From First-Order Logic to Assertional Logic

Yi Zhou!:2(®)

1 School of Computing, Engineering and Mathematics,
Western Sydney University, Sydney, Australia
y .zhou@westernsydney.edu.au
2 School of Computing Science and Technology, Tianjin University, Tianjin, China

Abstract. First-Order Logic (FOL) is widely regarded as the founda-
tion of knowledge representation. Nevertheless, in this paper, we argue
that FOL has several critical issues for this purpose. Instead, we propose
an alternative called assertional logic, in which all syntactic objects are
categorized as set theoretic constructs including individuals, concepts
and operators, and all kinds of knowledge are formalized by equality
assertions. We first present a primitive form of assertional logic that
uses minimal assumed knowledge and constructs. Then, we show how to
extend it by definitions, which are special kinds of knowledge, i.e., asser-
tions. We argue that assertional logic, although simpler, is more expres-
sive and extensible than FOL. As a case study, we show how assertional
logic can be used to unify logic and probability.

1 Introduction

Classical First-Order Logic (FOL) is widely regarded as the foundation of sym-
bolic AI. FOL plays a central role in the field of Knowledge Representation and
Reasoning (KR). Many of its fragments (such as propositional logic, modal and
epistemic logic, description logics), extensions (such as second-order logic, situ-
ation calculus and first-order probabilistic logic) and variants (such as Datalog
and first-order answer set programming) have been extensively studied in the
literature [2,8].

Nevertheless, Al researchers have pointed out several issues regarding using
FOL for the purpose of knowledge representation and reasoning, mostly from
the reasoning point of view. For instance, FOL is computationally very diffi-
cult. Reasoning about FOL is a well-known undecidable problem. Also, FOL
is monotonic in the sense that adding new knowledge into a first-order knowl-
edge base will always result in more consequences. However, human reasoning is
sometimes nonmonotonic.

In this paper, we argue that FOL also has some critical disadvantages merely
from the knowledge representation point of view. First of all, although FOL is
considered natural for well-trained logicians, it is not simple and flexible enough
for knowledge engineers with less training. One possible reason is the distinction
and hierarchy between term level (including constants, variables and terms),
predicate level (including predicates and functions) and formula level (including
© Springer International Publishing AG 2017

T. Everitt et al. (Eds.): AGI 2017, LNAI 10414, pp. 87-97, 2017.
DOI: 10.1007/978-3-319-63703-7_9

88 Y. Zhou

atoms and compound formulas/sentences). From my own experience as a teacher
in this subject, although strongly emphasized in the classes, many students failed
to understand why a predicate or an atom cannot be in the scope of a function.
Another reason is the notion of free occurrences of variables. For instance, it is
not easily understandable for many students why the GEN inference rule has to
enforce the variable occurrence restrictions. Last but not least, arbitrary nesting
is another issue. Again, although natural from a mathematical point of view, a
nested formula, e.g., (xV—=(yAz))A(—yV—z) is hard to be understood and used.

Secondly, FOL has limitations in terms of expressive power. Because of the
hierarchy from the term level to the formula level, FOL cannot quantify over
predicates/functions. This can be addressed by extending FOL into high-order
logic. Nevertheless, high-order logic still cannot quantify over formulas. As a
consequence, FOL and high-order logic are not able to represent an axiom or
an inference rule in logic, such as Modus Ponens. As an example, in automated
solving mathematical problems, we often use proof by induction. To represent
this, we need to state that for some statement P with a number parameter, if
that P holds for all numbers less than k implies that P holds for the number k as
well, then P holds for all natural numbers. Here, P is a statement at a formula
level, possibly with complex sub-statements within itself. Hence, in order to
represent proof by induction, we need to quantify over formulas.

Thirdly, FOL itself can hardly formalize some important notions including
probability, actions, time etc., which are needed in a wide range of Al appli-
cations. For this purpose, Al researchers have made significant progresses on
extending FOL with these notions separately, such as first-order probabilistic
logic [1,7], situation calculus [9,10], CTL [3] etc. Each is a challenging task in
the sense that it has to completely re-define the syntax as well as the seman-
tics. However, combing these notions together, even several of them, seems an
extremely difficult task. Moreover, there are many more building blocks to be
incorporated. For instance, consider task planning for home service robots. It
is necessary to represent and reason about actions, probability, time and more
building blocks such as preferences altogether at the same time.

To address these issues, we propose assertional logic, in which all syntactic
objects are categorized as set theoretic constructs including individuals, concepts
and operators, and all kinds of knowledge are uniformly formalized by equality
assertions of the form a = b, where a and b are either atomic individuals or com-
pound individuals. Semantically, individuals, concepts and operators are inter-
preted as elements, sets and functions respectively in set theory and knowledge
of the form a = b means that the two individuals a and b are referring to the
same element.

We first present the primitive form of assertional logic that uses minimal
assumed knowledge and primitive constructs. Then, we show how to extend it
with more building blocks by definitions, which are special kinds of knowledge,
i.e., assertions used to define new individuals, concepts and operators. Once these
new syntactic objects are defined, they can be used as a basis to define more. We
show that assertional logic, although simpler, is more expressive and extensible

From First-Order Logic to Assertional Logic 89

than FOL. As a case study, we show how to extend assertional logic for unifying
logic and probability. Note that our intention is not to reinvent the wheel of
these building blocks but to borrow existing excellent work on formalizing these
building blocks separately and to assemble them within one framework (i.e.,
assertional logic) so that they can live happily ever after.

2 Assertional Logic: The Primitive Form

One cannot build something from nothing. Hence, in order to establish asser-
tional logic, we need some basic knowledge. Of course, for the purpose of expla-
nation, we need an informal meta language whose syntax and semantics are
pre-assumed. As usual, we use a natural language such as English. Nevertheless,
this meta language is used merely for explanation and it should not affect the
syntax as well as the semantics of anything defined formally.

Only a meta level explanation language is not enough. Other than this, we
also need some core objects and knowledge, whose syntax and semantics are
pre-assumed as well. These are called prior objects and prior knowledge. For
instance, when defining real numbers, we need some prior knowledge about nat-
ural numbers; when defining probability, we need some prior knowledge about
real numbers.

In assertional logic, we always treat the equality symbol “=” as a prior
object. There are some prior knowledge associated with the equality symbol.
For instance, “=" is an equivalence relation satisfying reflexivity, symmetricity,
and transitivity. Also, “=" satisfies the general substitution property, that is, if
a = b, then a can be used to replace b anywhere. Other than the equality sym-
bol, we also assume some prior objects and their associated prior knowledge in
set theory [6], including set operators such as set union and Cartesian product,
Boolean values, set builder notations and natural numbers.

Given an application domain, a syntactic structure (structure for short if
clear from the context) of the domain is a triple (Z,C, O), where 7 is a collection
of individuals, representing objects in the domain, C a collection of concepts,
representing groups of objects sharing something in common and O a collection
of operators, representing relationships and connections among individuals and
concepts. Concepts and operators can be nested and considered as individuals as
well. If needed, we can have concepts of concepts, concepts of operators, concepts
of concepts of operators and so on.

An operator could be multi-ary, that is, it maps a tuple of individuals into
a single individual. Each multi-ary operator O is associated with a domain of
the form (C1,...,Cy), representing all possible values that the operator O can
operate on, where C;,1 < ¢ < n, is a concept. We call n the arity of O. For a
tuple (a1, ...,ay,) matching the domain of an operator O, i.e., a; € C;;1 < i < n,
O maps (ai,...,a,) into an individual, denoted by O(as,...,a,). We also use
O(C1,...,Cy) to denote the set {O(aq,...,an)|a; € C;}, called the range of
the operator O.

o)

90 Y. Zhou

Operators are similar to functions in first-order logic but differs in two essen-
tial ways. First, operators are many-sorted as C1, ..., C, could be different con-
cepts. More importantly, Cy,...,C,, could be high-order constructs, e.g., con-
cepts of concepts, concepts of operators.

For instance, consider a family relationship domain, in which Alice and Bob
are individuals, Human, Woman and Female are concepts and Father, Mother
and Aunt are operators etc.

Let (Z,C,0) be a syntactic structure. A term is an individual, either an
atomic individual a € Z or the result O(as,...,a,) of an operator O operating
on some individuals ay, ..., a,. We also call the latter compound individuals.

An assertion is of the form

a="b, (1)

where a and b are two terms. Intuitively, an assertion of the form (1) is a piece of
knowledge in the application domain, claiming that the left and right side refer
to the same object.

A knowledge base is a set of assertions. Terms and assertions can be con-
sidered as individuals as well. For instance, in the family relationship domain,
Father(Alice) = Bob, Father(Alice) = Uncle(Bob) are assertions.

Similar to concepts that group individuals, we use schemas to group terms
and assertions. A schema term is either an atomic concept C € C or of the form
O(C,...,Cy), where C;,1 < i < n are concepts. Essentially, a schema term
represents a set of terms, in which every concept is grounded by a corresponding
individual. For instance, O(Cy,...,Cy,) is the collection {O(aq,...,a,)}, where
a; € (5,1 <1 < n are individuals. Then, a schema assertion is of the same
form as form (1) except that terms can be replaced by schema terms. Similarly,
a schema assertion represents a set of assertions.

We say that a schema term/assertion mentions a set {C, ..., Cy,} of concepts
if Cq,...,C, occur in it, and only mentions if {C1,...,C,} contains all concepts
mentioned in it. Note that it could be the case that two or more different indi-
viduals are referring to the same concept C' in schema terms and assertions. In
this case, we need to use different copies of C, denoted by C',C?,..., to dis-
tinguish them. For instance, all assertions x = y, where x and y are human, are
captured by the schema assertion Human' = Human?. On the other side, in a
schema, the same copy of a concept C' can only refer to the same individual. For
instance, Human = Human is the set of all assertions of the form x = x, where
x € Human.

We introduce a set theoretic semantics for assertional logic. Since we assume
set theory as the prior knowledge, in the semantics, we freely use those individ-
uals (e.g., the empty set), concepts (e.g., the set of all natural numbers) and
operators (e.g., the set union operator) without explanation.

An interpretation (also called a possible world) is a pair (A,.7), where A
is a domain of elements, and ./ is a mapping function that admits all prior
knowledge, and maps each individual into a domain element in A, each con-
cept into a set in A and each m-ary operator into an n-ary function in A. The
mapping function . is generalized for terms as well by mapping O(ay, ..., a,)

From First-Order Logic to Assertional Logic 91

to O(al,... al). Similar to terms and assertions, interpretations can also be
considered as individuals to be studied.

It is important to emphasize that an interpretation has to admit all the prior
knowledge. For instance, since we assume set theory, suppose that an interpreta-
tion maps two individuals and y as the same element @ in the domain, then the
concepts {z} and {y} must be interpreted as {a}, and x = y must be interpreted
as a = a.

Let I be an interpretation and a = b an assertion. We say that I is a model
of a = b, denoted by I =a = b iff .f(a) = .1(b), also written a! = b’. Let KB be
a knowledge base. We say that I is a model of KB, denoted by I = KB, iff I is
a model of all assertions in K B. We say that an assertion A is a property of KB,
denoted by KB | A, iff all models of KB are also models of A. In particular,
we say that an assertion A is a tautology iff it is modeled by all interpretations.

Since we assume set theory as our prior knowledge, we directly borrow some
set theoretic constructs. For instance, we can use U(Cy,C3) (also written as
C1 UC%) to denote a new concept that unions two concepts C; and Cs. Applying
this to assertions, we can see that assertions of the primitive form (1) can indeed
represent many important features in knowledge representation. For instance, the
membership assertion, stating that an individual a is an instance of a concept C
is the following assertion € (a,C) = T (also written as a € C'). The containment
assertion, stating that a concept 7 is contained by another concept Cs, is
the following assertion C (Cq,C3) = T (also written as C; C C3). The range
declaration, stating that the range of an operator O operating on some concept
(' equals to another concept Cs is the following assertion O(C7) = Cy.

3 Extending New Syntactic Objects by Definitions

As argued in the introduction section, extensibility is a critical issue for knowl-
edge representation and modeling. In assertional logic, we use definitions for this
purpose. Definitions are (schema) assertions used to define new syntactic objects
(including individuals, concepts and operators) based on existing ones. Once these
new syntactic objects are defined, they can be used to define more. Note that def-
initions are nothing extra but special kinds of knowledge (i.e. assertions).
We start with defining new individuals. An individual definition is an asser-
tion of the form
a=t, (2)

where a is an atomic individual and ¢ is a term. Here, a is the individual to be
defined. This assertion claims that the left side a is defined as the right side ¢.
For instance, 0 = () means that the individual 0 is defined as the empty set.

Defining new operators is similar to defining new individuals except that
we use schema assertions instead. Let O be an operator to be defined and
(C1,...,Cp) its domain. An operator definition is a schema assertion of the
form

O(Cy,...,Cp) =T, (3)

92 Y. Zhou

where T is a schema term that mentions concepts only from C4, ..., C,. It could
be the case that T only mentions some of C1,...,C),. Note that if Cy,...,C),
refer to the same concept, we need to use different copies.

Since a schema assertion represents a set of assertions, essentially, an oper-
ator definition of the form (3) defines the operator O by defining the value of
O(ay,...,a,) one-by-one, where a; € C;, 1 < i < n. For instance, for defining the
successor operator Suce, we can use the schema assertion Succ(N) = {N, {N}},
meaning that, for every natural number n, the successor of n, is defined as
{n,{n}}, i.e., Succ(n) = {n,{n}}.

Defining new concepts is somewhat different. As concepts are essentially sets,
we directly borrow set theory notations to define concepts. There are four ways
to define a new concept.

Enumeration. Let aq, .. ., a, be n individuals. Then, the collection {ay, ..., an}
is a concept, written as

C={ay,...,an} (4)

For instance, we can define the concept Digits by Digits = {0,1,2,3,4,
5,6,7,8,9}.

Operation. Let C; and Cs be two concepts. Then, C; U Cy (the union of Cy
and C3), C; N Cy (the intersection of Cy and Cy), C1\C> (the difference of C
and Cy), C; x Cy (the Cartesian product of C; and Cy), 2¢* (the power set of
() are concepts. Operation can be written by assertions as well. For instance,
the following assertion

C=0,UC, (5)

states that the concept C is defined as the union of C; and C5. As an example,
one can define the concept Man by Man = Human N Male.

Comprehension. Let C be a concept and A(C) a schema assertion that
only mentions concept C. Then, individuals in C' satisfying A, denoted by
{z € C|A(z)} (or simply C|A(C)), form a concept, written as

O = C|A(C). (6)

For instance, we can define the concept Male by Male = {Animal]|
Sex(Animal) = male}, meaning that Male consists of all animals whose sexes
are male.

Replacement. Let O be an operator and C a concept on which O is well
defined. Then, the individuals mapped from C by O, denoted by {O(z) |z € C}
(or simply O(C)), form a concept, written as

C'=0(0). (7)

For instance, we can define the concept Parents by Parents =
ParentO f(Human), meaning that it consists of all individuals who is a
ParentO f some human.

From First-Order Logic to Assertional Logic 93

Definitions can be incremental. We may define some syntactic objects first.
Once defined, they can be used to define more. One can always continue with
this incremental process. For instance, in arithmetic, we define the successor
operator first. Once defined, it can be used to define the add operator, which is
further served as a basis to define more useful syntactic objects.

For clarity, we use the symbol “::=" to replace “=” for definitions.

4 Embedding Classical Logic into Assertional Logic

In the previous section, we show how to extend assertions of the primitive form
(1) into multi-assertions and nested assertions. In this section, we continue with
this task to show how to define more complex forms of assertions with logic
connectives, including not only propositional connectives but also quantifiers.

We start with the propositional case. Let A be the concept of nested asser-
tions. We introduce a number of operators over A in assertional logic, including
=(A) (for negation), A(A', A?) (for conjunction), V(A', A?) (for disjunction)
and — (A%, A?) (for implication).

There could be different ways to define these operators in assertional logic.
Let a = o’ and b =’ be two (nested) assertions. The propositional connectives
are defined as follows:

yu= {a}n{d} =0

)= ({a}n{a’H U ({b} N {t'}) = {a,d’,b,0"}
V(e =a,b="0) = ({a}N{a’}) U({b} N {t}) #0

)= ({a,d’}\{a} n{a’}) U ({b} N {0'}) #0.

We also use a # o’ to denote —(a = a’). One can observe that the ranges of all
logic operators are nested assertions. Hence, similar to multi-assertion and nested
assertion, propositional logic operators are syntactic sugar as well in assertional
logic.

It can be observed that all tautologies in propositional logic (e.g.,
De-Morgan’s laws) are also a tautology in assertional logic in the sense that
each proposition is replaced by an assertion and each propositional connective
is replaced by corresponding logic operators in assertional logic.

Now we consider to define operators for quantifiers, including V (for the uni-
versal quantifier) and 3 (for the existential quantifier). The domain of quantifiers
is a pair (C, A(C)), where C' is a concept and A(C) is a schema assertion that
only mentions C.

The quantifiers are defines as follows:

Y(C, A(C)) == C|A(C) = C (8)
3(C, A(C)) = CJAC) # 0 (9)

Intuitively, ¥(C, A(C)) is true iff those individuals z in C such that A(x) holds
equals to the concept C' itself, that is, for all individuals = in C, A(x) holds;
3(C, A(C)) is true iff those individuals z in C' such that A(z) holds does not
equal to the empty set, that is, there exists at least one individual z in C such

94 Y. Zhou

that A(x) holds. We can see that the ranges of quantifiers are nested assertions
as well. Thus, quantifiers are also syntactic sugar of the primitive form.

Note that quantifiers defined here are ranging from an arbitrary concept C.
If C is a concept of all atomic individuals and all quantifiers range from the
same concept C', then these quantifiers are first-order. Nevertheless, the concepts
could be different. In this case, we have many-sorted first-order logic. Moreover,
C' could be complex concepts, e.g., a concept of all possible concepts. In this
case, we have monadic second-order logic. Yet C' could be many more, e.g.,
a concept of assertions, a concept of concepts of terms etc. In this sense, the
quantifiers become high-order. Finally, the biggest difference is that C' can even
be a concept of assertions so that quantifiers in assertional logic can quantify
over assertions (corresponding to formulas in classical logics), while this cannot
be done in classical logics.

A problem arises whether there is cyclic definition as we assume first-order
logic as our prior knowledge. Nevertheless, although playing similar roles, oper-
ators (over assertions) defined in assertional logic are considered to be different
from logic connectives (over propositions/formulas) since they are on a different
layer of definition. The main motivation is for the purpose of extensibility, i.e., by
embedding classical logic connectives into operators in assertional logic, we can
easily extend it with more components and building blocks including probability.

5 Incorporating Probability

Probability is another important building block for knowledge representation
and modeling. In the last several decades, with the development of uncertainty in
artificial intelligence, a number of influential approaches [1,4,5,11-13] have been
developed, and important applications have been found in machine learning,
natural language processing etc.

In this section, we show how logic and probability can be unified through
assertions in assertional logic. The basic idea is that, although the interactions
between logic and probability are complicated, their interactions with assertions
of the form (1) could be relatively easy. As shown in the previous section, the
interactions between logic and assertions can be defined by a few lines. In this
section, following Gaifman’s idea [4], we show that this is indeed the case for inte-
grating assertions with probability as well. As a result, the interactions between
logic and probability will be automatically established via assertions.

Since operations over real numbers are involved in defining probability, we
need to assume a theory of real number as our prior knowledge.

Gaifman [4] proposed to define the probability of a logic sentence by the sum
of the probabilities of the possible worlds satisfying it. Following this idea, in
assertional logic, we introduce an operator Pr (for probability) over the concept
A of assertions. The range of Pr is the set of real numbers. For each possible
world w, we assign an associated weight W,,, which is a positive real number.
Then, for an assertion A, the probability of A, denoted by Pr(A), is define by
the following schema assertion:

From First-Order Logic to Assertional Logic 95

Ewm)\:A Wy

Pr(A) = > W

(10)
This definition defines the interactions between probability and assertions. In
case that there are a number of infinite worlds, we need to use measure theory.
Nevertheless, this is beyond the scope of our paper, which focuses on how to use
assertional logic for extensible knowledge modeling.

Once we have defined the probability Pr(A) of an assertion A as a real num-
ber, we can directly use it inside other assertions. In this sense, Pr(A) = 0.5,
Pr(A) > 0.3, Pr(A) > Pr(¥(C, B(C)))—0.3, Pr(A)x0.6 > 0.4 and Pr(Pr(A) >
0.3) > 0.3 are all valid assertions. We are able to investigate some proper-
ties about probability, for instance, Kolmogorov’s first and second probability
axioms, that is, (1) for all assertions, Pr(A) > 0, and (2) if A is a tautology,
then Pr(A) =1.

We also extend this definition for conditional probability. We again introduce
a new operator Pr over pairs of two assertions. Following a similar idea, the
conditional probability Pr(A;, As) of an assertion A; providing another assertion
As, also denoted by Pr(A;]|As), is defined by the following schema assertion:

Ew,w\:Al,wIZAg Wy

PT‘(A1|A2) = 5 —a W

(11)

Again, once conditional probability is defined as a real number, we can use
it arbitrarily inside other assertions. Similarly, we can derive some properties
about conditional probabilities, including the famous Bayes’ theorem, i.e.,

PT(Al) X PT(AQ‘Al) = PT(AQ) X PT‘(AQ)PT(A1|A2)

for all assertions A; and A,.

Although we only define probabilities for assertions of the basic form,
the interactions between probability and other building blocks, e.g., logic, are
automatically established since assertions connected by logic operators can be
reduced into the primitive form. In this sense, we can investigate some proper-
ties about the interactions between logic and probability. For instance, it can be
observed that Kolmogorov’s third probability axiom is a tautology in assertion
logic. That is, let Aq,..., A, be n assertions that are pairwise disjoint. Then,
Pr(AyV---VA,)=Pr(4;) + -+ Pr(4,).

It can be verified that many axioms and properties regarding the interac-
tions between logic and probability are tautologies in assertional logic as well,
for instance, the additivity axiom: Pr(¢) = Pr(¢ A1)+ Pr(¢ A —p) and the dis-
tributivity axiom: ¢ = 1 implies that Pr(¢) = Pr(y), for any two assertions ¢
and 1. In this sense, assertional logic can also be used to validate existing prop-
erties about the interactions of logic and probability. In addition, it may foster
new discoveries, e.g., the interactions between higher-order logic and probability
and some properties about nested probabilities.

96 Y. Zhou

6 Discussion and Conclusion

In this paper, we argue that, for the purpose of knowledge representation, clas-
sical first-order logic has some critical issues, including simplicity, flexibility,
expressivity and extensibility. To address these issues, we propose assertional
logic instead, in which the syntax of an application domain is captured by indi-
viduals (i.e., objects in the domain), concepts (i.e., groups of objects sharing
something in common) and operators (i.e., connections and relationships among
objects), and knowledge in the domain is simply captured by equality assertions
of the form a = b, where a and b are terms.

In assertional logic, without redefining the semantics, one can extend a cur-
rent system with new syntactic objects by definitions, which are special kinds of
knowledge (i.e., assertions). Once defined, these syntactic objects can be used to
define more. This can be done for assertional logic itself. We extend the primitive
form of assertional logic with logic connectives and quantifiers. The key point is
that, when one wants to integrate a new building block in assertional logic, she
only needs to formalize it as syntactic objects (including individuals, concepts
and operators) and defines its interactions with the basic form of assertions (i.e.,
a = b). The interactions between this building block and others will be automat-
ically established since all complicated assertions can essentially be reduced to
the basic form. As a case study, we briefly discuss how to incorporate probability
in this paper.

Of course, assertional logic is deeply originated from first-order logic. Indi-
viduals, concepts and operators are analogous to constants, unary predicates
and functions respectively, and assertion is inspired by equality atom. Neverthe-
less, they differ from many essential ways. Firstly, individuals can be high-order
objects, e.g., concepts and assertions, so are concepts and operators. Secondly,
assertional logic is naturally many-sorted, that is, the domain of an operator
can be a tuple of many different concepts including high-order ones. Thirdly,
concepts play a central role in assertional logic, which is natural for human
knowledge representation. While concepts can be formalized as unary predicates
in FOL, they are not specifically emphasized. Fourthly, in assertional logic, all
kinds of knowledge are uniformly formalized in the same form of equality asser-
tions. As shown in Sect. 5, complicated logic sentences are defined as equality
assertions as well by embedding connectives and quantifiers as operators over
assertions. Fifthly, following the above, although connectives, quantifiers and
nesting can be represented in assertional logic, they are not considered as primi-
tive constructs. In this sense, they will only be used on demand when necessarily
needed. For instance, each uses of nesting essentially introduces a new syntactic
object. We argue that this is an important reason that makes assertional logic
simpler than FOL. Sixthly, in assertional logic, the simple form of a = b is expres-
sive as a and b can be high-order constructs and can be inherently related within
a rich syntactic structure. While in FOL, an equality atom does not have this
power. Last but not least, assertional logic directly embraces extensibility within
its own framework by definitions. For instance, to define quantifiers, assertional

From First-Order Logic to Assertional Logic 97

logic only needs two lines (see Egs.8 and 9) without redefining a whole new
syntax and semantics, which is much simpler than FOLs.

This paper is only concerned with the representation task and the defini-
tion task, and we leave the reasoning task to our future work. Nevertheless, we
argue that representation and definition are worth study on their own merits.
Such successful stories include entity-relationship diagram, semantic network and
many more. Besides, extending assertional logic with some important Al building
blocks, e.g., actions and their effects, is challenging and worth pursuing.

Acknowledgement. The author would like to thank Fangzhen Lin for his valuable
comments on this paper.

References

1. Bacchus, F.: Representing and Reasoning with Probabilistic Knowledge: A Logical
Approach to Probabilities. MIT Press, Cambridge (1990)

2. Brachman, R.J., Levesque, H.J.: Knowledge Representation and Reasoning.
Elsevier, Amsterdam (2004)

3. Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons
using branching time temporal logic. In: Kozen, D. (ed.) Logic of Programs 1981.
LNCS, vol. 131, pp. 52-71. Springer, Heidelberg (1982). doi:10.1007/BFb0025774

4. Gaifman, H.: Concerning measures in first order calculi. Israel J. Math. 2, 1-18
(1964)

5. Hailperin, T.: Probability logic. Notre Dame J. Formal Logic 25, 198-212 (1984)

6. Halmos, P.: Naive Set Theory. Undergraduate Texts in Mathematics. Springer,
New York (1974)

7. Halpern, J.Y.: An analysis of first-order logics of probability. Artif. Intell. 46(3),
311-350 (1990)

8. van Harmelen, F., Lifschitz, V., Porter, B.W. (eds.): Handbook of Knowledge
Representation. Foundations of Artificial Intelligence, vol. 3. Elsevier, Amsterdam
(2008)

9. Levesque, H., Pirri, F., Reiter, R.: Foundations for the situation calculus. Electron.
Trans. Artif. Intell. 2(3—4), 159-178 (1998)

10. Lin, F.: Situation calculus. In: Handbook of Knowledge Representation, pp. 649-
669 (2008)

11. Milch, B.C.: Probabilistic models with unknown objects. Ph.D. thesis, Berkeley,
CA, USA, aAI3253991 (2006)

12. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann Publishers Inc., San Francisco (1988)

13. Richardson, M., Domingos, P.: Markov logic networks. Mach. Learn. 62(1-2), 107—
136 (2006)

http://dx.doi.org/10.1007/BFb0025774

	From First-Order Logic to Assertional Logic
	1 Introduction
	2 Assertional Logic: The Primitive Form
	3 Extending New Syntactic Objects by Definitions
	4 Embedding Classical Logic into Assertional Logic
	5 Incorporating Probability
	6 Discussion and Conclusion
	References

