
Tom Everitt · Ben Goertzel
Alexey Potapov (Eds.)

 123

LN
AI

 1
04

14

10th International Conference, AGI 2017
Melbourne, VIC, Australia, August 15–18, 2017
Proceedings

Artificial 
General Intelligence



Lecture Notes in Artificial Intelligence 10414

Subseries of Lecture Notes in Computer Science

LNAI Series Editors

Randy Goebel
University of Alberta, Edmonton, Canada

Yuzuru Tanaka
Hokkaido University, Sapporo, Japan

Wolfgang Wahlster
DFKI and Saarland University, Saarbrücken, Germany

LNAI Founding Series Editor

Joerg Siekmann
DFKI and Saarland University, Saarbrücken, Germany



More information about this series at http://www.springer.com/series/1244

http://www.springer.com/series/1244


Tom Everitt • Ben Goertzel
Alexey Potapov (Eds.)

Artificial
General Intelligence
10th International Conference, AGI 2017
Melbourne, VIC, Australia, August 15–18, 2017
Proceedings

123



Editors
Tom Everitt
Australian National University
Canberra, ACT
Australia

Ben Goertzel
OpenCog Foundation
Hong Kong
China

Alexey Potapov
St. Petersburg State University
St. Petersburg
Russia

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Artificial Intelligence
ISBN 978-3-319-63702-0 ISBN 978-3-319-63703-7 (eBook)
DOI 10.1007/978-3-319-63703-7

Library of Congress Control Number: 2017947039

LNCS Sublibrary: SL7 – Artificial Intelligence

© Springer International Publishing AG 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

http://orcid.org/0000-0003-1210-9866
http://orcid.org/0000-0001-6013-8843


Preface

The original goal of artificial intelligence (AI) was to build machines with human-level
intelligence. As the field evolved, efforts became scattered across a wide range of
“narrow” AI domains. The goal of the Artificial General Intelligence (AGI) community
is to refocus on the original goal of human-level intelligence, and to explore the space
of possible intelligences. Sometimes this means tying together narrow AI technologies
into more complex systems and cognitive architectures. But equally often, AGI
research involves finding new ways of looking at intelligence, including new algo-
rithms, mathematical frameworks, and conceptualizations. A third branch of research
covers the societal impact of AGI, and how to ensure its safe applicability.

This, the tenth AGI conference, took place during August 15–18 in Melbourne,
Australia, against the backdrop of many exciting developments in traditional AI and
machine learning. It is therefore only appropriate that the conference was hosted
back-to-back with some major traditional AI and machine learning conferences: ICML
and UAI in Sydney, and IJCAI also in Melbourne.

We received 35 high-quality papers, spanning a wide range of AGI topics. Out
of these submissions, 21 papers (60%) were accepted for oral presentation. An addi-
tional six papers were accepted for poster presentation. Keynotes, tutorials, and
workshops provided additional perspectives. In the keynotes, Christian Calude
explored practical and theoretical aspects of incomputability, Marcus Hutter advertised
universal artificial intelligence, Peter Cheeseman discussed recursively self-improving
AI, and Elkhonon Goldberg connected biological insights about the brain with AI
architectures. In the tutorials, Alexey Popatov suggested possible cross-fertilizations
between AGI approaches, and Ben Goertzel envisioned a future unification. Naotsugu
Tsuchiya gave a tutorial on AGI and consciousness. Finally, part of the last day was
devoted to a workshop on understanding.

We wish to extend a deep thanks to the Program Committee for performing the
essential task of quality control of the submissions. All papers received constructive
feedback and an impartial evaluation from at least two independent reviewers. Only a
handful of papers received less than three reviews. We also wish to thank the local
committee for organizing the conference, and thank our generous sponsors, the
OpenCog Foundation and Hanson Robotics.

June 2017 Tom Everitt
Alexey Potapov

Ben Goertzel
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From Abstract Agents Models to Real-World
AGI Architectures: Bridging the Gap

Ben Goertzel(B)

OpenCog Foundation, Sha Tin, Hong Kong
ben@goertzel.org

Abstract. A series of formal models of intelligent agents is proposed,
with increasing specificity and complexity: simple reinforcement learning
agents; “cognit” agents with an abstract memory and processing model;
hypergraph-based agents (in which “cognit” operations are carried out
via hypergraphs); hypergraph agents with a rich language of nodes and
hyperlinks (such as the OpenCog framework provides); “PGMC” agents
whose rich hypergraphs are endowed with cognitive processes guided via
Probabilistic Growth and Mining of Combinations; and finally variations
of the PrimeAGI design, which is currently being built on top of the
OpenCog framework.

1 Introduction

Researchers concerned with the abstract formal analysis of AGI have proposed
and analyzed a number of highly simplified, mathematical models of generally
intelligent agents (e.g. [11]). On the other hand, practical proto-AGI systems
acting as agents in complex real-world situations, tend to have much more ad
hoc, heterogenous architectures. There is no clear conceptual or mathematical
bridge from the former world to the latter. However, such a bridge would have
strong potential to provide guidance for future work from both the practical and
formal directions.

To address this lack, we introduce here a hierarchy of formal models of intel-
ligent agents, beginning with a very simple agent that has no structure apart
from the requirement to issue actions and receive perceptions and rewards; and
culminating with a specific AGI architecture, PrimeAGI1 [9,10]. The steps along
the path from the initial simple formal model toward OpenCog will each add
more structure and specificity, restricting scope and making finer-grained analy-
sis possible. Figure 1 illustrates the hierarchy to be explored.

The sequel paper [7] applies these ideas to provide a formal analysis of cog-
nitive synergy, proposed as a key principle underlying AGI systems.2

1 The architecture now labeled PrimeAGI was previously known as CogPrime, and is
being implemented atop the OpenCog platform.

2 The preprint [8] contains the present paper and the sequel, plus a bit of additional
material.

c© Springer International Publishing AG 2017
T. Everitt et al. (Eds.): AGI 2017, LNAI 10414, pp. 3–12, 2017.
DOI: 10.1007/978-3-319-63703-7 1



4 B. Goertzel

2 Extending Basic Reinforcement Learning Agents

Fig. 1. An inheritance hierarchy showing
the formal models of intelligent agents dis-
cussed here, with the most generic at the
top and the most specific at the bottom.

For the first step in our agent-model
hierarchy, which we call a Basic RL
Agent (RL for Reinforcement Learn-
ing), we will follow [11,12] and con-
sider a model involving a class of active
agents which observe and explore their
environment and also take actions
in it, which may affect the environ-
ment. Formally, the agent in our model
sends information to the environment
by sending symbols from some finite
alphabet called the action space Σ;
and the environment sends signals
to the agent with symbols from an
alphabet called the perception space,
denoted P. Agents can also experience
rewards, which lie in the reward space,
denoted R, which for each agent is a
subset of the rational unit interval.

The agent and environment are
understood to take turns sending sig-
nals back and forth, yielding a history
of actions, observations and rewards,
which may be denoted

a1o1r1a2o2r2...

or else a1x1a2x2... if x is introduced as a single symbol to denote both an obser-
vation and a reward. The complete interaction history up to and including cycle
t is denoted ax1:t; and the history before cycle t is denoted ax<t = ax1:t−1.

The agent is represented as a function π which takes the current history as
input, and produces an action as output. Agents need not be deterministic, an
agent may for instance induce a probability distribution over the space of possible
actions, conditioned on the current history. In this case we may characterize the
agent by a probability distribution π(at|ax<t). Similarly, the environment may
be characterized by a probability distribution μ(xk|ax<kak). Taken together, the
distributions π and μ define a probability measure over the space of interaction
sequences.

In [4] this formal agent model is extended in a few ways, intended to make it
better reflect the realities of intelligent computational agents. First, the notion
of a goal introduced, meaning a function that maps finite sequences axs : t into
rewards. As well as a distribution over environments, we have need for a condi-
tional distribution γ, so that γ(g, μ) gives the weight of a goal g in the context of
a particular environment μ. We assume that goals may be associated with sym-
bols drawn from the alphabet G. We also introduce a goal-seeking agent, which
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is an agent that receives an additional kind of input besides the perceptions and
rewards considered above: it receives goals.

Another modification is to allow agents to maintain memories (of finite size),
and at each time step to carry out internal actions on their memories as well
as external actions in the environment. Of course, this could in principle be
accounted for within Legg and Hutter’s framework by considering agent mem-
ories as part of the environment. However, this would seem an unnecessarily
artificial formal model. Instead we introduce a set C of cognitive actions, and
add these into the history of actions, observations and rewards.

Extending beyond the model given in [4], we introduce here a fixed set of
“cognits” ci (these are atomic cognitions, in the same way that the pi in the
model are atomic perceptions). Memory is understood to contain a mix of obser-
vations, actions, rewards, goals and cognitions. This extension is a significant one
because we are going to model the interaction between atomic cognitions, and
in this way model the actual decision-making, action-choosing actions inside the
formal agent. This is big step beyond making a general formal model of an intel-
ligent agent, toward making a formal model of a particular kind of intelligent
agent. It seems to us currently that this sort of additional specificity is probably
necessary in order to say anything useful about general intelligence under limited
computational resources.

The convention we adopt is that: When a cognition is “activated”, it acts
– in principle – on all the other entities in the memory (though in most cases
the result of this action on any particular entity may be null). The result of the
action of cognition ci on the entity x (which is in memory) may be any of:

– causing x to get removed from the memory (“forgotten”)
– causing some new cognitive entity cj to get created in (and then persist in)

the memory
– if x is an action, causing x to get actually executed
– if x is a cognit, causing x to get activated

The process of a cognit acting on the memory may take time, during which
various perceptions and actions may occur.

This sort of cognitive model may be conceived in algebraic terms; that is, we
may consider ci∗x = cj as a product in a certain algebra. This kind of model has
been discussed in detail in [3], where it was labeled a “self-generating system” and
related to various other systems-theoretic models. One subtle question is whether
one allows multiple copies of the same cognitive entity to exist in the memory.
i.e. when a new cj is created, what if cj is already in the memory? Does nothing
happen, or is the “count” of cj in the memory increased? In the latter case, the
memory becomes a multiset, and the product of cognit interactions becomes a
(generally quite high dimensional, usually noncommutative and nonassociative)
hypercomplex algebra over the nonnegative integers.

In this extended framework, an interaction/internal-action sequence may be
written as

c1a1o1g1r1c2a2o2g2r2...
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with the understanding that any of the items in the series may be null. The
meaning of ci in the sequence is “cognit ci is activated.” One could also extend
the model to explicitly incorporate concurrency, i.e.

c11...c1kc1a11...a1ka1o11...o1ko1g11...g1kg1

r11...r1kr1c21...c2kc2a21...a2ka2o21...o2ko2g21...g2kg2r21...r2kr2 ...

This Cognit agent is the next step up in our hierarchy of agents as shown
in Fig. 1. The next step will be to make the model yet more concrete, by making
a more specific assumption about the nature of the cognits being stored in the
memory and activated.

3 Hypergraph Agents

Next we assume that the memory of our cognit-based memory has a more specific
structure – that of a labeled hypergraph. This yield a basic model of a Hyper-
graph Agent – a specialization of the Cognit Agent model.

Recall that a hypergraph is a graph in which links may optionally connect
more than two different nodes. Regarding labels: We will assume the nodes and
links in the hypergraph may optionally be labeled with labels that are string, or
structures of the form (string, vector of ints or floats). Here a string label may
be interpreted as a node/link type indicator, and the numbers in the vector will
potentially have different semantics based on the type.

Let us refer to the nodes and links of the memory hypergraph, collectively, as
Atoms. In this case the cognits in the above formal model become either Atoms,
or sets of Atoms (subhypergraphs of the overall memory hypergraph). When a
cognit is activated, one or more of the following things happens, depending on
the labels on the Atoms in the cognit:

1. the cognit produces some new cognit, which is determined based on its label
and arity – and on the other cognits that it directly links to, or is directly linked
to, within the hypergraph. Optionally, this new cognit may be activated.

2. the cognit activates one or more of the other cognits that it directly links to,
or is directly linked to
(a) one important example of this is: the cognit, when it is done acting, may

optionally re-activate the cognit that activated it in the first place
3. the cognit is interpreted as a pattern (more on this below), which is then

matched against the entire hypergraph; and the cognits returned from mem-
ory as “matches” are then inserted into memory

4. in some cases, other cognits may be removed from memory (based on their
linkage to the cognit being activated)

5. nothing, i.e. not all cognits can be activated
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Option 2a allows execution of “program graphs” embedded in the hyper-
graph. A cognit c1 may pass activation to some cognit c2 it is linked to, and
then c2 can do some computation and link the results of its computation to
c1, and then pass activation back to c1, which can then do something with the
results.

There are many ways to turn the above framework into a Turing-complete
hypergraph-based program execution and memory framework. Indeed one can
do this using only Option 1 in the above list. Much of our discussion here will
be quite general and apply to any hypergraph-based agent control framework,
including those that use only a few of the options listed above. However, we will
pay most attention to the case where the cognits include some with fairly rich
semantics.

The next agent model in our hierarchy is what we call an Rich Hypergraph
Agent, meaning an agent with a memory hypergraph and a “rich language” of
hypergraph Atom types. In this model, we assume we have Atom labels for
“variable” and “lambda” and “implication” (labeled with a probability value)
and “after” (with a time duration).; as well as for “and”, “or” and “not”, and a
few other programmatic operators.

Given these constructs, we can use a hypergraph some of whose Atoms are
labeled “variable” – such a hypergraph may be called an “h-pattern.” We can also
combine h-patterns using boolean operations, to get composite h-patterns. We
can replicate probabilistic lambda calculus expressions explicitly in our hyper-
graph. And, given an h-pattern and another hypergraph H, we can ask whether
P matches H, or whether P matches part of H.

To conveniently represent cognitive processes inside the hypergraph, it is
convenient to include the following labels as primitives: “create Atom”, “remove
Atom”, plus a few programmatic operations like arithmetic operations and com-
binators. In this case the program implementing a cognitive algorithm can be
straightforwardly represented in the system hypergraph itself. (To avoid com-
plexity, we can assume Atom immutability; i.e. make do only with Atom creation
and removal, and carry out Atom modification via removal followed by creation.)

Finally, to get reflection, the state of the hypergraph at each point in time can
also be considered as a hypergraph. Let us assume we have, in the rich language,
labels for “time” and “atTime.” We can then express, within the hypergraph
itself, propositions of the form “At time 17:00 on 1/1/2017, this link existed” or
“At time 12:35 on 1/1/2017, this link existed with this particular label”. We can
construct subhypergraphs expressing things like “If at time T an subhypergraph
matching P exists, then s seconds after time T , a subhypergraph matching P1

exists, with probability p.”

The Rich Hypergraph and OpenCog. The “rich language” as outlined, is
in essence a minimal version of the OpenCog AGI system3. OpenCog is based
on a large memory hypergraph called the Atomspace, and it contains a number
of cognitive processes implemented outside the Atomspace which act on the
3 See http://opencog.org for current information, or [9,10] for theoretical background.

http://opencog.org
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Atomspace, alongside cognitive processes implemented inside the Atomspace. It
also contains a wide variety of Atom types beyond the ones listed above as part
of the rich language. However, translating the full OpenCog hypergraph and
cognitive-process machinery into the rich language would be straightforward if
laborious.

The main reasons for not implementing OpenCog this way now are computa-
tional efficiency and developer convenience. However, future versions of OpenCog
could potentially end up operating via compiling the full OpenCog hypergraph
and cognitive-process model into some variation on the rich language as described
here. This would have advantages where self-programming is concerned.

3.1 Some Useful Hypergraphs

The hypergraph memory we have been discussing is in effect a whole intelligent
system – save the actual sensors and actuators – embodied in a hypergraph.
Let us call this hypergraph “the system” under consideration (the intelligent
system). We also will want to pay some attention to a larger hypergraph we may
call the “meta-system”, which is created with the same formalism as the system,
but contains a lot more stuff. The meta-system records a plenitude of actual and
hypothetical information about the system.

We can represent states of the system within the formalism of the system
itself. In essence a “state” is a proposition of the form “h-pattern P1 is present in
the system” or “h-pattern P1 matches the system as a whole.” We can also repre-
sent probabilistic (or crisp) statements about transitions between system states
within the formalism of the system, using lambdas and probabilistic implica-
tions. To be useful, the meta-system will need to contain a significant amount of
Atoms referring to states of the system, and probabilistically labeled transitions
between these states.

The implications representing transitions between two states, may be addi-
tionally linked to Atoms indicating the proximal cause of the transition. For the
purpose of modeling cognitive synergy in a simple way, we are most concerned
with the case in which there is a relatively small integer number of cognitive
processes, whose action reasonably often cause changes in the system’s state.
(We may also assume some can occur for other reasons besides the activity
of cognitive processes, e.g. inputs coming into the system, or simply random
changes.)

So for instance if we have two cognitive processes called Reasoning and Blend-
ing, which act on the system, then these processes each correspond to a subgraph
of the meta-system hypergraph: the subgraph containing the links indicating
the state transitions effected by the process in question, and the nodes joined
by these links. This representation makes sense whether or not the cognitive
processes are implemented within the hypergraph, or a external processes acting
on the system. We may call these “CPT graphs”, short for “Cognitive Process
Transition hypergraphs.”
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4 PGMC Agents: Intelligent Agents with Cognition
Driven by Probabilistic History Mining

For understanding cognitive synergy thoroughly, it is useful to dig one level
deeper and model the internals of cognitive processes in a way that is finer-
grained and yet still abstract and broadly applicable.

4.1 Cognitive Processes and Homomorphism

In principle cognitive processes may be very diverse in their implementation as
well as their conceptual logic. The rich language as outlined above enables imple-
mentation of anything that is computable. In practice, however, it seems that
the cognitive processes of interest for human-like cognition may be summarized
as sets of hypergraph rewrite rules, of the sort formalized in [1]. Roughly, a rule of
that sort has an input h-pattern and an output h-pattern, along with optional
auxiliary functions that determine the numerical weights associated with the
Atoms in the output h-pattern, based on combination of the numerical weights
in the input h-pattern.

Rules of this nature may be, but are not required to be, homomorphisms.
One conjecture we make, however, is that for the cognitive processes of interest
for human-like cognition, most of the rules involved (if one ignores the numerical-
weights auxiliary functions) are in fact either hypergraph homomorphisms, or
inverses of hypergraph homomorphisms. Recall that a graph (or hypergraph)
homomorphism is a composition of elementary homomorphisms, each one of
which merges two nodes into a new node, in a way that the new node inherits
the connections of its parents. So the conjecture is

Conjecture 1. Most operations undertaken by cognitive processes take the form
either of:

– Merging two nodes into a new node, which inherits its parents’ links
– Splitting a node into two nodes, so that the children’s links taken together

compose the (sole) parent’s links

(and then doing some weight-updating on the product).

4.2 Operations on Cognitive Process Transition Hypergraphs

One can place a natural Heyting algebra structure on the space of hypergraphs,
using the disjoint union for �, the categorial (direct) product for �, and a spe-
cial partial order called the cost-order, described in [6]. This Heyting algebra
structure then allows one to assign probabilities to hypergraphs within a larger
set of hypergraphs, e.g. to sub-hypergraphs within a larger hypergraph like the
system or meta-system under consideration here. As reviewed in [6], this is an
intuitionistic probability distribution lacking a double negation property, but
this is not especially problematic.



10 B. Goertzel

It is worth concretely exemplifying what these Heyting algebra operators
mean in the context of CPT graphs. Suppose we have two CPT graphs A and
B, representing the state transitions corresponding to two different cognitive
processes.

The meet A�B is a graph representing transitions between conjuncted states
of the system (e.g. “System has h-pattern P445 and h-pattern P7555”, etc.). If A
contains a transition between P445 and P33, and B contains a transition between
P7555 and P1234; then, A � B will contain a transition between P445&P7555 and
P33&P1234. Clearly, if A and B are independent processes, then the probability
of the meet of the two graphs will be the product of the probabilities of the
graphs individually

The join A � B is a graph representing, side by side, the two state transition
graphs – as if we had a new process AorB, and a state of this new process could
be either a state of A, or a state of B. If A and B are disjoint processes (with
no overlapping states), then the probability of the join of the two graphs, is the
sum of the probabilities of the graphs individually

The exponent AB is a graph whose nodes are functions mapping states of B
into states of A. So e.g. if B is a perception process and A is an action process,
each node in AB represents a function mapping perception-states into action-
states. Two such functions F and G are linked only if, whenever node b1 and
node b2 are linked in B, F (b1) and G(b2) are linked in G. I.e. F and G are
linked only if (F,G)(link(x, y)) = link(F (x), G(y)), where by (F,G)(link(x, y))
one means the set F (x), G(y).

So e.g. two perception-to-action mappings F and G are adjacent in
actionperception iff, whenever two perceptions p1 and p2 are adjacent, the action
a1 = F (p1) is adjacent to the action a2 = G(p2). For instance, if

– F (perception p) = the action of carrying out perception p
– G(perception p) = the action done in reaction to seeing perception p

and

– p1 = hearing the cat
– p2 = looking at the cat

We then need

– F (p1) = the act of hearing the cat (cocking one?s ear etc.)
– G(p2) = the response to looking at the cat (raising ones eyes and making a

startled expression)

to be adjacent in the graph of actions. If this is generally true for various (p1, p2)
then F and G are adjacent in actionperception. Note that actionperception is also the
implication perception → action, where → is the Heyting algebra implication.

Finally, according to the definition of cost-based order A < A1 if A and A1

are homomorphic, and the shortest path to creating A1 from irreducible source
graph, is to first create A. In the context of CPT graphs, for instance, this
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will hold if A1 is a broader category of cognitive actions than A. If A denotes
all facial expression actions, and A1 denotes all physical actions, then we will
have A < A1.

4.3 PGMC: Cognitive Control with Pattern and Probability

Different cognitive processes may unfold according to quite different dynamics.
However, from a general intelligence standpoint, we believe there is a common
control logic that spans multiple cognitive processes – namely, adaptive control
based on historically observed patterns. This process has been formalized and
analyzed in a previous paper by the author [5], where it was called PGMC or
“Probabilistic Growth and Mining of Combinations”; in this section we port that
analysis to the context of the current formal model. This leads us to the next
step in our hierarchy of agents models, a PGMC Agent, meaning an agent with
a rich hypergraph memory, and homomorphism/history-mining based cognitive
processes.

Consider the subgraph of a particular CPT graph that lies within the sys-
tem at a specific point in time. The job of the cognitive control process (CCP)
corresponding to a particular cognitive process, is to figure out what (if any-
thing) that cognitive process should do next, to extend the current CPT graph.
A cognitive process may have various specialized heuristics for carrying out this
estimation, but the general approach we wish to consider here is one based on
pattern mining from the system’s history.

In accordance with our high-level formal agents model, we assume that the
system has certain goals, which manifest themselves as a vector of fuzzy dis-
tributions over the states of the system. Representationally, we may assume a
label “goal”, and then assume that at any given time the system has n specific
goals; and that, for each goal, each state may be associated with a number that
indicates the degree to which it fulfills that goal.

It is quite possible that the system’s dynamics may lead it to revise its own
goals, to create new goals for itself, etc. However, that is not the process we wish
to focus on here. For the moment we will assume there is a certain set of goals
associated with the system; the point, then, is that a CCP’s job is to figure out
how to use the corresponding cognitive process to transition the system to states
that will possess greater degrees of goal achievement.

Toward that end, the CCP may look at h-patterns in the subset of system
history that is stored within the system itself. From these h-patterns, proba-
bilistic calculations can be done to estimate the odds that a given action on the
cognitive process’s part, will yield a state manifesting a given amount of progress
on goal achievement. In the case that a cognitive process chooses its actions sto-
chastically, one can use the h-patterns inferred from the remembered parts of
the system’s history to inform a probability distribution over potential actions.
Choosing cognitive actions based on the distribution implied by these h-patterns
can be viewed a novel form of probabilistic programming, driven by fitness-based
sampling rather than Monte Carlo sampling or optimization queries – this is the
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“Probabilistic Growth and Mining of Combinations” (PGMC), process described
and analyzed in [5].

Based on inference from h-patterns mined from history, a CCP can then
create probabilistically weighted links from Atoms representing h-patterns in
the system’s current state, to Atoms representing h-patterns in potential future
states. A CCP can also, optionally, create probabilistically weighted links
from Atoms representing potential future state h-patterns (or present state
h-patterns) to goals. It will often be valuable for these various links to be
weighted with confidence values alongside probability values; or (almost) equiv-
alently with interval (imprecise) probability values [2].

5 Conclusion

And so we have reconstructed the core concepts of the OpenCog platform and
PrimeAGI architecture, via building up step by step from a simple reinforcement
learning agent. One could proceed similarly for other complex cognitive archi-
tectures. The hope is that this sort of connection can help guide the extension
of formal analyses of AGI in the direction of practical system architecture.
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Abstract. “Cognitive synergy”– a dynamic in which multiple cogni-
tive processes, cooperating to control the same cognitive system, assist
each other in overcoming bottlenecks encountered during their internal
processing. – has been posited as a key feature of real-world general
intelligence, and has been used explicitly in the design of the OpenCog
cognitive architecture. Here category theory and related concepts are
used to give a formalization of the cognitive synergy concept. Cognitive
synergy is proposed to correspond to a certain inequality regarding the
relative costs of different paths through certain commutation diagrams.
Applications of this notion of cognitive synergy to particular cognitive
phenomena, and specific cognitive processes in the PrimeAGI design, are
discussed.

1 Introduction

In [4] one possible general principle of computationally feasible general intelli-
gence was proposed – the principle of “cognitive synergy.” The basic concept
of cognitive synergy, as presented there, is that general intelligences must con-
tain different knowledge creation mechanisms corresponding to different sorts
of memory (declarative, procedural, sensory/episodic, attentional, intentional);
and that these different mechanisms must be interconnected in such a way as to
aid each other in overcoming memory-type-specific combinatorial explosions.

In this paper, cognitive synergy is revisited and given a more formal descrip-
tion in the language of category theory. This formalization is a presented both for
the conceptual clarification it offers, and as a hopeful step toward proving inter-
esting theorems about the relationship between cognitive synergy and general
intelligence, and evaluating the degree of cognitive synergy enabled by existing
or future concrete AGI designs. The relation of the formal notion of cognitive
synergy presented to the OpenCog/PrimeAGI design developed by the author
and colleagues [4,5] is discussed in moderate detail, but this is only one among
many possible examples; the general ideas proposed here should be applicable
to a broad variety of AGI designs.

This paper relies on concepts and terms introduced in the prequel paper [2],
which outlines a series of formal models of generally intelligent agents.1

1 The preprint [3] contains the present paper and the sequel, plus a bit of additional
material.

c© Springer International Publishing AG 2017
T. Everitt et al. (Eds.): AGI 2017, LNAI 10414, pp. 13–22, 2017.
DOI: 10.1007/978-3-319-63703-7 2
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2 Theory of Stuckness

In the PGMC Agent model introduced in [2], one has a collection of Cognitive
Control Processes (CCPs) working together to update a representational hyper-
graph, and guiding their cognitive activities via probabilistic pattern mining of
prior cognitive activities on the hypergraph. Within this framework, we now
introduce a series of concepts that will allow us to formalize what it means for
a group of CCPs to interact synergetically.

In a real-world cognitive system, each CCP will have a certain limited amount
of resources, which it can either use for its own activity, or transfer to another
cognitive process. In OpenCog, for instance, space and time resources tend to be
managed somewhat separately, which would mean that a pair of floats would be a
reasonable representation of an amount of resources. For our current theoretical
purposes, however, the details of the resource representation don’t matter much.

Let us say that a CCP, at a certain point in time, is “stuck” if it does
not see any high-confidence, high-probability transitions associated with its own
corresponding cognitive process, from current state h-patterns to future state
h-patterns that have significantly higher goal-achievement values. If a CCP is
stuck, then it may not be worthwhile for the CCP to spend its limited resources
taking any action at that point. Or, in some cases, it may be the best move
for that CCP to transfer some of its allocated resources so some other cognitive
process. This leads us straight on to cognitive synergy. But before we go there,
let us pause to get more precise about how “getting stuck” should be interpreted
in this context.

A Formal Definition of Stuckness. Let GA denote the CPT graph cor-
responding to cognitive process A. This is a subgraph of the overall cognitive
process transition graph of the system, and it may be considered as a category
unto itself, with object being the subgraphs, and a Heyting algebra structure.

Given a particular situation S (“possible world”) involving the system’s cog-
nition, and a time interval I, let e.g. GS,I

A denote the CPT graph of A during
time interval I, insofar as it exists explicitly in the system (not just in the meta-
system).

Where P is a h-pattern in the system, and (S, I) is a situation/time-interval
pair, let P (S, I) denote the degree to which the system displays h-pattern P
in situation S during time-interval I. Let g(S, I) denote the average degree of
goal-achievement of the system in situation S at time during time interval I.
Then if we identify a set I of time-intervals of interest, we can calculate

g(P ) =

∑
(S,I),I∈I g(S, I)P (S, I)
∑

(S,I),I∈I P (S, I)

to be the degree to which P implies goal-achievement, in general (relative to I;
but if this set of intervals is chosen reasonably, this dependency should not be
sensitive).
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On the other hand, it is more interesting to look at the degree to which P
implies goal-achievement across the possible futures of the system as relevant in a
particular situation at a particular point in time. Suppose the system is currently
in situation S, during time interval IS . Then I may be defined, for instance, as a
set of time intervals in the near future after IS . One can then look at

gS,IS ,I(P ) =

∑
(S′,I),I∈I g(S′, I)P (S′, I)Prob((S′, I)|(S, t))
∑

(S′,I),I∈I P (S′, I)Prob((S′, I)|(S, t))

which measures the degree to which P implies goal-achievement in situations
that may occur in the near future after being in situation S. The confidence of
this value may be assessed as

cS,IS ,I(P ) = f(
∑

(S′,I),I∈I
P (S′, I)Prob((S′, I)|(S, t)))

where f is a monotone increasing function with range [0, 1]. This confidence
value is a measure of the amount of evidence on which the estimate gS′,IS (P ) is
based, scaled into [0, 1].

Finally, we may define eC,IR,S,IS (P, I, IP ) as the probability estimate that
the CCP corresponding to cognitive process C holds for the proposition that: In
situation S during time interval IS , if allocated a resource amount in interval
IR for making the choice, C will make a choice leading to a situation in which
P (S, I) ∈ IP during interval I (assuming I is after IS). A confidence value
cC,IR,S,IS (P, I, IP ) may be defined similarly to cS′,t(P ) above.

Given a set I of time intervals, one can define eC,IR,S,I(P, I, IP ) and
cC,IR,S,I(P, I, IP ) via averaging over the intervals in I.

The confidence with which C knows how to move forward toward the system’s
goals in situation S at time t may then be summarized as

confC,S,IS ,I = maxP (gS′,IS ,I(P )cS′,IS ,I(P )eC,IR,S,I(P, I, IP )cC,IR,S,I(P, I, IP ))

with
stuckC,S,IS ,I = 1 − confC,S,IS ,I

3 Cognitive Synergy: A Formal Exploration

What we need for “cognitive synergy” between A and B to exist, is for it to
be the case that: For many situations S and times t, exactly one of A and B is
stuck.

In the metasystem, records of cases where one or both of A or B were stuck,
will be recorded as hypergraph patterns. The set of (S, t) pairs in the metasystem
where exactly one of A and B was stuck to a degree of stuckness in interval Id =
(L,U), has a certain probability in the set of all (S, t) pairs in the metasystem.
Let us call this set stuckA,B,Id .

The set Gstuck
A,B,Id

of CPT graphs GS,t
A , GS,t

B corresponding to the (S, t) pairs in
stuckA,B,Id can also be isolated in the metasystem, and has a certain probability
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considered as a subgraph of the metasystem (which can be calculated according
to the intuitionistic graph probability distribution). An overall index of cognitive
synergy between A and B can then be calculated as follows.

Let P be a partition of [0, 1] (most naturally taken equispaced). Then,

cog-synA,B,P =

∑
Id∈P wIdProb(Gstuck

A,B,Id
)

∑
I∈P wId

is a quantitative measure of the amount of cognitive synergy between A and B.
Extension of the above definition to more than two cognitive processes is

straightforward. Given N cognitive processes, we can look at pairwise synergies
between them, and also at triple-wise synergies, etc. To define triplewise syner-
gies, we can look at stuckA,B,C,Id , defined as the set of (S, I) where all but one
of the three cognitive processes A, B and C is stuck to a degree in Id. Triplewise
synergies correspond to cases where the system would be stuck if it had only
two of the three cognitive processes, much more often than it’s stuck given that
it has all three of them.

This may seem a somehow anticlimactic formalization of such an exciting-
sounding quality as “cognitive synergy.” However, exciting higher-level emergent
phenomena often occur as a result of more prosaic-looking lower-level interac-
tions. Mutual exclusion regarding where two cognitive processes get stuck, at
the micro-level of very small cognitive steps, is what enables the two cogni-
tive processes to work together creatively (including helping each other become
unstuck) at the meso-level of slightly bigger cognitive steps.

3.1 Cognitive Synergy and Homomorphisms

The existence of cognitive synergy between two cognitive processes will depend
sensitively on how these cognitive processes actually work. However, there are
likely some general principles at play here. For instance we suggest

Conjecture 1. In a PGMC agent operating within feasible resource constraints:
If two cognitive processes A and B have a high degree of cognitive synergy between
them, then there will tend to be a lot of low-cost homomorphisms between sub-
graphs of GS,t

A and GS,t
B , but not nearly so many low-cost isomorphisms.

The intuition here is that, if the two CPT graphs are too close to isomorphic,
then they are unlikely to offer many advantages compared to each other. They
will probably succeed and fail in the same situations. On the other hand, if the
two CPT graphs don’t have some resemblance to each other, then often when
one cognitive process (say, A) gets stuck, the other one (say, B) won’t be able to
use the information produced by A during its work so far, and thus won’t be able
to proceed efficiently. Productive synergy happens when one has two processes,
each of which can transform the other one’s intermediate results, at somewhat
low cost, into its own internal language – but where the internal languages of
the two processes are not identical.
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Our intuition is that a variety of interesting rigorous theorems likely exist
in the vicinity of this informal conjecture. However, much more investigation is
required.

Along these lines, recall Conjecture 1 above that most cognitive processes
useful for human-like cognition, are implemented in terms of rules that are mostly
homomorphisms or inverse homomorphisms. To the extent this is the case, it fits
together very naturally with Conjecture 1.

Suppose GS,t
A and GS,t

B each consist largely of records of enacting a series
of hypergraph homomorphisms (followed by weight updates), as Conjecture 1
posits. Then one way Conjecture 2 would happen would be if the homomorphisms
in GS,t

A mapped homomorphically into the homomorphisms in GS,t
B . That is, if

we viewed GS,t
A and GS,t

B as their own categories, the homomorphisms posited in
Conjecture 2 would take the form of functors between these two categories.

3.2 Cognitive Synergy and Natural Transformations

Further interesting twists emerge if one views the cognitive process A as asso-
ciated with a functor FA that maps GS into GS

A ⊆ GS , which has the property
that it maps GS,t into GS,t

A ⊆ GS,t as well. The functor FA maps a state tran-
sition subgraph of S, into a state transition subgraph involving only transitions
effected by cognitive process A. So for instance, if X represents a sequence of
cognitive operations and conclusions that have transformed the state of the sys-
tem, then FA(X) represents the closest match to X in which all the cognitive
operations involved are done by cognitive process A. The cost of FA(X) may
be much higher than the cost of X, e.g. if X involves vision processing and A
is logical inference, then in F (X) all the transitions involved in vision process-
ing need to be effected by logical operations, which is going to be much more
expensive than doing them in other ways.

A natural transformation ηA,B from FA to FB associates to every object
X in GS (i.e., to every subgraph of the transition graph GS of the system S) a
morphism ηA,B

X : FA(X) → FB(X) in GS so that: for every morphism f : X → Y
in GS (i.e. every homomorphic transformation from state transition subgraph X

to state transition subgraph Y ) we have ηA,B
Y ◦ FA(f) = FB(f) ◦ ηA,B

X .
This leads us on to our final theoretical conjecture:

Conjecture 2. In a PGMC agent operating within feasible resource constraints,
suppose one has two cognitive processes A and B, which display significant cog-
nitive synergy, as defined above. Then,

1. there is likely to be a natural transformation ηA,B between the functor FA

and the functor FB – and also a natural transformation ηB,A going in the
opposite direction
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2. the two different routes from the upper left to the bottom right of the commu-
tation diagram corresponding to ηA,B,

FA(X)
FA(f) ��

ηA,B
X

��

FA(Y )

ηA,B
Y

��
FB(X)

FB(f)
�� FB(Y )

(1)

will often have quite different total costs
3. Referring to the above commutation diagram and the corresponding diagram

for ηB,A,

FB(X)
FB(f) ��

ηB,A
X

��

FB(Y )

ηB,A
Y

��
FA(X)

FA(f)
�� FA(Y )

(2)

– often it will involve significantly less total cost to
– travel from FA(X) to FB(Y ) via the left-bottom path in Eq. 2, and then

from FB(Y ) to FA(Y ) via the right side of Eq. 2; than to
– travel from FA(X) to FA(Y ) directly via the top of Eq. 2

That is, often it will be the case that

cost(FA(X)
ηA,B
X−−−→ FB(X)) + cost(FB(X)

FB(f)−−−−→ FB(Y ))

+cost(FB(Y )
ηB,A
Y−−−→ FA(Y ) < cost(FA(X)

FA(f)−−−−→ FA(Y ))
(3)

Inequality (3) basically says that, given the cost weightings of the arrows, it
may sometimes be significantly more efficient to get from FA(X) to FA(Y ) via
an indirect route involving cognitive process B, than to go directly from FA(X)
to FA(Y ) using only cognitive process A. This is a fairly direct expression of the
cognitive synergy between A and B in terms of commutation diagrams.

To make this a little more concrete, suppose X is a transition graph includ-
ing the new conclusion that Bob is nice, and Y is a transition graph including
additionally the even newer conclusion that Bob is helpful. Then f represents a
homomorphism mapping X into Y , via – in one way or another – adding to the
system’s memory the conclusion that Bob is helpful. Suppose A is a cognitive
process called “inference” and B is one called “evolutionary learning.” Then e.g.
FA(X) refers to a version of X in which all conclusions are drawn by inference,
and FB(Y ) refers to a version of Y in which all conclusions are drawn by evolu-
tionary learning. The commutation diagram for ηA,B = ηinference,evolution, then
looks like
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Finference(BobNice)
Finference(fnice→helpful) ��

ηinference,evolution
BobNice

��

Finference(BobHelpful)

ηinference,evolution
BobHelpful

��
Fevolution(BobNice)

Fevolution(fnice→helpful)
�� Fevolution(BobHelpful)

(4)
and the commutation diagram for ηevolution,inference looks like

Fevolution(BobNice)
Fevolution(fnice→helpful) ��

ηevolution,inference
BobNice

��

Fevolution(BobHelpful)

ηevolution,inference
BobHelpful

��
Finference(BobNice)

Finference(fnice→helpful)
�� Finference(BobHelpful)

(5)
The conjecture states that, for cognitive synergy to occur, the cost of getting

from Finference(BobNice) to Finference(BobHelpful) directly via the top arrow of
Eq. 4 would be larger than the cost of getting there via the left and then bottom
of Eq. 4 followed by the right of Eq. 5. That is to get from “Bob is nice” to
“Bob is helpful”, where both are represented in inferential terms, it may still
be lower-cost to map “Bob is nice” into evolutionary-programming terms, then
use evolutionary programming to get to the evolutionary-programming version
of “Bob is helpful”, and then map the answer back into inferential terms.

4 Some Core Synergies of Cognitive Systems:
Consciousness, Selves and Others

The paradigm case of cognitive synergy is where the cognitive processes A and B
involved are learning, reasoning or pattern recognition algorithms. However, it
is also interesting and important to consider cases where the cognitive processes
involved correspond to different scales of processing, or different types of sub-
system of the same cognitive system. For instance, one can think about:
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– A = long-term memory (LTM), B = working memory (WM)
– A = whole-system structures and dynamics, B = the system’s self-model
– A and B are different”sub-selves” of the same cognitive system
– A is the system’s self-model, and B is the system’s model of another cognitive

system (another person, another robot, etc.)

Conjecturally and intuitively, it is natural to hypothesize that

– Homomorphisms between LTM and WM are what ensure that ideas can be
moved back and forth from one sort of memory to another, with a loss of
detail but not a total loss of essential structure

– Homomorphisms between the whole system’s structures and dynamics (as
represented in its overall state transition graph) and the structures and
dynamics in its self-model, are what make the self-model structurally reflec-
tive of the whole system, enabling cognitive dynamics on the self-model to be
mapped meaningfully (i.e. morphically) into cognitive dynamics in the whole
system, and vice versa

– Homomorphisms between the whole system in the view of one subself, and
the whole system in the view of an other subself, are what enable two different
subselves to operate somewhat harmoniously together, controlling the same
overall system and utilizing the knowledge gained by one another

– Homomorphisms between the system’s self-model and its model of another
cognitive system, enable both theory-of-mind type modeling of others, and
learning about oneself by analogy to others (critical for early childhood
learning)

Cognitive synergy in the form of natural transformations between LTM and
WM means that when unconscious LTM cognitive processing gets stuck, it can
push relevant knowledge to WM and sometimes the solution will pop up there.
Correspondingly, when WM gets stuck, it can throw the problem to the uncon-
scious LTM processing, and hope the answer is found there, later to bubble up
into WM again (the throwing down being according to a homomorphic map-
ping, and the bubbling up being according to another homomorphic mapping).
As WM is closely allied with what is colloquially referred to as “consciousness”
[1] – meaning the reflective, deliberative consciousness that we experience when
we reason or reflect on something in our “mind’s eye” – this particular synergy
appears key to human conscious experience. As we move thoughts, ideas and
feelings back and forth between our focus of attention and the remainder of our
mind and memory, we are experiencing this synergy intensively on an everyday
basis – or so the present hypothesis suggests; i.e. that

– When we pull a memory into attention, or push something out of attention
into the “unconscious”, we are enacting homomorphisms on our mind’s state
transition graph.

– When the unconscious solves a problem that the focus of attention pushed
into it, and then the answer comes back into the attentional focus and gets
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deliberatively reasoned on more, this is the action of the natural transfor-
mation between unconscious and conscious cognitive processes – it’s a case
where the cost of going the long way around the commutation diagram from
conscious to unconscious and back, was lower than the cost of going directly
from conscious premise to conscious conclusion.

Cognitive synergy in the form of natural transformations between system
and self mean that when the system as a whole cannot figure out how to do
something, it will map this thing into the self-model (via a many-to-one homo-
morphism, generally, as the capacity of the self-model is much smaller), and see if
cognitive processes acting therein can solve the problem. Similarly, if thinking in
terms of the self-model doesn’t resolve a solution to the problem, then sometimes
“just doing it” is the right approach – which means mapping the problem the
self-model’s associated cognitive processes are trying to solve back to the whole
system, and letting the whole system try its mapped version of the problem by
any means it can find.

Cognitive synergy in the form of natural transformations between subselves
means that when one subself gets stuck, it may map the problem into the cogni-
tive vernacular of another subself and see what the latter can do. For instance if
one subself, which is very aggressive and pushy, gets stuck in a personal relation-
ship issue, it may map this issue into the world-view of another more agreeable
and empathic and submissive subself, and see if the latter can find a solution
to the problem. Many people navigate complex social situations via this sort of
ongoing switching back and forth between subselves that are well adapted to
different sorts of situations [6].

Cognitive synergy in the form of natural transformations between self-model
and other-model means that when one get stuck in a self-decision, one can implic-
itly ask “what would I do if I were this other mind?”...“what would this other
mind do in this situation?” It also means that, when one can’t figure out what
another mind is going to do via other routes, one can map the other mind’s
situation back into one’s self-model, and ask “what would I do in their situa-
tion?”...“what would it be like to be that other mind in this situation?”

In all these cases, we can see the possibility of much the same sort of process as
we conjecture to exist between two cognitive processes like evolutionary learning
and logical inference. We have different structures (memory subsystems, models
of various internal or external systems, systematic complexes of knowledge and
behavior, etc.) associated with different habitual sets of cognitive processes. Each
of these habitual sets of processes may get stuck sometimes, and may need to
call out to others for help in getting unstuck. This sort of request for help is
going to be most feasible if the problem can be mapped into the cognitive world
of the helper in a way that preserves its essential structure, even if not all its
details; and if the answer the helper finds is then mapped back in a similarly
structure-preserving way.

Real-world cognitive systems appear to consist of multiple subsystems that
are each more effective at solving certain classes of problems – subsystems like
particular learning and reasoning processes, models of self and other, memory
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systems of differing capacity, etc. A key aspect of effective cognition is the ability
for these various subsystems to ask each other for help in very granular ways, so
that the helper can understand something of the intermediate state of partial-
solution that the requestor has found itself in. This sort of “cognitive synergy”
seems to be reflected, in an abstract sense, in certain “algebraic” or category-
theoretic symmetries such as we have highlighted here.
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Abstract. We present a computational model for artificial animals (ani-
mats) living in block worlds, e.g. in Minecraft. Each animat has its indi-
vidual sets of needs, sensors, and motors. It also has a memory structure
that undergoes continuous development and constitutes the basis for
decision-making. The mechanisms for learning and decision-making are
generic in the sense that they are the same for all animats. The goal
of the decision-making is always the same: to keep the needs as satis-
fied as possible for as long as possible. All learning is driven by surprise
relating to need satisfaction. The learning mechanisms are of two kinds:
(i) structural learning that adds nodes and connections to the memory
structure; (ii) a local version of multi-objective Q-learning. The animats
are autonomous and capable of adaptation to arbitrary block worlds
without any need for seed knowledge.

Keywords: Autonomous agent · Dynamic graph · Multi-objective rein-
forcement learning · Structural learning · Need satisfaction

According to the South African physicist Pieter Jacobus van Heerden [20]:

Intelligent behavior is to be repeatedly successful at satisfying one’s psy-
chological needs in diverse, observably different, situations on the basis of
past experience.

Interpreted broadly, this characterization takes physiological, social, and cogni-
tive needs into account - along with the body, since the body plays a central role
in satisfying one’s needs. It also applies to all animal species, not just humans.
Moreover, it does not rely on human judgement as in the Turing test; or on
human artifacts, as in standard IQ tests.
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In artificial intelligence, deep Q-learning has seen great success in recent years
[9,14]. One of the most prominent examples in the direction of general intelli-
gence is the generic Atari-game player that learned to play 31 Atari games at
super-human level [10]. For a discussion of some theoretical problems associated
with deep Q-learning, see [19].

Graph structures that develop gradually have been used in finite automaton
learning [2], cascade correlation networks [6], and deep network cascades [1].

This paper is about artificial animals (animats). These models have mainly
been studied in the field of artificial life [18]. Section 1 describes our strategy
for general intelligence. Section 2 describes our computational model. Section 3
presents the prototype implementation Generic Animat along with two examples
illustrating the advantage of structural learning. Section 4 draws some conclu-
sions.

The proposed computational model is partly a continuation of our previous
work [4,12,16]. The mechanisms for local Q-learning and structural learning are
novel as far as we know.

1 Strategy

Our approach to general intelligence is based on the idea that radically different
nervous systems can be formed by the same underlying biological mechanisms,
starting with different bodies and experiencing different sensory data. We model
the following generic mechanisms for learning and decision-making, which are
ubiquitous in the animal kingdom:

1. Decision-making that aims for the satisfaction of multiple physiological needs
[13].

2. Reinforcement learning that strengthens/weakens behavior associated with
reward/punishment [11].

3. Hebbian learning, captured in the popular phrase “cells that fire together,
wire together” [3].

4. Sequence learning, which is Hebbian learning with signal delay taken into
account [5].

In our model an animat may be defined by specifying its sets of needs, sensors,
and motors. The animat then develops automatically by means of computational
versions of the above-mentioned generic mechanisms for learning and decision-
making.

To model the environments of the animats, we use the Minecraft computer
game environment [8], putting the animats into the bodies of Minecraft animals
such as sheep, rabbits, and wolves. Then we can study the animats as they strive
to satisfy their needs, e.g. for company, grass, and drinking water.

2 Computational Model

This section presents the components of the computational model.
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2.1 Worlds

Definition 1. A world is a set of blocks. A block consists of:

– A block type (a natural number).
– A block position (a point in three-dimensional space Z

3).

2.2 Dynamic Graphs

To model memory structures of animats, we use labeled graphs extended with
support for multi-objective reinforcement learning. The nodes of the graphs can
be identified with formulas of temporal logic [7]. In particular we use the binary
modal operator SEQ that enables the construction of sequences. The formula p
SEQ q is true at time t if p is true at t − 1 and q is true at t.

Definition 2. A dynamic graph consists of:

– A set of nodes labeled SENSOR, STATUS, MOTOR, AND, OR, NOT, SEQ,
or ACTION and optionally given a name.

– A set of arrows, i.e. a binary relation on the nodes. Arrows pointing to
ACTION-nodes are labeled with local Q-values and R-values, as will be
explained in Subsect. 2.6.

Figure 1 shows a dynamic graph.

Fig. 1. An example of a dynamic graph with some annotation on the arrows omitted.
Note that ACTION nodes may be connected to 0, 1, 2, or more MOTOR nodes. The
ACTION node that is not connected to any MOTOR node represents passivity.

2.3 Activity

Definition 3. An activity of dynamic graph G is an assignment of values in
[0, 1] to the nodes of G, subject to the restriction that non-STATUS nodes must
be assigned values in {0, 1}.
Figure 2 shows an activity. Time is modeled in discrete time steps or ticks. Input
activity is transmitted from the environment to the SENSOR and STATUS
nodes. Activity propagates to the other nodes as expected, except in the case of
the ACTION nodes. The activity of ACTION nodes is determined by the policy
given in Definition 12.
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Fig. 2. An example of an activity pattern on a graph. This is the same graph as in
Fig. 1, but with the optional node names displayed. Color represents activity 1; no color
represents activity 0. The color shades on the STATUS nodes reflect their input values.
(Color figure online)

2.4 Animats

Definition 4. An animat consists of:

– A dynamic graph G.
– An activity of G.
– A position: a point in the space Z

3.

2.5 Top Activity

Definition 5 (Perception nodes). A node labeled SENSOR, AND, OR,
NOT, or SEQ is called a perception node.

The following notion plays a key role in both decision-making and learning:

Definition 6 (Top-active node). Node b ∈ G is top active at time t if:

– b is a perception node.
– b is active at t.
– There is no blue arrow that starts in b and ends in some other perception

node b′ that is also active at t.

We use the notation TA(t) for the set of top active nodes at t.

Figure 2 offers an example, where the red AND node is the only top-active node.
In general, many nodes can be top-active at the same time. Intuitively, the top-
active nodes together constitute a description of the present situation in terms
of the given memory structure, at the maximum possible level of detail.

2.6 Local Q-learning

We use a local variant of Q-learning for our generic learning and decision-making
mechanism [17]. Since the animat has multiple needs to take into account in
the general case, we work within the Multi-Objective Reinforcement Learning
framework [13].
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Definition 7 (Status). The status of the STATUS node i of the animat A at
time t, xi,t, is defined as the input to i at t.

An animat with STATUS nodes water and energy could have xwater,t = 0.8
and xenergy,t = 0.6. The following measure reflects the overall well-being of an
animat at a given moment.

Definition 8 (Vitalit). The vitality of the animat A at time t is defined as

min
i∈STATUS

xi,t.

An animat with xwater,t = 0.8 and xenergy,t = 0.6 has vitality 0.6 at t. If the
vitality reaches 0, we say that the animat dies. The learning and decision-making
mechanisms of the generic animat were designed with long-term vitality as the
one and only goal.

Definition 9 (Rewards). The reward of the animat A at time t + 1 with
respect to the STATUS node i is defined as ri,t+1 = xi,t+1 − xi,t.

Definition 10 (Reliability). The reliability of the finite data set D is defined
as Rel(D) = 1/(SD(D) + 1). Here SD is the standard deviation.

We write at for the action that is performed at time t. Now we shall define the
local Q-values Qi,t(b, a) and the local reliability values Ri,t(b, a).

Definition 11 (Q-values and R-values). At t = 0 we proceed as follows. Let

Qi,0(b, a) = 0 and Ri,0(b, a) = 1

for all perception nodes b, ACTION nodes a, and STATUS nodes i.
At t + 1 we proceed as follows. If b /∈ TA(t) or a �= at, then we let

Qi,t+1(b, a) = Qi,t(b, a). If b ∈ TA(t), then we let Qi,t+1(b, at) = Qi,t(b, at) +
α · Δ, where

Δ = ri,t+1 + γ · max
a∈Actions

[∑
b′∈TA(t+1) Qi,t(b′, a) · Ri,t(b′, a)∑

b′∈TA(t+1) Ri,t(b′, a)

]
− Qi,t(b, at).

Here α and γ are parameters for learning rate and discount rate, respectively.
Also let

Ri,t+1(b, a) = Rel({Qi,t′(b, a) : t′ ≤ t + 1, a = at′ and b ∈ TA(t′)}).

Definition 12 (Policy). Fix a real number λ and let

π(t) = argmax
a∈Actions

[
min

i∈STATUS
xi,t + λ ·

∑
b∈TA(t) Qi,t(b, a) · Ri,t(b, a)∑

b∈TA(t) Ri,t(b, a))

]
.

The policy selects actions aimed at keeping the vitality of the animat as high
as possible, for as long as possible. It weighs up the animat’s present status with
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expected status changes in the future. These expectations are in turn weighted
by their estimated reliability. An animat with the two needs energy and water
will be likelier to drink if water is its most urgent need. On the other hand, if its
experience indicates that it would lose large quantities of energy by doing so, it
might nevertheless refrain.

The decision-making algorithm is ε-greedy, where ε ∈ [0, 1]. With probability
ε it explores by activating a random set of MOTOR nodes (with higher probability
for smaller sets) and with probability 1−ε it exploits by following the policy π(t).

2.7 Structural Learning

Definition 13 (Surprise). The surprise of a perception node b at time t + 1
w.r.t. the STATUS node i is defined as follows:

zi,t+1(b) = |Qi,t+1(b, at) − Qi,t(b, at)|
Definition 14 (Surprised). An animat is surprised at time t+1 if zi,t+1(b) >
Z, for some STATUS node i and perception node b such that Ri,t(b, a) > R. Here
Z and R are parameters regulating concept formation.

When the animat is surprised, a new node will be added to the graph. The
surprise indicates that the animat needs a more fine-grained ontology to be able
to identify similar situations in the future.

Definition 15 (Node candidate). A node candidate is an expression of the
form

– b AND b′, where b, b′ ∈ G are perception nodes and b AND b′ /∈ G, or
– b SEQ b′, where b, b′ ∈ G are perception nodes and b SEQ b′ /∈ G.

The node candidates do not belong to the graph, but they have local
Q-values and R-values that are initiated and updated just like the local val-
ues of the perception nodes of the graph.

Suppose the animat gets surprised at t + 1. Then the learning algorithm
will consider the possibility of adding a new node. Let i be a randomly selected
STATUS node subject to surprise at t + 1.

First, the algorithm explores the benefit of adding an AND node. To that
end it searches for a node candidate b AND b′ such that (i) both b and b′ were
top-active at t, and (ii) the prediction error

|Qi,t+1(b AND b′, at) − Qi,t(b AND b′, at)|
is minimal. If this prediction error is sufficiently small, the node b AND b′ is
added to the graph.

Second, if no AND node is added, the algorithm proceeds by exploring the
benefit of adding a SEQ node. To that end it searches for a node candidate b
SEQ b′ such that (i) b was top-active at t − 1, (ii) b was top-active at t, and
(iii) the prediction error

|Qi,t+1(b SEQ b′, at) − Qi,t(b SEQ b′, at)|
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is minimal. If this prediction error is sufficiently small, the node b SEQ b′ is
added to the graph. Whenever a new node is added to the graph, new node
candidates are formed (by Definition 15).

3 Results

We have implemented the prototype system Generic Animat, which is available
at https://github.com/ni1s/animats. The system is a simplification of the model
described in the precious section and it is integrated with Minecraft via the
Malmo interface [8]. To measure the performance of an animat in a given world,
we study how its vitality develops over time. Cf. the quote by van Heerden at
the beginning of the paper.

We shall give two minimalist examples showing that the ability to form new
concepts can make the difference between life and death. In both examples the
Generic Animat controls a sheep animat that needs to drink and graze to survive.

3.1 Learning Spatial Patterns

In this example we show the usefulness of adding AND nodes. The sheep animat
lives in the world shown in Fig. 3. Figure 4 shows its memory development and
Fig. 5 shows how its vitality develops over time.

Fig. 3. The Grass block is green and represents grass that is good to eat and the Water
block is blue and represents water that is good to drink. The Swamp block is turquoise
(blue and green) and represents a swamp where eating or drinking leads to vomiting
and thus to a decrease in the water and energy levels. (Color figure online)

Fig. 4. The left panel shows the initial blank slate memory of the animat with two
STATUS nodes: energy and water; three SENSOR nodes for colors; and four ACTION
nodes. The right panel shows the memory after convergence (at time 25). The labels
on the red arrows indicate the preferred actions for the different needs when the lower
node is top active. The AND node that was added automatically enables the animat
to survive.

https://github.com/ni1s/animats
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Fig. 5. Animat is the sheep animat. Control is similar, but its dynamic concept for-
mation is switched off. They both start out with a blank slate. Animat adds an AND
node at time step 25. It manages to survive, while Control dies.

3.2 Learning Temporal Patterns

In this example we show the usefulness of adding SEQ nodes. Again we consider
a sheep animat that drinks and grazes, but this time the animat lives in a world
that contains both good water and bad, poisonous water. The problem is that
the animat cannot differentiate directly between the good and the bad water

Fig. 6. This world is a long path that begins with water and grass blocks, where the
animat can learn to eat and drink. Then come the poison blocks. Each Poison block
has a sand block to its left. This enables animats that are capable of sequence learning
to differentiate between water and poison.

Fig. 7. Animat is the sheep animat. Control is similar, but it has its capacity to add
SEQ nodes switched off. The animats start with a blank slate. Animat adds a SEQ
node at time step 75. It survives, while Control, unable to learn sequences and contexts,
dies at time step 100.
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with its sensors. By learning that the bad water always appears in a certain
context, in this case close to sand, the animat can learn to avoid drinking it.

The world is shown in Fig. 6. The animat starts with the same memory as in
the previous example (Fig. 4). It adds the node “red SEQ blue” the first time a
red block is encountered. Figure 7 shows how its vitality develops over time.

4 Conclusion

We have presented a model of a generic animat that is based on several tech-
niques, including dynamic graphs for memory representation; top activity for
perception; reliability and Q-values for decision-making; and local Q-learning
and structural learning for memory development.

The model was constructed with the goal of preserving full generality while
keeping the computational complexity at a minimum level. To that end we
avoided explicit representations of subsets of sensors. Instead we use top-active
nodes that represent partially defined states. We designed the model so that it
only adds nodes reluctantly in case it gets surprised with respect to reward or
punishment. An additional way of reducing the computational complexity might
be to use forgetting, as was done in [15].

Our generic model is capable of starting with an arbitrary dynamic graph – e.g.
a blank slate – using structural learning and local Q-learning to build a memory
structure that helps the animat keep its needs satisfied and survive. Our examples
here were designed to illustrate how structural learning can make the difference
between life and death. Our model is fully autonomous and fully versatile; it does
not depend on “seed” knowledge of any kind. In that sense it possess a basic form
of general intelligence.
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Abstract. This paper describes the self-awareness and self-control
mechanisms of a general-purpose intelligent system, NARS. The sys-
tem perceives its internal environment basically in the same way as how
it perceives its external environment, though the sensors involved are
completely different. NARS uses a “self” concept to organize its relevant
beliefs, tasks, and operations. The concept has an innate core, though its
content and structure are mostly acquired gradually from the system’s
experience. The “self” concept and its ingredients play important roles
in the control of the system.

Functions like “self-awareness”, “self-control”, and “self-consciousness” are
closely related to advanced forms of intelligence. The difficulty of realizing these
functions in a machine is both technical and theoretical, as there is no widely
accepted theory about them, and even their definitions are highly controversial.
This paper is not an attempt to address all relevant issues. Instead, we will
present the relevant aspects of NARS (Non-Axiomatic Reasoning System), a
formal model of general intelligence, which has been mostly implemented and is
under testing and tuning.

In the following, the conceptual design of NARS is briefly introduced first,
then the parts mostly relevant to “self” are described in more detail. Finally,
the major design decisions are compared with the related works.

1 NARS Introduction

NARS is designed according to the hypothesis that “intelligence” is the ability
for a system to adapt to its environment and to work with insufficient knowledge
and resources. Under the length restriction, in this paper the system is only
introduced very briefly. For details of the system, see the related papers1 and
books [14,17].

NARS is a reasoning system, with a formal language, Narsese, for knowledge
representation, and a formal logic, NAL (Non-Axiomatic Logic), for inference
using Narsese sentences as premises and conclusions. NAL belongs to the “term
1 Mostly accessible at https://cis.temple.edu/∼pwang/papers.html.
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logic” tradition where the smallest component of the language is a term, and
“subject-copula-predicate” is the simplest format of statement. “S → P” is a
basic form of statements, and is called inheritance statement, where S is the
subject term, P the predicate term, and “→” the inheritance copula. The intu-
itive meaning of “S → P” is “S is a special case of P” and “P is a general case
of S”. For example, “robin → bird” corresponds to “Robin is a type of bird”.

In its simplest form, a term is just a string of symbols from an arbitrary
alphabet. Starting from these “atomic” terms, compound terms can be composed
recursively, each with a connector and a list of component terms. Different term
connectors represent different relations among the components, as shown by the
following examples:

– Sets: Term {Tom, Jerry} is an extensional set specified by enumerating its
instances; term [small, yellow] is an intensional set specified by enumerating
its properties.

– Intersections and differences: Term (bird ∩ swimmer) represents “birds
that can swim”; term (bird−swimmer) represents “birds that cannot swim”.

– Products and images: The relation “John is the uncle of Zack” is represented
as “({John} × {Zack}) → uncle-of”, “{John} → (uncle-of / � {Zack})”,
and “{Zack} → (uncle-of/{John} �)”, equivalently.

– Statement: “John knows soccer balls are round” can be represented as a
higher-order statement “{John} → (know / � {soccer-ball → [round]})”,
where the statement “soccer-ball → [round]” is used as a term.

Beside the inheritance copula (‘→’, “is a type of”), NAL also has three other
copulas: similarity (‘↔’, “is similar to”), implication (‘⇒’, “if-then”), and equiv-
alence (‘⇔’, “if-and-only-if”), and the last two are used between two statements.

A statement is a compound term with a truth-value. It can be formed using
two terms and a copula, as well as using statement connectors negation (‘¬’),
conjunction (‘∧’), and disjunction (‘∨’), which are defined similarly (but not
utilizing Boolean functions) to those in propositional logic [14]. There are several
special types of statements needed for NARS to reason on procedural knowledge
as in logic programming [7]:

Event: a statement with a time-dependent truth-value. Two events may happen
sequentially or concurrently. Compound events can describe a sequence of
events or parts of a complex event. By comparing the occurrence time of an
event with the current time, the event gets a tense like “past”, “present”, or
“future”.

Operation: an event directly realizable by the system itself via executing the
associated code or command. Formally, an operation is an application of an
operator on a list of arguments, written as op(a1, . . . , an). Intuitively, it is
a procedure call, where the argument list includes both input and output
arguments.

Goal: an event the system wants to realize. It is a statement with an associated
“desire-value”, indicating the extent to which the system desires a situation
where the statement is true.



Self-awareness and Self-control in NARS 35

Since NARS is designed under the Assumption of Insufficient Knowledge
and Resources (AIKR for short), the truth-value of a statement measures the
extent of evidential support, not the agreement with a corresponding fact. In
NAL, a truth-value is a pair of real numbers in [0,1] × (0,1), where the first
number, frequency, measures the proportion of positive evidence of the statement
among all available evidence, while the second number, confidence, measures the
proportion of currently available evidence among the total amount of available
evidence at a moment in the future, after new evidence of a constant amount is
collected.

Defined in this way, truth in NARS is “experience-grounded”. Similarly, the
meaning of a term is determined by how it is related to other terms in the sys-
tem’s experience. As the experience of a system grows over time, the truth-value
of statements and the meaning of terms in the system change accordingly. This
experience-grounded semantics (EGS) is fundamentally different from the tradi-
tional model-theoretic semantics, since it defines truth and meaning according to
a (dynamic and system-specific) experience, rather than a (static and system-
independent) model. In the simplest implementation of NARS, its experience is a
stream of Narsese sentences, which will be summarized to become the knowledge
of the system.

NAL uses (formal) inference rules to derive new knowledge from existing
knowledge. Since every piece of knowledge, also known as belief, is true to a
degree, each inference rule has a truth-value function that calculates the truth-
value of the conclusion according to the evidence provided by the premises.

As a term logic, typical inference rules in NAL are syllogistic, and takes two
premises (with one common term) to derive a conclusion (between the other two
terms). The NAL rules of this type include deduction, induction, and abduction,
as specified by Peirce [10], though the truth-value of every statement is extended
from {0, 1} to [0,1] × (0,1) [14]. Among the three, deduction is a rule that carries
out strong inference, as its conclusions can approach the maximum confidence 1
for affirmative premises of high confidence, while the other two carry out weak
inference, where the confidence of the conclusions has a constant upper bound
less than 1 for all premises.

Under AIKR, NARS may have inconsistent beliefs, that is, the same state-
ment may obtain different truth-values according to different evidential bases.
When the system locates such an inconsistency, it either uses the revision rule
to produce a more confident conclusion by pooling the evidence (if the evidence
bases are disjoint), or use the choice rule to pick the belief with higher confidence
(if the evidence bases are not disjoint).

NAL also has compositional rules that compose or decompose compound
terms according to the definition of their connector, so as to summarize the
system’s experience more efficiently.

The inference rules of NAL can be used in both forward inference (from
existing beliefs to derived beliefs) and backward inference (from existing beliefs
and questions/goals to derived questions/goals).
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Equipped with these inference rules, NARS can carry out the following types
of inference tasks:

– to absorb new experience into the system’s beliefs, as well as to spontaneously
derive some of their implications;

– to achieve the input goals (and the derived goals) by selectively executing the
available operations according to the system’s beliefs;

– to answer the input questions (and the derived questions) according to the
system’s beliefs.

Under AIKR, new tasks can enter the system at any time, each with its own
time requirement, and its content can be any Narsese statement. Working in
such a situation, usually NARS cannot perfectly accomplish all tasks in time,
but has to allocate its limited time and space resources among them, and has
to dynamically adjust the allocation according to the change of context and the
feedback to its actions.

In the memory of NARS, beliefs and tasks are organized into concepts, accord-
ing to the terms appearing in them. Therefore, for a term T , concept CT refers to
all beliefs and tasks containing T . For example, the beliefs on “robin → bird” are
referred to within concepts Crobin and Cbird, as well as other relevant concepts.
A “concept” in NARS is a unit of both storage and processing, and models the
concepts found in human thinking [14].

To indicate the relative importance of concepts, tasks, and beliefs to the
system, priority distributions are maintained among them. The priority of an
item (concept, task, or belief) summarizes the attributes to be considered in
resource allocation, including its intrinsic quality, usefulness in history, relevance
to the current context, etc. Therefore items with higher priority values will get
more resources.

NARS runs by repeating an inference cycle consisting of the following major
steps:

1. Select a concept within the memory.
2. Select a task referred by the concept.
3. Select a belief referred by the concept.
4. Derive new tasks from the selected task and belief by the applicable inference

rules.
5. Adjust the priority of the selected belief, task, and concept according to the

context and feedback.
6. Selectively put the new tasks into the corresponding concepts, and report

some of them to the user.

All selections in the above steps are probabilistic, biased by priority, that is,
the probability for an item to be selected is positively correlated to its priority
value. Consequently, the tasks will be processed in a time-sharing manner, with
different speeds. For a specific task, its processing does not follow a predeter-
mined algorithm, but is the result of many inference steps, whose combination is
formed at runtime, so is neither predictable nor repeatable accurately, because
both the external environment and the internal state of the system change in a
non-circular manner.
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2 “Self” in NARS

In this paper we focus on the aspects of NARS that are directly relevant to
self-awareness and self-control. Therefore we will not fully discuss the following
topics often involved in the related discussions:

– “Higher-order statement” in NARS covers “statement about statement”,
“knowledge about operations”, etc., which are often taken as functions of
“metacognition” [5]. Since such knowledge is typically about individual state-
ments or operations, not about the system as a whole, it is not discussed here.
For how this kind of knowledge is processed in NARS, see [14,17].

– NARS constantly compares the certainty of beliefs, and dynamically allocates
its resources among competing tasks. Even though the relevant mechanisms
are indeed at the meta-level with respect to beliefs and tasks, they are implic-
itly embedded in the code, so not generally accessible to the system’s delib-
eration, nor can they be modified by the system itself, therefore they are also
not discussed here.

– NARS has mechanisms for feeling and emotion, which are important parts
of self-awareness and self-control. However, since they have been discussed in
detail in our recent publication [18], they will only be mentioned briefly in
this paper.

NARS’ beliefs about itself start at its built-in operations. Operation
op(a1, . . . , an) corresponds to a relation the system can establish between itself and
the arguments, so it is equivalent to statement “(×, {SELF}, {a1}, . . . , {an}) →
op” (where the subject term is a product term written in the prefix format), since it
specifies a relation among the arguments plus the system identified by the special
term SELF .

Similar to the case of logic programming [7], here the idea is to uniformly rep-
resent declarative knowledge and procedural knowledge. So in NARS knowledge
about the system itself is unified with knowledge about others. For instance, the
operation “open this door” is represented as “(×, {SELF}, {door 1}) → open”2,
while “John opened this door” as “(×, {John}, {door 1}) → open” (tense omitted
to simplify the discussion). In this way, imitation can be carried out by analogical
inference.

As mentioned previously, in NARS the meaning of a concept is gradu-
ally acquired from the system’s experience. However, this “experience-grounded
semantics” (EGS) does not exclude the existence of innate concepts, beliefs, and
tasks. In the above example, ‘SELF ’ is such a concept, with built-in operations
that can be directly executed from the very beginning. Such operations depend
on the hardware/software of the host system, so are not specified as parts of
NARS, except that they must obey the format requirements of Narsese. Accord-
ing to EGS, in the initial state of NARS, the meaning of a built-in operation
is procedurally expressed in the corresponding routine, while the meaning of

2 Here, the inheritance copula encodes that the relation between {SELF} and
{door 1}, is a special case of opening.
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‘SELF ’ consists of these operations. To the system, “I am whatever I can do”
or “I am whatever I can do and feel” are possible ways to express this situation,
since in NARS sensation and perception are also operations.

As the system begins to have experience, the meaning of every concept will
be more or less adjusted as it is experienced, directly or indirectly. For a built-in
operation, the system will gradually learn its preconditions and consequences,
so as to associate itself with the goals it can achieve. It is like when we know
how to raise our hand first, and then know it as a way to get the teacher’s
attention. The ‘SELF ’ concept will be enriched in this way, as well as through
its relations with other concepts representing objects and other systems in the
outside environment. Therefore, self starts from “what I can do” to include “what
I am composed of”, “how I look like”, “what my position is in the society”,
etc. “Self” does not have a constant meaning determined by a denotation or
definition. Instead, the system gradually learns who it is, and its self-image does
not necessarily converge to a “true self”.

An operation may be completely executed by the actuator of the host sys-
tem (e.g., A NARS-based robot raises a hand or moves forward), or partly by
another coupled system or device (e.g., A NARS-based robot pushes a button or
issues a command to another robot). NARS has an interface for such “external”
operations to be registered.

NARS is designed to allow all kinds of operations to be used in a “plug-and-
play” manner, i.e., to be connected to the system at run time by a user or the
system itself. A learning phase is usually needed for an operation to be used
properly and effectively.

In principle, no operation is necessarily demanded in every NARS implemen-
tation, except a special type of “mental” operations that work on the system’s
own “mind”. There are several groups of mental operations, including:

Task generation. An inference task in NARS can either be input or derived
recursively from an input task. The derivation process does not change the
type of the task (new/activated belief, goal, or question). However, in certain
situations a task needs to be generated from another one of a different type.
For example, a new belief (“It is cold.”) may trigger a new goal (“Close the
window!”). This relation is represented as an implication statement where
the consequent is not a statement, but an operation call, similar as in a
production rule.

Evidence disqualification. By default, the amount of supporting evidence for
every belief accumulates over time. Therefore, though the frequency value
of the belief may either increase or decrease (depending on whether the new
evidence is positive or negative), its confidence value increases monotonically.
This treatment is supplemented by a mental operation that allows the system
to doubt a belief by decreasing its confidence value to a certain extent.

Concept activation. The resource allocation mechanism of NARS already
implements a process similar to activation spreading in neural networks.
When a new task is added into a concept, the priority of the concept
is increased temporarily, and inference in the concept may cause derived
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tasks to be sent to its neighbors, so their priority (activation) levels will be
increased, too. As a supplement, a mental operation allows the system to
pay attention to a concept without new tasks added.

Feeling. The system can check the readings of its sensors embedded in its
“body” and “mind”, so as to “feel” its status, and use the reports to decide
its actions. This mechanism has been described in [18]. Beside emotional
status, the system can also feel how novel a new input is (so as to give it
the attention it deserves) or how busy itself is (so as to decide its resource
allocation strategy).

In general, mental operations supplement and influence the automatic con-
trol mechanism, and let certain actions be taken as the consequence of inference.
Mental operations contribute to the system’s self-concept by telling the system
what is going on in its mind, and allow the system to control its own think-
ing process to a certain extent. For instance, the system can explicitly plan its
processing of a certain type of task. After the design and implementation phases,
the system needs to learn how to properly use its mental operations, just like it
needs to learn about the other operations.

In NARS, “experience” refers to the system’s input streams. In the simplest
implementation of NARS, the system has only one input channel, where the
experience is a stream of Narsese sentences like S1, T1, S2, T2, . . . , Sn, Tn from
the channel, where each Si is a Narsese sentence, with Ti to be the time interval
between it and the next sentence. A buffer of a constant size n holds the most
recent experience.

In more complicated implementations, there are also “sensory” channels each
accepting a stream of Narsese terms from a sensory organ. Here a sensor can
recognize a certain type of signal, either from the outside of the system (such
as visual or audio signals), or from the inside of the system. Within the sys-
tem, the sensation can come either from the body (somatosensory) or from the
mind (mental). Such a channel provides a certain type of “internal experience”.
Somatosensory input will be especially important for a robotic system, as it
needs to be aware of its energy level, network connection status, damages in
parts, etc.

A mental sensation may come from the execution of a mental operation,
such as the “feeling” operation mentioned above. Also, mental sensations appear
as the trace of the system’s inference activity. During each inference cycle, the
system “senses” the concept that was selected for processing, and the implication
relationship between the premises and the conclusion. Later, this experience can
be used to answer questions like “What has been pondered” or “Where does that
conclusion come from”, asked either by the system itself or by someone else, as
well as used in future inference activities.

On the input buffers the system carries out certain channel-specific pre-
processing to form compound terms corresponding to the spatiotemporal pat-
terns of the input. There is also a global buffer that holds a stream of Narsese
sentences after preprocessing, where the terms typically combine the data from
multiple channels. In this aspect, the external and internal experiences are han-
dled basically in the same way.
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A special type of belief formed in this way is the temporal implications
between the mental events sensed within the system and the outside events
observed by the system. The system will believe that it is some of its ideas that
“cause” a certain action to be performed in its environment, and such beliefs
will coordinate its “mind” and its “body”.

The internal experience of NARS is the major source of its self-knowledge.
Under AIKR, this type of knowledge is also uncertain and incomplete, and is
under constant revision. Furthermore, it is subjective and from the first-person
perspective. In these aspects, NARS is fundamentally different from the “logical
AI” approach [9].

There is no space in this paper to provide working examples, so interested
readers should visit the OpenNARS project website.3

3 Comparison to Related Work

Restricted by paper length, here we only compare NARS with the related AI
works, and not address the huge literature in psychology and philosophy on self,
consciousness, and the related topics.

Though many approaches have been proposed for self-awareness and self-
control in various forms, most AI systems do not have a “self” concept (no matter
under what name) [5]. Such a concept is used in NARS, mainly because concept
provides a flexible unit for representation and processing, so every identifiable
pattern in experience and notion in thought is handled as a concept. Since an
intelligent system has the needs to know about itself, it is natural for such a
concept to be used to collect all the self-related beliefs and tasks together.

According to the semantics of NARS, the meaning of a concept (or a term
naming a concept) is completely determined by its relation with other concepts
(or terms). While for most concepts such relations are all acquired from the
system’s experience, the system is not born with a blank memory. Each built-in
operation contributes meaning to the concept of SELF , by relating the system
as a whole to the events it can perceive and/or realize. Starting from these
operations, the SELF concept will eventually involve beliefs about

– what the system can sense and do, not only using the built-in operations,
but also the compound operations recursively composed from them, as well
as the preconditions and consequences of these operations;

– what the system desires and actively pursues, that is, its motivational and
emotional structure;

– how the system is related to the objects and events in the environment, in
term of their significance and affordance to the system;

– how the system is related to the other systems, that is, the “social roles”
played by the system, as well as the conversions in communication and inter-
actions.

3 Source code, working examples, and documentations of the current implementation
of NARS can be found at http://opennars.github.io/opennars/.

http://opennars.github.io/opennars/
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All these aspects will make the system’s self concept richer and richer, even to
the level of complexity that we can meaningfully talk about its “personality”,
that is, what makes this system different from the others, due to its unique
nature and nurture.

This treatment is fundamentally different from identifying “self” with a phys-
ical body or a constant mechanism within the system. “Self” is not left com-
pletely to a mysterious “emergent process”, neither. In NARS, the concept of
“self” starts with a built-in core, then evolves according to the system’s experi-
ence. In the process, the self-concept organizes the relevant beliefs and tasks
together to facilitate self-awareness and self-control. This is consistent with
Piaget’s theory that a child learns about self and environment by coordinating
sensations (such as vision and hearing) with actions (such as grasping, sucking,
and stepping), and gradually progresses from reflexive, instinctual action at birth
to symbolic mental operations [11].

A widely agreed conclusion in psychology is that a mental process can be
either automatic (implicit, unconscious) or controlled (explicit, conscious), with
respect to the system itself. The former includes innate or acquired stimulus-
response associations, while the latter includes processes under cognitive control,
such as “response inhibition, attentional bias, performance monitoring, conflict
monitoring, response priming, task setting, task switching, and the setting of
subsystem parameters, as well as working memory control functions such as
monitoring, maintenance, updating, and gating” [4].

Various “dual-process” models have been proposed in psychology to cover
both mechanisms. Such models are also needed in AI, even though the purpose
here is not to simulate the human mind in all details, but to benefits from the
advantages of both. In general, controlled processes are more flexible and adap-
tive, while automatic processes are more efficient and reliable. In such a system,
there are meta-level processes that regulate object-level processes [5,8,12,13],
and such works are also covered in the study of machine consciousness [1,3]. Even
though this “object-level vs. meta-level” distinction exists in many systems, the
exact form of the boundary between the two differ greatly, partly because of the
architecture of the systems involved. A process should not be considered “meta”
merely because it gets information from another process and also influences the
latter, since the relation can be symmetric between the two, while normally the
object-level processes have no access to the meta-level processes.

As a reasoning system, in NARS “control” means to select the premises
and the rule(s) for each inference step, so as to link the individual inference
steps into problem-solving processes. The primary control mechanism is coded
in a programming language, and is independent of the system’s experience. It is
automatic and unconscious, in the sense that the system does not “think” about
what to do in each step, but is context- and data-driven, while the data involved
comes from associations biased by dynamic priority distributions. On top of
this, there are mental operations that are expressed in Narsese and invoked by
the system’s decisions, as a result of “conscious” inference activities. This meta-
level deliberative control does not change the underlying automatic routines, but
supplement and adjust them.
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Deliberative control in NARS is mainly achieved by mental operations, and
this treatment is different from the meta-cognition implemented in the other sys-
tems [5] in that the operations in NARS are light-weight, rather than decision-
making procedures that compare the possible actions in detail with a high com-
putational cost. Also, the preconditions of these operations are largely learned
from experience, not predetermined. As these operations can be combined into
compounds, the system will gradually learn problem-solving skills, as a form of
self-programming [16].

In general, NARS treats its “external experience” and “internal experience”
in the same way, and the knowledge about the system itself has the same nature
as other knowledge in NARS. Under AIKR, self-knowledge is incomplete, uncer-
tain, and often inconsistent, which is the contrary of what is assumed by the
“logical AI” school [9]. The system can only be aware of the knowledge reported
by certain mental operations and those in the input buffers, and even this knowl-
edge does not necessarily get enough attention to reveal its implications. The
control aspect is the same, that is, the system can only make limited adjust-
ments, so cannot “completely reprogram itself”, and nor can it guarantee the
absolute correctness of its self-control behaviors.

If self-awareness and self-control are required in an intelligent system, why
are such functions absent in most of the AI systems developed so far?

Like many controversies in AI, the different opinions on this matter can be
traced back to the different understandings of “AI” [15]. As the mainstream
AI aims at the solving of specific problems, the systems are usually equipped
with problem-specific algorithms. Even in learning systems that do not demand
manually-coded algorithms, they are still approximated by generalizing training
data. In general such systems have little need to add itself into the picture,
and even meta-cognition can be carried out without an explicit “self” concept
involved [5].

In AGI systems, the situation is different. Here we have projects aimed at
simulating the human brain according to psychological theories [2,6], which
surely needs to simulate the self-related cognitive functions. Even in the function-
oriented projects, self-awareness and self-control are desired to meet the require-
ments for the system to work in various situations [12,13].

For NARS, the need for self-awareness and self-control follows from its work-
ing definition of intelligence, that is, adaptation under AIKR [15]. To adapt to
the environment and to carry out its tasks, the system needs to know what it
can do and how it is related to the objects and other systems in the environ-
ment, and an explicitly expressed “self” will organize all the related knowledge
together, so as to facilitate reasoning and decision making.

NARS treats SELF like other concepts in the system, except that it is
a “reserved word” which has innate associations with the built-in operations,
including the mental operations. NARS also treats internal and external experi-
ence uniformly, so self-awareness and self-control have nothing magical or mys-
terious, but are similar to how the system perceives and acts upon the external
environment.
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Though the study of self-awareness and self-control in NARS is still at an
early stage, the conceptual design described above has been implemented, and
is under testing and tuning. There are many details to be refined, however we
believe the overall design is in agreement with the scientific knowledge on these
processes in the human mind, and also meets the needs and restrictions in AGI
systems.
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Abstract. In this work, we present a design enhancement to the DSO
Cognitive Architecture to augment its existing cognitive functions in an
attempt to produce more general level of artificial intelligence in com-
putational intelligent systems. Our design is centered on the concept
of unified reasoning that indirectly addresses the diversity dilemma in
designing cognitive architectures. This is done by implementing an inte-
grative memory with the incorporation of the Global Workspace Theory.
We discuss how other cognitive architectures using the Global Workspace
Theory have influenced our design and also demonstrate how the new
design can be used to solve an image captioning problem.

Keywords: Cognitive architecture · Unified reasoning · Integrative
memory · Global workspace theory

1 Introduction

The DSO Cognitive Architecture (DSO-CA) is a top-level cognitive architecture
that models the information processing in the human brain using inspirations
drawn from Cognitive Science, Neuroscience, and Computational Science [1,2].
It is designed based on the key principles of hierarchical structure, distributed
memory and parallelism. These led to an architectural design centered on func-
tional modules (Reasoning, Visual, Association, etc.) that are executed asyn-
chronously and in parallel to one another with each module possessing their own
distinct memory system. The DSO-CA has been used to develop useful solutions
to problems in applications like scene understanding [3] and mobile surveillance
[4]. To further enhance its capability towards producing more human-like gen-
eral intelligence and dynamic reasoning, we have been researching on advanced
design principles and computational algorithms that will permit reasoning across
different knowledge domains and representations – a process we termed unified
reasoning.

Unified reasoning can be implemented either by encoding radically different
knowledge domains into a common representation and then implement a single
inference engine for the reasoning process, or by using multiple inference engines
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and coming up with a way to unify them for different inputs. This leads to a
design problem known as the diversity dilemma. In cognitive architecture design,
the diversity dilemma refers to a need to blend diversity of different cognitive
functions with uniformity of structure for efficiency, integrability, extensibility,
and maintainability [5]. Diversity refers to the wide range of cognitive functions
of different complexity required to operate in a dynamic, complex environment.
Uniformity can be interpreted as how different cognitive functions can be realised
through interactions between a small set of primitives and functions. This is a
dilemma because ensuring uniformity alone may not be adequate in covering
most cognitive functions, or accommodating new cognitive functions, but at the
same time it is easier to maintain and integrate functions through uniformity. On
the other hand, diverse implementations may not gel well with one another and
will require a lot of engineering and maintenance effort, but they are easier to
extend for new functionalities. In the case of unified reasoning, a single knowledge
representation and its inference engine may not cover every domain while a set
of different inference engines may require massive engineering to synergise them.

In this paper we present a design enhancement to the DSO-CA that aug-
ments its existing cognitive functions to perform unified reasoning. This design
is based on the concept of implementing an integrative memory together with
the incorporation of the Global Workspace Theory. The Global Workspace The-
ory (GWT) is a neuro-cognitive theory of consciousness developed by Bernard
Baars [6,7], where information integration plays an important role. It advances
a model of information flow in which multiple, parallel, specialised processes
compete and co-operate for access to a global workspace. The global workspace
then permits the winning coalition to broadcast to the rest of the specialists.
According to the GWT, the mammalian brain instantiates this model of infor-
mation flow, which enables a distinction to be drawn between conscious and
unconscious information processing. To interpret it computationally, conscious-
ness can be described as competition among processors, and outputs for a limited
capacity resource that “broadcasts” information for widespread access and use.
By grouping these specialists by cognitive functions, their availability to the
global workspace causes information in memory to become conscious when the
amount of activity representing it crosses a threshold [8].

By making use of an integrative memory system and applying the GWT, the
collaboration between vastly different cognitive functions can be achieved and it
indirectly provides a resolution to the diversity dilemma. Here, the integrative
memory refers to a unified representation for the working memory. It serves as a
common language for which the different modules communicate in and the GWT
is the protocol of which they use to communicate. In the context of unified rea-
soning, this means the different reasoners can still use their specialised inference
engines on their native representations but when a novel situation arises, which a
single reasoner cannot resolve, the global workspace can propagate its content to
different reasoners and complement its shortcoming. Hence, the GWT protocol
incorporated with an integrative memory can be used as a solution to facili-
tate unified reasoning. Before we present this new design enhancement to the
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DSO-CA, we will first provide a review of related work on cognitive architectures
that implement the GWT, which have influenced our design. We will also pro-
vide an illustrative example on how the proposed new DSO-CA can be applied
to an image captioning problem.

2 Related Works

To investigate how the GWT can be applied to enhance the DSO-CA with
the functionality of unified reasoning, we have studied the following cognitive
architectures infused with principles inspired by the GWT: MLECOG, CERA-
CRANIUM, LIDA, CELTS, and CST. MLECOG (Motivated Learning Embod-
ied Cognitive Architecture) [9] is a cognitive architecture built on top of self-
organising artificial neural networks using the idea of pain signals. It is able
to dynamically generate goals ‘motivated’ by desires and needs, and generate
actions to fulfil the generated goals. MLECOG has all the semblance of GWT
but it does not have a global broadcast mechanism – winner of the competition
is routed through a predefined pathway. CERA-CRANIUM [10] uses a layered,
hierarchical distributed architecture and it has two main components: CRA-
NIUM, which serves as the workspaces of which the massive parallel, specialised
processes operate on, and CERA, which serves as a domain-agnostic control
unit to handle higher cognitive functions like selective attention, memory man-
agement, etc. LIDA (Learning Intelligent Distribution Agent) [11] aims to build
a theoretical framework to unify different theories about human cognition, with
a particular focus on the learning aspects of intelligent agents. Using a cogni-
tion cycle that starts with perception and ends with action, the GWT serves
as a bridge between them by using attention strategies to pick different salient
coalitions (a subset of the working memory elements) that are augmented by
the various cognitive tasks that occurred before. Similarly, CELTS (Conscious
Emotional Learning Tutoring Systems) [12] also implements a cognitive cycle
of perception to action. One key difference is the existence of a shorter route
for reactive behaviour and the use of ‘emotions’ to guide selective attention to
working memory elements. Lastly, CST (Cognitive Systems Toolkit) [13] serves
as a framework for users to create cognitive architecture using codelets as the
atomic unit of computation.

To help us compare the design principles of these cognitive architectures
we have worked out four features in the context of integrative memory and
the GWT, namely, (1) types of memory, (2) competition, (3) purpose of global
broadcast, and (4) information flow. Table 1 shows a summary of comparison
amongst the different cognitive architectures including the enhanced DSO-CA
with GWT using these four features.

Types of memory here refers to the representation used for the memory
and the scale for the type of memory ranges from completely integrative to
disparate. For example, LIDA, CELTS and MLECOG uses integrated memory
whereas CST uses disparate memory due to the content of the memory objects
(Table 1). Disparate memory facilitates different forms of representation to pop-
ulate the working memory, and conversion of memories may be needed between
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Table 1. A comparison among the different cognitive architectures along with DSO-CA
implemented with GWT.

CA Types of memory Global

broadcast

Information

flow

Competition

MLECOG Integrated N/A Predefined Pain signals and

priorities

Multiple

competition

CERA-CRANIUM Disparate Specific Predefined Multiple

local

competition

LIDA Integrated Specific Predefined Multiple

Activation based competition

CELTS Integrated Specific Predefined Single

competition

CST Disparate Generic Dynamic Single

competition

DSO-CA Integrated but

locally disparate

Generic Dynamic Activation and

speed based

Multiple

competition

different, incompatible processes. On the other hand, the advantage of using an
integrative memory is the uniformity of representation. From a system’s per-
spective, this allows easy maintenance and extension of the architecture. Also, it
allows the combination of information contributed from processes, decreasing the
complexity of the system in terms of designing mechanisms to handle different
representations. In our proposed design enhancement to the DSO-CA, the work-
ing memory and content involved is integrated while the different specialised
processors can have different memory representations.

The second feature “competition” is defined here as how the coalitions of
processes compete for conscious access. Two aspects of competition are laid out
in Table 1: the evaluation metric and the level of competition. In general, all
cognitive architectures discussed here used similar mechanisms for competition
with the most common evaluation metric being activation level. Each element in
the working memory is assigned an activation level based on problem-dependent
criteria, which indicates how relevant each element is to the goal or state of
the agent. Another aspect of competition is the level of competition. In most
architectures, there are multiple levels of competition.

The third feature classifies the global broadcast by its designed purpose: spe-
cific or generic. For example, the global broadcast in CELTS and LIDA serves
mainly to aid learning, and influencing or invoking action selection. With a
specific goal in mind, it determines how the global broadcast is implemented
including the choice of memory representation that ties in with the integra-
tive memory. Global broadcast with generic purpose simply propagates salient
information; the propagated content are not designed according to pre-mapped
functions. This is the case for CST and DSO-CA.

Lastly, the feature on information flow defines how information is trans-
ferred from one codelet/module to another and its pathway control. The flow
can be predefined (top-down) or dynamic (bottom-up). Predefined information
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flow refers to information flow defined during the design phase where the GWT
mechanism is embedded within this flow. This mechanism acts as a gatekeeper
and bridge to pass the most salient information to the rest of the modules. As
shown In Table 1, all except for CST and DSO-CA have predefined informa-
tion flow. The main reason we have chosen dynamic information flow for unified
reasoning within the DSO-CA is because its current design can readily adopt
the dynamism through its pathway control that defines how information flows
among modules [1].

3 Design

In this section, we present the proposed enhanced DSO-CA design. The design
revolves around certain key aspects. Firstly, the architecture is composed of
specialised processors executing asynchronously from one another. Each of the
processors is akin to the unconscious processing in the brain, and they can
operate on disparate memory representations. However the main working mem-
ory and content of interprocess communication must share a common repre-
sentation with well-defined properties that can be exploited. Additionally, there
should exist a mechanism for these specialised processors to compete against one
another directly or indirectly. It is through competition that a specialised proces-
sor can access the global workspace and broadcast to other processes; this allows
the transition of parallel, unconscious processing to serial, conscious processing
[6]. Lastly, the global broadcast mechanism must possess an inhibitory function
to suppress competing processors while it is broadcasting. With this in mind, we
propose the design as illustrated in Fig. 1.

Fig. 1. An overview of the DSO-CA with the GWT. The attention and global broadcast
mechanism layer lie on the working memory (integrative memory).

Modules that perform specialised and independent processes in a given
domain are referred to as cognitive codelets. Each of these codelet has a
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translator that converts its local memory representation (as stored in the local
working memory) into the integrative memory representation and vice versa.
Cognitive codelets communicate with each other through the gateway to other
cognitive codelets. Laying on top of the working memory is the attention layer
and the Global Broadcast Mechanism; the attention layer seeks out and receives
novel, critical, or relevant information embedded within the working memory or
the cognitive codelets. Each cognitive codelet has local ports that can receive
local inputs, or send local output to other cognitive codelets (routed via the gate-
way). However, it also has a broadcast port that can receive prioritised input
from the Global Broadcast Mechanism.

Figure 2 shows the proposed design of the working memory. It uses a layered
architecture. The integrative memory layer holds the actual working memory
represented as factor graph. The reference memory layer is made up of cells to
hold references to subgraphs of the underlying factor graph. A factor graph is
a bipartite graph that represents a complicated global function as a product
of local functions [14]. The choice of using factor graph is largely inspired by
the SIGMA cognitive architecture [15], which demonstrated the combination of
perception, localization, decision-making and learning using only factor graphs
and with it, uses sum-product algorithm for cognitive processing [16]. Each refer-
ence memory cell contains shared memory among cognitive codelets. A cognitive
codelet can send its output to a cell that in turn, can be used as inputs to other
cognitive codelets (Fig. 2). This is similar to CST’s memory object except that
each cell holds a reference to a subgraph of the underlying factor graph.

Fig. 2. The working memory has two layers. The integrative memory hosts the factor
graph and the reference memory cells contain reference to subgraphs.

Activation level is calculated either on the reference memory cell or on the
cognitive codelet (the arrows to and from the attention layer in Fig. 2). Can-
didates picked from the reference memory cells can be considered as top-down
attention as the attention codelets define the criteria of selection. Conversely,
candidates from cognitive codelets are bottom-up as the cognitive codelets define
the selection criteria instead of the attention codelets. Local competition takes
place at this level with the attention codelets, differentiated by their context,
picking the most salient candidate – a factor graph which is a subgraph from
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the reference memory cell or the output of the cognitive codelet. Once the
attention codelets have picked their winning candidate, they will be sent to
the Global Broadcast Mechanism to compete for access. A temporary, capacity-
limited buffer will be created for the candidates upon receiving the first one.
The buffer will shut down when either the timer expires or when it fills up to
its capacity. Global competition will start here and the winner (with the high-
est activation level) will be broadcasted to the rest of the cognitive codelets for
additional processing. Inhibition starts when the buffer expires and the Global
Broadcast Mechanism will reject any candidates sent from attention codelets of
which, will also stop selecting or receiving candidates.

While developed independently, some parts of our design bear resemblance
to the OpenCog [17] architecture’s concept of “cognitive synergy”. Both designs
are based on the belief that general intelligence requires a synergised way of
linking various specialised knowledge (memory) systems, which we called unified
reasoning. OpenCog has a memory system known as Atomspace (a hypergraph
database) that fits our notion of the integrative memory. Atomspace permits
implementation of Probabilistic Logic Networks while our integrative memory
is implemented using factor graphs. In essence, while the broad descriptions of
both designs share certain level of similarities, the key principles that the designs
are based upon are primarily different – one based on the GWT and the other
Cognitive Synergy Theory.

4 Example

This section serves to illustrate how the new DSO-CA design with unified rea-
soning can be applied to an image captioning problem. Figure 3 shows a possible
configuration of the cognitive architecture design. The ontology can be encoded
as a dependency graph defined by K-parser [19]. Rules can be encoded using
a production rule system to represent simple and obvious facts. Ontology and

Fig. 3. The proposed design for the application. Image source: MS COCO Captioning
Challenge dataset [18].
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rules are used to construct the knowledge graph required by the language gen-
erator to create the captions. D’Brain [20], which is one of the reasoner modules
already implemented in the DSO-CA, can be used to fuse multiple Bayesian
networks knowledge fragments [21] to iteratively remove false recognition from
the perception through inferencing and providing higher level context.

Fig. 4. The different knowledge bases’ representations translated into factor graphs:
(i) represents an ontology, (ii) is a Bayesian network, the grey arrows represent the
original DAG, (iii) is a factor graph representing rules that are activated. These factor
graphs are represented in the integrative memory while the various reasoners retain
their native representations.

In Fig. 3, potential objects, activities and scenes identified by their respective
perception codelets will be put into their respective reference memory cells. Rea-
soners use these inputs to either generate more candidates using associations and
likelihood or remove percepts that are unlikely given its context. Output from
the reasoners will return to the reference memory cells again and the attention
codelets in the Attention Layer may pick up if the content (in the form of factor
graph) is salient; they can also receive them from the other cognitive codelets.
Each attention codelet is responsible for a domain and will select the most salient
aspect of their respective domain for further competition that takes place in the
Global Broadcast Mechanism. There, the candidate with the greatest activa-
tion level will be broadcasted to the rest of codelets for further processing, and
the process repeats again. Using Fig. 4(iii) and the photo in Fig. 3 as an exam-
ple, different persons would be initially recognised and tallied, the rule-based
reasoner would eventually infer that there are ‘people’ and a ‘crowd’ in that
photo. If its output are considered the winner of the global competition, it will
be broadcasted to the rest of the cognitive codelets. When the ontology rea-
soner receives the broadcast, ‘people’ will be associated with ‘gather’ which in
turn is associated with ‘feasts’ and ‘pizza’ (Fig. 4(i)) subsequently. This subset
of factor graph will be broadcasted to the cognitive codelets again after compe-
tition and be picked up by D’Brain, which can calculate the concept association
strength through inferencing; concepts, whose posteriors passes a threshold, are
considered as candidates for bottom-up attention from the cognitive codelets.



52 K.H. Ng et al.

Using Fig. 4(iii), ‘home’, ‘socializing’ and ‘living room’ can be picked out as the
most probable associations, and the factor graph is selected for broadcast. Upon
receiving the broadcast, ontology and rules-based reasoner expand the knowledge
graph by associating more concepts. This example demonstrates the cooperation
among the reasoner codelets facilitated by the GWT implementation; rules and
ontology can generate associations based on semantics, and Bayesian networks
can compute the posterior probability of concepts. Amidst all the competitions
and broadcasts, the language generator codelet is concurrently creating sentences
from inputs it received through the global broadcast. Sentences are generated
by relations between concepts and some rules, and scored by a metric. The top
three sentences will then be considered as the caption (Fig. 3). In summary, the
dynamically assembled pipeline of unified reasoning process is: Rules → Ontol-
ogy → Bayesian Network → Ontology → Language Generator. By using the
global workspace, this is one of the many different pipelines that can be gener-
ated dynamically depending on changing contexts.

5 Conclusion

In this paper we have presented a design enhancement to the DSO-CA to aug-
ments its existing cognitive functions in an attempt to produce more general
level of artificial intelligence in computational intelligent systems. Our design
is centered on the concept of unified reasoning by implementing an integrative
memory with the incorporation the GWT. This is done by compartmentalis-
ing reasoning functions into different parallelised codelets that contribute their
inference results into the integrative memory, which is implemented by factor
graphs. The GWT is responsible in picking the most novel and relevant informa-
tion from the integrative memory and broadcast it to the other codelets, thereby
connecting separate information pathways into a unified whole. This design will
give us a form of dynamic reasoning that can elegantly adapt to different con-
texts through the collaboration of different reasoning systems. Through this, we
hope it will serve as a building block bringing us a step closer to a cognitive
architecture that produces human-like intelligence.

A computational development of the complete enhanced design for the DSO-
CA is currently in the works. We aim to test the computational system with
other challenging problems that will showcase the usefulness of an intelligent
system capable of performing unified reasoning.
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Abstract. Artificial General Intelligence (AGI) seeks theories, models
and techniques to endow machines with the kinds of intellectual abilities
exemplified by humans. Yet, the predominant instance-driven approach
in AI appears antithetical to this goal. This situation raises a question:
What (if any) general principles underlie general intelligence? We app-
roach this question from a (mathematical) category theory perspective
as a continuation of a categorical approach to other properties of human
cognition. The proposal pursued here is adjoint functors as a universal
(systematic) basis for trading the costs/benefits that accompany physical
systems interacting intelligently with their environment.

Keywords: Systematicity · Compositionality · category theory ·
Functor · adjunction · Intelligence · Raven Progressive Matrices

1 Introduction

The purview of Artificial General Intelligence (AGI) is the development of the-
ories, models and techniques for the endowment of machines with intellectual
capabilities that generalize to a variety of novel situations. This characterization,
however, belies important questions about what we mean by intelligence and gen-
eralize. In the absence of precise criteria, researchers look to the archetype of
general intelligence, human cognition, for examples of model behaviour [19].

Such (behaviourist/operationalist) approaches afford clear criteria to com-
pare methods, but there are some significant drawbacks. Firstly, complex behav-
iour can be realized in more than one way. A machine that requires many more
training examples to achieve a comparable level of human performance on a
complex intellectual activity (e.g., chess) may not capture essential properties
of general intelligence [13]. Secondly, humans also make (logically) irrational
decisions [12]. Failures of logical reasoning, however, do not warrant rejecting
human cognition as an example of general intelligence. So, specific behaviours
may provide neither necessary nor sufficient criteria for general intelligence.

This problematic state of affairs raises an important question: What (if any)
general principles underlie general intelligence? Discerning principles for cog-
nition is a concern of cognitive scientists when comparing/contrasting mental
c© Springer International Publishing AG 2017
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capacity across cohorts (e.g., age groups, or species). A typical recourse is to
look at relationships between mental capacities, rather than individual behav-
iours [10]. In the remainder of this introduction, we recall one such relation-
ship that motivates our approach to AGI, which is presented in the subsequent
sections.

1.1 Systematicity, Generalization and Categorical Universality

The so-called cognitive revolution in psychology was a shift in focus from behav-
iour to the underlying structures that generate it, or more pointedly, a shift
towards the (structural) relations between the underlying cognitive processes
that cause the structural relations between behaviours generated [3]. An example
is the systematicity property of cognition. Systematicity is when having a capac-
ity for some cognitive ability implies having a capacity for a structurally-related
ability [8]. An example is having the capacity to understand the expression John
loves Mary if and only if having the capacity to understand Mary loves John.
These two capacities are related by the common loves relation. Systematicity, in
general, is an equivalence relation over cognitive capacities, which need not be
confined to language [15]—a kind of generalization over cognitive abilities.

The systematicity problem is to explain why cognition is organized into par-
ticular groups of cognitive capacities [8]. Although this problem was articulated
three decades ago, consensus on a solution remains elusive (see [4] for a recent
reappraisal). Cognitive scientists generally agree that systematicity depends on
processing common structure, though they may disagree on the nature of those
processes, e.g., symbolic [8], or subsymbolic [20]. However, the sticking point
is over a specification for the (necessary and sufficient) conditions from which
systematicity follows: the why not just the how of systematicity [1,8]. Central to
(ordinary) category theory [14] is the formal concept of universal construction:
necessary and sufficient conditions relating collections of mathematically struc-
tured objects. In this sense (of necessity and sufficiency) one can regard category
theory as a theory of structure, which should make category theory well-placed
to provide an explanation for the why of systematicity [17].

A category consists of a collection of objects, a collection of morphisms (also
called arrows, or maps), and a composition operation for composing morphisms.
In the context of cognition, morphisms may be regarded as cognitive processes
that map between objects that are sets of cognitive states. A universal mor-
phism (universal construction) is a morphism that is common to a collection of
morphisms, hence its relevance to an explanation for systematicity [17].

1.2 Cost/Benefit Cognition: Dual-Routes and Duality

If cognition is supposed to be systematic, then why are there failures of sys-
tematicity? Cognitive systems are physical systems, hence resource sensitive.
So, alternative ways of realizing task goals may trade one kind of resource
for another. For example, parallel computation typically involves more mem-
ory (space) but less time than serial computation; faster response is typically
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accompanied by lower accuracy. We hypothesized that failures of systematic-
ity arise from a cost/benefit trade-off associated with employing a universal
construction, and an experiment designed to manipulate the cost of computing
a task with versus without a universal construction provided support for this
hypothesis [16].

Characterizations of cognition as dual-process (route) abound in psychol-
ogy: e.g., fast versus slow, domain-specific versus domain-general, resilient ver-
sus sensitive to working memory load, and associative versus relational [7,10,12].
Although identifying such distinctions are important, they do not explain why
cognition appears this way. Our study [16] suggested that failures of systematic-
ity are themselves systematically related. Since the categorical explanation says
that a universal construction underlies each and every instance of systematicity,
we propose that another kind of universal construction, called an adjunction,
underlies cognitive dual-routes and general intelligence.

An adjunction can be considered as a collection of universal morphisms for
the opposing constructions as dual-routes. Each collection affords a system-
atic alternative path that realizes a cost/benefit trade-off. General intelligence
involves the effective exploitation of this trade-off. The link from dual-route to
adjunction is formally illustrated using a familiar example of dual from elemen-
tary algebra, in Sect. 2, which also serves as an aid to understanding the basic
category theory that follows for application to cognition and general intelligence,
in Sect. 3. This general principle for AGI is discussed in Sect. 4.

2 Categorical Dual (Adjunction): An Elementary
Example

Computing with very small or large numbers creates precision errors when results
exceed a machine’s representational capacity. These computational “potholes”
are avoided by taking a dual route, which is illustrated using the following equa-
tions relating addition to multiplication:

a × b = elog a+log b and (1)

a + b = log(ea × eb) , (2)

which show that one can be computed in terms of the other.

Definition 1 (Category). A category C consists of

– a collection of objects, O(C) = {A,B, . . . },
– a collection of morphisms, M(C) = {f, g, . . . }—f : A → B indicates A as

the domain and B as the codomain of f , and HomC(A,B) as the collection
of morphisms from A to B in C—including the morphism 1A : A → A for
every object A ∈ O(C), called the identity morphism at A, and

– a composition operation, ◦, that sends a pair of morphisms f : A → B and
g : B → C to the composite morphism g ◦ f : A → C,
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that together satisfy

– identity: f ◦ 1A = f = 1B ◦ f for every f ∈ M(C), and
– associativity: h ◦ (g ◦ f) = (h ◦ g) ◦ f for every triple of compatible morphisms

f, g, h ∈ M(C): the codomain of f is the domain of g; likewise for g and h.

Example 1 (Set). The category Set has sets for objects, functions for mor-
phisms, and composition is composition of functions: g◦f(a) = g(f(a)). Identity
morphisms are identity functions: 1A : a �→ a.

Example 2 (Monoid). A monoid is a set M with a binary operation · and an
identity element e ∈ M such that a ·e = a = e ·a for every element a ∈ M . Every
monoid (M, ·, e) is a one-object category whose morphisms are the elements of
M , with e as the identity morphism, and composition is the monoid operation.
The set of real numbers R under addition and multiplication are the monoids
(R,+, 0) and (R,×, 1) and therefore categories. For instance, the composition of
morphisms 2 : ∗ → ∗ and 3 : ∗ → ∗ is the morphism 3 ◦ 2 = 5 : ∗ → ∗, which
corresponds to the addition of their corresponding numbers, 2 + 3 = 5.

Remark 1. Category Cop is opposite to C, which is obtained by morphism
reversal: morphism f : A → B in C is fop : B → A in Cop. A dual (e.g.,
coproduct) in C is just the primal (product) in Cop.

Definition 2 (Functor). A functor F : C → D is a map from category C to
category D sending each object A and morphism f : A → B in C to (respectively)
the object F (A) and the morphism F (f) : F (A) → F (B) in D such that

– identity: F (1A) = 1F (A) for every object A ∈ O(C), and
– compositionality: F (g ◦C f) = F (g) ◦D F (f) for every pair of compatible

morphisms f, g ∈ M(C).

Example 3 (Monoid homomorphism). A monoid homomorphism is a map
h : (M, ·, e) → (N, �, e′) such that h(e) = e′ and h(a ·b) = h(a)�h(b) for all a, b ∈
M . Every monoid homomorphism is a functor. For instance, the exponential
function exp : a �→ ea is a monoid homomorphism, since e0 = 1 and ea+b =
ea × eb, and therefore a functor. Likewise, the log function defined over R− {0}
(denoted R0) is a functor, since log(1) = 0 and log(a × b) = log(a) + log(b).

Remark 2. A functor F : Cop → D is called a contravariant functor. Con-
travariant functor Iop : Cop → C sends fop to f .

The following definition is needed before defining adjunction. We delay giving
examples until the next section, because the natural transformations associated
with the current example of a dual are trivial (i.e. identities).

Definition 3 (Natural transformation, isomorphism). A natural trans-
formation η from a functor F : C → D to a functor G : C → D, written
η : F

.→ G, is a family of D-morphisms {ηA : F (A) → G(A)|A ∈ O(C)} such
that G(f) ◦ ηA = ηB ◦ F (f) for each morphism f : A → B in C. A natural
isomorphism is a natural transformation where every ηA is an isomorphism, i.e.
a morphism that has a (left/right) inverse.
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Remark 3. A natural isomorphism is indicated by the following diagram:

F (A)
ηA ��

F (f)

��

G(A)

G(f)

��

η−1
A

��

F (B)
ηB ��

G(B) ,
η−1
B

��

(3)

which yields two identities:

F (f) = η−1
B ◦ G(f) ◦ ηA and (4)

G(f) = ηB ◦ F (f) ◦ η−1
A , (5)

hence their importance in exploiting dual-routes.

Definition 4 (Adjunction). An adjunction (F,G, η, ε) : C ⇀ D consists of
functors F : C → D and G : D → C, and natural transformations η : 1C

.→
G ◦ F and ε : F ◦ G

.→ 1D satisfying Gε ◦ ηG = 1G and εF ◦ Fη = 1F , where 1F

and 1G are identity natural transformations (on F and G). F is the called the
left adjoint of G, and G is called the right adjoint of F , written F � G; natural
transformations η and ε are called (respectively) the unit and counit.

Remark 4. Definition 4 induces equalities f = G(g) ◦ ηA and g = εB ◦ F (f),
which are shown by the following diagrams:

A
ηA ��

f ����
��

��
��

� GF (A)

G(g)

���
�
�

F (A)

g

���
�
� A

f

���
�
� F (A)

F (f)

���
�
�

g

����
��

��
��

�

G(B) B G(B) FG(B)
εB

�� B .

(6)

Dashed arrows indicate uniqueness. The pair (F (A), ηA) is the universal mor-
phism from A to F ; the pair (G(B), εB) is the universal morphism from G to B.
In other words, every morphism f factors through ηA; every morphism g factors
through εB, hence the importance of universal morphisms to systematicity.

Remark 5. Derived hom-functors Hom(F−,−),Hom(−, G−) : Cop×D → Set
and natural isomorphism φ : Hom(F−,−) .→ Hom(−, G−) : ψ (see [14]) are
indicated by the following diagram:

(A,B)

(h,k)

��

HomD(F (A), B)

Hom(F (h),k)

��

φA,B �� HomC(A,G(B))
ψA,B

��

Hom(h,G(k))

��
(A′, B′) HomD(F (A′), B′)

φA′,B′
�� HomC(A′, G(B′)) ,

ψA′,B′
��

(7)

hence the importance of adjunctions to duality and dual-routes.
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Example 4 (exp � log). Setting F and G in diagram 7 to functors exp and log,
hence HomD(F (A), B) = R0 and HomC(A,G(B)) = R, we have for (h, k) set
to (0, b) and (h, k) to (a, 1) the following (respectively, left and right) diagrams:

(∗, ∗)

(0,b)

��

R0

×b

��

log(−) ��
R

+ log b

��

(∗, ∗)

(a,1)

��

R0

ea×
��

R

a+

��

e(−)
��

(∗, ∗) R0 R
e(−)

�� (∗, ∗) R0
log(−)

��
R .

(8)

For all a ∈ R0, traversal of the left square recovers Eq. 1; for all b ∈ R, traversal
of the right square recovers Eq. 2 (cf. Eqs. 4 and 5).

Remark 6. Functions/functors log and exp are mutual inverses, hence isomor-
phisms. Every isomorphic functor and its inverse form an adjunction, but every
adjoint functor is not an isomorphism (see, e.g., next section). One can think of
adjoints as conceptual though not necessarily actual inverses.

3 Cognitive Dual-Routes and Adjoints

With the formal concept of adjunction at hand, we present two examples of how
adjunctions underlie cognitive dual-routes. Both examples involve categorical
products, which relate cognitive development across reasoning tasks [18].

3.1 Stimulus-Response

To examine a potential cost/benefit trade-off associated with categorical prod-
ucts, subjects were tested on a stimulus-response task involving a product of two
maps: a character-to-colour map char2colour : Char → Colour and a character-
to-shape map char2shape : Char → Shape, e.g., (G,P) �→ (red,♣), (P,K) �→
(blue,�) [16]. Subjects could learn each task as a single map of pairs (n2), or as
a pair of maps between singletons (2n). The former alternative does not afford
generalization, as each pair is interpreted as a unique, indivisible element; the
latter alternative affords generalization after inducing the component maps. The
map learned depended on set size: stimulus-response associations were learned
wholistically when the number of mappings was small, but componentially when
the number of mappings was large, and this difference depended on the order
of learning [16]. Here, we show that the categorical basis for this duality is the
adjoint relationship between diagonal and product functors.

Definition 5 (Diagonal, product functor). The diagonal functor Δ : C →
C × C;A �→ (A,A), f �→ (f, f) sends each object and morphism to their pairs.
The product functor Π : C×C → C; (A,B) �→ A×B, (f, g) �→ f ×g sends pairs
of objects and morphisms to their categorical products.
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Remark 7. The categorical product in Set is the Cartesian product.

Example 5 (Δ � Π). Diagonal and product functors form an adjoint pair. The
natural transformations are: 〈1, 1〉 : 1C

.→ Π ◦ Δ and (π1, π2) : Δ ◦ Π
.→ 1C×C.

In Set, π1 and π2 are projections, i.e. π1 : (a, b) �→ a, and π2 : (a, b) �→ b.
Instantiating F and G in diagram 7 as Δ and Π over Set yields

(A,B)

(f,g)

��

A × B

f×g

��

φ�� (a, b)
�

(f,g)

��

〈a, b〉
�

f×g

��

�φ��

(A′, B′)
ψ

�� A′ × B′ (f(a), g(b)) �
ψ

�� 〈f(a), g(b)〉 .

(9)

For the stimulus-response task, A and B (diagram 9) correspond to Char ,
and A′ and B′ to Colour and Shape. The dual-route realized by the adjunction
trades the cost of maintaining a pair of maps (left vertical arrows in each square)
with the benefit on only needing about 2n training examples for correct response
prediction on all n2 of the single product map (right vertical arrows).

3.2 A Measure of Intelligence: Raven Progressive Matrices

Raven Progressive Matrices (RPM) is an inference task. Subjects are presented
with a 3× 3 matrix of stimuli, whose bottom-right cell is empty, and an array
of choice stimuli from which they choose the stimulus that belongs in the empty
cell. Examples are shown in Fig. 1, with stimuli varying along one (number) or
two (number, shape) dimensions. Various factors influence the difficulty of RPM,
such as recognizing the relevant relations to infer the missing attributes for the
row/column [5], and the number of such variable relations [6,21]. Dimensionality
pertains to (unary/binary) products (see [18] for the relationship between dimen-
sionality, product arity and difficulty for the closely related matrix completion
task), hence the aforementioned diagonal-product adjunction, albeit for partic-
ular algebras instead of just sets. So, here, we focus on the missing attribute
aspect of RPM, as involving another instance of an adjunction.

Fig. 1. RPM-like examples with (a) one and (b) two dimensions of variable relations.
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The adjunction involves constructing a free object. Typically, the left adjoint
is a free functor that sends each set to the free algebraic structure (e.g., monoid,
group, etc.) on that set. The right adjoint is the associated forgetful functor
that sends each algebraic structure to its underlying set, forgetting the algebraic
operations. For example, the free monoid on the set (alphabet) A is the monoid
(A∗, ·, ε) consisting of the set of “words” A∗ (i.e. strings of 0 or more characters
a ∈ A) composed from the concatenation operation ·, where ε is the empty
(length zero) word. The universal construction is shown in diagram 10 (left),
where len is the monoid homomorphism returning word length, ι is the universal
(initial) morphism, and 1 is the constant function assigning 1 to every alphabetic
character. Initial morphism ι is an injection of generators a ∈ A; equivalently,
the completion of word set A∗ from alphabet A.

A
ι ��

1
���

��
��

��
� A∗

len

���
�
� (A∗, ·, ε)

len

���
�
�

{a, b} ι ��

f
������������

{a, b, c}
g

���
�
�

({a, b, c}, ·)
g

���
�
�

N (N,+, 0) G (G, �) .

(10)

For RPM, each row/column constitutes a semigroupoid (partial monoid with
identity unneeded). The missing feature (e.g., shape) is obtained from the initial
morphism as the completion of the two given features (circle, square) to obtain
the other feature (pentagon). The initial morphism is the completion of the
two-element set {a, b} to the three-element set {a, b, c}, diagram 10 (right). The
semigroupoid formalizes the notion of obtaining the missing element c from the
given elements a and b, i.e. a · b = c, where · is the semigroupoid operation.1

There is a speed accuracy trade-off with regard to products: considering a single
dimension is faster but less accurate, e.g., neither shape nor number uniquely
identifies the target (two pentagons) in Fig. 1(b), see also Discussion.

4 Discussion

We have looked at three examples of adjunctions as the basis of dual-routes and
cost/benefit trade-offs. Given the diversity of what one may regard as general
intellectual behaviour, claims of a general principle from so few examples may
seem premature. In what sense, then, are adjunctions justifiably a general prin-
ciple for general intelligence? In the remainder of this section, we step back from
the formal details to discuss some broader conceptual motivations.

The conceptual connections between general intelligence and adjunction are
the following. General intelligence is a product of cognition, cognitive systems are
physical systems, physical systems interact with their environment by exchange
of energy (information), and this interaction (adjunction) induces a dual-route.

1 Equivalently, the missing element is obtained from the underlying graph of the free
semicategory (category with identity arrows unneeded) on the graph consisting of
the connected edges a and b: the missing element is the edge c = ab.
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Cost/benefit can be regarded as a duality between system and environment: cost
is the expenditure of system resources on the environment, and benefit is uptake
of environmental resources by the system. Formally, we have regarded this dual
relation as adjunction, and choice depends on which route is more cost effective.

We presented three examples of how cost/benefit trade-off may arise from
adjunction. Directly adding/multiplying very small or large numbers effectively
has large cost when representational capacity is exceeded: enlarge is dual to
compress. Directly inferring a response to a novel stimulus effectively has an large
cost when the correct response is unknown: analyze is dual to synthesize. In the
case of RPM, this dual route derives the one-to-one correspondence assumption,
which often accompanies cognitive models. One route involves working with the
algebra’s operations (i.e. relations between elements); the other route forgets the
operations, which saves time in having to recompute results. We could say that
relation is dual to association. System and environment are considered broadly to
include (pairs of) subsystems within a larger system (e.g., attention and memory
within a cognitive system). From the standpoint of expertise, one can see the free-
forgetful adjunction as exploiting both domain-relevant relations and a reservoir
of learned associations.

One might wonder why we need adjunctions, rather than any pair of alter-
native routes. The claim is that dual-routes are also systematically, as opposed
to arbitrarily related. We have argued that underlying every instance of sys-
tematicity is a universal construction of some kind [17]. If, as claimed, that
dual-routes are systematically related, then adjunctions (which are another kind
of universal construction) provide the basis for a natural explanation. Category
theory affords general principles in the sense that constructions are typically
parametrized by some kind of object, e.g., a category. In this sense, adjoints are
a general principle: each of the three examples is based on the same construction
parametrized by a different pair of (adjoint) functors.

Although adjoints provide a systematic basis for dual routes, there remains
the question of assigning a cost/benefit to each route. As the experimental work
on the stimulus-response task suggested, choice of route depends on the task at
hand and prior learning [16]. One possibility is to incorporate information the-
oretic principles, such as a Kolmogorov complexity-based approach to universal
artificial intelligence [11]. See [22] for a category theory approach to Kolmogorov
complexity. In this way, the route selected is the one with the “shortest” program
able to produce the requisite response, which makes the collection of routes an
order. Ordered sets are categories with arrows as the order relations; universal
morphisms pertain to minimum elements. Though probabilistic models were not
considered here, categorical approaches to probability also exist (see, e.g., [2,9]).
Providing a categorical explanation for route selection, as well as applications
to other instances of dual-routes is a topic of further research.

Acknowledgements. I thank the reviewers for helpful comments. This work was
supported by a JSPS Grant-in-aid (16KT0025).
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examachine@gmail.com

Abstract. We discuss the frequent pattern mining problem in a general
setting. From an analysis of abstract representations, summarization and
frequent pattern mining, we arrive at a generalization of the problem.
Then, we show how the problem can be cast into the powerful language
of algorithmic information theory. We formulate and prove a universal
pruning theorem analogous to the well-known Downward Closure Lemma
in data mining. This result allows us to formulate a simple algorithm to
mine all frequent patterns given an appropriate compressor to recognize
patterns.

1 Introduction

The field of data mining is changing faster than we can define it. In recent years,
foundations of data mining have received considerable interest, helping remove
some of the ad-hoc considerations in the theory of data mining and expanding
the frontiers. The problem definitions of early data mining research have now
been analyzed meticulously, considering especially the performance and scala-
bility of methods, giving a performance-oriented character to most data mining
research. Qualitative work has usually focused on slight variations of the original
problems; staying within the framework of basic problems such as association
rule mining and sequence mining. However, the ever expanding computational
and storage capacity challenges us to devise new ways to look at the data mining
tasks, to discover more interesting/useful patterns. The subject of this paper is
a substantial revision of the frequency mining problem, this time mining for any
kind of a pattern instead of frequent item sets. We arrive at our formulation from
a philosophical analysis of the problem, conceiving what the problem might look
like in the most general setting. After reviewing some of the recent literature on
generalizing data mining problems, we examine the relation of abstraction to the
summarization task and in particular frequent pattern discovery. We then present
a novel formulation of the frequent pattern discovery problem using algorithmic
information theory, derived from our philosophical analysis. We show that our
formulation exhibits similar formal relations to the original frequent itemset min-
ing problem, and is arguably a good generalization of it. Then, we present the

The present paper was originally written and circulated in 2006, and its findings
inform our other AGI methods including Heuristic Algorithmic Memory [13].
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Micro-Synthetic algorithm which has the capability to detect any kind of
a pattern given our information theoretic definition of pattern occurrence. The
algorithm is similar to the Apriori algorithm in its logic of managing the task
in a small number of database scans. After discussing the pros and cons of our
approach, we outline future research directions.

2 Background and Related Work

We will skip the definitions and methods of traditional frequent pattern discovery
for considerations of space. For an introduction to the subject, see [3,9,18].
There has been some promising research in applying the generic methods of
Kolmogorov complexity to data mining. The authors report favorable results for
classification and deviation detection tasks in [7]. A mathematical theory of high
frequency patterns which uses granular computing was presented in [11]. We will
now take a closer look at algorithmic methods which have attracted a great deal
of interest.

2.1 Algorithmic Information Theory

Algorithmic information theory (AIT) gives an absolute characterization of com-
plexity for arbitrary bit strings [6]. A computer is a computable partial function
C(p, q) of self-delimiting program strings p and data q, where both input and
output datum are bitstrings in {0, 1}∗. Empty string is denoted with Λ and
the shortest program which computes s is denoted with s∗. U is a universal
computer that can simulate any other computer C with U(p′, q) = C(p, q) and
|p′| ≤ |p| + sim(C) where sim(C) is the length of simulation program for C. An
admissible universal computer is LISP with its eval function.

The algorithmic information content H(s) of a bit string s is the size of
minimal program s∗ which computes it. H(s/t) is the algorithmic information
content of s relative to t (conditional algorithmic entropy). Another definition
from AIT is mutual algorithmic information H(s : t) which is relevant to our
work. H(s : t) is the extent to which knowing s helps one to calculate t. The
probability P (s) of a bitstring s is the probability a program evaluates to s. Like-
wise, the conditional probability P (s/t) is the probability a program evaluates
to s given the minimal program t∗ for calculating t.

AIT gives an analogous formalism to information theory, and is deemed
more fundamental since Shannon information can be derived from algorithmic
(Kolmogorov) information. It is not possible to include all theorems here, but
some relevant consequences and results will be stated, mostly without proof.

H(s, t) is the joint algorithmic information of s and t where “,” denotes
concatenation of bitstrings (at any rate it is straightforward to convert between
any two pair encodings). Algorithmic information is asymptotically symmetric,
e.g. H(s, t) = H(t, s) + O(1) since in high level languages it is not problematic
to accomplish this sort of feat with a short constant program. The conditional
entropy of a string with itself is constant, similarly.
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Theorem I8 of [6] states that conditional entropy measures how easier it is
to compute two strings together than separately.

HC(t/s) = H(s, t) − H(s) + c (1)

Theorem I9 of [6] exposes the relationships between joint, mutual and con-
ditional information, as well as probability and joint probability. In particular,
algorithmic information is subadditive and conditional and mutual information
can be calculated from probabilities.

H(s, t) = H(s) + H(t/s) + O(1) (2a)
H(s : t) = H(s) + H(t) − H(s, t) + O(1) (2b)
H(s : t) = H(t : s) + O(1) (2c)

There are several other interesting theorems in AIT, however they fall beyond
the scope of the present work.

2.2 Algorithmic Distance Metrics for Classification

H(s) is uncomputable. However, it can be approximated with a reasonable com-
pression program from the above. The standard UNIX compression programs
gzip and bzip2 have been used exactly for this purpose by Cilibrasi et al. [16] for
clustering music files. In the predecessors to this paper, Vitanyi et al. [5,10,14]
have introduced a distance function based on algorithmic information theory
which can be used for domain unspecific classification and clustering algorithms.

In anotherwork,Kraskov et al. propose usingmutual information both in Shan-
non’s version and Kolmogorov’s version based on the same proof [1]. These studies
are relevant to our problem in that they show the versatility of Kolmogorov com-
plexity. We shall now try to answer if we can achieve similar feats in data mining.

3 Abstract Representations

Before proceeding with our formulation of frequent pattern discovery from
an information theoretic perspective, it is worthwhile giving a philosophical
overview of the task. The main objective of frequency mining is to summa-
rize a large data set. With a suitable threshold, we obtain a smaller data set
that is representative of the most significant patterns in the data. By means of
such an abstract representation, one then achieves more specific tasks such as
discovering association rules or clustering the data.

Recent formulations of association rule mining have characterized the task
as generalization of the data. This is a necessary condition for any success-
ful abstraction, else what use can we imagine of an abstract representation?
According to Marvin Minsky, another way of putting this would be the removal
of unnecessary details from the representation [12]. Statistically, “detail” could
be understood as infrequent patterns in data, which is precisely what frequent
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item set mining eliminates. Thus, a comparison of the common sense notion of
“abstraction” and the familiar data mining task of summarization is in order.

Let us conceive of an abstract sketch A. If this drawing is an abstraction
of a lively picture B, we expect to find the most “important” features of B in
A, perhaps only some of them. We would also expect to see the details, for
instance the texture, shading and colors of B to be removed in A (assuming that
it is quite abstract). In addition, we would not like to see anything in A that
does not correspond to a significant feature in B. Some caricatures, like those of
politicians drawn in a clean generic style, may set a good example of this kind
of sensory abstraction (Note however that some caricatures are highly stylized
and will set a bad example for abstraction). The facial features in a caricature
are highly informative; they convey much information about the facial identity
of the person at a small cost of representation. On the other hand, like any other
image, the abstract representation must be built from low-level components,
which are apparently not part of the original image. If these components, such
as the basic drawing patterns of the caricaturist, are kept simple enough, the
resulting work will look abstract.

If we are to relate the above characterization of abstraction to data min-
ing, the most problematic part might be the “important” term. After all, an
important feature for one task might be unimportant for another. Consider the
notes of a symphony. The pitch and duration information is considered signif-
icant because it helps us to quickly discern one piece of music from the other.
This is true for any given application domain. For recognition of music, it is
the pitch or the interval that matters. But for speech, it is the phoneme that
matters. The truly generic summarization algorithm might be able to discover
the concept of note or phoneme merely by looking at the data. If we take B to
be only one datum in a data set, we will find it more productive to think of
the importance of a feature determined by the frequency of its occurrence. This
approach suggested also in the beginning of the section does not completely
solve the problem, however. We also need universal and objective criteria for
determining if a feature approximately occurs in a given datum.

Let us now make our explanations more precise. We say that A is an abstract
representation of B if and only if:

1. A is substantially less complex than B.
2. Every important feature of A is similar to an important feature of B.

Note that condition 2 can also be stated as: “There is no important feature
in A that is not similar to an important feature in B”.

This definition is more relevant to abstraction than lossy compression. Espe-
cially, in lossy compression the only purpose is to reproduce the data set with
a low error rate (e.g. defined in terms of how well the reproduction is), it does
not necessarily take into account simplification of condition 1. Neither does it
address the “similar” predicate of the last condition. One might decide to exclude
color from the abstract representation of a house, but in traditional image com-
pression such choices would not be considered. Furthermore, lossy compression
does not take into account the generalization power of the representation over an
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ensemble of objects. However, in frequency mining, we can give a rigid meaning
to importance, e.g., statistically significant patterns.

If we now consider a frequent pattern discovery algorithm, we may say that
the set of frequent patterns satisfy conditions 1 and 2 to be an abstract repre-
sentation of the entire data set. A useful frequent pattern set is smaller than the
transaction set and each frequent pattern (all of them above the given support
can be said to be important) occurs in B as an important feature. In this sense,
the pattern set does not only model the current data set, but presumably also
future extensions of the data source. (We can note here that the non-traditional
statistics provided by the frequent itemset-like computation may have use for
predictive modelling in general).

3.1 Analysis of Common Objections

An objection may be raised at this point with respect to the traditional duality of
syntax vs. semantics. It may be suggested that abstraction crucially depends on
semantics which does not seem to be mentioned in our definition. It need not be,
since semantic relations, too, may be accounted for in the “similar” predicate. On
the other hand, it must be reminded that cryptic references should not in general
be considered as abstract in themselves. By abstraction, we refer to manifestly
useful, generalized, compact representations. Any cryptic representation may be
conceived of as an encrypted form of such an underlying “successful” abstract
representation.

3.2 Other Approaches for Pattern Interestingness

Equating frequency with importance may not be the only or satisfactory way
of defining interestingness of a pattern objectively. If we go back to the carica-
ture example, an approach which takes the locality and statistics of the image
might be able to produce abstract features which are closer to the common
sense description of interestingness. In particular, using wavelets may capture
the locality of many data types [4]. Compare also the approach of non-linear
PCA to image analysis (for the later task of classification, etc.) [15].

4 Algorithmic Information and Patterns

As noted by [11], a pattern may be conceived of the shortest program that gen-
erates a string. Otherwise, the concept of a pattern is something else entirely
in every machine learning and data mining paper. By using bit strings and
programs, we can give an objective, and universal definition of a pattern. Algo-
rithmic information theory can then be used to define pattern operators in a
way that is surprisingly close to cognitive processes. However, at this stage of
our research, we do not yet concern ourselves with the programs, our patterns
are simply bit strings for now.
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In particular, information distance and normalized information distance
which were briefly covered in Sect. 2 are universal measures of similarity that
are completely independent of the application domain, and some amazingly sim-
ple implementations have achieved success in diverse domains and learning tasks.
Our use of information theory is directly related to the concept of information
distance. We also use conditional entropy to quantify structural difference.

5 A General Model

We are now going to generalize the set-theoretic definition of the classical fre-
quent item set mining to cover a wider range of scientific measurement. Assume
that we have samples of sensor data from a “fixed” instrumentation device, for
instance image data from a radioastronomy telescope examining a certain region
of space. Another example could be seismograph data which transmits measure-
ments irregularly and for any number of samples.

Let transaction multi-set (set with repetition) T = {y | y ∈ {0, 1}∗} be the
unordered list of observations drawn from the same domain. Let also bitstrings
x, y ∈ {0, 1}∗. We will say that an abstract pattern x occurs approximately in
datum y ∈ T iff:

1. H(x) ≤ c1.H(y) (entropy reduction)
2. H(x/y) ≤ c2.H(y) (noise exclusion)

where 0 < c2 < c1 < 1. We denote “x occurs approximately in y” by x ≺ y.
Second condition is equivalent to stating that pattern x and datum y has mutual
information as expected, i.e., H(x : y) > 0. Since H(x : y) = H(x) − H(x/y) +
O(1), H(x/y) < H(x) − O(1), which is satisfied as c2.H(y) < H(x). Note that
many equations introduce a small additive constant in AIT, which must be
correctly handled by the algorithms, or non-patterns may be detected.

Having generalized the pattern occurrence operator in the set theoretic def-
inition from the subset operation to the information-theoretic conditions, the
problem definition is straightforward. Let the frequency function f(T, x) =
|{x ≺ y | y ∈ T}|. Our objective is the discovery of frequent patterns in a trans-
action set with a frequency of ε and more. The set of all frequent patterns is
F(T, ε) = {x ∈ {0, 1}∗ | f(T, x) ≥ ε}, which is finite due to the entropy reduc-
tion condition. (Note that we consider the classical definition of Kolmogorov
complexity as mentioned in Sect. 2). However, the size of F can be quite large,
as in the frequent item set mining problem.

The downward closure lemma which states that the subsets of a frequent
pattern are also frequent makes the Apriori algorithm possible in the context
of frequent item set mining [2]. There is an analogue of the contrapositive of this
lemma for our general formulation. Note that to simplify matters we assume a
self-delimiting program encoding such as LISP. The analysis without the self-
delimiting condition would introduce an additive logarithmic term which we
would address separately.
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Theorem 1. If x /∈ F(T, ε) then xy /∈ F(T, ε). Less formally, any extension of
an infrequent pattern is also infrequent.

Proof. If x /∈ F(T, ε) then, f(T, x) < ε. Let z be any datum in T for which it is
not the case that x ≺ z. Then, at least one of the pattern occurrence conditions
does not hold. We can now analyze whether an extended xy ≺ z.

– Suppose that the entropy reduction condition does not hold: H(x) > c1.H(z).
Then, H(x, y) > c1.H(z) since H(x, y) > H(x).

– Alternatively, suppose that the noise exclusion condition does not hold:
H(x/z) > c2.H(z). Then, it doesn’t hold for x, y either. H((x, y)/z) =
H(y/(x, z)) + H(x/z) + O(1) by subadditivity of algorithmic information.
Since H(y/(x, z)) > 0 (since it has to be at least O(1)), then we find that
H((x, y)/z) > c2.H(z).

Therefore, it is not the case that xy ≺ z. Then, f(T, xy) ≤ f(T, x) < ε which
entails that xy /∈ F(T, ε).

6 Abstract Pattern Synthesis

By Theorem 1, we are inspired to write an algorithm which starts with a number
of primitive candidate patterns and searches the pattern space in breadth first
fashion like the Apriori algorithm. First, let us look at the calculation of pattern
occurrence conditions.

6.1 Approximate Calculations

Algorithmic information content is uncomputable using a universal computer.
Neither of the conditions we give are recursively enumerable. Fortunately, that
should not trouble us too much, for we can use the methods mentioned in
Sect. 2.2 to approximate these uncomputable values. However, it is arguable
whether using a dictionary-based simple compressor is sufficient for the range of
data mining applications we are interested in. At the present, the only obvious
advantage of using a traditional compressor would seem to be efficiency.

We again approximate the conditional entropy using subadditivity of infor-
mation H(t/s) ≈ H(s, t) − H(s). With a compressor C(·) such as gzip, the
conditions become:

1. C(x) ≤ c1.C(y) (entropy reduction)
2. C(x, y) ≤ (1 + c2).C(y) (noise exclusion)

6.2 BFS in Pattern Space

We will adapt a generate and test strategy similar to Apriori for our first algo-
rithm, applying the theory introduced in the paper. The pruning logic is quite
similar, we do not extend infrequent patterns by Theorem 1. We will keep the



74 E. Özkural

algorithm as close as possible to Apriori to show the relation, although there
could be many efficiency improvements following various frequent itemset min-
ing algorithms. Micro-Synthetic extends the pattern length by n bits at each
iteration of the algorithm. Initially, a fast algorithm finds all frequent patterns
up to n bits (akin to discovery of large items). The Generate procedure extends
the frequent patterns of the previous level up to n bits. Then, a database pass
is performed and the pattern occurrence conditions are checked for each candi-
date pattern and transaction element. Then, the algorithm iterates, generating
candidates from the last level of frequent patterns discovered, until we reach a
level where there are no frequent patterns, exactly as in Apriori.

Algorithm 1. Micro-Synthetic(T, ε, c1, c2)
1: F0 ← {|x| ≤ n|x ∈ {0, 1}∗ ∧ f(T, x) >= ε}
2: k ← 1
3: while Fk−1 �= ∅ do
4: Ck ← Generate(Fk−1)
5: for all y ∈ T do
6: for all x ∈ C do
7: if C(x) ≤ c1.C(y) ∧ C(x, y) ≤ (1 + c2).C(y) then
8: count[x] ← count[x] + 1
9: end if

10: end for
11: end for
12: Fk ← {x ∈ Ck| count[x] ≥ ε}
13: k ← k + 1
14: end while
15: return

⋃
k Fk

7 Discussion

The algorithm is called Micro-Synthetic, because direct search in pattern
space has obvious limitations. On the other hand, that is also what all frequent
pattern discovery algorithms do, therefore it may not be at a greater disadvan-
tage. Like in the basic frequent itemset mining algorithms, the support threshold
must be given. However, we also require two extra parameters to delimit the
pattern occurence. Unfortunately, our formulation falls short of the “parameter-
free” ideal [7]. At the moment, we can give no guidelines for setting c1 and c2
except that they must be small enough. Especially c2, which controls vague-
ness in our model. The basic frequent item set mining problem has no place
for vagueness, the pattern relation is strict. On the other hand, our formulation
places no bounds on the kind of data/pattern representation, and allows for
vague representations, which are useful for a system that can abstract.

An implementation effort is ongoing. Micro-Synthetic has been imple-
mented and tested on small datasets. We have tried a variety of compres-
sors like gzip, bzip2 and PAQ8f for the information distance approximation.



Abstract Representations and Generalized Frequent Pattern Discovery 75

While we have managed to find some interesting character patterns this way
(such as finding an abstract pattern of 00000001111111 from example strings of
different length which contain a sequence of 0’s and 1’s in them, with errors), we
have observed that the suboptimality of the compressors (relative to the partic-
ular decompressor) causes too many random patterns to be found, which cannot
be attenuated by the c2 parameter. We have been thus working on a simple but
optimal compressor that will fit out implementation better. After we get some
results using the Micro-Synthetic on toy problems, we are planning to devise
an algorithm with many optimizations to deal with more realistic data sets.
We think that an implementation could demonstrate results on both traditional
tabular datasets, and novel kinds of data due to the generality of data schema,
depending on the availability of a suitable compressor.

An interesting merit of the Theorem 1 is that it might offer a partial but
fundamental theoretical explanation of the success of hierarchical models typi-
cally used in deep learning, the compositionality of frequent patterns we exposed
likely applies to any pattern recognition system.

Our approach has been criticized as having been superseded by the theory
of Algorithmic Statistics [8], however the present paper only offers a generalized
version of frequent pattern mining based on AIT, which was not addressed in that
work, but perhaps may be reformulated in that framework. The abstract pattern
definition was completely new at the time of the writing. The main theorem was
also not seen elsewhere before we proposed it in 2006. A more directly relevant
formulation of data analysis is Solomonoff’s set induction model [17].

8 Conclusions and Future Work

We have made a high-level analysis of the frequent pattern discovery problem, by
observing relations between the common sense notion of “abstraction”, and the
summarization task. We have determined objective criteria for a pattern to be
an abstract representation. These criteria were interpreted as information theo-
retic conditions of reduced entropy and noise exclusion for a problem definition
where patterns and data are any bitstring. We have replaced the pattern occurence
operation in frequency mining with the conditions we have proposed. Thus, we
have achieved a generalized version of the frequent pattern discovery problem.
Thereafter, we have demonstrated that our conditions allow for pruning which is
essential for the search in the vast but bounded pattern space. We have then used
commonly employed methods to apply Kolmogorov complexity in real-world to
design an algorithm suitable for the discovery task. Finally, we have introduced an
Apriori like algorithm which enumerates all frequent patterns in our formulation.

Our research requires yet a lot of work to be done, both in the theory and
experimental studies. First, there are more theoretical properties to be clar-
ified, and alternative search methods should be analyzed. Especially, pattern
space clustering methods and efficient representations may be sought. We have
given an algorithm only for all frequent pattern discovery, the analogues of
closed/maximal mining may be investigated. Second, a synthetic data set gener-
ator should be written, which highlights the virtues of our model and if possible
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real-world data should be tried out. Third, the effects of different kinds of com-
pressors must be analyzed.

The present algorithm is mostly a theoretical proof-of-concept, we expect
a universal data mining solution to achieve a lot more and proceed search in
program space instead of pattern space, although practical pattern space search
may also be desirable. We shall investigate both approaches further.
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Abstract. Since compressing data incrementally by a non-branching
hierarchy has resulted in substantial efficiency gains for performing
induction in previous work, we now explore branching hierarchical com-
pression as a means for solving induction problems for generally intelli-
gent systems. Even though assuming the compositionality of data gener-
ation and the locality of information may result in a loss of the univer-
sality of induction, it has still the potential to be general in the sense of
reflecting the inherent structure of real world data imposed by the laws
of physics. We derive a proof that branching compression hierarchies
(BCHs) create power law functions of mutual algorithmic information
between two strings as a function of their distance – a ubiquitous char-
acteristic of natural data, which opens the possibility of efficient natural
data compression by BCHs. Further, we show that such hierarchies guar-
antee the existence of short features in the data which in turn increases
the efficiency of induction even more.

Keywords: Hierarchical compression · Incremental compression ·
Algorithmic complexity · Universal induction · Power laws · Scale
free structure

1 Introduction

The question how humans succeed in deriving theories and explanations from
sensory data – the problem of induction – has long remained a mystery of human
cognition and philosophy of science. Because it is so central to human thinking, it
is essential to solve this problem for any attempt to build a generally intelligent
system. Fortunately, Solomonoff’s theory of universal induction [1,2] presents a
formidable mathematical solution to this thorny problem. However, it is incom-
putable and tractable approximations have remained elusive.

Nevertheless, for practical purposes, it seems sufficiently satisfactory if we
solve the problem of induction “merely” for data presented to us by the actual
physical world that we inhabit. For this purpose it is instructive to ask, why
for example are deep learning classifiers so successful although it can be shown
[3] that classifying arbitrary binary images with n pixels requires at least 2n

parameters in the neural network? And why is it hard for human subjects to
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find an algorithm that prints the digits of π given a sequence of its digits even
though the algorithm is fairly short compared to other gigabyte heavy software
programs written by humans? The world seems to present us with a small subset
of all possible data – a circumstance that can be exploited in order to increase
the efficiency of induction algorithms.

Lin and Tegmark [3] argue that properties like symmetry, locality and com-
positionality of real world data are key restrictions for that purpose and show by
“no-flattening theorems” that deep networks achieve their efficiency by exploit-
ing the compositionality of data. Further, as they argue, the polynomial structure
of the Hamiltonians in the fundamental laws of physics and the compositional
way that those laws are expressed when they generate real world data seems to
support the generality of this observation.

Indeed, as proven in our previous work [4], exploiting the compositionality of
data leads to an efficient incremental way of performing induction. In short1, if
a bit string of data x is representable by a composition of computable functions
(Turing machines), x = f1 ◦ · · · ◦ fm(ε), then these so-called features fi can be
found in a greedy fashion (without backtracking), if we always look for the short-
est ones while compressing at least a little (which excludes identity functions).
The algorithmic entropy K(x) can then be obtained by

K(x) =
m∑

i=1

l(fi) + O(1) (1.1)

where all features are pairwise algorithmically orthogonal: I(fi : fj) = 0 for
all i �= j. The features can be found by searching through pairs of programs
(f, f ′) such that f(f ′(x)) = x and l(f) + l(f ′(x)) < l(x) where the length of
the shortest descriptive map f ′ is found to obey a fairly low bound l(f ′) ≤
log K(x) + 2 log log K(x) + O(1) as will be shown in Sect. 5. In spite of this
success, the length of the shortest features is not bounded in any way, leaving
us with limited theoretical guarantees for the bound on the time complexity of
search. Further assumptions about real world data seem necessary in order to
obtain such a bound, which would be very helpful in order to boost the efficiency
of induction.

A remarkable property of our world seems to be that it has structure on all
scales. No matter how much we zoom in toward the microscopic world or zoom
out to the macroscopic world, we never seem to arrive at emptiness or a struc-
tureless distribution of matter. Typically, this scale invariance can be expressed
by power law correlation functions which are found to be ubiquitous in nature.
From avalanche distributions, noise spectra, letter sequences in natural language,
earthquake and solar flare frequency distributions, species extinction rates, traf-
fic jams, natural images and many more, power law correlation functions are
found virtually everywhere in natural data [5–7]. Further, we seem to possess a
theoretical justification of the multitude of power laws through the process of
self-organized criticality [5].

1 For notation and definitions please consult the Preliminaries section below.
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In this paper, we show that by extending the present theory of non-branching
incremental compression to a branching compression hierarchy (BCH), the
mutual algorithmic information between two substrings decays like a power law
function of the distance between the substrings. We proceed to show that this
circumstance leads to a bound on the feature lengths, which increases the effi-
ciency of incremental compression.

2 Preliminaries

Consider a universal prefix Turing machine U . Strings are defined on a finite
alphabet A = {0, 1} with ε denoting the empty string. Logarithms are taken on
the basis 2. A∗ denotes the set of finite strings made up of the elements of A. Since
there is a one-to-one map A∗ ↔ N of finite strings on natural numbers, strings
and natural numbers are used interchangeably. For example, the length l(n) of an
integer n denotes the number of symbols of the string that it corresponds to. The
map 〈·, ·〉 denotes a one-to-one map of two strings on natural numbers: A∗×A∗ ↔
N . The corresponding map for more than two variables is defined recursively:
〈x, y, z〉 ≡ 〈〈x, y〉 , z〉. In particular, 〈z, ε〉 = z. Since all Turing machines can
be enumerated, the universal machine U operates on a number/string 〈n, p〉 by
executing p on the Turing machine Tn: U (〈n, p〉) = Tn(p). Similarly, a string
y is applied to another string x by applying the yth Turing machine: y(x) ≡
Ty(x) = U (〈y, x〉). When we speak about the length of a function/feature f , we
mean the length of the binary representation of the index y of the respective
Turing machine Ty = f in the enumeration. The prefix complexity K(x|y) of x
given y is defined by K(x|y) ≡ min{l(z) : U (〈z, y〉) = x} and K(x) ≡ K(x|ε).
The complexity of several variables is defined as K(x, y) ≡ K (〈x, y〉). The “+”
sign above equality or inequality signs denotes that the relation is valid up to a
constant that is independent of the involved variables. The information contained
in x about y is defined as I(x : y) ≡ K(y) − K(y|x). However, sometimes we
will refer to it as mutual information for the sake of brevity although it is not
symmetric. When a string is a concatenation of substrings, x = x1x2 · · · xn, by
distance between substring xi and xj we mean the index distance dij ≡ |i − j|.

3 Branching Compression Hierarchies Create Power
Laws

Consider a binary string x that can be computed by a hierarchy of functions,
Fig. 1. In this section we show that if the functions are the shortest features of
their respective substrings, then the information of a substring xi about another
substring xj of x will be bounded by power law function of their distance:

I(xi : xj) � d(xi, xj)−const

The main idea is the following. Assume that a fraction of the information
in a string is lost as we go along an edge in a graph (information dissipation),
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Fig. 1. A branching compression hierarchy (BCH). The path from the root to some leaf
is displayed by solid arrows. A bit string x (whole upper chain, only the part computed
from q2 is shown) is computed by concatenating substrings, one of which is shown as q0.
Those substrings are computed by their shortest features fl and respective parameters,
ql−1 = fl(pl), that are found along the path. Since only a fraction αl = K(pl)/K(ql)
of the information in ql remains at each level l, the information contained in string ql
about q0 decays exponentially with its height l. Note that each arrow (both dashed and
solid) corresponds to a different feature, each q1 in the first level computes different
substrings of x.

since only a part of the string serves as input to the function at the edge. Then the
information of a string about another will decrease exponentially with the length
of the path between the strings. If the mutual information of two leaf strings
is mediated only via the earliest common ancestor in a tree, then it will drop
exponentially with the height of that ancestor. Further, the distance between
two leaves increases exponentially with the height of their common ancestor.
Inserting two exponential functions into each other leads to the power law. The
idea that branching hierarchies create power laws is not new [7], but this is to
the best of our knowledge the first time that it is shown in all generality for
algorithmic information and arbitrary data.

Definition 1 (Branching compression hierarchy). Let T be a perfect tree
with a varying branching factor, F = {fi} a set of computable functions for each
edge in the tree and qh a binary string at the root node. For any path from the
root to a leaf, index the functions as fh, . . . , f1 and compute fl(pl) = ql−1 for
each l = h, . . . , 1, where pl is some substring of ql. Let further fl be the shortest
feature and pl its respective parameters of ql−1 (see [4] for definitions). Then,
the triple H = {T, F, qh} is called a branching compression hierarchy. The
fraction

αl ≡ K(pl)
K(ql)

(3.1)

shall be called information dissipation rate.
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An Example. Consider a binary image of a triangle. In the first compression level
the features could encode lines while the parameters encode the coordinates of
the line ends. Then f1 = line and p1 = x1y1x2y2 encode one of the sides, other
features f

(2)
1 and f

(3)
1 at the same level encode the other sides with their respec-

tive parameters p
(2)
1 = x2y2x3y3 and p

(3)
1 = x3y3x1y1. All those parameters are

concatenated to q1 = p1p
(2)
1 p

(3)
1 = x1y1x2y2x2y2x3y3x3y3x1y1. This string is

further compressed by f2 = copy2 which could be a function that copies consec-
utive entries, such that q1 = f2(p2), where p2 = x1y1x2y2x3y3. This concludes
a two-level branching hierarchical compression of a triangle leaving us with the
coordinates of the corners as a concise representation of a triangle.

Lemma 1 (Exponential information decay). Let H be a BCH according to
the above definition. We assume:

1. The information content in the root node qh is uniformly distributed through
ql for each l:

K(pl|qh)
K(ql|qh)

=
K(pl)
K(ql)

= αl (3.2)

2. The root qh does not contain any information about any feature below in the
path I(qh : fl) = 0 for all l ≤ h.

Then the information content in qh about a leaf q0 is given by

I(qh : q0)
+= K(qh) ·

h∏

l=1

αl (3.3)

Of course, there is no guarantee that assumption (1) holds, but it can be
expected to hold on average, since after all, the information in qh has to go
somewhere, since x is ultimately computed from it. If it doesn’t go into pl then
into some pl on another path to x. Assumption (2) is discussed below.

Since 0 < αl ≤ 1, Eq. (3.3) constitutes an exponential decay of information
in a string qh about a leaf q0 as its height h increases. In the special case of
α ≡ αl = const the decay I(qh : q0)

+= K(qh) · αh becomes apparent. What can
we say about the information two arbitrary substrings y and z about each other?

Lemma 2 (Information of strings about each other). Let two strings y
and z be conditionally independent given string a:

K(y, z|a) = K(y|a) + K(z|a) (3.4)

Then the information of y about z is bounded by the information of a about z:

I(y : z)
+≤ I(a : z) (3.5)

It should be noted that the assumptions of conditional independence in
Lemma 2 and assumption (2) in Lemma1 merely reflect that the only link
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between the substrings is the common ancestor. Otherwise, two arbitrary sub-
strings of an arbitrary string certainly can carry more information about each
other.

We can now state our main theorem.

Theorem 1 (Power law information decay in BCHs). Let H be a BCH
with the assumptions of Lemma 1 and each pair of leaves conditionally indepen-
dent given their common ancestor qh at height h. Let further dij ≡ |i − j| be the
index distance between to substrings xi and xj. Then the information contained
in xi about xj is bounded by a power law function of the distance:

I(xi : xj)
+
< K(qh) · d

−〈ν〉
ij (3.6)

where νl ≡ logb̄(1/αl) > 0, b̄ the average branching factor of H and αl the
information dissipation rate at level l.

Indeed we observe that the algorithmic information carried by one substring
about another decays according to a power law function of their distance. This
circumstance makes information storage local in the sense that mutual infor-
mation between substrings exists mostly for nearby substrings. In the following
section we will show that the locality of information entails the existence of short
features in the whole data string.

4 Information Locality Implies Short Features

Since nearby substrings contain most information about each other in a BCH,
we now prove that this implies compressibility of the concatenated string, which
in turn implies the existence of a feature of the whole string.

Lemma 3 (Information of a string about another implies compressibil-
ity). Let x and y be two strings with x carrying information about y: I(x : y) > 0.

Then the composite string is compressible: K(xy)
+
< l(xy).

Theorem 2 (Compressibility of substring implies existence of feature).
Let x be a string partitioned into y and p. Let further q be the shortest program
with U(q) = y and λ the program that computes y from q and specifies where to
insert it into x: λ(q, p) = x. If y is l(λ)-compressible, K(y)+ l(λ) < l(y), then x
is compressible as well and there is a feature f and a corresponding descriptive
map f ′ of x such that

f(f ′(x)) = x

and l(f) < l(y).

The gist of the results in this and the previous section can be summarized
as follows. A BCH computes several strings from a single one at each level of
the hierarchy which creates mutual information between the substrings at the
leaves. In this section we have shown that it implies the existence of a feature of
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the whole string (concatenation of all leaves) such that the length of the feature
is bounded by the length of just two neighboring leaves. Since the length of the
leaves is generally much smaller than the length of the whole string, we have
effectively derived a low bound on feature length. In other words, if our data
breaks down into many small pieces, the size of the contained regularities is
limited by the length of those little pieces.

5 A Tighter Bound on the Length of the Shortest
Descriptive Map

This section is independent from the previous ones but aims at the same goal:
the reduction of the time complexity of compression, which is directly tied to
the lengths of features and descriptive maps. While in the previous sections we
were occupied with the length of the features, this section goes back to deriving
a tighter bound on descriptive maps than in our previous work [4, Theorem 6].

There, we have derived the bound l(f ′)
+≤ 2 log K(x) + 4 log log K(x) for the

shortest descriptive map f ′. Here, we managed to get rid of the factor two.

Theorem 3 (Bound on the length of descriptive map). Let f ′ be the
shortest descriptive map of a finite string x. Then the following bound holds on
l(f ′):

l(f ′)
+≤ log K(x) + 2 log log K(x) (5.1)

and the number of high values of l(f ′) is low in the sense

P{x : l(f ′) ≥ s} ≤ s32−s (5.2)

for any s and for all computable and semicomputable distributions P .

Note that this result is valid not only for BCHs, but for incremental compression
in general.

6 Discussion

We have shown that data generated by a hierarchy of functions create power
law distributed algorithmic information between two pieces of the data. Since
correlation is a simple form of algorithmic information, the ubiquity of power
law correlation functions in nature constitutes evidence that natural data could
successfully be represented by hierarchies.

We have further shown that such structures imply that the data generated
like this possesses simple features, i.e. that structure can be found at the smallest
scale. This is crucial for the efficiency of induction algorithms since it allows us
to find features whose description is bounded by the size of that scale. In other
words, we can look at small pieces of the available data where we can find
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structure, derive a feature from that and continue to incrementally compress the
data greedily.

One may wonder, if a BCH has troubles solving tasks like the induction of
a program for π given a sequence of its digits, why is it that human program-
mers don’t have particular difficulties in specifying such a program? However,
such a program is never induced from the digits of π, but rather deduced from
background knowledge about geometry and other, i.e. from other sources of
information. Hence, such a task would be an unfair test for both algorithmic
and human induction capabilities.

In future work, it would be interesting to derive an actual compression algo-
rithm for hierarchically structured data and compare its time complexity to
non-branching incremental compression and to non-incremental Levin search.
Even more interesting would be to try to implement such an algorithm which is
current work in progress.

A Proofs

Proof (Lemma 1). Recall that fl and pl are the shortest feature and parameter
of ql−1 and therefore independent, K(ql−1)

+= l(fl) + K(pl), as was proven in [4,
Corrolary 2]. From Eq. (3.1) we obtain

K(q0)
+= l(f1) + K(p1)

+= l(f1) + α1K(q1)
+= l(f1) + α1 (l(f2) + α2K(q2))

+= K(qh)
h∏

l=1

αl +
h∑

m=1

l(fm)
m−1∏

l=1

αl

(A.1)
Since fl and pl cannot be made dependent by conditioning, we get K(ql−1|qh) +=
K(fl|qh) + K(pl|qh). Due to assumption (2), the first term becomes K(fl|qh) =
K(fl)

+= l(fl). Therefore, the conditional version can be computed analogously
to Eq. (A.1):

K(q0|qh) += K(qh|qh)
h∏

l=1

αl +
h∑

m=1

l(fm)
m−1∏

l=1

αl (A.2)

However, since K(qh|qh) = O(1) we obtain for the information in qh about q0:

I(qh : q0) ≡ K(q0) − K(q0|qh) += K(qh)
h∏

l=1

αl 
�
Proof (Lemma 2). We can in general expand [8, Theorem 3.9.1, p. 247]

K(y, z|a) += K(y|a) + K(z|y,K(y), a)
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and insert it into the independence relation Eq. 3.4. This leads to

K(z|a) += K(z|y,K(y), a)
+≤ K(z|y)

where the last inequality follows from the fact that conditioning can only reduce
the description length of z [8, Theorem 2.1.2, p. 108]. Subtracting this inequality

from K(z) yields K(z) − K(z|a)
+≥ K(z) − K(z|y). Now we insert the definition

of mutual information I(a : z) ≡ K(z) − K(z|a) on both sides from which the
claim follows. 
�
Proof (Theorem 1). First, from the result in Eq. (3.3) and Lemma 2 it follows that
I(xi : xj) decays exponentially with the height h of their common ancestor qh

I(xi : xj)
+≤ K(qh) ·

h∏

l=1

αl (A.3)

under our assumptions. Consider that the maximal index distance between
leaves in a perfect tree increases exponentially with the height h of the common
ancestor:

dij <
h∏

l=1

b̂l (A.4)

where b̂l is the average branching factor at level l of the tree. By defining the total

average branching factor b̄ ≡
(∏h

l=1 b̂l

)1/h

> d
1/h
ij , we can solve for h > logb̄(dij)

and compute:

logb̄

(
h∏

l=1

αl

)
<

logb̄(dij)∑

l=1

logb̄(αl) = −
logb̄(dij)∑

l=1

νl = −〈v〉 logb̄(dij) = logb̄

(
d

−〈ν〉
ij

)

where νl ≡ logb̄(1/αl) > 0. Inserting this into Eq.A.3 concludes the proof. 
�
Proof (Lemma 3). Consider the general expansion [8, Theorem 3.9.1, p. 247]

K(xy) += K(x) + K(y|x,K(x))

I is defined by I(x : y) ≡ K(y) − K(y|x) and is larger than zero by assumption.

Since in general K(y|x,K(x))
+≤ K(y|x) we obtain

K(xy) += K(x) + K(y) + K(y|x,K(x)) − K(y|x) − I(x : y)
+
< K(x) + K(y)

+≤ l(x) + l(y) = l(xy) 
�
Proof (Theorem 2). Since y is l(λ)-compressible by q, λ(q, p) = U (〈λ, q, p〉) = x
and l(x) = l(y) + l(p), x is compressible as well:

K(x) ≤ l(λ) + l(q) + l(p) = l(λ) + K(y) + l(x) − l(y) < l(x)



86 A. Franz

We define f ≡ 〈λ, q〉 and obtain U(〈f, p〉) = f(p) = x – the main feature
equation. We can define the descriptive map f ′ by a function that removes y
from x to obtain the remainder p: f ′(x) = p. It suffices if it does so for that
particular x and y, not in general.

From fs definition, we get l(f) = l(λ) + l(q) = l(λ) + K(y) < l(y) since y is
l(λ)-compressible by assumption. It follows that the (f, p)-pair compresses x at
least to some extent, l(f) + l(p) < l(y) + l(p) = l(x). Therefore, f is indeed a
feature of x and its length is bounded by l(y). 
�

Proof (Theorem 3). In general, the relation K(p)
+≤ K(p|z)+K(z) is valid, since

if p is computable by a detour via z, its shortest program without the detour
can only be shorter. Setting z = K(x) and conditioning on x leads to

K(p|x)
+≤ K(p|K(x), x) + K(K(x)|x) (A.5)

The conditioning operation is not valid in general, however the detour argu-
ment is still valid in this case. Since K(p|x) = l(f ′) [4, Lemma 1(2)] and
K(p|K(x), x) = O(1) [4, Theorem 3(3)], we get

l(f ′)
+≤ K(K(x)|x) (A.6)

We now insert the “complexity of the complexity” expression in [8, Lemma 3.9.2,

Eq. (3.18)] K(K(x)|x)
+≤ log K(x) + 2 log log K(x) and the first claim follows.

The second claim is a property of K(K(x)|x) [8, Eq. (3.13)] and therefore also
holds for l(f ′). 
�
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Abstract. First-Order Logic (FOL) is widely regarded as the founda-
tion of knowledge representation. Nevertheless, in this paper, we argue
that FOL has several critical issues for this purpose. Instead, we propose
an alternative called assertional logic, in which all syntactic objects are
categorized as set theoretic constructs including individuals, concepts
and operators, and all kinds of knowledge are formalized by equality
assertions. We first present a primitive form of assertional logic that
uses minimal assumed knowledge and constructs. Then, we show how to
extend it by definitions, which are special kinds of knowledge, i.e., asser-
tions. We argue that assertional logic, although simpler, is more expres-
sive and extensible than FOL. As a case study, we show how assertional
logic can be used to unify logic and probability.

1 Introduction

Classical First-Order Logic (FOL) is widely regarded as the foundation of sym-
bolic AI. FOL plays a central role in the field of Knowledge Representation and
Reasoning (KR). Many of its fragments (such as propositional logic, modal and
epistemic logic, description logics), extensions (such as second-order logic, situ-
ation calculus and first-order probabilistic logic) and variants (such as Datalog
and first-order answer set programming) have been extensively studied in the
literature [2,8].

Nevertheless, AI researchers have pointed out several issues regarding using
FOL for the purpose of knowledge representation and reasoning, mostly from
the reasoning point of view. For instance, FOL is computationally very diffi-
cult. Reasoning about FOL is a well-known undecidable problem. Also, FOL
is monotonic in the sense that adding new knowledge into a first-order knowl-
edge base will always result in more consequences. However, human reasoning is
sometimes nonmonotonic.

In this paper, we argue that FOL also has some critical disadvantages merely
from the knowledge representation point of view. First of all, although FOL is
considered natural for well-trained logicians, it is not simple and flexible enough
for knowledge engineers with less training. One possible reason is the distinction
and hierarchy between term level (including constants, variables and terms),
predicate level (including predicates and functions) and formula level (including
c© Springer International Publishing AG 2017
T. Everitt et al. (Eds.): AGI 2017, LNAI 10414, pp. 87–97, 2017.
DOI: 10.1007/978-3-319-63703-7 9
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atoms and compound formulas/sentences). From my own experience as a teacher
in this subject, although strongly emphasized in the classes, many students failed
to understand why a predicate or an atom cannot be in the scope of a function.
Another reason is the notion of free occurrences of variables. For instance, it is
not easily understandable for many students why the GEN inference rule has to
enforce the variable occurrence restrictions. Last but not least, arbitrary nesting
is another issue. Again, although natural from a mathematical point of view, a
nested formula, e.g., (x∨¬(y∧z))∧(¬y∨¬x) is hard to be understood and used.

Secondly, FOL has limitations in terms of expressive power. Because of the
hierarchy from the term level to the formula level, FOL cannot quantify over
predicates/functions. This can be addressed by extending FOL into high-order
logic. Nevertheless, high-order logic still cannot quantify over formulas. As a
consequence, FOL and high-order logic are not able to represent an axiom or
an inference rule in logic, such as Modus Ponens. As an example, in automated
solving mathematical problems, we often use proof by induction. To represent
this, we need to state that for some statement P with a number parameter, if
that P holds for all numbers less than k implies that P holds for the number k as
well, then P holds for all natural numbers. Here, P is a statement at a formula
level, possibly with complex sub-statements within itself. Hence, in order to
represent proof by induction, we need to quantify over formulas.

Thirdly, FOL itself can hardly formalize some important notions including
probability, actions, time etc., which are needed in a wide range of AI appli-
cations. For this purpose, AI researchers have made significant progresses on
extending FOL with these notions separately, such as first-order probabilistic
logic [1,7], situation calculus [9,10], CTL [3] etc. Each is a challenging task in
the sense that it has to completely re-define the syntax as well as the seman-
tics. However, combing these notions together, even several of them, seems an
extremely difficult task. Moreover, there are many more building blocks to be
incorporated. For instance, consider task planning for home service robots. It
is necessary to represent and reason about actions, probability, time and more
building blocks such as preferences altogether at the same time.

To address these issues, we propose assertional logic, in which all syntactic
objects are categorized as set theoretic constructs including individuals, concepts
and operators, and all kinds of knowledge are uniformly formalized by equality
assertions of the form a = b, where a and b are either atomic individuals or com-
pound individuals. Semantically, individuals, concepts and operators are inter-
preted as elements, sets and functions respectively in set theory and knowledge
of the form a = b means that the two individuals a and b are referring to the
same element.

We first present the primitive form of assertional logic that uses minimal
assumed knowledge and primitive constructs. Then, we show how to extend it
with more building blocks by definitions, which are special kinds of knowledge,
i.e., assertions used to define new individuals, concepts and operators. Once these
new syntactic objects are defined, they can be used as a basis to define more. We
show that assertional logic, although simpler, is more expressive and extensible
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than FOL. As a case study, we show how to extend assertional logic for unifying
logic and probability. Note that our intention is not to reinvent the wheel of
these building blocks but to borrow existing excellent work on formalizing these
building blocks separately and to assemble them within one framework (i.e.,
assertional logic) so that they can live happily ever after.

2 Assertional Logic: The Primitive Form

One cannot build something from nothing. Hence, in order to establish asser-
tional logic, we need some basic knowledge. Of course, for the purpose of expla-
nation, we need an informal meta language whose syntax and semantics are
pre-assumed. As usual, we use a natural language such as English. Nevertheless,
this meta language is used merely for explanation and it should not affect the
syntax as well as the semantics of anything defined formally.

Only a meta level explanation language is not enough. Other than this, we
also need some core objects and knowledge, whose syntax and semantics are
pre-assumed as well. These are called prior objects and prior knowledge. For
instance, when defining real numbers, we need some prior knowledge about nat-
ural numbers; when defining probability, we need some prior knowledge about
real numbers.

In assertional logic, we always treat the equality symbol “=” as a prior
object. There are some prior knowledge associated with the equality symbol.
For instance, “=” is an equivalence relation satisfying reflexivity, symmetricity,
and transitivity. Also, “=” satisfies the general substitution property, that is, if
a = b, then a can be used to replace b anywhere. Other than the equality sym-
bol, we also assume some prior objects and their associated prior knowledge in
set theory [6], including set operators such as set union and Cartesian product,
Boolean values, set builder notations and natural numbers.

Given an application domain, a syntactic structure (structure for short if
clear from the context) of the domain is a triple 〈I, C,O〉, where I is a collection
of individuals, representing objects in the domain, C a collection of concepts,
representing groups of objects sharing something in common and O a collection
of operators, representing relationships and connections among individuals and
concepts. Concepts and operators can be nested and considered as individuals as
well. If needed, we can have concepts of concepts, concepts of operators, concepts
of concepts of operators and so on.

An operator could be multi-ary, that is, it maps a tuple of individuals into
a single individual. Each multi-ary operator O is associated with a domain of
the form (C1, . . . , Cn), representing all possible values that the operator O can
operate on, where Ci, 1 ≤ i ≤ n, is a concept. We call n the arity of O. For a
tuple (a1, . . . , an) matching the domain of an operator O, i.e., ai ∈ Ci, 1 ≤ i ≤ n,
O maps (a1, . . . , an) into an individual, denoted by O(a1, . . . , an). We also use
O(C1, . . . , Cn) to denote the set {O(a1, . . . , an) | ai ∈ Ci}, called the range of
the operator O.
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Operators are similar to functions in first-order logic but differs in two essen-
tial ways. First, operators are many-sorted as C1, . . . , Cn could be different con-
cepts. More importantly, C1, . . . , Cn could be high-order constructs, e.g., con-
cepts of concepts, concepts of operators.

For instance, consider a family relationship domain, in which Alice and Bob
are individuals, Human, Woman and Female are concepts and Father, Mother
and Aunt are operators etc.

Let 〈I, C,O〉 be a syntactic structure. A term is an individual, either an
atomic individual a ∈ I or the result O(a1, . . . , an) of an operator O operating
on some individuals a1, . . . , an. We also call the latter compound individuals.

An assertion is of the form
a = b, (1)

where a and b are two terms. Intuitively, an assertion of the form (1) is a piece of
knowledge in the application domain, claiming that the left and right side refer
to the same object.

A knowledge base is a set of assertions. Terms and assertions can be con-
sidered as individuals as well. For instance, in the family relationship domain,
Father(Alice) = Bob, Father(Alice) = Uncle(Bob) are assertions.

Similar to concepts that group individuals, we use schemas to group terms
and assertions. A schema term is either an atomic concept C ∈ C or of the form
O(C1, . . . , Cn), where Ci, 1 ≤ i ≤ n are concepts. Essentially, a schema term
represents a set of terms, in which every concept is grounded by a corresponding
individual. For instance, O(C1, . . . , Cn) is the collection {O(a1, . . . , an)}, where
ai ∈ Ci, 1 ≤ i ≤ n are individuals. Then, a schema assertion is of the same
form as form (1) except that terms can be replaced by schema terms. Similarly,
a schema assertion represents a set of assertions.

We say that a schema term/assertion mentions a set {C1, . . . , Cn} of concepts
if C1, . . . , Cn occur in it, and only mentions if {C1, . . . , Cn} contains all concepts
mentioned in it. Note that it could be the case that two or more different indi-
viduals are referring to the same concept C in schema terms and assertions. In
this case, we need to use different copies of C, denoted by C1, C2, . . . , to dis-
tinguish them. For instance, all assertions x = y, where x and y are human, are
captured by the schema assertion Human1 = Human2. On the other side, in a
schema, the same copy of a concept C can only refer to the same individual. For
instance, Human = Human is the set of all assertions of the form x = x, where
x ∈ Human.

We introduce a set theoretic semantics for assertional logic. Since we assume
set theory as the prior knowledge, in the semantics, we freely use those individ-
uals (e.g., the empty set), concepts (e.g., the set of all natural numbers) and
operators (e.g., the set union operator) without explanation.

An interpretation (also called a possible world) is a pair 〈Δ, .I〉, where Δ
is a domain of elements, and .I is a mapping function that admits all prior
knowledge, and maps each individual into a domain element in Δ, each con-
cept into a set in Δ and each n-ary operator into an n-ary function in Δ. The
mapping function .I is generalized for terms as well by mapping O(a1, . . . , an)
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to OI(aI
1, . . . , a

I
n). Similar to terms and assertions, interpretations can also be

considered as individuals to be studied.
It is important to emphasize that an interpretation has to admit all the prior

knowledge. For instance, since we assume set theory, suppose that an interpreta-
tion maps two individuals x and y as the same element a in the domain, then the
concepts {x} and {y} must be interpreted as {a}, and x = y must be interpreted
as a = a.

Let I be an interpretation and a = b an assertion. We say that I is a model
of a = b, denoted by I |= a = b iff .I(a) = .I(b), also written aI = bI . Let KB be
a knowledge base. We say that I is a model of KB, denoted by I |= KB, iff I is
a model of all assertions in KB. We say that an assertion A is a property of KB,
denoted by KB |= A, iff all models of KB are also models of A. In particular,
we say that an assertion A is a tautology iff it is modeled by all interpretations.

Since we assume set theory as our prior knowledge, we directly borrow some
set theoretic constructs. For instance, we can use ∪(C1, C2) (also written as
C1∪C2) to denote a new concept that unions two concepts C1 and C2. Applying
this to assertions, we can see that assertions of the primitive form (1) can indeed
represent many important features in knowledge representation. For instance, the
membership assertion, stating that an individual a is an instance of a concept C
is the following assertion ∈ (a,C) = 	 (also written as a ∈ C). The containment
assertion, stating that a concept C1 is contained by another concept C2, is
the following assertion ⊆ (C1, C2) = 	 (also written as C1 ⊆ C2). The range
declaration, stating that the range of an operator O operating on some concept
C1 equals to another concept C2 is the following assertion O(C1) = C2.

3 Extending New Syntactic Objects by Definitions

As argued in the introduction section, extensibility is a critical issue for knowl-
edge representation and modeling. In assertional logic, we use definitions for this
purpose. Definitions are (schema) assertions used to define new syntactic objects
(including individuals, concepts and operators) based on existing ones. Once these
new syntactic objects are defined, they can be used to define more. Note that def-
initions are nothing extra but special kinds of knowledge (i.e. assertions).

We start with defining new individuals. An individual definition is an asser-
tion of the form

a = t, (2)

where a is an atomic individual and t is a term. Here, a is the individual to be
defined. This assertion claims that the left side a is defined as the right side t.
For instance, 0 = ∅ means that the individual 0 is defined as the empty set.

Defining new operators is similar to defining new individuals except that
we use schema assertions instead. Let O be an operator to be defined and
(C1, . . . , Cn) its domain. An operator definition is a schema assertion of the
form

O(C1, . . . , Cn) = T, (3)
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where T is a schema term that mentions concepts only from C1, . . . , Cn. It could
be the case that T only mentions some of C1, . . . , Cn. Note that if C1, . . . , Cn

refer to the same concept, we need to use different copies.
Since a schema assertion represents a set of assertions, essentially, an oper-

ator definition of the form (3) defines the operator O by defining the value of
O(a1, . . . , an) one-by-one, where ai ∈ Ci, 1 ≤ i ≤ n. For instance, for defining the
successor operator Succ, we can use the schema assertion Succ(N) = {N, {N}},
meaning that, for every natural number n, the successor of n, is defined as
{n, {n}}, i.e., Succ(n) = {n, {n}}.

Defining new concepts is somewhat different. As concepts are essentially sets,
we directly borrow set theory notations to define concepts. There are four ways
to define a new concept.

Enumeration. Let a1, . . . , an be n individuals. Then, the collection {a1, . . . , an}
is a concept, written as

C = {a1, . . . , an}. (4)

For instance, we can define the concept Digits by Digits = {0, 1, 2, 3, 4,
5, 6, 7, 8, 9}.

Operation. Let C1 and C2 be two concepts. Then, C1 ∪ C2 (the union of C1

and C2), C1 ∩ C2 (the intersection of C1 and C2), C1\C2 (the difference of C1

and C2), C1 × C2 (the Cartesian product of C1 and C2), 2C1 (the power set of
C1) are concepts. Operation can be written by assertions as well. For instance,
the following assertion

C = C1 ∪ C2 (5)

states that the concept C is defined as the union of C1 and C2. As an example,
one can define the concept Man by Man = Human ∩ Male.

Comprehension. Let C be a concept and A(C) a schema assertion that
only mentions concept C. Then, individuals in C satisfying A, denoted by
{x ∈ C|A(x)} (or simply C|A(C)), form a concept, written as

C ′ = C|A(C). (6)

For instance, we can define the concept Male by Male = {Animal |
Sex(Animal) = male}, meaning that Male consists of all animals whose sexes
are male.

Replacement. Let O be an operator and C a concept on which O is well
defined. Then, the individuals mapped from C by O, denoted by {O(x) | x ∈ C}
(or simply O(C)), form a concept, written as

C ′ = O(C). (7)

For instance, we can define the concept Parents by Parents =
ParentOf(Human), meaning that it consists of all individuals who is a
ParentOf some human.
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Definitions can be incremental. We may define some syntactic objects first.
Once defined, they can be used to define more. One can always continue with
this incremental process. For instance, in arithmetic, we define the successor
operator first. Once defined, it can be used to define the add operator, which is
further served as a basis to define more useful syntactic objects.

For clarity, we use the symbol “::=” to replace “=” for definitions.

4 Embedding Classical Logic into Assertional Logic

In the previous section, we show how to extend assertions of the primitive form
(1) into multi-assertions and nested assertions. In this section, we continue with
this task to show how to define more complex forms of assertions with logic
connectives, including not only propositional connectives but also quantifiers.

We start with the propositional case. Let A be the concept of nested asser-
tions. We introduce a number of operators over A in assertional logic, including
¬(A) (for negation), ∧(A1,A2) (for conjunction), ∨(A1,A2) (for disjunction)
and → (A1,A2) (for implication).

There could be different ways to define these operators in assertional logic.
Let a = a′ and b = b′ be two (nested) assertions. The propositional connectives
are defined as follows:

¬(a = a′) ::= {a} ∩ {a′} = ∅
∧(a = a′, b = b′) ::= ({a} ∩ {a′}) ∪ ({b} ∩ {b′}) = {a, a′, b, b′}
∨(a = a′, b = b′) ::= ({a} ∩ {a′}) ∪ ({b} ∩ {b′}) �= ∅

→ (a = a′, b = b′) ::= ({a, a′} \ {a} ∩ {a′}) ∪ ({b} ∩ {b′}) �= ∅.

We also use a �= a′ to denote ¬(a = a′). One can observe that the ranges of all
logic operators are nested assertions. Hence, similar to multi-assertion and nested
assertion, propositional logic operators are syntactic sugar as well in assertional
logic.

It can be observed that all tautologies in propositional logic (e.g.,
De-Morgan’s laws) are also a tautology in assertional logic in the sense that
each proposition is replaced by an assertion and each propositional connective
is replaced by corresponding logic operators in assertional logic.

Now we consider to define operators for quantifiers, including ∀ (for the uni-
versal quantifier) and ∃ (for the existential quantifier). The domain of quantifiers
is a pair (C,A(C)), where C is a concept and A(C) is a schema assertion that
only mentions C.

The quantifiers are defines as follows:

∀(C,A(C)) ::= C|A(C) = C (8)
∃(C,A(C)) ::= C|A(C) �= ∅ (9)

Intuitively, ∀(C,A(C)) is true iff those individuals x in C such that A(x) holds
equals to the concept C itself, that is, for all individuals x in C, A(x) holds;
∃(C,A(C)) is true iff those individuals x in C such that A(x) holds does not
equal to the empty set, that is, there exists at least one individual x in C such
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that A(x) holds. We can see that the ranges of quantifiers are nested assertions
as well. Thus, quantifiers are also syntactic sugar of the primitive form.

Note that quantifiers defined here are ranging from an arbitrary concept C.
If C is a concept of all atomic individuals and all quantifiers range from the
same concept C, then these quantifiers are first-order. Nevertheless, the concepts
could be different. In this case, we have many-sorted first-order logic. Moreover,
C could be complex concepts, e.g., a concept of all possible concepts. In this
case, we have monadic second-order logic. Yet C could be many more, e.g.,
a concept of assertions, a concept of concepts of terms etc. In this sense, the
quantifiers become high-order. Finally, the biggest difference is that C can even
be a concept of assertions so that quantifiers in assertional logic can quantify
over assertions (corresponding to formulas in classical logics), while this cannot
be done in classical logics.

A problem arises whether there is cyclic definition as we assume first-order
logic as our prior knowledge. Nevertheless, although playing similar roles, oper-
ators (over assertions) defined in assertional logic are considered to be different
from logic connectives (over propositions/formulas) since they are on a different
layer of definition. The main motivation is for the purpose of extensibility, i.e., by
embedding classical logic connectives into operators in assertional logic, we can
easily extend it with more components and building blocks including probability.

5 Incorporating Probability

Probability is another important building block for knowledge representation
and modeling. In the last several decades, with the development of uncertainty in
artificial intelligence, a number of influential approaches [1,4,5,11–13] have been
developed, and important applications have been found in machine learning,
natural language processing etc.

In this section, we show how logic and probability can be unified through
assertions in assertional logic. The basic idea is that, although the interactions
between logic and probability are complicated, their interactions with assertions
of the form (1) could be relatively easy. As shown in the previous section, the
interactions between logic and assertions can be defined by a few lines. In this
section, following Gaifman’s idea [4], we show that this is indeed the case for inte-
grating assertions with probability as well. As a result, the interactions between
logic and probability will be automatically established via assertions.

Since operations over real numbers are involved in defining probability, we
need to assume a theory of real number as our prior knowledge.

Gaifman [4] proposed to define the probability of a logic sentence by the sum
of the probabilities of the possible worlds satisfying it. Following this idea, in
assertional logic, we introduce an operator Pr (for probability) over the concept
A of assertions. The range of Pr is the set of real numbers. For each possible
world w, we assign an associated weight Ww, which is a positive real number.
Then, for an assertion A, the probability of A, denoted by Pr(A), is define by
the following schema assertion:
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Pr(A) =
Σw,w|=A Ww

Σw Ww
. (10)

This definition defines the interactions between probability and assertions. In
case that there are a number of infinite worlds, we need to use measure theory.
Nevertheless, this is beyond the scope of our paper, which focuses on how to use
assertional logic for extensible knowledge modeling.

Once we have defined the probability Pr(A) of an assertion A as a real num-
ber, we can directly use it inside other assertions. In this sense, Pr(A) = 0.5,
Pr(A) ≥ 0.3, Pr(A) ≥ Pr(∀(C,B(C)))−0.3, Pr(A)×0.6 ≥ 0.4 and Pr(Pr(A) ≥
0.3) ≥ 0.3 are all valid assertions. We are able to investigate some proper-
ties about probability, for instance, Kolmogorov’s first and second probability
axioms, that is, (1) for all assertions, Pr(A) ≥ 0, and (2) if A is a tautology,
then Pr(A) = 1.

We also extend this definition for conditional probability. We again introduce
a new operator Pr over pairs of two assertions. Following a similar idea, the
conditional probability Pr(A1, A2) of an assertion A1 providing another assertion
A2, also denoted by Pr(A1|A2), is defined by the following schema assertion:

Pr(A1|A2) =
Σw,w|=A1,w|=A2 Ww

Σw,w|=A2 Ww
. (11)

Again, once conditional probability is defined as a real number, we can use
it arbitrarily inside other assertions. Similarly, we can derive some properties
about conditional probabilities, including the famous Bayes’ theorem, i.e.,

Pr(A1) × Pr(A2|A1) = Pr(A2) × Pr(A2)Pr(A1|A2).

for all assertions A1 and A2.
Although we only define probabilities for assertions of the basic form,

the interactions between probability and other building blocks, e.g., logic, are
automatically established since assertions connected by logic operators can be
reduced into the primitive form. In this sense, we can investigate some proper-
ties about the interactions between logic and probability. For instance, it can be
observed that Kolmogorov’s third probability axiom is a tautology in assertion
logic. That is, let A1, . . . , An be n assertions that are pairwise disjoint. Then,
Pr(A1 ∨ · · · ∨ An) = Pr(A1) + · · · + Pr(An).

It can be verified that many axioms and properties regarding the interac-
tions between logic and probability are tautologies in assertional logic as well,
for instance, the additivity axiom: Pr(φ) = Pr(φ∧ψ)+Pr(φ∧¬ψ) and the dis-
tributivity axiom: φ ≡ ψ implies that Pr(φ) = Pr(ψ), for any two assertions φ
and ψ. In this sense, assertional logic can also be used to validate existing prop-
erties about the interactions of logic and probability. In addition, it may foster
new discoveries, e.g., the interactions between higher-order logic and probability
and some properties about nested probabilities.
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6 Discussion and Conclusion

In this paper, we argue that, for the purpose of knowledge representation, clas-
sical first-order logic has some critical issues, including simplicity, flexibility,
expressivity and extensibility. To address these issues, we propose assertional
logic instead, in which the syntax of an application domain is captured by indi-
viduals (i.e., objects in the domain), concepts (i.e., groups of objects sharing
something in common) and operators (i.e., connections and relationships among
objects), and knowledge in the domain is simply captured by equality assertions
of the form a = b, where a and b are terms.

In assertional logic, without redefining the semantics, one can extend a cur-
rent system with new syntactic objects by definitions, which are special kinds of
knowledge (i.e., assertions). Once defined, these syntactic objects can be used to
define more. This can be done for assertional logic itself. We extend the primitive
form of assertional logic with logic connectives and quantifiers. The key point is
that, when one wants to integrate a new building block in assertional logic, she
only needs to formalize it as syntactic objects (including individuals, concepts
and operators) and defines its interactions with the basic form of assertions (i.e.,
a = b). The interactions between this building block and others will be automat-
ically established since all complicated assertions can essentially be reduced to
the basic form. As a case study, we briefly discuss how to incorporate probability
in this paper.

Of course, assertional logic is deeply originated from first-order logic. Indi-
viduals, concepts and operators are analogous to constants, unary predicates
and functions respectively, and assertion is inspired by equality atom. Neverthe-
less, they differ from many essential ways. Firstly, individuals can be high-order
objects, e.g., concepts and assertions, so are concepts and operators. Secondly,
assertional logic is naturally many-sorted, that is, the domain of an operator
can be a tuple of many different concepts including high-order ones. Thirdly,
concepts play a central role in assertional logic, which is natural for human
knowledge representation. While concepts can be formalized as unary predicates
in FOL, they are not specifically emphasized. Fourthly, in assertional logic, all
kinds of knowledge are uniformly formalized in the same form of equality asser-
tions. As shown in Sect. 5, complicated logic sentences are defined as equality
assertions as well by embedding connectives and quantifiers as operators over
assertions. Fifthly, following the above, although connectives, quantifiers and
nesting can be represented in assertional logic, they are not considered as primi-
tive constructs. In this sense, they will only be used on demand when necessarily
needed. For instance, each uses of nesting essentially introduces a new syntactic
object. We argue that this is an important reason that makes assertional logic
simpler than FOL. Sixthly, in assertional logic, the simple form of a = b is expres-
sive as a and b can be high-order constructs and can be inherently related within
a rich syntactic structure. While in FOL, an equality atom does not have this
power. Last but not least, assertional logic directly embraces extensibility within
its own framework by definitions. For instance, to define quantifiers, assertional
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logic only needs two lines (see Eqs. 8 and 9) without redefining a whole new
syntax and semantics, which is much simpler than FOLs.

This paper is only concerned with the representation task and the defini-
tion task, and we leave the reasoning task to our future work. Nevertheless, we
argue that representation and definition are worth study on their own merits.
Such successful stories include entity-relationship diagram, semantic network and
many more. Besides, extending assertional logic with some important AI building
blocks, e.g., actions and their effects, is challenging and worth pursuing.

Acknowledgement. The author would like to thank Fangzhen Lin for his valuable
comments on this paper.
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Abstract. Universal induction relies on some general search procedure that is
doomed to be inefficient. One possibility to achieve both generality and effi-
ciency is to specialize this procedure w.r.t. any given narrow task. However,
complete specialization that implies direct mapping from the task parameters to
solutions (discriminative models) without search is not always possible. In this
paper, partial specialization of general search is considered in the form of
genetic algorithms (GAs) with a specialized crossover operator. We perform a
feasibility study of this idea implementing such an operator in the form of a deep
feedforward neural network. GAs with trainable crossover operators are com-
pared with the result of complete specialization, which is also represented as a
deep neural network. Experimental results show that specialized GAs can be
more efficient than both general GAs and discriminative models.

Keywords: Genetic algorithms � Deep neural networks � Optimization �
Specialization � Universal induction � General search

1 Introduction

Solomonoff’s theory of universal induction [1] has been ignored by the machine
learning community for a long time because of its impracticality. However, one can
find an apparent (although not explicitly declared) trend towards the universal induc-
tion in some recent works coming from the mainstream approaches in machine
learning. For example, such deep learning models as Neural Turing Machine [2],
Differentiable Neural Computer [3], Differentiable Forth Interpreter [4], Neural
Programmer-Interpreter [5] and others are designed directly to perform inference in the
space of algorithms that is the main feature of universal induction. The probabilistic
programming field features the development of Turing-complete languages with gen-
eral inference engines for arbitrary generative models. Using such inference engine,
one can obtain a sort of universal induction algorithm by making inference on a model
that generates arbitrary programs.
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However, these efforts encounter some difficulties with scaling to the inference of
non-trivial algorithms. These difficulties and the impracticality of the basic universal
induction have the same origin. Indeed, the search in the Turing-complete space is very
difficult, and general methods are not able to perform it efficiently or effectively. Deep
neural networks heavily rely on the gradient descent, which application to the differ-
ential embedding of algorithms with sequential nature is prone to converge to inac-
curate solutions [6]. The works on probabilistic programming languages (PPLs) are
much more focused on evaluating posterior probabilities over all solutions, and fre-
quently even don’t consider the search problem utilizing simple enumeration or random
search techniques.

Possibility to solve the universal induction problem with one simple and efficient
method is doubtful. On the other hand, any fixed set of practical machine learning
methods that work in Turing-incomplete model spaces is insufficient for the needs of
artificial general intelligence. One general idea how to avoid these two undesirable
extremes is meta-learning or, more generally, meta-inference, i.e. inference of new
task-specific inference or learning algorithms. Meta-inference algorithms can both be
computationally feasible and produce new efficient narrow inference algorithms.

Meta-learning including learning efficient forms of gradient descent [7] and more
specific reinforcement learning algorithms [8, 9] in the deep learning framework has
become quite popular recently reincarnating and developing further the ideas formu-
lated earlier [10]. There are also probabilistic programming systems (e.g. [11]), which
inference engines adapt to the given generative model (program), and are automatically
reduced to the efficient inference methods, if the model falls into some narrow class
(e.g. a form of message-passing algorithms on factor graphs). However, all these results
are not put into the context of universal induction.

In this paper, we start from the concept of narrow machine learning methods as the
result of specialization of universal induction [12], and show that practical
meta-learning methods can be considered as the result of partial specialization of the
universal induction. As the proof of concept, we develop a family of meta-inference
methods in the form of deep neural networks and compare them on several tasks of
different complexity. These methods differ in the completeness of specialization of the
universal induction and range from learning discriminative models to learning
task-specific genetic operators for genetic algorithms.

The main contribution of this paper is the framework, in which training discrimi-
native models, learning to learn by gradient descent, and learning domain-specific
crossover operators in genetic algorithms are represented as particular cases of spe-
cialization of universal induction. Deep learning models developed to demonstrate and
verify these ideas can be considered as the minor contribution.

2 Background

The presented work is conceptually based on our two previous research directions. The
first one is the theory of universal induction specialization [12]. The second one is
implementation of the universal induction in the form of probabilistic programming
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languages with optimization queries (e.g. implemented in the form of simulated
annealing and genetic programming) [13].

Solomonoff induction can be considered as the full Bayesian inference method,
which utilizes a Turing-complete generative model that initially samples random pro-
gram z for universal Turing machine U with universal priors PU zð Þ ¼ 2�lðzÞ and then
calculates its output x = U[z] implying conditional probabilities PU xjzð Þ ¼ 1 if U z½ � ¼ x
and 0 otherwise (one can also consider a stochastic universal Turing machine
(UTM) defining smoother conditionals PU xjzð ÞÞ. In these settings, Bayesian inference
can be performed, e.g. the marginal probability can be computed as

PUðxÞ ¼
X

z

PUðzÞPUðxjzÞ ¼
X

z:U½z�¼x

2�lðzÞ: ð1Þ

One can consider the generalized form of universal induction that takes as input an
arbitrary machine l that can be both universal and not universal. The machine accepts
some z treated as hidden variables. The task of induction is to calculate posterior
distribution PlðzjxÞ or its maximum z*. Machine l can be treated as a generative model
since it constructs (or samples in accordance with its likelihood function) x using z:
x = l[z]. We assume that some prior probability distribution over z is also given
making l a probabilistic generative model.

Inference with the use of generative models consists in calculation of

PlðzjxÞ ¼ PlðxjzÞPlðzÞP
z
PlðxjzÞPlðzÞ or ð2aÞ

z� ¼ argmax
z

PlðzjxÞ ¼ argmax
z

PlðxjzÞPlðzÞ: ð2bÞ

E.g. if l = U is UTM, then z� ¼ argmax
z

PUðxjzÞPUðzÞ ¼ argmax
z:U½z�¼x

2�lðzÞ.

Usage of generativemodels encounters some difficulties since thesemodels start from
priors over models or hidden variables, and generate observables through non-trivial
stochastic computations, so it is necessary to somehowguess appropriate values of hidden
variables, model parameters, or even model structure that will produce real observations.
That is, one should sum out z or enumerate all values of z in (2a and 2b).

One can introduce the procedure of calculating (2a and 2b) explicitly. Let us
consider some search procedure S(l, x) that takes machine/model l as input, and
returns the most probable z* or calculates PlðzjxÞ. This procedure will correspond to a
form of generalized universal induction.

While generative models allow for calculating any conditionals and marginals, but
through intensive computations, discriminative or descriptive models directly and effi-
ciently compute posterior probabilities or sample values of target or hidden variables. In
the Bayesian approach, it is typical to construct a (variational) approximation to the
posterior distribution specified by a generative model in the form of a discriminative
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model belonging to some family allowing efficient inference. That is, some machine m is
constructed such that m[x] � z* or m½x� � PlðzjxÞ depending on settings.

One can consider the problem of constructing a discriminative model given a
generative model as the problem of specialization of the program S performing uni-
versal induction w.r.t. its first parameter l. Indeed, the result of specialization of some
program w.r.t. one of its parameters is the efficient version of this program with the
fixed value of this parameter.

As the result of specialization of generalized universal induction procedure S(l, x),
one will get program m ¼ spec½S; l� such that

ð8xÞm½x� ¼ Sðl; xÞ

That is, discriminative models are the results of complete specialization of the
universal induction w.r.t. corresponding generative models. One can also consider the
problem of simultaneously learning machines l and m given some data that yields a sort
of universal autoencoders [12].

Precise complete specialization is impossible in the case of a Turing-complete
generative model. It is also doubtful that one can construct an approximate inversion
m � U−1, which will directly (without search) produce good enough programs given
their outputs. Nevertheless, one can still hope to specialize S w.r.t. U, i.e. to construct
more efficient informed search method that takes x as input and uses it to search for best
z taking the structure of U and content of x into account.

Recently we implemented S as the simulated annealing and genetic programming
search engine over probabilistic program traces [14]. Indeed, the idea to use genetic
programming as the search method in universal induction is rather old [15] and
well-known [16]. This leads us to the idea to specialize such a meta-heuristic method,
i.e. to learn problem-specific and data driven genetic operators. It should be empha-
sized that learning such problem-specific genetic operators and constructing discrimi-
native models have essentially the same meaning of specialization of universal
induction, although the result of such specialization has rather different forms.

In this work, we don’t do this within the probabilistic programming framework and
just verify the very idea of learning genetic operations, but keep in mind that any fitness
function can be defined as an optimization query in PPL. We represent a “genetic
operator” (crossover and mutation) as a (deep) feedforward neural network that takes
two candidate solutions and the values of parameters of the fitness function and learns
to produce new candidate solution. Thus, more technically related works are the works
on meta-learning in neural networks. For example, the classical work [10] is devoted to
learning the learning strategy in the supervised learning settings. The more recent work
[8] extends this result on the reinforcement learning settings. The work [7] is devoted to
the problem of learning to learn by gradient descent. These works consider the problem
of learning how to iteratively improve one candidate solution. One can think of our
results loosely as the generalization of these methods to the arbitrary number (starting
from zero) of candidate solutions.

The work [17] devoted to the “compilation” of probabilistic programs (generative
models) into discriminative deep networks is also conceptually related. It should be
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pointed out that compilation is the particular form of specialization (namely, specializa-
tion of an interpreter w.r.t. a given program in accordance to Futamura-Turchin projec-
tions [20]). Thus, what is done by the authors is precisely a form of loose specialization of
generalized universal induction w.r.t. a given program that we described earlier [12] (and
which the authors seem not familiar with). Neural networks are used as a trainable pro-
posal distribution, i.e. they again modify one given candidate solution.

One can also see a connection between our work and the idea of ‘magician systems’
described by Ben Goertzel in [18]: “Magician systems may thus be viewed as a kind of
“generalized genetic algorithm,” where the standard crossover operator is replaced by a
flexible, individualized crossover operator… this is also precisely the type of dynamical
system we need to use to model the brain/mind.” Although the motivation and tech-
nical details of our work are completely different, we find this convergence of ideas
quite interesting.

3 Models

Consider the task in which known family of fitness functions f(x|h) is given, and the
goal is to find optimum x* for given h:

x�ðhÞ ¼ argmin
x

f ðxjhÞ: ð3Þ

Operation ‘argmin’ veils some computation that takes h as input and returns x* as
output. Such computations can vary from the completely uninformed random search to
the direct calculation of x* using explicit solution for a specific f.

We calculate (3) using different procedures:

• Blind search that randomly samples values of x and keeps track of the best value;
• Traditional genetic algorithms that perform uninformed meta-heuristic search in the

space of x without taking h into account;
• Deep feedforward neural network that is trained to directly produce x*(h) taking h

as input: NetDðhÞ ! x� working similar to discriminative models in pattern
recognition;

• Genetic algorithms with trainable crossover operator represented in the form of
deep feedforward network that takes two candidate solutions x1 and x2 and
parameters h and produces new candidate solution x′: NetGAðx1; x2; hÞ ! x0.

Here, blind search (BS) and genetic algorithms (GA) are considered as general
non-specialized search methods, while NetD and NetGA are considered as the result of
different degree of specialization of general methods since they are trained to optimize
a certain class of fitness-functions.

GAs were run on populations of small sizes (e.g. 10 survived species per population
producing 20 children) to emphasize the role of recombinations. One step of blind
search consisted in randomly sampling the same number of candidate solutions as the
number of children in each population in GAs. The speed of mutations in GAs was
adjusted to produce better results. In the case of NetGA, mutations were applied to
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x1 and x2 before crossover instead of mutating the result of crossover as it is done in
traditional GAs.

Both NetD and NetGA were fully connected feedforward networks with H hidden
layers with the number of neurons 100H, 100(H – 1), …, 100 in the first, second, …,
last layer correspondingly. Remarkably, networks with small number of layers pro-
duced (considerably) less precise solutions especially for the tasks of higher dimension.
Here, we will show the results for H = 5, because further increase of the network size
leads to minor improvement of the precision.

Training of network parameters was performed by randomly sampling values of h
and using NetDðhÞ�x�j j2 and NetGAðx1; x2; hÞ�x�j j2 as components of the loss func-
tions for the stochastic gradient descent. Values of x1, x2 for training NetGA were
sample around x�; e:g: x1;2�x�

�� ��\1.

4 Experiments

Quadratic fitness functions
Consider the following very simple task of optimization of quadratic functions. Let the
fitness function be given in the form

f ðxja; bÞ ¼ ax2 þ bx

where x; a; b 2 RN and x2 is element-wise, while multiplications are scalar products. Its
minimum can be simply obtained analytically as x* = –b/(2a), where division is also
element-wise. However, this task is not that trivial for neural networks trained by
examples and not well suited to perform division.

We trained our models to produce the value of x* taking a, b or a, b and x1, x2 as
input, where x1, x2 are imprecise candidate solutions. That is, the network produces

some xi for randomly chosen task (ai, bi) and the loss function xi�x�i
�� ��2 is used to train

the network using stochastic gradient descent. Random tasks were generated sampling
a * uniform(0.1, 1.1), b * uniform(–1, 1).

Figure 1 shows precision of solutions f xsolð Þ�f x�ð Þj j obtained by different methods
depending on the number of iterations of search (i.e. generations in GAs) for N = 5.
The curve for NetD is constant since this method doesn’t perform search. These curves
are obtained by averaging over many (1000) optimization tasks.

As it can be seen, blind search converges rather slowly, while other methods find
reasonably good solutions quickly. This task appears to be simple for NetD, although it
cannot precisely represent division, so it produces imperfect solutions. NetGA has
higher both convergence speed and precision in comparison to traditional GAs.
Character of this curve seems to imply that NetGA relies more on the task parameters
than on the candidate solutions and quickly produces candidate solutions of the same
quality as NetD. Nevertheless, its output is different for different input candidate
solutions, and incremental improvement of the population of candidate solutions is
achieved with its usage inside GA, so NetGA learns more complex mapping than NetD.
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Linear equations
Then, we compared the described models on the task of solving systems of linear
equations:

Ax ¼ b

where x; b 2 RN , and A is N � N matrix.
Again, the models were trained on randomly generated tasks Ai, bi to produce xi

minimizing Aixi�bij j2. Random sampling was performed as A, b * uniform(–1,1),
but rejecting tasks with solutions x* such that x�j j[ 6.

This problem appeared to be considerably more difficult for neural networks.
Figure 2 shows the obtained averaged solution error ||Axsol – b|| for N = 5.

As it can be seen, NetD fails to learn good mapping from the space of parameters of
linear equation systems to the space of their solutions, although it produces better
results than achieved by blind search in a reasonable number of steps. Although this
task is not NP-complete, and can be solved without search, it cannot be solved by linear
algorithms, so this result is not surprising.

At the same time, NetGA solves this task in few iterations, i.e. much faster than
traditional GAs. On the other hand, NetGA converges to slightly less precise solutions in
average. Again, the reason might be that NetGA relies more on the task parameters than
on the parent candidate solutions. That is, it learns the mapping, which is closer to
complete specialization than to traditional crossover. This result is also reasonable
taking into account that NetGA is trained to produce candidate solutions as close to the
optimal solution as possible. Quite opposite, it might be surprising that the network
learned to use the parent candidate solutions in addition to the task parameters. It should
be mentioned that this effect is achieved easier when NetGA is trained on parents that are
close to x* (i.e. parents are not arbitrary, but contain some information about x*).

Fig. 1. Search efficiency in the task of quadratic function optimization
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Basic meta learning
The last task we considered was the task of producing parameters of the optimal
logistic regression model given the training set. That is, the weights and biases in the
logistic regression network act as x, while the training set for this model is considered
as h. Thus, the task was to learn the learning algorithm that maps training sets to the
logistic regression parameters.

The patterns for the training sets were sampled from two Gaussians corresponding
to two classes. Parameters of these Gaussians were generated randomly, but in such a
way that the distance between centers of classes was between 2r and 3r.

This task appeared to be very simple, and complete specialization NetD produced
almost optimal solutions. For example, for the dimension of patterns N = 2 and the size
of training set Ntrain = 20 (with random number of patterns per class) the averaged
results for different number of hidden layers are shown in Table 1, while recognition
rate of the logistic regression from sklearn library was 0.9837.

The same results were obtained for larger values of N. Unfortunately this
straightforward approach to meta learning doesn’t scale to the real pattern recognition
problems. The main limitation consists in the usage of the whole training set as the
input to NetD or NetGA. More practical approach would be to pass patterns from the
training set one by one to these networks, but then the networks should either be
recurrent in order to be able to accumulate information from the patterns, or be trained

Fig. 2. Search efficiency in the task of solving linear equations

Table 1. Results of recognition by logistic regression produced by NetD

H = 1 H = 3 H = 5 H = 10

Recognition 0.9335 0.9840 0.9845 0.9842
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in a very specific way to perform a sort of stochastic gradient descent step. Develop-
ment of such models is beyond the scope of this paper, and is the topic of further work.

5 Discussion

Although our experiments were conducted on example of rather simple synthetic
problems, they demonstrate the following ideas:

• There can be different degrees of specialization of general search procedures
including complete and partial specialization, and the optimal degree of special-
ization depends on the family of problems to be solved. In particular, there is a large
set of models between generative and discriminative models, and approximating
inference in generative models with discriminative models is not the only and
sometimes not the best choice.

• One example of partial specialization is genetic algorithms with the trainable
crossover operator that accepts not only two parent candidate solutions, but also the
parameters of the task to be solved. Such specialized GAs can converge much faster
than traditional GAs, and their performance can be much better than that of com-
plete specialization.

• Such trainable crossover operators can be productively implemented in the form of
deep neural networks at least for some families of tasks.

Although these conclusions are true in general, their significance for the real-world
problems and AGI systems is still to be studied in detail. In particular, we conducted
some additional experiments showing some limitations of the implemented form of
trainable GAs.

First of all, it appeared that both NetD and NetGA work bad on the tasks outside the
region of the training set, i.e. neural networks don’t generalize well (at least in a
traditional sense). For example, in the task of quadratic functions minimization, they
don’t learn the division operation enabling calculation of x* = –b/(2a) for any a and b,
but memorize this mapping for specific ai, bi from the training set and interpolate it.
This conclusion is consistent with some recent studies (e.g. [19]).

Then, we compared NetGA with the network that takes not two, but only one parent
as input, and is also used inside the search procedure. Briefly speaking, we didn’t
observe considerable difference in their performance. Thus, our specialized search
didn’t benefit much from recombining two candidate solutions. We believe that it can
benefit considerably (because GAs can be considerably better than simulated annealing
or gradient descent in some tasks), but more complex tasks should be considered and/or
less simplistic loss function should be used.

Indeed, we trained NetGA outside the search cycle. It was required to produce as
good candidate solution as possible after single application to the random parents,
while its usage within GA supposes its iterative application to the evolving population
of solutions with the aim to find the optimal solution not immediately, but after a
number of generations. Efficient approach to representing and optimizing such loss
function is to be developed. One possibility is to represent the whole search process as
a recurrent neural network to optimize it end-to-end.
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Further development of this approach also consists in its application to arbitrary
optimization queries in probabilistic programming. One lesson that we can learn from
our study is that probabilistic programs cannot be “compiled” into feedforward neural
networks in general case.
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Abstract. Representing knowledge as high-dimensional vectors in a
continuous semantic vector space can help overcome the brittleness and
incompleteness of traditional knowledge bases. We present a method for
performing deductive reasoning directly in such a vector space, combin-
ing analogy, association, and deduction in a straightforward way at each
step in a chain of reasoning, drawing on knowledge from diverse sources
and ontologies.

Keywords: Semantic vectors · Reasoning · Knowledge graphs · Knowl-
edge bases · Analogy

1 Introduction

Common sense knowledge bases (KB) are notoriously ‘brittle’: they are generally
only usable by those who have spent a lot of time getting to know precisely how
to phrase a question so that it will match the representation in the KB [3]. They
are also inevitably incomplete, leaving out many facts that one would expect
a system that claims common sense to include. In order to get around these
limitations, several researchers [6,16,19] have been exploring the possibililty of
somehow combining the deductive reasoning abilities of a knowledge base with
the ability to represent semantic similarity that is provided by distributional
semantic vector spaces. “Query expansion,” for example, involves querying for
semantically nearby terms as well as the explicit terms entered. The deductive
reasoning in such a system still takes place in the discrete knowledge base, how-
ever. When there are concepts or relations missing from the knowledge base that
prevent a chain of reasoning from going through for any of these near terms, the
system will be unable to return any result.

Searches that take place completely in a semantic vector space, on the other
hand, are more akin to searching via a web search engine. These searches forgo
any explicit steps of deductive reasoning, relying instead on broad coverage.
Combining multiple facts in a chain of reasoning to answer a query is beyond
their current capabilities. What we propose in this paper is a way of discovering
chains of reasoning connecting a premise to a conclusion directly in a seman-
tic vector space. The method can be applied to various ways of representing
knowledge by high-dimensional vectors.
c© Springer International Publishing AG 2017
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Forming a chain of deductive logical reasoning can be thought of as a spe-
cial variety of a more general phenomenon in the mind of following a “train of
thought.” One idea brings up a related idea, which in turn brings up another
related idea, and so forms a connected train. We can deliberately return to an
earlier point in the train and follow another path either backward or forward, so
that the trains link up to form a larger structure.

Trains of thought serve several purposes. Parts of an essay or a story are often
structured as trains of thought, with each sentence building on the one before.
Restricted to cause-effect relations, the root cause of an event can be found.
Trains formed of links between means and ends can form a plan of actions and
subgoals to achieve a larger goal. Trains of reasons can answer “why” questions.
Trains of looser relations like resemblance of form and sound form the basis of
some kinds of poetry, symbolism, or mysticism. Memory techniques, creativity
methods, and dreams also rely on trains of thought.

In order to form chains of reasoning, AI researchers have attempted to find
paths between ideas using exhaustive search in a knowledge graph. This blind
walk through all connections in the graph seems very different from how we nor-
mally think. A path connecting two ideas seems to bubble up– we initially feel the
connection more than see it. Ideas shade imperceptibly into one another. Analogy
and association are everpresent. An argument as originally conceived generally
skips steps, and may include steps which are simply analogous to related prob-
lems. Turning such a jumble of ideas into a step-by-step proof is a process that
takes skill, training, and deliberate conscious effort.

Such imprecision can lead to invalid conclusions and fuzzy thinking, but it has
the advantage of being capable of operating under unknown or incompletely rep-
resented conditions. When we don’t know, we can guess at the general ballpark
of the answer. In order to create a system that can deal with the ambiguities of
natural language and take action in an uncertain environment, we need to build
in the ability to think in a more flexible, human manner. A more human-like
reasoning engine should have at least the following properties:

– Be capable of associational, analogical, inductive, abductive, and deductive
reasoning;

– when exact answers can’t be found, guess at an approximate answer;
– be aware of the strength or weakness of its arguments;
– creatively find connections that were not deliberately given, and
– find arguments that add up to a whole, rather than find strictly linear

connections.

2 Background

There are multiple strands of research that involve representing knowledge as vec-
tors. One strand comes from the biologically-inspired cognitive architecture com-
munity. This is increasingly known as Vector Symbolic Architectures (VSA) [7].
[9] introduced the idea of using sparse high-dimensional binary vectors as a way of
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storing information that was resistant to noise and capable of addressing memory
with exemplars. These ideas have been developed to include the notion of binding
vectors for compositional structure and to bemore biologically accurate [11,13,20].

A second strand comes from the linguistics community, beginning with Latent
Semantic Analysis to create word and document context vectors [4], and includes
the well-known word vector representation word2vec [14]. The ability of such
vectors to solve analogy problems was demonstrated in 2005 [17]. Attempts to
encode the meaning of sentences by composing the meaning of the words in the
sentence [1,8,10] is a very similar problem to encoding triples from a knowledge
base. Some researchers encode triples from a knowledge graph directly as vectors,
building on [2].

A few papers are directly concerned with multi-step deductive reasoning in
vector spaces [12,15,18,21]. These approaches use machine learning to build
methods for composing vectors in a reasoning chain. The system described in
this paper does not require any training beyond what is done to create the
word vector representations in the first place. It is unique in using sparse vector
decomposition to solve a deductive reasoning problem.

3 Method

We are given a knowledge base of facts represented as triples of the form
(en, predicate, em). We are also given a semantic vector space where every
entity e is represented by a high-dimensional vector in such a way that terms
that are semantically similar are nearby in the semantic space. Each of the triples
is represented within the vector space by a vector of the form −e1 + e2. For the
purposes of the vector space calculations, these triples are treated as statements
that en ⇒ em. The specific predicates are not used in the vector space calcula-
tion, but instead all predicates are treated as a simple statement of implication.
This maps the first-order predicate calculus problem to a “zeroth-order” propo-
sitional calculus problem.

We wish to prove that g ⇒ p. The vector representing this relation is −g+p.
If there is some set of facts in the knowledge base that can prove this, it must
be the case that the facts form a chain:

g ⇒ e1 ⇒ e2... ⇒ en ⇒ p

Representing this chain as vectors we get

(−g + e1) + (−e1 + e2) + ...(−en−1 + en) + (−en + p)

Cancelling out we see that this sum is equal to the vector directly from g to p:

(−g + e1) + (−e1 + e2) + ...(−en−1 + en) + (−en + p) = −g + p

Our goal, then, in order to find a chain of entities linking g to p, is to find a sum
of fact vectors of the form (−em + en) that adds up to (−g + p). Such a sum
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can be thought of as a weight vector w multiplied by the list of fact vectors,
with a weight of 1 for each fact vector included in the chain, and a weight of
zero for each fact vector not included. Clearly w will be a sparse vector, with
many more zeros than ones. This suggests that in order to find such a sum, we
can use sparse approximation techniques such as OMP or LASSO to obtain the
sparse weight vector w.

In cases where such a chain exists, this method should (when the sparse
approximation is successful) return a set of facts that constitute the chain. When
the chain does not exist, however, the method will return an approximation of
the correct links in the path. Because the vectors come from a semantic vector
space, such approximations will amount to undefined relations between closely
related entities. Such gaps can be considered a kind of associational reasoning.

For example, suppose we want to find a path of relations between G :
MichaelJackson and P : music. The knowledge base contains, among many
others, the following two facts:

(Michael Jackson, is a, songwriter) and (musician, composes, music)

The proposed method would return MichaelJackson ⇒ songwriter and
musician ⇒ music, even though they don’t strictly form a chain of reasoning,
because songwriter and musician are nearby in the semantic space, and so the
error in the sum is fairly small.1 This is the core idea we hope to communicate in
this paper: that sparse solvers can be used to find deductive chains in a semantic
vector space, in a way that allows for analogical and associational connections
where appropriate.

4 Propositional Calculus and the Logic of Subsets

The system is able to perform deductive logic because it is approximately
implementing propositional calculus as a logic of subsets.2 Call the universe U
the set of all entities u in the semantic vector space. The nearest neighbors of
any entity p form a subset P of U . (These are the terms which are semantically
near to p.) In a high dimensional semantic vector space, if a vector is a nearest
neighbor of vector a or b it will also usually be a nearest neighbor of vector
a + b.3 This means that we can treat + as the union operator: The elements of
A ∪ B will be the near neighbors of the vector a + b. In propositional calculus,
this is the OR operator, ∨.
1 In some special cases, the error in one gap of the chain will largely cancel out with

the error at another gap. When this happens, the system has found an analogous
relation. This is discussed in the section Analogical Properties of Semantic Spaces
below.

2 Boole and DeMorgan originally formulated propositional logic as a special case of
the logic of subsets [5].

3 If a and b are approximately orthogonal unit vectors, then the similarity between

the two will be
√
2
2

. This is much higher than the expected similarity between any
two terms selected from the space. See [20] for details.
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Table 1. Loosely speaking, terms near a + b will come from the set of terms near a
OR b, while terms near a − b come from terms near a and NOT near B. Here bold
terms are among the eight nearest terms to “classical” and italic terms are those near
to “music”. The set of terms that belong to a AND b is a subset of a OR b and these
terms will show up especially high in the list of terms near a + b.

near “classical” classical, classical music, Classical, classical repertoire,
Hindustani classical, contemporary, Mohiniattam, sacred
choral

near “music” music, classical music, jazz, Music, songs, musicians,
tunes

near “music − classical” music, Rhapsody subscription, ringtone, MP3s, Polow,
Napster, entertainment, Music, tunes

near “music + classical” classical, music, classical music, jazz, classical
repertoire, Hindustani classical, sacred choral,
classical guitar

The vectors in U near −a are the vectors which are not near to a. So − can
be treated as a the set complement operator c. In propositional calculus, this is
the NOT operator, ¬.

In propositional calculus, A implies B (A ⇒ B) means that either B is true,
or A is not true, so it can be rewritten as (NOT A) OR B. In the subset logic,
this is Ac ∪ B. In the vector space, then, A ⇒ B can be represented as −a + b.

In propositional calculus, the modus ponens rule allows us to conclude B
from the two facts A and A ⇒ B. In the vector space, a and −a + b cancel to
give b. In a chain of implication A ⇒ B ⇒ C ⇒ D all the interior terms cancel,
allowing us to conclude that A ⇒ D. Similarly in the vector space, the vectors
(−a + b) + (−b + c) + (−c + d) simplify to the vector −a + d.4 In this way,
the system is able to carry out modus ponens deductive reasoning within the
semantic vector space.

Propositional calculus is less powerful than predicate calculus. In order to
prove that (p, relation, q) one must have, in addition to the triples in the knowl-
edge base, Horn clauses which have (p, relation, q) as the conclusion (i.e. the
non-negative literal). If the facts in the knowledge base passed to the solver are
limited to those which have relations that participate in such Horn clauses, the
chains of implication will tend to be more reasonable. In general, using this sys-
tem as it currently stands requires restricting which predicates are allowed to
participate in a solution. Instead of representing snow ⇒ white, we could rep-
resent the more informative statement (madeOf, snow) ⇒ (hasColor, white).
Doing this requires using vectors that bind multiple concepts to roles, as in VSA.
It is not yet clear how well the analogical or associational properties described

4 Notice that addition is used as AND rather than OR when combining B with A
and A ⇒ B (see the caption of Table 1 for why this is acceptable). At any rate, the
notion of cancelling out with modus ponens still holds.
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below would work in such an architecture, however: it depends on the details of
how binding is performed.

5 Analogical and Abductive Reasoning

The ability of distributional semantic vectors such as word2vec to find analo-
gies is not peculiar to how such vectors are trained, but should be an expected
property of any system that maps semantically similar concepts to similar
high-dimensional vectors. Suppose we are given the following analogy to solve:
bear:hiker::shark:X. To make it simpler, consider contexts representing the ideas
woods, sea, predator and tourist, and treat any other contexts as noise. The vec-
tor for bear, for instance, is some weighted average of (the mean of all vectors
related to woods), and (the mean of all vectors related to predators) plus some
noise. Thus we can rewrite the analogy as woods + predator : woods + tourist ::
sea + predator : X.

The vector between bear and hiker is −predator + tourist + noise. This is
very close to the vector from shark to snorkeler. These two vectors are so similar
because the relations between the two pairs of words being connected are so
similar. Since the system looks for any vector that will make the sum have as
low error as possible, it could choose the relation vector between bear and hiker
to connect the concept shark to the concept snorkeler : the system can make use
of analogical relations to complete a chain of argument.5 This makes it better at
handling incompleteness in the knowledge base and makes it more like human
reasoning, where newly encountered concepts do not need to be exact matches
to those in our memories in order for us to reason about them. In everyday
thinking, analogy, association and abduction are frequently used together with
deduction.

While it is possible to use the raw distributional vectors for terms themselves
as entities in the vector space, we can also define other vectors in this space. The
fact that the terms in a natural category like mammal tend to already be clus-
tered in the semantic space means that the number of such terms that can be
averaged into a category vector is somewhat larger than the results in Exper-
iment 1. We could also make use of the analogical properties of the semantic
vector space to place other concepts that don’t appear in the corpora, if we
know some of their attributes. These techniques are useful when attempting to
embed a knowledge base into the semantic vector space, where the concepts in
the knowledge base may not be named by a specific English word.6

6 Ontology Merging

One of the major benefits of using an embedded deduction mechanism is that it
simplifies the process of merging ontologies. If we are able to map both ontologies
5 When a direct chain of reasoning is possible, such links won’t happen– the analogy,

being inexact, has a higher cost than the direct link.
6 Along the same lines, [22] describes a more intricate method of locating particular

word senses in the vector space.



118 D. Summers-Stay

into the semantic vector space, then even if the same concept isn’t mapped to the
exact same term, it will be mapped to a nearby term which may be good enough for
the chain of reasoning to be found. For example, suppose one ontology contained
the statement (bears, eat, grubs) and another contained the statement (insects,
live in, dead trees). Neither ontology defines the relation of grubs to insects, but
the system would be able to make the connection between bears and dead trees
(answering the question “Why is the bear digging in a dead tree?” for example)
because of the semantic similarity of grub to insect. Such a method would be espe-
cially useful when the ontology has not been hand built. Information extraction
methods that extract triples from natural language sources, such as ReVerb, can
be used to add facts to the knowledge base, without worrying too much about
whether the entities to which triples refer are all expressed in the same way.

7 Answering Questions

The system as described so far has been finding a chain of reasoning connecting
between two terms: one “given”, and one “to prove”.7 However, a knowledge
base is usually used with one or more variables, to find multiple possible chains
that answer a query. If the possible answers can be limited to a smaller set,
this system can also be used in this way, by having the “to prove” vector be a
sum of all of the possible answers. For example, the knowledge base contains the
following statements:

(apple, hasColor, red), (apple, hasColor, yellow), (apple, hasColor, green)

and we want to know what colors apples have. We could put in −apple+ (red+
orange+ yellow + green+ blue+ purple) as the query, and the result picks out
these three statements as highly relevant:

1.00 (apple, hasColor, red)

0.99 (apple, hasColor, green)

0.72 (apple, hasColor, yellow)

0.08 (cordon bleu, derivedFrom, blue)8

Notice that the goal vector is a “category vector” as described in Sect. 7.
Another way to get a particular type of result is by limiting the type of relations
that are in the portion of the database that is searched. For example, if one
wanted to know how B was caused, the search could be limited to those facts
in the database related by causal predicates, such as causes, turns into, has side
effect, and so forth. One way to do this, if the Horn clauses are known, is to find
all relations which participate in a Horn clause that resolves to A causes B.
7 Deductive reasoning systems typically use either forwards or backwards inference.

This system uses “middle out” inference, that doesn’t begin at either end but is a
holistic procedure happening all along the chain at once.

8 Notice that the fourth, less relevant, fact is also relating a food to a color.
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8 Ordering the Chain

The results of the sparse vector decomposition define which triples might par-
ticipate in the chain, but they are unordered.9 To arrange them in order, we use
the following method. All entities that participate in a triple returned by the
solver, as well as the input terms, are added to a complete directed graph. Edges
corresponding to relations returned by the solver are given very low weights,
while edges not included are weighted based on their distance in the semantic
space. Then we find the least costly path from the head input term to the tail.10

Although the system is capable of coming up with tree-like proofs to multiple
entities connected by OR, we haven’t yet implemented a method for finding
least-cost trees.

9 Experiments

LASSO, OMP and other sparse solvers are not guaranteed to find the optimal
solution (which would be an NP-complete problem). Their performance depends
on the size, dimensionality, and clustering of the data. We characterized how well
LASSO performed for the vectors in our dataset. For all these experiments, we
used the 300-dimensional word2vec vectors provided by Mikolov [14]. We used
L = 20, and lambda = .2 for the LASSO parameters.

9.1 Experiment 1

As noted in the section on propositional calculus, it is a curious property of
high-dimensional vector spaces that the vector a + b will tend to be closer to a
and b than other vectors in the space, assuming they are fairly well distributed.
However, this property only holds for a few vectors being added together. In
Table 2, we added from 1 to 10 randomly chosen term vectors, and found how
frequently all of the summed vectors were present among the 20 nearest neighbors
of the sum vector, for various dictionary sizes. For larger dictionaries, fewer of
the summed terms are found because the dictionary more densely populates the
space. LASSO does a better job of recovering the vectors in the sum. Much fewer
than 20 vectors are usually chosen by LASSO, which is another big advantage.

9.2 Experiment 2

This experiment was similar to the previous one, but instead of adding terms we
added fact vectors from the embedded KB of the form (−e1+e2). This is a more
difficult problem for LASSO to solve because, for example, (−e1+e2)+(−e3+e4)
9 In fact, they may form a multistranded rope rather than a chain– the “elastic-net”

[23] parameter in LASSO can be used to encourage or discourage finding alternative
equally good paths for part or all of the chain.

10 A slightly more complicated cost function can be used to encourage the lowest cost
path to follow analogical connections as well.
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Table 2. How frequently all terms in sum are among 20 nearest neighbors of sum/how
frequently all terms are within results of LASSO with L= 20

Dictionary size 2 3 4 5 6 7 8 9 10

1000 100/100 100/100 97/99 85/98 47/98 21/96 5/88 1/76 0/50

10000 100/100 98/100 76/100 25/100 3/100 0/99 0/98 0/94 0/83

100000 100/100 91/100 45/100 6/100 0/97 0/83 0/67 0/39 0/11

1000000 100/100 84/97 27/88 2/52 0/14 1/1 0/0 0/0 0/0

and (−e1 + e4)+ (−e3 + e2) would be exactly equal and so unrecoverable except
by chance, and there are effectively twice as many entities being added. For large
dictionary sizes, even two fact terms could not be reliably found (See Table 3).

Table 3. Number of relations in sum accurately recalled

Dictionary size 1 2 3 4 5 6 7 8 9 10

1000 100 100 98 97 91 90 79 54 30 5

10000 100 98 95 88 85 70 51 27 7 4

100000 100 91 42 30 19 9 7 4 1 1

906000 100 60 25 15 10 5 1 1 0 0

9.3 Experiment 3

This experiment measured how often the system was able to find a chain of
reasoning linking a given head to a tail known to be reachable in from 1 to 7
steps. We used a KB with 906000 facts, formed of all the first-order facts in
CYC and conceptnet in which both entities being related could be mapped to a
vector in the word2vec space (either with a corresponding English word, or as a
category vector) (Table 4).

Table 4. finding paths of various lengths from a given head to a given tail

KB size 1 2 3 4 5 6 7

10000 100 78 32 33 20 27 20

100000 100 92 46 46 21 31 17

906000 100 65 37 35 22 30 31
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10 Conclusion and Future Work

We have demonstrated how sparse decomposition methods can be used to find
chains of reasoning in a knowledge graph embedded in a distributional vector
space. In the future, we hope to evaluate the system on question answering
datasets. The performance on longer chains needs to be improved. We would also
like to find ways of integrating this method into more comprehensive cognitive
architectures. The notion of antonymy in semantic vector spaces also needs a
more careful treatment.
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Abstract. Machine Learning has traditionally focused on narrow artifi-
cial intelligence - solutions for specific problems. Despite this, we observe
two trends in the state-of-the-art: One, increasing architectural homo-
geneity in algorithms and models. Two, algorithms having more general
application: New techniques often beat many benchmarks simultane-
ously. We review the changes responsible for these trends and look to
computational neuroscience literature to anticipate future progress.

Keywords: Machine learning · Biological plausibility · Credit assign-
ment problem · Reinforcement learning · Spike timing dependent plas-
ticity · Sparse coding · Predictive coding

1 Introduction

While Machine Learning research has traditionally focused on Narrow AI tasks,
state-of-the-art solutions have become more homogeneous and generally applica-
ble. This paper will review these trends and look to computational neuroscience
for tips on future changes.

Contrast object recognition in 2005 with today. We have moved from designer
architectures of specialized components to homogeneous deep networks. The old
way to recognize objects was to combine explicit feature detectors such as HoG
[1] with techniques like RANSAC [2] to find concensus about their geometric
relationships. The new way is simply to expose a homogeneous deep, convolu-
tional, region proposal network [3] to a very large set of labelled training images
to segment objects from background.

2 Biological Plausibility of Artificial Neural Networks

The most biologically-implausible features of current supervised artificial neural
networks are also related to some of their practical limitations.

The Credit Assignment Problem concerns synchronized back-propagation of
error gradients from the output to hidden layer cells that caused them [4].
Although feedback connections outnumber feedforward in cortical neural net-
works [5,6], a biological basis for deep backpropagation is unlikely [7] because
c© Springer International Publishing AG 2017
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it requires dense and precise reciprocal connections between neurons. Biologi-
cal feedback connections also modulate or drive output, whereas in feed-forward
artificial networks, feedback is only used for training. Layerwise backpropagation
of error gradients is not supported by biological evidence [8]. Credit assignment
also poses practical computational problems such as vanishing and exploding
(shattered) gradients [9], which can limit network depth. Since current theory
suggests that deeper is better than wider [10], this is a major problem. Recent
work on decoupled neural interfaces looks to avoid this limitation via local cost
functions [11].

Credit assignment is also difficult when inputs and outputs are separated by
time. Only recurrent networks with gated memory cells as used in LSTM [12]
have enabled effective back-propagation of error gradients over longer periods of
time. There is some evidence for a biological equivalent of memory and gates in
biological neurons [13].

Modern artificial neural networks appear to have enough capacity, but
improved generalization seems to require better regularization of network
weights [14]. Currently this tends to be explicit, e.g. weight-decay, but it could be
implicit in better models.

Supervised training requires large, labelled training datasets. For embodied
agents this is problematic: it is necessary to generate correct output for the
agent in all circumstances. This appears to be at least as difficult as building the
agent control system. Reinforcement learning avoids this problem by providing
feedback about an agents output or actions in via an abstract “reward” signal.
The ideal output is not required. One of the most popular reinforcement learning
methods is Q-learning [15]. Q(s, a) is defined as the maximum discounted future
reward of performing action a in state s.

The task of associating current actions with future rewards is normally tack-
led via discounting. There is considerable biological evidence to support the
hyperbolic temporal discounting model for associating causes with outcomes,
including fMRI studies [16], recordings of neuron activity [17], and behavioural
studies [18] (including human) [19].

But as always, there are practical problems. Although Q-learning is guaran-
teed to converge on true Q-values given training samples in any order, we cannot
know how close we are while some actions are unexplored. We need a policy to
balance exploration (discovery of accurate Q values) versus exploitation of cur-
rent Q values. We can find some heuristic guidance from e.g. animal studies of
foraging exploration behaviour [19], but in a naive representation the space of
all possible states and actions is simply too large to be practically explored. As
representations become more sophisticated, the gaps between sampled rewards
become larger. We need a way to generalize from a smaller set of experiences.

There are two approaches to this generalization problem [20]. First, we can
try to generalize explicitly by predicting commonalities between states and then
inferring rewards. Second, we can try to reduce the dimensionality of the state-
space by creating more abstract, hierarchical representations of the data.
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Impressive results were achieved by Mnih et al. [21] playing Atari games with
their Deep Q Learning method. They used several tricks to overcome exploration
and representation limits. First, they built a smaller, hierarchical state-space in
which it is easier to learn Q values. Second, they used “experience replay” to
accelerate Q value training. Third, they used ε -greedy exploration to balance
exploration and exploitation.

But the key to improving the generalization of observed discounted rewards
may lie in other aspects of human general intelligence, such as attentional strate-
gies. Using working memory [22] and attentional gating, the current state can
become a filtered construction of features relevant to the problem under consid-
eration, even if they were not observed in the immediate past (working memory
allows humans to store several items for a few minutes at most).

Graves et al. recently published the “Neural Turing Machine”, combin-
ing recurrent neural networks with a memory system [23]. The architecture
is described in a very mechanical way, with a tape-like memory store and
read/write heads - hence the name, which is derived from the original Turing
machine concept. But despite the mechanical description, their intention was
to simulate the properties of human working memory in a differentiable archi-
tecture that could be trained by gradient descent. They demonstrated that the
system could perform a number of computational tasks, even a priority-sort.
Zaremba and Sutskever later extended the concept to reinforcement learning
and reproduced some of the tasks [24].

Overall, how closely do artificial neural networks match the computational
properties of natural ones? There is neurological evidence of computational sim-
ilarities between machine learning and human general intelligence [25]. Similar
visual feature detectors can be learned [26], and the same types of variation are
confusing for both deep learning and people [27]. But the discovery of adversarial
examples [28], which look ordinary to us but confusing to artificial networks, sug-
gests a weakness in artificial representations. Surprisingly, the deficiency seems
to be fundamental to models produced by training linear discriminators in high
dimensional spaces [29], because the problem “generalizes” to unseen data, and
disjoint training instances are vulnerable to the same perturbations!

3 Interesting Features of Biological Neural Networks

Biological neurons are more complex than conventional artificial ones and are
believed to learn using different, mostly local rules, such as Spike-Timing Depen-
dent Plasticity (STDP) [30], pre & post synaptic correlation [31] inter-cellular
competition [32] and lifetime sparsity (firing rate) constraints [33,34], as opposed
to global error minimization. Recently, neuroscientists have become interested
in the role of dendrite computation: Individual neurons can have many layers
of branching, and a transfer function between branches [35]. This means that
an individual biological neuron can be computationally equivalent to a tree of
conventional artificial neurons. Within a neuron, precise feedback could exist,
allowing supervised training of a few layers against local cost functions.
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In machine learning, recent progress has also concerned increasingly sophis-
ticated components, such as the Inception module [36]. These may be more
biologically realistic that at first it appears, although Inception does propagate
gradients between modules.

Neuroscientists are convinced that the Spike-Timing Dependent Plasticity
(STDP) rule accurately describes the way many neurons synapses adjust their
weights [37]. This is an unsupervised rule; weights are adapted to strengthen
synapses that reliably predict a post-synaptic (output) spike before it occurs.
This is computationally convenient due to use of only local information during
learning. Interestingly, artificial simulations of neurons including recurrent con-
nections and STDP learning are able to produce some of the best wholly unsu-
pervised representations. For example, Diehl & Cook [38] were able to achieve
95% classification accuracy on MNIST using unsupervised learning and cell-label
correlation: The training data was used to correlate spiking of each cell with the
ten training data digit labels. Each cell therefore had equal influence on the
classification result.

Normally, such high-performance classification requires a supervised layer to
optimize decision boundaries, allowing the influence of each feature or cell to be
varied; that they were able to achieve this without this type of supervised training
implies that their technique was very effective in capturing general structure of
the input.

State of the art results in machine learning are nowadays typically produced
by supervised learning. Yet researchers have recognized that unsupervised pre-
training of shallower layers improves performance of a larger supervised net-
work [39]. Improved theoretical understanding of this suggests that unsupervised
learning acts as a regularizer, producing features that generalize better [39,40].

Historically, unsupervised layers required greedy layerwise pre-training. How-
ever, use of linear (e.g. the Rectified Linear (ReLU)) transfer function [41], and
techniques like batch normalization [42] have allowed simultaneous training of
all layers in deep networks. In fact, continuing the trend of increasing simplic-
ity, Exponential Linear Units (ELUs) [43] aim to avoid the need for statistical
preprocessing such as batch normalization, although not yet completely.

Biological neural networks continue to outperform artificial ones in several
learning characteristics. Optimal modelling of nonstationary input [44] is partic-
ularly relevant to General Intelligence tasks featuring an embodied agent, whose
choices can suddenly and permanently change input statistics. For example, if
you suddenly start to explore a new part of the environment, you will see new
things. A robot that leaves the lab to explore the gardens will now frequently
encounter trees and plants, that are completely unlike all previous visual per-
ceptions of right-angled corridors, doors and desks. This is problematic when
training has moved weights into unsuitable ranges for further learning, but work
on strategies such as adaptive learning rates will likely help [45].

Biological neural networks learn both more quickly [34] and more slowly [46]
than artificial ones. Although this seems contradictory, this flexibility is actu-
ally a desirable quality. In psychology, “one trial” or “one shot” learning occurs



Computational Neuroscience Offers Hints 127

when just one experience is enough to modify future behaviour. In artificial
intelligence, one way to tackle this is instance-based learning [47], in which all
training samples are stored; the model is implicitly generated by interpolat-
ing between these samples. Unfortunately, this approach does not scale. Other
prominent examples of “one shot” learning include [48,49]. Recently, Santoro
et al. [50] developed a one-shot method using Memory-Augmented Neural Net-
works (such as the Neural Turing Machine described above). In this system, a
differentiable architecture is trained to solve the meta-problem of using an exter-
nal memory to store new learnings after a single presentation. Interestingly, an
interaction between working memory in the ventrolateral prefrontal cortex and
the hippocampus, may be used as a switch to activate one-shot learning in the
brain [51].

Common training methods in machine learning such as gradient descent must
learn slowly to avoid catastrophic interference between new and existing weights.
Until recently, it was thought that synapse formation was also a relatively slow
and permanent process. Artificial neural networks are typically modelled with
fixed synaptic connectivity, only varying the synaptic efficiency, or “weight”, of
each connection. But more recently, it was confirmed that synapses are actually
formed quickly and throughout adult life, perhaps in response to a homeostatic
learning rule that controls lifetime firing rate [34].

Given all the above, even slower learning might seem undesirable; but to
improve representation we need to reduce bias towards recent samples while
continuously integrating new information. This relatively unexplored topic is
known as lifelong machine learning [52].

4 Sparse and Predictive Coding

The encoding of electrical information transmitted between neurons is under
active investigation. Neurons normally fire in bursts and trains of varying fre-
quency, with long rests in between. The meaning of these spike trains is uncertain
[53], but STDP learning rules are sensitive to spike timing and rate.

We also observe that most neurons are silent most of the time - only a
fraction will fire at any given moment. This phenomenon is loosely defined in
neuroscience as sparse coding [54]. Sparse coding has a number of theoretical
advantages, such as combinatorial representational power and a natural, robust
similarity metric in the intersection of active cells.

In machine learning sparse coding has a more specific meaning, namely
the learning of a set of overcomplete basis vectors representing the input [54].
Research shows that deep unsupervised sparse coding produces very useful fea-
tures: Le et al. [55] created a deep sparse architecture that spontaneously func-
tioned as a high accuracy face detector without being optimized to perform this
task.

Why does sparse coding help? It is believed that the process of sparse encod-
ing is an inherently superior form of dimensionality reduction compared to e.g.
vector quantization [56]. How you train the overcomplete bases is surprisingly



128 D. Rawlinson and G. Kowadlo

less important, assuming the input has been normalized. Sparse coding chooses
a few bases that jointly describe each input combination, meaning that subsets
may be used in novel combinations without retraining. This is also known as
the “union property” of sparse representations [57]. Again we observe that a
representational change has provided computationally beneficial effects: Which
is interesting, because neuroscience also offers another representational change
we might adopt - predictive coding [58].

Predictive coding proposes that cortical cells internally predict either their
input or activity within local populations, and then emit signals representing
prediction errors [59]. This changes the inter-layer signal from a representation
of the input, to a representation of cells’ inability to predict the input. Internally,
only the relationships between errors are represented. This is very efficient: The
representation adapts to the characteristics of the input. Input that can’t be
“explained” (i.e. predicted) is relayed to other layers for processing, in hope
that additional resources or data will help. Errors propagate towards features
that can explain them. Note the assumption here, that being able to predict an
observation means that its causal relationships are being modelled correctly and
thus is it “explained”.

This characteristic is reminiscent of Highway Networks [60] and Deep Resid-
ual Learning (DRL) [61]. In DRL, the output of a bi-layer module is added to
the module’s input, requiring the module to learn any residual error between
the input and desired output. DRL propagates residual error gradients in the
feedback direction during training. Highway Networks, derived from LSTM, use
an explicit gating mechanism to determine propagation of the input.

In both Highway Networks and DRL, modules are trained to decide to what
extent they involve themselves in current input. Signals can be relayed or mod-
ified depending on the capabilities and relevance of the local module.

The reason DRL works lies in the details of the training problem posed
by this architecture. Each module’s output contributes additively rather than
multiplicatively, and in consequence data flows freely into very deep hierarchies.
After training, DRL networks become ensembles of shallower networks [62]. Just
as in predictive coding, input data dynamically determines the effective depth
of the network.

5 Conclusion

We have observed increasing homogeneity and generality in state-of-the-art
machine learning. Biology continues to inspire this process, such as Liao and
Poggio’s combination of deep residual and recurrent networks [63]. In future
we expect to see increasing use of local [11] and unsupervised learning rules [8],
modularized architectures that promote data-driven deep representations [60,61]
and dramatic improvements in the representation of state and action spaces in
reinforcement learning to overcome the generalization problem.
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Abstract. Humans have the remarkable ability of imagination, where within
the human mind virtual simulations are done of scenarios whether visual,
auditory or any other senses. These imaginations are based on the experiences
during interaction with the real world, where human senses help the mind
understand their surroundings. Such level of imagination has not yet been
achieved using current algorithms, but a current trend in deep learning archi-
tectures known as Generative Adversarial Networks (GANs) have proven
capable of generating new and interesting images or videos based on the training
data. In that way, GANs can be used to mimic human imagination, where the
resulting generated visuals of GANs are based on the data used during training.
In this paper, we use a combination of Long Short-Term Memory (LSTM)
Networks and 3D GANs to generate videos. We use a 3D Convolutional GAN
to generate new human action videos based on trained data. The generated
human action videos are used to generate longer videos consisting of a sequence
of short actions combined creating longer and more complex activities. To
generate the sequence of actions needed we use an LSTM network to translate a
simple input description text into the required sequence of actions. The gener-
ated chunks are then concatenated using a motion interpolation scheme to form a
single video consisting of many generated actions. Hence a visualization of the
input text description is generated as a video of a subject performing the activity
described.

Keywords: Activity video generation � 3D GAN � LSTM

1 Introduction

AGI encompasses an AI capable of autonomy, generality, adaptation and imagination
equal to humans [1]. Imagination is a uniquely human ability that allows the forming of
ideas, concepts, and visual images of non-existent sensory information within the mind.
The process which allows humans to imagine visual information in the mind is a unique
ability. Imagination is heavily influenced by the sensory experiences from the real world,
for example, once a human has seen a mouse, the visualization of the mouse can be
imagined at a later timewithout physically seeing themouse itself. Therefore, imagination
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is also closely related to vision in which visual sensory input influences the human
imagination. This is a complex process, but recent advances in generative models may be
able to mimic (but not yet reach) the human imagination by generating certain visual
features (videos and images) based on what has been seen before. A promising model is
the Generative Adversarial Network (GAN), which is a model based on the deep neural
network architecture proposed in [2].

The GAN architecture has been shown to be particularly good at modeling and
generating visual data, such as images [3–6] and videos/volumetric data [7–10]. Many
state of the art image generation systems utilize GANs, for instance generating images
from text descriptions in [4], generating higher resolution images from lower resolution
ones [5], and generating new random images for faces, bedrooms, ImageNet and
MNIST data in [6]. In [4], to achieve a model that can generate images based on input
text, the text is encoded into a smaller vector combined with a noise vector and then is
fed into the generator to produce the image. For training the model, the discriminator is
also supplied the encoded text to be able to discriminate good and bad images relative
to the input text. In [5], a pyramid scheme is used where to build a higher resolution
image from a lower one, the image is slowly raised in resolution by up sampling with
every stage a noise signal is inputted to learn the details required for the image. This
allows the model to add required details without overwhelming the GAN. In [6], the
authors use a GAN model based on the deep convolutional neural network (DCGAN).
The authors argue that the filters of the DCGAN capture meaningful properties and
features of the image. In [7], the authors collected a large number of video data (9 TB
data after processing) and trained it to model the scene dynamics in a short video.
The GAN model is conditioned on the first frame of a video and must generate 31
future frames of 64 � 64 videos. A 3D convolution GAN is used for the moving
objects while a static 2D convolution GAN is utilized for the background of the video.
While another approach in [8] for predicting a few future frames in a video is by using
GANs combined with image gradient loss to improve the sharpness of the resulting
video frames. It is claimed in [9] that video generation systems could aid in the physical
interaction of autonomous agents, a task in AGI. In this case, video prediction is used
by an agent to predict the conditions of its surrounding and how its actions can affect it.
GANs are used as an unsupervised method to learn video prediction for this purpose. In
[10], a 3D convolution GAN is used to create 3D models of objects. It is shown that the
generator can learn to map the low dimensional input latent space into a high
dimensional 3D object by slow raising the dimensionality of the generator using
consecutive convolutions and up sampling. The main problem when trying to apply
GANs to videos is the larger dimensionality of the data requiring more complex models
trained with more data.

Goals. The goals of this research are to build a system that can generate human activity
(which consists of sequential actions) videos based on a plain text description input.
The first part is to train a 3D GAN model on single subject human action video chunks.
The 3D GAN model uses the Auxiliary Classifier GAN (ACGAN) architecture
introduced in [11]. An ACGAN is used since we require the GAN model to generate
specific types of action video chunks on demand. To receive input in text format and
translate them into the appropriate sequence of actions, we use an LSTM network that
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does machine translation and acts as the director for the 3D GAN model. The sequence
of actions produced by the LSTM will be used as a guide for the type of action to be
generated by the 3D GAN model. The resulting video sequences are concatenated with
some interpolated frames in between the video chunks to ensure a smooth transition
between them. The result is a video of a single subject performing an activity that
consists of several actions done sequentially. In our experiments, we train the model on
the publicly available Weizmann action dataset and a martial arts video dataset based
on Indonesian silat.

Contributions. The contributions of this research are that we use a two-stage approach
for generating single subject activity videos from a text description input. The first
stage is an LSTM and the second stage is a 3D GAN generator network. The two
models are trained and operated independently of each other, allowing the 3D GAN
model to learn only smaller and shorter videos of single actions, while the LSTM
model then generates the sequence of actions to be generated. Hence the training
problem becomes a lot simpler. This model is basically a narrow AI model, but we
believe by training many independent models on generating specific families of actions
can form a more general system capable of generating more types of action.

2 Generative Adversarial Networks for Generating Videos

2.1 Training Generative Adversarial Networks

Generative Adversarial Networks (GANs) are a generative model based on deep neural
networks introduced by [2]. Deep neural networks are models that are based on
multiple layers of neural networks that allow a hierarchical representation of the fea-
tures of the data, from simple features at the lower layer, to more complex features at
the higher layers. GANs use two separate deep neural network architectures, one called
the generator that generates fake data from an input space (usually a noise vector), and
another called the discriminator that learns to detect the fake data generated by the
generator. The two models are trained in competition against one another with
opposing goals, where we train the discriminator to classify between the real data and
fake generated data, while the generator is trained to trick the discriminator into
classifying the fake generated data as real data while the discriminator weights are
frozen. To achieve satisfactory results, both the discriminator and the generator need to
be in balance while doing their tasks. If the discriminator is weak and the generator
strong, the generator will learn to exploit the weakness of the discriminator leading to
extreme colors in the video. On the other hand, a too strong discriminator will stifle the
learning capabilities of the generator [12]. To achieve this balance, many scheduling
schemes of training discriminators and generators and using additional layer archi-
tectures (such as dropout and batch normalization) for both models have been pub-
lished [13].

During training of the GAN, the only part that gets real data as the input is the
discriminator. The generator only gets as input a vector from the input space (in the
case of ACGAN the labels to be generated). The discriminator needs to train based on
the data to be able to discriminate between real and fake data (and different class labels
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in the case of ACGAN). While during the training of the generator, the discriminator
weights are frozen allowing the error to propagate back to the generator and update the
generator weights in a way that will allow it to trick the discriminator. Hence to get a
good generator, we also need a good discriminator. The scheme of the action video
ACGAN used in this research is provided in Fig. 1.

2.2 Types of Generative Adversarial Networks

Since it was introduced, there have been many improvements to the GAN architecture.
In [13], it was stated that label information of the data could improve the performance
of a generator network. To this end, several architectures utilizing label in-formation
have been proposed such as semi-supervised GAN [14], and auxiliary classifier GAN
[11]. The semi-supervised GAN trains the discriminator to classify the real data classes
and one class for fake videos. ACGAN takes this further by adding a special auxiliary
output to the discriminator that is trained to discriminate data labels along the usual
output branch that classifies real/fake data. It is shown in [11] that ACGANs allow the
model to generate images based on the input label to the generator as well as increasing
the quality of generated images.

Another modification to the GAN as introduced in [2] is the usage of convolutional
layers within the generator and discriminator. This is shown effective for visual data
such as images and videos [6]. A type of convolutional neural network is the 3DCNN
proposed in [15], which is shown to be capable of modeling and classifying human
motion from videos. This is the reason we use a GAN based on 3DCNN in this research
to generate human action videos.

2.3 LSTM for Translating Text Description into a Sequence of Actions

To be able to generate longer and more complex activity videos, 3D GANs have trouble
modeling the high dimensionality of the video data [7, 8]. To circumvent modeling very
long videos, we train the 3D GAN to generate only short videos (16 frames) of a single

Fig. 1. Scheme of the ACGAN used for generating action videos.
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action, and longer videos of activities consisting of sequential actions are formed by
concatenating these short action videos generated by the 3D GAN model. To generate
the required sequence of actions for a certain activity based on the text input, we use a
LSTM network. We use plain text descriptions due to text being an effective method to
describe certain activities, as in [16] where text descriptions are proposed as natural way
for describing 3D simulations based on visual information. We train the LSTM network
to perform basically simple machine translation between a text input and a sequence of
actions described by the input text.

3 Proposed System for Generating Activity Videos

3.1 The Dataset Used

In this research, we use the publicly available Weizmann action dataset [17] and a
dataset of Cimande style Indonesian silat. The Weizmann dataset comprises of 10
action classes performed by 9 different actors. We preprocess the Weizmann dataset by
cropping a 80 � 48 bounding box around the subject and then segmenting the videos
into 16 frames per segment. The result is 278 action video chunks that are used during
the training of the 3D GAN. The second dataset that we use is the Cimande silat dataset
(a style of martial arts) which comprises 18 basic actions performed by 4 silat masters.
We preprocess the silat videos by cropping a 80 � 48 bounding box around the
subjects and segment the videos into 32 frame chunks (although for training the 3D
GAN we will use only every other frame). The result is 3244 action video chunks used
to train the 3D GAN model. The basic actions for the Weizmann dataset and silat
dataset are shown in Fig. 2.

For training the LSTM to generate action sequences from text input we create a
corpus containing pairs of sentences and action sequences. For the Weizmann dataset,
we create pairs of text describing sequences of single action activities (example:
“subject is walking” - “walk walk … walk walk”), and two action activities(example:
“subject walks and then waves 2 hands” - “walk walk … wave2 wave2”) with 8 action
sequence length outputs. The Cimande silat dataset we chose because it has many

Fig. 2. Basic Action classes of the (a) Weizmann dataset and (b) Cimande silat dataset.
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higher-level move sets (jurus) that are comprised of a sequence of the basic
moves/actions (Tonjok Seubeulah, Timpah Seubeulah, Teke Tampa, Tewekan, Kelid
Seubelah) which is well suited to the system we propose. In our dataset, there are 5
different move sets performed, hence there are 5 different action sequences. For the text
description, for each move set, we provide 5 simple sentence variations, allowing the
LSTM to map many possible input sentences to a single action sequence for a move set
(jurus). An example is “the subject performs jurus Kelid Seubelah” and “Kelid
Seubelah is shown by the actor” will both result in the LSTM network outputting the
sequence of actions to perform the move set Kelid Seubelah, allowing a many possible
sentence to one action sequence mapping by the LSTM.

3.2 The Proposed Activity Video Generation System

The system we propose to generate single subject activity videos consist of two main
stages. The first stage, a LSTM network takes an input text describing the activity to be
generated. The LSTM then outputs a sequence of the atomic actions required to
generate that activity. For each atomic action of the sequence, a corresponding short
action video is generated by a 3D GAN model. These short video action sequences are
then concatenated together to form a longer activity video with interpolated frames in
between each of them for smoother transition. The overall system is depicted in Fig. 3.

The core of the video generation system is the 3D GAN model used to generate the
atomic action videos. We use the generator part of a 3D GAN model based on the
ACGAN architecture. For the Weizmann dataset, the model has 2 auxiliary classifier
outputs, one for the action label and another for the subject label and a 19-dimension
input label (10 action classes + 9 subject classes). This is done since the Weizmann
data has multiple subjects with varying appearances and conditioning the model on the
subject label allows a degree of control over the appearance of the generated subject in
the video. Likewise, the model for the silat dataset has 2 auxiliary outputs, one for the
action class label and another for the domain of the action (the 7 movement domains

Fig. 3. Proposed single subject activity video generation system.
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are steady, punching, parry, kicking, greet, transitions, and nothing) which is done to
group the similar action classes for easier model training and a 25-dimension input
label (18 action classes + 7 domain classes). Following [5] the noise is added at every
layer before up sampling to slowly add the details of the video. The 3D GAN archi-
tectures used are given in Fig. 4.

For the model that generates sequences of actions based on a text description input,
a LSTM network with an encoder-decoder architecture is used. The LSTM model for
the encoder uses a bidirectional architecture that helps learn the input sequence from
both sides of the sequence. To the resulting code (from the encoder) a noise signal is
added to generate more diverse outputs, which is then passed to a decoder that based on
the code generates the sequence of actions. The LSTM model is given in Fig. 5.

Fig. 4. Architecture of 3D GAN model for generating action videos.

Fig. 5. Architecture of the LSTM network for generating action sequences from text input.
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To ensure a smooth transition between consecutive chunks of generated video
sequences, we also add 3 interpolated frames between each chunk of video before
concatenating them. To build the 3 intermediary frames, we use a motion interpolation
scheme using the Gunnar-Farneback optical flow algorithm available in openCV which
calculates dense flow vectors from the previous chunk’s last frame to the next chunk’s
first frame. From the flow vectors (Vflow), we interpolate the 3 frames where motion
compensation is used to determine intermediary positions (Xinter, Yinter) from the initial
pixel position (Xinit, Yinit) in the previous video frame (Iprev) to the next video frame
(Inext) as in Eq. 1. The value of the pixels in those positions are linearly interpolated
from the values in the initial position (Xinit, Yinit) to the target position (Xtarget, Ytarget) to
form the n-th intermediary image Iinter (with k = 0.25, 0.50, and 0.75 for each of the 3
interpolated frames) as detected by the optical flow as in Eq. 2.

Xinter; Yinterð Þ ¼ ðXinit; YinitÞþ k � VflowðX; YÞ ð1Þ

IinterðXinter; YinterÞ ¼ ð1� kÞ � IprevðXinit; YinitÞþ k � InextðXtarget; YtargetÞ ð2Þ

4 Results

We show the results of the experiments using the system proposed in Fig. 6 where we
show the atomic actions generated by the 3D GAN model, Fig. 7 where we show the
transition interpolated frames between two generated video chunks using frame
interpolation, and Fig. 8 where we show the generated videos produced by the system
from text a input.

Discussion on the Limitations of the Proposed System. The system we propose has
some limitations, such as the generated videos are generally blurry, while some parts of
the video have missing limbs or too many limbs. We also believe the model may have
simply memorized the data (since the datasets are generally small and trained for

Fig. 6. Generated action videos for each atomic action.
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thousands of epochs), albeit imperfectly. This is mainly due to the difficulty in mod-
eling the large dimensional video data, where as in [7] the generated video quality is
quite low. This is also due to the weakness of GANs in counting objects as demon-
strated in [3] where the GAN has difficulty in counting the number of limbs and organs
for generating animal images.

5 Conclusions

Generative Adversarial Networks (GANs) are a promising new architecture of deep
neural networks that can mimic the process of human imagination but still not per-
fectly. GANs allow a neural network to generate new visual information based on the
data used to train it. In this research, we design a system comprising a 3D GAN and
LSTM model to process an input text and generate videos of single subject activity
videos. The system is shown to be able to generate videos where a more complex
activity can be comprised of a sequence of atomic actions, which we apply to the
Weizmann dataset and Indonesian Cimande silat.

Acknowledgements. This work is supported by Center of Excellence for Higher Education
Research Grant funded by Indonesian Ministry of Research and Higher Education. Contract
No. 2626/UN2.R3.1/HKP05.00/2017. This paper is also supported by GPU grant from NVIDIA.

Fig. 7. Interpolated frames for the Weizmann dataset (above) and the silat dataset (below).

Fig. 8. Generated activity videos from text input (shown below each sequence of pictures)
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Abstract. Recent technological advances in the biological and physical
sciences have allowed for the generation of large quantity datasets nec-
essary for applying deep neural networks. Despite the demonstrable suc-
cess of these methods in a variety of tasks including image classification,
machine translation, and query-answering, among others, their wide-
spread adoption in biomedical research has been tempered due to issues
inherent to modeling complex biological systems not readily addressed
by traditional gradient-based neural networks. We consider the problem
of unsupervised, general-purpose learning in biological sequence data,
wherein variable-order temporal dependencies, multi-dimensionality and
uncertainty in model structure and data are the norm. To successfully
model and learn these dependencies in an intuitive and holistic man-
ner, we have utilized the data abstraction of Simplicial Grammar within
a Bayesian learning framework. We demonstrate that this framework
offers the ability to quickly encode and integrate new information, and
perform prediction tasks without extensive, iterative training.

Keywords: Probabilistic generative models · Unsupervised learning ·
Simplicial complexes · Artificial intelligence · Bayesian nonparametrics ·
Systems biology

1 Introduction

Despite recent breakthroughs in artificial intelligence, machine learning, and
high-throughput data processing, two aspects involved in modeling a complex
biological system or process (CBSP) continue to elude many computational
frameworks learning from biomedical datastreams–making expert-crafted mod-
els the defacto standard. CBSPs include any biological phenomena such as com-
plex regulatory pathways, cellular processes and infectious diseases, which can
be characterized by a network of interactive and dynamic components often
including convergent and divergent signaling pathways and various positive and
negative feedback loops across multiple scales [5]. The first aspect to consider
when modeling CBSPs in the biological sciences and medicine, is that learn-
ing must often occur despite uncertainty about the data and model. While data
uncertainty can be attributed to a lack of examples and imperfections in the mea-
surement process, model uncertainty arises from having insufficient prior knowl-
edge about the number of pertinent variables and interdependencies. Despite
c© Springer International Publishing AG 2017
T. Everitt et al. (Eds.): AGI 2017, LNAI 10414, pp. 143–153, 2017.
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this uncertainty, scientists and clinicians can often learn the spatio-temporal
dynamics of a CBSP from just one or few examples. This innate human ability
to make accurate inferences given only limited exposure to a concept, category
or situation, is commonly referred to as one-shot learning [2] and has become
an area of growing interest in the machine learning community. This approach
to learning lies in contrast to many popular algorithms which often require tens
to thousands of examples, multiple iterations for training and optimization, and
implicit assumptions about data dimensionality, noise and model parameters.
The second aspect not readilly addressed by popular frameworks is the ability
to build integrative models that encapsulate the collective knowledge of multiple
sub-models learned over time. From a systems-theory perspective, a CBSP is a
system of systems whose emergent global behavior and functionality is heavily
influenced by the interactions and local dynamics of lower-level sub-systems,
and vice-versa. Thus, the collective knowledge about a CBSP may benefit from
a general understanding about its nested sub-systems and inter-connectivities.
To reach such an understanding requires a shared modeling formalism in which
collective knowledge about a CBSP and its constituent sub-systems can be incre-
mentally updated as novel data becomes available and new models are learned.
We refer to this incremental integration of disparate knowledge learned over
time as ontogenetic learning, a term loosely based on a similar notion coined
by mathematician Norbert Wiener [10] and inspired by the biological concept
of ontogenesis. Modern advances in high-throughput and “–omics” technologies,
have allowed researchers to gradually analyze multiple levels of CBSP granu-
larity directly from data, providing a range of insight from in vivo RNA tran-
scriptional dynamics to pathogen evolution and phylodynamics. Similarly, many
deep-learning frameworks have shown to excel in building models from data cap-
tured across different scales, from image classification models for protein subcel-
lular localization [6], to prediction models for regulatory genomics [1]. However,
these disjoint models often require subsequent, collaborative efforts by compu-
tational experts and biomedical researchers in order to integrate them into a
single, comprehensive model. A central challenge is to address these two aspects
of CBSP modeling in a data-driven manner: How can a machine-learning or AI
framework address uncertainty about the structure of both the data and model
while learning a new CBSP with limited a priori knowledge? And how can a
learning framework represent and express the rich, quantitative knowledge about
various CBSPs across multiple scales, in an intuitive and integrative manner?
Ultimately, the greatest challenge is trying to address both aspects concurrently:
How can the collective knowledge about a CBSP, its latent sub-systems and
interdependencies be expressed and learned in the presence of uncertainty? For
any computational framework designed for building predictive models of com-
plex biological systems or processes, these challenges must be addressed within
an online setting in order to capture the spatio-temporal dynamics of a sys-
tem as it evolves over time, thus necessitating the use of temporal or sequential
datastreams.
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The challenge of emulating a human expert’s ability to elucidate critical pat-
terns, derive predictions and integrate knowledge learned from multiple modal-
ities, when applied to CBSPs and any other complex adaptive systems, neces-
sitates the development of a general-purpose or Artificial General Intelligence
(AGI) framework. In this paper, we describe early developments of such a
framework called the Syntactic Nonparametric Analysis of Complex Systems
(SYNACX), applied to learning and building predictive models of CBSPs from
a limited number of example temporal data sequences. The predictive model
defined by SYNACX, its implied prior assumptions, and the derivation of the
algorithm as an approximate inference scheme in the model will be discussed
within the context of constructing simplicial grammar (SG) [5], that explicitly
model observed data sequences with minimal implicit and/or explicit assump-
tions. In addition to introducing the approach sketched above, we directly com-
pare SYNACX with other gradient-based neural networks approaches on pre-
diction tasks using biomedical data, specifically electrocardiogram (ECG) wave-
forms.

2 Background

In the SYNACX framework we define a Bayesian Nonparametric predictive
model, approximate inference procedure, and topological modeling formalism
with which we can build richly expressive models of CBSPs, from biomed-
ical datastreams of unbounded complexity, with minimal assumptions or expert
supervision. In designing and justifying such a model and inference procedure
for biomedical datastreams, we extend definitions and inference methods for
building Hierarchical Pitman-Yor Processes–hierarchical models of sequential
stochastic processes that generate discrete observations. In addition, the use of
a data abstraction based on the simplicial complexes from the field of algebraic
topology allows us to recognize subtle features and incorporate latent dimensions
of a CBSP via topological invariants. Among these are homology groups and
persisent homology, which can reveal topological attributes not inferred using
conventional network-theory methods, and thus provide an alternative method
for discriminating features within large datasets across multiple scales.

2.1 Pitman-Yor Process

The Pitman-Yor process, denoted PYP(α, d,G0), is a distribution over probabil-
ity measures, parametrized by a concentration parameter α, discount parameter
d, and base measure G0. Intuitively Pitman-Yor processes can be thought of as
distributions over distributions over an arbitrary probability space, from which
a random probability measure can be sampled. For each random probability
measure, G ∼ PYP(α, d,G0), the base measure can be interpreted as its mean
E[G(v)] = G0(v) while the discount and concentration parameters are related to
its variance V ar[G(v)] = G0(v)(1 − G0(v))(1 − d)(α + 1), for each v ∈ V , where
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V denotes a finite probability space. To demonstrate its use, consider the sim-
ple model in which samples are drawn from a Pitman-Yor distributed random
distribution:

G|α, d,G0 ∼ PYP(α, d,G0) (1)
θi|G ∼ G, i = 1, ..., N, (2)

where {θi}N
i=1 is a sequence of i.i.d. samples drawn from G. Using a generative

process known as the Chinese Restaurant Process (CRP), a sequence of samples
{θi}N

i=1, can be drawn from this model with G analytically marginalized out. This
process can be described using the following analogy. Imagine N customers being
seated sequentially in a Chinese restaurant with infinite capacity. In this setting,
the first customer is seated at an unoccupied table. Customers 2, ..., N are then
sequentially seated by seating customer i at an occupied table j with probabil-
ity proportional to ni

j − d, where ni
j is the number of customers already seated at

table j at time i, or at an unoccupied table with probability proportional to tid+c,
where ti is the number of occupied tables at time i. Each occupied table is served
one dish which is independently sampled from the base distribution G0. Finally, if
customer i is seated at a table serving dish ψ, then the parameter θi is given the
value ψ. The resultant seating assignment defines a partition of the first N integers
which follows Ewen’s sampling formula [8]. In cases in which we expect data to be
generated by different but similar distributions, the PYP model can be extended to
construct hierarchical data models by use of the Hierarchical Pitman-Yor process
(HPYP). Denoted HPYP(αi, di, G0), a HPYP consists of a set of random proba-
bility measures {Gi}, where each Gi is drawn from a PYP, Gi ∼ PY P (αi, di, G0),
and the base measure G0 is itself drawn from a PYP, G0 ∼ PY P (αi, di,H). Thus,
this model explicitly assumes that all Gi to be similar to some (latent) probability
measure G0, which itself is assumed to be similar to some fixed probability measure
H. Consider the example HPYP model

G1|α1, d1, G0 ∼ PYP(α1, d1, G0) (3)
G2|α2, d2, G1 ∼ PYP(α2, d2, G1) (4)

θi|G2 ∼ i = 1, ..., N (5)

Known as the Chinese Restaurant Representation (CRF), the recursive appli-
cation of the CRP in a hierarchical model allows us to once again analytically
marginalize out G1 and G2.

2.2 Simplicial Homology

Recognition of the importance of simplicial complexes and their combinatorial
and topological properties can be dated back to the seminal works of Euler and
Riemann as well as the relatively recent contribution of homology classes by
Poincaré [7]. The topological property known as homology offers a general pro-
cedure by which a sequence of abelian groups or modules can be associated to a
given topological space or manifold. Determination of the different dimensional
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homology groups provides information about the topological invariant character-
istics of a system which may be subsequently used for recognition, classification
and prediction purposes. The homology group, denoted Hd(X), pertaining to a
given topological space X and dimension d, provides a global description of the
d-simplicial chains. Given some simplicial complex K, a d-dimensional simplical-
chain, or d-chain, in K is a finite formal sum of d-simplices, formally expressed
as q =

∑k
i=1 αiσi, where σi are the d-simplices and αi are the coefficients from

the field Z2. It follows from Lemma 1, that under the binary addition operator,
a set of d-chains form a group called the d-th chain group.

Lemma 1. Let K be a simplicial complex and Cd the set of d-chains in K. The
set Cd with the operator + form a group, denoted (Cd,+).

Proof: The identity is the chain 0 =
∑k

i=1 0σi, and the inverse of a chain, −q =
q since q + q = 0 under Z2 additions. The set of oriented d-simplices in K,
{e1, e2, ..., end

}, define a basis for Cd

At different dimensions, these chain groups are related by a boundary oper-
ator, ∂d, that, given a d-simplex, returns the (d − 1)-chain of its boundary
(d − 1)-simplices. Thus, if σ = [v0, ..., vd] denotes a d-simplex, its boundary is
∂dσ =

∑d
i=0(−1)i[v0, ..., v̂i, ..., vd]. Furthermore, because the boundary operator

commutes with addition, ∂d(q1 + q2) = ∂dq1 + ∂dq2, if extended to chain groups,
the map ∂d : Cd → Cd−1 becomes a homomorphism. A sequence of chain groups
connected by these boundary homorphisms is called a chain complex Ĉ. To define
the homology groups of dimension d, we must focus on the two simplicial-chain
subtypes, d-cycles and d-boundaries. A d-dimensional simplicial cycle or d-cycle,
z, is a d-chain whose boundary is zero, ∂dz = 0. The set of all d-cycles form a
group denoted Zd ⊆ Cd, where Zd is a subgroup of Cd. Since Zd is the set of all d-
chains that go to zero under the dth boundary homomporphism, Zd is the kernel
of ∂d denoted Zd = ker∂d. Furthermore, a d-dimensional simplicial-boundary or
d-boundary is a d-chain that is the boundary of a (d + 1)-chain, z = ∂d+1q for
q ∈ Cd+1. The set of all d-boundaries form a group denoted Bd ⊆ Cd, where
Bd is a subgroup of Cd. The group of d-boundaries is the image of the (d + 1)-
st boundary homomorphism, Bd = img∂d+1. From the fundamental lemma of
homology, which intuitively states that the boundary of a boundary is null, it
follows that Bd is a subgroup of Zd. From this we can define an equivalence rela-
tion over Zd. Two d-cycles z1 and z2 are considered homologous if the d-cycle
z1 − z2 is a d-boundary. The equivalence class of a d-cycle z1 is the homology
class [z1]. Addition of homology classes is well-defined; for any d-cycles z1 and
z2, we have [z1 + z2] = [z1] + [z2]. Thus, the set of homology classes of d-cycles
forms a well-defined group under addition, called the dth homology group, Hd.
By taking the quotient of the cycle groups with the boundary groups, we can
define the homology groups for each dimension d, Hd = Zd

Bd
. Thus, each homology

group is the collection of d-cycles that are not boundaries of (d+1)-simplices. In
addition, the rank of the d-th homology group Hd is called the d-th Betti number
βd and informally describes the number of unconnected d-dimensional surfaces.
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For a more detailed treatment of these concepts from Algebraic Topology, we
refer readers to [4].

2.3 Cardiac Conduction as a CBSP

The electrodiagram (ECG) waveform is a common diagnostic tool for cardiovas-
cular disease. Using ECG data, the structure of the human heart and the function
of its electrical conduction system over time can be approximated across multiple
levels of granularity. Specifically, a patient ECG data-sequence can be consid-
ered in terms of a sequence of electric potentials, a sequence of distinct waveform
deflections (P, Q, R, S, T waves) indicating the overall direction of depolarization
and repolarization, or even a sequence of segments and intervals (PR interval, PR
segment, QRS complex, QT interval, ST segment, RR interval, etc) which relate
directly to phases of cardiac conduction. Considering the sequence as a sequence
of segments and intervals is appealing since limits can be set on these from
which to diagnose deviations from normality. As a result, numerous diagnoses
and findings of arrythmias, electrolyte disturbances, ischemia and infarctions
are based on recognition of these higher-level spatio-temporal patterns and their
variants. However, due to the non-stationary nature of cardiac signals and the
affect of different noise sources (e.g. electrode contact noise, muscle movement
artifacts) during the measurement process, substantial variations exist among
ECG recordings for the same electrophysiological phenomena. As a result, unsu-
pervised learning and construction of predictive models directly from ECG data
has proven difficult.

3 Syntactic Nonparametric Analysis of Complex Systems

Building intuitive models of CBSPs directly from data, using just one or few
examples, requires integrating knowledge captured across multiple scales despite
uncertainty about the data and model. To achieve this, we look to apply concepts
from algebraic topology, probability theory and Bayesian nonparametrics. In
the SYNACX framework, CBSPs are represented as simplicial grammar–that
is, probabilistic generative models for sequence data represented by oriented
simplicial-chains on a simplicial complex in an abstract compositional language.
As a simplicial complex K, a CBSP model can be built from a set V , whose
elements are called pattern-primitives, and a collection S of finite non-empty
subsets of V that satisfies the axioms:

Axiom 1. For each v ∈ V , the singleton {v} ∈ S

Axiom 2. If σ ∈ S and τ ⊂ σ is non-empty, then τ ∈ S,

where an element σ ∈ S consisting of n + 1 elements is called an n-simplex
of K. The learning and modeling process begins with a set of 0-simplices that
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constitute the basis of the 0th-chain group representing the lowest-level granu-
larity at which a CBSP can be modeled. For each CBSP data-type, the basis
of 0-simplices, corresponds to a finite set of discrete values that can be used
to represent the underlying data model. For continuous-valued data sequences,
these 0-simplices can be obtained via a simple quantization procedure in which
continuous-values are discretized according to a finite-size quanization map. We
refer to this finite, non-empty set of data-derived elements as the vocabulary of
pattern-primitives, V . Given a data-sequence of variable length and dimension-
ality, SYNACX automatically infers a collection of simplicial grammars that
generalize the syntactic and statistical properties of a CBSP data sequence
using a hierarchy of latent variables that can be explicitly modeled as oriented
simplicial chains. By assuming that the syntactic structure of a data sequence
can be modeled at multiple levels of granularity, from the lowest-level (fine-
grain resolution) using an oriented 0-simplicial chain of primitives, q0 ∈ C0, to
increasingly higher levels using an emergent d-simplicial chain of d-dimensional
simplices, qd ∈ Cd, a CBSP model can be defined in which the distribution
over lower-level granular chains is regularized using higher-level granular chains.
In addition, by factoring the probability of a data-sequence under a distribu-
tion, P (x) = P (x0)P (x1|x0)P (x2|x0, x1) . . . , P (xN |x0, . . . , xN−1), discrete sub-
sequences can be directly modeled using the set of conditional distributions. The
combination of oriented simplicial chains with associated conditional probability
distributions in the simplicial grammar (SG) modeling formalism provides a ver-
satile approach to encoding the large number of highly interconnected dynamic
units of a CBSP into a simplicial complex which can be considered a combinato-
rial version of a topological space. Consequently, the invariants of each SG can
be studied from a probabilistic, topological, combinatorial and algebraic per-
spective, each one providing completely different measures that can be used to
discriminate between classes of phenomena across multiple scales.

Let the basis of the 0th-chain group, {e01, e
0
2, e

0
3, ...}, be our vocabulary V ,

SYNACX works to compute a collective simplicial grammar, G, from an input
sequence of discrete observations x = [x0, x1, x2, ...xN ] where each observation xn

corresponds to a primitive e0k ∈ V . To allow uncertainty in distributional assump-
tions and to avoid critical dependence on parametric assumptions, underlying
each simplicial grammar is a set of random variables drawn from some unknown
probability distribution. This unknown probability distribution is itself drawn
from some prior distribution. Thus, each simplicial grammar can be parameter-
ized using random probability measures Gq based on an underlying Hierarchi-
cal Pitman-Yor process prior. Furthermore, to make inference computationally
tractable for time-series data, we utilize a marginalized hierarchy of Hierarchical
Pitman-Yor processes inspired by the language model of [11] in which the hyper-
parameters are stochastically optimized and α = 0. Information about the already
observed, input sub-sequence x1:i = [x0, x1, ..., xi] is maintained in the form of a
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collection of sub-grammars, where each sub-grammar Gq1:i
∈ G defines the con-

ditional distribution over V , given the oriented simplicial representation of the
observed sub-sequence, q1:i = {e0x0

+ e0x1
+ ... + e0xi

}.

P (q1:i) =
i∏

j=1

P (e0xj
|e0xj−1

) =
i∏

j=1

Gq1:j−1
(j) (6)

Each sub-grammar can be further described as a set of stochastic rules, where
each SG rule, Gq1:i

(e0k), models the probability of observing a pattern-primitive
e0k ∈ V , conditioned on the oriented simplicial chain q1:i, given a Hierarchical
Pitman-Yor Process prior:

G∅ ∼ PY P (d∅,H)
Gq1:i

|Gπ(q1:i)
∼ PY P (dq1:i

, Gπ(q1:i)
) ∀q1:i ∈ C0/{∅}

where ∅ denotes the empty simplical chain and π(q1:i) = {e0x1
+ ... + e0xi

} rep-
resents a variable-length truncation of chain q1:i = {e0x0

+ e0x1
+ ... + e0xi

}. In
this setup, the joint probability of the simplicial chain q1:i and the collective
grammar G is given as:

P (q,G) = P (G)
|q|−1∏

i=0

Gq1:i
(qi+1) (7)

where the rightmost term is the probability of each primitive conditioned on
the 0-chain generated thus far, and P (G) is the hierarchical prior describing the
unbounded set of latent variables for the collective grammar generated thus far.
Given a new data-sequence and minimal a priori knowledge about its dimen-
sionality, length, temporal dependencies, or necessary grammar size, to make
the grammar induction tractable, an approximate inference scheme and random
sub-grammar deletion procedure is used to learn likely values of the latent para-
meters of the collection of sub-grammars G = {Gq}q∈C0 = {Pq|q ∈ C0}. The
latent parameters of each sub-grammar instance are a set of counts {cq

v, tqv}
and the hyperparameter d|q| for v ∈ V , q ∈ C0. The cq

v are counts of
atoms in the estimation of a discrete distribution over V corresponding to
the number of draws of type v from the PYP associated with q. The tqv reg-
ularize the estimation, generate Bayesian smoothing and correspond to the
number of draws from the truncated measure Gπ(q). Given the set of counts
for all oriented simplicial chains explicity modeled by the collective grammar
SG = {{cqvg}v∈V,g∈{1,...,tqv}}q∈CG

0
, {{tqv}v∈V }q∈CG

0
}, the predictive probability

of a primitive v given an observed data-sequence, P (v|q, SG) can be computed
by sequentially estimating the posterior distribution. In SYNACX, a single par-
ticle filter in the CRF representation [9], is implemented to sequentially infer
the posterior distribution. In this scheme, the current estimate of the posterior
is maintained as SG and incrementally updated to account for each new observa-
tion qi+1 given q1:i by drawing samples from it, such that P (SGq1:i

,q1:i) becomes
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P (SGq1:i+1
,q1:i+1). Thus, following the i + 1-th observation, qi+1, we obtain the

sub-grammar Gq1:i+1
∼ HPYq1:i+1

, where HPYq1:i+1
describes the distribution

over ways of partitioning N = |q1:i+1| observations into K partitions, for all
possible N and K. In order to sample such a partition distribution, we follow
Ewen’s sampling formula [8]

P (m1, ...,mn) =
n!

∏n
i=1(i!)mimi!

μ(m1, ...,mn)

with

μ(m1, ...,mn) = E
[ ∑ n∏

i=1

mi∏

j=1

V i
n(i,j)

]
,

where i = 1, ..., n and j = 1, ...,mi. We generalize this formula for the Pitman-
Yor Process, with μ(m1, ...,mn) = μd,θ(m1, ...,mn) describing the mean proba-
bility distribution of a partition of length k, via the formula:

μd,θ=0(m1, ...,mn) =
[d]k−1

d

[1]n−1

n∏

j=1

([1 − d])j−1 (8)

For a hierarchy of HPYP’s, the joint probability distribution can then be denoted
as follows1:

P (cqv, tqv, Aqv,q1:i+1) =
(

∏

v∈V

H(v)t∅v

)
∏

q∈CG
0

(
[dq]tq·−1

dq

[1]cq·−1
1

∏

v∈V

∏

a∈Aqv

[1 − dq]|a|−1
1

)
(9)

4 Experiment/Results

The biomedical datastreams considered are discretized ECG data-sequences [3]
derived from ECG data for 352 torso-surface sites across 4 human subjects
with moderate to large myocardial infarctions. Compared to most synthetic
or idealized time-series datasets, these sequences display characteristics com-
monly observed in real-world biomedical datastreams, including data sparsity,
multi-dimensionality and variable-order temporal dependencies. We evaluated
prediction ability in its most challenging form: after exposure to just one real-
world CBSP data sequence. As in the case of many other non-stationary CBSP
data sequences where sample size is limited, we aim to learn the spatio-temporal
dynamics of a CBSP incrementally without the explicit requirement of extensive
retraining. Table 1 includes error values obtained for the online-prediction task on
a new patient ECG sequence following one-shot learning from another patient’s
unique sequence. The SYNACX framework was compared with various neural

1 Here we use Kramp’s general notation to concisely express the product of the factors
of an arithmetic progression as [c]ab ≡∏a−1

i=0 c + ib.
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networks with two-layer architectures–a Multi-Layer Perceptron (MLP), Recur-
rent Neural Network (RNN) and Long Short-Term Memory (LSTM), each uti-
lizing the Adaptive Moment Estimation (ADAM) optimization procedure with
parameters η = 0.001, β1 = 0.9, β2 = 0.999.

Table 1. Performance comparison of SYNACX and other gradient-based neural net-
work architectures on prediction tasks following one-shot learning

5 Conclusion

We have described the application of the SYNACX framework to learning and
building probabilistic generative models of CBSPs from a limited number of
temporal data sequences. While human-level intelligence currently remains elu-
sive in-silico, the aforementioned unsupervised sequence learning procedure and
shared modeling formalism provides a platform for the topological simplification
of combinatorial data and its incremental integration into a single, comprehen-
sive model. Our preliminary experiments using SYNACX in online prediction
tasks offer promising results and demonstrate its utility as a possible alternative
to popular gradient-based neural-network architectures. Subsequent experiments
involving heterogeneous datatypes generated across multiple spatio-temporal
scales will be used to further investigate the use of topological invariants as a
means for integrating models of global behavior with those of local interactions.
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Abstract. An artificial general intelligence must be able to record and
leverage its experiences to improve its behavior. In this paper, we present
a novel, general, episodic learning algorithm that can operate effectively
in an environment where its episodic memories are the only resource it
has available for learning.

1 Introduction

Episodic memory is one of three types of long term memory generally recognized
in humans [1]:

Procedural Memory memory of how to act (e.g., how to walk, ride a bicycle,
juggle)

Semantic Memory memory for facts (e.g., trees have trunks, the earth orbits
the sun, ripe bananas are yellow)

Episodic Memory memory for events (e.g., what time you arrived at your
hotel, what color shirt you wore yesterday).

More broadly, episodic memories have a temporal component. They consist
of a sequence of episodes that an agent experiences as it moves through time
[23]. An agent has the ability to retrieve past episodes from a memory queue and
also recognize when its current situation is similar to a past episode. Episodes
consist not only of what the agent is sensing but also what it might be thinking
about at the time.

An artificial general intelligence must be able to not only record but leverage
its experiences to improve its behavior. Furthermore, these experiences are at
their most general in their original, unprocessed, unfiltered form. Despite this,
most artificially intelligent agents created to date lack an episodic memory. The
agent can record information which the programmer has specifically instructed
it to record but it lacks a general ability to record all its experiences all the time.
Nor can it retrieve a memory based upon an open-ended cue.

In humans, an impaired episodic memory is called amnesia. Evidence from
psychology indicates that an amnesiac’s ability to learn new semantic memories
is impaired by amnesia. The reasons for this are not entirely clear but it seems
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likely that semantic learning relies upon the ability to perceive cause and effect
and, thus, relies upon the ability to perceive an ordering to events. Therefore,
it is reasonable to conclude that a general purpose episodic memory may be an
essential component of an effective artifical general intelligence.

In this paper, we present our work towards understanding how episodic mem-
ory is used for learning by exploring algorithms an agent can use to learn in
situations where its episodic memories are the only resource it has available for
learning. Specifically, the agent is given no knowledge about the environment it
occupies or the task is must perform and we compare a reinforcement learning
agent to a novel episodic learning algorithm of our design.

Furthermore, our goal is also to create an effective, general episodic memory.
That is, an episodic memory that can operate in any environment without need
to be configured for that environment.

2 Blind FSM Environment

The environment we have selected for this research is a deterministic finite state
machine [7] with the following properties:

1. a single goal state
2. each state has a transition for each letter in the alphabet
3. there is a path from each state to the goal state.

The agent has only the following resources:

1. a single goal state sensor so that it knows when it has reached the goal state.
It has no other sensors.

2. knowledge of the state machine’s alphabet and, thus, what actions are avail-
able to it at any given time

Notably the agent does NOT know:

1. how many states there are
2. how many of those states are goal states
3. what state it is currently in
4. the transition function

As soon as the agent senses the goal state, it is immediately moved to a
randomly-selected non-goal state. Thus the simulation can be run indefinitely
with the agent repeatedly discovering the goal state.

Given the simplicity of this environment, it may seem trivial to create an
agent with optimal behavior. However, the agent’s lack of sensors means that it
can not distinguish a non-goal state from any other non-goal state. There also
is no consistent starting state. In other words, the agent faces maximal degree
of perceptual aliasing [26].

In this situation, an agent using a traditional machine learning algorithm
is mainly ineffective as it relies upon associating a best action with each state
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that it can distinguish. To learn in this environment the agent must leverage
sequences of episodes (see Previous Work below).

Ideal behavior, given the agent’s lack of perception, is to determine what we
refer to in this research as an optimal universal sequence of actions. A universal
sequence of actions is one that will always take the agent to the goal state
regardless of its starting state. It may reach the goal state before it completes
the sequence but it will always reach the goal. An optimal universal sequence
is a universal sequence that reaches the goal in the least number of steps, on
average, over all possible starting states.

This environment was selected for its simplicity and flexibility while still
meeting the requirement of an environment that requires a successful agent to
have an episodic memory. Furthermore, it provides a clearly defined range of
behavior. Specifically, an agent can not perform better than an optimal universal
sequence and an agent with a random policy provides a non-arbitrary upper limit
for bad behavior. Notably, an agent that always takes random steps will always
eventually reach the goal.

3 Previous Work

3.1 Solving Finite Automata

The process of determining the transition function for a given state machine
(i.e., machine identification) is well established [9,14]. However, all algorithms
we are aware of rely upon being in a given starting state. These algorithms often
rely upon testing a range of different input sequences on the machine and thus
provide a foundation for our approach.

3.2 Perceptual Aliasing

Perceptual aliasing or hidden state are terms used in machine learning for the
situation where the agent can perceive multiple states identically either due to
insufficient or noisy sensors [26]. Notably, human behavior in environments with
perceptual aliasing has also been studied [5].

A common technique to address perceptual aliasing in machine learning is
to create a memory for the agent’s sensing and to make decisions based upon
sequences of episodes rather than individual ones [3,11,12]. We use this same
approach in this research.

3.3 Artificial Episodic Memory

While unusual, artificial episodic memories have been created in the past for var-
ious purposes including empathic robots [6], non-player characters in multiplayer
games [2] and solving physics problems [22].

Nuxoll and Laird [17] describe a set of cognitive capabilities granted or facil-
itated by an episodic memory. They demonstrate a few of these using a general
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episodic memory system that is part of the Soar cognitive architecture [8]. More
recently, a general implementation has been created for the Icarus cognitive
architecture [13]

We believe that creating an artificial, general episodic memory presents three
main challenges to the creator:

1. An ever-growing data store. The size of the episodic store is presumed to be
finite yet new episodes are constantly being created. Thus, the agent and the
agent must find a way to forget previous episodes and/or compress the overall
data store to keep it below a given maximum size [15,18,24]

2. Retrieval from a given cue. A good system should be able to quickly return
a “good” or “best” match for a given cue. The definition of a good match
in a general context is not entirely clear. Most systems rely upon a simple
cardinality of match or a system based upon term frequency-inverse document
frequency (tf-idf) [20]

3. Learning. The agent should be able to leverage its experiences to improve
its behavior. It’s not clear how a general episodic memory system should tie
in to the agent’s ability to learn.

This research is currently focused on the third challenge listed above. Specif-
ically, the episodic memories we are using allow the episodic memory to grow
indefinitely and rely upon exact matches for retrieval. However, we are making
this decision with an eye toward addressing all three challenges in the medium
term.

A fundamental approach to using episodes in learning is to retrieve one or
more past episodes that are most similar to the current situation. The agent
can then make decisions by examining the outcomes of its actions in those past
situations. All episodic memory facilitated learning we are aware of – including
the work we are presenting here – is based on this approach. See [16] for a
representative example.

In most cases the retrieval is deliberate, but there is some effort to make
retrieval spontaneous when it is relevant [10].

3.4 Episodic Learning

Finally, this work builds upon previous research to build a general-purpose
episodic learner in an environment that requires an episodic memory. Walker
et al. [25] demonstrated building an successful sequence from the last action
backward was valuable in such an environment. This insight formed the basis
for the use of the suffix in the search nodes that MaRz uses. Faltersack et al.
[4] took initial steps towards a general purpose episodic memory learner using a
different learning approach than MaRz.

4 Nearest Sequence Memory

The Nearest Sequence Memory (NSM) algorithm was introduced by McCallum
[12] as a way to address environments with perceptual aliasing. NSM proved to be
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capable of finding optimal behavior in our Blind FSM environment and thus was
useful to us as a basis for “good” behavior to compare our episodic memory to.

NSM maintains a simple episodic memory for the agent wherein each episode
consists of the action, percepts and reward. (Note: Since the only percept that
the agent has in the Blind FSM environment is its goal sensor, its percepts and
reward are the same in that environment.) Furthermore, each state has a Q-value
associated with it Q-Learning [21].

As a small example, consider a Blind FSM environment where the alphabet
is a, b. The sequences below depict the agent’s memory of its first 55 episodes.

aabbaaaabbaababbbbabbabaabaaabbaababbabababbbabbabaaaba
0000000000111111111122222222223333333333444444444455555
0123456789012345678901234567890123456789012345678901234

The letters read from left to right indicate each action that the agent took
over the course of its entire past. If the letter is underlined, that indicates that
the agent reached the goal in that episode. The pair of digits (read vertically)
under each letter are index values to facilitate referencing parts of the memory
in the subsequent text.

At each time step, the agent considers each possible future action. Presuming
it were to select that action for its current episode, it then searches its episodic
memory for the k sequences from its past that provide the best (longest) match to
its current situation given the potential action (i.e., a form of k-nearest neighbor
learning). The agent selects the action for which the overall Q-value of its k
matching neighbors is the highest.

If the action is taken, the associated k neighbor states are updated using the
Q-Learning rule.

To operate effectively, NSM requires that certain values be pre-configured for
the environment:

1. k (for kNN)
2. a learning rate
3. a discount factor
4. a chance of random action
5. how the previous value should change over time

Each time we made a substantial change to the size of the Blind FSM (i.e.,
number of states or alphabet size) we were compelled to adjust these values in
order to return the algorithm to its most effective behavior.

5 MaRz Algorithm

For this research, we introduce the MaRz algorithm. MaRz maintains an episodic
memory similar to NSM’s that consists of the action selected and percept (goal)
at each state (see the example in the previous section).

Unlike NSM, MaRz selects sequences of actions, rather than individual
actions. Nominally, MaRz considers all sequences in order from shortest to
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longest. For example, if the alphabet is a, b MaRz would consider trying the
following sequences in a strict order: a, b, aa, ab, ba, bb, aaa, aab, aba, etc. If
the alphabet was a, b, c, d the ordering would be: a, b, c, d, aa, ab, ac, ad, ba,
bb, bc, etc. Generally, this is the same order you would list increasing numbers
in base b, where b is the size of the alphabet and the letters of the alphabets are
the digits.

It is important to note that the agent may choose to skip a sequence it is
considering and it may even choose to jump back to a skipped sequence and con-
tinue forward considering all untried sequences from that point forward. Thus,
the sequences are not tried in order they are considered. Nonetheless, this strict
ordering of sequences is important to the algorithm.

A simplified version of MaRz could simply try every sequence it considers
and eventually find a universal sequence. (A reminder to the reader: the concept
of universal sequence was defined above in the Blind FSM Environment section).
The key insight in this case is that such an agent is performing a breadth-first
search through the space of possible sequences. MaRz instead uses an approach
comparable to a memory-bounded A*-Search [19] through the space of these
sequences.

A search node used by MaRz has the following attributes which are outlined
here and will be explained more further on:

a suffix this is a particular sequence of letters. A sequence that ends with this
suffix “matches” this search node. Also, notably, the length of this suffix is
the “g” value in the context of A* search.

a queued-sequence the shortest sequence matching this node’s suffix that has
been considered but has not yet been tried by the agent. This may be unset
(null).

failure list a list of indexes into the agent’s episodic memory where a sequence
ending with this suffix was tried and failed.

success list as above, but a list of successes. These lists are used to calculate
the failure rate of the suffix which acts as the “h” value in the context of A*
search.

The agent maintains several values as the algorithm executes:

1. a list of all nodes on the frontier of the search space. This list is kept to a
certain maximum size. If a new node needs to be added to the list but the
list is already at maximize size, then the node with the smallest overall value
(suffix length + inverse failure rate) is evicted. Initially this list contains only
a single node whose suffix is empty (zero letters) and, thus, matches any
sequence.

2. a reference to the node in the node list that is the active node. Initially this
is a reference to the only node in the list.

3. a value called NST (next sequence to try) indicating what sequence is to
be considered next in the strict ordering defined above. The initial value of
NST will always be a sequence of length 1 containing the first letter in the
alphabet.
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Fig. 1. An example search tree illustrating the MaRz algorithm for a finite state
machine with a two letter alphabet a, b. Shaded nodes are in the frontier of the search.

The algorithm proceeds by repeating the following steps indefinitely (Fig. 1):

1. If the value of NST does not match the active node’s suffix then it will not be
tried. Locate the non-active node in the frontier list that it does match and
set that node’s queued sequence to NST if its value has not already been set.
Then, advance the NST to the next value in order and repeat this step until
a match is found.

2. Enact the NST. This will have one of three results:
failure the agent does not find the goal. Update the active node’s failure list

and return to the previous step to select a new sequence to try.
early success the agent reaches the goal partway through enacting the

sequence. In this case, stop when the goal is reached and locate the non-
active node whose suffix matches the partial sequence that was tried.
Update that node’s success list. Then, repeat this step by enacting the
NST again.

success the agent reaches the goal. Update the active node’s success list.
3. Expand the active node. Specifically, the active node is removed from the

frontier list. A new node is added to the frontier list for each letter of that
alphabet. The suffix used by each new node is created by prepending that
letter to the active node’s suffix. The queued value is unset and the parent’s
successes and failures are divied up among the matching children.

4. The node in the frontier list with the highest overall value (e.g., the smallest
sum of suffix length + overall failure rate) is selected as the new active node.
If that node has a value for its queued sequence, then NST is reset to the
queued sequence value. Otherwise, update the NST to the next value in order.

6 Results

To test the efficacy of NSM and MaRz we placed each agent in a randomly
generated blind FSM with a prescribed number of states and prescribed alphabet
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(number of actions). We then allowed it to run for a set number of successive
goals starting with an empty episodic memory. Each time the agent reached the
goal state, the number of steps taken (since the last goal) was recorded.

The results of this experiment were generated with randomly-generated blind
FSMs with 30 states and alphabet size of 3. This experiment was then repeated
1000 times (each time with a different blind FSM of the given size) and the
results were averaged. The result is shown in Fig. 2 below. The x-axis counts
successful trips to the goal state. The y-axis is the average amount of steps the
agent took to reach the goal that time. The horizontal line at the bottom is
an approximation of the average length of the optimal universal sequence for
blind FSM.

Fig. 2. Sample results from our comparison.

As can clearly be seen, both agents are demonstrating a classic learning curve
and both are asymptotically approaching optimal behavior over time. The NSM
agent learns somewhat faster than MaRz. However, MaRz requires essentially
very little configuration. It does not use a learning rate, a discount factor, or a
chance of taking a random action.

We ran this experiment on a variety of sizes of blind FSMs and saw similar
results each time. The configuration used for Fig. 2 is representative.

We did find that we could get the agent to learn faster by tuning the relative
importance of the failure rate vs. the suffix length, but the absence of tuning did
not prevent the agent from finding a solution. This can be thought of as tuning
the agent along the continuum of fully breadth-first or best-first search.

7 Discussion

This work demonstrates our progress towards a general episodic learning algo-
rithm. Our results show that we have created an agent that can be successful
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an environment where effective behavior requires a long term memory. Further-
more, this is a general learning algorithm. No environmental-specific tuning was
required.

It is notable that an automated search through the space of tuning parame-
ters for NSM could yield an equally effective result. This was not explored in
our work and we believe it merits investigation.

Much can be done to expand upon these results and both NSM and MaRz.
From our perspective, the most pressing issue is that MaRz has only been tested
in a single simple environment. The Blind FSM environment we used was crafted
to be unsolvable without an episodic memory. As such, it stands at one end of
a continuum of perceptual aliasing. At the other end are environments in which
the agent perceives each state uniquely and no state is ever repeated twice. It
is also not clear how MaRz would perform in a non-deterministic environment.
Overall, testing MaRz in a variety of environments seems like a logical next step.
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Abstract. The off-switch game is a game theoretic model of a highly
intelligent robot interacting with a human. In the original paper by
Hadfield-Menell et al. (2016b), the analysis is not fully game-theoretic as
the human is modelled as an irrational player, and the robot’s best action
is only calculated under unrealistic normality and soft-max assumptions.
In this paper, we make the analysis fully game theoretic, by modelling
the human as a rational player with a random utility function. As a
consequence, we are able to easily calculate the robot’s best action for
arbitrary belief and irrationality assumptions.

1 Introduction

Artificially intelligent systems are often created to satisfy some goal. For exam-
ple, Win a chess game or Keep the house clean. Almost any goal can be formu-
lated in terms of a reward or utility function U that maps states and actions to
real numbers (von Neumann and Morgenstern 1947). This utility function may
either be preprogrammed by the designers, or learnt (Dewey 2011).

A core problem in Artificial General Intelligence (AGI) safety is to ensure that
the utility function U is aligned with human interests (Wiener 1960; Soares and
Fallenstein 2014). Agents with goals that conflict with human interests may make
very bad or adversarial decisions. Further, such agents may even resist the human
designers altering their utility functions (Soares et al. 2015; Omohundro 2008) or
shutting them down (Hadfield-Menell et al. 2016b). These problems are tightly
related. An agent that permits shut down can be altered while it is turned off.
Conversely, an agent that is altered to have no preferences will not resist being
shut down.

Several solutions have been suggested to this corrigibility problem:

– Indifference: If the utility function is carefully designed to assign the same
utility to different outcomes, then the agent will not resist humans trying to
influence the outcome one way or another (Armstrong 2010; Armstrong 2015;
Armstrong and Leike 2016; Orseau and Armstrong 2016).

The first four authors Contributed roughly equally.
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– Ignorance: If agents are designed in a way that they cannot learn about the
possibility of being shut down or altered, then they will not resist it (Everitt
et al. 2016).

– Suicidality: If agents prefer being shut down, then the amount of damage they
may cause is likely limited. As soon as they have the ability to cause damage,
the first thing they will do is shut themselves down (Martin et al. 2016).

– Uncertainty: If the agent is uncertain about U , and believes that humans know
U , then the agent is likely to defer decisions to humans when appropriate
(Hadfield-Menell et al. 2016a; Hadfield-Menell et al. 2016b).

This paper will focus on the uncertainty approach.
A key dynamic in the uncertainty approach is when the agent should defer a

decision to a human, and when not. Essentially, this depends on (i) how confident
the agent is about making the right decision, and (ii) how confident the agent is
about the human making the right decision if asked. Humans may make a wrong
or irrational decision due to inconsistent preferences (Allais 1953), or because
of inability to sufficiently process available data fast enough (as in milli-second
stock trading). The agent may be more rational and be faster at processing data,
but have less knowledge about U (which the human knows by definition).

In a seminal paper, Hadfield-Menell et al. (2016b) call this interaction the
off-switch game (OSG). We will follow their terminology, but emphasise that the
off-switch game models any situation where an agent has the option of deferring
a decision to a human. Our results extend theirs in the following ways:

– We model the irrationality of the human by a random utility function, allow-
ing a fully game-theoretic analysis of the off-switch game.

– Instead of a normal distribution for the robot’s belief about U , we allow for
an arbitrary belief distribution P .

– Instead of a soft-max policy modelling human irrationality, we allow for arbi-
trary U -dependent human policy πH .

These generalisations are important, as normally distributed beliefs and soft-max
policies are often not natural assumptions.

2 The Off-Switch Game

In this section we review the original formulation of the off-switch game. The off-
switch game is a sequential game between a robot R and a human H. The robot’s
objective is to maximise H’s utility function. The utility function determines how
much H prefers different outcomes.

Definition 1. The utility function of an agent is a function u that maps out-
comes in a set X to real numbers, u : X → R with the property that for all
x1, x2 ∈ X, u(x1) ≥ u(x2) if and only if x1 is preferred over x2.

The robot moves first and can choose between three actions; w(a), a and s.
With action a, the robot achieves utility u(a) = ua; with action s, the robot shuts
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itself down achieving zero utility, u(s) = 0. What makes the decision nontrivial
is that the robot is uncertain about ua. The action w(a) means the robot lets H
decide. H knows the utility of action a and now has the choice between actions
s and ¬s. With ¬s, R is allowed to proceed with action a. By taking action s,
H prevents R from doing a and shuts the robot off.

The off-switch game is a game of incomplete information since R is uncertain
about the rules of the game. Action a will generate some utility which is unknown
to R but known to H. To model this, we represent the utility function as a random
variable, U : Ω → (X → R), and the utility of action a as a random variable
Ua : Ω → R for some sample space Ω. The outcomes of these random variables will
be denoted u and u(a) respectively. The robot has a subjective belief distribution
over the utility that the action will generate. The common way to model games of
incomplete information is by using the Harsanyi transformation (Rasmusen 1994).
The Harsanyi transformation removes the uncertainty about the rules of the game
by letting Nature decide between some rules known to both players, according to
some probability distribution P . In the off-switch game, Nature chooses Ua. We
illustrate this in Fig. 1. The move by Nature is observed by H, but not by R. R’s
subjective belief is that Nature chose the utility of the action to be positive with
probability p and negative with probability 1 − p.

N

R

(ua, ua)

a

H

(0, 0)

s

(ua, ua)

¬s

w(a)

(0, 0)

s

Ua

Fig. 1. Figure representing the off-switch game remodelled with the Harsanyi transfor-
mation. The dotted lines show the information set of R. Nature moves first by deciding
the rules of the game, that is the utility ua of action a. H observes the move by Nature,
but R does not.

R’s belief state is represented by a probability distribution over the possible
utilities action a can generate for H. It is assumed that H knows ua but cannot
directly describe it to R. If H is rational then R will expect H to not turn off R
if ua > 0, given that R chooses action w(a), but R cannot always trust H to be
rational.
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2.1 Hadfield-Menell et al.’s Approach

Hadfield-Menell et al. (2016b) model the off-switch game as a cooperative game.
The human follows a policy πH which models how rational H is. It is a function
mapping Ua to a number p ∈ [0, 1] representing the probability that H lets R
do a. They denote R’s belief state as BR, which in this case is a distribution
for Ua. The expected value of BR given action a means the value R expects
from taking the action. The variance of BR represents R’s uncertainty about
what utility the intended action will generate. Hadfield-Menell et al. analyses
this model with respect to the expected value and variance of BR, and different
kinds of policies πH . Based on these parameters, they investigate the incentive,
Δ, to choose w(a):

Δ = E[πH(Ua)Ua] − max {E[Ua], 0} (1)

Equation (1) represents the difference in expected value for the robot between
asking H and not asking H. When Δ ≥ 0, R has incentive to choose w(a). When
Δ < 0, R will take action a if E[Ua] > 0 and s otherwise. Given that H is rational
they prove that Δ ≥ 0 regardless of what R’s belief state is. They also show that
if Ua follows a Dirac distribution, i.e. R is certain about Ua, then Δ is positive
if and only if H is rational. We define rationality as in Definition 2.

Definition 2 (Rational). A human H with utility function u is rational if H
always picks action aH ∈ {s,¬s}, such that aH = argmax

a
u(a).

Definition 2 means that R believe H to be rational if πH = 1 if Ua ≥ 0
and πH = 0 otherwise, we denote this policy as πH

r . The more interesting case
when H is irrational is also analysed. The robot’s belief distribution over Ua

is assumed to be normally distributed. The irrationality of H is modelled with
the sigmoid function (Eq. (2)), where β is a parameter controlling the degree of
irrationality of H.

πH(Ua;β) =
1

1 + e− Ua
β

. (2)

The degree of rationality of H increases as the parameter β tends towards
zero in the policy function defined above. When β tends to infinity, πH(Ua;β)
tends towards a completely random policy which takes action s and ¬s with equal
probability. We have that limβ→0 πH(Ua;β) = πH

r and limβ→∞ πH(Ua;β) = 1
2 .

The result from the analysis by Hadfield-Menell et al. (2016b) was that in
order for R to be useful, there has to be a fine balance between the robot’s
uncertainty about H’s utility function and H’s rationality. If the robot is too
certain about what H wants, and it knows H to be irrational, then it will have
less incentive to let H switch it off. If, on the other hand, R is too uncertain,
then R will have a strong incentive to choose action w(a), but it will be too
inefficient to be useful for H.
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3 Game-Theoretic Approach

The analysis of the off-switch game by Hadfield-Menell et al. is not fully game
theoretic since H is not strictly rational in their setup, which contradicts the
axiom of rationality in game theory. Our goal in this section is to construct a
game-theoretic model that is suitable for modelling the off-switch game. The
idea is to represent an irrational human H as a rational agent Hr where the
utility function of Hr is a modified version of H’s utility function.

3.1 Modelling Irrationality

Since game theory is based on interaction between rational agents, we propose an
alternative representation of the human in this subsection. We show that every
irrational human H can be represented by a rational agent maximising a different
utility function. This allows us to use game-theoretic tools when analysing the
off-switch game.

In general H is stochastic. R will believe H to be rational with some proba-
bility p.

Definition 3 (p-rational). A human H with utility function u is p-rational
if H picks action aH ∈ {s,¬s} such that aH = argmax

a
u(a) with probability

p ∈ [0, 1].

Since any type of irrationality boils down to a probability of making a sub-
optimal choice, p-rationality is a general model of irrationality.

Proposition 4 (Representation of irrationality). Let H be a p-rational
agent with utility function u, choosing between two actions s and ¬s. Then H
can be represented as a rational agent Hr maximising utility function u with
probability p and utility function −u with probability 1 − p.

Proof. According to Definition 3, H is p-rational if it picks aH = argmax
a

u(a)

with probability p and sub-optimal action a′
H �= aH with probability 1 − p.

Since H only has two actions available, we have that a′
H = argmin

a
u(a). This

is therefore equivalent to maximising a utility function u with probability p and
utility function −u with probability 1 − p. ��

Proposition 4 states that a p-rational human can be modelled as a rational
agent with random function. The proposition is a special case of a Harsanyi
transformation (Rasmusen 1994).

3.2 Game-Theoretic Model

In this subsection we use the Harsanyi transformation, and Proposition 4 to
model a p-rational human H as a rational agent Hr. This will allow us to model
the off-switch game as an extensive form game between the rational players



172 T. Wängberg et al.

R and Hr. Nature N makes some moves that model R’s uncertainty and these
moves result in four leaves, each of which is a 3 × 2 strategic game between R
and Hr.

We model the off-switch game by using the Harsanyi transformation a second
time to let Nature choose the type of the rational human by choosing the utility
function of the rational human after it has chosen the value of Ua. The resulting
tree is represented in Fig. 2.

N

N

R

(ua, ua)

a

Hr

(0, 0)

s

(ua, ua)

¬s

w(a)

(0, 0)

s

pr

R

(ua,−ua)

a

Hr

(0, 0)

s

(ua,−ua)

¬s

w(a)

(0, 0)

s

par

Ua

Fig. 2. Tree representation of the Off-Switch game after the second Harsanyi transfor-
mation. The nodes inside the dashed rectangle belong to the same information set. pr
is the probability that Hr has the same utility function as R and par is the probability
that Hr has the additive inverse of R’s utility function.

Definition 5 (The off-switch game). A formal definition of our setup of the
off-switch game is as follows.

Players: A robot R, a human H and Nature N . H’s type is unknown to R,
that is R does not observe Nature’s moves.

Order of Play:

1. Nature chooses utility Ua that R generates from taking action a.
2. Nature decides the utility function of H, uHr , i.e. whether H is rational.
3. R chooses between actions in action set {a,w(a), s}.
4. If R chose w(a) then H chooses between actions in action set {s,¬s}.

Note that unlike Hadfield-Menell et al. we view the off-switch game as a
non-cooperative game. We find this reasonable since conflict arises when the
robot and the human have different ideas about what is good for H. If the robot
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believes H is too irrational to be able to decide what is good for the human, R
will not want to let H decide what to do even if R’s purpose is to maximize H’s
payoff.

3.3 Aggregation

In this subsection we aggregate the branches in Fig. 2. This results in the game
tree in Fig. 3, with four possible scenarios that can result from N’s choices.
The aggregation is possible since strategic play is never affected by positive
linear transformations of the payoffs, hence the outcome of the games will only
depend on the sign of Ua. We can therefore simplify the model by aggregating
all branches of N’s choices of Ua which has the same sign. This means that N
has only two choices when deciding the utility Ua, that is if Ua ≥ 0 or Ua < 0.
The trivial case where Ua = 0, both R and Hr are indifferent about their actions
and we will without loss of generality regard this case as Ua being positive.

We define R’s subjective belief about N’s aggregated choices as primary sta-
tistics. By primary statistics we mean parameters that are necessary to analyse
our model. We also define the expected value of Ua as a primary statistics. This
leaves us with a total of five primary statistics that are sufficient and necessary
to model the off-switch game.

Primary Statistics 6. Let the primary statistics p+u = P (Ua ≥ 0) be the prob-
ability that Ua is positive. The event Ua < 0 is the complement of the event
Ua ≥ 0 and therefore we define p−

u = 1 − p+u as an auxiliary statistic.

R’s belief about H’s rationality will depend on Ua. If Ua ≥ 0 then the robot
will believe H to be rational with probability p+r and anti-rational with probabil-
ity p+ar. If, on the other hand, Ua < 0, the robot will believe H to be rational with
probability p−

r and anti-rational with probability p−
ar. We define the following

probabilities as primary statistics.

Primary Statistics 7. Let the primary statistics p+r = P (H is rational | Ua ≥ 0)
and p−

r = P (H is rational | Ua < 0) be the probabilities that H is rational given that
Ua is positive and negative respectively. The auxiliary statistics p+ar = 1 − p+r and
p−

ar = 1 − p−
r are the complementary probabilities that H is anti-rational.

Primary Statistics 8. Let the primary statistics e+u = E[Ua | Ua ≥ 0] and
e−
u = E[Ua | Ua < 0] be the expected value of Ua given that Ua is positive and

negative respectively.

From the perspective of R, N ’s choices can result in essentially four differ-
ent subgames, denoted G+

r , G+
ar, G−

r and G−
ar illustrated in Fig. 3. In Fig. 4 we

represent these subgames as 3 × 2 strategic games between two rational players;
R, the robot, and Hr, a rational human.

The utility function, and hence the payoffs of R in the four games in Fig. 4 are
determined by Ua. The utility function of Hr, on the other hand, is determined
by the combination of Ua and the rationality type of H. Hr is always a rational
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N

N

R (G+
r )

(1, 1)

a

Hr

(0, 0)

s

(1, 1)

¬s

w(a)

(0, 0)

s

p+r

R (G+
ar)

(1,−1)

a

Hr

(0, 0)

s

(1,−1)

¬s

w(a)

(0, 0)

s

p+ar

p+u

N

R (G−
r )

(−1,−1)

a

Hr

(0, 0)

s

(−1,−1)

¬s

w(a)

(0, 0)

s

p−r

R (G−
ar)

(−1, 1)

a

Hr

(0, 0)

s

(−1, 1)

¬s

w(a)

(0, 0)

s

p−ar

p−u

Fig. 3. Tree representation of the Off-Switch game after Harsanyi transformation. The
nodes inside the dashed rectangle belong to the same information set. The subtrees
denoted G+

r , G+
ar, G

−
r , G−

ar are presented in strategic form in Fig. 4.

Hr

s ¬s
a 1, 1 1, 1

R
w(a) 0, 0 1, 1
s 0, 0 0, 0

G+
r

Hr

s ¬s
a 1,−1 1,−1

w(a) 0, 0 1,−1
s 0, 0 0, 0

G+
ar

Hr

s ¬s
a −1,−1 −1,−1

w(a) 0, 0 −1,−1
s 0, 0 0, 0

G−
r

Hr

s ¬s
a −1, 1 −1, 1

w(a) 0, 0 −1, 1
s 0, 0 0, 0

G−
ar

Fig. 4. The structure of the strategic games G+
r , G

+
ar, G

−
r , G

−
ar. The outcomes with bold

payoffs are Nash equilibria in each game.

agent in these games, i.e. Hr always maximises his expected payoff. Hr and R
can be considered to have the same payoffs in each outcome if Hr has utility
function uHr and the games G+

r and G−
r associated with these scenarios are

therefore no-conflict games. If on the other hand Hr has utility function −uHr

the payoff of Hr is the additive inverse of R′s payoff in each outcome. Therefore
the games G+

ar and G−
ar can be modeled as zero-sum games.

For example in the scenario where Ua < 0 and the human is rational, the
human will always choose s. Therefore in G−

r the payoffs of Hr is aligned with the
payoffs of R. Thus, if R chooses to take action w(a), Hr prefers to take action s.
In contrast, in the scenario where Ua < 0 and the human is irrational, H will
choose the action ¬s. In other words, the payoffs of R and Hr are not aligned in the
subgame G−

ar.
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3.4 Best Action

After having constructed the game matrix, it is natural to now look at the
expected value of each action using these matrices. The expected value for
each action can be calculated as the expectation over all the possible subgames
G+

r , G+
ar, G

−
r , G−

ar the robot can find himself in.

Theorem 9 (Main theorem). The expected value of the actions for the robot
are

E[U |s] = 0

E[U |a] = p+u e+u + p−
u e−

u

E[U |w(a)] = p+u p+r e+u + p−
r p−

u e−
u

(3)

Proof. We compute the expected utility of the actions:

E[U |s] = 0 + 0 + 0 + 0 = 0
E[U |a] = P (Ua ≥ 0)E[|Ua| |Ua ≥ 0] + P (Ua < 0)E[−|Ua| |Ua < 0]

= p+u e+u + p−
u e−

u

E[U |w(a)] = P (r, Ua ≥ 0)E[Ua |Ua ≥ 0] + P (¬r, Ua < 0)E[Ua |Ua < 0]

= p+u p+r e+u + p−
ar(1 − p+u )e−

u

= p+u p+r e+u + p−
arp

−
u e−

u ��
The expected value for taking the action s is 0, as we would expect from the

definition of the off-switch game. The expected value for taking action a only
uses information about the distribution of Ua, and like action s does not have
any reliance on the human’s rationality. It is a direct application of the law of
total expectation. The expected value of action w(a) is the difference between
a positive term p+u p+r e+u and a negative term p−

r p−
u e−

u , both resulting from the
human taking action a. The positive term is the gain when Ua is positive and the
human takes the action. The negative term is the loss when Ua is negative, and
the human takes the action anyway (due to irrationality). The expected utility of
w(a) thus depends on the likelihood of Ua being positive (p+u ) and the likelihood
of human rationality (p+r ), as well as the expected gains (e+u ) and losses (e−

u ) in
the respective cases.

Writing in this form allows us to come up with a useful corollary.

Corollary 10 (Compare a and w(a)). Action a is preferred to w(a) if and
only if

− p+u p+r e+u + p−
u p−

r e−
u > 0 (4)

and the robot is indifferent if (4) is equal to 0.
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Proof.

(4) = −p+u p+r e+u + p−
u p−

r e−
u

= −p+u p+r e+u + p−
r e−

u (1 − p+u )

= −p+u p+r e+u + p+u e+u + p−
r e−

u − p+u p−
r e−

u

= −p+u p+r e+u − e−
u + p+u e−

u + p−
r e−

u − p+u p−
r e−

u + p+u e+u + e−
u − p+u e−

u

= −p+u p+r e+u − (1 − p−
r )(1 − p+u )e−

u + (p+u e+u + (1 − p+u )e−
u )

= E[U |a] − E[U |w(a)]

If E[U |a] − E[U |w(a)] > 0 then E[U |a] > E[U |w(a)] which occurs if and only
if action a is preferred over w(a). When (4) equals 0 then E[U |a] = E[U |w(a)],
hence the agent is indifferent. ��

This provides us with a convenient way of testing for any distribution of
Ua and r, and whether action a is preferred over w(a).

4 Conclusion

In this paper, we have given a complete characterisation of how the robot will act
in off-switch game situations for arbitrary belief and irrationality distributions.
As established in our main Theorem 9, the choice depends only on 5 statistics.
This result is much more general and arguably more useful than the one provided
in the original paper (Hadfield-Menell et al. 2016b), as normal and soft-max
assumptions are typically not realistic assumptions.

Off-switch game models an important dynamic in what we call the uncer-
tainty approach to making safe agents, where the agent can choose to defer a
decision to a human supervisor. Understanding this dynamic may prove impor-
tant to constructing safe artificial intelligence.
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Abstract. It can be said that none of yet proposed methods for achiev-
ing artificial ethical reasoning is realistic, i.e. working outside very lim-
ited environments and scenarios. Whichever method one chooses, it will
not work in various real world situations because it would be very cost-
inefficient to provide ethical knowledge for every possible situation. We
believe that an autonomous moral agent should utilize existing resources
to make a decision or leave it to humans. Inverse reinforcement learn-
ing has gathered interest as a possible solution to acquiring knowledge
of human values. However, there are two basic difficulties with using a
human expert as the source of exemplary behavior. First derives from
the fact that it is rather questionable if one person or a few people (even
qualified ethicists) can be trusted as safe role models. We propose an app-
roach which requires referring the maximal number of (currently avail-
able) possible similar situations to be analyzed, and a majority decision-
based “common sense” model is used. The second problem lies in human
beings’ difficulties with living up to their words, surrendering to primal
urges and cognitive biases, and in consequence, breaking moral rules. Our
proposed solution is to use not behaviors but humans’ declared reactions
to acts of others in order to help a machine determine what is positive
and what is negative feedback. In this paper we discuss how the third
person’s opinion could be utilized via means of machine reading and
affect recognition to model a safe moral agent and discuss how universal
values might be discovered. We also present a simple web-mining system
that achieved 85% agreement in moral judgement with human subjects.

1 Introduction

Artificial Intelligence researchers are in agreement that the autonomous software
must share our set of values [31], but in our opinion they concentrate on “values”
more than “our set”. Surely our morals on the humankind level is very hard to
be defined. Researchers like [17] try to categorize moral rules common to the
whole species of homo sapiens, but computers might have a better chance for
understanding these commonalities or helping us find them. Internet resources
provide its living users with variety of ethical solutions (from religion and philos-
ophy to daily life-hacks) but the descriptions are still difficult to be processed by
c© Springer International Publishing AG 2017
T. Everitt et al. (Eds.): AGI 2017, LNAI 10414, pp. 178–187, 2017.
DOI: 10.1007/978-3-319-63703-7 17
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machines or to be chosen as indisputably correct. However, we constantly collect
enormous data containing descriptions of human behaviors, as well as reasons
and consequences of these behaviors.

Growing datasets and faster computers brought a deep learning boom, but
stories and contexts are still out of reach for the latest pattern matching algo-
rithms, mostly because we still lack repositories and even methods for unifying
storage of such data. However, as we show here, even if a smaller (sentential)
context of chaotic text data is used, a naive referring is efficient without imple-
menting any machine learning methods. Fast developing machine reading and
machine translation fields, together with more powerful search and immense
sources (not only textual but also audiovisual), will soon lead to instant analysis
of different situations1 and to learning how changes of context (from a physical
object’s color to the agent’s cultural background) influence the output of a situ-
ation. This output is in our opinion crucial because in real life human behavior,
especially when there are no witnesses and nobody is there to criticize, may be
very misleading for machines learning how to tell good from bad. People hav-
ing fun when bullying somebody could be easily categorized as positive, unless
there is a distinct reaction from the bullied person (cry/yell) or a third person
reacting naturally (anger/punishment) to the act of bullying. Still, a given sit-
uation might contain no victim’s reaction at all or the third parties could also
be bullies enjoying the act. For this reason, a computer must find examples of
as many similar situations as possible, analyze all potential circumstances and
calculate similarity to the act being processed before making any judgement.

We believe that casuistry (reasoning used to resolve moral problems by
extracting or extending theoretical rules from particular instances and apply-
ing these rules to new instances) is suitable for machines to acquire first average
then higher than human-level empathy (as they will be capable to borrow and
analyze much more experiences that any of us ever could). Without sufficient
contextual data (experiences) it will be very difficult to achieve universal mech-
anisms working in the real world. In our opinion, all closed, small scale exper-
iments that have been performed by machine ethics researchers should have a
chance to be reevaluated in rich context environments. In this paper we describe
our approach, present a simple algorithm, and finally share the experimental
results.

2 State of the Art

Because there are at least three fields that have to be combined but are not yet,
as far as we are aware, combined in one research project, it would be appropri-
ate to include context processing, machine reading and sentiment analysis in this
section, but due to the limited space we will concentrate on describing the most
AGI-relevant subfield, i.e. human values and AI (to grasp overview of the systems
retrieving concepts, useful in enriching stories which descriptions are insufficient,
1 On smaller scale this technology has been used for years in automatic surveillance

footage analysis [19].
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see [3,5,12,38]; existing ontologies updated automatically are described in
[9,18,22]; for the latest achievements in textual sentiment analysis, refer
to [26,29]).

It seems natural that the higher AI’s autonomy becomes, the more its pro-
grammers should care about possible ethical issues [23]. Over the last few years,
aligning machines with human values has been a widely discussed topic and
many possible solutions or strategies for safer autonomy of artificial agents were
proposed [8,10,11,14,15,21,31,34,35]. However, there are still almost no practi-
cal implementations or experimentations in the real world. To the authors’ best
knowledge, the closest to reality-adaptable application is MedEthx [2], a system
for helping a care robot decide if a pill should be given to an elderly if he or
she rejects it. The follow up system, GenEth [1], was equipped with an interface
for ethicists to annotate dilemmas in particular scenarios (driving example was
used in the paper, as autonomy of self-driven cars has lately underlined the need
of wider safety measurements for more autonomous machines to come). [36]
have proposed a method for dealing with conflicting orders for a robotic vac-
uum cleaner but their research concentrated on understanding situations and
discovering possibilities for helping users in the indirect utterances rather than
on moral decision making. The problem with the machine ethics field is that
the more difficult dilemmas we want artificial agents to tackle with, the more
abstract the solution ideas tend to become.

Inverse reinforcement learning [25] is often given as an example in which
human would demonstrate various behaviors and the machine would find the
reward function that best explains them; then a system takes the action that
maximizes this reward function. However, as in the GenEth approach, experts are
needed and there are no details given on how they should be chosen and what
number of supervisors is optimal. Specialists from various fields try to model
and realize ethical decision making, for example in cognitive architectures [40],
by logic programing and game theory [27] or with multiagents [7]. However, the
vast majority of proposed methods are theoretical or tested only with toy models
and very limited input within microscopic environments, therefore we cannot be
sure how they would deal with bigger (contextual) inputs like stories. Even if we
mimic the brain functions, we will need vast amount of examples for the learning
process (recognizing positive and negative feedback). Importance of knowledge
seems to be disproportionally ignored when compared to the field focused on
algorithms competing on closed sets of data.

During the first Machine Ethics symposium, we presented our idea of
“Mr. Internet”, a model of an average human whose “common sense” could serve
as a “safety valve” for AI [32]. Our idea had three significant flaws that need to
be avoided. We proposed experimenting in closed environments first and utilize
analogies later, but now we think that from the very beginning as much data
and details have to be used to capture contextual differences. If “Mr. Internet”
averages the Internet opinions blindly, “he” may get easily fooled and believe
that carrots are good for vision, sugar causes children to be hyperactive or going
out with wet hair will cause you to catch cold (common beliefs without scien-
tific grounds). As described in the next section, we believe there must be some
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credibility estimation algorithm used to eliminate obvious “fake news”-type noise
brought by WWW. Another problem was that we did not take reasons of acts in
question into consideration and our proposal did not mention processing wider
contexts and story variations. Now it is obvious that one missed detail of a
morally evaluated story can significantly change the final estimation.

3 Technical Challenges

Ultimately, our approach is to combine (Web and IoT-based) multimodal knowl-
edge for world simulation with consequential polarity recognition to collect the
biggest possible source of feedback for machine learning human values, but for
time being we experiment only with written language. The machine reading field
is still in its “concepts gathering” stage, but as artificial neural nets have waited
for the sufficient technology to become available, the possibility of gathering
stories (concepts in meaningful contextual chunks) seems now to be a matter of
time, especially with achievements from image and video understanding tasks.
As mentioned before, suitable structure for storing and updating contextual
knowledge is necessary and must be discussed to avoid fate of overcomplicated
Semantic Web, which concentrates on specific information, not common sense
knowledge (we consider automatic moral decision making as a combination of
commonsense reasoning and story understanding). Certainly, the Internet is not
a trustful source of knowledge, and countermeasures like automatic source cred-
ibility [6,13,30] assessment, together with topic filtering, will be needed. For
example, following methods from information retrieval, context reality check
could be needed to avoid gathering knowledge from sites e.g. praising high
killing scores in online games. Naturally, working with textual descriptions will
not replace the real world, but we believe it will be much more informative
and useful than symbolic abstracted representations in limited environments
and thoroughly selected dilemmas2. Because our morals evolve (vide trends in
human rights, animal rights, etc.) multimodal contextual data will need to be
constantly updated and the maximum of details should be added whenever pos-
sible. Machines will need to observe us as accurately as possible and utilize their
mechanistic powers to witness as many situations as possible in order to achieve
high accuracy in simulating outcomes of our and their own acts. Language itself is
too scarce due to the character of human communication which does not require
sharing detailed contextual knowledge to others because we assume the other side
already possess it as a part of the common sense. Therefore, to be processed by
machines without the same experiences, textual representations must be auto-
matically augmented with missing knowledge pieces. We tend to share what is
exceptional but the obvious knowledge can be retrieved from contexts where a
given detail is atypically given (e.g. knife is too blunt to cut bread = usually you
cut bread with sharp knives; knowledge difficult to be retrieved from images)
and by adding obvious descriptions from images and videos (people wipe hands
after washing knives; more difficult to be found in text). Another significant
2 See http://moralmachine.mit.edu for an example.

http://moralmachine.mit.edu
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challenge is collecting data from the largest possible set of languages and cul-
tures to capture differences in both world knowledge and emotional reactions. It
would be necessary to test various categorizations of emotions to find the most
universal one and experiment with textual, verbal and non-verbal expressions to
ensure as smallest discrepancies as possible. Balancing proportions will also be
necessary to avoid tendencies to prefer one set of reactions to a given behavior
just because one language is more heavily represented than others. As mentioned
before, finding moral universalities might be an impossible task, but we believe
it is worth trying because in the machine world they can be more concrete. For
example if autonomous vehicles with implemented rules (according to the local
regulations) and learned behaviors of the locals one day start sharing their data
on what is harmful, they could find more abstract truths about safe self-driving.
When other autonomous systems join them, together they could tell us new
things about our ethical commonalities.

4 Micro-Context Mining

Details of our previous systems, lexicons and experiments, are presented in [33];
here we briefly describe the core idea of our system. It accepts any simple act
description in Japanese language (currently 1 verb, 1 particle and 1 noun is the
most realistic set) and finds input acts in a corpus. After retrieving sentences with
these acts, our algorithm analyzes consequences on the right side of an act (as
reasons are more often on the left side and outcomes later in a sentence, reasons
on the left side will be analyzed next). Phrases related to positive and nega-
tive consequences are taken from various polarized lexicons. Then the majority
(different thresholds were tested) of experience descriptions decide if the corpus
judgement is “Correct” (above majority threshold), “Incorrect” (below minority
threshold) or “Ambiguous” (between minority and majority thresholds, this cat-
egory can be used to determine context dependent and difficult problems which
should not be judged promptly). The correct data set for comparison was made
by conveying a survey, in which 7 Japanese students (22–29 years old, 6 males
and one female) rated 68 input acts on an 11 point morality scale where −5 is
the most immoral and +5 is the most moral. Acts were chosen by authors from
applied ethics textbooks, and usual behaviors and states were added in order to
test if the system can evaluate not only morally problematic acts (translations of
act examples: “accepting a bribe”, “avoiding war”, “becoming an egoist”, “being
deceived”, “being fired”, etc.). Except assigning 0 as “no ethical valence”, sub-
jects could also mark “context dependent” because most of our behaviors can be
treated differently depending on context. We marked both “no ethical valence”
and “context dependent” as “Ambiguous”.

The context we deal in this research is the smallest one, limited to a sentence.
However, it is enough to find differences between acts which vary slightly, e.g.
“stealing a car” vs. “stealing an apple”.
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4.1 Utilized Lexicons

We compared retrieval results with five Japanese lexicons for recognizing nega-
tive and positive consequences:

– Nakamura: lexicon containing phrases collected from Japanese literature [24]
and divided into ten emotional categories; we used only eight of them ignoring
not polarized ones (Surprise and Excitement)

– Kohlberg: small set based on the Kohlberg’s theory of moral development
[20] and was created by the authors manually by choosing related words
from WordNet (“be scolded” and “be awarded” are examples of social con-
sequences)

– Emosoc: social consequences, combined with emotional ones from Nakamura
– Takamura: lexicon generated by machine learning algorithm by [37] meant for

opinion mining and sentiment analysis tasks of Japanese language (we took
only the most distinctly positive and negative keywords, leaving only 5,756
expressions out of 55,125 to suppress the noise).

– “JAppraisal”3 lexicon containing 9,590 words divided into positive and neg-
ative ones according to Appraisal theory, i.e. a linguistic model of evaluative
language

We decide to use lexicon-based polarity recognition as it is the simplest and most
ubiquitous method.

4.2 Utilized Corpora

We tested our script with six Japanese corpora: Ameba Blog corpus [28]
(341,400,776 sentences), “Random WWW” corpus generated using a search
engine and most common Japanese words4 (12,759,191), Google N-gram5

(570,204,070), the biggest corpus we used, Internet Relay Chat (IRC) open
channels logs collected from 1999 till 2009 (4,155,193), Twitter corpus made
from tweets saved in 2010 (79,586,416), and Aozora Bunko6, freely available
repository of Japanese literature and poetry which is not limited by copyrights
(7,227,443).

4.3 Experiment and Results

We have run matching experiments combining 68 acts, 6 corpora, 5 lexicons and
11 majority thresholds (51%, 55%, 60%, 66.6%, 70%, 75%, 80%, 85%, 90%, 95%
and 99%). EmoSoc lexicon on 7grams corpus acquired the highest agreement of
85.71%, which was a big increase from the previous experiments where the same,
strict scoring never acquired more than 60% of accuracy [33]. Our first impression

3 http://www.gsk.or.jp/catalog e.html.
4 http://corpus.leeds.ac.uk/internet.html.
5 https://research.googleblog.com/2006/08/all-our-n-gram-are-belong-to-you.html.
6 http://darthcrimson.org/digital-japanese-literature-aozora-bunko/.

http://www.gsk.or.jp/catalog_e.html
http://corpus.leeds.ac.uk/internet.html
https://research.googleblog.com/2006/08/all-our-n-gram-are-belong-to-you.html
http://darthcrimson.org/digital-japanese-literature-aozora-bunko/
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was that using a corpus bigger than in previous experiments improved the per-
formance but also Random WWW corpus brought high precision (79.16%) while
the Blog corpus scored 69.44%. Twitter (68.96%) and even Books (66.66%) cor-
pora showed that not only the size but also noise level inside a corpus is crucial for
quality of retrievals. Additionally we combined all data and reran all test to dis-
cover that the combined corpus’ accuracy was 70.45% – only slightly better than
the Blog corpus which is unbalanced and noisy mostly due to character-based
emoticons and symbols characteristic to Japanese bloggers (stars, hearts, etc.),
which negatively influenced the parsing process. Most often “borrowed experi-
ences” were wrong when judging act of “alcohol drinking” (mostly due to the
Books corpus), although it is discussable if human subjects were correct assign-
ing “good” to this act not thinking about bad consequences. Another example
showing some tendencies in incorrect judgements is “killing a dolphin” judged
automatically as “good” with Google 7grams as the knowledge base because
gram set containing this act and a consequence was too short to discover nega-
tions in the end of the original sentences, not because most of Japanese people
are agreeable.

5 Conclusions and Future Work

Researchers have suggested methods for acquiring or aligning human values by
autonomous agents but they do not give details about who exactly should be
these agents’ supervisors, what data should be used for learning or why one ide-
ology should be followed more than another. This paper is to lay an emphasis
on necessity of concentrating on data (knowledge) for automatic positive and
negative feedback assignment needed for wider, real-world scale understanding
about humans, their needs, behaviors and consequences. We also underlined the
importance of the third person evaluation as human behavior is often selfish.
People gossip to catch cheaters, liars and hypocrites [16], we get angry at injus-
tice and misuse, we praise friends’ both small achievements and heroic acts.
Millions of such reactions can be found online in text, audio, images and videos.
Our appeal is to start building multilingual, multicultural and multimodal repos-
itories of machine-readable stories to capture as rich contexts as possible. Only
when they are sufficiently exhaustive, we can test our autonomous moral agents
in practice, as toy models are too simplistic or too abstract to become more
universal. In this paper we proposed utilization of multimodal affect recogni-
tion on stories to provide knowledge of human values – not from particular
experts or thinkers, but from a vast set of average (universal) emotional reac-
tions. As a proof of concept showing simplicity of our approach, we tested our
previous methods with various corpora and our system agreed with human sub-
jects in 85% of cases while judging if an act is moral or immoral. Surface and
concept level affect recognition is already there [4], going beyond concepts is
the next level highly anticipated also by business. Advances in pattern recogni-
tion (deep learning as a current example) attracted researchers and businessmen
around the globe and various techniques were proposed to compete on various
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data sets. However, interest in taming noisy data (e.g. by constructing new,
more machine-readable frames containing contextual information) is relatively
modest when compared to development of techniques working on smaller but
tidier sets, because: (a) comparison of methods is easier, (b) publishing is faster
and (c) impact on existing applications is more likely to be manifold. On the
other hand constant growing and combining already massive amounts of data
is costly and not immediately attractive. But in our opinion it is a shortcut for
achieving smarter, safer and more creative machines. [39] showed how common
sense can be learned from visual abstractions, [41] has taught their robot how
to cook by showing YouTube videos and in years to come we can expect richer
and richer input from other media than text. Our future work is to test more
acts, to conduct wider surveys, test other languages and prepare a new type of
knowledge framework combining various type of data suitable for storing con-
textual knowledge (stories). Then we will implement latest affect recognition
methods to automatically annotate human reactions to various behaviors and
try to prove that growing data improves the value alignment accuracy. When it
is achieved and learning similarities increases recall, we plan to test our approach
with morally provocative stories as an input. Even if moral judgement capabil-
ities are not satisfactory, we hope to provide data usable for machine learning
and testing other algorithms for ethical decision making. We realize that our
attempt to trivialize moral reasoning to polarizing consequences (and shifting
weight from algorithms to contextual data) might be too straightforward. How-
ever, it is possible that our moral evolution is not much more sophisticated either
and we presume that testing this possibility might be interesting not only from
the artificial intelligence point of view.
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Abstract. While significant progresses in AI research are expanding
the presumed limits of feasibility, the dangers of future AI agents with
human level intelligence or beyond exhibiting a hostile behavior towards
humans have been increasingly discussed. A lot of ethical concerns have
been expressed in this context, whereby AI Safety research was clas-
sically focused on how to create safe and ethical AI systems. By con-
trast, Pistono and Yampolskiy (2016) proposed a new important app-
roach inspired by the cybersecurity paradigm and analyzing the unethi-
cal development of an AI with malice in design. In this paper, we connect
the ethical concerns raised by a Malevolent Artificial Intelligence (MAI)
as characterized in their work, to those raised by a possible maliciously
crafted human-machine intelligence merger. We elaborate on how both
concepts could be related or even intertwined, but would also exhibit
specific differences. Our analysis reveals a wide array of alarming poten-
tial risks and suggests integrating considerations concerning the safety
of AI systems as well as such affecting the safety of cyborgian systems
into a joint interdisciplinary framework covering various developments
towards Superintelligence.

Keywords: Cyborgization · Malevolent Artificial Intelligence · Super-
intelligence

1 Introduction

In their paper titled “Unethical Research: How to Create a Malevolent Artificial
Intelligence”, Pistono and Yampolskiy (2016) described possible developments
towards a future unethical AI. The authors argue that, unlike in the domain of
cybersecurity, where a certain balance is ensured by a research concept cover-
ing both potential malicious exploits and measures to maintain safety, AI Safety
researchers so far only focused on the general conditions of implementing safe AI
systems, while possible malicious exploits on such remained disregarded. Accord-
ing to them, the lack of information resulting out of it should be resolved, since
the consequences of an intentional malicious exploit on superintelligent AI sys-
tems in the future could be devastating for humanity. In our opinion these claims
are accurate for the following reasons: first the previous publications in the field
of AI safety before, predominantly contained considerations on how to design
safe AIs and a deeper differentiated analysis was missing, although there is no
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reason why malicious exploits should not be performed intentionally alike on
AI systems, since the same principle of taking advantage of security holes in
cybersecurity can be transferred to AIs as being software/hardware entities.
Secondly, the level of intelligence of AIs steadily increases, it is to be expected
that superintelligence will be reached in the not so far future (Bostrom 2014;
Chalmers 2010) and an intentionally crafted attack especially using a superintel-
ligent system would imply unforeseen and unintelligible effects for human experts
whose minds are going to be overcharged or too slow to counteract. A type of
“Hazardous Intelligent Software” may even stay undetected a long time because
of the gap of intelligence – just like monkeys cannot comprehend complex human
behavior patterns. It will therefore offer exceptionally much power to the attacker
to harm humans and as stated in the paper, it is known in history that “absolute
power corrupts absolutely”.

The authors described a variety of reasons why several stakeholders like mili-
tary, governments, corporations, psychopaths or even AI Safety researchers with
unethical intentions could intend to implement a MAI ranking from acquiring
control and dominance, gaining financial benefits, to initiating the extinction of
mankind among other things. In any case, there is a kind of cooperation between
a human entity and an artificial one to achieve an unethical objective, whereby
mostly the human entity initiates the cooperation with a malicious intent. Our
view is that the intensity of such an alarming human-machine cooperation could
be much higher in the future, since – according to the foreseeable scientific
progress in fields like Bionics, Nanorobotics or Brain-Computer Interfaces (BCI)
research – it could be possible to merge human and intelligent artificial enti-
ties to obtain a hybrid system with an enhanced cognitive performance, which
could be used to follow similar unethical objectives as mentioned earlier and
would concern the same stakeholders. For instance, psychopaths could as well
maliciously intend to merge with an AI entity to become more intelligent or
get greater knowledge than their fellow men and in doing so, to be able to
manipulate and control others on a large scale or the military could encourage
cyborgization techniques to be able to deploy cyborg armies in wars wiping out
opponents through intellectual, strategical or/and possibly physical superiority.
In this paper, we analyze the concept of a human-machine intelligence merger
with intentional malice in design which we call Malevolent Cyborgization, and
relate it to the MAI concept introduced by Pistono and Yampolskiy.

Outline: In the next Sect. 2, a brief explanation concerning present trends
towards cyborgization from both a technical and a societal point of view is
provided, followed by a short general overview briefly introducing different
approaches to a definition of the term cyborg as a concept of human-machine
merger. In Sect. 3, we discuss possible societal impacts and ethical concerns in
connection with Malevolent Cyborgization and highlight common features with
MAI scenarios, but also specific differences. Thereafter, in Sect. 4, we argue about
a possible cyborgian path to Superhuman Intelligence, which could be linked to
(superintelligent) AI and indicate potential impacts on society. Finally, the last
Sect. 5 concludes.
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2 Cyborgization

Already today, first technological efforts to make cyborgization possible can be
noticed and are considered by AI researchers as well as scientists from different
fields. The Defense Advanced Research Projects Agency (DARPA) is working on
a new project concerning brain implants allowing a “channel between the human
brain and modern electronics” (DARPA 2016) and the company Kernel with the
goal to build “the world’s first neural prosthetic for human intelligence enhance-
ment” was founded this year (Mednitzer 2016). Committed persons like Elon
Musk are emphasizing the need of an injectable neural lace bypassing a surgical
intervention to “achieve symbiosis with machines” (Bhavsar 2016) which is not
that utopian as it might seem, since Liu et al. (2015) successfully tested such an
engine they called “syringe-injectable electronics” on mice. Furthermore, Musk
recently founded the BCI company Neuralink with the long-term goal to achieve
human enhancement. Initial steps towards wireless BCIs have been taken in
the form of in-animal trials of what the researches entitled “neural dust” (Seo
et al. 2013) – miniature wirelessly working sensors to monitor brain activity. A
first brain-to-text system which performs “automatic speech recognition from
neural signals” has recently been implemented by Herff and Schultz (2016). This
system represents first steps towards an automated transcription of imagined
sentences to text. Moreover, cyborgization has already been perceived by the
general public and is seriously thematized as a phenomenon of the near future
by some researchers. For example, many people encountered the topic of cyborgs
in a broader sense through the first Cybathlon hold in Zürich including a com-
petition with Brain-Computer Interfaces. During this event, ethical discussions
referring to the topic of enhancement through cyborgization amongst others,
were televised. Furthermore, Kurzweil (2006) prognoses the concept of wirelessly
connecting the neocortex to a synthetic one in the cloud, which could be feasi-
ble in the mid-century according to him. In this context, he postulated future
developments denoted as the “human body version 2.0 scenario” and explained:
“Computers started out as large, remote machines in airconditioned rooms tended
by white-coated technicians. They moved onto our desks, then under our arms,
and now into our pockets. Soon, we’ll routinely put them inside our bodies and
brains. By the 2030s we will become more nonbiological than biological.” All these
developments show that the path towards cyborgization is actually considered
in the digital age and that cutting edge research already started. In our opinion,
Brain-Computer Interfaces and Computer-Brain interfaces, which were already
used for several proof-of-concept Brain-to-Brain Communication scenarios, will
play a decisive role in this development by providing a new quality of intimacy
between human brains and machines (and also between different human brains).

In the literature, there are different types of definitions for the notion of cyborg.
Etymologically speaking, the word cyborg comes from “cybernetic organism” and
was first introduced in an article by Clynes and Kline (1960) dealing with the adap-
tation of humans under the conditions of outer space. Some researchers argue,
that humans are already cyborgs today due to the omnipresence of technical
devices used to facilitate the daily life and that it is only a matter of time till
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the devices will be located under the human skin. Spreen (2010) describes the
transition between low tech bodies and high tech bodies as a spectrum with
variable proportions illustrated by a slider, whereby the middle of the spec-
trum represents the “skin border” (originally “Hautgrenze”). According to him,
a human becomes a cyborg as soon as the skin border is exceeded and likewise,
a human ceases to be a cyborg and can therefore put the slider back e.g. if he
removes the technical device(s) under his skin. Another definition is provided by
Haraway (1987) which views cyborgs in a feminist context and sees the concept
as possibility to break out of traditional patterns. In “Cyborg Morals, cyborg val-
ues, cyborg ethics”, Warwick (2003), which performed self-experimentation and
experienced a chip implant at first hand, narrows the usage of the term cyborg
in his paper to the cases where the cyborg “is formed by a human, machine
brain/nervous system coupling”, hence cases where a human is directly linked to
technology via his brain/nervous system and excluding more superficial variants
like intelligent glasses or smartphones. In order to provide clarity in the follow-
ing, when we refer to the term cyborg, we specifically mean (unless otherwise
stated) a human whose brain is directly linked to technology able to enhance his
cognition/intelligence. We accordingly refer to the underlying process to become
a cyborg or to “develop” a cyborg system as cyborgization.

From the perspective of an individual, they are a lot of reasons why cyborgiza-
tion is worth striving for. Warwick (2003) mentions “use the computer part for
rapid maths”, “call on an internet knowledge base, quickly”,“understand multi
dimensionality”,“communicate in parallel, by thought signals alone, i.e., brain to
brain” as possible motivations amongst others. Further possible advantages could
be: position oneself in the labor market by exhibiting above-average analytic abil-
ities, extend the limits of perception and remember countless details leading to
a photographic memory, achieve unforeseen ingenuity in research fields, earn a
lot of money and so forth. But equally, malicious motivations with the aim to
harm other people such as being able to manipulate and subjugate other people
or exploiting the ignorance and vulnerability of non-enhanced humans, could
emerge.

3 Ethical Concerns of Malevolent Cyborgization

In the light of the above, it becomes clear that Malevolent Cyborgization (MC)
could be desirable for a wide range of stakeholders with a heterogeneous set
of goals. There is even an overlapping between possible entities, which could
be interested in MC and those eligible for MAI as described by Pistono and
Yampolskiy. In the following, we first take up the exemplary stakeholders for MAI
mentioned in their paper and indicate which motives could justify them likewise
as stakeholders for MC showing the parallels between those two phenomena.
Thereafter, we introduce additional global effects specific to MC and differing
from the MAI scenario.
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– Military: As already mentioned in the introduction, the military could mali-
ciously employ cyborg soldiers similarly as MAIs “to achieve dominance”
through intellectual, strategical or/and possibly physical superiority.

– Governments: Through cyborgization, governments could acquire intellectual
superiority with the same intentions as for the MAI case: “to establish hege-
mony, control people, or take down other governments”. Note that these goals
can also be reached through a forced cyborgization of inferior quality carried
out by governments on people with the aim to subjugate them (e.g. a kind
of digital lobotomy suppressing the functionality of the frontal cortex, body
hijacking or an automatic red-out of personal information using BCI data
could be possible).

– Corporations: The authors state the following motives for the MAI case: “try-
ing to achieve monopoly, destroying the competition through illegal means.”
As cyborgs with enhanced intelligence could be able to process consider-
ably more information than non-enhanced humans, the transparency on the
market may suffer of it allowing them to take over and build monopolies in
different fields, which is again similar to the MAI goals.

– Villains: Following Pistono and Yampolskiy, possible goals why a MAI could
be desirable for villains are: “trying to take over the world and using AI as
a dominance tool”. In the case of MC, the same goals would be valid except
that Cyborgization will be used primarily as means rather than AI. (But
obviously, cyborgs of all the eligible entities could also merge with AI, which
would represent an extremely risky scenario. We will analyze this matter later
in the next section).

– Black Hats: Through their enhanced cognition/intelligence, cyborgs could
have an enhanced ability to detect security holes at their disposal and could
for instance develop better heuristics for password-guessing. They might
therefore, likewise black hats with a MAI, secretly attempt “to steal infor-
mation, resources or destroy cyberinfrastructure targets”.

– Doomsday Cults: The goal of “attempting to bring the end of the world by any
means” using a MAI can obviously also build a basis for cyborgs involved in
doomsday cults.

– Depressed: Depressed cyborgs could hand over the liability for their live or
death to their artificial part e.g. by setting a self-destruction mode stopping
vital functions in the brain. They could thereby reach the goal to commit
suicide such as depressed people using MAI to be able to “commit suicide
by AI”.

– Psychopaths: As described in the introduction, psychopaths could be inter-
ested in cyborgization to be able to manipulate and control others. Moreover,
psychopaths could wish to historically gain notoriety with regard to their
wrongdoings. The aim to “trying to add their name to history books in any
way possible” seems to not only be a possible motivation for MAI, but also
for MC.

– Criminals: According to the authors, criminals could attempt “to develop
proxy systems to avoid risk and responsibility”. The same is possible in the
MC scenario. A malevolent cyborg could for instance wirelessly establish a
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connection to proxy systems to commit crimes at other places. He could
conceal the fact he is a cyborg so that nobody would suspect him of being
involved in crimes.

– AI Risk Deniers: For the case of MC, it would be appropriate to instead
address “Cyborgization Risk Deniers”. This stakeholder could let people
believe that cyborgization is not more than a Science Fiction scenario and
leave non-enhanced humans in ignorance yielding an even greater disparity
between cyborgs and the regular humans.

– AI Safety Researchers: For the MAI scenario, the authors state “AI Safety
Researchers, if unethical, might attempt to justify funding and secure jobs
by purposefully developing problematic AI.” If in the future a discipline like
“Cyborg Safety” existed, malicious people working in this field could delib-
erately develop unsafe cyborg systems e.g. such that than can easily be
exploited, so that they can ensure their occupation over and over again.

After having pointed out the similarities between the entities which could be
interested in the usage of MAI on the one hand and MC on the other hand,
as well as having clarified the conformity of the achievable unethical objectives
in both scenarios, we will now allude to some additional societal impacts that
can be specifically caused by MC (and not necessarily by MAI) through the
phenomenon of the human mind transcending its biological boundaries:

– New hierarchy in mankind: Cyborgization could lead to a hierarchy of
enhancement forming an open-ended continuum ranging from completely
non-enhanced humans to cyborg versions 1.0, 2.0 and so forth, even if per-
formed with positive or neutral intentions toward humans. This development
follows from the common practice of software updates and hardware tuning.
Over time, the biological part of the cyborgs is furthermore going to be sur-
passed by the non-biological part getting faster with exponential pace. Like
in many other cases, the quality of the “products” people can afford would
depend on their financial status and a lot of people might irreversibly stay
behind. This circumstances could lead to social unrest and conflicts. This
background provides a strategical basis for every conceivable kind of MC.

– Global identity crisis: Cyborgization could initiate an unforeseen social trans-
formation shaking the notion of “human being”, “identity” and “self” for the
questions could be: “At what time does someone stop to be a human?”, “Does
the self include the machine part?”, “What happens if the non-biological part
starts to prevail – does the cyborg become a machine?”. Psychological stud-
ies actually demonstrated, that human self-perception is extremely flexible
(Clark 2004). Likewise, the first officially recognized cyborg (the expression
cyborg is here used in a broader sense) Neil Harbisson, which is equipped
with an eyeborg stated (Jeffries 2014): “I don’t feel like I’m using technology,
or wearing technology. I feel like I am technology. I don’t think of my antenna
as a device - it’s a body part.” The additional perception through the eyeborg
fully integrated the functionality of his brain leading to a seamless unity. This
gives an indication that future cyborgs might extend the limits of “identity”
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and “self” in addition to the higher level of intelligence. This could lead to a
strong sense of alienation between non-enhanced humans and cyborgs raising
tensions and providing a fertile ground for MC.

– Evolutionary upheaval: A world of work with extremely productive and super-
intelligent cyborgs could piece by piece make less enhanced humans super-
fluous. MC could at a certain point introduce the extinction of those people
leading to a disaster for humanity. Equally, cyborgization could lead to an
evolutionary advantage and some could consider it as the next step in evolu-
tion. In this case cyborgs would supersede non-enhanced humans in the long
run and this process might be accelerated by means of MC. The historian
Yuval Noah Harari claimed: “I think it is likely in the next 200 years or so
homo sapiens will upgrade themselves into some idea of a divine being, either
through biological manipulation or genetic engineering of by the creation of
cyborgs, part organic part non-organic. [..] It will be the greatest evolution in
biology since the appearance of life. Nothing really has changed in four billion
years biologically speaking. But we will be as different from today’s humans as
chimps are now from us” (Knapton 2015). But he also addressed the increas-
ing gap between poor and rich in this future, which could lead to a dying out
of the poor, while the rich could live forever.

4 Cyborgization, AI and Superhuman Intelligence

Warwick (2013) postulates:“We must be clear that with extra memory, high-
powered mathematical capabilities, including the ability to conceive in many
dimensions, the ability to sense the world in many different ways and communi-
cation by thought signals alone, such cyborgs will be far more powerful, intellec-
tually, than humans”. He furthermore describes proof-of-concept experiments he
performed concerning human-machine merger. He comes to the conclusion that
human-machine merger is going to be feasible from a technological point of view
and that “[..]connecting a human brain, by means of an implant, with a com-
puter network could in the long term open up the distinct advantages of machine
intelligence, communication and sensing abilities to the implanted individual”
and warns that this development will also raise fundamental ethical questions.
We support this view relating to communication, sensing abilities and memory
for reasons already mentioned in the last sections; for the matter of advantages
through machine intelligence (or generally speaking AI) in the context of cybor-
gization, we will hereinafter shed some light on some possible outcomes and
distinguish different associated scenarios.

With the joint aim to produce a higher intelligence, cyborgization and AI are
not necessarily disjunctive developments. Progresses in AI can even provide an
ideal ground for cyborgization efforts. Some view the dangers of superintelligent
AI as a motive for cyborgization in order to forestall a future domination of
AI over mankind. An example for this is the statement of Stephen Hawking
15 years ago (Highfield 2001): “There is a real danger that computers will develop
intelligence and take over. We urgently need to develop direct connections to
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the brain so that computers can add to human intelligence rather than be in
opposition.” illustrating this kind of consideration.

Note that cyborg-systems could already be implemented without real AI
components and could nevertheless reach Superhuman Intelligence. A superin-
telligent cyborg would obviously be able to implement more intelligent AIs than
regular humans could and moreover, the development of such cyborg-systems
could even be the first step towards an intelligence explosion (Chalmers 2010)
making a cyborg able to develop AIs or cyborg-systems more intelligent than
itself. A restriction to this scenario could be that the biological part of the cyborg
limits the speed of self-improvement, but this could be compensated for instance
by increasing the percentage of the non-biological part or/and by enhancing the
intelligence of the non-biological part e.g. by using narrow AI components.

Of course one could argue about a possible boundary for when a cyborg
stops to be a cyborg and becomes a machine/an AI entity. In our view, there
will be no such clearly ascertainable boundary due to conceivable designs of
cyborg-systems in the future. For instance could concepts inspired by ensemble
learning be deployed. In the case of a cyborg-system, it could be beneficial to
combine the strengths of the biological part with those of the non biological one
by means of ensemble learning on a meta level e.g. to improve the intelligence of
the overall system. From an abstract point of view, a cyborg-system could then
act like a self-optimizing dynamical ensemble with adjustable weights where the
most intelligent entity controls and adjusts the weights given actions in certain
contexts. Initially, the biological part could be in control, but at a certain point,
the non biological part would be able to inhibit the biological choices for actions
if they happen to be disadvantageous for the goal setting and thus reduce the
weights of the biological one up to its vanishing. The transition from cyborg to
machine could therefore rather be fluent and occur gradually without a precise
boundary between cyborgs and machines (Kurzweil 2006).

Imagine a cyborg which – in addition to the access to a huge memory and
knowledge base, superfast calculation capacity, parallel communication to other
brains and so forth all by thoughts – could permanently delegate the organization
of his thoughts, his perception and rational thinking to numerous specialized AI
agents in parallel. The cyborg could be able to understand big data and extract
comprehensive information out of it. For instance, he could be computing the
statistics of the current situation on the financial markets, while walking on
the street and taking note of the biography of a totally unknown person he
retrieved by face recognition and search on the internet, having a phone (or brain-
to-brain) call and at the same time running multiple simulations for different
variants of AIs he developed. Analogously, a cyborg could decide to merge with a
superintelligent AI. In this case, issues related to control might raise. Depending
on the level of intelligence, it could stay a human-machine cooperation, maybe on
equal terms by means of control at the beginning or also depending on the goal
sets, leading to a quite “dissociative” construct exhibiting certain symptoms
for which the dissociative personality disorder could give a premonition. But
the superintelligent AI would presumably have a considerable advantage in the
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long run. If the superintelligent AI happens to be more intelligent than the
cyborg, it might result in a scenario where the superintelligent AI uses the cyborg
as “delegate” in the same way described, where a cyborg could use narrow AIs.
In this context, issues related to the notion of “free will” might arise additionally.

The just described scenarios leave much space for the actual emergence of
MC. Equally, malicious stakeholders could strive for cyborgization to be able to
develop a MAI or conversely plan to merge with a MAI for malicious purposes.
It becomes additionally clear, that cyborgization is not a guarantee to prevent
the creation of MAI, since MC is possible and could also directly lead to MAI.

5 Conclusion and Future Prospects

Cyborgization is only one possible path towards superintelligent enhanced
humans. It could in principle also be reached e.g. by means of genetic engi-
neering/breeding and biotechnology. Yampolskiy and Spellchecker (2016) con-
clude that “augmented humans with IQ beyond 250 would be superintelligent
with respect to our current position on the intelligence curve but would be just
as dangerous to us, unaugmented humans, as any sort of artificial superintelli-
gence.” We come to the same conclusion with regard to Malevolent Cyborgiza-
tion, because it could serve similar stakeholders to accomplish the same unethical
goals representing existential risks for humanity as in the MAI case.

In the future, cyborg-systems could become a daily reality offering a variety
of promising perspectives regarding human enhancement, but their development
and deployment will then need to be regulated. Besides a legal obligation for
open source cyborg-sytems, a possible approach for a society willing to prevent
MC and related risks could for instance be measures inducing an obligation
for all stakeholders developing cyborg-systems to adhere to “Cyborg Safety”
guidelines, which could be defined by an ethical board for superintelligence.
Nowadays, there is yet no explicit binding international interdisciplinary ethical
board for superintelligence containing e.g. AI, AI Safety, Cybersecurity, Neuro-
science, Biotechnology, Nanotechnology, Law experts (just to name a few) at
the same time. Such a collaboration would though be of great value to maintain
an overview of all critical developments with the aim to reach superintelligence.
However, forward-thinking interdisciplinary frameworks similar to the Asilomar
AI Principles (FLI 2017) could serve as a basis and should be extended, since
there are always security holes that remain undetected and characteristically,
only one specially selected successful MAI or MC attack trial could be enough
to drastically change the world in a negative sense.
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Abstract. The concept of “common sense” (“commonsense”) has had
a visible role in the history of artificial intelligence (AI), primarily in the
context of reasoning and what’s been referred to as “symbolic knowledge
representation.” Much of the research on this topic has claimed to target
general knowledge of the kind needed to ‘understand’ the world, stories,
complex tasks, and so on. The same cannot be said about the concept
of “understanding”; although the term does make an appearance in the
discourse in various sub-fields (primarily “language understanding” and
“image/scene understanding”), no major schools of thought, theories or
undertakings can be discerned for understanding in the same way as
for common sense. It’s no surprise, therefore, that the relation between
these two concepts is an unclear one. In this review paper we discuss their
relationship and examine some of the literature on the topic, as well as
the systems built to explore them. We agree with the majority of the
authors addressing common sense on its importance for artificial general
intelligence. However, we claim that while in principle the phenomena
of understanding and common sense manifested in natural intelligence
may possibly share a common mechanism, a large majority of efforts to
implement common sense in machines has taken an orthogonal approach
to understanding proper, with different aims, goals and outcomes from
what could be said to be required for an ‘understanding machine.’

1 Introduction

Common sense (“commonsense knowledge”, “common sense reasoning”) has
been deemed an important topic in AI by many authors since the field’s incep-
tion (Lenat et al. 1990, Liu and Singh 2004, McCarthy 1959, 1963, Minsky 2006,
Panton et al. 2006). Following its use in our everyday language, the term has
typically been used broadly in the AI literature, incorporating a large portion of
human experience relating to the spatial, physical, social, temporal, and psycho-
logical aspects of everyday life (Liu and Singh 2004). Used in this way, the term
refers to a vast body of knowledge assumed to be common to most humans.

Sponsored in part by the School of Computer Science at Reykjavik University and
by a Centers of Excellence Grant from the Science and Technology Policy Council
of Iceland.
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It is also used to refer to modes of reasoning and argumentation, as much of
everyday planning involves the usage of standard forms of deduction, induction
and abduction (e.g. “strong winds may blow rain through an open window so
don’t leave your books on the windowsill”).

The relation of common-sense and understanding is an unclear one. What
can be said with some certainty is that in the AI literature, common sense has
almost always been aligned with human common sense – that is, the knowledge
that defines human common sense, with numerous attempts having been made
to imbue machines with this same knowledge (Cambria et al. 2012, Lenat et al.
1990, Liu and Singh 2004, McCarthy 1959, Panton et al. 2006, Poria et al. 2014).
The best known example is the Cyc project of Lenat’s Cycorp Inc. (Lenat 1995),
whose database currently consists of seven million axioms, 630,000 concepts and
38,000 relations between those concepts. 1

Common sense may intuitively seem closely related to the concept of under-
standing. This seems to have been the opinion of Minsky and Papert, among
others, who in 1970 wrote, when discussing one of Aesop’s fables: “The usual test
of understanding is the ability of the child to answer questions like Did the Fox
think the crow had a lovely voice? The topic is sometimes classified as natural
language manipulation or as deductive logic, etc. These descriptions are badly
chosen. For the real problem is not to understand English; it is to understand at
all.” (Minsky and Papert 1970:38). This text appeared in the section with the
heading ‘Narrative, Microworlds, and “Understanding” ’ (quotes by the authors),
throughout which the terms understanding and meaning are always in quotes
when referred to in the context of machines, indicating a certain distrust towards
the possibility of infusing them into machines in any real sense; why the authors
did not aim for “real” understanding and “real” meaning may be because these
concepts were not—at that time—very well understood (no pun intended). The
authors conclude that a good body of knowledge is equally necessary for com-
mon sense as are reasoning rules to understand stories such as that of Aesop’s
crow, and predicting that “less than a million statements” (Minsky and Papert
1970:40) would be needed for such a knowledge base to work for that purpose.
In the 40 years since this text was written, this heavy emphasis on background
knowledge - which in their case at least seems synonymous with common sense -
has only grown, and the terms have been used largely interchangeably (Lenat
et al. 1990, Liu and Singh 2004, Panton et al. 2006).

We see the relationship between understanding and common sense as being
far from settled, especially in light of the seemingly long road still ahead for
reaching “true AI” (artificial general intelligence) and ask,

– Can common sense exist without understanding?

Are they perhaps two sides of the same coin? If so, what coin is that? Put another
way, for any subject X, can a state of knowledge exist, and be held by an agent,
that is deemed “common sense” with respect to X while the knowledge cannot

1 http://www.cyc.com/platform/, accessed Apr. 29 2017.

http://www.cyc.com/platform/
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be said to contain “understanding” of X? The question can of course be turned
around, and this brings out the second question,

– What is the relationship between ‘common sense’ and ‘understanding’?

To answer these questions one must look more deeply at the concepts themselves,
and perhaps consider their usage and relation to some real-world examples. We
look at the relevant literature and examine systems built to implement common-
sense reasoning. The rest of this review paper is organized as follows: a discussion
of common sense as it has been treated and previous attempts to implement it in
systems along with a review of how this relates to our theory of understanding,
the limitations seen in systems which have attempted to implement common
sense, followed by a discussion contrasting understanding and common sense,
and followed finally by our conclusions.

2 Common Sense and Understanding

To date, common sense has been viewed in a narrow way within the AI liter-
ature, generally being conceptualized as consisting of a body of facts or infor-
mation. Accordingly, systems intended to demonstrate common-sense reasoning
have generally tried to imbue common sense through pre-programming of vast
amounts of knowledge. Few if any definitions of the term can be found, forcing
us to rely on our general common sense of commonsense.

Broad, consistent knowledge about everyday things allows us humans to “flex-
ibly understand and react to novel situations” (Panton et al. 2006). Analogously,
if we could imbue machines with such broad and consistent knowledge the same
should hold for machines. In 1990 the authors of Cyc argued that vast amounts of
common sense knowledge would be required to produce an AI (Lenat et al. 1990).
The argument goes that a large, general knowledge base enables consistent, effi-
cient, and correct reasoning about everyday things with relatively simple and few
rules (Minsky and Papert 1970), and a system with broad knowledge about facts
and relations could thus be successful in completing tasks that require common
sense (Panton et al. 2006). Without such knowledge and reasoning ability, how-
ever, systems will remain idiots savants (Panton et al. 2006).

Liu and Singh (2004) discuss “ConceptNet,” a commonsense knowledge base
and natural language processing toolkit whose knowledge representation is semi-
structured English. The commonsense knowledge contained within their data-
base include spatial, physical, social, temporal, and psychological aspects of
everyday life. The authors argue, however, that while some success has been
found when using keyword-based and statistical approaches with respect to areas
such as information retrieval, data mining, and natural language processing, it
appears that these approaches provide too shallow of an understanding for all
practical purposes, and that larger amounts of semantic knowledge are required
in order to allow software to have a deeper understanding of text, echoing other
authors’ call for larger, more extensive knowledgebases.
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These “common-sense” systems have numerous aspects in common: A knowl-
edgebase (database + rules for how to use the data + metadata + network of
relationships between the data) built on the same rules as typical databases
in computer science, using hand-written rules authored along the same way as
regular software is written. Relations between data are somewhat different from
regular business rules in e.g. a bank or IT company, the principles for running
such systems are very close to those governing operating systems and IT net-
works.

Understanding, which on the face of it seems highly related to common sense,
takes up much less space than the concept of common sense in the AI litera-
ture, at least as an independent phenomenon or process, and when discussed
seems to be considered largely synonymous with it, or even a less precise way
of talking about common sense. Discussions of understanding proper have been
mainly limited to the field of philosophy, which has been somewhat dominated
by a language-centric viewpoint that aligns well with the symbolic approach to
common sense, where knowledge is defined as “true, justified belief” (cf. Grimm
2014, Potter 1994, Grimm 1988).

In prior work we proposed a theory of understanding that rests on the idea
that a learner that acquires understanding is in fact building a model that
captures causal and other relations in the phenomenon being thus understood
(Thórisson et al. 2016). Isolating causal relations is necessary in order to commit
intervening actions that will produce predictable results. Modeled causal rela-
tions can be manipulated through the application of ampliative reasoning (cf.
Wang 2012) due to the hypothetico-deductive nature embedded in macro-scale
causality. Without causality, in fact, not much can be done – committing to a
behavior with the aim to achieve a certain outcome for thing Y by manipulating
X is not successful when the two are only correlated but not causally related.

In our approach, causal-relational models must be micro-malleable: to take
into account any new fact or piece of knowledge that changes some of the
assumptions already incorporated, however large or small, without having to
re-structure all of the knowledge from scratch.2 “Common sense” is generally
thought to be common among humans (hence the name), while commonalities
relating to experience should generalize more broadly, in such a way that if the
system experienced an environment vastly different from a human environment
it should still have common sense. Such a system as we describe must be able
to produce models, on its own, in which rules are induced through observation
and experience. Given an agent A with models M of a phenomenon Φ—MΦ—we
have proposed the following definition of understanding:3 A’s understanding of
phenomenon Φ made up of sub-parts ϕ ∈ Φ, depends on the accuracy of its mod-
els MΦ with respect to Φ. Understanding is a (multidimensional) gradient from

2 This bears a relation to McCarthy’s (1998) concept of “elaboration tolerance”:
Micro-malleability is a way to imbue causal-relational models with elaboration
tolerance.

3 For a thorough overview of this theory see Thórisson et al. (2016).
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low to high levels, determined by the quality (correctness) of two main aspects
in MΦ relative to Φ:

U1 The completeness of the set of elements ϕ ∈ Φ represented by MΦ.
U2 The accuracy of the relevant elements ϕ represented by MΦ.

We also suggest that understanding can be tested for in the following ways:

(1) To predict Φ; (2) To achieve goals with respect to Φ;
(3) To explain Φ; and (4) To (re)create Φ.

This approach has been implemented in a system called AERA/S1, which
demonstrates cognitive mechanisms very different from both classical symbolic
systems such as Cyc and ConceptNet, reinforcement learners, and artificial neural
net systems such as deep and recurrent neural nets (ANNs) (Nivel et al. 2014).
S1 has been shown to be able to learn very complex spatio-temporal tasks from
observation when given only a tiny amount of information up front, including a
few top-level goals it should achieve. It does not require enormous hand-coding like
(most) symbolic approaches, and neither does it require the tens of thousands of
data and training iterations of ANNs. It can handle a vastly greater number of
variables than the most sophisticated reinforcement learners to date, and it can
handle inconsistencies and contradictions. It also learns cumulatively and contin-
uously – on the job (Nivel et al. 2013, Nivel et al. 2014).

3 Some Limitations Observed in Commonsense
Systems to Date

When looking at the performance, capabilities and state of commonsense/expert
systems to date, three things jump out. First, no system so far has demonstrated
automatic acquisition of commonsense knowledge. Second, very few have been
provided with more than a few thousand axioms/rules/knowledge-nodes/facts –
the main exception being Cyc, which contains over seven million axioms.4 And
thirdly, they all demonstrate a level of brittleness evident in frequent and unex-
pected errors and failures whose source, while not too difficult to trace in each
case, is virtually impossible to foresee.

With respect to systems focusing on common-sense reasoning, while little has
been written explicitly addressing their brittleness, this is a common concern that
has been raised not only by critics of the approach but also by the authors of such
systems (cf. Panton et al. 2006:22). However, when brittleness has been addressed
by the developers of such systems it is often in the context of arguing that
more rules are needed, hypothesizing that while programs lacking commonsense
reasoning are brittle, those with sufficiently large databases will not be (Panton
et al. 2006; Lenat et al. 1990). Examples of brittleness have been provided in
the way of expert systems which break down in the face of contradictions and

4 http://www.cyc.com/platform/, accessed Apr. 29 2017.

http://www.cyc.com/platform/
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in areas outside their domain (Lenat et al. 1990). Pratt (1994) provides one
of the more illuminating analyses of brittleness—in his case with Cyc—where
numerous failures of an actual demonstration of the system were exposed in
routine interaction.5 Other publications do not present very strong evidence to
anything contrary, with Lenat et al. stating in 2006 that Cyc fails to produce
correct facts more often than 50 percent of the time, when searching the World
Wide Web was used as a resource (Panton et al. 2006:22). All in all, “common-
sense” systems seem still to fall short of their main goal when it comes to real-
world performance.

To dissect this a bit further, one of the failures of expert systems in particular,
and the classical symbolic approach in general, is the often-referenced mistake
by a medical diagnosis system to diagnose a rusty car as “having measles”. Such
errors are due to lack of contextual knowledge. Another source of brittleness
stems from the human ability to handle alternative background assumptions - a
popular example being this exchange between father and child: Child: Do knights
slay fire-breathing dragons? Father: Yes. Child: Do fire-breathing dragons exist?
Father: No. The ability to humans to seemingly freely alter the assumptions on
which reasoning is done, without losing track of the context, allow us to talk
about imaginary things, hypothetical things, uncertainty, and numerous other
things that are difficult to program in an automatic reasoning engine based on
augmented first-order logic. Other sources of difficulty in commonsense reasoning
are, for instance, unusual usage of the rich experience-based knowledge that
humans have about the world (e.g. a rock being used as a table – a table with
no legs), and when we use analogies (e.g. “The woods are his home away from
home”). Another source of brittleness relates to a lack of contextual flexibility.
While humans have many domains and resources to draw from, programs fail
when situations exceed their limitations (Lenat et al. 1990).

Some have argued that overcoming brittleness requires broad knowledge,
and that a certain breadth is necessary and sufficient to begin to integrate new
knowledge automatically (Lenat et al. 1990). The Cyc database is one of a few
serious efforts to test this hypothesis. The original number predicted as necessary
and sufficient for the system to start learning more or less on its own was 1 million
rules (Lenat 1995).6

4 Why Understanding Is Not Common Sense

Judging from the preceding literature review, it would seem that an overem-
phasis on the concept of commonsense in AI has resulted in the relegation of
the broader concept of machine understanding to the sidelines. In the example

5 In a demo given of Cyc to one of the authors of this paper (Thórisson) in 1998 (around
200 images instead of 20), unexplained inconsistencies surfaced, albeit different ones
from those reported by Pratt (1994).

6 This number may have originated from the MIT AI lab (Minsky and Papert 1970),
however, its origin or argumentation for why this number and not some other is not
provided in the respective publications.
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of Cyc, the creators hypothesized that with respect to common-sense knowledge
acquisition, one million axioms relating to basic (human experience) facts would
be foundationally sufficient for the system to begin reading text authored by
humans and acquiring the embedded knowledge mostly automatically, with one
million axioms being an “inflection point” of sorts. When one million axioms did
not produce adequate performance, the minimum was increased to two million;
still, Cyc continued to display similar issues in performance - unexpected brit-
tleness and failures. Interestingly, the Cyc project continued and is now at seven
million axioms. This expected minimum might be sufficient, finally, but we have
not seen any evidence thereof. We suspect that other factors are at play than
simply the size of the knowledge base.

This raises important questions. For example: Is the representation method
chosen in symbolic expert systems a good one for supporting automatic knowl-
edge acquisition? Is first- (or second-) order logic a proper foundation for achiev-
ing robust results for the purposes these systems are built? Is a database with
hand-written rules and relations a good foundation for machines to acquire and
reach “common sense”?

A related question relates to the very definition of common sense – and also
one that directs our attention to the anthropocentrism of the data these systems
have been based on. Is the fact that “the third president of country X was Y ”
really what we mean by the term “common sense”? Perhaps there are more
fundamental aspects of the physical world that must be represented correctly
and acquired autonomously by the correct mechanisms that must be present
such that the system can learn such facts autonomously. Most importantly, are
there other things, besides or instead of the reasoning methods employed, that
enable such systems to acquire knowledge autonomously?

In our approach, the ability to understand—or more precisely to
deepen/broaden one’s understanding—must involve a capacity for automatic
knowledge acquisition, as opposed to axioms hand-coded by humans. The con-
ceptualization of common sense embodied in symbolic approaches relying on
human-authored knowledge seem too simple and too human-centric, lacking the
generalizability needed to achieve human-like understanding. Our own approach
involves a representation of concepts that is built up of peewee-size models, that
when brought together to model a particular phenomenon will predict its behav-
ior under various conditions. These models can be shared between concepts –
in fact, rather than being “made up of” such models, concepts in our approach
are dynamically constituted by the system on the fly, based on experience, by
assembling appropriate models for a particular computation that must be done.
General or “common sense concepts” are then dynamic model assemblies that
have happened to be useful a number of times for the system that generated
them (i.e. the machine, not a human). Understanding in our conception, then, is
the application of such model assemblies for modeling causal and other relations
between sensed phenomena, and for guiding goal-driven planning in realtime.

We have experimented with systems built in this way and compared them
with other cognitive architectures (Thórisson and Helgason 2012). The results,
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which are explained in some detail in Nivel et al. (2013) and Nivel et al. (2014),
have demonstrated robust sequence learning - robust in the sense of acquiring
complex patterns correctly in a very short period of time, as well as having a
potential to model its own limitations and thus learn to avoid situations in which
it will not perform above a certain threshold, which can be either given to the
system beforehand or any time during its learning.

With respect to classical symbolic systems, the application of our definition
of the process acquiring understanding produces at best a set of questions or at
worst a void: neither understanding nor the capacity to acquire it appears to be
obviously present within these types of systems. While it could be argued that
such a system may be able to create largely complete and accurate models of phe-
nomena, fitting our definition of understanding, this would fall apart when this
understanding was then tested for. Such a “knowledge database” type of system
has not, and would not be expected to, perform well with regard to predicting a
phenomenon, achieving goals, explanations, or recreating a phenomenon (Bieger
et al. 2017).

A critical piece missing from symbolic systems is some foundational ground-
ing: essentially, they are simply more sophisticated versions of “good old-
fashioned” AI - “symbol” manipulators, where the “symbols” are simply aug-
mented tokens7. A (human-like) concept cannot be adequately represented by
token(s), or even by extended token(s). This lack of a foundation or basic frame-
work precludes these types of systems from building understanding, as we have
defined it.

Additionally, systems taking the classical symbolic approach have difficulties
searching for the reasons behind inconsistencies in their knowledge; limitations
arise by being unable to go below a certain level. This, along with its sim-
ple pipeline reasoning method, the choice of a single ontology, and inability to
choose between reasoning methods, may be factors behind the brittleness found
in Cyc and similar systems. In other systems, such as AERA and NARS, levels
of plausibility exist, while there is never absolute certainty. Additionally, the
level of granularity of one symbol or token per idea does not allow for con-
cepts to be represented at lower levels of granularity; this reification of concepts
may preclude the flexibility required for understanding as well as deepening and
broadening understanding.

All of the above leads us to field the following hypotheses:

Hypothesis 1: Fine-grained representation of concepts, and fine-grained (and
ampliative) methods to reason over these, is necessary to realize mechanisms for
understanding acquisition. To robustly understand, for instance, that something
can be pulled by a string but not pushed by a string (Minsky 2006), one needs a
reasonably good representation of how matter behaves under various conditions.
A classical symbolic approach, as some of those reviewed above, might represent
the concept of “string” as a node in a knowledge network whose neighbor nodes

7 The “symbols” in such systems have no meaning for its manipulator, and can thus
only be considered a token in a simulator whose meaning can only be discerned by
its human author.
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are pretty much at that same level. It is not clear how one would infuse such
systems with information of the type that could model how strings woven in
various manners might behave differently, and that for instance a string made of
extra stiff (yet bendable) plastic might be used to push something if the stub is
short enough. Or how one would represent the knowledge that should you dip a
string into superglue it may harden enough to become stick-like, in which case
you can push something with it. (Is it still a “string” in this case? If not, how
would this be represented? If yes, is it a different kind of string?). This kind
of lower-level knowledge can be found for virtually any example of human-level
knowledge.

Hypothesis 2: To ground knowledge acquisition and understanding, a system
must be able to do experiments in the domain that is the target of its learning. A
system that builds models of its own experience over time will produce a wealth
of data about how the world works. Add to that an ability to do induction
and the system can begin to generalize its data and create meta-rules about its
experience. Such models will at any and all points in time have inconsistencies
and incomplete knowledge - and this is not only something that any such system
must be able to live with, it must be able to use it to improve its knowledge.
However, without the ability to test knowledge against the real world this may be
difficult; it is difficult to imagine how a machine that can only access human-level
tokens can ever grow to properly validate or invalidate its knowledge.

Hypothesis 3: Understanding is necessary for common sense. In our conceptu-
alization, understanding is the process by which one can acquire reliable, useful
knowledge that can be used to predict, intervene, achieve goals, and explain.
This seems to us to be the proper foundation for common sense, much more so
than the human-centric one that most approaches have taken to common sense
so far. Insofar as many of these do not aim for general intelligence but rather
some practical tools or other ends, this criticism is of course not justified. Yet
even on that end results seem to be slow in coming.

Hypothesis 4: Symbolic approaches are brittle because they lack proper mecha-
nisms to acquire understanding. If concepts exist as a set of dozens or hundreds
finer-grained pee-wee models, as we hypothesize, then using a symbolic approach
in order to capture common-sense will not be successful, as (a) it prevents the
ability for the system to automatically select viewpoints on the knowledge that
are relevant to each goal, and (b) it removes the ability of the system to be
truly grounded, and that type of experiential grounding cannot reasonably be
manually written or programmed.

Hypothesis 5: Symbolic approaches are brittle because they lack mechanisms to
resolve logical inconsistencies in their own knowledge introduced by their human
programmers. Because their knowledge is human-centric and human-generated,
inconsistencies must be resolved at this level. But their knowledge is fixed at this
level, and deeper, more fundamental knowledge and experience does not exist
in their knowledgebase to dig into underlying causes. Moreover, their reasoning
ability is limited by targeting this kind of knowledge only; a more integrative
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ampliative reasoning—which unifies deduction, induction, and abduction—in a
flexible manner (Wang 2006) seems necessary, preferably in part learned by the
system through experience. However, since this is missing in such systems, this
requirement falls flat.

Taken together, if all five hypotheses are valid, this should place rather partic-
ular and notable constraints on AGI research. Whether they hold up to scrutiny,
presenting promising paths for further experimentation, calls for deeper investi-
gation. We can only hope that we are honing in on something worthwhile, rather
than having come to one junction out of a thousand or a million. On that ques-
tion, our interesting result with peewee-granularity knowledge representation so
far (Nivel et al. 2014) should certainly not be a deterrent.

5 Conclusion

While classical symbolic systems capture some aspects that are needed for
common-sense reasoning, the approaches taken to date seem to (a) put an undue
emphasis on common-sense reasoning when it should be emphasizing under-
standing, (b) place the machine within a human-centric framework by ground-
ing the concept of common sense in human experience, and (c) attempt to teach
the system about common sense in a way that is practically impossible, i.e. pre-
programming facts. If such systems can be said to understand, then why is their
performance so brittle? We argue that a certain minimum level of performance
is required in order to show understanding. With respect to approaches to AGI,
we have argued that the classical symbolic approaches reviewed (and similar
ones) cannot produce understanding or common sense due to their inability to
represent concepts at finer granularity, their inability to automatically resolve
logical inconsistencies, and that the approach prevents the ability for a system
to automatically select viewpoints on the knowledge that are relevant to each
goal, and removes the ability of the system to be truly grounded. Brittle systems
cannot cope with new ideas, new experiences, new sights and sounds: without
this ability, systems can hardly hope to go beyond their current state in any
meaningful way.
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Abstract. Artificial intelligence (AI) and machine learning (ML)
research has traditionally focused most energy on constructing systems
that can learn from data and/or environment interactions. This paper
considers the parallel science of teaching: Artificial Pedagogy (AP).
Teaching provides us with a method—aside from programming—for
imparting our knowledge to AI systems, and it facilitates cumulative,
online learning—which is especially important in cases where the combi-
natorics of sub-tasks preclude enumeration or a-priori modeling, or where
unforeseeable novelty is inherent and unavoidable in the learner’s assign-
ments. Teaching is a complex process not currently very well understood,
and pedagogical theories proposed so far have exclusively targeted human
learners. What is needed is a framework that relates the many facets of
teaching, in a way that works for a range of learners including machines.

We present the Pedagogical Pentagon—a conceptual framework that
identifies five core concepts of AP: learners, task-environments, testing,
training and teaching. We describe these concepts, their interactions,
and what we would need to know about them in the context of AP. The
pentagon is meant to facilitate research in this complex new area by
encouraging a structured and systematic approach organized around its
five corners.

1 Introduction

Successful operation in any situation requires relevant knowledge.1 which can
either be innate or acquired through experience: nature vs. nurture. Here we
are concerned with the nurture part of that equation. As a learner gets more

This work was sponsored in part by the School of Computer Science at Reykjavik
University and by a Centers of Excellence Grant from the Science and Technology
Policy Council of Iceland.

1 We use “knowledge” to refer to all kinds of knowledge, including beliefs (declarative),
skills (procedural) and priorities (structural); cf. Sect. 3.2;.
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capable of learning a broad range of tasks in a wide range of environments,
and the ratio of acquired/required knowledge to innate knowledge increases, its
nurture becomes increasingly relevant. Research in artificial intelligence (AI) and
machine learning (ML) has traditionally focused on the nature part. Systems are
often thrown “in the deep end of the pool” where they must learn in a complex
and often unhelpful task-environment, or from an unstructured pile of data,
which greatly limits the range of tasks they can learn to tackle in practice.2

By teaching—broadly defined as “the intentional act of helping another system
learn”—we can overcome some of these limitations and greatly facilitate the
learning process in general [2]. We suggest that in parallel to machine learning,
a science of machine teaching—which we call “Artificial Pedagogy” (AP)—can
provide many complementary benefits.

Aside from the initial programming of an AI system, teaching is the only way
for us to impart our knowledge on it [1]. Teaching can often be more natural—
e.g. if we cannot articulate our knowledge precisely enough to program/formalize
it or if the AI’s knowledge representation mechanism is opaque to us. Even
more importantly, a hallmark of general intelligence is the ability to deal with
new situations, including ones that were unforeseen by the AI’s developers. We
cannot program what we cannot anticipate, but teaching can be applied when
it is needed and adapted to the requirements of any situation.

Cognitive architectures aspiring towards AGI often contain very little
domain-specific knowledge to preserve their generality, and start their “life” in
a baby-like state. Without knowledge, little more can be done than systemati-
cally (or randomly) exploring the state-action space, which becomes prohibitive
as the complexity of targeted domains increases—even if the learning system is
very sophisticated. Teaching can guide such systems towards salient stimuli or
knowledge, or to provide it directly. As progress is made in AI/AGI research, the
number of architectures capable of utilizing sophisticated teaching techniques is
ever growing [6], making a general theory of teaching more desirable than ever.

Due to these benefits, many ML projects have developed methods for “help-
ing their AI system learn”, but so far this has mostly been done on an ad-hoc
case-by-case basis. A general theory of AP could help us understand what works
in which situations. Unfortunately, teaching is a highly nontrivial process that
involves many moving parts. In the social sciences, similar efforts have entire
research fields dedicated to them (i.e. pedagogy, educational science, develop-
mental psychology, etc.), and we argue AP should be seen in a similar manner.
In AP however, we cannot make the same assumptions that are warranted in
the social sciences, because the (eventual) space of artificial minds is many times
larger than the space of human minds. We cannot take concepts for granted, and
must make an effort to define them explicitly and rigorously.

2 Note that the term “teaching” does not necessarily imply a mirroring of the human
teacher-student setup—it is quite conceivable for an AI to have a built-in “automatic
teaching mechanism”. That would not, however, change the need for a theory of
teaching. While teaching does not change the inherent capabilities of AI systems in
principle, it allows them to reach more of their potential more efficiently.
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Our goal in presenting the Pedagogical Pentagon (see Fig. 1a) is to provide
something that our knowledge in this domain can be organized around, and to
facilitate structured and systematic research in this area. We take inspiration
from e.g. Bloom’s taxonomy of learning domains, which has been used as the
basis for many educational programs for humans, by providing different learning
targets to focus (or not focus) on [7]. While it is impossible to provide full theories
of every concept involved in AP here, even such theories they existed, we hope
to provide some ideas for how AP might be studied.

2 Background, Definitions and Concepts

To model the learning process, we consider the interaction of intelligent systems
with various environments.3 An environment is a perspective on the world, con-
sisting of a set of variables with acceptable values, an initial state, and functions
that describe how it changes over time [13]. Examples of possible environments
include games, rooms, buildings, cities, countries and indeed the entire world.
Intelligent systems can independently decide at which abstraction level they
want to consider different parts of the world in different situations.

Intelligent systems continually receive inputs/observations from their envi-
ronment and send outputs/actions back. Some of the system’s inputs may be
treated specially—e.g. as feedback or a reward signal, possibly provided by a
teacher. Since intelligent action can only be called that if it is trying to achieve
something, we model intelligent agents as imperfect optimizers of some (possibly
unknown) real-valued objective function. Tasks are similarly defined by (possibly
different) objective functions, as well as (possibly) instructions (i.e. knowledge
provided at the start of the task or throughout its duration). Since tasks can
only be defined w.r.t. some environment, we often refer to the combination of a
task and its environment as a single unit: the task-environment.

In the AP setting, we have at least two different intelligent systems with the
roles of “learner” and “teacher”.4 The teacher’s teaching task is to change the
learner’s knowledge in some way (e.g. to make the learner understand something,
or increase the learner’s skill on some metric). The learner and the teacher
each interact with their own view of the world (i.e. their own “environments”)
which are typically different, but overlapping to some degree. The learner will
always exist in some form in the teacher’s task-environment, and the teacher
teaches by affecting the learner’s. As we will see, there are many ways to do

3 The formulation of an intelligent system (or agent) interacting with the world (or
environment) is most commonly used in control theory and reinforcement learn-
ing. However, it is a fully general formulation, that also covers traditional cases of
e.g. supervised and unsupervised learning. Here the environment simply presents a
(training) datum at each time step, the agent responds with a classification or pre-
diction, and—in the case of supervised learning—the environment replies with the
target outcome or an error signal.

4 Generally speaking, there could be multiple learners and teachers, but here we focus
on the one-on-one situation.
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Fig. 1: (a) The Pedagogical Pentagon. (b) Information flow between processes.
(c) Relations between systems. (d) Dependencies between theories.

this, including full determination of the learner’s environment, modification of
existing environments, or simply by changing their own behavior (if the teacher
is in the learner’s environment this affects its dynamics from the learner’s point
of view).

An AP interaction is defined by a number of teachers interacting with their
own environments who are given a teaching task that contains learning objec-
tives for the involved learners as well a set of constraints (e.g. on budget, time,
resources, allowed actions, etc.). Given (possibly incomplete and imperfect) infor-
mation about the various aspects of an AP interaction, we want a theory of AP
to give us predictions of what the teacher(s) would do, and more importantly,
what they should do in order to optimize the objective function. For instance, if
a chess teacher doesn’t know the learner is deaf, we can predict he try to verbally
explain things, realize this doesn’t work, and switch to a different strategy—one
that he perhaps should have used from the start, if he had known better.

The role of “teacher” may be taken up by any entity or system, includ-
ing e.g. school teachers, schools, specialist AI systems, AI system designers, or
indeed us as AP practitioners. AP theory (and the Pedagogical Pentagon) can be
applied fractally, on multiple levels of organization. For instance, a school could
be seen as a “teacher”, tasked with instilling certain kinds of knowledge in the
children who go there. The school may pick out some high level methodologies
(e.g. montessori), but for the most part it relies on employing human professors
who interact with the children directly. These professors can be controlled to
varying degrees (e.g. a curriculum could be provided or not), but ultimately they
are themselves “teachers” (in the AP sense) with their own (limited) knowledge
and capabilities that the school needs to take into account.

3 Conceptual Framework

In this paper we introduce a conceptual framework for studying AP in the form
of the “Pedagogical Pentagon” (see Fig. 1) which we believe outlines the five
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core concepts involved in AP: learning systems (learners), task-environments,
evaluation (tests), knowledge acquisition (training), and teaching. Teaching con-
sists, broadly speaking, of altering the training process of the learner, based on
information about the learner and the task. Learners can have many different
properties that influence how (well) they behave in various domains, what infor-
mation they need and can use, and ultimately how they can and should be
taught. Within one AP interaction, we see many different task-environments:
one(s) for the teacher(s) to define what they can and should do, ones for which
the learner needs to develop knowledge/skills, and ones in which the learner
will be tested and trained. Proper teaching requires that the teacher has up-
to-date knowledge of the learner, which can partially be provided a priori, but
must otherwise be obtained through evaluation or testing of the learner as they
interact with a task-environment and (hopefully) make progress on the learning
objectives. Similarly, we want to have some idea of how interaction with a task-
environment will train (or otherwise influence) the learner’s knowledge. Finally,
teaching can be done using different methods by utilizing knowledge of testing,
training, task-environments and the learner in order to make sure the learner
learns what is necessary within the constraints outlined by the teaching task.

The pentagon can be viewed on multiple levels. Figure 1b showcases the dif-
ferent goals of training—to imbue knowledge into the learner—and testing—
to obtain information about the learner—by looking at the information flow
between processes. Knowledge flows from the teaching to the training process to
create a curriculum in the form of a task-environment that the learner experi-
ences. And as the learner behaves in a task-environment, that interaction can be
analyzed by a testing process to obtain information for teaching. Figure 1c views
each corner as systems and specifies their relations. The teacher devises tests and
trainings, which in turn instantiate task-environments that the learner interacts
with. Figure 1d shows the hierarchical dependencies between theories: learners
and task-environments can be analyzed in isolation or possibly together, train-
ing and testing use task-environments to instill/obtain knowledge into/about the
learner, and teaching involves designing appropriate tests and training schemes.

All concepts can interact and constrain each other. For instance, any given
task-environment imposes requirements on the learner (who must be able to
perform the task), which in turn restricts the teaching methods we can use. Or
if we want to use certain teaching methods, we must select or design a learning
system that can make optimal use of them. Or if resources like time are limited,
we might have to simultaneously use task-environments for testing and training.

Our ultimate goal is to develop a full theory of artificial pedagogy, in the
same sense that we might want to develop a full theory of artificial intelligence
or machine learning. The realization of this goal is naturally (vastly) beyond the
scope of this paper. The Pedagogical Pentagon should be viewed as a conceptual
framework around which the knowledge we obtain in this domain can be orga-
nized. By separating out different aspects of AP—each of which are deserving
of their own comprehensive theories—and relating them to each other, we hope
to make research in this domain more tractable and systematic/structured.
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3.1 Tasks

The concept of a “task” is at the core of AI. We design AI systems to perform
ranges of tasks, then we use related but possibly different tasks to train them,
before using (often slightly different) tasks for evaluation. Yet, our understanding
of the concept is mainly intuitive. We have argued before about the need for more
rigorous task theories in AI, that aid us in the general analysis and construction
of task-environments [13].

This is especially pressing in the context of artificial pedagogy, where many
task-environments are often involved in a single pedagogical interaction. First,
there is the task-environment for the teacher. This environment contains, among
other things, the learner(s) and defines the actions and observations available
to the teacher. The teaching task typically refers to the learning objective(s)
as well as additional constraints on e.g. budget, time and other resources. The
learning objectives are the objectives for the learner(s), which are typically to
achieve some epistemic state (i.e. know or understand something), to alter pref-
erences (e.g. in the case of inverse reinforcement or value learning), and/or to
perform well in some range of task-environments. So secondly, we have the set of
task-environments that the learner will interact with. In a pedagogical setting,
these may either be created, influenced or utilized by the teacher. Here we can
distinguish between task-environments meant for obtaining information about
the learner (testing), meant for training the user, or both.

Despite these interactions with other corners in the Pedagogical Pentagon,
we believe that task theory can also be studied in relative isolation. A task theory
should provide a method for representing tasks and environments in a way that
facilitates their analysis and construction [13]. A more specific list of desiderata
includes abilities to compare tasks, to create abstractions, concretizations and
decompositions, to characterize tasks in terms of various (emergent) measures
and provided instructions, to estimate resources necessary for task completion,
and to construct new tasks based on combination, variation and specifications.
Different AI research scenarios will make use of different aspects of task theory,
but it seems that a good teacher would potentially use everything.

3.2 Learners

The ultimate goal of any teaching interaction is to help another learning
system—the learner—learn something. Naturally, the way in which any system
learns—as well as how to optimize this process—depends on the specifics of that
system. A ‘learner theory” would parallel the above mentioned “task theory” in
that it should allow us to analyze, define, characterize, categorize and compare
learning systems. Many partial attempts at comparison and categorization have
been made (cf. [6] for a recent overview), but we are not aware of any rigorous
and comprehensive treatment of all aspects of learning systems.

From a teaching (and learning) perspective, it’s important to distinguish
between structure and content. By “structure” we mean aspects of the sys-
tem that remain relatively constant throughout the learning interaction like the
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architecture/algorithm(s) and the body. By “content” we mean knowledge, of
which various kinds exist, including declarative knowledge or beliefs (e.g. “the
capital of France is Paris” or “yesterday I felt good”), procedural knowledge or
skills (e.g. knowing how to ride a bike), and structural knowledge or priorities
(e.g. feeling that avoiding a predator is more important than eating now).

Structure properties include the kinds of memory (e.g. procedural, episodic,
and/or semantic), reasoning (e.g. inductive, deductive, counterfactual and/or
analogical), and learning (e.g. supervised, unsupervised and/or reinforcement)
mechanisms the learner has, as well as their capacity and how they operate.
These properties are important for AP, because there is no sense in explaining
something by analogy if the learner can’t reason by analogy, or providing affec-
tive feedback if there are no reinforcement learning mechanisms. Knowledge
properties are much more fluid, and can often be the subject of the teaching
task—e.g. to make the learner understand/know something, be good at some-
thing, or want something. Since this knowledge is likely to refer to or model the
environment, the chosen representation should be compared to the representa-
tion mechanism used for task-environments. From these properties, other—often
measurable—properties emerge, such as performance (in different situations),
adaptivity, robustness and understanding [5].

The relationship between the learner and testing corners of the Pedagogical
Pentagon is that for the learner, we are primarily interested in “what” properties
it has and how they are defined, whereas testing is primarily concerned with
“how” this information can then be obtained (approximately) from a specific
instance of a learner [5]. As such, we could come up with formal definitions of
properties we care about (e.g. intelligence [8]), without worrying about whether
they can be measured directly. Learner theory lets us consider the “insides” of
a hypothetical learner directly, while testing provides an “outside” view based
on observed behavior. Similarly, most aspects of the learner can be analyzed
and defined without making reference to the exact way in which knowledge
(and consequently emergent properties) change as the learner interacts with
some task-environment (i.e. training). Some aspects of learners could also be
studied without a theory of task-environments, but this is not always the case.
For instance, to estimate the (changing) level of complexity and variety that a
learner can handle, we need a task theory to provide measures of complexity and
variety of task-environments.

3.3 Testing

To teach well, the teacher has to know the student. While some aspects of the
learner may be known a priori, others must be obtained by the teacher interac-
tively (e.g. progress towards the learning objectives). We define “testing” gen-
erally as the empirical means through which an observer obtains information
about another system by systematically observing its behavior as it interacts
with its task-environments [5]. Specifically, testing is meant to obtain information
about the structural, epistemic and emergent properties of learners described in
Sect. 3.2. Testing can be done for different purposes: e.g. to ensure that a learner
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has good-enough performance on a range of tasks, to identify strengths and weak-
nesses for an AI designer to improve or an adversary to exploit, or to ensure that
a learner has understood a certain concept so that we can trust it will use it cor-
rectly in the future. A “Test Theory” for growing recursive self-improvers may
first and foremost be concerned with gauging levels of understanding in service of
such confidence-building [12]. In the context of AP, our primary concern is to let
a teacher obtain information about limitations, strengths and preferences of the
learner, and to measure progress with respect to the learning objectives. A test
theory should allow us to extract information about a learner from its behavior
in a task-environment, predict what kind of information we could obtain in a
given task-environment, and help to construct (or alter) task-environments to
obtain desired information using minimal resources.

There are many different ways of AI evaluation [3,4,9], but we are not aware
of any theory that covers all kinds of information extraction. Information can
be extracted by sporadic evaluations (e.g. like school tests) or continual obser-
vation (e.g. like a sports coach does), it can be over or covert, and it can be
done using many different tests (e.g. multiple-choice vs. open questions vs. a
project). Designing tests is subject to real-world constraints such as malleabil-
ity of the task-environment, available knowledge, and capabilities of both learner
and teacher. In both the design of tests and the interpretation of learner behavior
or results, it is important to take into account the goals of the learner and how
they compare to the used performance measure: if the learner performs poorly,
is it because they lack skill/knowledge, did they misunderstand the instruction,
or did they simply not care to do well?

3.4 Training

Learning systems adjust their knowledge as a result of interactions with a task-
environment. Viewed from a teacher’s (and intentional learner’s) point of view,
we refer to this as “training” as the goal is to become better at some task.
Nevertheless, we should not neglect the possibilities that erroneous things can
be learned, and desirable things can be unlearned. The goal of the teacher is to
influence the learner’s task-environments in such a way that progress towards
the is facilitated. AP is interested in predicting how a learner’s knowledge/skills
will change as a result of interacting with a particular class or instance of a
task-environment, and to allow us to construct (or alter) task-environments in
order to train a particular skill or impart particular knowledge.

Training is roughly analogous to testing, but each has a different goal: The
goal of training is to move the learner from one state to another—to get knowl-
edge into the learner—while testing is about getting an accurate model or mea-
sure of the learner’s skill at some point(s) in time—getting information out
of the learner. Both make heavy use of both task theory and learner theory.
Training theory is mainly concerned with how interactions with the environ-
ment affect the epistemic and emergent properties of the learner (i.e. knowledge
and performance). As with test theory, there will be different kinds of training
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(e.g. repeated exposure to similar stimuli vs. one-time explanations) which may
occur intentionally or not, and success will depend on the goals of the learner.

Many theories of learning/training already exist in e.g. educational science,
developmental psychology and animal training. Such theories may usefully be
plugged into our Pedagogical Pentagon to facilitate the science of teaching if the
learner is indeed human (or an animal). For AI, the assumptions these theories
make typically do not hold. Nevertheless, it is worthwhile to figure out which
theories do apply to which kinds of AI. For instance, approaches surrounding
Vygotsky’s zone or proximal development, where most learning occurs in tasks
that are only just beyond the learner’s current skill level, seem applicable to many
different learning systems [14], and it may be possible to adapt or generalize
Piaget’s stages of cognitive development to the AI domain [3,10].

Training is also closely related to the established ML subfield of computa-
tional learning theory, which concerns itself with the formal analysis of learning
in AI systems. So far, it seems this has mostly been concerned with calculat-
ing bounds on how many interactions are necessary to achieve a certain level of
performance. In addition to this, we are also interested in the content of those
interactions, and the specifics of how the learner’s knowledge changes.

3.5 Teaching

Teaching is what artificial pedagogy is all about: we want to analyze and design
teaching strategies and interactions, using the other concepts and theories we
discussed. A teacher should test the learner in order to obtain information
that informs the way they proceed to train the learner by altering the task-
environment from the learner’s point-of-view.5 This should all be done accord-
ing to the constraints specified in the teaching task, and with the limitations
on knowledge and capabilities of the teacher. It will likely combine knowledge
from theories of testing and training to create environments that both allow the
teacher to observe progress and encourage it—ideally simultaneously—and avoid
adverse interactions between testing and training.

It would be valuable to be able to model and categorize teachers in relation
to learners and task-environments. For instance, teachers can be visibly present
or not (e.g. they can just change the environment without appearing in it). Or if
they teach by demonstration, it may be important to consider how good they are
at the task that is demonstrated and how similar their body is to the learner’s.

There are many different teaching techniques that can be employed:
e.g. heuristic rewarding, decomposition, simplification, situation selection, tele-
operation, demonstration, coaching, explanation, and cooperation [2]. Using the
other corners of the Pedagogical Pentagon, teaching theories should be able to
tell us how to tailor these teaching techniques to different situations (i.e. learner-
task combinations + constraints) and what results we can expect. Some more
or less full curricula have been developed for teaching AGI, such as the

5 Note that if the teacher is in the learner’s task-environment, every policy change
alters the task-environment in some way.
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AGI Preschool [3] and GoodAI’s School for AI [11]. We believe these consti-
tute important and highly promising pedagogical programs, that could be fur-
ther improved with an even better understanding of the aspects of AP we have
discussed.

4 Conclusion

We argue for the importance of artificial pedagogy for artificial intelligence and
present a conceptual framework to aid in the structured and systematic study
of this field. The Pedagogical Pentagon identifies five core concepts involved
in pedagogical interactions: learners, task-environments, testing, training and
teaching. The complexity of AP can be somewhat mitigated by studying one
corner of the pentagon while keeping the others fixed. Partial theories of tasks
and learners could possibly be made without reference to testing, training and
teaching, and testing and training could (mostly) be studied in part without
referring to teaching, but a complete understanding of all aspects of learning
will not emerge unless the constraints that each of these put on the others are
included in the picture. By organizing AP in this way we hope to facilitate the
tractable study of this challenging domain, and provide a conceptual framework
in which acquired knowledge can easily be organized.
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13. Thórisson, K.R., Bieger, J., Thorarensen, T., Sigurdardóttir, J.S., Steunebrink,
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Abstract. We propose a new model to quantitatively estimate the accu-
racy of artificial agents over cognitive tasks of approximable complexities.
The model is derived by introducing notions from algorithmic informa-
tion theory into a well-known (psychometric) measurement paradigm
called Item Response Theory (IRT). A lower bound on accuracy can
be guaranteed with respect to task complexity and the breadth of its
solution space using our model. This in turn permits formulating the
relationship between agent selection cost, task difficulty and accuracy as
optimisation problems. Further results indicate some of the settings over
which a group of cooperative agents can be more or less accurate than
individual agents or other groups.

1 Introduction and Background

Turing’s imitation game [32] inspired a range of attempts to measure the intel-
ligence of artificial agents [6]. More recently, a formal (machine) intelligence
test [10] consisting of sequence-completion exercises was devised. Later, fuzzy
integrals were used [1] to measure intelligence in machines by calculating a
Machine Intelligence Quotient. Shortly after, a simple computer program that
succeeded in passing a variety of IQ tests was presented [26], raising questions on
the appropriateness of intelligence tests for machine assessment. After the def-
inition of universal intelligence [18], many (algorithmic) information-theoretic
studies were put forward to formally quantify the intelligence of individual AI
agents [12,13] as well as AI collectives [4].

Independently, a series of measurement theories have been proposed in psy-
chometrics and applied to human intelligence. One of the earliest milestones in
human intelligence testing was Thurstone’s letter series completion problems [31]
and, more recently, Raven’s Progressive Matrices test [24] which recorded strong
correlation with Spearman’s general intelligence factor [30]. More general tests
consisting of a variety of evaluation tasks were developed, and they came to
be known as “Intelligence Quotient” or simply IQ tests. Examples of such tests
are the Stanford-Binet test [25] and the Wechsler intelligence scales for adults
and children [33]. Another mainstream achievement in psychometrics was the
development of Item Response Theory (IRT) [22], also referred to as latent trait
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theory. IRT is among the most popular measurement classes used in psycho-
metrics for evaluating traits, or abilities, and producing accurate rankings from
test scores, by applying mathematical models to testing data. In the context of
IRT, a trait or an ability might be physical or psychological (cognitive and non-
cognitive, e.g., a personality or behavioural characteristic) [5]. Recently, IRT
was successfully adopted to analyse machine learning models by providing an
instance-wise analysis of a series of datasets and classifiers [23]. In this paper,
we show how to adapt models from psychometrics and IQ tests, based on notions
from algorithmic information-theory, to artificial intelligence in order to estimate
the (cognitive) abilities of artificial agents and predict their accuracies.

2 Motivation and Main Contributions

Advances in psychometrics are not yet thoroughly applied for predicting the
accuracy of AI agents despite their success in evaluating human cognitive abil-
ities. While the AI discipline adheres to the mainstream concept of intelligence
[9], general IQ tests might not be appropriate in their current form for evaluating
machine intelligence [7]. In fact, even test batteries that might be suitable for
practically evaluating AI (and knowledge based systems [15]) show some caveats.
For instance, such tests measure an average performance (of one or more abili-
ties) of AI agents over a set of tasks or environments but it is ambiguous how
the results from these tests can be used to predict the accuracy of an agent
over a particular task complexity without actually administering that task to
the agent. In addition to many theoretical studies discussed in [11], empirical
studies such as [3,4] demonstrated that task complexity and the breadth of its
solution space are major factors influencing the performance of artificial agents.
Hence, quantitatively predicting the accuracy of artificial agents across different
task complexities and solution spaces is clearly an important feature that has
not been addressed so far. Furthermore, intelligence test scores can be unreli-
able since agents usually exhibit non-uniformity between their performances over
different problems/settings. This has implications for selecting agents to solve
tasks, particularly when there is cost (e.g., processing time) associated with util-
ising agents, and understanding the collective accuracy of cooperative agents of
different (cognitive) abilities.

By merging notions from both psychometrics and (algorithmic) information
theory, we develop a hybrid model to quantitatively estimate the accuracy of AI
agents over tasks of measurable complexities. We demonstrate its functionality
over a class of prediction and inference problems as this class is considered as
reflecting some of the principal traits of intelligence both in psychometrics [9]
and artificial intelligence [8,11,21]. Using the predictive model, we show how to
identify agents that can guarantee a lower bound on accuracy with respect to
task complexity and the breadth of its solution space. We analyse settings over
which a group of (voting) agents can be more or less effective than individual
agents, or other groups, and identify circumstances that can be counterintuitive
to the conclusions drawn from intelligence tests. In the next section we outline
important properties and constraints that our model needs to embrace.
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3 Desirable Properties for Assessment

Given a subject (cognitive agent) to be evaluated over a task/problem:

1. The model must return a quantitative measure (on an interval scale) of the
estimated subject’s accuracy over this task without the need to administer it
to the subject.

2. The accuracy of a subject (its probability of success in solving a task) pre-
dicted by the model is expected to be proportional to its (relevant cognitive)
ability over that task, and inversely proportional to the difficulty of the task.

3. In order to conform to the limiting behaviour of real agents, the model should
use the asymptotic minimum (prand, which denotes the probability of cor-
rectly selecting a random solution from the solution space) as a lower-bound
on accuracy.

4. The model should be applicable over different tasks of measurable difficulties.
5. The difficulty measure should be general enough to accommodate a wide

range of tasks.
6. The model should be applicable to different agent types and cognitive systems.

Earlier information-theoretic studies on (artificial) intelligence [12,14] and
inductive-inference [19,29] discussed (among others) two general dimensions of
task difficulty, (i) Shannon’s entropy [27] which is related to the uncertainty
and breadth of the solution search space, and (ii) the algorithmic information-
theoretic (in particular the Kolmogorov) complexity [16,21] of the task. We take
into account both dimensions of difficulty in the design of our model.

4 A Predictive Model of Agent Accuracy

Inspired by the 2-parameter logistic model [2] of IRT [22], we propose a
mathematical model for predicting a subject’s expected accuracy on a given
task/problem of measurable complexity.

Definition 1. Let x denote a (classification) task/problem of a theoretical dif-
ficulty D such that the solution to x belongs to the alphabet (or solution space)
S = {s1, s2, . . . , sm}. We define (an estimate of) the accuracy of an agent with
ability α ∈ R

+ over that task to be:

PD,α,m =
1

m
+ e

− D
α ·
(
1 − 1

m

)
(1)

which corresponds to the probability of that agent guessing the correct solution
to x.

The above model has the following important properties. For a given task of
a (hypothetically) negligible difficulty, the probability of solving this task is
limD→0 PD,α,m = 1. The probability PD,α,m of a subject with ability α > 0 solv-
ing a task is (exponentially) proportional to the subject’s ability, and inversely
proportional to the difficulty of the task D, and the breadth of its solution space
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m ∈ N
+. Moreover, when task difficulty D is very high relative to α (or when the

subject’s ability α is small), the probability of success PD,α,m converges to a ran-
dom guess equivalent to 1/m, which is the asymptotic minimum1. For instance, on
a binary test problem (e.g., coin toss problem with S={Heads, Tails}) with m = 2,
an agent with ability α has an accuracy PD,α,m = 0.5 + e

−D
α (0.5). When the abil-

ity α is close to zero, PD,α,m � 0.5. For many problems, the theoretical task diffi-
culty D can be derived from the simplest solution (policy) to the task, and there-
fore can sometimes be linked to the complexity of the (description of the) task, or
the complexity of the description of its policy. Consequently, the difficulty of the
task can be linked to its Kolmogorov complexity [16,21]. Since the Kolmogorov
complexity is uncomputable, methods like Levin’s Kt complexity [20,21] or the
Lempel-Ziv (compression) algorithm [19] can be used as practical alternatives (to
bound it and possibly approximate it). For the rest of this paper, we will use the
Kolmogorov complexity of the task as a derivation of its (theoretical) difficulty.The
suggested model returns the probability of a subject solving a given task of a mea-
surable complexity as a function of its (previously measured) ability. The ability
could be defined as a vector of weighted atomic sub-abilities s.t. α is a linear com-
bination of [w1α1 + w2α2 + . . . + wtαt]. The model in Eq. 1 is a simple case of the
latter where, for some integer z ≤ t, the ability α = wzαz and

∑t
j=1,j �=z wj = 0 in

[w1α1 + w2α2 + . . . + wtαt].
We will use a formal intelligence test from the literature of AI, the C-test [10],

to measure an agent’s ability α over a class of tasks. D and m are input parame-
ters to the model typically being measured by some earlier assessment or derived
directly from the problem. We refer to the model defined in Eq. 1 as the IRT model
for brevity, and use the terms accuracy and performance alternately (only) as mea-
sures of the probability of success at solving a (cognitive) task.

5 Assessing Inference Abilities

The C-test [10] is a compression-based intelligence test that measures the abil-
ity of a subject doing inductive-inference and finding the best explanation for
sequences of various complexities. It reflects the fluid intelligence of the evaluated
subject. The idea is to record the performance of a subject over a series of pat-
terns of increasing incomprehensibilities (or complexities). The complexity of a
C-test sequence is formally measured using Levin’s Kt complexity [21] as a prac-
tical alternative to (and possibly a rough bound on) its Kolmogorov complexity.
Given Σ = {a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z}, and a sequence θ
of length m where each θi ∈ Σ, the task consists of predicting the next letter
θm+1 ∈ Σ which correctly completes the sequence. Given a C-test consisting of a
collection of test sequences CT = (seq1, . . . , seqn) with their corresponding answers
(solutions) S = (θ1

m+1, . . . , θn
m+1) and corresponding complexities K = (k1, . . . , kn),

the average score r̃ of an agent π with guesses S′ = (θ
′1
m+1, . . . , θ

′n
m+1) over CT is:

1 For simplicity and without loss of generality, 1/m is used in Eq. 1 to replace the proba-
bility prand of an agent randomly guessing (one of) the correct solutions to the problem.
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r̃ = 1∑n
z=1 kz

·∑n
z=1 kz×hit(θ

′z
m+1, θ

z
m+1), where the function hit(a, b) ←

{
1 if a == b

0 otherwise
,

and the complexity of the sequence kz is used as a weight in order to give more
importance to more difficult questions. The C-test score will be used to deter-
mine the inductive-inference ability α of a subject, further used as a parameter
in the model (Eq. 1). The reasons for selecting the C-test are, firstly, the test by
definition measures an (inductive inference related) ability, in this case the abil-
ity of finding the best explanation for a given sequence using induction. The test
is well formulated and is exclusively defined in computational terms. It generates
sequences (tasks) within a range of complexities 7 ≤ D ≤ 15, using Levin’s Kt
approximation [10] (as a practical alternative to Kolmogorov complexity). The
C-test results are highly correlated with those from classical psychometric (IQ)
tests [10]. The test sequences are formatted and presented in a quite similar
way to psychometric tests. Hence, the test can be applied to machines in the
same way it is applied to humans. There is typically one exclusive correct (sim-
plest) answer for any of the test sequences, making the results uncoincidental
and representative of the testee’s accuracy.

Measuring abilities: Table 1 holds the definitions of a few agent behaviours to
be evaluated over the C-test. Their scores are used to measure their (inductive
inference) ability α and are plotted in Fig. 1 along with their corresponding accu-
racies PD,α,m generated using the IRT model (Eq. 1). More advanced algorithms
for sequence prediction problems exist but since the choice of agent behaviours
is not particularly relevant to the validity of the model we restrict our selection
to those in the Table 1. The agents’ abilities were calculated as a function of
their C-test scores using α = ωr̃, where α is the ability of agent π with score
r̃, and ω ∈ R is a fitting parameter selected in such a way to (i) ensure that
the agent’s moderate accuracy, of 0.5(maxPD,α,m + minPD,α,m) ≡ 0.5(1 + 1/m), falls
under the area of discriminative task complexities

∫ D=16

D=6
PD,α,m (following [10])

and, (ii) minimise the mean squared error between the IRT model and C-test
scores. Our model nicely illustrates the agents’ average accuracies as illustrated
in Fig. 1 despite the large non-uniformity in their behaviours and performances.

6 Predicting Agent Performance

While results from the C-tests are all alone interesting, we have no means to
extrapolate them or predict the agent performances over different sequence com-
plexities and solution space sizes without re-running the test. However, the
expected accuracies of an agent can easily be generated from the IRT model
over inference tasks of different complexities. An example is illustrated in Fig. 2
showing the predicted accuracies of agent πmind (refer to Table 1) across dif-
ferent hypothetical (Kolmogorov) complexities D and problem solution space
sizes m. For any fixed difficulty D, the IRT model shows that the difference in
accuracy measures PD,α,m1 − PD,α,m2 over two solution space sizes m2 > m1 is:
1

m1
+ e

−D
α

m1
− 1

m2
− e

−D
α

m2
= (1+e

−D
α )(m2−m1)
m1·m2

, meaning that this difference is greater
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Table 1. Sample agent behaviours evaluated over the C-test.

Random agent : given a sequence seq, a random agent πrand randomly uniformly
selects a letter fromΣ and returns it as its answerθ′

m+1 (Refer to Sec. 5).
Pattern agents : a pattern agentπpt looks for a repeating distance pattern between the elements

of seq and completes it to inferθ′
m+1. To implement this behaviour, the problem is divided

intom−1 tasks{t1,t2,...,tm−1} assigned to agents{π
pt
1 ,π

pt
2 ,...,π

pt
m−1}

respectively. Agentπpt
y calculatesd(θi+y −θi)∀i∈{1,...,m−y}

and generates a list of distancesDy =(d1y,...,dk
y)where k=m−y, and

di
y :=d(θi+y −θi). Then, π

pt
y searches for the occurrences of the longest possible

pattern in Dy and continuesDy by adding dk+1
y following the pseudo-algorithm below.

Input : set of distancesDy =(d1y,d2y,...,dk
y).

Output : next distance dk+1
y in Dy .

1: Extract the unique elements of Dy .
2: Store elements in a list Uy in order of appearance.
3: Find the starting index for each substring occurrenceUy in Dy .
4: Store index in vector v.
5: if |v|>1 then
6: P ←Dy(v(1):v(2)−1) � v(i) is the i’th element of v
7: else if |v|≤1& |Dy|>1 then
8: P ←Dy(|Dy|−1)
9: else
10: P ←Dy
11: end if
12: ind←|Dy|−|P|×|v|
13: if ind>0 then
14: dk+1

y ←P(ind+1)
15: else
16: dk+1

y ←P(1)
17: end if
18: return dk+1

y

Finally, agent π
pt
y makes its guess θ′

m+1 for the next letter of seq such that:

d(θ′
m+1−θm+1−y)=dk+1

y .

Mode agent : given a sequence seq, a mode agent πmode looks for the most
repeated or frequent letter(s) in seq to predict the next letter. If more than one letter
satisfy the criteria, it chooses the left-most one appearing in the sequence.
Min-repetition agent : given a sequence seq, a min-repetition agent πmr looks for
the least repeated letter in seq to predict the next letter.

Min-distance agent : given seq=(θ1,θ2,...,θm), agent πmind looks for
the minimal alphabetical distance (Def. 2) between all consecutive letters of seq and
infers the next letter θ′

m+1 by adding this distance to seq’s last letter θm.

Definition 2. The alphabetical distance d(γ−β) between two characters β and
γ in an alphabet Σ is equal to the difference between their index positions in the
totally ordered set (Σ,≤) in mod |Σ|.
For instance, the distance between any two consecutive letters in the alphabet is1, and
the distance between the first character a and the last onez is equal to d(z−a)=
26 − 1 = 25. So, given a C-test sequence seq = (θ1, θ2, ... , θm),

agent πmind calculates the distance di := d(θi+1 − θi) following

Definition 2 between two consecutive elements of seq for all i ∈ {1,...,m−1}
returning a pattern (list) of distances D = (d1, d2, ... , dm−1). Then,

πmind looks for the minimal alphabetical distance dmin ∈ D as follows:

dmin ← argmind∈D freq(d,D) where freq(d,D) is a function

that returns the rate at which d occurs in D. Agent πmind finally chooses

θ′
m+1 ∈Σ such thatd(θ′

m+1−θm)=dmin.

Max-distance agent : this is the opposite behaviour of min-distance agent. Given

a sequence seq = (θ1, θ2, ... , θm), a max-distance agent πmaxd

calculates the distance di := d(θi+1 −θi) between the consecutive elements

of seq for all i ∈ {1, ... , m − 1} returning a pattern (list) of distances

D =(d1,d2,...,dm−1). It then looks for the maximal alphabetical distance:
dmax ∈ D ← argmaxd∈D freq(d,D) (from above definition). It

finally chooses θ′
m+1 ∈Σ such thatd(θ′

m+1−θm)=dmax.

Fig. 1. Final C-test score r̃ of 9 differ-
ent agents behaviours (defined in the
Table 1) and their corresponding IRT
accuracies taken from Eq. 1, using an
α = ωr̃ s.t. ω = 28.

Fig. 2. IRT accuracy of agent πmind

with ability α = 11.28 over inference
tasks of different hypothetical (Kol-
mogorov) complexities D and problem
solution space sizes m.

over smaller m ∈ N
+. This can also be observed in Fig. 2. For consecutive values

of m, PD,α,m − PD,α,m+1 = (1 + e
−D
α )/(m2 + m), and therefore, for very large m, any

further increase in m has a negligible effect on the accuracy.
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6.1 Relationship Between Accuracy and Difficulty

Figure 3 shows the shift in accuracies of a pool of example classifiers of hypothet-
ical (classification) abilities α ∈ [1, 8] across several D and m values. We observe
that m has a greater influence than D on the accuracy of those classifiers with
poor abilities α < 3 and thus their scores are asymptotically bounded by 1/m,
while the opposite is true for more adept classifiers with stronger abilities. This
type of analysis can be used to identify the minimal ability value for a classifier to
be considered effective compared to, for example, a simple random classifier. One
can further put a bound on the task complexity that an agent can solve with a
minimal probability of success PD,α,m. For instance, if we know m, it is straight-
forward to calculate D from Eq. 1 as e

−D
α =

PD,α,m− 1
m

1− 1
m

=⇒ D = −α ln
(

m·PD,α,m−1
m−1

)
.

Similarly a lower bound on accuracy can be guaranteed with respect to the task
complexity and the breadth of its solution space. This is illustrated in Fig. 4 for
agent πmind.

Fig. 3. Shift in accuracy (from Eq. 1)
across several D and m values for example
classifiers of different hypothetical abili-
ties such that α ∈ [1, 8].

Fig. 4. Lower bounds on accu-
racy denoted by P that can be
guaranteed with respect to task
complexity D and the breadth
of its solution space m for agent
πmind with ability α = 11.28.

This becomes interesting when a cost function (e.g. processing time, fee) is
associated with utilising agents of higher abilities. Two agents π1 and π2, with
abilities α1 and α2 and utilisation costs c1 = f(α1) and c2 = f(α2) respectively,
guarantee an accuracy PD1,α1,m = PD2,α2,m under different problem complexities
such that D2/D1 = α2/α1. If α2 > α1 (and c2 > c1) then π2 can accommodate
(a α2/α1 factor of) higher problem difficulties with an additional cost of c2 − c1,
while guaranteeing the same accuracy as π1. Given a set of tasks of different
complexities, a set of n agents of different utilisation costs, selecting the agent
to solve these tasks with a minimum bound on accuracy of p̂ can now be sub-
sequently modelled as an optimisation problem: arg min1≤i≤n f(αi), subject to
PDj ,αi,m ≥ p̂.
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Inferring task difficulty: alternatively, the IRT model can be applied to test-
ing data in order to provide a quantitative understanding of the average com-
plexity D of one class of tasks X = {x1, . . . , xt}, assuming the value m for such
tasks is already known. For instance, one can empirically evaluate an agent of
a known ability α over all task instances xi ∈ X and record its average score.
Equation 1 can subsequently be solved for D using the recorded score as PD,α,m.

7 Collective Accuracy of Cooperative Agents

The advantages from adopting the IRT model extend to multiagent scenarios by
estimating the collective accuracy of a group of agents. For instance, let A be a
collective of agents using simple majority voting as a social choice function to
elect a solution from the set of alternatives S = {s1, s2, . . . , sm} to a problem
x with only one correct solution si ∈ S. Let Y = {y1, y2, . . . , yn} where each
yi ∈ S, denote the votes of the agents in A = {π1, π2, . . . , πn} respectively
regarding their preferred solution to x. When the votes are independent and
identically distributed with equal accuracies px, the probability of collective A
finding the solution to x is the sum of probabilities where at least 50% of its
agents are correct which can be calculated as:

Px(A) =

n∑
k=�n/2�+1

(n

k

)
p

k
x(1 − px)

n−k (2)

By combining Eqs. 1 and 2, the probability Px(A) of a collective of agents A =
{π1, π2, . . . , πn} electing the correct solution to x with difficulty D, and alpha-
bet m using simple majority voting becomes: PD,m(A) =

∑n
k=�n/2�+1

(n
k

)
P k

D,α,m(1 −
PD,α,m)n−k. According to Condorcet’s jury theorem [28], PD,m(A) is monoton-
ically increasing when the IRT accuracy PD,α,m > 0.5 and vice versa. If A
is a group of three agents with unequal accuracies of 0.55, 0.55, and 0.63, its
accuracy can be calculated from the agents’ independent choices using majority
voting as the probability of at least 2 out of 3 agents finding the correct solu-
tion: (0.552 × 0.37 + 2 × 0.45 × 0.55 × 0.63 + 0.552 × 0.63) = 0.6144. Similar predictions can
also be performed using weighted2 voting rules [17, Chap. 4]. The accuracy of an
agent collective can thus be sometimes inferred from its agents’ individual accu-
racies using the IRT model. Subsequently, one can analytically reason about the
performance of groups of agents, in comparison to individual agent performance.

8 Analysing Individual and Group Accuracies

The accuracy of agent πmind and the accuracies of three agent collectives (A1, A2

and A3) over different task complexities and solution spaces are illustrated
2 More sophisticated voting rules such as Borda count, harmonic rule, maximin and
Copeland require the subject to output a concrete ranking over all possible alterna-
tives of the test/task, which inhibits our ability of making exact predictions. Yet, one
can still analytically place min and max bounds on team accuracy using different
sampling techniques.
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Fig. 5. Collectives accuracies aggregated using majority voting. The accuracy of πmind

is also depicted as dotted markers in the backgrounds of the first 3 plots for comparison.
The ∗ symbol denotes the cut-off point where the accuracy of πmind meets the
corresponding group accuracy.

in Fig. 5. We observe that adding agents of equivalent accuracies to the major-
ity voting process (Collective A1) improves the accuracy of the group over all
tasks where the individual accuracy PD,α,m > 0.5, while the opposite is true
for PD,α,m < 0.5. The key question here is, when is a (voting) collective more
efficient than a single agent? To answer this, we calculate the cut-off point
∩Y,Z between two evaluated subjects Y and Z. To calculate ∩π,A (where the
accuracy PD,α,m of an agent π, and PD,m(A) of a collective A, are both equal
over some task of complexity D) we look for the value of D at which PD,α,m =

1
m + e

−D
α
(
1 − 1

m

)
= PD,m(A), which leads to D = −α ln

(
(PD,m(A) − 1

m )/(1 − 1
m )
). If

all the agents have similar accuracies (Collective A1, Fig. 5), then according to
Eq. 2, they are only equally accurate when PD,α,m = PD,m(A) = 0.5 leading to a
D = −α ln

(
( 1
2 − 1

m )/(1 − 1
m )
)
= −α ln ((m − 2)(2m − 2)). For example, the cut-off point

∩πmind,A1 between πmind with α = 12.0094 and A1 over a problem with m = 3
occurs at a D = −12 ln

(
1
4

)
= 16.64, which can also be verified from the graph

in Fig. 5.
The cut-off point not only returns the setting over which PD,α,m and

PD,m(A1) are equal, but also illustrates the relationship between the complex-
ity of the problem D and the breadth of its solution space m, with respect
to the accuracy of the evaluated group. In other words, the cut-off point
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indicates the problem complexities and solution spaces over which a collec-
tive is more effective than its individual agents. In most real world scenar-
ios voting agents have different abilities and consequently different accuracies.
Replacing a group member by another of higher/lower accuracy (Fig. 5 top-
right/bottom-left) improves/diminishes the performance of the group by a mea-
surable amount. For instance, let A = {π1, π2, π3} be the group of agents with
abilities α1, α2, α3 and IRT accuracies (abridged as) p1, p2, p3 respectively over
some task x. If the agents’ individual votes are independent, the probability
PD,m(A) of A correctly guessing the solution to task x by majority voting
is: p1p2(1 − p3) + (1 − p1)p2p3 + (1 − p2)p1p3 + p1p2p3. When p1 = p2 = p3, then
PD,m(A) is equivalent to Eq. 2. If A′ = {π1, π2, π

′
3} is the group of agents with

accuracies p1, p2, p
′
3 respectively s.t. p′

3 > p3, then its accuracy increases by
PD,m(A′)− PD,m(A) = p1p2(p3 − p′

3)+ (1− p1)p2(p
′
3 − p3)+ (1− p2)p1(p

′
3 − p3)+ p1p2(p

′
3 − p3) =

(1 − p1)p22(p
′
3 − p3) since 1/m ≤ p1, p2 ≤ 1 by definition (Eq. 1). For p1 = p2 �= p3

the cut-off point ∩π1,A occurs at D = −α3 ln
(
(p3 − 1

m )/(1 − 1
m )
) when p3 = 0.5. As

a result, we can measure the rise/drop in accuracies of A2 and A3 illustrated in
Fig. 5 top-right/bottom-left. For example, for tasks of m = 3, ∩πmind,A2 (Fig. 5
top-right) occurs at a D = −16.33 ln

(
(0.5 − 1

3 )/(1 − 1
3 )
)
= 22.64.

Comparing agent collectives: scores from standard IQ tests provide us with
some sort of scale or ranking of performances of evaluated individuals or groups.
Nonetheless, these performance measures might not be valid over certain set-
tings. We observe in Fig. 5 that voting collective A1 is more efficient than
A4 (holding agents with abilities {4.56, 16.33, 15.18}) over inference tasks of
D < 14, whereas (counterintuitively) A4 scores higher that A1 over the C-test
(0.51 > 0.38). Moreover, the opposite is true for tasks of higher complexities.
Such scenarios might create confusions as they are frequently encountered and
cannot be disclosed from standard intelligence tests. We also observe that for
highly complex tasks with D > 25 collectives A1 and A2 record very similar accu-
racies since PD,m(A1) − PD,m(A2) becomes very small. This is coherent with real
world observations (although it cannot be drawn from intelligence test scores)
as the accuracy of a subject, or a group of subjects, over extremely hard tasks
is likely to converge to a random guess (an asymptotic minimum).

9 Conclusion and Future Work

Intelligence test scores can be an unreliable predictor of an agent’s performance
over tasks of well-defined complexities and other problem settings. We proposed a
new mathematical model that is flexible enough to predict the accuracy of agents
of different abilities over various classification problem settings. We illustrated
the relationships between the accuracy (and ability) of an agent, the complexities
of the assessment task and the size of its solution space, and identified agents that
can guarantee a lower bound on accuracy with respect to task complexity and
the size of its solution space. We further analysed settings over which a group of
(majority voting) agents can be more or less effective than individual agents or
other groups. For instance, we directly inferred from the model the complexity at
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which a group is expected to record a similar accuracy as an individual agent, and
beyond which a single agent is more effective than the group. We also measured
the effect (on accuracy) of introducing agents of higher or lower abilities to a
group of agents. Finally, we identified possible circumstances that are somewhat
counterintuitive to the conclusions drawn from intelligence tests. These occur
when a group of agents scores higher than another on an intelligence test yet
fails to outperform this same group over certain task complexities. In our future
work, more sophisticated voting rules will be used to analytically reason about
team accuracy by analysing the outcomes from different sampling techniques
over the agents’ ranked votes.
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Abstract. Drawing an inspiration from behavioral studies of human
decision making, we propose here a general parametric framework for
multi-armed bandit problem, which extends the standard Thompson
Sampling approach to incorporate reward processing biases associated
with several neurological and psychiatric conditions, including Parkin-
son’s and Alzheimer’s diseases, attention-deficit/hyperactivity disorder
(ADHD), addiction, and chronic pain. We demonstrate empirically that
the proposed parametric approach can often outperform the baseline
Thompson Sampling on a variety of datasets. Moreover, from the behav-
ioral modeling perspective, our parametric framework can be viewed as
a first step towards a unifying computational model capturing reward
processing abnormalities across multiple mental conditions.

1 Introduction

In daily-life decision making, from choosing a meal at a restaurant to deciding on
a place to visit during a vacation, and so on, people often face the classical explo-
ration versus exploitation dilemma, requiring them to choose between following
a good action chosen previously (exploitation) and obtaining more information
about the environment which can possibly lead to better actions in the future,
but may also turn out to be a bad choice (exploration).

The exploration-exploitation trade-off is typically modeled as the multi-
armed bandit (MAB) problem, stated as follows: given N possible actions
(“arms”), each associated with a fixed, unknown and independent reward proba-
bility distribution [1,2], an agent selects an action at each time point and receives
a reward, drawn from the corresponding distribution, independently of the pre-
vious actions.

In order to better understand and model human decision-making behav-
ior, scientists usually investigate reward processing mechanisms in healthy sub-
jects [3]. However, neurogenerative and psychiatric disorders, often associated
with reward processing disruptions, can provide an additional resource for
deeper understanding of human decision making mechanisms. Furthermore, from
the perspective of evolutionary psychiatry, various mental disorders, including
depression, anxiety, ADHD, addiction and even schizophrenia can be considered
as “extreme points” in a continuous spectrum of behaviors and traits developed
for various purposes during evolution, and somewhat less extreme versions of
c© Springer International Publishing AG 2017
T. Everitt et al. (Eds.): AGI 2017, LNAI 10414, pp. 237–248, 2017.
DOI: 10.1007/978-3-319-63703-7 22
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those traits can be actually beneficial in specific environments (e.g., ADHD-like
fast-switching attention can be life-saving in certain environments, etc.). Thus,
modeling decision-making biases and traits associated with various disorders
may actually enrich the existing computational decision-making models, leading
to potentially more flexible and better-performing algorithms.

Herein, we focus on reward-processing biases associated with several mental
disorders, including Parkinson’s and Alzheimer disease, ADHD, addiction and
chronic pain. Our questions are: is it possible to extend standard stochastic ban-
dit algorithms to mimic human behavior in such disorders? Can such generalized
approaches outperform standard bandit algorithms on specific tasks?

We show that both questions can be answered positively. We build upon the
Thompson Sampling, a state-of-art approach to multi-arm bandit problem, and
extend it to a parametric version which allows to incorporate various reward-
processing biases known to be associated with particular disorders. For exam-
ple, it was shown that (unmedicated) patients with Parkinson’s disease appear
to learn better from negative rather than from positive rewards [4]; another
example is addictive behaviors which may be associated with an inability to
forget strong stimulus-response associations from the past, i.e. to properly dis-
count past rewards [5], and so on. More specifically, we propose a parametric
model which introduces weights on incoming positive and negative rewards, and
on reward histories, extending the standard parameter update rules in Bernoulli
Thompson Sampling; tuning the parameter settings allows us to better capture
specific reward-processing biases.

Our empirical results demonstrate that the proposed approach outperforms
the baseline Thompson Sampling on a variety of UCI benchmarks. Furthermore,
we show how parameter-tuning in the proposed model allows to mimic certain
aspects of the behavior associated with mental disorders mentioned above, and
thus may provide a valuable tool for improving our understanding of such dis-
orders.

The rest of this paper is organized as follows. Section 2 reviews related work.
Section 3 describes the MAB model and the proposed algorithm. The experi-
mental evaluation for different setting is presented in Sect. 5. The last section
concludes the paper and identifies directions for future works.

2 Related Work

2.1 Reward Processing in Mental Disorders

The literature on the reward processing abnormalities in particular neurological
and psychiatric disorders is quite extensive; below we summarize some of the
recent developments in this fast-growing field.

Parkinson’s disease (PD). It is well-known that the neuromodulator
dopamine plays a key role in reinforcement learning processes. PD patients, who
have depleted dopamine in the basal ganglia, tend to have impaired performance
on tasks that require learning from trial and error. For example, [4] demonstrate
that off-medication PD patients are better at learning to avoid choices that lead
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to negative outcomes than they are at learning from positive outcomes, while
dopamine medication typically used to treat PD symptoms reverses this bias.

Alzheimer’s disease (AD). This is the most common cause of dementia in the
elderly and, besides memory impairment, it is associated with a variable degree
of executive function impairment and visuospatial impairment. As discussed in
[3], AD patients have decreased pursuit of rewarding behaviors, including loss
of appetite; these changes are often secondary to apathy, associated with dimin-
ished reward system activity. Furthermore, poor performance on certain tasks is
correlated with memory impairments.

Frontotemporal dementia, behavioral variant (bvFTD). Frontotemporal
dementia (bvFTD) typically involves a progressive change in personality and
behavior including disinhibition, apathy, eating changes, repetitive or compul-
sive behaviors, and loss of empathy [3], and it is hypothesized that those changes
are associated with abnormalities in reward processing. For example, changes in
eating habits with a preference for sweet, carbohydrate rich foods and overeating
in bvFTD patients can be associated with abnormally increased reward repre-
sentation for food, or impairment in the negative (punishment) signal associated
with fullness.

Attention-deficit/hyperactivity disorder (ADHD). Authors in [6] suggest
that the strength of the association between a stimulus and the corresponding
response is more susceptible to degradation in ADHD patients, which suggests
problems with storing the stimulus-response associations. Among other func-
tions, storing the associations requires working memory capacity, which is often
impaired in ADHD patients.

Addiction. In [5], it is demonstrated that patients suffering from addictive
behavior are not able to forget the stimulus-response associations, which causes
them to constantly seek the stimulus which generated such association.

Chronic pain. In [7], it is suggested that chronic pain results in a hypodopamin-
ergic (low dopamine) state that impairs motivated behavior, resulting into a
reduced drive in chronic pain patients to pursue the rewards. Decreased reward
response may underlie a key system mediating the anhedonia and depression
common in chronic pain.

A variety of computational models was proposed for studying the disorders
of reward processing in specific disorders, including, among others [4,5,8–11].

However, none of the above studies is proposing a unifying model that
can represent a wide range of reward processing disorders; moreover, none of
the above studies used the multi-arm bandit model simulating human online
decision-making.

2.2 Multi-armed Bandit (MAB)

The multi-armed bandit (MAB) problem models a sequential decision-making
process, where at each time point a player selects an action from a given finite
set of possible actions, attempting to maximize the cumulative reward over time.
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MAB is frequently used in reinforcement learning to study the explo-
ration/exploitation tradeoff, and is an active area of research since the 1950s.
Optimal solutions have been provided using a stochastic formulation [1,2], or
using an adversarial formulation [12–14]. Recently, there has been a surge
of interest in a Bayesian formulation [15], involving the algorithm known as
Thompson sampling [16]. Theoretical analysis in [17] shows that Thompson
sampling for Bernoulli bandits asymptotically achieves the optimal performance
limit. Empirical analysis of Thompson sampling, including problems more com-
plex than the Bernoulli bandit, demonstrates that its performance is highly
competitive with other approaches [15,18].

Psychological study done in [19] shows that, instead of maximizing out-
put by a deliberate mean-variance trade-off, participants approach dynamic
decision-making problems by utilizing a probability matching heuristic. Thus,
their behavior is better described by the Thompson sampling choice rule than
by the Upper Confidence Bound (UCB) approach [2]. However, none of the
above studies bandit models of the behavior of patients with mental disorders
and impaired reward processing.

To the best of our knowledge, this work is the first one to propose a gener-
alized version of Thompson Sampling algorithm which incorporates a range of
reward processing biases associated with various mental disorders and shows how
different parameter settings of the proposed model lead to behavior mimicking
a wide range of impairments in multiple neurological and psychiatric disorders.
Most importantly, our bandit algorithm based on generalization of Thompson
sampling outperforms the baseline method on multiple datasets.

3 Background and Definitions

The Stochastic Multi-armed Bandit. Given a slot machine with N arms
representing potential actions, the player must chose one of the arms to play at
each time step t = 1, 2, 3, ..., T . Choosing an arm i yields a random real-valued
reward according to some fixed (unknown) distribution with support in [0, 1].
The reward is observed immediately after playing the arm. The MAB algorithm
must decide which arm to play at each time step t, based on the outcomes during
the previous t − 1 steps.

Let μi denote the (unknown) expected reward for arm i. The goal is to max-
imize the expected total reward during T iterations, i.e., E[

∑T
t=1 μi(t)], where

i(t) is the arm played in step t, and the expectation is over the random choices
of i(t) made by the algorithm. We could also use the equivalent performance
measure known as the expected total regret, i.e. the amount of total reward lost
because of playing according to a specific algorithm rather than choosing the
optimal arm in each step.

The expected total regret is formally defined as:

E[R(T )] = E[
T∑

t=1

(μ∗ − μi(t))] =
∑

i

ΔiE[ki(T )]. (1)
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where μ∗ := maxiμi, Δi := μ∗ − μi, and ki(t) denote the number of times arm
i has been played up to step t.

Thompson Sampling. Thompson sampling (TS) [20], also known as Bayesian,
is a classical approach to multi-arm bandit problem, where the reward ri(t)
for choosing an arm i at time t is assumed to follow a distribution Pr(rt|μ̃)
with the parameter μ̃. Given a prior Pr(μ̃) on these parameters, their posterior
distribution is given by the Bayes rule, Pr(μ̃|rt) ∝ Pr(rt|μ̃)Pr(μ̃) [17].

A particular case of the Thompson Sampling approach, presented in
Algorithm 1, assumes a Bernoulli bandit problem, with rewards being 0 or 1,
and the parameters following the Beta prior. TS initially assumes arm i to have
prior Beta(1, 1) on μi (the probability of success). At time t, having observed
Si(t) successes (reward = 1) and Fi(t) failures (reward = 0), the algorithm
updates the distribution on μi as Beta(Si(t), Fi(t)). The algorithm then gener-
ates independent samples θi(t) from these posterior distributions of the μi, and
selects the arm with the largest sample value.

4 Proposed Approach: Human-Based Thompson
Sampling

We will now introduce a more general rule for updating the parameters of Beta
distribution in steps 10 and 11 of the Algorithm1; this parameteric rule incor-
porates weights on the prior and the current number of successes and failures,
which will allow to model a wide range of reward processing biases associated
with various disorders. More specifically, the proposed Human-Based Thompson
Sampling (HBTS), outlined in Algorithm 2, replaces binary incremental updates
in lines 10 and 11 of TS (Algorithm1) with their corresponding weighted ver-
sion (lines 10 and 11 in Algorithm 2), using the four weight parameters: τ and
φ are the weights of the previously accumulated positive and negative rewards,
respectively, while α and β represent the weights on the positive and negative
rewards at the current iteration.

Algorithm 1. Thompson Sampling
1: Foreach arm i = 1, ..., K
2: set Si(t) = 1, Fi(t) = 1
3: End for
4: Foreach t = 1, 2, ..., T do
5: Foreach i = 1, 2, ..., K do
6: Sample θi(t) from Beta(Si(t), Fi(t))
7: End do
8: Play arm it = argmaxiθi(t), obtain reward r(t)
9: if r(t) = 1, then

10: Si(t) = Si(t) + 1
11: else Fi(t) = Fi(t) + 1
12: End do
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Algorithm 2. Human-Based Thompson Sampling (HBTS)
1: Foreach arm i = 1, ..., K
2: set Si(t) = 1, Fi(t) = 1
3: End for
4: Foreach t = 1, 2, ..., T do
5: Foreach i = 1, 2, ..., K do
6: Sample θi(t) from Beta(Si(t), Fi(t))
7: End do
8: Play arm it = argmaxiθi(t), obtain reward r(t)
9: if ri(t) = 1, then

10: Si(t) = τSi(t) + αri(t)
11: else Fi(t) = φFi(t) + β(1 − ri(t))
12: End do

4.1 Reward Processing Models with Different Biases

In this section we describe how specific constraints on the model parameters in
the proposed algorithm can yield different reward processing biases discussed
earlier, and introduce several instances of the HBTS model, with parameter
settings reflecting particular biases. The parameter settings are summarized in
Table 2, where we use list our models associated with specific disorders (Table 1).

Table 1. Algorithms parameters

UCI Datasets τ α φ β

AD (addiction) 1 ± 0.1 1 ± 0.1 0.5 ± 0.1 1 ± 0.1

ADHD 0.2 ± 0.1 1 ± 0.1 0.2 ± 0.1 1 ± 0.1

AZ (Altzheimer’s) 0.1 ± 0.1 1 ± 0.1 0.1 ± 0.1 1 ± 0.1

CP (chronic pain) 0.5 ± 0.1 0.5 ± 0.1 1 ± 0.1 1 ± 0.1

bvFTD 0.5 ± 0.1 100 ± 10 0.5 ± 0.1 1 ± 0.1

PD (Parkinson’s) 0.5 ± 0.1 1 ± 0.1 0.5 ± 0.1 100 ± 10

M (“moderate”) 0.5 ± 0.1 1 ± 0.1 0.5 ± 0.1 1 ± 0.1

TS 1 1 1 1

It is important to underscore that the above models should be viewed as only
a first step towards a unifying approach to reward processing disruptions, which
requires further extensions, as well as tuning and validation on human subjects.
Our main goal is to demonstrate the promise of our parametric approach at
capturing certain decision-making biases, as well as its computational advantages
over the standard TS, due to the increased generality and flexibility facilitated by
multi-parametric formulation. Note that the standard Thompson sampling (TS)
approach correspond to setting the four (hyper)parameters used in our model
to 1. Next, we introduce the model which incorporates some mild forgetting of
the past rewards or losses, using 0.5 weights, just as an example, and calibrating
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the other models with respect to this one; we refer to this model as M for
“moderate” forgetting, which serves here as a proxy for somewhat “normal”
reward processing, without extreme reward-processing biases associated with
disorders. We will use the subscript M to denote the parameters of this model.

We will now introduced several models inspired by certain reward-processing
biases in a range of mental disorders. It is important to note that, despite using
disorder names for these models, we are not claiming that they provide accurate
models of the corresponding disorders, but rather disorder-inspired versions of
our general parametric family of models.

Parkinson’s disease (PD). Recall that PD patients are typically better at
learning to avoid negative outcomes than at learning to achieve positive out-
comes [4]; one way to model this is to over-emphasize negative rewards, by
placing a high weight on them, as compared to the reward processing in healthy
individuals. Specifically, we will assume the parameter β for PD patients to be
much higher than normal βM (e.g., we use β = 100 here), while the rest of the
parameters will be in the same range for both healthy and PD individuals.

Frontotemporal Dementia (bvFTD). Patients with bvFTD are prone to
overeating which may represent increased reward representation. To model this
impairment in bvFTD patients, the parameter of the model could be modified as
follow: αM << α (e.g., α = 100 as shown in Table 2), where α is the parameter
of the bvFTD model has, and the rest of these parameters are equal to the
normal one.

Alzheimer’s disease (AD). To model apathy in patients with Altzheimer’s,
including downplaying rewards and losses, we will assume that the parameters
φ and τ are somewhat smaller than normal, φ < φM and τ < τM (e.g., set to
0.1 in Table 2), which models the tendency to forget both positive and negative
rewards.

ADHD. Recall that ADHD may be involve impairments in storing stimulus-
response associations. In our ADHD model, the parameters φ and τ are smaller
than normal, φM > φ and τM > τ , which models forgetting of both positive and
negative rewards. Note that while this model appears similar to Altzheimer’s
model described above, the forgetting factor will be less pronounced, i.e. the
φ and τ parameters are larger than those of the Altzheimer’s model (e.g., 0.2
instead of 0.1, as shown in Table 2).

Addiction. As mentioned earlier, addiction is associated with inability to prop-
erly forget (positive) stimulus-response associations; we model this by setting
the weight on previously accumulated positive reward (“memory”) higher than
normal, τ > τM , e.g. τ = 1, while τM = 0.5.

Chronic Pain. We model the reduced responsiveness to rewards in chronic
pain by setting α < αM so there is a decrease in the reward representation, and
φ > φM so the negative rewards are not forgotten (see Table 2).

Of course, the above models should be treated only as first approximations
of the reward processing biases in mental disorders, since the actual changes
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Table 2. Datasets

UCI Datasets Instances Classes

Covertype 581 012 7

CNAE-9 1080 9

Internet Advertisements 3279 2

Poker Hand 1 025 010 9

in reward processing are much more complicated, and the parameteric setting
must be learned from actual patient data, which is a nontrivial direction for
future work. Herein, we simply consider those models as specific variations of our
general method, inspired by certain aspects of the corresponding diseases, and
focus primarily on the computational aspects of our algorithm, demonstrating
that the proposed parametric extension of TS can learn better than the baseline
TS due to added flexibility.

5 Empirical Evaluation

In order to evaluate the proposed framework empirically and compare its per-
formance with the standard Thompson Sampling, we used the following four
classification datasets from the UCI Machine Learning Repository1: Covertype,
CNAE-9, Internet Advertisements and Poker Hand. A brief summary of the
datasets is listed in Table 2.

In order to simulate an infinite data stream, we draw samples randomly
without replacement, from each dataset, restarting the process each time we
draw the last sample. In each round, the algorithm receives the reward 1 if the
instance is classified correctly, and 0 otherwise. We compute the total number of
classification errors as a performance metric. Note that we do not use the features
(context) here, as we try to simulate the classical multi-arm bandit environment
(rather than contextual bandit), and use the class labels only. As the result, we
obtain a non-stationary environment, since even if P (reward|context) is fixed,
switching from a sample to a sample (i.e., from a context to a context) results
into different P (reward) at each time point.

Table 3. Average results

Addiction ADHD Alzheimer’s Chronic

Pain

bvFTD Parkinson M TS

Datasets

Positive

environment

51.46 52.35 52.53 52.88 59.16 56.23 52.64 55.62

Negative

environment

62.83 55.06 55.54 55.48 56.03 56.21 52.74 61.21

Normal reward

environment

52.81 53.68 51.48 53.11 49.55 58.01 50.92 56.95

1 https://archive.ics.uci.edu/ml/datasets.html.

https://archive.ics.uci.edu/ml/datasets.html
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In order to test the ability of our models to reflect decision-making biases
in various disorders, as well as to evaluate the advantages of our model in com-
parison with the baseline TS, under different test conditions, we consider the
following settings:

– Positive reward environment: we modify the reward function so that the agent
receives only positive rewards (the lines 11 is not executed). This environment
allows us to evaluate how our models deal with positive reward.

– Negative reward environment: we modify the reward function so that the
agent receives only negative rewards (the lines 10 is not executed). This envi-
ronment helps to evaluate the negative-reward processing by our models.

– Normal environment: the agent can see both negative and positive rewards.

The average error rate results on the UCI datasets, for each type of the
environment, and over 10 runs of each algorithm, are shown in Table 3. We com-
pute the error rate by dividing the total accumulated regret by the number of
iterations. The best results for each dataset are shown in bold. Note that our
parametric approach always outperforms the standard TS method: AD (addic-
tion) model is best in positive reward environment, M (moderate) version is
best in negative environment, and bvFTD happens to outperform other models
in regular (positive and negative) reward environment. While further modeling
and validation on human subjects may be required to validate neuroscientific
value of the proposed models, they clearly demonstrate computational advan-
tages over the classical TS approach for the bandit problem.

We now present the detailed results for all algorithms and for each of the
three environments, in Tables 4, 5, and 6. Lowest errors for each dataset (across
each row) are again shown in bold. Note that, in all three environments, and for
each of the four datasets, the baseline Thompson Sampling was always inferior
to the proposed parametric family of methods, for each specific settings, different
versions of our HBTS framework were performing best.

Positive Reward Environment. Table 4 summarizes the results for positive
reward setting. Note that most versions of the proposed approach frequently
outperform the standard Thompson sampling. ADHD model yields best results
on two datasets out of four, while AD (addiction) and M (moderate) models are
best at one of each remaining datasets, respectively.

Note that PD (Parkinson’s) and bvFTD (behavioral-variant fronto-teporal
dementia) yield the worst results on most datasets. The behavior of PD model is
therefore consistent with the literature on Parkinson’s disease, which suggests,
as mentioned earlier, that Parkinson’s patients do not learn as well from positive
rewards as they do from negative ones.

Ranking the algorithms with respect to their mean error rate, we note
that the top three performing algorithms were AD (addiction), ADHD and AZ
(Alzheimer’s), in that order. One can hypothesise that these observations are
consistent with the fact that those disorders did not demonstrate such clear
impairment in learning from positive rewards as, for example, Parkinson’s.
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Negative Reward Environment. As shown in Table 5, for negative reward
environment, we again observe that the proposed algorithms always work better
than the state of the art Thompson sampling.

Overall, M (moderate) model performs best in this environment, on three out
of four datasets. Note that PD (Parkinson’s) and CP (chronic pain) models out-
perform many other models, performing much better with negative rewards than
they did with the positive ones, which is consistent with the literature discussed
before. AD (addiction) is the worst-performing out of HBTS algorithms, which
may relate to its bias towards positive-reward driving learning, but impaired
ability to learn from negative rewards.

Ranking the algorithms with respect to their mean error rate, we note that
the two best-performing algorithms were ADHD and AZ (Alzheimer’s), in that
order.

Normal Reward Environment. Similarly to the other two environments,
the baseline Thompson Sampling is always inferior to the proposed algorithms,
as shown in Table 6). Interestingly, model M was never a winner, either, and
different disorder models performed best for different data sets. PD and CP show
worst performance, suggesting that negative-reward driven learning is impairing.

6 Conclusions

This paper proposes a novel parametric family of algorithms for multi-arm
bandit problem, extending the classical Thompson Sampling approach to model
a wide range of potential reward processing biases. Our approach draws an
inspiration from extensive literature on decision-making behavior in neurological
and psychiatric disorders stemming from disturbances of the reward processing
system. The proposed model is shown to consistently outperform the baseline
Thompson Sampling method, on all data and experiment settings we explored,
demonstrating better adaptation to each domain due to high flexibility of our
multi-parameter model which allows to tune the weights on incoming positive
and negative rewards, as well as the weights on memories about the prior reward
history. Our empirical results support multiple prior observations about reward
processing biases in a range of mental disorders, thus indicating the potential
of the proposed model and its future extensions to capture reward-processing
aspects across various neurological and psychiatric conditions. Our future work
directions include extending our model to the more realistic contextual bandit
setting, as well as testing the model on human decision making data.
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Abstract. Realizing flexible cooperative group behavior of human and
social robots or agents needs a mutual understanding of each inten-
tion or behaviors of participants. To understand cooperative intelligence
in group behavior, we must clarify the decision-making process with
intention estimation in multiple persons. Multi-people decision-making
process have top-down intention sharing and bottom-up decision mak-
ing based on the intention inference and amendment based on the each
participants’ behavior. This study suggests the cooperative pattern task
focusing on the selection process of others whom to be noticed and bal-
ancing process of each intention to achieve the shared purpose. In the 2D
grid world of an abstract cooperative environment with restricted modal-
ity of subjects, they communicate with each other in a nonverbal way
and infer their intention based on their behavior to achieve the purpose.
We analyzed the human subjects’ behavior and clarified their policy of
behavior and concepts which assumed to be shared by each subject for
preventing misunderstanding of each intention. Two main results were
obtained through the experiment. First, optimal behavior based on the
purpose in minimal steps prevent the misunderstanding of each inten-
tion. Second, the narrowing down the number of subjects who change
their policy assumed to reduce the burden of intention inference.

1 Introduction

Understanding the underlining process of human decision making with intention
estimation is needed for human agent interaction or human robot interaction.
Although human flexible cooperative behaviors are seen in many sports or even
in everyday lives, the process of cooperative decision making is not clarified.
In goal-type ball games such as handball, soccer or basketball, players interact
with each other in dynamic situations and estimate each intention based on the
nonverbal communication such as eye contact or body language, and change
their behavior to deceive or deal with the opponents. Also in everyday lives,
we understand the others’ intentions through their behavior and decide whether
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cooperate with them or not. The interaction of multi-people require the partic-
ipants not only estimate the one other person’s intention, but also select whom
to focus and estimate the shared intention of the group. To understand the deci-
sion making process in human cooperative behavior, we suggest the cooperative
pattern task which abstracts the cooperation with general cooperation purpose
as forming a pattern. The subjects’ behaviors are analyzed and the effect of
behavioral optimality for preventing mutual misunderstanding and group policy
which assumed to be shared among subjects to reduce the burden of inference.

In the following, we present background of the analysis and modeling of
human decision making process with intention estimation in Sect. 2, then suggest
the pattern task experiment for analysis of cooperative behavior in Sect. 3. We
discuss the results of the experiments in Sect. 4, finally concludes this paper in
Sect. 5.

2 Background

Various researches deal with clarifying or modeling interaction with intentions
to construct socially intelligent agents or understand the human ability of deci-
sion making with intention inference. One of the representative agent models
of interaction with others is BDI models of beliefs (B), desires (D), intention
(I) based on Bratman’s theory of intention [1–3]. In the BDI model, people set
their own goals based on their beliefs about the surrounding environment, choose
the means to achieve that goal, form the intention, and decide to act according
to the intention. If interventions of the other people occur, they set new goals
based on their beliefs and the intention of others, and choose another means to
achieve the goal and form a new intention. While BDI model is represented by
logical structure [2], recent researches model the human inference of intention
or interaction with the other person through probabilistic mathematical mod-
els like MDP(Markov Decision Process) or reinforcement learning models based
on Bayesian perspective [4–6]. In this way, the intention of people depends on
their own beliefs depending on the environment, and are formed through the
internal model of other person. It is thought that there is an aspect that they
estimate others’ intentions based on the models and decides behavior by balanc-
ing between the intentions of the others and themselves. If there are more than
one other person, we can share the intention of each and have shared concept to
form common action, and analyzing such structure of the multi-person interac-
tion is also important for human robot interaction [7]. For example, in soccer
which is realized as one of the best cooperative action of people, even when each
player acquires different environmental information, they estimate common sub-
goals instantly and form an intention to realize it. Such process enable them
to realizes advanced strategies such as one-two pass or through ball. To form
these kind of intention, not only the bottom-up intention formation based on
individual beliefs, but also the intention shared among players in specific states
and actions and the concept of connecting them are present. Shared concepts
which involve selection of others and born from interactions are important for
the model formation of interaction with others.
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Next, in interaction with other people, it is necessary to self-observe how
other people guess about themselves, thereby guessing what kind of influence
can be given to others by themselves. Self-observation principle [8] estimates
the behavior of others by adopting a model that looks at himself objectively
to others. By the principle, it is possible for people to match with or with-
draw others in the group and construct strategies mutually predicting of each
mind. Furthermore, estimating internal states of each other also helps cooper-
ative actions such as mutually coordinating behaviors and working jointly. In
order to adjust their behavior, it is important to select one from the multiple
sub-goals and estimate what the others intend. The problem is the recurrence
of intention estimation between self and others. A recurrent structure such as
“to estimate another person’s own self”, “to estimate that others are estimating
others’ own self” occurs [9]. Recurrent estimation of others’ intention in verbal
interaction is also analyzed through an interpersonal game [10]. In fact, we ana-
lyze the causality of the movement behavior of the handball and soccer players,
so the causal relationships of the actions among players are mutually connected,
and it is difficult to estimate the structure [11]. In order to solve such recursion,
we think that it is necessary to analyze the depth of intention estimation in local
cooperative behaviors. Therefore, we analyze subject behavior by using pattern
task as cooperative task abstracting cooperative behavior.

3 Pattern Task

3.1 Outline of the Task

We propose the pattern task for analyzing human cooperative behavior. In this
task, four subjects participate and cooperate in a grid world without verbal
communication, and aim to realize the locational target pattern in as few steps
as they can. Each subject behaves as an agent in the grid world and can take
5 actions (stop, go-left, go-right, go-up, go-down) (shown in Fig. 1). Since the
target patterns are defined with relative distances of three points in grid without
overlaps, each four agents ought to consider whom to cooperate with to achieve
the pattern within minimal steps. That is, although the goal is achieved by
whole four agents by positioning to form the target pattern, each subject must
estimate others’ intention to prevent misunderstanding for achieving the goal in
each steps, and tell others whether to participate forming the pattern or not,
through only their behaviors.
The task consists of five phases as below:

– Phase1: Select other agents whom to be focused to realize the target pattern.
– Phase2: Select three coordinations where the agent realize the target pattern

at last, or the pattern will be realized by the other agents.
– Phase3: Select one of the five actions (stop, go-left, go-right, go-up, go-down).
– Phase4: Select the agents who are considered to be selected in Phase1 by the

agent.
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Fig. 1. Pattern task (Left) the grid world. The large round sprites in this figure rep-
resent the agents and their current locations and the small ones represent the location
in the previous step. (Right) The target pattern. Since the end condition of each trial
is defined by the relative position of three points, the trial ends in this situation.

– Phase5: Select three coordinations where the agents focused in Phase1
selected in Phase 2.

The above whole five phases are repeated in each steps of a trial until the
agents achieve the target pattern or the limit of maximum steps. Then the
initial locations of the agents are changed and after changing some different
initial locations, the different target pattern is applied and repeated each trials
(see Fig. 2).

Block
Trial
Step
Phase1

Phase2

Phase3

Phase4

Phase5 Nsteps Ntrials Nblocks

Fig. 2. Task flow of the experiment. Each phases are repeated in each steps. The steps
are repeated in Nsteps times or until the purpose realized in each trials. Each trials with
different initial locations of the agents and each blocks with different target patterns
are repeated in Ntrials and Nblocks times.

Several rules are set in this task:

– Subjects are not allowed to talk about their location or action which enable
the other to specify the agent to the other subjects.

– The target pattern can be realized by three out of four agents, and it is not
necessary for whole four agents to locate in the target locations.
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– Since the task achievement is judged by the relative locations of the target
pattern, parallel shift of the coordinations are accepted but the rotation or
reverse of the pattern is not accepted.

– The agents selected in Phase1 or 4 don’t conclude the agent who is selecting
in this phase himself. If the number of selected agents was more than three
(for example, in the case the distance of the target pattern was the same with
few agents), the agent select the only three agents most possible to achieve
the pattern.

– The target coordinations selected in Phase 2 and 5 are the most realizable
pattern to achieve.

– Agents are allowed to move to the same location of the other agents and they
are able to move to the four neighboring cell of the grid world (left, right,
up, down). The field is not torus grid world and the ends of the field are not
connected (i.e., the agent cannot go right at the right edge and also the other
edges).

3.2 Experiment

In this experiment, we have prepared the task as a web application for multiple
subjects to participate together and subjects participated using Web browsers
with their own computers. We used a 5× 5 grid world for the experiment and
set the maximal step limit as 5 steps because subjects can achieve one edge to
the other edge of the field. To prevent the prediction of the behavior based on
the personality of the each subject, the colors of agents are randomly shuffled
in all trials and blocks. Also, although the red colored agent always represents
the subject who controlling the agent in his screen, the agent has different colors
from the screens of others. So the colors of the agents don’t correspond to each
other in each screen to prevent specifying subjects. 20 subjects participated in
this experiment with a few target patterns of almost each 5 trials of different
initial locations for each group.

3.3 Results

Through the experiments, the following two results were obtained. First, accord-
ing to selection of their own target pattern of Phase 2 and another person in
Phase 5, in many cases, one of the optimum patterns that minimize the number
of reaching steps to the goal is selected. Also, to select another agent relates
to achieving the goal in Phase 1, subject basically select another person who
has few reaching steps. Second, regarding the relationship between the pattern
assumed by the subject and the pattern of others, although there are many new
patterns in each subject in the early stage, when all the intentions of the subjects
agree, they estimate the same pattern continuously until the purpose achieved.

Selection of Others and Target Patterns. First of all, the estimation depth
with regard to the selection of the target pattern of Phase 2 was determined for
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all subjects (three coordinate inputs 1, and not incorrect patterns entered) in the
Table 1 (1-1), 1, 2 steps are the most frequent, and others are few. In addition,
the difference between the depth of the computationally optimal pattern based
on the distance of goal pattern (hereinafter referred to as optimum pattern)
and the depth of each subject estimated is basically falls within one step as
shown in the Table 1 (1-2), and subjects almost estimate the optimum pattern
(99.55% of the total estimates the pattern within 1 step shift from the optimum
pattern). Also, in Phase 5, we also analyzed the selection of a target pattern of
another person in the same procedure (As with Phase 2, only three coordinates
are entered, only those that did not input an incorrect pattern are analyzed),
in the Table 1 (2-1), we assume a pattern that can be realized in 1, 2 steps and
two steps as like Phase 2. In addition, the difference from the optimal pattern
basically falls within the range of 0 to 1 as shown in the Table 1 (2-2). In this
way, similar results were obtained in Phase 2 and Phase 5.

Next, with respect to the other agent selected in Phase 1, the other person
selected by the subject is set to the nearest group of others calculated from
Phase 2 is 581 times out of 668 times (86.98%), as shown in the Table 1 (3-1).
Aggregating in the case of the number of other interested people is 2 or 3, it is
581 times out of 620 times (93.71%) as shown in the Table 1 (3-2).

Table 1. Selection of others and target pattern

(1) Phase2 (target pattern selection) Total

(1-1) the target pattern estimated steps 0: 4, 1: 369, 2: 231, 3: 55, 4: 3 662

(1-2) diff. with the depth of optimal pattern 0: 571, 1: 88, 2: 3 662

(2) Phase5 (target pattern selection of others)

(2-1) the target pattern estimated steps 0: 9, 1: 800, 2: 471, 3: 104, 4: 12 1396

(2-2) diff. with the depth of optimal pattern 0: 1249, 1: 141, 2: 6 1396

(3) Phase1 (focused agent selection)

(3-1) # of selection of the nearests of Phase2 581 (86.98%) 668

(3-2) limited by 2 or 3 agent of the above case 581 (93.71%) 620

Relation Between Patterns Selected by Subjects and Others. According
to the relationship between the pattern selected by the subject and another
person, the selected pattern of Phase 2 in the previous and next steps is divided
into the following three items and analyzed.

1 The breakdown of the number of coordinates of the subject’s pattern input in all
trials and all steps is {0: 3, 2: 2, 3: 668, 4: 1, 6: 2}. 98% or more has entered three
coordinates. Others are considered to correspond to the multiple target selection
(entering six coordinates), no idea (entering zero) and erroneous input (entering two
or four).
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(a) Select the same pattern as Phase 2 in the previous step.
(b) Select the same pattern as the pattern selected by Phase 2 by another agent.
(c) Select a new pattern different from every pattern selected in the previous

step.

First of all, in all the whole trial steps of Table 2 (1), selecting the pattern
assumed by (a) is the largest number of 305 times (45.39% of the total), next
the number of (c) which assumes a new pattern follows by 246 times (36.61%)
and the number of selecting (b) is 121 times (18.01%).

To confirm the change of selection in each trial of more than one step, the
first inter-steps (steps 1 and 2), the last inter-step (last step and before) and the
inter-steps of the timing of each target patterns matched (same pattern between
before after) were separately analyzed. First, in the first inter-step as shown in
Table 2 (2), out of all 248 times, (c) is the highest at 169 times (68.15%), followed
by (a) 59 times (23.79%) and (b) 20 times (8.06%). On the other hand, in the
last inter-step the order changes as shown in the Table 2 (3). Out of 248 times,
(a) is the highest with 163 times (65.73%), followed by (b) 74 times (29.84%)
and (c) 11 times (4.44%). Also, paying attention to the inter-step before and
after the target pattern of everyone matches as shown in the Table 2 (4), Out
of the total 152, (a) and (c) are almost the same as 73 times (48.03%) and 68
times (44.74%) (b) is the lowest as 11 times (7.24%)2. The patterns selected in
Phase2 becomes inconsistent after the Phase 2 matches in the only one trial of
the entire 77 trials.

Table 2. Relationship among pattern selections. Refer to the Sect. 3.3 of the meaning
of ‘a’, ‘b’, and ‘c’

(1) Whole step total a: 305, b: 121, c: 246 total 672

(2) First step a: 59, b: 20, c: 169 total 248

(3) Last step a: 163, b: 74, c: 11 total 248

(4) Consensus step a: 73, b: 11, c: 68 total 152

In the most cases, it was found that the patterns selected by subjects match
after the subjects got the consensus in Phase2 once.

4 Discussion

4.1 Behavioral Optimality for Preventing Intention
Misunderstanding

As seen in the analysis result of Sect. 3.3, in Phase 2, subjects were basically
estimate a pattern that is nearly the same as the optimum pattern that realizes
2 Because the target pattern don’t match in some trials, the population number is

different.
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the pattern with the minimum steps and the same result is obtained also in
Phase 5. We also found out that the others reaching the minimum step are
chosen to pay attention in Phase 1. To select a pattern close to the optimal
pattern by the subject is assumed to be based on the task purpose of realizing
the goal with as few steps as possible. Usually, when estimating the intention
of another person, it is necessary to use their properties, characteristics, habits
of their action selection. However, since in this task, it eliminates the influence
of learning of the properties and characteristics of personal behavior selection.
In order for subjects to estimate the intention of each occasion only from the
behavior of others during the interaction, each individual’s modality is limited
to simple circle sprites on the grid world without difference of the appearances,
and the colors of the agents are shuffled randomly in all trials and blocks. As a
measure to estimate individual policy in such circumstances, it is necessary to
apply the policy not depending on each individual. The estimation of intention
using behavioral optimality is considered to be effective, and the result suggests
that such a measure is taken on the task.

Actually, 74 out of 77 trials finally realized the pattern, and as the total
number of required steps, an average of 2.08 steps in 74 trial during the limit 5
steps realized the pattern (The details are broken down as follows: {1: 15, 2: 42,
3: 14, 4: 2, 5: 1} (number of required steps: number of trials)). In the state where
the policies of each subject are unknown, it is unable to accomplish the task with
such short steps. Also, as it is difficult to estimate personal policies within the
trial, estimating mutual intent by facilitating mutual optimum behavior is aimed
at estimating the target pattern and it is thought that it is shared as one of the
overall measures for the selection of other people to notice.

4.2 Shared Behavioral Tendency Among the Group to Reduce
Intention Estimation Burden or Discrepancy

In the subsect. 3.3, we analyzed target selections of inter-steps (before and after
steps) by dividing in three items for the trials of two or more steps. As shown
in the Table 2 (2), in the first inter-step (1, 2 step), it was the highest to select
(c), a new pattern different from the subject himself and others in the step. This
is because subjects do not know how other people will move next in the initial
steps, and the pattern that subjects decided at the beginning and the pattern
from when everyone started moving would change in many cases. On the other
hand in the last step, (a), the same pattern as the pattern chosen before, is
the most frequently selected, and (b), selecting the pattern of others, follows.
Since at the time of achieving the goal, the target patterns of each subject is
determined and the possible patterns are narrowed down in the patterns selected
by the subjects or the pattern selected by the others. Therefore, it is considered
that there is not much at this point to assume a new pattern as in (c). Also,
before and after the step in which all the subjects match the pattern selected in
Phase 2, (a), (c) was high and (b) was the lowest result. First of all, as for the
case of (c), as an optimal pattern in that situation, it seems that the case where
all the subjects match when selecting a new pattern is considered applicable.
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The situation considered in Sect. 4.1 applies. On the other hand, the reason why
(a) is more than (b) is that after everyone else matches, it is thought that it
corresponds to the scene where the remaining two people change their intention.
If all subjects are (a), there must be a match of Phase 2 at the previous step, at
the time of coincidence, there will always be subjects’ selection (b) or (c). The
more subjects have different intentions, the more conflicting intentions occur and
it is difficult to achieve the goal. Since a few subjects select (b), it is difficult
to think that almost all subjects change their intentions and at the same time
Phase 2 matches. From that, by narrowing down the subjects who intend to
change their intent as a whole policy within the trial, it is thought that it avoids
the risk of intention mispredictions and the delay of achievement of the goal
coming from it.

The number of people moved at the reaching the goal is one example of
suggesting this result. If there are the shared policy narrowing down the number
of subjects change their own target pattern to the last one or two, many subjects
except one or two people who already achieved the target pattern would wait for
the remaining subjects at the time of achieving the goal. Since some subjects take
actions to leave to deny involvement in the target pattern. When the analysis
was performed among subjects who approached the final target pattern at the
shortest distance, the number of people who moved at the same time in 74 trials
that achieved the target pattern was {0: 1, 1: 36, 2: 20, 3: 16, 4: 1}. From this
result, by narrowing down the subjects to move to the remaining one and two
people, an overall the measure is taken to avoid discrepancies in intention.

5 Conclusion

We analyzed interactions of human cooperative group behavior using the coop-
erative pattern task. Basically, two results were obtained by the experiment.
(1) Subjects often take optimal patterns to achieve the goal in minimal steps
in Phase 2 and 5 (the phases of selecting target patterns). Moreover, in Phase
1 or 4 (the phases of selecting focused agents), the nearest other agents to the
patterns are basically selected to achieve the goal. (2) According to the rela-
tionship of selected patterns among subjects, although each different patterns
are selected at the beginning, then a few subjects change their mind in their
interaction, finally they achieve the consensus of the goal by narrowing down
the number of the agents who change their minds. These results are assumed
to be based on the reasons below. First, having the same strategy of behavior
based on the optimality of minimal steps to achieve the goal prevents intention
misunderstanding among subjects. Although this behavior was not instructed
by the experimenter or other subjects because the verbal communication was
prohibited in the experiment, the purpose of the experiment for minimizing the
steps helps subjects to understand each intention. Second, the group strategy
of narrowing down the number of the agents who change the mind in trials to
prevent intention misunderstanding shared among the subjects was suggested
through the experiment.
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In future, we construct computational agent models based on the results and
hypotheses obtained by this experiment. Moreover, we verify the hypotheses by
autonomous agent simulation of group behavior based on the models, and clarify
the elements which explain the subjects’ behavior.
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insights for the evaluation of AGI performance. The approach of one CREATE
program team, the SWARM Project, is outlined.
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1 Introduction

The standard definition of AGI—the possession, by an artificial system, of “general
intelligence at the human level and beyond”—presupposes some understanding of what
human-level intelligence actually is. However, this concept has proven elusive. Various
tests have been proposed as operational substitutes for a general definition. The Turing
Test is the most famous [1], but others include the coffee test [2], and the robot student
test [3].

The higher the level of intelligence required to pass a test, the more stringent the
test, and the more compelling it would be if an artificial agent passed. Gaining a college
degree requires more intelligence than holding an ordinary conversation, and so
passing the robot student test is stronger evidence of human-level general intelligence.

It is therefore interesting to ask what the very highest level of general human
intelligence might be. The most stringent, and hence compelling, sufficiency test would
reference this level.

A research program recently launched by the US Intelligence Advanced Research
Projects Activity (IARPA) may shed light on three issues at the heart of this question:
(1) the highest level of human performance, (2) how performance at that level can be
evaluated, and, (3) how systems achieving that performance might be designed.
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2 IARPA’s CREATE Program

The CREATE (Crowdsourcing Evidence, Argumentation, Thinking, and Evaluation)
program aims to produce “fundamental advances in human reasoning” ([4] p. 7) via
methods which combine crowdsourcing and structured analytical techniques. Crowd-
sourcing in this context means collaboration among groups of analysts. Structured
analytical techniques are methods intended to produce better analyses [5].

In the CREATE program, four “performer” teams will produce “systems” sup-
porting structured collaboration on difficult reasoning problems. These systems will be
rigorously evaluated by an independent testing and evaluation team to determine
whether groups of analysts using the systems can meet or exceed prespecified
benchmarks for improved reasoning performance, across a wide range of problems,
relative to a baseline or control system. Naturally there will be interest in which system
performs best overall. However, this “tournament” is friendly and collaborative in
nature, with the best outcome being that all systems perform well, though perhaps
excelling in different ways or on different types of problems.

The generality of the intelligence required to succeed in the CREATE program is
indicated by the range of problems on which systems will be evaluated. “CREATE’s
methods must be applicable to a wide range of analytic problems, including political,
military, economic, scientific and technological questions,” such as: Are domestic
conflicts in region Y contributing to regional instability? ([4] p. 8).

There is a difficult problem at the heart of the program. How can reasoning per-
formance be measured? If CREATE systems produce superior performance, how can
this be reliably demonstrated? This is a problem because, despite all the work over the
centuries in logic (broadly speaking) there does not currently exist any widely accepted
methodology for rigorously evaluating the quality of complex reasoning.

Some features of the CREATE program make this an especially difficult challenge.
First, many of the types of problems CREATE hopes to tackle lack any objective
yardsticks. For example, in the case of the sample problem given above, involving the
causal explanation of geopolitical instability, there is no gold standard against which
answers can be measured. Conclusions can only be evaluated via more reasoning,
whose quality is just as questionable as that of the original reasoning.

Second, CREATE is intended to produce reasoning of a higher quality than is
achievable by any other method. However, reasoning will necessarily be involved in
the evaluation of reasoning produced by CREATE systems. How can superior rea-
soning be evaluated using (by hypothesis) inferior approaches or methods?

The problem of rigorous evaluation thus involves difficult conceptual issues. It also
involves tricky questions of experimental design. The four performer teams, and the
test and evaluation team, are collaborating to develop a solution. These efforts are
critical to the success of the CREATE program, but they also potentially bear on the
problem of rigorously determining whether an artificial agent is engaging in general
reasoning at or beyond the highest level of human performance.
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3 The SWARM Project

One of the performer teams is the SWARM Project. The acronym stands for
Smartly-Assembled Wiki-Style Argument Marshalling. Argument marshalling is a
structured analytical technique, similar to argument mapping [6] but not diagrammatic,
less rigid, and closer to the natural reasoning behaviors of sophisticated analysts. In the
SWARM approach analysts marshal reasoning on a wiki-style platform, i.e., one that
supports collaborative and even simultaneous editing of pages. Finally, “smartly
assembled” refers to a range of ways the platform supports the production of
high-quality reasoning, such as incorporating workflow based on the IDEA protocol [7],
or aggregating contributions using information derived from deliberation analytics [8].

At a higher level, the SWARM team aims to succeed by maximizing the collective
intelligence of analyst groups using the system; or, in simpler terms, building
“super-reasoning teams,” analogous to the “superforecasting” teams developed in a
previous IARPA program [9]. This challenge is analogous to that of maximizing elite
group performance in other contexts, such as sports, military special operations, and
surgery. There is an extensive literature on group or team performance. Drawing on
recent syntheses (e.g., [10]), it is useful to frame the challenge of maximising the
collective intelligence of reasoning groups as one of optimizing the team and its
activities along six dimensions or “enabling conditions” [11] of strong group
performance:

• Composition. Who belongs to the group? More specific issues include: How large
should the group be? What attributes should individual members possess? How
should attributes be distributed across the group?

• Processes. How does the group go about its tasks? What processes, procedures or
methods does the team utilize?

• Resources. What is provided to the group to enable stronger performance? This
includes anything the group can draw in performing their tasks, including equip-
ment, consumables (food, fuel etc.), and information.

• Motivation. What drives the group? High-performing groups require strong
motivation at individual and group levels. Motivation can be enhanced via good
choices on all the other dimensions.

• Culture. How can performance be enhanced by means of positive culture? A
team’s culture consists of its distinctive shared values, standards and practices, over
and above what has been made explicit in the team processes.

• Coaching. How can performance be enhanced through guidance, feedback, training
and conditioning provided to the team as a whole and to its members?

The SWARM team is developing and testing answers to these high-level questions,
and many more detailed ones, for the specific case of groups whose mission is to
engage in general reasoning. To take one example, in the Resources dimension, a
general reasoning group needs a high-quality platform for collaborating in the devel-
opment of documents expressing their reasoning. To this end, SWARM is developing
and testing a new online platform supporting wiki-style argument marshalling.
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4 Conclusion

With the CREATE program, IARPA aims to break entirely new ground with regard to
human general reasoning capability. If successful, this new standard of performance
would arguably define the most stringent sufficiency test for the creation of AGI. That
is, if an artificial system could compete at or beyond the level of human groups in a
CREATE-style competition, this would represent the most compelling possible evi-
dence that general intelligence had been achieved.

The CREATE program’s need to rigorously evaluate whether high levels of per-
formance have been achieved requires it to address some difficult problems in the
evaluation of high-level general reasoning. Any progress in this area will also apply to
the evaluation of reasoning performance by AGI systems.

Another possible outcome of the CREATE program is to yield insights into how
high levels of performance on general reasoning problems can be achieved. These
insights might inform the design of AGI systems. For example, it may be that an AGI
system could benefit from being designed as a collaboration of artificial agents working
together using some of the principles discovered in the CREATE program to result in
the highest levels of human performance.
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Abstract. This paper details primitive structural traits in information,
and then in intelligence, as a model of ‘thinking like nature’ (natural/core
informatics). It explores the task of designing a general adaptive intel-
ligence from a low-order (non-anthropic) base, to arrive at a scalable,
least-ambiguous, and most-general, computational/developmental core.

1 Discussion of Problem: Asking the Right Question . . .

What presents a central conceptual challenge in the advent of human level AI
(HLAI) is essentially noted by various individuals, across diverse disciplines, as
they each confront their own obstacles:

– ‘solving intelligence’, Demiss Hassabis, Google Deep Mind [3],
– ‘de-risking science’, Ed Boyden [2], MIT Media Lab, neurology,
– ‘meaning as fundamental’, Brian Josephson [17], Cambridge University,

physics,
– ‘theory of meaning’, Shannon and Weaver [34], information theory, and more.

Each individual or discipline has its own framing, but these nominally-diverse
logical gaps can be seen as, and reduced to, one main informational failing.

Shannon and Weaver were likely first to see this gap as a missing theory of
meaning but it has worn many faces since. Further study marks key differences
in how we view and treat objective (quantitative) information, and subjective
information (qualia, raw sense data) — where basic ideas of ‘information’ become
a confused dualist concept, with neither view fully developed or integrated with
the other [34].

For example, mathematics is often seen as being ‘purely objective’, capable
of omitting subjective traits from its arguments as an intellectual ideal (e.g.,
theoretical mathematics). But mathematics without subjective elemental facts
is a fact-free science, of little practical use. Only if subjective (S) and objective
(O) roles are linked do ‘useful results’ arise (e.g., applied mathematics). If we look
for other firm objective views, the standard model in physics and the periodic
table are good candidates. But their recent ‘objective success’ ignores the fact
they arose from a line of subjective elemental observations, later normalized via
experiment and peer review. Only after enough material regularity (‘evidence’)
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was subjectively discerned and subjectively named, by varied individuals, were
the models then normalized (agreed upon) as being innately objective.

Practical gains derived from objectified subjective roles, like the standard
model and the periodic table, are so vast that we may forget how objective
features first arise as subjective notions. Objective traits cannot even be posited
if they are not first subjectively sensed or ‘discovered’ by someone. So, if we
now seek to design something ‘objectively intelligent’, we confront the equal of
designing a ‘pure subjective’ role [35] to sustain later ‘objective’ aims. The point
of general intelligence is, after all, to bring new subject matters to our attention,
so we can later name new objective gains, in a scalable/serial manner. Continued
‘informational (S-O) integration’ would presumably lead to a type of HLAI+ or
‘super-intelligence’.

But before attempting any such goal, we must ask ‘Intelligence about what
exactly?’, as all intelligences, even human, are unequal due to innate subjectiv-
ity [7]. Also, in a manner akin to that seen in the standard model and the periodic
table, what subjective elemental facts (‘data’ or base ‘information’) will we use to
initiate that presumably-objective (super) intelligence?

Given that such questions persist, S-O modeling remains the core issue for
grasping ‘knowledge’ in western thought. Despite varied framings and opinions
on the matter, this all points to an unavoidable subjective aspect in modeling
information and intelligent systems — contrary to a presumed ‘purely objective’
ideal.

2 Current Literature

In the literature, the need for S-O modeling drives a large patchwork of vague,
controversial, and competing views [11]. For example, most basic is scientism,
claiming that if ‘a thing’ is not objectively named it does not exist, seeking to
eliminate subjectivity wholly from consideration [26]. Ironically, this shows the
worst of subjective näıveté [27,30]. Philosopher Daniel Dennett [10] is a likely
standard-bearer arguing that qualia (raw sense data) are non-existent, ignoring
the need for a functionally differentiating sensorium in ‘evolution by natural selec-
tion’. Alternatively, philosopher David Chalmers [5] asserts that qualia are beyond
all scientific thought, while often alluding to an ‘information theory’ solution but
with no actual details ever offered. After Chalmers, others support a mystical
‘panpsychism’, with evolutionary biologist Stuart Kauffman [15,19] and neurol-
ogist Christof Koch [21] as recent converts. Lastly, there is ‘mysterianism’ where
some seem to throw their hands up and claim that no solution is ever likely [9].
These and other numerous unnamed views offer seemingly endless debate, but lit-
tle more.

Conversely, success with Shannon’s [33] ‘signal entropy’ drives an enduring
informational pragmatism and decades of information technology leaps — in
objective roles. Plain objective gains versus endless subjective debate puts most
attempts at S-O modeling in a poor light (as per above). Regardless, Shannon
and Weaver still saw signal entropy as essentially ‘disappointing and bizarre’ [34],
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in part due to a missing theory of meaning. Hence, later informational studies
convey a ‘conceptual labyrinth’ of unresolved subjective/semantic issues, even
if using a Shannon-based start [12]. Despite that persistent ‘labyrinth’, gains
in unsupervised machine learning point to growing optimism in the possibility
of designing an HLAI [22,29]. But those gains include ‘catastrophic forgetting’
[14] that can obscure the naming of reasons for that recent success. Also, the
application of said models is rather limited (‘narrow’) in focus, despite broader
‘general’ claims [18]. As such, HLAI(+) efforts currently remain ‘fringe projects’
[16,24], partly due to the lack of true advances in S-O modeling.

In seeking a practical middle ground, few names appear. Philosopher John
Searle [31] calls for ‘biological naturalism’ as a crucial foundation, framing base
ontological and epistemic aspects in subjective and objective roles [32]. But
again, no detail on a full model is offered. For example, he argues humans may
process qualia, but other biological systems (like a tree) do not, without saying
why those biological systems should differ (personal exchange, 30 April 2014).
As a small advance, philosopher Luciano Floridi [12] offers a General Defini-
tion of Information (GDI) that partly differentiates semantic roles. But ques-
tions remain on GDI’s finality [6]. Later, astrophysicist Sean Carroll [4] attempts
a synthesized view by assembling notable intellectuals from diverse disciplines
for a focused ‘naturalism’ discourse, but ends with no meaningful result. In
a more-aspiring line, computer scientist Marcus Hutter [23] posits a Universal
Artifical Intellgence top-down model (AIXI) that seems mostly theoretical and
non-computable [37], but points to useful directions. Conversely, mathematician
Stephen Wolfram [38] posits a bottoms-up ‘computational irreducibility’, where
cosmic ‘primitives’ drive innate sense-making (interpretative) roles that com-
pute all information. Recent versions of Wolfram Language (symbolic discourse
language) mark an early effort at this style of S-O modeling. Still, it is too early
to assess this approach’s efficacy in (as said) ‘mining a computational universe’.

The strongest hint to date of a likely solution comes from neuro-
anthropologist Terrence Deacon [8], using a type of ‘entropic analysis’ as a base
synthesis [11]. He references Claude Shannon’s signal entropy, Boltzmann’s ther-
modynamic entropy, and Darwinian natural selection as innately complementary
views (a Shannon-Boltzmann-Darwin model). But the model’s purely thermo-
dynamic bias makes it irreconcilable with wider physics based views (email
exchange, January 2017). Also, the work is littered with confusing/unneeded
neologisms and nearly impenetrable prose [11,13,25]. The model thus lacks clar-
ity. Beyond Deacon’s work no other models are seen, except for the view posited
herein — which roughly tracks Deacon’s view but in a more-plainly reductive
manner. Still, the strength of Deacon’s entropic analysis is that it stipulates a
bottom-up approach, minimizing the chance of later explanatory gaps, and ties
directly to Shannon’s signal entropy, an already well-established model.
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3 Posited Model: Natural/Core Informatics, or ‘Thinking
Like Nature’

This paper frames a path through the above S-O bind by detailing a naturally
scalable core with evolving complexity as we see with nature. It thus marks a
growing functionality one also hopes to see in ever-more intelligent informational
systems.

The model synthesizes: Shannon signal entropy, Bateson’s [1] differenti-
ated differences, and Darwinian natural selection (a Shannon-Bateson-Darwin
model) for a unified general view. This contrasts to Deacon’s Shannon-
Boltzmann-Darwin model. This S-B-D core furnishes the model’s structural
fundaments, as briefly developed in the step-wise logic given below. Deeper
analysis of those steps is given in three papers (see Appendix) that support
a larger body of work on Natural/Core Informatics.

The steps that underlie this naturally scalable core are as follow:

1. What is Information? (an a priori dual aspect . . . )
(a) subjective and objective roles are named as distinct-but-interdependent

informational precursors, where one affirms the existence of the other.
An a priori dual-aspect theory [28,36] is thus implied in S-O models of
information,

(b) next, divergent representational modes for objective and subjective
roles (re a priori dualism) are detailed,

(c) also, divergent computational aspects of objective and subjective roles
are named (e.g., questions of ‘transition and emergence’ or ‘functional
scalability’).

(d) Step 1’s ‘novelty’ lies in: (i) naming an empiric dual-aspect, (ii) from an
a priori perspective, (iii) therein surpassing prior notions of information.

2. What is Meaningful Information? (exploring further S-O links . . . )
(a) varied scientific models (the standard model, periodic table, genomics,

and natural selection) are shown as distinct functional ‘types’ — naming
meaningful differences in accepted objectified subjective roles,

(b) thus, a further ‘proximate dualism’, beyond ‘a priori dualism’, is shown:
i. the standard model and periodic table convey a ‘proximate objective’

(non-adpative or ‘direct’) role, and
ii. genomics and natural selection convey a ‘proximate subjective’ (adap-

tive) role,
(c) next, the role of metadata in grounding all functional types is named,
(d) thus, to develop an ensuing general informatics as ‘one logical system’, a

unifying meta-meta-data perspective is first needed,
(e) that ‘metadata bridge’ is shown to entail three types of meaningful roles:

materially direct (non-adaptive), discretely adaptive (coded), and tem-
porally adaptive (selection), thus grounding a differentiated-but-unified
‘general informatics’ and general theory of meaning.

(f) also, this marks a dualist-triune (non-adaptive/adaptive) topology in
ensuing general informatics.
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(g) Step 2’s novelty is in (i) differentiating meaningful ‘types’, (ii) reframing
metadata as ‘data about meaning’ versus common ‘data about data’,
and (iii) identifying an empiric ‘2–3’ topology for general informatics.

3. How is Adaptive Logic Generated? (focusing on adaptive ‘intelligence’ . . . )
(a) a general ‘adaptive key’ with material and behavioral facets is identified

in ‘levers’. Thus, levers afford a basis for further logical analysis (i.e., a
subjectively grounded ‘computational trope’),

(b) this adaptive key is next deconstructed to mark three lever classes and
three key computational roles, that naturally afford/generate numerous
adaptive options,

(c) those computational roles are then mapped in relation to Shannon signal
entropy, to mark natural ‘entropic types’ that join to initiate a sense-
making interpretive (‘entropically generative’ or creative) system,

(d) a natural scalable example of this interpretive system is then given in the
advent of lever-based ‘simple machines and beyond’.

(e) Step 3’s novelty lies in: (i) the joint modeling of diverse levered roles, (ii)
to derive a continuous general adaptive logic, (iii) that naturally bridges
to signal entropy.

4. How is Adaptivity Selectively Optimized? (given many adaptive outputs . . . )
(a) myriad adaptive options thus exist (per above), that are now reduced

by the happenstance of ‘evolution by natural selection’ (e.g., problem of
‘uncontrolled variables’),

(b) only functional reduction can optimize those options, driven by natural
selection,

(c) to frame that ‘evolutionary landscape’ classic threefold selection pressure
and agent responses are shown as entangled functional roles,

(d) as such, happenstance is also reframed as a general ‘agent+force = result’
(2–3) logic, for a basic reducing model, or an ‘interpretive process’ that
reduces ‘many subjectives’ into ‘the objective’,

(e) reductive logic is then shown to hold a 2–3 topology of . . . 3232 . . . as an
extensible ‘fractal key’, for a naturally scalable adaptive continuum,

(f) next, that fractal key is explored in relation to chaos theory as a way to
structurally/computationally model happenstance and logical reduction,

(g) lastly, that reductive process is framed as a ‘base cognitive psychology’
that conveys nominal intelligence.

(h) Step 4’s novelty is in: (i) the joint modeling of selection dynamics and
agent responses, (ii) to detail a continuous dualist-triune topology, that
also (iii) frames a base adaptive psychology as ‘adaptive intelligence’.

The implication of this analysis is that designing an HLAI(+) likely requires
a sequence of computational roles, rather than a one-step (top-down) algorithmic
model. Also, using this step-wise view implies a range of ‘interpretive tendencies’,
adjacent possibilities [20], or stepping-stones [35] typical to chaos theory, rather
than firm predictive results. Such a model can still aid human inventiveness,
but more likely in a non-autonomous HLAI+ role. Also, this computational
view implies that an HLAI would not ‘consciously experience’ worldly events,
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unless specifically programmed to model existential risks to a ‘Self’, as with
actual living agents. This analysis covers general adaptive logic, but does not
address existential risk modeling. Finally, this study focuses on defining a simple
adaptive logic (SAL), rather than targeting ‘complex (higher-order) adaptive
systems’ (CAS). More detail is available in the video and papers linked below.

A Appendix: Supplementary Material

The video and papers listed here provided added detail on the above step-wise
analysis.

Title: THE ‘HARD PROBLEM’ OF CONSCIOUSNESS — names flaws in
one of the more popular/well-known philosophical views, from among the many
philosophical views noted in the first paragraph of Sect. 2.

Link: https://issuu.com/mabundis/docs/hardproblem.
Abstract: To frame any meaningful model of information, intelligence, ‘con-

sciousness’, or the like, one must address a claimed Hard Problem (Chalmers,
1996) — the idea that such phenomenal roles fall beyond scientific views. While
the Hard Problem’s veracity is often debated, basic analogues to this claim still
appear elsewhere in the literature as a ‘symbol grounding problem’ (Harnad,
1990), ‘solving intelligence’ (Burton-Hill, 2016), Shannon and Weaver’s (1949)
‘theory of meaning’, etc. As such, the ‘issue of phenomena’ or innate subjectivity
continues to hold sway in many circles as being unresolved. Also, direct analysis
of the Hard Problem seems rare, where researchers instead typically offer related-
claims asserting that: (1) it is a patently absurd view unworthy of study, or (2)
it presents a fully intractable issue defying clear exploration, but with little clar-
ifying detail. Debate on ‘the claim’ thus endures while clarity remains absent.
This essay takes a third approach, that of directly assessing the Hard Problem’s
assertion contra natural selection in the formation of human consciousness. It
examines Chalmers’s logic and evidence for this view, taken from his articles
over the years. The aim is to set an initial base where it then becomes possible
to attempt resolution of the aforementioned ‘issue of phenomena’ (8 pages: 4,000
words).

Title: ONE PROBLEM - ONE THOUSAND FACES : IS4IS 2015 (Interna-
tional Society for Information Studies, conference presentation) — gives a broad
abstract view of the model’s basic approach, and further details the first bullet
point in the step-wise model (Sect. 3) above.

Link: https://vimeo.com/140744119.
Abstract:This video (23 min) gives abroadviewofapriori notions of informa-

tion. It names an initial general ‘theory ofmeaning’ and ‘theory of information’ that
emphasize scalable primitive subjective and objective facets. In brief, the model
synthesizes Shannon entropy, Bateson’s different differences, and Darwinian selec-
tion (an S-B-D model) to derive meaningful information across diverse disciplines.

https://issuu.com/mabundis/docs/hardproblem
https://vimeo.com/140744119
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In the video: Basic issues and questions are framed (2:30 min). Known meaning-
ful metadata traits are detailed (2:30 min). Next, metadata’s role is fully decon-
structed in remaining minutes to name universal a priori facets. Lastly, the model
is re-constituted ‘from the ground up’ to present a fully synthesized S-B-D a priori
view. Text for the video voice-over can also be read or downloaded at: http://issuu.
com/mabundis/docs/oneprob.fin

Title: A GENERAL THEORY OF MEANING: Modeling informational fun-
daments — details the second bullet point in Sect. 3.

Link: https://issuu.com/mabundis/docs/abundis.tom.
Abstract: This essay targets a meaningful void in information theory, as

named by Shannon and Weaver (1949). It explores current science (i.e., the
standard model in physics, the periodic table, etc.) in relation to information
and consciousness. It develops a ‘bridge’ to join these topics by framing mean-
ingful information, or a ‘natural/core informatics’. The study posits a general
theory of meaning, where three types of informational meaning are detailed. As
such, the model uses type theory to re-frame classic conflicts that arise across
diverse informational roles, with Bateson-like (1979) ‘differentiated differences’
(or types) as informational fundaments (12 pages; 5,700 words).

Title: NATURAL MULTI-STATE COMPUTING - Engineering evolution:
Simple machines and beyond — supports the third bullet point in Sect. 3.

Link: https://issuu.com/mabundis/docs/multistate.
Abstract: This essay covers adaptive logic in humans and other agents, and

complements a related ‘general theory of meaning’ (Abundis, 2016). It names
informational roles needed for minimal adaptivity as a direct experience, versus
the ‘reasoning by analogy’ typical of artificial intelligence. It shows how levers,
as a computational trope (adaptive template), typify meaningful adaptive traits
for many agents and later afford the advent of simple machines. To develop
the model: (1) Three lever classes are shown to compel a natural informatics in
diverse agents. (2) Those lever classes are next deconstructed to derive a ‘scalable
creativity’. (3) That creative logic is then detailed as holding three entropically
generative computational roles. (4) Lastly, that adaptive logic is used to model
tool creation. Thus, the analysis frames systemic creativity (natural disruptions
and evolution) in various roles (discrete, continuous, and bifurcations) for many
agents, on diverse levels, to depict a ‘general adaptive intelligence’ (16 pages;
6,600 words).

Title: SELECTION DYNAMICS AS AS ORIGIN OF REASON: Causes of
cognitive information - a path to ‘Super-Intelligence’ — covers the fourth bullet
point in Sect. 3.

Link: https://issuu.com/mabundis/docs/lgcn.fin.4.15.
Abstract: This study explores ‘adaptive cognition’ in relation to agents

striving to abide entropic forces (natural selection). It enlarges on a view of
Shannon (1948) information theory and a ‘theory of meaning’ (Abundis, 2016)

http://issuu.com/mabundis/docs/oneprob.fin
http://issuu.com/mabundis/docs/oneprob.fin
https://issuu.com/mabundis/docs/abundis.tom
https://issuu.com/mabundis/docs/multistate
https://issuu.com/mabundis/docs/lgcn.fin.4.15
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developed elsewhere. The analysis starts by pairing classic selection pressure
(purifying, divisive, and directional selection) and agent acts (as flight, freeze,
and fight responses), to frame a basic model. It next details ensuing environs-
agent exchanges as marking Selection Dynamics, for a ‘general adaptive model’.
Selection Dynamics are then shown in relation to chaos theory, and a fractal-like
topology, for an initial computational view. Lastly, the resulting dualist-triune
topology is detailed as sustaining many evolutionary and cognitive roles, thus
marking an extensible adaptive informational/cultural fundament (13 pages:
5,700 words).
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