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Abstract. Universal induction relies on some general search procedure that is
doomed to be inefficient. One possibility to achieve both generality and effi-
ciency is to specialize this procedure w.r.t. any given narrow task. However,
complete specialization that implies direct mapping from the task parameters to
solutions (discriminative models) without search is not always possible. In this
paper, partial specialization of general search is considered in the form of
genetic algorithms (GAs) with a specialized crossover operator. We perform a
feasibility study of this idea implementing such an operator in the form of a deep
feedforward neural network. GAs with trainable crossover operators are com-
pared with the result of complete specialization, which is also represented as a
deep neural network. Experimental results show that specialized GAs can be
more efficient than both general GAs and discriminative models.

Keywords: Genetic algorithms � Deep neural networks � Optimization �
Specialization � Universal induction � General search

1 Introduction

Solomonoff’s theory of universal induction [1] has been ignored by the machine
learning community for a long time because of its impracticality. However, one can
find an apparent (although not explicitly declared) trend towards the universal induc-
tion in some recent works coming from the mainstream approaches in machine
learning. For example, such deep learning models as Neural Turing Machine [2],
Differentiable Neural Computer [3], Differentiable Forth Interpreter [4], Neural
Programmer-Interpreter [5] and others are designed directly to perform inference in the
space of algorithms that is the main feature of universal induction. The probabilistic
programming field features the development of Turing-complete languages with gen-
eral inference engines for arbitrary generative models. Using such inference engine,
one can obtain a sort of universal induction algorithm by making inference on a model
that generates arbitrary programs.
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However, these efforts encounter some difficulties with scaling to the inference of
non-trivial algorithms. These difficulties and the impracticality of the basic universal
induction have the same origin. Indeed, the search in the Turing-complete space is very
difficult, and general methods are not able to perform it efficiently or effectively. Deep
neural networks heavily rely on the gradient descent, which application to the differ-
ential embedding of algorithms with sequential nature is prone to converge to inac-
curate solutions [6]. The works on probabilistic programming languages (PPLs) are
much more focused on evaluating posterior probabilities over all solutions, and fre-
quently even don’t consider the search problem utilizing simple enumeration or random
search techniques.

Possibility to solve the universal induction problem with one simple and efficient
method is doubtful. On the other hand, any fixed set of practical machine learning
methods that work in Turing-incomplete model spaces is insufficient for the needs of
artificial general intelligence. One general idea how to avoid these two undesirable
extremes is meta-learning or, more generally, meta-inference, i.e. inference of new
task-specific inference or learning algorithms. Meta-inference algorithms can both be
computationally feasible and produce new efficient narrow inference algorithms.

Meta-learning including learning efficient forms of gradient descent [7] and more
specific reinforcement learning algorithms [8, 9] in the deep learning framework has
become quite popular recently reincarnating and developing further the ideas formu-
lated earlier [10]. There are also probabilistic programming systems (e.g. [11]), which
inference engines adapt to the given generative model (program), and are automatically
reduced to the efficient inference methods, if the model falls into some narrow class
(e.g. a form of message-passing algorithms on factor graphs). However, all these results
are not put into the context of universal induction.

In this paper, we start from the concept of narrow machine learning methods as the
result of specialization of universal induction [12], and show that practical
meta-learning methods can be considered as the result of partial specialization of the
universal induction. As the proof of concept, we develop a family of meta-inference
methods in the form of deep neural networks and compare them on several tasks of
different complexity. These methods differ in the completeness of specialization of the
universal induction and range from learning discriminative models to learning
task-specific genetic operators for genetic algorithms.

The main contribution of this paper is the framework, in which training discrimi-
native models, learning to learn by gradient descent, and learning domain-specific
crossover operators in genetic algorithms are represented as particular cases of spe-
cialization of universal induction. Deep learning models developed to demonstrate and
verify these ideas can be considered as the minor contribution.

2 Background

The presented work is conceptually based on our two previous research directions. The
first one is the theory of universal induction specialization [12]. The second one is
implementation of the universal induction in the form of probabilistic programming
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languages with optimization queries (e.g. implemented in the form of simulated
annealing and genetic programming) [13].

Solomonoff induction can be considered as the full Bayesian inference method,
which utilizes a Turing-complete generative model that initially samples random pro-
gram z for universal Turing machine U with universal priors PU zð Þ ¼ 2�lðzÞ and then
calculates its output x = U[z] implying conditional probabilities PU xjzð Þ ¼ 1 if U z½ � ¼ x
and 0 otherwise (one can also consider a stochastic universal Turing machine
(UTM) defining smoother conditionals PU xjzð ÞÞ. In these settings, Bayesian inference
can be performed, e.g. the marginal probability can be computed as

PUðxÞ ¼
X

z

PUðzÞPUðxjzÞ ¼
X

z:U½z�¼x

2�lðzÞ: ð1Þ

One can consider the generalized form of universal induction that takes as input an
arbitrary machine l that can be both universal and not universal. The machine accepts
some z treated as hidden variables. The task of induction is to calculate posterior
distribution PlðzjxÞ or its maximum z*. Machine l can be treated as a generative model
since it constructs (or samples in accordance with its likelihood function) x using z:
x = l[z]. We assume that some prior probability distribution over z is also given
making l a probabilistic generative model.

Inference with the use of generative models consists in calculation of

PlðzjxÞ ¼ PlðxjzÞPlðzÞP
z
PlðxjzÞPlðzÞ or ð2aÞ

z� ¼ argmax
z

PlðzjxÞ ¼ argmax
z

PlðxjzÞPlðzÞ: ð2bÞ

E.g. if l = U is UTM, then z� ¼ argmax
z

PUðxjzÞPUðzÞ ¼ argmax
z:U½z�¼x

2�lðzÞ.

Usage of generativemodels encounters some difficulties since thesemodels start from
priors over models or hidden variables, and generate observables through non-trivial
stochastic computations, so it is necessary to somehowguess appropriate values of hidden
variables, model parameters, or even model structure that will produce real observations.
That is, one should sum out z or enumerate all values of z in (2a and 2b).

One can introduce the procedure of calculating (2a and 2b) explicitly. Let us
consider some search procedure S(l, x) that takes machine/model l as input, and
returns the most probable z* or calculates PlðzjxÞ. This procedure will correspond to a
form of generalized universal induction.

While generative models allow for calculating any conditionals and marginals, but
through intensive computations, discriminative or descriptive models directly and effi-
ciently compute posterior probabilities or sample values of target or hidden variables. In
the Bayesian approach, it is typical to construct a (variational) approximation to the
posterior distribution specified by a generative model in the form of a discriminative
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model belonging to some family allowing efficient inference. That is, some machine m is
constructed such that m[x] � z* or m½x� � PlðzjxÞ depending on settings.

One can consider the problem of constructing a discriminative model given a
generative model as the problem of specialization of the program S performing uni-
versal induction w.r.t. its first parameter l. Indeed, the result of specialization of some
program w.r.t. one of its parameters is the efficient version of this program with the
fixed value of this parameter.

As the result of specialization of generalized universal induction procedure S(l, x),
one will get program m ¼ spec½S; l� such that

ð8xÞm½x� ¼ Sðl; xÞ

That is, discriminative models are the results of complete specialization of the
universal induction w.r.t. corresponding generative models. One can also consider the
problem of simultaneously learning machines l and m given some data that yields a sort
of universal autoencoders [12].

Precise complete specialization is impossible in the case of a Turing-complete
generative model. It is also doubtful that one can construct an approximate inversion
m � U−1, which will directly (without search) produce good enough programs given
their outputs. Nevertheless, one can still hope to specialize S w.r.t. U, i.e. to construct
more efficient informed search method that takes x as input and uses it to search for best
z taking the structure of U and content of x into account.

Recently we implemented S as the simulated annealing and genetic programming
search engine over probabilistic program traces [14]. Indeed, the idea to use genetic
programming as the search method in universal induction is rather old [15] and
well-known [16]. This leads us to the idea to specialize such a meta-heuristic method,
i.e. to learn problem-specific and data driven genetic operators. It should be empha-
sized that learning such problem-specific genetic operators and constructing discrimi-
native models have essentially the same meaning of specialization of universal
induction, although the result of such specialization has rather different forms.

In this work, we don’t do this within the probabilistic programming framework and
just verify the very idea of learning genetic operations, but keep in mind that any fitness
function can be defined as an optimization query in PPL. We represent a “genetic
operator” (crossover and mutation) as a (deep) feedforward neural network that takes
two candidate solutions and the values of parameters of the fitness function and learns
to produce new candidate solution. Thus, more technically related works are the works
on meta-learning in neural networks. For example, the classical work [10] is devoted to
learning the learning strategy in the supervised learning settings. The more recent work
[8] extends this result on the reinforcement learning settings. The work [7] is devoted to
the problem of learning to learn by gradient descent. These works consider the problem
of learning how to iteratively improve one candidate solution. One can think of our
results loosely as the generalization of these methods to the arbitrary number (starting
from zero) of candidate solutions.

The work [17] devoted to the “compilation” of probabilistic programs (generative
models) into discriminative deep networks is also conceptually related. It should be
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pointed out that compilation is the particular form of specialization (namely, specializa-
tion of an interpreter w.r.t. a given program in accordance to Futamura-Turchin projec-
tions [20]). Thus, what is done by the authors is precisely a form of loose specialization of
generalized universal induction w.r.t. a given program that we described earlier [12] (and
which the authors seem not familiar with). Neural networks are used as a trainable pro-
posal distribution, i.e. they again modify one given candidate solution.

One can also see a connection between our work and the idea of ‘magician systems’
described by Ben Goertzel in [18]: “Magician systems may thus be viewed as a kind of
“generalized genetic algorithm,” where the standard crossover operator is replaced by a
flexible, individualized crossover operator… this is also precisely the type of dynamical
system we need to use to model the brain/mind.” Although the motivation and tech-
nical details of our work are completely different, we find this convergence of ideas
quite interesting.

3 Models

Consider the task in which known family of fitness functions f(x|h) is given, and the
goal is to find optimum x* for given h:

x�ðhÞ ¼ argmin
x

f ðxjhÞ: ð3Þ

Operation ‘argmin’ veils some computation that takes h as input and returns x* as
output. Such computations can vary from the completely uninformed random search to
the direct calculation of x* using explicit solution for a specific f.

We calculate (3) using different procedures:

• Blind search that randomly samples values of x and keeps track of the best value;
• Traditional genetic algorithms that perform uninformed meta-heuristic search in the

space of x without taking h into account;
• Deep feedforward neural network that is trained to directly produce x*(h) taking h

as input: NetDðhÞ ! x� working similar to discriminative models in pattern
recognition;

• Genetic algorithms with trainable crossover operator represented in the form of
deep feedforward network that takes two candidate solutions x1 and x2 and
parameters h and produces new candidate solution x′: NetGAðx1; x2; hÞ ! x0.

Here, blind search (BS) and genetic algorithms (GA) are considered as general
non-specialized search methods, while NetD and NetGA are considered as the result of
different degree of specialization of general methods since they are trained to optimize
a certain class of fitness-functions.

GAs were run on populations of small sizes (e.g. 10 survived species per population
producing 20 children) to emphasize the role of recombinations. One step of blind
search consisted in randomly sampling the same number of candidate solutions as the
number of children in each population in GAs. The speed of mutations in GAs was
adjusted to produce better results. In the case of NetGA, mutations were applied to
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x1 and x2 before crossover instead of mutating the result of crossover as it is done in
traditional GAs.

Both NetD and NetGA were fully connected feedforward networks with H hidden
layers with the number of neurons 100H, 100(H – 1), …, 100 in the first, second, …,
last layer correspondingly. Remarkably, networks with small number of layers pro-
duced (considerably) less precise solutions especially for the tasks of higher dimension.
Here, we will show the results for H = 5, because further increase of the network size
leads to minor improvement of the precision.

Training of network parameters was performed by randomly sampling values of h
and using NetDðhÞ�x�j j2 and NetGAðx1; x2; hÞ�x�j j2 as components of the loss func-
tions for the stochastic gradient descent. Values of x1, x2 for training NetGA were
sample around x�; e:g: x1;2�x�

�� ��\1.

4 Experiments

Quadratic fitness functions
Consider the following very simple task of optimization of quadratic functions. Let the
fitness function be given in the form

f ðxja; bÞ ¼ ax2 þ bx

where x; a; b 2 RN and x2 is element-wise, while multiplications are scalar products. Its
minimum can be simply obtained analytically as x* = –b/(2a), where division is also
element-wise. However, this task is not that trivial for neural networks trained by
examples and not well suited to perform division.

We trained our models to produce the value of x* taking a, b or a, b and x1, x2 as
input, where x1, x2 are imprecise candidate solutions. That is, the network produces

some xi for randomly chosen task (ai, bi) and the loss function xi�x�i
�� ��2 is used to train

the network using stochastic gradient descent. Random tasks were generated sampling
a * uniform(0.1, 1.1), b * uniform(–1, 1).

Figure 1 shows precision of solutions f xsolð Þ�f x�ð Þj j obtained by different methods
depending on the number of iterations of search (i.e. generations in GAs) for N = 5.
The curve for NetD is constant since this method doesn’t perform search. These curves
are obtained by averaging over many (1000) optimization tasks.

As it can be seen, blind search converges rather slowly, while other methods find
reasonably good solutions quickly. This task appears to be simple for NetD, although it
cannot precisely represent division, so it produces imperfect solutions. NetGA has
higher both convergence speed and precision in comparison to traditional GAs.
Character of this curve seems to imply that NetGA relies more on the task parameters
than on the candidate solutions and quickly produces candidate solutions of the same
quality as NetD. Nevertheless, its output is different for different input candidate
solutions, and incremental improvement of the population of candidate solutions is
achieved with its usage inside GA, so NetGA learns more complex mapping than NetD.
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Linear equations
Then, we compared the described models on the task of solving systems of linear
equations:

Ax ¼ b

where x; b 2 RN , and A is N � N matrix.
Again, the models were trained on randomly generated tasks Ai, bi to produce xi

minimizing Aixi�bij j2. Random sampling was performed as A, b * uniform(–1,1),
but rejecting tasks with solutions x* such that x�j j[ 6.

This problem appeared to be considerably more difficult for neural networks.
Figure 2 shows the obtained averaged solution error ||Axsol – b|| for N = 5.

As it can be seen, NetD fails to learn good mapping from the space of parameters of
linear equation systems to the space of their solutions, although it produces better
results than achieved by blind search in a reasonable number of steps. Although this
task is not NP-complete, and can be solved without search, it cannot be solved by linear
algorithms, so this result is not surprising.

At the same time, NetGA solves this task in few iterations, i.e. much faster than
traditional GAs. On the other hand, NetGA converges to slightly less precise solutions in
average. Again, the reason might be that NetGA relies more on the task parameters than
on the parent candidate solutions. That is, it learns the mapping, which is closer to
complete specialization than to traditional crossover. This result is also reasonable
taking into account that NetGA is trained to produce candidate solutions as close to the
optimal solution as possible. Quite opposite, it might be surprising that the network
learned to use the parent candidate solutions in addition to the task parameters. It should
be mentioned that this effect is achieved easier when NetGA is trained on parents that are
close to x* (i.e. parents are not arbitrary, but contain some information about x*).

Fig. 1. Search efficiency in the task of quadratic function optimization
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Basic meta learning
The last task we considered was the task of producing parameters of the optimal
logistic regression model given the training set. That is, the weights and biases in the
logistic regression network act as x, while the training set for this model is considered
as h. Thus, the task was to learn the learning algorithm that maps training sets to the
logistic regression parameters.

The patterns for the training sets were sampled from two Gaussians corresponding
to two classes. Parameters of these Gaussians were generated randomly, but in such a
way that the distance between centers of classes was between 2r and 3r.

This task appeared to be very simple, and complete specialization NetD produced
almost optimal solutions. For example, for the dimension of patterns N = 2 and the size
of training set Ntrain = 20 (with random number of patterns per class) the averaged
results for different number of hidden layers are shown in Table 1, while recognition
rate of the logistic regression from sklearn library was 0.9837.

The same results were obtained for larger values of N. Unfortunately this
straightforward approach to meta learning doesn’t scale to the real pattern recognition
problems. The main limitation consists in the usage of the whole training set as the
input to NetD or NetGA. More practical approach would be to pass patterns from the
training set one by one to these networks, but then the networks should either be
recurrent in order to be able to accumulate information from the patterns, or be trained

Fig. 2. Search efficiency in the task of solving linear equations

Table 1. Results of recognition by logistic regression produced by NetD

H = 1 H = 3 H = 5 H = 10

Recognition 0.9335 0.9840 0.9845 0.9842
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in a very specific way to perform a sort of stochastic gradient descent step. Develop-
ment of such models is beyond the scope of this paper, and is the topic of further work.

5 Discussion

Although our experiments were conducted on example of rather simple synthetic
problems, they demonstrate the following ideas:

• There can be different degrees of specialization of general search procedures
including complete and partial specialization, and the optimal degree of special-
ization depends on the family of problems to be solved. In particular, there is a large
set of models between generative and discriminative models, and approximating
inference in generative models with discriminative models is not the only and
sometimes not the best choice.

• One example of partial specialization is genetic algorithms with the trainable
crossover operator that accepts not only two parent candidate solutions, but also the
parameters of the task to be solved. Such specialized GAs can converge much faster
than traditional GAs, and their performance can be much better than that of com-
plete specialization.

• Such trainable crossover operators can be productively implemented in the form of
deep neural networks at least for some families of tasks.

Although these conclusions are true in general, their significance for the real-world
problems and AGI systems is still to be studied in detail. In particular, we conducted
some additional experiments showing some limitations of the implemented form of
trainable GAs.

First of all, it appeared that both NetD and NetGA work bad on the tasks outside the
region of the training set, i.e. neural networks don’t generalize well (at least in a
traditional sense). For example, in the task of quadratic functions minimization, they
don’t learn the division operation enabling calculation of x* = –b/(2a) for any a and b,
but memorize this mapping for specific ai, bi from the training set and interpolate it.
This conclusion is consistent with some recent studies (e.g. [19]).

Then, we compared NetGA with the network that takes not two, but only one parent
as input, and is also used inside the search procedure. Briefly speaking, we didn’t
observe considerable difference in their performance. Thus, our specialized search
didn’t benefit much from recombining two candidate solutions. We believe that it can
benefit considerably (because GAs can be considerably better than simulated annealing
or gradient descent in some tasks), but more complex tasks should be considered and/or
less simplistic loss function should be used.

Indeed, we trained NetGA outside the search cycle. It was required to produce as
good candidate solution as possible after single application to the random parents,
while its usage within GA supposes its iterative application to the evolving population
of solutions with the aim to find the optimal solution not immediately, but after a
number of generations. Efficient approach to representing and optimizing such loss
function is to be developed. One possibility is to represent the whole search process as
a recurrent neural network to optimize it end-to-end.
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Further development of this approach also consists in its application to arbitrary
optimization queries in probabilistic programming. One lesson that we can learn from
our study is that probabilistic programs cannot be “compiled” into feedforward neural
networks in general case.
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