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Abstract. One innovative solution to traffic congestion is to use real-time data
and Intelligent Transportation Systems (ITSs) to optimize the existing trans-
portation system. To address this need, we propose an algorithm for real-time
automatic congestion identification that uses speed probe data and the corre-
sponding weather and visibility to build a unified model. Based on traffic flow
theory, the algorithm assumes three traffic states: congestion, speed-at-capacity,
and free-flow. Our algorithm assumes that speed is drawn from a mixture of
three components, whose means are functions of weather and visibility and
defined using a linear regression of their predictors. The parameters of the model
were estimated using three empirical datasets from Virginia, California, and
Texas. The fitted model was used to calculate the speed cut-off between con-
gestion and speed-at-capacity by minimizing either the Bayesian classification
error or the false positive (congestion) rate. The test results showed promising
congestion identification performance.

Keywords: Transportation planning and traffic operation � Real-time automatic
congestion identification � Mixture of linear regression � ITS

1 Introduction

Traffic congestion has become one of the problems of modern life in many
metropolitan areas. This growing problem has environmental effects. During conges-
tion, cars cannot run efficiently, so air pollution, carbon dioxide (CO2) emissions, and
fuel use increase. In 2007, Americans lost $87.2 billion in wasted fuel and lost pro-
ductivity from congestion. This waste reached $115 billion in 2009 [1]. Congestion
also increases travel time; for example, in 1993 driving under congested conditions
caused a delay of about 0.6 min per km of travel on expressways and 1.2 min of delay
per km of travel in arterials [2]. The congestion problem has only grown since then.
The Texas Transportation Institute has reported that the number of hours Americans
wasted in traffic congestion increased fivefold between 1982 and 2005. Moreover,
congestion has an economic effect. Studies show that congestion slows metropolitan
growth, inhibits agglomeration economies, and shapes economic geographies [3].
Traffic congestion can be caused by an obstruction or lack of road capacity, which is an
inefficient use of the roads. This problem can be reduced by increasing budgets for the
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construction of roads and infrastructure. But adding more road capacity is costly,
budgets are limited, and the construction itself takes a long time.

With the continuous increase in traffic volumes, managing traffic, particularly at times
of peak demand, is a good and inexpensive solution to congestion. Advanced traffic
management systems (ATMS) use various applications of intelligent transportation sys-
tems (ITS) to manage traffic and reduce congestion problems. Recently, advancements in
communication and computers have greatly improved ITS and made it more capable of
identifying and reducing congestion. ITS is an effective solution to traffic problems because
it improves the dynamic capacity of the road system without building extra expensive
infrastructure [4]. Accurate and real-time traffic information is the foundation of ITS.

Congestion usually starts from a road bottleneck, then spills over to neighboring
road segments. It takes time until this congestion disappears. Depending on the fre-
quency of occurrence, traffic congestion can be divided into two categories [5]. The
first is recurrent traffic congestion, and the second is accidental (non-recurring) traffic
congestion. Recurrent traffic congestion, which usually results from exceeding the road
capacity, is easier to identify and predict. Accidental traffic congestion usually results
from traffic incidents or severe weather conditions. Traffic congestion is different for
different locations, time periods, and weather conditions.

The impact of weather on freeway traffic operations is a major concern of roadway
management agencies; however, little research has been done to link weather and
congestion in a quantitative sense. Two groups at the University of Washington cor-
related weather and traffic phenomena using the Traffic Data Acquisition and Distri-
bution (TDAD) data mine and the Doppler radar data mine [6]. Their basic idea was
that if moving weather cells could be tracked and predicted using weather radar then a
correlation between the properties of the weather cell and observed traffic states could
be found. Nookala studied the traffic congestion caused by weather conditions and their
effect on traffic volume and travel time [7]. He observed an increase in the traffic
congestion during inclement weather conditions resulting from a drop in freeway
capacity without a corresponding significant drop in traffic demand. Chung et al. used
traffic data collected over a 2-year period from July 1, 2002, to June 30, 2004, at the
Tokyo Metropolitan Expressway (MEX) and showed a decrease in free-flow speed and
in capacity with increasing amount of rainfall [8]. Brilon and Ponzlet used 3 years of
historical data for 15 freeway sites in Germany to investigate the impacts of several
factors, including weather, on speed-flow relationships [9]. They found that wet
roadway conditions cause different reductions in speed on highways with different
numbers of lanes. Agarwal et al. emphasized that the results obtained from studies
outside the United States cannot be applied within the United States due to different
roadway and driver characteristics. Moreover, the results obtained from rural freeway
segments within the United States may be different from urban freeways [10]. Ibrahim
and Hall used a limited historical dataset and multiple regression analysis to study the
impact of rain and snow on speed [1]. Their results showed that light rain and snow
cause similar reductions in speeds (3%–5%), while 14%–15% and 30%–40% reduc-
tions in speed are caused by heavy rain and heavy snow respectively. Rakha et al. used
weather data (precipitation and visibility) and loop detector data (speed, flow, and
occupancy) obtained from Baltimore, Maryland, Minneapolis/St. Paul, Minnesota, and
Seattle, Washington, in the United States to quantify the impact of inclement weather
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on traffic stream behavior and key traffic stream parameters, including free-flow speed,
speed-at-capacity, capacity, and jam density [11].

During the last few years, many automatic congestion identification algorithms have
been proposed. ASBIA is an algorithm that uses speed measurements over short tem-
poral intervals and spatial segments to identify the status of a segment using the t-test
[12]. The outputs of the algorithm are the status of the roadway segment (free-flow or
congested) and the confidence level of the test (p-value). Another algorithm uses vehicle
trajectories in an intelligent vehicle infrastructure co-operation system (IVICS) [4]. The
spatial-temporal trajectories are considered as an image to extract the propagation speed
of a congestion wave and construct a congestion template. The correlation is evaluated
between the template and the spatial-temporal velocity image to identify the congestion.
A parallel support vector machine (SVM) is used in [13] to identify traffic congestion.
The authors proposed parallel SVM instead of SVM because the training computation
cost of SVM is expensive and congestion identification is a real-time task.

Floating car data are used in [14] to find meaningful congestion patterns. The
analysis of the floating car data is done using a method based on a data cube and the
spatial-temporal related relationship of the slow-speed road segment to identify the
traffic congestion. The research team at the Center for Sustainable Mobility (CSM) at
the Virginia Tech Transportation Institute (VTTI) developed an algorithm to identify
congested segments using a spatiotemporal speed matrix [15]. The proposed algorithm
fits two log-normal (or normal) distributions to the training dataset.

To the best of our knowledge, no research addresses the impacts of both visibility
and weather conditions on congestion identification. In this paper, the impacts of
weather conditions and visibility levels on the congestion identification algorithm are
investigated by modeling the speed distribution as a mixture of three log-normal
components whose means are linear functions of weather condition and visibility level.
So that based on weather condition and visibility level the three log-normal compo-
nents may get close or apart and the cut-off speed is changed. The proposed algorithm
was built using three different datasets from three different states (Virginia, Texas, and
California). The results of our proposed model are promising and reasonable; for
example, the cut-off speed increases as the visibility level increases.

The remainder of this paper is organized as follows. First, a brief background of the
method used is given. After that, the proposed algorithm is introduced. The datasets
used in the case study are described. Subsequently, the result of the experimental work
is explained and an illustrative example is given to show how to implement the pro-
posed model. Finally, conclusions are presented.

2 Mixture of Linear Regressions

Finite mixture models are powerful tools for analyzing a wide variety of random phe-
nomena. They are used to model random phenomena in many fields, including agri-
culture, biology, economics, medicine, and genetics. A mixture of linear regressions is
one of the mixture families that has been studied carefully in the literature [16, 17]. It can
be used to model the speed for different traffic regimes at different weather condition and
visibility levels.
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The mixture of linear regression can be written as:

p yjXð Þ ¼
Xm
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where yi is a response corresponding to a predictors vector x
T
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coefficients for the jth mixture component, kj is a mixing probability of the jth mixture
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can be estimated by maximizing the log-likelihood of Eq. (1) given a set of response
predictor pairs, ðy1; x1Þ; ðy2; x2Þ; . . .; ðyn; xnÞ, and using the Expectation-Maximization
algorithm (EM).

2.1 EM Algorithm

The EM algorithm iteratively finds maximum likelihood estimates by alternating the
E-step and M-step. Let wðkÞ be parameter estimates after the kth iteration. On the E-step,
the posterior probability of the ith observation comes from component j and is com-
puted as shown in Eq. (3).

wðkþ 1Þ
ij ¼

kðkÞj /j yijxi;wðkÞ
� �

Pm
j¼1 k

ðkÞ
j /j yijxi;wðkÞ

� � ð3Þ

where /j yijxi;wðkÞ
� �

is the probability density function of the jth component.

On the M-step, new parameter estimates wðkþ 1Þ maximizing the log-likelihood
function in Eq. (1) are calculated, as shown in Eqs. (4) and (5).

kðkþ 1Þ
j ¼

Pn
i¼1 w

ðkþ 1Þ
ij

n
ð4Þ

bbðkþ 1Þ
j ¼ ðXTWjXÞ�1XTWjY ð5Þ
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where Xnxðpþ 1Þ is the predictors matrix, Ynx1 is the corresponding response vector, and

Wnxn is an diagonal matrix having wðkþ 1Þ
ij along its diagonal.

br2ðkþ 1Þ
j ¼

Pn
i¼1 w

ðkþ 1Þ
ij ðyi � xTi bb

ðkþ 1Þ
j Þ2

Pn
i¼1 w

ðkþ 1Þ
ij

ð6Þ

The E-step and M-step are alternated repeatedly until the incomplete log-likelihood
change is arbitrarily small, as shown in Eq. (7).

Yn

i¼1

Xm
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kðkþ 1Þ
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� �
�
Yn

i¼1

Xm
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where n is a small number.

3 The Proposed Algorithm

The proposed algorithm is the result of a research effort that extended over a couple of
years. Our research efforts resulted in the development of three algorithms. The first
algorithm is based on the one-sample t-test [12]. This algorithm uses speed measure-
ments over short temporal intervals and spatial segments to identify the status of the
center point as being in a free-flow or congested state using a t-test. The drawbacks of
this algorithm are its need of future speed readings, a normality assumption, and
multiple testing corrections. In order to overcome the drawbacks of this algorithm, we
proposed a second algorithm.

The second algorithm fits a mixture of two components using a historical dataset
[15]. The fitted mixture model is used to calculate a threshold to distinguish between
free-flow and congested traffic. If the speed of a segment is greater than this threshold,
the segment is considered to be in a free-flow state; otherwise the segment is considered
congested. The second algorithm overcomes the model deficiencies of the t-test-based
algorithm, and it overcomes the normality problem by using the log-normal distribution
to model skewed data. It is also suitable for online (real-time) application because it
does not require knowledge of future speed readings. However, the drawback of this
algorithm is that it does not consider any weather conditions or visibility levels.

The third algorithm uses a mixture of two linear regressions to model the speed
distributions for different traffic conditions, including free-flow and congested traffic
[18]. The speed of each regime is modeled as a distribution whose mean is function of
weather condition and visibility level. The threshold that separates free-flow and
congested traffic becomes a function of weather and visibility level as well. The pro-
posed model overcomes the problem of limited data for some weather conditions and
visibility levels by pooling the data during model fitting. However, this algorithm has a
serious problem in that it overestimates the thresholds separating the free-flow and
congested regimes. To overcome this problem, we used the traffic flow theory fun-
damental diagram, which assumes that there are three traffic states: free-flow,
speed-at-capacity, and congested.
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As shown in the fundamental diagrams in Fig. 1, we divide the traffic states of a
road segment into three traffic regimes where the speed of each regime can be modeled
by a log-normal distribution. Consequently, the overall speed distribution can be
represented as a mixture of three log-normal components. The first regime is free-flow,
which has the speed distribution with the highest mean. At free-flow, traffic density lies
below the capacity density. The second regime is congested flow, which has the speed
distribution with the lowest mean. Congested flow is characterized by traffic density
between the capacity density and the jam density. The third regime is capacity flow,
which separates free-flow from congested flow. Its speed distribution has a mean
between the means of the other two regimes.

As has been shown in several studies, the flow fundamental diagram is affected by
weather conditions [11, 19, 20]. Thus, we expect the mean of the speed distribution
corresponding to each regime to change with weather and visibility. The proposed
algorithm uses a mixture of three linear regressions and real datasets to learn the means
of the distribution as a function of weather and visibility and find the boundary between
the three regimes. The proposed algorithm is shown below in Table 1.

All segments with speeds greater than the threshold are classified as free-flow
segments, and other segments are classified as congested segments. The output of the
above algorithm is a spatiotemporal binary matrix with dimensions identical to the
spatiotemporal speed matrix. A “1” in the binary matrix identifies a segment as con-
gested, and a “0” represents free-flow conditions.

Fig. 1. Illustration of link between the fundamental diagrams and the three components mixture.
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4 Experimental Work

4.1 Data Reduction

In order to use collected traffic data in the proposed algorithm, data reduction was an
important process for transforming the raw measured data into the required data input
formats. In general, the spatiotemporal traffic state matrix is a fundamental attribute of
the input data. Reduction of INRIX probe data is one example, and a similar process
can be applied to other types of measured data (e.g., loop detector). INRIX data are
collected for each roadway segment and time interval. Each roadway segment repre-
sents a traffic management center (TMC) station. Geographic TMC station information
is also provided. The average speed for each TMC station can be used to derive a
spatiotemporal traffic state matrix. However, raw INRIX data includes geographically
inconsistent sections, irregular data collection time intervals, and missing data. Con-
sidering these problems, the data reduction process is illustrated in Fig. 2.

Table 1. The proposed algorithm.

1. Use the EM algorithm described earlier to fit three component distributions to lo-
cally collected data, as demonstrated in Equation (8). 

(1) 

where vector  is a vector of weather conditions and visibility predictors.   
Here ), and ( ) are the locations and spreads of the 
mixture components, and (  are the mixture parameters. 

2. For unseen data, use the weather condition, visibility level, and equations of the 
means ( ) to calculate locations (means) of the three compo-
nents. 

3. Calculate the cut-off speed. We have two options to calculate the cut-off speed and 

4. Use cut-off speed as a threshold to classify the state of each road segment.

we can use either of them: 
(a) Calculate the 0.001 quintile of the speed-at-capacity (the middle distribution).  
(b) Calculate cut-off speed using the Bayesian approach, which finds the intersec-

tion point (between congestion and speed-at-capacity) that minimizes classifi-
cation error [18]. 

Station-based 
raw data

Sort data by 
geographic 
information

Aggregate 
data

Estimate 
missing 

data

Spatiotemporal 
traffic state 

matrix

Data reduction

Input Output

Fig. 2. Data reduction of INRIX probe data.
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Based on the geographic information of each TMC station, raw data are sorted by
roadway direction (e.g., eastbound or westbound). As part of this step, the data should
be checked for any overlapping or inconsistent stations along the direction. Afterwards,
speed data should be aggregated by time intervals (e.g., 5 min), according to the
algorithm’s resolution requirement. In this way, raw data can be aggregated into a daily
matrix format along spatial and temporal intervals. It should be noted that missing data
usually exist in the developed data matrix. Therefore, data imputation methods should
be conducted to estimate the missing data based on neighboring cell values. Conse-
quently, the daily spatiotemporal traffic state matrix can be generated for congestion
and bottleneck identification.

4.2 Study Sites

INRIX traffic data from three states (Virginia, Texas, and California) were used to
develop the proposed automatic congestion identification algorithm. Specifically, the
study included 2011*2013 data along I-66 eastbound, 2012 data along US-75
northbound, and 2012 data along I-15 southbound. The selected freeway corridor on
I-66 is presented in Fig. 3, which includes 36 freeway segments along 30.7 miles.
Average speeds (or travel times) for each roadway segment are provided in the raw
data, which were collected every minute. In order to reduce the stochastic noise and
measurement error, raw speed data were aggregated by 5-minute intervals. Therefore,
the traffic speed matrix over spatial (upstream to downstream) and temporal (from 0:00
to 23:55) domains could be obtained for each day. For the other two locations, daily
speed matrices were obtained using the same procedure. Selected freeway corridors on
US-75 and I-15, which include 81 segments across 38 miles and 30 segments across
15.6 miles, respectively, are presented in Figs. 4 and 5.

Fig. 3. Layout of the selected freeway stretch on I-66 (Source: Google Maps).
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4.3 Effect of Visibility and Weather Conditions

This subsection describes the investigation of weather and visibility impacts on the
cut-off speed (threshold) that is used to define the congested condition. The investi-
gation was limited by the fact that data could not be divided into bins containing each
weather condition and visibility level. Moreover, many bins had small amounts of data
or no data at all. With this in mind, a mixture of linear regressions was used to pool data
and estimate cut-off speeds, without sorting the data into clusters. In this subsection, we

Fig. 4. Layout of the selected freeway stretch on US-75 (Source: Google Maps).

Fig. 5. Layout of the selected freeway stretch on I-15 (Source: Google Maps).
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describe a speed model featuring a mix of three linear regressions. Each linear equation
describes a relationship between independent variables (visibility and weather) and the
dependent variable, which is speed. In other words, instead of mixing three components
with unchanged means, the speed model mixes three components whose means are a
function of weather and visibility.

4.4 Unified Model

In order to get a unified model that is independent of the location or the speed limit, we
did the following:

1. Weather conditions for the three datasets were consolidated based on precipitation,
as shown in Appendix A. Weather conditions from all three datasets were then
mapped onto these weather groups.

2. We put all three datasets in one pool and did not include indicator variables that
would identify the dataset.

3. The speed was normalized by dividing the speed at each road segment by the posted
maximum speed at this segment.

The unified model has a response which is the normalized speed coming from the
three datasets. The predictors are the indicator variables for the weather groups and the
visibility level.

Before applying the mixture of three linear regression models was applied, speed
and visibility data were grouped by weather. Because the dataset was huge and we
could not estimate the model parameters using the whole dataset at once due to
memory issues, a total of 7,000 random samples were drawn randomly from each
weather group to construct a realization (dataset). Each random sample included the
speed and visibility level, together with indicator variables for the weather. Because
speed distributions are skewed, the log-normal distribution is preferred to the normal
distribution. Log speed was used as the response variable. Weather code and visibility
were the explanatory variables (predictors). Coefficients of the predictors ðb1; b2; b3Þ,
the variance of each component (r2

1;r
2
2;r

2
3), and the proportions (k1; k2; k3) of each

component were estimated using the iterative EM algorithm (Eqs. 3–6). This procedure
was repeated 300 times by bootstrapping the sample construction without replacement.
Final model parameters were the mean or median of all model coefficients. Once the
final model was derived, we could observe the shift of the distribution mean with the
weather condition and visibility level in the three regimes (free-flow, speed-at-capacity,
and congested). Given any combination of weather and visibility, the final model
computes mean speeds for the three regimes. Furthermore, using the estimated model’s
parameters, the model computes Bayesian and 0.001 quantile cut-off speeds.

The estimated general model’s parameters are shown in Table 2. As shown in
Fig. 6, the results are sensible because all weather groups have cut-off speeds lower
than or equal to the clear group. Moreover, the cut-off speed increases as visibility
increases. We should mention that the cut-off speeds for clear and light rain are very
close, so we can apply the cut-off speed of the clear condition to light rain as well.
Appendix B shows the speed matrix and the corresponding binary matrix after applying
the proposed algorithm.
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Table 2. Unified model’s parameters.

Congestion Speed-at-capacity Free-flow

“Clear” (Intercept)
“Visibility”
“Medium Rain”
“Heavy Rain”
“Freezing Rain”
“Snow”

−0.9025
0.0260
−0.0722
−0.0398
0.2809
0.1754

−0.1947
0.0229
−0.0024
−0.0465
−0.1134
−0.0740

0.0335
0.0026
−0.0238
−0.0308
−0.0018
−0.0149

r 0.4881 0.1027 0.0680
kj 0.0846 0.1123 0.8028

Fig. 6. Unified model’s cut-off speeds (a) quantile, (b) Bayesian.
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4.5 Example Illustration

The model that explains the variation in normalized speed using weather and visibility
is shown in Eq. (9):

logðyÞjk1; k2; b1; b2; b3;r1;r2;r3ð Þ ¼ k1
1ffiffiffiffiffiffi
2p

p
r1

e
logðyÞ�XTb1ð Þ2

2r2
1 þ

k2
1ffiffiffiffiffiffi
2p

p
r2

e
logðyÞ�XTb2ð Þ2

2r2
2 þð1� k2 � k1Þ 1ffiffiffiffiffiffi

2p
p

r3
e

logðyÞ�XTb3ð Þ2
2r2

3

; ð9Þ

where vector X is the vector of weather conditions and visibility predictors, and y is the
normalized speed. Here (XTb1;r1Þ, (XTb2;r2), and (XTb3;r3) are the locations and
spreads of the mixture components and (k1; k2Þ are the mixture parameter.

Table 2 shows that the equations that govern the locations of the three components are

lCongestion ¼ �0:9025 þ 0:0260 � Visibility � 0:0722 � Medium Rain � 0:0398 �
Heavy Rain þ 0:2809 � Freezing Rain þ 0:1754 � Snow

ð10Þ

lSpeed�at�capacity ¼ �0:1947 þ 0:0229 � Visibility � 0:0024 � Medium Rain �
0:0465 � Heavy Rain � 0:1134 � Freezing Rain � 0:0740 � Snow

ð11Þ

lFree�flow ¼ 0:0335 þ 0:0026 � Visibility � 0:0238 � Medium Rain � 0:0308 �
Heavy Rain � 0:0018 � Freezing Rain � 0:0149 � Snow

ð12Þ

We provide an example to show how to come up with the Q-quantile cut-off speed
for a given weather group and visibility level. Based on the model, the predictors’
vector is as shown in Eq. (13):

XT ¼ Visibility Medium Rain Heavy Rain Freezing Rain Snow½ �: ð13Þ

Assume the weather is “FreezingRain” and the visibility is “2”; what is the
Q-quantile cut-off speed? Given the previous information, the predictors vector is shown
in Eq. (14):

XT ¼ 12 0 0 1 0½ �: ð14Þ

Then the mean of speed-at-capacity component is calculated as shown in Eq. (15):

lSpeed�at�capacity ¼ �0:1947 þ 0:0229 � 2 � 0:0024 � 0 � 0:0465 � 0 � 0:1134 �
1 � 0:0740 � 0:

:

ð15Þ
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Manipulating the above equation, we get −0.2623 as the mean of the speed-at-
capacity component. Using the Matlab command “norminv(Q, −0.2623, 0.1123)” we
get the Q-quantile cut-off speed where 0.1123 is the standard deviation for the
speed-at-capacity component. Note that the standard deviation and the proportion
parameters are constant and do not depend on the weather group or visibility.

Assume we are interested in the 0.001 quantile for “FreezingRain” and visibility is
“2.” Using the Matlab command “norminv(0.001, −0.2623, 0.1123)” we get the 0.001
quantile cut-off speed, which is −0.6093. −0.6093 is the cut-off speed on the log scale,
and thus the cut-off speed used to compute the binary matrix is exp(−0.6093) = 0.5437,
which means the 0.001 quantile cut-off speed is 0.5437 of the posted speed. In other
words, the cut-off speed is 0.5437 � 65 = 35.34 mph if the posted speed is 65 mph.

5 Conclusions

In this paper we propose an algorithm for real-time automatic congestion identification.
The proposed algorithm models the speed distributions in free-flow, speed-at-capacity,
and congested traffic states using a mixture of linear regressions. To the best of our
knowledge, our proposed algorithm is the first methodology that considers the impact
of weather and visibility in automated congestion identification. The parameters of the
speed distributions were estimated using three different datasets covering three diverse
regions, thus making this methodology more portable and transferable to any stretch of
road in North America and potentially worldwide. The proposed algorithm is expected
to be the state of practice and one of the routines used daily at many Departments of
Transportation because of its simplicity, promising results, and suitability for running
real-time scenarios. Because the proposed algorithm accurately identifies traffic con-
gestion, both spatially and temporally, it is expected to be the state of practice pre-
processing step toward identifying and ranking bottlenecks.

Acknowledgements. This effort was funded by the Federal Highway Administration and the
Mid-Atlantic University Transportation Center (MAUTC).

Appendix A

See Table 3

Table 3. Six weather groups.

Groups #

Clear 1
Light Rain 2
Rain 3
Heavy Rain 4
Freezing Rain 5
Snow 6
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Appendix B

Figure 7 shows the speed matrix and the corresponding binary matrix after applying
the proposed algorithm. The binary matrix will be further filtered to fill gaps and
remove noise using image-processing techniques.

Fig. 7. Speed (left) and binary matrix after applying algorithm (right); (a) Texas, (b) California,
(c) Virginia.
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