
103

3.1 Information Technology
Systems

 3.1.1 COMPUTER SYSTEMS

The study of informatics must begin at the most elemental
level. Only by understanding computer systems can we prog-
ress to understanding how they work and what they can do.

 3.1.1.1 Programming
Programming is the technique by which we tell computers
what we expect of them. From a physical (electronic) stand-
point, all information in the computer must be represented by
a series circuits which are either “on” or “off”. For conve-
nience, we usually refer to these values as 1’s and 0’s (binary).
By convention, the computer reads a series of binary numbers
(usually a multiple of 8) which correlates to a specific instruc-
tion. Each of these instructions tells the computer to perform
some simple task. Most of these instructions involve fetching
data from memory, storing data into memory or performing
some kind of mathematical operation. By combining thou-
sands or millions of very simple operations, we can instruct
the computer to perform useful and interesting tasks.

For example, the following is a very short program written
in Intel x86 machine code which adds the numbers 23 and 44.

MACHINE CODE WHAT IT MEANS

01100110101110000001011100000000 Load the number 23 into
a register called ax

01100110101110110010110000000000 Load the number 44 into
another register called
bx

011001100000000111011000 Add the two numbers in
ax and bx

When written on paper, binary notation can be quite ver-
bose. For convenience, the above program can be expressed in

SCOTT MANKOWITZ

CHAPTER OUTLINE

 3.1.1 Computer Systems
 3.1.1.1 Programming
 3.1.1.2 Data and Control Structures
 3.1.1.3 Software Development Methods
 3.1.1.4 System Integration
 3.1.1.5 Quality
 3.1.1.6 Information Systems Design and Analysis

 3.1.2 Architecture
 3.1.2.1 Systems (e.g., Distributed, Centralized, Relational,

Object Oriented, Warehouses/Data Marts)
 3.1.2.2 Networks
 3.1.2.3 Data/Database

 3.1.3 Networks
 3.1.3.1 Topologies
 3.1.3.2 Telecommunications

 3.1.4 Security
 3.1.4.1 The HIPAA Security Rule and Other Government

Regulations
 3.1.4.2 Firewalls
 3.1.4.3 Virtual Private Networks
 3.1.4.4 Encryption

 3.1.5 Data
 3.1.5.1 Integrity
 3.1.5.2 Mapping
 3.1.5.3 Manipulation (e.g., Querying, SQL, Reporting)
 3.1.5.4 Representation and Types
 3.1.5.5 Warehousing
 3.1.5.6 Data Mining and Knowledge Discovery

 3.1.6 Technical Approaches That Enable Sharing Data
 3.1.6.1 Integration Versus Interfacing
 3.1.6.2 Dealing with Multiple Identifiers
 3.1.6.3 Anonymization of Data

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-63766-2_6&domain=pdf

104

hexadecimal notation (base 16). Note that the information is exactly the same, only the pre-
sentation is different. See Box 6-1—Hexadecimal Notation.

66B8170066BB2C006601D8

Although the computer understands this code natively, it is very difficult for us humans to
parse. In order to make programming easier, computer scientists created assembly language
which uses words and abbreviations in place of the long strings of numbers. The program-
mer writes the program in assembly language while another program (called an assembler)
translates it into machine code.

In the code snippet below, the left column represents the machine code while the right column
is assembly language. To the far right are human-readable comments which make the code easier
to understand (The assembler ignores the comments when it produces machine code.)

0: 66 b8 17 00 mov ax,0x17 ;move the number 23 (17 hex)into
 register ax
4: 66 bb 2c 00 mov bx,0x2c ;move 44 (2c hex) in register bx
8: 66 01 d8 add ax,bx ;add the two registers ax and bx

As the complexity of programs grew, it became impractical to write programs in assem-
bly language, and higher-order languages were created. By the late 1950s, IBM had devel-
oped a language called FORTRAN (FORmula TRANslator). Compared to assembly
language, FORTRAN was easier to read, easier to write, and much easier to debug. Instead

Box 6-1: Hexadecimal Notation
When humans talk about numbers, we use base 10 (decimal). Computers store data in
base 2 (binary). Each Binary digiIT is called a bit. Eight bits compose one byte.
Programmers often use base 16 (hexadecimal) to express numbers because it is more
compact than binary. Since 16 is a power of 2, an 8-digit binary number can be repre-
sented as a 2-digit hex number. Longer strings of bytes are measured in multiples of
1024 (210). For example, a string of 1024 bytes is called a kilobyte; 1024 kilobytes is
a megabyte, and so on.

DECIMAL BINARY HEX

 1 0000 0001 01

 2 0000 0010 02

 3 0000 0011 03

 4 0000 0100 04

 5 0000 0101 05

 6 0000 0110 06

 7 0000 0111 07

 8 0000 1000 08

 9 0000 1001 09

10 0000 1010 0A

11 0000 1011 0B

12 0000 1100 0C

13 0000 1101 0D

14 0000 1110 0E

15 0000 1111 0F

16 0001 0000 10

S. MAN KOWITZ

105

of mapping the computer’s machine code into short words and mnemonics, FORTRAN
was a completely new language with its own syntax and grammar. Below is an example of
an FORTRAN program in the f90 dialect which prints the result of an arithmetic
problem.

program addnumbers
print *, 23*55+33*155
end program

That’s much easier to read, even for non-programmers. Computers, however, don’t
natively understand Fortran. Instead, yet another program, called a compiler, is needed to
convert the FORTRAN program (known as source code) into machine code. In compiled
languages, the entire program has to be complete before the compiler can begin. Only after
compilation is finished can the program be run.

It is important to note that while assembly language is simply a human-readable form of
machine code, FORTRAN is its own language. There is no direct 1:1 mapping between
FORTRAN and machine code as there is with assembly language. In fact, if two different
FORTRAN compilers are given identical source code, they can produce entirely different
machine code. In some cases, a good compiler can make up for a sloppy programmer by
applying optimizations so that the code runs more quickly.

Sometimes, programmers would like to examine and change a program while it is
running. This desire lead to the creation of the interpreted language, where each line
of the program is passed through an interpreter for execution, and only the part of the
program that is immediately needed will be translated. The program can be stopped and
started whenever necessary. The cost of this flexibility is speed. Compiled languages
tend to run much faster. Probably the most famous interpreted language is BASIC
(Beginner’s All-purpose Symbolic Instruction Code) which appeared on most home
computers in the 1980s. Interestingly, Visual Basic, created by Microsoft, is a compiled
language.

Today, there are more than 8000 established computer languages with widely varying
purposes. There has been great progress in the development of both interpreters and com-
pilers, especially with the advent of Just-In-Time (JIT) compilers, so that both speed of
execution and real-time mutability can be had with either compiled or interpreted
languages.

 3.1.1.2 Data and Control Structures
Control Structures are the linguistic mechanisms that programmers use to tell a com-
puter what to do in a given circumstance. The most simple control structure is the if/
then/else block. Suppose you want the computer to address a female user using an age-
appropriate greeting using the following rule: a person under age 10 is a girl, a person
over age 40 is a lady and everyone else is a woman. In Visual Basic, this logic can be
expressed as the following program. (Note: The command Console.Write prints text to
the screen)

 If age < 10 Then
 Console.Write("Girl")
 ElseIf age > 40 Then
 Console.Write("Lady")
 Else
 Console.Write("Woman")
 End If

Another common construct is the loop, which executes code over and over. In the
following Visual Basic program, the computer is instructed to print the word “cat” 100
times. In Basic, this kind of loop is called a for/next loop because it begins with the

C HAPTER 6 • I N FOR MATION TEC H NOLOGY SYSTEMS

106

word For and ends with the word Next. All of the instructions between the words For
and Next are repeated.

 For counter = 1 To 100
 Console.Write("cat")
 Next

This program starts by setting a counter to 1 and then increasing that counter until it gets
to 100. Each time the loop is run is called an iteration. The counter, which changes its value
during the operation of the program, is called a variable. When using a placeholder for a
value that does not change, it is called a constant or sometimes an invariant. Constants are
commonly used in programs for numbers or strings that are unlikely to change. Some con-
stants are even built into the language. For example, in Javascript there is a constant called
Math.PI which equals 3.141592653589793.

In some cases, the programmer does not know exactly how many times to run a piece of
code. The while loop instructs the computer to repeat a process until some condition is met.
In this case, all the instructions between While and End While are repeated. The for/next
loop above could be rewritten as

 counter = 1
 While counter < 100
 Console.Write("cat")
 counter = counter + 1
 End While

Note that the instruction counter = counter + 1 tells the computer to increase the value
of counter by one, just like the for/next loop. The loop runs over and over (i.e. iterates) until
the value of counter reaches 100.

Control structures can be incredibly powerful. Consider the following code that might be
used to control an insulin pump1:

 If (glucose < 60) Then
 ' Danger: Hypoglycemia
 Activate_Alarm_Bell()
 Page_Covering_Physician()
 ElseIf (glucose > 60 And glucose < 180) Then
 ' No action required
 ElseIf (glucose > 180 And glucose < 400) Then
 ' Use a formula to determine insulin dosage
 ' Insulin dose = 3.2 units for each 100 mg/dl glucose over 140
 Inject_Insulin(3.2 * (glucose - 140)/100)
 ElseIf (glucose > 400) Then
 ' Danger: Hyperglycemia
 Inject_Insulin(10)
 Activate_Alarm_Bell()
 Page_Covering_Physician()
 End If

Functions (or methods) are used to encapsulate pieces of code that are used multiple times.
In the example above, Inject_Insulin and Activate_Alarm_Bell are examples of
functions. In general, functions can take a certain number of arguments which provide the
function with more information on what to do. In the above program, Inject_Insulin

1 There are bugs in this “program.” Can you find them? Hint: what would happen if the blood glucose were
exactly 60?

S. MAN KOWITZ

107

takes the number of units of insulin as an argument, so that Inject_Insulin(10) would
tell the program to inject 10 units of insulin. Functions can also provide a return value. Consider
the following Visual Basic function:

Function Words_In_Book(pages As Integer, words_per_page As Integer) As Integer

 Return pages * words_per_page
End Function

This function may be useful to figure out how many words there are in a book, given the
number of pages and the number of words per page. The keyword return means that the
function gives that number back to the calling program. For example, suppose our book had
200 pages with 450 words per page. We could use our newly defined function like this:

Console.Write(“The book has“)
Console.Write(Words_In_Book(200, 450))
Console.Write(“words”)

Every language has its own version of control structures and syntax tailored to make
certain tasks easier. While some languages are designated all-purpose (such as C, Java, Basic
and others), others are dedicated to a particular purpose. For example, Pascal is a language
designed specifically to teach programming; SQL is designed to interact with databases; and
R is designed for statistics. In some cases, languages can be designed for one purpose and
evolve as needs arise. Both Java and Javascript (ECMAscript) were developed to provide
interactivity to web pages. Today, they play significant roles in server-side programming and
embedded systems.

An introductory programming course is beyond the scope of this book. A truly great and
free reference to learn programming (and many other things) is Khan Academy, www.
khanacademy.org.

 3.1.1.3 Software Development Methods
Small programs are often written by individual developers, but as application requirements
become more complex, the coordination of software teams becomes vital. One of the earliest
software development methods is called waterfall. This is a sequential method, where each
phase has to be complete before proceeding to the next level.

The key components of the waterfall method are arranged in the shape of a waterfall.
(See Fig. 6-1).

The waterfall method has its origins in manufacturing, where applying structural revi-
sions later on in production could be difficult or impossible. Usually, up to 50% of the proj-
ect resources are consumed in the Requirement and Design phases. Once those are thoroughly
hashed out, the remainder are spent on implementation (i.e. writing code), verification (i.e.
debugging) and maintenance. In fact, this is the central tenet of the waterfall model: a few
hours spent thoroughly evaluating requirements and design can save many hundreds of

Requirements

Design

Implementation

Verification

Maintenance

FIGURE 6-1

The waterfall development
method

C HAPTER 6 • I N FOR MATION TEC H NOLOGY SYSTEMS

108

hours later on. An additional benefit is that it provides recognizable and predictable mile-
stones to ensure that a project is running on-time and within budget. Waterfall is often
referred to as a top-down method because it starts at the design phase and works down
towards implementation and maintenance.

Critics of the waterfall method point out that in the real world, project requirements rarely
remain stationary.2 For example, clients may not know what they really want until they have
a working prototype in their hands.

This common occurrence lead to another method called rapid prototyping where the
programmers create representative but incomplete parts of their program so that the client
can see what it will look like in advance. Since the user is involved early on, future changes
are less likely. Starting with the user interface and working backwards is often referred to as
bottom-up.

In an effort to combine waterfall and rapid prototyping, Barry Boehm created the spiral
model which emphasized cyclical iterative risk assessment. Each cycle or iteration repre-
sents only a part of the whole project. It begins with identification of the key stakeholders
and their “win conditions” and ends with review and commitment. The cycles consist of four
parts: (1) Analysis of objectives, alternatives and constraints; (2) Evaluation of alternatives
and identification of risks; (3) Development and verification; (4) Planning for the next cycle
(Fig. 6-2).

A similar method is rapid application development (RAD). Like spiral, it attempts to
reduce project risk by breaking the project into smaller chunks and adhering to strict time-
lines or timeboxes. If the project is not progressing as expected, the requirements are reduced
to fit the timebox, instead of postponing the deadline. Emphasis is on keeping users involved
in the development process and fulfilling business needs over technical excellence. In dis-
tinction to rapid prototyping, RAD involves building completely functional models as
opposed to prototypes. RAD also favors computerized development tools such as code gen-
erators and object-oriented techniques.

Agile software development is another iterative method that advocates for a more light-
weight and people-centric approach. It favors face-to-face, daily interactions between cus-
tomers and programmers. It welcomes change, even late changes, as long as it doesn’t
disrupt the planned delivery date. Agile seeks to avoid being trapped by comprehensive
documentation and strict planning, and instead stresses short cycles of continuously improv-
ing software. Scrum and Extreme Programming (XP) are variations of the agile theme.

2 Hence the old joke: Walking on water, like writing to a specification, is easy—as long as it’s frozen.

Analysis Evaluation

DevelopmentPlanning

FIGURE 6-2

The spiral model of
development emphasizes
cyclical iterative risk
assessment. Public domain
image wikibooks.com.
https://commons.wikime-
dia.org/wiki/File:Software_
Development_Spiral.svg

S. MAN KOWITZ

109

In Test-driven Development (TDD), before any feature is added to a project, the pro-
grammer writes an automated test. After the feature is added and the test passes, it is added
to the application’s library of internal tests. As the application develops, the code is continu-
ously re-tested to ensure that none of the previous tests fail with the addition of new features.
Critics of this process point out that by the time the application is released, it is not uncom-
mon for the testing code to be much larger than the application code.

 3.1.1.4 System Integration
In an ideal world, there would be one computer system to manage information for an entire
organization. In practice, however, most organizations employ a variety of different sys-
tems to accomplish different tasks. In a hospital, for example, the clinical laboratory may
be running a Laboratory Information System (LIS), the radiology department may have a
Radiology Information System (RIS) as well as a Picture Archiving and Communication
System (PACS). Specialized units, such as the Emergency Department or Labor and
Delivery may also have their own information systems tailored to their own particular
workflow. The decision of what kind of system to use in each department is often both bud-
getary and political.

One of the greatest challenges in hospital information technology is to enable these
disparate systems to communicate. In general, this process is called System Integration.
In some cases, the integration is very weak and one system is barely aware of another. In
tightly integrated systems, there is reliable and verifiable two-way communication. The
software used to bind two systems is called an interface. In order to create an interface,
the vendors from the two systems must agree on the volume and type of data to be
transferred.

Vertical Integration is the process of integrating systems based on similar functionality.
For example, a RIS may keep track of radiology orders and results, while a PACS may main-
tain the images. In a vertical integration example, these systems would be tightly integrated
with each other, while other systems, such as dietary or patient billing would be more loosely
integrated. The tightly integrated units are often called silos because they hold information
in one place, but don’t necessarily share it with other silos (Fig. 6-3).

In some cases, it is desirable for every single system to be able to communicate with
every other system. With a small number of systems, this may be a reasonable option,

Radiology Silo

Image
Server

RIS LISBilling
System

Point Of
Care Test

Glucometer

Lab
Instrument

General
Ledger

Finance Silo Laboratory Silo

FIGURE 6-3

Vertical integration. Similar
systems are located in silos (7
interfaces)

C HAPTER 6 • I N FOR MATION TEC H NOLOGY SYSTEMS

110

but as the number of systems increases, the number of interfaces increases exponen-
tially. This topology is sometimes referred to as star integration because the resulting
map looks like an N-pointed star where N is the number of systems. Colloquially, it is
called spaghetti integration because the links look more like a spilled plate of spa-
ghetti. Although expensive, this method provides the best inter-system communication
(Fig. 6-4).

A compromise between the high cost of star integration and the weak communication
offered by vertical integration is horizontal integration. In this method, an entirely new
system is created which is dedicated to providing communication between the other systems.
Once this system is created, the maintenance and expansion costs are minimal because each
new system only requires a single new interface. Moreover, adding new systems is com-
pletely transparent to the existing systems, since systems only consume data that they
require. Of course, the cost of the system to coordinate this information (often called a bus
or enterprise service bus) can be quite high (Fig. 6-5).

Image
Server

RIS

LIS

Billing
System

Point Of
Care Test

Glucometer

Lab
Instrument

General
Ledger

FIGURE 6-4

Star integration. Each system is
connected to every other system
(28 interfaces)

Image
Server

Hospital Information System (HIS)

RIS

LIS

Billing
System

Point Of
Care Test

GlucometerLab
Instrument

General
Ledger

FIGURE 6-5

Horizontal integration. Each
system is connected to a bus
(8 interfaces +1 new system)

S. MAN KOWITZ

111

 3.1.1.5 Quality
Quality in computer systems (as in medicine) is often difficult to define because of the many
factors that need to be taken into account. Some define quality in terms of the usability or
reliability of the final product. Others measure structural aspects of the code base. One
attempt to describe quality is specified in the International Organization for Standards docu-
ment 25010 (ISO-25010), which lists the following eight categories.

 1. Functional Suitability—How well does the system meet the needs of the client? Does it
provide correct and complete solutions to the user needs? Can it accomplish all the tasks
it is supposed to do? For example, when a hospital or medical practice wishes to attest to
meaningful use of a computer system, does it meet all the required specifications?

 2. Performance efficiency—How well does this system function with a given amount of
resources? Is the data store large enough to contain all the patient information required?
Will it scale in capacity as the population grows? Does the system access that information
quickly enough to be useful on a day-to-day basis?

 3. Compatibility—Can this system communicate with other systems? (see Sect 3.1.1.4
System Integration, above) How expensive is it to build interfaces with other common
computer architectures? Can this system coexist with other systems in the same
environment?

 4. Usability—Can an end-user figure this system out? Can he learn it easily? What is the
cost of training users to operate this system? To what degree does it prevent errors, or at
least prevent user errors from harming patients or other users? Once learned, how many
steps are needed to accomplish common, simple tasks?

 5. Reliability—How often must the system be taken down for maintenance? How often is
this system expected to fail? When it does fail, how hard is it to recover?

 6. Security—With the advent of the Health Insurance Portability and Accountability Act
(HIPAA), security is a very important topic in assessing the value of a computer system. Does
the system have a sufficient array of access levels so that users can be given exactly the per-
missions that they need and no others? Does the system prevent unauthorized access to data
or computer programs? Is there a reliable authentication process to correctly identify users
and prevent one user from masquerading as another? Are there detailed security policies?

 7. Maintainability—This section is much more apparent to the software developer and may
not be easily measured by potential customers. In many relationships, this measure can be
boiled down to the question of how well the vendor supports its product. However, in
order to make a supportable product, these questions are useful: Is the system composed
of discrete components so that changing one aspect does not require modification of the
whole system? Can aspects of the system be reused in other systems that require similar
functionality? How difficult is it to test the system to make sure it is running correctly? To
what extent does the system report internal errors? How are those errors tracked? How
hard is it for a service engineer to analyze the errors to make improvements?

 8. Portability—Can the system be moved (“ported”) to another architecture or environ-
ment? When better hardware becomes available, will it be able to take advantage of the
new technology? How difficult is the initial install? Does it use standard installation tools,
or does it require special expertise? How well can it replace another product or be replaced
by another product when needs change?

 3.1.1.6 Information Systems Design and Analysis
When designing a data store, it is very important to make sure that your data architecture matches
the data you intend to gather. Let’s explore a simple example where a researcher is collecting
information on patients for a study. She needs to know the patient’s name, phone number,
address and pulse rate at various times. We can organize the data in a table as follows (Table 6-1):

C HAPTER 6 • I N FOR MATION TEC H NOLOGY SYSTEMS

https://doi.org/10.1007/978-3-319-63766-2_6

112

Each record, or row, of the table contains information about a measurement. That data is
stored in several columns, or fields of different types.

Whenever the researcher records another pulse rate, she adds another line in the table. For
small amounts of data, this could be an Excel™ spreadsheet.

The problem with a spreadsheet is that it is not scalable. As the amount of data grows, a
table might have a million or more rows, which can exceed the capacity of most spread-
sheets. As the number of researchers grows, there may be many different people trying to
access the data at the same time. Most spreadsheets can not accommodate multiple simulta-
neous users. Finally, spreadsheets are only able to provide a single representation of the data
at a time. For example, suppose that one researcher wanted to sort the data by the patient’s
name in order to identify a trend. At the same time, another researcher is trying to enroll a
new patient into the study. Spreadsheets lack the capacity to accomplish both tasks simulta-
neously. Despite these limitations, spreadsheets are used for a startling amount of scientific
recordkeeping.

A more robust method of collecting and maintaining data is the database. A database is
able to handle many simultaneous users and vast amounts of data. It usually contains a per-
mission system so that specific users only have access to certain types of data.

The database is also able to enforce certain rules about what sort of data it will accept.
These rules are often called a schema. For example, in our table, each column has a
particular data type. The pulse rate column and the patient id column are always num-
bers; the Date/Time column always contains a date and time. The remainder of the col-
umns are strings of different lengths. These rules, or constraints, ensure greater data
integrity. Although constraints wouldn’t prevent a user from entering a pulse rate that is
inaccurate, they would prevent someone from inadvertently entering an address in the
patient ID column. The database could also prevent someone from leaving one of the
fields blank.

Standardized Query Language (SQL) is a language used to create and query databases.
The code below can be used to create Table 6-1. Note that INT means an integer type,
DATETIME stores a date and time, and VARCHAR stores a variable length character string
with an optional limit. VARCHAR(25) is a string limited to 25 characters.

CREATE TABLE patient_pulse_data (
 patient_id INT,
 patient_name VARCHAR(25),
 patient_phone VARCHAR(15),
 patient_address VARCHAR(45),
 pulse_date_time DATETIME,
 pulse_rate INT
);

SQL can be surprisingly easy to read for simple queries. The following query will select
the patient name, patient address and pulse readings for a patient with ID of 0003 from the
table called patient_pulse_data.

PATIENT ID PATIENT
NAME

PATIENT PHONE ADDRESS DATE/TIME PULSE
RATE

0002 Jon Harvey (201) 555-1212 24 Front St. 11/12/16 11:39 78

0002 Jon Harvey (201) 555-1212 24 Front St. 11/12/16 11:50 85

0001 Marc Jones (201) 555-2342 90 Field Ave. 11/12/16 11:40 77

0001 Marc Jones (201) 555-2342 90 Field Ave. 11/12/16 11:51 88

0003 Shara Bevs (201) 555-6565 16 Broad St. 11/12/16 11:10 66

0002 Jon Harvey (201) 555-1212 24 Front St. 11/12/16 10:35 90

TABLE 6-1

PATIENT PULSE DATA

S. MAN KOWITZ

113

SELECT patient_name,
 patient_address,
 pulse_rate
FROM patient_pulse_data
WHERE patient_id = 0003

Normalization is the process of organizing the columns and tables in a database to reduce
data redundancy and improve data integrity. How might we improve our Patient Pulse Data
table, above? One way to do this is to remove repeating elements. For example, patient
name, phone number and address is repeated multiple times. If we can assume that a patient
will maintain the same demographic information throughout the length of the study, we
could separate the table into two smaller tables, one which describes the patient and another
which describes our measurements.

The corresponding SQL is

CREATE TABLE pulses (
 patient_id INT,
 pulse_date_time DATETIME,
 pulse_rate INT
);
CREATE TABLE patients (
 patient_id INT,
 patient_name VARCHAR(25),
 patient_phone VARCHAR(15),
 patient_address VARCHAR(45)
);

In this representation, each row of the pulse table (Table 6-2) refers to a single pulse mea-
surement. Each row in the patient information table (Table 6-3) refers to a single patient.
Since a single patient can not be divided into smaller parts, these rows are said to be atomic.

The two-table format (i.e. Tables 6-2 and 6-3) is said to be normalized because each row
of each table refers to one single indivisible idea (i.e. a pulse measurement or a patient, but
not both). When a table is intentionally designed to keep redundant data for performance
purposes, it is called denormalized.

There are two key benefits to normalized data. Firstly, since there is no duplicate information,
it takes up less storage space and is generally easier to modify. The trade-off is that that if infor-
mation is needed from both tables at the same time, the denormalized table is generally faster
because the computer does not have to spend extra time matching up the patient ID values.

DATE/TIME PATIENT ID PULSE RATE

11/12/16 11:39 0002 78

11/12/16 11:50 0002 85

11/12/16 11:40 0001 77

11/12/16 11:51 0001 88

11/12/16 11:10 0003 66

11/13/16 06:00 0002 90

TABLE 6-2

PULSE INFORMATION
(PULSES)

PATIENT ID PATIENT NAME PATIENT PHONE ADDRESS

0001 Marc Jones (201) 555-2342 90 Field Ave.

0002 Jon Harvey (201) 555-1212 24 Front St.

0003 Shara Bevs (201) 555-6565 16 Broad St.

TABLE 6-3

PATIENT INFORMATION (PATIENTS)

C HAPTER 6 • I N FOR MATION TEC H NOLOGY SYSTEMS

114

The second benefit of normalization is the prevention of data anomalies. If one needs to edit
the address for Marc Jones in the normalized table (Table 6-3), it only needs to be edited in one
place. In the denormalized table (Table 6-1), it has to be edited in three different places. If, for
some reason, the address is only updated in one of those locations, the data becomes inconsis-
tent. This is called an update anomaly because an incomplete update causes anomalous data.

Suppose a new patient was enrolled into the study, but did not have any pulse data
acquired yet. In the one-table model, there would be no way to add the person to the table.
(The pulse column can not be left blank because it would violate the constraint.) This prob-
lem is called an insertion anomaly, which is the inability to add new data to a table because
of absence of other data.

The final anomaly is the deletion anomaly, where deletion of one piece of data causes
unintentional loss of other data. In our example above, suppose the researcher made a mis-
take and had to delete Shara Brev’s pulse reading for 11/12/14. Since the entire row would
be deleted, all reference to this patient would disappear.

The two tables are linked (or related) by their common data element, namely the patient
ID. If a user wants to know the pulse values for patient 0001, he would select those values
from the pulse table. If he wants to get demographic information, he would look in the
patient information table.

What if he needs data from both tables? Since the two tables are related by the patient ID,
the computer will match up rows from the two tables to produce the necessary output. This
process is called a join. The fact that tables can be related this way is the defining character-
istic of the Relational DataBase Management System (RDBMS).

The following SQL command will select the patient name from the patients table and the
pulse rate from the pulses table. The two tables will be joined using the common data point
called patient_id.

SELECT patients.patient_name, pulses.pulse_rate
FROM patients JOIN pulses ON (patients.patient_id = pulses.patient_id)

PATIENT_NAME PULSE_RATE

Marc Jones 77

Marc Jones 88

Jon Harvey 78

Jon Harvey 78

Jon Harvey 85

Jon Harvey 90

Shara Bevs 66

 3.1.2 ARCHITECTURE

The architecture of a health information system is every bit as important to its function as the
physical architecture of a house. Understanding the different methods in which data is stored
and retrieved is crucial to building a durable and usable system.

 3.1.2.1 Systems (e.g., Distributed, Centralized,
Relational, Object Oriented, Warehouses/
Data Marts)

Until this point, we have considered data that is rigidly assigned to tables, rows and columns.
An alternative to the RDBMS is the NoSQL database, or the object-oriented (OO) data-
base. In this format, there is no schema to define what data is required or what format it

S. MAN KOWITZ

115

should be in. The primary feature of the OO database is that persistent objects in the database
should be as transferrable and manipulatable as in-memory objects that are used in an object-
oriented programming language.

In one common manifestation of the OO database called a document store, each section
of the database (often called a collection) contains numerous arbitrary objects called docu-
ments. In the example above, each patient could be stored in a document which would
include all the demographic information as well as the pulse readings.3

OO data is often represented in eXtensible Markup Language (XML) or JavaScript
Object Notation (JSON). The following is an example of what a document for patient 0002,
Jon Harvey might look like. Note that all the pulse data pertaining to this patient is stored
together with the demographic information which makes it easy to fetch all the patient infor-
mation at once.

{
 "patient_id":2,
 "patient_name":"Jon Harvey",
 "patient_phone":"(201) 555-1212",
 "patient_address":"24 Front St.",
 "pulses":[
 {
 "pulse_date_time":"11/12/14 11:39",
 "pulse_rate":78
 },
 {
 "pulse_date_time":"11/12/14 11:50",
 "pulse_rate":85
 },
 {
 "pulse_date_time":"11/12/14 10:35",
 "pulse_rate":90
 }
]
}

Since there is no predefined format of these documents, they can be modified quite easily.
If the need arose, adding data about blood pressure or temperature for a single patient would
pose minimal challenge. To do the same thing in an RDBMS would require the creation of
additional columns or even tables.

Another benefit of the OO family of databases is that they are designed to easily scale
horizontally. In other words, the data is often distributed among many commodity computers
which leads to nearly limitless storage and very high availability. RDBMS tend to scale
vertically, which means that there is a single data store and scaling requires a larger hardware
investment. The trade off is that RDBMS usually offer greater data consistency.

There are four characteristics used to describe the reliability of a database: (1) Atomicity
is used to describe database transactions that must be done completely or fail completely.
For example, suppose you had a table keeping track of money in different bank accounts,
and you wanted to transfer money from one account to another. You would have to do two
separate database edits: one to debit the money from the first account and one to credit the
money to the second account. It would be completely unacceptable if one of the edits went
through and the other one didn’t. Since the two edits comprise a transaction that is indivis-
ible, it is said to be atomic. (2) Consistency means that any transaction will bring the data-
base from one valid state to another. Data written to the database must satisfy all existing
constraints, and if an edit would have resulted in an inconsistent state, the edit should be

3 It is important to remember that each of these documents could contain any number of other objects,
including other documents. If this sounds complicated, it is. Too complicated for the boards, anyway.

C HAPTER 6 • I N FOR MATION TEC H NOLOGY SYSTEMS

116

rejected. For example, suppose a database column is constrained to hold only a date, such as
date of birth for a patient. A user accidentally enters an invalid date, such as 2017-02-30.
There should be no time where the database contains this inappropriate data. (3) Isolation
provides that if the database allows transactions to run concurrently, the database must
ensure that the same state would be achieved if they had run sequentially. In other words,
transactions must have adequate isolation from one another. (4) Durability means that once
a transaction is complete, the change has to be permanent, even if there is a power loss or
the computer crashes.

These properties are usually abbreviated as ACID, and most RDBMS provide ACID
guarantees. OO databases are usually distributed over several computers and can not provide
ACID guarantees (however some do). Instead, there are complex algorithms which are used
to determine the most recent or most accurate data to be provided to the user. Some systems
provide eventual consistency, which means that although the query result may not be accu-
rate at this instant, it will get there eventually, usually within a few seconds. For legal and
regulatory reasons, databases that can not provide ACID guarantees are not routinely used to
store patient information.

In summary, relational databases usually maintain a single, centralized data store and
usually provide ACID guarantees. NoSQL (object oriented) databases are usually distrib-
uted over many commodity machines in order to provide high availability while sacrificing
consistency. But not always.

A data warehouse is an intentional abstraction of a database designed for analytics. For
example, an Electronic Health Record (EHR) is an example of a database. It is designed for
efficiently adding and querying information about a particular patient at a particular point in
time. It is very rare that a clinician using an EHR would need to review multiple patients at
once.

On the other hand, a hospital administrator is much more interested in the care provided
to many patients over longer timeframes (e.g. how many CT scans are being performed on a
month-by-month basis?). He would be interested in aggregate data instead of individual
data (Table 6-4).

DATABASE DATA WAREHOUSE

Definition An electronic information store,
usually organized by data type

A subset of a database, organized for
ease of aggregate queries

Optimization Optimized for online transaction
processing (OLTP). Tables tend to
be highly normalized and the
system is optimized for fast and
reliable read-write of individual
data points. This usually results in
many tables linked in complex
ways. However, good process
modelling ensures that the data is
only written once, resulting in fast
response times

Optimized for online analytical
processing (OLAP). Tables are usually
read-only and are intentionally
denormalized to make queries faster
and easier. The data are organized
into multidimensional arrays (also
called cubes or hypercubes). Data are
summarized in pivot tables and used
to garner business intelligence

Uptime Mission critical. Systems are
expected to have very little
unscheduled downtime. Data
errors can be literally
life-threatening

Usually, warehouse data is a replica of
the original data, running on a
separate system so as not to affect
performance of the database. Many
systems create an overnight
“snapshot” of data for this purpose.
Since the data are re-created
periodically, reliability of OLAP
servers is less of a concern

TABLE 6-4

DIFFERENCES BETWEEN A DATA
WAREHOUSE AND A DATABASE

S. MAN KOWITZ

117

A data mart is a smaller slice of the original data, usually restricted to a particular line
of business. For example, the radiology department may be given access to a data mart of
radiology data, while housekeeping would use a different set of data pertaining to its
needs.

Figure 6-6 is a representation of a OLAP cube, a multidimensional array used for gather-
ing business intelligence. In this example, the data show the number of different kinds of
radiology studies (X-Ray, Computed Tomography, Ultrasound and Nuclear Medicine) done
in various clinical environments (Hospital #1, Hospital #2, Clinic and Outpatient) in the
timeframe from 2012 to 2014. This type of analysis can help an administrator determine how
to provision new equipment or advertise for existing services. In this representation, each
axis is called a dimension. There is no limit to the number of dimensions in an OLAP cube,
although it can be difficult to visualize more than three. Each box in the cube contains a
number. For example, in diagram above, the bottommost left cube indicates that there were
995 X-Rays done in the outpatient department in 2014. The data in these cells are referred to
as facts or measures.

There are several OLAP operations which are used to investigate data. Drill-down is the
process of breaking categories into smaller segments. For example, if the user wants to
look at monthly data instead of yearly data, we could break 2014 down into 12 months. The
reverse of drill-down is roll-up where several categories are combined. For example, the
user could combine data from the two hospitals in order to compare it to the outpatient set-
tings. Slicing is looking at a subsection of the data when one of the dimensions is held
constant. For example, if the user wanted to look at only X-Rays. Dicing is looking at a
subset of the data based on constraints in more than one dimension. For example, if the user
wants to look at only XR and CT studies which were done in the clinic and outpatient
departments. A Pivot is when the axes of the cube are changed in order to provide a differ-
ent view. (see Box 6-2)

CT USXR NM

201220132014

Clinic

Hosp #2

Outpatient

Hosp #1 353 120 221 18

886 43 166 6

995 55 43 9

528 227 65 25

FIGURE 6-6

An example of an online
analytic processing
(OLAP) cube. This cube
shows three dimensions.
Along the X-axis is the
study type. XR, X-ray; CT,
computed tomography;
US, ultrasound; NM,
nuclear medicine. The
Y-axis shows the location
of the study. The Z-axis
shows the year of the
study.

C HAPTER 6 • I N FOR MATION TEC H NOLOGY SYSTEMS

118

Box 6-2: Types of OLAP operations
Drill Down—Breaking one category into smaller chunks. Here we see that Hospital #1
has an Emergency Room, Intensive Care Unit, Operating Room, Medical service,
Surgical service and Pediatrics service.

CT USXR NM

201220132014

Clinic

Hosp #2

Outpatient

Hosp #1 353 120 221 18

886 43 166 6

995 55 43 9

528 227 65 25

ER

ICU

OR

Med

Surg

Peds

80 920 141

15 52 22

60 20 3

166 040 18

25 155 2

7 13 35

Roll-up—combining categories into larger chunks.

CT USXR NM

201220132014

Outpatient

Hospitals 881 347 286 43

188
1 98 209 15

S. MAN KOWITZ

119

Slice—holding one dimension constant.

CT USXR NM

201220132014

Clinic

Hosp #2

Outpatient

Hosp #1 353 120 221 18

886 43 166 6

995 55 43 9

528 227 65 25

Dice—limiting data based on more than one dimension.

CTXR

20122013

Hosp #2

Hosp #1 353 120

528 227

Pivot—rotating the data by changing axes.

Hsp
#2

ClinHsp
#1

Out
pt

201220132014

US

CT

NM

XR 353 528 886 995

221 65 166 43

18 25 6 9

120 227 43 55

C HAPTER 6 • I N FOR MATION TEC H NOLOGY SYSTEMS

120

 3.1.2.2 Networks
Networking computers together efficiently is key for establishing interoperability. For fur-
ther discussion, see Sect. 3.1.3.

 3.1.2.3 Data/Database
As we have mentioned earlier, databases are computer programs which allow multiple users
to have simultaneous controlled access to different types of data. These have been discussed
in other sections.

 3.1.3 NETWORKS

Computer networks are a set of protocols and transmission media which allow two or more
computers to interact with one another. Networks can be as simple as two computers sharing
files over a USB cable or can be as vast as the internet. Any device that can send or receive
data is called a node. The path along which the data travels is called a link.

Some nodes are user nodes, such as computers or display terminals. Other nodes can be
devices specifically designed for networking. A hub is a node that allows many other nodes
to connect to it. Whenever it receives a signal from one node, it rebroadcasts it to all other
attached nodes. A switch is similar to a hub, however it is more selective. When it receives
a signal intended for a particular node, it rebroadcasts the signal only to that node. A router
is a network device that functions similar to a switch, but it normally sits at the junction of
two networks and decides which signals should be allowed to pass through. Some routers
provide Network Address Translation (NAT) which allows computers to hide their actual
identity in order to share a single public-facing address. This is very common in home and
corporate networks.

The different aspects of the network are often referred to as layers, where the lowest
levels deal with physical aspects of the network and the higher levels relate to interactions
between programs. There are several models used to describe networks. The two most com-
mon are the Open System Interconnect (OSI) model and the Transmission Control Protocol/
Internet Protocol (TCP/IP) model. (See Fig. 6-7).

In the OSI model, the lowest level is the transmission media, or the physical layer.
Common physical layers include radio frequency, copper wire and fiber optic. The data link
layer rests just above this and accounts for correcting errors in the physical layer and

TCP

Application

Transport

Internet

Network Access

7. Application

6. Presentation

5. Session

4. Transport

3. Network

2. Data Link

1. Physical

OSI

FIGURE 6-7

The Open System
Interconnect (OSI) and
Transmission control
Protocol/Internet Protocol
(TCP/IP) network models.
OSI, right, contains seven
layers. TCP/IP contains
four

S. MAN KOWITZ

https://doi.org/10.1007/978-3-319-63766-2_6

121

providing synchronization of data transport. Together, these two layers are called the net-
work access layer in the TCP/IP model (Table 6-5).

The next layer up is the network layer which provides routing and switching capabili-
ties. In the TCP/IP model, this is called the internet layer.

The next layer is the transport layer (it has the same name in both models). This layer
employs error-checking algorithms to ensure that data is transported completely and correctly.

The session layer is responsible for opening and closing communications between soft-
ware applications. The presentation layer transforms data into usable formats. For exam-
ple, converting a binary data stream into a picture. In addition, encryption usually occurs at
this layer. The top layer is the application layer, where all the higher-order interaction is
done, such as authentication, user interaction and quality of service. Everything at this layer
is application-specific. Web browsers, File Transfer Protocol (FTP), E-mail and all other
applications function at this level.4 In the TCP/IP model, these top three layers are all referred
to as the application layer.

 3.1.3.1 Topologies
A network topology refers to the map of connections between different nodes. The physical
topology represents the physical location of nodes and the interconnects that run between
them. In contrast, the logical topology refers to the way that signals pass from one node to
another, regardless of the physical layout. For example, suppose that the finance department
and the dietary department share office space. The network engineer connects all the com-
puters with Ethernet cables, but installs specific network devices and protocols to ensure that
the two departments’ data remains separate.

There are several different network topologies.
Point-to-point is the simplest network topology, and involves two nodes and one link

between them. An example is two computers connected with a USB cable. In telephony, a cir-
cuit-switching system establishes logical point-to-point network whenever a phone call is
made. When the call is completed, the resources are returned to the network (Fig. 6-8).

4 Health Level 7 (HL7), a group responsible for many messaging standards in healthcare got its name from
the top layer of the OSI model.

MEDIA TYPICAL BANDWIDTH PROS CONS

Radio
frequency

Cellular phones with 4G
LTE can get 5–12 Mb/s;
WiFi networks using
the latest 802.11 ac
are rated to 1.5 Gb/s.
In practice,
70–100 Mb/s is
common.

Nodes are easily
moved and adding
another node to the
network is as simple
as bringing it within
range of the
transmitter

Radio Frequency is highly
subject to electromagnetic
interference, and often can
not penetrate into basements
or through thick walls. As
distance from the transmitter
increases, bandwidth drops
precipitously

Copper wire Gigabit Ethernet can
reliably provide 1Gb/s
when using category
6 (CAT-6) cables

In commercial
networking, Ethernet
is ubiquitous and
hardware is sold at
commodity prices

Installing a new node requires
running physical cables and/
or purchasing hardware

Fiber optic 100 Gb/s on OTU-4
lines. Researchers
have shown speeds of
1 Tb/s or more

Exceedingly fast and
durable. Able to
send long distances
(>500 km) without
repeaters.

Because of high cost, fiber is
primarily used in network
backbones and WANs

TABLE 6-5

COMPARISON OF DIFFERENT
PHYSICAL NETWORK LAYERS

C HAPTER 6 • I N FOR MATION TEC H NOLOGY SYSTEMS

122

In bus topology, all nodes are connected to a single wire, called the bus, or backbone. As
the signal passes from one end to the other, each node examines the data to determine the
appropriate recipient. The benefits to this topology are that it is relatively inexpensive, and
adding nodes is relatively easy. The downside is that if the wire is cut, all nodes distal to the
break are lost (Fig. 6-9).

In star topology, every node is connected to a single central node, called a hub. As with
bus topology, nodes can be easily added or removed. However, in star topology, if the hub
fails, the entire network fails (Fig. 6-10).

In ring topology, every node functions as a repeater to keep the signal moving between
nodes. When the message reaches the node that originally sent the message, it is terminated.
In unidirectional rings, messages travel in only one direction (e.g. clockwise or counter-
clockwise). In bidirectional rings, messages are transmitted simultaneously in both direc-
tions. Although unidirectional rings use less bandwidth, they are prone to failure. If a single
node fails, the whole network is affected. In a bidirectional ring, when one node fails, only
that node is affected. When a ring is left open, it is sometimes called a daisy-chain (Fig. 6-11).

In a mesh network, each node is connected to multiple other nodes. Although this kind
of network is very efficient and very secure, it becomes prohibitively expensive as the num-
ber of nodes increases. In a fully connected mesh (shown below) every node is connected to
every other node. In a partially connected mesh, each node is connected to two or more other
nodes, but not to every other node. The main benefit of a mesh network is that if any single
node fails, the network remains intact. The internet is an example of an enormous mesh
network (Fig. 6-12).

FIGURE 6-8

A simple point-to-point
network

FIGURE 6-9

Network with Bus topology

FIGURE 6-10

Star topology

S. MAN KOWITZ

123

A hybrid network is a combination of two or more network topologies. For example, A
tree network is a combination of star networks linked by a bus. This is a very common
arrangement in large organizations, where each department has its own hub and all depart-
mental computers connect to it. If the backbone fails, the departments become isolated from
one another, but departmental nodes can still communicate with other nodes in the same
department (Fig. 6-13).

Other common hybrid networks include the star-ring network, which is a series of star
networks, connected by a ring, and the star-star network which is a star of stars (sometimes
called a snowflake) (Fig. 6-14).

FIGURE 6-11

Network with ring topology

Image
Server

RIS

LIS

Billing
System

Point Of
Care Test

Gluco
meter

Lab
Instrument

General
Ledger

FIGURE 6-12

Network with mesh
topology

FIGURE 6-13

Hybrid network with tree
topology (star networks
linked with a bus/
backbone)

C HAPTER 6 • I N FOR MATION TEC H NOLOGY SYSTEMS

124

 3.1.3.2 Telecommunications
Telecommunication networks enable people and machines to communicate over long dis-
tances. In general, these are very large networks shared by many people. The Public
Switched Telephone Network (PSTN) is the global network of telephones and switching
systems. It provides an easy and generally inexpensive method for real-time voice commu-
nication. It is sometimes referred to as Plain Old Telephone Service (POTS).

In the early days of telecommunication, when a person wanted to place a call, he would
call an operator who would physically plug a jack into a receptacle to create a circuit. If the
call required multiple connections, multiple operators were needed. If all the outgoing wires
were in use, the call could not go through and the caller would be informed that all circuits
are busy. More modern systems function very similarly, although the manual switching pro-
cess has been replaced with digital switches. This process of sharing a finite number of cir-
cuits is called circuit switching. Since the circuit is used for only one conversation at a time,
there is generally little lag between transmitting and receiving. The downside is that the
entire circuit is reserved for one conversation, even if the line is completely silent.

Cellular phones and Voice-over-IP (VOIP) networks do not rely on physical circuits, but
instead use packet switching. In this technology, each bit of the conversation is encapsu-
lated into a packet of data, which is sent from station to station until it gets to the recipient.
The recipient then reassembles the packets and converts them back into voice. Since the
packets may arrive in any order, and can sometimes get lost, there is a variable delay between
sending and receiving. In high quality local networks, VOIP can be indistinguishable from
POTS. However, at the time of this writing, cellular phone communication has significantly
more degradation that traditional land-lines.

 3.1.4 SECURITY

Protecting patient information while still making it available to decisionmakers is a difficult,
if not impossible task. Nearly every few weeks, there are reports of a large company being
hacked and personal information being released. Healthcare organizations are required to
safeguard patient information and prevent identity theft.

FIGURE 6-14

A star-star network,
sometimes called a
snowflake

S. MAN KOWITZ

125

 3.1.4.1 The HIPAA Security Rule and Other
Government Regulations

In 1996, Congress passed the Health Insurance Portability and Accountability Act (HIPAA).
Among the many provisions of the act, the Privacy Rule defined characteristics of Protected
Health Information (PHI). PHI includes any individually identifiable information about the
patient, including demographic information (e.g. name, birth date, social security number,
address).

Another title in the act, the Security Rule, required that the department of Health and
Human Services (HHS) develop policies to secure PHI. The Office for Civil Rights (OCR)
was given responsibility to enforce the Security Rule and the Privacy Rule.

The Security Rule applies to organizations that transmit health information in electronic
form, such as health plans, healthcare clearinghouses, and health care providers. Collectively,
these groups are called covered entities.

The Security Rule specifically protects electronic protected health information (e-PHI)
which includes all health information that a covered entity creates, receives, maintains or
transmits in electronic form. Interestingly, the Security Rule does not apply to PHI transmit-
ted verbally or in writing. Faxes are something of a gray area.

In the course of business, Covered Entities often need to enter into agreements with other
organizations or Business Associates (BA). For example, a physician group (a covered entity)
may hire an outside billing company to process claims. In these cases, the covered entity is
only allowed to share the minimum necessary PHI for business purposes. In most cases, the
BA is required to sign a contract called a Business Associates Agreement (BAA) with the
covered entity to ensure that PHI will remain protected.5 At a minimum, the BAA should

 1. Establish the permitted uses of PHI
 2. Prohibit the BA from disclosing PHI inappropriately
 3. Establish safeguards to protect PHI
 4. Report any breaches of security
 5. Allow individuals access to their own PHI
 6. Ensure that the BA be held to the same privacy standard as the covered entity itself
 7. Allow HHS to review the BA’s privacy practices
 8. Ensure that the BA will destroy all data when the relationship with the covered entity

ends
 9. Require any of the BA’s subcontractors to follow the same rules as the BA itself
 10. Allow the covered entity to terminate the contract if violations occur

The Security Rule divides safeguards into three categories: Administrative, Physical and
Technical. Some of the safeguards are mandatory while others are considered addressable, which
means that the entity is allowed to make a cost/benefit decision as to whether they want to imple-
ment the safeguard or employ some reasonable alternative. In either case, the risk analysis must
be thoroughly documented. For example, according to § 164.312(a)(2)(iii), computer systems
must have an automatic logoff after a period of inactivity. If the EMR does not directly support
automatic logoff, it could be very expensive to add that functionality. Instead, the covered entity
decides to use the operating system’s own password-based screen saver program. Although the
user isn’t logged off per se, the PHI remains protected, so the safeguard is addressed.

Administrative Safeguards establish policies and procedures within an organization to
protect PHI. This process begins with regular risk assessment to identify and analyze vulner-
abilities in the information systems. Staff training and compliance monitoring are key to
enforcing privacy policies. Information access rules have to be defined so that each person
only has access to the minimum necessary to do their job. Finally, there must be an emer-
gency plan to respond to data leaks or lost data.

5 An example Business Associate Agreement (BAA) can be found at http://www.hhs.gov/ocr/privacy/hipaa/
understanding/coveredentities/contractprov.html

C HAPTER 6 • I N FOR MATION TEC H NOLOGY SYSTEMS

http://www.hhs.gov/ocr/privacy/hipaa/understanding/coveredentities/contractprov.html
http://www.hhs.gov/ocr/privacy/hipaa/understanding/coveredentities/contractprov.html

126

Physical Safeguards refer to efforts put in place to limit physical access to data or work-
stations. Some examples include: security personnel to patrol data centers; locks and alarms
on workstations; or computer monitor privacy filters which prevent onlookers from reading
sensitive data. The covered entity also must have a plan regarding the transfer, removal,
disposal, and re-use of electronic media, to ensure appropriate protection of electronic pro-
tected health information.

Technical Safeguards include hardware, software, and other technology that limits
access to PHI. These controls fall into four basic categories: (1) Audit Controls keep track
of which users are accessing what kinds of PHI. In the event that PHI becomes public, it is
important to review the access logs to see who had access to the leaked information. (2)
Access Controls restrict access to various systems to users who are authorized. (3) Integrity
Controls prevent improper alteration or deletion of PHI. (4) Transmission Security
Controls protect PHI when it is transferred over an electronic network. Specifically, this
requirement demands that data is protected in motion and at rest.

Box 6-3: Is texting prohibited under HIPAA?
It is fairly common for physicians to communicate with their patients and with one
another by sending messages through their smartphones or other devices. However,
since HIPAA requires that PHI be protected in motion and at rest, this could potentially
represent a violation. To address this, let’s examine how texting works.

A text message passes through five phases during its lifecycle:

 1. on the sender’s device
 2. enroute to the cell tower
 3. transiently stored on the carrier’s server while waiting for receipt confirmation
 4. enroute to the recipient
 5. on the recipient’s device

Protecting the message while stored on the user’s device (stage 1 and 5, above) is
problematic. Most devices store copies of sent and received messages for an indefinite
period of time. Both sender and receiver have to be careful to remove messages that are
no longer needed. Many devices have lock screens which protect unauthorized users
from reading their contents. In some cases, such as Apple’s iOS 10, messages are auto-
matically encrypted on the device so that even if the device were lost or stolen, it would
be impossible for a hacker to read the messages. Android 5.0 uses full disk encryption
(FDE) by default.

Protecting data in motion (stages 2 and 4) is easier. Short Message Service (SMS)
messages which are sent over GSM networks are encrypted between the device and the
cell tower, so that even if a hacker were situated right next to the sender or recipient
with a radio receiver, he would only be able to intercept the encrypted message. Apple’s
iMessage protocol, a competitor to SMS, uses encrypted internet connections in place
of cellular radio.

Messages stored by the carrier (stage 3) may not represent a violation, even if unen-
crypted: these messages are temporary; they are not routinely screened by the carrier;
and they are not available on public networks.

So, is physician texting OK? Maybe.
The weakest points in this system are usually the physicians themselves. Forcing

doctors to lock their phones has proven difficult, especially for the technically unin-
clined. Many organizations have opted for a third-party application that ensures end-
to-end encryption at the cost of easy usability.

S. MAN KOWITZ

127

 3.1.4.2 Firewalls
In construction, a firewall is a structural entity meant to keep a fire from spreading from one
part of a building to another. In computing, a firewall is a device that sits at the junction
between two networks and decides what kinds of information is allowed to pass through,
thus protecting one network from another (Fig. 6-15).

When information is sent from one computer to another over a network, it is broken down
into smaller packets. These packets are reassembled on the target computer to create the
original message. (see packet switching, Sect. 3.1.3.2).

The simplest type of firewall is the packet filter. The firewall inspects each packet to ensure
that it is coming from an acceptable source and is travelling to a permitted endpoint. This is a
fairly swift operation because the list of acceptable computers is well known in advance. The
weakness of this method is that the contents of the packet are never examined.

The next generation of firewalls were able to overcome this limitation by stateful inspec-
tion of packets. The packets are temporarily reassembled on the firewall itself and examined
for prohibited information. In healthcare organizations, this kind of firewall can be used to
prevent users from visiting unauthorized web sites, downloading viruses and playing online
games. Since the firewall operates in both directions, it can also be used to prevent users
from inadvertently disseminating protected health information. Most modern firewalls
employ a combination of stateful inspection and simple packet filtering.

Network Address Translation (NAT) is a process by which computers in a private network
are able to share a public-facing address without divulging their local address. Although this
function is normally performed by a router, many firewalls incorporate this functionality as well.
In this scenario, the firewall has a public IP address. Whenever any of the computers on the pri-
vate network want to connect to a public site, they send packets to the router, which replaces the
actual origin address with its own. When the public site returns information, it is replies to the
router, which then transmits the packet back to the local machine. In a standard configuration,
uninvited packets are simply rejected by the router and can not get into the private network.

 3.1.4.3 Virtual Private Networks
Many healthcare networks are closed networks, which means that they can not be easily
accessed from outside the walls of the institution. A virtual private network (VPN) allows
a remote computer to access an otherwise closed network by making it appear as though the

FIGURE 6-15

A firewall separates the LAN from
the WAN. Image: “Firewall” by
Bruno Pedrozo—Feito por mim.
Licensed under CC BY-SA 3.0 via
Wikimedia Commons—http://
commons.wikimedia.org/wiki/
File:Firewall.png#/media/
File:Firewall.png

C HAPTER 6 • I N FOR MATION TEC H NOLOGY SYSTEMS

128

remote computer has an address in the local network. The communication between the
remote computer and the network is encrypted and can travel in the public internet without
fear of interception.

 3.1.4.4 Encryption
When private networks are unavailable, health information must be transmitted over public
networks such as the internet. In order to prevent interception of sensitive information, data
are encrypted by the sending computer and decrypted by the receiving machine. In all cases
of cryptography, the original message (plaintext) is only known to the sender and recipient,
while the encoded message (ciphertext) is widely available. In addition, there may be one
or more secret keys which are known only to sender or recipient (Fig. 6-16).

One of the simplest forms of cryptography is simple substitution. Each letter of the alpha-
bet is substituted for another letter using a predetermined plan.6 According to legend, Julius
Caesar used this method, and a Caesar rotate is named for him.

For example, a coded message may read as follows.

Lqirpdwlfv

Before the message was sent, the recipient was given the secret key of 3, which tells him
to shift the letters ahead by three and create the following dictionary.7

As you can imagine, this method is fairly easy to break, as there are only 25 different
encrypted possibilities. If a hacker tried each one, it would take a short time to have the original
message. A slightly more difficult method involves substituting letters in random order (instead

6 Think of the secret decoder ring found in cereal boxes.
7 The plaintext is: Informatics.

FIGURE 6-16

Decoder ring. Photo
courtesy Retro Works,
shopretroworks.com

Cipher: DEFGHIJKLMNOPQRSTUVWXYZABC
Plain: ABCDEFGHIJKLMNOPQRSTUVWXYZ

S. MAN KOWITZ

129

of alphabetical order). In this case, the secret key would be much longer than just a number.
This complexity results in 4 × 1026 different possibilities, which sounds much harder to break.

Unfortunately, it isn’t. Analysis of common texts show that certain letters appear much
more frequently than others. Using this well known distribution, a series of educated guesses
will allow a hacker to decode a longer message fairly easily.8

Modern cryptography employs a combination of substitution, transposition and mixing of
plaintext in order to create the ciphertext. In order to make it more difficult to crack, the newly
created ciphertext is then passed through the encryption algorithm several times to make it harder
to break. After multiple rounds of encryption, the message can be nearly impossible to break.

Advanced Encryption Standard (AES) is a common encryption mechanism. It requires
that the sender and recipient possess the same 256-bit key. One way to break this kind of
security is to try every possible password (called the brute force method). There are
approximately 1077 possible 256-bit keys. AES was designed so that encryption process is
fairly quick, the decryption process takes a significant fraction of a second to complete. As
a result, it would take 3 × 1069 years to crack an AES encrypted message.

Another useful type of encryption is called public key cryptography or asymmetric key
cryptography. In this method, the key is composed of two parts. One is the public key,
which is well known and the other is the private key, which is known only to the sender.
While the two keys are mathematically linked, it is impossible to derive one from another.
The public key is used for encryption, while the private key is used for decryption. For
example a person could give out his public key and anyone who wants to send him a mes-
sage could do so securely.

Asymmetric keys can also be used to verify a digital signature. For example, a person
could use his private key to encrypt a document. If the public key is able to decrypt the docu-
ment, that proves the authenticity of the original signer.

 3.1.5 DATA

 3.1.5.1 Integrity
Data integrity reflects the degree to which we can trust our data. There are two aspects to data
integrity. Physical integrity refers to the way information is stored on various media. When
media is subject to physical insults, the data can become corrupted. One way to protect the data
is to employ redundant data stores, such as a Redundant Array of Inexpensive Disks (RAID).
Logical integrity means that the data makes sense and is appropriate to our needs. For exam-
ple, if a thermocouple is malfunctioning, an oral thermometer may register a temperature of
300°. Even if the database records the information faithfully, it is logically impossible.

Database integrity includes three special integrity requirements in order to guarantee con-
sistency. Entity integrity requires that every table in the database has a unique primary key.
This is not always enforced. Referential integrity requires that whenever a database column
refers to a row in another table, that row exists. Domain integrity specifies a specific list of
values that are acceptable for a particular column. For example, we can preserve the logical
integrity of our temperature field by restricting input values to the range of 20–40 °C.

Consider the following example, shown in figure 6-17. A database contains two tables.
The purchases table lists the customers and the items that they purchased. The items table
shows a description of the items. The two tables are related by the common column item_
code. The problem with this database is that the GHI company has purchased an item with
code A9, but there is no corresponding item in the items table. This database lacks referential
integrity because an item in the purchases table refers to a row in the items table which does
not exist.

8 For a great demonstration of a computer program to solve cryptoquotes, see http://quipqiup.com/. Note that
this works for longer messages, but shorter messages are much harder to solve. For example, all the following
are possible plaintexts to the ciphertext Lqirpdwlfv: Objections; Speciously; Spaciously; Operations;
Exchangers.

C HAPTER 6 • I N FOR MATION TEC H NOLOGY SYSTEMS

130

 3.1.5.2 Mapping
Data Mapping is the process by which data is compared or transferred between two different
data models. In some cases, the mapping is fairly straightforward, such as when similar ele-
ments exist in both models and simply require changing the field name. When this is possi-
ble, bidirectional mapping is possible (Fig. 6-18).

In other cases, mapping can be more complicated and require calculation. In the example
below, the age (in the target table) can be calculated from the current date and the date of
birth (in the source table). The Blood pressure can be separated into systolic and diastolic
measures. It can be tricky to provide bidirectional support for this mapping because it
depends on knowing the date on which the conversion took place in order to calculate the
age. In this case, the age is recorded as an integer, so the exact DOB would be impossible to
determine (Fig. 6-19).

Sometimes, the data themselves prohibit bidirectional mapping. Systematized
Nomenclature of Medicine-Clinical Terms (SNOMED) is a vast terminology which describes
many different clinical entities. The International Classification of Diseases, ninth edition
(ICD9) describes diagnoses, but has much fewer terms than SNOMED, so that a single ICD9
term may map to many SNOMED terms and sometimes vice-versa. In these cases, an
approximate mapping can be done, but there is no guarantee that the reverse mapping will
be relevant.

purchases

customer item_code

ABC company A3

DEF comany A4

GHI comany A9

JKL company A5

items

item_code description price

A3 Camera Lens $60

A4 Light Bulb $1

A5 Rubber Stamp $3

Empty

FIGURE 6-17

The purchases table has an item
with code A9, but this item
doesn’t exist in the items table, a
violation of referential integrity

Source Table

f_name l_name

Albert Zonks

Reva Tilers

Target Table

FirstName LastName

Albert Zonks

Reva Tilers

FIGURE 6-18

Direct mapping between
source and target tables

Source Table

id DOB BP

1 2010-04-05 120/60

2 1972-02-15 155/83

Target Table

id Age SBP DBP

1 5 120 60

2 43 155 83

FIGURE 6-19

Mapping from date of birth
to age is possible, but the
reverse is not

S. MAN KOWITZ

131

 3.1.5.3 Manipulation (e.g., Querying, SQL,
Reporting)

The standardized query language (SQL) is a relatively simple computer language for inter-
acting with databases. There are four basic functions for manipulating data, Create, Read,
Update and Delete. These are commonly abbreviated as CRUD. For some more examples of
SQL, see Sect. 3.1.1.6

OPERATION SQL EXAMPLE EXPLANATION

Create INSERT source
 (id, dob, bp)
VALUES
 (3, ’1937-04-11’, ‘166/75’);

Insert a new row into the table named
“source” with id=3, blood pressure and
DOB as shown.

Read SELECT id, dob
FROM source;

Show the id and DOB for all patients in
the table named “source”

Update UPDATE source
SET dob = '1955-08-14'
WHERE id = 2;

Update the row of the person who has
id=2 and set the birthday to 8/14/1955

Delete DELETE FROM source
WHERE id = 3;

Remove the row from the table named
“source” for the person who has id=3

Database reporting is one of the most important professional tasks the informaticist will
perform. Being able to locate the right piece of data, ensuring that it is logically correct and
reflective of the real world is vitally important to making decisions and measuring outcomes.
Once the query has been written, it can be re-run periodically to determine if a clinical or
operational change has a desired result.

 3.1.5.4 Representation and Types
Data exists in many different formats within a computer. The simplest form of data is a
whole number (integer). In order to store a number, we have to allocate a certain amount
of memory for it. If we know in advance that a number falls into a certain range, we can
specify how many bytes of data are required to store it. For example, suppose we want to
record the number of children a person has and store it in a database. A negative number
is impossible; a fraction is impossible, and a number greater than 30 is probably a data
error. So what container should we use? In Standard Query Language (SQL), a tinyint is
defined as a whole number between −127 and +128. Since there are 256 distinct possibili-
ties (28), this number can be stored in 8 bits, or one byte9, and this would be the best
answer to our needs.

Now, suppose we also want to record the population of various countries. Again, we
can not accept numbers less than zero and we can not accept fractions. The maximum
value is going to be very high, as both China and India have over 1 billion residents.
Fortunately, there exist larger integer type, such as an unsigned int which allows whole
numbers between 0 and 4,294,967,295. This represents 232 different possibilities, and
thus requires 4 bytes. Different languages and different systems have many options of
varying sizes for storing integers10. In general, the programmer should choose the data

9 Truthfully, we could express this number using only 5 bits, since 25 = 32, but there is usually little benefit
of using only part of an 8-bit byte for storage. It does not improve calculation time or storage requirements.
10 Gangam Style by PSY is the most-watched video on Youtube. When the creators of Youtube initially
created their video database they used an int to store the number of times a video is watched. In October,
2014, Gangam surpassed 2.1 billion views and exceeded the available storage capacity, resulting in data

C HAPTER 6 • I N FOR MATION TEC H NOLOGY SYSTEMS

https://doi.org/10.1007/978-3-319-63766-2_6

132

type which requires the smallest amount of space but whose range includes all reasonable
values.

What if I wanted to record the mass of different elements or mean temperatures? Real
numbers (or floating point numbers) are usually represented as a number times a base
raised to an exponent. For example, the number 350.15 could be expressed as 3.5015 × 102.
In this example, 3.5015 is the mantissa or significand; 10 is the base and 2 is the exponent.
If we assume a convention where the decimal point is always to the right of the first digit and
the base is always 10, this number could be represented as two integers: 35,015 and 2. By
varying the number of significant digits available for the significand and the exponent, we
can express a wide range of numbers. It is important to remember that this format does not
always represent numbers exactly. For example, if you only allow 4 significant digits to the
significand, you will find that the number 250,000 is stored the same as 250,001. In practice,
a single precision floating point number occupies 32 bits and provides 7 significant digits
and an exponent up to 127.

Letters and words are also commonly stored as data. The American Standard Code for
Information Interchange (ASCII, see Table 6-6) encodes the 100 or so most commonly used
letters, numbers and punctuation to particular numbers. In this method, one byte corresponds
to one letter. Unicode is a much more encompassing system and includes 1,114,112 charac-
ters, with the more common characters requiring one byte and the more esoteric characters
using up to four bytes. While ASCII is limited to Latin-based languages, Unicode is able to
represent most known languages, including pictorial languages such as Chinese. For exam-
ple, consider the string of English letters in the word Informatics. This can be expressed in
ASCII as the following series of numbers: 73, 110, 102, 111, 114, 109, 97, 116, 105, 99, 115.

Screen colors are commonly expressed as the value of their Red, Green and Blue (RGB)
components, where each component is completely off (0) or completely on (255) or some-
where in between. For example, bright red would be (255,0,0); black, the absence of color is
(0,0,0) and white is the combination of all colors (255,255,255).

Using this methodology, it is possible to describe a photograph by dividing the picture
into a sufficient number of small boxes (picture elements, or pixels). Similarly, a movie can
be encoded as a series of still images. Sound can be encoded by digitally sampling the audio
in discrete timeframes.

Nearly any kind of information can be expressed as a combination of the above elemental
data types. Documents, drawings and even computer programs can be encapsulated and
stored this way.

 3.1.5.5 Warehousing
A data warehouse is an intentional abstraction of a database which is organized for easy
reporting. The data warehouse is often designed with particular queries in mind and orga-
nized for maximum efficiency. In addition, it is often created so that the user can interact
with the data without needing specific database programming skills. See Sect. 3.1.2.1 for
more information on data warehouses and datamarts.

 3.1.5.6 Data Mining and Knowledge Discovery
Data mining is a process meant to explore large volumes of data (sometimes called big
data) looking for patterns or relationships among different variables. In contrast to most
biomedical research, there is no hypothesis to be tested by data mining. Instead, the goal is
to look for correlations and then work backward to see if causation exists.

errors. Google (the owner of youtube) was forced to rework their database and change the storage capacity
from int which is 4 bytes to bigint which is 8 bytes, effectively raising the limit to 1.8 × 1019 (one quintillion).

S. MAN KOWITZ

https://doi.org/10.1007/978-3-319-63766-2_6

133

ASCII HEX CHAR ASCII HEX CHAR ASCII HEX CHAR ASCII HEX CHAR

0 0 NUL 32 20 (spc) 64 40 @ 96 60 `

1 1 SOH 33 21 ! 65 41 A 97 61 a

2 2 STX 34 22 " 66 42 B 98 62 b

3 3 ETX 35 23 # 67 43 C 99 63 c

4 4 EOT 36 24 $ 68 44 D 100 64 d

5 5 ENQ 37 25 % 69 45 E 101 65 e

6 6 ACK 38 26 & 70 46 F 102 66 f

7 7 BEL 39 27 71 47 G 103 67 g

8 8 BS 40 28 (72 48 H 104 68 h

9 9 TAB 41 29) 73 49 I 105 69 i

10 A LF 42 2A * 74 4A J 106 6A j

11 B VT 43 2B + 75 4B K 107 6B k

12 C FF 44 2C , 76 4C L 108 6C l

13 D CR 45 2D - 77 4D M 109 6D m

14 E SO 46 2E . 78 4E N 110 6E n

15 F SI 47 2F / 79 4F O 111 6F o

16 10 DLE 48 30 0 80 50 P 112 70 p

17 11 DC1 49 31 1 81 51 Q 113 71 q

18 12 DC2 50 32 2 82 52 R 114 72 r

19 13 DC3 51 33 3 83 53 S 115 73 s

20 14 DC4 52 34 4 84 54 T 116 74 t

21 15 NAK 53 35 5 85 55 U 117 75 u

22 16 SYN 54 36 6 86 56 V 118 76 v

23 17 ETB 55 37 7 87 57 W 119 77 w

24 18 CAN 56 38 8 88 58 X 120 78 x

25 19 EM 57 39 9 89 59 Y 121 79 y

26 1A SUB 58 3A : 90 5A Z 122 7A z

27 1B ESC 59 3B ; 91 5B [123 7B {

28 1C FS 60 3C < 92 5C \ 124 7C |

29 1D GS 61 3D = 93 5D] 125 7D }

30 1E RS 62 3E > 94 5E ^ 126 7E ~

31 1F US 63 3F ? 95 5F _ 127 7F DEL

TABLE 6-6

ASCII TABLE

Data mining includes three stages: exploration, model building and deployment.
The exploration phase involves taking a good look at a sample of the data to identify

important variables and to make sure that the data is accurate enough for analysis. Since
the source of the data is often vast, the informaticist must make special attention to nar-
row the scope of data before embarking on further analysis. The process of model build-
ing includes the competitive evaluation of models which compares various data models
on the basis of their predictive ability. When the best model is chosen, it must be validated
to ensure that it is able to produce stable results across many different samples.
Deployment involves using the model selected above and applying it to new data to make
predictions.

C HAPTER 6 • I N FOR MATION TEC H NOLOGY SYSTEMS

134

 3.1.6 TECHNICAL APPROACHES THAT ENABLE
SHARING DATA

Isolated data is practically useless. When that data is shared among patients, providers,
administrators, consultants and public health agencies, it becomes useful and valuable for
making important decisions.

 3.1.6.1 Integration Versus Interfacing
There are two methods for sharing data between software applications. Integration means
that the two applications share the same data store. Interfacing means that they are able to
communicate with one another via some messaging system and can synchronize their data
when needed. The communication system is sometimes called a bridge.

INTERFACE INTEGRATION

What is it? A messaging system that exists between two
software applications enabling them to
share data. Interfaces typically use a
standard file format, such as XML or HL7

Two applications that share the same
data store

Benefits Consumers can choose “best-of-breed”
software tailored to their needs, and
synchronization occurs when needed

Both software applications have
access to real-time data, so that
reports from one system should be
equivalent to reports from the other

Pitfalls Data may be out of sync. The mapping
between systems may not be robust
enough and the interface may not include
all data points needed

Unifying a database is often very
costly, and may destroy backwards-
compatibility with the original
applications

Deciding between an integrated system versus an interfaced system can be difficult. Here
are some questions to help decide:

 1. Is there particular functionality in the “best-of-breed” system that can not be replicated in
the integrated system? If so, interface may be better.

 2. Is there a requirement for real-time data? For example, suppose you are choosing a
Human Resources and Payroll systems. Since checks are written only once every 2
weeks, the payroll synchronization process is run infrequently, and an interface would be
adequate. However, in an EMR system, vital signs should be updated every few minutes,
an integrated system may be better.

 3. Is isolation required? Are there certain parts of the database that should not be shared
because of HIPAA or some other requirement? If so, a selective interface may be better.

 3.1.6.2 Dealing with Multiple Identifiers
Whenever patient data is inserted into a database, there are certain fields that are used as
unique patient identifiers. For example, a social security number11 or a medical record num-
ber usually identifies a particular person for their lifetime. When comparisons are made
within a single health system, these identifiers are usually adequate to uniquely identify a
person. These identifiers are stored in a Master Patient Index (MPI) or an Enterprise
Master Patient Index (EMPI). However, when patient data are shared with other systems

11 Social Security Numbers (SSN) are commonly used to identify patients, but they have some drawbacks.
Firstly, they are not always unique. Until the 1970s SSNs were not issued to non-workers, and the spouse of
a worker would usually use the same number as the worker. In addition, SSN are commonly used in financial
transactions such as applying for a credit card, and a data breach could lead to identity theft. For these
reasons, many healthcare organizations (such as Kaiser Permanente) do not use SSN to identify patients.

S. MAN KOWITZ

135

(for example, with a regional health information exchange), the problem of matching and
identifying patients can be more tricky.

One solution to this problem is to create a national patient health identifier, such as exists
in Denmark. This has failed to gain traction in the US because of privacy and security con-
cerns. In 2014, the Office of the National Coordinator commissioned a report12 to address
methods of patient matching. The two key recommendations included placing emphasis on
accurate initial data collection and industry standardization of data identity elements.

There are several ways to make sure data are entered correctly

 1. Rigorous training and or certification for registrars
 2. Using data entry forms which require the operator to select from a set of validated options

instead of allowing free text.
 3. Allowing the patient to review the data before it is committed to the database
 4. Maintaining a list of abbreviations and diminutive forms to assist in duplicate detection

(e.g. William would match Will, Willy, Bill, Billy, etc)

For the second objective, there is no “official” identity data set, but some of the common
items are shown below. Note that primary data relates to things that most people have, are
unlikely to change, or are unlikely to forget. Secondary items are those that are more variable
or less reliable.

PRIMARY SECONDARY

Legal Name
Date of Birth
Sex
Race
Ethnicity
Primary Phone Number
Previous Names
Mother’s Maiden Name
Street Address

Date of Death
Birthplace
Birth order
Marital status
Other Phone numbers
Social Security Number
Driver License Number
Passport Number
E-mail address
Biometric information

A probabilistic matching algorithm would try to match as much as data as possible, plac-
ing more weight on primary than secondary data elements, in order to identify potential
duplicates. In some cases, these algorithms can be very complex.

 3.1.6.3 Anonymization of Data
In order to permit the secondary use of PHI, data must be de-identified. Section 164.514 of
the HIPAA Privacy Rule states that “health information that does not identify an individual
and with respect to which there is no reasonable basis to believe that the information can be
used to identify an individual is not individually identifiable health information.”

There are two methods to meet the HIPAA Privacy rule. The first is the expert determi-
nation method. An expert is defined as a person with appropriate knowledge and experience
in statistics and scientific methods for de-identifying data. If this expert deems that the risk
of identifying an individual is very small, the standard is met. It is notable that the term “very
small” is not clearly defined.

When using the expert determination rule, emphasis will be placed on characteristics of
the population as a whole as well as the population being studied. For example, a patient
identified with a first name of Muhammad may be unique in Montana13 but fairly common
in Saudi Arabia.

Another point to take into account is the availability of public databases. Since vital
records (birth, death, marriage) are widely available in most states, it may be easy to

12 http://www.healthit.gov/sites/default/files/patient_identification_matching_final_report.pdf
13 Although hardly a canonical reference, see http://names.whitepages.com/first/Muhammad

C HAPTER 6 • I N FOR MATION TEC H NOLOGY SYSTEMS

136

re-identify a patient whose birthdate and zip code are known. Health plan numbers and
patient account numbers that exist within proprietary databases and are harder to collect,
however data breaches have been known to exist and re-identification is not impossible.
Similarly, at one point, it was assumed that there could never exist a database of IP address
or hardware MAC address. That is, until Google was caught collecting this data through its
network of Street View vehicles.14

The second, and more common, solution to de-identifying data is the Safe Harbor
method, in which the data is considered de-identified when all of the following identifiers are
removed.

 1. Names
 2. All geographic subdivisions smaller than a state, including street address, city, county,

precinct, ZIP code, and their equivalent geocodes, except for the initial three digits of
the ZIP code if, according to the current publicly available data from the Bureau of the
Census:

 (a) The geographic unit formed by combining all ZIP codes with the same three initial
digits contains more than 20,000 people; and

 (b) The initial three digits of a ZIP code for all such geographic units containing 20,000
or fewer people is changed to 000

 3. All elements of dates (except year) for dates that are directly related to an individual,
including birth date, admission date, discharge date, death date, and all ages over 89 and
all elements of dates (including year) indicative of such age, except that such ages and
elements may be aggregated into a single category of age 90 or older

 4. Telephone numbers
 5. Fax numbers
 6. Email addresses
 7. Social security numbers
 8. Medical record numbers
 9. Health plan beneficiary numbers
 10. Account numbers
 11. Certificate/license numbers
 12. Vehicle identifiers and serial numbers, including license plate numbers
 13. Device identifiers and serial numbers
 14. Web Universal Resource Locators (URLs)
 15. Internet Protocol (IP) addresses
 16. Biometric identifiers, including finger and voice prints
 17. Full-face photographs and any comparable images
 18. Any other unique identifying number, characteristic, or code

De-identified health information created following these methods is no longer protected
by the Privacy Rule because it does not fall within the definition of PHI.

14 Kravets D. An Intentional Mistake: The Anatomy of Google’s Wi-Fi Sniffing Debacle. WIRED 2012.
https://www.wired.com/2012/05/google-wifi-fcc-investigation/

S. MAN KOWITZ

	3.1 Information Technology Systems
	3.1.1 Computer Systems
	3.1.1.1 Programming
	3.1.1.2 Data and Control Structures
	3.1.1.3 Software Development Methods
	3.1.1.4 System Integration
	3.1.1.5 Quality
	3.1.1.6 Information Systems Design and Analysis

	3.1.2 Architecture
	3.1.2.1 Systems (e.g., Distributed, Centralized, Relational, Object Oriented, Warehouses/Data Marts)
	3.1.2.2 Networks
	3.1.2.3 Data/Database

	3.1.3 Networks
	3.1.3.1 Topologies
	3.1.3.2 Telecommunications

	3.1.4 Security
	3.1.4.1 The HIPAA Security Rule and Other Government Regulations
	3.1.4.2 Firewalls
	3.1.4.3 Virtual Private Networks
	3.1.4.4 Encryption

	3.1.5 Data
	3.1.5.1 Integrity
	3.1.5.2 Mapping
	3.1.5.3 Manipulation (e.g., Querying, SQL, Reporting)
	3.1.5.4 Representation and Types
	3.1.5.5 Warehousing
	3.1.5.6 Data Mining and Knowledge Discovery

	3.1.6 Technical Approaches That Enable Sharing Data
	3.1.6.1 Integration Versus Interfacing
	3.1.6.2 Dealing with Multiple Identifiers
	3.1.6.3 Anonymization of Data

