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Abstract This chapter proposes a new method for determining the multilevel thresh-
olding values for image segmentation. The proposed method considers the multilevel
threshold as multi-objective function problem and used the whale optimization algo-
rithm (WOA) to solve this problem. The fitness functions which used are the maxi-
mum between class variance criterion (Otsu) and the Kapur’s Entropy. The proposed
method uses the whale algorithm to optimize threshold, and then uses this threshold-
ing value to split the image. The experimental results showed the better performance
of the proposed method to solving the multilevel thresholding problem for image seg-
mentation and provided faster convergence with a relatively lower processing time.

Keywords Multi-objective +  Swarms  optimization <+  Whale
optimization algorithm - Multilevel thresholding * Image segmentation
1 Introduction

In recent years, the intelligent systems that depend on machine learning and pat-
tern recognition are widely used in numerous fields. These include the application
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of face and voice recognition, objects identification, computer vision, and so on.
Nevertheless, the researchers are still working to improve the accuracy of these sys-
tems, especially when they are used in real-time environments. When these systems
acquire their data from images, they should use image processing techniques to pre-
pare and process the images to be able to identify and recognize the objects on them.
Image segmentation is an essential phase in this stage. It works for splitting an image
into segments with similar features (i.e., color, contrast, brightness, texture, and gray
level) based on a predefined criterion [1]. Image segmentation has been applied in
several applications such as medical diagnosis [2], satellite image [3], and optical
character recognition [4]. However, it could be a complex process if the images are
corrupted by noises from environments or equipment. There are many methods for
applying image segmentation, such as edge detection [5], region extraction [6], his-
togram thresholding, and clustering algorithms [7]; as well as, threshold segmen-
tation [8], it is one of the popular methods for performing this task to locate the
best threshold value [9, 10]; it can be divided into two types: bi-level which can be
used to produce two groups of objects and multilevel that used to segment complex
images and separate pixels into multiple homogeneous classes (regions) based on
intensity [1, 11]. Bi-level thresholding method can produce adequate outcomes in
cases where the image includes two levels only, however, if it has been used with
multilevel the computational time will be often high [12]. On the other hand, the
results of bi-level thresholding are not suitable to real application images; so, there
is a wide requirement to use multilevel thresholding [11]. There are two methods to
determine the thresholds, namely, a global and local level. In a local level, thresh-
olds are determined for each portion of the image; on the other hand, at a global
level, one threshold is taken to the whole image [13]. So, by using the image his-
togram, the global thresholding can be determined. Several thresholding methods
explore for the thresholds by optimizing some fitness functions that are defined from
images and they handle the determined thresholds as parameters. So, the determi-
nation of optimal thresholds in multilevel thresholding is an NP-hard problem [14].
Many methods analyze the image histogram to determine the optimal thresholds, by
either minimizing or maximizing a fitness function with consideration of the values
of threshold.

When the number of thresholds is small, classical methods are acceptable; but if
there are several threshold numbers, it is a best practice to perform a swarm intelli-
gence (SI) technique to optimize this task, such as, genetic algorithm (GA), particle
swarm optimization (PSO), firefly optimization (FFO), and bat algorithm.

Jie et al. (2013) [15] introduced a multi-threshold segmentation method that uti-
lized k-means and firefly optimization algorithm (FA). The results showed that the
proposed method obtained a low run-time and higher performance than the classi-
cal fast FCM and PSO-FFCM models. In the same effort, Chaojie et al. (2013) [16]
proposed a method based on FA that outperformed GA algorithm.

Vishwakarma et al. (2014) [17] compared their proposed model that based on
FA with the classical K-means clustering algorithm and the model achieved the best
results. Sarkar (2011) [18] presented a technique based on differential evolution for
multilevel thresholding using minimum cross entropy thresholding (MCET). It was
applied to some of the real images and the results showed high efficiency than PSO
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and GA. Moreover, Fayad et al. [19] proposed a segmentation model based on ACO
algorithm. It achieved good results and small errors in comparison to the ground
truth. On the other hand, Abd ElAziz et al. [20] introduced a hybrid model that com-
bined SSO and FA (FASSO) for image segmentation. It showed faster convergence
and lower preprocessing time. The PSO and its edition [21-26] are implemented
in image segmentation to locate the multilevel thresholding. Moreover, there are
several swarm techniques that applied for segmentation including honey bee mat-
ing optimization (HBMO) [27], harmony search (HS) algorithm [28], cuckoo search
(CS) [29], and artificial bee colony (ABC) [30, 31]. However, most of these tech-
niques are either trapped on local optima or predefined control parameters such as
GA, PSO, CS, and HS algorithms.

In this chapter, we present a new multilevel thresholding method for image seg-
mentation method. The multilevel thresholding is considered as multi-objective opti-
mization problem, in which the popular two image segmentation functions namely,
Otsu’s and entropy are used as the fitness function which optimized by the whale
optimization algorithm. The properties of these two functions are used to improve
the accuracy of image segmentation via multilevel thresholding. The characteristics
of the WOA are the ability of fast convergence. The rest of this chapter is organized
as follows: Sect. 2 presents the materials and methods. Section 3 introduces the pro-
posed method. Section 4 illustrates the experiments and discussions. The conclusion
and future work are given in Sect. 5.

2 Materials and Methods

2.1 Problem Formulation

In this section, the multilevel thresholding problem definition is introduced, by con-
sidering an gray level image I contains K + 1 groups. Therefore, the t,,k =1,... ,K
thresholds are needed to split / to subgroups C, as in the following equation:

Co=UGpell0<1G) <t -1}
Cl = {I(l’])e Iltl Sl(i’j)stZ_l}’

6]
Cx={Gpe Iy <IG)j)<L-1}

where I(i,j) is (i, j)th pixel value and L is the gray levels of I € [0, L — 1].
The aim of the multilevel thresholding is to find the threshold values construct
these groups C;, which can be determined by maximizing the following equation:

(it sty = max F(ty, ... tg), 2)

ety

where F(¢, ..., ) may be Kapur’s entropy or the Otsu’s function.
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e Otsu’s function:

This function is defined mathematically as

K
Foi = zAi("l[ - ”11)2, 3
i=0
fip1~1
A=) P, )
J=t
tig—1 .
L
.= i—, where P;=h;/N, 5
, ; A / 5)

where #, is the mean intensity of / with 7, = 0 and #x; = L. The h; and P; are the
frequency and the probability of the ith gray level, respectively.

» Kapur’s Entropy:

The Kapur’s entropy function determines the optimal threshold values through max-
imizing the overall entropy [32] that is defined as:

lip1~1

K pP. P
Fyop = §<— > X’;l”(zj.”' ©6)

2.2 Whale Optimization Algorithm (WOA)

The whale optimization algorithm (WOA) is a new meta-heuristic technique that
mimics the Humpback whales [33]. In this technique, the optimization begins by
producing a random population of whales. These whales search for the prey’s (opti-
mum) location, then attach (optimize) them by one of these methods encircling or
bubble-net.

In the encircling method [33] the Humpback whales improve their location based
on the best location as follows:

D= |Co X" - X()] @)

Xt+1)=|X*6)-AoD|, )

where D describes the distance between the position vector of both the prey X(t)*
and a whale X(t), and ¢ denotes the current iteration number. A and C are coefficient

vectors, and defined as follows:

A=2a0r-a &)
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C=2r, (10)

where r is a random vector € [0, 1], and the value of a is linearly decreased from 2
to O as iterations proceed.

Whereas the bubble-net method can be performed by two approaches. The first is
the shrinking encircling that given by reducing the value of a in equation (9), also, A
is reduced. The last is the spiral updating position. This method is applied to mimic
the helix-shaped movement of Humpback whales around prey:

X+ 1) =D 0" 0 cos@rl) + X*(1), (11)

where D' = |X*(¢) — X(#)| is the distance between the whale and prey, b is a constant
for determining the shape of the logarithmic spiral, ® is an element-by-element mul-
tiplication, and / is a random value in [—1, 1].

The whales can swim around the victim through a shrinking circle and along a
spiral-shaped path concurrently:

XH-AoD if p>05

X@+1) = { D' 0 " © cos2xl) + X*(t) if p <0.5 a2)

where p € [0, 1] is arandom value which describes the probability of choosing either

the shrinking encircling method or the spiral model to adjust the position of whales.

In exploration phase, the Humpback whales search randomly for prey. The posi-

tion of a whale is adjusted by determining a random search agent rather than the best
search agent as follows:

D=|CoX X(1)]| (13)

rand ~

X(r+1) = |X,,0 —AOD, (14)

rand

where X,,, is a random position determined from the current population.
Algorithm 1 illustrates the whole structure of the WOA.

3 The Proposed Method

In this section the proposed method for determining the multilevel thresholding val-
ues is introduced. In the first the fitness function is defined, based on the combination
of the Otsu’s and Kapur entropy functions, as

Fit = aF g, + fFyqps (15)

where a and f are random values in the range [0, 1] and the parameters represent the
balance between the two fitness functions.
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The input to the proposed method is the image histogram, the number of whales
N and the dimension of each whale position is the threshold level dim. The WOA
starting by generating a random population of N solutions in the search domain [0, L]
(here L = 265), for each position the fitness function Fit; is computed using equation
(15). Then the fitness function F, ., and its corresponding best whale position x;,,,, are
determined. Based on each value of decrease the parameter a from 2 to 0, the values
of two parameters A and C are computed, then the position of each whale is updated
based on the value of the parameter p as illustrated in Sect. 2.2. The previous steps
are repeated until the stop criteria are satisfied, and the proposed method is shown
in Algorithm 1.

Algorithm 1 Whale Optimization Algorithm (WOA)

1: Input: dim dimension of each whale, N: number of whales, 7,,,.: maximum number of iterations.

max*

2: Output: x,est Threshold values.
3: Generate a population of N whales x;,i=1,2,... N
4: =1
5: for all x; do // parallel techniques do
6:  Calculate the fitness function Fit; for x;.
7: end for
8: Determine the best fitness function F,,, and its position whale x,,,,.
9: repeat
10:  for For Each value of a decrease from 2 to 0 do
11: fori=1:Ndo
12: Calculate C and A using (10) and (9) respectively.
13: p = rand
14: if p > 0.5 then
15: Update the solution using (11)
16: else
17: if | A [> 0.5 then
18: Update the solution using (14)
19: else
20: Update the solution using (7)
21: end if
22: end if
23: end for
24 end for
25: t=t+1

26: until G < ¢

max

4 Experiments and Discussion

In this section, the experimental environment for the proposed method is introduced.
The image description is illustrated in the first, then the setting of the parameters for
each algorithm and the measurements used to evaluate the quality of segmentation
image is discussed.
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Fig. 1 Samples of the tested images, from left TestE1, TestE2, TestE3, and TestE7

4.1 Benchmark Images

The proposed methods used in this chapter are tested on four common grayscale
images from the database of Berkeley University [34]. These images are called
TestE1, TestE2, TestE3, and TestE7 as illustrated in Fig. 1.

4.2 Experimental Settings

The proposed method results are compared with four algorithms, namely, WOA,
SSO, FA, and FASSO; these algorithms are previously proposed for multilevel image
segmentation and introduced good results. To make the comparison process fair, the
population size is 25, the dimension of each agent is the number of thresholds (m)
and the same stopping criteria (maximum number of iterations is 100, with a total
of 35 runs per algorithm). The parameters of each algorithm used in this paper are
illustrated in Table 1.

The experiments were computed on using the following threshold numbers: 2, 3,
4, and 5. All of the methods are programmed in “Matlab 2014” and implemented on
“Windows 64bit” environment on a computer having “Intel Core2Duo (1.66 GHz)”
processor and 2 GB memory.
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Table 1 The parameters setting of each algorithm

Algorithm Parameters Value
WOA a [0, 2]
b 1
l [-1,1]
SSO Probabilities of attraction or repulsion (pm) 0.7
Lower female percent 65
Upper female percent 90
FASSO YEA 0.7
B L0
Ay 0.8
Probabilities of attraction or repulsion (pm) 0.7
Lower female percent 65
Upper female percent 90
FA YA 0.7
B L0
Ay 0.8

4.3 Segmented Image Quality Metrics

The accuracy of the segmented image is evaluated based on fitness function, time,
peak signal-to-noise ratio (PSNR), and the structural similarity index (SSIM), where
PSNR is defined as

> UG j) = 1G,))
N.M

N
PSNR = 20lo (ﬂ) RMSE = \/ i (16)
= SO0 R ISE” = :

where I and ] are original and segmented images of size M x N, respectively. The
high value of PSNR refers to the high performance of segmentation algorithm.
The SSIM is defined as

Cupp; + cl)(20',j +c,)

SSIM(1,1) = .
(u12 + ,uiz + cl)(crl1 + 622 +cy)

A7)

where y; (y;) and o; (0;) are the mean intensity and the standard deviation of the
image I (I), respectively. The o, is the covariance of I and T and ¢, = 6.5025 and
¢, = 58.52252 are two constants [35]. The highest value of SSIM and PSNR indi-
cates better performance (Figs. 2, 3, 4 and 5).
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Fig. 2 The average of results of measures overall the testing images

(a) K=2

(b) K=3

(c) K=4
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(d) K=5

Fig. 3 The result of segmentation TestE1 image using (from left to right) SSO, FASSO, FA,
WOAMOP, and WOA
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Fig. 4 The result of segmentation TestE2 image using (from left to right) SSO, FASSO, FA,
WOAMOP, and WOA

. (d) K=5

Fig. 5 The result of segmentation TestE3 image using (from left to right) SSO, FASSO, FA,
WOAMOP, and WOA
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(d) K=5

Fig. 6 The result of segmentation TestE7 image using (from left to right) SSO, FASSO, FA,
WOAMOP, and WOA

4.4 The Results and Discussions

The results of comparison between the proposed algorithm and other algorithms are
illustrated in Tables 2, 3, 4 and Fig. 6.

In Table 2, the average results of fitness values and time(s) are computed at thresh-
olds 2, 3, and 4. From this table and Fig. 6d we can conclude that, based on the fit-
ness function (as a measure), in general the WOAMOP is the better algorithm than
the SSO is in the second rank followed by the FASSO, FA, and WOA. However,
at threshold level equal to the FA and SSO give results better than that obtained
by WOAMOP, also at level three of segmentation, the FASSO is outperformed
WOAMOP (very small difference). At the high-level thresholding (4 and 5) the
WOAMOP is better than all other algorithms followed by SSO in the second rank.
Also from this table and Fig. 6¢ the best algorithm based on the time elapsed is the
proposed algorithm followed by FA (however, this very small difference).

Table 4 and Fig. 6a—b show the SSIM and PSNR values. From this table and 6b
we can observe that, at K = 2,3,4, and 5 the WOAMOP is better than all other
algorithms (however, at k = 2 the difference between the algorithm is small). Also,
the FA is in the second rank followed by SSO, FASSO, and WOA.

From all previous discussion we can conclude that the proposed method gives
better performance based on the quality measures that used (PSNR, SSIM, time,
and fitness function).
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5 Conclusion and Future Work

Image recognition applications use image processing methods to prepare and process
the images to be able to identify and recognize the objects on them. So, image seg-
mentation techniques is an essential preprocessing step in several applications; it
divides an image into segments with similar features based on a predefined criterion.
In this chapter, a new multi-objective whale optimization algorithm (WOAMOP)
was proposed for multi-thresholding image segmentation. The proposed method
used the hybrid between the Kapur’s entropy and the Otsu’s function as a fitness
function. The WOAMOP applied to determine the best solution (threshold values)
and then used this thresholding values to divide the image. The experiment results of
the proposed method were compared with four algorithms, namely, original WOA,
FA, SSO, and FASSO. The WOAMOP achieved better results than all algorithms,
and also it provides a faster convergence with relatively lower processing time. In
future, the WOAMOP can be applied to other complex image segmentation prob-
lems such as color images.
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