Indifferentiability of Iterated Even-Mansour
Ciphers with Non-idealized Key-Schedules:
Five Rounds Are Necessary and Sufficient

Yuanxi Dai'®™) | Yannick Seurin?, John Steinberger!,
and Aishwarya Thiruvengadam?®

! Tsinghua University, Beijing, People’s Republic of China
dyx13@mails.tsinghua.edu.cn, jpsteinb@gmail.com
2 ANSSI, Paris, France
yannick.seurin@m4x.org
3 University of Maryland, College Park, USA
aish@cs.umd.edu

Abstract. We prove that the 5-round iterated Even-Mansour (IEM)
construction with a non-idealized key-schedule (such as the trivial key-
schedule, where all round keys are equal) is indifferentiable from an ideal
cipher. In a separate result, we also prove that five rounds are necessary
by describing an attack against the corresponding 4-round construction.
This closes the gap regarding the exact number of rounds for which the
IEM construction with a non-idealized key-schedule is indifferentiable
from an ideal cipher, which was previously only known to lie between four
and twelve. Moreover, the security bound we achieve is comparable to
(in fact, slightly better than) the previously established 12-round bound.

Keywords: Key-alternating cipher - Iterated Even-Mansour construc-
tion - Indifferentiability

1 Introduction

BACKGROUND. A large number of block ciphers are so-called key-alternating
ciphers. Such block ciphers alternatively apply two types of transformations to
the current state: the addition (usually bitwise) of a secret key and the applica-
tion of a public permutation. In more detail, an r-round key-alternating cipher
with message space {0,1}" is a transformation of the form

y=kr® Pr(kr—l D Pr—l(' o PQ(kl S3) Pl(ko D I)) e))7 (]‘)
where (ko, ..., k,) are n-bit round keys (usually derived from a master key k of
size close to n), where Py, ..., P, are fixed, key-independent permutations and

© International Association for Cryptologic Research 2017
J. Katz and H. Shacham (Eds.): CRYPTO 2017, Part III, LNCS 10403, pp. 524-555, 2017.
DOI: 10.1007/978-3-319-63697-9_18

Indifferentiability of Iterated Even-Mansour Ciphers 525

where x and y are the plaintext and ciphertext, respectively. In particular, vir-
tually all' SPNs (Substitution-Permutation Networks) have this form, including,
e.g., the AES family.

A recent trend has been to analyze this class of block ciphers in the so-called
Random Permutation Model (RPM), which models the permutations Py, ..., P.
as oracles that the adversary can only query (from both sides) in a black-box
way, each behaving as a perfectly random permutation. This approach allows to
assert the nonexistence of generic attacks, i.e., attacks not exploiting the partic-
ular structure of “concrete” permutations endowed with short descriptions. This
approach dates back to Even and Mansour [25] who studied the case r = 1. For
this reason, construction (1), once seen as a way to define a block cipher from
an arbitrary tuple of permutations P = (P, ..., P,), is often called the iterated
Even-Mansour (IEM) construction. The general case of r > 2 rounds was only
considered more than 20 years later in a series of papers [11-13,31,37,45], primar-
ily focusing on the standard security notion for block ciphers, namely pseudo-
randomness, which requires that no computationally bounded adversary with
(usually two-sided) black-box access to a permutation can distinguish whether
it is interacting with the block cipher under a random key or a perfectly ran-
dom permutation. Pseudorandomness of the IEM construction with independent
round keys is by now well understood, the security bound increasing beyond the
“birthday bound” (the original bound proved for the 1-round Even-Mansour
construction [24,25]) as the number of rounds increases [13,31].

THE IDEAL CIPHER MODEL. Although pseudorandomness has been the primary
security requirement for a block cipher, in some cases this property is not enough
to establish the security of higher-level cryptosystems using the block cipher. For
example, the security of some real-world authenticated encryption protocols such
as 3GPP confidentiality and integrity protocols f8 and {9 [33] rely on the stronger
block cipher security notion of indistinguishability under related-key attacks [3,7].
Problems also arise in the context of block-cipher based hash functions [36,42]
where the adversary can control both the message and the key of the block
cipher, and hence can exploit “known-key” or “chosen-key” attacks [8,35] in
order to break the collision- or preimage-resistance of the hash function.
Hence, cryptographers have come to view a good block cipher as something
close to an ideal cipher (IC), i.e., a family of 2 uniformly random and inde-
pendent permutations, where k is the key-length of the block cipher. Perhaps
not surprisingly, this view turned out to be very fruitful for proving the secu-
rity of constructions based on a block cipher when the PRP assumption is not
enough [4,6,10,22,28,34,41,46], an approach often called the ideal cipher model
(ICM). This ultimately remains a heuristic approach, as one can construct (arti-
ficial) schemes that are secure in the ICM but insecure for any concrete instan-
tiation of the block cipher, similarly to the random oracle model [5,9,27]. On

1 Some SPNs do not adhere to the key-alternating abstraction because they introduce
the key at the permutation stage as well—e.g., by using keyed S-boxes.

526 Y. Dai et al.

the other hand, a proof in the ideal cipher model is typically considered a good
indication of security from the point of view of practice.

INDIFFERENTIABILITY. While an IC remains unachievable in the standard model
for reasons stated above (and which boil down to basic considerations on the
amount of entropy in the system), it remains an interesting problem to “build”
ICs (secure in some provable sense) from other ideal primitives. This is precisely
the approach taken by the indifferentiability framework, introduced by Maurer
et al. [40] and popularized by Coron et al. [17]. Indifferentiability is a simulation-
based framework that helps assess whether a construction of a target primitive A
(e.g., a block cipher) from a lower-level ideal primitive B (e.g., for the TEM con-
struction, a small number of random permutations P,..., P,) is “structurally
close” to the ideal version of A (e.g., an IC). Indifferentiability comes equipped
with a composition theorem [40] which implies that a large class of protocols
(see [21,43] for restrictions) are provably secure in the ideal-B model if and only
if they are provably secure in the ideal-A model.

We note that indifferentiability does not presuppose the presence of a private
key; indeed, a number of indifferentiability proofs concern the construction of a
keyless primitive (such as a hash function, compression function or permutation)
from a lower-level primitive [1,17,32]. In the case of a block cipher, thus, the key
is “just another input” to the construction.

PREVIOUS RESULTS. Two papers have previously explored the indifferentiability
of the IEM construction from an ideal cipher, modeling the underlying permu-
tations as random permutations. Andreeva et al. [1] showed that the 5-round
IEM construction with an idealized key-schedule (i.e., the function(s) mapping
the master key onto the round key(s) are modeled as random oracles) is indif-
ferentiable from an IC. Lampe and Seurin [38] showed that the 12-round IEM
construction with the trivial key-schedule, i.e., in which all round keys are equal,
is also indifferentiable from an IC. Moreover, both papers included impossibility
results for the indifferentiability of the 3-round IEM construction with a triv-
ial key-schedule, showing that at least four rounds must be necessary in that
context. In both settings, the question of the exact number of rounds needed to
make the IEM construction indifferentiable from an ideal cipher remained open.

OUR REsULTS. We improve both the positive and negative results for the indif-
ferentiability of the TEM construction with the trivial (and more generally, non-
idealized) key-schedule. Specifically, we show an attack on the 4-round IEM
construction, and prove that the 5-round IEM construction is indifferentiable
from an IC, in both cases for the trivial key-schedule.? Hence, our work resolves
the question of the exact number of rounds needed for the TEM construction
with a non-idealized key-schedule to achieve indifferentiability from an IC.

2 Actually we consider a slight variant of the trivial key-schedule where the first and
last round keys are omitted, but both our negative and positive results are straight-
forward to extend to the “standard” trivial key-schedule. See Sect. 2 for a discussion.

Indifferentiability of Iterated Even-Mansour Ciphers 527

Our 4-round impossibility result improves on the afore-mentioned 3-round
impossibility results [1,38]. It can be seen as an extension of the attack
against the 3-round IEM with the trivial key-schedule [38]. However, unlike this
3-round attack, our 4-round attack does not merely consist in finding a tuple of
key /plaintext/ciphertext triples for the construction satisfying a so-called “eva-
sive” relation (i.e., a relation which is hard to find with only black-box access
to an ideal cipher, e.g., a triple (k,z,y) such that @& y = 0). Instead, it relies
on relations on the “internal” variables of the construction (which makes the
attack harder to analyze rigorously). We note that a simple “evasive-relation-
finding” attack against four rounds had previously been excluded by Cogliati
and Seurin [14] (in technical terms, they proved that the 4-round IEM construc-
tion is sequentially-indifferentiable from an IC, see the remark after Theorem 1
in Sect. 3) so the extra complexity of our 4-round attack is in a sense inevitable.

Our 5-round feasibility result can be seen as improving both the 5-round
result for the TEM construction with idealized key-schedules [1] (albeit see the
fine-grained metrics below) and on the 12-round feasibility result for the IEM
construction with the trivial key-schedule [38]. Our simulator runs in time O(g®),
makes O(¢°) IC queries, and achieves security 241 -¢'2 /2", where ¢ is the number
of distinguisher queries. By comparison, these metrics are respectively

0(@), O(¢*), 2°*-¢'%/2"
for the 5-round simulator of Andreeva et al. [1] with idealized key-schedule, and
O(q4)7 O(q4)a 291 : q12/2n

for the 12-round simulator of Lampe and Seurin [38]. Hence, as far as the security
bound is concerned at least, we achieve a slight improvement over the previous
(most directly comparable) work.

A GLIMPSE AT THE SIMULATOR. Our 5-round simulator follows the traditional
“chain detection/completion” paradigm, pioneered by Coron et al. [16,18,32]
for proving indifferentiability of the Feistel construction, which has since been
used for the IEM construction as well [1,38]. However, it is, in a sense, con-
ceptually simpler and more “systematic” than previous simulators for the IEM
construction (something we pay for by a more complex “termination” proof).
In a nutshell, our new 5-round simulator detects and completes any path of
length 3, where a path is a sequence of adjacent permutation queries “chained”
by the same key (and which might “wrap around” the ideal cipher). In contrast,
the 12-round simulator of [38] used a much more parsimonious chain detection
strategy (inherited from [16,18,32,44]) which allowed a much simpler termina-
tion argument.

Once a tentative simulator has been determined, the indifferentiability proof
usually entails two technical challenges: on the one hand, proving that the simula-
tor works hard enough to ensure that it will never be trapped in an inconsistency,
and on the other hand, proving that it does not work in more than polynomial
time. Finding the right balance between these two requirements is at the heart
of the design of a suitable simulator.

528 Y. Dai et al.

The proof that our new 5-round simulator remains consistent with the IC
roughly follows the same ideas as in previous indifferentiability proofs. In short,
since the simulator completes all paths of length 3, at the moment the distin-
guisher makes a permutation query, only incomplete paths of length at most two
can exist. Hence any incomplete path has three “free” adjacent positions, two
of which (the ones on the edge) will be sampled at random, while the middle
one will be adapted to match the IC. The most delicate part consists in prov-
ing that no path of length 3 can appear “unexpectedly” and remain unnoticed
by the simulator (which will therefore not complete it), except with negligible
probability.

The more innovative part of our proof lies in the “termination argument”,
i.e., in proving that the simulator is efficient and that the recursive chain
detection/completion process does not “chain react” beyond a fixed polynomial
bound. As in many previous termination arguments [16,18,23,32,44], we first
observe that certain types of paths (namely those that wrap around the IC) are
only ever detected and completed if the distinguisher made the corresponding IC
query. Hence, assuming the distinguisher makes at most ¢ queries, at most ¢ such
paths will be triggered and completed. In virtually all previous indifferentiability
proofs, this fact easily allows to upper bound the size of permutation histories
for all other “detect zones” used by the simulator, and hence to upper bound
the total number of paths that will ever be detected and completed. (Indeed, all
of the indifferentiability results in the afore-mentioned list actually have quite
simple termination arguments!) But in the case of our 5-round simulator, this
observation only allows us to upper bound the size of the middle permutation Ps,
which by itself is not sufficient to upper bound the number of other detected
paths. To push the argument further, we make some additional observations—
essentially, that every triggered path that is not a “wraparound” path associated
to some distinguisher query is uniquely (i.e., injectively) associated to one of:
(i) a pair of P; and P; entries, where the P, entry was directly queried by the
distinguisher, or (ii) symmetrically, a pair of P; and Ps entries, where the P;
entry was directly queried by the distinguisher, or (iii) a pair of Ps entries. (In
some sense, the crucial “trick” that allows to fall back on (iii) in all other cases
is the observation that every query that is left over from a previous query cycle
and that is not the direct result of a distinguisher query is in a completed path,
and this completed path contains a query at P3.) This suffices, because the dis-
tinguisher makes only ¢ queries and because of the afore-mentioned bound on
the size of P3;. In order to show that the association described above is truly
injective, a structural property of P, and P, is needed, namely that the table
maintaining answers of the simulator for P, (resp. P;) never contains 4 distinct
input /output pairs (z(9,y®), such that @, ;.,(z @ y) = 0. Since some
queries are “adapted” to fit the IC, proving this part ends up being a source of
some tedium as well.

RELATED WORK. Several papers have studied security properties of the
IEM construction that are stronger than pseudorandomness yet weaker than
indifferentiability, such as resistance to related-key [14,26], known-key [2,15],

Indifferentiability of Iterated Even-Mansour Ciphers 529

or chosen-key attacks [14,29]. A recent preprint shows that the 3-round IEM con-
struction with a (non-invertible) idealized key-schedule is indifferentiable from
an IC [30]. This complements our work by settling the problem analogous to ours
in the case of idealized key-schedules. In both cases, the main open question is
whether the concrete indifferentiability bounds (which are typically poor) can
be improved.

ORGANIZATION. Preliminary definitions are given in Sect. 2. The attack against
the 4-round TEM construction is given in Sect.3. Our 5-round simulator is
described in Sect. 4, while the indifferentiability proof is in Sect. 5.

2 Preliminaries

Throughout the paper, n will denote the block length of permutations P, ..., P,
of the IEM construction and will play the role of security parameter for asymp-
totic statements. Given a finite non-empty set S, we write s «<—g .S to mean that
an element is drawn uniformly at random from .S and assigned to s.

A distinguisher is an oracle algorithm D with oracle access to a finite list of
oracles (01, 0,,...) and that outputs a single bit b, which we denote D102 =
b or D[01,027 .] =b.

A block cipher with key space {0, 1}* and message space {0, 1}" is a mapping
E :{0,1}* x {0,1}™ — {0,1}" such that for any key k € {0,1}", 2 — E(k, x) is
a permutation. An ideal cipher with block length n and key length « is a block
cipher drawn uniformly at random from the set of all block ciphers with block
length n and key length x.

THE TEM CONSTRUCTION. Fix integers m,r > 1. Let £ = (fo,..., fr) be a
(r + 1)-tuple of functions from {0,1}™ to {0,1}". The r-round iterated Even-
Mansour construction EM|n,r, f] specifies, from any r-tuple P = (Py,..., P,)

of permutations of {0,1}", a block cipher with n-bit keys and n-bit messages,
simply denoted EMF in all the following (parameters [n, r, f] will always be clear
from the context), which maps a plaintext « € {0,1}" and a key k € {0,1}" to
the ciphertext defined by

EMP(ka J,‘) = fr(k) 2] Pr(fr—l(k‘) ® Pr—l(' .- Pg(fl(kj) &) Pl(fo(k') st JJ)) ..))

We say that the key-schedule is trivial when all f;’s are the identity.

Note that the first and last key additions do not play any role for indiffer-
entiability where the key is just a “public” input to the construction, much like
the plaintext/ciphertext. What provides security are the random permutations,
that remain secret for inputs that have not been queried by the attacker. So, we
will focus on a slight variant of the trivial key-schedule where fy = f,. = 0 (see
Fig. 1), but our results carry over to the trivial key-schedule (and more generally
to any non-idealized key-schedule where the f;’s are permutations on {0, 1}").

INDIFFERENTIABILITY. We recall the standard definition of indifferentiability for
the IEM construction.

530 Y. Dai et al.

k k k k
PR < N S <1 A U S NN A S U A B

Fig. 1. The 5-round iterated Even-Mansour construction with independent permuta-
tions and identical round keys. The first and last round key additions are omitted since
they do not play any role for the indifferentiability property.

Definition 1. The construction EMF with access to an r-tuple P =
(Py,...,P.) of random permutations is (ts, ¢s, €)-indifferentiable from an ideal
cipher IC if there exists a simulator S = S(¢) such that S runs in total time ts
and makes at most gs queries to IC, and such that

| Pr[DEMTP — 1] - pr[DIOS™ = 1| <&

for every (information-theoretic) distinguisher D making at most ¢ queries
in total.

We say that the r-round IEM construction is indifferentiable from an ideal
cipher if for any ¢ polynomial in n, it is (ts, ¢s, €)-indifferentiable from an ideal
cipher with ts, ¢gs polynomial in n and e negligible in n.

Remark 1. Definition1 allows the simulator S to depend on the number of
queries ¢. In fact, our simulator (cf. Figs.4 and 5) does not depend on ¢, but
is efficient only with high probability. In the full version of the paper [19], we
discuss an optimized implementation of our simulator that, among others, uses
knowledge of ¢ to abort whenever its runtime exceeds the limit of a “good”
execution, thus ensuring that it is efficient with probability 1.

3 Attack Against 4-Round Simulators

We describe an attack against the 4-round IEM construction, improving pre-
vious attacks against 3 rounds [1,38]. Consider the distinguisher D whose
pseudocode is given in Fig.2 (see also Fig. 3 for an illustration of the attack).
This distinguisher can query the permutations/simulator through the interface
Query(4, 9, z), and the EM construction/ideal cipher through interfaces Enc(k, x)
and Dec(k,).

We prove that D has advantage close to 1/2 against any simulator making
a polynomial number of queries to the IC. More formally, we have the following
result, whose proof can be found in the full version of the paper [19]:

Theorem 1. Let S be any simulator making at most o IC queries when interact-
ing with D. Then the advantage of D in distinguishing (EMF | P) and (IC, S'C)
is at least

Indifferentiability of Iterated Even-Mansour Ciphers 531

1 ys < {0,1}" 16 k" =y @ ah
2 x4 4 {0,1}" v K=k OkOK
s @)+ {0,117\ {z4} 18 yq = Enc(k”,z1)
1 k=ysDxa 10 yy' = Enc(k",z7)
5 K =ys®ah 20 if ya,y4,y4,y4 are not distinct then
6 ya = Query(4,+,x4) 21 return 0
7y = Query(4, +,x}) 22 draw b < {0,1}
s w1 = Dec(k,ya) 23 if b=1 then
o x4 = Dec(k',y}) 24 vy <5 {0, 11"\ {ya,y4}
10 if 1 = xll then 25 yf{' —g {0, l}n \ {y4, yf;, yZ}
1 return 0 26 x4 = Query(4, —, y4)
12 y1 = Query (1,4, 1) 27z = Query(4, —, yi")
13y = Query(1,+,x7) 2s if b =0 then
u Ty=y Dk 20 return x) = x4 D 2}
15 xh =y DK 30 else (b=1)
31 return x)’ # x4 D x}

Fig. 2. Pseudocode of the attack against the 4-round IEM construction.

k . K LA SRR A

Fig. 3. Illustration of the attack against the 4-round IEM construction. The circled
dots correspond to queries made by the distinguisher to the permutations/simulator.

As an additional remark, say that a distinguisher is sequential [14,39] if it first
queries only its right interface (random permutations/simulator), and then only
its left interface (IEM construction/ideal cipher), but not its right interface
anymore. Many “natural” attacks against indifferentiability are sequential (in
particular, the attack against 5-round Feistel of [18] and the attack against 3-
round IEM of [38]), running in two phases: first, the distinguisher looks for
input/output pairs satisfying some relation which is hard to satisfy for an ideal
cipher (a so-called “evasive” relation) by querying the right interface; then, it
checks consistency of these input/output pairs by querying the left interface
(since the relation is hard to satisfy for an ideal cipher, any polynomially-
bounded simulator will fail to consistently simulate the inner permutations in
the ideal world). We note that the attack described in this section is not sequen-
tial. This does not come as a surprise since Cogliati and Seurin [14] showed
that the 4-round IEM construction is sequentially indifferentiable from an IC,
i.e., indifferentiable from an IC by any sequential distinguisher. Hence, our new
attack yields a natural separation between (full) indifferentiability and sequential
indifferentiability.

532 Y. Dai et al.

4 The 5-Round Simulator

We start with a high-level overview of how the simulator & works, deferring
the formal description in pseudocode to Sect.4.1. For each ¢ € {1,...,5}, the
simulator maintains a pair of tables P; and Pfl with 2" entries containing
either an n-bit value or a special symbol L, allowing the simulator to keep track
of values that have already been assigned internally for the i-th permutation.
Initially, these tables are empty, meaning that P;(x) = Pi_l(y) = 1 for all
z,y € {0,1}". The simulator sets Pi(z) < y, P, '(y) « =« to indicate that the
i-th permutation maps x to y. The simulator never overwrites entries in P; or
Pfl, and always keeps these two tables consistent, so that P; always encodes a
“partial permutation” of {0,1}"™. We sometimes write x € P; (resp. y € Pi_l) to
mean that P;(x) # L (vesp. P, (y) # 1).

The simulator offers a single public interface Query (i, d, z) allowing the dis-
tinguisher to request the value P;(z) when § = + or P, *(z) when § = — for
z € {0,1}". Upon reception of a query (i,d,z), the simulator checks whether
P?(z) has already been defined, and returns the corresponding value if this is
the case. Otherwise, it marks the query (4,0, z) as “pending” and starts a “chain
detection/completion” mechanism, called a permutation query cycle in the fol-
lowing, in order to maintain consistency between its answers and the IC as we
now explain. (We stress that some of the wording introduced here is informal
and that all notions will be made rigorous in the next sections.)

We say that a triple (¢, z;, y;) is table-defined if P;(x;) = y; and Pi_l(yi) =z
(that is, the simulator internally decided that z; is mapped to y; by permutation
P;). Let us informally call a tuple of j — ¢+ 1 > 2 table-defined permutation
queries at adjacent positions ((¢,2;,¥;), ..., (j, 2, y;)) (indices taken mod 5) such
that z;01 = y; @k if i # 5 and 2441 = IC_l(k‘,yi) if i =5 a “k-path of length
j+1i—17 (hence, paths might “wrap around” the IC).

The very simple idea at the heart of the simulator is that, before answering
any query of the distinguisher to some simulated permutation, it ensures that
any path of length three (or more) has been preemptively extended to a “com-
plete” path of length five ((1,2z1,41),...,(5,@5,y5)) compatible with the ideal
cipher (i.e., such that IC(k,z1) = y5). For this, assume that at the moment the
distinguisher makes a permutation query (4,4, z) which is not table-defined yet
(otherwise the simulator just returns the existing answer), any path of length
three is complete. This means that any existing incomplete path has length at
most two. These length-2 paths will be called (table-defined®) 2chains in the
main body of the proof, and will play a central role. For ease of the discussion
to come, let us call the pair of adjacent positions (i,4 + 1) of the table-defined
queries constituting a 2chain the type of the 2chain. (Note that as any path, a
2chain can “wrap around”, i.e., consists of two table-defined queries (5, x5, ys)
and (1,z1,y1) such that IC(k,2z1) = ys, so that possible types are (1,2), (2,3),
(3,4), (4,5), and (5,1).) Let us also call the direct input to permutation P; o

3 While the difference between a table-defined and table-undefined 2chain will be
important in the formal proof, we ignore this subtlety for the moment.

Indifferentiability of Iterated Even-Mansour Ciphers 533

and the inverse input to permutation P;_; when extending the 2chain in the
natural way the right endpoint and left endpoint of the 2chain, respectively.*

The “pending” permutation query (z,d, z) asked by the distinguisher might
create new incomplete paths of length 3 (once answered by the simulator) when
combined with adjacent 2chains, that is, 2chains at position (i — 2,7 — 1) for a
direct query (i,+,x;) or 2chains at position (i + 1,4 + 2) for an inverse query
(i, —,y;). Hence, just after having marked the initial query of the distinguisher
as “pending”, the simulator immediately detects all 2chains that will form a
length-3 path with this pending query, and marks these 2chains as “triggered”.
Following the high-level principle of completing any length-3 path, any triggered
2chain should (by the end of the query cycle) be extended to a complete path.

To ease the discussion, let us slightly change the notation and assume that
the query that initiates the query cycle is either a forward query (i + 2,4, z;12)
or an inverse query (i — 1, —,y;—1). In both cases, adjacent 2chains that might
be triggered are of type (i,7+ 1). For each such 2chain, the simulator computes
the endpoint opposite the initial query, and marks it “pending” as well. Thus
if the initiating query was (¢ + 2,+,x;12), new pending queries of the form
(i—1,—,+) are (possibly) created, while if the initiating query was (i—1, —, y;—1),
new pending queries of the form (i + 2,+,) are (possibly) created. For each of
these new pending queries, the simulator recursively detects whether they form
a length-3 path with other (i, i+ 1)-2chains, marks these 2chains as “triggered”,
and so on. Hence, if the initiating query of the distinguisher was of the form
(i4+2,4,-) or (i—1,—,-), all “pending” queries will be of the form (i+2,+,) or
(i—1,—,), and all triggered 2chains will be of type (4,7 1). For this reason, we
say that such a query cycle is of “type (i,7 + 1)”. Note that while this recursive
process is taking place, the simulator does not assign any new values to the
partial permutations P, ..., Ps—indeed, each pending query remains defined
only “at one end” during this phase.

Once all 2chains that must eventually be completed have been detected as
described above, the simulator starts the completion process. First, it randomly
samples the missing endpoints of all “pending” queries. (Thus, a pending query
of the form (i+2, 4, 2;12) will see a value of y; 12 sampled; a pending query of the
form (i—1,—, y;—1) will see a value of x;_; sampled. The fact that each pending
query really does have a missing endpoint to be sampled is argued in the proof.)
Secondly, for each triggered 2chain, the simulator adapts the corresponding path
by computing the corresponding input z;43 and output y;+3 at position ¢ + 3
and “forcing” Piy3(xit3) = yits. If an overwrite attempt occurs when trying to
assign a value for some permutation, the simulator aborts. This completes the
high-level description of the simulator’s behavior. The important characteristics
of an (4,7 + 1)-query cycle are summarized in Table 1.

* Again, there is a slight subtlety for the left endpoint of a (1,2)-2chain and the right
endpoint of a (4,5)-2chain since this involves the ideal cipher, but we ignore it here.

534 Y. Dai et al.

Table 1. The five types of (i, 4+ 1)-query cycles of the simulator.

Type (i, + 1) | Initiating query type (¢ — 1, —) and (i +2,+) | Adapt at ¢ + 3
(1,2) (5,—) and (3,+) 4
(2,3) (1,-) and (4,4) 5
(3,4) (2,-) and (5,4+) 1
(4,5) (3,—) and (1,4) 2
(5,1) (4,—) and (2,+) 3

4.1 Pseudocode of the Simulator and Game Transitions

We now give the full pseudocode for the simulator, and by the same occasion
describe the intermediate worlds that will be used in the indifferentiability proof.
The distinguisher D has access to the public interface Query(i,d, z), which in
the ideal world is answered by the simulator, and to the ideal cipher/IEM con-
struction interface, that we formally capture with two interfaces Enc(k,z) and
Dec(k,y) for encryption and decryption respectively. We will refer to queries to
any of these two interfaces as cipher queries, by opposition to permutation queries
made to interface Query(-, -,). In the ideal world, cipher queries are answered by
an ideal cipher IC. We make the randomness of IC explicit through two random
tapes ic, ic” ' : {0,1}" x {0,1}" — {0,1}" such that for any k € {0,1}", ic(k,-)
is a uniformly random permutation and ic'(k,-) is its inverse. Hence, in the
ideal world, a query Enc(k, x), resp. Dec(k, y), is simply answered with ic(k, x),
resp. icfl(k, y). The randomness used by the simulator for lazily sampling per-
mutations Pi,...,Ps when needed is also made explicit in the pseudocode
through uniformly random permutations tapes p = (p1,p; - . .,Ps, D5) where
pi : {0,1}" — {0,1}" is a uniformly random permutation and p; ' is its inverse.
Hence, randomness in game G; is fully captured by ic and p.

Since we will use two intermediate games, the real world will be denoted Gy.
In this world, queries to Query(:,-,-) are simply answered with the correspond-
ing value stored in the random permutation tapes p, while queries to Enc or
Dec are answered by the IEM construction based on random permutations p.
Randomness in G, is fully captured by p.

INTERMEDIATE GAMES. The indifferentiability proof relies on two intermediate
games G and Gs. In game Go, following an approach of [32], the Check procedure
used by the simulator (see Line 30 of Fig.4) to detect new external chains is
modified such that it does not make explicit queries to the ideal cipher; instead,
it first checks to see if the entry exists in table T" recording cipher queries and if
not, returns false. In game Gg, the ideal cipher is replaced with the 5-round IEM
construction that uses the same random permutation tapes p as the simulator
(and hence both the distinguisher and the simulator interact with the 5-round
TEM construction instead of the IC).

Indifferentiability of Iterated Even-Mansour Ciphers 535

Summing up, randomness is fully captured by ic and p in games G; and Go,
and by p in games Gz and G4 (since the ideal cipher is replaced by the ITEM
construction EMP when transitioning from Gz to Gg).

NOTES ABOUT THE PSEUDOCODE. The pseudocode for the public (i.e., accessible
by the distinguisher) procedures Query, Enc, and Dec is given in Fig. 4, together
with helper procedures that capture the changes from games G; to Gy. The
pseudocode for procedures that are internal to the simulator is given in Fig. 5.
Lines commented with “\\G,;” apply only to game G;. In the pseudocode and
more generally throughout this paper, the result of arithmetic on indices in
{1,2,3,4,5} is automatically wrapped into that range (e.g., i +1 =1 if i = 5).
For any table or tape 7 and 6 € {4+, —}, we let 7% be 7T if § = + and be 7! if
0 = —. Given a list L, L <« x means that x is appended to L. If the simulator
aborts (Line 86), we assume it returns a special symbol L to the distinguisher.

Tables T and T~ are used to record the cipher queries that have been issued
(by the distinguisher or the simulator). Note that tables P; and P, * are modified
only by procedure Assign. The table entries are never overwritten, due to the
check at Line 86.

5 Proof of Indifferentiability

5.1 Main Result and Proof Overview

Our main result is the following theorem which uses the simulator described in
Sect. 4. We present an overview of the proof following the theorem statement.

Theorem 2. The 5-round iterated Even-Mansour construction EMY with ran-
dom permutations P = (Py,...,Ps) is (ts,qs,€)-indifferentiable from an ideal
cipher with ts = O(q°), qs = O(q°) and € = 2 x 1012¢*2 /2.

Moreover, the bounds hold even if the distinguisher is allowed to make q
permutation queries in each position (i.e., it can call Query(i,*,%) q times for
eachi € {1,2,3,4,5}) and make q cipher queries (i.e., Enc and Dec can be called
q times in total).

PROOF STRUCTURE. Our proof uses a sequence of games Gy, Go, Gz and G4 as
described in Sect. 4.1, with G; being the simulated world and G4 being the real
world.

Throughout the proof we will fix an arbitrary information-theoretic distin-
guisher D that can make a total of 6¢g queries: at most ¢ cipher queries and
at most ¢ queries to Query(i,-,-) for each ¢ € {1,...,5}, as stipulated in
Theorem 2. (Giving the distinguisher ¢ queries at each position gives it more
power while not significantly affecting the proof or the bounds, and the distin-
guisher’s extra power actually leads to better bounds at the final stages of the
proof [20].5) We can assume without loss of generality that D is deterministic,

5 In the randomness mapping, we will need to convert an arbitrary distinguisher to
one that “completes all paths”. If the distinguisher is only allowed g arbitrary queries
in total, the number of queries will balloon up to 6¢; but if D is given extra power
as described here, the reduction only increases g to 2q.

536 Y. Dai et al.
1 Game G;(ic,p), i =1,2 / Gi(p), i = 3,4

2 Variables:

3 Tables of cipher queries T, 7!

4 Tables of defined permutation queries P;, Pfl, 1e{l,...,5}
5 Ordered list of pending queries Pending

6 Ordered list of triggered paths Triggered

7 public procedure Query(s, 4, z):
8 return SimQuery (3, d, z) \\ Gi, Gz, G
9 return pl(z) \\ Gs

10 public procedure Enc(k, z1): 16 public procedure Dec(k, ys):

1 if T(k,x1) = 1 then 17 if T7'(k,ys) = L then

12 ys <« ic(k,z1) \\ G1, G2 18 Ty icil(k, ys) \\ G1, Gz

13 Ys EM(k:,a:l) \\ Gs, Gy 19 Tl EMil(k’,y‘t’)) \\ Gs, Gy

14 T(k, :Cl) — Ys, Tﬁl(k,ys) — 1 20 T(k, :cl) — Ys, Tﬁl(k,ys) — I1
15 return T(k,z1) 21 return T (k, ys5)

22 private procedure EM(k, x1): 26 private procedure EM ™' (k,ys):
23 for i =1 to 4 do 27 for i =5to 2 do

24 Tip1 = pi(zi) Sk 28 Yi—1 :pfl(yi)@k

a5 return ps(zs) 29 return pfl(y1)

30 private procedure Check(k,x1,ys):
31 return Enc(k,z1) = y5 \\ G1
32 return T'(k,z1) = y5 \\ G2, Gs, G4

Fig. 4. Public procedures Query, Enc, and Dec for games G1-G4, and helper procedures
EM, EM~!, and Check. This set of procedures captures all changes from game G; to
G4, namely: from game G; to G2 only procedure Check is modified; from game Gz to
Gs, the only change is in procedures Enc and Dec where the ideal cipher is replaced
by the IEM construction; and from game Gz to G4, only procedure Query is modified
to return directly the value read in random permutation tables p.

as any distinguisher can be derandomized using the “optimal” random tape and
achieve at least the same advantage.

Without loss of generality, we assume that D outputs 1 with higher probabil-
ity in the simulated world Gy than in the real world G4. We define the advantage
of D in distinguishing between G; and G; by

AD(Gi, G]) — lgr[zDQuery,Enc,Dec — 1} _ lgr[DQuery,Enc,Dec _ 1]

J

Our primary goal is to upper bound Ap(Gy,Gy) (in Theorem 20), while the
secondary goals of upper bounding the simulator’s query complexity and running
time will be obtained as corollaries along the way.

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

77

78

79

80

81

82

83

84

85

86

87

Indifferentiability of Iterated Even-Mansour Ciphers

private procedure SimQuery(i, d, z):
if P/(z) = L then
Pending < ((4, 4, 2)), Triggered « 0
forall (7,0,z) in Pending do FindNewPaths(i, d, z)
forall (7,0,z) in Pending do ReadTape(%, ¢, z)
forall (i,7+ 1,y;, i1, k) in Triggered do AdaptPath(z, i + 1, yi, xit1, k)
return P?(z)

private procedure FindNewPaths(i, 4, 2):

case (0 = +): 59
T; < 2 60
forall (./L’i72’.r7',71) in (Pi72,P¢71) do 61

Yi—2 P'ifQ(xi—Z)y Yi—1 Pi—l(aji—l) 62

case (6 = —):
Yi < 2
forall (:L‘7;+1,.1‘,;+2) in (PiJrl7 Pi+2) do

if i =2 then k + yi_1 ® x; 63 if i =4 then k + y; ® 41
else k + yi—2o D xi_1 64 else k + yit1 D xiyo
Ce(ifQ,ifl,sz,xFl,k) 65 C + (i+1,i+2,y¢+1,$¢+2,k)
if C € Triggered then continue 66 if C € Triggered then continue
case i € {1,2}: 67 case i € {4,5}:
if —Check(k, z1,y5) then 68 if —Check(k,z1,ys5) then
continue 69 continue
case i € {3,4,5}: 70 case i € {1,2,3}:
if Next(i — 1,yi—1,k) # x; then 71 if Prev(i +1,zi41,k) # y; then
continue 72 continue
Triggered <= C' 73 Triggered < C'
Yi—3 Prev(i — 2,2, k) 74 Tit3 < Next(i + 2, Yit2, k‘)
if (i —3,—,yi—3) ¢ Pending then 75 if (i + 3,4+, zit+3) ¢ Pending then
Pending < (i — 3, —, yi—3) 76 Pending <= (i + 3,4, zit+3)

private procedure ReadTape(s, 4, z):
if § = + then Assign(i, z,pi(2)) else Assign(i,p; *(2), 2)

private procedure AdaptPath(i,i + 1,y;, xit1,k):
Yit1 < Pig1(Tit1), Tive + Next(i + 1, yit1, k), Yit2 < Piro(xiy2)
Xit3 < Next(i + 2, Yiyo, k))
@i < PN (i), yio1 <+ Prev(i,zi, k), zim1 < P (yio1)
Yi—2 < Prev(i — l,xi_l, k)
Assign(i + 3, zi4+3, yi—2) \\ subscripts are equal because of the wrapping

private procedure Assign(i, z;, y;):
if Pi(x;) # L or Pfl(yi) # 1 then abort
Pi(w) < yi, P (i) @i

i

private procedure Next(i,y;, k): 91 private procedure Prev(i, z;, k):

537

Yit1 < P¢+1($¢+1), Yit2 < Pz'+2($i+2)

if ¢ =5 then return Dec(k, y;) 92

else return y; & k

93

if i =1 then return Enc(k, z;)
else return z; ® k

Fig. 5. Private procedures used by the simulator.

538 Y. Dai et al.

Our proof starts with discussions about the game Gy, which is in some sense
the “anchor point” of the first two game transitions. As usual, there are bad
events that might cause the simulator to fail. We will prove that bad events
are unlikely, and show properties of good executions in which bad events do
not occur. The proof of efficiency of the simulator (in good executions of Gg)
is the most interesting part of this paper; the technical content is in Sect. 5.4,
and a separate high-level overview of the argument is also included immediately
below (see “Termination Argument”). During the proof of efficiency we also
obtain upper bounds on the sizes of the tables and on the number of calls to
each procedure, which will be a crucial component for the transition to G4 (see
below).

For the G;-Gz transition (found in the full version [19]), note that the only
difference between the two games is in Check. If the simulator is efficient, the
probability that the two executions diverge in a call to Check is negligible. There-
fore, if an execution of Gg is good, it is identical to the Gi-execution with the
same random tapes except with negligible probability. In particular, this implies
that an execution of Gy is efficient with high probability.

For the G3-G3 transition, we use a standard randomness mapping argument.
We will map the randomness of good executions of Go to the randomness of
non-aborting executions of Gs, so that the Gs-executions with the mapped ran-
domness are identical to the Gs-executions with the preimage randomness. We
will show that if the randomness of a Gz-execution has a preimage, then the
answers of the permutation queries output by the simulator must be compati-
ble with the random permutation tapes. Thus the Gz-execution is identical to
the Gg-execution with the same random tapes, where the permutation queries
are answered by the corresponding entries of the random tapes. This enables
a transition directly from Gy to G4 using the randomness mapping, which is a
small novelty of our proof. The details of this transition can be found in the full
version [19].

TERMINATION ARGUMENT. Since the termination argument—i.e., the fact that
our simulator does not run amok with excessive path completions, except with
negligible probability—is one of the more novel aspects of our proof, we provide
a separate high-level overview of this argument here.

To start with, observe that at the moment when an (¢, 4+ 1)-path is triggered,
3 queries on the path are either already in existence or already scheduled for
future existence regardless of this event: the queries at position ¢ and ¢ + 1 are
already defined, while the pending query that triggers the path was already
scheduled to become defined even before the path was triggered; hence, each
triggered path only “accounts” for 2 new queries, positioned either at i 42, 1+ 3
orati—1,i—2 (=i+ 3), depending on the position of the pending query.

A second observation is that...

— (1,2)-2chains triggered by pending queries of the form (5, —,), and
— (4,5)-2chains triggered by pending queries of the form (1,+,-), and
— (5,1)-2chains triggered by either pending queries of the form (2,+,-) or
(4a))

Indifferentiability of Iterated Even-Mansour Ciphers 539

...all involve a cipher query (equivalently, a call to Check, in Gg) to check the
trigger condition, and one can argue that this query must have been made by
the distinguisher itself. (Because when the simulator makes a query to Enc/Dec
that is not for the purpose of detecting paths, it is for the purpose of completing
a path.) Hence, because the distinguisher only has ¢ cipher queries, only ¢ such
path completions should occur in total. Moreover, these three types of path
completions are exactly those that “account” for a new (previously unscheduled)
query to be created at P3. Hence, and because the only source of new queries are
path completions and queries coming directly from the distinguisher, the size of
P5 never grows more than ¢ + ¢ = 2q, with high probability.

Of the remaining types of 2chain completions (i.e., those that do not involve
the presence of a previously made “wraparound” cipher query), those that con-
tribute a new entry to P, are the following:

— (3,4)-2chains triggered by pending queries of the form (5, +, ")
— (4,5)-2chains triggered by pending queries of the form (3, —, ")

We can observe that either type of chain completion involves values ys, x4, Y4,
x5 that are well-defined at the time the chain is detected. We will analyze both
types of path completion simultaneously, but dividing into two cases according
to whether (a) the distinguisher ever made the query Query(5,+,x5), or else
received the value x5 as an answer to a query of the form Query(5, —,ys), or
(b) the query Ps(x5) is being defined/is already defined as the result of a path
completion. (Crucially, (a) and (b) are the only two options for zs.)

For (a), at most ¢ such values of 5 can ever exist, since the distinguisher
makes at most ¢ queries to Query(5, -, -); moreover, there are at most 2q possi-
bilities for y3, as already noted; and we have the relation

Y3 B x5 = T4 DYy (2)

from the fact that ys, x4, y4 and x5 lie on a common path. One can show that,
with high probability,
T4 O Ys # T © Yl

for all x4, y4, 2, y} such that Py(xy) = ya, Ps(2)) = y} and such that x4 # /.5
Hence, with high probability (2) has at most a unique solution x4, y4 for each
Y3, T35, and scenario (a) accounts for at most 2¢® path completions (one for each
possible left-hand side of (2)) of either type above.

For (b), there must exist a separate (table-defined) 2chain (3,5, v5),
(4,2}, y}) whose right endpoint is z5. (This is the case if 5 is part of a previ-
ously completed path, and is also the case if (5,4, x5) became a pending query
during the current query cycle without being the initiating query.) The relation

Ys Dy DYy = y3 B T4 Dys

5 Probabilistically speaking, this trivially holds if P, is a random partial permutation
defined at only polynomially many points, though our proof is made more compli-
cated by the fact that P, also contains “adapted” queries.

540 Y. Dai et al.

(both sides are equal to x5) implies
Ys © Yy = T4 D ys Oy O Yy (3)
and, similarly to (a), one can show that (with high probability)
T @Y Sy Oy £ Xa @Y1 0 X 0Y]

for all table-defined queries (4,4, y4), ..., (4, X}, YY) with {(24,y4), (@), v4)} #
{(X4,Ys), (X}, Y])}. Thus, we have (modulo the ordering of (z4,y4) and
(«),94)7) at most one solution to the RHS of (3) for each LHS; hence, sce-
nario (b) accounts for at most 4¢? path completions® of either type above, with
high probability.

Combining these bounds, we find that P, never grows to size more than
2q + 2¢° + 4¢® = 6¢> + 2¢ with high probability, where the term of 2¢ accounts
for (the sum of) direct distinguisher queries to Query(2,-,-) and “wraparound”
path completions involving a distinguisher cipher query. Symmetrically, one can
show that Py also has size at most 6¢2 + 2¢, with high probability.

One can now easily conclude the termination argument; e.g., the number of
(2,3)- or (3,4)-2chains that trigger path completions is each at most 2¢-(6¢%+2q)
(the product of the maximum size of P3 with the maximum size of P»/Py); or,
e.g., the number of (1, 2)-2chains triggered by a pending query (3, +, -) is at most
2q - (6¢% + 2q) (the product of the maximum size of P3 with the maximum size
of P,), and so forth.

5.2 Executions of G3: Definitions and Basic Properties

We start by introducing some notation and establishing properties of executions
of Gao. Then, we define a set of bad events that may occur in Go. An execution
of Gy is good if none of these bad events occur. We will prove that in good
executions of Gg, the simulator does not abort and runs in polynomial time.

QUERIES AND 2CHAINS. The central notion for reasoning about the simulator is
the notion of 2chain, that we develop below.

Definition 2. A permutation query is a triple (i,0,2) where 1 < ¢ < 5, § €
{+,—} and z € {0,1}". We call i the position of the query, 0 the direction of
the query, and the pair (¢,0) the type of the query.

Definition 3. A cipher query is a triple (4, k, z) where § € {+,—} and k,z €
{0,1}™. We call § the direction and k the key of the cipher query.

7 As argued within the proof, this ordering issue does not actually introduce an extra
factor of two into the bounds.

8 Or more exactly, to at most 2q(2q — 1) path completions, which leads to slightly
better bounds used in the proof.

Indifferentiability of Iterated Even-Mansour Ciphers 541

Definition 4. A permutation query (i, 6, z) is table-defined if P (z) # L, and
table-undefined otherwise. Similarly, a cipher query (4, k,z) is table-defined if
T9(k,z) # L, and table-undefined otherwise.

For permutation queries, we may omit ¢ and § when clear from the context and
simply say that x;, resp. y;, is table-(un)defined to mean that (i,4+,x;), resp.
(i, —,yi), is table-(un)defined.

Note that if (i,4,z;) is table-defined and P;(z;) = y;, then necessarily
(i, —,y;) is also table-defined and P, '(y;) = z;. Indeed, tables P; and P, " are
only modified in procedure Assign, where existing entries are never overwritten
due to the check at Line 86. Thus the two tables always encode a partial per-
mutation and its inverse, i.e., P;(z;) = y; if and only if Pfl(yi) = ;. In fact, we
will often say that a triple (i, z;,y;) is table-defined as a shorthand to mean that
both (i,+,2;) and (i, —, ;) are table-defined with P;(x;) = yi, P, *(y:) = ;.

Similarly, if a cipher query (4, k,) is table-defined and T'(k,z) = y, then
necessarily (—,k,y) is table-defined and T~ (k,y) = x. Indeed, these tables are
only modified by calls to Enc/Dec, and always according to the IC tape ic, hence
these two tables always encode a partial cipher and its inverse, i.e., T(k,z) =y
if and only if T~1(k,y) = x. Similarly, we will say that a triple (k, z,y) is table-
defined as a shorthand to mean that both (+, k, 2) and (—, k, y) are table-defined
with T'(k,z) =y, T~ (k,y) = z.

Definition 5 (2chain). An inner 2chain is a tuple (i,i+1,y;, i1, k) such that
i€ {1,2,3,4}, y;,xip1 € {0,1}", and k = y; ® xi41. A (5,1)-2chain is a tuple
(5,1, ys, 21, k) such that ys,x1,k € {0,1}™. An (4,7 + 1)-2chain refers either to
an inner or a (5,1)-2chain, and is generically denoted (4,7 + 1,y;, x;+1, k). We
call (4,7 + 1) the type of the 2chain.

Remark 2. Note that for a 2chain of type (i,7 + 1) with ¢ € {1,2, 3,4}, given y;
and x;41, there is a unique key k such that (¢,7+1, y;, z;4+1, k) is a 2chain (hence
k is “redundant” in the notation), while for a 2chain of type (5, 1), the key might
be arbitrary. This convention allows to have a unified notation independently of
the type of the 2chain. See also Remark 3 below.

Definition 6. An inner 2chain (i,7 + 1,y;,2;41,k) is table-defined if both
(i, —,y;) and (i + 1,4, x;41) are table-defined permutation queries, and table-
undefined otherwise. A (5,1)-2chain (5,1, y5,x1,k) is table-defined if both
(5,—,ys5) and (1,4, z1) are table-defined permutation queries and if T'(k,z1) =
ys, and table-undefined otherwise.

Remark 3. Our definitions above ensure that whether a tuple (¢,i+1, y;, 211, k)
is a 2chain or not is independent of the state of tables P;/ Pi_1 and T/T~. Only
the fact that a 2chain is table-defined or not depends on these tables.

Definition 7 (endpoints). Let C = (i,i + 1,y;,2,41,k) be a table-defined
2chain. The right endpoint of C, denoted r(C') is defined as

r(C) = Pipi(wip1) @k ifie{1,2,3,5}
=T (k,Ps(zs5)) ifi=4and (—,k, Ps(xs5)) is table-defined
=1 if i =4 and (—, k, Ps(x5)) is table-undefined.

542 Y. Dai et al.

The left endpoint of C, denoted ¢(C') is defined as

(C)=P (y) ek ifie{23,4,5}
=T(k, P (y1)) ifi=1and (4+,k, Py (y1)) is table-defined
=1 if i =1 and (+,k, P, ' (y1)) is table-undefined.

We say that an endpoint is dummy when it is equal to L1, and non-dummy
otherwise. Hence, only the right endpoint of a 2chain of type (4,5) or the left
endpoint of a 2chain of type (1,2) can be dummy.

We sometimes identify the right and left (non-dummy) endpoints r(C),
£(C) of an (i,i + 1)-2chain C' with the corresponding permutation queries
(i4+2,+,r(C)) and (¢ — 1,—,£(C)). In particular, if we say that r(C) or ¢(C)
is “table-defined” this implicitly means that the endpoint in question is non-
dummy and that the corresponding permutation query is table-defined. More
importantly—and more subtly!—when we say that one of the endpoints of C'
is “table-undefined” we also implicitly mean that it is non-dummy. (Hence, an
endpoint is in exactly one of these three possible states: dummy, table-undefined,
table-defined.)

Definition 8. A complete path (with key k) is a 5-tuple of table-defined per-
mutation queries ((1,z1,91),...,(5,2s5,ys5)) such that

Yi ®xip1 =k fori=1,2,3,4 and T'(k,z1) = ys. (4)

The five table-defined queries (i, x;,y;) and the five table-defined 2chains (7,7 +
1,9, Tit1, k), © € {1,...,5}, are said to belong to the (complete) path.

A 2chain C' is also said to be complete if it belongs to some complete path.
Note that such a 2chain is table-defined; also, its endpoints 7(C), ¢(C) are (non-
dummy and) table-defined.

Lemma 3. In any execution of Go, any 2chain belongs to at most one complete
path.

Proof. This follows from the fact that, by definition, a 2chain stipulates a value
of k, and from the fact that the tables P;/P; " as well as T'(k,-)/T~*(k, -) encode
partial permutations. a

QUERY CYCLES. When the distinguisher makes a permutations query (3,9, z)
that is already table-defined, the simulator returns the answer immediately. The
definition below introduces some vocabulary related to the simulator’s behavior
when the distinguisher makes a permutation query that is table-undefined.

Definition 9 (query cycle). A query cycle is the period of execution between
when the distinguisher issues a permutation query (ig,do,29) which is table-
undefined and when the answer to this query is returned by the simulator. We
call (ig, 0o, 20) the initiating query of the query cycle.

Indifferentiability of Iterated Even-Mansour Ciphers 543

A query cycle is called an (4,7 + 1)-query cycle if the initiating query is of
type (i —1,—) or (i + 2,+) (see Lemma4(a) and Table1).

The portion of the query cycle consisting of calls to FindNewPaths at Line 36
is called the detection phase of the query cycle; the portion of the query cycle
consisting of calls to ReadTape at Line 37 and to AdaptPath at Line 38 is called
the completion phase of the query cycle.

Definition 10 (cipher query cycle). A cipher query cycle is the period of execu-
tion between when the distinguisher issues a table-undefined cipher query (9, k, 2)
and when the answer to this query is returned. We call (4, k, z) the initiating
query of the cipher query cycle.

Remark 4. Note that a “query cycle” as defined above is a “permutation query
cycle” in the informal description in Sect. 4, and cipher query cycles are not a
special case of query cycles. Both query cycles and cipher query cycles require
the initiating query to be table-undefined, since otherwise the answer already
exists in the tables and is directly returned.

Definition 11 (pending queries, triggered 2chains). During a query cycle, we
say that a permutation query (i,9,z) is pending (or that z is pending when i
and ¢ are clear from the context) if it is appended to list Pending at Line 35, 58,
or 76. We say that a 2chain C = (4,7 + 1, y;, 2,11, k) is triggered if the simulator
appends C' to the list Triggered at Line 55 or 73.

We present a few lemmas below that give some basic properties of query cycles
and will help understand the simulator’s behavior.

Lemma 4. During an (i,i + 1)-query cycle whose initiating query was
(40,00, 20), the following properties always hold:

(a) Only 2chains of type (i,i+ 1) are triggered.

(b) Only permutations queries of type (i —1,—), (i +2,4+) become pending.

(c) Any 2chain that is triggered was table-defined at the beginning of the query
cycle.

(d) At the end of the detection phase, any pending query is either the initiating
query, or the endpoint of a triggered 2chain.

(e) If a 2¢chain C is triggered during the query cycle, and the simulator does not
abort, then C' is complete at the end of the query cycle.

Proof. The proof of (a) and (b) proceeds by inspection of the pseudocode: note
that calls to FindNewPaths(i — 1, —,) can only add 2chains of type (i,i+ 1) to
Triggered and permutations queries of type (i+2,+) to Pending, whereas calls to
FindNewPaths(i+2, 4, -) can only add 2chains of type (4,74 1) to Triggered and
permutations queries of type (i — 1, —) to Pending. Hence, if the initiating query
is of type (i —1,—) or (i+2,+), only 2chains of type (,i+ 1) will ever be added
to Triggered, and only permutation queries of type (i —1, —) or (i+2, +) will ever
be added to Pending. The proof of (¢) also follows easily from inspection of the
pseudocode. The sole subtlety is to note that for a (5, 1)-query cycle (where calls

544 Y. Dai et al.

to FindNewPaths are of the form (2,4,) and (4, —,-)), for a (5, 1)-2chain to be
triggered one must obviously have 2, € Py and y5 € P *, but also T'(k, 1) = ys
since otherwise the call to Check(k, z1, y5) would return false. The proof of (d)
is also immediate, since for a permutation query to be added to Pending, it
must be either the initiating query, or computed at Line 56 or Line 74 as the
endpoint of a triggered 2chain. Finally, the proof of (e) follows from the fact
that, assuming the simulator does not abort, all values computed during the call
to AdaptPath(C) form a complete path to which C' belongs.

Lemma 5. In any execution of Go, the following properties hold:

(a) During a (1,2)-query cycle, tables T/T~' are only modified during the detec-
tion phase by calls to Enc(-,-) resulting from calls to Prev(1,-,-) at Line 56.

(b) During a (2,3)-query cycle, tables T/T~' are only modified during the
completion phase by calls to Enc(-,-) resulting from calls to Prev(l,-,-) at
Line 83.

(c) During a (3,4)-query cycle, tables T/T—' are only modified during the
completion phase by calls to Dec(-,-) resulting from calls to Next(5,-,-) at
Line 81.

(d) During a (4,5)-query cycle, tables T/T~1 are only modified during the detec-
tion phase by calls to Dec(-,-) resulting from calls to Next(5,-,-) at Line 74.

(e) During a (5,1)-query cycle, tables T/T~! are not modified.

Proof. This follows by inspection of the pseudocode. The only non-trivial point
concerns (1, 2)-, resp. (4,5)-query cycles, since Prev(1,-,-), resp. Next(5, -, -) are
also called during the completion phase, but they are always called with argu-
ments (z1, k), resp. (ys, k) that were previously used during the detection phase,
so that this cannot modify the tables T/T~1. O

5.3 Bad Events

In order to define certain bad events that may happen during an execution of
Gz, we introduce the following definitions.

Definition 12 (H, K and &). Consider a permutation query (ig,do,29) or a
cipher query (dg, ko, z0) made by the distinguisher. The following sets are defined
with respect to the state of tables when the query occurs. We define the “history”
H as the multiset consisting of the following elements (each n-bit string may
appear and be counted multiple times):

— for each table-defined permutation query (i, z;,y;), H contains corresponding
elements xz;, y; and x; ® y;.

— for each table-defined cipher query (k,x1,ys), H contains corresponding ele-
ments k, 1 and ys.

We define K as the multiset of all keys of 2chains triggered in the current query
cycle, and £ as the multiset of non-dummy endpoints of all table-defined 2chain
plus the value zy (the query issued by the distinguisher).

Indifferentiability of Iterated Even-Mansour Ciphers 545

Remark 5. When referring to sets H, K and £ with respect to a query cycle, we
mean with respect to its initiating permutation query (and the state of tables at
the beginning of the query cycle). These sets are time-dependent, but they don’t
change during a query cycle (in particular, the set of triggered 2chains do not
depend on the queries that become table-defined during the query cycle). Also
note that /C only concerns 2chains triggered in the query cycle, while £ concerns
all 2chains that are table-defined at the beginning of the query cycle.

Definition 13 (P, P*, A and C). Given a query cycle, let P be the multiset of
random values read by ReadTape on tapes (php;l, . ,pg,,pgl) in the current
query cycle, and P* be the multiset of z; & p;(z;) and y; B p{l(yi) for each
random value p;(x;) or p; *(y;) read from the tapes in the current query cycle.

Let A be the multiset of the values of x; ®y; for each adapted query (i, z;, y;)
with 7 € {2,4}. Note that A is non-empty only for (4, 5)- and (1, 2)-query cycles.

Given a query cycle or a cipher query cycle, we denote C the multiset of
random values read by Enc and Dec on tapes ic or ic™ 1.9

We define the operations N, U and @ of two multisets S1,S> in the natural
way: For each element e that appears s; and so times (s1,s2 > 0) in S; and So
respectively, S; NSy contains min{sy, so} copies of e and S; US, contains s1 + s9
copies of e. To define S & Sa, we start from an empty multiset; for each pair of
e1 € 8§ and ep € Sy that appear s; and sy times respectively (s1,s2 > 1), add
$1 - 8o copies of e; @ e to the multiset.

Definition 14. Let H®? be the multiset of values equal to the exclusive-or of
exactly i distinct elements in H, and let H®? := {0}. The multisets K¢ £%¢
PO PP A9 and CP? are defined similarly.'?

We are now ready to define the afore-mentioned “bad events” on executions of

Gs.

Definition 15. BadPerm is the event that at least one of the following occurs
in a query cycle:

~ PO NHEI £ fori>1and i+ j <4

— PN KB £ () fori>1and i+ j <4
~PNEAD,PNESK)#D, PN(KBH)#D, PN (KdHD2) £
- PE2OKP2Z L Por PE2N(HBK) # 0

~P*N(HOE) #0D.

Definition 16. BadAdapt is the event that in a (1,2)- or (4,5)-query cycle,
AP N HS £ fori>1andi+j <4

Definition 17. BadIC is the event that in a query cycle or in a cipher query
cycle, either CN(H UE) # @ or C contains two equal entries.

9 For a query cycle, these Enc/Dec queries are made by the simulator, while for a
cipher query cycle, a single call to Enc or Dec is made by the distinguisher.

10 Since H, K, £, P, P*, A and C are multisets, two distinct elements may be equal.
Because of the distinctness requirement, we have H%? # H @ H, etc.

546 Y. Dai et al.

Note that P®? P*®i A9 and C®* are random sets built from values read from
tapes (p1,p; ", ..., ps,p5 ") and ic/ic™" during the query cycle, while H®?, K&
and £% are fixed and determined by the states of the tables at the beginning of
the query cycle.

Definition 18 (Good Executions). An execution of Gz is said to be good if
none of BadPerm, BadAdapt and BadIC occurs in the execution.

The main result of this section is to prove that the simulator does not abort
in good executions of Go. Due to space constraints, however, the proof of the
following lemma is relegated to the full version [19].

Lemma 6. The simulator does not abort in a good execution of Go.

5.4 Efficiency of the Simulator

We analyze the running time of the simulator in a good execution of Gy. A large
part of this analysis consists of upper bounding the size of tables T, T, P;, Pi_l.
Since |T| = |T~!| and |P;| = |P;"!| we state the results only for T and P;.

Note that during a query cycle, any triggered 2chain C' can be associated with
the query that became pending just before C' was triggered and, reciprocally, any
pending query (i, 0, z), except the initiating query, can be associated with the
2chain C' that was triggered just before (i, 6, z) became pending. We make these
observations formal through the following definitions.

Definition 19. During a query cycle, we say that a 2chain C is triggered by
query (i,0,z) if it is added to Triggered during a call to FindNewPaths(i, ¢, z).
We say C is an (i, 0)-triggered 2chain if it is triggered by a query of type (i,0).

By Lemma4(b), a triggered (i, + 1)-2chain is either (i — 1, —)- or (i +2,+)-
triggered. For brevity, we group 4 special types of triggered 2chains under a
common name.

Definition 20. A (triggered) wrapping 2chain is either

— a (4,5)-2chain that was (1, +)-triggered,
— a (1,2)-2chain that was (5, —)-triggered,
a (5,1)-2chain that was either (2,+)- or (4, —)-triggered.

Note that wrapping 2chains are exactly those for which the simulator makes a
call to procedure Check to decide whether to trigger the 2chain or not.

Definition 21. Consider a query cycle with initiating query (ig, do, 20) and a
permutation query (i,0,z) # (io,d0,20) which becomes pending. We call the
(unique) 2chain that was triggered just before (4, §, z) became pending the 2chain
associated with (i,9, z).

Indifferentiability of Iterated Even-Mansour Ciphers 547

Note that uniqueness of the 2chain associated with a non-initiating pending
query follows easily from the checks at Lines 57 and 75.

The proof of the following lemma can be found in the full version [19]. The
proof relies on the fact that, in a good execution, an (i,7 + 1)-2chain that is
complete at the beginning of a query cycle cannot be triggered again in that
cycle.

Lemma 7. Consider a good execution of Go, and assume that a complete path
exists at the end of the execution. Then at most one of the five 2chains belonging
to the complete path has been triggered during the execution.

Lemma 8. Fori € {1,...,5}, the number of table-defined permutation queries
(i, zi,yi) during an execution of Ga can never exceed the sum of the number of

— distinguisher’s calls to Query(,-,),

— (i + 1,7 + 2)-2chains that were (i + 3, +)-triggered,

— (i —2,i— 1)-2chains that were (i — 3, —)-triggered,

— (i + 2,1+ 3)-2chains that were either (i +1,—)- or (i + 4, +)-triggered.

Proof. Entries are added to P; /PZ-_1 either by a call to ReadTape during an
(i+1,i42)-or an (i — 2,4 — 1)-query cycle or by a call to AdaptPath during an
(i + 2,4 + 3)-query cycle (see Table1).

We first consider entries that were added by a call to ReadTape during an
(i+1,i42)- or an (i — 2,i — 1)-query cycle. The number of such table-defined
queries cannot exceed the sum of the total number N; 1 of queries of type (i, +)
that became pending during an (i — 2,7 — 1)-query cycle and the total number
N;._ of queries of type (i,—) that became pending during an (i + 1,7 + 2)-
query cycle. N; 4 cannot exceed the sum of the total number of initiating and
non-initiating pending queries of type (i,4) over all (i — 2,4 — 1)-query cycles.
The total number of initiating queries of type (i,+) is at most the number of
distinguisher’s calls to Query(i,+,-), while the total number of non-initiating
pending queries of type (i,+) over all (i — 2,i — 1)-query cycles cannot exceed
the total number of (i—3, —)-triggered 2chains (as a non-initiating pending query
of type (i, +) cannot be associated with an (i, +)-triggered (i — 2,4 — 1)-2chain).
Similarly, N; _ cannot exceed the sum of the total number of distinguisher’s
call to Query(i, —,-) and the total number of (i — 3, —)-triggered (i + 1,7 4 2)-
2chains. All in all, we see that the total number of triples (i, z;, y;) that became
table-defined because of a call to ReadTape cannot exceed the sum of

— the number of distinguisher’s calls to Query(z, -,),
— the number of (i + 1,i + 2)-2chains that were (i + 3, +)-triggered,
— the number of (i — 2,i — 1)-2chains that were (i — 3, —)-triggered.

Consider now a triple (i, x;,y;) which became table-defined during a call to
AdaptPath in an (i + 2,7 + 3)-query cycle. The total number of such triples
cannot exceed the total number of (i + 2,7 4 3)-2chains that are triggered over
all (i + 2,7 4+ 3)-query cycles (irrespective of whether they are (i + 1,—)- or
(i + 4, +)-triggered). The result follows. O

548 Y. Dai et al.

The following lemma contains the standard “bootstrapping” argument intro-
duced in [18]. The proof of the lemma can be found in the full version [19].

Lemma 9. In a good execution of Ga, at most q wrapping 2chains are triggered
in total.

Lemma 10. In a good execution of G, one always has | P3| < 2q.

Proof. By Lemma 8, the number of table-defined permutation queries (3, x5, y3)
(and hence the size of P;) cannot exceed the sum of

— the number of distinguisher’s calls to Query(3,-,-),

the number of (4, 5)-2chains that were (1, +)-triggered,

— the number of (1,2)-2chains that were (5, —)-triggered,

— the number of (5, 1)-2chains that were either (2, +)- or (4, —)-triggered.

The number of entries of the first type is at most ¢ by the assumption that the
distinguisher makes at most ¢ oracle queries to each permutation. Further note
that any 2chain mentioned for the 3 other types are wrapping 2chains. Hence,
by Lemma9, there are at most ¢ such entries in total, so that |Ps| < 2g. O

Before proceeding further, we state the following properties of good executions
which will be used in the proof of Lemma 13. These properties are proven in the
full version [19].

Lemma 11. In a good execution of Ga, for i € {2,4}, there do not exist two
distinct table-defined queries (i,x;,y;) and (1,2}, yl) such that x; ® y; = ©}, Y.

Lemma 12. In a good ezxecution of Go, for i € {2,4} there never ewist
four distinct table-defined queries (i,xz(-j),ygj)) with j = 1,2,3,4 such that
Y ey”) =o.

Lemma 13. In a good execution of Ga, the sum of the total numbers of (3,—)-
and (5, +)-triggered 2chains, resp. of (1,—)- and (3,+)-triggered 2chains, is at
most 6¢% — 2q.

Proof. Let C be a 2chain which is either (3, —)- or (5, +)-triggered during the
execution. (The case of (1, —)- or (3,+)-triggered 2chains is similar by symme-
try.) By Lemmad4(e), C belongs to a complete path ((1,21,91),...,(5,25,¥5))
at the end of the execution (since the simulator does not abort), and C =
(3,4, y3, x4, k) if it was (5, +)-triggered, whereas C' = (4,5, y4, x5, k) if it was
(3, —)-triggered.

Note that when C was triggered, (5, 4+, z5) was necessarily table-defined or
pending. If C = (4,5,y4,x5,k) was (3, —)-triggered, (5,4, z5) must be table-
defined. If C' = (3,4, y3, x4, k) was (5, +)-triggered, then it was necessarily during
the call to FindNewPaths(5, 4+, 25) which implies that x5 was pending.

We now distinguish two cases depending on how (5,4, x5) became table-
defined or pending. Assume first that this was because of a distinguisher’s call

Indifferentiability of Iterated Even-Mansour Ciphers 549

to Query(5, -, -). There are at most g such calls, hence there are at most ¢ possibil-
ities for x5. There are at most 2¢ possibilities for y3 by Lemma 10. Moreover, for
each possible pair (ys, z5), there is at most one possibility for the table-defined
query (4, x4, y4) since otherwise this would contradict Lemma 11 (note that one
must have x4 ® y4 = y3 ® 5). Hence there are at most 2¢> possibilities in that
case.

Assume now that (5,4, z5) was a non-initiating pending query in the same
query cycle in which C was triggered, or became table-defined during a previous
query cycle than the one where C was triggered and for which (5,4, z5) was
neither the initiating query nor became table-defined during the ReadTape call
for the initiating query. In all cases there exists a table-defined (3, 4)-2chain C" =
(3,4, y4, 2y, k') distinct from (3,4, y3, x4, k) such that z5 = r(C’) = v} & 2, D 5.
Since we also have x5 = y4 ® x4 ® y3, we obtain x4 ® ys ® 24 ® y) = ys B v5.
If y3 = y5, by Lemmall we have z4, =) and C' = (3,4,ys,24,k) = C,
contradicting our assumption. On the other hand, for a fixed (orderless) pair of
ys # y4, the (orderless) pair of (4,x4,y4) and (4, 2/, y)) is unique by Lemmas 11
and 12 (otherwise, one of the lemmas must be violated by the two pairs). There
are at most (%) = ¢(2¢ — 1) choices of y3 and yj; for each pair there is at most
one (orderless) pair of (4,z4,y4) and (4,2},y}), so there are 2 ways to combine
the queries to form two 2chains. Moreover, C’ must either have been completed
during a previous query cycle than the one where C' is triggered, or must have
been triggered before C' in the same query cycle and have made x5 pending
(in which case C was triggered by (5,4, z5)). Thus each way to combine ys,
Y5, (4,24,94) and (4,2},y4) to form two 2chains corresponds to at most one
(3,+)- or (5, —)-triggered 2chain, so at most 4¢® — 2q such 2chains are triggered.
Combining both cases, the number of (3,—)- or (5,+)-triggered 2chains is at
most 6¢% — 2q.

Lemma 14. In a good execution of Ga, |Ps| < 6¢% and |Py| < 6¢°.

Proof. By Lemma8, the number of table-defined queries (2, z2,y2) (and hence
the size of P5) cannot exceed the sum of

— the number of distinguisher’s calls to Query(2, -,),

— the number of (3,4)-2chains that were (5, +)-triggered,

— the number of (5, 1)-2chains that were (4, —)-triggered,

— the number of (4, 5)-2chains that were either (3, —)- or (1, +)-triggered.

There are at most g entries of the first type by the assumption that the distin-
guisher makes at most ¢ oracle queries. Any 2chain mentioned for the other cases
are either wrapping, (3, —)-triggered, or (5, +)-triggered 2chains. By Lemmas9
and 13, there are at most ¢ + 6¢> — 2q entries of the three other types in total.
Thus, we have |P| < g + q + 6¢® — 2q = 6¢>. Symmetrically, |P;| < 6¢>. 0

Lemma 15. In a good execution of G, at most 12¢> 2chains are triggered
in total.

550 Y. Dai et al.

Proof. Since the simulator doesn’t abort in good executions by Lemma6, any
triggered 2chain belongs to a complete path at the end of the execution. By
Lemma 7, at most one of the five 2chains belonging to a complete path is trig-
gered in a good execution. Hence, there is a bijective mapping from the set of
triggered 2chains to the set of complete paths existing at the end of the execution.
Consider all (3,4)-2chains which are table-defined at the end of the execution.
Each such 2chain belongs to at most one complete path by Lemma 3. Hence,
the number of complete paths at the end of the execution cannot exceed the
number of table-defined (3,4)-2chains, which by Lemmas 10 and 14 is at most
2q - 6¢ = 12¢°3. a

Lemma 16. In a good execution of Ga, we have |T| < 12¢° + q.

Proof. Recall that the table T is used to maintain the cipher queries that have
been issued. In Gs, no new cipher query is issued in Check called in procedure
Trigger. So the simulator issues a table-undefined cipher query only if the path
containing the cipher query has been triggered. The number of triggered paths
is at most 12¢°, while the distinguisher issues at most ¢ cipher queries. Thus the
number of table-defined cipher queries is at most 12¢> + g¢. a

Lemma 17. In a good execution of G, |P1| < 12¢% + q and |Ps| < 12¢3 + q.

Proof. By Lemma8, the number of table-defined queries (1,z1,y1) (and hence
the size of P;) cannot exceed the sum of the number of distinguisher’s call to
Query(1, -, -), which is at most ¢, and the total number of triggered 2chains, which
is at most 12¢® by Lemma 15. Therefore, the size of |P;| is at most 12¢> +¢. The
same reasoning applies to |Ps|. O

The proof of the following lemma can be found in the full version. It follows in
a straightforward manner from the previous lemmas and by inspection of the
pseudocode.

Lemma 18. In good executions of Ga, the simulator runs in time O(q®) and
uses O(q*) space.

Due to space limitations, we present the proofs of the remaining theorems in

the full version [19].

5.5 Probability of Good Executions

Theorem 19. An execution of Go is good with probability at least

1—4.2x108¢'2/2™.

5.6 Indistinguishability of G; and G4

Theorem 20. Any distinguisher with q queries cannot distinguish Gy from Gy
with advantage more than 2 x 1012¢12 /2",

Indifferentiability of Iterated Even-Mansour Ciphers 551

6 Final Thoughts: 4 and 6 Rounds

We conclude the paper with some more remarks on 4- and 6-round simulators,
as a means of providing some extra intuition on our work. The 6-round simulator
outlined below is also interesting for reasons of its own, as it achieves significantly
better security and efficiency than what we achieve in this paper at 5 rounds.

A FAILED 4-ROUND SIMULATOR. Naturally, any simulator for 4-round iterated
Even-Mansour with a non-idealized key schedule can only fail (at least, as long
as the distinguisher is allowed to be non-sequential) given the attack presented in
Sect. 3. Nonetheless, it can be interesting to review where the indifferentiability
proof breaks down if we attempt a straightforward “collapsation” of our 5-round
simulator to 4 rounds.

Recall that our 5-round simulator completes chains of length 3. E.g., a for-
ward query Ps(z3) will cause a chain to be completed for each previously estab-
lished pair of queries Pi(x1) = y1, Pa(x2) = y2 such that y1 ® xo = yo P w3,
and in the course of completing such a chain a new query P5_1(y5) will be made
and the chain will be adapted at P,. As the P; L_query may trigger several fresh
chain completions of its own, the process recurses, “bouncing back” between
chains triggered by Ps3(-)- and Pgl(-)—queries. Finally, as described, the 5-round
simulator actually waits for the recursive process of chain detections to stop
before adapting all detected chains at P, with each detected chain ultimately
being adapted at “its own” Pj-query.

Similarly, one can imagine a 4-round simulator that attempts to complete all
paths of length 3 in the same recursive fashion, but that adapts paths slightly
differently: because of the missing round, a path is not adapted by “plugging val-
ues in at both ends” of a table P;, but rather by sampling two adjacent values y;,
;41 non-independently such that y; $x;11 = k where k is the key for the path in
question. In a nutshell, the problem with this approach is that because endpoints
are shared between paths, simultaneous systems of equations can arise that have
no solutions. (In turn, the existence of such unsolvable systems can be traced
back to configurations in which “cycles of paths” arise. Such a counterexample
can be reconstructed, e.g., from the attack of Sect. 3.)

A 6-ROUND SIMULATOR. At the opposite, our 5-round simulator enjoys a rather
straightforward adaption to 6 rounds. The 6-round version holds some interest
because it has a (theoretically) simpler analysis as well as improved efficiency
and security.

The basic idea for the 6-round simulator is to detect paths of length 3 as well,
but due to the extra round some leeway is afforded, and not all paths need be
detected.!! Specifically, the 6-round simulator detects paths at positions 2-3-4,
3-4-5, 6-1-2 and 5-6-1. We shall refer to these position groups as detect zones.
For example, a forward query Ps(x5) for which there exist two previous queries

11 Tndeed, detecting all paths of length 3 would also be problematic for the termination
argument, given the larger number of rounds.

552 Y. Dai et al.

P3(x3) = y3 and Py(x4) = y4 such that ys B xy = ys ® x5 would trigger a path by
virtue of the 3-4-5 detect zone. We refer to 2-3-4 and 3-4-5 as the middle detect
zones and to 6-1-2 and 5-6-1 as the outer detect zones. One can observe that
four distinct detect zones exist, each of which has two “trigger points”. (E.g.,
the 2-3-4 detect zone is triggered by queries Py(-) and Py '(+).) Structurally this
makes the 6-round simulator very similar to the 8-round Feistel simulator of [20]
(which was indeed an early source of inspiration for this work).

One can then observe that path completions triggered by either of the middle
detect zones do not add queries to positions 3 and 4, while each path triggered
by an outer detect zone will require a separate distinguisher query to set up.
By a standard termination argument due to Seurin [44], this caps the number of
paths completed by the simulator to O(g?) (the product of the size of Py and Py),
an improvement over the O(¢®) bound from our 5-round simulator. Further, a
refined analysis of bad events (some of which can be omitted for the 6-round
simulator) pushes security all the way to O(¢%/2"), a substantial improvement
over previous indifferentiability bounds. However, further details are deferred to
the full version of this paper.

Acknowledgments. We thank Dana Dachman-Soled and Jonathan Katz for discus-
sions that led to the termination argument used in this work. The first author was
supported by the National Basic Research Program of China Grant 2011CBA00300,
2011CBA00301, the National Natural Science Foundation of China Grant 61033001,
61361136003. The second author was partially supported by the French Agence
Nationale de la Recherche through the BRUTUS project under Contract ANR-14-
CE28-0015. The third author was supported by National Natural Science Foundation
of China Grant 20131351464. Work of the fourth author was performed under financial
assistance award 7TONANB15H328 from the U.S. Department of Commerce, National
Institute of Standards and Technology.

References

1. Andreeva, E., Bogdanov, A., Dodis, Y., Mennink, B., Steinberger, J.P.: On the
indifferentiability of key-alternating ciphers. In: Canetti, R., Garay, J.A. (eds.)
CRYPTO 2013. LNCS, vol. 8042, pp. 531-550. Springer, Heidelberg (2013). doi:10.
1007/978-3-642-40041-4_29

2. Andreeva, E., Bogdanov, A., Mennink, B.: Towards understanding the known-key
security of block ciphers. In: Moriai, S. (ed.) FSE 2013. LNCS, vol. 8424, pp.
348-366. Springer, Heidelberg (2014). doi:10.1007/978-3-662-43933-3_18

3. Bellare, M., Kohno, T.: A theoretical treatment of related-key attacks: RKA-PRPs,
RKA-PRFs, and applications. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol.
2656, pp. 491-506. Springer, Heidelberg (2003). doi:10.1007/3-540-39200-9-31

4. Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated key exchange secure
against dictionary attacks. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol.
1807, pp. 139-155. Springer, Heidelberg (2000). doi:10.1007/3-540-45539-6_11

5. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for design-
ing efficient protocols. In: ACM Conference on Computer and Communications
Security, pp. 62-73 (1993)

http://dx.doi.org/10.1007/978-3-642-40041-4_29
http://dx.doi.org/10.1007/978-3-642-40041-4_29
http://dx.doi.org/10.1007/978-3-662-43933-3_18
http://dx.doi.org/10.1007/3-540-39200-9_31
http://dx.doi.org/10.1007/3-540-45539-6_11

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Indifferentiability of Iterated Even-Mansour Ciphers 553

Bellare, M., Rogaway, P.: The security of triple encryption and a framework for
code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS,
vol. 4004, pp. 409-426. Springer, Heidelberg (2006). doi:10.1007/11761679_-25. Full
version: http://eprint.iacr.org/2004/331

Biham, E.: New types of cryptanalytic attacks using related keys. J. Cryptol. 7(4),
229-246 (1994)

Biryukov, A., Khovratovich, D., Nikoli¢, I.: Distinguisher and related-key attack
on the full AES-256. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp.
231-249. Springer, Heidelberg (2009). doi:10.1007/978-3-642-03356-8_14

Black, J.: The ideal-cipher model, revisited: an uninstantiable blockcipher-based
hash function. In: Robshaw, M. (ed.) FSE 2006. LNCS, vol. 4047, pp. 328-340.
Springer, Heidelberg (2006). doi:10.1007/11799313_21

Black, J., Rogaway, P., Shrimpton, T.: Black-box analysis of the block-cipher-based
hash-function constructions from PGV. In: Yung, M. (ed.) CRYPTO 2002. LNCS,
vol. 2442, pp. 320-335. Springer, Heidelberg (2002). doi:10.1007/3-540-45708-9_21
Bogdanov, A., Knudsen, L.R., Leander, G., Standaert, F.-X., Steinberger, J.,
Tischhauser, E.: Key-alternating ciphers in a provable setting: encryption using
a small number of public permutations - (Extended abstract). In: Pointcheval, D.,
Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 45-62. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-29011-4_5

Chen, S., Lampe, R., Lee, J., Seurin, Y., Steinberger, J.: Minimizing the two-
round Even-Mansour cipher. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO
2014. LNCS, vol. 8616, pp. 39-56. Springer, Heidelberg (2014). doi:10.1007/
978-3-662-44371-2_3. Full version: http://eprint.iacr.org/2014/443

Chen, S., Steinberger, J.: Tight security bounds for key-alternating ciphers. In:
Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 327—
350. Springer, Heidelberg (2014). doi:10.1007/978-3-642-55220-5_19. Full version:
http://eprint.iacr.org/2013/222

Cogliati, B., Seurin, Y.: On the provable security of the iterated Even-
Mansour cipher against related-key and chosen-key attacks. In: Oswald, E.,
Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 584-613.
Springer, Heidelberg (2015). doi:10.1007/978-3-662-46800-5-23. Full version:
http://eprint.iacr.org/2015/069

Cogliati, B., Seurin, Y.: Strengthening the known-key security notion for block
ciphers. In: Peyrin, T. (ed.) FSE 2016. LNCS, vol. 9783, pp. 494-513. Springer,
Heidelberg (2016). doi:10.1007/978-3-662-52993-5_25

Coron, J., Holenstein, T., Kiinzler, R., Patarin, J., Seurin, Y., Tessaro, S.: How to
build an ideal cipher: the indifferentiability of the Feistel construction. J. Cryptol.
29(1), 61-114 (2016)

Coron, J.-S., Dodis, Y., Malinaud, C., Puniya, P.: Merkle-Damgard revisited: how
to construct a hash function. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621,
pp- 430-448. Springer, Heidelberg (2005). doi:10.1007/11535218_26

Coron, J.-S., Patarin, J., Seurin, Y.: The random oracle model and the ideal cipher
model are equivalent. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp.
1-20. Springer, Heidelberg (2008). doi:10.1007/978-3-540-85174-5_1

Dai, Y., Seurin, Y., Steinberger, J.P., Thiruvengadam, A.: Five rounds are suf-
ficient and necessary for the indifferentiability of iterated Even-Mansour. IACR
Cryptology ePrint Archive, Report 2017/042 (2017). http://eprint.iacr.org/2017/
042

http://dx.doi.org/10.1007/11761679_25
http://eprint.iacr.org/2004/331
http://dx.doi.org/10.1007/978-3-642-03356-8_14
http://dx.doi.org/10.1007/11799313_21
http://dx.doi.org/10.1007/3-540-45708-9_21
http://dx.doi.org/10.1007/978-3-642-29011-4_5
http://dx.doi.org/10.1007/978-3-662-44371-2_3
http://dx.doi.org/10.1007/978-3-662-44371-2_3
http://eprint.iacr.org/2014/443
http://dx.doi.org/10.1007/978-3-642-55220-5_19
http://eprint.iacr.org/2013/222
http://dx.doi.org/10.1007/978-3-662-46800-5_23
http://eprint.iacr.org/2015/069
http://dx.doi.org/10.1007/978-3-662-52993-5_25
http://dx.doi.org/10.1007/11535218_26
http://dx.doi.org/10.1007/978-3-540-85174-5_1
http://eprint.iacr.org/2017/042
http://eprint.iacr.org/2017/042

554

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

Y. Dai et al.

Dai, Y., Steinberger, J.: Indifferentiability of 8-round Feistel networks. In:
Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9814, pp. 95—
120. Springer, Heidelberg (2016). doi:10.1007/978-3-662-53018-4_4. Full version:
http://eprint.iacr.org/2015/1069

Demay, G., Gazi, P., Hirt, M., Maurer, U.: Resource-restricted indifferentiability.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
664-683. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38348-9_39. Full ver-
sion: http://eprint.iacr.org/2012/613

Desai, A.: The security of all-or-nothing encryption: protecting against exhaustive
key search. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 359-375.
Springer, Heidelberg (2000). doi:10.1007/3-540-44598-6_23

Dodis, Y., Stam, M., Steinberger, J., Liu, T.: Indifferentiability of confusion-
diffusion networks. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016.
LNCS, vol. 9666, pp. 679-704. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-49896-5_24

Dunkelman, O., Keller, N., Shamir, A.: Minimalism in cryptography: the Even-
Mansour scheme revisited. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT
2012. LNCS, vol. 7237, pp. 336-354. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-29011-4_21

Even, S., Mansour, Y.: A construction of a cipher from a single pseudorandom
permutation. J. Cryptol. 10(3), 151-162 (1997)

Farshim, P., Procter, G.: The related-key security of iterated Even—Mansour
ciphers. In: Leander, G. (ed.) FSE 2015. LNCS, vol. 9054, pp. 342-363.
Springer, Heidelberg (2015). doi:10.1007/978-3-662-48116-5_17. Full version:
http://eprint.iacr.org/2014,/953

Fiat, A., Shamir, A.: How To prove yourself: practical solutions to identification
and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263,
pp. 186-194. Springer, Heidelberg (1987). doi:10.1007/3-540-47721-7_12
Granboulan, L.: Short signatures in the random oracle model. In: Zheng, Y. (ed.)
ASTACRYPT 2002. LNCS, vol. 2501, pp. 364-378. Springer, Heidelberg (2002).
doi:10.1007/3-540-36178-2_23

Guo, C., Lin, D.: Separating invertible key derivations from non-invertible ones:
sequential indifferentiability of 3-round Even-Mansour. Designs Codes Cryptogr.
81, 109-129 (2015). http://dx.doi.org/10.1007/s10623-015-0132-0

Guo, C., Lin, D.: Indifferentiability of 3-round Even-Mansour with random oracle
key derivation. IACR Cryptology ePrint Archive, Report 2016/894 (2016). http://
eprint.iacr.org/2016,/894

Hoang, V.T., Tessaro, S.: Key-alternating ciphers and key-length extension: exact
bounds and multi-user security. In: Robshaw, M., Katz, J. (eds.) CRYPTO
2016. LNCS, vol. 9814, pp. 3-32. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-53018-4_1

Holenstein, T., Kiinzler, R., Tessaro, S.: The equivalence of the random oracle
model and the ideal cipher model, revisited. In: Fortnow, L., Vadhan, S.P. (eds.)
Symposium on Theory of Computing - STOC 2011, pp. 89-98. ACM (2011). Full
version http://arxiv.org/abs/1011.1264

Iwata, T., Kohno, T.: New security proofs for the 3GPP confidentiality and
integrity algorithms. In: Roy, B., Meier, W. (eds.) FSE 2004. LNCS, vol. 3017,
pp. 427-445. Springer, Heidelberg (2004). doi:10.1007/978-3-540-25937-4_27
Kilian, J., Rogaway, P.: How to protect DES against exhaustive key search.
In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 252-267. Springer,
Heidelberg (1996). doi:10.1007/3-540-68697-5_20

http://dx.doi.org/10.1007/978-3-662-53018-4_4
http://eprint.iacr.org/2015/1069
http://dx.doi.org/10.1007/978-3-642-38348-9_39
http://eprint.iacr.org/2012/613
http://dx.doi.org/10.1007/3-540-44598-6_23
http://dx.doi.org/10.1007/978-3-662-49896-5_24
http://dx.doi.org/10.1007/978-3-662-49896-5_24
http://dx.doi.org/10.1007/978-3-642-29011-4_21
http://dx.doi.org/10.1007/978-3-642-29011-4_21
http://dx.doi.org/10.1007/978-3-662-48116-5_17
http://eprint.iacr.org/2014/953
http://dx.doi.org/10.1007/3-540-47721-7_12
http://dx.doi.org/10.1007/3-540-36178-2_23
http://dx.doi.org/10.1007/s10623-015-0132-0
http://eprint.iacr.org/2016/894
http://eprint.iacr.org/2016/894
http://dx.doi.org/10.1007/978-3-662-53018-4_1
http://dx.doi.org/10.1007/978-3-662-53018-4_1
http://arxiv.org/abs/1011.1264
http://dx.doi.org/10.1007/978-3-540-25937-4_27
http://dx.doi.org/10.1007/3-540-68697-5_20

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

Indifferentiability of Iterated Even-Mansour Ciphers 555

Knudsen, L.R., Rijmen, V.: Known-key distinguishers for some block ciphers. In:
Kurosawa, K. (ed.) ASTACRYPT 2007. LNCS, vol. 4833, pp. 315-324. Springer,
Heidelberg (2007). doi:10.1007/978-3-540-76900-2_19

Lai, X., Massey, J.L.: Hash functions based on block ciphers. In: Rueppel, R.A.
(ed.) EUROCRYPT 1992. LNCS, vol. 658, pp. 55-70. Springer, Heidelberg (1993).
doi:10.1007/3-540-47555-9_5

Lampe, R., Patarin, J., Seurin, Y.: An asymptotically tight security analysis of
the iterated Even-Mansour cipher. In: Wang, X., Sako, K. (eds.) ASTACRYPT
2012. LNCS, vol. 7658, pp. 278-295. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-34961-4_18

Lampe, R., Seurin, Y.: How to construct an ideal cipher from a small set of public
permutations. In: Sako, K., Sarkar, P. (eds.) ASTACRYPT 2013. LNCS, vol. 8269,
pp. 444-463. Springer, Heidelberg (2013). doi:10.1007/978-3-642-42033-7_23
Mandal, A., Patarin, J., Seurin, Y.: On the public indifferentiability and correla-
tion intractability of the 6-round Feistel construction. In: Cramer, R. (ed.) TCC
2012. LNCS, vol. 7194, pp. 285-302. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-28914-9_16. Full version: http://eprint.iacr.org/2011/496

Maurer, U., Renner, R., Holenstein, C.: Indifferentiability, impossibility results on
reductions, and applications to the random oracle methodology. In: Naor, M. (ed.)
TCC 2004. LNCS, vol. 2951, pp. 21-39. Springer, Heidelberg (2004). doi:10.1007/
978-3-540-24638-1_2

Merkle, R.C.: One way hash functions and DES. In: Brassard, G. (ed.) CRYPTO
1989. LNCS, vol. 435, pp. 428-446. Springer, New York (1990). doi:10.1007/
0-387-34805-0_40

Preneel, B., Govaerts, R., Vandewalle, J.: Hash functions based on block ciphers:
a synthetic approach. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp.
368-378. Springer, Heidelberg (1994). doi:10.1007/3-540-48329-2_31

Ristenpart, T., Shacham, H., Shrimpton, T.: Careful with composition: limita-
tions of the indifferentiability framework. In: Paterson, K.G. (ed.) EUROCRYPT
2011. LNCS, vol. 6632, pp. 487-506. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-20465-4_27

Seurin, Y.: Primitives et protocoles cryptographiques & sécurité prouvée. Ph.D.
thesis, Université de Versailles Saint-Quentin-en-Yvelines, France (2009)
Steinberger, J.: Improved security bounds for key-alternating ciphers via Hellinger
distance. IACR Cryptology ePrint Archive, Report 2012/481 (2012). http://eprint.
iacr.org/2012/481

Winternitz, R.S.: A secure one-way hash function built from DES. In: IEEE Sym-
posium on Security and Privacy, pp. 88—-90 (1984)

http://dx.doi.org/10.1007/978-3-540-76900-2_19
http://dx.doi.org/10.1007/3-540-47555-9_5
http://dx.doi.org/10.1007/978-3-642-34961-4_18
http://dx.doi.org/10.1007/978-3-642-34961-4_18
http://dx.doi.org/10.1007/978-3-642-42033-7_23
http://dx.doi.org/10.1007/978-3-642-28914-9_16
http://dx.doi.org/10.1007/978-3-642-28914-9_16
http://eprint.iacr.org/2011/496
http://dx.doi.org/10.1007/978-3-540-24638-1_2
http://dx.doi.org/10.1007/978-3-540-24638-1_2
http://dx.doi.org/10.1007/0-387-34805-0_40
http://dx.doi.org/10.1007/0-387-34805-0_40
http://dx.doi.org/10.1007/3-540-48329-2_31
http://dx.doi.org/10.1007/978-3-642-20465-4_27
http://dx.doi.org/10.1007/978-3-642-20465-4_27
http://eprint.iacr.org/2012/481
http://eprint.iacr.org/2012/481

	Indifferentiability of Iterated Even-Mansour Ciphers with Non-idealized Key-Schedules: Five Rounds Are Necessary and Sufficient
	1 Introduction
	2 Preliminaries
	3 Attack Against 4-Round Simulators
	4 The 5-Round Simulator
	4.1 Pseudocode of the Simulator and Game Transitions

	5 Proof of Indifferentiability
	5.1 Main Result and Proof Overview
	5.2 Executions of G2: Definitions and Basic Properties
	5.3 Bad Events
	5.4 Efficiency of the Simulator
	5.5 Probability of Good Executions
	5.6 Indistinguishability of G1 and G4

	6 Final Thoughts: 4 and 6 Rounds
	References

