preceding chapters we suppose the Mach number is small,
specifically,

Ma D "; " ! 0:

Unlike the situation studied in Chap. 5, the strongly stratified fluids are characterized
by the Froude number Fr proportional to Ma,

Fr D ":

Finally, the transport coefficients enhanced by radiation give rise to a small Péclet
number, specifically,

Pe D "2:

As a matter of fact, there are several possibilities of different scaling leading
to the above values of the characteristic numbers Ma, Fr, and Pe. The subsequent
analysis is based on a proper choice of constitutive equations reflecting the relevant
physical properties of the fluid in the high temperature regime. In particular, the
radiation component of the pressure, specific internal energy, and entropy as well
as the heat conductivity coefficient augmented by a radiation part will be taken into
account and play a significant role in the analysis of the asymptotic limit.

6.2 Primitive System

6.2.1 Field Equations

A suitable but still highly simplified platform for studying fluids under the specific
circumstances required by models in astrophysics is represented by the NAVIER-
STOKES-FOURIER SYSTEM (balance of mass, momentum, and entropy) introduced
in Sect. 1 that may be stated in a concise form:

@t%C divx.%u/ D 0; (6.1)

@t.%u/C divx.%u ˝ u/C rxp.%; #/ D divxS � %gj; (6.2)

@t.%s.%; #//C divx.%s.%; #/u/C divx
� q
#

�
D �; (6.3)

where g > 0 is the gravitational constant and j D .0; 0; 1/.
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In order to develop the essential ideas without becoming entangled in the
complexities of shapes of the underlying physical space, we confine ourselves to
a very simple geometry expressed by means of the Cartesian coordinates x D
.x1; x2; x3/, where .x1; x2/ denotes the horizontal directions, while x3 stands for
the depth pointing downward parallel to the gravitational force gj. In addition,
the periodic boundary conditions are imposed in the horizontal plane, the physical
domain � � R

3 being an infinite slab bounded above and below by two parallel
plates. Such a stipulation can be written in a concise form

� D T 2 � .0; 1/; (6.4)

where

T 2 D
�
Œ0; 1�jf0;1g

�2
is a two-dimensional flat torus.

Similarly to the preceding chapters, the physical boundary is assumed to be
impermeable and mechanically “smooth” (acoustically hard) so that the fluid
velocity satisfies the complete slip boundary conditions

u � nj@� D 0; ŒSn� � nj@� D 0: (6.5)

The bottom part of the boundary is thermally insulated:

q � njfx3D0g D 0; (6.6)

while a radiative condition

q � n D ˇ.#/.# � #/jfx3D1g (6.7)

is imposed on the upper part of the boundary.
Accordingly, the total energy balance takes the form

d

dt
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2
%juj2 C %e.%; #/C %gx3

�
dx D

Z

fx3D1g
ˇ.#/.# � #/ dSx: (6.8)

Obviously, condition (6.7), frequently used in astrophysical models, has a strong
stabilizing effect driving the system to the state of the reference temperature # .

6.2.2 Constitutive Relations

A pivoting preliminary idea of how to obtain a simplified model under the
circumstances described in Sect. 6.1 asserts that the characteristic temperature of the
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system is very large. This fact, in combination with physically relevant constitutive
equations, gives rise to a tentative scaling to be incorporated in the values of the
characteristic numbers Ma, Fr, and Pe.

Similarly to Chap. 5, the thermodynamic functions p, e, and s are determined
through a single function P and a scalar parameter a as follows:

p.%; #/ D pM.%; #/C pR.#/; pM D #
5
2P
� %

#
3
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�
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3
#4; a > 0; (6.9)
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and
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where

S0.Z/ D �3
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3
P.Z/� ZP0.Z/
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for all Z > 0: (6.12)

Moreover, the hypothesis of thermodynamic stability requires

P0.Z/ > 0;
5
3
P.Z/ � ZP0.Z/

Z
> 0 for all Z > 0: (6.13)

Here we assume P 2 C2Œ0;1/ such that

P.0/ D 0; P0.0/ D p0 > 0; (6.14)

and, similarly to hypotheses (5.22), (5.23),
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The viscous stress tensor S obeys the classical Newton’s law

SŒ#;rxu� D .#/
�
rxu C rx

tu � 2

3
divxuI

�
; (6.16)

where we have deliberately omitted the bulk viscosity component assumed to be
zero for the plasma. The heat flux q is given by Fourier’s law

qŒ#;rx#� D ��.#/rx#: (6.17)
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In order to avoid unnecessary technicalities, we simply assume that  is an affine
function of the absolute temperature, specifically,

.#/ D 0 C 1#; with 0; 1 > 0: (6.18)

Similarly,

�.#/ D �M.#/C d#3; �M.#/ D �0 C �1#; with d; �0; �1 > 0; (6.19)

and

ˇ.#/ D ˇ1#; ˇ1 > 0: (6.20)

As already pointed out in Sect. 1.4.3, the extra cubic term in (6.19) is responsible
for the fast transport of heat due to radiation.

6.2.3 Scaling

Keeping in mind the characteristic features of the underlying physical system
discussed in Sect. 6.1, we introduce a tentative scaling as follows:

• the characteristic temperature of the system is large, specifically of order "�2˛=3,
where " is a small positive parameter, and 2 < ˛ < 3;

• the radiative constants satisfy a � "2˛C1, d � "4˛=3�2;
• the characteristic velocity is of order "1�˛=3, the characteristic length of order
"�1�˛=3, the reference time is of order "�2 so that the Strouhal number equals 1;

• the gravitational constant g is of order "1�˛=3;
• ˇ1 � "˛=3.

The reader may consult Sect. 1.4.4 for typical values of the physical constants
appearing above.

Under these circumstances, the re-scaled system (6.1)–(6.3), (6.8) reads as
follows:

� SCALED NAVIER-STOKES-FOURIER SYSTEM:

@t%C divx.%u/ D 0; (6.21)

@t.%u/C divx.%u ˝ u/C 1

"2
rxp".%; #/ D divxS"Œ#;rxu� � 1

"2
%gj; (6.22)
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@t.%s".%; #//C divx.%s".%; #/u/C 1

"2
divx

�q"Œ#;rx#�

#

�
D �"; (6.23)

d

dt

Z

�

�"2

2
%juj2 C %e".%; #/C %gx3

�
dx D

Z

fx3D1g
ˇ1#

# � #

"
dSx; (6.24)

supplemented with

� SCALED EQUATIONS OF STATE:

p".%; #/ D #
5
2

"˛
P
�
"˛
%

#
3
2

�
C "

a

3
#4; (6.25)

e".%; #/ D 3

2%

#
5
2

"˛
P
�
"˛
%

#
3
2

�
C "a

#4

%
; (6.26)

s".%; #/ D S
�
"˛
%

#
3
2

�
� S."˛/C "

4a

3

#3

%
: (6.27)

Accordingly, the viscous stress tensor S" is given as

S".#;rxu/ D ."2˛=30 C 1#/
�
rxu C rx

?u � 2

3
divxuI

�
; (6.28)

while the heat flux q" reads

q".#;rx#/ D �
�
"2C2˛=3�0 C "2�1# C d#3

�
rx#: (6.29)

We recall that in the framework of weak solutions considered in this book, the
entropy production rate �" is a non-negative measure on the set Œ0;T��� satisfying

�" 	 1

#

�
"2S".#;rxu/ W rxu � 1

"2
q".#;rx#/ � rx#

#

�
; (6.30)

where

1

#

�
"2S".#;rxu/ W rxu � 1

"2
q".#;rx#/ � rx#

#

�
(6.31)

	 "2

2
1

ˇ
ˇ̌rxuC rx

Tu� 2

3
divxuI

ˇ
ˇ̌2 C "2˛=3�0jrx log.#/j2 C �1

#
jrx#j2 C d

"2
#jrx#j2:
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The homogeneous boundary conditions (6.5), (6.6) remain unaffected by the
scaling, while the radiative condition (6.7) is converted to

1

"2
q".#;rx#/ � n D ˇ1#

# � #
"

jfx3D1g: (6.32)

Thus, at least formally, system (6.21)–(6.24) corresponds to system (4.1)–(4.4)
with the values of the characteristic numbers

Ma D Fr D "; Pe D "2:

A fundamentally new feature of the present problem is the fact that the material
properties of the fluid change during the scaling process. In this context, it is
interesting to note that the state equation for the pressure approaches the standard
perfect gas law in the asymptotic limit " ! 0, namely

p".%; #/ ! p0%# as " ! 0:

This is in good agreement with the well-founded observation that any monoatomic
gas obeys approximately the perfect gas state equation in the non-degenerate area
of high temperatures and moderate values of the density. This remarkable property
plays a significant role in the asymptotic analysis of the system for " ! 0

eliminating artificial pressure components in the so-called anelastic limit discussed
below.

6.3 Asymptotic Limit

6.3.1 Static States

Static states are solutions of system (6.21)–(6.24) with vanishing velocity field. In
the present setting, the temperature corresponding to any static state is constant,
specifically, # D # . Accordingly, the density % must satisfy

rxp".%; #/C %gj D 0 in �; % 	 0;

where % is uniquely determined by the total mass

M0 D
Z

�

% dx:

Note that, in general, any static solution % may and indeed does depend on ".
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For future analysis, it seems more convenient to approximate the pressure by its
linearization, namely

p".%; #/ � p0%#;

and to solve the corresponding linear problem

p0#rx Q%C Q%gj D 0 in �;
Z

�

Q% dx D M0: (6.33)

It is easy to check that (6.33) admits a unique (non-negative) solution in the form

Q% D Q%.x3/ D c.M0/ exp
�

� gx3

p0#

�
:

In agreement with our previous discussion, the density distribution given by Q% is
a very good approximation of the static state provided " is small enough.

6.3.2 Solutions to the Primitive System

Analogously as in Chap. 5, we prescribe the initial data in the form:

%.0; �/ D %0;" D Q%C "%
.1/
0;"; u.0; �/ D u0;"; #.0; �/ D # C "#

.1/
0;" ; (6.34)

where Q% D Q%.x3/ solves (6.33), # is the equilibrium temperature introduced
in (6.32), and

Z

�

%
.1/
0;" dx D 0: (6.35)

Given " > 0, we suppose that the scaled NAVIER-STOKES-FOURIER SYS-
TEM (6.21)–(6.30), supplemented with the boundary conditions (6.5), (6.6), (6.32),
and the initial conditions (6.34) admits a weak solution f%";u"; #"g on the set
.0;T/�� in the sense specified in Sect. 2.1. As a matter of fact, the main existence
result established in Theorem 3.1 does not cover the case of the radiative boundary
condition (6.32). On the other hand, however, the abstract theory developed in
Chap. 3 can be easily modified in order to accommodate more general boundary
conditions including (6.32).
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In accordance with Theorems 3.1, 3.2, we assume that

8
ˆ̂̂
ˆ̂
<

ˆ̂̂
ˆ̂
:

%" 	 0; %" 2 L1.0;TIL 5
3 .�//;

u" 2 L2.0;TIW1;2.�IR3//; u" � nj@� D 0;

#" > 0 a.a. in .0;T/ ��; #" 2 L1.0;TIL4.�// \ L2.0;TIW1;2.�//;

9
>>>>>=

>>>>>;

(6.36)

and the following integral identities hold:

(i) Renormalized equation of continuity:

Z T

0

Z

�

%"B.%"/
�
@t' C u" � rx'

�
dx dt (6.37)

D
Z T

0

Z

�

b.%"/divxu"' dx dt �
Z

�

%0;"B.%0;"/'.0; �/ dx

for any test function ' 2 C1
c .Œ0;T/ ��/, and any b as in (2.3);

(ii) Momentum equation:

Z T

0

Z

�

�
%"u" � @t' C %"u" ˝ u" W rx' C 1

"2
p".%"; #"/divx'

�
dx dt (6.38)

D
Z T

0

Z

�

�
S".#";rxu"/ W rx' C 1

"2
%g'3

�
dx dt �

Z

�

%0;"u0;"'.0; �/ dx;

for any test function ' 2 C1
c .Œ0;T/ ��IR3/, ' � nj@� D 0, where S" is given

by (6.28);
(iii) Entropy balance equation:

Z T

0

Z

�

h
%"s".%"; #"/

�
@t' C u" � rx'

�
C 1

"2
q".#";rx#"/

#"
� rx'

i
dx dt

(6.39)

C < �"I' >ŒMIC�.Œ0;T���/ �
Z T

0

Z

fx3D1g
ˇ1
#" � #

"
' dSx dt

D �
Z

�

%0;"s".%0;"; #0;"/'.0; �/ dx

for any ' 2 C1
c .Œ0;T/ � �//, where q" is given by (6.29), and �" is a non-

negative measure satisfying inequality (6.30);
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(iv) Total energy balance:

Z

�

�"2

2
%"ju"j2 C %"e".%"; #"/C %"gx3

�
.	/ dx (6.40)

D
Z

�

�"2

2
%0;"ju0;"j2 C %0;"e".%0;"; #0;"/C %0;"gx3

�
dx

C
Z 	

0

Z

fx3D1g
ˇ1#"

# � #"

"
dSx dt

for a.a. 	 2 .0;T/.

6.3.3 Main Result

The limit problem has been formally identified in Sect. 4.3. It consists of the
following set of equations.

� HYDROSTATIC BALANCE EQUATION:

p0#rx Q%C Q%gj D 0I (6.41)

� ANELASTIC CONSTRAINT:

divx. Q%U/ D 0I (6.42)

� MOMENTUM EQUATION:

@t. Q%U/Cdivx. Q%U˝U/C Q%rx… D 1#�UC 1

3
1#rxdivxUC #.2/

#
Q%gj; (6.43)

where U satisfies the complete slip boundary conditions

U � nj@� D 0;
h
1#

�
rxU C rx

TU
�
n
i

� nj@� D 0; (6.44)

and #.2/ is related to the vertical component of the velocity through

Q%gU3 D d#
3
�#.2/ in �; rx#

.2/ � nj@� D 0: (6.45)
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A suitable weak formulation of the momentum equation (6.43), supplemented
with the anelastic constraint (6.42), and the complete slip boundary condi-
tions (6.44), reads:

Z T

0

Z

�

�
Q%U � ' C Q%U ˝ U W rx'

�
dx dt (6.46)

D
Z T

0

Z

�

1#
�
rxU C rx

TU � 2

3
divxUI

�
W rx' dx dt

�
Z T

0

Z

�

#.2/

#
Q%g'3 dx dt �

Z

�

Q%U0 � '.0; �/ dx

to be satisfied for any test function

' 2 C1
c .Œ0;T/ ��IR3/; ' � nj@� D 0; divx. Q%'/ D 0:

Formula (6.46) suggests that the standard concept of Helmholtz projectors
introduced in Sect. 5.4.1 has to be modified in order to handle the anelastic
approximation. To this end, any vector function v W � ! R

3 is now decomposed as

� WEIGHTED HELMHOLTZ DECOMPOSITION:

v D HQ%Œv�„ƒ‚…
solenoidal part

C H?
Q% Œv�„ƒ‚…

weighted gradient part

; (6.47)

with the weighted gradient part given through formula

H?
Q% Œv� D Q%rx‰;

where the scalar potential ‰ is determined as a unique solution to the Neumann
problem:

divx. Q%rx‰/ D divxv in �; Q%rx‰ � nj@� D v � n;
Z

�

‰ dx D 0: (6.48)

A weak (variational) formulation of (6.48) can be written in the form

Z

�

Q%rx‰ � rx' dx D
Z

�

v � rx' dx;
Z

�

‰ dx D 0 (6.49)

to be satisfied for any test function ' 2 C1
c .�/. Since the function Q% is regular

and bounded below on � away from zero, the mappings HQ%, H?
Q% enjoy the same

continuity properties as the standard Helmholtz projectors, in particular, they are
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bounded on W1;p.�IR3/ as well as on Lp.�IR3/ provided 1 < p < 1 (see
Sect. 11.7 in Appendix).

Having collected the preliminary material we are in a position to state the main
result to be proved in the remaining part of this chapter. The resulting problem,
arising as a simultaneous singular limit of the Mach, Froude, and Péclet numbers,
can be viewed as a simple model of the fluid motion in stellar radiative zones.

� LOW MACH NUMBER LIMIT—STRONG STRATIFICATION:

Theorem 6.1 Let � D T 2 � .0; 1/. Suppose that P 2 C2Œ0;1/ satisfies
hypotheses (6.13)–(6.15). Let f%";u"; #"g">0 be a family of weak solutions to the
rescaled Navier-Stokes-Fourier system (6.21)–(6.30) on .0;T/ � � in the sense
specified in Sect. 6.3.2, with the parameter ˛ 2 .2; 3/, supplemented with the
boundary conditions (6.5), (6.6), (6.32), and the initial conditions

%.0; �/ D %0;" D Q%C "%
.1/
0;"; u.0; �/ D u0;"; #.0; �/ D # C "#

.1/
0;" ;

where Q% solves the linearized static problem (6.33), %.1/0;" satisfies (6.35), and

8
<̂

:̂

f%.1/0;"g">0; f#.1/0;" g">0 are bounded in L1.�/;

u0;" ! u0 weakly-(*) in L1.�IR3/:

9
>=

>;

Then, at least for suitable subsequences, we have

%" ! Q% in C.Œ0;T�ILq.�// for any 1 � q <
5

3
;

u" ! U weakly in L2.0;TIW1;2.�IR3//;
#" ! # in L2.0;TIW1;2.�//;

and

rx

�#" � #
"2

�
! rx#

.2/ weakly in L1.0;TIL1.�IR3//;

where Q%, # , U, #.2/ is a weak solution to problem (6.41)–(6.45), supplemented with
the initial condition

Q%U0 D HQ%Œ Q%u0�:
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Remark The same result can be shown provided that � � R
3 is a bounded regular

domain, the driving force of the form f D rxF, where F 2 W1;1.�/, and the
boundary condition (6.7) imposed on the whole @�.

At a purely conceptual level, the principal ideas of the proof of Theorem 6.1
are identical to those introduced in Chap. 4 and further developed in Chap. 5. In
particular, each function h defined on the set .0;T/ � � will be decomposed
as

h D Œh�ess C Œh�res;

where, similarly to (4.44), (4.45),

Œh�ess D h 1M"
ess
; Œh�res D h 1M"

res
;

M"
ess D f.t; x/ 2 .0;T/ �� j %=2 < %".t; x/ < 2%; #=2 < #".t; x/ < 2#g;

M"
res D ..0;T/ ��/ n M"

ess;

where the constants %, % have been fixed in such a way that

0 < % < inf
x2� Q%.x/ � sup

x2�
Q%.x/ < %: (6.50)

As already pointed out in Chap. 5, the “residual” parts are expected to vanish
for " ! 0, while the total information on the asymptotic limit is carried by the
“essential” components.

A significant new aspect of the problem arises in the analysis of propagation of
the acoustic waves. In agreement with the formal arguments discussed in Sect. 4.4.2,
the speed of the sound waves in a highly stratified fluid changes effectively with the
depth (vertical) coordinate. Consequently, the spectral analysis of the wave operator
must be considerably modified, the basic modes being orthogonal in a weighted
space reflecting the anisotropy in the system.

6.4 Uniform Estimates

Although the uniform bounds deduced below are of the same nature as in Sect. 5.2,
a rigorous analysis becomes more technical as the structural properties of the
thermodynamic functions depend on the parameter ".
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6.4.1 Dissipation Equation, Energy Estimates

To begin, observe that the total mass is a constant of motion, specifically,

Z

�

%".t; �/ dx D
Z

�

Q% dx D M0 for all t 2 Œ0;T�: (6.51)

Exactly as in Chap. 5, combining the entropy production equation (6.39) with the
total energy balance (6.40) we arrive at the total dissipation balance:

Z

�

h1
2
%"ju"j2 C 1

"2

�
H"

#
.%"; #"/C %"gx3

�i
.	; �/ dx (6.52)

C #

"2
�"

h
Œ0; 	� ��

i
C
Z 	

0

Z

fx3D1g
ˇ1
.#" � #/2

"3
dSx dt

D
Z

�

h1
2
%0;"ju0;"j2 C 1

"2

�
H"

#
.%0;"; #0;"/C %0;"gx3

�i
dx for a:a: 	 2 Œ0;T�;

where we have set

H"

#
.%; #/ D %e".%; #/ � #%s".%; #/:

Since the functions p", e", and s" satisfy Gibbs’ equation (1.2) for any fixed " > 0,
we easily compute

@2H"

#
.%; #/

@%2
D 1

%

@p".%; #/

@%
D #

%
P0�"˛

%

#
3
2

�
I (6.53)

whence

@H"

#
.%; #/

@%
D
Z %

1

1

z

@p".z; #/

@%
dz C const;

in particular,

@H"

#
. Q%"; #/
@%

C gx3 D const; (6.54)

where Q%" is the solution of the “exact” static problem

rxp". Q%"; #/C Q%"gj D 0;

Z

�

Q%" dx D M0: (6.55)
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In accordance with (6.54), relation (6.52) can be rewritten in the form

1

2

Z

�

%"ju"j2.	; �/ dx C 1

"2

Z

�

�
H"

#
.%"; #"/ � H"

#
.%"; #/

�
.	; �/ dx (6.56)

C 1

"2

Z

�

�
H"

#
.%"; #/� .%" � Q%"/

@H"

#
. Q%"; #/
@%

� H"

#
. Q%"; #/

�
.	; �/ dx

C #

"2
�"

h
Œ0; 	� ��

i
C
Z 	

0

Z

fx3D1g
ˇ1
.#" � #/2

"3
dSx dt

D 1

2

Z

�

%0;"ju0;"j2.	; �/ dx C 1

"2

Z

�

�
H"

#
.%0;"; #0;"/ � H"

#
.%0;"; #/

�
.	; �/ dx

C 1

"2

Z

�

�
H"

#
.%0;"; #/� .%0;" � Q%"/

@H"

#
. Q%"; #/
@%

� H"

#
. Q%"; #/

�
.	; �/ dx

for a.a 	 2 Œ0;T�.
The following assertion shows that the “exact” static solution Q%" and the “limit”

static solution Q% are close as soon as " is small enough.

Lemma 6.1 Let Q% be the solution of problem (6.33), while Q%" satisfies (6.55).
Then

sup
x2�

j Q%".x/� Q%.x/j � c"˛; (6.57)

where the constant c is independent of ", and ˛ has been introduced in Sect. 6.2.3.

Proof Obviously both Q%" and Q% depend solely on the vertical coordinate x3, and, in
addition,

Z 1

0

�
Q%".x3/� Q%.x3/

�
dx3 D 0: (6.58)

Moreover, as a consequence of hypothesis (6.14), there exist positive constants
%, % such that

0 < % < inf
x2� Q%".x/ � sup

x2�
Q%".x/ < % (6.59)

uniformly for " ! 0.
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Finally, as P 2 C2Œ0;1/, a direct inspection of (6.25), (6.33), (6.55) yields

ˇ
ˇ̌ d

dx3
.log. Q%"/ � log. Q%//

ˇ
ˇ̌ � "˛c;

which, combined with (6.58), (6.59), implies (6.57).
�

In order to exploit the total dissipation balance (6.56) for obtaining uniform
estimates, we first observe that the expression on the right-hand side is bounded
in terms of the initial data uniformly for " ! 0. To this end, we use Gibbs’
equation (1.2) to obtain

@H"

#
.%; #/

@#
D %.# � #/@s".%; #/

@#
; (6.60)

in particular,

1

"2

ˇ
ˇ
ˇH"

#
.%0;"; #0;"/� H"

#
.%0;"; #/

ˇ
ˇ
ˇ � c1

ˇ
ˇ
ˇ
#0;" � #

"

ˇ
ˇ
ˇ
2 D c1j#.1/0;" j2 � c2:

Indeed a direct computation yields

@s".%; #/

@#
D � 3

2#
S0.Z/Z C "

4a

%
#2 for Z D "˛

%

#
3
2

I (6.61)

whence the desired bound follows from hypothesis (6.15).
Similarly, in accordance with (6.53), the function H"

#
is twice continuously

differentiable in %, in particular,

1

"2

ˇ̌
ˇH"

#
.%0;"; #/� .%0;" � Q%"/

@H"

#
. Q%"; #/
@%

� H"

#
. Q%"; #/

ˇ̌
ˇ � c1

ˇ̌
ˇ
%0;" � Q%"

"

ˇ̌
ˇ
2

� c2
�ˇˇ̌%0;" � Q%

"

ˇ
ˇ̌2 C

ˇ
ˇ̌ Q%� Q%"

"

ˇ
ˇ̌2� D c2

�
j%.1/0;"j2 C

ˇ
ˇ̌ Q% � Q%"

"

ˇ
ˇ̌2�I

whence the desired uniform bound is provided by Lemma 6.1, where ˛ 2 .2; 3/.
The hypothesis of thermodynamic stability expressed through (6.13), together

with (6.53), (6.60), imply that all integrated quantities on the left-hand side of
the total dissipation balance (6.56) are non-negative, and, consequently, we deduce
immediately the following uniform estimates:

ess sup
t2.0;T/

Z

�

%"ju"j2 dx � c; (6.62)

k�"kMC.Œ0;T���/ � "2c; (6.63)
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and, by virtue of hypothesis (6.20),

Z T

0

Z

fx3D1g

ˇ
ˇ
ˇ
#" � #
"

ˇ
ˇ
ˇ
2

dSx dt � "c: (6.64)

Note that #" 2 L2.0;TIW1;2.�// possesses a well-defined trace on @� for a.a.
t 2 .0;T/.

As for the integrals containing the function H"

#
, observe first that

H"

#
.%"; #"/� H"

#
.%"; #/ 	 cj#" � # j2

as soon as

%=2 < %" < 2%; #=2 < #" < 2#;

where, as a direct consequence (6.13), (6.60), and (6.61), the constant c is
independent of ". In particular, we have obtained

ess sup
t2.0;T/

�
��
h#" � #

"

i

ess

�
��
L2.�/

� c: (6.65)

Furthermore, it follows from hypotheses (6.13)–(6.15) that

P0.Z/ 	 c.1C Z
2
3 / > 0 for all Z 	 0; (6.66)

in particular,

@2H"

#
.%; #/

@%2
D #

%
P0
�
"˛
%

#
3
2

�
	 c

%
: (6.67)

Consequently, boundedness of the third integral in (6.56) gives rise to

ess sup
t2.0;T/

�
��
h%" � Q%"

"

i

ess

�
��
L2.�/

� cI

whence, by virtue of Lemma 6.1,

ess sup
t2.0;T/

�
�
�
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� c: (6.68)
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Next, it follows from (6.53), (6.60), and (6.61) that
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.%;#/2Mres
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.%; #/ � .%� Q%"/
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#
. Q%"; #/
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� H"

#
. Q%"; #/

�
(6.69)
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@H"

#
. Q%"; #/
@%

� H"

#
. Q%"; #/

�
	 c > 0;

where, by virtue of Lemma 6.1, the constant c is independent of ", Q%". Thus we infer,
exactly as in Chap. 5, that

ess sup
t2.0;T/

jM"
resŒt�j � "2c; (6.70)

where, similarly to (4.43), we have set

M"
resŒt� D M"

resjftg�� � �:

In other words, the measure of the residual set is small and vanishes with " ! 0. In
addition, by virtue of (6.67), (6.70),

ess sup
t2.0;T/

Z

�

j Œ%" log.%"/�res j dx � "2c: (6.71)

As a direct consequence of estimates (6.70), (6.71), we deduce that the residual
component of any affine function of %" divided on "2 is bounded in the space
L1.0;TIL1.�//. On the other hand, by virtue of Proposition 3.2,
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#
.%; #/ 	 1
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2#
.%; 2#/

ˇ
ˇ̌

for any %, # , therefore we can use again relation (6.56) in order to conclude that
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Œ%"e".%"; #"/�res dx � "2c; (6.72)

and
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Z

�

j Œ%"s".%"; #"/�res j dx � "2c: (6.73)

Note that, as a consequence of (6.27) and hypothesis (6.15), both
@H"

2#

@%
.%; 2#/ and

H"

2#
.%; 2#/ are uniformly bounded for " ! 0.
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In accordance with hypothesis (6.26) and (6.66),
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�

Œ%"#"�res dx � "2c; (6.74)
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res dx � "c; (6.75)

and
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Z

�

Œ%"�
5
3
res dx � "2�2˛=3c: (6.76)

Note that 2 � 2˛=3 > 0 as ˛ 2 .2; 3/.
To conclude, we exploit the piece of information provided by the uniform

bound (6.63). In accordance with (6.28)–(6.30), we deduce immediately that
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and
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0

Z

�

ˇ
ˇ
ˇrx

�
log.#"/ � log.#/

�ˇˇ
ˇ
2

dx dt � "2�2˛=3c: (6.80)

Note that (6.80) implies rx log.#"/ � 0 in the asymptotic limit as ˛ < 3.
Combining estimates (6.62), (6.70), (6.77) we get, by help of a variant of Korn’s

inequality established in Proposition 2.1,

fu"g">0 bounded in L2.0;TIW1;2.�//: (6.81)

Similarly, by means of Proposition 2.2, relations (6.70), (6.74), together
with (6.78)–(6.80) yield

n#" � #
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">0
bounded in L2.0;TIW1;2.�//; (6.82)

np
#" �

p
#
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">0
bounded in L2.0;TIW1;2.�//; (6.83)
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and

k log.#"/� log.#/kL2.0;TIW1;2.�// � "1�˛=3c: (6.84)

6.4.2 Pressure Estimates

The upper bound (6.76) on the residual component of the density is considerably
weaker than its counterpart (5.48) established in Chap. 5. This is an inevitable
consequence of the scaling that preserves only the linear part of the pressure
yielding merely the “logarithmic” estimate (6.71). Deeper considerations, based on
the pressure estimates discussed in Sect. 2.2.5, are necessary in order to provide
better bounds required later in the limit passage.

Following the leading idea of Sect. 2.2.5, we define the quantities

'.t; x/ D  .t/B
h
b.%"/� 1

j�j
Z

�

b.%"/ dx
i
;  2 C1

c .0;T/

to be used as test functions in the variational formulation of the momentum
equation (6.38). Here the symbol B stands for the Bogovskii operator on the domain
� introduced in Sect. 11.6 in Appendix.

After a bit tedious but rather straightforward manipulation, which is completely
analogous to that one performed and rigorously justified in Sect. 2.2.5, we arrive at
the following relation:
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 p".%"; #"/b.%"/ dx dt (6.85)
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where we have set
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C
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 %"u" � BŒdivx.b.%"/u"/� dx dtC
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h
.%"b

0.%"/� b.%"//divxu"

� 1

j�j
Z

�

.b.%"/ � b0.%"/%"/divxu" dx
i

dx dt:

Taking the uniform estimates established in Sect. 6.4.1 into account we can show,
exactly as in Sect. 2.2.5, that all integrals contained in I" are bounded uniformly for
" ! 0 as soon as

jb.%/j C j%b0.%/j � c%
 for 0 < 
 < 1 small enough: (6.86)

In order to comply with (6.86), let us take b 2 C1Œ0;1/ such that

b.%/ D

8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

0 for 0 � % � 2%;

2 Œ0; %
 � for 2% < % � 3%;

%
 if % > 3%;

(6.87)

with 
 > 0 sufficiently small to be specified below. In particular, we have

b.%"/ D b.Œ%"�res/I

whence, in accordance with (6.71),

ess sup
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Z

�

b.%"/ dx � c"2 (6.88)

as soon as 0 < 
 < 1. Consequently, the first integral at the right-hand side of (6.85)
is bounded.

In order to control the second term, we use the fact that Q%, # solve the static
problem (6.41). Accordingly, we get
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where the last integral is uniformly bounded because of (6.88).
On the other hand, by virtue of the Lp-estimates for B (see Theorem 11.17 in

Appendix),
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and, by the same token,
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:

Finally, in accordance with (6.71), (6.88),

Z

�

jb.%"/jq dx �
Z

�

Œ%"�

q
res dx �

Z

�

Œ%" log.%"/�res dx � c"2 (6.92)

as soon as 
 � 1=q.
Estimates (6.89)–(6.92) yield a uniform bound on the second term at the right-

hand side of (6.85). The remaining integrals grouped in I" are bounded by virtue of
the estimates established in the previous part exactly as in Sect. 2.2.5. Consequently,
we conclude that

Z T

0

Z

�

p".%"; #"/b.%"/ dx dt � "2c; (6.93)

provided b is given by (6.87), with 0 < 
 < 1=4.

6.5 Convergence Towards the Target System

The uniform estimates deduced in the preceding section enable us to pass to the
limit in the family f%";u"; #"g">0.
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Specifically, by virtue of (6.68), (6.70), (6.76), we have

%" ! Q% in L1.0;TIL 5
3 .�// \ C.Œ0;T�ILq.�// for any 1 � q <

5

3
: (6.94)

Moreover, in accordance with (6.81), we may assume

u" ! U weakly in L2.0;TIW1;2.�IR3//; (6.95)

passing to a subsequence as the case may be, where

U � nj@� D 0 in the sense of traces: (6.96)

Finally, it follows from (6.82) that

#" ! # in L2.0;TIW1;2.�//: (6.97)

Our goal in the remaining part of this section is to identify the limit system of
equations governing the time evolution of the velocity U.

6.5.1 Anelastic Constraint

Combining (6.94), (6.95) we let " ! 0 in the equation of continuity expressed
through the integral identity (6.37) in order to obtain

divx. Q%U/ D 0 a.a. in .0;T/ ��: (6.98)

This is the so-called anelastic approximation discussed in Sect. 4.3 characterizing
the strong stratification of the fluid in the vertical direction.

6.5.2 Determining the Pressure

As already pointed out in Sect. 4.3, a successful analysis of the anelastic limit in
the isothermal regime is conditioned by the fact that the thermal equation of state
relating the pressure to the density and the temperature is that of a perfect gas,
namely p D p0%# .

Let us examine the quantity
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To begin, since P is twice continuously differentiable, we deduce
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where the expression on the right-hand side tends to zero for " ! 0 uniformly on
.0;T/ �� as soon as ˛ > 2.

Next, by virtue of hypothesis (6.15),
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On the other hand, it follows from the refined pressure estimates (6.93) that
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Thus writing
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while, in accordance with (6.102),
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Consequently, we conclude that
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res ! 0 in L1..0;T/ ��/ for " ! 0: (6.103)

Finally, the radiation pressure can be decomposed as
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where, by virtue of the uniform estimates (6.70), (6.75), and (6.82),
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In order to control the essential component of the radiation pressure, we first
recall a variant of Poincare’s inequality
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Here and hereafter, we have used that

c1jŒ#" � #�essj � jŒ#"p � #p
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Thus the uniform estimates (6.64), (6.78) imply that
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Moreover, from (6.104), (6.105) we infer that
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Summing up the estimates (6.101), (6.103)–(6.106) we conclude that
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In other words .1="2/rxp".%"; #"/ � .p0="2/rx.%"#"/ in the asymptotic limit
"! 0.

6.5.3 Driving Force

Our next goal is to determine the asymptotic limit of the driving force acting on
the fluid through the momentum equation (6.38). In accordance with (6.107), the
thermal equation of state reduces to that of a perfect gas, therefore it is enough to
examine that quantity
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where we have exploited the fact that Q% solves the linearized static problem (6.41).
In order to handle the latter term on the right-hand side of (6.108), we first write
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where, as a straightforward consequence of the uniform estimates (6.68), (6.105),
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In addition, using (6.82) in combination with the standard embedding relation
W1;2.�/ ,! L6.�/, we obtain
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Moreover, by a simple interpolation argument,

�
�
�
h%" � Q%

"

i

res

�
�
�
L
6
5 .�/

�
�
�
�
h%" � Q%

"

i

res

�
�
�

7
12

L1.�/

�
�
�
h%" � Q%

"

i

res

�
�
�

5
12

L
5
3 .�/

;

where, in accordance with the bounds (6.70), (6.71), (6.76),
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Resuming the previous considerations we may infer that
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therefore it is enough to find a suitable uniform bound on the family f.#" �
#/="2g">0. To this end, write
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where, by virtue of (6.65), (6.75), (6.83), and the embedding W1;2.�/ ,! L6.�/,
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Consequently, by means of (6.78), (6.82), and a simple interpolation argument, we
get
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Thus, finally,
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In accordance with (6.111),
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Furthermore, after a simple manipulation, we observe that
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Putting together relations (6.108)–(6.114) we conclude that
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where

�" ! 0 in L1..0;T/ ��/:

Note that the terms containing divx. Q%'/ are irrelevant in the limit " ! 0 as the
admissible test functions in (6.46) obey the anelastic constraint divx. Q%'/ D 0.

6.5.4 Momentum Equation

At this stage, we can use the limits obtained in Sect. 6.5 in combination
with (6.107), (6.115), in order to let " ! 0 in the momentum equation (6.38).
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We thereby obtain
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and the symbol %U ˝ U denotes a weak limit of f%"u" ˝ u"g">0. Moreover, since Q%
satisfies (6.41), we have

p0

Z T

0

Z

�

Q%#.2/divx' dx dt D
Z T

0

Z

�

#.2/

#
Q%g'3 dx dt

in agreement with (6.46).
Consequently, in order to complete the proof of Theorem 6.1, we must verify:

(i) Identity

Z T

0

Z

�

%U ˝ U W rx' dx dt D
Z T

0

Z

�

Q%U ˝ U W rx' dx dt (6.118)

for any admissible test function in (6.116);
(ii) Equation (6.45) relating the temperature #.2/ to the vertical component of the

velocity U3. These are the main topics to be discussed in the next two sections.

6.6 Analysis of the Acoustic Waves

As already pointed out in Sect. 4.4.2, the acoustic equation describing the time
evolution of the gradient part of the velocity in strongly stratified fluids exhibits a
wave speed varying with direction, in particular, with the vertical (depth) coordinate.
A typical example of a highly anisotropic wave system due to the presence of
internal gravity waves arises in the singular limit problem discussed in this chapter.
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6.6.1 Acoustic Equation

Formally, the equation of continuity (6.21) can be written in the form

"@t

�
%" � Q%
" Q%

�
C 1

Q%divx.%"u"/ D 0: (6.119)

Similarly, by means of the identity,

p0#rx%" C %"gj D p0# Q%rx

�
%" � Q%

Q%
�
;

momentum equation (6.22) reads

"@t.%"#"/C p0# Q%rx

�
%" � Q%
" Q%

�
(6.120)

D 1

"
rx

�
p0%"#" � p.%"; #"/ � p0%".#" � #/

�
C "divx .S" � %"u" ˝ u"// :

System (6.119), (6.120) may be regarded as a classical formulation of the acoustic
equation discussed in Sect. 4.4.2.

In terms of the weak solutions, the previous formal arguments can be justified in
the following manner. Taking '= Q% as a test function in (6.37) we obtain

Z T

0

Z

�

�
"
%" � Q%
" Q% @t' C Q%%"u"Q% � rx

'

Q%
�

dx dt D �
Z

�

"
%0;" � Q%
" Q% '.0; �/ dx

(6.121)

to be satisfied for any ' 2 C1
c .Œ0;T/ � �/. In a similar fashion, the momentum

equation (6.38) gives rise to

Z T

0

Z

�

�
"
%"u"

Q% � @t' C p0#
%" � Q%
" Q% divx'

�
dx dt (6.122)

D �
Z

�

"
%0;"u0;"

Q% � '.0; �/ dx

C
Z T

0

Z

�

�
"h"divx

'

Q% C "G" W rx
'

Q% C p0 Q%# � #"

"
divx

'

Q%
�

dx dt;
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for any ' 2 C1
c .Œ0;T/ ��IR3/, ' � nj@� D 0, where

h" D 1

"2

�
p0%"#" � p".%"; #"/

�
C p0

� Q% � %"
"

� 
#" � #

"

!

;

and

G" D S" � %"u" ˝ u":

In accordance with the uniform bounds (6.107), (6.110),

h" ! 0 in L1..0;T/ ��/;

while, by virtue of (6.62), (6.75), (6.76), and (6.81),

fG"g">0 is bounded in Lq.0;TILq.�IR3�3// for a certain q > 1:

In addition, relation (6.105) implies

�
��
h#" � #

"

i

ess

�
��
L2..0;T/��/ � p

"c;

and (6.70), together with (6.82), give rise to

��
�
h#" � #

"

i

res

��
�
L1..0;T/��/ � "c:

Consequently, introducing the quantities

r" D %" � Q%
" Q% ; V" D %"u"

Q% ;

we can rewrite system (6.121), (6.122) in a concise form as

� STRATIFIED ACOUSTIC EQUATION:

Z T

0

Z

�

�
"r"@t' C Q%V" � rx

�
'

Q%
��

dx dt D �
Z

�

"r".0; �/'.0; �/ dx (6.123)

for any ' 2 C1
c .Œ0;T/ ��/,

Z T

0

Z

�

�
"V" � @t' C p0#r"divx'

�
dx dt D �

Z

�

"V".0; �/ � '.0; �/ dx (6.124)
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Cp
"

Z T

0

Z

�

H" W rx
'

Q% dx dt

for any ' 2 C1
c .Œ0;T/ ��IR3/, ' � nj@� D 0,

where

fH"g">0 is bounded in L1..0;T/ ��IR3�3/: (6.125)

We recall that left-hand side of (6.123), (6.124) can be understood as a weak
formulation of the wave operator introduced in (4.30).

Two characteristic features of the wave equation (6.123), (6.124) can be easily
identified:

• the wave speed depends effectively on the vertical (depth) coordinate x3,
• the right-hand side is “large” of order

p
" in comparison with the frequency of

the characteristic wavelength proportional to ".

6.6.2 Spectral Analysis of the Wave Operator

We consider the eigenvalue problem associated to the differential operator
in (6.123), (6.124), namely

Q%rx

�q
Q%
�

D �w; p0#divxw D �q in �; (6.126)

supplemented with the boundary condition

w � nj@� D 0: (6.127)

Equivalently, it is enough to solve

� divx
h

Q%rx

�q
Q%
�i

D ƒ Q%
�q

Q%
�

in �; (6.128)

with

rx

�q
Q%
�

� nj@� D 0; (6.129)

where

�2 D �ƒp0#: (6.130)
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It is a routine matter to check that problem (6.128), (6.129) admits a complete
system of real eigenfunctions fqj;mg1;mj

jD0;mD1, together with the associated eigenvalues
ƒj;m such that

8
<

:

m0 D 1; ƒ0;1 D 0; q0;1 D Q%;

0 < ƒ1;1 D � � � D ƒ1;m1 .D ƒ1/ < ƒ2;1 D : : : ƒ2;m2 .D ƒ2/ < : : : ;

9
=

;

(6.131)

where mj stands for the multiplicity ofƒj. Moreover, it can be shown that the system
of functions fqj;mg1;mj

jD0;mD1 forms an orthonormal basis of the weighted Lebesgue
space L2

1=Q%.�/ endowed with the scalar product

< vIw >L2
1=Q%
.�/D

Z

�

vw
dx

Q%
(see Sect. 11.3.2 in Appendix and also Chap. 3 in the monograph by Wilcox [272]).

Consequently, any solution of (6.126), (6.127) can be written in the form

8
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂:

� D �˙j D ˙i
q
p0#ƒj; q D qj;m; w D w˙j;m;

w˙j;m D �i.
q
p0#ƒj/

�1 Q%rx
qj;m

Q%

for j D 1; : : : ;m; m D 1; : : : ;mj;

9
>>>>>>=

>>>>>>;

(6.132)

where a direct computation yields

Z

�

wj;m � wk;l
dx

Q% D � 1

p0#

Z

�

qj;mqk;l
dx

Q% : (6.133)

In addition, the eigenspace corresponding to the eigenvalue �0 D ƒ0;1 D 0

coincides with

N D
n
.c Q%;w/

ˇ̌
ˇ c D const; w 2 L2�;1=Q%.�IR3/

o
;

where the symbol L2
�;1=Q%.�IR3/ stands for the space of solenoidal functions

L2�;1=Q%.�IR3/ D closureL2
1=Q%

fw 2 C1
c .�IR3/ j divxw D 0g D L2� .�;R

3/:
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Accordingly, the Hilbert space L2
1=Q%.�IR3/ admits an orthogonal decomposition

L21=Q%.�IR3/ D L2�;1=Q%.�IR3/˚ closureL2
1=Q%

fspanfiwj;mg1;mj

jD1;mD1g;

with the corresponding orthogonal projections represented by the Helmholtz pro-
jectors HQ%, H?

Q% introduced in (6.47).
Finally, taking ' D  1.t/qj;m as a test function in (6.123), and ' D  2wj;m

in (6.124), with  1; 2 2 C1
c .0;T/, we arrive at an infinite system of ordinary

differential equations in the form:

8
<

:

"@tbj;mŒr"� � !
p
ƒj aj;mŒV"� D 0;

"@taj;mŒV"�C
p
ƒj bj;mŒr"� D p

"Hj;m
"

9
=

;
(6.134)

for j D 1; 2; : : : , and m D 1; : : : ;mj, where we have introduced the “Fourier
coefficients”

bj;mŒr"� D
Z

�

r"qj;m dx; aj;mŒV� D ip
!

Z

�

V" � wj;m dx; and ! D p0#: (6.135)

In accordance with (6.125),

fHj;m
" g">0 is bounded in L1.0;T/ for any fixed j;m: (6.136)

6.6.3 Convergence of the Convective Term

The description of the time oscillations of the acoustic modes provided by (6.134)
is sufficient in order to identify the asymptotic limit of the convective term in the
momentum equation (6.38). More precisely, our aim is to show that

Z T

0

Z

�

%"Œu" ˝ u"� W rx

�'

Q%
�

dx dt !
Z T

0

Z

�

Q%ŒU ˝ U� W rx

�'

Q%
�

dx dt (6.137)

for any function ' such that

' 2 C1
c ..0;T/ ��IR3/; divx' D 0; ' � nj@� D 0: (6.138)

If this is the case, the limit Eq. (6.116) gives rise to (6.46).
In order to see (6.137), we follow formally the approach used in Sect. 5.4.6,

that means, we reduce (6.137) to a finite number of modes that can be explicitly
expressed by help of (6.134).
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Strong Convergence of the Solenoidal Part We claim that

HQ%Œ%"u"� ! HQ%Œ Q%U� D Q%U in L1..0;T/ ��IR3//: (6.139)

To this end, we take

'.t; x/ D  .t/

Q% HQ%Œ Q%ˆ�; ˆ 2 C1
c .�IR3/; ˆ � nj@� D 0;  2 C1

c .0;T/

as a test function in the momentum equation (6.38). Seeing that

Z T

0

@t 

Z

�

HQ%Œ%"u"� � ˆ dx dt D
Z T

0

Z

�

%"u" � @t' dx dt;

and taking relations (6.107), (6.115), together with the uniform estimates obtained
in Sect. 6.4.1, into account, we conclude that the mappings

t 2 Œ0;T� 7!
Z

�

HQ%Œ%"u"�.t/ � ˆ dx

are precompact in CŒ0;T�, in other words,

HQ%Œ%"u"� ! HQ%Œ Q%U� D Q%U in Cweak.Œ0;T�IL 5
4 .�IR3//; (6.140)

where we have used (6.62), (6.94), and compactness of the embedding L
5
4 .�/ ,!

ŒW1;2.�/��.
On the other hand, as HQ%, H?

Q% are orthogonal in the weighted space L2
1=Q%,

and (6.95) holds, we can use (6.140) in order to obtain

Z T

0

� Z

�

HQ%Œ%"u"� � HQ%Œ Q%u"�dxQ%
�

dt (6.141)

D
Z T

0

Z

�

HQ%Œ%"u"� � u" dt !
Z T

0

Z

�

HQ%Œ Q%U� � U dx dt

D
Z T

0

� Z

�

Q%2jUj2 dx

Q%
�

dt:

In accordance with (6.94),

ess sup
t2.0;T/

k%".t/ � Q%k
L
5
3 .�/

! 0;
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and we may infer from (6.141) that

HQ%Œ Q%u"� ! Q%U in L2..0;T/ ��IR3/; (6.142)

which, by the same token, gives rise to (6.139).

Time Oscillations of the Gradient Part Initially, we write

%"u" ˝ u" D 1

Q%HQ%Œ%"u"�˝ Q%u" C 1

Q%H
?
Q% Œ%"u"�˝ HQ%Œ Q%u"�C 1

Q%H
?
Q% Œ%"u"�˝H?

Q% Œ Q%u"�

Since both HQ% and H?
Q% are continuous in Lp.�IR3/ for any 1 < p < 1 (see

Sect. 11.3.1 in Appendix), we have

H?
Q% Œ%"u"� ! 0 weakly-(*) in L1.0;TIL 5

4 .�IR3//: (6.143)

Consequently, we can use (6.139), (6.142) to reduce (6.137) to showing

Z T

0

Z

�

�
H?

Q% Œ Q%V"�˝ H?
Q% Œ Q%u"�

�
W rx

�'

Q%
� dx

Q% dt ! 0 for " ! 0 (6.144)

for any ' satisfying (6.137), where V" D %"u"= Q% is the quantity appearing in the
acoustic equation (6.123), (6.124).

We proceed in two steps:

(i) To begin, we reduce (6.144) to a finite number of modes. Similarly to (6.135),
we introduce the “Fourier coefficients”

aj;mŒZ� D ip
!

Z

�

Z � wj;m dx for any Z 2 L1.�IR3/:

Moreover, similarly to Sect. 5.4.6, we set

H?
Q%;MŒ Q%Z� D �ip

!

X

j;0<ƒj�M

mjX

mD1
aj;mŒZ�wj;m: (6.145)

Now a straightforward manipulation yields

8
ˆ̂
ˆ̂̂
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
ˆ̂̂
ˆ̂
:

H?
Q% Œ Q%V"�˝ H?

Q% Œ Q%u"�

D
h
H?

Q%;M Œ Q%V"�C
�
H?

Q% Œ Q%V"� � H?
Q%;MŒ Q%V"�

�i

˝
h
H?

Q%;MŒ Q%u"�C
�
H?

Q% Œ Q%u"� � H?
Q%;MŒ Q%u"�

�i
;

9
>>>>>>>>>>>=

>>>>>>>>>>>;

(6.146)
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where we can write

H?
Q% Œ Q%V"� � H?

Q%;MŒ Q%V"�
D H?

Q% Œ.%" � Q%/u"� � H?
Q%;MŒ.%" � Q%/u"�C H?

Q% Œ Q%u"� � H?
Q%;MŒ Q%u"�:

Using relations (6.94), (6.95) we obtain

H?
Q% Œ.%" � Q%/u"� � H?

Q%;MŒ.%" � Q%/u"� ! 0 in L1..0;T/ ��IR3/ as " ! 0

(6.147)

for any fixed M.
On the other hand, using orthogonality of the functions fqj;mg, together

with Parseval’s identity with respect to the scalar product of L2
1=Q%.�/ and

relation (6.132), we get

kdivx. Q%u"/k2L2
1=Q%
.�/

D
1X

jD1

mjX

mD1
ƒja

2
j;mŒu"�:

Moreover, in accordance with (6.133),

kH?
Q% Œ Q%u"� � H?

Q%;MŒ Q%u"�k2L2
1=Q%
.�IR3/

D
X

jIƒj>M

mjX

mD1
a2j;mŒu"� � 1

M
kdivx. Q%u"/k2L2

1=Q%
.�/
:

Thus, by virtue of (6.81), we are allowed to conclude that

H?
Q% Œ Q%u"� � H?

Q%;MŒ Q%u"� ! 0 in L2.0;TIL21=Q%.�IR3// as M ! 1 (6.148)

uniformly with respect to " ! 0.
In view of relations (6.147), (6.148), the proof of (6.137) simplifies consid-

erably, being reduced to showing

Z T

0

Z

�

�
H?

Q%;MŒ Q%V"�˝ H?
Q%;MŒ Q%u"�

�
W rx

�'

Q%
�dx

Q% dt ! 0

or, equivalently, by virtue of (6.94),

Z T

0

Z

�

�
H?

Q%;MŒ Q%V"�˝ H?
Q%;MŒ Q%V"�

�
W rx

�'

Q%
�dx

Q% dt ! 0 (6.149)

for any test function ' satisfying (6.138) and any fixed M.
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(ii) In order to see (6.149), we first observe that

Z T

0

Z

�

�
H?

Q%;M Œ Q%V"�˝ H?
Q%;MŒ Q%V"�

�
W rx

�'

Q%
�dx

Q% dt

D
Z T

0

Z

�

. Q%rx‰" ˝ rx‰"/ W rx

�'

Q%
�

dx dt;

where, by means of (6.145),

‰" D 1

!

X

j�M

mjX

mD1

aj;mŒV"�p
ƒj

�qj;m
Q%
�
: (6.150)

First, integrating the above expression by parts and making use of the fact that
divx' D 0, we get

Z T

0

Z

�

. Q%rx‰" ˝ rx‰"/ W rx

�'

Q%
�

dx dt D

�
Z T

0

Z

�

divx
�

Q%rx‰"

�
rx‰" �

�'

Q%
�

dx dt;

where, in agreement with (6.128),

�divx. Q%rx‰"/ D 1

!

X

j�M

mjX

mD1

p
ƒjaj;mŒV"�qj;m:

The next step is to use system (6.134) in order to obtain

�
Z T

0

Z

�

divx
�

Q%rx‰"

�
rx‰" �

�'

Q%
�

dx dt

D "

!2

Z T

0

Z

�

X

j�M

mjX

mD1
@tbj;mŒr"�

qj;m
Q% rx‰" � ' dx dt

D � "

!2

Z T

0

Z

�

X

j�M

mjX

mD1
bj;mŒr"�

qj;m
Q% rx‰" � @t' dx dt

� "

!2

Z T

0

Z

�

X

j�M

mjX

mD1
bj;mŒr"�

qj;m
Q% @trx‰" � ' dx dt:

We see immediately that the first integral on the right-hand side of the above
equality tends to zero for " ! 0, therefore the proof of (6.149) will be complete as
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soon as we are able to verify that the amplitude of @trx‰" � ' grows at most as "�k

for a certain k < 1. Thus it is enough to show that

ˇ̌
ˇ
Z T

0

Z

�

X

j�M

mjX

mD1
bj;mŒr"�

qj;m
Q% @trx‰" � ' dx dt

ˇ̌
ˇ � cp

"
: (6.151)

In order to see (6.151), we make use of the second equation in (6.134),
and (6.150) to express

@trx‰" D � 1

"!

X

j�M

mjX

mD1
bj;mŒr"�rx

�qj;m
Q%
�

C 1p
"!

X

j�M

mjX

mD1

1
p
ƒj

Hj;m
" rx

�qj;m
Q%
�
;

where Hj;m
" are bounded in L1.0;T/ as stated in (6.136).

Finally, we observe that the expression

�X

j�M

mjX

mD1
bj;mŒr"�

qj;m
Q%
�X

j�M

mjX

mD1
bj;mŒr"�rx

�qj;m
Q%
�

D 1

2
rx

�X

j�M

mjX

mD1
bj;mŒr"�

qj;m
Q%
�2

is a perfect gradient, in particular

Z T

0

Z

�

�X

j�M

mjX

mD1
bj;mŒr"�

qj;m
Q%
�X

j�M

mjX

mD1
bj;mŒr"�rx

�qj;m
Q%
�

� ' dx dt D 0

as divx' D 0, ' �nj@� D 0. Consequently, we have verified (6.151); whence (6.149).
Thus we conclude that (6.118) holds, notably the integral identity (6.116)

coincides with (6.46). Consequently, in order to complete the proof of Theorem 6.1,
we have to check that #.2/ identified in (6.113) is related to the vertical component
U3 through (6.45). This is the objective of the last section.

6.7 Asymptotic Limit in the Entropy Balance

In contrast with Chap. 5, the analysis of the entropy equation (6.39) is rather simple.
To begin, we get

< �"I' >ŒMIC�.Œ0;T���/ �
Z T

0

Z

fx3D1g
ˇ1
#" � #

"
' dSx dt ! 0 as " ! 0 (6.152)
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for any fixed ' 2 C1
c .Œ0;T/ � �/ as a direct consequence of the uniform

estimates (6.63), (6.64).
Similarly, by virtue of (6.82), (6.84),

"2˛=3�0rx log.#"/C �1rx# ! 0 in L2..0;T/ ��IR3/;

and, consequently,

� lim
"!0

Z T

0

Z

�

1

"2
q"
#"

� rx' dx dt D lim
"!0

Z T

0

Z

�

d#"
2rx#"

"2
� rx' dx dt

D lim
"!0

Z T

0

Z

�

d#"
2rx#

.2/
" � rx' dx dt;

where the quantities #.2/" have been introduced in (6.112).
Furthermore, writing

Z T

0

Z

�

d#"
2rx#

.2/
" � rx' dx dt

D
Z T

0

Z

�

dŒ#"�
2
essrx#

.2/
" � rx' dx dt C

Z T

0

Z

�

dŒ#"�
3=2
res

p
#"rx

�#"
"2

�
� rx' dx dt;

we can use (6.97), (6.113) to deduce

Z T

0

Z

�

dŒ#"�
2
essrx#

.2/
" � rx' dx dt !

Z T

0

Z

�

d#
2rx#

.2/ � rx' dx dt;

while the uniform estimates (6.75), (6.78) give rise to

Z T

0

Z

�

dŒ#"�
3=2
res

p
#"rx

�#"
"2

�
� rx' dx dt ! 0:

Thus, we conclude that

lim
"!0

Z T

0

Z

�

1

"2
q"
#"

� rx' dx dt D �d#
2
Z T

0

Z

�

rx#
.2/ � rx' dx dt (6.153)

for any ' 2 C1
c .Œ0;T/ ��/.

Finally, in order to handle the convective term in (6.39), we write

%"s".%"; #"/ D Œ%"s".%"; #"/�ess C Œ%"s".%"; #"/�res;



6.7 Asymptotic Limit in the Entropy Balance 261

where, in accordance with (6.72),

Œ%"s".%"; #"/�res ! 0 in L1..0;T/ ��/: (6.154)

Now, similarly to (6.11), we can decompose

%"s".%"; #"/ D %"sM;".%"; #"/C %"sR;".%"; #"/;

where, by virtue of (6.75),

%"sR;".%"; #"/ D "
4a

3
#"
3 ! 0 in L1.0;TIL 4

3 .�//; (6.155)

in particular

%"sR;".%"; #"/u" ! 0 in L2.0;TIL 12
11 .�IR3//: (6.156)

On the other hand, due to (6.11), (6.12),

%"sM;".%"; #"/ D %"

�
S
�
"˛

%"

#"
3=2

�
� S."˛/

�
;

where, in accordance with hypothesis (6.15),

ˇ
ˇ
ˇS
�
"˛

%"

#"
3=2

�
� S."˛/

ˇ
ˇ
ˇ �

ˇ
ˇ
ˇ
Z "˛%"

#"
3=2

"˛
S0.Z/ dZ

ˇ
ˇ
ˇ � c.j log.%"/j C j log.#"/j/:

Consequently, using the uniform bounds established in (6.62), (6.71), (6.76),
and (6.84), we obtain

Œ%"s".%"; #"/�resu" ! 0 in Lq..0;T/ ��IR3/ for a certain q > 1: (6.157)

Thus in order to complete our analysis, we have to determine the asymptotic limit
of the “essential” component of the entropy Œ%"sM;".%"; #"/�ess. To this end, write

S.Z/ D � log.Z/C QS.Z/;

where

QS0.Z/ D �3
2

5
3
.P.Z/ � p0Z/ � .P0.Z/ � p0/Z

Z2
:
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As P is twice continuously differentiable on Œ0;1/, and, in addition, satis-
fies (6.15), we have

jQS0.Z/j � c for all Z > 0:

Consequently, we obtain

Œ%"sM;".%"; #"/�ess ! p0 Q%
�3
2

log.#/� log. Q%/
�

in Lq..0;T/ ��/ (6.158)

for any 1 � q < 1.
Going back to (6.39) and resuming relations (6.152)–(6.158) we conclude that

� d#
2
Z T

0

Z

�

rx#
.2/ � rx' dx dt D p0

Z T

0

Z

�

Q% log. Q%/U � rx' dx dt (6.159)

for any test function ' 2 C1
c ..0;T/ � �/, where we have used the anelastic con-

straint (6.98) and (6.95). Since Q% solves the static problem (6.41), relation (6.159) is
nothing other than a variational formulation of (6.45). Theorem 6.1 has been proved.



Chapter 7
Interaction of Acoustic Waves with Boundary

As we have seen in the previous chapters, one of the most delicate issues in the
analysis of singular limits for the NAVIER-STOKES-FOURIER SYSTEM in the low
Mach number regime is the influence of acoustic waves. If the physical domain
is bounded and the complete slip boundary conditions (cf. (5.15)) imposed, the
acoustic waves, being reflected by the boundary, inevitably develop high frequency
oscillations resulting in the weak convergence of the velocity field, in particular,
its gradient part converges to zero only in the sense of integral means. This rather
unpleasant phenomenon creates additional problems when handling the convective
term in the momentum equation (cf. Sects. 5.4.7, 6.6.3 above). In this chapter,
we focus on the mechanisms sofar neglected by which the acoustic energy may be
dissipated , and the ways how the dissipation may be used in order to show strong
(pointwise) convergence of the velocities.

The principal mechanism of dissipation in the NAVIER-STOKES-FOURIER SYS-
TEM is of course viscosity, here imposed through Newton’s rheological law. At a
first glance, the presence of the viscous stress S in the momentum equation does not
seem to play any significant role in the analysis of acoustic waves. In the situation
described in Sect. 4.4.1, the acoustic equation can be written in the form

8
<

:

"@tr" C divx.V"/ D “small terms00;

"@tV" C !rxr" D "divxS" C “small terms00:

9
=

;
(7.1)

Replacing for simplicity divxS" by �V", we examine the associated eigenvalue
problem:

divxw D �r;

!rxr � "�xw D �w:
(7.2)
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Applying the divergence operator to the second equation and using the first one
to express all quantities in terms of r, we arrive at the eigenvalue problem

��xr D �2

"� � ! r:

Under the periodic boundary conditions, meaning � D T 3, the corresponding
eigenvalues are given as

�2n
"�n � !

D ƒn;

where ƒn are the (real non-negative) eigenvalues of the Laplace operator supple-
mented with the periodic boundary conditions. It is easy to check that

�n D "ƒn ˙ i
p
4!ƒn � "2ƒ2

n

2
:

Moreover, the corresponding eigenfunctions read

frn;wng; wn D ! � "�n

�n
rxrn;

where rn are the eigenfunctions of the Laplacian supplemented with the periodic
boundary conditions.

The same result is obtained provided the velocity field satisfies the complete slip
boundary conditions (1.19), (1.27) leading to the Neumann boundary conditions for
r, namely

w � nj@� D rxr � nj@� D 0:

In particular, the eigenfunctions differ from those of the limit problem with " D 0

only by a multiplicative constant approaching 1 for " ! 0.
Physically speaking, the complete slip boundary conditions correspond to the

ideal mechanically smooth boundary of the physical space. As suggested by the
previous arguments, the effect of viscosity in this rather hypothetical situation does
not change significantly the asymptotic analysis in the low Mach number limit.

� CONJECTURE I (NEGATIVE):
The dissipation of the acoustic energy caused by viscosity in domains with

mechanically smooth boundaries is irrelevant in the low Mach number regime. The
decay of the acoustic waves is exponential with a rate independent of ".

On the other hand, the decay rate of the acoustic waves may change substantially
if the fluid interacts with the boundary, meaning, if some kind of “dissipative” (in
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terms of the acoustic energy) boundary conditions is imposed on the velocity field.
Thus, for instance, the no-slip boundary conditions (1.28) give rise to

wj@� D 0: (7.3)

Accordingly, system (7.2), supplemented with (7.3), becomes a singularly perturbed
eigenvalue problem. In particular, if the (overdetermined) limit problem

divxw D �r; !rxr D �w; wj@� D 0 (7.4)

admits only the trivial solution for � ¤ 0, we can expect that a boundary layer
is created in the limit process " ! 0 resulting in a faster decay of the acoustic
waves. This can be seen by means of the following heuristic argument. Suppose
that problem (7.2), (7.3) admits a family of eigenfunctions fr";w"g">0 with the
associated set of eigenvalues f�"g">0. Multiplying (7.2) on r", w", where the bar
stands for the complex conjugate, integrating the resulting expression over �, and
using (7.3), we obtain

"

Z

�

jrxw"j2 dx D .1C !/ReŒ�"�
Z

�

�
jr"j2 C jw"j2

�
dx;

where Re denotes the real part of a complex number. Normalizing fr";w"g">0 in
L2.�/ � L2.�IR3/ we easily observe that

ReŒ�"�

"
! 1;

since otherwise fw"g">0 would be bounded in W1;2.�IR3/ and any weak accu-
mulation point .r;w/ of fr";w"g">0 would represent a nontrivial solution of the
overdetermined limit system (7.4).

� CONJECTURE II (POSITIVE):
Sticky boundaries in combination with the viscous effects may produce a decay

rate of the acoustic waves that is considerably faster than their frequency in the low
Mach number regime. In particular, the mechanical energy is converted into heat
and the acoustic waves are anihilated at a time approaching zero in the low Mach
number limit.

Finally, we claim that a similar effect may be produced even if the complete slip
boundary conditions

u � nj@�" D 0; Sn � nj@�" D 0

are imposed, where �" is a family of domains with “rough” boundaries depending
on the scaling parameter ". More precisely, the boundaries @�" differ from a limit
shape by a family of small but still smooth asperities approximating the limit
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boundary in a similar way as the sequence of functions " sin .x="/ approaches zero.
In particular, as the fluid is viscous, such oscillating boundaries force the fluid
velocity to vanish, meaning to satisfy the no-slip boundary condition

uj@� D 0

in the asymptotic limit " ! 0. Thus the scenario predicted by Conjecture II remains
valid and we expect to recover strong convergence of the velocity fields.

7.1 Problem Formulation

Motivated by the previous discussion, we examine the low Mach number limit
for the NAVIER-STOKES-FOURIER SYSTEM supplemented with either the no-slip
boundary condition, or, alternatively, with the complete slip boundary conditions
imposed on a family of domains with “oscillating” boundaries. In both cases, the
fact that the fluid adheres completely (at least asymptotically in the latter case) to
the wall of the physical space imposes additional restrictions on the propagation of
acoustic waves. Our goal is to identify the geometrical properties of the domain, for
which this implies strong convergence of the velocity field in the asymptotic limit.

7.1.1 Field Equations

We consider the same scaling of the field equations as in Chap. 5. Specifically, we set

Ma D "; Fr D p
"

obtaining

� SCALED NAVIER-STOKES-FOURIER SYSTEM:

@t%" C divx.%"u"/ D 0; (7.5)

@t.%"u"/C divx.%"u" ˝ u"/C 1

"2
rxp.%"; #"/ D divxS" C 1

"
%"rxF; (7.6)

@t.%"s.%"; #"//C divx.%"s.%"; #"/u"/C divx
�q"
#

�
D �"; (7.7)

d

dt

Z

�

�"2

2
%"ju"j2 C %"e.%"; #"/ � "%"F

�
dx D 0; (7.8)
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where

�" 	 1

#"

�
"2S" W rxu" � q" � rx#"

#"

�
: (7.9)

System (7.5)–(7.8) is supplemented, exactly as in Chap. 5, with the constitutive
relations:

S" D S.#";rxu"/ D .#"/
�
rxu" C rx

Tu" � 2

3
divxu"I

�
; (7.10)

q" D q.#";rx#"/ D ��.#"/rx#"; (7.11)

and

p.%"; #"/ D pM.%"; #"/C pR.#"/; pM D #"
5
2P
� %"

#"
3
2

�
; pR D a

3
#"
4; (7.12)

e.%"; #"/ D eM.%"; #"/C eR.%"; #"/; eM D 3

2

#"
5
2

%"
P
� %"

#"
3
2

�
; eR D a

#"
4

%"
; (7.13)

s.%"; #"/ D sM.%"; #"/C sR.%"; #"/; sM.%"; #"/ D S
� %"

#"
3
2

�
; sR D 4

3
a
#"
3

%"
;

(7.14)
where

S0.Z/ D �3
2

5
3
P.Z/� ZP0.Z/

Z2
for all Z > 0: (7.15)

The reader will have noticed that the bulk viscosity has been neglected in (7.10) for
the sake of simplicity.

As always in this book, Eqs. (7.5)–(7.8) are interpreted in the weak sense
specified in Chap. 1 (see Sect. 7.2 below). We recall that the technical restrictions
imposed on the constitutive functions are dictated by the existence theory developed
in Chap. 3 and could be relaxed, to a certain extent, as far as the singular limit
passage is concerned.

7.1.2 Physical Domain and Boundary Conditions

As indicated in the introductory part, the geometry of the physical domain plays a
crucial role in the study of propagation of the acoustic waves. As already pointed
out, the existence of an effective mechanism of dissipation of the acoustic waves
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is intimately linked to solvability of the (overdetermined) system (7.4) that can be
written in a more concise form as

��xr D ƒr in �;
�2

!
D �ƒ; rxrj@� D 0: (7.16)

The problem of existence of a non-trivial, meaning non-constant, solution to (7.16)
is directly related to the so-called Pompeiu property of the domain�. A remarkable
result of Williams [273] asserts that if (7.16) possesses a non-constant solution
in a domain in R

N whose boundary is homeomorphic to the unit sphere, then,
necessarily, @�must admit a description by a system of charts that are real analytic.
The celebrated Schiffer’s conjecture claims that (7.16) admits a non-trivial solution
in the aforementioned class of domains only if � is a ball.

In order to avoid the unsurmountable difficulties mentioned above, we restrict
ourselves to a very simple geometry of the physical space. Similarly to Chap. 6,
we assume the motion of the fluid is 2�-periodic in the horizontal variables .x1; x2/,
and the domain� is an infinite slab determined by the graphs of two given functions
Bbottom, Btop,

� D f.x1; x2; x3/ j .x1; x2/ 2 T 2; Bbottom.x1; x2/ < x3 < Btop.x1; x2/g; (7.17)

where T 2 denotes the flat torus,

T 2 D �
Œ��; ��jf��;�g

�2
:

Although the specific length of the period is not essential, this convention simplifies
considerably the notation used in the remaining part of this chapter.

In the simple geometry described by (7.17), it is easy to see that problem (7.16)
admits a non-trivial solution, namely r D cos.x3/ as soon as the boundary is flat,
more precisely, if Bbottom D �� , Btop D 0. On the other hand, we claim that
problem (7.16) possesses only the trivial solution in domains with variable bottoms
as stated in the following assertion.

Proposition 7.1 Let � be given through (7.17), with

8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

Bbottom D �� � h.x1; x2/; Btop D 0;

where

h 2 C.T 2/; jhj < � for all .x1; x2/ 2 T 2:

9
>>>>>=

>>>>>;

(7.18)

Assume there is a function r ¤ const solving the eigenvalue problem (7.16) for a
certain ƒ.

Then h � constant.
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Proof Since r is constant on the top part, specifically r.x1; x2; 0/ D r0, the function

V.x1; x2; x3/ D r.x1; x2; x3/� r0 cos.
p
ƒx3/

satisfies

��xV D ƒV in �; and, in addition, rxVjBtop D VjBtop D 0:

Accordingly, the function V extended to be zero in the upper half plane fx3 > 0g
solves the eigenvalue problem (7.16) in � [ fx3 	 0g. Consequently, by virtue of
the unique continuation property of the elliptic operator �x C ƒI (analyticity of
solutions to elliptic problems discussed in Sect. 11.3.1 in Appendix), we get V � 0,
in other words,

r D r0 cos.
p
ƒx3/ in �:

However, as r must be constant on the bottom part fx3 D �� � h.x1; x2/g, we
conclude that h � const.

�

Our future considerations will be therefore concerned with fluids confined to
domains described through (7.17), with flat “tops” and variables “bottoms” as
in (7.18) with h 6� const.

7.2 Main Result: The No-Slip Boundary Conditions

We start by imposing the no-slip boundary conditions for the velocity field

u"j@� D 0; (7.19)

together with the no-flux boundary condition for the temperature

q" � nj@� D 0: (7.20)

Accordingly, the system is energetically insulated in agreement with (7.8).
As a matter of fact, the approach delineated in this section applies to any bounded

and sufficiently smooth spatial domain � � R
3, on which the overdetermined

problem (7.16) admits only the trivial (constant) solution r. In particular, the
arguments in the proof of Proposition 7.1 can be used provided a part of the
boundary is flat and the latter is connected.
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7.2.1 Preliminaries: Global Existence

Exactly as in Chap. 5, we consider the initial data in the form

8
ˆ̂̂
ˆ̂
<

ˆ̂
ˆ̂
:̂

%".0; �/ D %0;" D %C "%
.1/
0;";

u".0; �/ D u0;";

#".0; �/ D #0;" D # C "#
.1/
0;" ;

9
>>>>>=

>>>>>;

(7.21)

where
8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

R
�
%
.1/
0;" dx D 0; %

.1/
0;" ! %.1/ weakly-(*) in L1.�/;

u0;" ! u0 weakly-(*) in L1.�IR3/;
R
�
#
.1/
0;" dx D 0; #

.1/
0;" ! #

.1/
0 weakly in L1.�/;

9
>>>>>=

>>>>>;

(7.22)

with positive constants %, # .
For reader’s convenience, we recall the list of hypotheses, under which sys-

tem (7.5)–(7.15), supplemented with the boundary conditions (7.19), (7.20), and
the initial conditions (7.21), possesses a weak solution defined on an arbitrary time
interval .0;T/. To begin, we need the hypothesis of thermodynamic stability (1.44)
expressed in terms of the function P as

P 2 C1Œ0;1/\ C2.0;1/; P.0/ D 0; P0.Z/ > 0 for all Z 	 0; (7.23)

0 <

5
3
P.Z/ � ZP0.Z/

Z
� sup

z>0

5
3
P.z/ � zP0.z/

z
< 1; (7.24)

together with the coercivity assumption

lim
Z!1

P.Z/

Z
5
3

D p1 > 0: (7.25)

Similarly to Chap. 5, the transport coefficients , �, and � are assumed to be
continuously differentiable functions of the temperature # satisfying the growth
restrictions

0 < .1C#/ � .#/ � .1C#/ for all # 	 0; 0 bounded in Œ0;1/; (7.26)
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and

0 < �.1C #3/ � �.#/ � �.1C #3/ for all # 	 0; (7.27)

where , , �, and � are positive constants.
Now, as a direct consequence of the abstract existence result established in

Theorem 3.1, we claim that for any " > 0, the scaled NAVIER-STOKES-FOURIER

SYSTEM (7.5)–(7.9), supplemented with the boundary conditions (7.19)–(7.20), and
the initial conditions (7.21), possesses a weak solution f%";u"; #"g">0 on the set
.0;T/ �� such that

%" 2 L1.0;TIL 5
3 .�//; u" 2 L2.0;TIW1;2

0 .�IR3//; #" 2 L2.0;TIW1;2.�//:

More specifically, we have:

(i) Renormalized equation of continuity:

Z T

0

Z

�

%"B.%"/
�
@t' C u" � rx'

�
dx dt (7.28)

D
Z T

0

Z

�

b.%"/divxu"' dx dt �
Z

�

%0;"B.%0;"/'.0; �/ dx

for any b as in (2.3) and any ' 2 C1
c .Œ0;T/ ��/;

(ii) Momentum equation:

Z T

0

Z

�

�
%"u" � @t' C %"Œu" ˝ u"� W rx' C 1

"2
p.%"; #"/divx'

�
dx dt

(7.29)

D
Z T

0

Z

�

�
S" W rx' � 1

"
%"rxF � '

�
dx dt �

Z

�

.%0;"u0;"/ � ' dx

for any test function

' 2 C1
c .Œ0;T/ ��IR3/I

(iii) Total energy balance:

Z

�

�"2

2
%"ju"j2 C %"e.%"; #"/ � "%"F

�
.t/ dx (7.30)

D
Z

�

�"2

2
%0;"ju0;"j2 C %0;"e.%0;"; #0;"/ � "%"F

�
dx for a.a. t 2 .0;T/I
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(iv) Entropy balance:

Z T

0

Z

�

%"s.%"; #"/
�
@t' C u" � rx'

�
dx dt C

Z T

0

Z

�

q"
#"

� rx' dx dt (7.31)

C < �"I' >ŒMIC�.Œ0;T���/D �
Z

�

%0;"s.%0;"; #0;"/'.0; �/ dx

for any ' 2 C1
c .Œ0;T/ ��/, where �" 2 MC.Œ0;T� ��/ satisfies (7.9).

Note that the satisfaction of the no-slip boundary conditions is ensured by the
fact that the velocity field u".t; �/ belongs to the Sobolev space W1;2

0 .�IR3/ defined
as a completion of C1

c .�IR3/ with respect to the W1;2-norm. Accordingly, the test
functions in the momentum equation (7.29) must be compactly supported in �, in
particular, the Helmholtz projection HŒ'� is no longer an admissible test function
in (7.29).

7.2.2 Compactness of the Family of Velocities

In order to avoid confusion, let us point out that the principal result to be shown
in this part is pointwise compactness of the family of velocity fields fu"g">0. Then
following step by step the analysis presented in Chap. 5 we could show that the limit
system obtained by letting " ! 0 is the same as in Theorem 5.2, specifically, the
OBERBECK-BOUSSINESQ APPROXIMATION (5.161)–(5.166).

� COMPACTNESS OF VELOCITIES ON DOMAINS WITH VARIABLE BOTTOMS:

Theorem 7.1 Let � be the infinite slab introduced in (7.17), (7.18), where the
“bottom” part of the boundary is given by a function h satisfying

h 2 C3.T 2/; jhj < �; h 6� const: (7.32)

Assume that S", q" as well as the thermodynamic functions p, e, and s are given
by (7.10)–(7.15), where P meets the structural hypotheses (7.23)–(7.25), while the
transport coefficients  and � satisfy (7.26), (7.27). Finally, let f%";u"; #"g">0 be
a family of weak solutions to the Navier-Stokes-Fourier system satisfying (7.28)–
(7.31), where the initial data are given by (7.21), (7.22).

Then, at least for a suitable subsequence,

u" ! U in L2..0;T/ ��IR3/; (7.33)

where U 2 L2.0;TIW1;2
0 .�IR3//, divxU D 0.
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The bulk of the remaining part of this chapter, specifically Sects. 7.3–7.5, is
devoted to the proof of Theorem 7.1 which is tedious and rather technical. It is based
on careful analysis of the singular eigenvalue problem (7.2), (7.3) in a boundary
layer by means of the abstract method proposed by Vishik and Ljusternik [267] and
later adapted to the low Mach number limit problems in the context of isentropic
fluid flows by Desjardins et al. [81]. In contrast with [81], we “save” one degree of
approximation—a fact that simplifies considerably the analysis and makes the proof
relatively transparent and easily applicable to other choices of boundary conditions
(see [118]).

7.3 Uniform Estimates

We begin the proof of Theorem 7.1 by recalling the uniform estimates that can be
obtained exactly as in Chap. 5. Thus we focus only the principal ideas referring to
the corresponding parts of Sect. 5.2 for all technical details.

As the initial distribution of the density is a zero mean perturbation of the
constant state %, we have

Z

�

%".t/ dx D
Z

�

%0;" dx D %j�j;

in particular,
Z

�

.%".t/ � %/ dx D 0 for all t 2 Œ0;T�: (7.34)

To obtain further estimates, we combine (7.30), (7.31) to deduce the dissipation
balance equality in the form

Z

�

h1
2
%"ju"j2 C 1

"2

�
H#.%"; #"/� "%"F

�i
.	/ dx C #

"
�"

h
Œ0; 	� ��

i
(7.35)

D
Z

�

h1
2
%0;"ju0;"j2 C 1

"2

�
H#.%0;"; #0;"/� "%"F

�i
dx for a.a. 	 2 Œ0;T�;

where H# is the Helmholtz function introduced in (2.48).
As we have observed in (2.49), (2.50), the hypothesis of thermodynamic stability

@%p > 0, @#e > 0, expressed in terms of (7.23), (7.24), implies that

% 7! H#.%; #/ is a strictly convex function,

while

# 7! H#.%; #/ attains its strict minimum at # for any fixed %:
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Consequently, subtracting a suitable affine function of % from both sides
of (7.35), and using the coercivity properties of H# stated in Lemma 5.1 we deduce
the following list of uniform estimates:

• Energy estimates:

ess sup
t2.0;T/

kp
%"u"kL2.�IR3/ � c [ cf. (5.49) ]; (7.36)

ess sup
t2.0;T/

�
�
�
h%" � %

"

i

ess

�
�
�
L2.�/

� c [ cf. (5.46) ]; (7.37)

ess sup
t2.0;T/

�
�
�
h%" � %

"

i

res

�
�
�
L
5
3 .�/

� "
1
5 c [ cf. (5.45), (5.48) ]; (7.38)

ess sup
t2.0;T/

�
�
�
h#" � #

"

i

ess

�
�
�
L2.�/

� c [ cf. (5.47) ]; (7.39)

ess sup
t2.0;T/

�
��Œ#"�res

�
��
L4.�/

� "
1
2 c [ cf. (5.48) ]; (7.40)

ess sup
t2.0;T/

��
�
hp.%"; #"/� p.%; #/

"

i

res

��
�
L1.�/

� "c [ cf. (5.45), (5.100) ]: (7.41)

• Estimates based on energy dissipation:

k�"kMC.Œ0;T���/ � "2c [ cf. (5.50) ]; (7.42)

Z T

0

ku"k2W1;2
0 .�IR3/ dt � c [ cf. (5.51) ]; (7.43)

Z T

0

��
�
#" � #
"

��
�
2

W1;2.�/
dt � c [ cf. (5.52) ] ; (7.44)

Z T

0

��
�

log.#"/� log.#/

"

��
�
2

W1;2.�/
dt � c [ cf. (5.53) ] : (7.45)

• Entropy estimates:

ess sup
t2.0;T/

�
�
�
h%"s.%"; #"/

"

i

res

�
�
�
L1.�/

dt � "c [ cf. (5.44) ]; (7.46)

Z T

0

�
��
h%"s.%"; #"/

"

i

res

�
��
q

Lq.�/
dt � c for a certain q > 1 [ cf. (5.54) ]; (7.47)



7.4 Analysis of Acoustic Waves 275

Z T

0

�
��
h%"s.%"; #"/

"
u"
i

res

�
��
q

Lq.�IR3/ dt � c for a certain q > 1 [ cf. (5.55) ];

(7.48)Z T

0

�
�
�
h�.#"/
#"

i

res

rx#"

"

�
�
�
q

Lq.�IR3/ dt ! 0 for a certain q > 1 [ cf. (5.56) ]:

(7.49)

Let us recall that the “essential” component Œh�ess of a function h and its “residual”
counterpart Œh�res have been introduced in (4.44), (4.45).

We conclude with the estimate on the “measure of the residual set” established
in (5.46), specifically,

ess sup
t2.0;T/

jM"
resŒt�j � "2c; (7.50)

with M"
resŒt� � � introduced in (4.43).

7.4 Analysis of Acoustic Waves

7.4.1 Acoustic Equation

The acoustic equation governing the time oscillations of the gradient part of the
velocity field is essentially the same as in Chap. 5. However, a refined analysis to be
performed below requires a more elaborate description of the “small” terms as well
as the knowledge of the precise rate of convergence of these quantities toward zero.

We start rewriting the equation of continuity (7.5) in the form
Z T

0

Z

�

�
"
%" � %

"
@t' C %"u" � rx'

�
dx dt D �

Z

�

"
%0;" � %

"
dx (7.51)

for any ' 2 C1
c .Œ0;T/ ��/.

Similarly, the momentum equation (7.29) can be written as

Z T

0

Z

�

"%"u" � @t' dx dt (7.52)

C
Z T

0

Z

�

�@p.%; #/
@%

h%" � %

"

i

ess
C @p.%; #/

@#

h#" � #
"

i

ess
� %F

�
divx' dx dt

�
Z T

0

Z

�

"S" W rx' dx dt D �"
Z

�

%0;"u0;" � ' dx

C"
Z T

0

Z

�

G
"
1 W rx' dx dt C "

Z T

0

Z

�

G2
" � ' dx dt

C
Z T

0

Z

�

�
G3" C G4"

�
divx' dx dt;
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for any ' 2 C1
c .Œ0;T/ ��IR3/, where we have set

G
1
" D �%"u" ˝ u"; G2

" D % � %"
"

rxF; (7.53)

G3" D � Œ p.%"; #"/�res

"
; (7.54)

and

G4" D @p.%; #/

@%

h%" � %

"

i

ess
C @p.%; #/

@#

h#" � #
"

i

ess
�
� Œ p.%"; #"/�ess � p.%; #/

"

�
:

(7.55)

It is important to notice that validity of (7.52) can be extended to the class of test
functions satisfying

' 2 C1
c .Œ0;T� ��IR3/; 'j@� D 0 (7.56)

by means of a simple density argument. Indeed, in accordance with the integrability
properties of the weak solutions established in Theorem 3.2, it is enough to use the
density of C1

c .�/ in W1;p
0 .�/ for any finite p.

Since u" 2 L2.0;TIW1;2
0 .�IR3//, in particular, the trace of u" vanishes on the

boundary, we are allowed to use the Gauss-Green theorem to obtain

Z T

0

Z

�

"S" W rx' dx dt D �"
Z T

0

Z

�

2.#/

%
%"u" � divxŒŒrx'�� dx dt (7.57)

C
Z T

0

Z

�

2".#/

%
.%" � %/u" � divxŒŒrx'�� dx dt

C
Z T

0

Z

�

"
�
.#"/ � .#/

��
rxu" C rx

?u" � 2

3
divxu"I

�
W rx' dx dt

for any ' as in (7.56), where we have introduced the notation

ŒŒM�� D 1

2

h
M C M

T � 2

3
traceŒM� I

i
:
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In a similar fashion, the entropy balance (7.31) can be rewritten as

Z T

0

Z

�

"
�%"s.%"; #"/� %"s.%; #/

"

�
@t' dx dt (7.58)

D �
Z

�

"
�%0;"s.%0;"; #0;"/� %0;"s.%; #/

"

�
'.0; �/ dx� < �"I' >ŒMIC�.Œ0;T���/

C
Z T

0

Z

�

��.#"/
#"

rx#" C
�
%"s.%; #/� %"s.%"; #"/

�
u"
�

� rx' dx dt

for any ' 2 C1
c .Œ0;T/ ��/.

Summing up relations (7.51)–(7.58) we obtain, exactly as in Sect. 5.4.3, a linear
hyperbolic equation describing the propagation of acoustic waves.

� ACOUSTIC EQUATION:

Z T

0

Z

�

�
"r"@t' C V" � rx'

�
dx dt (7.59)

D �
Z

�

"r0;"'.0; �/ dx C A

!

� Z T

0

Z

�

G"
5 � rx' dx dt� < �"; ' >

�

for any ' 2 C1
c .Œ0;T/ ��/,

Z T

0

Z

�

�
"V" � @t' C !r"divx' C "DV" � divxŒŒrx'��

�
dx dt (7.60)

D �
Z

�

"V0;" � '.0; �/ dx

C
Z T

0

Z

�

�
G"
6 � divxŒŒrx'��C G

"
7 W rx' C G"8divx' C G"

9 � '
�

dx dt

for any ' 2 C1
c .Œ0;T/ � R

3IR3/, 'j@� D 0,

where we have set

r" D 1

!

�
!
%" � %
"

C A%"
s.%"; #"/� s.%; #/

"
� %F

�
;V" D %"u"; (7.61)

r0;" D 1

!

�
!
%0;" � %
"

C A%0;"
s.%0;"; #0;"/� s.%; #/

"
� %F

�
;V0;" D %0;"u0;";

(7.62)
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with

! D @%p.%; #/C j@#p.%; #/j2
%2 @#s.%; #/

; A D @#p.%; #/

% @# s.%; #/
; D D 2.#/

%
: (7.63)

Note that the integral identities (7.59), (7.60) represent a weak formulation of
Eq. (7.1), where the “small” terms read as follows:

G"
5 D �.#"/

#"
rx#" C

�
%"s.%; #/� %"s.%"; #"/

�
u"; (7.64)

G"
6 D "D.%" � %/u"; (7.65)

G
"
7 D 2"..#"/� .#//ŒŒrxu"�� � "%"u" ˝ u"; (7.66)

G"8 D A%"
h s.%"; #"/� s.%; #/

"

i

res
�
hp.%"; #"/

"

i

res
(7.67)
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s.%"; #"/� s.%; #/

"

i

ess

�%
�@s.%; #/

@%

h%" � %
"

i

ess
C @s.%; #/

@#

h#" � #
"

i

ess

�o

�
n Œ p.%"; #"/�ess � p.%; #/

"
�
�@p.%; #/

@%

h%" � %

"

i

ess
C @p.%; #/

@#

h#" � #
"

i

ess

�o

C!
h%" � %

"

i

res
;

and

G"
9 D .% � %"/rxF: (7.68)

7.4.2 Spectral Analysis of the Acoustic Operator

In this part, we are concerned with the spectral analysis of the linear operator
associated to problem (7.59), (7.60), namely we examine the differential operator

�
v

w

�
7! A

�
v

w

�
C "B

�
v

w

�
; (7.69)
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with

A
�
v

w

�
D
�
!divxw

rxv

�
; B

�
v

w

�
D
�

0

DdivxŒŒrxw��

�

that can be viewed as the formal adjoint of the generator in (7.59), (7.60). In
accordance with (7.19), we impose the homogeneous Dirichlet boundary condition
for w,

wj@� D 0: (7.70)

Let us start with the limit eigenvalue problem

A
�
v

w

�
D �

�
v

w

�
; meaning

8
<

:

!divxw D �v

rxv D �w

9
=

;
(7.71)

which can be equivalently reformulated as

��xv D ƒv; ƒ D ��
2

!
; (7.72)

where the boundary condition (7.70) transforms to rxvj@� D 0, in particular,

w � nj@� D rxv � nj@� D 0: (7.73)

Note that the null space (kernel) of A is

KerŒA� D
�

spanf1g
L2� .�IR3/

�
(7.74)

D f.v;w/ j v D const; w 2 L2.�IR3/; divxw D 0; w � nj@� D 0g:

As is well-known, the Neumann problem (7.72), (7.73) admits a countable set of
real eigenvalues fƒng1

nD0,

0 D ƒ0 < ƒ1 < ƒ2 : : : ;

where the associated family of real eigenfunctions fvn;mg1;mn
nD0;mD1 forms an orthonor-

mal basis of the Hilbert space L2.�/. Moreover, we denote

En D spanfvn;mgmn
mD1; n D 0; 1; : : :

the eigenspace corresponding to the eigenvalueƒn of multiplicity mn. In particular,
m0 D 1, E0 D spanf1g (see Theorem 11.9 in Appendix).
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Under hypothesis (7.32), Proposition 7.1 implies that v0 D 1=
pj�j is the only

eigenfunction that satisfies the supplementary boundary condition rxv0j@� D 0.
Thus the term "B, together with (7.70), may be viewed as a singular perturbation
of the operator A.

Accordingly, the eigenvalue problem (7.71), (7.73) admits a system of
eigenvalues

�˙n D ˙i
p
!ƒn; n D 0; 1; : : :

lying on the imaginary axis. The associated eigenspaces are

8
<̂

:̂

spanf1g � L2� .�IR3/ for n D 0;

span
n
.vn;m;w˙n;m/ D 1

�
˙n

rxvn;m

omn

mD1 for n D 1; 2; : : :

9
>=

>;

Here and hereafter, we fix n > 0 and set

� D �n D i
p
!ƒn; v D vn;1; w D wn;1 D 1

�n
rxvn;1; (7.75)

together with

E D En D spanfv.1/; : : : ; v.m/g; v. j/ D vn; j; m D mn: (7.76)

In order to match the incompatibility of the boundary conditions (7.70), (7.73),
we look for “approximate” eigenfunctions of the perturbed problem (7.80), (7.82)
in the form

v" D .vint;0 C vbl;0/C p
".vint;1 C vbl;1/; (7.77)

w" D .wint;0 C wbl;0/C p
".wint;1 C wbl;1/; (7.78)

where we set

vint;0 D v; wint;0 D w: (7.79)

The functions v", w" are determined as solutions to the following approximate
problem.

� APPROXIMATE EIGENVALUE PROBLEM:

A
�
v"

w"

�
C "B

�
v"

w"

�
D �"

�
v"

w"

�
C p

"

�
s1"
s2"

�
;
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meaning,

8
<

:

!divxw" D �"v" C p
"s1";

rxv" C "DdivxŒŒrxw"�� D �"w" C p
"s2";

9
=

;
(7.80)

where

�" D �0 C p
"�1; with �0 D �; (7.81)

supplemented with the homogeneous Dirichlet boundary condition

w"j@� D 0: (7.82)

There is a vast amount of literature, in particular in applied mathematics, devoted
to formal asymptotic analysis of singularly perturbed problems based on the so-
called WKB (Wentzel-Kramers-Brilbuin) expansions for boundary layers similar
to (7.77), (7.78). An excellent introduction to the mathematical aspects of the theory
is the book by Métivier [211]. The “interior” functions vint;k D vint;k.x/, wint;k D
wint;k.x/ depend only on x 2 �, while the “boundary layer” functions vbl;k.x;Z/ D
vbl;k.x;Z/, wbl;k D wbl;k.x;Z/ depend on x and the fast variable Z D d.x/=

p
",

where d is a generalized distance function to @�,

d 2 C3.�/; d.x/ D
8
<

:

distŒx; @�� for all x 2 � such that distŒx; @�� � ı;

d.x/ 	 ı otherwise:
(7.83)

Note that the distance function enjoys the same regularity as the boundary @�,
namely as the function h appearing in hypothesis (7.32).

The rest of this section is devoted to identifying all terms in the asymptotic
expansions (7.77), (7.78), the remainders s1" , s

2
" , and the value of �1. In accordance

with the heuristic arguments in the introductory part of this chapter, we expect to
recover �1 ¤ 0, specifically, ReŒ�1� < 0 yielding the desired exponential decay rate
of order

p
" (no contradiction with the sign of ReŒ�"� in the introductory section

as the elliptic part of problem (7.80)–(7.82) has negative spectrum!). This rather
tedious task is accomplished in several steps.

Differential Operators Applied to the Boundary Layer Correction Functions
To avoid confusion, we shall write rxwbl;k.x; d.x/=

p
"/ for the gradient of the

composed function x 7! wbl;k.x; d.x/=
p
"/, while rxwbl;k.x;Z/, @Zwbl;k.x;Z/ stand
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for the differential operators applied to a function of two variables x and Z. It is a
routine matter to compute:

ŒŒrxwbl;k.x; d.x/=
p
"/�� D ŒŒrxwbl;k.x;Z/��C

1

2
p
"

�
@Zwbl;k.x;Z/˝ rxd C rxd ˝ @Zwbl;k.x;Z/ � 2

3
@Zwbl;k.x;Z/ � rxd I

�
:

Similarly, we get

divxŒwbl;k.x; d.x/=
p
"/� D divxwbl;k.x;Z/C 1p

"
@Zwbl;k.x;Z/ � rxd.x/;

rxŒv
bl;k.x; d.x/=

p
"/� D rxv

bl;k.x;Z/C 1p
"
@Zv

bl;k.x;Z/rxd.x/;

and

divxŒŒrxwbl;k.x; d.x/=
p
"/�� D divxŒŒrxwbl;k.x;Z/��

C 1p
"

n
Œ@Zrxwbl;k.x;Z/�rxd.x/C 1

6
.@Zdivxwbl;k.x;Z//rxd.x/

C1

6
Œ@Zrx

Twbl;k.x;Z/�rxd.x/

C1

2
@Zwbl;k.x;Z/�xd.x/C 1

6
Œr2

x d.x/�@Zw
bl;k.x;Z/

o

C 1

2"

n
@2Zw

bl;k.x;Z/jrxd.x/j2 C 1

3
@2Zw

bl;k.x;Z/ � rxd.x/rxd.x/
o

for k D 0; 1, where Z stands for d.x/=
p
".

Consequently, substituting ansatz (7.77), (7.78) in (7.80), (7.81), we arrive at the
following system of equations:

!divxwint;1.x/ D �0vint;1.x/C �1vint;0.x/; (7.84)

rxv
int;1.x/ D �0wint;1.x/C �1wint;0.x/; (7.85)

@Zwbl;0.x;Z/ � rxd.x/ D 0; (7.86)

!
�
divxwbl;0.x;Z/C @Zwbl;1.x;Z/ � rxd.x/

� D �0vbl;0.x;Z/; (7.87)

@Zv
bl;0.x;Z/rxd.x/ D 0; (7.88)
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and
�
rxv

bl;0.x;Z/C @Zv
bl;1.x;Z/rxd.x/

�
(7.89)

CD

2

�
@2Zw

bl;0.x;Z/jrxd.x/j2 C 1

3
@2Zw

bl;0.x;Z/ � rxd.x/rxd.x/
�

D �0wbl;0.x;Z/:

Moreover, the remainders s1" , s
2
" are determined by means of (7.80) as

s1" D divx.wbl;1.x;Z//� �0vbl;1.x;Z/

��1vbl;0.x;Z/ � p
"�1

�
vint;1.x/C vbl;1.x;Z/

�
;

(7.90)

s2" D D
n
Œ@Zrxwbl;0.x;Z/�rxd.x/C 1

6
Œ@Zdivxwbl;0.x;Z/�rxd.x/ (7.91)

C1

6
Œ@Zrx

Twbl;0.x;Z/�rxd.x/C 1

2
@Zwbl;0.x;Z/�xd.x/

C1

6
Œr2

x d.x/�@Zw
bl;0.x;Z/C 1

2
@2Zw

bl;1.x;Z/jrxd.x/j2

C1

6
@2Zw

bl;1.x;Z/ � rxd.x/rxd.x/
o

Crxv
bl;1.x;Z/ � �0wbl;1.x;Z/ � �1wbl;0.x;Z/

Cp
"
n
D
�

divxŒŒrxwint;0.x/��C divxŒŒrxwbl;0.x;Z/��C

Œ@Zrxwbl;1.x;Z/�rxd.x/C 1

6
Œ@Zdivxwbl;1.x;Z/�rxd.x/

C1

6
Œ@Zrx

Twbl;1.x;Z/�rxd.x/

C1

2
@Zwbl;1.x;Z/�xd.x/C 1

6
Œr2

x d.x/�@Zw
bl;1.x;Z/

�

��1wint;1.x/ � �1wbl;1.x;Z/
o

C"
n
divxŒŒrxwint;1.x/��C divxŒŒrxwbl;1.x;Z/��

o
;

where Z D d.x/=
p
".

Finally, in agreement with (7.82), we require

wbl;k.x; 0/C wint;k.x; 0/ D 0 for all x 2 @�; k D 0; 1: (7.92)
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Determining the Zeroth Order Terms System (7.84)–(7.89) consists of six
equations for the unknowns vbl;0, wbl;0, vint;1, wint;1, and vbl;1, wbl;1. Note that, in
agreement with (7.79),

!divxwint;0 D �0vint;0; �0wint;0 D rvint;0;

wint;0 � nj@� D rxv
int;0 � nj@� D 0:

(7.93)

Moreover, since the matrix fR
@�

rxv.i/ � rxv. j/ dSxgmi;jD1 is diagonalizable, the basis
fv.1/; : : : ; v.m/g of the eigenspace E introduced in (7.75), (7.76) may be chosen in
such a way that

Z

�

v.i/v. j/ dx D ıi; j;

Z

@�

rxv.i/ � rxv. j/ dSx D 0 for i ¤ j; (7.94)

where vint;0 D v.1/.
Since there are no boundary conditions imposed on the component v, we can take

vbl;0.x;Z/ � vbl;1.x;Z/ � 0; (7.95)

in particular, Eq. (7.88) holds.
Furthermore, Eq. (7.86) requires the quantity wbl;0.x;Z/ � rxd.x/ to be inde-

pendent of Z. On the other hand, by virtue of (7.73), (7.92), the function x 7!
wbl;0.x; d.x/=

p
"/ must have zero normal trace on @�. Since d.x/ D 0, rxd.x/ D

�n.x/ for any x 2 @�, we have to take

wbl;0.x;Z/ � rd.x/ D 0 for all x 2 �;Z 	 0: (7.96)

Consequently, Eq. (7.89) reduces to

D

2
@2Zw

bl;0.x;Z/jrxd.x/j2 D �0wbl;0.x;Z/ to be satisfied for Z > 0: (7.97)

For a fixed x 2 �, relation (7.97) represents an ordinary differential equation
of second order in Z, for which the initial conditions wbl;0.x; 0/ are uniquely
determined by (7.92), namely

wbl;0.x; 0/ D �wint;0.x/ for all x 2 @�: (7.98)

It is easy to check that problem (7.97), (7.98) admits a unique solution that decays
to zero for Z ! 1, specifically,

wbl;0.x;Z/ D ��.d.x//wint;0 .x � d.x/rxd.x// exp.��Z/; (7.99)
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where � 2 C1Œ0;1/,

�.d/ D
8
<

:

1 for d 2 Œ0; ı=2�

0 if d > ı;
(7.100)

and

�2 D 2�0

D
; ReŒ�� > 0: (7.101)

It seems worth-noting that formula (7.99) is compatible with (7.96) as for x 2 �

the point x � rxd.x/=d.x/ is the nearest to x on @� as soon as d.x/ coincides with
distŒx; @��.

First Order Terms Equation (7.87), together with the ansatz made in (7.95), give
rise to

@Z

�
wbl;1.x;Z/ � rxd.x/

�
D �divx.wbl;0.x;Z//: (7.102)

In view of (7.99), Eq. (7.102) admits a unique solution with exponential decay for
Z ! 1 for any fixed x 2 �, namely

wbl;1.x;Z/ � rxd.x/ D 1

�
divx.wbl;0.x;Z//:

Thus we can set

wbl;1.x;Z/ D 1

�
divx.wbl;0.x;Z//rxd.x/C H.x/ exp.��Z/; (7.103)

for a function H such that

H.x/ � rxd.x/ D 0 (7.104)

to be determined below. Note that, in accordance with formula (7.99), jrxd.x/j D
jrxdistŒx; @��j D 1 on the set where wbl;0 ¤ 0.

Determining �1 Our ultimate goal is to identify vint;1, wint;1, and, in particular �1,
by help of equations of (7.84), (7.85). In accordance with (7.92), the normal trace
of the quantity wint;1.x/ C wbl;1.x; 0/ must vanish for x 2 @�; whence, by virtue
of (7.103),

0 D wint;1.x/ � n.x/C wbl;1.x; 0/ � n.x/ D wint;1.x/ � n.x/ � 1

�
divx.wbl;0.x; 0//

(7.105)

for any x 2 @�.
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As a consequence of (7.93), system (7.84), (7.85) can be rewritten as a second
order elliptic equation

�xv
int;1 Cƒvint;1 D 2

�1�0

!
vint;0 in �; (7.106)

where ƒ D �.�0/2=!. Problem (7.106) is supplemented with the non-
homogeneous Neumann boundary condition determined by means of (7.93), (7.85),
and (7.105), namely

rxv
int;1 � n.x/ D �0

�
divx.wbl;0.x; 0// for all x 2 @�: (7.107)

According to the standard Fredholm alternative for elliptic problems (see
Sect. 11.3.2 in Appendix), system (7.106), (7.107) is solvable as long as

!

�

Z

@�

divx.wbl;0.x; 0//v.k/ dSx D 2�1
Z

�

vint;0v.k/ dx for k D 1; : : : ;m;

where fv.1/; : : : ; v.m/g is the system of eigenvectors introduced in (7.94). In accor-
dance with our agreement v.1/ D vint;0, therefore we set

�1 D !

2�

Z

@�

divx.wbl;0.x; 0//vint;0 dSx (7.108)

and verify that
Z

@�

divx.wbl;0.x; 0//v.k/ dSx D 0 for k D 2; : : : ;m: (7.109)

To this end, use (7.93), (7.99) to compute

divx.wbl;0.x; 0// D �divx
�
wint;0.x � d.x/rxd.x//

�

D � 1

�0
divx

�rxv
int;0.x � d.x/rxd.x//

�

D � 1

�0
r2
x v

int;0 .x � d.x/rxd.x// W
�
I � rxd.x/˝ rxd.x/� d.x/r2d.x/

�

whenever distŒx; @�� < ı=2. Consequently,
Z

@�

divx.wbl;0.x; 0//v.k/ dSx

D � 1

�0

Z

@�

r2
x v

int;0 W .I � n ˝ n/v.k/ dSx

D 1

�0

Z

@�

�Sv
int;0v.k/ dSx D 1

�0

Z

@�

rxv
int;0 � rxv.k/ dSx;
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where the symbol �S denotes the Laplace-Beltrami operator on the (compact)

Riemannian manifold @�. Indeed expression
h
r2
x v

int;0 W .n ˝ n � I/
i

represents

the standard “flat” Laplacian of the function vint;0 with respect to the tangent plane
at each point of @� that coincides (up to a sign) with the associated Laplace-
Beltrami operator on the manifold @� applied to the restriction of vint;0j@� provided
rxv

int;0 � n D 0 on @� (see Gilbarg and Trudinger [136, Chap. 16]).
In accordance with (7.94), we infer that

Z

@�

rxv
int;0 � rxv.k/ dSx D

8
<

:

R
@�

jrxv
int;0j2 dSx if k D 1;

0 for k D 2; : : : ;m:

In particular, we get (7.109), and, using (7.72), (7.101),

�1 D �� D

4ƒ

Z

@�

jrxv
int;0j2 dSx:

Seeing that ƒ > 0, and, by virtue of (7.101), ReŒ�� > 0, we utilize
hypothesis (7.32) together with Proposition 7.1 to deduce the desired conclusion

ReŒ�1� < 0: (7.110)

This is the crucial point of the proof of Theorem 7.1.
Having identified vint;1 by means of (7.106), (7.107) we use (7.85) to compute

wint;1 D 1

�0

�rxv
int;1 � �1wint;0� :

Finally, in order to meet the boundary conditions (7.92), we set

H.x/ D ��.d.x//
�
wint;1.x/� .wint;1 � rxd.x//rxd.x/

�
for x 2 �

in (7.103), with � given by (7.100).

Conclusion By a direct inspection of (7.90), (7.91), where all quantities are
evaluated by means (7.95), (7.99), (7.103), we infer that

js1"j C js2"j � c

�p
"C exp

�
�ReŒ��

d.x/p
"

��
;

in particular s1" , s
2
" are uniformly bounded in � and tend to zero uniformly on any

compact K � �.
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The results obtained in this section are summarized in the following assertion.

Proposition 7.2 Let � be given through (7.17), with

Btop D 0; Bbottom D �� � h;

h 2 C3.T 2/; jhj < �; h 6� const:

Assume that vint;0, wint;0, and �0 ¤ 0 solve the eigenvalue problem (7.71), (7.73).
Then the approximate eigenvalue problem (7.80)–(7.82) admits a solution in the

form (7.77), (7.78), where

• the functions vint;1 D vint;1.x/, wint;1 D wint;1.x/ belong to the class C2.�/;
• the boundary layer corrector functions vbl;0 D vbl;1 D 0, wbl;0 D wbl;0.x;Z/,

wbl;1 D wbl;1.x;Z/ are all of the form h.x/ exp.��Z/, where h 2 C2.�IR3/, and
ReŒ�� > 0;

• the approximate eigenvalue �" is given by (7.81), where

ReŒ�1� < 0I (7.111)

• the remainders s1" , s
2
" satisfy

s1" ! 0 in Lq.�/; s2" ! 0 in Lq.�IR3/ as " ! 0 for any 1 � q < 1:

(7.112)

7.5 Strong Convergence of the Velocity Field

We are now in a position to establish the main result of this chapter stated in
Theorem 7.1, namely

u" ! U strongly in L2..0;T/ ��IR3/: (7.113)

We recall that, in accordance with (7.43),

u" ! U weakly in L2.0;TIW1;2
0 .�IR3//I (7.114)

at least for a suitable subsequence. Moreover, exactly as in Sect. 5.3.1, we have

divx U D 0:

Consequently, it remains to control possible oscillations of the velocity field in
time. To this end, similarly to Chap. 5, the problem is reduced to a finite number
of acoustic modes that can be treated by means of the spectral theory developed in
the preceding section.
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7.5.1 Compactness of the Solenoidal Component

It follows from the uniform estimates (7.36)–(7.38) that

%"u" ! %U weakly-(*) in L1.0;TIL 5
4 .�IR3//: (7.115)

Using quantities

'.t; x/ D  .t/�.x/;  2 C1
c .0;T/; � 2 C1

c .�/; divx� D 0

as test functions in the momentum equation (7.29) we deduce, by means of the
standard Arzelà-Ascoli theorem, that the scalar functions

t 7!
Z

�

%"u" � � dx are precompact in CŒ0;T�:

Note that
Z

�

1

"
%"rxF � � dx D

Z

�

%" � %
"

rxF� dx

as � is a divergenceless vector field.
Consequently, by help of (7.115) and a simple density argument, we infer that

the family

t 7!
Z

�

%"u" � HŒ�� dx is precompact in CŒ0;T�

for any � 2 C1
c .�IR3/, where H denotes the Helmholtz projection introduced in

Sect. 5.4.1. In other words,

HŒ%"u"� ! %HŒU� D %U in Cweak.Œ0;T�IL 5
4 .�IR3//: (7.116)

Let us point out that HŒ�� is not an admissible test function in (7.29), however, it
can be approximated in Lp.�IR3/ by smooth solenoidal functions with compact
support for finite p (see Sect. 11.7 in Appendix).

Thus, combining relations (7.114), (7.116), we infer

Z T

0

Z

�

HŒ%"u"� � HŒu"� dx dt ! %

Z T

0

Z

�

jHŒU�j2 dx dt;

which, together with estimates (7.37), (7.38), gives rise to

Z T

0

Z

�

jHŒu"�j2 dx dt !
Z T

0

Z

�

jUj2 dx dt
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yielding, finally, the desired conclusion

HŒu"� ! U (strongly) in L2..0;T/ ��IR3/: (7.117)

7.5.2 Reduction to a Finite Number of Modes

Exactly as in (5.146), we decompose the space L2 as a sum of the subspace of
solenoidal vector fields L2� and gradients L2g:

L2.�IR3/ D L2� .�IR3/˚ L2g.�IR3/:

Since we already know that the solenoidal components of the velocity field u" are
precompact in L2, the proof of (7.113) reduces to showing

H?Œu"� ! H?ŒU� D 0 in L2..0;T/ ��IR3/:

Moreover, since the embedding W1;2
0 .�IR3/ ,! L2.�IR3/ is compact, it is enough

to show

h
t 7!

Z

�

u" � w dx
i

! 0 in L2.0;T/; (7.118)

for any fixed w D 1
�
rxv, where v, w, � ¤ 0 solve the eigenvalue prob-

lem (7.71), (7.73) (cf. Sect. 5.4.6).
In view of (7.37), (7.38), relation (7.118) follows as soon as we show

h
t 7!

Z

�

%"u" � w dx
i

! 0 in L2.0;T/;

where the latter quantity can be expressed by means of the acoustic equa-
tion (7.59), (7.60). In addition, since the solutions of the eigenvalue prob-
lem (7.71), (7.73) come in pairs Œv;w; ��, Œv;�w;���, it is enough to show

h
t 7!

Z

�

�
r"v C V" � w

�
dx
i

! 0 in L2.0;T/ (7.119)

for any solution v, w of (7.71), (7.73) associated to an eigenvalue � ¤ 0, where r",
V" are given by (7.61).

Finally, in order to exploit the information on the spectrum of the perturbed
acoustic operator, we claim that (7.119) can be replaced by

h
t 7!

Z

�

�
r"v" C V" � w"

�
dx
i

! 0 in L2.0;T/; (7.120)
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where v", w" are the solutions of the approximate eigenvalue problem (7.80), (7.82)
constructed in the previous section. Indeed, by virtue of Proposition 7.2, we have

v" ! v in C.�/; w" ! w in Lq.�IR3/ for any 1 � q < 1:

Accordingly, the proof of Theorem 7.1 reduces to showing (7.120). This will be
done in the following section.

7.5.3 Strong Convergence

In order to complete the proof of Theorem 7.1, our ultimate goal consists in
showing (7.120). To this end, we make use of the specific form of the acoustic
equation (7.59), (7.60), together with the associated spectral problem (7.80), (7.82).
Taking the quantities  .t/v".x/,  .t/w".x/,  2 C1

c .0;T/, as test functions
in (7.59), (7.60), respectively, we obtain

Z T

0

�
"�"@t C �"�" 

�
dt C p

"

Z T

0

 

Z

�

�
r"s

1
" C V" � s2"

�
dx dt D

7X

mD1
I"m;

(7.121)
where we have set

�".t/ D
Z

�

�
r".t; �/v" C V".t; �/ � w"

�
dx;

and the symbols I"m stand for the “small” terms:

I"1 D A

!

Z T

0

 

Z

�

h�.#"/
#"

rx#" C
�
%"s.%; #/� %"s.%"; #"/

�
u"
i

� rxv" dx dt;

I"2 D �A

!
< �"I v" >ŒMIC�.Œ0;T���/;

I"3 D D
Z T

0

 

Z

�

"2
�%" � %

"

�
u" � divxŒŒrxw"�� dx dt;

I"4 D
Z T

0

 

Z

�

"2
�.#"/ � .#/

"

�
ŒŒrxu"�� W rxw" dx dt;

I"5 D �
Z T

0

 

Z

�

"%"u" ˝ u" W rxw" dx dt;

I"6 D
Z T

0

 

Z

�

"
�% � %"

"

�
rxF � w" dx dt;
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and

I"7 D
Z T

0

 

Z

�

G"8 divxw" dx dt;

where G"8 is given by (7.67).
Our aim is to show that each of the integrals can be written in the form

I" �
Z T

0

 .t/
�
"
".t/C "1Cˇ�".t/

�
dt;

where
8
<

:

f
"g">0 is bounded in Lq.0;T/ for a certain q > 1;

f�"g">0 is bounded in L1.0;T/; and ˇ > 0:

9
=

;

This rather tedious task, to be achieved by means of Proposition 7.2 combined with
the uniform estimates listed in Sect. 7.3, consists in several steps as follows:

(i) By virtue of Hölder’s inequality, we have

ˇ
ˇ
ˇ
Z

�

h�.#"/
#"

rx#" � rxv" dx
ˇ
ˇ
ˇ (7.122)

� "kv"kW1;1.�/

ˇ
ˇ
ˇ
Z

�

h�.#"/
#"

i

ess

ˇ
ˇ
ˇ
rx#"

"

ˇ
ˇ
ˇ dx

ˇ
ˇ
ˇC

ˇ
ˇ
ˇ
Z

�

h�.#"/
#"

i

res

ˇ
ˇ
ˇ
rx#"

"

ˇ
ˇ
ˇ dx

ˇ
ˇ
ˇ

D "
"1;1; with f
"1g">1 bounded in Lq.0;T/ for a certain q > 1;

where we have used estimates (7.44) and (7.49). Note that, in accordance
with Proposition 7.2, both correction terms vbl;0, vbl;1 vanish identically, in
particular,

kv"kW1;1.�/ � c uniformly in ": (7.123)

In a similar way,

ˇ
ˇ
ˇ
Z

�

�
%"s.%; #/ � %"s.%"; #"/

�
u" � rxv" dx

ˇ
ˇ
ˇ (7.124)

� "kv"kW1;1.�/

"Z

�

ˇ
ˇ
ˇ
h%"s.%; #/ � %"s.%"; #"/

"

i

ess

ˇ
ˇ
ˇju"j dx

C
Z

�

ˇ̌
ˇ
h%"s.%"; #"/

"

i

res
u"
ˇ̌
ˇ dx dt C js.%; #/j

Z

�

h%"
"

i

res
ju"j dx

�
D "
"1;2:
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Thus we can use Proposition 5.2, together with estimates (7.37)–
(7.39), (7.43), (7.48), (7.50), in order to conclude that

f
"1;2g">0 is bounded in Lq.0;T/ for a certain q > 1:

Summing up (7.122), (7.124) we infer that

I"1 D "

Z T

0

 .t/
"1 .t/ dt; with f
"1g">0 bounded in Lq.0;T/ for a certain q > 1:

(7.125)

(ii) As a straightforward consequence of estimate (7.42) we obtain

I"2 D "2 < �"2 I >ŒMIC�Œ0;T� ; where f�"2g">0 is bounded in MCŒ0;T�:
(7.126)

(iii) Taking advantage of the form of wbl;0, wbl;1 specified in Proposition 7.2, we
obtain

k"divxŒŒrxw"�� kL1.�IR3/ � c

uniformly for " ! 0. This fact, combined with the uniform bounds established
in (7.37), (7.38), (7.43), and the standard embeddingW1;2.�/ ,! L6.�/, gives
rise to

I"3 D "

Z T

0

 .t/
"3 .t/ dt; (7.127)

where

f
"3g">0 is bounded in L2.0;T/:

(iv) Similarly to the preceding step, we deduce

kp
"w"kW1;1.�IR3/ � cI (7.128)

whence, by virtue of (7.40), (7.43), and (7.44),

I"4 D "3=2
Z T

0

 .t/�"4 .t/ dt; (7.129)

where

f�"4g">0 is bounded in L1.0;T/:
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(v) Probably the most delicate issue is to handle the integrals in I"5. To this end,
we first write

Z T

0

 

Z

�

"%"u" ˝ u" W rxw" dx dt

D
Z T

0

 

Z

�

"2
�%" � %

"

�
u" ˝ u" W rxw" dx dt C %

Z T

0

 

Z

�

"u" ˝ u" W rxw" dx dt;

where, by virtue of (7.37), (7.38), (7.43), and the gradient estimate established
in (7.128),

Z T

0

 

Z

�

"2
�%" � %

"

�
u" ˝ u" W rxw" dx dt D "3=2

Z T

0

 .t/�"5;1.t/ dt;

(7.130)

with

f�"5;1g">0 bounded in L1.0;T/:

On the other hand, a direct computation yields

Z

�

.u" ˝ u"/ W rxw" dx D �
Z

�

divxu"u" � w" dx �
Z

�

.rxu"u"/ � w" dx:

(7.131)

Now, we have

Z

�

divxu"u" � w" dx D
Z

�

divxu"Œu"�ess � w" dx C
Z

�

divxu"Œu"�res � w" dx;

where, in accordance with estimates (7.36), (7.43),

fdivxu"Œu"�essg">0 is bounded in L2.0;TIL1.�IR3//;

while

kdivxu"Œu"�reskL1.0;TIL1.�IR3//

� c"2=3krxu"kL2.0;TIL2.�IR3�3//ku"kL2.0;TIL6.�IR3//;

where we have used (7.43), the embeddingW1;2.�/ ,! L6.�/, and the bound
on the measure of the “residual set” established in (7.50).
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Applying the same treatment to the latter integral on the right-hand side
of (7.131) and adding the result to (7.130) we conclude that

I"5 D "3=2
Z T

0

 .t/�"5;1 dt C "

Z T

0

 .t/
"5 .t/ dt C "5=3
Z T

0

 .t/�"5;2 dt;

(7.132)
where

f
"5g">0 is bounded in L2.0;T/;

and

f�"5;1g">0; f�"5;2g">0 are bounded in L1.0;T/:

(vi) In view of estimates (7.37), (7.38), it is easy to check that

I"6 D "

Z T

0

 .t/
"6 .t/ dt; (7.133)

with

f
"6g">0 bounded in L1.0;T/:

(vii) Finally, in accordance with the first equation in (7.80) and Proposition 7.2,

kdivxw"kL1.�/ � cI

therefore relations (7.38)–(7.41), (7.46), together with Proposition 5.2, can be
used in order to conclude that

I"7 D "

Z T

0

 .t/
"7 .t/ dt; (7.134)

where

f
"7g">0 is bounded in L1.0;T/:

We are now in a position to use relation (7.121) in order to show (7.120). To
begin, we focus on the integral

p
"

Z T

0

 

Z

�

�
r"s

1
" C V" � s2"

�
dx
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appearing on the left-hand side of (7.121), with r", V" specified in (7.61). Writing

p
"

Z T

0

 

Z

�

�
r"s

1
" C V" � s2"

�
dx

D p
"

Z T

0

 

Z

�

�
Œr"�esss

1
" C Œr"�ress

1
" C .%"u"/ � s2"

�
dx

we can use the uniform estimates (7.36)–(7.41), together with pointwise conver-
gence of the remainders established in (7.112), in order to deduce that

p
"

Z T

0

 

Z

�

�
r"s

1
" C V" � s2"

�
dx D p

"

Z T

0

 .t/ˇ".t/ dt; (7.135)

where

ˇ" ! 0 in L1.0;T/: (7.136)

Next, we use a family of standard regularizing kernels

�ı.t/ D 1
ı
�
�

t
ı

�
; ı ! 0;

� 2 C1
c .�1; 1/; � 	 0;

R 1
�1 �.t/ dt D 1

in order to handle the “measure-valued” term in (7.121). To this end, we take �ı as
a test function in (7.121) to obtain

d

dt
�";ı � �"

"
�";ı D p

"h1";ı C h2";ı C 1p
"
h3";ı; (7.137)

where we have set

�";ı.t/ D
Z

R

�".t � s/ ı.s/ ds

for t 2 .ı;T � ı/.
In accordance with the uniform estimates (7.122)–(7.134), we have

fh1";ıg">0 bounded in L1.0;T/; fh2";ıg">0 bounded in Lp.0;T/ for a certain p > 1;

(7.138)

uniformly for ı ! 0, where we have used the standard properties of mollifiers
recorded in Theorem 11.3 in Appendix. Similarly, by virtue of (7.135), (7.136),

sup
ı>0

kh3";ıkL1.0;T/ � �."/; �."/ ! 0 for " ! 0: (7.139)
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Here all functions in (7.138), (7.139) have been extended to be zero outside
.ı;T � ı/.

The standard variation-of-constants formula yields

j�";ı.t/j � exp
�

ReŒ�"="�.t � ı/
�

ess sup
s2.0;T/

j�";ı.s/j C p
"

Z T

0

jh1";ı.s/j ds

C
Z t

ı

exp
�

ReŒ�"="�.t � s/
�
jh2";ı.s/j ds C

Z t

ı

1p
"

exp
�

ReŒ�"="�.t � s/
�
jh3";ı.s/j dsI

therefore letting first ı ! 0 and then " ! 0 yields the desired conclusion (7.120).
Note that, in accordance with (7.111),

ReŒ�"="� � � cp
"

for a certain c > 0;

in particular

Z t

0

1p
"

exp
�

ReŒ�"="�.t � s/
�

ds < c

uniformly for " ! 0. The proof of Theorem 7.1 is now complete.

7.6 Asymptotic Limit on Domains with Oscillatory
Boundaries and Complete Slip Boundary Conditions

Although the no-slip boundary condition (7.19) is probably the most widely
accepted for viscous fluids in contact with an impermeable boundary, it is sometimes
more convenient to approximate a complicated topography of the real physical
boundary by a smooth one endowed with a suitable wall law similar to the
slip boundary condition (5.15) rather than (7.19) (see Jaeger and Mikelic [158],
Mohammadi et al. [215], among others).

Similarly to the preceding part, we consider the infinite slab (7.17), (7.18), with
flat top and variable bottom determined through a function

Bbottom D �� � h.x1; x2/ � !".x1; x2/; !".x1; x2/ D 1

k."/
! .k."/x1; k."/x2/ ; ! 	 0

(7.140)

where h 2 C2.T 2/ is the same as in (7.18), ! 2 C2.T 2/, and k."/ is a sequence of
positive integers, k."/ ! 1 as " ! 0. Thus the functions !" are 2�=k."/-periodic,
with amplitude proportional to 1=k."/.
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We set

�" D
n
.x1; x2; x3/

ˇ
ˇ
ˇ .x1; x2/ 2 T 2; �� � h.x1; x2/� !".x1; x2/ < x3 < 0

o

(7.141)
and impose the following boundary conditions for the velocity:

8
<

:

ujfx3D0g D 0;

u � njfx3D���h.x1;x2/�!".x1;x2/g D 0; Sn � njfx3D���h.x1;x2/�!".x1;x2/g D 0:

9
=

;

(7.142)

The no-slip boundary condition is therefore prescribed only on the top part
while complete slip boundary conditions, used in the preceding Chaps. 5 and 6,
are required at the bottom part of �". Our goal is to show that (7.142) provides the
same effect as the no-slip boundary conditions provided the “oscillatory” part of the
boundary here represented by !" is non-degenerate, meaning not constant in any
direction. In particular, the velocities u" in the asymptotic low Mach number limit
will approach the limit profile u strongly with respect to the L1-topology.

We claim the following variant of Theorem 7.1.

� COMPACTNESS OF VELOCITIES ON DOMAINS WITH VARIABLE BOTTOMS:
THE COMPLETE SLIP BOUNDARY CONDITIONS

Theorem 7.2 Let �" be a family of domains determined through (7.140), (7.141),
where the “bottom” part of the boundary is given by functions h, ! satisfying

h; ! 2 C3.T 2/; jhj < �; h 6� const; ! 	 0; (7.143)

and ! is non-degenerate, specifically, for any w D Œw1;w2� ¤ 0 there is .x1; x2/ 2
T 2 such that

r!.x1; x2/ � w ¤ 0: (7.144)

Let

k."/ 	 "�m for a certain m > 1: (7.145)

Let F 2 W1;1.R3/ be given such that
Z

�

F dx D 0;

where

� D
n
.x1; x2; x3/

ˇ̌
ˇ .x1; x2/ 2 T 2; �� � h.x1; x2/ < x3 < 0

o
: (7.146)
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Assume that S, q as well as the thermodynamic functions p, e, and s are given
by (7.10)–(7.15), where P meets the structural hypotheses (7.23)–(7.25), while the
transport coefficients  and � satisfy (7.26), (7.27).

Finally, let f%";u"; #"g">0 be a family of weak solutions to the Navier-Stokes-
Fourier system satisfying (7.5)–(7.9) in .0;T/ � �", with the boundary condi-
tions (7.20), (7.142), with the initial data

%.0; �/ D %0;" D %C "%
.1/
0;"; u.0; �/ D u0;": #.0; �/ D #0;" D # C "#

.1/
0;" ;

where

% > 0; # > 0;

Z

�"

%
.1/
0;" dx D

Z

�"

#
.1/
0;" dx D 0 for all " > 0;

and
8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

%
.1/
0;" ! %

.1/
0 weakly-(*) in L1.R3/;

u0;" ! U0 weakly-(*) in L1.R3IR3/;

#
.1/
0;" ! #

.1/
0 weakly-(*) in L1.R3/:

9
>>>>>=

>>>>>;

Then, at least for a suitable subsequence,

u" ! U in L2..0;T/ ��IR3/; (7.147)

where U 2 L2.0;TIW1;2
0 .�IR3//, divxU D 0.

Remark It is worth noting that the limit velocity profile U satisfies the no-slip
boundary condition on both the top and the bottom part of the boundary of the
limit domain�. Similarly to the preceding part, we leave to the reader to show that
the limit quantities satisfy the Oberbeck-Boussinesq system introduced in Sect. 5.

Remark The weak solutions are defined exactly as in Sect. 7.2.1, with the obvious
modifications

u" 2 L2.0;TIW1;2.�"IR3/; u"jfx3D0g D 0; u" � njfx3D���h.x1;x2/�!".x1;x2/g D 0;

whereas the test functions ' in the momentum equation (7.29) are taken from the
space

' 2 C2.Œ0;T/ ��"IR3/; 'jfx3D0g D 0; ' � njfx3D���h.x1;x2/�!".x1;x2/g D 0:

Remark For the sake of simplicity, we have assumed that the initial data are defined
on the whole physical space R3. As � � �", the statement (7.147) makes sense.
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The rest of this chapter is devoted to the proof of Theorem 7.2. The idea is that
the rapidly oscillating boundary along with the effect of viscosity will force the fluid
to be at rest on the boundary of the limit domain; whence the methods developed in
Sects. 7.4, 7.5 can be applied.

7.7 Uniform Bounds

The uniform bounds on the sequence of solutions Œ%";u"� are essentially the same as
in Sect. 7.3. However, we should keep in mind that the underlying spatial domains
�" depend on the scaling parameter ". Accordingly, the constants appearing in
Korn’s and Poicaré’s inequality used in Sect. 7.3 may depend on ". Fortunately,
by virtue of hypotheses (7.140), (7.141), the family �" is uniformly Lipschitz,
and, consequently, the corresponding constants are the same for all �", see
Theorem 11.24 in Appendix. With this observation in mind, we report the following
list of estimates.

• Energy estimates:

ess sup
t2.0;T/

kp
%"u"kL2.�"IR3/ � c; (7.148)

ess sup
t2.0;T/

��
�
h%" � %

"

i

ess

��
�
L2.�"/

� c; (7.149)

ess sup
t2.0;T/

�
��
h%" � %

"

i

res

�
��
L
5
3 .�"/

� "
1
5 c; (7.150)

ess sup
t2.0;T/

��
�
h#" � #

"

i

ess

��
�
L2.�"/

� c; (7.151)

ess sup
t2.0;T/

�
�
�Œ#"�res

�
�
�
L4.�"/

� "
1
2 c; (7.152)

ess sup
t2.0;T/

�
�
�
hp.%"; #"/ � p.%; #/

"

i

res

�
�
�
L1.�"/

� "c: (7.153)

• Estimates based on energy dissipation:

k�"kMC.Œ0;T���"/ � "2c; (7.154)

Z T

0

ku"k2W1;2.�"IR3/ dt � c; (7.155)
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Z T

0

�
�
�
#" � #

"

�
�
�
2

W1;2.�"/
dt � c; (7.156)

Z T

0

�
�
�

log.#"/ � log.#/

"

�
�
�
2

W1;2.�"/
dt � c: (7.157)

• Entropy estimates:

ess sup
t2.0;T/

��
�
h%"s.%"; #"/

"

i

res

��
�
L1.�"/

dt � "c; (7.158)

Z T

0

�
�
�
h%"s.%"; #"/

"

i

res

�
�
�
q

Lq.�"/
dt � c for a certain q > 1; (7.159)

Z T

0

��
�
h%"s.%"; #"/

"
u"
i

res

��
�
q

Lq.�"IR3/
dt � c for a certain q > 1; (7.160)

Z T

0

�
�
�
h�.#"/
#"

i

res

rx#"

"

�
�
�
q

Lq.�"IR3/
dt ! 0 for a certain q > 1: (7.161)

7.8 Convergence of the Velocity Trace
on Oscillatory Boundary

Our goal is to show that the traces of the velocities fu"g">0 vanish on the boundary
of the limit domain� in the asymptotic limit " ! 0.

Proposition 7.3 Let �" be a family of domains satisfying the hypotheses of
Theorem 7.2.

Then
Z

fx3D���h.x1;x2/g
jvj2 dSx � c

1

k."/

Z

�"

jrxvj2 dx � c"m
Z

�"

jrxvj2 dx (7.162)

for any v 2 W1;2.�"IR3/ satisfying

v � njfx3D���h.x1;x2/�!".x1;x2/g D 0;

where the constant is independent of " ! 0.
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Proof Obviously, we can restrict ourselves to the strip

S" D
n
.x1; x2; x3/

ˇ
ˇ
ˇ .x1; x2/ 2 T 2;

� � � h.x1; x2/ � !".x1; x2/ < x3 < �� � h.x1; x2/C 1

k."/

o

containing the bottom part B of the boundary @�,

B D
n
x3 D �� � h.x1; x2/

ˇ
ˇ̌
.x1; x2/ 2 T 2

o
:

Next, writing

S" D [nDk."/�1;mDk."/�1
nD0;mD0 Sn;m" ;

Sn;m" D
n
.x1; x2; x3/

ˇ
ˇ̌ n

k."/
< x1 <

n C 1

k."/
;

m

k."/
< x2 <

m C 1

k."/
;

� � � h.x1; x2/� !".x1; x2/ < x3 < �� � h.x1; x2/C 1

k."/

o

we observe that it is enough to show (7.162) on each Sn;m" .
Finally, after the scaling x � k."/x and an obvious space shift, the problem

reduces to proving

Z

.x1;x2/2.0;1/2

Z

fx3D�".x1;x2/g
jvj2 dSx

� c
Z

.x1;x2/2.0;1/2

Z

f�".x1;x2/�!.x1;x2/<x3<�".x1;x2/C1g
jrxvj2 dx

(7.163)

for any v 2 W1;2.R3;R3/,

v � njx3D�".x1;x2/�!.x1;x2/ D 0 in the sense of traces;

where �" ! � in C1Œ0; 1�2 as " ! 0, and where � is an affine function.
Arguing by contradiction, we obtain a sequence v" 2 W1;2.R3;R3/,

v" � njx3D�".x1;x2/�!.x1;x2/ D 0 in the sense of traces;

g."/
Z

.x1;x2/2.0;1/2

Z

fx3D�".x1;x2/g
jv"j2 dSx

	
Z

.x1;x2/2.0;1/2

Z

f�".x1;x2/�!.x1;x2/<x3<�".x1;x2/C1g
jrxv"j2 dx;
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where g."/ ! 0 as " ! 0. In addition, we may assume
Z

.x1;x2/2.0;1/2

Z

f�".x1;x2/�!.x1;x2/<x3<�".x1;x2/C1g
jv"j2 dx D 1;

and

v" ! v weakly in W1;2.R3;R3/:

Consequently, in view of the compact embedding W1;2.KIR3/ ,! L2.KIR3/,
K � R

3 compact, the limit function v satisfies
Z

Q
jvj2 dx D 1; rxvjQ D 0; (7.164)

where

Q D
n
.x1; x2; x3/

ˇ̌
ˇ .x1; x2/ 2 .0; 1/2; �.x1; x2/ � !.x1; x2/ < x3 < �.x1; x2/C 1

o
:

Finally, we claim that

v � njfx3D�.x1;x2/�!.x1;x2/g D 0: (7.165)

Indeed seeing that

Z

.x1;x2/2.0;1/2

Z

f�".x1;x2/�!.x1;x2/<x3<�".x1;x2/C1g
.divxv"' � v" � rx'/ dx D 0

for any

' 2 C1.R3/; 'jx3D�".x1;x2/C1
we infer that

Z

.x1;x2/2.0;1/2

Z

Q
.divxv"' � v" � rx'/ dx D 0

for any

' 2 C1.R3/; 'jx3D�.x1;x2/C1;

which implies (7.165).
In view of (7.164), the limit v is constant in Q, which is incompatible with (7.165)

as long as ! satisfies the non-degeneracy condition (7.144).
�
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Thus Proposition 7.3, together with the uniform bound (7.155) yield

Z T

0

Z

@�

ju"j2 dSx � c"m: (7.166)

The remaining part of the proof is obvious although technically involved. We restrict
ourselves to the limit domain �, where the boundary terms arising in by parts
integration will be controlled by (7.166).

7.9 Strong Convergence of the Velocity Field Revisited

Our final goal is to establish the strong convergence of the velocities claimed
in (7.147). As a consequence of (7.155), we may assume that

u" ! U weakly in L2.0;TIW1;2.T 2 � .�1; 0/;R3/ (7.167)

provided u" were extended to the set where x3 � �� � h.x1; x2/ � !".x1; x2/.
Moreover, as a consequence of (7.166),

divxU D 0; Uj@� D 0: (7.168)

7.9.1 Solenoidal Component

The velocity fields, restricted to the target domain�, decompose as

u" D HŒu"�C H?Œu"�;

where H denotes the Helmholtz projection defined on�. Using the uniform bounds
obtained in Sect. 7.7 and repeating the arguments of Sect. 7.5.1 we deduce that the
family of scalar functions

t 7!
Z

�

.%"u"/.t; �/ � � dx is precompact in CŒ0;T�

for any � 2 C1
c .�IR3/; divx� D 0; whence, in accordance with (7.168),

HŒ%"u"� ! %HŒU� D %U in Cweak.Œ0;T�IL5=4.�IR3//:
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Consequently, by virtue of (7.167) and compactness of the embedding W1;2.�/ ,!
L5.�/, we may infer that

Z T

0

Z

�

HŒ%";u"� � HŒu"� dx dt ! %

Z T

0

Z

�

jH.U/j2 dx dt D %

Z T

0

Z

�

jUj2 dx dt

yielding

HŒu"� ! U (strongly) in L2..0;T/ ��IR3/: (7.169)

7.9.2 Acoustic Waves

In view of (7.169), it remains to show

H?Œu"� ! 0 (strongly) in L2..0;T/ ��IR3/: (7.170)

We use arguments similar to those in Sect. 7.4 starting with the acoustic equa-
tion (7.59), (7.60) for the unknowns

r" D 1

!

�
!
%" � %

"
C A%"

s.%"; #"/� s.%; #/

"
� %F

�
;V" D %"u";

r0;" D 1

!

�
!
%0;" � %

"
C A%0;"

s.%0;"; #0;"/ � s.%; #/

"
� %F

�
;V0;" D %0;"u0;":

The equation of continuity together with the entropy balance give rise to

Z T

0

Z

�"

�
"r"@t' C V" � rx'

�
dx dt (7.171)

D �
Z

�"

"r0;"'.0; �/ dx C A

!

� Z T

0

Z

�

G"
5 � rx' dx dt� < �"; ' >

�

for any ' 2 C1
c .Œ0;T/ ��"/, with

! D @%p.%; #/C j@#p.%; #/j2
%2 @#s.%; #/

; A D @#p.%/

%@#s.%; #/
;

and

G"
5 D �.#"/

#"
rx#" C

�
%"s.%; #/� %"s.%"; #"/

�
u";

cf. (7.59).
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Next, as � � �", we may consider

' 2 C1
c .Œ0;T/ ��IR3/;

as a test function in (7.29) obtaining

Z T

0

Z

�

"%"u" � @t' dx dt (7.172)

C
Z T

0

Z

�

�@p.%; #/
@%

h%" � %

"

i

ess
C @p.%; #/

@#

h#" � #
"

i

ess
� %F

�
divx' dx dt

�
Z T

0

Z

�

"S" W rx' dx dt D �"
Z

�

%0;"u0;" � ' dx

C"
Z T

0

Z

�

G
"
1 W rx' dx dt C "

Z T

0

Z

�

G2
" � ' dx dt

C
Z T

0

Z

�

�
G3" C G4"

�
divx' dx dt;

with

G
1
" D �%"u" ˝ u"; G2

" D % � %"
"

rxF;

G3" D � Œ p.%"; #"/�res

"
;

and

G4" D @p.%; #/

@%

h%" � %

"

i

ess
C @p.%; #/

@#

h#" � #

"

i

ess
�
� Œ p.%"; #"/�ess � p.%; #/

"

�
;

cf. (7.52). It is easy to observe that validity of (7.172) can be extended to

' 2 W1;1.Œ0;T/ ��IR3/; 'j@� D 0; '.T; �/ D 0:

Next, we may compute

Z T

0

Z

�

"S" W rx' dx dt D �"
Z T

0

Z

�

2.#/

%
%"u" � divxŒŒrx'�� dx dt

C2"
Z T

0

Z

@�

.#/.ŒŒrx'��u"/ � n d� C
Z T

0

Z

�

2".#/

%
.%" � %/u" � divxŒŒrx'�� dx dt

C
Z T

0

Z

�

"
�
.#"/� .#/

��
rxu" C rx

?u" � 2

3
divxu"I

�
W rx' dx dt;
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for all

' 2 W2;1..0;T/ ��IR3/; 'j@� D 0; '.T; �/ D 0;

recalling that

ŒŒM�� D 1

2

h
M C M

t � 2

3
traceŒM� I

i
:

Thus (7.172) finally reads as

Z T

0

Z

�

�
"V" � @t' C !r"divx' C "DV" � divxŒŒrx'��

�
dx dt (7.173)

D �
Z

�

"V0;" � '.0; �/ dx

C
Z T

0

Z

�

�
G"
6 � divxŒŒrx'��C G

"
7 W rx' C G"8divx' C G"

9 � '
�

dx dt

C2"
Z T

0

Z

@�

.#/ .ŒŒrx'��u"/ � n dSx

for any

' 2 W2;1..0;T/ ��IR3/; 'j@� D 0; '.T; �/ D 0;

where

G"
5 D �.#"/

#"
rx#" C

�
%"s.%; #/� %"s.%"; #"/

�
u";

G"
6 D "D.%" � %/u";

G
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7 D 2"..#"/� .#//ŒŒrxu"�� � "%"u" ˝ u";

G"8 D A%"
h s.%"; #"/� s.%; #/

"

i

res
�
hp.%"; #"/

"

i

res
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s.%"; #"/� s.%; #/

"
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�%
�@s.%; #/
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h%" � %
"

i

ess
C @s.%; #/
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h#" � #
"

i

ess

�o

�
n Œ p.%"; #"/�ess � p.%; #/

"
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�@p.%; #/
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h%" � %

"

i

ess
C @p.%; #/

@#

h#" � #
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i

ess
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"
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res
;

G"
9 D .%� %"/rxF and D D 2.#/

%
;

cf. (7.60). Unlike its counterpart (7.59), (7.60), however, Eqs. (7.171), (7.173) are
considered on different spatial domains�", �, respectively.

7.9.3 Strong Convergence of the Gradient Component

In view of exactly the same arguments as in Sect. 7.5.2, the proof of (7.170) can be
reduced to showing

h
t 7!

Z

�

�
r"v" C V" � w"

�
dx
i

! 0 in L2.0;T/; (7.174)

where r", V" satisfy the acoustic system (7.171), (7.173), and v", w" are the solutions
of the approximate eigenvalue problem (7.80), (7.82).

A natural idea is to use v", w" as test functions in (7.171), (7.173), respectively.
Unfortunately, however, v" is defined only on the set � and therefore must be
extended as Qv" to �" in such a way that

Qv" 2 W1;1.R3/; Qv"j� D v; k Qv"kW1;1.R3/ � ckv"kW1;1.�/;

where c is independent of ". As the family f�"g">0 is equi-Lipschitz, such an
extension exists (see Theorem 8). Accordingly, we will show

�
t 7!

�Z

�"

r" Qv" dx C
Z

�

V" � w" dx

��
! 0 in L2.0;T/ (7.175)

instead of (7.174).
Following the line of arguments in Sect. 7.5.3, we take the quantities  .t/ Qv".x/,

 .t/w".x/,  2 C1
c .0;T/, as test functions in (7.171), (7.173) to obtain
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"�"@t C �"�" 
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Z T

0
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�
r"s

1
" C V" � s2"

�
dx dt D

10X

mD1
I"m;

(7.176)
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where

�".t/ D
Z

�"

r".t; �/ Qv" dx C
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V".t; �/ � w" dx;

and
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G"8 divxw" dx dt;

and
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I"9 D �
Z T
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V" � rx Qv" dx dt;

I"10�" D
Z T
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Z

�"n�
r" Qv" dx dt:

Note that the integrals I"1–I
"
7 are the same as their counterparts in (7.121). In

particular, the same arguments as in Sect. 7.5.3 can be used to show that each of
them can be written in the form

I"m D
Z T

0

 .t/
�
"
"m.t/C "1Cˇ�"m.t/

�
dt; m D 1; : : : ; 7

where
8
<

:

f
"mg">0 is bounded in Lq.0;T/ for a certain q > 1;

f�"mg">0 is bounded in L1.0;T/; and ˇ > 0:

9
=

;
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Now, we come to the crucial point of the proof using the bound (7.166) on the
trace of the solution u" on @� to obtain

Z

@�

.ŒŒrxw"�� u"/ � n dSx � "
m�1
2 ku"kW1;2.�"IR3/k

p
"rxw"kL1.�/:

With help of (7.155) and Proposition 7.2 yielding the necessary bound for
p
"rxw"

we conclude that
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"8 dt; f
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Next, as j�" n�j � ", we get
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�
:

Furthermore, by means of Hölder’s inequality,
Z

�"n�
ju"j dx � c"5m=6ku"kL6.�"IR3/

therefore, by virtue of (7.155) and Proposition 7.2,

I"9 D "minf 5m=6; 1g
Z T

0

 .t/
"9 dt;

where

f
"9g">0 is bounded in L2.0;T/:

Finally, to control the integral I"10, we write

ˇ
ˇ
ˇ
Z

�"n�
r" Qv" dx

ˇ
ˇ
ˇ

� ck Qv"kL1.R3/

� Z

�"n�

ˇ̌
ˇ
%" � %

"

ˇ̌
ˇ dx C

Z

�"n�
%"

ˇ̌
ˇ
s.%"; #"/ � s.%; #/

"

ˇ̌
ˇ dx C

Z

�"n�
%jFj dx

�
;

where,
Z

�"n�

ˇ
ˇ
ˇ
%" � %
"

ˇ
ˇ
ˇ dx

�
Z

�"n�

ˇ̌
ˇ
h%" � %

"

i

ess

ˇ̌
ˇ dx C

Z

�"

ˇ̌
ˇ
h%" � %

"

i

res

ˇ̌
ˇ dx;
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and, similarly,

Z

�"n�

%"

ˇ̌
ˇ
s.%"; #"/ � s.%; #/

"

ˇ̌
ˇ dx

� c
� Z

�"n�

�ˇ̌
ˇ
h%" � %

"

i

ess

ˇ̌
ˇC

ˇ̌
ˇ
h#" � #

"

i

ess

ˇ̌
ˇ dx C

Z

�"

%"

ˇ̌
ˇ
h s.%"; #"/ � s.%; #/

"

i

res

ˇ̌
ˇ dx

�
:

Thus the uniform bounds (7.149)–(7.153) yield the desired conclusion

I"10 D "minf m
2 ;1g

Z T

0

 .t/
"10 dt;

where

f
"10g">0 is bounded in L1.0;T/:

Having controlled all the integrals in (7.176) and seeing that m > 1, we are in
the situation described in the last part of Sect. 7.5.3. Consequently, repeating step
by step the arguments used therein, we can show (7.174) and therefore complete the
proof of Theorem 7.2.

7.10 Concluding Remarks

We have shown that the no-slip boundary conditions and the complete slip boundary
conditions considered on “oscillatory” boundary produce the same effect in the
low Mach number limit, specifically, the acoustic waves are effectively damped as
long as the boundary of the target domain is non-degenerate (non-flat). As a matter
of fact, a proper choice of the boundary conditions for the velocity of a viscous
fluid confined to a bounded physical space has been discussed by many prominent
physicists and mathematicians over the last two centuries (see the survey paper by
Priezjev and Troian [235]).

For a long time, the no-slip boundary conditions have been the most widely
accepted for their tremendous success in reproducing the observed velocity profiles
for macroscopic flows. Still the no-slip boundary condition is not intuitively
obvious. Recently developed technologies of micro and nano-fluidics have shown
the slip of the fluid on the boundary to be relevant when the system size approaches
the nanoscale. The same argument applies in the case when the shear rate is
sufficiently strong in comparison with the characteristic length scale as in some
meteorological models (see Priezjev and Troian [235]). As a matter of fact, an
alternative microscopic explanation of the no-slip condition argues that because
most real surfaces are rough, the viscous dissipation as the fluid passes the surface
irregularities brings it to rest regardless the character of the intermolecular forces
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acting between the fluid and the solid wall. A rigorous mathematical evidence of
this hypothesis has been provided in a series of papers by Amirat et al. [9, 10],
Casado-Díaz et al. [51] or, more recently, [52]. Thus the roughness argument,
used also in this chapter, reconciles convincingly the ubiquitous success of the no-
slip condition with the boundary behaviour of real fluids predicted by molecular
dynamics (cf. Qian et al. [236]).



Chapter 8
Problems on Large Domains

Many theoretical problems in continuum fluid mechanics are formulated on
unbounded physical domains, most frequently on the whole Euclidean space R

3.
Although, arguably, any physical but also numerical space is necessarily bounded,
the concept of unbounded domain offers a useful approximation in the situations
when the influence of the boundary or at least its part on the behavior of the system
can be neglected. The acoustic waves examined in the previous chapters are often
ignored in meteorological models, where the underlying ambient space is large
when compared with the characteristic speed of the fluid as well as the speed of
sound. However, as we have seen in Chap. 5, the way the acoustic waves “disappear”
in the asymptotic limit may include fast oscillations in the time variable caused
by the reflection of acoustic waves by the physical boundary that may produce
undesirable numerical instabilities. In this chapter, we examine the incompressible
limit of the NAVIER-STOKES-FOURIER SYSTEM in the situation when the spatial
domain is large with respect to the characteristic speed of sound in the fluid.
Remarkably, although very large, our physical space is still bounded exactly in the
spirit of the leading idea of this book that the notions of “large” and “small” depend
on the chosen scale.

8.1 Primitive System

Similarly to the previous chapters, our starting point is the full NAVIER-STOKES-
FOURIER SYSTEM, where the Mach number is proportional to a small parameter ",
while the remaining characteristic numbers are kept of order unity.

© Springer International Publishing AG 2017
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� SCALED NAVIER-STOKES-FOURIER SYSTEM:

@t%C divx.%u/ D 0; (8.1)

@t.%u/C divx.%u ˝ u/C 1

"2
rxp D divxS C 1

"
rxF; (8.2)

@t.%s/C divx.%su/C divx
� q
#

�
D �; (8.3)

with

� 	 1

#

�
"2S W rxu � q � rx#

#

�
; (8.4)

where the inequality sign in (8.4) is motivated by the existence theory developed in
Chap. 3. The viscous stress tensor S satisfies the standard Newton’s rheological law

S D S.#;rxu/ D .#/
�
rxu C rx

tu � 2

3
divxuI

�
C �.#/divxuI; (8.5)

where the effect of the bulk viscosity may be omitted, while the heat flux q obeys
Fourier’s law

q D q.#;rx#/ D ��.#/rx#: (8.6)

System (8.1)–(8.3) is considered on a family of spatial domains f�"g">0 “large”
enough in order to eliminate the effect of the boundary on the local behavior of
acoustic waves. Seeing that the speed of sound in (8.1)–(8.3) is proportional to 1="
we shall assume that the family f�"g">0 has the following property.

� PROPERTY (L):

The boundary @�" consists of two disjoint parts

@�" D � [ �";

where � is a fixed compact subset of R3 and, for any x 2 �",

"distŒx; �"� ! 1 for " ! 0: (8.7)
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In other words, given a fixed bounded cavity B � �" in the ambient space, the
acoustic waves initiated in B cannot reach the boundary, reflect, and come back
during a finite time interval .0;T/. Typically, we may consider � � R

3 an exterior
domain—an unbounded domain with a compact boundary �—and define

�" D � \
�
x 2 R

3
ˇ
ˇ
ˇ jxj < 1

"m


; m > 1:

Similarly to Chap. 5, we suppose that the initial distribution of the density and
the temperature are close to a spatially homogeneous state, specifically,

%.0; �/ D %0;" D %C "%
.1/
0;"; (8.8)

#.0; �/ D #0;" D # C "#
.1/
0;" ; (8.9)

where %, # are positive constants, and

u.0; �/ D u0;": (8.10)

The analysis in this chapter will heavily lean on the assumption that both the
perturbations %.1/0;", #

.1/
0;" and the velocity field u0;" are spatially localized, specifically

they satisfy the far field boundary conditions

%
.1/
0;" ! 0; #

.1/
0;" ! 0; u0;" ! 0 as jxj ! 1

in some sense, and the solutions we look for are supposed to enjoy a similar property.
Finally, we impose the complete slip boundary conditions and the no flux

condition

u � nj@�" D 0; Sn � nj@�" D 0; q � nj@�" D 0: (8.11)

Problem Formulation We consider a family f%";u"; #"g">0 of (weak) solutions
to problem (8.1)–(8.6), (8.11) on a compact time interval Œ0;T� emanating from
the initial state satisfying (8.8)–(8.10) on a family of spatial domains �" enjoying
Property (L). Our main goal formulated in Theorem 8.3 below is to show that

u" ! U in L2..0;T/ � BIR3/ for any compact set B � �"; (8.12)

at least for a suitable subsequence " ! 0, where the limit velocity field complies
with the standard incompressibility constraint

divxU D 0: (8.13)
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Thus, in contrast with the case of a bounded domain examined in Chap. 5, we
recover strong (pointwise) convergence of the velocity field regardless the specific
shape of the “far field” boundary �", and, in fact, the boundary conditions imposed
on �".

The strong convergence of the velocity is a consequence of the dispersive
properties of the acoustic equation—the energy of acoustic waves decays on
any compact set. Mathematically this can be formulated in terms of Strichartz’s
estimates or their local variant discovered by Smith and Sogge [249]. Here we use
probably the most general result in this direction—the celebrated RAGE theorem.

As already pointed out, these considerations should be independent of the
behavior of f%";u"; #"g">0 on the far-field boundary �", in particular, we may
impose there any boundary conditions, not just (8.11). On the other hand, certain
restrictions have to be made in order to prevent the energy to be “pumped” into the
system at infinity. Specifically, the following hypotheses are required.

(i) The total mass of the fluid contained in�" is proportional to j�"j, in particular
the average density is constant.

(ii) The system dissipates energy, specifically, the total energy of the fluid con-
tained in �" is non-increasing in time.

(iii) The system produces entropy, the total entropy is non-decreasing in time.

Typical examples of fluid motion on unbounded (exterior) domains arise in
meteorology or astrophysics, where the complement of the physical space often
plays a role of a rigid core (a star) around which the fluid evolves. Since the effect
of gravitation is essential in these problems, it is natural to ask if the Oberbeck–
Boussinesq approximation introduced in Chap. 5 can be adapted to unbounded
domains.

The matter in this chapter is organized as follows. The Oberbeck–Boussinesq
approximation considered on an exterior domain is introduced in Sect. 8.2. Similarly
to the preceding part of this book, our analysis is based on the uniform estimates
of the family f%";u"; #"g">0 resulting from the dissipation inequality deduced in
the same way as in Chap. 5 (see Sect. 8.3 and the first part of convergence proof
in Sect. 8.4 ). The time evolution of the velocity field, specifically its gradient
component, is governed by a wave equation (acoustic equation) introduced in
Sect. 5.4.3 and here revisited in Sect. 8.5. Since the acoustic waves propagate with a
finite speed proportional to 1=", the acoustic equation may be handled as if defined
on an unbounded exterior domain, where efficient tools for estimating the rate
of local decay of acoustic waves as RAGE theorem are available, see Sects. 8.6
and 8.7. In particular, the desired conclusion on strong (pointwise) convergence of
the velocity fields is proved and rigorously formulated in Theorem 8.2. The proof of
convergence towards the limit system is then completed in Sect. 8.8 and formulated
in Theorem 8.3. We finish by discussing possible extensions and refinements of
these techniques in Sects. 8.9 and 8.10.
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8.2 Oberbeck–Boussinesq Approximation in Exterior
Domains

The OBERBECK–BOUSSINESQ APPROXIMATION has been introduced in Sect. 4.2.
The fluid velocity U and the temperature deviation‚ satisfy

� OBERBECK–BOUSSINESQ APPROXIMATION:

divxU D 0; (8.14)

%
�
@tU C divxU ˝ U

�
C rx… D .#/�U C rrxF; (8.15)

%cp
�
@t‚C divx.‚U/

�
� �.#/�‚ � %#˛divx.FU/ D 0; (8.16)

r C %˛‚ D 0; (8.17)

where … is the pressure and the quantities cp D cp.%; #/, ˛ D ˛.%; #/ are defined
through (4.17), (4.18).

The function F D F.x/ represents a given gravitational potential acting on
the fluid. In real world applications, it is customary to take the x3-coordinate to
be vertical parallel to the gravitational force rxF D gŒ0; 0;�1�. This is indeed a
reasonable approximation provided the fluid occupies a bounded domain � � R

3,
where the gravitational field can be taken constant. Thus one may be tempted to
study system (8.14)–(8.17) with rxF D gŒ0; 0;�1� also un an unbounded physical
space (cf. Brandolese and Schonbek [32], Danchin and Paicu [74–76]). Although
such an “extrapolation” of the model is quite natural from the mathematical
viewpoint, it seems a bit awkward physically. Indeed, if the self-gravitation of the
fluid is neglected, the origin of the gravitational force must be an object placed
outside the fluid domain� therefore a more natural setting is

F.x/ D
Z

R3

1

jx � yjm.y/ dy; with m 	 0; suppŒm� � R
3 n�; (8.18)

where m denotes the mass density of the object acting on the fluid by means of
gravitation. In other words,F is a harmonic function in�, F.x/ � 1=jxj as jxj ! 1.

Accordingly, we consider the Oberbeck-Boussinesq system on a domain � D
R3 n K exterior to a compact set K, @K D � , where, in accordance with (8.18), F
satisfies

��F D m in R
3; rxF 2 L2.R3IR3/; suppŒm� � K: (8.19)
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In particular, introducing a new variable � D ‚ � #˛F=cp we can rewrite the
system (8.14)–(8.17) in the more frequently used form

divxU D 0;

%
�
@tU C divxU ˝ U

�
C rxP D �U � %˛�rxG;

%cp
�
@t� C divx.�U/

�
� ��� D 0;

where we have set P D … � F2%#˛2=2cp.

8.3 Uniform Estimates

The uniform estimates derived below follow immediately from the general axioms
(i)–(iii) stated in the introductory section, combined with the hypothesis of thermo-
dynamic stability (see (1.44))

@p.%; #/

@%
> 0;

@e.%; #/

@#
> 0; (8.20)

where e D e.%; #/ is the specific internal energy interrelated to p and s through
Gibbs’ equation (1.2). We recall that the first condition in (8.20) asserts that the
compressibility of the fluid is always positive, while the second one says that the
specific heat at constant volume is positive.

Although the estimates deduced below are formally the same as in Chap. 5,
we have to pay special attention to the fact that the volume of the ambient space
expands for " ! 0. In particular, the constants associated to various embedding
relations may depend on ". Note that the existence theory developed in Chap. 3
relies essentially on boundedness of the underlying physical domain.

8.3.1 Static Solutions

Similarly to Sect. 6.3.1, we introduce the static solutions Q% D Q%" satisfying

rxp. Q%; #/ D " Q%rxF: (8.21)

Note that solutions of (8.21) depend on ". More specifically, fixing two positive
constants % > 0, # > 0, we look for a solution to (8.21) in the whole space R

3

satisfying the far field condition

Q%.x/ ! % as jxj ! 1: (8.22)
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Anticipating that Q% is positive, it is not difficult to integrate (8.21) to obtain

P. Q%/ D "F C P.%/; where P0.%/ D 1

%
@%p.%; #/:

Thus, if p is twice continuously differentiable in a neighborhood of .%; #/, the
unique solution Q%" of (8.21), (8.22) satisfies

Q%" � % D "

P0.%/
F C "2h"F; kh"kL1.R3/ � c; (8.23)

jrx Q%".x/j � "cjrxF.x/j for all x 2 R
3; (8.24)

uniformly for " ! 0.

8.3.2 Estimates Based on the Hypothesis of Thermodynamic
Stability

To derive the uniform bounds, it is convenient to introduce the total dissipation
inequality based on the static solutions, similar to (6.56) derived in the context of
stratified fluids.

� TOTAL DISSIPATION INEQUALITY:

Z

�"

h1
2
%"ju"j2 C 1

"2

�
H#.%"; #"/ � @%H#. Q%"; #/.%" � Q%"/ � H#. Q%"; #/

�i
.t/ dx

(8.25)

C #

"2
�"
�
Œ0; t� ��"

	

D
Z

�"

h1
2
%0;"ju0;"j2 C 1

"2

�
H
#
.%0;"; #0;"/� @%H#. Q%"; #/.%0;" � Q%"/ � H

#
. Q%"; #/

�i
dx

for a.a. t 2 Œ0;T�,
where

H#.%; #/ D %e.%; #/ � #%s.%; #/

is the Helmholtz function introduced in (2.48), and

�"

h
Œ0; t� ��"

i
D
Z

�"

h
%"s.%"; #"/.t/ � %0;"s.%0;"; #0;"/

i
dx (8.26)
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is the total entropy production,

�" 	 1

#"

�
"2S" W rxu" � q" � rx#"

#"

�
; S" D S.#";rxu"/; q" D q.#";rx#"/:

(8.27)
Relation (8.25) reflects the general principles (i)–(iii) introduced in Sect. 8.1 and has
bees rigorously verified in the present form in Sect. 6.4.1 as long as�" is a bounded
domain. We recall that, by virtue of Gibbs’ relation (1.2),

@2H#.%; #/

@%2
D 1

%

@p.%; #/

@%
;
@H#.%; #/

@#
D %

#
.# � #/

@e.%; #/

@#
I

whence the hypothesis of thermodynamic stability (8.20) implies that

% 7! H#.%; #/ is strictly convex on .0;1/;

and

# 7! H#.%; #/ is decreasing for # < # and increasing for # > #

(see Sect. 2.2.3).
As observed several times in this book, the total dissipation inequality (8.25)

is the only source of uniform bounds available in the limit process. The minimal
assumption in this respect is the expression on the right hand side, controlled
exclusively by the initial data, to be bounded uniformly for " ! 0. To this end,
we take

%0;" D Q%" C " Q%.1/0;"; #0;" D # C "#
.1/
0;" ; (8.28)

where

k Q%.1/0;"kL2\L1.�"/ � c; k#.1/0;" kL2\L1.�"/ � c; (8.29)

Z

�"

Q%.1/0;" dx D
Z

�"

#
.1/
0;" dx D 0I (8.30)

and

ku0;"kL2\L1.�"IR3/ � c; (8.31)

where all constants are independent of ". As a matter of fact, boundedness in L1 is
never used and may be relaxed to weaker integrability properties, the bound in L2,
independent of " and the size of �", is however essential.
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Remark Comparing (8.28) with (8.8) we observe that

%
.1/
0;" D Q%.1/0;" C Q%" � %

"
;

where, by virtue of (8.23),

Q%" � %
"

D 1

P0.%/
F C "h"F:

As F is the gravitational potential determined by (8.18), the initial distribution of the
density %0;" cannot be taken a square integrable perturbation of the constant state %
on R

3.

As a direct consequence of the structural properties of the Helmholtz function
observed in Lemma 5.1, boundedness of the left-hand side of (8.25) gives rise to a
number of useful uniform estimates. Similarly to Sect. 6.4, we obtain

ess sup
t2.0;T/

kp
%"u"kL2.�"IR3/ � c; (8.32)

ess sup
t2.0;T/

�
�
�
h%" � Q%"

"

i

ess

�
�
�
L2.�"/

� c; (8.33)

ess sup
t2.0;T/

�
��
h#" � #

"

i

ess

�
��
L2.�"/

� c; (8.34)

ess sup
t2.0;T/

k Œ%"e.%"; #"/�reskL1.�"/ � "2c; (8.35)

and

ess sup
t2.0;T/

k Œ%"s.%"; #"/�reskL1.�"/ � "2c; (8.36)

where the “essential” and “residual” components have been introduced
through (4.39)–(4.45).

Remark We point out that, by virtue of (8.23),

k Q%" � %kL1.R3/ � "cI

whence the essential and residual sets may be defined using % exactly as in (4.39).
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In addition to the above estimates, we control the measure of the “residual set”,
specifically,

ess sup
t2.0;T/

jM"
resŒt�j � "2c; (8.37)

where M"
resŒt� � � was introduced in (4.43). Note that estimate (8.37) is

particularly important as it says that the measure of the “residual” set, on which
the density and the temperature are far away from the equilibrium state . Q%"; #/ (or,
equivalently .%; #/), is small, and, in addition, independent of the measure of the
whole set �".

Finally, we deduce

k�"kMC.Œ0;T���"/ � "2c; (8.38)

therefore,

Z T

0

Z

�"

1

#"
S" W rxu" dx dt � c; (8.39)

and

Z T

0

Z

�"

�q" � rx#"

#"
2

dx dt � "2c: (8.40)

8.3.3 Estimates Based on the Specific Form of Constitutive
Relations

The uniform bounds obtained in the previous section may be viewed as a con-
sequence of the general physical principles postulated through axioms (i)–(iii) in
the introductory section combined with the hypothesis of thermodynamic stabil-
ity (8.20). In order to convert them to a more convenient language of the standard
function spaces, structural properties of the thermodynamic functions as well as of
the transport coefficients must be specified.

Motivated by the general hypotheses of the existence theory developed in Sect. 3,
exactly as in Sect. 5, we consider the state equation for the pressure in the form

p.%; #/ D pM.%; #/„ ƒ‚ …
molecular pressure

C pR.#/„ƒ‚…
radiation pressure

; pM D #
5
2P
� %

#
3
2

�
; pR D a

3
#4; a > 0;

(8.41)
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while the internal energy reads

e.%; #/ D eM.%; #/C eR.%; #/; eM D 3

2

#
5
2

%
P
� %

#
3
2

�
; eR D a

#4

%
; (8.42)

and, in accordance with Gibbs’ relation (1.2),

s.%; #/ D sM.%; #/C sR.%; #/; sM.%; #/ D S
� %

#
3
2

�
; sR D 4

3
a
#3

%
; (8.43)

where

S0.Z/ D �3
2

5
3
P.Z/� ZP0.Z/

Z2
for all Z > 0: (8.44)

The hypothesis of thermodynamic stability (8.20) reformulated in terms of the
structural properties of P requires

P 2 C1Œ0;1/\ C2.0;1/; P.0/ D 0; P0.Z/ > 0 for all Z 	 0; (8.45)

0 <

5
3
P.Z/� ZP0.Z/

Z
� sup

z>0

5
3
P.z/� zP0.z/

z
< 1: (8.46)

Furthermore, it follows from (8.46) that P.Z/=Z5=3 is a decreasing function of Z,
and we assume that

lim
Z!1

P.Z/

Z
5
3

D p1 > 0: (8.47)

The transport coefficients  and � will be continuously differentiable functions
of the temperature # satisfying the growth restrictions

8
<

:

0 < .1C #/ � .#/ � .1C #/;

0 < �.1C #3/ � �.#/ � �.1C #3/ for all # 	 0;

9
=

;
(8.48)

where , , �, and � are positive constants.
To facilitate future considerations and basically without loss of generality we

focus on the class of domains satisfying a slightly stronger version of Property (L),
namely

�" D � \
n
x 2 R

3
ˇ
ˇ
ˇ jxj < d."/

o
; lim
"!0

"d."/ D 1; (8.49)

where� is an exterior domain with a regular (Lipschitz) boundary.
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Now, observe that (8.48), together with estimate (8.39), and Newton’s rheological
law expressed in terms of (8.5), give rise to

Z T

0

k rxu" C rx
tu" � 2

3
divxu"I k2L2.�"IR3�3/ dt � c; (8.50)

with c independent of " ! 0.
At this stage, we apply Korn’s inequality in the form stated in Proposition 2.1 to

r D Œ%"�ess, v D u" and use the bounds established in (8.33), (8.37), (8.50) in order
to conclude that

Z T

0

k u" k2W1;2.�"IR3/ dt � c uniformly for " ! 0 (8.51)

This can be seen writing

�" D � \
n
x 2 R

3
ˇ
ˇ
ˇ jxj < r

o
[
n
x 2 R

3
ˇ
ˇ
ˇr � jxj < d."/

o

for a suitable r so large that the ball fjxj < rg contains @� in its interior. Now,
writing

n
x 2 R

3
ˇ̌
ˇr � jxj < d."/

o
D [m."/

iD1Qi

as a union of equi-Lipschitz sets Qi with mutually disjoint interiors, we can apply
Korn’s inequality on

� \
n
x 2 R

3
ˇ
ˇ
ˇ jxj < r

o

and on each Qi separately to obtain the desired conclusion.
In a similar fashion, we can use Fourier’s law (8.6) together with (8.40) to obtain

Z T

0

Z

�"

�.#"/

#"
2

jrx#"j2 dx dt � "2c; (8.52)

which, combined with the structural hypotheses (8.48), the uniform bounds estab-
lished in (8.34), (8.37), and the Poincaré inequality stated in Proposition 2.2, yields

Z T

0

k#" � #k2W1;2.�"/
dt C

Z T

0

k log.#"/� log.#/k2W1;2.�"/
dt � "2c: (8.53)

Finally, a combination of (8.35), (8.41), and (8.47) yields

ess sup
t2.0;T/

Z

�"

Œ%"�
5=3
res dx � "2c: (8.54)

ess sup
t2.0;T/

Z

�"

Œ#"�
4
res dx � "2c: (8.55)
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8.4 Convergence, Part I

The uniform bounds established in the previous section allow us to pass to the limit
in the family f%";u"; #"g">0. To begin, we deduce from (8.33), (8.54) that

ess sup
t2.0;T/

k.%" � Q%"/.t; �/k.L2CL5=3/.�"/ ! 0 as " ! 0; (8.56)

which, together with (8.23), yields

ess sup
t2.0;T/

k.%" � %/.t; �/kL5=3.K/ ! 0 as " ! 0 for any compact K � �: (8.57)

Thus, at least for a suitable subsequence, %" converges a.a. to the constant
equilibrium state %.

Similarly, relations (8.34), (8.37), and (8.55) imply that

ess sup
t2.0;T/

k.#" � #/.t; �/kL2.�"/ ! 0 as " ! 0: (8.58)

Finally, extending suitably #", u" outside�" (cf. Theorem 8) we may assume, in
view of (8.51), (8.53) that

‚" � #" � #
"

! ‚ weakly in L2.0;TIW1;2.�//; (8.59)

and

u" ! U weakly in L2.0;TIW1;2.�IR3//; divxU D 0; (8.60)

passing to subsequences as the case may be.
Our next goal will be to establish pointwise (a.a.) convergence of the sequence

of velocities fu"g">0. More specifically, we show that

u" ! U (strongly) in L2..0;T/ � KIR3/ for any compact K � �: (8.61)

Observe that for (8.61) to hold, it is enough to show that

%"u" ! %U in L2.0;TIW�1;2.KIR3//: (8.62)

Indeed, for any ' 2 C1
c .�/, we have

%

Z T

0

Z

�

'ju"j2 dx dt D
Z T

0

Z

�

'.% � %"/ju"j2 dxdt C
Z T

0

Z

�

'%"u" � u" dx dt;
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where, in accordance with (8.57), (8.60), and the embedding relation W1;2.�/ ,!
L6.�/,

Z T

0

Z

�

'.% � %"/ju"j2 dx dt ! 0;

while, as a consequence of (8.60), (8.62),

Z T

0

Z

�

'%"u" � u" dx dt ! %

Z T

0

Z

�

'jUj2 dx dt:

Remark As the function ' is compactly supported in �, its support is contained in
�" for all " > 0 small enough and all the above integrals are therefore well defined.

The final observation is that, by virtue of (8.32), (8.33), and (8.54),

ess sup
t2.0;T/

k%"u"k
L
5
4 .KIR3/ � c.K/ for any compact K � �:

As the embedding L5=4.K/ ,! W�1;2.K/ is compact, we infer that the desired
relation (8.62) follows as soon as we are able to show that the family of functions

n
t 7!

Z

�

.%"u"/.t; �/ � ' dx
o

is precompact in L2.0;T/ (8.63)

for any fixed ' 2 C1
c .�/. Relation (8.63) will be shown in the following part of

this chapter as a consequence of the local decay of acoustic waves. Note that (8.63)
is very weak with respect to regularity in the space variable. This is because
compactness in space is already guaranteed by the gradient estimate (8.51).

8.5 Acoustic Equation

The acoustic equation, introduced in Chap. 4 and thoroughly investigated in various
parts of this book, governs the time evolution of the acoustic waves and as such
represents a key tool for studying the time oscillations of the velocity field in the
incompressible limits for problems endowed with ill-prepared data. It can be viewed
as a linearization of system (8.1)–(8.3) around the static state f%; 0; #g.

If f%";u"; #"g">0 satisfy (8.1)–(8.3) in the weak sense specified in Chap. 1, we
get, exactly as in Sect. 5.4.3,

Z T

0

Z

�"

h
"
�%" � %

"

�
@t' C %"u" � rx'

i
dx dt D 0 (8.64)
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for any test function ' 2 C1
c ..0;T/ ��"/;

Z T

0

Z

�"

"%"

� s.%"; #"/� s.%; #/

"

�
@t' dx dt (8.65)

D
Z T

0

Z

�"

"%"

� s.%; #/� s.%"; #"/

"

�
u" � rx' dx dt

C
Z T

0

Z

�"

�.#"/rx#"

#"
� rx' dx dt� < �"I' >ŒMIC�.Œ0;T���/

for any test function ' 2 C1
c ..0;T/ ��"/; and

Z T

0

Z

�"

h
".%"u"/ � @t' C

�p.%"; #"/ � p.%; #/

"
� %F

�
divx'

i
dx dt (8.66)

D
Z T

0

Z

�"

"
�
S" � %"u" ˝ u"

�
W rx' dx dt C

Z T

0

Z

�"

.%� %"/rxF � ' dx dt

for any test function ' 2 C1
c ..0;T/ ��"IR3/.

Thus, after a simple manipulation, we obtain

Z T

0

Z

�"

h
"!r"@t' C !%"u" � rx'

i
dx dt (8.67)

D A
Z T

0

Z

�"

"%"

� s.%; #/ � s.%"; #"/

"

�
u" � rx' dx dt

CA
Z T

0

Z

�"

�rx#"

#"
� rx' dx dt � A < �"I' >ŒMIC�.Œ0;T���/

for all ' 2 C1
c ..0;T/ ��"/, and

Z T

0

Z

�"

h
".%"u"/ � @t' C !r"divx'

i
dx dt (8.68)

D
Z T

0

Z

�"

h
!r" �

�p.%"; #"/� p.%; #/

"

�i
divx' dx dt

C
Z T

0

Z

�"

"
�
S" � %"u" ˝ u"

�
W rx' dx dt C

Z T

0

Z

�"

.% � %"/rxF � ' dx dt
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for any test function ' 2 C1
c ..0;T/ ��"IR3/, where we have set

r" D %" � %
"

C A

!
%"

� s.%"; #"/� s.%; #/

"

�
� %

!
F; (8.69)

with the constants !, A determined through

A%
@s.%; #/

@#
D @p.%; #/

@#
; ! C A%

@s.%; #/

@%
D @p.%; #/

@%
: (8.70)

As a direct consequence of Gibbs’ equation (1.2), we have

@s

@%
D � 1

%2
@p

@#
;

in particular,

! D p%.%; #/C jp#.%; #/j2
%2s#.%; #/

as soon as e, p comply with the hypothesis of thermodynamic stability stated
in (8.20).

Finally, exactly as in Sect. 5.4.7, we introduce the “time lifting” †" of the
measure �" as

†" 2 L1.0;TIMC.�"//\ Cweak��.Œ0;T�;MC.�"//

< †"I >ŒL1.0;TIM.�"//IL1.0;TIC.�//�WD< �"I IŒ'� >ŒMIC�.Œ0;T���"/; (8.71)

where

IŒ'�.t; x/ D
Z t

0

'.s; x/ ds:

Consequently, system (8.67), (8.68) can be written in a concise form as

� ACOUSTIC EQUATION:

Z T

0

Z

�"

h
"Z"@t' C V" � rx'

i
dx dt D

Z T

0

Z

�"

"F1" � rx' dx dt (8.72)

for all ' 2 C1
c ..0;T/ ��"/,
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Z T

0

Z

�"

h
"V" � @t' C !Z"divx'

i
dx dt D

Z T

0

Z

�"

�
"F2" W rx' C "F3"divx'

�
dx dt

(8.73)

C A

"!
< †"I divx' >ŒL1.0;TIM.�"//IL1.0;TIC.�"//� C

Z T

0

Z

�"

"F4" � ' dx dt

for all ' 2 C1
c ..0;T/ ��"IR3/, ' � nj@�" D 0,

where we have set

Z" D %" � %
"

C A

!
%"

� s.%"; #"/� s.%; #/

"

�
C A

"!
†" � %

!
F; V" D %"u"; (8.74)

F1" D A

!
%"

� s.%; #/ � s.%"; #"/

"

�
u" C A

!

�rx#"

"#"
; (8.75)

F
2
" D S" � %"u" ˝ u"; (8.76)

F3" D !

�
%" � %

"2

�
CA%"

� s.%"; #"/� s.%; #/

"2

�
�
�p.%"; #"/� p.%; #/

"2

�
; (8.77)

and

F4" D % � %"

"
rxF: (8.78)

Here, similarly to Chap. 5, we have identified the “lifted measure”

Z

�"

†"' dx WD< †"I' >ŒMIC�.�"/ :

8.5.1 Boundedness of the Data

Our next goal is to examine the integrability properties of the quantities appearing
in the weak formulation of the acoustic equation (8.72), (8.73). We start by writing

%" � %

"
D %" � Q%"

"
C Q%" � %

"
D
�
%" � Q%"
"

�

ess
C
�
%" � Q%"
"

�

res
C Q%" � %

"
;

where, in accordance with the uniform bounds (8.33), (8.37), and (8.54),

ess sup
t2.0;T/

�
��
�

�
%" � Q%"
"

�

ess

�
��
�
L2.�"/

� c; ess sup
t2.0;T/

�
��
�

�
%" � Q%"
"

�

res

�
��
�
L1.�"/

� "c:

(8.79)
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Remark It is worth noting that the measure of the “residual set” is uniformly small
as stated in (8.37). In particular, unlike on the unbounded domain �, the Lp norms
on the residual set are comparable.

Next, by virtue of (8.23), (8.24),

�
��
�

Q%" � %

"

�
��
�
.L1\Lq/.R3/

� c for any q > 3; (8.80)

�
�
�
�rx

� Q%" � %
"

���
�
�
L2.R3IR3/

� c: (8.81)

Remark The previous computations reveal one of the main difficulties in obtaining
uniform bounds, namely the terms proportional to the difference . Q%�%/=" � F that
are not (uniformly) square integrable in �".

Next, we have

%"s.%"; #"/ � %s.%; #/
"

D %"s.%"; #"/ � Q%"s. Q%"; #/
"

C Q%"s. Q%"; #/ � %s.%; #/
"

D
"
%"s.%"; #"/� Q%"s. Q%"; #/

"

#

ess

C
"
%"s.%"; #"/� Q%"s. Q%"; #/

"

#

res

C Q%"s. Q%"; #/� %s.%; #/

"
;

where, by virtue of (8.33), (8.34), (8.36), (8.37),

ess sup
t2.0;T/

�
�
�
�
�

"
%"s.%"; #"/ � Q%"s. Q%"; #/

"

#

ess

�
�
�
�
�
L2.�"/

� c; (8.82)

ess sup
t2.0;T/

�
�
�
��

"
%"s.%"; #"/ � Q%"s. Q%"; #/

"

#

res

�
�
�
��
L1.�"/

� "c; (8.83)
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and, in accordance with (8.23), (8.24),

�
��
�
�

Q%"s. Q%"; #/ � %s.%; #/
"

�
��
�
�
.L1\Lq/.R3/

� c for all q > 3; (8.84)

�
�
�
��
rx

 
Q%"s. Q%"; #/� %s.%; #/

"

!��
�
��
L2.R3IR3/

� c: (8.85)

Finally, as a consequence of (8.38),

ess sup
t2.0;T/

�
�
�
�
†".t; �/
"

�
�
�
�
MC.�"/

� "c; (8.86)

and we may infer that Z" introduced in (8.74) can be written in the form

Z".t; �/ D Z1" .t; �/C Z2" .t; �/C Z3.t; �/C Z4; (8.87)

where

ess sup
t2.0;T/

kZ1"kMC.�"/
� "c; ess sup

t2.0;T/
kZ2"kL1.�"/; (8.88)

ess sup
t2.0;T/

kZ3"kL2.�"/ � c; Z4 D � %
!

QF 2 D1;2.�/;

with

QF 2 C1.�/; QF.x/ D 0 for jxj < r1; QF.x/ D F.x/ for jxj > r2; (8.89)

and where @� � B.0; r1=2/.

Remark Note that F being determined by (8.19) admits a decomposition

F D QF C G; G 2 L2.R3/:

We recall that the space D1;2.�/ is defined as the closure of C1
c .�/ with respect to

the norm

kvk2D1;2.�/ D
Z

�

jrxvj2 dx:
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Now, similarly,

V" D Œ%"u"�ess C Œ%"u"�res;

where, by virtue of (8.32), (8.37), and (8.54),

ess sup
t2.0;T/

kŒ%"u"�esskL2.�"IR3/ � c; ess sup
t2.0;T/

kŒ%"u"�reskL1.�"IR3/ � "c: (8.90)

The “forcing terms” F1" , F
2
" , F

3
" , and F4" can be treated in a similar manner. We

focus only on the most complicated term:

!

�
%" � %

"2

�
C A

 
%"s.%"; #"/� %s.%; #/

"2

!

�
 
p.%"; #"/� p.%; #/

"2

!

D !

�
%" � Q%"
"2

�
C A

 
%"s.%"; #"/� Q%"s. Q%"; #/

"2

!

�
 
p.%"; #"/� p. Q%"; #/

"2

!

C!
� Q%" � %

"2

�
C A

 
Q%"s. Q%"; #/ � %s.%; #/

"2

!

�
 
p. Q%"; #/ � p.%; #/

"2

!

:

Seeing that ! and A have been chosen to satisfy

! C A@%.%s/.%; #/ � @%p.%; #/ D 0;

the quantity

!

�
%" � Q%"
"2

�
C A

 
%"s.%"; #"/� Q%"s. Q%"; #/

"2

!

�
 
p.%"; #"/ � p. Q%"; #/

"2

!

contains only quadratic terms proportional to %" � Q%", # � # and as such may be
handled by means of the estimates (8.33)–(8.37), (8.53)–(8.55). Moreover, by the
same token, we may use (8.23), (8.24) to deduce

�
�
�!

�
%" � Q%"
"2

�
C A

 
%"s.%"; #"/� Q%"s. Q%"; #/

"2

!

� (8.91)

 
p.%"; #"/� p. Q%"; #/

"2

!�
�
�
.L1\Lq/.R3/

� c for all q > 3=2:
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8.5.2 Acoustic Equation Revisited

Summing up the previous considerations, we may rewrite the acoustic equa-
tion (8.72), (8.73) in a more concise form.

� ACOUSTIC EQUATION (REVISITED):

"

Z T

0

< Z".t; �/; @t' > dt C
Z T

0

Z

�"

V" � rx' dx dt (8.92)

D �" < Z0;"; '.0; �/ > C"
Z T

0

Z

�"

�
H1
" � rx' C H2

" � rx'
�

dx dt;

for any ' 2 C1c.Œ0;T/ ��"/,

"

Z T

0

Z

�"

V" � @t' dx dt C !

Z T

0

< Z".t; �/; divx' > dt (8.93)

D �"
Z

�"

V0;" � '.0; �/ dx

C"
Z T

0

< G1".t; �/; divx' > C"
Z T

0

Z

�

G
2
" W rx' dx dt dt

C"
Z T

0

Z

�

G
3
" W rx' dx dt C "

Z T

0

Z

�

G4
" � ' dx dt;

for any ' 2 C1c.Œ0;T/ ��"IR3/, ' � nj@�" D 0.

Remark Note that, unlike (8.72), (8.73), the weak formulation (8.92), (8.93) already
incorporates the satisfaction of the initial conditions.

We have

Z" 2 Cweak�.�/.Œ0;T�IM.�"//;

and

Z" D Z1" C Z2" C Z3" C Z1;2;
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where

ess sup
t2.0;T/

kZ1" .t; �/kMC.�"/
� "c; ess sup

t2.0;T/
kZ2" .t; �/kL1.�"/ � c; (8.94)

ess sup
t2.0;T/

kZ3" .t; �/kL2.�"/ � c; Z1;2 D � %
!

QF 2 D1;2.�/;

and

Z0;" D Z10;" C Z20;" C Z30;" C Z1;2; (8.95)

where

kZ10;"kM.�"/
� "c; kZ20;"kL1.�"/ � c; kZ30;"kL2.�"/ � c: (8.96)

Furthermore,

V" D V1" C V2";

ess sup
t2.0;T/

kV1"kL1.�"IR3/ � "c; ess sup
t2.0;T/

kV2"kL2.�"IR3/ � c; (8.97)

kV0;"k.L1\L2/.�"IR3/ � c; (8.98)

and

V" 2 Cweak.Œ0;T�IL1.�"//:

Finally,

Z T

0

�
kH1

"k2L1.�"IR3/ C kH2
"k2L2.�"IR3/

�
dt � c; (8.99)

G1 2 Cweak�.�/.Œ0;T�IMC.�"//; sup
t2.0;T/

kG1.t; �/kM.�"/
� c; (8.100)

Z T

0

�
kG2

"k2L1.�"IR3�3/ C kG3
"k2L2.�"IR3�3/

�
dt � c; (8.101)

ess sup
t2.0;T/

kG4
".t; �/k.L5=3/.�"IR3/ � c; (8.102)

where all constants are independent of ".
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8.6 Regularization and Extension to �

As already observed and used in several parts of this book, the acoustic equa-
tion (8.92), (8.93) provides a suitable platform for studying the time evolution of
the gradient component of the velocity field, and, in particular, for establishing
the desired property (8.63) that guarantees strong (pointwise) convergence of the
velocity fields.

To facilitate the forthcoming discussion it is more convenient

• to deal with classical (strong) solutions to the acoustic system (8.92), (8.93);
• to consider the problem on the limit domain� rather than �".

8.6.1 Regularization

A standard regularization of generalized functions is provided by a spatial convolu-
tion with a family of regularizing kernels f�ıgı>0, namely

Œv�ı.x/ D
Z

R3

�ı.x � y/v.y/ dy;

where the kernels �ı are specified in Sect. 11.2 in Appendix. Note that this can be
applied to a general distribution v 2 D0

R
3, setting

Œv�ı.x/ D hvI �ı.x � �/i for any x 2 R
3:

Regularization of vector valued functions (distributions) is performed component-
wise.

For " > 0,�" fixed for a moment, we proceed by regularizing the initial data and
the driving forces in (8.92), (8.93).

Regularizing the Initial Data As for Z20;", we take

Z20;";ı D Œ�ıZ
2
0;"�


 ;

where �ı is a cut-off function

�ı.x/ D
8
<

:

1 for x 2 �"; distŒx; @�"� > 1;

0 otherwise
:

It is straightforward to see that

�
�Z20;";ı

�
�
L1.�"/

� kZ20;"kL1.�"/; (8.103)
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and that ı, 
.ı/ can be adjusted in such a way that

Z20;";ı 2 C1
c .�"/; Z

2
0;";ı ! Z20;" in L1.�"/ as ı ! 0 (8.104)

for any fixed ".
Applying the same treatment to Z30;" we obtain Z30;";ı ,

�
�Z30;";ı

�
�
L2.�"/

� kZ30;"kL2.�"/; (8.105)

Z30;";ı 2 C1
c .�"/; Z

3
0;";ı ! Z30;" in L2.�"/ as ı ! 0 (8.106)

for any fixed ".
The “measure-valued” component Z10;" 2 M1.�"/ is slightly more delicate.

First, we use the approximation theorem (Theorem 12 in Notation, Definitions, and
Function Spaces, Sect. 7) to construct a sequence QZ10;";ı such that

QZ10;";ı 2 L1.�"/; QZ10;";ı 2 L1.�"/ 	 0;
�
� QZ10;";ı

�
�
L1.�"/

� kZ10;"kMC.�"/
;

QZ10;";ı ! Z10;" weakly - (*) in M.�"/:

(cf. Theorem 12). Next, similarly to the above, we cut-off and regularize the
functions QZ10;";ı to obtain Z10;";ı such that

Z10;";ı 2 C1
c .�"/; Z

1
0;";ı 2 L1.�"/ 	 0;

�
�Z10;";ı

�
�
L1.�"/

� kZ10;"kMC.�"/
; (8.107)

Z10;";ı ! Z10;" weakly - (*) in M.�"/ for any fixed " > 0; (8.108)

specifically,

Z

�"

Z10;";ı' dx ! ˝
Z10;"I'

˛
M.�"/;C.�"/

for any ' 2 C.�"/:

Finally, with (8.98) in mind, we may construct V0;";ı ,

V0;";ı 2 C1
c .�"IR3/; kV0;";ık.L1\L2/.�"IR3/ � kV0;"k.L1\L2/.�"IR3/ (8.109)

V0;";ı ! V0;" in L2.�"IR3/ as ı ! 0 (8.110)

for any fixed ".

Regularizing the Forcing Terms The forces Hj
", G

j
", j D 1; 2, G3

" can be
regularized by means of the following procedure.

• Extend a given function H 2 L2.0;TIX/, X D L1.�/; L2.�/; MC.�/ to be
zero for t � 0, t 	 T.
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• Use the regularization in time by means of the convolution

ŒH�ı.	/ D
Z 1

�1
�ı.	 � t/H.t/ dt

to produce an approximate sequence

Hı 2 C1.RIX/; kHıkL2.RIX/ � kHkL2.0;TIX/; Hı ! H in L2.0;TIX/

cf. Sect. 11.2 in Appendix.
• Approximate Hı by piece-wise constant functions, specifically by Hı

N ,

Hı
N D

N�1X

jD0
�Œ.Tj/=N;T.jC1/=N�hj; hj 2 X:

• Similarly to the preceding section, approximate each function hj 2 X by Qhj 2
C1
c .�"/ producing

QHı
N D

N�1X

jD0
�Œ.Tj/=N;T.jC1/=N� Qhj:

• Regularize the functions QHı
N performing once more the time convolution

� QHı
N

	ı
.	/ D

Z 1

�1
�ı.	 � t/ QHı

N.t/dt:

Going back to the acoustic equation (8.92), (8.93), we may regularize the forcing
terms as follows:

Hj
";ı 2 C1

c .Œ0;T� ��"IR3/; j D 1; 2;

Z T

0

�
kH1

";ık2L1.�"IR3/ C kH2
";ık2L2.�"IR3/

�
dt (8.111)

�
Z T

0

�
kH1

"k2L1.�"IR3/ C kH2
"k2L2.�"IR3/

�
dt;

Hj
";ı ! Hj

" in L2.0;TILj.�"IR3// as ı ! 0; j D 1; 2 (8.112)
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for any fixed " > 0;

G
j
";ı 2 C1

c .Œ0;T� ��"IR3�3/; j D 2; 3;

Z T

0

�
kG1

";ık2L1.�"IR3�3/ C kG2
";ık2L2.�"IR3�3/

�
dt; (8.113)

�
Z T

0

�
kG1

"k2L1.�"IR3�3/ C kG2
"k2L2.�"IR3�3/

�
dt

G
2
";ı ! G

2
" in L2.0;TIL1.�"IR3�3// as ı ! 0; (8.114)

G
3
";ı ! G

3
" in L2.0;TIL2.�"IR3�3// as ı ! 0; (8.115)

and

sup
t2Œ0;T�

�
�G4

";ı.t; �/
�
�
L5=3.�IR3/ � ess sup

t2Œ0;T�

�
�G4

".t; �/
�
�
L5=3.�IR3/ ; (8.116)

G4
";ı ! G3

" in Lp.0;TIL5=3.�"IR3�3//; 1 � p < 1 as ı ! 0 (8.117)

for any fixed " > 0.
Finally, we find

G1";ı 2 C1
c .Œ0;T� ��/

such that

sup
t2Œ0;T�

kG1";ıkL1.�"/ � sup
t2Œ0;T�

kG1"kM.�"/
; (8.118)

Z

�"

G1";ı.t; �/' dx ! ˝
G1".t; �/; '

˛
for any ' 2 C.�"/; t 2 Œ0;T� as ı ! 0

(8.119)
for any fixed " > 0.

8.6.2 Reduction to Smooth Data

We recall that our ultimate goal is to show (8.63), or, in terms of the present notation,

�
t 7!

Z

�

V" � ' dx


is precompact in L2.0;T/; (8.120)
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for any fixed ' 2 C1
c .�IR3/. For the rest of this section we therefore fix ' and

suppose its support is contained in a ball B � �.
As it is definitely more convenient to replace the abstract weak formulation of

the acoustic equation by a classical one, meaning to consider the regularized data
constructed in the previous section, we show that the error in (8.120) resulting from
such a simplification can be made arbitrarily small.

Step 1: Eliminating the Initial Data Z1;2 We start by the term Z1;2 appearing
in (8.95). For a given (small) constant � > 0, we find a function Z1;2� ,

Z1;2� 2 C1
c .�/; krxZ

1;2
� � rxZ

1;2k2L2.�IR3/ < �:

In view of (8.49),

Z1;2� 2 C1
c .�"/

as soon as 0 < " < "0.�/.
We estimate the error resulting from replacing Z1;2 by Z1;2� in the acoustic

equation. More specifically, we look for (weak) solutions to the problem

"@tZ� C divxV� D 0; "@tV� C !rxZ� D 0 in .0;T/ ��"; V� � nj@�" D 0;

with that initial data

Z�.0; �/ D Z1;2 � Z1;2� ; V�.0; �/ D 0;

or, more precisely, in its weak formulation

"

Z T

0

Z

�"

Z�.t; �/ � @t' dxdt C
Z T

0

Z

�"

V� � rx' dx dt (8.121)

D �
Z

�"

"
�
Z1;2 � Z1;2�

�
'.0; �/ dx for any ' 2 C1c.Œ0;T/ ��"/;

"

Z T

0

Z

�"

V� � @t' dx dt C !

Z T

0

Z

�"

Z�.t; �/divx' dxdt D 0 (8.122)

for any ' 2 C1c.Œ0;T/ ��"IR3/; ' � nj@�" D 0:

System (8.121), (8.122) can be seen as a weak formulation of the standard
acoustic wave equation with the initial data

Z�.0; �/ 2 W1;2.�"/; V�.0; �/ D 0
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belonging to the associated energy space W1;2 � W1;2
n . Consequently, the problem

admits a unique solution

Z� 2 C.Œ0;T�IW1;2.�"//; (8.123)

V� D rx‰� 2 W1;2.�"/;

Z

�"

‰� dx D 0; rx‰� � nj@�" D 0;

satisfying the energy balance

Z

�"

!jrxZ�.t; �/j2 C jdivxV�.t; �/j2 dx D
Z

�"

!jrxZ�.0; �/j2 C !jdivxV�.0; �/j2 dx

(8.124)
D !krxZ

1;2
� � rxZ

1;2k2L2.�"IR3/ � !�;

cf. Sect. 11.1 in Appendix.
To proceed, we need to show that solutions of system (8.121), (8.122) admits a

finite speed of propagation proportional to
p
!=". This can be seen by “integrat-

ing” (8.121), (8.122) over the space-time cone

C D
�
.t; x/

ˇ
ˇ̌ t 2 .0; 	/; x 2 B \�; distŒ@B� >

p
!

"
t



where B D B.r; 0/ is a ball (centered at zero) containing @� in its interior. As Z�,
V� belong to W1;2.C/ (the time derivatives being computed from the equations), the
Gauss-Green theorem can be used to obtain

0 D
Z

C

h
!@tZ�Z� C !divxV�Z� C @tV� � V� C !

"
rxZ� � V�

i
dx dt

D
Z

C

�
1

2
@t
�
!jZ�j2 C jVj2�C !

"
divx

�
Z�V�

��
dx dt

D
"Z

n
jxj<r�

p

!

" t
o
\�

1

2

�
!jZ� j2 C jVj2� dx

#tD	

tD0

C
Z
n
t2.0;	/; xDr�

p

!
" t
o

�
1

2

�
!jZ�j2 C jVj2� nt C !

"
Z�V�nx

�
dSt;x;

where

1

2

�
!jZ� j2 C jVj2� nt C !

"
Z�V�nx 	 1

2
!

 

jZ� j2 C
ˇ
ˇ
ˇ̌ Vp
!

ˇ
ˇ
ˇ̌
2
!�

nt �
p
!

"
jnxj

�
	 0
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yielding the desired conclusion

Z
n
jxj<r�

p

!

" 	
o
\�

1

2

�
!jZ� j2 C jVj2� dx �

Z

fjxj<rg\�
1

2

�
!jZ� j2 C jVj2� dx

(8.125)
for any 0 � 	 � T.

Recalling our goal—proving (8.120)—we realize that what matters is only the
behavior of the solution V� on the fixed compact set containing suppŒ'�. As the
family �" enjoys Property (L) specified through (8.49), and i view of the finite
speed of propagation property enjoyed by solutions of (8.121), (8.122), we may
therefore replace V� in by a weak solution QV� D rx Q‰� of the same system on the
limit domain�. Accordingly,

Z

�

V� � ' dx D
Z

�

QV� � ' dx D
Z

�

rx Q‰� � H?' dx (8.126)

D
Z

�

rx Q‰� � H?' dx D �
Z

�

� Q‰� ˆ dx;

where H denotes the Helmholtz projection on the limit domain � and H?Œ'� D
rxˆ. Note that, similarly to �‰� ,

sup
t2.0;T/

k� Q‰�k2L2.�/ � !�

by virtue of teh energy bounds stated in (8.124). Finally, as ' 2 C1
c .BIR3/, we get

ˆ 2 D1;p.�/,

krxˆkLp.�IR3/ � c.p/ for all 1 < p < 1;

in particular, by virtue of Sobolev inequality, ˆ 2 L2.�/ (cf. Theorem 7). Thus the
bound (8.124) yields the desired conclusion

ˇ
ˇ̌
ˇ

Z

�

V� � ' dx

ˇ
ˇ̌
ˇ � k� Q‰�kL2.�/kˆkL2.�/ � c.'/

p
�; (8.127)

meaning the error in (8.120) can be made small if we replace Z1;2 by Z1;2� in (8.95).

Step 2: Approximating Data Given by Measure The next step is to estimate the
error in (8.120) if we replace ŒZ";V"� by the solution of the same system endowed
with the mollified initial data

Z";ı.0; �/ D Z10;";ı C Z20;";ı C Z30;";ı C Z1;2� ; V";ı.0; �/ D V0;ı;
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and with the driving forces determined through the regularized functions

Hj
";ı ; G

j
";ı ; j D 1; 2; G3

";ı

identified in Sect. 8.6.1. As the deviation between the solution of the homogeneous
acoustic system emanating from the data ŒZ1;2; 0� and ŒZ1;2� ; 0� has been estimated in
the previous part, our goal reduces to showing

sup
t2.0;T/

ˇ
ˇ
ˇ
ˇ

Z

�

V�.t; �/ � ' dx

ˇ
ˇ
ˇ
ˇ < o.�/; o.�/ ! 0 as � ! 0: (8.128)

for a given (small) � > 0, where ' is the same as in (8.120), and ŒZ� ;V� � is a (weak)
solution of the acoustic system

"

Z T

0

< Z�.t; �/; @t' > dt C
Z T

0

Z

�"

V� � rx' dx dt (8.129)

D �" < Z0;� ; '.0; �/ > C"
Z T

0

Z

�"

H� � rx' dx dt;

for any ' 2 C1c.Œ0;T/ ��"/,

"

Z T

0

Z

�"

V� � @t' dx dt C !

Z T

0

< Z�.t; �/; divx' > dt (8.130)

D �"
Z

�"

V0;� � '.0; �/ dx

C"
Z T

0

˝
g�; divx'

˛
dt C "

Z T

0

Z

�"

G�.t; �/ W rx' dx dt dt C "

Z T

0

Z

�"

h� � ' dx dt;

for any ' 2 C1c.Œ0;T/ ��"IR3/, ' � nj@�" D 0, with the initial data

Z0;� D
3X

jD1

�
Zj
0;" � Zj

0;";ı

�
; V0;� D V0;" � V0;";ı ;

and the forces

H� D
2X

jD1

�
Hj
" � Hj

";ı

�
; G� D

2X

jD1

�
G

j
" � G

j
";ı

�
; g� D G3

" � G2
";ı :
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To begin, we fix " D ".�/ is in Step 1 to guarantee (8.127). With " fixed and the
approximation estimates (8.104), (8.106), (8.108), we may take ı D ı."/ so small
that

DM.�"/
ŒZ0;� ; 0� < �; (8.131)

whereD denotes the metric in the M weak-(*) topology on bounded sets in M.�"/.
Next, by virtue of (8.110),

kV�kL2.�"IR3/ < �: (8.132)

Similarly, evoking (8.112), (8.114), (8.115) we get

kH�kL2.0;TIL1.�IR3�3// < �; kG�kL2.0;TIL1.�IR3�3// < �; (8.133)

and, by virtue of (8.117),

kh�kLp.0;TIL5=3.�IR3// < c.p/�; 1 � p < 1: (8.134)

Finally, in accordance with (8.119),

g� 2 Cweak�.�/.Œ0;T�IM.�"//;

Z T

0

ˇ
ˇ̌DM.�"/

Œg�.t; �/; 0�
ˇ
ˇ̌p dt < c.p/�; 1 � p < 1: (8.135)

Remark Note that, as " > 0 is fixed, the L2-norm dominates the L1-norm in �".

Roughly speaking, we have to show that solutions of the acoustic sys-
tem (8.129), (8.130) with “small” data are “small”. The main difficulty is that
the data are very irregular (measures) and so are the solutions. Note, however, that
regularity of ŒZ� ;V� � is the same as that of ŒZ";V"� as the approximate data are
regular.

Writing

Z

�

V� � ' dx D
Z

�"

V� � ' dx D
Z

�"

V� � �HŒ'�C H?Œ'�
�

dx;

where H is the Helmholtz projection in�", we immediately see by taking .t/HŒ'�,
 2 C1

c .Œ0;T/ as test function in (8.130) that

�
t 7!

Z

�"

V� � HŒ'� dx


! 0 in CŒ0;T� as � ! 0:
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Thus showing (8.128) reduces to

sup
t2.0;T/

ˇ
ˇ
ˇ̌
Z

�"

V�.t; �/ � H?Œ'� dx

ˇ
ˇ
ˇ̌ < o.�/; o.�/ ! 0 as � ! 0: (8.136)

Our idea, similar to Sect. 5.4.6, is to regularize (8.129), (8.130) by means of the
spectral projections associated to the Neumann Laplacian�N ;�" ,

�N ;�"v D �v

defined on

DŒ�N ;�" � D
n
v 2 W2;2.�"/

ˇ
ˇ
ˇ rxv � nj@�" D 0 (in the sense of traces)

o
:

It is well-known that if @�" is regular, the operator ��N ;�" generates a self-adjoint
non-negative operator on the space L2.�"/. In particular, as �" is bounded, the
eigenvalue problem

��wn D ƒnwn in �"; rxwn � nj@�" D 0

admits a countable sequence of eigenvalues ƒ0 D 0 < ƒ1 � ƒ2 : : : , where the
eigenspace associated to ƒ0 is spanned by constants, cf. (5.146). In particular, we
may define the functional calculus and the functions of ��N ;�" by means of a
simple formula

G.��N ;�"/Œv� D
1X

jD0
G.ƒn/anŒv�wn; anŒv� D

Z

�"

vwn dx

see Sect. 11.1 in Appendix. We may also define a scale of Hilbert spaces

D.��N ;�"
˛/ D

8
<

:
v 2 L2.�"/

ˇ
ˇ
ˇ

1X

jD0
ƒ2˛

n jan.v/j2 < 1;

Z

�"

v dx D 0 if ˛ < 0

9
=

;

Since D.��N ;�"/ � W2;2.�"/, where W2;2.�"/ is compactly embedded in
C.�"/, bounded sets in M.�"/ are compact in the dual space D..��N ;�"/

�1/.
In particular, the linear form

' 7!
Z

�"

H�.t; �/ � rx' dx

can be understood as a bounded linear form acting on D..��N ;�"/
3=2/. Applying

the Riesz representation theorem we get

Z

�"

H�.t; �/ � rx' dx D
Z

�"

�1�.t; �/.��N ;�"/
3=2Œ'� dx; (8.137)
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with

k�1.t; �/kL2.�"/ � ckH�.t; �/kL1.�"IR3/
Next, we take a test function rx', rx' � nj@�" D 0 in (8.130) to obtain

"

Z T

0

Z

�"

V� � @trx' dx dt C !

Z T

0

˝
Z�.t; �/;�N ;�" Œ'�

˛
dt

D �"
Z

�"

V0;� � rx'.0; �/ dx C "

Z T

0

˝
g�; �N ;�" Œ'�

˛
dt

C"
Z T

0

Z

�"

G�.t; �/ W rx
2' dx dt dt C "

Z T

0

Z

�"

h� � rx' dx dt:

Here, similarly to (8.137), we have

Z

�"

G�.t; �/ W rx
2' dx D

Z

�"

�2.t; �/.��N ;�"/
2Œ'� dx; (8.138)

with

k�2.t; �/kL2.�"/ � ckG�.t; �/kL1.�"IR3�3/;

and, similarly,

Z

�"

h�.t; �/ � rx' dx D
Z

�"

�3.t; �/.��N ;�"/
3=2Œ'� dx (8.139)

with

k�3.t; �/kL2.�"/ � ckh�.t; �/kL1.�"IR3/:

Finally, since the embedding D..��N ;�"/
2/ ,! C.�"/ is compact, we have

˝
g�.t; �/;�N ;�"Œ'�

˛ D
Z

�"

�4.t; �/.��N ;�"/
2Œ'� dx; (8.140)

with

k�4.t; �/kL2.�"/ � cDM.�"/
Œg�.t; �/; 0�:

Writing

V� D HŒV� �C rx‰�
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we may reformulate the acoustic system (8.129), (8.130) as

"

Z T

0

< Z�.t; �/; @t' > dt �
Z T

0

Z

�"

‰� ��N ;�"Œ'� dx dt (8.141)

D �" < Z0;� ; '.0; �/ > C"
Z T

0

Z

�"

�1.��N ;�"/
3=2Œ'� dx dt;

for any ' 2 C1.Œ0;T�;D..��N ;�" /
3=2//, '.T; �/ D 0,

�"
Z T

0

Z

�"

‰� � @t�N ;�"Œ'� dx dt C !

Z T

0

˝
Z�.t; �/;�N ;�"Œ'�

˛
dt

D "

Z

�"

‰0;��N ;�"Œ'�.0; �/ dx C "

Z T

0

Z

�"

�4.��N ;�"/
2Œ'�dt

C"
Z T

0

Z

�"

�2.��N ;�"/
2Œ'� dx dt dt C "

Z T

0

Z

�"

�3.��N ;�"/
3=2Œ'� dx dt;

where the latter can be rephrased as

� "

Z T

0

Z

�"

‰� � @t' dx dt C !

Z T

0

˝
Z�.t; �/; '

˛
dt (8.142)

D "

Z

�"

‰0;�'.0; �/ dx C "

Z T

0

Z

�"

�4.��N ;�"/Œ'�dt

C"
Z T

0

Z

�"

�2.��N ;�"/Œ'� dx dt dt C "

Z T

0

Z

�"

�3.��N ;�"/
1=2Œ'� dx dt

for any ' 2 C1.Œ0;T�;D..��N ;�" /
3=2//, '.T; �/ D 0.

Remark Formally, the system of equations (8.141), (8.142) can be written as

"@tZ� C�N ;�"‰� D �".��N ;�"/
3=2Œ�1�;

"@tˆ� C !Z� D ".��N ;�"/Œ�
4�C ".��N ;�"/Œ�

2�C ".��N ;�"/
1=2Œ�3�:

Such a formulation can be rigorously justified at the level of individual projections
onto the eigenfunctions of the operator�N ;�" , which corresponds to taking the test
functions in (8.141), (8.142) in the form

' D G.��N ;�"/Œw�; G 2 C1
c .0;1/:



8.6 Regularization and Extension to� 347

Note that such a procedure has already been performed in Sect. 5.4.6.

Solutions, or rather their spectral projections, of the linear system (8.141), (8.142)
can be conveniently expressed by means of the variation-of-constants formula,
namely

‰�.t; �/ D 1

2
exp

�
i
t

"
.�!�N ;�"/

1=2
� h
‰0;� C i! .��N ;�"/

�1=2 ŒZ0;� �
i

(8.143)

C1

2
exp

�
�i

t

"
.�!�N ;�"/

1=2
� h
‰0;� � i! .��N ;�"/

�1=2 ŒZ0;� �
i

C1

2

Z t

0

exp
�

i
t � s

"
.�!�N ;�"/

1=2
� �
.��N ;�"/Œ�

4�

C.��N ;�"/Œ�
2�C .��N ;�"/

1=2Œ�3� � i! .��N ;�"/ Œ�
1�
	

ds

C1

2

Z t

0

exp
�
�i

t � s

"
.�!�N ;�"/

1=2
� �
.��N ;�"/Œ�

4�C .��N ;�"/Œ�
2�

C.��N ;�"/
1=2Œ�3�C i! .��N ;�"/ Œ�

1�
	

ds;

where we have set

rx‰0;� D H?ŒV0;� �:

In accordance with (8.132), we have

krx‰0;�kL2.�"IR3/ � �I whence ‰� D .��N ;�"/
�1=2Œ � �; k �kL2.�"/ � c�:

Remark A similar formula holds for Z� , however, we do not need it here.

The identity between ‰� and the expression on the right-hand side of (8.143) is
to be understood in the sense of the Fourier coefficients

an D
Z

�"

‰�wn dx; n D 1; 2; : : :

wn being the eigenfunctions of .��N ;�"/. In view of the uniform bounds established
in (8.131)–(8.135), in combination with (8.137)–(8.140), it is easy to deduce from
formula (8.143) that

‰�.t; �/ D .��N ;�"/
�1Œ �.t; �/�;
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where

sup
t2Œ0;T�

k �.t; �/kL2.�"/ D o.�/; o.�/ ! 0 as � ! 0:

Going back to (8.136) we easily observe that

Z

�"

V�.t; �/ � H?Œ'� dx D �
Z

�"

‰�divx' dx

D �
Z

�"

.��N ;�"/
�1Œ �.t; �/�divx' dx

D �
Z

�"

.��N ;�"/
�1 �.t; �/.��N ;�"/

�1Œdivx'� dxI

whence (8.136) follows as ' 2 C1
c .�"/.

Step 3: Extension to � As shown in the previous two steps, the desired prop-
erty (8.120) can be verified replacing the original problem (with irregular data) by
the problem with regularized and compactly supported data specified in Sect. 8.6.1.
Moreover, extending the data to be zero in �" n � we may use the finite speed of
propagation property established in (8.124), together with Property (L), to observe
that we may consider the problem defined on the target domain �. Thus our task
reduces to the following problem

� PROBLEM (D):

For a given ' 2 C1
c .�/ show that

�
t 7!

Z

�

V" � ' dx


is precompact in L2.0;T/ as " ! 0; (8.144)

where ŒZ";V"� is a family of (regular) solutions of the acoustic system

"@tZ" C divxV" D "divxH" (8.145)

"@tV" C !rxZ" D " .divxG" C g/ (8.146)

with the Neumann boundary conditions

V" � nj@� D 0; (8.147)

and the far field conditions

V"; Z" ! 0 as jxj ! 1; (8.148)
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and the initial data

Z".0; �/ D Z0;";V";0.0; �/ D V0;": (8.149)

The data enjoy the following regularity properties:

8
<

:

Z0;" 2 C1
c .�/; V0;" 2 C1

c .�IR3/;

kZ0;"k.L1CL2CD1;2/.�/ � c; kV"k.L2\L1/.�IR3/ � c;

9
=

;
(8.150)

H 2 C1
c .Œ0;T� ��IR3/;

Z T

0

kHk2
.L1CL2/.�IR3/ dt � c; (8.151)

G 2 C1
c .Œ0;T� ��IR3�3/;

Z T

0

kHk2
.L1CL2/.�IR3�3/ dt � c; (8.152)

and

g 2 C1
c .Œ0;T� ��IR3/; sup

t2Œ0;T�
kg.t; �/kL5=3.�IR3/ � c; (8.153)

where all constants are independent of ".

Remark Note that system (8.145), (8.146) is formally the same as (8.92), (8.93).
However, there are two essential features that make the present setting definitely
more convenient for future discussion: system (8.145), (8.146) is defined on the
(" independent) target domain � and admits unique classical solutions compactly
supported in Œ0;T� ��.

8.7 Dispersive Estimates and Time Decay of Acoustic Waves

Our goal in this section is to give a positive answer to Problem (D) and thus complete
the proof of the strong (a.a. pointwise) convergence of the velocity fields claimed
in (8.61). To this end, we use the dispersive decay estimates for solutions of the
acoustic system (8.145), (8.146) on the unbounded domain�. The method, formally
similar to that used in the previous section, is based on the spectral properties of the
Neumann Laplacian ��N ;�,

�N ;�v D �v in �; rxv � nj@� D 0; v 2 C1
c .�/

and its extension to a self-adjoint non-negative operator on that Hilbert space
L2.�/, see Sect. 11.3.4 in Appendix. As a consequence of Rellich’s theorem (The-
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orem 11.10 in Appendix), the point spectrum of ��N ;� is empty in sharp contrast
with its bounded domain counterpart ��N ;�" . Moreover, the spectrum of ��N ;�

is absolutely continuous and coincides with the half-line Œ0;1/, see Sect. 11.3.4
in Appendix. In particular, we may develop the spectral theory, define functions
G.��N ;�/ for G 2 C.0;1/, and the associated Hilbert spaces D..��N ;�/

˛/,
˛ 2 R, see Sect. 11.1 in Appendix.

8.7.1 Compactness of the Solenoidal Components

Similarly to the preceding part, we observe that (8.144) holds true for solenoidal
functions, in particular

�
t 7!

Z

�

V" � HŒ'� dx


is precompact in L2.0;T/ as " ! 0:

Writing V" in terms of its Helmholtz decomposition

V" D HŒV"�C rx‰";

we therefore conclude that it is enough to show

�
t 7!

Z

�

rx‰" � ' dx


is precompact in L2.0;T/ as " ! 0:

Moreover, as the gradient part rx‰" is expected to disappear in the asymptotic limit
(cf. (8.60)), we may anticipate a stronger statement

�
t 7!

Z

�

rx‰" � ' dx


! 0 (strongly) in L2.0;T/ as " ! 0: (8.154)

for any fixed ' 2 C1
c .�IR3/.

Remark Note that (8.154) cannot hold on any domain, where ��N ;� admits
positive eigenvalues, in particular if � was a bounded domain, as can be observed
from the variation-of-constants formula (8.143). On the other hand, we will see that
the absence of eigenvalues is basically sufficient to produce (8.154).

8.7.2 Analysis of Acoustic Waves

Similarly to the preceding section, system (8.145), (8.146) can be written in the
form of
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� LINEAR WAVE EQUATION:

"@tZ" C�N ;�‰" D "divxH"; (8.155)

"@t‰" C !Z" D ".�N ;�/
�1divx .divxG" C g/ (8.156)

with the Neumann boundary conditions

rx‰" � nj@� D 0; (8.157)

the far field conditions

‰"; Z" ! 0 as jxj ! 1; (8.158)

and the initial data

Z".0; �/ D Z0;"; ‰";0.0; �/ D �N ;�
�1divxV0;": (8.159)

Our aim is to rewrite the linear operators on the right-hand sides of (8.155),
(8.156) in the form

G.��N ;�/Œh� where h 2 L2.0;TIL2.�//;

cf. Step 2 in Sect. 8.6.2.

• As H admits the bound (8.151) and is compactly supported in�, the linear form

' 7!
Z

�

divxH.t; �/' dx D �
Z

�

H.t; �/ � rx' dx

is continuous on the space of functions ' having their gradient rx' bounded in
L2 \ L1, in particular, it is continuous on the Hilbert space

D..��N ;�/
1=2/ \ D..��N ;�/

3=2/:

Indeed, by virtue of the standard elliptic regularity estimates (see Theorem 11.12
in Appendix), the gradients of functions in D..��N ;�/

1=2/ \ D..��N ;�/
3=2/

belong to L2.�/, with their second derivatives bounded in L2.�/; whence
bounded in W2;2.�/ � .L2 \ L1/.�/. Thus we can write

divxH D ..��N ;�/
3=2 C .��N ;�/

1=2/Œ�1�; k�1kL2.0;TIL2.�// � c: (8.160)
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• Similarly,

divxg D ..��N ;�/
3=2 C .��N ;�/

1=2/Œ�2�

therefore, by virtue of (8.153),

�N ;�
�1divxg D ..��N ;�/

1=2 C .��N ;�/
�1=2/Œ�2�; sup

t2Œ0;T�
k�2.t; �/kL2.�/ � c:

(8.161)
• The expression divxdivxG can be identified with

divxdivxG D ..��N ;�/
2 C .��N ;�/

1=2/Œ�3�I
whence, by virtue of (8.151),

�N ;�
�1divxdivxG D ..��N ;�/C .��N ;�/

�1=2/Œ�3�; k�3kL2.0;TIL2.�// � c:
(8.162)

• Finally, in accordance with (8.150), the initial data can be written as
8
<

:

Z0;" D �
.��N ;�/

2 C .��N ;�/
�1=2� Œ�4�;

‰0;" D .��N ;�/
�1=2Œ�5�; k�jkL2.�/ � c:

9
=

;

Consequently, system (8.155), (8.156) takes the form

"@tZ" C�N ;�‰" D "..��N ;�/
3=2 C .��N ;�/

1=2/Œf 1" � (8.163)

"@t‰" C !Z" D "..��N ;�/C .��N ;�/
�1=2/Œf 2" � (8.164)

where

k f 1" kL2.0;TIL2.�/ C k f 2" kL2.0;TIL2.�/ � c; (8.165)

Z0;" D �
.��N ;�/

2 C .��N ;�/
�1=2� Œz0;"�; ‰0;" D .��N ;�/

�1=2Œ 0;"�

kz0;"kL2.�/ C k 0;"kL2.�/ � c: (8.166)

Remark We have used a simple observation that

F.��N ;�/Œa�C G.��N ;�/Œb� D .F.��N ;�/C G.��N ;�//Œd�;

d D F.��N ;�/

.F.��N ;�/C G.��N ;�//
Œa�C F.��N ;�/

.F.��N ;�/C G.��N ;�//
Œb� 2 L2.�/

whenever F;G 	 0, a; b 2 L2.�/.
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At this stage, we evoke the variation-of-constants formula introduced in (8.143)
to compute‰":

‰".t; �/ D 1

2
exp

�
i
t

"
.�!�N ;�/

1=2
� �
.��N ;�/

�1=2Œ 0;"� (8.167)

Ci!
�
.��N ;�/

3=2 C .��N ;�/
�1� Œz0;"�

	

C1

2
exp

�
�i

t

"
.�!�N ;�/

1=2
� �
.��N ;�/

�1=2Œ 0;"�

� i!
�
.��N ;�/

3=2 C .��N ;�/
�1� Œz0;"�

	

C1

2

Z t

0

exp
�

i
t � s

"
.�!�N ;�/

1=2
� h
..��N ;�/C .��N ;�/

�1=2/Œf 2" �

Ci!..��N ;�/C Id/Œf 1" �
i

ds

C1

2

Z t

0

exp
�
�i

t � s

"
.�!�N ;�/

1=2
� h
..��N ;�/C .��N ;�/

�1=2/Œf 2" �

�i!..��N ;�/C Id/Œf 1" �
i

ds:

Now, take G� 2 C1
c .0;1/ such that

0 � G� � 1; G�.z/ D 1 for z 2 Œ�; 1
�
�; � > 0:

Going back to (8.154), we write

Z

�

rx‰" � ' dx D �
Z

�

‰"divx' dx D (8.168)

�
Z

�

G2�.��N ;�/Œ‰"�divx' dx C
Z

�

�
G2�.��N ;�/� Id

�
Œ‰"�divx' dx;

where
Z

�

�
G2�.��N ;�/� Id

�
Œ‰"�divx' dx D

Z

�

‰"

�
G2�.��N ;�/� Id

�
Œdivx'� dx:

In accordance with the explicit formula (8.167) and the bounds (8.165), (8.166),
we have

‰" D �
.��N ;�/

3=2 C .��N ;�/
�1� Œ "�;
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where

sup
t2Œ0;T�

k ".t; �/kL2.�/ � c:

Consequently, writing

Z

�

‰"

�
G2�.��N ;�/ � Id

�
Œdivx'� dx

D
Z

�

�
.��N ;�/

3=2 C .��N ;�/
�1� Œ "�

�
G2�.��N ;�/� Id

�
Œdivx'� dx

D
Z

�

 "

�
G2�.��N ;�/ � Id

� ��
.��N ;�/

3=2 C .��N ;�/
�1� divx'

	
dx

we get

ˇ̌
ˇ
ˇ

Z

�

�
G2�.��N ;�/� Id

�
Œ‰"�divx' dx

ˇ̌
ˇ
ˇ < o.�/; o.�/ ! 0 as � ! 0

uniformly in " as soon as we observe that

�
.��N ;�/

3=2 C .��N ;�/
�1� Œdivx'� 2 L2.�/:

Indeed

.��N ;�/
3=2Œdivx'� 2 L2.�/

as ' is smooth and compactly supported, while, by the same token,

divx' 2 Lp.�/ for any 1 � p � 1;

therefore, by the Lp-elliptic estimates (see Theorem 11.12 in Appendix),

.��N ;�/
�1Œdivx'� 2 D1;p.�/ for any 1 < p < 1;

and the desired conclusion

.��N ;�/
�1Œdivx'� 2 L2.�/

follows from Sobolev inequality.
Consequently, in view of (8.168), verifying validity of (8.154) amounts to

showing

�
t 7!

Z

�

G2�.��N ;�/Œ‰"� � divx' dx


! 0 (strongly) in L2.0;T/ as " ! 0

(8.169)
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for any fixed ' 2 C1
c .�IR3/ and any fixed � > 0. As ‰" is given (8.167), the

problem reduces to suitable time decay properties of

�G�.��N ;�/ exp
�
˙i

t

"
.!�N ;�/

1;2
�
Œh�; � 2 C1

c .�/; (8.170)

with h belonging to a bounded set in L2.�/, and

�G�.��N ;�/

Z t

0

exp
�
˙i

t � s

"
.!�N ;�/

1;2
�
Œh.s/� ds; � 2 C1

c .�/; (8.171)

with h belonging to a bounded set in L2.0;TIL2.�//.

8.7.3 Decay Estimates via RAGE Theorem

In order to establish (8.170), (8.171) we use the celebratedRAGE Theorem, see Reed
and Simon [237, Theorem XI.115], Cycon et al. [66]. The reader may consult
Sect. 11.1 in Appendix for the relevant part of the spectral theory for self-adjoint
operators used in the text below.

� RAGE THEOREM

Theorem 8.1 Let H be a Hilbert space, A W D.A/ � H ! H a self-adjoint
operator, C W H ! H a compact operator, and Pc the orthogonal projection onto
Hc, where

H D Hc ˚ clH
n
spanfw 2 H j w an eigenvector of Ag

o
:

Then
�
�
�
�
1

	

Z 	

0

exp.�itA/CPc exp.itA/ dt

�
�
�
�
L.H/

! 0 for 	 ! 1: (8.172)

We apply Theorem 8.1 to

H D L2.�/; A D .�!�N ;�/
1=2; C D �2G.��N ;�/; Pc D Id;

with

� 2 C1
c .�/; � 	 0; G 2 C1

c .0;1/; 0 � G � 1:
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Remark The operator C D �2G.��N ;�/ represents a cut-off both in the physical
space R3 represented by the compactly supported function � and in the “frequency”
space represented by picking up a compact part of the spectrum of ��N ;�

belonging to the support of G. It is easy to see that

G.��N ;�/ � D..�N ;�/
˛/ for any ˛ 2 R;

in particular

krx
kG.��N ;�/Œv�kL2.�/ � c.k/kvkL2.�/ for any k 	 0

ensuring local compactness in L2.

Taking 	 D 1=" in (8.172) we obtain

Z T

0

D
exp

�
�i

t

"
.�!�N;�/

1=2
�
�2G.��N;�/ exp

�
i
t

"
.�!�N;�/

1=2
�
XIY

E

L2.�/
dt

� o."/kXkL2.�/kYkL2.�/; o."/ ! 0 as " ! 0:

Thus for Y D G.��N ;�/ŒX� we deduce that

Z T

0

��
��G.��N ;�/ exp

�
i
t

"
.�!�N ;�/

1=2
�
ŒX�
��
�
2

L2.�/
dt (8.173)

� o."/kXk2L2.�/ for any X 2 L2.�/; o."/ ! 0 as " ! 0;

yielding (8.169) for the component of ‰" given by (8.170).
Similarly, we have

�
�
�
��
Z T

0

G.��N ;�/ exp
�

i
t � s

"
.�!�N;�/

1=2
�
ŒY.s/� ds

�
�
�
�

2

L2..0;T/��/
(8.174)

�
Z T

0

 �
�
�
�

Z T

0

�G.��N ;�/ exp
�

i
t � s

"
.�!�N ;�/

1=2
�
ŒY.s/� ds

�
�
�
�

2

L2.�/

!

dt

�
Z T

0

Z T

0

�
�
��G.��N ;�/ exp

�
i
t � s

"
.�!�N ;�/

1=2
�
ŒY.s/�

�
�
�
2

L2.�/
dt ds

� o."/
Z T

0

�
�
�exp

�
�i

s

"
.�!�N ;�/

1=2
�
ŒY.s/�

�
�
�
2

L2.�/
ds

D o."/
Z T

0

kY.s/k2L2.�/ ds; o."/ ! 0 as " ! 0;
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which implies (8.169) for the component of ‰" given by (8.171).
Having completed the proof of (8.144) we have shown the strong convergence of

the velocities claimed in (8.61).

� LOCAL DECAY OF ACOUSTIC WAVES:

Theorem 8.2 Let f�"g">0 be a family of bounded domains in R
3, with C2C�

boundaries

@�" D � [ �"

enjoying PROPERTY (L). Let F be determined through (8.18), where m 	 0 is a
bounded measurable function,

suppŒm� � R
3 n�;

� being the exterior domain, @� D � . Assume that the thermodynamic functions p,
e, s as well as the transport coefficients, � satisfy the structural hypotheses (8.41)–
(8.48). Let f%";u"; #"g">0 be a weak solution of the NAVIER-STOKES-FOURIER

SYSTEM (8.1)–(8.6) in .0;T/��" with the complete slip boundary conditions (8.11)
in the sense specified in Sect. 5.1.2. Finally, let the initial data satisfy (8.28)–(8.31).

Then, at least for a suitable subsequence, we have

u" ! U in L2..0;T/ � KIR3/ for any compact K � �;

with

U 2 L2.0;TIW1;2.�IR3//; divxU D 0:

Remark Smoothness of the boundaries @�" is necessary as we have repeatedly used
the regularity theory for the Neumann Laplacian. Recall that RAGE Theorem is
applicable under the mere assumption of the absence of eigenvalues of �N ;�. On
the other hand, we have no information on the rate of decay. In Sect. 8.9 below, we
shall discuss other possibilities to deduce dispersive estimates with an explicit decay
rate in terms the parameter " > 0.
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8.8 Convergence to the Target System

Since we have shown strong pointwise (a.a.) convergence of the family of the
velocity fields fu"g">0 we may let " ! 0 in the weak formulation of the NAVIER-
STOKES-FOURIER SYSTEM to deduce as in Sect. 5.3 that

%" � %

"
! r weakly-(*) in L1.0;TIL5=3.K// for any compact K � �;

#" � #

"
! ‚ weakly in L2.0;TIW1;2.�//;

cf. (8.59), and

u" ! U

8
<

:

weakly in L2.0;TIW1;2.�IR3//

and (strongly) in L2..0;T/ � K/ for any compact K � �;

cf. (8.60), where Œr; ‚;U� solves the OBERBECK–BOUSSINESQ APPROXIMA-
TION (8.14)–(8.17) in .0;T/ ��. Specifically, we have

divxU D 0 a.a. on .0;T/ ��;
Z T

0

Z

�

.%.U � @t' C .U ˝ U/ W rx'// dx dt (8.175)

D �
Z

�

%U0 � ' dx C
Z T

0

Z

�

S W rx' � rrxF dx dt

for any test function ' 2 C1
c .Œ0;T/ ��IR3/, divx' D 0, ' � nj@� D 0, where

S D .#/.rxU C rx
tU/:

Furthermore,

%cp.%; #/
h
@t‚C divx.‚U/

i
� ��‚� %#˛.%; #/divx.FU/ D 0 a.a. in .0;T/ ��;

rx# � nj@� D 0;‚.0; �/ D ‚0;

and

r C %˛.%; #/‚ D 0 a.a. in .0;T/ ��:
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Similarly to the primitive system, the limit velocity field U satisfies the complete
slip boundary conditions condition

U � nj@� D 0 and ŒSn� � nj@� D 0;

where the latter holds implicitly through the choice of test functions in the
momentum equation (8.175).

Exactly as in Sect. 5.5.3 the adjustment of the initial temperature distribution
experiences some difficulties related to the initial time boundary layer. While the
initial conditions for the limit velocity are determined through

u0;" ! U0 weakly in L2.�IR3/;
the initial value of the temperature deviation‚0 reads

‚0 D #

cp.%; #/

 
@s.%; #/

@%
%
.1/
0 C @s.%; #/

@#
#
.1/
0

!

; (8.176)

where

Q%.1/0;" ! %
.1/
0 ; #

.1/
0;" ! #

.1/
0 weakly in L2.�/:

Thus if %.1/0 , #.1/0 satisfy

@p.%; #/

@%
%
.1/
0 C @p.%; #/

@#
#
.1/
0 D 0;

which is nothing other than linearization of the pressure at the constant state .%; #/
applied to the vector Œ%.1/0 ; #

.1/
0 �, relation (8.176) reduces to

‚0 D #
.1/
0 :

We have shown the following result.

� LOW MACH NUMBER LIMIT: LARGE DOMAINS

Theorem 8.3 Let f�"g">0 be a family of bounded domains in R
3, with C2C�

boundaries

@�" D � [ �"

enjoying PROPERTY (L). Let F be determined through (8.18), where m 	 0 is a
bounded measurable function,

suppŒm� � R
3 n�;
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� being the exterior domain, @� D � . Assume that the thermodynamic functions p,
e, s as well as the transport coefficients, � satisfy the structural hypotheses (8.41)–
(8.48). Let f%";u"; #"g">0 be a weak solution of the NAVIER-STOKES-FOURIER

SYSTEM (8.1)–(8.6) in .0;T/��" with the complete slip boundary conditions (8.11)
in the sense specified in Sect. 5.1.2. Finally, let the initial data satisfy

%0;" D Q%" C " Q%.1/0;"; #0;" D # C "#
.1/
0;" ;

where

k Q%.1/0;"kL2\L1.�"/ � c; k#.1/0;" kL2\L1.�"/ � c;
Z

�"

Q%.1/0;" dx D
Z

�"

#
.1/
0;" dx D 0I

Q%.1/0;" ! %
.1/
0 weakly in L2.�/; #.1/0;" ! #

.1/
0 weakly in L2.�/;

and

ku0;"kL2\L1.�"IR3/ � c; u0;" ! u0 weakly in L2.�IR3/:

Then, at least for a suitable subsequence, we have

%" � %
"

! r weakly-(*) in L1.0;TIL5=3.K// for any compact K � �;

#" � #
"

! ‚ weakly in L2.0;TIW1;2.�//;

u" ! U

8
<

:

weakly in L2.0;TIW1;2.�IR3//

and (strongly) in L2..0;T/ � K/ for any compact K � �;

where Œr; ‚;U� is a weak solution OBERBECK–BOUSSINESQ APPROXIMA-
TION (8.14)–(8.17) in .0;T/ ��, with the initial data

U.0; �/ D HŒu0�; ‚.0; �/ D #

cp.%; #/

 
@s.%; #/

@%
%
.1/
0 C @s.%; #/

@#
#
.1/
0

!

:

Remark We have tacitly assumed that the initial data were suitable extended outside
�" to the whole space R3.
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8.9 Dispersive Estimates Revisited

The crucial arguments used to derive the dispersion estimates in Sect. 8.7.3 were all
based on the decay rate d D d."; ';G/ of the integral

Z T

0

ˇ
ˇ
ˇ
ˇ
D
exp

�
˙i

t

"
.��N ;�/

1=2
�
Œ‰�;G.��N ;�/Œ'�

E

L2.�/

ˇ
ˇ
ˇ
ˇ

2

dt � d."; ';G/k‰k2L2.�/:
(8.177)

In particular, we have shown, by means of RAGE Theorem, that d."; ';G/ ! 0 as
" ! 0 for any fixed ' 2 C1

c .�/ and G 2 C1
c .0;1/ as long as ��N ;� does not

possesses any proper eigenvalues in its spectrum. In this section, we examine (8.177)
in more detail and show that certain piece of qualitative information concerning
d may be available at least on a special class of domains including the exterior
domains considered sofar in this chapter. To this end, refined tools of the spectral
theory will be used, in particular the properties of the spectral measure associated
to the function '. The reader may consult Sect. 11.1 in Appendix for the relevant
results used in the text below.

8.9.1 RAGE Theorem via Spectral Measures

We start by rewriting the integral

D
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t
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.��N ;�/
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L2.�/

to a more tractable form. Following the language of quantum mechanics, notably
the work by Last [181], we use the spectral measure ' associated to the function
'. Given ' , any function‰ possesses its representative‰' such that

‰' 2 L2.Œ0;1/; '/; k‰'kL2.Œ0;1/;'/ � k‰kL2.�/
and

hH.��N ;�/Œ‰�; 'iL2.�/ D
Z

Œ0;1/

H.�/‰'.�/ d';

in particular
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(8.178)
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Accordingly, we write
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Remark We have used the explicit formula
Z 1

�1
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�
:

Thus, finally, by means of Hölder’s inequality,
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We infer that (8.177) holds with

d."; ';G/

D eT
p
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jG.z/j2
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where

�Z

Œ0;1/

Z

Œ0;1/

exp

�
�T2

jx1=2 � y1=2j2
4"2

�
d'.x/d'.y/

�1=2
! 0 for " ! 0

as long as the spectral measure' does not charge points in Œ0;1/, meaning as long
as the point spectrum of the operator �N ;� is empty (cf. Sect. 11.1 in Appendix).
We have recovered the statement shown in the previous section by means of RAGE
Theorem.

8.9.2 Decay Estimates via Kato’s Theorem

An alternative approach to study the local decay of acoustic waves is based on an
abstract result of Tosio Kato [166] (see also Burq et al. [44], Reed and Simon
[237, Theorem XIII.25 and Corollary]).

� KATO’S THEOREM

Theorem 8.4 Let C be a closed densely defined linear operator and A a self-adjoint
densely defined linear operator in a Hilbert space H. For � … R, let RAŒ�� D
.A � �Id/�1 denote the resolvent of A. Suppose that

� D sup
�…R; v2D.C�/; kvkHD1

kC ı RAŒ�� ı C�Œv�kH < 1: (8.181)

Then

sup
w2X; kwkHD1

�

2

Z 1

�1
kC exp.�itA/Œw�k2X dt � �2:
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Anticipating, for a while, that A D .��N ;�/
1=2, C—the projection onto the 1D-

space spanned by ', satisfy the hypotheses of Kato’s theorem, we get
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˛
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ˇ
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d	 � "�2.'/k‰k2L2.�/;

meaning (8.177) holds with an explicit decay of d of order ". This is because the
piece of information hidden in hypothesis (8.181) is definitely stronger than the
mere absence of eigenvalues required by RAGE Theorem. In fact, as we shall se
bellow, relation (8.181) is basically equivalent to the so-called limiting absorption
principle for the operator �N ;�, cf. Vaı̆nberg [263]. Our plan for the remaining
part of this section is to use a direct argument, based on the spectral measure
representation introduced above, to show explicit decay rate for d in (8.177), among
which (8.182) as a special case. To this end, we adopt an extra assumptions on the
cut-off function G, namely

suppŒG� � Œa; b�; 0 < a < b < 1: (8.183)

Exactly as in (8.179), we have
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where we have used the Cauchy-Schwartz inequality and Fubini’s theorem in the
following way:
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yielding the desired conclusion for the symmetric kernel
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Now, the kernel in the last integral in (8.184) can be written as
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provided' is absolutely continuous with respect to the Lebesgue measure on Œa; b�
and

'ŒI� � c.a; b; '/jIj for any closed interval I � Œa; b�: (8.187)

Relations (8.186), (8.187) give rise to (8.177) with

d."; ';G/ D "c.';G/I

it remains to show sufficient conditions for (8.187) to hold. The value of 'Œ˛; ˇ�
can be evaluated by means of Stone’s formula (formula (11.1) in Appendix)

'Œ˛; ˇ� (8.188)

D lim
ı!0C lim

�!0C

Z ˇCı

˛Cı

��
1

��N ;� � � � i�
� 1

��N ;� � �C i�

�
'; '
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d�;

consequently, (8.187) holds as soon as the operator ��N ;� satisfies the so-called
limiting absorption principle (LAP).

� LIMITING ABSORPTION PRINCIPLE:

We say that ��N ;� satisfies limiting absorption principle (LAP) if

8
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ˆ̂̂
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ˆ̂
ˆ̂̂
:

Operators

V ı .��N ;� � �˙ i�/�1 ı V W L2.�/ ! L2.�/; V Œv� D .1C jxj2/�s=2; s > 1

are bounded uniformly for � 2 Œ˛; ˇ�; 0 < ˛ < ˇ; � > 0;

9
>>>>>=

>>>>>;

It is known that ��N ;� satisfies (LAP) if� is an exterior domain with a smooth
boundary considered in this chapter, see Theorem 11.11 in Appendix. Accordingly,
we have
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(8.189)

provided

G 2 C1
c .0;1/; suppŒG� � Œa; b�; 0 � G � 1:



8.10 Conclusion 367

8.10 Conclusion

Apart form the exterior domains considered in this chapter, there is a vast class of
domains on which the operator ��N ;� has empty point spectrum or even satisfies
the limiting absorption principle. Obviously our method can be extended to the
situation when these domains are approximated by a suitable family of bounded
domains. A relevant example is the perturbed half-space studied in [123].

Another possibility how to exploit the stronger decay rate stated in (8.189) is the
situation, where the boundary of �" varies with ", in particular, it may contains one
or several “holes” vanishing in the asymptotic limit " ! 0, see [122].

There are intermediate decay rates of d.";G; '/ for spectral measures that are
˛-Hölder continuous with respect to the Lebesgue measure, see Strichartz [252].
Other interesting extensions were obtained by Last [181].



Chapter 9
Vanishing Dissipation Limits

The behavior of fluids in the vanishing dissipation regime, meaning when both the
Reynolds number and the Péclet number are large, plays an important role in the
study of turbulence. In this chapter, we examine the situation when

Sr D 1; Ma D "; and Re D 1

�
; Pe D 1

d
; with suitably chosen "; �; d > 0:

Such a choice of scaling parameters gives rise to qualitatively new difficulties in the
study of the singular limit as we lose compactness in the space variable of both
velocity and temperature. As a result, the singular limit is no longer a problem
of convergence of solutions of the primitive system to those of the target system
but rather a problem of stability of the target solution with respect to singular
perturbations. Accordingly, we have to assume that the target system admits a
regular solution at least on a certain maximal time interval .0;T/. Thus the existence
of solutions to the target problem is no longer a byproduct of the singular limit
analysis but a necessary hypothesis for the singular limit process to converge.

Stability of the target solution will be evaluated in the “norm” induced by a
new quantity called relative energy, the analogue of which—the so-called relative
entropy—has been introduced in the context of hyperbolic systems of conservation
laws by Dafermos [67]. Formally, the relative energy reads

E
�
%; #;u

ˇ
ˇ
ˇr; T ;V

�
(9.1)
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%ju � Vj2 C HT .%; #/ � .% � r/

@HT .r; T /
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� HT .r; T /
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dx;

where Œ%; #;u� is a weak solution of the (unscaled) Navier-Stokes-Fourier system,

.%; #/ 7! HT .%; #/
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is the Helmholtz function introduced in Sect. 2.2.3, and Œr; T ;V� a trio of admissible
smooth “test” functions. Formally, the relative energy is reminiscent of the quantity
appearing in the total dissipation balance (2.52), where the arguments r, � , and
V are now functions of the independent variables .t; x/. The relative energy

E
�
%; #;u

ˇ
ˇ̌r; T ;V

�
can be seen as a kind of distance between the quantities Œ%; #;u�

and Œr; T ;V�. Indeed the hypothesis of thermodynamics stability (1.44) implies that
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ˆ̂
:
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%; #;u

ˇ
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r; T ;V
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	 0I

if r > 0; then

E
�
%; #;u

ˇ
ˇ
ˇr; T ;V

�
D 0 only if Œ%; #;u� D Œr; T ;V�:

9
>>>>>>=

>>>>>>;

Remark Note however that E is not a metric, in particular it is not symmetric with
respect to Œ%; #;u� and Œr; T ;V�.

The strength of the existence theory of weak solutions based on the entropy
balance developed in Chap. 3 will be demonstrated by the fact that the time evolution
of E can be controlled by means of the weak formulation introduced in Chap. 2,
Sect. 2.1.

9.1 Problem Formulation

To simplify the presentation, we consider the primitive NAVIER-STOKES-FOURIER

SYSTEM in the absence of external driving forces:

� PRIMITIVE SYSTEM:

@t%C divx.%u/ D 0; (9.2)

@t.%u/C divx.%u ˝ u/C 1

"2
rxp.%; #/ D �divxS; (9.3)

@t.%s.%; #//C divx
�
%s.%; #/u

�
C ddivx

� q
#

�
D �"; (9.4)

d

dt

Z

�

�"2

2
%juj2 C %e.%; #/

�
dx D 0: (9.5)
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In accordance with the general framework of fluid motions considered in this book,
the viscous stress tensor is determined by Newton’s law

S D S.#;rxu/ D .#/
�
rxu C rx

Tu � 2

3
divxuI

�
C �.#/divxuI; (9.6)

the heat flux by Fourier’s law

q D q.#;rx#/ D ��.#/rx#; (9.7)

and the entropy production rate is a non-negative measure �" satisfying

�" 	 1

#

�
"2� S W rxu � d

q � rx#

#

�
: (9.8)

9.1.1 Physical Space and Boundary Conditions

Similarly to Chap. 8, we consider an expanding family of spatial domains f�RgR>0,
specifically

• �R � R
3 are simply connected, bounded, C2C� domains, uniformly for R ! 1;

•
n
x 2 R

3
ˇ̌
ˇ jxj < R

o
� �R: (9.9)

• there exists D > 0 such that

@�R �
n
x 2 R

3
ˇ
ˇ
ˇ R < jxj < R C D

o
(9.10)

Remark A typical example of such domains is, of course, a family of balls of
radius R,

�R D
n
x 2 R

3
ˇ
ˇ
ˇ jxj < R C ı

o
; ı > 0:

We impose the no-slip boundary conditions for the velocity field

uj@�R D 0; (9.11)

together with the no-flux conditions

q � nj@�R D 0: (9.12)
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9.1.2 Initial Data

Similarly to the low Mach number limit problems considered in this book, we
suppose that the initial data can be written in the form

%.0; �/ � %0 D %C "%
.1/
0 ; #.0; �/ � #0 D # C "#

.1/
0 ; u.0; �/ D u0; (9.13)

where %, # are positive constants,

8
<

:

0 < D�1 < %; # < D;

k%.1/0 k.L2\L1/.R3/ C k#.1/0 k.L2\L1/.R3/ C ku0k.L2\L1/.R3/ < D:

9
=

;
(9.14)

Remark The parameter D > 0 measures the size of the data and may be chosen
large enough to comply also with (9.10). Of course, the initial data perturbations
%
.1/
0 , #.1/0 , u0 as well as the corresponding weak solutions to the Navier-Stokes-

Fourier system may depend on the scaling parameters "; �; d and also on the total
mass

M D
Z

�R

%0dx:

9.1.3 Target Problem

As the family of expanding domains will eventually fill up the whole space R
3, it

makes sense to consider the limit problem with this geometry, supplemented with
the far field boundary condition for the limit velocity

U ! 0 as jxj ! 1:

Given our previous experience with the low Mach number limit and since we
intend to let the diffusion coefficients � and ! vanish, we may anticipate the
following form of the target problem.
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� INCOMPRESSIBLE EULER SYSTEM WITH TEMPERATURE TRANSPORT:

divxU D 0 in .0;T/ � R
3; (9.15)

@tU C divx.U ˝ U/C rx… D 0 in .0;T/ � R
3; (9.16)

@t‚C U � rx‚ D 0 in .0;T/ � R
3: (9.17)

Here, as observed many times in the previous chapters, the transported quantity
‚ is related to the temperature deviation

‚ � # � #

"
:

System (9.15), (9.16)—called (incompressible) Euler system—decouples
from (9.17) and may be solved independently. A nowadays classical result of
Tosio Kato [164, 165, 167] asserts the existence of a unique classical solution U of
the initial-value problem associated to (9.15), (9.16) in the class

U 2 C.Œ0;Tmax/IWk;2.R3IR3/; @tU 2 C.Œ0;Tmax/IWk�1;2.R3IR3/; (9.18)

defined on a maximal time interval Œ0;Tmax/, Tmax > 0 for any initial data

U.0; �/ D U0 2 Wk;2.R3IR3/ as soon as k 	 3: (9.19)

To avoid technicalities, we have taken k to be an integer. More general results
can be shown, see e.g. Constantin et al. [64], Chemin [55], Danchin [73]. Note
that regularity of the pressure… can be deduced from (9.16), (9.18).

Any field U belonging to the regularity class (9.18) possesses a continuous
gradient rxU, in particular, the transport equation (9.17) can be uniquely solved
for any initial data

‚.0; �/ D ‚0 (9.20)

by the method of characteristics. Specifically, the system of ordinary differential
equations

d

dt
X.t/ D U.t;X/; X.0/ D X0; (9.21)
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admits a unique solution X D X.t;X0/ for any X0 in R
3 and we set

‚.t;X.t;X0// D ‚0.X0/; t 2 Œ0;Tmax/:

9.1.4 Strategy of the Proof of Stability of Smooth Solutions
to the Target Problem

Our goal in this chapter is to show that solutions of the primitive Navier-Stokes-
Fourier system remain close to a smooth solution of the target problem provided

"; �; d ! 0; R ! 1

and the initial data of the two systems are close. As we shall see, the result will be
path dependent, meaning the rates of convergence of the singular parameters to their
limit values must be interrelated in a certain specific fashion. Here, the “distance”
between the data will be measured in terms of the relative energy E .

Our strategy leans on the following steps.

• Derive a relation between the values of the relative energy E at the times t D 0; 	 .
• Take the strong solution of the target system as a test function in the relative

entropy.
• Use a Gronwall lemma type argument to evaluate the distance between the two

solutions by means of E .

9.2 Relative Energy Inequality

The relative energy inequality may be seen as a refined version of the total
dissipation balance (2.52), where the constants %, # are replaced by functions r, T ,
and the velocity u D u � 0 by u � V. It is of independent interest so we formulate
it for the unscaled version of the Navier-Stokes-Fourier system where we set, for a
moment,

" D � D d D R D 1; � � �1:

We consider a weak solution Œ%; #;u� of problem (9.2)–(9.8), (9.11), (9.12) in
the sense specified in Chap. 2, Sect. 2.1. The crucial observation is that the relative
energy can be decomposed as the sum

E
�
%; #;u

ˇ̌
ˇr; T ;V

�
D

6X

jD1
Ej;
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where
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%s.%; #/T dx;

E5 D �
Z

�

%
@HT .r; T /

@%
dx;

E6 D
Z

�

�
r
@HT .r; T /

@%
� HT .r; T /

�
dx;

where each integral can be evaluated by means of the weak formulation as long as
the functions r, T , and V are smooth enough, r > 0, T > 0, and V satisfies the
relevant boundary conditions, here

Vj@� D 0:

Our goal is to compute

h
E
�
%; #;u

ˇ̌
ˇr; T ;V

�itD	
tD0 � E

�
%; #;u

ˇ̌
ˇr; T ;V

�
.	/ � E

�
%; #;u

ˇ̌
ˇr; T ;V

�
.0/

using only the weak formulation of the Navier-Stokes-Fourier system

Step 1 The total energy balance (2.22) yields

�Z

�

�
1

2
%juj2 C %e.%; #/

�
dx

�tD	

tD0
(9.22)

D
Z

�

�
1

2
%juj2 C %e.%; #/

�
.	; �/ dx �

Z

�

�
1

2
%0ju0j2 C %0e.%0; #0/

�
dx D 0

for a.a. 	 2 Œ0;T�.
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Step 2 Taking V as a test function in the weak formulation of the momentum
balance (2.9) gives rise to

�Z

�

%u � V dx

�tD	

tD0
(9.23)

D
Z 	

0

Z

�

h
%u � @tV C %Œu ˝ u� W rxV C p.%; #/divxV � S W rxV

i
dx dt

for any 	 2 Œ0;T�.
Step 3 Taking jVj2 as a test function in the equation of continuity (2.2) we get

�Z

�

1

2
%jVj2 dx

�tD	

tD0
D
Z 	

0

Z

�

h
%V � @tV C %u � V � rxV

i
dx dt (9.24)

for any 	 2 Œ0;T�.
Step 4 Taking T as a test function in the entropy balance (2.27) yields

�
�Z

�

%s.%; #/T dx

�tD	

tD0
C
Z 	

0

Z

�

T
#

�
S W rxu � q � rx#

#

�
dx dt (9.25)

� �
Z 	

0

Z

�

h
%s.%; #/@tT C %s.%; #/u � rxT C q

#
� rxT

i
dx dt

for a.a. 	 2 Œ0;T�.
Step 5 Taking @%HT .r; T / as a test function in the equation of continuity (2.2) we
obtain

�Z

�

%
@HT .r; T /

@%
dx

�tD	

tD0
(9.26)

D
Z 	

0

Z

�

�
%@t

�
@HT .r; T /

@%

�
C %u � rx

�
@HT .r; T /

@%

��
dx dx dt

for any 	 2 Œ0;T�.
Step 6 Summing up the previous identities we obtain

h
E
�
%; #;u

ˇ
ˇ
ˇr; T ;V

�itD	
tD0 C

Z 	

0

Z

�

T
#

�
S W rxu � q � rx#

#

�
dx dt (9.27)

�
Z 	

0

Z

�

h
% .@tV C u � rxV/ � .V � u/ � p.%; #/divxV C S W rxV

i
dx dt
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�
Z 	

0

Z

�

h
%s.%; #/@tT C %s.%; #/u � rxT C q

#
� rxT

i
dx dt

�
Z 	

0

Z

�

�
%@t

�
@HT .r; T /

@%

�
C %u � rx

�
@HT .r; T /

@%

��
dx dt

C
Z 	

0

Z

�

@t

�
r
@HT .r; T /

@%
� HT .r; T /

�
dx dt

for a.a. 	 2 Œ0;T�.
Conclusion Finally, making of use of Gibbs’ equation (1.2), we compute

@t

�
@HT .r;T /

@%

�
D �s.r;T /@tT � r

@s.r;T /
@%

@tT C @2HT .r;T /
@%2

@tr C @2HT .r;T /
@%@#

@tT ;

rx

�
@HT .r;T /

@%

�
D �s.r;T /rxT �r

@s.r;T /
@%

rxT C@2HT .r;T /
@%2

rxrC@2HT .r;T /
@%@#

rxT ;

together with the relations

@2HT .r; T /
@%2

D 1

r

@p.r; T /
@%

; r
@s.r; T /
@%

D �1
r

@p.r; T /
@#

@2HT .r; T /
@%@#

D @

@%

�
%.# � T / @s

@#

�
.r; T / D

�
.# � T / @

@%

�
%
@s

@#

��
.r; T / D 0;

and
�
r
@HT .r; T /

@%
� HT .r; T /

�
D p.r; T /:

Thus inequality (9.27) can be written in a more concise form as

� RELATIVE ENERGY INEQUALITY:

h
E
�
%; #;u

ˇ
ˇ
ˇr; T ;V

�itD	
tD0 C

Z 	

0

Z

�

T
#

�
S.#;rxu/ W rxu � q.%;rx#/ � rx#

#

�
dx dt

(9.28)

�
Z 	

0

Z

�

%.u � V/ � rxV � .V � u/ dx dt

C
Z 	

0

Z

�

% .s.%; #/ � s.r; T // .V � u/ � rxT dx dt
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C
Z 	

0

Z

�

h
% .@tV C V � rxV/ � .V � u/� p.%; #/divxV C S.#;rxu/ W rxV

i
dx dt

�
Z 	

0

Z

�

h
% .s.%; #/ � s.r; T // @tT C % .s.%; #/ � s.r; T //V � rxT

Cq.#;rx#/

#
� rxT

i
dx dt

C
Z 	

0

Z

�

h�
1 � %

r

�
@tp.r; T / � %

r
u � rxp.r; T /

i
dx dt

for a.a. 	 2 Œ0;T� and any trio of continuously differentiable test functions Œr; T ;V�
satisfying

r > 0; T > 0; Vj@� D 0: (9.29)

Remark Note that the requirement on smoothness of the test functions may be
relaxed by a density argument if the weak solution enjoys certain regularity. Similar
inequality may be derived also for the slip boundary conditions (1.19), (1.27), for
which V must satisfy V � nj@� D 0.

9.3 Uniform Estimates

To derive suitable uniform bounds on the family of solutions to the scaled Navie-
Stokes-Fourier system, certain restrictions must be imposed on the constitutive
relations. These are basically the same as in Chap. 5 and we list them here for
convenience:

p.%; #/ D pM.%; #/C pR.#/; pM D #
5
2P
� %

#
3
2

�
; pR D a

3
#4; a > 0I (9.30)

e.%; #/ D eM.%; #/C eR.%; #/; eM D 3

2

#
5
2

%
P
� %

#
3
2

�
; eR D a

#4

%
; (9.31)

and

s.%; #/ D sM.%; #/C sR.%; #/; sM.%; #/ D S
� %

#
3
2

�
; sR D 4

3
a
#3

%
; (9.32)
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where

S0.Z/ D �3
2

5
3
P.Z/� ZP0.Z/

Z2
for all Z > 0; and lim

Z!1 S.Z/ D 0: (9.33)

Remark The last stipulation in (9.33) reflects the Third law of thermodynamics
discussed in Chap. 1, Sect. 1.4.2. It implies, in particular, that

0 � S.Z/ � S.1/ for Z 	 1; 0 � S.Z/ � S.1/� c log.Z/; c > 0; for Z < 1I

whence

%s.%; #/ � c
�
1C % log.%/C %Œlog.#/�C C #3

�
for all %; # 	 0: (9.34)

This condition plays a technical role in our analysis and may be probably omitted.

Furthermore, the hypothesis of thermodynamic stability (1.44) requires P 2
C1Œ0;1/ \ C2.0;1/,

P.0/ D 0; P0.Z/ > 0 for all Z 	 0; (9.35)

0 <

5
3
P.Z/ � ZP0.Z/

Z
� sup

z>0

5
3
P.z/ � zP0.z/

z
< 1; (9.36)

and, in addition,

lim
Z!1

P.Z/

Z
5
3

D p1 > 0: (9.37)

The viscosity coefficients  D .#/, � D �.#/ are (globally) Lipschitz
continuous in Œ0;1/, and

0 < .1C #/ � .#/ � .1C #/;

0 � �.#/ � �.1C #/

9
=

;
for all # 	 0; (9.38)

where , , � are positive constants. Similarly, � D �.#/ is a continuously
differentiable function satisfying

0 < �.1C #3/ � �.#/ � �.1C #3/ for all # 	 0; (9.39)

with positive constants �, �.



380 9 Vanishing Dissipation Limits

The basic uniform estimates will be derived by means of the rescaled version of
the relative energy inequality associated to system (9.2)–(9.5). For

E";R
�
%; #;u

ˇ
ˇ
ˇr; T ;V

�

D
Z

�R

�
1

2
%ju � Vj2 C 1

"2

�
HT .%; #/ � .% � r/

@HT .r; T /
@%

� HT .r; T /
��

dx;

we have

h
E";R

�
%; #;u

ˇ
ˇ
ˇr; T ;V

�itD	
tD0 (9.40)

C
Z 	

0

Z

�R

T
#

�
�S.#;rxu/ W rxu � d

"2
q.%;rx#/ � rx#

#

�
dx dt

�
Z 	

0

Z

�R

%.u � V/ � rxV � .V � u/ dx dt

C 1

"2

Z 	

0

Z

�R

% .s.%; #/ � s.r; T // .V � u/ � rxT dx dt

C
Z 	

0

Z

�R

h
% .@tV C V � rxV/�.V�u/� 1

"2
p.%; #/divxVC�S.#;rxu/ W rxV

i
dx dt

� 1

"2

Z 	

0

Z

�R

h
% .s.%; #/ � s.r; T // @tT C % .s.%; #/ � s.r; T //V � rxT

Cd
q.#;rx#/

#
� rxT

i
dx dt

C 1

"2

Z 	

0

Z

�R

h�
1 � %

r

�
@tp.r; T /� %

r
u � rxp.r; T /

i
dx dt

The necessary uniform bounds can be derived in exactly the same way as in
Chap. 8, Sect. 8.3. Introducing Œh�ess, Œh�res as in (4.39)–(4.45), we take

r D %; T D #; V D 0

in the relative energy inequality (9.40) to deduce the estimates:

ess sup
t2.0;T/

kp
%ukL2.�RIR3/ � c.D/; (9.41)

ess sup
t2.0;T/

�
�
�
h% � %

"

i

ess

�
�
�
L2.�R/

� c.D/; (9.42)
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ess sup
t2.0;T/

�
�
�
h# � #

"

i

ess

�
�
�
L2.�R/

� c.D/; (9.43)

ess sup
t2.0;T/

k Œ%e.%; #/�reskL1.�R/ � "2c.D/; (9.44)

and

ess sup
t2.0;T/

k Œ%s.%; #/�reskL1.�R/ � "2c.D/; (9.45)

along with the estimate on the measure of the residual set (cf. (4.43) and (8.37))

ess sup
t2.0;T/

jMresŒt�j � "2c.D/; (9.46)

where the bounds depend solely on the norm of the initial data through (9.14).
Finally, exactly as in (8.50)–(8.55), Chap. 8, we conclude

ess sup
t2.0;T/

Z

�R

Œ%�5=3res dx � "2c.D/; (9.47)

ess sup
t2.0;T/

Z

�R

Œ#�4res dx � "2c.D/; (9.48)

and

Z T

0

� kuk2W1;2.�RIR3/ dt � c.D/; (9.49)

d
Z T

0

k#�#k2W1;2.�R/
dtCd

Z T

0

k log.#/� log.#/k2W1;2.�R/
dt � "2c.D/: (9.50)

Remark We tacitly anticipate d and � to be small, in particular, the above estimates
hold (independently of �, d) on condition that d < 1, � < 1.

9.4 Well-Prepared Initial Data

To illuminate the method based on the relative entropy inequality, we first consider
the well-prepared initial data. Accordingly, we consider

r D %; T D #; V D U
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in (9.40), where U is a solution of the Euler system (9.15), (9.16). Unfortunately, the
function U does not vanish on @�R and therefore cannot be used as a test function
in (9.40). Instead we take a suitable cut-off of the Euler solution.

First, we fix

v0 2 Cm
c .R

3/ and write v0 D HŒv0�C rx‰0; (9.51)

suppŒv0� � B.0;D/; kv0kCm.R3/ � D; m > 4; (9.52)

where H denotes the Helmholtz projection defined on the whole space R
3, and

consider U—the solution of the Euler system (9.15), (9.16) defined on a time
interval .0;Tmax/—satisfying

U.0; �/ D w0 � HŒv0�: (9.53)

Remark Similarly to (9.10), (9.14), the quantity D measures the size of the initial
data. Obviously,D may be chosen large enough so that both (9.10), (9.14) and (9.52)
hold.

The solenoidal function U can be expressed by means of the Biot–Savart law

U D �curlx��1
x curlxŒU�;

where

��1
x Œh�.x/ D

Z

R3

h. y/

jx � yj dy:

Consequently, as

curlxŒw0� D curlxŒv0� 2 Cm�1
c .R3/;

and the Euler system (9.15), (9.16) propagates curlxU with a finite speed (see
Sect. 11.20 in Appendix), we infer that

8
<

:

U D curlxŒh�;

where�h D 0 .h is a harmonic function) outside a bounded ball in R
3:

By the same token,�‰0 is compactly supported and we conclude that

jrx‰0.x/j C jU.t; x/j � c.D/

jxj2 � c.D/

R2
whenever x 2 @�R: (9.54)
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We introduce a cut-off function �R D �R.x/,

�R.x/ D �.jxj � R/; � 2 C1
c .R/; 0 � � � 1; �.z/ D 1 for z 2 Œ0;D�:

It follows from (9.54) and hypothesis (9.10) that

8
ˆ̂
<

ˆ̂
:

k@t.�RU/.t; �/kLp.R3IR3/ C k.�RU/.t; �/kW2;p.R3IR3/ � c.D/R2
�
1
p �1

�

k�Rrx‰0kW2;p.R3IR3/ � c.D/R2
�
1
p �1

�

for any 1 � p � 1; t 2 Œ0;Tmax/:

9
>>=

>>;

(9.55)

The function V D .1 � �R/U vanishes on @�R, therefore can be taken, together
with r D %, T D # as a test function in the relative energy inequality (9.40) to
obtain

h
E";R

�
%; #;u

ˇ
ˇ̌
%; #; .1 � �R/U

�itD	
tD0 (9.56)

C
Z 	

0

Z

�R

#

#

�
�S.#;rxu/ W rxu � d

"2
q.%;rx#/ � rx#

#

�
dx dt

�
Z 	

0

Z

�R

%.u � V/ � rxV � .V � u/ dx dt

C
Z 	

0

Z

�R

h
% .@tV C V � rxV/�.V�u/� 1

"2
p.%; #/divxVC�S.#;rxu/ W rxV

i
dx dt;

where, in view of (9.55),

ˇ
ˇ̌
ˇ

Z

�R

%.u � V/ � rxV � .V � u/ dx

ˇ
ˇ̌
ˇ �

Z

�R

%ju � .1 � �R/Uj2jrxVj dx (9.57)

� c.D/
Z

�R

%ju � .1� �R/Uj2 dx � c.D/E";R
�
%; #;u

ˇ
ˇ̌
%; #; .1 � �R/U

�
:

Next, we compute

ˇ
ˇ
ˇ
ˇ

Z

�R

�S.#;rxu/ W rxV dx

ˇ
ˇ
ˇ
ˇ �

ˇ
ˇ
ˇ
ˇ

Z

�

�.#/

�
rxu C rx

tu � 2

3
divxuI

�
W rxV dx

ˇ
ˇ
ˇ
ˇ

(9.58)

C
ˇ
ˇ̌
ˇ

Z

�R

��.#/divxudivxV dx

ˇ
ˇ̌
ˇ

� ı

Z

�R

�

#
S.#;rxu/ W rxu dx C c.ı/�

Z

�R

#..#/C �.#//jrxVj2 dx
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for any ı > 0, where the former integral on the right-hand side my be absorbed
by the left-hand side of (9.56) for ı D ı.#/ > 0, while in accordance with
hypothesis (9.38) and the bounds established in (9.48), (9.55),

Z

�R

#..#/C �.#//jrxVj2 dx (9.59)

D
Z

�R

Œ#..#/C �.#//�essjrxVj2 dx C
Z

�R

Œ#..#/C �.#//�resjrxVj2 dx

� c.#/kUk2W1;2.R3IR3/ C ckŒ#�2reskL2.�R/kUk2W1;4.R3IR3/ � c.D/:

In view of (9.57), (9.58), inequality (9.56) reduces to

h
E";R

�
%; #;u

ˇ
ˇ̌
%; #; .1 � �R/U

�itD	
tD0 (9.60)

� c.D/
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� C E";R
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0

Z

�R

h
% .@tV C V � rxV/ � .V � u/ � 1

"2
p.%; #/divxV

i
dx dt:

Next, we write
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1

"2
p.%; #/divxV dx D
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1
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�
p.%; #/� p.%; #/

�
divxV dx

D
Z
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1

"2

h
p.%; #/ � p.%; #/

i

ess
divxV dxC

Z

�R

1

"2

h
p.%; #/ � p.%; #/

i

res
divxV dx;

where, by virtue of hypotheses (9.30) and the coercivity properties of HT estab-
lished in Chap. 5, Lemma 5.1,

ˇ
ˇ
ˇ
ˇ

Z

�R

1

"2

h
p.%; #/� p.%; #/

i

res
divxV dx

ˇ
ˇ
ˇ
ˇ � c.D/E";R

�
%; #;u

ˇ
ˇ
ˇ%; #; .1 � �R/U

�
:

(9.61)
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Moreover,
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1
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i
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where, similarly to (9.61),
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(9.62)
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ˇ%; #; .1 � �R/U
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:

Finally, in accordance with (9.55),
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�
C 1
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:

Thus (9.60) gives rise to
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Z
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The final step is to handle the integral

Z 	

0

Z

�R

% .@tV C V � rxV/ � .V � u/ dx dt D
5X

jD1

Z 	

0

Ijdt;

where
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%
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�
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I3 D
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%
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u � V

�
� .�RU/ � rx .�RU/ dx;

I4 D
Z

�R

%
�
V � u

�
� @t .�RU/ dx;

I5 D
Z

�R

%
�
V � u

�
�
�
@tU C U � rxU

�
dx dt D

Z

�R

%
�
u � V

�
� rx… dx:

First, writing

%.u � V/ D Œ%�ess.u � V/C Œ%�res.u � V//;

we observe that, by virtue of (9.41),

ess sup
t2.0;	/

kŒ%�ess.u � V/.t; �/kL2.�RIR3/ � c.D/: (9.65)

Similarly, by virtue of (9.41), (9.47),

ess sup
t2.0;	/

kŒ%�res.u � V/.t; �/kL5=4.�RIR3/ � c.D/: (9.66)

As a consequence of (9.55) we may infer that

ˇ
ˇ
ˇ
ˇ̌
ˇ

4X

jD1
Ij

ˇ
ˇ
ˇ
ˇ̌
ˇ

� c.D/
�
R�1 C R�8=5� � c.D/R�1 provided R 	 1: (9.67)



9.4 Well-Prepared Initial Data 387

To conclude, we have

Z 	

0

I5dt D
Z 	

0

Z

�R

%
�
u � V

�
� rx… dx D

Z

�R

%u � rx… dx �
Z

�R

%V � rx… dx dt;

where, in accordance with the weak formulation of the equation of continuity (2.2),

Z 	

0

Z

�R

%u � rx… dx dt D �"
Z 	

0

Z

�R

% � %
"

@t… dx dt C "

�Z

�R

%� %

"
… dx

�tD	

tD0
;

(9.68)

and, by virtue of the estimates (9.42), (9.47),

ˇ
ˇ
ˇ
ˇ

Z

�R

% � %
"

@t… dx

ˇ
ˇ
ˇ
ˇ � c1.D/

�k@t…kL2.R3/ C k@t…kL1.R3/

� � c2.D/; (9.69)

and, by the same token,

ˇ̌
ˇ
ˇ

Z

�R

% � %

"
… dx

ˇ̌
ˇ
ˇ � c1.D/

�k…kL2.R3/ C k…kL1.R3/

� � c2.D/: (9.70)

Remark Note that the pressure in the Euler system can be “computed”, namely

… D ���1
x divxdivx.U � U/;

in particular,

sup
t2Œ0;	 �

k….t; �/kLp.R3/ � c. p; 	;D/ for any 1 < p < 1; 	 < Tmax;

see Sect. 11.20 in Appendix.

Finally, the last integral to handle reads

Z

�R

%V � rx… dx D "

Z

�R

% � %

"
V � rx… dx C %

Z

�R

V � rx… dx (9.71)

D "

Z

�R

% � %
"

V � rx… dx � %
Z

�R

rx�R � U… dx;



388 9 Vanishing Dissipation Limits

where the first integral can be estimates exactly as in (9.69), (9.70), while, by virtue
of (9.55),

ˇ
ˇ̌
ˇ

Z

�R

rx�R � U… dx

ˇ
ˇ̌
ˇ � c1.D/R

�1k…kL2.R3/ � c2R
�1:

Summing up the previous estimates and going back to (9.64) we may infer that

h
E";R

�
%; #;u

ˇ
ˇ̌
%; #; .1 � �R/U

�itD	
tD0 (9.72)

� c.D/
Z 	

0

�
"C � C 1

R
C 1

"2R2
C E";R

�
%; #;u

ˇ
ˇ
ˇ%; #; .1 � �R/U

��
dt

whenever 	 < Tmax, where Tmax is the life-span for the Euler system. Consequently,
a straightforward application of Gronwall’s lemma yields the following result.

� VANISHING DIFFUSION LIMIT—WELL PREPARED INITIAL DATA:

Theorem 9.1 Let f�RgR�1 be a family of uniformly C2;� simply connected bounded
domains in R3 satisfying (9.9), (9.10). Let the constitutive hypotheses (9.30)–(9.39)
be satisfied.

Let Œ%; #;u� be a weak solution of the Navier-Stokes-Fourier system (9.2)–
(9.8), (9.11), (9.12) in .0;T/ ��R starting from the initial data

%.0; �/ � %0 D %C "%
.1/
0 ; #.0; �/ � #0 D # C "#

.1/
0 ; u.0; �/ D u0;

where

8
<

:

0 < D�1 < %; # < D;

k%.1/0 k.L2\L1/.R3/ C k#.1/0 k.L2\L1/.R3/ C ku0k.L2\L1/.R3/ < D:

9
=

;

Let U be a (strong) solution to the Euler system (9.15), (9.16) in R
3 � .0;Tmax/

starting from the initial data

U.0; �/ D w0 D HŒv0�;

where

v0 2 Cm
c .R

3/; suppŒv0� � B.0;D/; kv0kCm.R3/ � D; m > 4:
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Then for any compact K � R
3 and any T 2 .0;Tmax/, there are c1 D c.T;D/,

c2.D/ such that

Z

K

"
1

2
%ju � Uj2 C 1

"2

 

H#.%; #/ � .% � %/
@H#.%; #/

@%
� H#.%; #/

!#

.	; �/ dx

(9.73)

� c1.T;D/

�
"C � C 1

R
C 1

"2R2

�

Cc2.D/

0

@
�
�
��
%0 � %
"

�
�
��

2

L2.�R/

C
�
�
�
��
#0 � #
"

�
�
�
��

2

L2.�R/

C ku0 � w0k2L2.�RIR3/

1

A

for a.a. 	 2 Œ0;T/ provided R D R.K/ is large enough.

Remark Theorem 9.1 yields uniform in time convergence of u towards the solutions
of the Euler system and asymptotic spatial homogeneity in % and # provided the
right-hand side of (9.73) tends to zero, in particular, %.1/0 , #.1/0 must be small and the
initial velocity close to a solenoidal (divergenceless) function v0. Such a situation
corresponds to the so-called well-prepared initial data.

9.5 Ill-Prepared Initial Data

The stability result established in Theorem 9.1 is quite restrictive with respect to the
initial data that must be close to the expected limit solution. This can be improved by
choosing a more refined ansatz of the test functions Œr; T ;V� in the relative energy
inequality. The basic idea used several times in this book, is to augment the basic
state Œ%; #;U� by the oscillatory component produced by acoustic waves.

9.5.1 Acoustic Equation

The equation governing the propagation of acoustic waves is represented by the
homogeneous part of acoustic system (8.141), (8.142), specifically we get

� ACOUSTIC WAVE EQUATION:

"@tZ C�‰ D 0; "@trx‰ C !rxZ D 0 in .0;T/ � R
3; (9.74)
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with the wave speed
p
!=",

! D p%.%; #/C jp#.%; #/j2
%2s#.%; #/

> 0;

and the initial data

Z.0; �/ D Z0; rx‰.0; �/ D rx‰0: (9.75)

The potential‰0 was introduced in (9.51) as the gradient component of a compactly
supported vector field v0. As showed in (8.125), solutions of (9.74) admit the finite
speed of propagation

p
!=". In particular, for the initial data

Z0; rx‰0 D H?Œv0�; suppŒv0�; suppŒZ0� � B.0;D/; (9.76)

the solution of (9.74), (9.75) satisfies

rx‰.t; x/ D rx‰0.x/; �‰.t; x/ D Z.t; x/ D 0 whenever t 	 0; jxj > D C t

p
!

"
:

(9.77)

To facilitate future considerations, it is convenient that the acoustic waves may
not reach the boundary @�R of the physical space within the time lap .0;T/.
Accordingly, we suppose that

R > D C T

p
!

"
: (9.78)

It is easy to see that solutions of acoustic system (9.74), (9.75) with spatially
concentrated initial data conserve the total energy,

Z

R3

�
!jZj2 C jrx‰j2	 .	; �/ dx D

Z

R3

�
!jZ0j2 C jrx‰0j2

	
.	; �/ dx for any 	 	 0:

Moreover, differentiating (9.74) with respect to the x-variable, we deduce higher
order energy balance

!kZ.	; �/k2Wk;2.R3/
C krx‰.	; �/k2Wk;2.R3;R3�3/

D¤ (9.79)

!kZ0k2Wk;2.R3/
C krx‰0k2Wk;2.R3;R3�3/

; k D 0; 1; 2; : : : ; 	 	 0:
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Similarly to their counterpart investigated in Chap. 8, solutions of the acoustic
equation considered on the unbounded physical space R

3 enjoy certain dispersive
decay properties that are crucial for future analysis. Here, we report the celebrated
Strichartz estimates

kZ.	; �/kLq.R3/ C krx‰.	; �/kLq.R3IR3/ (9.80)

� c. p; q/
�
1C 	

"

� 1
q� 1

p �kZ0kW4;p.R3/ C krx‰0kW3;p.R3IR3/
	

for

1

p
C 1

q
D 1; 1 < p � 2;

see Theorem 11.13 in Appendix Similarly to (9.80) we may differentiate the
equations to obtain higher order version of (9.80), namely

kZ.	; �/kWk;q.R3/ C krx‰.	; �/kWk;q.R3IR3/ (9.81)

� c. p; q/
�
1C 	

"

� 1
q � 1

p �kZ0kW4Ck;p.R3/ C krx‰0kW3Ck;p.R3/

	
; k D 0; 1; : : :

for

1

p
C 1

q
D 1; 1 < p � 2:

Note that, in accordance with hypothesis (9.52), the right-hand side of (9.81)
remains bounded by a constant c D c.D/ at least for k D 0; 1.

9.5.2 Transport Equation

For a given solution U of the Euler system (9.15), (9.16), we consider the transport
equation

@tP C U � rxP D 0; ‚.0; �/ D P0 in .0;Tmax/ � R
3: (9.82)

As U is regular, problem (9.82) admits a unique solution for any given initial
datum P0 that may be computed by the method of characteristics, see Sect. 11.20
in Appendix. More precisely, solutions of (9.82) enjoy the same regularity as those
of the Euler system,

kP.	; �/kWk;2.R3/ C k@tP.	; �/kWk�1;2.R3/ � c.	;D/ (9.83)
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as soon as

kP0kWk;2.R3/ � c.D/; k 	 3:

Moreover, the solution P remains compactly supported for any positive time as long
as P0 has compact support.

9.5.3 Stability via the Relative Energy Inequality

We consider a trio of test functions

V D .1 � �R/ .U C rx‰/ ; r D %C "ƒ; T D # C "‚;

where U is the solution of the Euler system (9.15), (9.16) in .0;Tmax/ � R
3,

U.0; �/ D HŒv0�;

andƒ and ‚ are uniquely determined as the unique solution of the system

1

%!

@p.%; #/

@%
ƒC 1

%!

@p.%; #/

@#
‚ D Z; (9.84)

%
@s.%; #/

@%
ƒC %

@s.%; #/

@#
‚ D P; (9.85)

where ŒZ;rx‰� is the solution of the acoustic system (9.74), with the initial data

Z0 D 1

%!

@p.%; #/

@%
ƒ0 C 1

%!

@p.%; #/

@#
‚0; rx‰0 D H?Œv0�; (9.86)

and P solves the transport equation (9.82), with the initial data

P0 D %
@s.%; #/

@%
ƒ0 C %

@s.%; #/

@#
‚0 D P0: (9.87)

Similarly to v0, the functionsƒ0, ‚0 belong to the class

ƒ0; ‚0 2 Cm
c .R

3/; kƒ0kCm.R3/Ck‚0kCm.R3/ � D; suppŒƒ0�; suppŒ‚0� � B.0;D/:
(9.88)
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With this ansatz, the relative energy inequality (9.40) reads
h
E";R

�
%; #;u

ˇ̌
ˇ%C "ƒ; # C "‚; .1� �R/.U C rx‰/

�itD	
tD0 (9.89)

C
Z 	

0

Z

�R

# C "‚

#

�
�S.#;rxu/ W rxu � d

"2
q.%;rx#/ � rx#

#

�
dx dt

�
Z 	

0

Z

�R

%.u � V/ � rxV � .V � u/ dx dt

C1

"

Z 	

0

Z

�R

% .s.%; #/ � s.r; T // .V � u/ � rx‚ dx dt

C
Z 	

0

Z

�R

h
% .@tV C V � rxV/�.V�u/� 1

"2
p.%; #/divxVC�S.#;rxu/ W rxV

i
dx dt

�1
"

Z 	

0

Z

�R

h
% .s.%; #/ � s.r; T // @t‚C % .s.%; #/ � s.r; T //V � rx‚

Cd
q.#;rx#/

#
� rx‚

i
dx dt

C 1

"2

Z 	

0

Z

�R

h�
1 � %

r

�
@tp.r; T /� %

r
u � rxp.r; T /

i
dx dt

Similarly to the preceding part, our goal is to “absorb” all terms on the right-hand
side by means of a Gronwall type argument.

Step 1 To begin, we observe that the integrals
Z 	

0

Z

�R

%.u � V/ � rxV � .V � u/ dx dt

and
Z 	

0

Z

�R

�S.#;rxu/ W rxV dx dt

can be handled exactly as in (9.57), (9.58).
Moreover,

d

"

ˇ
ˇ
ˇ̌
Z

�R

q.#;rx#/

#
� rx‚ dx

ˇ
ˇ
ˇ̌ D d

"

ˇ
ˇ
ˇ̌
Z

�R

�.#/

#
rx# � rx‚ dx

ˇ
ˇ
ˇ̌

� ı
d

"2

Z

�R

�.#/

#2
jrx#j2 dx C c.ı/d

Z

�R

�.#/jrx‚j2 dx
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for any ı > 0; whence the first integral can be absorbed by the left-hand side
of (9.89).

Finally, we have

Z

�R

�.#/jrx‚j2 dx D
Z

�R

Œ�.#/�essjrx‚j2 dx C
Z

�R

Œ�.#/�resjrx‚j2 dx

� c1.D/
h
krx‚k2L2.R3IR3/ C krx‚k2L1.R3IR3/

i
� c2.D/:

Indeed the function ‚ is a linear combination of P and Z; where P is compactly
supported and Z admits the energy bound (9.79).

Thus (9.89) reduces to

h
E";R

�
%; #;u

ˇ
ˇ
ˇ%C "ƒ; # C "‚; .1� �R/.U C rx‰/

�itD	
tD0 (9.90)

� c.D/
Z 	

0

h
� C d C E";R

�
%; #;u

ˇ
ˇ̌ r; T ;V

�i
dt

C1

"

Z 	

0

Z

�R

% .s.%; #/ � s.r; T // .V � u/ � rx‚ dx dt

C
Z 	

0

Z

�R

h
% .@tV C V � rxV/ � .V � u/ � 1

"2
p.%; #/divxV

i
dx dt

�1
"

Z 	

0

Z

�R

h
% .s.%; #/ � s.r; T // @t‚C % .s.%; #/ � s.r; T //V � rx‚

i
dx dt

C 1

"2

Z 	

0

Z

�R

h�
1 � %

r

�
@tp.r; T /� %

r
u � rxp.r; T /

i
dx dt

Step 2 The next observation is that the integral

Z 	

0

Z

�R

h
% .@tV C V � rxV/ � .V � u/

can be handled in a similar way as its counterpart in the preceding section. Indeed
we have

Z 	

0

Z

�R

% .@tV C V � rxV/ � .V � u/ dx dt D
9X

jD1

Z 	

0

Ijdt;
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where

I1 D
Z

�R

%
�
V � u

�
� .�R.U C rx // � rxU dx;

I2 D
Z

�R

%
�
V � u

�
� U � rx .�R.U C rx‰// dx;

I3 D
Z

�R

%
�
u � V

�
� .�RU/ � rx .�R.U C rx‰// dx;

I4 D
Z

�R

%
�
V � u

�
� @t .�R.U C rx‰// dx;

I5 D
Z

�R

%
�
V � u

�
�
�
@tU C U � rxU

�
dx dt D

Z

�R

%
�
u � V

�
� rx… dx;

I6 D 1

2

Z

�R

%
�
V � u

�
� rxjrx‰j2 dx;

I7 D
Z

�R

%
�
V � u

�
� rxU � rx‰ dx;

I8 D
Z

�R

%
�
V � u

�
� U � rx

2‰ dx;

and

I9 D
Z

�R

%
�
V � u

�
� @trx‰ dx

Now, as a consequence (9.78), the function ‰ coincides with ‰0 on the support
of �R, in particular, we may apply the bounds (9.55) in the same way as when
deriving (9.67) to obtain

ˇ
ˇ̌
ˇ
ˇ
ˇ

4X

jD1
Ij

ˇ
ˇ̌
ˇ
ˇ
ˇ

� c.D/R�1: (9.91)

Moreover, I5 is exactly the same as in the preceding section, therefore esti-
mates (9.69)–(9.71) remain valid yielding

ˇ̌
ˇ
ˇ

Z 	

0

I5 dt

ˇ̌
ˇ
ˇ � c.D/

�
"C 1

R

�
: (9.92)
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As for I6 it can be treated in a similar way. First, we write
Z 	

0

I6 dt D 1

2

Z

�R

%u � rxjrx‰j2 dx dt � 1

2

Z

�R

%V � rxjrx‰j2 dx dt;

where the first integral on the right-hand side can be bounded exactly as
in (9.69), (9.70) as, in view of the energy estimates (9.79), jrx‰j2 enjoys the
same integrability properties as ….

The second integral reads
Z

�R

%V � rxjrx‰j2 dx D "

Z

�R

% � %
"

V � rxjrx‰j2 dx C %

Z

�R

V � rxjrx‰j2;

where the first term is controlled exactly as in (9.71), while
Z

�R

V � rxjrx‰j2 dx D
Z

�R

divx.�R.U C rx‰//jrx‰j2 dx �
Z

�R

�‰jrx‰j2 dx;

where again the first term is handled as in (9.71). Now, we use the energy and decay
estimates for the acoustic potential (9.79), (9.81) to conclude that

Z

�R

�‰jrx‰j2 dx

� c.q/k�‰kLq.�/krx‰kLp.�/krx‰kL2.�/; � c.q;D/
�
1C 	

"

�� 2
q �1

�

where

1

q
C 1

p
C 1

2
D 1:

Thus taking q close to 1, p > 2 close to 2, we may infer that
ˇ̌
ˇ
ˇ

Z

�R

�‰jrx‰j2 dx

ˇ̌
ˇ
ˇ � c.˛;D;T/"˛ for any 0 � ˛ < 1:

In view of (9.65), (9.66), the integrals I7, I8 can be estimated in a similar fashion
using again the decay estimates (9.81).

Finally, we use (9.77), (9.78) to rewrite

I9 D
Z

�R

%
�
V � u

�
� @trx‰ dx D

Z

�R

%
�
U C rx‰ � u

�
� @trx‰ dx

D %

Z

R3

rx‰ � @trx‰ dx C
Z

�R

.% � %/rx‰ � @trx‰ dx

C
Z

�R

.% � %/U � @trx‰ dx �
Z

�R

%u � @trx‰ dx;
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where, furthermore,

ˇ
ˇ
ˇ̌
Z

�R

.%� %/rx‰ � @trx‰ dx

ˇ
ˇ
ˇ̌C

ˇ
ˇ
ˇ̌
Z

�R

.% � %/U � @trx‰ dx

ˇ
ˇ
ˇ̌

� c.D/

ˇ
ˇ
ˇ
ˇ

Z

�R

% � %

"
rx‰ � rxZ dx

ˇ
ˇ
ˇ
ˇC c.D/

ˇ
ˇ
ˇ
ˇ

Z

�R

% � %
"

U � rxZ dx

ˇ
ˇ
ˇ
ˇ � c.˛;D/"˛; 0 � ˛ < 1;

where we have used the dispersive estimates (9.81).
Summing up the previous observations we can rewrite (9.90) as

h
E";R

�
%; #;u

ˇ
ˇ
ˇ%C "ƒ; # C "‚; .1� �R/.U C rx‰/

�itD	
tD0�

�
%

2

Z

R3

jrx‰j2 dx

�tD	

tD0
(9.93)

� c.D/
Z 	

0

�
� C d C "C c.˛/"˛ C 1

R
C E";R

�
%; #;u

ˇ
ˇ
ˇ r; T ;V

��
dt

C1

"

Z 	

0

Z

�R

% .s.%; #/ � s.r; T // .V � u/ � rx‚ dx dt

� 1

"2

Z 	

0

Z

�R

p.%; #/divxV dx dt �
Z 	

0

Z

�R

%u � @trx‰ dx dt

�1
"

Z 	

0

Z

�R

h
% .s.%; #/ � s.r; T // @t‚C % .s.%; #/ � s.r; T //V � rx‚

i
dx dt

C 1

"2

Z 	

0

Z

�R

h�
1 � %

r

�
@tp.r; T /� %

r
u � rxp.r; T /

i
dx dt; 0 � ˛ < 1:

Step 3 We write

1

"

Z

�R

% .s.%; #/ � s.r; T // .V � u/ � rx‚ dx

D 1

"

Z

�R

% Œs.%; #/ � s.r; T /�ess .V � u/ � rx‚ dx

C1

"

Z

�R

% Œs.%; #/ � s.r; T /�res .V � u/ � rx‚ dx;
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where
ˇ
ˇ̌
ˇ
1

"

Z

�R

% Œs.%; #/ � s.r; T /�ess .V � u/ � rx‚ dx

ˇ
ˇ̌
ˇ

� c1.D/krx‚kL1.R3IR3/
Z

�R

�
%jV � uj2 C 1

"2

�
jŒ%� r�essj2 C jŒ# � T �essj2

��
dx

� c2.D/E";R
�
%; #;u

ˇ
ˇ
ˇr; T ;V

�
:

Next,

1

"

Z

�R

% Œs.%; #/ � s.r; T /�res .V � u/ � rx‚ dx;

D 1

"

Z

�R

% Œs.%; #/ � s.r;T /�res V � rx‚ dx C 1

"

Z

�R

% Œs.r;T /� s.%; #/�res u � rx‚ dx;

where, by virtue of (9.45), (9.47),

ˇ̌
ˇ
ˇ
1

"

Z

�R

% Œs.%; #/ � s.r; T /�res V � rx‚ dx

ˇ̌
ˇ
ˇ � "c.D/:

Now, using hypothesis (9.33), or, specifically (9.34), we get

% jŒs.%; #/ � s.r; T /�resj � c
h
%C %j log.%/j C %Œlog #�C C #3

i

res
� cŒ%C%1CıC#3�res

where ı > 0 can be taken arbitrarily small.

Remark This is the only point when we effectively use hypothesis (9.33) (the Third
law of thermodynamics).

Consequently, by virtue of the uniform bounds (9.47)–(9.49),

ˇ̌
ˇ
ˇ
1

"

Z

�R

% Œs.r; T /� s.%; #/�res u � rx‚ dx

ˇ̌
ˇ
ˇ

� c1.D/

"�1=2
krx‚kL1.�R/k�1=2ukL6.�RIR3/

�
�Œ%C %1Cı C #3�res

�
�
L6=5.�R/

Cc1.D/

"�1=2
"5=3k�1=2ukW1;2.�RIR3/:
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Thus we conclude that

ˇ
ˇ
ˇ
ˇ
1

"

Z

�R

% Œs.r; T /� s.%; #/�res u � rx‚ dx

ˇ
ˇ
ˇ
ˇ � c.D/

"2=3

�1=2
: (9.94)

After this step, the inequality (9.93) gives rise to

h
E";R

�
%; #;u

ˇ
ˇ
ˇ%C "ƒ; # C "‚; .1� �R/.U C rx‰/

�itD	
tD0�

�
%

2

Z

R3

jrx‰j2 dx

�tD	

tD0
(9.95)

� c.D/
Z 	

0

�
� C d C "C c.˛/"˛ C 1

R
C "2=3

�1=2
C E";R

�
%; #;u

ˇ
ˇ
ˇ r; T ;V

��
dt

� 1

"2

Z 	

0

Z

�R

p.%; #/divxV dx dt �
Z 	

0

Z

�R

%u � @trx‰ dx dt

�1
"

Z 	

0

Z

�R

h
% .s.%; #/ � s.r; T // @t‚C % .s.%; #/ � s.r; T //V � rx‚

i
dx dt

C 1

"2

Z 	

0

Z

�R

h�
1 � %

r

�
@tp.r; T /� %

r
u � rxp.r; T /

i
dx dt; 0 � ˛ < 1:

Step 4 The next step is to observe that we can replace V in the remaining three
integrals on the right-hand side of (9.95) by U C rx‰ committing an error of order
1
"R . Indeed we have

1

"2

Z

�R

p.%; #/divx.�R.UCrx‰// dx D 1

"2

Z

�R

�
p.%; #/ � p.%; #/

�
divx.�R.UCrx‰// dx

D 1

"

Z

�R

h
p.%; #/� p.%; #/

i

ess

"
divx.�R.U C rx‰// dx

C
Z

�R

h
p.%; #/� p.%; #/

i

res

"2
divx.�R.U C rx‰// dx;

where, by virtue of (9.42), (9.43), combined with (9.55),

ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ

1

"

Z

�R

h
p.%; #/ � p.%; #/

i

ess

"
divx.�R.U C rx‰// dx

ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ

� c.D/
1

"R
;
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and, using (9.46)–(9.48), and again (9.55),

ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ

Z

�R

h
p.%; #/� p.%; #/

i

res

"2
divx.�R.U C rx‰// dx

ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ

� c.D/

R2
:

As the integral

1

"

Z 	

0

Z

�R

% .s.%; #/ � s.r; T //V � rx‚
i

dx dt

can be handled in a similar fashion, we are allowed to rewrite (9.95) in the form

h
E";R

�
%; #;u

ˇ
ˇ
ˇ%C "ƒ; # C "‚; .1� �R/.U C rx‰/

�itD	
tD0�

�
%

2

Z

R3

jrx‰j2 dx

�tD	

tD0
(9.96)

� c.D/
Z 	

0

�
� C d C "C c.˛/"˛ C 1

"R
C "2=3

�1=2
C E";R

�
%; #;u

ˇ
ˇ
ˇ r; T ;V

��
dt

C 1

"2

Z 	

0

Z

�R

�
p.%; #/� p.%; #/

�
�‰ dx dt �

Z 	

0

Z

�R

%u � @trx‰ dx dt

�1
"

Z 	

0

Z

�R

h
% .s.%; #/ � s.r; T // @t‚C % .s.%; #/ � s.r; T // .U C rx‰/ � rx‚

i
dx dt

C 1

"2

Z 	

0

Z

�R

h�
1 � %

r

�
@tp.r; T /� %

r
u � rxp.r; T /

i
dx dt; 0 � ˛ < 1:

Step 5 We rewrite the integrals containing the pressure as

1

"2

Z

�R

h�
1 � %

r

�
@tp.r; T / � %

r
u � rxp.r; T /

i
dx (9.97)

D
Z

�R

r � %

"

�
1

r

@p.r; T /
@%

@tƒC 1

r

@p.r; T /
@#

@t‚

�
dx

�1
"

Z

�R

%u �
�
1

r

@p.r; T /
@%

rxƒC 1

r

@p.r; T /
@#

rx‚

�
dx

Assume, for a moment, that we can replace in the above expression

1

r

@p.r; T /
@%

by
1

%

@p.%; #/

@%
; and

1

r

@p.r; T /
@#

by
1

%

@p.%; #/

@#
:
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Consequently, in accordance with (9.84),

Z

�R

r � %

"

�
1

r

@p.r; T /
@%

@tƒC 1

r

@p.r; T /
@#

@t‚

�
dx (9.98)

�1
"

Z

�R

%u �
�
1

r

@p.r; T /
@%

rxƒC 1

r

@p.r; T /
@#

rx‚

�
dx

�
Z

�R

r � %

"

 
1

%

@p.%; #/

@%
@tƒC 1

%

@p.%; #/

@#
@t‚

!

dx

�1
"

Z

�R

%u �
 
1

%

@p.%; #/

@%
rxƒC 1

%

@p.%; #/

@#
rx‚

!

dx

D !

Z

�R

r � %
"

@tZ dx � !

"

Z

�R

%u � rxZ dx

D !

Z

�R

r � %

"
@tZ dx C

Z

�R

%u � @trx‰ dx;

where the last term will cancel with his counterpart in (9.96).
Finally, we check the error committed by the approximation in (9.98) in two

steps. First,

ˇ
ˇ
ˇ
ˇ
ˇ

Z

�R

r � %
"

" 
1

r

@p.r; T /
@%

� 1

%

@p.%; #/

@%

!

@tƒC
 
1

r

@p.r; T /
@#

� 1

%

@p.%; #/

@#

!

@t‚

#

dx

ˇ
ˇ
ˇ
ˇ
ˇ

� c.D/
Z

�R

ˇ
ˇ
ˇ
r � %
"

ˇ
ˇ
ˇ " .j@tƒj C j@t‚j/ dx � c.D; "/."C "˛/; 0 � ˛ < 1;

where we have used Eqs. (9.74), (9.82) to express @tƒ, @t‚, together with the
bounds (9.81), (9.83).

The second step is to approximate

1

r

@p.r; T /
@%

� 1

%

@p.%; #/

@%

D "

�
@

@%

�
1

%

@p

@%

�
.%; #/ƒC 1

%

@2p

@%@#
.%; #/‚

�
C "2r1; kr1kL1.R3/ � c.D/;
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and

1

r

@p.r; T /
@#

� 1

%

@p.%; #/

@#

D "

�
1

%

@2p

@%@#
.%; #/ƒC 1

%

@2p

@#2
.%; #/‚

�
C "2r2; kr2kL1.R3/ � c.D/:

Thus we have
ˇ̌
ˇ
ˇ
ˇ
1

"

Z

�R

%u �
" 

1

r

@p.r; T /
@%

� 1

%

@p.%; #/

@%

!

rxƒ

ˇ̌
ˇ
ˇ
ˇ

C
 
1

r

@p.r; T /
@#

� 1

%

@p.%; #/

@#

!

rx‚

#

dx

ˇ̌
ˇ
ˇ
ˇ

� "c.D/C
ˇ
ˇ̌
ˇ
@

@%

�
1

%

@p

@%

�
.%; #/

Z

�R

%u � rxƒ
2 dx

ˇ
ˇ̌
ˇC
ˇ
ˇ̌
ˇ
1

%

@2p

@%@#
.%; #/

Z

�R

%u � rx.ƒ‚/ dx

ˇ
ˇ̌
ˇ

ˇ
ˇ
ˇ
ˇ
1

2%

@2p

@#2
.%; #/

Z

�R

%u � rx‚
2 dx

ˇ
ˇ
ˇ
ˇ ;

where the gradient dependent terms are of order ", which can be shown in the same
way as in (9.68)–(9.70).

Thus we may rewrite (9.96) as

h
E";R

�
%; #;u

ˇ̌
ˇ%C "ƒ; # C "‚; .1� �R/.U C rx‰/

�itD	
tD0�

�
%

2

Z

R3

jrx‰j2 dx

�tD	

tD0
(9.99)

� c.D/
Z 	

0

�
� C d C "C c.˛/"˛ C 1

"R
C "2=3

�1=2
C E";R

�
%; #;u

ˇ
ˇ̌ r; T ;V

��
dt

C 1

"2

Z 	

0

Z

�R

�
p.%; #/ � p.%; #/

�
�‰ dx dt C !

Z 	

0

Z

�R

r � %

"
@tZ dx dt

�1
"

Z 	

0

Z

�R

h
% .s.%; #/ � s.r; T // @t‚C % .s.%; #/ � s.r; T // .U C rx‰/ � rx‚

i
dx dt

for 0 � ˛ < 1.



9.5 Ill-Prepared Initial Data 403

Step 6 Repeating the arguments of the previous step, we may replace

1

"2

Z 	

0

Z

�R

�
p.%; #/ � p.%; #/

�
�‰ dx dt

� 1

"

Z 	

0

Z

�R

 
@p.%; #/

@%

% � %

"
C @p.%; #/

@#

# � #

"

!

�‰ dx dt;

committing an error of order "˛, 0 � ˛ < 1, and

�1
"

Z 	

0

Z

�R

h
% .s.%; #/ � s.r; T // @t‚C % .s.%; #/ � s.r; T //U � rx‚

i
dx dt

�
Z 	

0

Z

�R

h 

%
@s.%; #/

@%

r � %
"

C %
@s.%; #/

@#
dx

T � #

"

!

@t‚ dx dt

Z 	

0

Z

�R

h 

%
@s.%; #/

@%

r � %

"
C %

@s.%; #/

@#

T � #
"

!

U � rx‚ dx dt

with an error of order ".
Summing up the previous estimates and using the first equation in (9.74), we get

1

"2

Z 	

0

Z

�R

�
p.%; #/� p.%; #/

�
�‰ dx dt C !

Z 	

0

Z

�R

r � %

"
@tZ dx dt

�1
"

Z 	

0

Z

�R

h
% .s.%; #/ � s.r; T // @t‚C % .s.%; #/ � s.r; T //U � rx‚

i
dx dt

� �
Z 	

0

Z

�R

 
@p.%; #/

@%

% � %
"

C @p.%; #/

@#

# � #
"

!

@tZ dx dt

C!
Z 	

0

Z

�R

%� %

"
@tZ dx dt

C
Z 	

0

Z

�R

h
 

%
@s.%; #/

@%

%� %

"
C %

@s.%; #/

@#

# � #
"

!

@t‚ dx dt

C
Z 	

0

Z

�R

h
 

%
@s.%; #/

@%

%� %

"
C %

@s.%; #/

@#

# � #
"

!

U � rx‚ dx dt
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C!
Z 	

0

Z

�R

ƒ@tZ dx dt C
Z 	

0

Z

�R

h
 

%
@s.%; #/

@%
ƒC %

@s.%; #/

@#
‚

!

@t‚ dx dt

C
Z 	

0

Z

�R

h
 

%
@s.%; #/

@%
ƒC %

@s.%; #/

@#
‚

!

U � rx‚ dx dt:

Introducing the notation

a D 1

%

@p.%; #/

@%
; b D 1

%

@p.%; #/

@#
; d D %

@s.%; #/

@#
; ! D %

�
a C b2

d

�
;

we may write the above expression in a concise form

1

"2

Z 	

0

Z

�R

�
p.%; #/� p.%; #/

�
�‰ dx dt C !

Z 	

0

Z

�R

r � %

"
@tZ dx dt

�1
"

Z 	

0

Z

�R

h
% .s.%; #/ � s.r; T // @t‚C % .s.%; #/ � s.r; T //U � rx‚

i
dx dt

�
Z 	

0

Z

�R

 
b2

b2 C ad

% � %
"

� bd

b2 C ad

# � #

"

!

@t.aƒC b‚/ dx dt

C
Z 	

0

Z

�R

 

d
# � #

"
� b

%� %

"

!

@t‚ dx dt

C
Z 	

0

Z

�R

h 

d
# � #
"

� b
% � %
"

!

U � rx‚ dx dt

C
Z 	

0

Z

�R

ƒ@t.aƒC b‚/ dx dt C
Z 	

0

Z

�R

.d‚ � bƒ/@t‚ dx dt

C
Z 	

0

Z

�R

.d‚ � bƒ/U � rx‚ dx dt:

Now, the rest is just a bit of simple algebra. First we write
Z

�R

ƒ@t.aƒC b‚/C .d‚ � bƒ/@t‚ dx

D 1

2

Z

�R

�
d

b2 C ad
@t.aƒC bT/2 C a

b2 C ad
@t.dT � bƒ/2

�
dx

D 1

2
%!

�Z

R3

Z2 dx

�tD	

tD0
C 1

2

a

b2 C ad

�Z

R3

P2 dx

�tD	

tD0
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In view of the acoustic energy balance (9.79), the former integral cancels with

�
�
%

2

Z

R3

jrx‰j2 dx

�tD	

tD0

appearing on the left-hand side of (9.99), while

1

2

a

b2 C ad

�Z

R3

P2 dx

�tD	

tD0
D 0

as P satisfies the transport equation (9.82) with divxU D 0.
Similarly,

Z 	

0

Z

�R

 

d
# � #
"

� b
% � %
"

!

@t‚ dx dt (9.100)

C
Z 	

0

Z

�R

 
b2

b2 C ad

% � %

"
� bd

b2 C ad

# � #
"

!

@t.aƒC b‚/ dx dt

D a

b2 C ad

Z 	

0

Z

�R

 

d
# � #

"
� b

%� %

"

!

@tP dx dt;

while

Z 	

0

Z

�R

h 

d
# � #
"

� b
% � %
"

!

U � rx‚ dx dt (9.101)

C
Z 	

0

Z

�R

.d‚ � bƒ/U � rx‚ dx dt

D b

b2 C ad

Z 	

0

Z

�R

 

d
# � #

"
� b

%� %

"

!

U � rx.aƒC b‚/ dx dt

C a

b2 C ad

Z 	

0

Z

�R

 

d
# � #

"
� b

%� %

"

!

U � rx.d‚ � bƒ/ dx dt

C b

b2 C ad

Z 	

0

Z

�R

.d‚ � bƒ/U � rx.aƒC b‚/ dx dt

C a

b2 C ad

Z 	

0

Z

�R

.d‚ � bƒ/U � rx.d‚ � bƒ/ dx dt
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D b!

b2 C ad

Z 	

0

Z

�R

 

d
# � #

"
� b

%� %

"

!

U � rxZ dx dt

C a

b2 C ad

Z 	

0

Z

�R

 

d
# � #
"

� b
%� %

"

!

U � rxP dx dt

C b!

b2 C ad

Z 	

0

Z

�R

.d‚ � bƒ/U � rxZ dx dt:

Thus, putting together (9.100), (9.101), we observe that the P-dependent terms
cancel out as P satisfies the transport equation (9.82) whereas the integrals
containing rxZ are of order c.˛;D/"˛, 0 � ˛ < 1 as a consequence of the dispersive
estimate (9.80).

Step 7 Finally, we observe that the integral

1

"

Z 	

0

Z

�R

% .s.%; #/ � s.r; T //rx‰ � rx‚ dx dt

is small of order c.D; ˛/"˛ , 0 � ˛ < 1 due to the dispersive estimates (9.80).
Thus the relative energy inequality finally gives rise to

h
E";R

�
%; #;u

ˇ
ˇ
ˇ%C "ƒ; # C "‚; .1� �R/.U C rx‰/

�itD	
tD0 (9.102)

� c.D/
Z 	

0

�
� C d C "C c.˛/"˛ C 1

"R
C "2=3

�1=2
C E";R

�
%; #;u

ˇ
ˇ
ˇ r; T ;V

��
dt

for 0 � ˛ < 1.

9.5.4 Conclusion

Applying Gronwall’s lemma to (9.102) we obtain the following conclusion.

� VANISHING DIFFUSION LIMIT—ILL PREPARED INITIAL DATA:

Theorem 9.2 Let f�RgR�1 be a family of uniformly C2;� simply connected bounded
domains in R3 satisfying (9.9), (9.10). Let the constitutive hypotheses (9.30)–(9.39)
be satisfied.

Let Œ%; #;u� be a weak solution of the Navier-Stokes-Fourier system (9.2)–
(9.8), (9.11), (9.12) in .0;T/ ��R starting from the initial data

%.0; �/ � %0 D %C "%
.1/
0 ; #.0; �/ � #0 D # C "#

.1/
0 ; u.0; �/ D u0;
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where

8
<

:

0 < D�1 < %; # < D;

k%.1/0 k.L2\L1/.R3/ C k#.1/0 k.L2\L1/.R3/ C ku0k.L2\L1/.R3/ < D;

9
=

;

In addition, let

R > D C T

p
!

"
; where ! D p%.%; #/C jp#.%; #/j2

%2s#.%; #/
:

Let U be a (strong) solution to the Euler system (9.15), (9.16) in R
3 � .0;Tmax/

starting from the initial data

U.0; �/ D HŒv0�;

where

v0 2 Cm
c .R

3/; suppŒv0� � B.0;D/; kv0kCm.R3/ � D; m > 4:

Let ŒZ; ‰� be the solution of the acoustic system (9.74), (9.75), with the initial
data

Z0 D 1

%!

@p.%; #/

@%
ƒ0 C 1

%!

@p.%; #/

@#
‚0; rx‰0 D H?Œv0�

where

ƒ0; ‚0 2 Cm
c .R

3/; kƒ0kCm.R3/Ck‚0kCm.R3/ � D; suppŒƒ0�; suppŒ‚0� � B.0;D/:

Let P solve the transport equation (9.82) in .0;Tmax/ � R
3, with the initial data

P0 D %
@s.%; #/

@%
ƒ0 C %

@s.%; #/

@#
‚0:

Finally, let ƒ and‚ be determined as

1

%!

@p.%; #/

@%
ƒC 1

%!

@p.%; #/

@#
‚ D Z;

%
@s.%; #/

@%
ƒC %

@s.%; #/

@#
‚ D P:
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Then for any compact K � R
3 and any T 2 .0;Tmax/, there are c1 D c.T;D/,

c2.D/ such that

Z

K

1

2
%ju � U � rx‰j2.	; �/ dx

C
�
�
��

�
%.	; �/� %

"
�ƒ.	; �/

�

ess

�
�
��

2

L2.K/

C
�
�
�
��

"
#.	; �/� #

"
�‚.	; �/

#

ess

�
�
�
��

2

L2.K/

C 1

"2

Z

K

�
1C jŒ%�res.	; �/j5=3 C jŒ#�res.	; �/j4

�
dx

� c1.˛;T;D/

�
� C d C "C c.˛/"˛ C 1

"R
C "2=3

�1=2

�

Cc2.D/

���
�%.1/0 �ƒ0

��
�
2

L2.�R/
C
��
�#.1/0 �‚0

��
�
2

L2.�R/
C ku0 � v0k2L2.�RIR3/

�

for any 0 � ˛ < 1 and for a.a. 	 2 Œ0;T/.
Remark Theorem 9.2 gives an explicit rate of convergence in terms of the scaling
parameters. In particular, we need the quantity

�
� C d C "C c.˛/"˛ C 1

"R
C "2=3

�1=2

�

to be small. Such a process is termed path dependent.



Chapter 10
Acoustic Analogies

We interpret our previous results on the singular limits of the NAVIER-STOKES-
FOURIER SYSTEM in terms of the acoustic analogies discussed briefly in Chaps. 4
and 5. Let us recall that an acoustic analogy is represented by a non-homogeneous
wave equation supplemented with source terms obtained simply by regrouping the
original (primitive) system. In the low Mach number regime, the source terms may
be evaluated on the basis of the limit (incompressible) system. This is the principal
idea of the so-called hybrid method used in numerical analysis. Our goal is to
discuss the advantages as well as limitations of this approach in light of the exact
mathematical results obtained so far.

As a model problem, we revoke the situation examined in Chap. 5, where the
fluid is driven by an external force f of moderate strength in comparison with the
characteristic frequency of the acoustic waves. More precisely, we consider a family
of weak solutions f%";u"; #"g">0 to the NAVIER-STOKES-FOURIER SYSTEM:

@t%" C divx.%"u"/ D 0; (10.1)

@t.%"u"/C divx.%"u" ˝ u"/C 1

"2
rxp.%"; #"/ D divxS" C %"f; (10.2)

@t.%"s.%"; #"//C divx.%"s.%"; #"/u"/C divx

�
q"
#"

�
D �"; (10.3)

d

dt

Z

�

�
"2

2
%"ju"j2 C %"e.%"; #"/

�
dx D "2

Z

�

%"f � u" dx; (10.4)

where the thermodynamic functions p, e, and s satisfy hypotheses (5.17)–(5.23)
specified in Sect. 5.1.
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In addition, we suppose that

S" D .#"/
�
rxu" C rT

x u" � 2

3
divxu" I

�
; (10.5)

q" D ��.#"/rx#"; (10.6)

and, in agreement with our concept of weak solutions,

�" 	 1

#"

�
"2S" W rxu" � q" � rx#"

#"

�
; (10.7)

where the transport coefficients , � obey (5.24), (5.25).
Exactly as in Chap. 5, the problem is posed on a regular bounded spatial domain

� � R
3, and supplemented with the conservative boundary conditions

u" � nj@� D 0; S"n � nj@� D 0; q" � nj@� D 0: (10.8)

The initial data are taken in the form

8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

%".0; �/ D %C "%
.1/
0;" C "2%

.2/
0;";

u".0; �/ D u0;" C "u.1/0;";

#".0; �/ D # C "#
.1/
0;" C "2#

.2/
0;" ;

9
>>>>>=

>>>>>;

(10.9)

where % > 0, # > 0 are constant, and

Z

�

%
. j/
0;" dx D

Z

�

#
. j/
0;" dx D 0 for j D 1; 2; and " > 0: (10.10)

10.1 Asymptotic Analysis and the Limit System

In accordance with the arguments set forth in Chap. 5, the limit problem can be
identified exactly as in Theorem 5.2. Assuming that

f is a function belonging to L1..0;T/ ��IR3/; (10.11)

8
<̂

:̂

f%.2/0;"g">0; f#.2/0;" g">0 are bounded in L1.�/;

fu.1/0;"g">0 is bounded in L1.�IR3/;

9
>=

>;
(10.12)
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and
8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

%
.1/
0;" ! %

.1/
0 weakly-(*) in L1.�/

u0;" ! U0 weakly in L1.�IR3/;

#
.1/
0;" ! #

.1/
0 weakly-(*) in L1.�/;

9
>>>>>=

>>>>>;

(10.13)

we have that, at least for a suitable subsequence,

%" � %
"

WD %"
.1/ ! %.1/ weakly-(*) in L1.0;TIL5=3.�//; (10.14)

u" ! U weakly in L2.0;TIW1;2.�IR3//; (10.15)

#" � #
"

WD #"
.1/ ! ‚ weakly in L2.0;TIW1;2.�//; (10.16)

where U, ‚ solve the target problem in the form

divxU D 0; (10.17)

%
�
@tU C divx.U ˝ U/

�
C rx… D divx

�
.#/.rxU C rT

x U/
�

C % f; (10.18)

%cp.%; #/
�
@t‚C Urx‚

�
� divx

�
�.#/rx‚

�
D 0; (10.19)

with the boundary conditions

U � nj@� D 0; .rxU C rT
x U/n � nj@� D 0; rx‚ � n D 0; (10.20)

and the initial data

U.0; �/ D HŒU0�; ‚.0; �/ D #

cp.%; #/

�@s.%; #/
@%

%
.1/
0 C @s.%; #/

@#
#
.1/
0

�
: (10.21)

Moreover, by virtue of (5.103),

@p.%; #/

@%
%.1/ C @p.%; #/

@#
‚ D 0: (10.22)

The proof is precisely like that of Theorem 5.2, except that we have to deal with
a bounded driving term f in place of a singular one 1

"
rxF. Accordingly, the fluid

part represented by the incompressible NAVIER-STOKES SYSTEM (10.17), (10.18)
is completely independent of the limit temperature field ‚. The reader can consult
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the corresponding parts of Chap. 5 for the weak formulation of both the primitive
and the target system as well as for all details concerning the proof. We recall that
the specific heat at constant pressure cp is related to %, # by (4.17).

10.2 Acoustic Equation Revisited

The primitive system (10.1)–(10.3) can be written in the form of a linear wave
equation derived in Sect. 5.4.3, namely

� SCALED ACOUSTIC EQUATION:

Z T

0

Z

�

�
"r"@t' C V" � rx'

�
dx dt (10.23)

D "
A

!

�Z T

0

Z

�

s1" � rx' dx dt � 1

"
< �"I' >ŒMIC�.Œ0;T���/

�

for any ' 2 C1
c ..0;T/ ��/,

Z T

0

Z

�

�
"V" � @t' C !r"divx'

�
dx dt (10.24)

D "

Z T

0

Z

�

�
s2" W rx' C s3" � ' C s4"divx'

�
dx dt

for any ' 2 C1
c ..0;T/ ��IR3/; ' � nj@� D 0,

where A, ! > 0 are constants given by (5.126), and the source terms s1" , s
2
" , s

3
" , s

4
"

have been identified as follows:

s1" D �.#"/

#"

�
rx
#"

"

�
C %"

 
s.%"; #"/� s.%; #/

"

!

u"; (10.25)

s2" D S" � %"u" ˝ u"; (10.26)

s3" D �%"f; (10.27)

s4" D 1

"

 
p.%; #/ � p.%"; #"/

"
C A%"

s.%"; #"/ � s.%; #/

"
C !

%" � %

"

!

: (10.28)
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In addition, we have

r" D 1

!

 

!
%" � %
"

C A%"
s.%"; #"/ � s.%; #/

"

!

; V" D %"u": (10.29)

In accordance with the uniform bounds established in Sect. 5.3, specifi-
cally (5.44), (5.69), (5.70), and (5.77), we have

r" D Œr"�ess C Œr"�res;

with

fŒr"�essg">0 bounded in L1.0;TIL2.�//; (10.30)

and

Œr"�res ! 0 in L1.0;TIL1.�//: (10.31)

Similarly, by virtue of (5.41), (5.45), and (5.48),

V" D ŒV"�ess C ŒV"�res;

where

fŒV"�essg">0 is bounded in L1.0;TIL2.�IR3//; (10.32)

while

ŒV"�res ! 0 in L1.0;TIL1.�IR3//: (10.33)

Finally,

8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

fs1"g">0; fs3"g">0 are bounded in Lq.0;TIL1.�IR3//;

fs2"g">0 is bounded in Lq.0;TIL1.�IR3�3//;

fs4"g">0 is bounded in Lq.0;TIL1.�//

9
>>>>>=

>>>>>;

(10.34)

for a certain q > 1, and

k�"kMC.Œ0;T���/ � "2c (10.35)

as stated in (5.135), (5.136). It is worth-noting that these bounds are optimal, in
particular, compactness of the source terms in the afore-mentioned spaces is not
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expected. This fact is intimately related to the time oscillations of solutions to the
acoustic equation.

We conclude this part by introducing a “lifted” measure, namely †" 2
L1.0;TIMC.�//,

< †"I' >ŒL1.0;TIMIL1.0;TIC.�//�D< �"I IŒ'� >ŒMIC�.Œ0;T���/;

IŒ'�.	; x/ WD
Z 	

0

'.t; x/ dt for ' 2 L1.0;TIC.�//;

and rewriting system (10.23), (10.24) in the form

Z T

0

Z

�

�
"Z"@t' C V" � rx'

�
dx dt D "

A

!

Z T

0

Z

�

s1" � rx' dx dt (10.36)

for any ' 2 C1
c ..0;T/ ��/,

Z T

0

Z

�

�
"V" � @t' C !Z"divx'

�
dx dt (10.37)

D "

Z T

0

Z

�

�
s2" W rx' C s3" � ' C s4"divx' C s5"divx'

�
dx dt

for any ' 2 C1
c ..0;T/ ��IR3/; ' � nj@� D 0, where

Z" D r" C A

"!
†"; s

5
" D A

"2
†";

where, exactly as in Sect. 5.4.7, we identify

Z

�

†"' dx D< †"I' >ŒMIC�.�/ :

Solutions of system (10.36), (10.37) may be written in a more concise form in
terms of the Fourier coefficients:

a�n ŒV� WD
Z

�

V � vn dx; agnŒV� WD 1p
ƒn

Z

�

V � rxqn dx; n D 1; 2; : : : ;

b0ŒZ� D 1
pj�j

Z

�

Z dx; bnŒZ� D
Z

�

rqn dx; n D 1; 2; : : : ;

where fvng1
nD1 is an orthonormal basis of the space L2� .�IR3/ of solenoidal

fields with zero normal trace, and fqng1
nD0 is the complete orthonormal system of
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eigenfunctions of the homogeneous Neumann problem

��xqn D ƒnqn; 0 D ƒ0 < ƒ1 � ƒ2 � : : : ; q0 D 1
pj�j :

We start with the homogeneous wave equation

8
<

:

@tRt C divxQ D 0;

@tQ C !rxR D 0;

9
=

;
in .0;T/ ��; Q � nj@� D 0; R.0/ D R0; Q.0/ D Q0:

It is easy to check that the associated solution operator

S.t/

�
R0
Q0

�
D
�
R.t/
Q.t/

�

can be expressed in terms of the Fourier coefficients as

b0ŒR.t/� D b0ŒR0�; a
�
n ŒQ.t/� D a�n ŒQ0� for n D 1; 2; : : : (10.38)

bnŒR.t/� D exp.i
p
!ƒnt/

�
1

2

�
�i

1p
!
agnŒQ0�C bnŒR0�

��
(10.39)

C exp.�i
p
!ƒnt/

�
1

2

�
i
1p
!
agnŒQ0�C bnŒR0�

��
for n D 1; 2; : : :

and

agnŒQ.t/� D exp.i
p
!ƒnt/

�
1

2

�
agnŒQ0�C i

p
!bnŒR0�

��
(10.40)

C exp.�i
p
!ƒnt/

�
1

2

�
agnŒQ0� � i

p
!bnŒR0�

��
for n D 1; 2; : : :

These formulas are the discrete counterparts to those defined by means of the
Fourier transform. Accordingly, the solution operator S.t/ can be extended to a
considerably larger class of initial data, for which the Fourier coefficients an, bn
may be defined, in particular, the data may belong to the space M of measures or
distributions of higher order.

Similarly, we can identify solutions of the non-homogeneous problem

8
<

:

@tR C divxQ D h1;

@tQ C !rxR D h2;

9
=

;
in .0;T/ ��; Q � nj@� D 0; R.0/ D R0; Q.0/ D Q0;
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by means of the standard Duhamel’s formula

�
R.t/
Q.t/

�
D S.t/

�
R0
Q0

�
C
Z t

0

S.t � s/

�
h1.s/
h2.s/

�
ds:

Finally, the solutions of the scaled equation

8
<

:

"@tR C divxQ D "h1;

"@tQ C !rxR D "h2;

9
=

;
in .0;T/ ��; Q � nj@� D 0; R.0/ D R0; Q.0/ D Q0;

(10.41)

can be expressed as

�
R.t/
Q.t/

�
D S

� t
"

� � R0
Q0

�
C
Z t

0

S
� t � s

"

� � h1.s/
h2.s/

�
ds; (10.42)

where again the right-hand side may belong to a suitable class of distribu-
tions, in particular, formula (10.42) applies to solutions of the acoustic equa-
tion (10.36), (10.37).

10.3 Two-Scale Convergence

As we have observed several times in the previous chapters, solutions of the scaled
acoustic equation (10.23), (10.24) are expected to develop fast time oscillations
with the frequency proportional to 1=". It is therefore natural to investigate the
asymptotic behavior of solutions with respect to both the real (slow) time t and
the fast time 	 D t=". To this end, we adapt the concept of two scale convergence
introduced by Allaire [6] and Nguetseng [220] to characterize the limit behavior
of oscillating solutions in the theory of homogenization. The reader may consult the
review paper by Visintin [269] for more information on the recent development of
the two-scale calculus. Here we use the following weak-strong definition of two-
scale convergence.

� TWO-SCALE CONVERGENCE:

We shall say that a sequence fw" D w".t; x/g">0 � L1.0;TIL1.�// two-scale
converges to a function w D w.	; t; x/, w 2 L1

loc.Œ0;1/ � Œ0;T�IL1.�//, if

ess sup
t2.0;T/

ˇ
ˇ
ˇ̌
Z

�

h
w".t; x/ � w

� t
"
; t; x

�i
'.x/ dx

ˇ
ˇ
ˇ̌ ! 0 (10.43)

for any ' 2 C1
c .�/.
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Now, we are ready to formalize the ideas discussed in Sect. 5.4.4 in terms of the
two-scale convergence. The main issue to be discussed here is to investigate the time
oscillations as our definition requires only weak convergence in the spatial variable.
Unfortunately, the result presented below gives only a very rough description of
oscillations in terms of completely unknown driving terms.

Theorem 10.1 Let

�
r"
V"

�
be a family of solutions to the scaled acoustic equa-

tions (10.23), (10.24) belonging to class (10.30)–(10.33), where the terms on the
right-hand side satisfy (10.34), (10.35).

Then

�
r"
V"

�
two-scale converges to S .	/

�
G1.t; �/
G2.t; �/

�
; 	 D t

"
;

for certain functions

G1 2 Cweak \ L1.Œ0;T�IL2.�//; G2 2 Cweak \ L1.Œ0;T�IL2.�IR3//;

where S is the solution operator defined by means of (10.38)–(10.40).

Remark As solutions of the acoustic equation are almost-periodic, the preceding
result implies (it is in fact stronger than) the two-scale convergence on general
Besicovitch spaces developed by Casado-Díaz and Gayte [50].

Proof

(i) Seeing that

r" D Z" � A

"!
†";

where, by virtue of (10.35),

ess sup
t2.0;T/

k†".t/kM.�/ � "2c; (10.44)

it is enough to show the result for Z", V" solving system (10.36), (10.37).
Moreover, as the two-scale convergence defined through (10.43) is weak with
respect to the spatial variable, we have to show the result only for each Fourier
mode in (10.38)–(10.40), separately. More specifically, we write

�
Z"
V"

�
D S

� t
"

� �G1"
G2
"

�
(10.45)
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and show that

bnŒG
1
" �; a

�
n ŒG

2
"�; a

g
nŒG

2
"� are precompact in CŒ0;T� for any fixed n: (10.46)

To this end, we associate to the forcing terms in (10.36), (10.37) their Fourier
projections

b0Œh
1
"� D 0; bnŒh

1
"� D �A

!

Z

�

s1" � rxqn dx; n D 1; 2; : : : ;

a�n Œh
2
" � D �

Z

�

�
s2" W rxvn C s3" � vn

�
dx; n D 1; 2; : : : ;

and

agnŒh
2
" � D � 1p

ƒn

Z

�

�
s2" W r2

x qn C s3" � rxqn �ƒn.s
4
" C s5"/qn

�
dx; n D 1; 2; : : :

As a direct consequence of the uniform bounds (10.34), (10.35),

fbnŒh1"�g">0; fa�n Œh2" �g">0; fagnŒh2" �g">0 are bounded in Lq.0;T/ (10.47)

for a certain q > 1.
Using Duhamel’s formula (10.42), we obtain

b0ŒZ".t/� D b0ŒZ".0/�; a
�
n ŒV".t/� D a�n ŒV".0/�C

Z t

0

a�n Œh
2
".s/� ds; n D 1; 2; : : : :

By virtue of (10.30)–(10.33), together with (10.44), we can assume that

Z".0; �/ ! Z0 weakly-(*) in M.�/; V".0; �/ ! V0 weakly in L1.�/;
(10.48)

with

Z0 2 L2.�/; V 2 L2.�IR3/:

In particular,

bnŒZ".0/� ! bnŒZ0�; a
�
n ŒV".0/� ! a�n ŒV�0; and agnŒV".0/� ! agnŒV0� as " ! 0

for any fixed n.
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Moreover, it follows from (10.47) that the family

ft 7!
Z t

0

a�n Œh
2
".s/� dsg">0 is precompact in CŒ0;T�:

Similarly, in accordance with (10.39),

bnŒZ".t/�

D exp
�

i
p
!ƒn

t

"

� �1
2

�
� ip

!

�
agnŒV".0/�C

Z t

0

exp
�
�i
p
!ƒn

s

"

�
agnŒh

2
".s/� ds

�

CbnŒZ".0/�C
Z t

0

exp
�
�i

p
!ƒ

s

"

�
bnŒh

1
".s/�ds

��

C exp
�
�i
p
!ƒn

t

"

� �1
2

�
ip
!

�
agnŒV".0/�C

Z t

0

exp
�

i
p
!ƒn

s

"

�
agnŒh

2
".s/� ds

�

CbnŒZ".0/�C
Z t

0

exp
�

i
p
!ƒ

s

"

�
bnŒh

1
".s/�ds

��
;

where the family of functions

�
t 7!

Z t

0

exp
�
˙i
p
!ƒn

s

"

�
agnŒh

2
".s/� ds


; t 2 Œ0;T�;

�
t 7!

Z t

0

exp
�
˙i
p
!ƒn

s

"

�
bnŒh

1
".s/� ds


; t 2 Œ0;T�

is precompact in CŒ0;T�.
As the remaining terms can be treated in a similar way, we have

shown (10.45), (10.46). Consequently, we may assume that

bnŒG1"� ! bnŒG1�

a�n ŒG
2
"� ! a�n ŒG

2�

a�g ŒG
2
"� ! a�n ŒG

2�

9
>>>>>=

>>>>>;

in CŒ0;T� for any fixed n;

where the limit distributions G1, G2
" are uniquely determined by their Fourier

coefficients. In other words,

�
P1MŒr"�
P2MŒV"�

�
two-scale converges to S .	/

�
P1MŒG

1�

P2MŒG
2�

�
; 	 D t

"
;
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for any fixed M, where P1M, P2M are projections on the first M Fourier modes,
specifically,

P1MŒr� D
X

n�M

bnŒr�qn; P2MŒV� D
X

n�M

�
a�n ŒV�vn C agnŒV�

1p
ƒn

rxqn

�
:

(ii) It remains to show that the quantities G1, G2 are bounded in the L2-norm
uniformly in time. To this end, we use the estimates (10.56)–(10.59) in order to
see that

lim sup
"!0

 

ess sup
t2.0;T/

kP1MŒr"�kL2.�/
!

� c1; (10.49)

lim sup
"!0

 

ess sup
t2.0;T/

kP2MŒV"�kL2.�IR3/

!

� c2; (10.50)

where the constants c1, c2 are independent of M.
On the other hand, since P1MŒr"�, P

2
MŒV"� two-scale converge, we have

ess sup
t2.0;T/

�
�
��

�
P1MŒr"�
P2MŒV"�

�
� S

� t
"

� �P1MŒG
1�

P2MŒG
2�

���
��
L2.�/�L2.�IR3/

! 0

as " ! 0 for any fixed M. Since S is isometry on L2.�/ � L2.�IR3/, we
conclude that

ess sup
t2Œ0;T�

�
�
��

�
P1MŒG

1�

P2MŒG
2�

���
��
L2.�/�L2.�IR3/

D ess sup
t2Œ0;T�

�
�
��S
� t
"

� �P1MŒG
1�

P2MŒG
2�

���
��
L2.�/�L2.�IR3/

� lim sup
"!0

"

ess sup
t2.0;T/

�
�
��

�
P1MŒr"�
P2MŒV"�

���
��
L2.�/�L2.�IR3/

#

� c;

where, as stated in (10.49), (10.50), the constant is independent of M.

�
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10.3.1 Approximate Methods

We intend to simplify system (10.23), (10.24) by replacing the source terms by their
asymptotic limits for " ! 0. To begin, by virtue of the uniform bound (5.50), we
observe that

�"=" ! 0 in M.Œ0;T� ��/:

Similarly, by means of the same arguments as in Sect. 5.3.2,

s1" ! s1 weakly in L1..0;T/ ��IR3/;

where

s1 D �.#/

#
rx‚C %

 
@s.%; #/

@%
%.1/ C @s.%; #/

@#
‚

!

U:

We simplify further by eliminating completely the temperature fluctuations sup-
posing that the initial state of the primitive system is almost isentropic, specifically,

@s.%; #/

@%
%
.1/
0 C @s.%; #/

@#
#
.1/
0 D 0:

Consequently, the limit temperature ‚ solves the Neumann problem for the heat
equation (10.19) with the prescribed initial state ‚0 D 0. As a straightforward
consequence of the heat energy balance established in (5.184), we obtain ‚ D 0.
Moreover, utilizing relation (10.22), we get %.1/ D 0; whence s1 D 0. Thus we
have shown that it is reasonable, at least in view of the uniform bounds obtained
in Sect. 5.2, to replace the right-hand side in (10.23) by zero provided the initial
entropy of the primitive system is close to its (maximal) value attained at the
equilibrium state .%; #/.

A similar treatment applied to the acoustic sources in (10.24) requires more
attention. Obviously, we can still replace

S" � .#/
�
rxU C rT

x U
�
; and s3" � s3 WD �% f

but the asymptotic limit of the convective term %"u" ˝ u" is far less obvious as we
have already observed in Sect. 5.4. All we know for sure is

%"u" ˝ u" ! %U ˝ U weakly in L1..0;T/ ��IR3�3/;

where, in general,

U ˝ U 6� U ˝ U
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unless the velocity fields u" converge pointwise to U in .0;T/ ��.
A similar problem occurs when dealing with s4" . Note that, in accordance with

our choice of the parameters !, ƒ (cf. (5.126)),

�@%p.%; #/C A%@%s.%; #/C ! D 0; �@#p.%; #/C A%@#s.%; #/ D 0I

whence, by virtue of the uniform bounds established in Sect. 5.2,

��
�
�
�
p.%; #/ � p.%"; #"/

"
C A%"

s.%"; #"/� s.%; #/

"
C !

%" � %

"

��
�
�
�
L1..0;T/��/

� "c:

However, in order to obtain s4" ! 0 in some sense, we need strong convergence

%" � %

"
WD %.1/" ! %.1/ D 0;

#" � #
"

WD #.1/ ! ‚ D 0 pointwise in .0;T/ ��:

In light of the previous arguments, any kind of linear acoustic analogy is likely
to provide a good approximation of propagation of the acoustic waves only when
their amplitude is considerably smaller than the Mach number, or, in the standard
terminology, in the case of well-prepared data. We are going to discuss this issue in
the next section.

10.4 Lighthill’s Acoustic Analogy in the Low Mach Number
Regime

10.4.1 Ill-Prepared Data

Motivated by the previous discussion, we suppose that solutions r", V" of the scaled
acoustic equation can be approximated by R", Q" solving a wave equation, where,
in the spirit of Lighthill’s acoustic analogy, the source terms have been evaluated
on the basis of the limit system (10.17), (10.18). In addition, we shall assume that
the limit solution is smooth so that the weak formulation of the problem may be
replaced by the classical one as follows.

� LIGHTHILL’S EQUATION:

"@tR" C divxQ" D 0; (10.51)

"@tQ" C !rxR" D "
�
.#/divx.rxU C rT

x U/� divx.%U ˝ U/C % f
�
; (10.52)

Q" � nj@� D 0; (10.53)
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supplemented with the initial conditions

R".0; �/ D r".0; �/; Q".0; �/ D V".0; �/: (10.54)

Since U is a smooth solution of the incompressible NAVIER-STOKES SYS-
TEM (10.17), (10.18), we can rewrite (10.51), (10.52) in the form

"@t.R" � ".…=!//C divx.Q" � %U/ D �"2@t.…=!/;

"@t.Q" � %U/C !rx.R" � ".…=!// D 0;

which can be viewed as another non-homogeneous wave equation with the same
wave propagator and with a source of order "2. In other words, if the initial data are
ill-prepared, meaning,

r";0 � r0;" � ".…=!/; H?ŒV0;"� of order 1;

the presence of Lighthill’s tensor in (10.52) yields a perturbation of order " with
respect to the homogeneous problem. Consequently, for the ill-prepared data,
Lighthill’s equation can be replaced, with the same degree of “precision”, by the
homogeneous wave equation

"@tR" C divxQ" D 0;

"@tQ" C !rxR" D 0:

Thus we conclude, together with Lighthill [188, Chap. 1], that use of a linear
theory, for waves of any kind, implies that we consider disturbances so small that
in equations of motion we can view them as quantities whose products can be
neglected. In particular, the ill-prepared data must be handled by the methods of
nonlinear acoustics (see Enflo and Hedberg [94]).

10.4.2 Well-Prepared Data

If the initial data are well-prepared, meaning,

r";0; H?ŒV0;"� are of order ";

or, in terms of the initial data for the primitive system,

%
.1/
0;" D #

.1/
0;" D 0; u0;" D U0
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in (10.9), then, replacing R" � R"=", Q" � Q"=", we can write Lighthill’s
equation (10.51), (10.52) in the form

"@tR" C divxQ" D 0; (10.55)

"@tQ" C !rxR" D
�
.#/divx.rxU C rT

x U/� divx.%U ˝ U/C % f
�
; (10.56)

Q" � nj@� D 0; (10.57)

R".0; �/ D R0;"; Q".0; �/ D Q0;"; (10.58)

where the initial data R0;", Q0;" are determined by means of the “second order” terms
%
.2/
0;", #

.2/
0;" , and u.1/0;".

For simplicity, assume that U, … represent a smooth solution of the incom-
pressible NAVIER-STOKES SYSTEM (10.17), (10.18), (10.20), satisfying the initial
condition

U.0; �/ D U0;

where U0 solves the stationary problem

%divx.U0 ˝ U0/C rx…0 D divx
�
.#/.rxU0 C rT

x U0/
�

C % f0; divxU0 D 0 in �;

(10.59)

…0 D ….0; �/;

supplemented with the boundary conditions (10.20). Here, the driving force f0 is
a function of x only, and the solution U0, …0 is called the background flow. We
normalize the pressure so that

Z

�

….t; �/ dx D
Z

�

…0 dx D 0

for all t 2 Œ0;T�.
Our aim is to find a suitable description for the asymptotic limits of R", Q" when

" ! 0. These quantities, solving the scaled Lighthill’s equations (10.55), (10.56),
are likely to develop fast oscillations in time that would be completely ignored
should we use the standard concept of weak limits. Instead we use again the two-
scale convergence introduced in the previous section. We claim the following result.

� ASYMPTOTIC LIGHTHILL’S EQUATION:

Theorem 10.2 Let R", Q" be the (unique) solution of problem (10.55)–(10.58),
where

R0;" ! R0 in L
2.�/I Q0;" ! Q0 in L2.�IR3/; HŒQ0;"� D 0;
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and where U, … is a smooth solution of problem (10.17), (10.18), (10.20), with
U.0; �/ D U0,….0; �/ D …0 satisfying (10.59).

Then

fR";Q"g">0 two-scale converges to fR C…=! �…0=!IQg;

where R, Q is the unique solution of the problem (10.51), (10.52) in the form

"@tR C divxQ D 0;

"@tQ C !rxR D
�
.#/divx.rxU0 C rT

x U0/ � divx.%U0 ˝ U0/C % f0
�
;

Q � nj@� D 0;

R.0; �/ D R0; Q.0; �/ D Q0:

Remark In particular, solutions R, Q of the limit system can be written in the form
R D R.t="; t; x/, Q D Q.t="; t; x/.

Proof As all quantities are smooth, it is easy to check that

R" D …=! C Z"; Q" D Y";

where Z", Y" is the unique solution of the problem

"@tZ" C divxY" D �"@t…=!;

"@tY" C !rxZ" D 0;

Y" � nj@� D 0;

Z".0; �/ D R0;" �…0=!; Y".0; �/ D Q0;":

Similarly to Sect. 5.4.4, we can write

�
Z".t/
Y".t/

�
D S

� t
"

� �R0;" �…0=!

Q0;"

�
� S

� t
"

� Z t

0

S
��s

"

� �
@t…=!

0

�
ds;

where S is the solution operator associated to the homogeneous problem introduced
in Sect. 10.2.



426 10 Acoustic Analogies

It is easy to check that .Z";Y"/ two-scale converges to

�
Z
Y

�
D S

� t
"

� �R0 �…0=!

Q0

�
;

which completes the proof. Indeed since
R
� … dx D 0, we get

t 7!
Z t

0

S
��s

"

� �
@t…=!

0

�
ds ! 0 in C.Œ0;T�IL2.�//; (10.60)

as the integrated quantity can be written as a Fourier series with respect to the
eigenvectors of the wave operator identified in Sect. 5.4.5. Since all (non-zero)
Fourier modes take the form

exp
�
˙ijƒj s

"

�
a.s/

"
q.x/

� ipjƒj rxq.x/

#

; ƒ ¤ 0;

relation (10.60) follows.
�

In this section, we have deliberately omitted a highly non-trivial issue, namely to
which extent Lighthill’s equation can be used as a description of the acoustic waves
for the well prepared data. Apparently, we need higher order uniform bounds that
implicitly imply regularity of solutions of the target system. Moreover, these bounds
also imply existence of regular solutions for the primitive system provided the data
are close to the equilibrium state. Positive results in this direction were obtained by
Hagstrom and Lorentz [147].

In order to conclude this section, let us point out that Lighthill’s equa-
tion (10.51)–(10.54) may indicate completely misleading results when applied
on bounded domains with acoustically soft boundary conditions. As we have
seen in Chap. 7, the oscillations of the acoustic waves are effectively damped
by a boundary layer provided the velocity vanishes on the boundary as soon as
the latter satisfies certain geometrical conditions, even for the ill-prepared data.
On the contrary, Lighthill’s equation predicts violent oscillations of the velocity
field with the frequency proportional to 1=" in the low Mach number limit. Of
course, in this case, system (10.51), (10.52) is not even well-posed if the boundary
condition (10.53) is replaced by Q"j@� D 0.

10.5 Concluding Remarks

In the course of the previous discussion, we have assumed that the solution U of the
limit incompressible NAVIER-STOKES SYSTEM is smooth. Of course, smoothness
of solutions should be determined by the initial datum U0. Unfortunately, in the
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three dimensional physical space, it is a major open problem whether solutions to
the incompressible NAVIER-STOKES SYSTEM emanating from smooth data remain
smooth at any positive time. Still there is a large class, although not explicitly
known, of the initial data for which the system (10.17), (10.18) admits a smooth
solution. In particular, this is true for small perturbations of smooth stationary
states.

The problem becomes even more delicate in the framework of the asymptotic
limits studied in this book. Although we are able to identify the low Mach number
limit as a weak solution of system (10.17), (10.18) emanating from the initial datum
U0, it is still not completely clear if this weak solution coincides with the strong
(regular) one provided the latter exists.

Fortunately, such a weak-strong uniqueness result holds provided the weak
solution U of (10.17), (10.18) satisfies the energy inequality:

1

2

Z

�

%jUj2.	/ dx C .#/

2

Z 	

0

Z

�

jrxU C rT
x Uj2 dx dt (10.61)

� 1

2

Z

�

%jU0j2.	/ dx C
Z 	

0

Z

�

% f � U dx dt for a.a. 	 2 .0;T/:

As we have shown, the solutions obtained in the low Mach number asymptotic
analysis do satisfy (10.61) as soon as the data are “suitably” prepared (see
Theorem 5.3).

Now, for the sake of simplicity, assume that f is independent of t and thatU0 D w,
where w is a regular stationary solutions to the incompressible NAVIER-STOKES

SYSTEM, specifically,

divxw D 0; (10.62)

divx.%w ˝ w/C rx… D .#/divx
�
rxw C rT

x w
�

C %f; (10.63)

satisfying the complete slip boundary conditions

w � nj@� D 0; .rxw C rT
x w/n � nj@� D 0: (10.64)

We claim that w D U as soon as U is a weak solution of (10.17), (10.18), (10.20),
with U.0; �/ D U0 D w, in the sense specified in Sect. 5.5.1 provided U satisfies
the energy inequality (10.61). Indeed as w is smooth and satisfies the boundary
conditions (10.64), the quantities .t/w,  2 C1c.0;T/, can be used as test functions
in the weak formulation of (10.18), and, conversely, the stationary equation (10.63)
can be multiplied on U and integrated by parts. Thus, after a straightforward
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manipulation, we obtain

Z

�

jU.	/ � wj2 dx C .#/

%

Z 	

0

Z

�

ˇ
ˇrx.U � w/C rT

x .U � w/
ˇ
ˇ2 dx dt

� 2

Z 	

0

Z

�

..U ˝ U/ W rxw C .w ˝ w/ W rxU/ dx dt for a.a. 	 2 .0;T/;

where, by means of by parts integration,

Z

�

..U ˝ U/ W rxw C .w ˝ w/ W rxU/ dx D
3X

i;jD1

Z

�

@xiwjUj.Ui � wi/ dx

D
Z

�

Œrxw.U � w/� � .U � w/ dx C 1

2

Z

�

rxjwj2 � .U � w/ dx

D
Z

�

Œrxw.U � w/� � .U � w/ dx:

Consequently, the desired result U D w follows directly from Gronwall’s lemma.



Chapter 11
Appendix

For reader’s convenience, a number of standard results used in the preceding text
is summarized in this chapter. Nowadays classical statements are appended with
the relevant reference material, while complete proofs are provided in the cases
when a compilation of several different techniques is necessary. A significant part
of the theory presented below is related to general problems in mathematical fluid
mechanics and may be of independent interest.

In the whole appendix M denotes a positive integer while N 2 N refers to the
space dimension. The space dimension is always taken greater or equal than 2, if
not stated explicitly otherwise.

11.1 Spectral Theory of Self-Adjoint Operators

Let H be a complex Hilbert space with a scalar produce h�I �i. A linear operator
A W H ! H is called self-adjoint, if

• the domain D.A/ of A is dense in H;
• A is symmetric,

hAvIwi D hvIAwi

for all v;w 2 D.A/;
• if

hAxI yi D hxI hi for all x 2 D.A/;

then y 2 D.A/ and h D Ay.

© Springer International Publishing AG 2017
E. Feireisl, A. Novotný, Singular Limits in Thermodynamics of Viscous Fluids,
Advances in Mathematical Fluid Mechanics, DOI 10.1007/978-3-319-63781-5_11
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The spectrum of a self-adjoint operator A is a subset of the real axis R, meaning
for any complex � D �1 C i�2, �1; �2 2 R, �2 ¤ 0, the operator

A C �Id W D.A/ � H ! H

is surjective with bounded inverse.

� SPECTRAL DECOMPOSITION:

Theorem 11.1 Let A be a densely defined self-adjoint operator on a Hilbert
space H.

Then there exists a family of orthogonal projections fP�g�2R enjoying the
following properties:

• P�, P commute,

P� ı P D Pminf�;g for any �; 2 RI

• P� are right continuous,

Ph ! P�h in H for any h 2 H whenever  & �I

•

P�h ! 0 in H for any h 2 H if � ! �1;

P�h ! h in H for any h 2 H if � ! 1I

• P� commutes with A on D.A/,

u 2 D.A/ if and only if
Z 1

�1
�2 d hP�uI ui < 1;

and

hAuI vi D
Z 1

�1
� d hP�uI vi for any u 2 D.A/; v 2 H: (11.1)

See Reed and Simon [237], Leinfelder [182] �
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The above results is also known as Spectral Theorem for self-adjoint operators.
The integral in (11.1) is understood in the Lebesgue-Stieltjes sense. We report

� STONE’S FORMULA:

h.Pb � Pa/ uI vi (11.2)

D lim
ı!0C

 

lim
"!0C

Z bCı

aCı
˝�
ŒA � .s C i"/I��1 � ŒA � .s � i"/I��1

�
uI v˛ ds

!

for any a < b and u; v 2 H.

See Reed and Simon [238] �

Given the spectral decomposition fP�g�2R we may define functional calculus
associated to A, specifically for any Borel function G defined on R we define G.A/
with a domain

u 2 D.G.A// if and only if
Z 1

�1
jG.�/j2 d hP�uI ui < 1 < 1;

and

hG.A/uI vi D
Z 1

�1
G.�/ d hP�uI vi ; v 2 H;

see Reed and Simon [238].
Finally, we introduce the spectral measure u associated to u 2 H as

hu;GiM.R/ICc.R/ D
Z 1

�1
G.�/ d hP�uI ui :

We report the following consequence of Spectral Theorem.

� SPECTRAL MEASURE REPRESENTATION:

Theorem 11.2 Let A be a densely defined self-adjoint operator on a Hilbert space
H, G a Borel function on R. Let u 2 D.G.A// and let u be the associated spectral
measure.

Then any ‰ 2 H admits a representative‰u 2 L2.R; du/,

Z 1

�1
j‰u.�/j2 du � k‰k2H ;
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such that

hG.A/u; ‰i D
Z 1

�1
G.�/‰u.�/ du:

See Reed and Simon [238] �

11.2 Mollifiers

A function � 2 C1
c .R

M/ is termed a regularizing kernel if

suppŒ�� � .�1; 1/M; �.�x/ D �.x/ 	 0;

Z

RM
�.x/ dx D 1: (11.3)

For a measurable function a defined on R
M with values in a Banach space X, we

denote

S!Œa� D a!.x/ D �! 
 a D R
RM �!.x � y/a.y/ dy;

where �!.x/ D 1
!M �.

x
!
/; ! > 0;

(11.4)

provided the integral on the right hand-side exists. The operator S! W a 7! a! is
called a mollifier. Note that the above construction easily extends to distributions by
setting a!.x/ D< aI �!.x � �/ >ŒD0ID�.RM/.

� MOLLIFIERS:

Theorem 11.3 Let X be a Banach space. If a 2 L1loc.R
MIX/, then we have a! 2

C1.RMIX/. In addition, the following holds:
(i) If a 2 Lploc.R

MIX/, 1 � p < 1, then a! 2 Lploc.R
MIX/, and

a! ! a in Lp
loc.R

MIX/ as ! ! 0:

(ii) If a 2 Lp.RMIX/, 1 � p < 1, then a! 2 Lp.RMIX/,

ka!kLp.RMIX/ � kakLp.RM IX/; and a! ! a in Lp.RMIX/ as ! ! 0:

(iii) If a 2 L1.RMIX/, then a! 2 L1.RMIX/, and

ka!kL1.RM IX/ � kakL1.RM IX/:
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iv) If a 2 Ck.UIX/, where U � R
M is an (open) ball, then .@˛a/!.x/ D @˛a!.x/

for all x 2 U, ! 2 .0; distŒx; @U�/ and for any multi-index ˛, j˛j � k.
Moreover,

ka!kCk.BIX/ � kakCk.VIX/

for any ! 2 .0; distŒ@B; @V�/, where B, V are (open) balls in R
M such that

B � V � V � U. Finally,

a! ! a in Ck.BIX/ as ! ! 0:

See Amann [8, Chap. III.4], or Brezis [41, Chap. IV.4]. �

11.3 Basic Properties of Some Elliptic Operators

Let � � R
N be a bounded domain. We consider a general elliptic equation in the

divergence form

A.x; u/ D �
NX

i;jD1
@xi.ai;j.x/@xju/C c.x/u D f for x 2 �; (11.5)

supplemented with the boundary condition

ıu C .ı � 1/

NX

jD1
ai;j@xju njj@� D g; (11.6)

where ı D 0; 1. We suppose that

ai;j D aj;i 2 C1.�/;
X

i;j

ai;j�i�j 	 ˛j�j2 (11.7)

for a certain ˛ > 0 and all � 2 R
N ; j�j D 1. The case ı D 1 corresponds to the

Dirichlet problem, ı D 0 is termed the Neumann problem.
In several applications discussed in this book,� is also taken in the form

� D f.x1; x2; x3/ j .x1; x2/ 2 T 2; Bbottom.x1; x2/ < x3 < Btop.x1; x2/g; (11.8)
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where the horizontal variable .x1; x2/ belongs to the flat torus

T 2 D �
Œ��; ��jf��;�g

�2
:

Although all results below are formulated in terms of standard domains, they apply
to domains� given by (11.8) as well provided we identify

@� D f.x1; x2; x3/ j .x1; x2/ 2 T 2; x3 D Bbottom.x1; x2/g

[f.x1; x2; x3/ j .x1; x2/ 2 T 2; x3 D Btop.x1; x2/g:

This is due to the fact that all theorems concerning regularity of solutions to elliptic
equations are of local character.

11.3.1 A Priori Estimates

We start with the classical Schauder estimates.

� HÖLDER REGULARITY:

Theorem 11.4 Let � � R
N be a bounded domain of class CkC2;� , k D 0; 1; : : : ,

with � > 0. Suppose, in addition to (11.7), that ai;j 2 CkC1;�.�/, i; j D 1; : : : ;N, c 2
Ck;�.�/. Let u be a classical solution of problem (11.5), (11.6), where f 2 Ck;�.�/,
g 2 CkCıC1;�.@�/.

Then

kukCkC2;� .�/ � c
�
k fkCk;� .�/ C kgkCkC1;� .@�/ C kukC.�/

�
:

See Ladyzhenskaya and Uralceva [178, Theorems 3.1 and 3.2, Chap. 3], Gilbarg and
Trudinger [136, Theorem 6.8]. �

Similar bounds can be also obtained in the Lp-framework. We report the
celebrated result by Agmon et al. [2] (see also Lions and Magenes [193]). The
hypotheses we use concerning regularity of the boundary and the coefficients ai;j, c
are not optimal but certainly sufficient in all situations considered in this book.

� STRONG Lp-REGULARITY:

Theorem 11.5 Let� � R
N be a bounded domain of class C2. In addition to (11.7),

assume that c 2 C.�/. Let u 2 W2;p.�/, 1 < p < 1, be a (strong) solution of
problem (11.5), (11.6), with f 2 Lp.�/, g 2 WıC1�1=p;p.@�/.
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Then

kukW2;p.�/ � c
�k fkLp.�/ C kgkWıC1�1=p;p.@�/ C kukLp.�/

�
:

See Agmon et al. [2]. �

The above estimates can be extrapolated to “negative” spaces. For the sake of
simplicity, we set g D 0 in the Dirichlet case ı D 1. In order to formulate the
adequate results, let us introduce the Dirichlet form associated to the operator A,
namely

ŒAu; v� WD
Z

�

ai;j.x/@xju@xiv C c.x/uv d x:

In such a way, the operator A can be regarded as a continuous linear mapping

A W W1;p
0 .�/ ! W�1;p.�/ for the Dirichlet boundary condition

or

A W W1;p.�/ ! ŒW1;p0

.�/�� for the Neumann boundary condition;

where

1 < p < 1;
1

p
C 1

p0 D 1:

� WEAK Lp-REGULARITY:

Theorem 11.6 Assume that � � R
N is a bounded domain of class C2, and 1 <

p < 1. Let ai;j satisfy (11.7), and let c 2 L1.�/.

(i) If u 2 W1;p
0 .�/ satisfies

ŒAu; v� D< f ; v >
ŒW�1;pIW1;p0

0 �.�/
for all v 2 W1;p0

0 .�/

for a certain f 2 W�1;p.�/, then

kuk
W
1;p
0 .�/

� c
�k fkW�1;p.�/ C kukW�1;p.�/

�
:
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(ii) If u 2 W1;p.�/ satisfies

ŒAu; v� D< F; v >ŒŒW1;p0

��IW1;p0

�.�/ for all v 2 W1;p0

.�/

for a certain F 2 ŒW1;p0

��.�/, then

kukW1;p.�/ � c
�
kFkŒW1;p0

��.�/ C kukŒW1;p0

��.�/

�
:

In particular, if

ŒAu; v� D
Z

�

fv d x �
Z

@�

gv dSx for all v 2 W1;p0

.�/;

then

kukW1;p.�/ � c
�
k fkŒW1;p0

��.�/ C kgkW�1=p;p.@�/ C kukŒW1;p0

��.�/

�
:

See Lions [190], Schechter [242]. �

Remark The hypothesis concerning regularity of the boundary can be relaxed to
C0;1 in the case of the Dirichlet boundary condition, and to C1;1 for the Neumann
boundary condition.

Remark The norm containing u on the right-hand side of the estimates in Theo-
rems 11.4–11.6 is irrelevant and may be omitted provided that the solution is unique
in the given class.

Remark As we have observed, elliptic operators, in general, enjoy the degree of
regularity allowed by the data. In particular, the solutions of elliptic problems with
constant or (real) analytic coefficients are analytic on any open subset of their
domain of definition. For example, if

�u C b � rxu C cu D f in � � R
N ;

where b, c are constant, and � is a domain, then u is analytic in � provided that
f is analytic (see John [162, Chap. VII]). The result can be extended to elliptic
systems and even up to the boundary provided the latter is analytic (see Morrey and
Nirenberg [216]).
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11.3.2 Fredholm Alternative

Now, we focus on the problem of existence. Given the scope of applications
considered in this book, we consider only the Neumann problem, specifically
ı D 0 in system (11.5), (11.6). Similar results hold also for the Dirichlet boundary
conditions. A useful tool is the Fredholm alternative formulated in the following
theorem.

� FREDHOLM ALTERNATIVE:

Theorem 11.7 Let� � R
N be a bounded domain of class C2. In addition to (11.7),

assume that c 2 C.�/, 1 < p < 1, k D 1; 2, and ı D 0.
Then either

(i) Problem (11.5), (11.6) possesses a unique solution u 2 Wk;p.�/ for any f , g
belonging to the regularity class

f 2 ŒW1;p0

.�/��; g 2 W� 1
p ;p.@�/ if k D 1; (11.9)

f 2 Lp.�/; g 2 W1� 1
p ;p.@�/ if k D 2I (11.10)

or
(ii) the null space

kerŒA� D fu 2 Wk;p.�/ j u solve (11.5), (11.6) with f D g D 0g

is of finite dimension, and problem (11.5), (11.6) admits a solution for f , g
belonging to the class (11.9), (11.10) only if

< f Iw >ŒŒW1;p0

��IW1;p0

�.�/ � < gIw >ŒW�1=p;p ;W1=p;p0

�.@�/D 0

for all w 2 kerŒA�.

See Amann [7, Theorem 9.2], Geymonat and Grisvard [135]. �

In the concrete cases, the Fredholm alternative gives existence of a solution u
while the estimates of u in Wk;p.�/ in terms of f and g follow from Theorems 11.5
and 11.6 via a uniqueness contradiction argument.

For example, in the sequel, we shall deal with a simple Neumann problem for
generalized Laplacian

�divx

�
�rx

�
v

�

��
D f in �; rx

�
v

�

�
� nj@� D 0;
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where � is a sufficiently smooth and positive function on � and f 2 Lp.�/ with a
certain 1 < p < 1. In this case the Fredholm alternative guarantees existence of
u 2 W2;p.�/ provided f 2 Lp.�/,

R
�
fd x D 0. The solution is unique in the class

u 2 W2;p.�/,
R
�

u
�
d x D 0 and satisfies estimate

kukW2;p.�/ � ck fkLp.�/:

11.3.3 Spectrum of a Generalized Laplacian

We begin by introducing a densely defined (unbounded) linear operator

��;N D divx

�
�rx

�
v

�

��
; (11.11)

with the function � to be specified later, acting from Lp.�/ to Lp.�/ with domain
of definition

D.��;N / D fu 2 W2;p.�/ j rx

�
v

�

�
� nj@� D 0g: (11.12)

Further we denote �N D �1;N the classical Laplacian with the homogenous
Neumann boundary condition.

We shall apply the results of Sects. 11.3.1–11.3.2 to the spectral problem that
consists in finding couples .�; v/, � 2 C, v 2 D.��;N / that verify

�divx

�
�rx

�
v

�

��
D �v in �; rx

�
v

�

�
� nj@� D 0:

The results announced in the main theorem of this section are based on a
general theorem of functional analysis concerning the spectral properties of compact
operators.

Let T W X ! X be a linear operator on a Hilbert space X endowed with scalar
product < �I � >. We say that a complex number � belongs to the spectrum of T
(one writes � 2 �.T/) if ker.T � �I/ ¤ f0g or if .T � �I/�1 W X ! X is not
a bounded linear operator (here I denotes the identity operator). We say that � is
an eigenvalue of T or belongs to the discrete (pointwise) spectrum of T (and write
� 2 �p.T/ � �.T// if ker.T � �I/ ¤ f0g. In the latter case, the non zero vectors
belonging to ker.T � �I/ are called eigenvectors and the vector space ker.T � �I/

eigenspace.

� SPECTRUM OF A COMPACT OPERATOR:
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Theorem 11.8 Let H be an infinite dimensional Hilbert space and T W H ! H a
compact linear operator. Then

(i) 0 2 �.T/;
(ii) �.T/ n f0g D �p.T/ n f0g;
(iii)

8
<

:

�.T/ n f0g is finite, or else

�.T/ n f0g is a sequence tending to 0:

(iv) If � 2 �.T/ n f0g, then the dimension of the eigenspace ker.T � �I/ is finite.
(v) If T is a positive operator, meaning < TvI v >	 0, v 2 H, then �.T/ �

Œ0;C1/.
(vi) If T is a symmetric operator, meaning < TvIw >D< vITw >, v;w 2 H, then

�.T/ � R. If in addition H is separable, then H admits an orthonormal basis
of eigenvectors that consists of eigenvectors of T.

See Evans [96, Chap. D, Theorems 6,7]

The main theorem of this section reads:

� SPECTRUM OF THE GENERALIZED LAPLACIAN WITH NEUMANN BOUND-
ARY CONDITION:

Theorem 11.9 Let � � R
N be a bounded domain of class C2. Let

� 2 C1.�/; inf
x2� �.x/ D � > 0:

Then the spectrum of the operator ���;N , where ��;N is defined in (11.11)–
(11.12), coincides with the discrete spectrum and the following holds:

(i) The spectrum consists of a sequence f�kg1
kD0 of real eigenvalues, where �0 D

0, 0 < �k < �kC1, k D 1; 2; : : :, and limk!1 �k D 1;
(ii) 0 < dim.Ek/ < 1 and E0 D spanf�g, where Ek D ker.���;N � �kI/ is the

eigenspace corresponding to the eigenvalue �k;
(iii) L2.�/ D L1

kD0 Ek, where the direct sum is orthogonal with respect to the
scalar product

< uI v >1=�D
Z

�

uv
d x

�

(here the line over v means the complex conjugate of v).
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Proof We set

T W L2.�/ ! L2.�/; Tf D

8
<̂

:̂

���1
�;N f if f 2 PL2.�/;

0 if f 2 spanf1g;

��1
�;N W PL2.�/ D f f 2 L2.�/ j

Z

�

f d x D 0g 7! fu 2 L2.�/ j
Z

�

u

�
d x D 0g;

���1
�;N f D u , ���;N u D f :

In accordance with the regularity properties of elliptic operators collected in
Sects. 11.3.1–11.3.2 (see notably Theorems 11.5 and 11.7), the operator T is a
compact operator.

A double integration by parts yields

�
Z

�

divx

�
�rx

�
v

�

��
u

d x

�
D
Z

�

�rx

�
v

�

�
� rx

�
u

�

�
d x D

�
Z

�

divx

�
�rx

�
u

�

��
v

d x

�
:

Taking in the last formula u D Tf , f 2 L2.�/, v D Tg, g 2 L2.�/ and recalling that
functions Tf

�
, Tg
�

have zero mean, we deduce that

Z

�

Tf g
d x

�
D
Z

�

f Tg
d x

�
and

Z

�

Tf f
d x

�
	 0:

To resume, we have proved that T is a compact positive linear operator on L2.�/
that is symmetric with respect to the scalar product< � I � >1=�. Now, all statements
of Theorem 11.9 follow from Theorem 11.8.

�

11.3.4 Neumann Laplacian on Unbounded Domains

In this section, � � RN , N D 2; 3 is an unbounded exterior domain,

� D RN n B;

where B is a compact set (the case B D ;, � D RN included). We consider the
Neumann Laplacian �N ;� defined for sufficiently smooth functions decaying at
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infinity as

�N ;�Œv� D �v in �; rxv � nj@� D 0; v.x/ ! 0 as jxj ! 1:

The standard notation � will be used for the same operator if � D RN .
Conventionally, the operator .��N ;�/ is usually considered being self-adjoint and
non-negative.

In order to apply the abstract spectral theory introduced in Sect. 11.1, we define
.��N ;�/ on the Hilbert space L2.�/ in the following way:

For u 2 D1;2.�/, f 2 L2.�/, we say that

��N ;�Œv� D f only if
Z

�

rxv � rx' d x D
Z

�

f' d x for any ' 2 C1
c .�/:

The domain of ��N ;� in the Hilbert space L2.�/ is defined as

D.��N ;�/ D
n
v 2 L2.�/\ D1;2.�/

ˇ
ˇ
ˇ ��N ;�Œv� D f ; f 2 L2.�/

o
:

If @� is at least of class C2, then ��N ;� is a densely defined self-adjoint operator
on the Hilbert space L2.�/, with

D.��N ;�/ D
n
v 2 W2;2.�/

ˇ
ˇ
ˇ rxv � nj@� D 0 in the sense of traces

o
;

see e.g. Leis [183].

� RELLICH’S THEOREM:

Theorem 11.10 Let � � RN, N D 2; 3 be an exterior domain with C2 boundary.
Suppose that

��u.x/C q.x/u.x/ D �u.x/ 2 �; � > 0;

where q is Hölder continuous in � and

jxjq.x/ ! 0 as jxj ! 1:

Then if u 2 L2.fjxj > r0g/ for a certain r0 > 0, then

u � 0 in �:

See Eidus [91, Theorem 2.1] �
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As an immediate corollary of Rellich’s theorem we deduce that .��N ;�/ defined
on an exterior domain has no eigenvalues—its point spectrum is empty. More
specifically, we report the following result.

� SPECTRUM OF NEUMANN LAPLACIAN ON EXTERIOR DOMAIN:

Theorem 11.11 Let � � R3 be an exterior domain with C2 boundary.
Then ��N ;� is a non-negative self-adjoint operator with absolutely continuous

spectrum Œ0;1/—all spectral projection are absolutely continuous with respect
to the Lebesgue measure. In addition, ��N ;� satisfies the Limiting absorption
principle (LAP):

8
ˆ̂
ˆ̂̂
<

ˆ̂
ˆ̂
:̂

Operators

V ı .��N ;� � �˙ i�/�1 ı V W L2.�/ ! L2.�/; V Œv� D .1C jxj2/�s=2; s > 1

are bounded uniformly for � 2 Œ˛; ˇ�; 0 < ˛ < ˇ; � > 0;

9
>>>>>=

>>>>>;

See Leis [183] �

We recall “negative” Lp-estimates for the Neumann Laplacian on exterior
domains.

� NEGATIVE Lp-ESTIMATES FOR THE NEUMANN LAPLACIAN ON EXTERIOR

DOMAIN:

Theorem 11.12 Let � � RN be an exterior domain with C2 boundary. Then for
any w 2 C1

c .�/, the problem

Z

�

rxu � rx' d x D
Z

�

w � rx' d x for all ' 2 C1
c .�/ (11.13)

admits a unique solution u 2 D.��N ;�/. Moreover, u 2 D1;p.�/ and

krxukLp.�IRN/ � c. p/kwkLp.�IRN / for any 1 < p < 1:

See e.g. Galdi [131] �

Finally, we consider the operator U D exp
�˙it

p��N ;�

�
Œh� that appears in the

variation-of-constants formula associated to the wave equation

@2t;tU ��U D 0; rxU � nj@� D 0:
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� STRICHARTZ ESTIMATES FOR THE FLAT LAPLACIAN ON RN :

Theorem 11.13 Let � be the L2.RN/ self-adjoint realization of the Laplacian
defined on the whole space RN. Suppose that

N 	 2; 2 � p < 1; 2 � q < 1; 
 D N

2
� N

q
� 1

p
;
2

p
� N � 1

2

�
1 � 2

q

�
:

Then
Z 1

�1

�
�
�exp

�
˙it

p��
�
Œh�
�
�
�
p

Lq.RN/
dt � c.N; p; q; 
/khkp

H
;2.RN /
:

See Keel and Tao [168] �

Remark Here H
;2 denotes the homogeneous Sobolev space of functions having
derivatives of order 
 square integrable. The norm in H
;2.RN/ can be defined via
Fourier transform

kvk2H
;2.RN/
D
Z

RN
j�j2
 ˇˇFx!� Œv�.�/

ˇ
ˇ2 d�:

11.4 Normal Traces

Let� be a bounded domain in R
N . For 1 � q; p � 1, we introduce a Banach space

Eq;p.�/ D fu 2 Lq.�IRN/j divu 2 Lp.�/g: (11.14)

endowed with norm

kukEq.�/ WD kukEq.�IR3/ C kdivukLp.�/: (11.15)

We also define

Eq;p
0 .�/ D closureEq;p.�/

n
C1
c .�IRN/

o

and

Ep.�/ D Ep;p.�/; Ep
0.�/ D Ep;p

0 .�/:
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Our goal is to introduce the concept of normal traces and to derive a variant of
Green’s formula for the functions belonging to Eq;p.�/.

� NORMAL TRACES:

Theorem 11.14 Let � � R
N be a bounded Lipschitz domain, and let 1 < p < 1.

Then there exists a unique linear operator 
n with the following properties:

(i)


n W Ep.�/ 7! ŒW1� 1
p0
;p0

.@�/�� WD W� 1
p ;p.@�/; (11.16)

and


n.u/ D 
0.u/ � n a.a. on @� whenever u 2 C1.�IRN/: (11.17)

(ii) The Stokes formula

Z

�

vdivu d x C
Z

�

rv � u d x D< 
n.u/ I 
0.v/ >; (11.18)

holds for any u 2 Ep.�/ and v 2 W1;p0

.�/, where< � I � > denotes the duality

pairing between W1� 1
p0
;p0

.�/ and W� 1
p ;p.�/.

(iii)

kerŒ
n� D Ep
0.�/: (11.19)

(iv) If u 2 W1;p.�IRN/, then 
n.u/ in Lp.@�/, and 
n.u/ D 
0.u/ � n a.a. on @�.

Proof of Theorem 11.14 As a matter of fact, Theorem 11.14 is a standard result
whose proof can be found in Temam [256, Chap. 1]. We give a concise proof based
on the following three lemmas that may be of independent interest.

Step 1 We start with a technical result, the proof of which can be found in Galdi
[131, Lemma 3.2]. We recall that a domain Q � R

N is said to be star-shaped if
there exists a 2 Q such that Q D fx 2 R

N j jx� aj < h. x�a
jx�aj /g, where h is a positive

continuous function on the unit sphere; it is said star-shaped with respect to a ball
B � Q if it is star-shaped with respect to any of its points.

Lemma 11.1 Let � be a bounded Lipschitz domain.
Then there exists a finite family of open sets fOigi2I and a family of balls fB.i/gi2I

such that each �i WD � \ Oi is star-shaped with respect to the ball B.i/, and

� � [i2IOi:
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Step 2 The main ingredient of the proof of Theorem 11.14 is the density of
smooth functions in the spaces Eq;p.�/.

Lemma 11.2 Let � be a bounded Lipschitz domain and 1 � p � q < 1. Then
C1.�IRN/ D C1

c .�/ is dense in Eq;p.�/.

Proof of Lemma 11.2 Hypothesis q 	 p is of technical character and can be relaxed
if, for instance, � is of class C1;1. It ensures that u' 2 Eq;p.�/ as soon as ' 2
C1
c .�/. Moreover, according to Lemma 11.1, any bounded Lipschitz domain can

be decomposed as a finite union of star-shaped domains with respect to a ball. Using
the corresponding subordinate partition of unity we may assume, without loss of
generality, that� is a starshaped domain with respect to a ball centered at the origin
of the Cartesian coordinate system.

For u 2 Eq;p.�/ we denote u	 .x/ D u.	x/, 	 > 0, so that if 	 2 .0; 1/, u	 2
Eq;p.	�1�/ and div.u	 / D 	.divu/	 in D0.	�1�/, where 	�1� D fx 2 R

N j 	x 2
�g. We therefore have

kdiv.u � u	 /kLp.�/ � .1 � 	/kdivukLp.�/ C kdivu � .divu/	kLp.�/: (11.20)

Since the translations R
N 3 h ! u.� C h/ 2 Ls.RN/ are continuous for any

fixed u 2 Ls.RN/, 1 � s < 1, the right hand side of formula (11.20) as well as
ku � u	kLq.�/ tend to zero as 	 ! 1�. Thus it is enough to prove that u	 can be
approximated in Eq;p.�/ by functions belonging to C1.�IRN/.

Since� � 	�1�, the mollified functions ��
u	 belong to C1.�IRN/\Eq;p.�/

provided 0 < " < dist.�; @.	�1�// and tend to u	 in Eq;p.�/ as " ! 0C (see
Theorem 11.3). This observation completes the proof of Lemma 11.2.

�

Step 3 We are now in a position to define the operator of normal traces. Let� be

a bounded Lipschitz domain, 1 < p < 1, v 2 W1� 1
p0
;p0

.@�/, and u 2 C1.�IRN/.
According to the trace theorem (see Theorem 6), we have

Z

@�

vu � n d� D
Z

�

`.v/divu d x C
Z

�

r`.v/ � u d x;

and

ˇ
ˇ
ˇ
Z

@�

vu � n d�
ˇ
ˇ
ˇ � kukEp.�/ k`.v/kW1;p0

.�/ � c. p; �/kukEp.�/ kvkW1�1=p0 ;p0

.@�/;
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where the first identity is independent of the choice of the lifting operator `.
Consequently, the map


n W u ! 
0.u/ � n (11.21)

is a linear densely defined (on C1.�/) and continuous operator from Ep.�/ to

ŒW1�1=p0 ;p0

.@�/�� D W� 1
p ;p.@�/. Its value at u is termed the normal trace of u on

@� and denoted 
n.u/ or .u � n/j@�.

Step 4 In order to complete the proof of Theorem 11.14, it remains to show that
kerŒ
n� D Ep

0.�/.

Lemma 11.3 Let � be a bounded Lipschitz domain, 1 < p < 1, and let 
n W
Ep.�/ ! W� 1

p ;p.@�/ be the operator defined as a continuous extension of the
trace operator introduced in (11.21). Then kerŒ
n� D Ep

0.�/.

Proof of Lemma 11.3 Clearly, C1
c .�/ � kerŒ
n�; whence, by continuity of 
n,

Ep
0.�/ � kerŒ
n�.

Conversely, we set

Qu.x/ D
8
<

:

u.x/ if x 2 �;

0 otherwise:

Assumption u 2 kerŒ
n� yields
R
� vdivu d xCR� rv �u d x D 0 for all v 2 C1

c .R
N/,

meaning that, in the sense the distributions,

div Qu.x/ D
8
<

:

divu.x/ if x 2 �;

0 otherwise

9
=

;
2 Lp.RN/;

and, finally, Qu 2 Ep.RN/.
In agreement with Lemma 11.2, we suppose, without loss of generality, that

� is starshaped with respect to the origin of the coordinate system. Similarly
to Lemma 11.2, we deduce that suppŒ. Qu1=	 /� belongs to the set 	� � �, and,
moreover, kQu � Qu1=	kEp.�/ ! 0 as 	 ! 1�.

Consequently, it is enough to approximate Qu1=	 by a suitable function belonging
to the set C1

c .�IRN/. However, according Theorem 11.3, functions �"
u1=	 belong
toC1

c .�/\Ep.�/ provided 0 < " < 1
2
dist.	�; @�/, and �"
Qu1=	 ! Qu1=	 in Ep.�/.

This completes the proof of Lemma 11.3 as well as that of Theorem 11.14.
�
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11.5 Singular and Weakly Singular Operators

The weakly singular integral transforms are defined through formula

ŒT. f /�.x/ D
Z

RN
K.x; x � y/f .y/ dy; (11.22)

where

K.x; z/ D �.x; z/

jzj� ; 0 < � < N; � 2 L1.RN � R
N/: (11.23)

A function K satisfying (11.23) is called weakly singular kernel.
The singular integral transforms are defined as

ŒT. f /�.x/ D lim
"!0C

� Z

jx�yj�"
K.x; x � y/f .y/ dy

�
WD v:p:

Z

RN
K.x; x � y/f .y/ dy;

(11.24)

where

K.x; z/ D �.x;z=jzj/
jzjN ; � 2 L1.RN � S/;

S D fz 2 R
N j jzj D 1g; R

jzjD1 �.x; z/ dSz D 0:

(11.25)

The kernels satisfying (11.25) are called singular kernels of Calderón-Zygmund
type.

The basic result concerning the weakly singular kernels is the Sobolev theorem.

� WEAKLY SINGULAR INTEGRALS:

Theorem 11.15 The operator T defined in (11.22) with K satisfying (11.23) is a
bounded linear operator on Lq.RN/ with values in Lr.RN/, where 1 < q < 1,
1
r D �

N C 1
q � 1. In particular,

kT. f /kLr .RN / � ck fkLq.RN /;

where the constant c can be expressed in the form c0.q;N/k�kL1.RN�RN /.

See Stein [251, Chap. V, Theorem 1] �

The fundamental result concerning the singular kernels is the Calderón-Zygmund
theorem.

� SINGULAR INTEGRALS:
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Theorem 11.16 The operator T defined in (11.24) with K satisfying (11.25) is a
bounded linear operator on Lq.RN/ for any 1 < q < 1. In particular,

kT. f /kLq.RN / � ck fkLq.RN /;

where the constant c takes the form c D c0.q;N/k�kL1.RN�S/.

See Calderón-Zygmund [46, Theorem 2], [47, Sect. 5, Theorem 2]. �

11.6 The Inverse of the div-Operator (Bogovskii Formula)

We consider the problem

divxu D f in �; uj@� D 0 (11.26)

for a given function f , where � � R
N is a bounded domain. Clearly, prob-

lem (11.26) admits many solutions that may be constructed in different manners.
Here, we adopt the integral formula proposed by Bogovskii [28] and elaborated
by Galdi [131]. In such a way, we resolve (11.26) for any smooth f of zero
integral mean. In addition, we deduce uniform estimates that allow us to extend
solvability of (11.26) to a significantly larger class of right-hand sides f , similarly
to Geissert et al. [134]. The main advantage of our construction is that it
requires only Lipschitz regularity of the underlying spatial domain. Extensions to
other geometries including unbounded domains are possible. We recommend the
interested reader to consult the monograph by Galdi [131] or [224, Chap. III] for
both positive and negative results in this direction.

Our result are summarized in the following theorem.

� THE INVERSE OF THE DIV-OPERATOR:

Theorem 11.17 Let � � R
N be a bounded Lipschitz domain.

(i) Then there exists a linear mapping B,

B W f f j f 2 C1
c .�/;

Z

�

f d x D 0g ! C1
c .�IRN/;

such that divx.BŒ f �/ D f , meaning, u D BŒ f � solves (11.26).
(ii) We have

kBŒ f �kWkC1;p.�IRN / � ck fkWk;p.�/ for any 1 < p < 1; k D 0; 1; : : : ;

(11.27)
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in particular, B can be extended in a unique way as a bounded linear operator

B W f f j f 2 Lp.�/;

Z

�

f d x D 0g ! W1;p
0 .�IRN/:

(iii) If f 2 Lp.�/,
R
�
f d x D 0, and, in addition, f D divxg, where g 2 Eq;p

0 .�/,
1 < q < 1, then

kBŒ f �kLq.�IR3/ � ckgkLq.�IR3/: (11.28)

(iv) B can be uniquely extended as a bounded linear operator

B W Œ PW1;p0

.�/�� D f f 2 ŒW1;p0

.�/�� j < f I 1 >D 0g ! Lp.�IRN/

in such a way that

�
Z

�

BŒ f � � rv d x D< f I v >fŒW1;p0

��IW1;p0 g.�/ for all v 2 W1;p0

.�/;

(11.29)

kBŒ f �kLp.�IRN/ � ck fkŒW1;p0

.�/�� : (11.30)

Here, a function f 2 C1
c .�/ is identified with a linear form in ŒW1;p0

.�/�� via
the standard Riesz formula

< f I v >ŒW1;p0

.�/��IW1;p0

.�/D
Z

�

fv d x for all v 2 W1;p0

.�/: (11.31)

Remark Since B is linear, it is easy to check that

@tBŒ f �.t; x/ D BŒ@tf �.t; x/ for a.a. .t; x/ 2 .0;T/ �� (11.32)

provided

@tf ; f 2 Lp..0;T/ ��/;
Z

�

f .t; �/ d x D 0 for a.a. t 2 .0;T/:

The proof of Theorem 11.17 is given by means of several steps which may be of
independent interest.

Step 1 The first ingredient of the proof is a representation formula for function-
als belonging to Œ PW1;p0

.�/��.
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Lemma 11.4 Let � be a domain in R
N, and let 1 < p � 1.

Then any linear form f 2 Œ PW1;p0

.�/�� admits a representation

< f I v >Œ PW1;p0

.�/��; PW1;p0

.�/D
NX

iD1

Z

�

wi@xiv d x;

where

w D Œw1; : : : ;wN � 2 Lp.�IRN/ and k fkŒ PW1;p0

.�/�� D kwkLp.�IRN/:

Proof of Lemma 11.4 The operator I W PW1;p0

.�/ ! Lp
0

.�IRN/, I.u/ D ru is an
isometric isomorphism mapping PW1;p0

.�/ onto a (closed) subspace I. PW1;p0

.�// of
Lp

0

.�IRN/. The functional � defined as

< �I ru >WD< f I u >Œ PW1;p0

.�/��; PW1;p0

.�/

is a linear functional on I. PW1;p0

.�// satisfying condition

sup
n
< �I v > j v 2 I. PW1;p0

.�//; kvkLp0

.�IRN/ � 1
o

D k fkŒ PW1;p0

.�/�� :

Therefore by the Hahn-Banach theorem (see e.g. Brezis [41, Theorem I.1]), there
exists a linear functionalˆ defined on Lp

0

.�IRN/ satisfying

< ˆI ru >D< �I ru >; u 2 PW1;p0

.�/; kˆkŒLp0

.�IRN/�� D k fkŒ PW1;p0

.�/�� :

According to the Riesz representation theorem (cf. Remark following Theorem 2)
there exists a unique w 2 Lp.�IRN/ such that

< ˆI v >D
Z

�

w � v; v 2 Lp
0

.�IRN/;

kˆkŒLp0

.�IRN/�� D kwkLp.�IRN/:

This yields the statement of Lemma 11.4.
�

Step 2 We use Lemma 11.4 to show that C1
c .�/ is dense in Œ PW1;p0

.�/��.
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Lemma 11.5 Let � � RN be an open set, 1 < p0 � 1.
Then the set fC1

c .�/ j R
�
v d x D 0g, identified as a subset of Œ PW1;p0

.�/��
via (11.31), is dense in Œ PW1;p0

.�/��.

Proof of Lemma 11.5 Let w 2 Lp.�IRN/ be a representant of f 2 Œ PW1;p0

.�/��
constructed in Lemma 11.4 and let wn 2 C1

c .�IRN/ be a sequence converging
strongly to w in Lp.�IRN/. Then a family of functionals fn D divwn 2 fv 2
C1
c .�/ j R

�
v d x D 0g, defined as < fnI v >D R

�
wn � rv d x D � R

�
divwnv d x,

converges to f in Œ PW1;p0

.�/��. This completes the proof.
�

Step 3 Having established the preliminary material, we focus on particular
solutions to the problem divxu D f with a smooth right hand side f . These solutions
have been constructed by Bogovskii [28], and their basic properties are collected in
the following lemma.

Lemma 11.6 Let � be a bounded Lipschitz domain.
Then there exists a linear operator

B W f f 2 C1
c .�/j

Z

�

f d x D 0g 7! C1
c .�IRN/ (11.33)

such that:

(i)

divxB. f / D f ; (11.34)

and

krxB. f /kWk;p.�IRN�N/ � ck fkWk;p.�/; 1 < p < 1; k D 0; 1; : : : ;

(11.35)

where c is a positive constant depending on k, p, diam.�/ and the Lipschitz
constant associated to the local charts covering @�.

(ii) If f D divxg, where g 2 C1
c .�IRN/, then

kB. f /kLq.�IRN�N/ � ckgkLq.�IR3/; 1 < q < 1; (11.36)

where c is a positive constant depending on q, diam.�/, and the Lipschitz
constant associated to @�.

(iii) If f ; @tf 2 fv 2 C1
c .I � �/ j R

�
v.t; x/ d x D 0; t 2 Ig, where I is an (open)

interval, then

@B. f /
@t

.t; x/ D B
�@f
@t

�
.t; x/ for all t 2 I; x 2 �: (11.37)
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Remark In the case of a domain star-shaped with respect to a ball of radius r and for
k D 1, the estimate of the constants in (11.35), (11.36) are given by formula (11.41)
below. In the case of a Lipschitz domain, it may be evaluate by using (11.41)
combined with Lemmas 11.1, and 11.7 below.

Step 4 Before starting the proof of Lemma 11.6, we observe that it is enough to
consider star-shaped domains.

Lemma 11.7 Let � � R
N be a bounded Lipschitz domain, and let

f 2 C1
c .�/;

Z

�

f d x D 0:

Then there exists a family of functions

fi 2 C1
c .�i/;

Z

�i

fi d x D 0; �i D � \ Oi for i 2 I;

where fOgi2I is the covering of � constructed in Lemma 11.1, and �i are star-
shaped with respect to a ball. Moreover,

k fikWk;p.�i/ � ck fkWk;p.�/; 1 � p � 1; k D 0; 1; : : : ;

where c is a positive constant dependent solely on p, k and jOij, i 2 I.

Proof of Lemma 11.7 Let f'igi2I[J be a partition of unity subordinate to the cover-
ing fOigi2I of �. We set

�1 D � \ O1; �
1 D [i2Inf1g�i; where �i D Oi \�:

Next, we introduce

f1 D f'1 � �1

Z

�1

f'1 d x; g D f� � �1

Z

�1
f� d x;

where

�1 2 C1
c .�1 \�1/;

Z

�

�1 d x D 1; � D
X

i2Inf1g
'i:

With this choice,

f1 2 C1
c .�1/;

Z

�1

f1 d x D 0; g 2 C1
c .�

1/;

Z

�1
g d x D 0;
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and both f1 and g satisfy Wk;p-estimates stated in Lemma 11.7. Applying the above
procedure to g in place of f and to �1 in place of �, we can proceed by induction
and complete the proof after a finite number of steps.

�

Step 5: Proof of Lemma 11.6
In view of Lemma 11.7, it is enough to assume that � is a star-shaped domain

with respect to a ball B.0I r/, where the latter can be taken of radius r centered at
the origin of the coordinate system.

In such a case, a possible candidate satisfying all properties stated in Lemma 11.6
is the so-called Bogovskii’s solution given by the explicit formula:

BŒ f �.x/ D
Z

�

f .y/
h x � y

jx � yjN
Z 1

jx�yj
�r

�
y C s

x � y

jx � yj
�
sN�1 ds

i
dy; (11.38)

or, equivalently, after the change of variables z D x � y, r D s=jzj,

BŒ f �.x/ D
Z

RN

h
f .x � z/z

Z 1

1

�r.x � z C rz/rN�1 dr
i

dz; (11.39)

where �r is a mollifying kernel specified in (11.3)–(11.4). A detailed inspection of
these formulas yields all statements of Lemma 11.6.

Thus, for example, we deduce from (11.39) that BŒ f � 2 C1.�/, and that
suppŒBŒ f �� � M where

M D fz 2 � j z D �z1 C .1 � �/z2; z1 2 supp. f /; z2 2 B.rI 0/; � 2 Œ0; 1�g:

Since M is closed and contained in �, (11.33) follows.
Now we explain, how to get (11.34) and estimate (11.35) with k D 1.

Differentiating (11.39) we obtain

�
@iBj. f /

�
.x/ D

Z

RN

@f

@xi
.x � z/zj

h Z 1

1

�r.x � z C rz/rN�1 dr
i

dz

C
Z

RN
f .x � z/zj

h Z 1

1

@�r

@xi

�
x � z C rz

�
r N dr

i
dz:

Next, we split the set RN in each integral into a ball B.0I "/ and its complement
realizing that the integrals over B.0I "/ tend to zero as " ! 0C. The first of the
remaining integrals over RN n B.0I "/ is handled by means of integration by parts.
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This direct but rather cumbersome calculation leads to

�
@iBjŒ f �

�
.x/ D lim

"!0C

n Z

jzj�"
f .x � z/�

�
h
ıi;j

Z 1

1

�r.x � z C rz/rN�1 dr C zj

Z 1

1

@�r

@xi

�
x � z C rz

�
r N dr

i
dz

C
Z

jzjD"
f .x � z/

h
zj
zi
jzj
Z 1

1

�r.x � z C rz/rN�1 dr
i

d�z
o
;

or, equivalently,

�
@iBjŒ f �

�
.x/ D lim

"!0C

n Z

jy�xj�"
f .y/�

�
h ıi;j

jx � yjN
Z 1

0

�r

�
x C r

x � y

jx � yj
�
.jx � yj C r/N�1 drC

xj � yj
jx � yjNC1

Z 1

0

@�r

@xi

�
x C r

x � y

jx � yj
�
.jx � yj C r/N dr

i
dy
o

Cf .x/ lim
"!0C

n Z

jzjD"

h
zj
zi
jzj
Z 1

1

�r.x � z C rz/rN�1 dr
i

d�z
o
;

where we have used the fact that

lim
"!0C

n Z

jzjD"

h�
f .x � z/ � f .x/

�
zj
zi
jzj
Z 1

1

�r.x � z C rz/rN�1 dr
i

d�z
o

D 0:

Developing the expressions .jx� yj C r/N�1, .jx� yj C r/N in the volume integral
of the above identity by using the binomial formula, we obtain

�
@iBjŒ f �

�
.x/ D v:p:

� R
�
Ki;j.x; x � y/f .y/ dy

�

C R
�
Gi;j.x; x � y/f .y/ dy C f .x/Hi;j.x/:

(11.40)

The terms on the right hand side have the following properties:

(i) The first kernel reads

Ki;j.x; z/ D �i;j.x; z=jzj/
jzjN
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with

�i;j

�
x;

z

jzj
�

D ıi;j

Z 1

0

�r

�
x C r

z

jzj
�
rN�1 dr C zj

jzj
Z 1

0

@�r

@xi

�
x C r

z

jzj
�
r N dr:

Thus a close inspection shows that

Z

jzjD1
�.x; z/ d�z D 0; x 2 R

N ;

j�.x; z/j � c.N/
.diam.�//N

rN

�
1C diam.�/

r

�
; x 2 R

N ; jzj D 1:

We infer that Ki;j are singular kernels of Calderón-Zygmund type obeying
conditions (11.25) that were investigated in Theorem 11.16.

(ii) The second kernel reads

Gi;j.x; z/ D �i;j.x; z/

jzjN�1 ;

where

j�i;j.x; z/j � c.N/
.diam.�//N

rN

�
1C diam.�/

r

�
; .x; z/ 2 R

N � R
N :

Thus Gi;j are weakly singular kernels obeying conditions (11.23) discussed in
Theorem 11.15.

(iii) Finally,

Hi;j.x/ D
Z

RN

zizj
jzj2 �r.x C z/ dz;

where

jHi;j.x/j � c.N/
.diam.�//N

rN
; x 2 R

N

and

NX

iD1
Hi;i.x/ D 1:

Using these facts together with Theorems 11.15, 11.16 we easily verify esti-
mate (11.35) with k D 1. We are even able to give an explicit formula for the
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constant appearing in the estimate, namely

c D c0. p;N/
�diam.�/

r

�N�
1C diam.�/

r

�
: (11.41)

Since

d

dr

h
�r

�
x C r

x � y

jx � yj
�
.jx � yj C r/N

i
D

NX

kD1

xk � yk
jx � yj

@�r

@xk

�
x C r

x � y

jx � yj
�
.jx � yj C r/N

CN�r
�
x C r

x � y

jx � yj
�
.jx � yj C r/N�1;

we have

NX

iD1

� Z

jx�yj�"
f .y/.Ki;i.x; x � y/C Gi;i.x; x � y/

�
dy D �r.x/

Z

�

f .y/ dy D 0:

Moreover, evidently,

NX

iD1
Hi;i.x/ D

Z

�

�r.y/ dy D 1I

whence (11.34) follows directly from (11.40).
In a similar way, the higher order derivatives of BŒ f � can be calculated by means

of formula (11.39). Moreover, they can be shown to obey a representation formula
of type (11.40), where, however, higher derivatives of f do appear; this leads to
estimate (11.35) with an arbitrary positive integer k.

Last but not least, formula (11.39) written in terms of divxg yields, after
integration by parts, a representation of BŒdivxg� of type (11.40), with f replaced
by g. Again, the same reasoning as above yields naturally estimate (11.36).

Finally, property (11.37) is a consequence of the standard result concerning
integrals dependent on a parameter.

The proof of Lemma 11.6 is thus complete.
�

Step 6: End of the Proof of Theorem 11.17 . For

< f I v >Œ PW1;p0

.�/��; PW1;p0

.�/D
Z

�

w � rv d x;with w 2 Lp.�IRN/;
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we can take

< f"I v >Œ PW1;p0

.�/��; PW1;p0

.�/D
Z

�

w" � rv d x;

where w" 2 C1
c .�IRN/ have been constructed in Lemma 11.5.

Furthermore, let h" 2 Lp.�IRN/,

R
�
f"v d x D � R

�
h" � rv d x for all v 2 C1.�/;

k f"kŒ PW1;p0

.�/��; PW1;p0

.�/ D kh"kLp.�IRN /;

be a sequence of representants of f" introduced in Lemma 11.4. The last formula
yields

f" D divh";
Z

�

�
vdivh" C h" � rv

�
d x D 0;

meaning, in particular,


n.h"/ D 0 and, equivalently, h" 2 Ep
0.�/; 1 < p < 1

(see (11.19) in Theorem 11.14).
In view of the basic properties of the spaces Ep

0.�/, we can replace h" by g" 2
C1
c .�IRN/ so that

kh" � g"kEp.�/ ! 0:

In particular, the sequence Qf", < Qf"I v >Œ PW1;p0

.�/��; PW1;p0

.�/D
R
�
g" � rv d x; converges

to f , < f I v >Œ PW1;p0

.�/��; PW1;p0

.�/D
R
�w � rv d x, strongly in Œ PW1;p0

.�/��.
Due to estimate (11.36), the operator B is densely defined and continuous from

Œ PW1;p0

.�/�� to Lp.�IRN/, therefore it can be extended by continuity to the whole
space Œ PW1;p0

.�/��.
If < f I v >Œ PW1;p0

.�/��; PW1;p0

.�/D
R
� wv d x, with w D Wk;p

0 .�/\ PLp.�/, we take f"
such that < f"I v >Œ PW1;p0

.�/��; PW1;p0

.�/D
R
�
w"v d x, w" D �" 
 w � �

R
�
.�" 
 w/ d x,

where � 2 C1
c .�/,

R
�
� d x D 0 so that

C1
c .�/ 3 f" D w" ! f D w in Wk;p.�/:

If < f I v >Œ PW1;p0

.�/��; PW1;p0

.�/D
R
�
w � rv d x with w 2 Eq;p

0 .�/, we take
a sequence f" such that < f"I v >Œ PW1;p0

.�/��; PW1;p0

.�/D
R
�
w" � rv d x, with w 2

Lp.�IRN/ D R
� divw"v d x, where w" 2 C1

c .�IRN/, w" ! w in Eq;p
0 .�/.

By virtue of estimates (11.35), (11.36), the operator B is in both cases a
densely defined bounded linear operator on Wk;p

0 .�/ (,! Œ PW1;p0

.�/��) ranging in
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WkC1;p
0 .�/, and on Eq;p

0 .�/ (,! Œ PW1;p0

.�/��) with values in Lq.�/ \ W1;p
0 .�/; in

particular, it can be continuously extended to Wk;p
0 .�/, and Eq;p

0 .�/, respectively.
This completes the proof of Theorem 11.17.

�

11.7 Helmholtz Decomposition

Let � be a domain in R
N . Set

Lp
� .�IRN/ D fv 2 Lp.�IRN/ j divxv D 0; v � nj@� D 0g

and

Lp
g;�.�IRN/ D fv 2 Lp.�IRN/ j v D �rx‰; ‰ 2 W1;p

loc .�/g;

where � 2 C.�/. The definition and the basic properties of the Helmholtz
decomposition are collected in the following theorem.

� HELMHOLTZ DECOMPOSITION:

Theorem 11.18 Let � be a bounded domain of class C1;1, and let

� 2 C1.�/; inf
x2��.x/ D � > 0:

Then the Lebesgue space Lp.�IRN/ admits a decomposition

Lp.�IRN/ D Lp
� .�IRN/˚ Lp

g;�.�IRN/; 1 < p < 1;

more precisely,

v D H�Œv�C H?
� Œv� for any v 2 Lp.�IRN/;

with H?
� Œv� D �rx‰, where ‰ 2 W1;p.�/ is the unique (weak) solution of the

Neumann problem

Z

�

�rx‰ � rx' d x D
Z

�

v � rx' d x for all ' 2 C1.�/;
Z

�

‰ d x D 0:
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In the particular case p D 2, the decomposition is orthogonal with respect to the
weighted scalar product

< vIw >1=�D
Z

�

v � wd x

�
:

Proof We start the proof with a lemma which is of independent interest.

Lemma 11.8 Let � be a bounded domain of class C0;1 and 1 < p < 1. Then

Lp
� .�IRN/ D closureLp.�IRN /C

1
c;� .�IRN/;

where

C1
c;� .�IRN/ D fv 2 C1

c .�IRN/ j divxv D 0g:

Proof of Lemma 11.8 Let u 2 Lp
� .�IR3/. Due to Lemma 11.3, there exists a

sequence w" 2 C1
c .�;R

N/, such that w" ! u in Lp.�IR3/ and divxw" ! 0

in Lp.�/ as " ! 0C. Next we take the sequence u" D w" � BŒdivxw"�, where
B is the Bogovskii operator introduced in Sect. 11.6. According to Theorem 11.17,
the functions u" belong to C1

c;� .�IRN/ and the sequence fu"g">0 converges to u in
Lp.�IRN/. This completes the proof of Lemma 11.8.

�

Existence and uniqueness of ‰ follow from Theorems 11.6, 11.7. Evidently,
according to the definition, H�Œv� D v � �rx‰ 2 Lp

� .�IRN/. Finally, we may
use density of C1

c;� .�IRN/ in Lp
� .�IRN/ and integration by parts to show that the

spaces L2� .�IRN/ and L2g;�.�IRN/ are orthogonal with respect to the scalar product
< �I � >1=�. This completes the proof of Theorem 11.18.

�

Remark In accordance with the regularity properties of the elliptic operators
reviewed in Sect. 11.3.1, both H� and H?

� are continuous linear operators on
Lp.�IRN/ and W1;p.�IRN/ for any 1 < p < 1 provided� is of class C1;1.

If � D 1, we recover the classical Helmholtz decomposition denoted as H,
H? (see, for instance, Galdi [131, Chap. 3]). The result can be extended to a
considerably larger class of domains, in particular, it holds for any domain� � R

3

if p D 2. For more details about this issue in the case of arbitrary 1 < p < 1 see
Farwig et al. [99] or Simader, Sohr [248], and references quoted therein.

If � D R
N , the operator H? can be defined by means of the Fourier multiplier

H?Œv�.x/ D F�1
�!x

�
� ˝ �

j�j2 Fx!� Œv�
�
:
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11.8 Function Spaces of Hydrodynamics

Let � be a domain in R
N . We introduce the following closed subspaces of the

Sobolev space W1;p.�IRN/, 1 � p � 1:

W1;p
0;� .�/ D fv 2 W1;p

0 .�IRN/ j divx v D 0g;

W1;p
n .�/ D fv 2 W1;p.�IRN/ j v � nj@� D 0g;

W1;p
n;� .�IRN/ D fv 2 W1;p

n .�/ j divxv D 0g:

We also consider the vector spaces

C1
c;� .�IRN/ D fv 2 C1

c .�IRN/ j divv D 0g;

Ck;�
n .�IRN/ D fv 2 Ck;�

c .�IRN/ j v � nj@� D 0g;

Ck;�
n;� .�;R

N/ D fv 2 Ck;�
n .�IRN/ j divxv D 0g;

C1
n .�IRN/ D \1

kD1Ck;�
n .�IRN/; C1

n;� .�IRN/ D \1
kD1Ck;�

n;� .�IRN/:

Under certain regularity assumptions on the boundary @�, these spaces are dense
in the afore-mentioned Sobolev spaces, as stated in the following theorem.

� DENSITY OF SMOOTH FUNCTIONS:

Theorem 11.19 Suppose that� is a bounded domain in R
N, and 1 < p < 1.

Then we have:

(i) If the domain� is of class C0;1, then the vector space C1
c;� .�IRN/ is dense in

W1;p
0;� .�IRN/.

(ii) Suppose that� is of class Ck;� , � 2 .0; 1/, k D 2; 3; : : :, then the vector space
Ck;�
n;� .�IRN/ is dense in W1;p

n;� .�IRN/.
(iii) Finally, if � is of class Ck;� , � 2 .0; 1/, k D 2; 3; : : :, then the vector space

Ck;�
n .�IRN/ is dense in W1;p

n .�IRN/.

Proof Step 1 In order to show statement (i), we reproduce the proof of Galdi
[131, Sect. II.4.1]. Let v 2 W1;p

0;� .�/ ,! W1;p
0 .�IRN/. There exists a sequence

of smooth functions w" 2 C1
c .�IRN/ such that w" ! v in W1;p.�IRN/, and,

obviously, divw" ! 0 in Lp.�/. Let u" D BŒdivxw"�, where B � divx�1 is
the operator constructed in Theorem 11.17. In accordance with Theorem 11.17,
u" 2 C1

c .�IRN/, divu" D divw", and ku"kW1;p.�IRN / ! 0.
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In view of these observations, we have

v" D w" � u" 2 C1
c .�IRN/; divxv" D 0;

v" ! v in W1;p.�IRN/

yielding part (i) of Theorem 11.19.
Step 2 Let v 2 W1;p

n;� .�IRN/ ,! W1;p.�IRN/. Take w" 2 C1
c .�IRN/ such that

w" ! v in W1;p.�IRN/. Obviously, we have

divw" ! 0 in Lp.�/; w" � nj@� ! 0 in W1� 1
p ;p.@�/:

Let '" 2 Ck;�
c .�/,

R
�
'" d x D 0 be an auxiliary function satisfying

�'" D divw"; r'" � nj@� D w" � nj@�:

Then, in accordance with Theorem 11.4,

Ck;�
n;� .�IRN/ 3 w" � r'" ! v in W1;p.�IRN/:

This finishes the proof of part (ii).
Step 3 Let v 2 W1;p

n .�IRN/. We take u D B.divxv/, where B is the
Bogovskii operator constructed in Theorem 11.17, and set w D v � u. Clearly
w 2 W1;p

n;� .�IRN/.
In view of statement (ii), there exists a sequence w" 2 Ck;�

n;� .�IRN/ such that

w" ! w in W1;p.�IRN/:

On the other hand u belonging to W1;p
0 .�IRN/, there exists a sequence u" 2

C1
c .�IRN/ such that

u" ! u in W1;p.�IRN/:

The sequence v" D w" C u" belongs to Ck;�
n .�IRN/ and converges in W1;p.�IRN/

to v.
This completes the proof of Theorem 11.19

�

The hypotheses concerning regularity of the boundary in statements (ii), (iii) are
not optimal but sufficient in all applications for all treated in this book.

If the domain � is of class C1, the density of the space C1
n .�IRN/ in

W1;p
n .�IRN/ and of C1

n;� .�IRN/ in W1;p
n .�IRN/ is a consequence of the theorem.
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11.9 Poincaré Type Inequalities

The Poincaré type inequalities allow to estimate the Lp-norm of a function by
the Lp-norms of its derivatives. The basic result in this direction is stated in the
following lemma.

� POINCARÉ INEQUALITY:

Lemma 11.9 Let 1 � p < 1, and let � � R
N be a bounded Lipschitz domain.

Then the following holds:

(i) For any A � @� with the non zero surface measure there exists a positive
constant c D c. p;N;A; �/ such that

kvkLp.�/ � c

�
krvkLp.�IRN/ C

Z

@�

jvj dSx

�
for any v 2 W1;p.�/:

(ii) There exists a positive constant c D c. p; �/ such that

kv � 1

j�j
Z

�

v d xkLp.�/ � ckrvkLp.�IRN/ for any v 2 W1;p.�/:

The above lemma can be viewed as a particular case of more general results, for
which we refer to Ziemer [277, Chap. 4, Theorem 4.5.1].

Applications in fluid mechanics often require refined versions of Poincaré
inequality that are not directly covered by the standard theory. Let us quote
Babovski, Padula [13] or [87] as examples of results going in this direction. The
following version of the refined Poincaré inequality is sufficiently general to cover
all situations treated in this book.

� GENERALIZED POINCARÉ INEQUALITY:

Theorem 11.20 Let 1 � p � 1, 0 < � < 1, V0 > 0, and let � � R
N be a

bounded Lipschitz domain.
Then there exists a positive constant c D c. p; �;V0/ such that

k v kW1;p.�/ � c
h
krxvkLp.�IRN / C

� Z

V
jvj�d x

� 1
�
i

for any measurable V � �, jVj 	 V0 and any v 2 W1;p.�/.
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Proof Fixing the parameters p, � , V0 and arguing by contradiction, we construct
sequences wn 2 W1;p.�/, Vn � � such that

kwnkLp.�/ D 1; krwnkW1;p.�IRN / C
� Z

Vn

jwnj� dx
� 1
�
<
1

n
; (11.42)

jVnj 	 V0: (11.43)

By virtue of (11.42), we have at least for a chosen subsequence

wn ! w in W1;p.�/ where w D j�j� 1
p :

Consequently, in particular,

ˇ
ˇ
ˇfwn � w

2
g
ˇ
ˇ
ˇ ! 0: (11.44)

On the other hand, by virtue of (11.42)

ˇ
ˇ
ˇfwn 	 w

2
g \ Vn

ˇ
ˇ
ˇ �

�
2=w

�� Z

Vn

w�n d x ! 0;

in contrast to

ˇ
ˇ
ˇfwn 	 w

2
g \ Vn

ˇ
ˇ
ˇ D

ˇ
ˇ
ˇVn n fwn <

w

2
g
ˇ
ˇ
ˇ 	

ˇ
ˇ
ˇVn

ˇ
ˇ
ˇ �

ˇ
ˇ
ˇfwn <

w

2
g
ˇ
ˇ
ˇ 	 V0;

where the last statement follows from (11.43), (11.44).
�

Another type of Poincaré inequality concerns norms in the negative Sobolev
spaces in the spirit of Nečas [219].

� POINCARÉ INEQUALITY IN NEGATIVE SPACES:

Lemma 11.10 Let � be a bounded Lipschitz domain, 1 < p < 1, and k D
0; 1; : : :. Let � 2 Wk;p0

0 .�/,
R
�
� d x D 1 be a given function.

(i) Then we have

k fkW�k;p.�/ � c
�
krxfkW�k�1;p.�IRN /C

ˇ
ˇ̌P

j˛j�k.�1/j˛j R
� w˛@˛� dx

ˇ
ˇ̌�

for any f 2 W�k;p.�/;

(11.45)

where fw˛gj˛j�k, w˛ 2 Lp.�/ is an arbitrary representative of f constructed in
Theorem 3, and c is a positive constant depending on p, N, �.
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(ii) In particular, if k D 0, inequality (11.45) reads

k fkLp.�/ � c
�
krfkW�1;p.�IRN/ C

ˇ
ˇ
ˇ
Z

�

f� d x
ˇ
ˇ
ˇ
�
:

Proof Since C1
c .�/ is dense in W�k;p.�/, it is enough to suppose that f is smooth.

By direct calculation, we get

k fkW�k;p.�/ D sup
g2Wk;p0

0 .�/

R
�
fg d x

kgkWk;p0

.�/

�

sup
g2Wk;p0

0 .�/

�R
�
f Œg � � R

�
g d x� d x

kg � � R
�
g d xkWk;p0

.�/

� kg � �
R
�
g d xkWk;p0

.�/

kgkWk;p0

.�/

�

C sup
g2Wk;p0

0 .�/

.
R
� g d x/.

R
� f� d x/

kgkWk;p0

.�/

�

c. p; �/
�

sup
v2WkC1;p0

0 .�IRN/

R
�
fdivxv d x

kvkWkC1;p0

.�IRN/

C
ˇ
ˇ
ˇ
X

j˛j�k

.�1/˛
Z

�

w˛@
˛� d x

ˇ
ˇ
ˇ
�
;

where fw˛g˛�k is any representative of f (see formula (3) in Theorem 3), and where

the quantity WkC1;p0

0 .�/ 3 v D B.g � �
R
g d x/ appearing on the last line is a

solution of problem

divxv D g � �
Z

�

g d x; kvkWkC1;p0

�/ � c. p; �/
�
�
�g � �

Z

�

g d x
�
�
�
Wk;p0

.�/

constructed in Theorem 11.17.
The proof of Lemma 11.10 is complete.

�

11.10 Korn Type Inequalities

Korn’s inequality has played a central role not only in the development of linear
elasticity but also in the analysis of viscous incompressible fluid flows. The reader
interested in this topic can consult the review paper of Horgan [157], the recent
article of Dain [69], and the relevant references cited therein. While these results
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rely mostly on the Hilbertian L2-setting, various applications in the theory of
compressible fluid flows require a general Lp-setting and even more.

We start with the standard formulation of Korn’s inequality providing a bound of
the Lp-norm of the gradient of a vector field in terms of the Lp-norm of its symmetric
part.

� KORN’S INEQUALITY IN Lp:

Theorem 11.21 Assume that 1 < p < 1.

(i) There exists a positive constant c D c. p;N/ such that

krvkLp.RN IRN�N / � ckrv C rTvkLp.RN IRN�N /

for any v 2 W1;p.RN IRN/.
(ii) Let � � R

N be a bounded Lipschitz domain. Then there exists a positive
constant c D c. p;N; �/ > 0 such that

kvkW1;p.�IRN / � c
�
krv C rTvkLp.�;RN�N / C

Z

�

jvj d x
�

for any v 2 W1;p.�IRN/.

Proof Step 1 Since C1
c .R

N IRN/ is dense in W1;p.RN IRN/, we may suppose that v
is smooth with compact support. We start with the identity

@xk@xjvs D @xjDs;k C @xkDs;j � @xsDj;k; (11.46)

where

D D .Di;j/
N
i;jD1; Di;j D 1

2
.@xjui C @xiuj/:

Relation (11.46), rewritten in terms of the Fourier transform, reads

�k�jFx!�.vs/ D �i
�
�jFx!�.Ds;k/C �kFx!�.Ds;j/� �sFx!�.Dj;k

�
:

Consequently,

Fx!�.@xkvs/ D Fx!�.Ds;k/C �j�k

j�j2Fx!�.Ds;j/� �j�s

j�j2Fx!�.Dj;k/:

Thus estimate (i) follows directly from the Hörmander-Mikhlin theorem (Theo-
rem 9).
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Step 2 Similarly to the previous part, it is enough to consider smooth functions
v. Lemma 11.10 applied to formula (11.46) yields

krvkLp.�IRN�N/ � c
�
kDkLp.�IRN�N/ C

ˇ
ˇ
ˇ
Z

�

rv� d x
ˇ
ˇ
ˇ
�
;

where � 2 C1
c .�/,

R
�
� d x D 1. Consequently, estimate (ii) follows.

�

In applications to models of compressible fluids, it is useful to replace the
symmetric gradient in the previous theorem by its traceless part. The adequate result
is stated in the following theorem.

� GENERALIZED KORN’S INEQUALITY:

Theorem 11.22 Let 1 < p < 1, and N > 2.

(i) There exists a positive constant c D c. p;N/ such that

krvkLp.RN IRN�N / � ckrv C rTv � 2

N
divvIkLp.RN IRN�N /

for any v 2 W1;p.RN IRN/, where I D .ıi;j/
N
i;jD1 is the identity matrix.

(ii) Let � � R
N be a bounded Lipschitz domain. Then there exists a positive

constant c D c. p;N; �/ > 0 such that

kvkW1;p.�IRN/ � c
�
krv C rTv � 2

N
divvIkLp.�IRN�N/ C

Z

�

jvj d x
�

for any v 2 W1;p.�IRN/.

Remark As a matter of fact, part (i) of Theorem 11.22 holds for any N 	 1. On the
other hand, statement (ii) may fail for N D 2 as shown by Dain [69].

Proof Step 1 In order to show (i), we suppose, without loss of generality, that v is
smooth and has a compact support in R

N . A straightforward algebra yields

@xk@xjvs D @xjDs;k C @xkDs;j � @xsDj;kC

1
N

�
ıs;k@xjdivxv C ıs;j@xkdivxv � ıj;k@xsdivxv

�
;

(11.47)

.N � 2/@xsdivxv D 2N@xkDs;k � N�vs; (11.48)

@xj.�vs/ D @xj@xkDs;k C�Dj;s � @xs@xkDj;k C 1

N � 1
ıj;s@xk@xnDk;n; (11.49)
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where D D .Di;j/
N
i;jD1 denotes the tensor

D D 1

2
.rxv C rx

Tv/� 1

N
divxvI:

Moreover, we deduce from (11.47) that

Fx!�.@xkvs/ D Fx!�.Ds;k/C �k�j

j�j2Fx!�.Ds;j/

� �s�j

j�j2Fx!�.Dj;k/C 1
N ıs;kFx!�.divv/;

(11.50)

where, according to (11.48), (11.49),

Fx!�.divv/ D N

N � 2

1

j�j2Fx!�

�
@s.�vs/

�C 2N

N � 2

�s�j

j�j2Fx!�.Ds;j/;

with

1

j�j2Fx!�

�
@s.�vs/

� D �
�
Fx!�.Ds;s/C N

N � 1

�k�n

j�j2 F.Dk;n/
�
:

Thus, estimate (i) follows from (11.50) via the Hörmander–Mikhlin multiplier
theorem.

Step 2 Similarly to the previous step, it is enough to show (ii) for a smooth v. By
virtue of Lemma 11.10, we have

k@xkvjkLp.�/ � c. p; �/
�
krx@xkvjkW�1;p.�IRN/ C

ˇ̌
ˇ
Z

�

@xkvj� d x
ˇ̌
ˇ
�
; (11.51)

and

k�vskW�1;p.�/ � c. p; �/
�
krx�vskW�2;p.�IRN / C

ˇ
ˇ̌
Z

�

�vs Q� d xj
�

(11.52)

for any � 2 Lp
0

.�/,
R
�
� d x D 1, Q� 2 W1;p0

0 .�/,
R
�

Q� d x D 1.
Using the basic properties of the W�1;p-norm we deduce from identities (11.47)–

(11.48) that

krx@xkvjkW�1;p.�IRN / � c
�
kDkLp.�IRN / C k�vkW�1;p.�IRN/

�
;

where the second term at the right-hand side is estimated by help of identity (11.49)
and inequality (11.52). Coming back to (11.51) we get

k@xkvjkLp.�/ � c. p; �/
�
kDkLp.�IRN / C

ˇ
ˇ
ˇ
Z

�

@xkvj� d x
ˇ
ˇ
ˇC

ˇ
ˇ
ˇ
Z

�

�vj Q� d x
ˇ
ˇ
ˇ
�
;
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which, after by parts integration and with a particular choice � 2 C1c .�/, Q� 2 C2c.�/,
yields estimate (ii).

�

We conclude this part with another generalization of the previous results.

� GENERALIZED KORN-POINCARÉ INEQUALITY:

Theorem 11.23 Let � � R
N, N > 2 be a bounded Lipschitz domain, and let

1 < p < 1, M0 > 0, K > 0, 
 > 1.
Then there exists a positive constant c D c. p;M0;K; 
/ such that the inequality

kvkW1;p.�IRN/ (11.53)

� c
���
�rxv C rx

Tv � 2

N
divv I

�
�
�
Lp.�IRN /

C
Z

�

rjvj d x
�

holds for any v 2 W1;p.�IRN/ and any non negative function r such that

0 < M0 �
Z

�

r d x;
Z

�

r
 d x � K: (11.54)

.

Proof Without loss of generality, we may assume that 
 > maxf1; Np
.NC1/p�N g.

Indeed replacing r by Tk.r/, where Tk.z/ D maxfz; kg, we can take k D k.M0; 
/

large enough. Moreover, it is enough to consider smooth functions v.
Fixing the parameters K, M0, 
 we argue by contradiction. Specifically, we

construct a sequence wn 2 W1;p.�IRN/ such that

kwnkW1;p.�IRN/ D 1; wn ! w weakly in W1;p.�IRN/ (11.55)

and

�
�
�rxwn C rx

Twn � 2

N
divxwn I

�
�
�
Lp.�IRN/

C
Z

�

rnjwnj d x <
1

n
(11.56)

for certain

rn ! r weakly in L
 .�/;
Z

�

r d x 	 M0 > 0: (11.57)

Consequently, due to the compact embeddingW1;p.�/ into Lp.�/, and by virtue
of Theorem 11.22,

wn ! w strongly in W1;p.�IRN/: (11.58)
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Moreover, in agreement with (11.55)–(11.58), the limit w satisfies the identities

kwkW1;p.�IRN/ D 1; (11.59)

rw C rTw � 2

N
divwI D 0; (11.60)

Z

�

rjwj d x D 0: (11.61)

Equation (11.60) which is valid provided N > 2, implies that �divw D 0 and
�w D 2�N

N divw, see (11.48), (11.49). In particular, in agreement with remarks
after Theorem 11.4 in Appendix, w is analytic in �. On the other hand, according
to (11.61), w vanishes on the set fx 2 � j r.x/ > 0g of a nonzero measure; whence
w � 0 in � in contrast with (11.61).

Theorem 11.23 has been proved.
�

Finally, we address the question how the constant in Theorem 11.23 depends
on the geometry of the spatial domain �. To this end, we assume that @� can
be described by a finite number of charts based on balls of radius r and Lipschitz
constant L. Then it turns out that c depends only on these two parameters.

� GENERALIZED KORN-POINCARÉ INEQUALITY—DOMAIN DEPENDENCE:

Theorem 11.24 Under the hypotheses of Theorem 11.23, suppose that there exists
a radius r and a constant L such that @� can be covered by a finite number of balls
B.x; r/, on each of which @� is expressed as a graph of a Lipschitz function with the
Lipschitz constant L.

Then the generalized Korn inequality (11.53) holds with a constant depending
only on r and L.

Proof See [42]. �

11.11 Estimating ru by Means of divxu and curlxu

� ESTIMATING ru IN TERMS OF divxu AND curlxu:
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Theorem 11.25 Assume that 1 < p < 1.

(i) Then

krukLp.RN IRN�N / � c. p;N/
�
kdivxukLp.RN / C kcurlxukLp.RN IRN�N /

�
;

for any u 2 W1;p.RN IRN/:
(11.62)

(ii) If� � R
N is a bounded domain, then

krukLp.�IRN�N/ � c
�
kdivxukLp.�/ C kcurlxukLp.�IRN�N/

�
;

for any u 2 W1;p
0 .�IRN/:

(11.63)

Proof To begin, observe that it is enough to show the estimate for u 2 C1
c .R

N IRN/.
To this end, we write

i
NX

kD1
�kFx!�.uk/ D Fx!�.divxu/;

i
�
�kFx!�.uj/� �jFx!�.uk/

�
D Fx!�.Œcurl�j;ku/; j ¤ k:

Solving the above system we obtain

ij�j2Fx!�.uk/ D �kFx!�.divu/C
X

j¤k

�jFx!�.Œcurl�k;ju/;

for k D 1; : : : ;N. Consequently, we deduce

Fx!�.@xruk/ D �k�r

j�j2 Fx!�.divu/C
X

j¤k

�j�r

j�j2Fx!�.Œcurl�k;ju/:

Thus estimate (11.62) is obtained as a direct consequence of Hörmander-Mikhlin
theorem on multipliers (Theorem 9).

�

If the trace of u does not vanish on @�, the estimates of type (11.62) depend
strongly on the geometrical properties of the domain�, namely on the values of its
first and second Betti numbers.
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For example, the estimate

krukLp.�IR3�3/ � c. p;N; �/
�
kdivxukLp.�/ C kcurlxukLp.�IR3�3/

�

holds

(i) for any u 2 W1;p.�IR3/, u � nj@� D 0, provided� is a bounded domain with
the boundary of class C1;1 and the set R3 n� is (arcwise) connected (meaning
R
3 n� does not contain a bounded (arcwise) connected component);

(ii) for any u 2 W1;p.�IR3/, u � nj@� D 0, if � is a bounded domain with the
boundary of class C1;1 whose boundary @� is a connected and compact two-
dimensional manifold.

The interested reader should consult the papers of von Wahl [270] and Bolik and
von Wahl [29] for a detailed treatment of these questions including more general
results in the case of non-vanishing tangential and/or normal components of the
vector field u.

11.12 Weak Convergence and Monotone Functions

We start with a straightforward consequence of the De la Vallée Poussin criterion of
the L1-weak compactness formulated in Theorem 10.

Corollary 11.1 Let Q � R
N be a domain and let f fng1

nD1 be a sequence in L1.Q/
satisfying

sup
n>0

Z

Q
ˆ.jfnj/ d x < 1; (11.64)

where ˆ is a non negative function continuous on Œ0;1/ such that limz!1ˆ.z/=z
D 1.

Then

sup
n>0

n Z

fjfnj�kg
jfn.x/jd x

o
! 0 as k ! 1; (11.65)

in particular,

k sup
n>0

fjfjfnj 	 kgjg ! 0 as k ! 1:
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Typically,ˆ.z/ D zp, p > 1, in which case we have

jfjfnj 	 kgj � 1

k

Z

fjfnj�kg
jfn.x/jd x � 1

k

� Z

Q
jfnjpd x

�1=pjfjfnj 	 kgj1=p0

:

Consequently, we report the following result.

Corollary 11.2 Let Q � R
N be a domain and let f fng1

nD1 be a sequence of functions
bounded in Lp.Q/, where p 2 Œ1;1/.

Then
Z

fjfnj�kg
jfnjsd x � 1

kp�s
sup
n>0

n
k fnkpLp.Q/

o
; s 2 Œ0; p�: (11.66)

In particular

jfjfnj 	 kgj � 1

kp
supn>0

n
k fnkpLp.Q/

o
: (11.67)

In the remaining part of this section, we review a mostly standard material based
on monotonicity arguments. There are several variants of these results scattered
in the literature, in particular, these arguments have been extensively used in the
monographs of Lions [192], or [102, 224]. Our aim is to formulate these results
at such a level of generality so that they may be directly applicable to all relevant
situations investigated in this book.

� WEAK CONVERGENCE AND MONOTONICITY:

Theorem 11.26 Let I � R be an interval, Q � R
N a domain, and

.P;G/ 2 C.I/ � C.I/ a couple of non-decreasing functions. (11.68)

Assume that %n 2 L1.QI I/ is a sequence such that

8
ˆ̂
ˆ̂̂
<

ˆ̂
ˆ̂̂
:

P.%n/ ! P.%/;

G.%n/ ! G.%/;

P.%n/G.%n/ ! P.%/G.%/

9
>>>>>=

>>>>>;

weakly in L1.Q/: (11.69)

(i) Then

P.%/ G.%/ � P.%/G.%/: (11.70)
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(ii) If, in addition,

G 2 C.R/; G.R/ D R; G is strictly increasing;

P 2 C.R/; P is non-decreasing;
(11.71)

and

P.%/G.%/ D P.%/ G.%/; (11.72)

then

P.%/ D P ı G�1.G.%//: (11.73)

(iii) In particular, if G.z/ D z, then

P.%/ D P.%/: (11.74)

Proof We shall limit ourselves to the case I D .0;1/ already involving all
difficulties encountered in other cases.

Step 1 If P is bounded and G strictly increasing, the proof is straightforward.
Indeed, in this case,

0 � limn!1
R
B

h
P.%n/� .P ı G�1/

�
G.%/

�i�
G.%n/� G.%/

�
d x D

R
B

�
P.%/G.%/ � P.%/ G.%/

�
d x

� limn!1
R
B P ı G�1.G.%//

�
G.%n/� G.%/

�
d x;

(11.75)

where B is a ball in Q and P ı G�1.G.%// D lims!G.%/ P ı G�1.s/. By virtue of
assumption (11.69), the second term at the right hand side of the last formula tends
to 0; whence the desired inequality (11.70) follows immediately from the standard
result on the Lebesgue points.

Step 2 If P is bounded and G non-decreasing, we replace G by a strictly
increasing function, say,

Gk.z/ D G.z/C 1

k
arctan.z/; k > 0:
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In accordance with Step 1 we obtain

P.%/G.%/C 1

k
P.%/arctan.%/ 	 P.%/ G.%/C 1

k
P.%/ arctan.%/;

where we have used the De la Vallé Poussin criterion ( Theorem 10) to guarantee
the existence of the weak limits. Letting k ! 1 in the last formula yields (11.70).

Step 3 If limz!0C P.z/ 2 R and if P is unbounded, we may approximate P by a
family of bounded non-decreasing functions,

P ı Tk; k > 0;

where

Tk.z/ D kT . z
k
/; C1.R/ 3 T .z/ D

8
ˆ̂
ˆ̂̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
ˆ̂
:̂

z if z 2 Œ0; 1�

concave in .0;1/

2 if z 	 3

�T .�z/ if z 2 .�1; 0/

9
>>>>>>>>>=

>>>>>>>>>;

: (11.76)

Reasoning as in the previous step, we obtain

.P ı Tk/.%/G.%/ 	 .P ı Tk/.%/ G.%/: (11.77)

In order to let k ! 1, we observe first that

k.P ı Tk/.%/ � P.%/kL1.Q/ �

lim inf
n!1 k.P ı Tk/.%n/ � P.%n/kL1.Q/ � 2 sup

n2N

n Z

f%n�kg
jP.%n/jd x

o
;

where the last integral is arbitrarily small provided k is sufficiently large (see
Theorem 10). Consequently,

.P ı Tk/.%/ ! P.%/ a.e. in Q:

Similarly,

P ı Tk.%/G.%/ ! P.%/G.%/ a.e. in Q:

Thus, letting k ! 1 in (11.77) we obtain again (11.70).



11.12 Weak Convergence and Monotone Functions 475

Step 4 Finally, if limz!0C P.z/ D �1, we approximate P by

Ph.z/ D
8
<

:

P.h/ if z 2 .�1; h/

P.z/ if z 	 h

9
=

;
; h > 0; (11.78)

so that, according to Step 3,

Ph.%/G.%/ 	 Ph.%/ G.%/; (11.79)

As in the previous step, in accordance with Theorem 10,

kPh.%/ � P.%/kL1.Q/ � lim infn!1 kPh.%n/� P.%n/kL1.Q/

� 2 supn2N
n R

fjP.%n/j�jP.h/jg jP.%n/jd x
o

! 0 as h ! 0C;
(11.80)

and

kPh.%/G.%/ � P.%/G.%/kL1.Q/

� 2 supn2N
n R

fjP.%n/j�jP.h/jg jP.%n/G.%n/jd x
o

! 0 as h ! 0C :

(11.81)

Thus we conclude the proof of part (i) of Theorem 11.26 by letting h ! 0C
in (11.79).

Step 5 Now we are in a position to prove part (ii). We set

Mk D
n
x 2 B j sup

s2Œ�1;1�
G�1�G.%/C s

�
.x/ � k

o
;

where B is a ball in Q, and k > 0. Thanks to monotonicity of P and G, we can write

0 � R
B 1Mk

h
P.%n/ � .P ı G�1/

�
G.%/˙ �'

�i
�

�
G.%n/ � G.%/� �'

�
d x D

R
B 1Mk

�
P.%n/G.%n/� P.%n/ G.%/

�
d x

� RB 1Mk .P ı G�1/
�
G.%/˙ �'

��
G.%n/� G.%/

�
d x

�" RB 1Mk

h
P.%n/� .P ı G�1/

�
G.%/˙ �'

�i
'd x;

(11.82)
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where � > 0, ' 2 C1
c .B/ and 1Mk is the characteristic function of the set Mk.

For n ! 1 in (11.82), the first integral on the right-hand side tends to zero
by virtue of (11.69), (11.72). Recall that 1MkG.%/ is bounded. On the other hand,
the second integral approaches zero by virtue of (11.69). Recall that 1Mk .P ı
G�1/

�
G.%/˙ �'

�
is bounded.

Thus we are left with
Z

B
1Mk

h
P.%/ � .P ı G�1/

�
G.%/˙ �'

�i
'd x D 0; ' 2 C1

c .B/I (11.83)

whence (11.73) follows by sending � ! 0C and realizing that [k>0Mk D B. This
completes the proof of statement (ii).

�

11.13 Weak Convergence and Convex Functions

The idea of monotonicity can be further developed in the framework of convex
functions. Similarly to the preceding section, the material collected here is standard
and may be found in the classical books on convex analysis as, for example, Ekeland
and Temam [92], or Azé [12].

Consider a functional

F W RM ! .�1;1�; M 	 1: (11.84)

We say that F is convex on a convex set O � R
M if

F.tv C .1 � t/w/ � tF.v/C .1 � t/F.w/ for all v;w 2 O; t 2 Œ0; 1�I (11.85)

F is strictly convex on O if the above inequality is strict whenever v ¤ w.
Compositions of convex functions with weakly converging sequences have a

remarkable property of being lower semi-continuous with respect to the weak L1-
topology as shown in the following assertion (cf. similar results in Visintin [268],
Balder [15]).

� WEAK LOWER SEMI-CONTINUITY OF CONVEX FUNCTIONS:

Theorem 11.27 Let O � R
N be a measurable set and fvng1

nD1 a sequence of
functions in L1.OIRM/ such that

vn ! v weakly in L1.OIRM/:
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Let ˆ W RM ! .�1;1� be a lower semi-continuous convex function. Then
Z

O
ˆ.v/d x � lim inf

n!1

Z

O
ˆ.vn/d x:

Moreover if

ˆ.vn/ ! ˆ.v/ weakly in L1.O/;

then

ˆ.v/ � ˆ.v/ a.a. on O: (11.86)

If, in addition, ˆ is strictly convex on an open convex set U � R
M, and

ˆ.v/ D ˆ.v/ a.a. on O;

then

vn.y/ ! v.y/ for a.a. y 2 fy 2 O j v.y/ 2 Ug (11.87)

extracting a subsequence as the case may be.

Proof Step 1 Any convex lower semi-continuous function with values in .�1;1�

can be written as a supremum of its affine minorants:

ˆ.z/ D supfa.z/ j a an affine function on R
M; a � ˆ on R

Mg (11.88)

(see Theorem 3.1 of Chap. 1 in [92]). Recall that a function is called affine if it can
be written as a sum of a linear and a constant function.

On the other hand, if B � O is a measurable set, we have

Z

B
ˆ.v/ dy D lim

n!1

Z

B
ˆ.vn/ dy 	 lim

n!1

Z

B
a.vn/ dy D

Z

B
a.v/ dy

for any affine function a � ˆ. Consequently,

ˆ.v/.y/ 	 a.v/.y/

for any y 2 O which is a Lebesgue point of bothˆ.v/ and v.
Thus formula (11.88) yields (11.86).
Step 2 As any open set U � R

M can be expressed as a countable union of
compacts, it is enough to show (11.87) for

y 2 MK � fy 2 O j v.y/ 2 Kg;

where K � U is compact.
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Since ˆ is strictly convex on U, there exists an open set V such that

K � V � V � U;

and ˆ W V ! R is a Lipschitz function (see Corollary 2.4 of Chap. I in [92]). In
particular, the subdifferential @ˆ.v/ is non-empty for each v 2 K, and we have

ˆ.w/ �ˆ.v/ 	 @ˆ.v/ � .w � v/ for any w 2 R
M; v 2 K;

where @ˆ.v/ denotes the linear form in the subdifferential @ˆ.v/ � .RM/� with the
smallest norm (see Corollary 2.4 of Chap. 1 in [92]).

Next, we shall show the existence of a function !,

! 2 CŒ0;1/; !.0/ D 0;

! non-decreasing on Œ0;1/ and strictly positive on .0;1/;

(11.89)

such that

ˆ.w/�ˆ.v/ 	 @ˆ.v/ � .w � v/C !.jw � vj/ for all w 2 V; v 2 K: (11.90)

Were (11.90) not true, we would be able to find two sequences wn 2 V , zn 2 K
such that

ˆ.wn/�ˆ.zn/ � @ˆ.zn/ � .wn � zn/ ! 0 for n ! 1

while

jwn � znj 	 ı > 0 for all n D 1; 2; : : :

Moreover, as K is compact, one can assume

zn ! z 2 K; ˆ.zn/ ! ˆ.z/; wn ! w in V; @ˆ.zn/ ! L 2 R
M;

and, consequently,

ˆ.y/ �ˆ.z/ 	 L � .y � z/ for all y 2 R
M;

that is L 2 @ˆ.z/.
Now, the function

‰.y/ � ˆ.y/�ˆ.z/� L � .y � z/
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is non-negative, convex, and

‰.z/ D ‰.w/ D 0; jw � zj 	 ı:

Consequently,‰ vanishes on the whole segment Œz;w�, which is impossible as ˆ is
strictly convex on U.

Seeing that the function

a 7! ˆ.z C ay/�ˆ.z/� a@ˆ.z/ � y

is non-negative, convex and non-decreasing for a 2 Œ0;1/ we infer that the
estimate (11.90) holds without the restriction w 2 V . More precisely, there exists !
as in (11.89) such that

ˆ.w/�ˆ.v/ 	 @ˆ.v/ � .w � v/C !.jw � vj/ for all w 2 R
M; v 2 K: (11.91)

Taking w D vn.y/, v D v.y/ in (11.91) and integrating over the set MK we get

Z

MK

!.jvn � vj/ dy �
Z

MK

ˆ.vn/ �ˆ.v/� @ˆ.v/ � .vn � v/ dy;

where the right-hand side tends to zero for n ! 1. Note that the function @ˆ.v/ is
bounded measurable on Mk as ˆ is Lipschitz on V , and

@ˆ.v/ D lim
"!0

rˆ".v/ for any v 2 V;

where

ˆ".v/ � min
z2RM

n1
"

jz � vj Cˆ.z/
o

(11.92)

is a convex, continuously differentiable function on R
M (see Propositions 2.6, 2.11

of Chap. 2 in [40]).
Thus

Z

MK

!.jvn � vj/ dy ! 0 for n ! 1

which yields pointwise convergence (for a subsequence) of fvng1
nD1 to v a.a. on MK .

�
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11.14 Div-Curl Lemma

The celebrated Div-Curl Lemma of Tartar [254] (see also Murat [218]) is a
cornerstone of the theory of compensated compactness and became one of the most
efficient tools in the analysis of problems with lack of compactness. Here, we recall
its Lp-version.

Lemma 11.11 Let Q � R
N be an open set, and 1 < p < 1. Assume

Un ! U weakly in Lp.QIRN/;

Vn ! V weakly in Lp
0

.QIRN/:

(11.93)

In addition, let

div Un � r � Un;

curl Vn � .rVn � rTVn/

9
=

;
be precompact in

�
W�1;p.Q/;
W�1;p0

.QIRN�N/:
(11.94)

Then

Un � Vn ! U � V in D0.Q/:

Proof Since the result is local, we can assume that Q D R
N . We have to show that

Z

RN

�
HŒUn�C H?ŒUn�

� � �HŒVn�C H?ŒVn�
�
' d x !

Z

RN

�
HŒU�C H?ŒU�

� � �HŒV�C H?ŒV�
�
' d x

for any ' 2 C1
c .R

N/, where H, H? are the Helmholtz projections introduced in
Sect. 11.7. We have

H?ŒUn� D r‰U
n ; H

?ŒVn� D r‰V
n ;

where, in accordance with hypothesis (11.94) and the standard elliptic estimates
discussed in Sects. 11.3.1 and 11.11,

r‰U
n ! r‰U D H?ŒU� in Lp.BIRN/;

HŒVn� ! HŒV� in Lp
0

.BIRN/;
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and

HŒUn� ! HŒU� weakly in Lp.BIRN/;

r‰V
n ! r‰V D H?ŒV� weakly in Lp

0

.BIRN/;

where B � R
N is a ball containing the support of '.

Consequently, it is enough to handle the term HŒUn� � rx‰
V
n '. However,

Z

RN
HŒUn� � rx‰

V
n ' d x D �

Z

RN
HŒUn� � r'‰V

n d x !

�
Z

RN
HŒU� � r'‰V d x D

Z

RN
HŒU� � rx‰

V' d x:

�

The following variant of Div-Curl Lemma seems more convenient from the
perspective of possible applications.

� DIV-CURL LEMMA:

Theorem 11.28 Let Q � R
N be an open set. Assume

Un ! U weakly in Lp.QIRN/;

Vn ! V weakly in Lq.QIRN/;

(11.95)

where

1

p
C 1

q
D 1

r
< 1:

In addition, let

div Un � r � Un;

curl Vn � .rVn � rTVn/

9
=

;
be precompact in

�
W�1;s.Q/;
W�1;s.QIRN�N/;

(11.96)

for a certain s > 1. Then

Un � Vn ! U � V weakly in Lr.Q/:

The proof follows easily from Lemma 11.11 as soon as we observe that
precompact sets in W�1;s that are bounded in W�1;p are precompact in W�1;m for
any s < m < p.
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11.15 Maximal Regularity for Parabolic Equations

We consider a parabolic problem:

8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

@tu ��u D f in .0;T/ ��;

u.0; x/ D u0.x/; x 2 �;

rxu � n D 0 in .0;T/ � @�;

9
>>>>>=

>>>>>;

(11.97)

where� � R
N is a bounded domain. In the context of the so-called strong solutions,

the first equation is satisfied a.e. in .0;T/ ��, the initial condition holds a.e. in �,
and the homogenous Neumann boundary condition is satisfied in the sense of traces.

The following statement holds.

� MAXIMAL Lp � Lq REGULARITY:

Theorem 11.29 Let � � R
N be a bounded domain of class C2, 1 < p; q < 1.

Suppose that

f 2 Lp.0;TILq.�//; u0 2 Xp;q; Xp;q D fLq.�/ID.�N /g1�1=p;p;

D.�N / D fv 2 W2;q.�/ j rxv � nj@� D 0g;

where f�I �g�;� denotes the real interpolation space.
Then problem (11.97) admits a solution u, unique in the class

u 2 Lp.0;TIW2;q.�//; @tu 2 Lp.0;TILq.�//;

u 2 C.Œ0;T�IXp;q/:

Moreover, there exists a positive constant c D c. p; q; �;T/ such that

ku.t/kXp;q C k@tukLp.0;TILq.�// C k�ukLp.0;TILq.�// � (11.98)

c
�k fkLp.0;TILq.�// C ku0kXp;q

�

for any t 2 Œ0;T�.
See Amann [7, 8]. �
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For the definition of real interpolation spaces see e.g. Bergh, Löfström [27,
Chap. 3]. It is well known that

Xp;q D

8
ˆ̂<

ˆ̂
:

B
2� 2

p
q;p .�/ if 1 � 2

p � 1
q < 0;

fu 2 B
2� 2

p
q;p .�/ j rxu � nj@� D 0g; if 1 � 2

p � 1
q > 0;

see Amann [7]. In the above formula, the symbol Bs
q;p.�/ refers to the Besov space.

For the definition and properties of the scale of Besov spaces Bs
q;p.R

N/ and
Bs
q;p.�/, s 2 R, 1 � q; p � 1 see Bergh and Löfström [27, Sect. 6.2], Triebel

[257, 258]. A nice overview can be found in Amann [7, Sect. 5]. Many of the
classical spaces are contained as special cases in the Besov scales. It is of interest
for the purpose of this book that

Bs
p;p.�/ D Ws;p.�/; s 2 .0;1/ n N; 1 � p < 1;

where Ws;p.�/ is the Sobolev-Slobodeckii space.
Extension of Theorem 11.29 to general classes of parabolic equations and

systems as well as to different type of boundary conditions are available. For more
information concerning the Lp � Lq maximal regularity for parabolic systems with
general boundary conditions, we refer to the book of Amann [8] or to the papers by
Denk et al. [77, 78, 148].

Maximal regularity in the classes of smooth functions relies on classical argu-
ment. A result in this direction reads as follows.

� MAXIMAL HÖLDER REGULARITY:

Theorem 11.30 Let � � R
N be a bounded domain of class C2;� , � > 0. Suppose

that

f 2 C.Œ0;T�IC0;� .�//; u0 2 C2;�.�/; rxu0 � nj@� D 0:

Then problem (11.97) admits a unique solution

u 2 C.Œ0;T�IC2;� .�//; @tu 2 C.Œ0;T�IC0;� .�//:

Moreover, there exists a positive constant c D c. p; q; �;T/ such that

k@tukC.Œ0;T�IC0;� .�// C kukC.Œ0;T�IC2;� .�// � c
�
ku0kC2;� .�/ C k fkC.Œ0;T�IC0;� .�//

�
:

(11.99)

See Lunardi [199, Theorem 5.1.2] �
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Unlike most of the classical existence theorems that can be found in various
monographs on parabolic equation (see e.g. Ladyzhenskaya et al. [179]), the above
results requires merely the continuity in time of the right hand side. This aspect is
very convenient for the applications in this book.

11.16 Quasilinear Parabolic Equations

In this section we review a well known result solvability of the quasilinear parabolic
problem:

8
ˆ̂
ˆ̂̂
<

ˆ̂
ˆ̂̂
:

@tu �PN
i;jD1 aij.t; x; u/@xi@xj u C b.t; x; u;rxu/ D 0 in .0;T/ ��;

PN
i;jD1 ni aij@xju C  D 0 on ST ;

u.0; �/ D u0;

9
>>>>>=

>>>>>;

(11.100)

where

aij D aij.t; x; u/; i; j D 1; : : : ;N;  D  .t; x/; b.t; x; u; z/ and u0 D u0.x/

are continuous functions of their arguments .t; x/ 2 Œ0;T� � �, u 2 R, z 2 R
N ,

ST D Œ0;T� � @� and n D .n1; : : : ; nN/ is the outer normal to the boundary @�.
The results stated below are taken over from the classical book by Ladyzhen-

skaya et al. [179]. We refer the reader to this work for all details, and also for the
further properties of quasilinear parabolic equations and systems.

� EXISTENCE AND UNIQUENESS

FOR THE QUASILINEAR PARABOLIC NEUMANN PROBLEM:

Theorem 11.31 Let � 2 .0; 1/ and let� � R
N be a bounded domain of class C2;� .

Suppose that

(i)

u0 2 C2;�.�/;  2 C1.Œ0;T� ��/; rx is Hölder continuous

in the variables t and x with exponents �=2 and �; respectively,

NX

i;jD1
ni.x/ aij@xj.0; x; u0.x//C  .0; x/ D 0; x 2 @�I
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(ii)

aij 2 C1.Œ0;T� �� � R/;

rxaij; @uaij are � � Hölder continuous in the variable xI

(iii)

b 2 C1.Œ0;T� �� � R � R
N/;

rxb; @ub;rzb are � � Hölder continuous in the variablexI

(iv) there exist positive constants c, c, c1, c2 such that

0 � aij.t; x; u/�i�j � cj�j2; .t; x; u; �/ 2 .0;T� �� � R � R
N ;

aij.t; x; u/�i�j 	 cj�j2; .t; x; u; �/ 2 ST �� � R � R
N ;

�ub.t; x; u; z/ � c0jzj2 C c1u
2 C c2; .t; x; u; �/ 2 Œ0;T� �� � R � R

N I

(v) for any L > 0 there are positive constants C and C such that

C.L/j�j2 � aij.t; x; u/�i�j; .t; x; u; �/ 2 Œ0;T� �� � Œ�L;L� � R
N ;

ˇ
ˇ
ˇb; @tb; @ub; .1C z/rzb

ˇ
ˇ
ˇ.t; x; u; z/

� C.L/.1C jzj2/; .t; x; u; z/ 2 Œ0;T� �� � Œ�L;L� � R
N :

Then problem (11.100) admits a unique classical solution u belonging to the
Hölder space C1;�=2I2;�.Œ0;T� � �/, where the symbol C1;�=2I2;�.Œ0;T� � �/ stands
for the Banach space with norm

kukC1.Œ0;T���/ C sup.t;	;x/2Œ0;T�2��
j@tu.t; x/� @tu.	; x/j

jt � 	 j�=2

C
3X

i;jD1
k@xi@xjukC.Œ0;T���/

C
3X

i;jD1
sup

.t;x;y/2Œ0;T���2
j@xi@xju.t; x/ � @xi@xju.t; y/j

jx � yj� :

See Ladyzhenskaya et al. [179, Theorems 7.2, 7.3, 7.4]. �
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11.17 Basic Properties of the Riesz Transform
and Related Operators

Various (pseudo) differential operators used in the book are identified through their
Fourier symbols:

• the Riesz transform:

Rj � i�j
j�j ; j D 1; : : : ;N;

meaning that

RjŒv� D F�1
�!x

h i�j
j�jFx!� Œv�

i
I

• the “double” Riesz transform:

R D fRk;jgNk;jD1; R D ��1
x rx ˝ rx; Ri;j � �i�j

j�j2 ; i; j D 1; : : : ;N;

meaning that

Rk;jŒv� D F�1
�!x

h�k�j
j�j2Fx!� Œv�

i
I

• the inverse divergence:

A D fAjgNjD1; Aj D @xj�
�1
x � � i�j

j�j2 ; j D 1; : : : ;N;

meaning that

AjŒv� D �F�1
�!x

h i�j
j�j2Fx!� Œv�

i
I

• the inverse Laplacian:

.��/�1 � 1

j�j2 ;

meaning that

.��/�1Œv� D F�1
�!x

h 1

j�j2Fx!� Œv�
i
:
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In the sequel, we shall investigate boundedness of these pseudo- differential
operators in various function spaces. The following theorem is an immediate
consequence of the Hörmander-Mikhlin theorem (Theorem 9).

� CONTINUITY OF THE RIESZ OPERATOR:

Theorem 11.32 The operators Rk, Rk;j are continuous linear operators mapping
Lp.RN/ into Lp.RN/ for any 1 < p < 1. In particular, the following estimate holds
true:

kRŒv�kLp.RN / � c.N; p/kvkLp.RN / for all v 2 Lp.RN/; (11.101)

whereR stands forRk orRk;j.

As a next step, we examine the continuity properties of the inverse divergence
operator. To begin, we recall that for Banach spaces X and Y, with norms k � kX
and k � kY , the sum X C Y D fw D u C v j u 2 X; v 2 Yg and the
intersection X\Y can be viewed as Banach spaces endowed with norms kwkXCY D
inf
n

maxfkukX; kvkY g;
ˇ
ˇ
ˇw D u C v

o
and kwkX\Y D kwkX C kwkY , respectively.

� CONTINUITY PROPERTIES OF THE INVERSE DIVERGENCE:

Theorem 11.33 Assume that N > 1.

(i) The operator Ak is a continuous linear operator mapping L1.RN/ \ L2.RN/

into L2.RN/C L1.RN/, and Lp.RN/ into L
Np

N�p .RN/ for any 1 < p < N.
(ii) In particular,

kAkŒv�kL1.RN /CL2.RN / � c.N/kvkL1.RN /\L2.RN /

for all v 2 L1.RN/\ L2.RN/;

(11.102)

and

kAkŒv�k
L

Np
N�p .RN /

� c.N; p/kvkLp.RN / for all v 2 Lp.RN/; 1 < p < N:

(11.103)

(iii) If v; @v
@t 2 Lp.I � R

N/, where I is an (open) interval, then

@Ak. f /

@t
.t; x/ D Ak

�@f
@t

�
.t; x/ for a. a. .t; x/ 2 I � R

N : (11.104)
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Proof Step 1 We write

�AkŒv� D F�1
�!x

h i�k
j�j2 1fj�j�1gFx!� Œv�

i
C F�1

�!x

h i�k
j�j2 1fj�j>1gFx!� Œv�

i
:

Since v belongs to L1.RN/, the function Fx!� Œv� is uniformly bounded; whence
the quantity i�k

j�j2 1fj�j�1gFx!� Œv� is integrable. Similarly, v being square integrable,

Fx!� Œv� enjoys the same property so that i�k
j�j2 1fj�j>1gFx!� Œv� is square integrable

as well. After these observations, estimate (11.102) follows immediately from the
basic properties of the Fourier transform, see Sect. 5.

Step 2 We introduce E.x/—the fundamental solution of the Laplace operator,
specifically,

�xE D ı in D0.RN/; (11.105)

where ı denotes the Dirac distribution. If N 	 2, @xkE takes the form

@xkE.x/ D 1

aN

1

jxjN�1
xk
jxj ; where aN D

8
<

:

2� if N D 2

.N � 2/�N if N > 2

9
=

;
(11.106)

with �N being the area of the unit sphere. From (11.105) we easily deduce that

Fx!� Œ@xkE � D 1

.2�/N=2
i�k
j�j2 :

Consequently,

@xkE 
 v D F�1
�!x

h
Fx!� Œ@xkE 
 v�

i
D 1

.2�/N=2
F�1
�!x

h i�k
j�j2Fx!� Œv�

i

where the weakly singular operator v ! @xkE 
 v is continuous from Lp.RN/ to
Lr.RN/, 1r D N�1

N C 1
p � 1, provided 1 < p < N as a consequence of the classical

results of harmonic analysis stated in Theorem 11.15. This completes the proof of
parts (i), (ii).

Step 3 If v 2 C1
c .I � R

3/, statement (iii) follows directly from the theorem on
differentiation of integrals with respect to a parameter. Its Lp-version can be proved
via the density arguments.

�

In order to conclude this section, we recall several elementary formulas that can
be verified by means of direct computation.
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Rj;kŒ f � D @jAkŒ f � D �Rj

h
RkŒ f �

i
;

Rj

h
RkŒ f �

i
D Rk

h
RjŒ f �

i
;

PN
kD1Rk

h
RkŒ f �

i
D f

R
�
AkŒ f �g d x D � R

�
fAkŒg�/ d x;

R
�
Rj

h
RkŒ f �

i
g d x D R

�
fRj

h
RkŒg�

i
d x:

(11.107)

These formulas hold for all f ; g 2 S.RN/ and can be extended by density in
accordance with Theorems 11.33, 11.32 to f 2 Lp.RN/, g 2 Lp

0

.RN/, 1 < p < 1,
whenever the left and right hand sides make sense. We also notice that functions
Ak. f /, Rj;k. f / are real valued functions provided f is real valued.

11.18 Commutators Involving Riesz Operators

This section presents two important results involving Riesz operators. The first one
represents a keystone in the proof of the weak continuity property of the effective
pressure. Its formulation and proof are taken from [101, 117].

� COMMUTATORS INVOLVING RIESZ OPERATORS, WEAK CONVERGENCE:

Theorem 11.34 Let

V" ! V weakly in Lp.RN IRN/;

U" ! U weakly in Lq.RN IRN/;

where 1
p C 1

q D 1
s < 1. Then

U" � RŒV"�� RŒU"� � V" ! U � RŒV� � RŒU� � V weakly in Ls.RN/:
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Proof Writing

U" � RŒV"� � V" � RŒU"� D
�
U" � RŒU"�

�
� RŒV"� �

�
V" � RŒV"�

�
� RŒU"�

we easily check that

divx
�
U" � RŒU"�

�
D divx

�
V" � RŒV"�

�
D 0;

while RŒU"�, RŒV"� are gradients, in particular

curlxRŒU"� D curlxRŒV"� D 0:

Thus the desired conclusion follows from Div-Curl Lemma (Theorem 11.28).
�

The following result is in the spirit of Coifman, Meyer [62]. The main ideas of
the proof are taken over from [87].

� COMMUTATORS INVOLVING RIESZ OPERATORS, BOUNDEDNESS IN

SOBOLEV-SLOBODECKII SPACES:

Theorem 11.35 Let w 2 W1;r.RN/ and V 2 Lp.RN IRN/ be given, where

1 < r < N; 1 < p < 1;
1

r
C 1

p
� 1

N
< 1:

Then for any s satisfying

1

r
C 1

p
� 1

N
<
1

s
< 1;

there exists

ˇ D ˇ.s; p; r/ 2 .0; 1/; ˇ

N
D 1

s
C 1

N
� 1

p
� 1

r

such that
�
�
�RŒwV� � wRŒV�

�
�
�
Wˇ;s.RN IRN /

� ckwkW1;r.RN /kVkLp.RN IRN /;

where c D c.s; p; r/ is a positive constant.
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Proof We may suppose without loss of generality that w 2 C1
c .R

N/, V 2 C1
c .R

N I
R

N/. First we notice that the norms

kakW1;m.RN IRN / and kakLm.RN IRN / C kcurlxakLm.RN IRN / C kdivxakLm.RN / (11.108)

are equivalent for 1 < m < 1, see Theorem 11.25. We also verify by a direct
calculation that

Œ.curlx.RŒwV�/�j;k D 0; Œcurlx.wRŒV�/�j;k D @xkw Rj;sŒVs� � @xjw Rk;sŒVs�;

(11.109)

and

divx.RŒwV�/ � divx
�
wRŒV�

�
D

NX

jD1
@xjw Vj �

NX

i;jD1
@xiw Ri;jŒVj�: (11.110)

Next we observe that for any s, 1
r C 1

p � 1
N < 1

s < 1 there exist 1 � r1 D
r1.s; p/ < r < r2 D r2.s; p/ < 1 such that

1

r1
C 1

p
� 1

N
D 1

s
D 1

r2
C 1

p
:

Taking advantage of (11.108)–(11.110) and using Theorem 11.32 together with
the Hölder inequality, we may infer that

�
��RŒwV� � wRŒV�

�
��
W1;s.RN IRN /

� ckwkW1;r2 .RN /kVkLp.RN IRN /: (11.111)

On the other hand, Theorem 11.32 combined with the continuous embedding

W1;r1 .RN/ ,! L
Nr1

N�r1 .RN/, and the Hölder inequality yield

�
�
�RŒwV� � wRŒV�

�
�
�
Ls.RN IRN /

� ckwkW1;r1 .RN /kVkLp.RN IRN /: (11.112)

We thus deduce that, for any fixed V 2 Lp.�IRN/, the linear operator w !
RŒwV� � wRŒV� is a continuous linear operator from W1;r2 .�/ to W1;s.�;RN/ and
from W1;r1 .�/ to Ls.�IRN/. Now we conclude by the Riesz-Thorin interpolation
theorem (see [257]) that this operator is as well continuous from W1;r.�/ to
Wˇ;s.�/, where ˇ 2 .0; 1/ verifies the formula ˇ

r1
C 1�ˇ

r2
D 1

r .
This finishes the proof.

�
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11.19 Renormalized Solutions to the Equation of Continuity

In this section we explain the main ideas of the regularization technique developed
by DiPerna and Lions [85] and discuss the basic properties of the renormalized
solutions to the equation of continuity. To begin, we introduce a variant of the
classical Friedrichs commutator lemma.

� FRIEDRICHS’ COMMUTATOR LEMMA IN SPACE:

Lemma 11.12 Let N 	 2, ˇ 2 Œ1;1/, q 2 Œ1;1�, where 1
q C 1

ˇ
D 1

r 2 .0; 1�.
Suppose that

% 2 Lˇloc.R
N/; u 2 W1;q

loc .R
N IRN/:

Then

divx
�
S�Œ%u�

�
� divx

�
S�Œ%�u

�
! 0 in Lrloc.R

N/; (11.113)

where S" is the mollifying operator introduced in (11.3)–(11.4).

Proof We have

divx
�
S�Œ%u�

�
� divx

�
S�Œ%�u

�
D I" � S".%/divxu;

where

I".x/ D
Z

RN
%.y/Œu.y/ � u.x/� � rx�".x � y/dy: (11.114)

According to Theorem 11.3,

S".%/divxu ! %divxu in Lrloc.R
N/I

whence it is enough to show that

I" ! %divxu in Lrloc.R
N/: (11.115)

After a change of variables y D x C "z, formula (11.114) reads

I".x/ D R
jzj�1 %.x C "z/ u.xC"z/�u.x/

"
� rx�.z/dz

D R 1
0

R
jzj�1 %.x C "z/ z � rxu.x C "tz/ � rx�.z/dz dt;

(11.116)
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where we have used the Lagrange formula

u.� C "z/ � u.�/ D "

Z 1

0

z � rxu.� C "tz/dt:

From (11.116) we deduce a general estimate

kI"kLs.BR/ � c.r; s; p; q/ k%kLp.BrC1/k krxEukLq.BrC1/; (11.117)

where Br is a ball of radius r in R
N , and where

8
<̂

:̂

s is arbitrary in Œ1;1/ if p D q D 1;

1
s D 1

q C 1
p if 1

q C 1
p 2 .0; 1�

9
>=

>;
:

Formula (11.117) can be used with %n � % and p D ˇ, q and s D r, where
%n 2 Cc.R

N/, %n ! % strongly in Lˇloc.R
N/, in order to justify that it is enough to

show (11.115), with % belonging to Cc.R
N/. For such a %, we evidently have

I".x/ ! Œ%divxu�.x/ a. a. in R
N

as is easily seen from (11.116). Moreover, formula (11.117) now with p D 1,
yields I" bounded in Ls.Br/ with s > r. This observation allows us obtain the desired
conclusion by means of Vitali’s convergence theorem.

�

In the case of a time dependent scalar field % and a vector field u, Lemma 11.117
gives rise to the following corollary.

� FRIEDRICHS COMMUTATOR LEMMA IN TIME-SPACE:

Corollary 11.3 Let N 	 2, ˇ 2 Œ1;1/, q 2 Œ1;1�, 1q C 1
ˇ

D 1
r 2 .0; 1�. Suppose

that

% 2 Lˇloc..0;T/ � R
N/; u 2 Lqloc.0;TIW1;q

loc .R
N IRN//:

Then

divx
�
S�Œ%u�

�
� divx

�
S�Œ%�u

�
! 0 in Lrloc..0;T/ � R

N/; (11.118)

where S" is the mollifying operator introduced in (11.3)–(11.4) acting solely on the
space variables.
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With Lemma 11.12 and Corollary 11.3 at hand, we can start to investigate the
renormalized solutions to the continuity equation.

� RENORMALIZED SOLUTIONS OF THE CONTINUITY EQUATION I:

Theorem 11.36 Let N 	 2, ˇ 2 Œ1;1/, q 2 Œ1;1�, 1q C 1
ˇ

2 .0; 1�. Suppose that

the functions .%;u/ 2 Lˇloc..0;T/ � R
N/ � Lqloc.0;TIW1;q

loc .R
N IRN//, where % 	 0 a.

e. in .0;T/ � R
N, satisfy the transport equation

@t%C divx.%u/ D f in D0..0;T/ � R
N/; (11.119)

where f 2 L1loc..0;T/ � R
N/.

Then

@tb.%/C divx
�
.b.%/u

�
C
�
%b0.%/ � b.%/

�
divxu D fb0.%/ in D0..0;T/ � R

N/

(11.120)

for any

b 2 C1.Œ0;1//; b0 2 Cc.Œ0;1//: (11.121)

Proof Taking convolution of (3.198) with �" (see (11.3)–(11.4)), that is to say using
�".x � �/ as a test function, we obtain

@t

�
S"Œ%�

�
C divx

�
S"Œ%�u

�
D }".%;u/; (11.122)

where

}".%;u/ D divx
�
S"Œ%�u

�
� divxS"Œ%u� a.e. in .0;T/ � R

N :

Equation (11.122) can be multiplied on b0.S"Œ%/�, where b is a globally Lipschitz
function on Œ0;1/; one obtains

@tb .S"Œ%�/C divx Œb .S"Œ%�/ u� (11.123)

C �
S"Œ%�b

0 .S"Œ%�/ � b .S"Œ%�/
	 D }".%;u/ b0 .S"Œ%�/ :

It is easy to check that for " ! 0C the left hand side of (11.123) tends to the
desired expression appearing in the renormalized formulation of the continuity
equation (11.120). Moreover, the right hand side tends to zero as a direct conse-
quence of Corollary 11.3.

�



11.19 Renormalized Solutions to the Equation of Continuity 495

Once the renormalized continuity equation is established for any b belonging
to (11.121), it is satisfied for any “renormalizing” function b belonging a larger
class. This is clarified in the following lemma.

� RENORMALIZED SOLUTIONS OF THE CONTINUITY EQUATION II:

Lemma 11.13 Let N 	 2, ˇ 2 Œ1;1/, q 2 Œ1;1�, 1q C 1
ˇ

2 .0; 1�. Suppose that

the functions .%;u/ 2 Lˇloc..0;T/ � R
N/ � Lqloc.0;TIW1;q

loc .R
N IRN//, where % 	 0

a. e. in .0;T/ � R
N, satisfy the renormalized continuity equation (11.120) for any b

belonging to the class (11.121).
Then we have:

(i) If f 2 Lp
loc..0;T/ � R

N/ for some p > 1, p0. ˇq0
� 1/ � ˇ, then Eq. (11.120)

holds for any

b 2 C1.Œ0;1//; jb0.s/j � cs�; for s > 1; where � � ˇ

q0 � 1: (11.124)

(ii) If f D 0, then Eq. (11.120) holds for any

b 2 C.Œ0;1//\ C1..0;1//;

lims!0C
�
sb0.s/� b.s/

�
2 R;

jb0.s/j � cs� if s 2 .1;1/ for a certain � � ˇ

q0
� 1

(11.125)

(iii) The function z ! b.z/ in any of the above statements (i)–(ii) can be replaced
by z ! cz C b.z/, c 2 R, where b satisfies (11.124) or (11.125) as the case
may be.

(iv) If f D 0, then

@t

�
%B.%/

�
C divx

�
%B.%/u

�
C b.%/divxu D 0 in D0..0;T/�R

N/ (11.126)

for any

b 2 C.Œ0;1// \ L1.0;1/; B.%/ D B.1/C
Z %

1

b.z/

z2
dz (11.127)

Proof Statement (i) can be deduced from (11.120) by approximating conveniently
the functions b satisfying relation (11.124) by functions belonging to the class
C1.Œ0;1// \ W1;1.0;1/ and using consequently the Lebesgue dominated or
Vitali’s and the Beppo-Levi monotone convergence theorems. We can take a
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sequence S 1
n
.bıTn/, n ! 1, where Tn is defined by (11.76), and with the mollifying

operator S 1
n

introduced in (11.3)–(11.4).
Statement (ii) follows from (i): The renormalized continuity equation (11.121)

certainly holds for bh.�/ WD b.h C �/. Thus we can pass to the limit h ! 0C,
take advantage of condition lims!0C.sb0.s/ � b.s// 2 R, and apply the Lebesgue
dominated convergence.

Statement (iii) results from summing the continuity equation with the renormal-
ized continuity equation.

The function z ! zB.z/ satisfies assumptions (11.125). Statement (iv) thus
follows immediately from (ii).

�

Next, we shall investigate the pointwise behavior of renormalized solutions with
respect to time.

� TIME CONTINUITY OF RENORMALIZED SOLUTIONS

Lemma 11.14 Let N 	 2, ˇ; q 2 .1;1/, 1
q C 1

ˇ
2 .0; 1�. Suppose that the

functions .%;u/ 2 L1.0;TILˇloc.R
N// � Lq.0;TIW1;q

loc .R
N IRN//, % 	 0 a.a. in

.0;T/�R
N, satisfy continuity equation (11.119)with f 2 Lsloc..0;T/��/, s > 1, and

renormalized continuity equation (11.120) for any b belonging to class (11.121).
Then

% 2 Cweak.Œ0;T�ILˇ.O//\ C.Œ0;T�;Lp.O//

with any 1 � p < ˇ and O any bounded domain in RN.

Proof According to Lemma 11.13,

@t� C divx.�u/ D 1

2
�divxu in D0..0;T/ � R

N/;

where we have set � D p
%; we may therefore assume that

� 2 Cweak.Œ0;T�IL2ˇ.O// for any bounded domain O � R
N : (11.128)

Regularizing the latter equation over the space variables, we obtain

@t .S"Œ��/C divx .S"Œ��u/ D 1

2
S" Œ�divxu�C }".�;u/ a.a. in .0;T/ � R

N ;
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where S" and }" are the same as in the proof of Theorem 11.36. Now, applying to
the last equation Theorem 11.36 and Lemma 11.13, we get

@t .S"Œ��/
2 C divx

�
.S"Œ��/

2 u
�

D S"Œ��S" .�divxu/

C 2S"Œ��}".�;u/ � .S"Œ��/
2 divxu a.a. in .0;T/ � R

N : (11.129)

We employ Eq. (11.129) together with Theorem 11.3 and Corollary 11.3 to verify
that the sequence fR

�
.S"Œ��/

2 � d xg">0, � 2 C1
c .R

N/ satisfies assumptions of
Arzelà-Ascoli theorem on C.Œ0;T�/. Combining this information with separability
of Lˇ

0

.O/ and the density argument, we may infer that

Z

O
.S"Œ��/

2 � d x !
Z

O
�2.t/� d x in C.Œ0;T�/:

for any � 2 Lˇ
0

.O/.
On the other hand, Theorem 11.3 yields

.S"Œ��/
2 .t/ ! �2.t/ in Lˇ.O/ for all t 2 Œ0;T�I

therefore
R
O �

2� d x D R
O �

2� d x on Œ0;T� and

�2 2 Cweak.Œ0;T�ILˇ.O//: (11.130)

Relations (11.128) and (11.130) yield � 2 C.Œ0;T�IL2.O//, whence we complete
the proof by a simple interpolation argument.

�

We conclude this section with a compactness result involving the renormalized
continuity equation.

Theorem 11.37 Let N 	 2, ˇ > 2N
NC2 , � be a bounded Lipschitz domain in R

N,
T > 0, and

B 2 C.Œ0;T� �� � Œ0;1//; sup
.t;x/2.0;T/��

jB.t; x; s/j � c.1C sp/; (11.131)

where c is a positive constant, and 0 < p < NC2
2N ˇ is a fixed number.

Suppose that f%n 	 0;ung1
nD1 is a sequence with the following properties:

(i)

%n ! % weakly � .
/ in L1.0;TILˇ.�//;

un ! u weakly in L2.0;TIW1;2.�IRN//I
(11.132)



498 11 Appendix

(ii)

Z T

0

Z

�

�
a.%n/@t' C a.%n/un � rx' � .%na

0.%n/� a.%n//divxun
�

d xdt D 0

(11.133)

for all a 2 C1.Œ0;1//\ W1;1..0;1//, and for all ' 2 C1
c ..0;T/ ��/.

Then the sequence fB.�; �; %n/g1
nD1 is precompact in the space Ls.0;TIW�1;2 .�//

for any s 2 Œ1;1/.

Proof Step 1 Due to Corollary 11.2 and in accordance with assumptions (11.131)–
(11.133),

sup
n2N

kB.�; �; Tk.%n// � B.�; �; %n/k
L

2N
NC2 .�/

! 0 as k ! 1;

where Tk is the truncation function introduced in (11.76). Since Lˇ.�/ ,!,!
W�1;2.�/ whenever ˇ > 2N

NC2 , it is enough to show precompactness of the sequence
of composed functions B.�; �; Tk.%n//.

Step 2 According to the Weierstrass approximation theorem, there exists a
polynomial A" on R

NC2 such that

kA" � BkC.Œ0;T����Œ0;2k�/ < ";

where " > 0. Therefore,

sup
n2N

kA".�; �; Tk.%n/ � B.�; �; Tk.%n/kL1..0;T/��/ < ":

Consequently, it is merely enough to show precompactness of any sequence of
type a1.t/a2.x/a.%n/, where a1 2 C1.Œ0;T�/, a2 2 C1.�/, and where a belongs to
C1.Œ0;1//\W1;1..0;1//. However, this is equivalent to proving precompactness
of the sequence a.%n/, a 2 C1.Œ0;1//.

Step 3 Since %n, un solve Eq. (11.133), we easily check that the functions t !
Œ
R
�
a.%n/' d x�.t/ form a bounded and equi-continuous sequence in C.Œ0;T�/ for all

' 2 C1
c .�/. Consequently, the standard Arzelà-Ascoli theorem combined with the

separability of Lˇ
0

.�/ yields, via density argument and a diagonalization procedure,
the existence of a function a.%/ 2 Cweak.Œ0;T�ILˇ.�// satisfying

Z

�

a.%n/' d x !
Z

�

a.%/' d x in C.Œ0;T�/ for all ' 2 Lˇ
0

.�/

at least for a chosen subsequence. Since Lˇ.�/ ,!,! W�1;2.�/, we deduce that

a.%n/.t; �/ ! a.%/.t; �/ strongly in W�1;2.�/ for all t 2 Œ0;T�:
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Thus applying Vitali’s theorem to the sequence fka.%n/kW�1;2.�/g1
nD1, which is

bounded in L1.0;T/ completes the proof.
�

11.20 Transport Equation and the Euler System

For a given vector field w D w.t; x/, consider the transport equation

@tU C w � rxU D 0; U.0; x/ D U0.x/: (11.134)

We also define a weak solution to the transport equation in .0;T/ � RN via a family
of integral identities

Z T

0

Z

RN
.U@t' C Uw � rx' C Udivxw'/ dx dt D �

Z

RN
U0'.0; �/ dx (11.135)

for any ' 2 C1
c .Œ0;T/ � RN/.

Solutions of (11.134) can be computed by the method of characteristics. Specifi-
cally, supposing we can solve the system of ordinary differential equations

d

dt
X.t; x/ D w .t;X.t; x// ; X.0; x/ D x;

we may take

U .t;X.t; x// D U0.x/; t 	 0; x 2 R
N :

More specifically, the following holds.

� CHARACTERISTICS AND TRANSPORT EQUATION:

Theorem 11.38 Let the vector field w belongs to the class

w 2 L1..0;T/ � R
N IRN/; rxw 2 L1.0;TIL1.RN IRN�N/:

Then for any U0 2 L1.RN/ the problem (11.134) admits a solution U determined
by the method of characteristics. Moreover, the solution is unique in the class of
weak solutions satisfying (11.135).

See DiPerna and Lions [85] �
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Finally, we consider the incompressible Euler system

@tv C v � rxv C rx… D 0; divxv D 0; v.0; �/ D v0: (11.136)

� CLASSICAL SOLUTIONS TO THE EULER SYSTEM:

Theorem 11.39 Let v0 2 Wm;2.RN/ be given such that

m >

�
N

2

�
C 1; N D 2; 3; divxv0 D 0:

Then the initial-value problem (11.136) admits a classical solution v, unique in
the class

v 2 C.Œ0;Tmax/IWm;2.RN IRN//; … 2 C.Œ0;Tmax/IWm;2.RN//;

@tv 2 C.Œ0;Tmax/IWm�1;2.RN IRN//

defined on some maximal time interval Œ0;Tmax/, where Tmax > 0 if N D 3 and
Tmax D 1 if N D 2.

See Kato and Lai [167] �

Finally, we remark that vorticity w D curlxv satisfies the pure transport equation

@tw C v � rxw D 0 if N D 2;

and

@tw C v � rxw D w � rxv if N D 3:

Therefore the theory of the transport equation (11.134) may be applied as long as
the velocity field v is smooth.



Chapter 12
Bibliographical Remarks

12.1 Fluid Flow Modeling

The material collected in Chap. 1 is standard. We refer to the classical monographs
by Batchelor [20] or Lamb [180] for the full account on the mathematical theory
of continuum fluid mechanics. A more recent treatment may be found in Truesdell
and Noll [259] or Truesdell and Rajagopal [260]. An excellent introduction to the
mathematical theory of waves in fluids is contained in Lighthill’s book [188].

The constitutive equations introduced in Sect. 1.4, in particular, the mechanical
effect of thermal radiation, are motivated by the mathematical models in astro-
physics (see Battaner [21]). Relevant material may be also found in the monographs
by Bose [31], Mihalas and Weibel-Mihalas [213], Müller and Ruggeri [217], or
Oxenius [228]. A general introduction to the theory of equations of state is provided
by Eliezer et al. [93].

In the present monograph, we focused on thermodynamics of viscous com-
pressible fluids. For the treatment of problems related to inviscid fluids as well
as more general systems of hyperbolic conservation laws, the literature provides
several comprehensive seminal works, for instance, Benzoni-Gavage and Serre
[26], Bressan [38], Chen and Wang [58], Dafermos [68], and Serre [247].

The weak solutions in this book are considered on large time intervals. There is a
vast literature investigating (strong) solutions with “large” regular external data on
short time intervals and/or with “small” regular external data on arbitrary large time
intervals for both the Navier-Stokes equations in the barotropic regime and for the
Navier-Stokes-Fourier system. These studies were originated by the seminal work
of Matsumura and Nishida [206, 207], and further developed by many authors:
Beirao da Veiga [23], Cho et al. [59] Danchin [70, 71], Hoff [149–154], Jiang
[159], Matsumura and Padula [208, 221], Padula and Pokorný [229], Salvi and
Straškraba [241], Valli and Zajaczkovski [264], among others.

As far as the singular limits in the fluid dynamics are concerned, the mathe-
matical literature provides two qualitatively different groups of results. First one

© Springer International Publishing AG 2017
E. Feireisl, A. Novotný, Singular Limits in Thermodynamics of Viscous Fluids,
Advances in Mathematical Fluid Mechanics, DOI 10.1007/978-3-319-63781-5_12

501



502 12 Bibliographical Remarks

concerns the investigation of singular limits in the passage from the microscopic
description provided by the kinetic models of Boltzmann’s type to the macroscopic
one represented by the Euler, Navier-Stokes, and Navier-Stokes-Fourier equations
and their modifications. The reader may find interesting to compare the methods
and techniques used in the present monograph to those developed in the context of
kinetic equations and their asymptotic limits by Bardos et al. [17–19], Bardos and
Ukai [16], Golse and Saint-Raymond [144], Golse and Levermore [143], Lions
and Masmoudi [196, 197], see also the review paper by Villani [266] as well as the
references therein. The second group of problems concerns the relations between
models at the same conceptual level provided by continuum mechanics studied in
this book. We refer to Sect. 12.4 for the corresponding bibliographic remarks.

12.2 Mathematical Theory of Weak Solutions

Variational (weak) solutions represent the most natural framework for a mathemat-
ical formulation of the balance laws arising in continuum fluid mechanics, these
being originally formulated in the form of integral identities rather than partial
differential equations. Since the truly pioneering work of Leray [184], the theory of
variational solutions, based on the function spaces of Sobolev type and developed in
the work of Ladyzhenskaya [177], Temam [255], Caffarelli et al. [45], Antontsev
et al. [11], and, more recently Lions [191], has become an important part of modern
mathematical physics.

Although many of the above cited references concern the incompressible fluids,
where the weak solutions are expected (but still not proved) to be regular at least for
smooth data, the theory of compressible and/or compressible and heat conducting
fluids supplemented with arbitrarily large data is more likely to rely on the concept
of “genuinely weak” solutions incorporating various types of discontinuities and
other irregular phenomena as the case may be (for relevant examples see Desjardins
[79], Hoff [153, 154], Hoff and Serre [155], Vaigant [261], among others). Pursuing
further this direction some authors developed the theory of measure valued solutions
in order to handle the rapid oscillations that solutions may develop in a finite time
(see DiPerna [83], DiPerna and Majda [86], Málek et al. [201]). The representation
of the basic physical principles in terms of conservation laws has been discussed in
a recent paper by Chen and Tores [57] devoted to the study of vector fields with
divergence measure.

A rigorous mathematical theory of compressible barotropic fluids with large data
was presented only recently in the pioneering work by Lions [192] (see also a very
interesting related result by Vaigant and Kazhikhov [262]). The fundamental idea
discussed already by Hoff [152] and Serre [246] is based on a “weak continuity”
property of a physical quantity termed effective viscous pressure, together with a
clever use of the renormalized equation of continuity in order to describe possible
density oscillations. A survey of the relevant recent results in this direction can be
found in the monograph [224].
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12.3 Existence Theory

The seminal work of Lions [192] on the existence for compressible viscous
barotropic fluids requires certain growth restrictions on the pressure, specifically,
the adiabatic exponent 
 	 9

5
in the nonsteady case, and 
 > 5

3
in the steady case.

These result have been improved by means of a more precise description of the
density oscillations in [101, 117] up to the adiabatic exponents 
 > 3

2
. Finally,

Frehse, Goj, Steinhauer in [128] and Plotnikov, Sokolowski in [232] derived,
independently, new estimates, which has been quite recently used, at least in the
steady case, to extend the existence theory to smaller adiabatic exponents, see
[39, 223, 233] and [160], among others. Recently, Plotnikov and Weigant [234]
succeeded in applying these ideas also to the evolutionary isothermal case in two
space dimensions. Time periodic solutions have been investigated in [116, 121].
All above mentioned results deal with no inflow/outflow boundary conditions. A
few existence results with large inflow/outflow boundary data are available at least
in the barotropic case in [139] and recently in [54, 115]. A progress has been
made also in another direction, namely relaxation of certain hypotheses concerning
the structure of the viscous stress tensor as well as pressure required by the theory
based on Lions’ ideas, see Bresch and Jabin [36].

The existence theory presented in this book can be viewed as a part of the
program originated in the monograph [102]. In comparison with [102], the present
study contains some new material, notably, the constitutive equations are much
more realistic, with structural restrictions based on purely physical principles, and
the transport coefficients are allowed to depend on the temperature. These new
ingredients of the existence theory have been introduced in a series of papers [103–
105, 107] and recently revisited in [126].

Recently, several works appeared constructing weak solutions from the conver-
gent numerical schemes, see for example Eymard et al. [98] for the compressible
Stokes problem, Karper [163] for the equations in barotropic regime, [124] for the
full system or monograph [125] and references quoted there.

Several new ideas related to the existence problem for the full Navier-Stokes-
Fourier system with density dependent shear and bulk viscosities satisfying a partic-
ular differential relation have been developed recently in a series of papers by Bresch
and Desjardins [34, 35]. Making a clever use of the structure of the equations, the
authors discovered a new integral identity which allows to obtain uniform estimates
on the density gradient and which may be used to prove existence of global-in-time
solutions in some particular situations, see Vasseur, Yu [265], Li, Xin [185].

12.4 Analysis of Singular Limits

Many recent papers and research monographs explain the role of formal scaling
arguments in the physical and numerical analysis of complex models arising in
mathematical fluid dynamics. This approach has become of particular relevance in
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meteorology, where the huge scale differences in atmospheric flows give rise to a
large variety of qualitatively different models, see the survey papers by Klein et al.
[173], Klein [171, 172], the lecture notes of Majda [200], and the monographs
by Chemin et al. [56], Zeytounian [274–276]. The same is true for applications
in astrophysics, see the classical book of Chandrasekhar [53], or the more recent
treatment by Gilman, Glatzmeier [138, 140], Lignières [189], among others.

The “incompressible limit” Ma ! 0 for various systems arising in mathematical
fluid dynamics was rigorously studied in the seminal work by Klainerman and
Majda [170] (see also Ebin [89]). One may distinguish two kinds of qualitatively
different results based on different techniques. The first approach applies to strong
solutions defined on possibly short time intervals, the length of which, however,
is independent of the value of the parameter Ma ! 0. In this framework, the
most recent achievements for the full Navier-Stokes-Fourier system can be found
in the recent papers by Alazard [3, 4] (for earlier results see the survey papers by
Danchin [72], Métivier and Schochet [212], Schochet [244], and the references
cited therein).

The second group of results is based on a global-in-time existence theory for
the weak solutions of the underlying primitive system of equations, asserting
convergence towards solutions of the target system on an arbitrary time interval.
Results of this type for the isentropic Navier-Stokes system have been obtained by
Lions and Masmoudi [194, 195], and later extended by Desjardins et al. [81],
Bresch et al. [37]. For a survey of these as well as of many other related results, see
the review paper by Masmoudi [204].

The investigation of singular limits for the full Navier–Stokes–Fourier system
in the framework of weak variational solutions has been originated in [108] and
[109]. The spectral analysis of acoustic waves in the presence of strong stratification
exposed in Chap. 6 follows the book of Wilcox [272], while the weighted Helmholtz
decomposition used throughout the chapter has been inspired by Novotný and
Pileckas [222]. Related results based on the so-called local method were obtained
only recently by Masmoudi [205]. The refined analysis of the acoustic waves
presented in Chap. 7 is based on the asymptotic expansion technique developed by
Vishik and Ljusternik [267] to handle singular perturbations of elliptic operators,
later adopted in the pioneering paper of Desjardins et al. [81] to the wave operator
framework. Related techniques are presented in the monograph of Métivier [211].

12.5 Propagation of Acoustic Waves

There is a vast literature concerning acoustics in fluids, in general, and acoustic
analogies and equations, in particular. In the study of the low Mach number limits,
we profited from the theoretical work by Schochet [243–245]. Besides, the truly
pioneering work in the context of weak solutions is the paper by Desjardins and
Grenier [80], where the Strichartz estimates are used. A nice introduction to the
linear theory of wave propagation is the classical monograph by Lighthill [188].



12.6 Relative Energy, Inviscid Limits 505

The nonlinear acoustic phenomena together with the relevant mathematical theory
are exposed in the book by Enflo and Hedberg [94].

Lighthill’s acoustic analogy in the spirit of Chap. 10 has been used by many
authors, let us mention the numerical results obtained by Golanski et al. [141, 142].

Clearly, this topic is closely related to the theory of wave equation both in linear
and nonlinear setting. Any comprehensive list of the literature in this area goes
beyond the scope of the present monograph, and we give only a representative
sample of results: Bahouri and Chemin [14], Burq [43], Christodoulou and
Klainerman [61], Smith and Tataru [250], or, more recently, Metcalfe and Tataru
[210].

12.6 Relative Energy, Inviscid Limits

The method of relative entropies (energies) proposed in the truly pioneering work
of Dafermos [67] has been used by many authors in rather different context,
see Masmoudi [203, 204], Saint–Raymond [240], Sueur [253] to name only a
few. Applications to the Navier-Stokes-Fourier system have been established only
recently in [110] (see also [106, 119, 120]). This tool proved to be very efficient
in investigating singular limits with lack of compactness for the velocity field
occurring typically in the high Reynolds number regime, see [111, 112, 253] and
also Chap. 9 of this monograph. It appeared also to be efficient in investigation of
multiply scaled distinguished singular limits, see [113, 114] or in the dimension
reduction of the compressible models, see [24, 25, 202]. Note that similar ideas in
the context of purely barotropic fluids were exploited by Masmoudi [203], Wang
and Jiang [271], or Jiang et al. [161], among others. Applications of the relative
energy method to the numerical schemes with goal to establish error estimates has
been started in Gallouet et al. [133].

The problem of inviscid (zero dissipation) limits was considered in Chap. 9 in
its “mild” form, in particular, the effect of the boundary layer was eliminated by a
proper choice of the boundary conditions. In general, the velocity component of the
primitive system on domains with boundaries is expected to take the form

u" D U C UBL (12.1)

where U is the solution of the limit inviscid problem and UBL is small except at a
small neighborhood of the boundary. The behavior of UBL is determined by Prandtl’s
equation, however, rigorous results concerning validity of (12.1) are in a short
supply, see the survey papers by W. E [88], Grenier et al. [146], or Masmoudi [204].
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