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Abstract. The Fiat-Shamir paradigm [CRYPTO’86] is a heuristic for
converting three-round identification schemes into signature schemes,
and more generally, for collapsing rounds in constant-round public-coin
interactive protocols. This heuristic is very popular both in theory and
in practice, and its security has been the focus of extensive study.

In particular, this paradigm was shown to be secure in the Ran-
dom Oracle Model. However, in the plain model, the results shown were
mostly negative. In particular, the heuristic was shown to be insecure
when applied to computationally sound proofs (also known as argu-
ments). Moreover, recently it was shown that even in the restricted set-
ting where the heuristic is applied to interactive proofs (as opposed to
arguments), its soundness cannot be proven via a black-box reduction to
any so-called falsifiable assumption.

In this work, we give a positive result for the security of this para-
digm in the plain model. Specifically, we construct a hash function for
which the Fiat Shamir paradigm is secure when applied to proofs (as
opposed to arguments), assuming the existence of a sub-exponentially
secure indistinguishability obfuscator, the existence of an exponentially
secure input-hiding obfuscator for the class of multi-bit point functions,
and the existence of a sub-exponentially secure one-way function.

More generally, we construct a hash family that is correlation
intractable (under the computational assumptions above), solving an
open problem originally posed by Canetti, Goldreich and Halevi (JACM,
2004), under the above assumptions.

In addition, we show that our result resolves a long-lasting open prob-
lem in about zero-knowledge proofs: It implies that there does not exist a
public-coin constant-round zero-knowledge proof with negligible sound-
ness (under the assumptions stated above).

1 Introduction

In 1986, Fiat and Shamir [FS86] proposed a general method for converting any
three-round identification (ID) scheme into a signature scheme. This method
quickly gained popularity both in theory and in practice, since known ID schemes
(in which a sender interactively identifies himself to a receiver) are significantly
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simpler and more efficient than known signature schemes, and thus this heuristic
gives an efficient and easy way to implement digital signature schemes.

The Fiat-Shamir method is both simple and intuitive: The public key of the
signature scheme consists of a pair (pk,H), where pk is a public key correspond-
ing to the underlying ID scheme, and H is a hash function chosen at random
from a hash family. To sign a message m, compute a triplet (α, β, γ), such that
β = H(α,m) and (α, β, γ) is an accepting transcript of the ID scheme with
respect to pk.

The main question is:

Is the Fiat-Shamir heuristic sound?

Namely, for what hash function families is the signature scheme, obtained by
applying the Fiat-Shamir heuristic to a secure ID scheme, secure against adaptive
chosen message attacks?

The intuition for why the heuristic may be sound, is that if H looks like a truly
random function, and if all the adversary (i.e., impersonator) can do is use H in
a black-box manner, then interacting with H is similar to interacting with the
real verifier. This intuition was formalized by Pointcheval and Stern [PS96], and
by followup works [OO98,AABN02], who proved that the Fiat-Shamir heuristic
is sound in the so-called Random Oracle Model (ROM) – when the hash function
is modeled by a random oracle [BR93], assuming the underlying ID scheme is
sound against passive impersonation attacks.

This led to the belief that if a 2-round protocol, obtained by applying the
Fiat-Shamir paradigm, is insecure, then it must be the case that the hash fam-
ily used is not “secure enough”, and the hope was that there exists another
hash family that is sufficiently secure. These positive results (in the ROM),
together with the popularity and importance of the Fiat-Shamir heuristic, led
many researchers to try to prove the security of this paradigm in the plain model
(without resorting to random oracles). Unfortunately, these attempts led mainly
to negative results.

Goldwasser and Kalai [GK03] proved a negative result, by constructing a
(contrived) 3-round public-coin ID scheme, for which the resulting signature
scheme obtained by applying the Fiat-Shamir heuristic, is insecure, no matter
which hash family is used.

Extending the Fiat-Shamir Heuristic. The Fiat-Shamir heuristic can be
used outside the regime of ID and signature schemes. It can be used to convert
any constant-round public-coin proof system into a two-round proof system, as
follows: In the first round, the verifier sends a hash function H, where H is
chosen at random from a hash family; in the second round, the prover sends the
entire transcript of the interactive protocol, where the verifier’s messages are
computed by applying H to the communication so far.

The first work to extend the Fiat-Shamir paradigm to this regime, was the
work of Micali [Mic94] on CS-proofs. We note that in this regime, the importance
of the Fiat-Shamir heuristic stems from the fact that latency, caused by sending
messages back and forth, is often a bottleneck in running cryptographic protocols
[MNPS04,BDNP08].
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The main question about this (extended) heuristic is therefore:

Is the two-message proof system obtained by applying the Fiat-Shamir
heuristic, to a constant-round proof system, sound?

Namely, does there exist an explicit hash family, for which is it infeasible for a
(computationally bounded) cheating prover, given an input outside the language
and a random function H from the family, to generate an accepting transcript
for the original interactive protocol (where each verifier-message is computed by
applying H to the communication so far).

Barak [Bar01] gave the first negative result in the “plain model”, by con-
structing a constant-round public-coin protocol, such that for any hash family
H, the resulting 2-round protocol, obtained by applying the Fiat-Shamir heuris-
tic to this interactive protocol with respect to H, is not sound.1 However, the
interactive protocol constructed in [Bar01] has only computational soundness,
and thus is an argument system (as opposed to a proof). This gave rise to the
following question:

Is the Fiat-Shamir method secure when applied to interactive proofs (as
opposed to arguments)?

Namely, does there exist an explicit hash family for which the transformation,
when applied to an information-theoretically sound interactive proof, produces
a (computationally) sound two-message argument system?

In this work, we give a positive answer to this final question (under strong
computational assumptions). Before we present our results in detail, we describe
previous works which attempted to answer this question.

Barak, Lindell and Vadhan [BLV06] presented a security property for the
Fiat-Shamir hash function which, if realized, would imply the soundness of
the Fiat-Shamir paradigm applied to any constant-round public-coin interactive
proof system.2 However, they left open the problem of realizing this security def-
inition under standard hardness assumptions (or under any assumption beyond
simply assuming that the definition holds for a given hash function).

Dodis, Ristenpart and Vadhan [DRV12] showed that under specific assump-
tions regarding the existence of robust randomness condensers for seed-
dependent sources, the definitions of [BLV06] can be realized. However, the
question of constructing such suitable robust randomness condensers was left
open by [DRV12].

On the other hand, Bitansky et al. [BDG+13] gave a negative result. They
showed that that soundness of the Fiat-Shamir paradigm, even when applied to

1 We note that the work of [GK03] is a followup work to [Bar01], and builds upon its
techniques.

2 Loosely speaking, a hash family {hs} is said to have this security property if for
every probabilistic polynomial time adversary A, that is given a random seed s and
outputs an element in the domain of hs, the random variable hs(A(s)) conditioned
on A(s) has almost full min entropy.
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interactive proofs, cannot be proved via a black-box reduction to any so-called
falsifiable assumption, a notion defined by Naor [Nao03]).3,4

Correlation Intractable Hash Functions. Our results can be cast more
generally in the language of correlation intractability, a notion defined in the
seminal work of Canetti, Goldreich and Halevi [CGH04].

Roughly speaking, a correlation intractable function family is one for which
it is infeasible to find input-output pairs that satisfy some “rare” relation. More
precisely, a binary relation R is said to be evasive if for every value x only
negligible fraction of the y values satisfy (x, y) ∈ R. A function family F = {fs}
is correlation intractable if for every evasive relation R it is computationally
hard, given a description of a random function fs ∈ F , to find a value x such
that (x, fs(x)) ∈ R.

It was shown in [CGH04] that there does not exist a correlation intractable
hash family whose seeds are shorter than the input length. The question of
whether there exists a correlation intractable function family whose seeds are
larger than the input, remained open. Very recently, [CCR15] construct a func-
tion family that is correlation intractable with respect to all relations that are
computable in a-priori bounded polynomial complexity (under computational
assumptions).

In this work, we construct a correlation intractable hash family with respect
to all relations (under computational assumptions). We provide a more detailed
comparison between our work and that of [CCR15] after we present our result
more formally, below.

1.1 Our Results

In this work, we construct a hash family, and prove that the Fiat-Shamir par-
adigm is sound w.r.t. this hash family, when applied to interactive proofs (as
opposed to arguments). We also show that the family is correlation intractable.
Both results are shown under the following three cryptographic assumptions:

1. The existence of 2n-secure indistinguishability obfuscation iO, where 2n is the
domain size of the functions being obfuscated.5

3 The formalization of a falsifiable assumption, given in [BDG+13], is similar to the
formalization given in [GW11], and differs slightly from the formalization given
in [Nao03].

4 Our assumptions (see Sect. 1.1), which deal with exponential-time (rather than
polynomial-time) adversaries, are inherently not falsifiable. Note that [BDG+13]
allow an unbounded challenger, but restrict to polynomial-time attackers. In the
context of obfuscation, the attacker is the algorithm trying to break the security of
the obfuscation. We assume hardness against super polynomial-time attackers, and
thus our assumptions do not fall into the category ruled out by Bitansky et al.

5 This assumption has been made in many previous works on iO and is referred to as
sub-exponential iO, since the security parameter can be polynomially larger than n
(which makes 2n sub-exponential in the security parameter).
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Recently, several constructions of iO obfuscation were proposed, starting with
the work of Garg et al. [GGH+13]. However, to date, none of these construc-
tions are known to be provably secure under what is known as a complex-
ity assumption [GK16] or more generally a falsifiable assumption [Nao03].
We mention that [GLSW14] provided a construction and proved its security
under the subgroup elimination assumption, which is a complexity assump-
tion (and in particular is a falsifiable assumption). However, this assumption
has been refuted in all candidate multi-linear groups.

2. The existence of 2n-secure puncturable pseudo-random function (PRF) family
F , where 2n is the domain size.
Puncturable PRFs were defined in [BW13,BGI14,KPTZ13]. The PRF family
of [GGM86] is a puncturable PRF family, and thus 2n-secure puncturable
PRFs can be constructed from any sub-exponentially secure one-way function.

3. The existence of an exponentially secure input-hiding obfuscation hideO for
the class of multi-bit point functions {In,k}.
The class {In,k} consists of functions of the form Iα,β where |α| = n and
|β| = k, and where Iα,β(x) = β for x = α and Iα,β(x) = 0 otherwise. An
obfuscation for this class is said to be input-hiding with T -security if any
poly-size adversary that is given an obfuscation of a random function Iα,β in
this family, guesses α with probability at most T−1. Note that we assume
hardness for a distribution where the value β may be correlated with α and
furthermore, it may be computationally difficult to find β from α.
For our construction we require T that is roughly equal to 2n · μ, where μ is
the soundness error of the underlying proof system. For example, if we start
off with an interactive proof with soundness error 2−nε

(where n is an upper
bound the length of prover messages), then we require roughly T = 2n−nε

. For
constructing correlation intractable functions, μ is the “evasiveness” of the
relation R. That is, for every value x, the fraction of y’s satisfying (x, y) ∈ R
is at most μ.
This assumption was considered in [CD08,BC14], who also provided a can-
didate construction based on a strong variant of the DDH assumption (we
elaborate on this in Sect. 2.4).6 See further discussion on various notions of
point function obfuscation in [BS16].
We emphasize that we do not assume security of the multi-bit point func-
tion obfuscation with auxiliary input. Indeed, security with auxiliary input
is known to be problematic, and, as was shown by Brzuska and Mittle-
bach [BM14], if iO obfuscation exists then multi-bit point function obfuscation
with auxiliary inputs does not exist. We do not allow auxiliary information,
and we only assume input-hiding (against exponential-time adversaries) for a
random function from the family (rather than black-box worst-case).

6 While DDH (and even discrete log) can be broken in time less than 2n (even in the
generic group model - e.g., by the baby-step giant-step algorithm), this does not
imply a non-trivial polynomial-time attack (i.e., one with success probability greater
than poly(n)/2n).
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Theorem 1 [(Informally Stated, see Theorem 4)]. Under the assumptions
above, for any constant-round public-coin interactive proof Π, the resulting 2-
message argument ΠFS, obtained by applying the Fiat-Shamir paradigm to Π
with the function family iO(F), is sound.

This theorem provides a general-purpose transformation for reducing inter-
action in interactive proof systems. Beyond our primary motivation of studying
the security of the Fiat-Shamir transformation (and its implications to zero-
knowledge proofs), the secure transformation can also serve as an avenue for
obtaining new public-coin 2-message argument systems (often referred to as
publicly-verifiable non-interactive arguments). For example, it can be applied
to the interactive proofs of [RRR16] to obtain arguments for bounded-space
polynomial-time computations, with small communication and almost-linear-
time verification. We note, however, that prior works [BGL+15] have shown how
to construct such arguments for general polynomial-time computations using
subexponential iO and one-way functions (without the need for multi-bit point
function obfuscation). Nonetheless, one advantage of Theorem 1 is that it can
be applied to any interactive proof, which may give more efficient arguments for
specific languages in P and for languages outside of P .

Cast in the language of correlation intractability, we prove:

Theorem 2 [(Informally Stated)]. Under the assumptions above, the function
family iO(F) is correlation intractable.

Here and throughout this work iO(F) refers to an iO obfuscation of a program
that computes the PRF, using a hardwired random seed.

Remark 1. Although outside the scope of this paper, we note that this transfor-
mation from interactive proofs to 2-message arguments preserves some secrecy
guarantees.

In particular, it is easy to see that the Fiat-Shamir paradigm always preserves
witness indistinguishability. Namely, if the underlying interactive proof is witness
indistinguishable then the resulting 2-message argument, obtained by applying
the Fiat-Shamir method with respect to any function family, is also witness
indistinguishability. Loosely speaking, this follows from the fact that witness
indistinguishability is defined to hold with respect to any cheating (poly-size)
verifier.

Moreover, we claim that the Fiat-Shamir paradigm, applied with our func-
tion family iO(F), preserves honest-verifier zero-knowledge. Loosely speaking,
this (non-trivial) claim follows from the following argument: To simulate the
2-message argument with respect to some input x, first use the simulator for the
interactive proof to obtain a simulated transcript (m1, r1, . . . , mc, rc,mc+1). Note
that this transcript may not be consistent with any hash function from the fam-
ily. To obtain a simulated transcript for the 2-message argument, we simulate the
verifier as sending the iO of a randomly chosen PRF function fs ← F , punctured
at the points m1, (m1, r1,m2), . . . , (m1, r1, . . . , mc1 , rc−1,mc)}, and hardwire the
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values r1, r2 . . . , rc for these points (respectively). Standard iO techniques can
be used to argue that this obfuscated circuit is indistinguishable from iO(fs).

As we discuss next, Theorem 1 settles a long lasting open problem about
zero-knowledge proofs.

Impossibility of Constant-Round Public-Coin Zero-Knowledge. Hada
and Tanaka [HT98] and Dwork et al. [DNRS99] observed an intriguing con-
nection between the security of the Fiat-Shamir paradigm and the existence
of certain zero-knowledge protocols. In particular, if there exists a constant-
round public-coin zero-knowledge proof for a language outside BPP, then the
Fiat-Shamir paradigm is not secure when applied to this zero-knowledge proof.7

Intuitively, this follows from the following observation: Consider the cheating
verifier that behaves exactly like the Fiat-Shamir hash function. The fact that
the protocol is zero-knowledge implies that there exists a simulator who can sim-
ulate the view in an indistinguishable manner. Thus, for elements in the language
the simulator generates accepting transcripts. The simulator cannot distinguish
between elements in the language and elements outside the language (since the
simulator runs in poly-time and the language is outside of BPP). In addition,
the protocol is public-coin, which implies that the simulator knows whether the
transcript is accepted or not. Hence, it must be the case that the simulator also
generates accepting transcripts for elements that are not in the language, which
implies that the Fiat-Shamir paradigm is not secure.

Thus, Theorem 1, combined with [DNRS99, Theorem 5.4] implies the follow-
ing corollary.

Corollary 1. Under the assumptions above, there does not exist a constant-
round public-coin zero-knowledge proof with negligible soundness for languages
outside BPP.

We emphasize that the above negative result not only rule out black-box simu-
lation, but also rules out non-black-box simulation. Moreover, as pointed out by
[DNRS99], this negative result actually rules out even extremely weak notions
of zero-knowledge which they call ultra weak zero knowledge (see [DNRS99,
Sect. 5]).

In particular, this corollary implies that (under the assumptions above) par-
allel repetition of Blum’s Hamiltonicity protocol for NP [Blu87] is not zero-
knowledge. Previously it was not known whether (in general) parallel repetition
preserves zero-knowledge. Our result shows that it does not (under the assump-
tions above).

The existence of constant-round public-coin zero-knowledge proofs has been
a long-standing open question (see, e.g., [GO94,GK96,KPR98,Ros00,CKPR02,
BLV06,BGGL01,BL04,Rey01]). For black-box zero-knowledge proofs (which
means that the simulator only uses the verifier as a black-box), the work of
Goldreich and Krawczyk [GK96] ruled out constant-round public-coin protocols
7 We note that this is how Barak [Bar01] obtained his negative result. He constructed

a constant-round public-coin zero-knowledge argument.
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(for languages outside of BPP). It is known, however, that non black-box tech-
niques can be quite powerful in the context of zero-knowledge [Bar01]. Under
the assumptions stated above, our work rules out any constant-round public-coin
zero knowledge proof (even non black-box ones).

We note that even for those who are skeptical about the obfuscation assump-
tions we make, this corollary implies that finding a constant-round public-coin
zero-knowledge proof requires overcoming technical barriers, and in particu-
lar requires disproving the existence of sub-exponentially secure iO obfusca-
tion, or the existence of exponentially secure input-hiding obfuscation for the
class of multi-bit point functions (or, less likely, disproving the existence of sub-
exponential OWF).

Comparison to Concurrent Works
Comparison to [CCR15]. As mentioned above, in a concurrent and indepen-
dent work, Canetti et al. [CCR15] construct a correlation intractable function
family that withstands all relations computable in a-priori bounded polynomial
complexity. More specifically, they construct a function family that is correlation
intractable with respect to all evasive relations that can be computed in time p,
for any a priori polynomial p, where the size of the functions in the family grows
with p.

We note that this result does not have any implications to the security of the
Fiat-Shamir paradigm, since to prove the security of this paradigm we need a
correlation intractable ensemble for relations that cannot be computed in poly-
nomial time. Moreover, we note that since the size of the functions grow with p,
leveraging techniques do not seem to apply here.

As mentioned above, our result on the security of the Fiat-Shamir para-
digm can be cast more generally in the language of correlation intractability.
In particular, the hash family that we construct, and with which we prove the
security of the Fiat-Shamir paradigm, is correlation intractable (with respect to
all relations) under our assumption stated above.

In terms of the assumptions used, [CCR15] assume the existence of sub-
exponentially secure indistinguishability obfuscation, the existence of a sub-
exponentially secure puncturable PRF family, and the existence of input-hiding
obfuscation for the class of evasive functions [BBC+14]. Comparing to the
assumptions we make in this work, we also make the first two assumptions.
However, we assume input-hiding obfuscation only for multi-bit point functions
(a significantly smaller family compared to general evasive functions). On the
other hand, we require an exponentially secure input-hiding obfuscation, whereas
their work only needs polynomial-time hardness of the input-hiding obfuscation.

Comparison with [MV16]. In an additional independent and concurrent work,
Mittelbach and Venturi [MV16] showed a hash function for which the Fiat-
Shamir is secure for a very particular class of protocols. The class of protocols
that they consider in itself does not include any previously-studied protocols.
However, [MV16] show an additional transformation for 3 message protocols
(on top of Fiat-Shamir) that works when the first message in the underlying
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3-message protocol is independent (as a function) of the input. Mittelbach and
Venturi also show that their transformation, which is based on indistinguishabil-
ity obfuscation, maintains zero-knowledge, and can be used to obtain signature
schemes and NIZKs.

In contrast to [MV16], our primary motivation and goal is showing that the
Fiat-Shamir transformation can be used to reduce interaction while preserving
soundness. Reducing the interaction in cryptographic protocols and particularly
showing that the Fiat-Shamir transform can be proved sound has been a central
and widely-studied question in the cryptographic literature. We emphasize that
the [MV16] result does not yield a method for reducing rounds while preserving
soundness.8

1.2 Overview

Throughout this overview we focus on proving the security of the Fiat-Shamir
paradigm, when applied to 3-round public-coin interactive proofs. The more
general case, of any constant number9 of rounds, is then proved by induction on
the number of rounds (we refer the reader to Sect. 4 for details). Consider any
3-round proof Π for a language L. Denote the transcript by (α, β, γ) where α is
the first message sent by the prover, β is the random message sent by the verifier,
and γ is the final message sent by the prover. Fix any x /∈ L. The fact that Π
is a sound proof means that for every α, for most of the verifier’s messages β,
there does not exist γ that makes the verifier accept.

The basic idea stems from the original intuition for why the Fiat-Shamir is
secure, which is that if we use a hash function H that looks like a truly random
function, then all the prover can do is use H in a black-box manner, in which
case interacting with H is similar to interacting with the real verifier, and hence
security follows.

The first idea that comes to mind is to choose the hash function randomly
from a pseudo-random function (PRF) family. However, the security guarantee
of a PRF is that given only black-box access to a random function f in the PRF
family, one cannot distinguish it from a truly random function. No guarantees
are given if the adversary is given a succinct circuit for computing f .

Obfuscation to the Rescue. A natural next step is to try to obfuscate f , in the
hope that whatever can be learned given the obfuscation of f can also be learned
from black-box access to f . However, this requires virtual-black-box (VBB) secu-
rity, and VBB obfuscation is known not to exist [BGI+12]. Moreover, there are

8 Indeed, for the class of protocols that [MV16] support, reducing to 2 rounds while
preserving soundness (but not necessarily zero-knowledge) is straightforward: Since
the prover’s first message is not a function of the input, the verifier can compute the
prover’s first message α for it, and sends α (together with the coins used to generate
it) to the prover.

9 The Fiat Shamir paradigm refers to constant round protocols. Indeed, there are
interactive proofs with a super-constant number of rounds (and negligible soundness
error) for which the Fiat Shamir paradigm is insecure.
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specific PRF families for which VBB obfuscation is impossible [BGI+12]. Fur-
ther obstacles to VBB obfuscation of PRFs and, more generally, functions with
high pseudo-entropy (w.r.t. auxiliary input) are given in [GK05,BCC+14]. Given
these obstacles to achieving VBB obfuscation, could we hope to prove security
using relaxed notions of obfuscation, such as iO obfuscation? The question is:

Is iO obfuscation strong enough to prove the security of the Fiat-Shamir
paradigm?

It is well known that iO obfuscation is not strong enough to prove the security
of the Fiat-Shamir paradigm when applied to computationally sound interactive
arguments. Indeed the Fiat-Shamir paradigm is known be insecure when applied
to arguments as opposed to proofs.10 In contrast, we show that iO obfuscation
(together with additional assumptions) is strong enough to prove security when
the Fiat-Shamir paradigm is applied to interactive proofs (rather than argu-
ments).

For proving security of the Fiat-Shamir paradigm for proofs, consider a cheat-
ing prover for the transformed protocol ΠFS, who receives the obfuscation iO(fs)
of a pseudo-random function fs. Since fs is a PRF, we know that there will only
be a small set Bads of inputs α (corresponding to the prover’s first message in
the proof Π), for which the communication prefix (α, fs(α)) can lead the verifier
in the interactive proof to accept (i.e. α’s for which there exists γ s.t. (α, f(α), γ)
is an accepting transcript).

To show the security of the resulting protocol, we now want to claim that the
obfuscation hides this (small) set Bads of inputs, and that a cheating prover P ∗

cannot find any input α ∈ Bads. Note, however, that iO obfuscation only guar-
antees that one cannot distinguish between the obfuscation of two functionally
equivalent circuits of the same size, and it does not give any hiding guarantees.

Puncturable PRFs to the Rescue? As mentioned above, iO obfuscation
does not immediately seem to give any hiding guarantees. Nonetheless, starting
with the beautiful work of Sahai and Waters [SW14], iO has proved remarkably
powerful in the construction of a huge variety of cryptographic primitives. A
basic technique used in order to get a hiding guarantee from iO obfuscation, as
pioneered in [SW14], is to use it with a puncturable PRF family.

A puncturable PRF family is a PRF family that allows the “puncturing”
of the seed at any point α in the domain of f . Namely, for any point α in
the domain, and for any seed s of the PRF, one can generate a “punctured”
seed, denoted by s{α}. This seed allows the computation of fs anywhere in the
domain, except at point α, with the security guarantee that for a random seed s
chosen independently of α, the element fs(α) looks (computationally) random
given (s{α}, α). The security of iO obfuscation guarantees that one cannot distin-

10 More specifically, the insecurity is in the sense that there exist contrived interactive
arguments such that for any hash family H, applying the Fiat-Shamir paradigm with
the hash family H, results in an insecure 2-round protocol [Bar01,GK03].
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guish between iO(s) and iO(s{α}, α, fs(α)),11 which together with the security
of the puncturable PRF, implies that one cannot distinguish between iO(s) and
iO(s{α}, α, u) for a truly random output u. Thus, we managed to use iO, together
with the puncturing technique, to generate a circuit for computing fs that hides
the value of fs(α). We emphasize that this technique crucially relies on the fact
that the punctured point α is independent of the seed s, and hence as a result
fs(α) is computationally random.

It is natural to try and use obfuscated puncturable PRFs to show security of
the Fiat-Shamir paradigm. Consider the following naive (and flawed) analysis,
which loosely speaking proceeds in three steps: Suppose that there exists a poly-
size cheating prover P ∗ that convinces the verifier to accept x /∈ L. Recall that
we denote transcripts by (α, β, γ). The (statistical) soundness of Π implies that
for every α, for most of the verifier’s messages β, there does not exist γ that
makes the verifier accept. For any function f consider the (evasive) relation
R = {(α, β) : ∃γ s.t. V (x, α, β, γ) = 1}. Suppose that the cheating prover P ∗,
given iO(s), outputs α such that (α, fs(α)) ∈ R, with non-negligible probability.

1. Puncture the PRF at a random point α∗ s.t. α∗ ∈ Bads, and send the obfus-
cation of iO(s{α∗}, α∗, fs(α∗)) to the cheating prover P ∗. Note that this does
not change the functionality.
Therefore, we can use the (sub-exponential) security of iO to argue that
the cheating prover P ∗ cannot tell where we punctured the PRF, and still
succeeds with non-negligible probability. In particular, taking M to be the
expected number of α’s such that (α, fs(α)) ∈ R, we have that P ∗ outputs
α∗ with probability ≈1/M (up to poly(n) factors).12

2. Next, we want to use the (sub-exponential) security of the puncturable
PRF to argue that the cheating prover P ∗ cannot distinguish between
(s{α∗}, α∗, fs(α∗)) and (s{α∗}, α∗, β∗) where (α∗, β∗) is random in R. Thus,
given iO(s{α∗}, α∗, β∗) the cheating prover P ∗ still outputs α∗ with proba-
bility ≈1/M (up to poly(n) factors).

3. In the final step, we argue that α∗ is close to uniform (for an appropri-
ate modification of the original protocol) and independent of s. Thus, given
iO(s{α∗}, α∗, β∗), the cheating prover P ∗ outputs α∗ with probability ≈1/M
(up to poly(n) factors), where α∗ is close to truly random. We want to argue
that this contradicts the (sub-exponential) security of iO.

Unfortunately, the argument sketched above is doubly-flawed. In particular,
the arguments in Step (2) and Step (3) are simply false. In Step (2) we start
with a distribution where fs is punctured at a point α∗ for which (α∗, fs(α∗)) is
not (computationally) random, and in fact the choice of α∗ depends on the seed
s. We want to argue that this is indistinguishable from the case where we pick

11 We use (s{α}, α, fs(α)) to denote the circuit that on input α outputs the hardwired
value fs(α), and on any other input x �= α computes fs(x) using the punctured
seed s{α}.

12 We think of n as polynomially related to the security parameter, where 2n is the
domain size of fs.



From Obfuscation to the Security of Fiat-Shamir for Proofs 235

(α∗, β∗) randomly in R, and then puncture at α∗. It is not a-priori clear why the
puncturable PRF or iO would guarantee this indistinguishability. Indeed, the
functions generated by these two distributions can be distinguished with some
advantage by simply counting the number of input-output pairs that are in R.

Nevertheless, in our analysis (see Lemma 1) we manage to argue that the
cheating prover P ∗, given iO(s{α∗}, α∗, β∗) where (α∗, β∗) is random in R, still
outputs α∗ with probability significantly higher than 1/2n (i.e., significantly
higher than guessing). Indeed, P ∗ still outputs α∗ with probability ≈1/M (up to
poly(n) factors).

We next move to the flaw in Step (3). The problem here is that puncturing at
the point α∗ does not at all hide α∗. It is also not clear whether the iO obfuscation
of the punctured seed hides α∗.

Input-Hiding Obfuscation to the Rescue. We overcome this hurdle by using
an exponentially secure input-hiding obfuscation to hide the punctured point.

Namely, we replace iO(s{α∗}, α∗, β∗) with iO(s, hideO(α∗, β∗)), where hideO
is an exponentially secure input hiding obfuscator, and where we did not change
the functionality of the circuit; i.e. the circuit on input x first runs hideO(α∗, β∗)
to check if x = α∗; if so it outputs β∗ and otherwise it outputs fs(x). The
security of iO implies that P ∗(iO(s, hideO(α∗, β∗))) outputs α∗ with probability
1/M (up to poly(n) factors).

It remains to note that s is independent of (α∗, β∗), and hence we conclude
that there exists a poly-size adversary that given hideO(α∗, β∗) outputs α∗ with
probability 1/M (up to poly(n) factors). In the last step we replace the distri-
bution of (α∗, β∗) with a distribution where α∗ is chosen uniformly at random
from {0, 1}n and β∗ is chosen at random such that (α∗, β∗) ∈ R and prove that
still there exists a poly-size adversary that given hideO(α∗, β∗) (where (α∗, β∗)
is according to the new distribution) outputs α∗ with probability 1/M (up to
poly(n) factors). This contradicts the exponential security of the input-hiding
obfuscator hideO.

Remark 2. We note that the input-hiding obfuscator was only used in the secu-
rity analysis. It plays no role in the construction itself. This is similar to some
other recent uses of indistinguishability obfuscation in the literature.

We note that the idea of using input-hiding obfuscation to hide the punctured
point, was also used in [BM14]. However, as opposed to this work, they relied
on the obfuscation being secure against auxiliary inputs.

2 Preliminaries

2.1 Indistinguishability

Definition 1. For any function T : N → N and for any function μ : N → [0, 1],
we say that μ = negl(T ) if for every constant c > 0 there exists K ∈ N such that
for every k ≥ K,

μ(k) ≤ T (k)−c.
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Definition 2. Two distribution families X = {Xκ}κ∈N and Y = {Yκ}κ∈N are

said to be T -indistinguishable (denoted by X T≈ Y) if for every circuit family
D = {Dκ}κ∈N of size poly(T (κ)),

AdvX ,Y
D (T ) def= |Pr[D(x) = 1] − Pr[D(y) = 1]| = negl(T (κ)),

where the probabilities are over x ← Xκ and over y ← Yκ.

2.2 Puncturable PRFs

Our construction uses a puncturable pseudo-random function (PRF) family
[BW13,BGI14,KPTZ13,SW14] that is 2n-secure (where n is the input length);
see the definitions below.

Definition 3 (T -Secure PRF [GGM86]). Let m = m(κ), n = n(κ) and
k = k(κ) be functions of the security parameter κ. A PRF family is an ensemble
F = {Fκ}κ∈N of function families, where Fκ = {fs : {0, 1}n → {0, 1}k}s∈{0,1}m .
The PRF F is T -secure, for T = T (κ), if for every poly(T )-size (non-uniform)
adversary Adv: ∣

∣
∣Advfs(1κ) − Advf (1κ)

∣
∣
∣ = negl(T (κ)),

where fs is a random function in Fκ, generated using a uniformly random seed
s ∈ {0, 1}m(κ), and f is a truly random function with domain {0, 1}n and range
{0, 1}k.

We use 2n-secure PRF families in our construction (for k = poly(n)). We can
construct such PRFs assuming subexponentially hard one-way functions by tak-
ing the seed length m to be a sufficiently large polynomial in n. Observe that,
since the entire truth table of the function can be constructed in time poly(n)·2n,
we get that 2n-security implies that the entire truth table of a PRF fs is indis-
tinguishable from a uniformly random truth table.13

Definition 4 (T -Secure Puncturable PRF [SW14]). A T -secure family of
PRFs (as in Definition 3) is puncturable if there exist PPT procedures puncture
and eval such that

1. Puncturing a PRF key s ∈ {0, 1}m at a point r ∈ {0, 1}n gives a punctured
key s{r} that can still be used to evaluate the PRF at any point r′ 	= r

∀r ∈ {0, 1}n, r′ 	= r : Pr
s,s{r}←puncture(s,r)

[eval(s{r}, r′) = fs(r′)] = 1

13 The fact that subexponential OWF yield PRFs for which distinguishing the entire
truth table from a random truth table the truth table of a random function has been
previously noted in the literature, most notably by Razborov and Rudich [RR97] in
their work on natural proofs.
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2. For any fixed r ∈ {0, 1}n, given a punctured key s{r}, the value fs(r) is
pseudorandom:

(s{r}, r, fs(r))
T (κ)
≈ (s{r}, r, u),

where s{r} is obtained by puncturing a random seed s ∈ {0, 1}m(κ) at the
point r, and u is uniformly random in {0, 1}k.

We note that the GGM-based construction of PRFs gives a construction of
2n-secure puncturable PRFs from any subexponentially hard one-way function
[GGM86,HILL99].

2.3 Indistinguishability Obfuscation

Our construction uses an indistinguishability obfuscator iO with 2−n security. A
candidate construction was first given in the work of Garg et al. [GGH+13].

Definition 5 (T -secure Indistinguishability Obfuscator [BGI+12]).
Let T : N → N be a function. Let C = {Cn}n∈N be a family of polynomial-size

circuits, where Cn is a set of boolean circuits operating on inputs of length n.
Let iO be a PPT algorithm, which takes as input a circuit C ∈ Cn and a security
parameter κ ∈ N, and outputs a boolean circuit iO(C) (not necessarily in C).

iO is a T -secure indistinguishability obfuscator for C if it satisfies the fol-
lowing properties:

1. Preserving Functionality: For every n, κ ∈ N, C ∈ Cn, x ∈ {0, 1}n:

(iO(C, 1κ))(x) = C(x).

2. Indistinguishable Obfuscation: For every two sequences of circuits {C1
n}n∈N

and {C2
n}n∈N, such that for every n ∈ N, |C1

n| = |C2
n|, C1

n ≡ C2
n, and C1

n, C2
n ∈

Cn, and for every polynomially-bounded function m : N → N it holds that:

(

1κ, iO(C1
m(κ), 1

κ)
) T (κ)

≈
(

1κ, iO(C2
m(κ), 1

κ)
)

.

2.4 Input-Hiding Obfuscation

An input-hiding obfuscator for a class of circuits C, as defined by Barak et al.
[BBC+14], has the security guarantee that given an obfuscation of a randomly
drawn circuit in the family C, it is hard for an adversary to find an accepting
input. In our work, we consider input-hiding obfuscation for the class of multi-bit
point functions. A multi-bit point function Ix,y is defined by an input x ∈ {0, 1}n,
and an output y ∈ {0, 1}k. Ix,y outputs y on input x, and 0 on all other inputs.
Informally, we assume that given the obfuscation of Ix,y for a uniformly random
x and an arbitrary y, it is hard for an adversary to recover x.
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Definition 6 (T -secure Input-Hiding Obfuscator [BBC+14]). Let T :
N → N be a function, and let C = {Cn}n∈N be a family of poly-size circuits,
where Cn is a set of boolean circuits operating on inputs of length n. A PPT
obfuscator hideO is a T -secure input-hiding obfuscator for C, if it satisfies the
preserving functionality requirement of Definition 5, as well as the following
security requirement. For every poly-size (non-uniform) adversary Adv and all
sufficiently large n,

Pr
C←Cn,hideO

[C(Adv(hideO(C))) 	= 0] ≤ T−1(n).

We emphasize that (unlike other notions of T -security used in this work),
we only allow the adversary for a T -secure input hiding obfuscation to run in
polynomial time. Nevertheless, depending on the function T , the definition of
T -secure input hiding is quite strong. In particular, for the typical case of proof-
systems with soundness 2nε

(where ε > 0 is a constant) we will assume input-
hiding obfuscation for T = 2n−nε

, which means that a polynomial-time adversary
can only do sub-exponentially better than the trivial attack that picks random
inputs until it finds an accepting input (this attack succeeds with probability
poly(n)/2n). This is also why we do not separate the security parameter from the
input length (the adversary can always succeed with probability 2−n, assuming
there exists an accepting input).

We assume input-hiding obfuscation for the class of multi-bit point functions
(see above), where the point x is drawn uniformly at random, and the output y
is arbitrary. In particular, we do not assume that the collection C of pairs (x, y)
can be sampled efficiently, only that its marginal distribution on x is uniform.

Assumption 3 (T -secure Input-Hiding for Multi-Bit Point Functions).
Let T, k : N → N be functions. An obfuscator hideO is a T -secure input-hiding

obfuscator for (n, k)-multi-bit point functions if for every collection C as below,
hideO is a T -secure input-hiding obfuscator for C. In the collection C , for every
n ∈ N, every function Ix,y ∈ Cn has x ∈ {0, 1}n, y ∈ {0, 1}k(n), and the marginal
distribution of a random draw from Cn on x is uniform.

The assumption is strong in that we do not assume that a random function
in C can be sampled efficiently, or that the output y is an efficient function of the
input x. This assumption was studied in [CD08,BC14]. A candidate construction
(in the standard model) was provided in [CD08]. Loosely speaking, their con-
struction is an extension of the point function obfuscation of Canetti [Can97],
where the obfuscation of Ix,y consists of a pair of the form (r, rx), together with
k pairs of the form (ri, r

αi
i ) where αi = x if yi = 1 and is uniformly random

otherwise. It was proved in [BC14] that this construction is secure in the generic
group model, where the inversion probability is at most poly(n) · 2−n.

2.5 Interactive Proofs and Arguments

An interactive proof, as introduced by Goldwasser, Micali and Rackoff [GMR89],
is a protocol between two parties, a computationally unbounded prover and a
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polynomial-time verifier. Both parties have access to an input x and the prover
tries to convince the verifier that x ∈ L. Formally an interactive proof is defined
as follows:

Definition 7 (Interactive Proof [GMR89]). An r-message interactive proof
for the language L is an r-message protocol between the verifier V , which is
polynomial-time, and a prover P , which is computationally unbounded. We
require that the following two conditions hold:

– Completeness: For every x ∈ L, if V interacts with P on common input x,
then V accepts with probability at least 2/3.

– Soundness: For every x /∈ L and every (computationally unbounded) cheat-
ing prover strategy P̃ , the verifier V accepts when interacting with P̃ with
probability at most 1/3.

We say that an interactive-proof is public-coin if all messages sent from V to P
consist of fresh random coins tosses. Also, recall that the constants 1/3 and 2/3
are arbitrary and can be amplified by (e.g., parallel) repetition.

Interactive Arguments. An interactive argument is defined similarly to an
interactive proof except that the soundness condition is only required to hold
for cheating provers that run in polynomial time. We also require that the honest
prover run in polynomial-time, given the witness as an auxiliary input.

Definition 8 (Interactive Argument). An r-message argument for the lan-
guage L ∈ NP is an r-message protocol between a verifier V and a prover P ,
both of which are polynomial-time algorithms. We require that the following two
conditions hold:

– Completeness: There exists a negligible function negl such that for every x ∈
L, if V interacts with P on common input x, where P is given in addition an
NP witness w for x ∈ L, then V accepts with probability at least 1−negl(|x|).

– Soundness: For every polynomial-size cheating prover strategy P̃ and for
every x /∈ L, the verifier V accepts when interacting with P̃ on common input
x, with probability at most negl(|x|).

We remark that in contrast to Definition 7, here we require negligible com-
pleteness and soundness errors. This is because parallel repetition does not nec-
essarily decrease the soundness error for interactive arguments [BIN97]. We fur-
ther remark that it is common to add a security parameter to the definition of
argument systems so as to allow obtaining strong security guarantees even for
short inputs. For simplicity of notations however we refrain from introducing a
security parameter and note that better security guarantees for short inputs can
be simply obtained by padding the input.
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2.6 The Fiat-Shamir Paradigm

In this section, we recall the Fiat-Shamir paradigm. For the sake of simplicity
of notation, we describe this paradigm when applied to 3-round (as opposed to
arbitrary constant round) public-coin protocols. Let Π = (P, V ) be a 3-round
public-coin proof system for an NP language L. We denote its transcripts by
(α, β, γ), where β are the messages sent by the verifier, and α, γ are the messages
sent by the prover. We denote by n the length of α (i.e., α ∈ {0, 1}n), and we
denote by k the length of β (i.e., β ∈ {0, 1}k). We assume that k ≤ poly(n)
(since otherwise we can just pad).

Let {Hn}n∈N be an ensemble of hash functions, such that for every n ∈ N

and for every h ∈ Hn,
h : {0, 1}n → {0, 1}k.

We define ΠFS, with respect to the hash family H to be the 2-round protocol
obtained by applying the Fiat-Shamir transformation to Π using H. A formal
presentation of the “collapsed” protocol ΠFS = (P FS, V FS) is in Fig. 1.

Remark 3. We emphasize that our main result is that the Fiat-Shamir para-
digm in its original formulation (as presented in Fig. 1) is secure when applied
to interactive proofs and when using a particular hash function (based on the
assumption mentioned above).

Fig. 1. Collapsing a 3-round Protocol Π = (P, V ) into a 2-round Protocol ΠFS =
(P FS, V FS) using H

3 Security of Fiat-Shamir for 3-Message Proofs

We show an instantiation of the Fiat-Shamir paradigm that is sound when it
is applied to interactive proofs (as opposed to arguments). Taking n to be a
bound on the message lengths of the prover in Π, our instantiation assumes the
existence of a 2n-secure indistinguishability obfuscation scheme iO, a 2n-secure
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puncturable PRF family F , and a 2n-secure input-hiding obfuscation for the
class of multi-bit point functions In,k.

For clarity of exposition, we first show that our instantiation is secure for
3-round public-coin interactive proofs. This is the regime for which the Fiat-
Shamir paradigm was originally suggested. We then build on the proof for the
3-message case (or rather the 4-message case, see below), and prove security for
any constant number of rounds.

Theorem 4 (Fiat-Shamir for 3-message Proofs). Let Π be a public-coin
3-message interactive proof system with negligible soundness error. Let n be an
upper bound on the input length and the length of the prover’s messages and let
k ≤ poly(n) be an upper bound on the length of the verifier’s messages.

Assume the existence of a 2n-secure puncturable PRF family F , the existence
of a 2n-secure Indistinguishability Obfuscation iO, and the existence of a secure
input-hiding obfuscation for the class of multi-bit point functions {In,k} with
security T = 2n · negl(n).

Then, the resulting 2-round argument ΠFS, obtained by applying the Fiat-
Shamir paradigm (see Fig. 1) to Π with the function family iO(F), is secure.

(Recall that we defined iO(F) as the iO obfuscation of a program that computes
the PRF, using a hardwired random seed.)

In Sect. 4 we prove the security of the Fiat-Shamir paradigm when applied to
any constant round interactive proof. To prove the general (constant round) case,
we need to rely on a more general (and more technical) variation of Theorem 4.
First, we rely on the security of the Fiat-Shamir paradigm for any 4-round inter-
active proof Π where the first message is sent by the verifier. In the transformed
protocol ΠFS, the first message of the verifier consists of the first message as in
Π, along with a Fiat-Shamir hash function, which will be applied to the prover’s
first message. In addition, in the generalized theorem we allow the verifier in the
original protocol Π to run in time 2O(n).

We state the generalized theorem below.

Theorem 5 (Theorem 4, more General Statement). Let Π be a 4-
message public-coin interactive proof system, where the first message is sent
by the verifier. Let n be an upper bound on the input length14 and the lengths
of the prover’s messages, let k ≤ poly(n) be a bound on the verifier’s messages,
let μ(n) = negl(n) be the soundness error15 error, and assume that the verifier
runs in time at most 2O(n).

14 We remark that the reason we bound the input length is solely because we use a
simplified definition of argument system that does not have a security parameter,
and we are aiming for argument systems with soundness that is negligible in the
input length.

15 Since parallel repetition decreases the soundness error of interactive proofs at an
exponential rate, we may assume without loss of generality that the soundness error
is negligible in n.
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Assume the existence of a 2n-secure puncturable PRF family F , the existence
of a 2n-secure Indistinguishability Obfuscation iO, and the existence of a input-
hiding obfuscation for the class of multi-bit point functions {In,k} that is T -
secure for every T = 2n · μ/ν, where ν is any non-negligible function.

Then the resulting 2-round argument ΠFS, obtained by applying the
Fiat-Shamir paradigm16 to Π with the function family iO(F), is secure.

We remark that μ · 2n · poly(n) is a shorthand for a function T such that for
every c > 0 and all sufficiently large n ∈ N it holds that T (n) ≥ μ(n) · 2n · nc.

Proof (Proof of Theorem 5). Fix any 4-round interactive proof Π = (P, V ) as
claimed in the theorem statement. Let μ = negl(n) be the soundness error of Π.

Suppose for the sake of contradiction that there exists a poly-size cheating
prover P ∗ who breaks the soundness of the protocol ΠFS with respect to some
x∗ /∈ L with non-negligible probability ν. We will use P ∗ to eventually break the
security of the input-hiding obfuscation, while using along the way the soundness
of Π as well as the security of the PRF F and Indistinguishability Obfuscator iO.

There must exist a choice for the verifier’s first message τ in Π, such that the
following two conditions hold: (i) Even conditioned on the first part of the first
message in ΠFS being τ , the cheating prover P ∗ still breaks the soundness of the
protocol ΠFS on x∗ with probability at least (ν/2), and (ii) even conditioned
on the first message in Π being τ , the original protocol Π still has soundness
error at most (2μ/ν). Such a τ must exist because at least a (ν/2)-fraction of
the messages must satisfy condition (i) (otherwise P ∗ cannot break ΠFS with
total probability ν), and the fraction that do not satisfy condition (ii) must be
smaller than (ν/2) (otherwise the soundness of Π is smaller than μ).

Fix the verifier’s first message to always be τ (both in the original and in the
transformed protocols). We have that:

Pr
s,iO

[

P ∗(τ, iO(s)) = (α, γ) s.t. V (x∗, τ, α, fs(α), γ) = 1
]

≥ ν/2, (3.1)

where iO(s) refers to the iO obfuscation of a random function fs from the
family F .

The relaxed verifier and its properties. To obtain a contradiction, we ana-
lyze a relaxed verifier V ′ (which is only used in the security analysis). The relaxed
verifier accepts a transcript (α, β, γ) if the original verifier V would accept, or
if the first �log(ν/(2μ)
 bits of β are all 0 (where recall that μ is the soundness

16 For 4-message proofs, the same paradigm as in Fig. 1 is used, except that the verifier
also sends its first message from the base proof-system (i.e., a random string) in the
first round.
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error of Π).17 In particular, whenever V accepts, the relaxed verifier V ′ also
accepts, and so:

Pr
s,iO

[

P ∗(τ, iO(s)) = (α, γ) s.t. V ′(x∗, τ, α, fs(α), γ) = 1
]

≥ ν/2. (3.2)

We take μ′ to be the soundness of the interactive proof (P, V ′) (after τ is fixed),
which runs the relaxed verifier. Observe that by a union bound

μ′ ≤ (2μ/ν) + 2−�log(ν/(2μ))� ≤ 4μ/ν,

(in particular if μ is negligible, then so is μ′).
We define:

ACC =
{

(α, β) : ∃γ s.t. V ′(x∗, τ, α, β, γ) = 1
}

Observe that membership in ACC can be computed in time 2n · poly(n) = 2O(n)

by enumerating over all γ’s and running V ′. Equation (3.2) implies that there
exists a poly-size adversary A (that just outputs the first part of P ∗’s output)
such that:

Pr
s,iO

[

A(iO(s)) outputs some α s.t.
(

α, fs(α)
)

∈ ACC
]

≥ ν/2. (3.3)

Using Eq. (3.3) we prove our main lemma.

Lemma 1.

Pr
s,α∗,u∗,iO

[

A
(

iO(s{α∗}, α∗, u∗)
)

= α∗
∣
∣
∣

(

α∗, u∗) ∈ ACC
]

≥ 2−n+2 · ν/μ′

where α∗ and u∗ are uniformly distributed (in {0, 1}n and {0, 1}k, respectively)
and iO(s{α∗}, α∗, u∗) refers to an iO obfuscation of the program that contains
the seed s punctured at the point α∗, and on input α first checks if α = α∗ and
if so outputs u∗ and otherwise outputs fs(α).

Proof. We prove the lemma by analyzing the probability that the event
(

A(iO(s{α∗}, α∗, u∗)) = α∗
)

∧
((

α∗, u∗) ∈ ACC
)

occurs.
By the exponential hardness of the puncturable PRF, and the fact that mem-

bership in ACC is computable in 2O(n) time, we have that
17 In the original protocol Π, it may be the case that different messages α sent by the

prover can lead the verifier to accept with different probabilities. E.g., some specific
α’s may lead the verifier to accept with probability μ and others with probability 0.
This presents a technical difficulty later in the proof and so we construct the relaxed
verifier V ′ so that every string α leads it to accept with roughly the same probability
(up to a small multiplicative constant) without increasing the soundness error by
too much.
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Pr
s,α∗,u∗,iO

⎡
⎣

A(iO(s{α∗}, α∗, u∗)) = α∗
∧(

α∗, u∗) ∈ ACC

⎤
⎦ ≥ Pr

s,α∗,iO

⎡
⎣

A(iO(s{α∗}, α∗, fs(α∗))) = α∗
∧(

α∗, fs(α∗)
) ∈ ACC

⎤
⎦− 2−2n.

(3.4)

Further applying the exponential hardness of the iO scheme (and the fact that
membership in ACC can be decided in 2O(n) time), we get that:

Pr
s,α∗,u∗,iO

⎡

⎣

A(iO(s{α∗}, α∗, u∗)) = α∗

∧
(

α∗, u∗) ∈ ACC

⎤

⎦≥ Pr
s,α∗,iO

⎡

⎣

A(iO(s)) = α∗

∧
(

α∗, fs(α∗)
)

∈ ACC

⎤

⎦− 2 · 2−2n.

(3.5)

Using elementary probability theory, we have that:

Pr
s,α∗,iO

⎡
⎣

A(iO(s)) = α∗

∧(
α∗, fs(α

∗)
)

∈ ACC

⎤
⎦ = Pr

s,α∗,iO

[⋃
α

((
A(iO(s)) = α

∗) ∧
((

α
∗
, fs(α

∗
)
)

∈ ACC
)

∧
(
α

∗
= α
))]

=
∑

α

Pr
s,α∗,iO

[(
(A(iO(s)) = α) ∧

((
α, fs(α)

)
∈ ACC

)
∧
(
α

∗
= α
))]

= 2
−n
∑

α

Pr
s,iO

[
(A(iO(s)) = α) ∧

((
α, fs(α)

)
∈ ACC

)]

= 2
−n

Pr
s,iO

[
A(iO(s)) outputs some α s.t.

(
α, fs(α)

)
∈ ACC

]

≥ 2
−n · ν/2

where the last inequality is by Eq. (3.3). Thus, we have that:

Pr
s,α∗,u∗,iO

⎡

⎣

A(iO(s{α∗}, α∗, u∗)) = α∗

∧
(

α∗, u∗) ∈ ACC
s

⎤

⎦ ≥ 1
4

· 2−n · ν.

By the soundness of the underlying proof-system, it holds thats
Prα∗,u∗ [(α∗, u∗) ∈ ACC] ≤ μ′ (since otherwise a cheating prover could violate
soundness by just sending a random α∗).18

Let ζ = Prs,α∗,u∗,iO

[

A(iO(s{α∗}, α∗, u∗)) = α∗
∣
∣
∣

(

α∗, u∗) ∈ ACC
]

.
Then, by definition of conditional probability we have that

ζ =

Prs,α∗,u∗,iO

⎡

⎣

A(iO(s{α∗}, α∗, u∗)) = α∗

∧
(

α∗, u∗) ∈ ACC

⎤

⎦

Prα∗,u∗ [(α∗, u∗) ∈ ACC]
≥ 1

4
· 2−n · ν/μ′,

and the lemma follows.
18 It may at first seem odd that we only use the soundness of the underlying proof-

system with respect to a cheating prover that just sends a random message α∗. Recall
however that here we consider the relaxed verifier who, by design, has a (roughly)
similar acceptance probability given any string α.
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We are now ready to use (and break) our input-hiding obfuscator hideO.
Lemma 1, together with the 2n-security of the iO implies that

Pr
s,α∗,u∗,iO

[

A(iO(s, hideO(α∗, u∗))) = α∗
∣
∣
∣

(

α∗, u∗) ∈ ACC
]

≥ 1
4

· 2−n · ν/μ′ − 2−n

≥ 1
8

· 2−n · ν/μ′,

(3.6)

where α∗ and u∗ are uniformly distributed and iO(s, hideO(α∗, u∗)) refers to the
iO obfuscation of the program that contains a seed s for a PRF (in its entirety),
and the input-hiding obfuscation hideO(α∗, u∗) of a multi-bit point function that
on input α∗ outputs u∗. The program uses the input-hiding obfuscation to check
if its input equals α∗, and if so outputs the same value as hideO(α∗, u∗). Other-
wise the program behaves like the PRF.

Equation (3.6) is almost what we want. Namely, an adversary that given
access to hideO(α∗, u∗) produces α∗ with probability ω(poly(n)/2n) (since ν is
inverse polynomial and μ is a negligible function). The only remaining problem
is that the distribution of (α∗, u∗) is not quite what we need. More specifically,
in Eq. (3.6) (α∗, u∗) are distributed uniformly conditioned on (α∗, u∗) ∈ ACC,
whereas we need for the marginal distribution of α to be uniform in order to
break the hideO obfuscation. Using the properties of the relaxed verifier, we show
that these two distributions are actually closely related.

We define the following two distributions. The distribution T1 is obtained by
jointly picking a pair (α, β) uniformly from ACC (this is the distribution from
which (α∗, u∗) are sampled from in Eq. (3.6)). T2 is the distribution obtained by
picking a uniformly random α ∈ {0, 1}n and then a random β conditioned on
(α, β) ∈ ACC (i.e. the marginal distribution on α is uniform). For α∗ ∈ {0, 1}n,
β∗ ∈ {0, 1}k, we use T1[α∗, β∗] and T2[α∗, β∗] to denote the probability of the
pair (α∗, β∗) by T1 and by T2 (respectively).

Proposition 1. For any α∗ ∈ {0, 1}n and β∗ ∈ {0, 1}k:

T2[α∗, β∗] ≥ 1
4
T1[α∗, β∗]

Proof. For every α∗ denote by:

Sα∗ =
{

β∗ ∈ {0, 1}k : (α∗, β∗) ∈ ACC
}

.

By construction of the relaxed verifier V ′, we know that for every α ∈ {0, 1}n it
holds that

μ

ν
≤ |Sα|

2k
≤ 4μ

ν
.

In particular, for any α, α∗ ∈ {0, 1}n:

|Sα| ≥ 1
4
|Sα∗ |.
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Now we have that:

T1[α∗, β∗] =
1

∑

α∈{0,1}n |Sα| ≤ 4
∑

α∈{0,1}n |Sα∗ | =
4

2n · |Sα∗ | = 4 · T2[α∗, β∗]

(3.7)

In particular, drawing by T2 rather than T1 can only decrease the success
probability of A by a multiplicative factor of 4. Moreover, when drawing by T2,
the marginal distribution on α∗ is uniform. Thus Proposition 1 and Eq. (3.6)
imply that there exists a poly-size adversary A, such that

Pr
(α∗,u∗)←T2,hideO

[A(hideO(α∗, u∗)) = α∗] ≥ 1
32

· ν

μ′ · 2n

where α∗ drawn by T2 is uniformly random. Since ν is a non-negligible function
and μ′ = O(μ/ν), this contradicts the security of the input-hiding obfusca-
tion hideO.

4 Security of Fiat-Shamir for Multi-round Proofs

In this section we show a secure instantiation of the Fiat-Shamir method-
ology for transforming any constant-round interactive proof into a 2-round
computationally-sound argument. We assume for the sake of simplicity, and with-
out loss of generality, that the verifier always sends the first message, and thus
consider interactive protocols with an even number of rounds. Namely, for any
constant c ≥ 2, we consider a 2c-round interactive proof Π = (P, V ). We assume
without loss of generality that all of the prover’s messages are of the same length,
and denote this length by n (i.e. ∀i, αi ∈ {0, 1}n). Similarly, we assume without
loss of generality that all of the verifier’s messages are of the same length, and
denote this length by k (i.e. ∀i, βi ∈ {0, 1}k). We assume without loss of gener-
ality that k ≤ n. All these assumptions are only for the simplicity of notations,
and can be easily achieved by padding.

For every i ∈ [c − 1], let {F (i)
n }n∈N be an ensemble of hash functions, such

that for every n ∈ N and for every f (i) ∈ Fn,

f (i) : {0, 1}i·(n+k) → {0, 1}k.

We assume without loss of generality that there exists a polynomial p such that
for every i ∈ [c − 1] and for every n ∈ N,

F (i)
n = {f (i)

s }s∈{0,1}p(n) .

We define ΠFS to be the 2-round protocol obtained by applying the multi-
round Fiat-Shamir transformation to Π using (iO(f (1)

s1 ), . . . , iO(f (c−1)
sc−1 )), where

f
(i)
si ← F (i)

n for every i ∈ [c − 1]. The security of ΠFS is shown in Theorem 6
below.
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Theorem 6 (Fiat-Shamir Transform for Multi-Round Interactive
Proofs). Let μ : N → [0, 1] be a function. Assume the existence of a 2n-secure
puncturable PRF family F , assume the existence of a 2n-secure Indistinguisha-
bility Obfuscation, and assume the existence of an input-hiding obfuscation for
the class of multi-bit point functions {In,k} that is T -secure for any T = 2n ·μ/ν,
where ν is any non-negligible function.

Then for any constant c ∈ N such that c ≥ 2, and any 2c-round interactive
proof Π with soundness μ, the resulting 2-round argument ΠFS, obtained by
applying the multi-round Fiat-Shamir transformation to Π with the function
family iO(F), is secure.

Proof. The proof is by induction on c ∈ N, for c ≥ 2. The base case c = 2 follows
immediately from Theorem 4. Suppose the theorem statement is true for < c
rounds, and we will prove that it is true for c rounds.

To this end, fix any 2c-round interactive proof Π for proving membership
in a language L. Suppose for the sake of contradiction that ΠFS is not secure.
Namely, there exists a poly-size cheating prover P ∗ and there exists x∗ /∈ L such
that P ∗ succeeds in convincing the verifier of ΠFS that x∗ ∈ L with non-negligible
probability. We assume without loss of generality that P ∗ is deterministic.

Consider the following protocol Ψ for proving membership in L, which con-
sists of 2c−2 rounds: In the first round the verifier chooses the first message that
it would have sent in Π, which we denote by β0. In addition, it chooses a random
seed s1 ← {0, 1}p(n), and sends to the prover the pair (β0, iO(f (1)

s1 )). Then, the
prover chooses (α1, β1, α2) such that β1 = f

(1)
s1 (α1), and such that α1 and α2 are

chosen as in Π. It sends (α1, β1, α2) to the verifier. Then the prover and verifier
continue to execute the protocol Π interactively, conditioned on (β0, α1, β1, α2).
Finally, the verifier accepts if and only if the verifier of Π would have accepted
the resulting transcript and β1 = f

(1)
s1 (α1).

Consider the protocol ΨP ∗ , in which we fix the first message from the prover in
Ψ to be the message (α1, β1, α2) generated by P ∗ in ΠFS. If ΨP ∗ is a sound proof
then, by our induction hypothesis (ΨP ∗)FS is sound. However, note that P ∗ can be
trivially converted into a cheating prover that breaks the soundness of (ΨP ∗)FS,
contradicting our induction hypothesis that the Fiat-Shamir transformation is
sound for interactive proofs with 2(c−1) rounds (with the function family iO(F)).
Thus, it must be the case that ΨP ∗ is not a sound proof. Namely, there exists a
(possibly inefficient) cheating prover P ∗∗, an element x∗ /∈ L, and a polynomial q,
such that P ∗∗ convinces the verifier of ΨP ∗ to accept x∗ with probability ≥ 1/q(κ)
for infinitely many κ ∈ N.

Consider the 4-round protocol Φ, which consists of the first 4 rounds of Π,
denoted by (β0, α1, β1, α2). Given a transcript (β0, α1, β1, α2) the verifier of Φ
accepts if and only if there exists a strategy of the (cheating) prover of Π that
causes the verifier of Π to accept with probability ≥ 1/q(κ) conditioned on the
first 4-rounds of Π being (β0, α1, β1, α2). Note that the verifier of Φ runs in
time poly(2c(n+k)) = 2O(n). The statistical soundness of Π implies that Φ is
also statistically sound. Note however that ΦFS is not computationally sound.
To see this, consider a poly-size cheating prover for ΦFS that sends the message
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(α1, β1, α2) that P ∗ sends in Π. By the fact that ΨP ∗ is not sound (since P ∗∗

breaks its soundness), the verifier of ΦFS will accept x∗ 	∈ �L. This is in contra-
diction to Theorem 5 (where we used the fact that Theorem 5 holds even for
verifiers running in time 2O(n)).
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