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Abstract. Machine Learning has traditionally focused on narrow artifi-
cial intelligence - solutions for specific problems. Despite this, we observe
two trends in the state-of-the-art: One, increasing architectural homo-
geneity in algorithms and models. Two, algorithms having more general
application: New techniques often beat many benchmarks simultane-
ously. We review the changes responsible for these trends and look to
computational neuroscience literature to anticipate future progress.
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1 Introduction

While Machine Learning research has traditionally focused on Narrow AI tasks,
state-of-the-art solutions have become more homogeneous and generally applica-
ble. This paper will review these trends and look to computational neuroscience
for tips on future changes.

Contrast object recognition in 2005 with today. We have moved from designer
architectures of specialized components to homogeneous deep networks. The old
way to recognize objects was to combine explicit feature detectors such as HoG
[1] with techniques like RANSAC [2] to find concensus about their geometric
relationships. The new way is simply to expose a homogeneous deep, convolu-
tional, region proposal network [3] to a very large set of labelled training images
to segment objects from background.

2 Biological Plausibility of Artificial Neural Networks

The most biologically-implausible features of current supervised artificial neural
networks are also related to some of their practical limitations.

The Credit Assignment Problem concerns synchronized back-propagation of
error gradients from the output to hidden layer cells that caused them [4].
Although feedback connections outnumber feedforward in cortical neural net-
works [5,6], a biological basis for deep backpropagation is unlikely [7] because
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it requires dense and precise reciprocal connections between neurons. Biologi-
cal feedback connections also modulate or drive output, whereas in feed-forward
artificial networks, feedback is only used for training. Layerwise backpropagation
of error gradients is not supported by biological evidence [8]. Credit assignment
also poses practical computational problems such as vanishing and exploding
(shattered) gradients [9], which can limit network depth. Since current theory
suggests that deeper is better than wider [10], this is a major problem. Recent
work on decoupled neural interfaces looks to avoid this limitation via local cost
functions [11].

Credit assignment is also difficult when inputs and outputs are separated by
time. Only recurrent networks with gated memory cells as used in LSTM [12]
have enabled effective back-propagation of error gradients over longer periods of
time. There is some evidence for a biological equivalent of memory and gates in
biological neurons [13].

Modern artificial neural networks appear to have enough capacity, but
improved generalization seems to require better regularization of network
weights [14]. Currently this tends to be explicit, e.g. weight-decay, but it could be
implicit in better models.

Supervised training requires large, labelled training datasets. For embodied
agents this is problematic: it is necessary to generate correct output for the
agent in all circumstances. This appears to be at least as difficult as building the
agent control system. Reinforcement learning avoids this problem by providing
feedback about an agents output or actions in via an abstract “reward” signal.
The ideal output is not required. One of the most popular reinforcement learning
methods is Q-learning [15]. Q(s, a) is defined as the maximum discounted future
reward of performing action a in state s.

The task of associating current actions with future rewards is normally tack-
led via discounting. There is considerable biological evidence to support the
hyperbolic temporal discounting model for associating causes with outcomes,
including fMRI studies [16], recordings of neuron activity [17], and behavioural
studies [18] (including human) [19].

But as always, there are practical problems. Although Q-learning is guaran-
teed to converge on true Q-values given training samples in any order, we cannot
know how close we are while some actions are unexplored. We need a policy to
balance exploration (discovery of accurate Q values) versus exploitation of cur-
rent Q values. We can find some heuristic guidance from e.g. animal studies of
foraging exploration behaviour [19], but in a naive representation the space of
all possible states and actions is simply too large to be practically explored. As
representations become more sophisticated, the gaps between sampled rewards
become larger. We need a way to generalize from a smaller set of experiences.

There are two approaches to this generalization problem [20]. First, we can
try to generalize explicitly by predicting commonalities between states and then
inferring rewards. Second, we can try to reduce the dimensionality of the state-
space by creating more abstract, hierarchical representations of the data.
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Impressive results were achieved by Mnih et al. [21] playing Atari games with
their Deep Q Learning method. They used several tricks to overcome exploration
and representation limits. First, they built a smaller, hierarchical state-space in
which it is easier to learn Q values. Second, they used “experience replay” to
accelerate Q value training. Third, they used ε -greedy exploration to balance
exploration and exploitation.

But the key to improving the generalization of observed discounted rewards
may lie in other aspects of human general intelligence, such as attentional strate-
gies. Using working memory [22] and attentional gating, the current state can
become a filtered construction of features relevant to the problem under consid-
eration, even if they were not observed in the immediate past (working memory
allows humans to store several items for a few minutes at most).

Graves et al. recently published the “Neural Turing Machine”, combin-
ing recurrent neural networks with a memory system [23]. The architecture
is described in a very mechanical way, with a tape-like memory store and
read/write heads - hence the name, which is derived from the original Turing
machine concept. But despite the mechanical description, their intention was
to simulate the properties of human working memory in a differentiable archi-
tecture that could be trained by gradient descent. They demonstrated that the
system could perform a number of computational tasks, even a priority-sort.
Zaremba and Sutskever later extended the concept to reinforcement learning
and reproduced some of the tasks [24].

Overall, how closely do artificial neural networks match the computational
properties of natural ones? There is neurological evidence of computational sim-
ilarities between machine learning and human general intelligence [25]. Similar
visual feature detectors can be learned [26], and the same types of variation are
confusing for both deep learning and people [27]. But the discovery of adversarial
examples [28], which look ordinary to us but confusing to artificial networks, sug-
gests a weakness in artificial representations. Surprisingly, the deficiency seems
to be fundamental to models produced by training linear discriminators in high
dimensional spaces [29], because the problem “generalizes” to unseen data, and
disjoint training instances are vulnerable to the same perturbations!

3 Interesting Features of Biological Neural Networks

Biological neurons are more complex than conventional artificial ones and are
believed to learn using different, mostly local rules, such as Spike-Timing Depen-
dent Plasticity (STDP) [30], pre & post synaptic correlation [31] inter-cellular
competition [32] and lifetime sparsity (firing rate) constraints [33,34], as opposed
to global error minimization. Recently, neuroscientists have become interested
in the role of dendrite computation: Individual neurons can have many layers
of branching, and a transfer function between branches [35]. This means that
an individual biological neuron can be computationally equivalent to a tree of
conventional artificial neurons. Within a neuron, precise feedback could exist,
allowing supervised training of a few layers against local cost functions.
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In machine learning, recent progress has also concerned increasingly sophis-
ticated components, such as the Inception module [36]. These may be more
biologically realistic that at first it appears, although Inception does propagate
gradients between modules.

Neuroscientists are convinced that the Spike-Timing Dependent Plasticity
(STDP) rule accurately describes the way many neurons synapses adjust their
weights [37]. This is an unsupervised rule; weights are adapted to strengthen
synapses that reliably predict a post-synaptic (output) spike before it occurs.
This is computationally convenient due to use of only local information during
learning. Interestingly, artificial simulations of neurons including recurrent con-
nections and STDP learning are able to produce some of the best wholly unsu-
pervised representations. For example, Diehl & Cook [38] were able to achieve
95% classification accuracy on MNIST using unsupervised learning and cell-label
correlation: The training data was used to correlate spiking of each cell with the
ten training data digit labels. Each cell therefore had equal influence on the
classification result.

Normally, such high-performance classification requires a supervised layer to
optimize decision boundaries, allowing the influence of each feature or cell to be
varied; that they were able to achieve this without this type of supervised training
implies that their technique was very effective in capturing general structure of
the input.

State of the art results in machine learning are nowadays typically produced
by supervised learning. Yet researchers have recognized that unsupervised pre-
training of shallower layers improves performance of a larger supervised net-
work [39]. Improved theoretical understanding of this suggests that unsupervised
learning acts as a regularizer, producing features that generalize better [39,40].

Historically, unsupervised layers required greedy layerwise pre-training. How-
ever, use of linear (e.g. the Rectified Linear (ReLU)) transfer function [41], and
techniques like batch normalization [42] have allowed simultaneous training of
all layers in deep networks. In fact, continuing the trend of increasing simplic-
ity, Exponential Linear Units (ELUs) [43] aim to avoid the need for statistical
preprocessing such as batch normalization, although not yet completely.

Biological neural networks continue to outperform artificial ones in several
learning characteristics. Optimal modelling of nonstationary input [44] is partic-
ularly relevant to General Intelligence tasks featuring an embodied agent, whose
choices can suddenly and permanently change input statistics. For example, if
you suddenly start to explore a new part of the environment, you will see new
things. A robot that leaves the lab to explore the gardens will now frequently
encounter trees and plants, that are completely unlike all previous visual per-
ceptions of right-angled corridors, doors and desks. This is problematic when
training has moved weights into unsuitable ranges for further learning, but work
on strategies such as adaptive learning rates will likely help [45].

Biological neural networks learn both more quickly [34] and more slowly [46]
than artificial ones. Although this seems contradictory, this flexibility is actu-
ally a desirable quality. In psychology, “one trial” or “one shot” learning occurs
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when just one experience is enough to modify future behaviour. In artificial
intelligence, one way to tackle this is instance-based learning [47], in which all
training samples are stored; the model is implicitly generated by interpolat-
ing between these samples. Unfortunately, this approach does not scale. Other
prominent examples of “one shot” learning include [48,49]. Recently, Santoro
et al. [50] developed a one-shot method using Memory-Augmented Neural Net-
works (such as the Neural Turing Machine described above). In this system, a
differentiable architecture is trained to solve the meta-problem of using an exter-
nal memory to store new learnings after a single presentation. Interestingly, an
interaction between working memory in the ventrolateral prefrontal cortex and
the hippocampus, may be used as a switch to activate one-shot learning in the
brain [51].

Common training methods in machine learning such as gradient descent must
learn slowly to avoid catastrophic interference between new and existing weights.
Until recently, it was thought that synapse formation was also a relatively slow
and permanent process. Artificial neural networks are typically modelled with
fixed synaptic connectivity, only varying the synaptic efficiency, or “weight”, of
each connection. But more recently, it was confirmed that synapses are actually
formed quickly and throughout adult life, perhaps in response to a homeostatic
learning rule that controls lifetime firing rate [34].

Given all the above, even slower learning might seem undesirable; but to
improve representation we need to reduce bias towards recent samples while
continuously integrating new information. This relatively unexplored topic is
known as lifelong machine learning [52].

4 Sparse and Predictive Coding

The encoding of electrical information transmitted between neurons is under
active investigation. Neurons normally fire in bursts and trains of varying fre-
quency, with long rests in between. The meaning of these spike trains is uncertain
[53], but STDP learning rules are sensitive to spike timing and rate.

We also observe that most neurons are silent most of the time - only a
fraction will fire at any given moment. This phenomenon is loosely defined in
neuroscience as sparse coding [54]. Sparse coding has a number of theoretical
advantages, such as combinatorial representational power and a natural, robust
similarity metric in the intersection of active cells.

In machine learning sparse coding has a more specific meaning, namely
the learning of a set of overcomplete basis vectors representing the input [54].
Research shows that deep unsupervised sparse coding produces very useful fea-
tures: Le et al. [55] created a deep sparse architecture that spontaneously func-
tioned as a high accuracy face detector without being optimized to perform this
task.

Why does sparse coding help? It is believed that the process of sparse encod-
ing is an inherently superior form of dimensionality reduction compared to e.g.
vector quantization [56]. How you train the overcomplete bases is surprisingly
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less important, assuming the input has been normalized. Sparse coding chooses
a few bases that jointly describe each input combination, meaning that subsets
may be used in novel combinations without retraining. This is also known as
the “union property” of sparse representations [57]. Again we observe that a
representational change has provided computationally beneficial effects: Which
is interesting, because neuroscience also offers another representational change
we might adopt - predictive coding [58].

Predictive coding proposes that cortical cells internally predict either their
input or activity within local populations, and then emit signals representing
prediction errors [59]. This changes the inter-layer signal from a representation
of the input, to a representation of cells’ inability to predict the input. Internally,
only the relationships between errors are represented. This is very efficient: The
representation adapts to the characteristics of the input. Input that can’t be
“explained” (i.e. predicted) is relayed to other layers for processing, in hope
that additional resources or data will help. Errors propagate towards features
that can explain them. Note the assumption here, that being able to predict an
observation means that its causal relationships are being modelled correctly and
thus is it “explained”.

This characteristic is reminiscent of Highway Networks [60] and Deep Resid-
ual Learning (DRL) [61]. In DRL, the output of a bi-layer module is added to
the module’s input, requiring the module to learn any residual error between
the input and desired output. DRL propagates residual error gradients in the
feedback direction during training. Highway Networks, derived from LSTM, use
an explicit gating mechanism to determine propagation of the input.

In both Highway Networks and DRL, modules are trained to decide to what
extent they involve themselves in current input. Signals can be relayed or mod-
ified depending on the capabilities and relevance of the local module.

The reason DRL works lies in the details of the training problem posed
by this architecture. Each module’s output contributes additively rather than
multiplicatively, and in consequence data flows freely into very deep hierarchies.
After training, DRL networks become ensembles of shallower networks [62]. Just
as in predictive coding, input data dynamically determines the effective depth
of the network.

5 Conclusion

We have observed increasing homogeneity and generality in state-of-the-art
machine learning. Biology continues to inspire this process, such as Liao and
Poggio’s combination of deep residual and recurrent networks [63]. In future
we expect to see increasing use of local [11] and unsupervised learning rules [8],
modularized architectures that promote data-driven deep representations [60,61]
and dramatic improvements in the representation of state and action spaces in
reinforcement learning to overcome the generalization problem.
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